
36th European Conference on
Object-Oriented Programming

ECOOP 2022, June 6–10, 2022, Berlin, Germany

Edited by

Karim Ali
Jan Vitek

LIPIcs – Vo l . 222 – ECOOP 2022 www.dagstuh l .de/ l ip i c s

Editors

Karim Ali
University of Alberta, Canada
karim.ali@ualberta.ca

Jan Vitek
Czech Technical University in Prague, Czech Republic
Northeastern University, Boston, MA, USA
j.vitek@neu.edu

ACM Classification 2012
Software and its engineering

ISBN 978-3-95977-225-9

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-225-9.

Publication date
June, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ECOOP.2022.0

ISBN 978-3-95977-225-9 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-5516-1376
mailto:karim.ali@ualberta.ca
https://orcid.org/0000-0003-4052-3458
mailto:j.vitek@neu.edu
https://www.dagstuhl.de/dagpub/978-3-95977-225-9
https://www.dagstuhl.de/dagpub/978-3-95977-225-9
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ECOOP.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-225-9
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ECOOP 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

This volume is dedicated to the memory of Camil Demetrescu and Eelco Visser.

Contents

Message from the Program Chairs
Karim Ali and Jan Vitek . 0:xi

Message from the Artifact Evaluation Chairs
Alessandra Gorla and Stefan Winter . 0:xiii

Foreword by the President of AITO
Eric Jul . 0:xv

Authors
. 0:xvii–0:xx

Regular Papers

Verified Compilation and Optimization of Floating-Point Programs in CakeML
Heiko Becker, Robert Rabe, Eva Darulova, Magnus O. Myreen, Zachary Tatlock,
Ramana Kumar, Yong Kiam Tan, and Anthony Fox . 1:1–1:28

Elementary Type Inference
Jinxu Zhao and Bruno C. d. S. Oliveira . 2:1–2:28

Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs
Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and
Behnaz Hassanshahi . 3:1–3:28

Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types
Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida . 4:1–4:29

How to Take the Inverse of a Type
Daniel Marshall and Dominic Orchard . 5:1–5:27

Compiling Volatile Correctly in Java
Shuyang Liu, John Bender, and Jens Palsberg . 6:1–6:26

Functional Programming with Datalog
André Pacak and Sebastian Erdweg . 7:1–7:28

Design-By-Contract for Flexible Multiparty Session Protocols
Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida . . . 8:1–8:28

A Deterministic Memory Allocator for Dynamic Symbolic Execution
Daniel Schemmel, Julian Büning, Frank Busse, Martin Nowack, and
Cristian Cadar . 9:1–9:26

Accumulation Analysis
Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst 10:1–10:30

Concolic Execution for WebAssembly
Filipe Marques, José Fragoso Santos, Nuno Santos, and Pedro Adão 11:1–11:29

Defining Corecursive Functions in Coq Using Approximations
Vlad Rusu and David Nowak . 12:1–12:24

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:viii Contents

REST: Integrating Term Rewriting with Program Verification
Zachary Grannan, Niki Vazou, Eva Darulova, and Alexander J. Summers 13:1–13:29

Static Analysis for AWS Best Practices in Python Code
Rajdeep Mukherjee, Omer Tripp, Ben Liblit, and Michael Wilson 14:1–14:28

What If We Don’t Pop the Stack? The Return of 2nd-Class Values
Anxhelo Xhebraj, Oliver Bračevac, Guannan Wei, and Tiark Rompf 15:1–15:29

Maniposynth: Bimodal Tangible Functional Programming
Brian Hempel and Ravi Chugh . 16:1–16:29

Synchron – An API and Runtime for Embedded Systems
Abhiroop Sarkar, Bo Joel Svensson, and Mary Sheeran . 17:1–17:29

Direct Foundations for Compositional Programming
Andong Fan, Xuejing Huang, Han Xu, Yaozhu Sun, and
Bruno C. d. S. Oliveira . 18:1–18:28

Low-Level Bi-Abduction
Lukáš Holík, Petr Peringer, Adam Rogalewicz, Veronika Šoková, Tomáš Vojnar,
and Florian Zuleger . 19:1–19:30

Functional Programming for Distributed Systems with XC
Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Guido Salvaneschi, and
Mirko Viroli . 20:1–20:28

PEDroid: Automatically Extracting Patches from Android App Updates
Hehao Li, Yizhuo Wang, Yiwei Zhang, Juanru Li, and Dawu Gu 21:1–21:31

Ferrite: A Judgmental Embedding of Session Types in Rust
Ruo Fei Chen, Stephanie Balzer, and Bernardo Toninho . 22:1–22:28

A Self-Dual Distillation of Session Types (Pearl)
Jules Jacobs . 23:1–23:22

JavaScript Sealed Classes
Manuel Serrano . 24:1–24:27

Union Types with Disjoint Switches
Baber Rehman, Xuejing Huang, Ningning Xie, and Bruno C. d. S. Oliveira 25:1–25:31

Fair Termination of Multiparty Sessions
Luca Ciccone, Francesco Dagnino, and Luca Padovani . 26:1–26:26

API Generation for Multiparty Session Types, Revisited and Revised Using
Scala 3 (Pearl)

Guillermina Cledou, Luc Edixhoven, Sung-Shik Jongmans, and José Proença 27:1–27:28

Global Type Inference for Featherweight Generic Java
Andreas Stadelmeier, Martin Plümicke, and Peter Thiemann . 28:1–28:27

Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with
BackREST

François Gauthier, Behnaz Hassanshahi, Benjamin Selwyn-Smith,
Trong Nhan Mai, Max Schlüter, and Micah Williams . 29:1–29:30

Contents 0:ix

Qilin: A New Framework For Supporting Fine-Grained Context-Sensitivity in
Java Pointer Analysis

Dongjie He, Jingbo Lu, and Jingling Xue . 30:1–30:29

NWGraph: A Library of Generic Graph Algorithms and Data Structures in C++20
Andrew Lumsdaine, Luke D’Alessandro, Kevin Deweese, Jesun Firoz,
Xu Tony Liu, Scott McMillan, John Phillip Ratzloff, and Marcin Zalewski 31:1–31:28

Extended Abstracts

Vincent: Green Hot Methods in the JVM
Kenan Liu , Khaled Mahmoud, Joonhwan Yoo, and Yu David Liu 32:1–32:30

Hinted Dictionaries: Efficient Functional Ordered Sets and Maps
Amir Shaikhha, Mahdi Ghorbani, and Hesam Shahrokhi . 33:1–33:3

Slicing of Probabilistic Programs Based on Specifications
Marcelo Navarro and Federico Olmedo . 34:1–34:2

Prisma: A Tierless Language for Enforcing Contract-Client Protocols in
Decentralized Applications

David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi,
Sebastian Faust, and Mira Mezini . 35:1–35:4

ECOOP 2022

Message from the Program Chairs

Started in 1987, ECOOP is Europe’s oldest programming conference, welcoming papers on all
practical and theoretical investigations of programming languages, systems and environment
providing innovative solutions to real problems as well as evaluations of existing solutions.
Papers were submitted to one of four categories: Research for papers that advance the
state of the art in programming; Reproduction for empirical evaluations that reconstructs a
published experiment in a different context in order to validate the results of that earlier
work; Experience for applications of known techniques in practice; and Pearl for papers that
either explain a known idea in an elegant way or unconventional papers introducing ideas
that may take some time to substantiate. ECOOP is a selective venue, with acceptance,
by traditio, capped at 25% of all submissions and re-submissions. The chairs thank the
Program Committee: A. Donaldson, B. Hermann, M. Sridharan, S. Alimadadi, A. Bieniusa,
S. Blackburn, S. Blazy, E. Brady, L.r Bulej, S. Chiba, A. Cohen, E. Darulova, W. De Meuter,
D. Dreyer, S. Drossopoulou, S. Ducasse, S. Erdweg, S. Fowler, J. Franco, D. Garg, S. Gay,
J. Gibbons, E. Gonzalez Boix, P. Haller, R. Hirschfeld, T. Hosking, D. Lea, M. Luján, M.
Madsen, A. Møller, J. Noble, M. Odersky, B. C.d.S. Oliveira, K. Ostermann, T. Petricek,
A. Potanin, M. Rapoport, M. Rigger, G. Salvaneschi, T. Schrijvers, M. Serrano, A. Silva,
E. Tosch, L. Tratt, V. Vasconcelos, E. Visser, T. Wrigstad, T. Xie, J. Xue, E. Zucca. We
thank the Extended Review Committee: Q. Stiévenart, C. Koparkar, K. Narasimhan, S.
Singh, J. Yang, L. De Simone, M. Jimenez, T. Nakamaru, J. Immanuel Brachthäuser, O.
Bračevac, J. Norlinder, D. He, C. Zhang, M. Kruliš, V. Dort, V. Horky, W. Ye, B. Rehman,
K. Marussy, P. Koronkevich, H. Dang, A. Tondwalkar, I. Kabir, A. Renda, M. Chiari, O.
Flückiger, P. Maj, C. Hsieh, M. Raab, M. Schröder, D. Justo, L. Schütze, P. Weisenburger,
E. D’Osualdo, S. Keuchel, J. An, S. Keidel, P. Rein, T. Mattis, A. Gorla, S. Winter. This
year saw a number of innovations:

Multiple rounds. ECOOP has two main rounds of submissions per year. Each round
supports both minor and major revisions. Major revisions are handled in the next round
(either the same year or the next) by the same reviwers.
No format or length restrictions. In order reduce friction for authors, papers can
come in any format and at any length. This applies to submisisions, final versions must
abide by the publisher’s requirements.
Arfitacts and Papers together. Every submitted paper can be accompanied with an
artifact, submitted 10 days after the paper. Both submission are evaluated in parallel by
overlapping committees as members of the artifact evaluation committee were invited to
served on the conference review committee.
Journal First/Last. Papers can be submittted either one of three associated journals
and be invited to present at the meeting. Furthermore, some accepted papers can be
forward to journals.

Overall, we found these innovations to have worked well. Clearly more experience is
needed to draw any broader conclusions. We do encourage future chair to keep experimenting.

Karim Ali Jan Vitek

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Message from the Artifact Evaluation Chairs

ECOOP has a long-standing tradition of offering artifact evaluation dating back to 2013. For
the first time this year, though, the artifact evaluation process involved every single paper
submission to ECOOP 2022, rather than just accepted papers, and happened in parallel with
the paper review process. Besides providing feedback on the artifacts irrespective of paper
acceptance, evaluation results were made available to the technical PC. Artifact submissions
could thus provide more insights on the technical contributions described in the papers, and
help to improve the overall review process.

To handle the higher review load that such a process entails, we recruited an artifact
evaluation committee that was almost twice as large as for last year’s ECOOP and included
both experienced and novice artifact reviewers. The submission deadlines for artifacts were
just 10 days after the paper deadlines for both submission rounds. We received a total of
57 submissions (39 for R1 and 18 for R2). After a kick-the tires review and author response
phase, during which authors had the opportunity to clarify or address technical issues with
their submissions, each submitted artifact was reviewed by at least three committee members,
leading to an overall review load of 4–5 artifact reviews per committee member.

Following the positive experience with adopting ACM’s artifact badges for ECOOP 2021,
we adopted the same badging policies for ECOOP 2022. The artifact evaluation committee
positively evaluated 46 submissions (33/13 for R1/R2) as functional or reusable, out of which
25 belong to papers to appear in the technical program of ECOOP 2022. Seven submitted
artifacts (4/3 in R1/R2) that did not pass the bar for the functional and reusable badges,
were found eligible for the available badge, 2 of which are associated with papers accepted
for presentation at ECOOP 2022 (both from R1).

To streamline the artifact review process and to decouple artifact from paper review
aspects, we asked authors to submit documentation of explicit claims in a pre-specified
format that the artifact evaluation committee checked the artifacts against. At the same
time, the PC could assess the importance of these claims for the submitted papers as a
frame of reference for the strength of support for the paper that an artifact can provide.
This separation greatly facilitated the artifact evaluation committee’s discussions regarding
which badges to award. The details of this process are documented in the call for artifacts
(https://doi.org/10.5281/zenodo.6553744), the artifact submission template (https:
//doi.org/10.5281/zenodo.5720714), and an artifact review template (https://doi.org/
10.5281/zenodo.5750738) that we provided as guidance for artifact reviewers in addition
to prior community guidance linked from the call for artifacts.

The smooth and thorough artifact evaluation process would have not been possible
without the 39 members of the committee, who handled the artifact review workload and
contributed to the technical PC discussions with great dedication. For this reason, we would
like to thank them for their valuable work and the inspiring discussions.

Alessandra Gorla Stefan Winter
Artifact Evaluation Co-chair Artifact Evaluation Co-chair
IMDEA Software Institute Ludwig-Maximilians-Universität München

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.5281/zenodo.6553744
https://doi.org/10.5281/zenodo.5720714
https://doi.org/10.5281/zenodo.5720714
https://doi.org/10.5281/zenodo.5750738
https://doi.org/10.5281/zenodo.5750738
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Foreword by the President of AITO

Welcome back to a physical conference – after two years of pandemic, we are again able
to hold a non-virtual conference. Corona has changed the world – there certainly will be
more virtual interaction than before – witness VCOOP. Will physical conferences survive
this seismic shift in ways to interact? Well, perhaps if the traditional conference format is
adjusted to the new times. The ECOOP 2022 team has done a tremendous job of reigniting
ECOOP – a huge thanx to them and their efforts – which have appeared to pay off, as
both paper submission, attendance, and the number of workshops has increased. AITO will
continue to explore new ways of adapting to the changing realities that scientific conferences
face today – as spearheaded by the ECOOP 2022 organizers – we look forward to a really
good conference with lots of great paper, personal interaction, excellent keynotes – including
a Dahl-Nygaard Senior winner, Dan Ingalls. Enjoy the conference – and modern-day Berlin.

Eric Jul
AITO President

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

List of Authors

Pedro Adão (11)
Instituto Superior Técnico,
University of Lisbon, Portugal;
Instituto de Telecomunicações, Aveiro, Portugal

Giorgio Audrito (20)
University of Turin, Italy

Stephanie Balzer (22)
Carnegie Mellon University,
Pittsburgh, PA, USA

Heiko Becker (1)
MPI-SWS, Saarland Informatics Campus, (SIC),
Saarbrücken, Germany

John Bender (6)
Sandia National Laboratories,
Albuquerque, NM, USA

Oliver Bračevac (15)
Purdue University, West Lafayette, IN, USA

Frank Busse (9)
Imperial College London, UK

Julian Büning (9)
RWTH Aachen University, Germany

Cristian Cadar (9)
Imperial College London, UK

Roberto Casadei (20)
University of Bologna, Cesena, Italy

Madhurima Chakraborty (3)
University of California, Riverside, CA, USA

Ruo Fei Chen (22)
Independent Researcher, Leipzig, Germany

Ravi Chugh (16)
University of Chicago, IL, USA

Luca Ciccone (26)
University of Torino, Italy

Guillermina Cledou (27)
HASLab, INESC TEC, Porto, Portugal;
University of Minho, Braga, Portugal

Luke D’Alessandro (31)
Indiana University, Bloomington, IN, USA

Francesco Dagnino (26)
University of Genova, Italy

Ferruccio Damiani (20)
University of Turin, Italy

Eva Darulova (1, 13)
Uppsala University, Sweden

Kevin Deweese (31)
Cadence Design Systems, San Jose, CA, USA

Luc Edixhoven (27)
Open University of the Netherlands,
Heerlen, The Netherlands;
NWO-I, Centrum Wiskunde & Informatica,
Amsterdam, The Netherlands

Sebastian Erdweg (7)
JGU Mainz, Germany

Michael D. Ernst (10)
University of Washington, Seattle, WA, USA

Andong Fan (18)
Zhejiang University, Hangzhou, China

Sebastian Faust (35)
Technische Universität Darmstadt, Germany

Jesun Firoz (31)
Pacific Northwest National Laboratory,
Richland, WA, USA

Anthony Fox (1)
Arm Limited, Cambridge, UK

José Fragoso Santos (11)
Instituto Superior Técnico, University of Lisbon,
Portugal; INESC-ID Lisbon, Portugal

François Gauthier (29)
Oracle Labs, Brisbane, Australia

Lorenzo Gheri (8)
Imperial College London, UK

Mahdi Ghorbani (33)
University of Edinburgh, UK

Zachary Grannan (13)
University of British Columbia,
Vancouver, Canada

Dawu Gu (21)
Shanghai Jiao Tong University, China

Behnaz Hassanshahi (3, 29)
Oracle Labs, Brisbane, Australia

Dongjie He (30)
The University of New South Wales,
Sydney, Australia

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-4049-1954
https://doi.org/10.4230/LIPIcs.ECOOP.2022.11
https://orcid.org/0000-0002-2319-0375
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://orcid.org/0000-0002-3481-2272
https://doi.org/10.4230/LIPIcs.ECOOP.2022.1
https://doi.org/10.4230/LIPIcs.ECOOP.2022.6
https://doi.org/10.4230/LIPIcs.ECOOP.2022.15
https://orcid.org/0000-0003-1661-0439
https://doi.org/10.4230/LIPIcs.ECOOP.2022.9
https://orcid.org/0000-0003-3917-6858
https://doi.org/10.4230/LIPIcs.ECOOP.2022.9
https://orcid.org/0000-0002-3599-7264
https://doi.org/10.4230/LIPIcs.ECOOP.2022.9
https://orcid.org/0000-0001-9149-949X
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.3
https://orcid.org/0000-0001-5796-4386
https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://doi.org/10.4230/LIPIcs.ECOOP.2022.16
https://orcid.org/0000-0001-9515-5280
https://doi.org/10.4230/LIPIcs.ECOOP.2022.26
https://orcid.org/0000-0003-0006-6440
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.4230/LIPIcs.ECOOP.2022.31
https://orcid.org/0000-0003-3599-3535
https://doi.org/10.4230/LIPIcs.ECOOP.2022.26
https://orcid.org/0000-0001-8109-1706
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://orcid.org/0000-0002-6848-3163
https://doi.org/10.4230/LIPIcs.ECOOP.2022.1
https://doi.org/10.4230/LIPIcs.ECOOP.2022.13
https://doi.org/10.4230/LIPIcs.ECOOP.2022.31
https://orcid.org/0000-0002-6011-9535
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.4230/LIPIcs.ECOOP.2022.7
https://doi.org/10.4230/LIPIcs.ECOOP.2022.10
https://orcid.org/0000-0003-2124-9625
https://doi.org/10.4230/LIPIcs.ECOOP.2022.18
https://orcid.org/0000-0002-8625-4639
https://doi.org/10.4230/LIPIcs.ECOOP.2022.35
https://orcid.org/0000-0002-8174-2545
https://doi.org/10.4230/LIPIcs.ECOOP.2022.31
https://doi.org/10.4230/LIPIcs.ECOOP.2022.1
https://orcid.org/0000-0001-5077-300X
https://doi.org/10.4230/LIPIcs.ECOOP.2022.11
https://doi.org/10.4230/LIPIcs.ECOOP.2022.29
https://orcid.org/0000-0002-3191-7722
https://doi.org/10.4230/LIPIcs.ECOOP.2022.8
https://doi.org/10.4230/LIPIcs.ECOOP.2022.33
https://orcid.org/0000-0002-7042-7013
https://doi.org/10.4230/LIPIcs.ECOOP.2022.13
https://doi.org/10.4230/LIPIcs.ECOOP.2022.21
https://doi.org/10.4230/LIPIcs.ECOOP.2022.3
https://doi.org/10.4230/LIPIcs.ECOOP.2022.29
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xviii Authors

Brian Hempel (16)
University of Chicago, IL, USA

Lukáš Holík (19)
FIT, Brno University of Technology,
Czech Republic

Xuejing Huang (18, 25)
The University of Hong Kong, China

Jules Jacobs (23)
Radboud University Nijmegen, The Netherlands

Sung-Shik Jongmans (27)
Open University of the Netherlands,
Heerlen, The Netherlands;
NWO-I, Centrum Wiskunde & Informatica,
Amsterdam, The Netherlands

Martin Kellogg (10)
University of Washington, Seattle, WA, USA

David Kretzler (35)
Technische Universität Darmstadt, Germany

Ramana Kumar (1)
DeepMind, London, UK

Nicolas Lagaillardie (4)
Department of Computing,
Imperial College London, UK

Ivan Lanese (8)
Focus Team, University of Bologna, Italy;
Focus Team, INRIA, Sophia Antipolis, France

Hehao Li (21)
Shanghai Jiao Tong University, China

Juanru Li (21)
Shanghai Jiao Tong University, China

Ben Liblit (14)
Amazon Web Services, Arlington, VA, USA

Kenan Liu (32)
SUNY Binghamton, NY, USA

Shuyang Liu (6)
University of California, Los Angeles, CA, USA

Xu Tony Liu (31)
University of Washington, Seattle, WA, USA

Yu David Liu (32)
SUNY Binghamton, NY, USA

Jingbo Lu (30)
The University of New South Wales,
Sydney, Australia

Andrew Lumsdaine (31)
University of Washington, Seattle, WA, USA;
Pacific Northwest National Laboratory,
Richland, WA, USA;
TileDB, Inc., Cambridge, MA, USA

Khaled Mahmoud (32)
SUNY Binghamton, NY, USA

Trong Nhan Mai (29)
Oracle Labs, Brisbane, Australia

Filipe Marques (11)
Instituto Superior Técnico,
University of Lisbon, Portugal;
INESC-ID Lisbon, Portugal

Daniel Marshall (5)
School of Computing, University of Kent,
Canterbury, UK

Scott McMillan (31)
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, USA

Mira Mezini (35)
Technische Universität Darmstadt, Germany

Rajdeep Mukherjee (14)
Amazon Web Services, San Jose, CA, USA

Magnus O. Myreen (1)
Chalmers University of Technology,
Gothenburg, Sweden

Marcelo Navarro (34)
Computer Science Department (DCC),
University of Chile, Santiago, Chile

Rumyana Neykova (4)
Department of Computer Science,
Brunel University London, UK

Martin Nowack (9)
Imperial College London, UK

David Nowak (12)
Univ. Lille, CNRS, Centrale Lille, UMR 9189
CRIStAL, F-59000 Lille, France

Renzo Olivares (3)
University of California, Riverside, CA, USA

Bruno C. d. S. Oliveira (2, 18, 25)
The University of Hong Kong, China

Federico Olmedo (34)
Computer Science Department (DCC),
University of Chile, Santiago, Chile

https://doi.org/10.4230/LIPIcs.ECOOP.2022.16
https://orcid.org/0000-0001-6957-1651
https://doi.org/10.4230/LIPIcs.ECOOP.2022.19
https://orcid.org/0000-0002-8496-491X
https://doi.org/10.4230/LIPIcs.ECOOP.2022.18
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25
https://doi.org/10.4230/LIPIcs.ECOOP.2022.23
https://orcid.org/0000-0002-4394-8745
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.4230/LIPIcs.ECOOP.2022.10
https://orcid.org/0000-0002-6556-6457
https://doi.org/10.4230/LIPIcs.ECOOP.2022.35
https://orcid.org/0000-0002-2319-1933
https://doi.org/10.4230/LIPIcs.ECOOP.2022.1
https://orcid.org/0000-0002-6431-4100
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://orcid.org/0000-0003-2527-9995
https://doi.org/10.4230/LIPIcs.ECOOP.2022.8
https://doi.org/10.4230/LIPIcs.ECOOP.2022.21
https://doi.org/10.4230/LIPIcs.ECOOP.2022.21
https://orcid.org/0000-0002-2245-2839
https://doi.org/10.4230/LIPIcs.ECOOP.2022.14
https://doi.org/10.4230/LIPIcs.ECOOP.2022.32
https://orcid.org/0000-0002-1601-9086
https://doi.org/10.4230/LIPIcs.ECOOP.2022.6
https://orcid.org/0000-0003-3980-9803
https://doi.org/10.4230/LIPIcs.ECOOP.2022.31
https://doi.org/10.4230/LIPIcs.ECOOP.2022.32
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://orcid.org/0000-0002-9153-6622
https://doi.org/10.4230/LIPIcs.ECOOP.2022.31
https://doi.org/10.4230/LIPIcs.ECOOP.2022.32
https://doi.org/10.4230/LIPIcs.ECOOP.2022.29
https://orcid.org/0000-0002-2555-5382
https://doi.org/10.4230/LIPIcs.ECOOP.2022.11
https://orcid.org/0000-0002-4284-3757
https://doi.org/10.4230/LIPIcs.ECOOP.2022.5
https://orcid.org/0000-0003-1868-5178
https://doi.org/10.4230/LIPIcs.ECOOP.2022.31
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/LIPIcs.ECOOP.2022.35
https://orcid.org/0000-0002-8179-4396
https://doi.org/10.4230/LIPIcs.ECOOP.2022.14
https://orcid.org/0000-0002-9504-4107
https://doi.org/10.4230/LIPIcs.ECOOP.2022.1
https://doi.org/10.4230/LIPIcs.ECOOP.2022.34
https://orcid.org/0000-0002-2755-7728
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://orcid.org/0000-0002-1177-0233
https://doi.org/10.4230/LIPIcs.ECOOP.2022.9
https://doi.org/10.4230/LIPIcs.ECOOP.2022.12
https://doi.org/10.4230/LIPIcs.ECOOP.2022.3
https://doi.org/10.4230/LIPIcs.ECOOP.2022.2
https://doi.org/10.4230/LIPIcs.ECOOP.2022.18
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25
https://orcid.org/0000-0003-0217-6483
https://doi.org/10.4230/LIPIcs.ECOOP.2022.34

Authors 0:xix

Dominic Orchard (5)
School of Computing, University of Kent,
Canterbury, UK;
Department of Computer Science and
Technology, University of Cambridge, UK

André Pacak (7)
JGU Mainz, Germany

Luca Padovani (26)
University of Torino, Italy

Jens Palsberg (6)
University of California, Los Angeles, CA, USA

Petr Peringer (19)
FIT, Brno University of Technology,
Czech Republic

Martin Plümicke (28)
Duale Hochschule Baden-Württemberg
Stuttgart, Campus Horb, Germany

José Proença (27)
CISTER, ISEP, Polytechnic Institute of Porto,
Portugal

Robert Rabe (1)
TU München, Germany

John Phillip Ratzloff (31)
SAS Institute, Cary, NC, USA

Baber Rehman (25)
The University of Hong Kong, China

David Richter (35)
Technische Universität Darmstadt, Germany

Adam Rogalewicz (19)
FIT, Brno University of Technology,
Czech Republic

Tiark Rompf (15)
Purdue University, West Lafayette, IN, USA

Vlad Rusu (12)
Inria, Lille, France

Guido Salvaneschi (20, 35)
Universität St. Gallen, Switzerland

Nuno Santos (11)
Instituto Superior Técnico, University of Lisbon,
Portugal; INESC-ID Lisbon, Portugal

Abhiroop Sarkar (17)
Chalmers University of Technology,
Gothenburg, Sweden

Neil Sayers (8)
Imperial College London, UK;
Coveo Solutions Inc., Canada

Daniel Schemmel (9)
Imperial College London, UK

Max Schlüter (29)
Oracle Labs, Brisbane, Australia

Benjamin Selwyn-Smith (29)
Oracle Labs, Brisbane, Australia

Manuel Serrano (24)
Inria/UCA, Inria Sophia Méditerranée, 2004
route des Lucioles, Sophia Antipolis, France

Narges Shadab (10)
University of California, Riverside, CA, USA

Hesam Shahrokhi (33)
University of Edinburgh, UK

Amir Shaikhha (33)
University of Edinburgh, UK

Mary Sheeran (17)
Chalmers University of Technology,
Gothenburg, Sweden

Manu Sridharan (3, 10)
University of California, Riverside, CA, USA

Andreas Stadelmeier (28)
Duale Hochschule Baden-Württemberg
Stuttgart, Campus Horb, Germany

Alexander J. Summers (13)
University of British Columbia,
Vancouver, Canada

Yaozhu Sun (18)
The University of Hong Kong, China

Bo Joel Svensson (17)
Chalmers University of Technology,
Gothenburg, Sweden

Yong Kiam Tan (1)
Carnegie Mellon University,
Pittsburgh, PA, USA

Zachary Tatlock (1)
University of Washington, Seattle, WA, USA

Peter Thiemann (28)
Institut für Informatik,
Universität Freiburg, Germany

Bernardo Toninho (22)
NOVA LINCS, Nova University Lisbon,
Portugal

Omer Tripp (14)
Amazon Web Services, San Jose, CA, USA

ECOOP 2022

https://orcid.org/0000-0002-7058-7842
https://doi.org/10.4230/LIPIcs.ECOOP.2022.5
https://doi.org/10.4230/LIPIcs.ECOOP.2022.7
https://orcid.org/0000-0001-9097-1297
https://doi.org/10.4230/LIPIcs.ECOOP.2022.26
https://doi.org/10.4230/LIPIcs.ECOOP.2022.6
https://orcid.org/0000-0002-8264-8307
https://doi.org/10.4230/LIPIcs.ECOOP.2022.19
https://doi.org/10.4230/LIPIcs.ECOOP.2022.28
https://orcid.org/0000-0003-0971-8919
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.4230/LIPIcs.ECOOP.2022.1
https://doi.org/10.4230/LIPIcs.ECOOP.2022.31
https://orcid.org/0000-0002-9458-8428
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25
https://orcid.org/0000-0002-8672-0265
https://doi.org/10.4230/LIPIcs.ECOOP.2022.35
https://orcid.org/0000-0002-7911-0549
https://doi.org/10.4230/LIPIcs.ECOOP.2022.19
https://doi.org/10.4230/LIPIcs.ECOOP.2022.15
https://orcid.org/0000-0002-3495-2232
https://doi.org/10.4230/LIPIcs.ECOOP.2022.12
https://orcid.org/0000-0002-9324-8894
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/LIPIcs.ECOOP.2022.35
https://orcid.org/0000-0001-9938-0653
https://doi.org/10.4230/LIPIcs.ECOOP.2022.11
https://orcid.org/0000-0002-8991-9472
https://doi.org/10.4230/LIPIcs.ECOOP.2022.17
https://orcid.org/0000-0003-4718-7290
https://doi.org/10.4230/LIPIcs.ECOOP.2022.8
https://orcid.org/0000-0001-8769-7813
https://doi.org/10.4230/LIPIcs.ECOOP.2022.9
https://doi.org/10.4230/LIPIcs.ECOOP.2022.29
https://doi.org/10.4230/LIPIcs.ECOOP.2022.29
https://orcid.org/0000-0002-5240-1610
https://doi.org/10.4230/LIPIcs.ECOOP.2022.24
https://doi.org/10.4230/LIPIcs.ECOOP.2022.10
https://doi.org/10.4230/LIPIcs.ECOOP.2022.33
https://doi.org/10.4230/LIPIcs.ECOOP.2022.33
https://orcid.org/0000-0003-2509-0957
https://doi.org/10.4230/LIPIcs.ECOOP.2022.17
https://doi.org/10.4230/LIPIcs.ECOOP.2022.3
https://doi.org/10.4230/LIPIcs.ECOOP.2022.10
https://doi.org/10.4230/LIPIcs.ECOOP.2022.28
https://orcid.org/0000-0001-5554-9381
https://doi.org/10.4230/LIPIcs.ECOOP.2022.13
https://doi.org/10.4230/LIPIcs.ECOOP.2022.18
https://orcid.org/0000-0003-0363-1206
https://doi.org/10.4230/LIPIcs.ECOOP.2022.17
https://orcid.org/0000-0001-7033-2463
https://doi.org/10.4230/LIPIcs.ECOOP.2022.1
https://orcid.org/0000-0002-4731-0124
https://doi.org/10.4230/LIPIcs.ECOOP.2022.1
https://orcid.org/0000-0002-9000-1239
https://doi.org/10.4230/LIPIcs.ECOOP.2022.28
https://orcid.org/0000-0002-0746-7514
https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://orcid.org/0000-0002-2393-854X
https://doi.org/10.4230/LIPIcs.ECOOP.2022.14

0:xx Authors

Emilio Tuosto (8)
Gran Sasso Science Institute, L’Aquila, Italy

Niki Vazou (13)
IMDEA Software Institute, Madrid, Spain

Mirko Viroli (20)
University of Bologna, Cesena, Italy

Tomáš Vojnar (19)
FIT, Brno University of Technology,
Czech Republic

Yizhuo Wang (21)
Shanghai Jiao Tong University, China

Guannan Wei (15)
Purdue University, West Lafayette, IN, USA

Pascal Weisenburger (35)
Universität St. Gallen, Switzerland

Micah Williams (29)
Oracle, Durham, NC, USA

Michael Wilson (14)
Amazon Web Services, Seattle, WA, USA

Anxhelo Xhebraj (15)
Purdue University, West Lafayette, IN, USA

Ningning Xie (25)
University of Cambridge, UK

Han Xu (18)
Peking University, Beijing, China

Jingling Xue (30)
The University of New South Wales,
Sydney, Australia

Joonhwan Yoo (32)
SUNY Binghamton, NY, USA

Nobuko Yoshida (4, 8)
Imperial College London, UK

Marcin Zalewski (31)
NVIDIA, Seattle, WA, USA

Yiwei Zhang (21)
Shanghai Jiao Tong University, China

Jinxu Zhao (2)
Department of Computer Science,
The University of Hong Kong, China

Florian Zuleger (19)
Faculty of Informatics, TU Wien, Austria

Veronika Šoková (19)
FIT, Brno University of Technology,
Czech Republic

https://orcid.org/0000-0002-7032-3281
https://doi.org/10.4230/LIPIcs.ECOOP.2022.8
https://orcid.org/0000-0003-0732-5476
https://doi.org/10.4230/LIPIcs.ECOOP.2022.13
https://orcid.org/0000-0003-2702-5702
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://orcid.org/0000-0002-2746-8792
https://doi.org/10.4230/LIPIcs.ECOOP.2022.19
https://doi.org/10.4230/LIPIcs.ECOOP.2022.21
https://doi.org/10.4230/LIPIcs.ECOOP.2022.15
https://orcid.org/0000-0003-1288-1485
https://doi.org/10.4230/LIPIcs.ECOOP.2022.35
https://doi.org/10.4230/LIPIcs.ECOOP.2022.29
https://doi.org/10.4230/LIPIcs.ECOOP.2022.14
https://doi.org/10.4230/LIPIcs.ECOOP.2022.15
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25
https://orcid.org/0000-0002-2548-6866
https://doi.org/10.4230/LIPIcs.ECOOP.2022.18
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://doi.org/10.4230/LIPIcs.ECOOP.2022.32
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://doi.org/10.4230/LIPIcs.ECOOP.2022.8
https://doi.org/10.4230/LIPIcs.ECOOP.2022.31
https://doi.org/10.4230/LIPIcs.ECOOP.2022.21
https://doi.org/10.4230/LIPIcs.ECOOP.2022.2
https://orcid.org/0000-0003-1468-8398
https://doi.org/10.4230/LIPIcs.ECOOP.2022.19
https://orcid.org/0000-0003-1980-7245
https://doi.org/10.4230/LIPIcs.ECOOP.2022.19

Verified Compilation and Optimization of
Floating-Point Programs in CakeML
Heiko Becker !

MPI-SWS, Saarland Informatics Campus
(SIC), Saarbrücken, Germany

Robert Rabe
TU München, Germany

Eva Darulova !

Uppsala University, Sweden
Magnus O. Myreen !

Chalmers University of Technology,
Gothenburg, Sweden

Zachary Tatlock !

University of Washington,
Seattle, WA, USA

Ramana Kumar !

DeepMind, London, UK

Yong Kiam Tan !

Carnegie Mellon University,
Pittsburgh, PA, USA

Anthony Fox !

Arm Limited, Cambridge, UK

Abstract
Verified compilers such as CompCert and CakeML have become increasingly realistic over the last few
years, but their support for floating-point arithmetic has thus far been limited. In particular, they
lack the “fast-math-style” optimizations that unverified mainstream compilers perform. Supporting
such optimizations in the setting of verified compilers is challenging because these optimizations,
for the most part, do not preserve the IEEE-754 floating-point semantics. However, IEEE-754
floating-point numbers are finite approximations of the real numbers, and we argue that any compiler
correctness result for fast-math optimizations should appeal to a real-valued semantics rather than
the rigid IEEE-754 floating-point numbers.

This paper presents RealCake, an extension of CakeML that achieves end-to-end correctness
results for fast-math-style optimized compilation of floating-point arithmetic. This result is achieved
by giving CakeML a flexible floating-point semantics and integrating an external proof-producing
accuracy analysis. RealCake’s end-to-end theorems relate the I/O behavior of the original source
program under real-number semantics to the observable I/O behavior of the compiler generated and
fast-math-optimized machine code.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Software and its engineering → Compilers; Software and its engineering → Software performance

Keywords and phrases compiler verification, compiler optimization, floating-point arithmetic

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.1

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.10

Funding Eva Darulova: Part of this work was done while the author was at MPI-SWS, Germany.
Magnus O. Myreen: Supported by the Swedish Foundation for Strategic Research.
Zachary Tatlock: Supported in part by the U.S. Department of Energy under Award Number
DE-SC0022081 (ComPort), and by the National Science Foundation under Grant No. 1749570. Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of the DOE or NSF.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Heiko Becker, Robert Rabe, Eva Darulova, Magnus O. Myreen,
Zachary Tatlock, Ramana Kumar, Yong Kiam Tan, and Anthony Fox;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 1; pp. 1:1–1:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hbecker@mpi-sws.org
https://orcid.org/0000-0002-3481-2272
mailto:eva.darulova@it.uu.se
https://orcid.org/0000-0002-6848-3163
mailto:myreen@chalmers.se
https://orcid.org/0000-0002-9504-4107
mailto:ztatlock@cs.washington.edu
https://orcid.org/0000-0002-4731-0124
mailto:ramanakumar@google.com
https://orcid.org/0000-0002-2319-1933
mailto:yongkiat@cs.cmu.edu
https://orcid.org/0000-0001-7033-2463
mailto:anthony.fox@arm.com
https://doi.org/10.4230/LIPIcs.ECOOP.2022.1
https://doi.org/10.4230/DARTS.8.2.10
https://doi.org/10.4230/DARTS.8.2.10
https://doi.org/10.4230/DARTS.8.2.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Verified Compilation and Optimization of Floating-Point Programs in CakeML

1 Introduction

Verified compilers guarantee that the executable code they generate will only exhibit be-
haviors allowed by the semantics of the input program. Establishing such guarantees is
challenging [49], especially if the compiler is to perform sophisticated optimizations. Adding
new classes of optimizations requires significant design and proof engineering effort. Des-
pite tremendous progress, state-of-the-art verified compilers like CakeML [55] for ML and
CompCert [32] for C remain only moderately optimizing. While CakeML and CompCert
support classic optimizations like common subexpression and dead code elimination, their
compilation and optimization of floating-point programs is very limited: CompCert performs
only a few conservative optimizations and, prior to this work, CakeML did not support
floating-point arithmetic at all.

The limited support of floating-point programs in verified compilers is in stark contrast
to mainstream compiler frameworks like GCC [19] and LLVM [4]. Both of these compiler
frameworks support aggressive floating-point optimization via their fast-math flags [20, 57, 33,
7]. Fast-math optimizations include reassociating arithmetic, e.g., rewriting x×(x×(x×x)) →
(x × x) × (x × x) to enable common subexpression elimination; fused-multiply-add (FMA)
introduction, i.e., rewriting x × y + z → fma(x, y, z) for strength reduction and to avoid
intermediate rounding; as well as branch folding and dead code elimination by assuming
special floating-point values like Not-a-Number (NaN) do not arise.

While such optimizations are sound under real-number semantics, they generally do not
preserve IEEE-754 behavior [26], e.g., because floating-point arithmetic is non-associative
due to the inherent rounding at every intermediate operation. In part, this is why verified
compilers up until now have not supported fast-math optimizations: CompCert strictly
preserves IEEE-754 semantics [10], under which such optimizations are disallowed.

However, for many applications strict preservation of IEEE-754 semantics is overly
constraining and artificial, preventing useful performance optimizations. Numerical applica-
tions are typically designed implicitly assuming real-number arithmetic and are only later
implemented in floating-point arithmetic.1

The Icing language [5] proposes a more relaxed, non-deterministic semantics for floating-
point expressions that allows a limited set of fast-math-style optimizations to be applied.
Icing comes with a proof-of-concept optimizer, whose formal correctness proof shows that
the optimization result is one of those modeled by the semantics of the initial expression.

While Icing showed what it means to allow fast-math-style optimizations in a verified
compiler, Icing did not go as far as bounding the accuracy of the resulting, fast-math-optimized
code. Icing’s correctness theorems describe only the optimizations that a verified compiler can
apply to a floating-point expression, but not their effect on overall program behavior. Hence
the Icing optimizer cannot bound changes in the accuracy of the optimized floating-point
expression with respect to the real-valued semantics of the unoptimized expression.

We argue that a verified compiler must provide accuracy guarantees to reasonably
support fast-math-style optimizations. Applications in domains such as signal processing [12],
embedded controllers [38], and neural networks [23], which could be optimized with fast-
math-style optimizations, are designed to operate in noisy environments and can thus tolerate
a certain amount of floating-point roundoff error by design, however, this noise has to be
bounded. For example, a real-number version of an embedded controller is typically proven
correct (i.e. stable) with respect to bounded implementation noise [3]. At the same time,
performance is important and so developers are often indifferent to fine-grained floating-point
implementation decisions.

1 Error-free computation with rational or constructive real [8] libraries is often prohibitively expensive.

H. Becker et al. 1:3

To support such potentially safety-critical applications in a verified compiler, we introduce
a local, more flexible notion of correctness which we call error refinement: a floating-point
kernel within an application may be optimized (potentially changing its IEEE-754 behavior)
as long as its results remain within a user-specified error bound relative to the implicit
real-number semantics.

We formalize error refinement inside the CakeML compiler to support fast-math optimiz-
ations end-to-end. Our extension, which we call RealCake, carries source-level guarantees
down to fast-math-optimized executable machine code. That is, our final correctness theorem
shows that running the machine code for a fast-math-optimized floating-point program under
strict IEEE-754 semantics produces a result that is within a programmer-provided error
bound w.r.t. the unoptimized program evaluated under real-number semantics. While our
extension is done in the context of the CakeML compiler, we expect it to carry over to other
verified compilers like CompCert as well.

Our first key technical contribution is a relaxed floating-point semantics that allows
both fast-math-style optimizations as well as backward simulation soundness proofs (as
CakeML’s semantics requires determinism). RealCake’s relaxed semantics preserves the
core ideas of the existing Icing semantics [5] and models nondeterministic application of
an arbitrary number of fast-math rewrites, just as Icing does. Icing provides only a loose
coupling with CakeML via a simulation between the deterministic optimized expression
and a CakeML source program. Unlike Icing, RealCake’s semantics is designed to be more
tightly integrated with the CakeML source semantics. This new integration is necessary to
prove end-to-end error refinement that relates unoptimized real-valued CakeML programs
and optimized floating-point machine code. RealCake’s design furthermore supports function
calls, I/O and memory beyond (Icing supported) floating-point expressions and can thus
prove error refinement for complete applications.

The second technical contribution is to realize error refinement with translation valida-
tion [45, 51] using an interface to an existing proof-producing roundoff error bound analysis [6].
RealCake automatically composes the error bound proofs with its optimizer’s correctness
theorems to support fast-math optimizations with semantic and accuracy guarantees within
a verified compiler for the first time.

RealCake is primarily designed to support numerical kernels, straight-line code such
as those found in (safety-critical) embedded controllers or sensor-processing applications.2

Often such kernels are evaluated in a control loop or process sensor inputs repeatedly. For
such programs, both correctness as well as performance are important, and an analysis of the
straight-line code is sufficient: the correctness (stability) of the overall programs (and loops)
can be shown with, e.g., control-theoretic techniques that rely on the straight-line loop body’s
errors being bounded [3, 37]. We do not address some of the orthogonal challenges in bounding
the floating-point roundoff error for programs with loops and conditional statements, which
remain open research problems [15]; state-of-the-art proof-producing error bound analyses
only robustly support straight-line numerical kernels [54, 41, 6]. A key aspect of RealCake’s
design is the loose coupling between the compiler and error analysis. This loose coupling
leads to a clean separation of concerns, which we hope will allow us to switch to more general
error analysis methods when such are discovered.

We evaluated RealCake by optimizing all kernels from the standard floating-point arith-
metic benchmark suite FPBench [14] (Section 7) which can be expressed as input to RealCake,
for a total of 51 kernels. During our evaluation we found that CakeML was missing a general

2 RealCake nevertheless proves error refinement for whole programs, including I/O (Section 7).

ECOOP 2022

1:4 Verified Compilation and Optimization of Floating-Point Programs in CakeML

1 (* target error bound: 2−5,
precondition P:

3 0.0 ≤ x1 ≤ 5.0 ∧ −20.0 ≤ x2 ≤ 5.0 *)
fun jetEngine(x1:double, x2:double):double =

5 opt: (let
val t = (((3.0 * x1) * x1) + (2.0 * x2)) - x1

7 val t2 = (((3.0 * x1) * x1) - (2.0 * x2))
- x1

9 val d = (x1 * x1) + 1.0
val s = t / d

11 val s2 = t2 / d
in

13 x1 + (((((((((2.0 * x1) * s) * (s - 3.0)) +
((x1 * x1) * ((4.0 * s) - 6.0))) * d) +

15 (((3.0 * x1) * x1) * s)) +
((x1 * x1) * x1)) + x1) + (3.0 * s2))

17 end)

(a) Unoptimized floating-point kernel.

1 (* guaranteed error bound: 2−5,
precondition P:

3 0.0 ≤ x1 ≤ 5.0 ∧ −20.0 ≤ x2 ≤ 5.0 *)
fun jetEngine(x1:double, x2:double):double =

5 noopt: (let
val t = fma((x1+x1)+x1, x1, (x2 + x2) - x1)

7 val t2 = fma((x1+x1)+x1, x1,
fma(-2.0, x2, -x1))

9 val d = fma(x1, x1, 1.0)
val s = t / d

11 val s2 = t2 / d
in

13 x1 + fma(x1 * d, fma((s - 3.0) + (s - 3.0),
s, x1 * fma(4.0, s, -6.0)),

15 fma(x1 * x1, ((s + s) + s) + x1,
x1 + ((s2 + s2) + s2)))

17 end)

(b) Optimized floating-point kernel.

1 fun main () = let
val args = Commandline.arguments ()

3 val a = Double.fromString (List.nth args 1)
val b = Double.fromString (List.nth args 2)

5 val r = jetEngine (a, b)
in

7 TextIO.print (Double.toString r)
end

(c) Main function.

Figure 1 Example unoptimized and optimized CakeML floating-point kernels, and a stand-in
main function. The opt: annotation (lines 5) allows developers to selectively apply optimizations.
Here, we choose to optimize the entire kernel, but a user may place only part of a program under
opt: and the rest will be compiled preserving IEEE-754 semantics.

optimization that is particularly effective for floating-point programs: global constant lifting.
RealCake achieves a (geometric) mean performance improvement for fast-math optimizations
of 3% and a maximum improvement of 16% on top of improvements from constant lifting with
respect to the unoptimized FPBench kernels. Our additional constant lifting optimization
achieves a geometric mean performance improvement of 83% across all benchmarks with
speedups of up-to 97%. For all optimized kernels, RealCake formally guarantees that the
roundoff error remains within a user-specified bound.

Contributions

To summarize, this paper makes the following contributions:
the concept of error refinement and its formalization within the CakeML verified compiler
(Section 2);
an extension of CakeML with strict, IEEE-754 semantics preserving, floating-point
arithmetic as well as a relaxed non-deterministic floating-point semantics (Section 4);
a fast-math optimizer that is effective in improving the performance of floating-point
programs (Section 5);
automated proof tools that soundly bound roundoff errors of (optimized or unoptimized)
kernels w.r.t. our new real-number semantics for CakeML (Section 6).

The RealCake development is publicly available.

https://github.com/CakeML/cakeml/tree/75310ce9010c0ccf4b4b7d2d038023a6ac2004c3

H. Becker et al. 1:5

2 Overview

We start by demonstrating at a high-level how RealCake works using an example, before
giving an overview of the RealCake toolchain and our major design decisions.

2.1 Example
Figure 1a shows jetEngine, a straight-line nonlinear embedded controller [3] adapted to
CakeML syntax. This controller has been proven to be safe for the dynamical system of a jet
engine compressor. That is, it has been proven that the two state variables (x1, x2) will remain
within the bounds given by P (on line 2), that the system will always steer the state variables
towards the equilibrium point (0.0), and that the systems thus remains stable. The stability
proof assumes the control expression to be real-valued, but accounts for a certain amount of
error, including measurement and implementation errors, and hence the controller is stable
as long as the errors remain below this bound. For the purpose of this paper, we choose
2−5 as the bound on the roundoff error due to a floating-point implementation. However, in
addition to stability, performance is also an important concern when designing controllers
for resource-constrained embedded systems. To summarize, an embedded developer designs
a controller, such as the jetEngine, assuming real-valued arithmetic together with an error
bound, and requires that the executed finite-precision code A) correctly implements the
control expression, B) is as efficient as possible, and C) meets the error bound.

Such a kernel may be part of a safety critical system so we would like to compile it to
an executable using a verified compiler. Unfortunately, no verified compiler today meets
the requirements listed above: while CompCert [10] does support floating-point arithmetic,
and so ensures A), it does not optimize floating-point programs and cannot provide roundoff
error bounds. Prior to our work, CakeML did not even support floating-point arithmetic.

RealCake, our extension of the CakeML compiler, closes this gap. RealCake automatically
optimizes the input kernel into the optimized version shown in Figure 1b, compiles it down
to machine code, and proves the end-to-end correctness theorem shown in Figure 2 that
captures both “traditional” compiler correctness as well as accuracy guarantees.

For this example, RealCake prepares the program for optimization by replacing floating-
point subtraction by addition of the inverse ((4.0 × s) − 6.0 → (4.0 × s) + (−1 × 6.0)), and
during optimization, RealCake replaces multiplications by additions (2.0 × x1 → x1 + x1),
and introduces FMA instructions (x1 × x1 + 1.0 → fma(x1, x1, 1.0)) that go beyond IEEE-
754 semantics. For this example, RealCake compiles the optimized floating-point kernel
(Figure 1b) together with a simple stand-in main function (Figure 1c) into a verified binary.
On a Raspberry Pi v3, RealCake improves the performance of our example kernel by 95%.
This performance improvement comes from both floating-point specific optimizations, as well
as global constant lifting that is not specific but particularly effective for floating-points and
that CakeML did not support before (Section 7). Such a speedup is important for repeatedly
run code such as our embedded controller.

RealCake automatically proves the end-to-end correctness theorem that we formally state
in Figure 2. At a high-level, Theorem 1 relates the behavior of the optimized program with
the behavior of the real-number semantics of the initial, unoptimized program on the domain
specified by precondition P .3

3 The precondition is important, since roundoff errors directly depend on the ranges of (intermediate)
values.

ECOOP 2022

1:6 Verified Compilation and Optimization of Floating-Point Programs in CakeML

▶ Theorem 1 (jetEngine – Whole program correctness).

jetEngineInputsInPrecond (s1, s2) (w1, w2) ∧ environmentOk ([jetEngine; s1; s2], fs) ⇒
∃ w r .

CakeMLevaluatesAndPrints (jetEngineCode, s1, s2, fs) (toString w) ∧
initialFPcodeReturns jetEngineUnopt (w1, w2) w ∧
realSemanticsReturns jetEngineUnopt (w1, w2) r ∧ abs (fpToReal w − r) ≤ 2−5

Figure 2 RealCake-proven specification theorem for the jetEngine kernel. Here, jetEngineCode
refers to the overall program consisting of the jetEngine kernel, the main function from Figure 1c,
and the glue-code for I/O, jetEngine is the name of the produced binary, and jetEngineUnopt is the
kernel from Figure 1a.

Formally, the theorem states that, if the kernel is run on two arbitrary input strings s1 and
s2, representing the double word inputs w1 and w2 respectively, and the double words satisfy
precondition P from Figure 1a (assumption jetEngineInputsInPrecond), and if the machine
code for the jetEngine kernel is run with three command line arguments (the name of the
binary, and s1 and s2) in an environment with filesystem fs (assumption environmentOk), then
there exists a double-precision floating-point word w such that
(a) running the optimized kernel with the command line arguments prints the word w on

stdout4

(b) w is a result of running the unoptimized jetEngine kernel on (w1, w2) with optimizations
applied by our relaxed semantics, and

(c) running the initial unoptimized jetEngine kernel under real-number semantics on (w1, w2)
returns a real number r such that |w − r| ≤ 2−5, where 2−5 is the user-given error bound.

2.2 Overview of CakeML

RealCake extends the CakeML compiler toolchain [55], built around a verified compiler for (a
dialect of) Standard ML (SML). CakeML compiles programs written in SML to x86, ARMv7,
ARMv8, MIPS, RISC-V and Silver [35] machine code and is implemented completely in the
HOL4 theorem prover [53]. Our work mainly focuses on the compiler part of the CakeML
ecosystem.

The behavior of a program written in the CakeML dialect of SML is defined in the
CakeML source semantics. This semantics is implemented as a deterministic function in the
HOL4 theorem prover, in the style of functional big-step semantics [43]. CakeML programs
are turned into machine code using the in-logic compiler, with compiler passes going through
various intermediate languages.

The CakeML compiler’s correctness theorem states that the compiler preserves observable
behaviors of the input program, modulo out-of-memory errors that can occur in the generated
machine code [21].

4 We chose printing to standard output as one option for implementing I/O behavior to show how the
error bound proof can be related to I/O behavior. In a real-world setting this could be replaced by
other I/O functionality.

H. Becker et al. 1:7

constant lifting

input: RealCake program

CakeML compiler CakeML semantics

fast-math optimizer relaxed semanticsaccuracy analysis

input: constraints

output: specification with I/O
and accuracy bound

§6 §5 §4.2

§7

accuracy correctness

optimizer correctness

compiler correctness

IEEE-754 floating-points §4.1 IEEE-754 floating-points §4.1

output: machine code

§7

optimized program

Figure 3 Overview of the RealCake toolchain. Boxes with white background are part of the
original CakeML toolchain, our RealCake extensions are marked with a green background, dashed
lines indicate proof dependencies, solid lines indicate output flows.

2.3 Overview of RealCake

Figure 3 illustrates the RealCake toolchain, with the extensions over CakeML marked
in green. The RealCake toolchain takes as inputs a program and constraints similar to
those in Figure 1a. In a first step, the fast-math optimizer is run on each floating-point
kernel, optimizing it with respect to RealCake’s relaxed floating-point semantics, as well
as lifting constants. As a result we obtain an optimized floating-point kernel, and a proof
relating executions of the optimized kernel back to its unoptimized version. Next, the input
constraints, and the optimized kernel are run through our accuracy analysis pipeline (left
part of Figure 3). We have proven once and for all that if the analysis succeeds, the roundoff
error of the optimized floating-point kernel with respect to a real-number semantics of its
unoptimized version is below the user specified error bound. This requires non-trivially
combining properties of the fast-math optimizer with a simulation proof relating results of the
roundoff error analysis to CakeML floating-point programs. Finally, the CakeML compiler
compiles the optimized kernel into machine code that can be run on x86-64 and ARMv7
platforms.5 RealCake automatically combines optimizer correctness with the correctness of
the accuracy analysis and the CakeML compiler correctness theorem to prove a theorem
about the I/O behavior and the accuracy of the machine code with respect to the real-number
semantics of the unoptimized, initial kernel.

One of our key insights is to apply the fast-math optimizations that require reasoning
about nondeterministic semantics early; a nondeterministic semantics can be integrated more
easily with a deterministic verified compiler by resolving the nondeterminism before the code
enters the compiler itself. We formally prove the correctness of the fast-math optimizer: if
the optimizer turns kernel p1 into kernel p2, and evaluating p2 returns the floating-point
word w, then the relaxed floating-point semantics can evaluate and optimize p1 such that it
returns w.

5 At the time of writing, only the underlying ISA models for x86-64 and ARMv7 support floating-point
arithmetic in CakeML.

ECOOP 2022

1:8 Verified Compilation and Optimization of Floating-Point Programs in CakeML

2.4 Error Refinement
Optimization correctness alone effectively captures only the machine’s point of view, and
ignores the programmer’s (implicit) real-valued source semantics. To relate the real-number,
unoptimized program with its fast-math-optimized version requires both proving the correct-
ness of our optimizer (i.e. showing that the behavior of the source semantics is preserved), as
well as establishing accuracy guarantees using roundoff errors. Any fast-math optimization
will necessarily change the rounding and thus the result value of the floating-point kernel,
ruling out alternative bit-wise comparisons. While the programmer will be indifferent to
how exactly the floating-point code is compiled and will accept some roundoff error – or
she would not have chosen finite-precision arithmetic – this roundoff error should not be
unduly large and make the computed results useless.6 We argue that a correctness theorem
of verified fast-math floating-point compilation thus needs to capture this error refinement.

To this end, RealCake automatically infers verified accuracy bounds via a verified
translation from CakeML source to the proof-producing formally verified static analysis
tool FloVer [6]. We combine a simulation proof relating the floating-point semantics of
FloVer and CakeML with a proof that all optimizations done by our fast-math optimizer are
real-valued identities. RealCake then lifts the roundoff error bound to the complete program
and combines it with the general compilation correctness proofs to automatically show the
end-to-end correctness theorem for our example (Figure 2). This makes RealCake the first
verified compiler for floating-point arithmetic that proves a whole-program specification
relating the I/O behavior of optimized floating-point machine code to the real-number
semantics of the unoptimized initial program.

We choose to integrate the roundoff error analysis only loosely with CakeML. This
gives us a flexible compiler infrastructure that allows us to prove roundoff error bounds
on optimized as well as unoptimized floating-point kernels, or to greedily optimize kernels
without necessarily proving roundoff error bounds (but still obtaining compiler correctness
guarantees). By not tightly integrating the roundoff error analysis into CakeML, we have
the option to relatively easily replace FloVer with an extension or another tool in the future.

RealCake’s end-to-end correctness theorem only relies on error bounds proven independ-
ently for each straight-line kernel instead of a global kernel error bound. Our focus on
straight-line kernels is inherited from the current capabilities of verified floating-point error
analyses (see Subsection 3.2 for a more detailed discussion), but can be easily lifted with
advances in this area. Per-kernel error analysis, on the other hand, is crucial to maintaining
compiler modularity: it is not (nor should it be) the compiler’s responsibility to ensure that
a program is globally numerically stable – that is a job for the algorithm designer. Rather,
the compiler compiles and optimizes a program and, in the case of fast-math floating-point
optimizations, ensures that it has preserved sufficient (user-provided) accuracy bounds with
respect to a specification over real-number semantics. This can be checked locally.

Similarly, the goal of the accuracy analysis is not necessarily to improve the accuracy of
a given kernel, even though introducing FMAs will generally have this effect, but rather to
ensure that the compiler has not introduced unacceptable numerical instability by accident.

Overall, a key challenge of RealCake is proof engineering. RealCake combines a verified
roundoff error analysis with the deterministic CakeML compiler and a non-deterministic
semantics that supports floating-point optimizations. Specifically, the main proof engineering

6 There are programs, such as compensated sum algorithms [25], that explicitly rely on the exact floating-
point semantics; such code would not be subject to fast-math-style optimizations and thus not written
under an opt: scope.

H. Becker et al. 1:9

challenge is getting the different tools to “cooperate”. CakeML’s source semantics is an
integral part of the CakeML ecosystem. Therefore, our integration of the relaxed floating-
point semantics must make sure to not break any existing invariants. Further, the semantics
of the external roundoff error analysis and the semantics of CakeML source programs must
be compatible such that analysis results can be transformed into CakeML source properties.
Finally, all of this has to happen while making sure that RealCake optimizes floating-point
programs with a non-deterministic relaxed floating-point semantics.

3 Background

In this section, we review some necessary background on IEEE-754 floating-point arithmetic,
how to analyze the roundoff error of IEEE-754 floating-point programs, and how the Icing
semantics allows to support fast-math-style optimizations in a verified compiler context.

3.1 IEEE-754 Floating-Point Arithmetic
The IEEE-754 standard [26] defines the representation, special values, arithmetic operations,
and rounding modes of floating-point arithmetic. A floating-point number x is represented
as a triple (s, m, e) that defines x = (−1)s × m × 2e where s is the sign bit, m the so-called
significand and e the exponent. Most commonly used formats are binary single float and
double precision that use 23 and 52 bits for the significand and 8 and 11 bits for the exponent,
respectively. If the exponent of a number is 0, it is called a subnormal number, all other
valid numerical values are called normal numbers. IEEE-754 additionally defines the special
values Infinity and NaN that represent exceptional results. The standard further specifies
that arithmetic operations (e.g., +, −, ×, /) are rounded correctly, i.e. the result is as if the
computation was performed in infinite precision and then rounded. The standard defines
five rounding modes, of which we assume and support the most commonly used: rounding
to nearest, ties to even. A further consequence of the finite precision and rounding is that
floating-point arithmetic does not satisfy common real-valued identities such as associativity
and distributivity. Hence, reordering a computation may lead to different results (and
roundoff errors), even though the expression is equivalent under the reals.

3.2 Analysis of Rounding Errors
There exist a number of analysis tools that bound absolute roundoff errors for floating-
point kernels and that provide formally verified error bounds: Precisa [56], FPTaylor [54],
real2Float [36], Gappa [17], and FloVer [6]. They either use a global optimization analysis
approach, or a forward dataflow analysis using an interval abstract domain to compute
absolute roundoff errors:

max
x∈P (x)

|f(x) − f̃(x)| (1)

where f is the real-number expression, f̃ its floating-point counterpart and P (x) is the
precondition that constrains the input variables x. A precondition providing lower and upper
bounds on the inputs is necessary to obtain interesting, non-infinite roundoff error bounds.
Computing relative errors |f(x) − f̃(x)|/|f(x)| is not well-defined when the denominator is
zero and is thus not suitable for a general error analysis. For our purpose of checking that
compilation has not introduced large numerical instabilities, any of the above mentioned
tools is in principle suitable. We choose FloVer, because it is conveniently implemented in
HOL4.

ECOOP 2022

1:10 Verified Compilation and Optimization of Floating-Point Programs in CakeML

Despite the abundance of analysis tools, bounding finite-precision roundoff errors remains
a challenging and active research area. We thus choose to focus on verifying absolute roundoff
errors w.r.t. a real-number specification for straight-line arithmetic kernels, which is currently
well supported. To the best of our knowledge, all available verified roundoff error analysis
tools relate roundoff errors to idealized real-number semantics. Support for conditionals and
loops [41] is currently severely limited. The challenge with loops is that roundoff errors in
general grow in every loop iteration and thus computed fixpoints necessarily become infinite.
We thus focus on absolute error accuracy analysis of straight-line arithmetic kernels, i.e.
binary arithmetic operations (+, −, ×, /), unary −, fma operations and let-bindings.

FloVer is a verified certificate checker for finite-precision roundoff errors that is meant
to validate results of external, unverified, floating-point analysis tools. Given a certificate,
encoding the result of the external analysis tool, FloVer verifies the bounds encoded in
the certificate by computing the bounds using a dataflow analysis in logic. In this work
in RealCake, we extend FloVer with an unverified function that computes a roundoff error
certificate, which we then send through the checking pipeline.

FloVer abstracts floating-point arithmetic operations by:

(x ◦fl y) = (x ◦ y)(1 + e) |e| ≤ ε (2)

where ◦ ∈ {+, −, ×, /} and ε is the machine epsilon. FloVer uses interval arithmetic [40]
to propagate intermediate bounds on x and y, on which the magnitude of absolute errors
and error propagation depends, and equally uses interval arithmetic to propagate worst-case
error bounds through the arithmetic expression. For our evaluation, we have added support
for sqrt operations to FloVer which was previously unsupported.

FloVer’s soundness theorem states that a successful run of FloVer implies that the
encoded floating-point kernel can be run under IEEE-754 floating-point semantics, and that
the given error bound is a sound upper bound on the worst-case absolute error between the
floating-point execution and the idealized real-number semantics. Error bounds proven by
FloVer in RealCake are valid for normal and subnormal floating point numbers. To make
this possible we extended FloVer with support for subnormal floating-point numbers, and
have proven the corresponding HOL4 theorems.

3.3 Icing Floating-Point Semantics
Icing [5] was proposed as the first semantics to support fast-math-style optimizations in
a verified compiler, going beyond IEEE-754 floating-point semantics. To support fast-
math-style optimizations, Icing relies on three core ideas: fine-grained control, giving the
programmer full control over which part of the program is optimized; value trees, which are
a lazy representation of floating-point values; and nondeterministic floating-point evaluation,
applying optimizations while evaluating. We review the design rationale behind each of these
points.

Fine-Grained Control In unverified compilers fast-math optimizations are globally switched
on or off. For a verified compiler this is unsatisfactory, as some code can be heavily
optimized, while some of it might need to be compiled under strict IEEE-754 semantics.
Icing solved this issue by introducing fine-grained control over which part of a program is
optimized by annotating it with opt:, if optimizations should be applied, and noopt:, if
optimizations should not be applied.

Value Trees In Icing, floating-point values are not represented by 64-bit words. Instead,
Icing uses a lazy datatype called value trees. A value tree is a tree with constants as
leaf nodes, and operators as intermediate nodes. During evaluation, expression variables

H. Becker et al. 1:11

opt:

+

*

v 3.5

9.1

opt:

fma

v 3.5 9.1

Figure 4 Value trees for the unoptimized example expression (left) and its optimized version
with an FMA instruction (right).

are replaced by a value tree loaded from an execution environment. When evaluating a
floating-point comparison, value trees are eagerly compressed into floating-point words.
Value trees are a perfect fit for encoding syntactic information about the evaluated
expression in the Icing semantics.

Nondeterministic Semantics To handle fast-math-style optimizations in the semantics, Icing
adds a set of allowed optimizations to the semantics, and the semantics can nondetermin-
istically optimize by applying a subset of the allowed optimizations to value trees.
Icing’s lazy value trees allow the semantics to alter the structure of a floating-point value
after it has been evaluated. This is key to modelling the floating-point optimizations.

Example

To illustrate how the Icing semantics works and how optimizations are applied we give a
simple example. We will optimize the floating-point expression opt:(x * 3.5 + 9.1) in the
Icing semantics.

If we evaluate the initial, unoptimized expression (opt:(x * 3.5 + 9.1)) in Icing semantics,
which nondeterministically optimizes by introducing FMA instructions, the semantics first
computes the value tree at the left-hand side of Figure 4. Because of the nondeterminism, the
semantics can now either keep the value tree as is, or introduce an FMA, replacing the value
tree by the one on the right-hand side of Figure 4. We explain next how Icing establishes a
relation between nondeterministic optimizations and evaluation of optimized expressions to
prove correctness of optimizers.

Correctness Proofs

The original Icing paper presents three different optimizers. Here, we focus on the so-called
greedy optimizer, and the IEEE-754-translator. For a list of optimizations, the greedy
optimizer greedily applies them to a program wherever possible. The IEEE-754-translator
rules out further optimizations by replacing all opt: optimization annotations by noopt:.

Correctness of the IEEE-754-translator proves that program evaluation is deterministic
after applying the IEEE-754-translator, as no optimizations can be applied syntactically
or semantically. The main correctness theorem for the greedy optimizer states: Suppose
the greedy optimizer is run with optimizations o on floating-point program f and returns
program g. If evaluating g without any optimizations under Icing semantics gives value tree
v, then one of the results of evaluating f nondeterministically under Icing semantics with
optimizations o enabled is also value tree v. In general we call such a proof a backwards
simulation, as it relates the result obtained from evaluating the optimized program back to
an evaluation of the initial program with the applied optimizations added to the semantics.

While being an important first step to support fast-math-style optimizations in a verified
compiler, Icing is not able to prove accuracy guarantees, which are required to prove end-
to-end error refinement. Even though the original Icing paper proposes to include roundoff

ECOOP 2022

1:12 Verified Compilation and Optimization of Floating-Point Programs in CakeML

error bounds in future work ([5], Theorem 1), we found that these guarantees could not be
translated into guarantees for CakeML programs, as the backwards simulation only allows
transferring information from CakeML programs to Icing expressions, but not vice versa.
This motivates our approach of tightly integrating a relaxed floating-point semantics with
CakeML source semantics. It allows to establish accuracy guarantees and carry them down
to machine code generated by the compiler.

4 RealCake’s Semantics

Our overall goal for RealCake is to optimize and compile floating-point kernels, establishing
verified end-to-end correctness and accuracy guarantees. In this section, we lay the foundations
for this work by extending the CakeML compiler with three different semantics: strict IEEE-
754 preserving floating-point arithmetic, relaxed floating-point semantics going beyond
IEEE-754, and a real-number semantics as a ground truth for bounding errors.

4.1 Extending CakeML with IEEE-754 Floating-Point Arithmetic

Prior to this paper, CakeML did not have support for floating-point arithmetic. In a first
step, we add strictly IEEE-754 compliant floating-point arithmetic to CakeML. This part of
the work did not require any deep new insights; we briefly review the supported operations.

The CakeML source language already had support for 64-bit machine words and we used
these to hold IEEE-754 double values, but added new primitive operations for 64-bit words
(single precision floats are currently not supported). The new source-level primitive operations
are floating-point addition, subtraction, multiplication, division; multiply-and-add, negation,
square root, absolute value, and the usual floating-point comparisons. The semantics was
defined using an existing formalization of IEEE-754 by Harrison [24], which includes NaNs
and Infinities.7

The bulk of the compiler required only simple changes since most intermediate languages
compile the strict IEEE-754 operations to their very similar counterparts in the next inter-
mediate language. The only internal part that required a bit more effort is the point where
the data abstraction is implemented, i.e. where all data becomes concrete. At this point
we had to wrap every primitive floating-point operation with code that unboxes and then
boxes the double values. The same code is also responsible for loading and storing to the
architecture-specific floating-point registers. Our IEEE-754-preserving compilation ensures
that evaluation order is preserved.

At the time of writing, the CakeML compiler has six target languages. We have added
floating-point support to two of them: the x86-64 and ARMv7 targets. The ARMv7 model
that we use already included IEEE-754 floating-point support based on the same standard
formalization that the CakeML semantics uses. For x86-64, we extended the model of the
x86-64 instruction set architecture to include a minimal collection of IEEE-754 floating-
point instructions required by the compiler. As the underlying L3 model [18] of the x86-64
instruction set architecture does not support FMA instructions, only the ARMv7 backend
currently supports code generation for kernels with FMA instructions.

7 The fragment of IEEE-754 that we include in CakeML has not changed between standard revisions.

H. Becker et al. 1:13

evaluate st env [App op es] =
case evaluate st env es of
(st’, Rerr v) => (st’, Rerr v)
(st’, Rval vs) =>
case do_app (st’.refs, st’.ffi) op vs of
None => (st’, Rerr (Rabort Rtype_error))
| Some ((refs, ffi), r) =>
(updateState st’ refs ffi, list_result r)

(a) Standard operator evaluation.

evaluate st env [FpOptimise ann e] =
case evaluate (updateOptFlag st ann) env [e] of
(st’, Rerr e) => (resetOptFlag st’ st, Rerr e)
| (st’, Rval vs) =>
(resetOptFlag st’ st, Rval (addAnnot ann vs))

(b) Optimization scope evaluation.

evaluate st env [App op es] =
case evaluate st env es of
(st’, Rerr v) => (st’, Rerr v)
| (st’, Rval vs) =>
case do_app (st’.refs, st’.ffi) op vs of
None => (st’, Rerr (Rabort Rtype_error))
| Some ((refs, ffi), r) =>
let (st’, r_opt) = optimizeIfOk st’ r

fp_res = if isFpBool op then toBool r_opt
else r_opt

in
(updateState st’ refs ffi, list_result r)

(c) Relaxed floating-point evaluation.

evaluate st env [App op es] =
case evaluate st env es of
(st’, Rerr v) => (st’, Rerr v)
| (st’, Rval vs) =>
if ¬realsAllowed st’.fp_state then
(advanceOracle st’,
Rerr (Rabort Rtype_error))

else
case do_app (st’.refs, st’.ffi) op vs of
None => (st’, Rerr (Rabort Rtype_error))
| Some ((refs, ffi), r) =>
(updateState st’ refs ffi, list_result r)

(d) Real-valued operator evaluation.

Figure 5 HOL4 definitions of operator evaluation in CakeML source for (a) the simple case, (b)
relaxed floating-point operations, (c) optimization scopes, and (d) real-number operations. In (c)
and (d) difference to Figure 5a is highlighted in bold.

4.2 RealCake’s Relaxed Floating-Point Semantics

Next, we present RealCake’s relaxed floating-point semantics. Similar to Icing, the relaxed
floating-point semantics applies optimizations during evaluation. In CakeML, we call the
process of applying optimizations to floating-point kernels during evaluation semantic op-
timization. Before going into the details of how evaluation is implemented in the relaxed
semantics, we briefly review some necessary details of CakeML’s source semantics.

CakeML Source Semantics

The CakeML source semantics is implemented in the style of functional big-step semantics [43].
As such, CakeML source semantics (evaluate) is a pure, deterministic function in the HOL4
theorem prover. evaluate st1 env e = (st2,r) means that evaluating the CakeML source
expression e under environment env and global state st1 results in global state st2 and ends
with result r . If evaluation succeeded, r is a value, otherwise r is an error. Global state st1
and st2 model the state of the foreign-function-interface (FFI), as well as global references.
In CakeML source semantics, the FFI models interactions with the outside world, e.g. I/O.

We explain the case for operator evaluation in more detail, as we will extend it with
relaxed floating-point operations later. The definition of operator evaluation in CakeML
is given in Figure 5a. In CakeML source, an operator application is written as App op es,
denoting that operator op is applied to the list of expressions es.

First, evaluate is run on the argument list. If evaluation of the argument list fails with an
error and a new state, the error and the state are returned. If evaluation succeeds returning
values vs, function do_app applies operator op to the value list vs for the current references

ECOOP 2022

1:14 Verified Compilation and Optimization of Floating-Point Programs in CakeML

(st ′.refs), and the current state of the FFI (st ′.ffi). Function do_app fails if not enough or too
many arguments to operator op are given in vs. Therefore the semantics raises a type error
(Rabort Rtype_error) if do_app fails. If successful, function do_app returns a new state for the
global references (refs), a new state of the FFI (ffi), and a value v. The overall result of the
evaluate call is then the global state updated with refs and ffi, and value v.

Relaxed Floating-Point Semantics

Both the relaxed floating-point semantics and Icing use value trees to represent floating-
point values. However, Icing’s nondeterministic semantics cannot be directly added to
CakeML source, because evaluate is a deterministic function. RealCake instead encodes
the nondeterminism as a deterministic optimization oracle. Specifically, RealCake’s relaxed
floating-point semantics extends the global state with a floating-point optimization oracle:

fpState = <| rewrites : optimization list; opts : num → rewriteApp list;
canOpt : optChoice; choices : num|>

The oracle stores the currently allowed optimizations in the field rewrites. Component
opts encodes the oracle decisions of when which optimization is applied. opts 0 returns all
optimizations that are applied next during evaluation of a floating-point expression. The
optimization scope canOpt models the fine-grained control by recording the last optimization
scope that has been seen while evaluating. The relaxed floating-point semantics optimizes
only if canOpt is an opt:annotation. In choices we track the number of optimizations that
have been applied. We will use this global counter for integrating the relaxed floating-point
semantics with the proof-producing synthesis.

In principle, RealCake’s relaxed floating-point semantics and the Icing semantics model
the same set of optimization results, as for each nondeterministic Icing result there exists a
deterministic oracle under which RealCake’s semantics returns the same value, and vice versa.
However, supporting floating-point optimizations in CakeML source is only possible with the
optimization oracle. Adding the oracle to the global state of the semantics causes the least
amount of friction with existing CakeML proofs, while also enabling the nondeterministic
simulation proofs from Icing in CakeML via manipulation of the global optimization oracle.

To integrate the relaxed floating-point semantics of RealCake with evaluate, Figure 5c
adds a separate case to evaluate for floating-point operators. As for standard operator
evaluation in Figure 5a, when evaluating a floating-point operation, evaluate first evaluates
the arguments, and runs do_app. When evaluating a floating-point operation, function do_app

does not alter the global state (st ′.refs), and it does not call into the foreign function interface
(st ′.ffi). It simply returns the value tree representing operator op applied to argument values
in vs. If do_app successfully returns value tree r , evaluate attempts to optimize the value tree.
To this end, function optimizeIfOk first checks whether the canOpt field of the optimization
oracle is set to opt. If optimizations are allowed, the function performs the optimizations of
the oracle in field opts. Then, the optimization oracle is advanced to the next decision, and
the global optimization counter choices is incremented. Function optimizeIfOk returns both
the global state updated with the new optimization oracle, and the optimized value tree. If
no optimizations are allowed, the function leaves its inputs unchanged. Finally, if op is a
Boolean comparison of floating-point value trees (isFpBool op), evaluate turns the resulting
value tree into a Boolean constant as CakeML eagerly evaluates control-flow expressions.

For the loose connection between Icing and CakeML, it was sufficient for Icing to turn
value trees into floating-point words once a control-flow decision was made. To keep the
changes to the CakeML semantics local and manageable, RealCake’s relaxed floating-point
semantics eagerly evaluates value trees into words as soon as a Boolean comparison is applied
to them, even if no control-flow decision is made afterwards.

H. Becker et al. 1:15

Figure 5b adds the optimization annotations opt: and noopt: as a separate case to
evaluate. FpOptimize annot e means that expression e is evaluated under the optimization
scope annot, which can either be opt: or noopt:. Evaluation of an optimization scope replaces
the current semantic scope in canOpt with the new scope annotation (updateOptFlag st annot),
before evaluating e. Next, the old annotation is recovered by resetOptFlag st ′ st. Function
addAnnot annot vs ensures that all value trees in vs are extended with a correct scoping an-
notation. This is required to ensure that the semantics respects the fine-grained control. If
evaluate did not add the annotation to the value trees, the semantics could optimize expres-
sion noopt:(x + 2.4) by first evaluating x + 2.4 and then optimizing it once the expression
is used as part of a larger floating-point expression.

4.3 Integrating Relaxed Floating-Point Semantics into the Compiler
Toolchain

If we want to fully integrate RealCake’s relaxed floating-point semantics with CakeML, we
have to also integrate it with the tools included in the CakeML compiler toolchain. In the
toolchain, a binary implementation of the compiler is obtained by verified bootstrapping [29]
of the in-logic compiler using proof-producing synthesis [2]. Furthermore, CakeML source
code can be verified using CakeML’s program verification tools that rely on characteristic
formulae (CF) [22], allowing Hoare-logic like manual proofs (e.g., for verification of non-
terminating programs [46] or a proof checker for higher-order logic [1]). To prove whole-
program specifications (Section 6), we integrate RealCake’s relaxed floating-point semantics
with the proof-producing synthesis and CF.

CakeML Compiler Backend

A key insight for getting the deterministic compiler proofs to interact nicely with the
optimization oracles used in RealCake’s relaxed floating-point semantics was to implement
the fast-math optimizer as a source-level optimization pass, separate from the CakeML
compiler backend. With our extension from Subsection 4.1, the CakeML compiler backend
compiles deterministic 64-bit floating-point kernels to machine code and we reuse this
infrastructure by adding a third optimization scope, strict, to the relaxed floating-point
semantics. Intuitively, we use the strict annotation to completely disallow floating-point
optimizations in the compiler backend, allowing us to preserve determinism of the source
semantics for the correctness proofs.

Any program that is run with the strict annotation will never apply optimizations and
perform only IEEE-754 correct arithmetic operations. The difference between a strict and a
noopt annotation is that strict is “sticky” in the sense that if a program ever enters strict

mode, evaluation becomes deterministic and cannot escape from it through successive opt

annotations, while noopt and opt can be mixed freely; e.g. a program may be under a noopt

scope, while parts of it are marked with opt to selectively apply optimizations.

Proof-Producing Synthesis and CF

The proof-producing synthesis and the CF are key components of the CakeML compiler, and
required for bootstrapping the compiler. As both crucially depend on how the CakeML source
semantics are defined, we have to make sure that the bootstrapping still works, even after
adding the relaxed floating-point semantics. Specifically, the synthesis relies on expressions
being pure, and thus not altering global state. The crux is that we need the optimization
oracle to reside in global state for the backwards simulation proofs, and therefore must ensure

ECOOP 2022

1:16 Verified Compilation and Optimization of Floating-Point Programs in CakeML

that no floating-point optimizations can be applied in code produced by synthesis. The
choices component of the optimization oracle makes optimization attempts by the semantics
observable in the global state. We prove a lemma that if the optimization counter choices is
not incremented, evaluation cannot have attempted to optimize floating-point code under
an opt: scope. To use this lemma, the synthesis configures the initial optimization oracle
to be running under an opt scope, with an empty list of optimization choices. From this
configuration we show that no floating-point optimizations are ever attempted by synthesized
code, reestablishing the invariant of the expression being pure.

We use an optimization counter instead of a Boolean flag, as some of our simulation
theorems must combine optimization oracles, while preserving optimization decisions (e.g.,
when combining oracles for left and right-hand sides of binary operators). In such proofs, the
optimization counter gives an exact bound on when the behavior of the oracle must change.

The exact same technique is applied to CF: we make sure that programs reasoned about
with CF cannot apply optimizations based on the optimization oracle.

4.4 Extending CakeML with Real-Number Arithmetic
The third semantics added to CakeML in RealCake is a real-number semantics used for
bounding roundoff errors of floating-point kernels. We extend the CakeML source semantics
with support for real numbers and real-number operations by adding a new case to evaluate’s
operator evaluation in Figure 5d. Here, we focus on the real-number semantics. In Section 6 we
explain how RealCake translates floating-point programs into their real-number counterpart.

Evaluation of real-number operations follows the simple case from Subsection 4.2. The
main difference is that we extend the optimization oracle in the global state with an additional
flag real_sem. Function realsAllowed st.fp_state checks that the flag is set to true, otherwise
evaluation is aborted. The flag disallows real-number operations where necessary, as the
real-valued semantics is only used for verification purposes. Further, the compiler does not
compile real-valued operations or constants. In the compiler proofs, we rule out real-number
operations by assuming that the flag is switched off.

We have presented operator evaluation separately. In our implementation, when evaluating
an App op es expression, the CakeML source semantics first does a case split on op and chooses
whether to apply standard operator evaluation (Figure 5a), relaxed floating-point semantics
(Figure 5c), or real-number semantics (Figure 5d).

When integrating the relaxed floating-point semantics with proof-producing synthesis of
CakeML (Subsection 4.3), the global counter choices is used to make attempted floating-point
optimizations observable. To preserve invariants of the proof-producing synthesis, the real-
number semantics requires a similar treatment: The global counter choices is incremented if
evaluation of a real-number operation is attempted but fails (advanceOracle).

5 RealCake’s Floating-Point Optimizer

In this section, we implement a fast-math-style peephole optimizer for RealCake and prove
it correct with respect to the relaxed floating-point semantics. At a high-level, we split
optimization into two steps. In step one, function planOpts computes which optimizations
should be applied to the kernel. We call the list of optimizations returned by planOpts

the optimization plan and refer to this first step as optimization planning. In step two,
function applyOpts(plan,e) applies the optimization plan plan to floating-point kernel e. Before
returning, the noOpts function tags the result with a marker to dissallow further optimizations,
which is required to recover the determinism needed by the CakeML compiler proofs. We
call this second step optimization execution.

H. Becker et al. 1:17

x × 0 → 0
x × 1 → x

x × −1 → −x

x × 2 → x + x∗

x × 3 → x + (x + x)
x + 0 → x

x − x → 0

−(x × y) → x × (−y)∗

x + (−y) → x − y∗

x × y + z → fma(x, y, z)

Figure 6 Optimizations currently used by the peephole optimization phase, IEEE-754 preserving
optimizations are marked with a ∗.

Optimization Planning

For a floating-point kernel e, function planOpts(e) returns a list of tuples (path, opts), where
the left-hand side path is an index into the kernel stating where the kernel should be
optimized, and the right-hand side opts is a list of optimizations stating how the kernel
should be optimized. The optimization planner planOpts is split into the following phases
(applied in this order):

canonicalForm puts all floating-point kernels into a canonical shape replacing x − y with
x + ((−1) × y), associating +, × to the right ((x + y) + z → x + (y + z)), and moving
constants to right-hand sides with commutativity of + and ×.
undistribute replaces expressions like (x × y) + (x × z) with x × (y + z), “undistributing”
as much as possible to increase possibilities for FMA-introduction, and reduce the size
of the floating-point kernel. The symmetric case of (y × x) + (z × x) is ignored by the
undistribute phase, as canonicalForm rotates all multiplications with commutativity.
peepholeOptimize re-establishes canonical form and applies the optimizations from Figure 6.
balanceTrees reorders sub-expressions in the floating-point kernel by replacing deeply-
nested arithmetic expressions like x1 + (x2 + (x3 + x4)) by more shallow versions, such as
(x1 + x2) + (x3 + x4) and similarly for ×.8

Function composePlans concatenates the optimization plans produced by each phase.

Optimization Execution

When executing the optimization plan, function applyOpts first runs function optimizeWithPlan

on the plan and its input kernel, where optimizeWithPlan applies all elements of a given
optimization plan one by one. Function optimizeWithPlan optimizes an expression only if it is
wrapped under an opt: annotation. Further, either all or none of the optimizations in the
plan are applied: if optimization fails, then the unoptimized input kernel is returned.

For each element of the plan (path, opts), optimizeWithPlan traverses expression e following
path until reaching a sub-expression e’ and applies the optimizations opts at the end of the
path. Having reached expression e’ at the end of path, function optimizeWithPlan calls function
rewrite(e, opts) that applies the optimizations opts to the CakeML expression e’.

As CakeML source supports stateful features like reference cells, and calls into a foreign-
function-interface (FFI), function rewrite(e, opts) checks that CakeML expression e is a
pure (floating-point) expression. This check, which is implemented as a function isPureExp(e),
effectively rules out optimization of expressions that use any of CakeML’s stateful features.

8 We added balanceTrees as an optimization pass to simplify register allocations.

ECOOP 2022

1:18 Verified Compilation and Optimization of Floating-Point Programs in CakeML

The result of running optimizeWithPlan is given to function noOpts, that performs a bottom-
up traversal of expression e, replacing any opt: annotation with a noopt: annotation, disal-
lowing further optimizations and, as a result, making the program’s semantics deterministic.

5.1 Correctness of the Fast-Math Optimizer

Our optimizer is split into two separate phases, optimization planning, and optimization
execution. A key benefit of this split is that we can prove correctness of optimization
execution without caring about the exact optimizations contained in the plan. Rather, we
verify applyOpts for any potential plan generated by our optimization planner.

At a high-level, we show that the optimizations done by applyOpts are correct with
respect to the relaxed floating-point semantics, and no further optimizations can be applied
afterwards. Accordingly, we split correctness of applyOpts into two proofs. First, we prove that
running the result of noOpts(e) gives the same result as running e with an oracle that performs
no optimizations. The correctness proof for noOpts(e) is a simple backwards simulation and
thus we do not show it here. Second, we prove that there is a backwards simulation between
the result of optimizeWithPlan(e, plan) and e, where plan has been generated by our planner.

▶ Theorem 2 (optimizeWithPlan – correctness).

evaluate st1 env (optimizeWithPlan (planOpts e) exps) = (st2, Rval r) ∧
allVarsBoundToFPVal exps env ∧ flagAndScopeAgree cfg st1.fp_state ∧
notInStrictMode st1.fp_state ∧ noRealsAllowed st1.fp_state ⇒
∃ fpOpt choices fpOptR choicesR.

evaluate (appendOptsAndOracle st1 (getRws (planOpts e)) fpOpt choices) env exps =
(appendOptsAndOracle st2 (getRws (planOpts e)) fpOptR choicesR, Rval r)

Theorem 2 proves: for the result obtained from evaluating the syntactically optimized
kernel, there exists an optimization oracle such that evaluate returns the same result when
semantically optimizing with the optimizations from the computed plan. The CakeML source
semantics is untyped, and thus we assume that all variables are bound to floating-point
constants in exps (allVarsBoundToFPVal). Instead of showing correctness of optimizeWithPlan

for the overall plan, we reduce the global correctness proof to a series of correctness proofs
about the separate phases, and combine them into the overall backwards simulation.

Extending the Optimizer

Extending the RealCake optimizer requires extending both the implementation of the
optimizer, and its correctness proof. To add a new peephole optimization, a user adds
the optimization to the list of optimization of peepholeOptimize, and extends the correctness
theorem for peepholeOptimize. All other theorems need not be changed. We provide a set
of lemmas that can be used to reduce the global correctness proof of peepholeOptimize to a
simple local backwards simulation for the newly-added optimization in terms of the rewrite

function only. Adding a new phase to planOpts is more involved as it requires showing a
global correctness theorem for the newly added phase, as well as extending the theorem that
splits up correctness of planOpts into correctness of its components. The complexity of the
first proof depends on the complexity of the phase, whereas splitting up the correctness proof
for planOpts is a straightforward proof showing that optimizations of the newly added phase
are contained in the optimizations applied by planOpts.

H. Becker et al. 1:19

6 Proving Error Refinement with RealCake

CakeML with relaxed floating-point semantics optimizes floating-point kernels and auto-
matically proves a relation between the unoptimized and the optimized kernel. However,
to meaningfully support floating-point arithmetic in a verified compiler, the compiler must
relate the unoptimized real-valued program and the optimized floating-point program.

Classic compiler optimizations like constant propagation and dead-code elimination have
a clear definition of when they can be applied and one can prove that the optimizations do
not change the program result. Floating-point fast-math optimizations do not follow this
intuition in general. As an example, we can introduce an FMA instruction in the simple
expression x * 2.9 + 0.05 with relaxed floating-point semantics: fma(x, 2.9, 0.05). The FMA
makes the expression generally faster and locally more accurate, as the result is only rounded
once. Correctness of the fast-math optimizer proves a backwards simulation between the
expressions, however, the theorem does not capture the change in roundoff errors.

We propose the notion of error refinement: the compiler may optimize a floating-point
kernel aggressively as long as the results remain within a (given) bound relative to real-number
semantics. This notion captures the implicit assumption or expectation by the programmer.
We make this notion of error refinement explicit by implementing a fully automatic pipeline
that computes an upper bound on the roundoff error of a floating-point kernel in CakeML
and compares it to a user-specified accuracy bound. For this we use the roundoff error
analysis tool FloVer [6], implemented in HOL4. We prove the roundoff error bound correct
with respect to a run of the original input kernel under an idealized real-number semantics.

6.1 Translating RealCake Kernels into FloVer Input

To infer roundoff errors for a RealCake kernel with FloVer, we define a straightforward
encoding function toFloVer(e), translating floating-point kernels with variables, constants,
unary and binary floating-point operations, FMAs, and let bindings into FloVer syntax.
Correctness of the translation functions proves once and for all a simulation relating determ-
inistic RealCake floating-point semantics with FloVer’s idealized finite-precision semantics.
To prove the simulation, our translation function ensures that the kernel is wrapped under a
noopt: annotation. As roundoff error analysis tools depend on ranges for the input variables
our pipeline also requires a real-number function specifying these input constraints.

RealCake implements a function isOkError(e, P, err) that returns true if err is a sound
upper bound on the worst-case roundoff error for RealCake expression e and input constraints
P. First, the RealCake kernel e is translated into FloVer syntax with toFloVer(e). Function
isOkError then runs FloVer’s unverified inference algorithm to generate a (untrusted) roundoff
error analysis certificate for the FloVer encoding of e and input constraints P. FloVer’s
certificate checker automatically checks the certificate, and if the check suceeds, the error
bound encoded in the certificate is correct. Finally, isOkError checks that the global upper
bound encoded in the certificate is smaller or equal to the user-specified error constraint err.

6.2 Proving Roundoff Error Bounds for RealCake Kernels

To prove error refinement for an optimized kernel, we connect the soundness theorem of
FloVer to RealCake’s relaxed floating-point semantics. Together with the idealized real-valued
semantics we show once and for all the HOL4 theorem:

ECOOP 2022

1:20 Verified Compilation and Optimization of Floating-Point Programs in CakeML

▶ Theorem 3 (CakeML-FloVer roundoff errors).

∀ f P err theVars vs body env.

isOkError_succeeds (f , P, err , theVars, body) ∧ isPrecondFine theVars vs P ⇒
∃ r fp.

realEvals_to (realify body) (envWithRealVars env theVars vs) r ∧
floatEvals_to body (envWithFloatVars env theVars vs) fp ∧
abs (valueTree2real fp − r) ≤ err

On a high-level, Theorem 3 states that if function isOkError succeeds, the analyzed function
can be run both under floating-point and real-number semantics, and err is an upper bound
on the roundoff error. The assumptions are: isOkError succeeds, and body is the function
body of RealCake floating-point kernel f, with the parameters theVars (isOkError_succeeds);
and the values vs bound to the parameters theVars are within the input constraints P
(isPrecondFine theVars vs P). realify replaces floating-point operations by their real-number
counterparts. The theorem shows that there exists a real number r and a floating-point word
fp such that evaluation of the function under an idealized real-number semantics returns r
(realEvals_to), evaluation under floating-point semantics returns fp (floatEvals_to), and err
is an upper bound to the roundoff error of function f (abs(valueTree2real fp − r) ≤ err).

Error refinement relates the user-given error bound back to a real-number semantics
of the initial, unoptimized kernel, but RealCake runs function isOkError on the optimized
kernel. In addition to Theorem 3 we also need to prove that the applied optimizations are
real-valued identities. Exactly like we prove correctness of optimizeWithPlan in Subsection 5.1,
we have proven once and for all a simulation between the real-number semantics of the
optimized kernel and its unoptimized version. Combining this theorem with Theorem 3, we
automatically prove error refinement for floating-point kernels.

7 Evaluation: Performance and Accuracy Proofs

The RealCake development spans roughly 35k lines of proof-code, composed of the IEEE
floating-point implementation and proofs, including the ARMv7 backend (∼1.5k LOC),
the relaxed floating-point semantics and the real-number semantics (∼7k LOC, including
proofs), the implementation and correctness proofs for the optimizer (∼20k LOC), and the
benchmarks from the evaluation (∼7k LOC).

We evaluate RealCake on 51 benchmarks taken from the standard floating-point bench-
mark set FPBench [14]. Our evaluation includes all FPBench benchmarks that use floating-
point operations that are supported by RealCake and we exclude only those that cannot
be expressed in RealCake (for instance we exclude benchmarks with elementary function
calls; i.e. functions like sin, cos, . . .). We use the preconditions that are already specified in
FPBench, but modify them slightly for the jetEngine and n_body kernels such that FloVer can
prove a roundoff error bound and does not report a possible division by zero. Our evaluation
shows how RealCake establishes end-to-end correctness proofs, and compares the runtime of
the optimized and unoptimized kernels.

H. Becker et al. 1:21

Table 1 Roundoff errors for optimized and unoptimized FPBench benchmarks; benchmarks
where the roundoff error improves are highlighted in bold font and benchmarks where no end-to-end
specification is proven are underlined.

Name Orig fast-math Impr.

bspline3 1.295e-16 1.295e-16 0%
carbonGas 5.688e-08 5.688e-08 0%
cartToPol 2.815e-09 2.463e-09 13%
delta4 4.048e-12 2.028e-13 75%
delta 1.970e-13 2.940e-12 -198%
doppler1 6.534e-13 6.412e-13 2%
doppler2 6.534e-13 1.639e-12 50%
doppler3 1.675e-12 2.680e-13 20%
himmilbeau 3.417e-12 3.003e-12 12%
hypot 2.815e-09 2.463e-09 13%
hypot32 2.815e-09 2.463e-09 13%
i4modified 4.002e-13 4.002e-13 0%
intro_ex 2.220e-10 2.220e-10 0%
jetEngineModi 5.209e-08 3.898e-08 25%
kepler0 1.761e-13 1.801e-13 -2%
kepler1 8.397e-13 8.467e-13 -1%
kepler2 4.069e-12 3.973e-12 2%
matDet2 5.107e-12 4.663e-12 9%
matDet 5.107e-12 4.663e-12 9%
n_bodyXmod ERR ERR ERR
n_bodyZmod ERR ERR ERR
nonlin1 2.220e-10 2.220e-10 0%
nonlin2 2.657e-09 2.657e-09 0%
pid 7.621e-15 7.727e-15 -1%
predatorPrey 3.395e-16 3.366e-16 1%
rigidBody1 6.565e-11 5.329e-13 80%

Name Orig fast-math Impr.

rigidBody2 5.579e-13 6.410e-11 -360%
rump_C 4.079e+22 3.859e+22 5%
rump_rev 3.859e+22 3.679e+22 5%
rump_pow 4.079e+22 3.859e+22 5%
runge_kutta_4 2.220e-14 2.220e-14 0%
sec4_example 2.657e-09 2.657e-09 0%
sine_newton 7.495e-15 6.275e-15 16%
sineOrder3 1.765e-15 1.765e-15 0%
sine 1.538e-15 1.373e-15 11%
sqroot 1.115e-15 1.059e-15 5%
sqrt_add 1.322e-12 1.322e-12 0%
sum 5.995e-15 5.995e-15 0%
t01_s3 5.995e-15 5.995e-15 0%
t02_s8 9.548e-15 8.438e-15 12%
t03_nl2 4.885e-14 4.885e-14 0%
t04_dqmom9 1.999 1.999 0%
t05_nl1_r4 4.441e-06 4.441e-06 0%
t05_nl1_t2 2.776e-16 2.776e-16 0%
t06_sums4_sum1 1.443e-15 1.332e-15 8%
t06_sums4_sum2 1.332e-15 1.332e-15 0%
turbine1 1.588e-13 1.541e-13 3%
turbine2 2.213e-13 2.213e-13 0%
turbine3 1.108e-13 1.061e-13 4%
verhulst 8.343e-16 8.343e-16 0%
x_by_xy 2.220e-15 2.220e-15 0%

7.1 Automated End-To-End Proofs
We have translated all 51 FPBench benchmarks into HOL4 script files that are read by Real-
Cake. Each script file defines the original, unoptimized, floating-point kernel, a precondition
for the kernel, and a user-provided error bound. For simplicity, our evaluation uses 2−5 as
the user-provided error bound for all of the benchmarks, though those would be given by the
compiler user in a real-world setting.9

Our HOL4 automation at the end of each script file fully automatically optimizes the
kernel, instantiates Theorem 2 for the generated plan, infers a roundoff error bound and
compares it to the user-provided error bound. Finally, a whole-program specification relating
the behavior of the machine code for the optimized program to the real-number semantics of
the unoptimized program is proven automatically by combining the individual proofs.

RealCake proves the end-to-end correctness theorem (Theorem 1) for 45 benchmarks.
That is, for these benchmarks it is able to show that the roundoff error of the optimized
program is below the specified default error bound of 2−5. For the three rump benchmarks and
the test04_dqmom9 benchmark, the computed errors are larger than the user-provided error
bound (already for the original unoptimized program), and for the benchmarks n_bodyXmod

and n_bodyZmod FloVer is not able to infer a roundoff error bound as its HOL4 computation
becomes stuck, likely due to limitations in the HOL4 real number computations.

9 If the error bound is choosen too tightly the optimizer may reject every optimization candidate, while a
too coarse bound could allow for too aggressive optimizations.

ECOOP 2022

1:22 Verified Compilation and Optimization of Floating-Point Programs in CakeML

Table 2 Running times for optimized and unoptimized FPBench benchmarks on the Raspberry
Pi v3; benchmarks where performance improves with fast-math optimizations are highlighted in bold.

Name Orig Csts Csts + fast-math

bspline3∗ 18.14 1.75 (91%) 1.75 (91% / 0%)
carbonGas ∗ 103.40 3.85 (97%) 3.85 (97% / 0%)
cartToPol 2.05 2.04 (1%) 1.86 (10% / 9%)
delta4 6.34 6.33 (1%) 6.17 (3% / 3%)
delta 13.49 13.47 (1%) 11.44 (16% / 16%)
doppler1 36.02 3.25 (91%) 3.06 (92% / 6%)
doppler2 36.00 3.25 (91%) 3.06 (92% / 6%)
doppler3 35.98 3.25 (91%) 3.07 (92% / 6%)
himmilbeau 36.13 3.36 (91%) 3.05 (92% / 10%)
hypot32 2.04 2.04 (1%) 1.86 (10% / 9%)
hypot 2.05 2.05 (1%) 1.86 (10% / 10%)
i4modified∗ 1.77 1.78 (0%) 1.78 (0% / 0%)
intro_ex∗ 17.73 1.32 (93%) 1.32 (93% / 0%)
jetEngineMod 195.99 11.89 (94%) 11.12 (95% / 7%)
kepler0 5.32 5.31 (1%) 5.30 (1% / 1%)
kepler1 8.19 8.20 (0%) 8.16 (1% / 1%)
kepler2 12.43 12.41 (1%) 12.22 (2% / 2%)
matDet2 6.38 6.37 (1%) 5.67 (12% / 12%)
matDet 6.37 6.38 (0%) 5.65 (12% / 12%)
n_bodyXmod 38.46 5.20 (87%) 5.06 (87% / 3%)
n_bodyZmod 38.40 5.27 (87%) 5.15 (87% / 0%)
nonlin1∗ 17.72 1.31 (93%) 1.31 (93% / 0%)
nonlin2∗ 35.06 2.41 (94%) 2.41 (94% / 0%)
pid∗ 104.11 4.72 (96%) 4.72 (96% / 0%)
predatorPrey 52.25 2.81 (95%) 3.08 (95% / -9%)
rigidBody1∗ 19.11 2.78 (86%) 2.78 (86% / 0%)

Name Orig Csts Csts + fast-math

rigidBody2 54.92 5.10 (91%) 4.54 (92% / 11%)
rump_C 107.48 6.82 (94%) 6.26 (95% / 9%)
rump_rev 107.96 6.80 (94%) 6.27 (95% / 8%)
rump_pow 112.54 12.34 (90%) 11.57 (90% / 7%)
runge_kutta_4∗ 93.46 9.53 (90%) 9.53 (90% / 0%)
sec4_example∗ 34.99 2.40 (94%) 2.40 (94% / 0%)
sineOrder3∗ 34.86 2.08 (95%) 2.08 (95% / 0%)
sine_newton∗ 126.34 10.73 (92%) 10.73 (92% / 0%)
sine∗ 55.36 6.03 (90%) 6.03 (90% / 0%)
sqroot 87.06 4.85 (95%) 4.65 (95% / 5%)
sqrt_add∗ 35.21 2.59 (93%) 2.59 (93% / 0%)
sum∗ 3.07 3.07 (1%) 3.07 (1% / 0%)
t01_s3∗ 3.07 3.08 (0%) 3.08 (0% / 0%)
t02_s8∗ 3.04 3.05 (0%) 3.05 (0% / 0%)
t03_nl2∗ 1.78 1.78 (1%) 1.78 (1% / 0%)
t04_dqmom9 163.82 11.76 (93%) 10.20 (94% / 14%)
t05_nl1_r4∗ 34.67 2.06 (95%) 2.06 (95% / 0%)
t05_nl1_test2∗ 34.00 1.54 (96%) 1.54 (96% / 0%)
t06_sums4_sum1∗ 1.70 1.70 (0%) 1.70 (0% / 0%)
t06_sums4_sum2∗ 1.68 1.67 (1%) 1.67 (1% / 0%)
turbine1∗ 121.02 5.29 (96%) 5.29 (96% / 0%)
turbine2∗ 69.90 3.94 (95%) 3.94 (95% / 0%)
turbine3∗ 121.29 5.28 (96%) 5.28 (96% / 0%)
verhulst∗ 51.28 2.27 (96%) 2.27 (96% / 0%)
x_by_xy∗ 1.51 1.51 (1%) 1.51 (1% / 0%)

We show the errors for the optimized and unoptimized kernels in Table 1. “Orig.” is
the roundoff error for the unoptimized kernel, and “fast-math” is the roundoff error for the
optimized kernel, and column “Impr.” shows the percentage by which the error improved
with our fast-math optimizations, i.e. if the number is less than 0% the error has increased,
and decreased if it is greater than 0%. We highlight benchmarks where the roundoff error has
been decreased by the RealCake optimizer in bold font. While improving the roundoff error
is not the goal of our optimizations, FMA instructions are said to be locally more accurate,
and reordering of operations influences roundoff errors too. Hence we evaluate the effect
on roundoff errors of our optimization strategy. The benchmarks delta4, delta, rigidBody1,
and rigidBody2 have the largest difference in roundoff errors. By inspecting the generated
code we found that in these cases, RealCake has significantly alterted the structure of the
kernel. The roundoff error computed for a single kernel is highly influenced by the order
of operations, thus we suspect that this large difference is mainly due to operator odering.
Overall, we notice that if RealCake can infer a roundoff error, the error of the optimized
kernel is usually within the same order of magnitude as the unoptimized version, but in
many cases it is actually more accurate.

7.2 Performance Improvements

We compared the performance of unoptimized and RealCake’s optimized floating-point
kernels. In a first run, we measured wide differences in speedups and slowdowns. By
manually inspecting the code, we noticed a missing optimization in CakeML: 64-bit word
constants should be pre-allocated (or lifted) to increase performance. Lifting constants is a
worthwhile optimization in general, and particularly effective for floating-point programs, as

H. Becker et al. 1:23

it is does not change the program’s IEEE-754-semantics and floating-point programs usually
contain many constants. Thus, we implemented an independent, semantics preserving, global
optimization that preallocates 64-bit words as global variables. Our performance evaluation
compares three versions of FPBench kernels: the unoptimized version as a baseline, the
kernel with preallocated constants, and the kernel after first applying fast-math optimizations
and then preallocating constants.

To measure performance, CakeML generates ARMv7 machine code where each numerical
kernel is run 10 million times in a loop. Each version of the benchmark, with the core loop
running the kernel 10 million times, is run three times on five different sets of inputs, for a
total of fifteen runs per benchmark.

We run the ARMv7 code on a Raspberry Pi v3 and summarize the results in Table 2.
Column “Orig.” shows the running time of the (10 million iterations of the) unoptimized
program in seconds. Column “Csts.” shows the running time of the program with preallocated
constants in seconds plus the relative speedup in percent. And column “Csts. + fast-math”
shows the running time of the program when first running RealCake’s optimizer and then
preallocating constants in seconds plus first the relative speedup in percent with respect
to the unoptimized program, and second the relative speedup with respect to the version
with preallocated constants. We mark benchmarks with a performance improvement of more
than 1% of the fast-math optimizations with respect to preallocating constants in bold (we
identified a difference within ±1% to be noise).

Initially, some benchmarks experienced slowdowns of up to 20%. Via manual inspection,
we noticed that the fast-math optimizer created too many instructions. As a simple heuristic
to prevent this problem, RealCake sums the arities of the floating-point operators in the
program versions, and returns the unoptimized version if the heuristic value of the fast-math
optimized program is greater than or equal to the unoptimized program. Even if the heuristic
rejects an optimization, RealCake computes roundoff errors for both program versions and
proves an end-to-end specification theorem about the optimized program. In total, the
heuristic rejects optimizations for 27 benchmarks, and we mark them with a ∗ in Table 2.

Overall the evaluation shows that preallocating constants is a valuable optimization
for CakeML on its own. On top of this, our fast-math optimizer is able to improve the
performance for 20 benchmarks and for 7 of those significantly (> 10%). This is remarkable,
since the FPBench benchmarks are carefully hand-written and do not target optimizations
specifically and are not representative of, e.g., automatically generated code from tools such
as Matlab that would be used in the development of embedded system kernels.

For one benchmark we notice a slowdown of 9% even with our heuristic, and the program
versions differ only by a single FMA instruction. We suspect that this slowdown is due to
bad pipelining on the Raspberry Pi.

RealCake’s constant preallocation achieves a geometric mean speeup of 83%, and the
geometric mean of the speedup for RealCake’s optimizer compared with the program with
preallocated constants is 3%. The maximum speedup achieved with preallocating constants
only is 97%, and we notice no slowdowns. When applying fast-math optimization, the
greatest slowdown is -9%, and the maximum speedup is 16%.

In general, benchmarks with higher speed-ups from our optimization strategy usually
provide many opportunities to both introduce fma instructions, and remove constants. We
think that the foundational work in RealCake facilitates exploration of other optimization
strategies in the future.

ECOOP 2022

1:24 Verified Compilation and Optimization of Floating-Point Programs in CakeML

8 Related Work

Verified Compilation of Floating-Point Programs

Besides CakeML, CompCert [31] is the other major available verified compiler, compiling
imperative C programs. CompCert supports floating-point programs [10] following the strict
IEEE-754 semantics. This semantics allows it to perform a few small optimizations that are
IEEE-754 compliant such as constant propagation and replacing a multiplication by two by
an addition (x × 2 → x + x).

RealCake supports additional optimizations based on real-valued identities that are not
IEEE-754 compliant. While our implementation is done in the context of CakeML and
verified in HOL4, the principles of RealCake are independent of the particular programming
language that is being compiled and should thus be portable to CompCert as well.

The Alive framework [34] provides a way to specify and prove correct peephole optimiza-
tions for C++ code that can be applied in an LLVM pass. Alive verifies optimizations using
SMT solvers and has been extended to bit-precise floating-point optimizations and optimiza-
tions involving special values, satisfying the IEEE-754 standard [39, 42]. These optimizations
are complementary to RealCake’s optimizations. Formal verification of Alive’s peephole
optimizations is addressed separately by the AliveInLean project [30]. The VELLVM pro-
ject [59] provides a rigorous semantics for LLVM IR semantics to reason about optimizations
and implements IEEE-754-preserving floating-point arithmetic.

Verification of Floating-point Programs

Besides FloVer, there are several other tools that provide formally verified roundoff error
bounds for floating-point arithmetic expressions:
FPTaylor [54], real2Float [36], Precisa [41], Gappa [17], and each of these can in principle
replace FloVer in RealCake. We chose FloVer for convenience as it is implemented in HOL4.

Verification of floating-point programs that go beyond numerical kernels is still relatively
limited. The above-mentioned automated tools, for instance, do not consider function calls,
and techniques for loops are very restricted [41, 15], and thus require the user to provide
range annotations for each function call, as well as loop invariants in general. Entire programs
have been manually formally verified w.r.t. a real-valued specification, but with considerable
human effort [48, 9], which is not suitable for a compilation setting.

If we only require verification of runtime exceptions, resp. absence of special values, then
abstract interpretation-based techniques do scale to larger programs [27] and some provide
formal verification [28].

Optimization of Floating-Point Programs

Floating-point optimizations have also been considered outside of the traditional compiler
context, most of them focused on performance optimization.

Precimonious [50] performs mixed-precision tuning, by determining which operations
can be implemented in a lower or higher precision, while satifying a user-provided error
bound. While Precimonious can handle short programs with loops, it cannot guarantee the
error bound as it uses a dynamic error analysis. Both FPTuner [11] and Daisy [16] perform
mixed-precision tuning while providing accuracy guarantees using a static analysis, but can
only handle relatively short straight-line expressions. Mixed-precision tuning requires a
global error analysis and is thus not suitable to be performed inside a fundamentally modular

H. Becker et al. 1:25

compiler. However, the precision-tuned program could be further optimized by a (verified)
compiler. While RealCake currently only supports double precision floating-point arithmetic,
an extension with (uniform) single precision requires merely some engineering work.

Several tools improve the performance or accuracy of floating-point programs by rewriting
with real-valued identities. Spiral [47] rewrites linear algebra kernels to improve their
performance on a particular hardware platform. Spiral does not take into account roundoff
errors; its rewrites are not IEEE-754-preserving, but it does not quantify the errors. The
HELIX project [58] uses Spiral as an external oracle for building a verified optimization
pipeline for dataflow optimizations. Optimizations in HELIX are done with respect to
real-number semantics which is orthogonal to RealCake’s floating-point peephole optimizer.

Herbie [44] aims to improve the accuracy, instead of performance, of floating-point
arithmetic expressions but estimates roundoff errors unsoundly using a dynamic analysis.
The Salsa [13] tool applies a set of transformation rules to improve performance while soundly
tracking roundoff errors. Finally, Daisy [16] first applies rewriting similar to Herbie in order
to improve performance gains due to mixed-precision tuning. Still further away is the tool
STOKE [52], which generates small floating-point kernels by superoptimization, but which
does not even guarantee real-valued equivalence. We consider these optimizations to be
orthogonal to the fast-math optimizations that we consider in RealCake. We note that the
scoping mechanism allows RealCake to easily integrate parts of the code that have been
heavily optimized, and that thus should not be modified further by the compiler.

9 Conclusion

We have presented RealCake, an extension of the CakeML compiler with fast-math-style
floating-point optimizations. Using an oracle-based relaxed floating-point semantics we
have integrated nondeterminstic semantics for fast-math-style optimizations into the verified
CakeML compiler. Via a connection to an external accuracy analysis, RealCake establishes
accuracy guarantees for the optimized program, relating it back to the real-numbered ex-
ecution of the unoptimized program. In summary, RealCake is the first verified compiler
that establishes end-to-end floating-point accuracy guarantees to enable fast-math-style
optimization and prove end-to-end compilation theorems. Our evaluation has shown how
RealCake automatically verifies whole programs, proving properties about their I/O beha-
vior and accuracy. Further, both our fast-math optimizer and our global constant lifting
achieve significant performance improvements. RealCake’s error refinement establishes the
core infrastructure necessary to verify fast-math-style peephole optimizations, enabling the
implementation of additional optimizations such as vectorization in the future.

References
1 Oskar Abrahamsson. A Verified Proof Checker for Higher-Order Logic. Journal of Logical and

Algebraic Methods in Programming, 112, 2020. doi:10.1016/j.jlamp.2020.100530.
2 Oskar Abrahamsson, Son Ho, Hrutvik Kanabar, Ramana Kumar, Magnus O. Myreen, Michael

Norrish, and Yong Kiam Tan. Proof-Producing Synthesis of CakeML from Monadic HOL
Functions. J. Autom. Reason., 64(7), 2020. doi:10.1007/s10817-020-09559-8.

3 A. Anta and P. Tabuada. To Sample or not to Sample: Self-Triggered Control for Nonlinear
Systems. IEEE Transactions on Automatic Control, 55(9):2030–2042, 2010. doi:10.1109/
TAC.2010.2042980.

4 Apache Software Foundation. The LLVM Compiler Infrastructure, 2020. URL: https:
//www.llvm.org/.

ECOOP 2022

https://doi.org/10.1016/j.jlamp.2020.100530
https://doi.org/10.1007/s10817-020-09559-8
https://doi.org/10.1109/TAC.2010.2042980
https://doi.org/10.1109/TAC.2010.2042980
https://www.llvm.org/
https://www.llvm.org/

1:26 Verified Compilation and Optimization of Floating-Point Programs in CakeML

5 Heiko Becker, Eva Darulova, Magnus O Myreen, and Zachary Tatlock. Icing: Supporting
Fast-Math Style Optimizations in a Verified Compiler. In Computer Aided Verification (CAV),
2019. doi:10.1007/978-3-030-25543-5_10.

6 Heiko Becker, Nikita Zyuzin, Raphaël Monat, Eva Darulova, Magnus O Myreen, and Anthony
Fox. A Verified Certificate Checker for Finite-Precision Error Bounds in Coq and HOL4.
In Formal Methods in Computer Aided Design (FMCAD), 2018. doi:10.23919/FMCAD.2018.
8603019.

7 Michael Berg. LLVM Numerics Blog, 2019. URL: http://blog.llvm.org/2019/03/
llvm-numerics-blog.html.

8 Hans-J. Boehm. Towards an API for the Real Numbers. In Programming Language Design
and Implementation (PLDI), 2020. doi:10.1145/3385412.3386037.

9 Sylvie Boldo, François Clément, Jean-Christophe Filliâtre, Micaela Mayero, Guillaume
Melquiond, and Pierre Weis. Wave Equation Numerical Resolution: A Comprehens-
ive Mechanized Proof of a C Program. Journal of Automated Reasoning, 50(4), 2013.
doi:10.1007/s10817-012-9255-4.

10 Sylvie Boldo, Jacques-Henri Jourdan, Xavier Leroy, and Guillaume Melquiond. Verified
Compilation of Floating-Point Computations. Journal of Automated Reasoning, 54(2):135–163,
2015. doi:10.1007/s10817-014-9317-x.

11 Wei-Fan Chiang, Mark Baranowski, Ian Briggs, Alexey Solovyev, Ganesh Gopalakrishnan,
and Zvonimir Rakamarić. Rigorous Floating-Point Mixed-Precision Tuning. In Principles of
Programming Languages (POPL), 2017. doi:10.1145/3009837.3009846.

12 G. A. Constantinides, P. Y. K. Cheung, and W. Luk. Wordlength Optimization for Linear
Digital Signal Processing. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 22(10), 2003. doi:10.1109/TCAD.2003.818119.

13 Nasrine Damouche, Matthieu Martel, and Alexandre Chapoutot. Improving the Numerical
Accuracy of Programs by Automatic Transformation. International Journal on Software Tools
for Technology Transfer, 19(4), 2017. doi:10.1007/s10009-016-0435-0.

14 Nasrine Damouche, Matthieu Martel, Pavel Panchekha, Chen Qiu, Alexander Sanchez-Stern,
and Zachary Tatlock. Toward a Standard Benchmark Format and Suite for Floating-Point
Analysis. In Numerical Software Verification (NSV), 2016. doi:10.1007/978-3-319-54292-8_
6.

15 Eva Darulova and Viktor Kuncak. Towards a Compiler for Reals. ACM Transactions on
Programming Languages and Systems (TOPLAS), 39(2), 2017. doi:10.1145/3014426.

16 Eva Darulova, Saksham Sharma, and Einar Horn. Sound Mixed-Precision Optimization
with Rewriting. In International Conference on Cyber-Physical Systems (ICCPS), 2018.
doi:10.1109/ICCPS.2018.00028.

17 Florent De Dinechin, Christoph Quirin Lauter, and Guillaume Melquiond. Assisted Verification
of Elementary Functions Using Gappa. In ACM Symposium on Applied Computing (SAC),
2006. doi:10.1145/1141277.1141584.

18 Anthony Fox. Improved Tool Support for Machine-Code Decompilation in HOL4. In
International Conference on Interactive Theorem Proving. Springer, 2015. doi:10.1007/
978-3-319-22102-1_12.

19 Free Software Foundation. The GNU Compiler Collection, 2020. URL: https://gcc.gnu.org/.
20 GCC Developers. GCC Wiki: Floating-point Math, 2020. URL: https://gcc.gnu.org/wiki/

FloatingPointMath.
21 Alejandro Gomez-Londono, Johannes Åman Pohjola, Hira Taqdees Syeda, Magnus O. Myreen,

and Yong Kiam Tan. Do You Have Space for Dessert? A Verified Space Cost Semantics for
CakeML Programs. Proceedings of the ACM on Programming Languages (OOPSLA), 4, 2020.
doi:10.1145/3428272.

22 Armaël Guéneau, Magnus O Myreen, Ramana Kumar, and Michael Norrish. Verified Char-
acteristic Formulae for CakeML. In European Symposium on Programming (ESOP), 2017.
doi:10.1007/978-3-662-54434-1_22.

https://doi.org/10.1007/978-3-030-25543-5_10
https://doi.org/10.23919/FMCAD.2018.8603019
https://doi.org/10.23919/FMCAD.2018.8603019
http://blog.llvm.org/2019/03/llvm-numerics-blog.html
http://blog.llvm.org/2019/03/llvm-numerics-blog.html
https://doi.org/10.1145/3385412.3386037
https://doi.org/10.1007/s10817-012-9255-4
https://doi.org/10.1007/s10817-014-9317-x
https://doi.org/10.1145/3009837.3009846
https://doi.org/10.1109/TCAD.2003.818119
https://doi.org/10.1007/s10009-016-0435-0
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1007/978-3-319-54292-8_6
https://doi.org/10.1145/3014426
https://doi.org/10.1109/ICCPS.2018.00028
https://doi.org/10.1145/1141277.1141584
https://doi.org/10.1007/978-3-319-22102-1_12
https://doi.org/10.1007/978-3-319-22102-1_12
https://gcc.gnu.org/
https://gcc.gnu.org/wiki/FloatingPointMath
https://gcc.gnu.org/wiki/FloatingPointMath
https://doi.org/10.1145/3428272
https://doi.org/10.1007/978-3-662-54434-1_22

H. Becker et al. 1:27

23 Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. In International Conference on Machine Learning (ICML),
2015.

24 John Harrison. Floating Point Verification in HOL. In Proceedings of the 8th International
Workshop on Higher Order Logic Theorem Proving and Its Applications, 1995. doi:10.1007/
3-540-60275-5_65.

25 Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Society for Industrial
and Applied Mathematics, 2nd edition, 2002. doi:10.1137/1.9780898718027.

26 IEEE. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of IEEE
754-2008), 2019. doi:10.1109/IEEESTD.2019.8766229.

27 Bertrand Jeannet and Antoine Miné. Apron: A Library of Numerical Abstract Do-
mains for Static Analysis. In Computer Aided Verification (CAV), 2009. doi:10.1007/
978-3-642-02658-4_52.

28 Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie.
A Formally-Verified C Static Analyzer. In Principles of Programming Languages (POPL),
2015. doi:10.1145/2676726.2676966.

29 Ramana Kumar. Self-Compilation and Self-Verification. PhD thesis, University of Cambridge,
2015.

30 Juneyoung Lee, Chung-Kil Hur, and Nuno P Lopes. AliveInLean: a Verified LLVM Peephole
Optimization Verifier. In International Conference on Computer Aided Verification. Springer,
2019. doi:10.1007/978-3-030-25543-5_25.

31 Xavier Leroy. Formal Certification of a Compiler Back-end, or: Programming a Compiler
with a Proof Assistant. In Principles of Programming Languages (POPL), 2006. doi:
10.1145/1111037.1111042.

32 Xavier Leroy. A Formally Verified Compiler Back-end. Journal of Automated Reasoning, 43(4),
2009. doi:10.1007/s10817-009-9155-4.

33 LLVM Developers. LLVM Language Reference: Fast-Math Flags, 2020. URL: https://llvm.
org/docs/LangRef.html#fast-math-flags.

34 Nuno P. Lopes, David Menendez, Santosh Nagarakatte, and John Regehr. Provably Correct
Peephole Optimizations with Alive. In Programming Language Design and Implementation
(PLDI), 2015. doi:10.1145/2737924.2737965.

35 Andreas Lööw, Ramana Kumar, Yong Kiam Tan, Magnus O. Myreen, Michael Norrish, Oskar
Abrahamsson, and Anthony Fox. Verified Compilation on a Verified Processor. In Programming
Language Design and Implementation (PLDI), 2019. doi:10.1145/3314221.3314622.

36 Victor Magron, George Constantinides, and Alastair Donaldson. Certified Roundoff Error
Bounds Using Semidefinite Programming. ACM Transactions on Mathematical Software, 43(4),
2017. doi:10.1145/3015465.

37 Rupak Majumdar, Indranil Saha, and Majid Zamani. Synthesis of Minimal-Error Control
Software. In International Conference on Embedded Software (EMSOFT), 2012. doi:10.1145/
2380356.2380380.

38 Adolfo Anta Martinez, Rupak Majumdar, Indranil Saha, and Paulo Tabuada. Automatic
Verification of Control System Implementations. In International Conference on Embedded
software (EMSOFT), 2010. doi:10.1145/1879021.1879024.

39 David Menendez, Santosh Nagarakatte, and Aarti Gupta. Alive-FP: Automated Verification
of Floating Point Based Peephole Optimizations in LLVM. In Static Analysis Symposium
(SAS), 2016. doi:10.1007/978-3-662-53413-7_16.

40 Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduction to Interval Analysis.
Society for Industrial and Applied Mathematics, 2009. doi:10.1137/1.9780898717716.

41 Mariano M. Moscato, Laura Titolo, Aaron Dutle, and César A. Muñoz. Automatic Estimation
of Verified Floating-Point Round-Off Errors via Static Analysis. In Computer Safety, Reliability,
and Security (SAFECOMP), 2017. doi:10.1007/978-3-319-66266-4_14.

ECOOP 2022

https://doi.org/10.1007/3-540-60275-5_65
https://doi.org/10.1007/3-540-60275-5_65
https://doi.org/10.1137/1.9780898718027
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1007/978-3-642-02658-4_52
https://doi.org/10.1145/2676726.2676966
https://doi.org/10.1007/978-3-030-25543-5_25
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1145/1111037.1111042
https://doi.org/10.1007/s10817-009-9155-4
https://llvm.org/docs/LangRef.html#fast-math-flags
https://llvm.org/docs/LangRef.html#fast-math-flags
https://doi.org/10.1145/2737924.2737965
https://doi.org/10.1145/3314221.3314622
https://doi.org/10.1145/3015465
https://doi.org/10.1145/2380356.2380380
https://doi.org/10.1145/2380356.2380380
https://doi.org/10.1145/1879021.1879024
https://doi.org/10.1007/978-3-662-53413-7_16
https://doi.org/10.1137/1.9780898717716
https://doi.org/10.1007/978-3-319-66266-4_14

1:28 Verified Compilation and Optimization of Floating-Point Programs in CakeML

42 Andres Nötzli and Fraser Brown. LifeJacket: Verifying Precise Floating-Point Optimizations
in LLVM. In International Workshop on State Of the Art in Program Analysis (SOAP), 2016.
doi:10.1145/2931021.2931024.

43 Scott Owens, Magnus O Myreen, Ramana Kumar, and Yong Kiam Tan. Functional Big-
Step Semantics. In European Symposium on Programming (ESOP), 2016. doi:10.1007/
978-3-662-49498-1_23.

44 Pavel Panchekha, Alex Sanchez-Stern, James R Wilcox, and Zachary Tatlock. Automatically
Improving Accuracy for Floating Point Expressions. In Conference on Programming Language
Design and Implementation (PLDI), 2015. doi:10.1145/2737924.2737959.

45 A. Pnueli, M. Siegel, and E. Singerman. Translation Validation. In Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), 1998. doi:10.1007/BFb0054170.

46 Johannes Aman Pohjola, Henrik Rostedt, and Magnus O. Myreen. Characteristic Formulae for
Liveness Properties of Non-terminating CakeML Programs. In Interactive Theorem Proving
(ITP), 2019. doi:10.4230/LIPIcs.ITP.2019.32.

47 Markus Püschel, José M F Moura, Bryan Singer, Jianxin Xiong, Jeremy R Johnson, David A
Padua, Manuela M Veloso, and Robert W Johnson. Spiral - A Generator for Platform-
Adapted Libraries of Signal Processing Algorithms. International Journal of High Performance
Computing Applications, 18(1), 2004.

48 Tahina Ramananandro, Paul Mountcastle, Benoît Meister, and Richard Lethin. A Unified
Coq Framework for Verifying C Programs with Floating-Point Computations. In Certified
Programs and Proofs (CPP), 2016. doi:10.1145/2854065.2854066.

49 Talia Ringer, Karl Palmskog, Ilya Sergey, Milos Gligoric, and Zachary Tatlock. QED at
Large: A Survey of Engineering of Formally Verified Software. Foundations and Trends in
Programming Languages, 5, 2019. doi:10.1561/2500000045.

50 Cindy Rubio-González, Cuong Nguyen, Hong Diep Nguyen, James Demmel, William Kahan,
Koushik Sen, David H. Bailey, Costin Iancu, and David Hough. Precimonious: Tuning
Assistant for Floating-Point Precision. In International Conference for High Performance
Computing, Networking, Storage and Analysis (SC), 2013. doi:10.1145/2503210.2503296.

51 Hanan Samet. Proving the Correctness of Heuristically Optimized Code. Communications of
the ACM, 21(7), 1978. doi:10.1145/359545.359569.

52 Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic Optimization of Floating-point
Programs with Tunable Precision. In Programming Language Design and Implementation
(PLDI), 2014. doi:10.1145/2594291.2594302.

53 Konrad Slind and Michael Norrish. A Brief Overview of HOL4. In International Conference on
Theorem Proving in Higher Order Logics (TPHOL), 2008. doi:10.1007/978-3-540-71067-7_
6.

54 Alexey Solovyev, Charles Jacobsen, Zvonimir Rakamaric, and Ganesh Gopalakrishnan. Rigor-
ous Estimation of Floating-Point Round-off Errors with Symbolic Taylor Expansions. In Inter-
national Symposium on Formal Methods (FM), 2015. doi:10.1007/978-3-319-19249-9_33.

55 Yong Kiam Tan, Magnus O. Myreen, Ramana Kumar, Anthony Fox, Scott Owens, and Michael
Norrish. The Verified CakeML Compiler Backend. Journal of Functional Programming, 29,
2019. doi:10.1017/S0956796818000229.

56 Laura Titolo, Marco A Feliú, Mariano Moscato, and César A Munoz. An Abstract In-
terpretation Framework for the Round-off Error Analysis of Floating-Point Programs. In
Verification, Model Checking, and Abstract Interpretation (VMCAI), 2018. doi:10.1007/
978-3-319-73721-8_24.

57 Linus Torvalds. What is acceptable for -ffast-math?, 2001. URL: https://gcc.gnu.org/
legacy-ml/gcc/2001-07/msg02150.html.

58 Vadim Zaliva. HELIX: From Math to Verified Code. PhD thesis, Carnegie Mellon University,
2020.

59 Jianzhou Zhao, Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. Formalizing
the LLVM Intermediate Representation for Verified Program Transformations. In Principles
of Programming Languages (POPL), 2012. doi:10.1145/2103656.2103709.

https://doi.org/10.1145/2931021.2931024
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1145/2737924.2737959
https://doi.org/10.1007/BFb0054170
https://doi.org/10.4230/LIPIcs.ITP.2019.32
https://doi.org/10.1145/2854065.2854066
https://doi.org/10.1561/2500000045
https://doi.org/10.1145/2503210.2503296
https://doi.org/10.1145/359545.359569
https://doi.org/10.1145/2594291.2594302
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1007/978-3-319-19249-9_33
https://doi.org/10.1017/S0956796818000229
https://doi.org/10.1007/978-3-319-73721-8_24
https://doi.org/10.1007/978-3-319-73721-8_24
https://gcc.gnu.org/legacy-ml/gcc/2001-07/msg02150.html
https://gcc.gnu.org/legacy-ml/gcc/2001-07/msg02150.html
https://doi.org/10.1145/2103656.2103709

Elementary Type Inference
Jinxu Zhao #

Department of Computer Science, The University of Hong Kong, China

Bruno C. d. S. Oliveira #

Department of Computer Science, The University of Hong Kong, China

Abstract
Languages with polymorphic type systems are made convenient to use by employing type inference
to avoid redundant type information. Unfortunately, features such as impredicative types and
subtyping make complete type inference very challenging or impossible to realize.

This paper presents a form of partial type inference called elementary type inference. Elementary
type inference adopts the idea of inferring only monotypes from past work on predicative higher-
ranked polymorphism. This idea is extended with the addition of explicit type applications that
work for any polytypes. Thus easy (predicative) instantiations can be inferred, while all other (impre-
dicative) instantiations are always possible with explicit type applications without any compromise
in expressiveness. Our target is a System F extension with top and bottom types, similar to the
language employed by Pierce and Turner in their seminal work on local type inference. We show a
sound, complete and decidable type system for a calculus called F e

<:, that targets that extension
of System F. A key design choice in F e

<: is to consider top and bottom types as polytypes only.
An important technical challenge is that the combination of predicative implicit instantiation and
impredicative explicit type applications, in the presence of standard subtyping rules, is non-trivial.
Without some restrictions, key properties, such as subsumption and stability of type substitution
lemmas, break. To address this problem we introduce a variant of polymorphic subtyping called
stable subtyping with some mild restrictions on implicit instantiation. All the results are mechanically
formalized in the Abella theorem prover.

2012 ACM Subject Classification Software and its engineering → General programming languages

Keywords and phrases Type Inference

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.2

Related Version Full Version: https://github.com/JimmyZJX/ElementaryTypeInference/blob/
main/paper_extended.pdf

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.5

Funding The research is supported by the Type Inference for Complex Type Systems collaboration
project (TC20210422012) between Huawei, and the University of Hong Kong and Hong Kong
Research Grants Council projects number 17209520 and 17209821.

Acknowledgements We are grateful to the anonymous reviewers for their valuable comments
which helped to improve the presentation of this work. We also thank Chen Cui for creating the
implementation for our prototype.

1 Introduction

Many programming languages, such as Java, C#, Scala or TypeScript (among others)
have type systems with parametric polymorphism, subtyping and first-class functions. For
convenience, some form of type inference is desirable in those languages. Type inference avoids
code being cluttered with redundant type annotations, as well as explicit type instantiations
of polymorphic functions. For instance, in Java, we can write code such as:

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Jinxu Zhao and Bruno C. d. S. Oliveira;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 2; pp. 2:1–2:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jxzhao@cs.hku.hk
mailto:bruno@cs.hku.hk
https://doi.org/10.4230/LIPIcs.ECOOP.2022.2
https://github.com/JimmyZJX/ElementaryTypeInference/blob/main/paper_extended.pdf
https://github.com/JimmyZJX/ElementaryTypeInference/blob/main/paper_extended.pdf
https://doi.org/10.4230/DARTS.8.2.5
https://doi.org/10.4230/DARTS.8.2.5
https://doi.org/10.4230/DARTS.8.2.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 Elementary Type Inference

List<String> numbers = Arrays.asList("1", "2", "3", "4", "5", "6");
List<Integer> even = numbers.stream()

.map(s -> Integer.valueOf(s))

.filter(number -> number % 2 == 0)

.collect(Collectors.toList());

This code processes a list of strings representing numbers, converts the strings into numbers,
and filters the even numbers. Thus the list even is [2,4,6]. The code is made practical by a
form of local type inference [27, 21, 4, 28], which helps in two ways. Firstly, local type inference
enables synthesis of type arguments in many cases. That is, applications of generic methods
(i.e. methods parametrized by some types) will automatically infer the type arguments.
An example of type argument synthesis is the method call map(s -> Integer.valueOf(s)).
The polymorphic map function allows taking a function that converts values in the list with
some type A into values of some other type B, thus producing a list with type List. In
the code above, B is Integer, and such instantiation is implicitly done by the compiler.
Secondly, local type inference employs bidirectional type-checking [27, 10] to propagate known
type-information. For example, in the snippet above the type of numbers is List<String>,
therefore in map(s -> Integer.valueOf(s)) we can deduce that s is of type String.

Without local type inference, the code above would need to explicitly provide the types for
instantiation and the types of arguments for the lambda functions, making the code cluttered
with type annotations. Nonetheless, some instantiations cannot be automatically inferred.
For such cases, languages like Java support explicit type applications as well. For instance,
we can write an alternative invocation of the map function with explicit type application as:

.<Integer>map(s -> Integer.valueOf(s))

In their original work on local type inference, Pierce and Turner [27] considered a System
F language extended with subtyping and a top and a bottom type. Such a language captures
most of the essential features of interest to write code such as the above. In particular, their
System F variant captures essential forms of subtyping by including top and bottom types,
supports both implicit instantiation and explicit type application, and employs bidirectional
type-checking for inferring types in simple cases with lambdas as arguments.

Local type inference is a pragmatic approach. It is not aimed to provide the same degree
of type inference that is possible in languages with Hindley-Milner type inference [16, 19, 5].
Instead, as Pierce and Turner state, the goal is to “exchange complete type inference for
simpler methods that work well in the presence of more powerful type-theoretic features such
as subtyping and impredicative polymorphism”. In local type inference, the main design
decision that is made to simplify type inference is to avoid forms of global type inference
that employ long-distance constraints such as unification variables.

The issues caused by both subtyping and impredicative polymorphism for more ambitious
global type inference methods are well-known. There are several important undecidability
results that are relevant. For instance, for System F, full type inference is undecidable [38] and
an impredicative polymorphic subtyping relation for System F is undecidable as well [35, 3].
For a type system with top and bottom types and type variables, subtyping can also easily
run into undecidable problems [34]. Despite those problems, several different approaches
and restrictions have been developed for allowing type inference for: predicative versions
of System F [25, 8, 9, 20, 39]; impredicative versions of System F [17, 18, 36, 33, 32, 14]; as
well as several Hindley-Milner extensions with subtyping [11, 30, 6, 23].

Perhaps surprisingly, follow-up research on local type inference and type inference for
type systems that include higher-ranked polymorphism, impredicativity and subtyping (with
top and bottom types) has been relatively limited. In contrast, closely related global type
inference approaches with higher-ranked polymorphism (HRP) for System-F-like languages

J. Zhao and B. C. d. S. Oliveira 2:3

have seen quite a bit of development. Such HRP approaches [8, 17, 18, 36, 25, 33, 20]
extend the classic Hindley-Milner type system, removing the restriction of top-level (let)
polymorphism only. Both local type inference and HRP type inference techniques allow
synthesis of type arguments and use type annotations to aid inference. The main difference
is that HRP type inference targets a System-F-like language without subtyping, whereas the
local type inference targets a System-F-like language with subtyping. Another difference is
that most HRP techniques support implicit instantiation only, although there is some work
on supporting visible (or explicit) type applications as well in HRP approaches [13, 32].

In this paper, we propose a form of partial type inference called elementary type inference.
Like local type inference, we aim at having a pragmatic approach. We are willing to sacrifice
some power in terms of what can be inferred, in exchange for an approach that can deal
with both subtyping in the presence of top and bottom types, as well as impredicative
polymorphism. Like local type inference we support synthesis of type arguments and bi-
directional type-checking, but do not support Hindley-Milner style generalization. Unlike
local type inference, our type inference is global and employs long-distance constraints. We
build on recent developments in predicative type inference with HRP for System-F-like
languages. The philosophy in elementary type inference is to infer only monotypes, but also
include an explicit type application construct that can be used to instantiate any types (or
polytypes). In other words, many programs where instantiations are monotypes can still
benefit from type inference, while no expressive power is sacrificed. We can always resort to
explicit type application for dealing with general polytypes.

We present a calculus with elementary type inference, called F e
<:, that can encode all

terms in a variant of System F with subtyping. The type system of F e
<: is a variant of the

Dunfield and Krishnaswami [8] (DK) type system, extended with top and bottom types and
impredicative explicit type application. The algorithmic formulation of F e

<: is based on the
worklist algorithm by Zhao et al. [39]. We have a prototype implementation, as well as a full
mechanical formalization (including results such as soundness, completeness and decidability)
in the Abella theorem prover [15]. A key design choice in F e

<: is to consider top and bottom
types as polytypes only. In other words, we avoid guessing types for implicit instantiation
that use top and bottom types. This design choice avoids many of the technical challenges
that would otherwise occur in the inference of terms with top and bottom types.

A key technical challenge is that the combination of predicative implicit instantiation and
impredicative explicit type applications is problematic. Without some restrictions, important
properties, such as subsumption and type substitution lemmas, break. To address this
problem we introduce a novel polymorphic subtyping relation called stable subtyping. Stable
subtyping has some mild restrictions, compared to the well-known Odersky and Läufer [20]
formulation, but accounts for top and bottom types and impredicative instantiations. In
essence, due to the presence of explicit impredicative type applications, out-of-order implicit
instantiation and unused type variables are forbidden.

In summary, the contributions of this work are:

Elementary type inference: A form of partial type inference that combines predicative
implicit instantiation with impredicative explicit type application, in the presence of
conventional subtyping rules and top and bottom types.
The F e

<: calculus: We present a syntax-directed specification and an algorithmic version
of the F e

<: calculus. We show that the algorithmic version is sound and complete to the
specification, and its type system is also decidable. Furthermore, F e

<: is type-safe and
complete with respect to a variant of System F with subtyping and top and bottom types.

ECOOP 2022

2:4 Elementary Type Inference

Stable subtyping: A new form of polymorphic subtyping, based on the well-known
polymorphic subtyping relation by Odersky and Läufer [20], but with some restrictions.
The restrictions are needed to ensure important properties such as subsumption and
stability of type substitutions in the presence of impredicative type applications.
Implementation and mechanical formalization. All the calculi and proofs presented
in this paper are mechanically formalized in the Abella theorem prover. The formalization,
an implementation and the extended version of the paper can be found in:
https://github.com/JimmyZJX/ElementaryTypeInference

2 Overview

We start with a background on higher-ranked polymorphic (HRP) type inference and the
declarative type system by Dunfield and Krishnaswami [8]. Then we discuss the challenges
of extending such HRP systems with explicit type applications and top and bottom types.
Finally, we illustrate the key ideas in our work to address those challenges.

2.1 Background: Higher-Ranked Type Inference and Type Applications
Our work builds on prior work on HRP type inference. In HRP type systems, universal
quantification can appear in arbitrary positions in types. This lifts a restriction of Hindley-
Milner type inference [16, 19, 5], where universal quantification can only appear at the top
level. To introduce HRP type inference we will use examples in GHC 8, whose type inference
algorithm is closely based on the work by Eisenberg et al. [13] on visible type application.
The use of GHC 8 will later be helpful to illustrate some challenges of combining HRP type
inference with explicit type applications and standard subtyping rules.1

A canonical example of an expression with an arbitrary higher-ranked type is:
hpoly = \(f :: forall a. a -> a) -> (f 1, f ’c’)

The type of this function is (forall a. a -> a) -> (Int, Char). A type annotation helps
the type system to infer a type. In general, HRP type systems require some type annotations.
In many such systems, it is enough to provide type annotations for polymorphic arguments
(such as above). The use of some type annotations means that type inference is partial.

Predicativity, Polymorphic Subtyping and Explicit Type Applications. In predicative type
systems, universally quantified types can only be instantiated with monotypes, which are
types that do not contain universal quantifiers. For instance, the following definition of f:

f :: (forall a. Int -> a -> Int) -> Bool -> Int
f k = k 3

illustrates a higher-ranked function, where the argument k is polymorphic. In the body,
implicit instantiation is used when applying k to an argument. In that application, the type
argument of k is left implicit and is instantiated automatically with the monotype Bool.

The polymorphic subtyping relation used in GHC 8 (based on Peyton Jones et al.’s
work [25]) and also by DK’s type system allows implicit instantiation of type arguments in
polymorphic types, which follows Hindley-Milner. This allows us, for instance, to define a
function h, with a different but compatible type with f:

h :: (forall b a. b -> a -> b) -> Bool -> Int
h k = f k

1 Type-checked with the GHC extensions: RankNTypes, TypeApplications and ScopedTypeVariables.

https://github.com/JimmyZJX/ElementaryTypeInference

J. Zhao and B. C. d. S. Oliveira 2:5

Notice that in h, one more universal variable is added, generalizing the argument type
compared to f. However, since subtyping of functions is contravariant on the input types,
the type of h is less general (or a supertype) of the type of f.

Another alternative to support instantiation is to employ an explicit type application.
For example, function g illustrates explicit type applications in GHC Haskell:

g :: (forall a. Int -> a -> Int) -> Bool -> Int
g k = k @Bool 3

The function g has the same type as f but explicitly instantiates the type arguments of the
argument k. The notation e @τ (for instance k @Bool in the definition of g above) denotes
explicit type applications in Haskell. We will also adopt a similar notation in this paper.

2.2 Background: The Dunfield and Krishnaswami Type System
Our declarative type system can be viewed as a variant of the DK type system. The DK
type system is predicative and supports implicit instantiation only. We review the original
type system first, before proceeding with the presentation of our work.

Syntax. The syntax of DK’s declarative system is shown at the top of Figure 1. A declarative
type A is either the unit type 1, a type variable a, a universal quantification ∀a. A or a
function type A → B. Nested universal quantifiers are allowed for types, but monotypes τ do
not have any universal quantifier. Terms include a unit term (), variables x, lambda-functions
λx. e, applications e1 e2 and annotations (e : A). Contexts Ψ are sequences of type variable
declarations and term variables with their types declared x : A.

Declarative Subtyping. The middle of Figure 1 shows DK’s declarative subtyping judgment
Ψ ⊢ A ≤ B, which was adopted from Odersky and Läufer [20]. This judgment compares
the degree of polymorphism between types A and B in DK’s implicitly polymorphic type
system. If A can always be instantiated to match any instantiation of B, then A is “at least
as polymorphic as” B. We also say that A is “more polymorphic than” B and write A ≤ B.
Subtyping rules ≤Var, ≤Unit and ≤→ handle simple cases that do not involve universal
quantifiers. The subtyping rule for function types ≤→ is standard, being covariant on the
return type and contravariant on the argument type. Rule ≤∀R states that if A is more
general than ∀b. B, then A must instantiate to [τ/b]B for every τ . The type variable b we
introduced in the premise is implicitly fresh. We use this convention throughout the whole
paper. The most interesting rule is ≤∀L, which is where implicit instantiation can happen.
If some instantiation of ∀a. A, [τ/a]A, is a subtype of B, then ∀a. A ≤ B. Only monotypes
τ can be used to instantiate a, which is guessed in this declarative rule.

Declarative Typing. The bidirectional type system, shown at the bottom of Figure 1, has
three judgments. The checking judgment Ψ ⊢ e ⇐ A checks expression e against the type A

in the context Ψ. The synthesis judgment Ψ ⊢ e ⇒ A synthesizes the type A of expression e

in the context Ψ. The application judgment Ψ ⊢ A • e ⇒⇒ C synthesizes the type C of the
application of a function of type A (which could be polymorphic) to the argument e.

Many rules are standard bidirectional type-checking rules [10], so we focus only on the
more interesting and non-standard rules. Checking an expression e against a polymorphic
type ∀a. A in the context Ψ (rule D∀I) succeeds if e checks against A in the extended context
(Ψ, a). The subsumption rule DSub calls the subtyping relation, and changes the mode from
checking to synthesis: if e synthesizes type A and A ≤ B, then e checks against B. Besides a
standard checking rule (D→I) for lambda abstractions, rule D→I⇒ synthesizes monotypes

ECOOP 2022

2:6 Elementary Type Inference

Syntax

Type variables a, b

Types A, B, C ::= 1 | a | ∀a. A | A → B

Monotypes τ, σ ::= 1 | a | τ → σ

Expressions e ::= x | () | λx. e | e1 e2 | (e : A)
Contexts Ψ ::= · | Ψ, a | Ψ, x : A

Ψ ⊢ A ≤ B Declarative subtyping

a ∈ Ψ
Ψ ⊢ a ≤ a

≤Var
Ψ ⊢ 1 ≤ 1

≤Unit
Ψ ⊢ B1 ≤ A1 Ψ ⊢ A2 ≤ B2

Ψ ⊢ A1 → A2 ≤ B1 → B2
≤→

Ψ ⊢ τ Ψ ⊢ [τ/a]A ≤ B

Ψ ⊢ ∀a. A ≤ B
≤∀L

Ψ, b ⊢ A ≤ B

Ψ ⊢ A ≤ ∀b. B
≤∀R

Ψ ⊢ e ⇐ A e checks against input type A.
Ψ ⊢ e ⇒ A e synthesizes output type A.
Ψ ⊢ A • e ⇒⇒ C Applying a function of type A to e synthesizes type C.

(x : A) ∈ Ψ
Ψ ⊢ x ⇒ A

DVar
Ψ ⊢ e ⇒ A Ψ ⊢ A ≤ B

Ψ ⊢ e ⇐ B
DSub

Ψ ⊢ A Ψ ⊢ e ⇐ A

Ψ ⊢ (e : A) ⇒ A
DAnno

Ψ ⊢ () ⇒ 1
D1I⇒

Ψ ⊢ τ Ψ ⊢ [τ/a]A • e ⇒⇒ C

Ψ ⊢ ∀a. A • e ⇒⇒ C
D∀App

Ψ, a ⊢ e ⇐ A

Ψ ⊢ e ⇐ ∀a. A
D∀I

Ψ, x : A ⊢ e ⇐ B

Ψ ⊢ λx. e ⇐ A → B
D→I

Ψ ⊢ e ⇐ A

Ψ ⊢ A → C • e ⇒⇒ C
D→App

Ψ ⊢ σ → τ Ψ, x : σ ⊢ e ⇐ τ

Ψ ⊢ λx. e ⇒ σ → τ
D→I⇒

Ψ ⊢ e1 ⇒ A Ψ ⊢ A • e2 ⇒⇒ C

Ψ ⊢ e1 e2 ⇒ C
D→E

Figure 1 The Dunfield and Krishnaswami Type System.

σ → τ . Application e1 e2 is handled by rule D→E, which first synthesizes the type A of the
function e1. If A is a function type B → C, then rule D→App is applied. The synthesized
type of function e1 can also be polymorphic, of the form ∀a. A. In that case, we instantiate A

to [τ/a]A with a monotype τ using the rule D∀App. If [τ/a]A is a function type, rule D→App
is used; if [τ/a]A is another universal quantified type, rule D→I⇒ is recursively applied.

2.3 The Challenges of Explicit Type Applications

While explicit type applications seem like a natural extension to type systems with implicit
instantiation, the combination can break some important properties and make programs less
robust to refactoring or inlining. In particular, in many existing type systems with implicit
instantiation, the order of type arguments being instantiated does not matter, whereas
with explicit instantiation the order does matter (at least if arguments are positional). The
design proposed by Eisenberg et al. [13] notices this difference, and distinguishes between
specified and generalized type quantification. All the GHC examples that we show in this

J. Zhao and B. C. d. S. Oliveira 2:7

paper employ specified type quantification, where the programmer explicitly writes the type
signature, and the order of type arguments is relevant. However, there are other subtler
points in the design of a subtyping relation for specified type quantification that make it
hard to get certain expected properties in a language. We illustrate some concrete issues
next with GHC 8 and Eisenberg et al.’s design. We remark, however, that some other issues
with GHC 8’s approach have already been identified and GHC 9 adopts a different approach
that avoids the issues described here. A detailed discussion follows in Section 7.

Explicit Type Applications, Subsumption and Equational Reasoning. The design by
Eisenberg et al. is based on bidirectional type-checking and supports a standard subsumption
rule, similar to the rule DSub in DK’s type system. Moreover, the subtyping relation employed
in that design is essentially an extension of that in DK’s type system. The examples that we
show next involve subtyping relations that are valid in both DK’s type system, as well as the
subtyping relation employed by Eisenberg et al. [13]. An important lemma that holds for
the DK type system is the checking subsumption lemma:

▶ Lemma 1 (Checking Subsumption). If Ψ ⊢ e ⇐ A and Ψ ⊢ A ≤ B then Ψ ⊢ e ⇐ B

This lemma is quite similar to the subsumption rule. The difference is that the premise
(Ψ ⊢ e ⇐ A) is in checking mode, instead of synthesis mode. The lemma states that we
can always change the type of an expression being checked to a supertype. A practical
consequence of this lemma is that changing type annotations of an expression to a supertype
is always possible, which is something that programmers would expect. For example, we
could change the type annotation of f in Section 2.1 to that of h and f would still type-check.

In contrast to DK’s type system, the work by Eisenberg et al. [13] and GHC 8 does
not have the checking subsumption property. We believe that the lack of this property is
undesirable, especially for a language that promotes equational reasoning like Haskell. To
illustrate why the property is important, consider the Haskell functions:
h2 :: (forall b a. b -> a -> b) -> Bool -> Int
h2 k = g k -- type checks!

h3 :: (forall b a. b -> a -> b) -> Bool -> Int
h3 k = k @Bool 3 -- rejected!

Recall the examples from Section 2.1. Function h is defined with a simple call to f, although
it has a different type. Here the new function h2 has the same type as h, which is a supertype
of the type of f and g. However, if we try to replace the call g k by its definition in h2, we
get the definition h3, which no longer type-checks. There are two important issues to notice
here. Firstly, replacing equals by equals (or inlining) results in a program that does not
type-check! The problem is that now the type argument of k in h3 instantiates the wrong
type variable. Now k has two type arguments, and the second type argument corresponds
to the first type argument of the type of the argument k in g. Because of this, the type of
k in h3 is not compatible with the use of k in the body. Secondly, the example shows that
higher-ranked type arguments that use explicit type applications can break the checking
subsumption property. There are some valid supertypes of functions that, if used instead
of the original type, will result in an ill-typed program. Even though the type of h2 is a
supertype of the type of g, we cannot use that supertype to type-check g.

ECOOP 2022

2:8 Elementary Type Inference

Explicit Type Applications in DK’s Type System. A naive extension of the DK type
system with explicit type applications would be to add the rule:

Ψ ⊢ e ⇒ ∀a. A

Ψ ⊢ e @B ⇒ [B/a]A
DTypeApp∀

This rule first synthesizes a polymorphic type ∀a. A from e, and then outputs its instantiation
[B/a]A for the explicit type application e @B. Unfortunately, this rule breaks checking
subsumption as well, for very similar reasons to those in the GHC examples. It is easy to
port the previous GHC counter-examples to this extension of DK’s type system, and get
similar issues to those that we have just described.

▶ Example 2. Now we look at a different example that illustrates the general problem
of having order-irrelevance of universally quantified type variables. Suppose that we have
e = λx. x @Int 3 True, A = (∀a. ∀b. a → b → a) → Int, and B = (∀b. ∀a. a → b → a) → Int.
Both conditions of the checking subsumption lemma

λx. x @Int 3 True ⇐ (∀a. ∀b. a → b → a) → Int
(∀a. ∀b. a → b → a) → Int ≤ (∀b. ∀a. a → b → a) → Int

hold, yet the conclusion
(
λx. x @Int 3 True ⇐ (∀b. ∀a. a → b → a) → Int

)
does not hold:

the type application instantiates the wrong type variable, causing the type system to reject
it. The types A and B here differ only in the order of polymorphic type variables. The
order-sensitive explicit type application is not compatible with order-irrelevant subtyping
relations, such as the one in DK’s type system, breaking the checking subsumption lemma.

Impredicative Type Applications and Stability of Subtyping. So far, we have illustrated
problems that involve only monotypes (and predicative instantiation). If impredicative type
applications are supported as well, then this brings another class of problems.

▶ Example 3. Consider e = λx. x @C, A = (∀a. a → a) → (C → C), and B =
(∀a. ∀b. b → a) → (C → C). Here we assume C = (∀a. a → a) → Int, but other poly-
morphic types could be used as well. Both conditions of the checking subsumption lemma:

λx. x @C ⇐ (∀a. a → a) → (C → C)
(∀a. a → a) → (C → C) ≤ (∀a. ∀b. b → a) → (C → C)

hold, but not the conclusion λx. x @C ⇐ (∀a. ∀b. b → a) → (C → C). When type checking
the condition λx. x @C ⇐ (∀a. a → a) → (C → C), the type application @C is properly
applied, instantiating the universal variable a on the type of x (∀a. a → a) to C. However,
when we have the conclusion λx. x @C ⇐ (∀a. ∀b. b → a) → (C → C), the type application
x @C only instantiates the type argument a, but not the type argument b. Thus the type
inferred for the application x @C is ∀b. b → C. Unfortunately, the predicative subtyping
relation rejects ∀b. b → C ≤ C → C when C is a polymorphic type like (∀a. a → a) → Int.
Thus, the conclusion λx. x @C ⇐ (∀a. ∀b. b → a) → (C → C) fails to type check.

While this problem is also an instance of checking subsumption not holding, the reason
why this example fails is different from the previous examples. The crux of the problem here
is that some instantiations with polytypes break the polymorphic subtyping relation after
instantiation. More concretely, we would like the following property to hold:

J. Zhao and B. C. d. S. Oliveira 2:9

▶ Corollary 4 (Stability of Subtyping). If Ψ ⊢ ∀a. A ≤ ∀a. B then Ψ ⊢ [C/a]A ≤ [C/a]B
holds for any well-formed C (Ψ ⊢ C).

but this property does not hold in general for polytypes in DK’s type system. DK’s type
system has a similar property, but only for monotypes. When impredicative type applications
are present, we would like to have a more general property that holds for polytypes as well.

Problem with Unused Variables. Furthermore, unused type variables in universal quantifiers
are problematic, since they can also break stability of subtyping. ∀a. ∀b. a ≤ ∀a. a is accepted
by most subtyping relations that support implicit instantiation, including DK and HM. If
we instantiate both sides of the subtyping judgment with the polytype C := ∀c. c → c, the
judgment becomes ∀b. ∀c. c → c ≤ ∀c. c → c, which is then problematic, because a second
instantiation with C ′ := ∀d. d → d would give ∀c. c → c ≤ (∀d. d → d) → (∀d. d → d), which
is rejected by predicative systems. Here the problem is not caused by a permutation or extra
type variables in polytypes. Instead, an unused variable leads to such problem.

2.4 The Problems with Subtyping with Top and Bottom Types
Besides the problems with explicit type applications, the presence of top and bottom types
raises its own class of issues.

Polymorphic Subtyping with Top and Bottom Types. To support top and bottom types
in DK’s type system, a first idea is to introduce those types, with their standard subtyping
rules and consider them to be monotypes, leading to the following syntax for monotypes:

τ ::= 1 | ⊥ | ⊤ | τ → τ | a

Unfortunately, it is known that the subtyping for a language with type variables, such as the
above, can quickly become undecidable [34]. To illustrate some of the issues, consider the
subtyping judgment ∀a. (a → a → 1) → 1 ≤ (∀b. b → b) → 1, which reduces to the following
problem: find (predicative) instantiations for α̂ and β̂, satisfying α̂ ≤ β̂ and β̂ ≤ α̂ → 1.
Such a problem has infinitely many solutions, where there is no best one. If we assume that
existential variables α̂ and β̂ are instantiated to the same type, there are infinite solutions:

α̂ = β̂ = ⊥ | ⊤ → 1 | ⊤ → ⊥ | (⊥ → 1) → 1 | · · ·

Additionally, α̂ = β̂ is not the most general unification for the judgment α̂ ≤ β̂. Assignments
like α̂ = β̂, β̂ = β̂ → 1 also validate the subtyping judgments.

Inference of ⊤ and ⊥ Types can Mask Type Errors errors. Consider the following
expression:

λf. f + f 1

Such expression can be typed with the type ⊥ → Int. Since the input parameter f , having
type ⊥, can be converted to either an integer or to a function of type Int → Int. However,
inferring such a type is hardly useful in practice. Instead, the programmer might have
immediately realised the bug (perhaps the argument for the first call to f is missing) if the
type inference algorithm rejects the lambda expression, rather than after it has inferred a
type with ⊥. By constraining the type inference algorithm to infer types free from ⊤ and ⊥,
such type is no longer be inferred, and thus the bug is reported when defining the function.

ECOOP 2022

2:10 Elementary Type Inference

It is mentioning that, in languages like Scala, there are several reports of issues arising
because ⊤ and ⊥ (respectively Any and Nothing in Scala) can be inferred2. The Scala
compiler even has a flag -Xlint:infer-any that is used to warn whenever Any is inferred.

2.5 Our Solution

The form of type-inference available in F e
<: is inspired by current approaches employed in

predicative higher-ranked type inference [25, 8, 9, 20, 39]. In terms of restrictions, F e
<: does

not have generalization (similarly to the DK type system), and there are some restrictions
that weaken the expressive power of the polymorphic subtyping relation. However, those
restrictions mostly affect higher-ranked programs, and for many other Hindley-Milner style
programs (with polymorphic annotations) there should be no impact from those restrictions.
In terms of innovations the type system of F e

<: supports top and bottom types and explicit
impredicative type applications. Moreover, implicit instantiation and explicit instantiation
interoperate well and have important properties, such as checking subsumption and stability
of subtyping. Next we show some examples that run in our implementation and illustrate
the capabilities of the F e

<: type system. We note that our implementation contains some
extra features that enable us to present more interesting examples. These features include
recursive let expressions, (polymorphic) lists and case expressions on lists.

Rank-1 Polymorphism. We start with first-order polymorphism, which is the kind of
polymorphism supported in Hindley-Milner. We can define the map function in F e

<: as follows:
1 let map :: forall a b. (a -> b) -> [a] -> [b]
2 = \f -> \xs -> case xs of [] -> []; (x:xs) -> f x : map f xs

This definition is similar to a definition in a language with Hindley-Milner, except that we
must explicitly provide the type of the map function. An explicit type is optional in languages
like Haskell or ML, but must be provided in F e

<: for polymorphic functions like map. Like in
Hindley-Milner, when writing the body of the function we do not need to use type binders
and the recursive call implicitly instantiates the types a and b. We can use map conventionally,
as in an HM language like Haskell or ML:

1 map (\x -> x + 1) [1,2,3]

or use explicit type applications if necessary or desired. For example:
1 map @Int @Top (\x -> x :: Top) [1,2,3]

which uses explicit type applications to instantiate b with the Top type. Since the body
of the function argument uses a type annotation (x :: Top) to return a Top type, writing
map (\x -> x :: Top) [1,2,3] would fail to type-check. The problem is that Top is not a
monotype in our system and cannot be inferred during implicit instantiation.

While there is no generalization, we can still infer monotypes for lambdas. Therefore, the
following is allowed:

1 let succ = \x -> x + 1

The type inferred for succ is the monotype Int -> Int. However writing let id = \x -> x,
without an explicit annotation for id would fail, since generalization would be necessary to
infer a polymorphic type for the identity function.

2 See for instance: https://riptutorial.com/scala/example/21134/preventing-inferring-nothing.

https://riptutorial.com/scala/example/21134/preventing-inferring-nothing

J. Zhao and B. C. d. S. Oliveira 2:11

Higher-Ranked Polymorphism. With explicit type applications, it becomes possible to
perform impredicative instantiations. A simple example of this is applying the identity
function to itself. In F e

<: we can write:
1 let id :: forall a. a -> a = \x -> x in id @(forall a. a -> a) id

In this case the type used to explicitly instantiate the identity function is a polymorphic
type. Implicit instantiation is not possible here, since the type argument is not a monotype.
Another example of impredicative instantiation is:

1 let plist :: [forall a. a -> a] = [\z -> z, \z -> z]
2 in map @(forall a. a -> a) (\f -> f 1) plist

where the map function takes a list with polymorphic functions of type forall a. a -> a. The
function argument (\f -> f 1) of map applies a polymorphic function to 1.

Restrictions for Higher-Ranked Polymorphism. The GHC 8 definitions in Section 2.1 for f
and g also type-check in F e

<::
1 let f :: (forall a. Int -> a -> Int) -> Bool -> Int = \k -> k 3
2 let g :: (forall a. Int -> a -> Int) -> Bool -> Int = \k -> k @Bool 3

However, the definition of h fails to type-check:
1 let h :: (forall b. forall a. b -> a -> b) -> Bool -> Int = \k -> f k -- fails!

This definition is rejected because ∀b. ∀a. b → a → b ≤ ∀a. Int → a → Int does not hold in
F e

<:. Our polymorphic subtyping relation does not consider the type of k to be a subtype of
the expected argument for f. By preventing examples such as this one we avoid the issues
discussed in Section 2.3 and we retain the checking subsumption property.

We can also type-check the expression used in our Example 2:
1 \x -> x @((forall a. a -> a) -> Int)

with a type annotation:
1 (forall a. a -> a) -> ((forall a. a -> a) -> Int) -> ((forall a. a -> a) -> Int)

owever, using the type annotation
1 (forall a. forall b. b -> a) ->
2 ((forall a. a -> a) -> Int) -> ((forall a. a -> a) -> Int)

will fail because the type in the first annotation is not a subtype of the type in the second
annotation in our polymorphic subtyping relation: the subtyping statement ∀a. ∀b. b → a ≤
∀a. a → a does not hold. In the Odersky and Läufer relation, such subtyping statement
holds. As discussed in Section 2.3, accepting such subtyping statements is problematic when
impredicative instantiation is allowed, since we lose the stability of subtyping property.

No Inference of Top and Bottom. Finally the type system of F e
<: rejects:

1 let strange = \f -> f + f 1 -- fails!

As discussed in Section 2.4, this definition could be type-checked if we could infer the bottom
type for f. Since bottom is not a monotype, it cannot be infered and this definition is rejected.
However, the following definition, with an explicit type annotation is allowed:

1 let strange : Bot -> Int = \f -> f + f 1

In other words, we avoid inferring top and bottom, which can type-check programs that are
likely to have type errors. However, we can always provide annotations for definitions that
can type-check with polytypes, thus allowing such definitions to type-check if desired.

ECOOP 2022

2:12 Elementary Type Inference

Ψ ⊢s A ≤ B Stable subtyping

Ψ ⊢s A

Ψ ⊢s A ≤ A
≤srefl

Ψ ⊢s A ≤ ⊤
≤s⊤

Ψ ⊢s ⊥ ≤ A
≤s⊥

∀C, Ψ ⊢s C =⇒ Ψ ⊢s [C/a]A ≤ [C/a]B
Ψ ⊢s ∀a. A ≤ ∀a. B

≤s∀
Ψ ⊢s B1 ≤ A1 Ψ ⊢s A2 ≤ B2

Ψ ⊢s A1 → A2 ≤ B1 → B2
≤s→

Ψ ⊢ τ Ψ ⊢s [τ/a]A ≤ B B ̸= ∀b.B′

Ψ ⊢s ∀a. A ≤ B
≤s∀L

Figure 2 Stable Subtyping.

2.6 Key Technical Ideas
Stable Polymorphic Subtyping. We address the problems with explicit type applications
via a novel notion of polymorphic subtyping, which preserves both subsumption and stability
of subtyping. Stable subtyping, shown in Figure 2, is a variant from DK’s subtyping with
some changes. Note that we use color to highlight new rules or changes, with respect to
DK’s type system, here and throughout the paper. The new rule ≤srefl replaces base cases
in the previous system, and rule ≤s∀ directly expresses the expected stability property. We
also forbid polymorphic types that contain unused type variables. This restriction is enforced
by the well-formedness relation (see details in Section 3.1). Rule ≤s∀L has a side condition
to prevent overlapping with rule ≤s∀ and has a less priority. In addition, we also have two
new (but standard) rules for top and bottom types (rules ≤s⊤ and ≤s⊥).

There are 3 main differences with respect to DK’s subtyping relation. Firstly, stable
subtyping does not allow instantiations out-of-order. Note that, unlike DK’s type system,
there is no rule that corresponds to ≤∀R, which removes the ability to perform such instanti-
ations. Thus, the order of type variables becomes relevant. Secondly, types with unused type
variables, such as ∀a.1, are not allowed. Finally, top and bottom types are supported.

A Syntax-Directed System with Subtype Variables. While rule ≤s∀ directly captures
the stability property that we want, such a rule is highly declarative. Thus, an important
challenge is to find an alternative equivalent set of rules that is closer to an implementation.
Our solution to the problem relies on a new sort of variables, ã, called subtype variables,
and the following subtyping rule, which is proven to have equal effect to ≤s∀:

Ψ, ã ⊢ [ã/a]A ≤ [ã/a]B
Ψ ⊢ ∀a. A ≤ ∀a. B

≤∀

The difference between a subtype variable ã and a conventional type variable a is that a
subtype variable is not a monotype, therefore it cannot be instantiated with rule ≤∀L. Thus,
a subtyping statement such as ∀a. ∀b. b → a ≤ ∀a. a → a does not hold, since it would
require instantiation with a subtype variable, which is not allowed.

Explicit Type Applications for Polytype Instantiations. To avoid being overly restrictive,
we still support polytype instantiations via explicit type applications. Thus, while some
convenience afforded by more expressive formulations of type inference is lost, no expressive

J. Zhao and B. C. d. S. Oliveira 2:13

power is lost. We can encode a variant of System F<: (without bounded quantification)
trivially using explicit type applications. We formally verify the soundness and completeness
theorems in our Abella formalization and present the results in the extended version.

Summary. With stable subtyping, Corollary 4 and the subsumption lemma hold, and the
system works smoothly with the explicit type application rules in the type system. Moreover,
we address the problems with top and bottom types by not considering top and bottom types
as monotypes. This extends a similar idea in predicative HRP, which excludes universal
types from monotypes, thus avoiding decidability issues that arise from including such types.

3 Syntax-Directed System

This section introduces a syntax-directed type system for F e
<:, which serves as a specification

for the algorithmic version that will be presented in Section 4. The type system can be
viewed as a variant of the Dunfield and Krishnaswami [8] type system, adding explicit type
applications and abstractions, as well as ⊤ and ⊥ types. Furthermore, the type system
supports impredicativity via explicit instantiations. The subtyping relation employed in this
type system is equivalent to the stable subtyping relation introduced in Section 2.6, but it
is syntax-directed and employs a special kind of type variables in the subtyping relation.
Several important properties, such as the subsumption lemma, a generalized stability lemma
for impredicative types, and transitivity of subtyping are proved.

3.1 Syntax and Well-Formedness
Compared to the syntax of the DK system presented in Figure 1, the syntax of F e

<::

Type variables a, b Subtype variables ã, b̃

Types A, B, C ::= 1 | a | ∀a. A | A → B | ã | ⊤ | ⊥
Monotypes τ, σ ::= 1 | a | τ → σ

Expressions e, t ::= x | () | λx. e | e1 e2 | (e : A) | e @A | Λa. e : A

Contexts Ψ ::= · | Ψ, a | Ψ, x : A | Ψ, ã

is extended in the four directions. First, types now include ⊤ and ⊥. Second, expressions
are extended with type applications (e @A). Third, type abstractions (Λa. e : A), studied
by Zhao et al. [39], are adopted as well, since they are useful to express programs with
scoped type variables [24]. Note that programmers do not have to write Λ’s directly. Instead,
an explicit annotation e : ∀a. A can serve as the syntactic sugar e : ∀a. A ≡ Λa.e : ∀a. A.
Finally, there is a new syntactic sort: subtype variables, ã, representing type variables that
are only used in subtyping and are not monotypes. It is worth mentioning that the definition
for monotypes is not changed. We do not treat ⊤, ⊥, or subtype variables as monotypes.

Well-Formedness. The well-formedness relation is mainly used to ensure the well-scopedness
of binders. Additionally, we add special free variable checks to ensure that the polymorphic
type ∀a. A is indeed polymorphic in the following two rules:

Ψ, a ⊢ A a ∈ FV(A)
Ψ ⊢ ∀a. A

wfd∀
Ψ, a ⊢ A Ψ, a ⊢ e a ∈ FV(A)

Ψ ⊢ Λa. e : A
wfdtLam

The motivation for the a ∈ FV(A) restriction is discussed in Section 2.3 with examples. This
has an impact on the compatibility with other systems, since we can no longer express types
like ∀a. 1. Yet we argue that such types are not very useful in practice; when a /∈ FV(A),
∀a. A is isomorphic to A in systems without explicit instantiation.

ECOOP 2022

2:14 Elementary Type Inference

Ψ ⊢ A ≤ B ↪→ E Syntax-directed subtyping

Ψ ⊢ 1 ≤ 1 ↪→ λ(x : 1). x
≤Unit

Ψ ⊢ A ≤ ⊤ ↪→ λ(x : |A|). top
≤⊤

Ψ ⊢ ⊥ ≤ A ↪→ λ(x : ∀a. a). x @|A|
≤⊥

a ∈ Ψ
Ψ ⊢ a ≤ a ↪→ λ(x : a). x

≤Var

ã ∈ Ψ
Ψ ⊢ ã ≤ ã ↪→ λ(x : a). x

≤SVar

Ψ ⊢ τ Ψ ⊢ [τ/a]A ≤ B ↪→ E B ̸= ∀b.B′ B ̸= ⊤
Ψ ⊢ ∀a. A ≤ B ↪→ λ(x : |∀a. A|). E (x @τ)

≤∀L

Ψ, ã ⊢ [ã/a]A ≤ [ã/a]B ↪→ E

Ψ ⊢ ∀a. A ≤ ∀a. B ↪→ λ(x : |∀a. A|). Λa. E (x @a)
≤∀

Ψ ⊢ B1 ≤ A1 ↪→ E1 Ψ ⊢ A2 ≤ B2 ↪→ E2

Ψ ⊢ A1 → A2 ≤ B1 → B2 ↪→ λ(f : |A1 → A2|). λ(x : |B1|). E2 (f (E1 x))
≤→

Ψ ⊢ e ⇐ A ↪→ E e checks against input type A.

Ψ ⊢ e ⇒ A ↪→ E e synthesizes output type A.

Ψ ⊢ A • e ⇒⇒ C ↪→ Ec | E Applying a function of type A to e synthesizes type C.

(x : A) ∈ Ψ
Ψ ⊢ x ⇒ A ↪→ x

DVar
Ψ ⊢ e ⇒ A ↪→ E Ψ ⊢ A ≤ B ↪→ co A ̸= ∀a. A′

Ψ ⊢ e ⇐ B ↪→ co E
DSub

Ψ ⊢ A Ψ ⊢ e ⇐ A ↪→ E

Ψ ⊢ (e : A) ⇒ A ↪→ E
DAnno

Ψ ⊢ σ → τ Ψ, x : σ ⊢ e ⇐ τ ↪→ E

Ψ ⊢ λx. e ⇒ σ → τ ↪→ λ(x : σ). E
D→I⇒

Ψ, a ⊢ e ⇐ A ↪→ E

Ψ ⊢ e ⇐ ∀a. A ↪→ Λa. E
D∀I

Ψ, x : A ⊢ e ⇐ B ↪→ E

Ψ ⊢ λx. e ⇐ A → B ↪→ λ(x : A). E
D→I

Ψ ⊢ () ⇒ 1 ↪→ ()
D1I⇒

Ψ ⊢ e1 ⇒ A ↪→ E1 Ψ ⊢ A • e2 ⇒⇒ C ↪→ Ec | E2

Ψ ⊢ e1 e2 ⇒ C ↪→ (Ec E1) E2
D→E

Ψ ⊢ e

Ψ ⊢ e ⇐ ⊤ ↪→ top
D⊤

Ψ ⊢ e ⇐ A ↪→ E

Ψ ⊢ A → C • e ⇒⇒ C ↪→ λ(x : |A → C|). x | E
D→App

Ψ ⊢ e ⇒ ⊥ ↪→ E

Ψ ⊢ e @B ⇒ ⊥ ↪→ E
DTA⊥

Ψ ⊢ τ Ψ ⊢ [τ/a]A • e ⇒⇒ C ↪→ Ec | E

Ψ ⊢ ∀a. A • e ⇒⇒ C ↪→ λ(x : |∀a. A|). Ec (x @τ) | E
D∀App

Ψ, a ⊢ e ⇐ A ↪→ E

Ψ ⊢ Λa. e : A ⇒ ∀a. A ↪→ Λa. E
DSTV

Ψ ⊢ e ⇒ ∀a. A ↪→ E

Ψ ⊢ e @B ⇒ [B/a]A ↪→ E @|B|
DTA∀

Ψ ⊢ e

Ψ ⊢ ⊥ • e ⇒⇒ ⊥ ↪→ λ(x : ∀a. a). x @(⊤ → ∀a. a) | top
D⊥App

Figure 3 Syntax-directed System.

J. Zhao and B. C. d. S. Oliveira 2:15

3.2 Subtyping and Typing Rules
The top of Figure 3 shows the subtyping relation. Grayed parts are F<: [2] expressions, which
are used to prove our soundness result with respect to F<:, can be ignored for the moment.
We refer the reader to the our extended version for the details of the F<: soundness result.
Most rules are inherited from Odersky and Läufer (OL) [20], yet there are several differences.
Rule ≤SVar is a new rule for subtype variables. This rule is just like the standard rule for
type variables (rule ≤Var). Rules ≤⊤ and ≤⊥ are new (but standard) rules for ⊤ and ⊥.
Rule ≤∀ is also new. In this rule, two forall types are subtypes if their bodies are subtypes.
Importantly, the type variables in the bodies become subtype variables and are marked
as such when added to the context. Rule ≤∀L has an two additional premises to prevent
overlapping with rules ≤∀ and ≤⊤, respectively. The first condition B ̸= ∀b. B′ ensures that
≤∀ always has priority. The second condition B ̸= ⊤ can be safely omitted without changing
the expressive power, but is presented here to ensure that the system is syntax-directed.

The polymorphic subtyping relation behaves slightly differently from OL’s subtyping. If
we ignore ⊤ and ⊥ types, this relation is weaker than OL. In F e

<:, the order of polymorphic
variables is important. For example, in the OL’s system, the subtyping statement · ⊢
∀a. ∀b. a → b → a ≤ ∀b. ∀a. a → b → a holds, but F e

<: will reduce that to ã, b̃ ⊢ ã → b̃ →
ã ≤ b̃ → ã → b̃ , which does not hold. Apart from the ordering of variables, instantiation
works differently for subtyping between polymorphic types. OL’s subtyping relation accepts
the following judgment · ⊢ ∀a. (a → a) → (a → a) ≤ ∀a. a → a but F e

<: does not, since
ã ⊢ (ã → ã) → (ã → ã) ≤ ã → ã does not hold either.

Typing. The bottom of Figure 3 shows the type system. Compared to DK’s type system,
there are 4 groups of changes:
1. Rules D⊤ and D⊥App are introduced for the ⊤ and ⊥ types. Note that in rule D⊤ we

employ a relation Ψ ⊢ e that checks for the well-formedness of expressions. We omit
the definition of Ψ ⊢ e, but it is standard, checking whether all the free variables in
e are bound in Ψ. Both rules are essential for the subsumption lemma to hold. For
example, rule D⊥App is required to type-check the expression (λx. x ()) : ⊥ → 1, where
the argument x has type ⊥ and the application x () synthesizes ⊥ according to the rule,
which can then check against the 1 type by rule DSub.

2. Rule DSub now requires one side-condition to prevent overlapping with Rule D∀I. In
presence of explicit type applications, this condition cannot be eliminated.

3. Rules DTA⊥ and DTA∀ infer type application expressions. If the type of e synthesizes a
polymorphic type ∀a. A, then e @B has type [B/a]A. Any expression of type ⊥ will
synthesize ⊥ for any type applied.

4. Rule DSTV enables the scoped type variables [24]. This allows flexible control of type
variables by the programmer.

Note that the D⊤ is peculiar in that it allows some ill-typed terms to type-check. Such
rules are often needed in bi-directional type systems with top types to enable properties such
as checking subsumption. For instance a similar rule is employed by Dunfield [7]. Since the
top type is the supertype of all types, all well-typed expressions should be able to type-check
under the top type as well. For example, we should be able to change the type annotation
in function λx.x : Int → Int to λx.x : ⊤. However, there is not enough type information to
type-check the body of the later lambda. Nevertheless, we do not need to evaluate expressions
with a top type, since no information can be extracted from such type, and the elaboration
to F<: results directly in the top value for such expression, preserving type-safety.

ECOOP 2022

2:16 Elementary Type Inference

3.3 Metatheory
The type system has several desirable properties, including subsumption and a stability of
type substitutions lemma in subtyping.

Reflexivity and Transitivity. Firstly, our subtyping relation is reflexive and transitive.

▶ Lemma 5 (Subtyping Reflexivity). If Ψ ⊢ A then Ψ ⊢ A ≤ A.

▶ Lemma 6 (Subtyping Transitivity). If Ψ ⊢ A ≤ B and Ψ ⊢ B ≤ C then Ψ ⊢ A ≤ C.

Equivalence to Stable Subtyping and Stability. Secondly, the syntax-directed formulation
of subtyping is sound and complete with respect to the stable subtyping relation in Section 2.6.
Subtype variables are used to provide an alternative formulation of the ≤∀ rule, bringing
subtyping closer to an algorithm. Nonetheless, syntax-directed subtyping still guesses
monotypes, thus it is not algorithmic.

▶ Theorem 7 (Soundness w.r.t stable subtyping). If Ψ ⊢ A ≤ B then Ψ ⊢s A ≤ B.

▶ Theorem 8 (Completeness w.r.t stable subtyping). Given Ψ ⊢ A and Ψ ⊢ B, if Ψ ⊢s A ≤ B

then Ψ ⊢ A ≤ B.

The proof works by generalizing instantiations for subtype variables and existential
variables (which represents monotypes to be guessed). We refer to the extended version
for details. A related property of the subtyping relation is stability. The following lemma
generalizes Corollary 4 by allowing the subtype variable to appear anywhere in the context.

▶ Lemma 9 (Stability of Subtyping, Generalized). If Ψ ⊢ A ≤ B and Ψ ⊢ C then Ψ ⊢
[C/ã]A ≤ [C/ã]B.

This property ensures that any subtype variable can be replaced by a polytype C in two
types A and B while preserving the subtyping relation between those two types.

The Subsumption Lemma. To prove the checking subsumption lemma, we first need
to generalize the statement for inference and application inference judgments, as well as
introduce a context subtyping relation, Ψ ≤ Ψ′ , to state the most general form.

▶ Definition 10. Ψ′ ≤ Ψ Context Subtyping

· ≤ ·
CS_Empty

Ψ′ ≤ Ψ
Ψ′, a ≤ Ψ, a

CS_TV
Ψ′ ≤ Ψ

Ψ′, ã ≤ Ψ, ã
CS_STV

Ψ′ ≤ Ψ Ψ ⊢ A′ ≤ A

Ψ′, x : A′ ≤ Ψ, x : A
CS_V

Context Ψ subsumes context Ψ′ if they bind the same variables in the same order, but the
types of variables in Ψ′ must be subtypes of those in Ψ. The generalized lemma is:

▶ Lemma 11 (Subsumption). Given Ψ′ ≤ Ψ:
1. If Ψ ⊢ e ⇐ A and Ψ ⊢ A ≤ A′ then Ψ′ ⊢ e ⇐ A′;
2. If Ψ ⊢ e ⇒ B then there exists B′ s.t. Ψ ⊢ B′ ≤ B and Ψ′ ⊢ e ⇒ B′;
3. If Ψ ⊢ A • e ⇒⇒ C and Ψ ⊢ A′ ≤ A, then ∃C ′ s.t. Ψ ⊢ C ′ ≤ C and Ψ′ ⊢ A′ • e ⇒⇒ C ′.
This lemma expresses that any derivation in a context Ψ has a corresponding derivation in
any context Ψ′ that it subsumes.

J. Zhao and B. C. d. S. Oliveira 2:17

Type variables a, b Subtype variables ã, b̃ Existential variables α̂, β̂

Algorithmic types A, B, C ::= . . . | α̂

Judgment chain ω ::= A ≤ B | e ⇐ A | e ⇒a ω | A • e ⇒⇒a ω | A ◦ B ⇒⇒a ω

Algorithmic worklist Γ ::= · | Γ, a | Γ, ã | Γ, α̂ | Γ, x : A | Γ ⊩ ω

Declarative worklist Ω ::= · | Ω, a | Ω, ã | Ω, x : A | Ω ⊩ ω

Figure 4 Extended Syntax for the Algorithmic System (Extended from Figure 1).

Relating Subtype and Type Variables. The following lemma shows that we can substitute
a subtype variable with a normal type variable, while preserving the subtyping relation.

▶ Lemma 12. If Ψ[ã] ⊢ A ≤ B then Ψ[a] ⊢ [a/ã]A ≤ [a/ã]B.

The reason is relatively straightforward. First, the substitution does not affect the ã ≤ ã

sub-judgments. Second, substituting ã to a increases the range of implicit instantiation,
which means that the monotypes picked in the old context are still well-formed under the new
context. Note that the reverse statement does not hold. For example, b ⊢ ∀a. a → a ≤ b → b

holds with the predicative instantiation a := b, but b̃ ⊢ ∀a. a → a ≤ b̃ → b̃ does not; one
cannot instantiate a with a non-monotype, or b̃ in this case.

4 Algorithmic System

This section introduces an algorithmic system that implements the syntax-directed specifica-
tion of F e

<:. The new algorithm is based on Zhao et al.’s [39] worklist algorithm but extended
with explicit type applications and top and bottom types. In Section 5, we show that this
algorithm is sound, complete and decidable with respect to the specification presented in
Section 3. We also use color throughout this section to highlight differences to the original
formulation by Zhao et al. [39].

4.1 Syntax and Well-Formedness

Figure 4 shows the syntax for the algorithmic version of F e
<:. Similarly to the syntax-directed

system, the well-formedness rules are unsurprising, ensuring well-scopedness for binders as
well as the free variable constraint on polymorphic types. We refer to the extended version
for well-formedness relations of algorithmic types, expressions, judgments, and worklists.

Existential Variables. The algorithmic system inherits the syntax of terms from the syntax-
directed system and extends types with a new sort of variables – existential variables.
Existential variables (α̂, β̂) are introduced to help find unknown monotypes τ that appear in
multiple rules of the syntax-directed system. In the algorithmic worklist, the position where
existential variables are declared indicates the possible monotypes they can be solved to.
Formally speaking, if α̂ is introduced right after Γ, then α̂ can only be solved to a monotype
τ where Γ ⊢ τ . This behavior is derived from the well-formedness restriction of the rule ≤∀L.
An important remark is that subtype variables are not considered to be monotypes, therefore
no existential variable can be solved to a subtype variable.

ECOOP 2022

2:18 Elementary Type Inference

Judgment Chains. Judgment chains ω, or judgments for short, are the core components
of our algorithmic type-checking. There are five kinds of judgments in our system. Four of
them are inherited from [39]: subtyping (A ≤ B), checking (e ⇐ A), inference (e ⇒a ω) and
application inference (A•e ⇒⇒a ω). Type application inference A◦B ⇒⇒a ω is new, and it is
used to help with the inference in type application expressions (e @B). This judgment plays
a role similar to application inference for regular applications. In type application inference
judgments, the first type A is the type inferred from the expression e. The judgment is then
reduced differently depending on whether A is a polymorphic type ∀a. A′ or ⊥.

Subtyping and checking are relatively simple, since their results are only success or failure.
However, inference, application inference, and type application inference judgments return a
type that is used in subsequent judgments. We use a continuation-passing-style encoding to
accomplish this, following the approach by Zhao et al. [39]. For example, the judgment chain
e ⇒a (a ≤ B) contains two judgments: first we infer the type of the expression e, and then
check if the inferred type is a subtype of B. The unknown type of e is represented by a type
variable a, which is used as a placeholder in the second judgment to denote the type of e.

Worklist Judgments. Our algorithmic context Γ, or worklist, combines traditional contexts
and judgment(s) into a single sort. The worklist is an ordered collection of both variable
bindings and judgments. The order captures the scope: only the objects that come after
a variable’s binding in the worklist can refer to it. For example, [·, a, x : a ⊩ x ⇐ a] is a
valid worklist, but [· ⊩ x ⇐ a, x : a, a] is not (the underlined symbols refer to out-of-scope
variables). This property also affects how the algorithm behaves regarding solving existential
variables. By solving an existential variable α̂ with any monotype that does not escape the
scope of α̂ preserves well-formedness of the whole worklist.

Notation and Form of the Algorithmic Rules. The algorithmic subtyping and typing
reduction rules, defined in Figures 5 and 6, have the form Γ −→ Γ′. Since the worklist is
a stack of variable definitions and judgment chains, the algorithm pops the first element,
processes according to the rules, and possibly pushes simplified judgments back. The syntax
Γ −→∗ Γ′ denotes multiple reduction steps. A worklist Γ is accepted by the algorithm iff
Γ −→∗ ·. In other words a program successfully type-checks if all the work has been processed.
Any new variable introduced to the r.h.s of the worklist Γ′ is fresh implicitly, similarly to
how we treat them in the conditions of other rules. We also adopt the notation Γ[ΓM] from
the DK type system to denote the worklist ΓL, ΓM , ΓR, where Γ[•] is the worklist ΓL, •, ΓR

with a hole (•). Hole notations with the same name implicitly share the same structure ΓL

and ΓR. A multi-hole notation splits the worklist into more parts. For example, Γ[α̂][β̂]
means Γ1, α̂, Γ2, β̂, Γ3.

4.2 Garbage Collection and Algorithmic Subtyping Rules
Figure 5 defines algorithmic rules on variables (garbage collection) and subtyping. Rules
1-4 pop variable declarations that are essentially garbage. Thanks to the nature of ordered
context, those variables are no longer referred to by the remaining judgments, therefore
removing them does not break the well-formedness of the worklist.

Subtyping rules. We can discern 3 groups of rules for algorithmic subtyping. The first
group consists of rules 5-12, where all the rules are similar to their syntax-directed system
counterparts. The most interesting one is rule 12, which reflects the changes in our syntax-
directed system. A subtype variable ã is used to replace the bound variable in the polymorphic
types ∀a. A and ∀a. B for further reduction. Rule 11 differs from rule ≤∀L by introducing
an existential variable α̂ instead of guessing the monotype τ instantiation.

J. Zhao and B. C. d. S. Oliveira 2:19

Γ −→ Γ′ Γ reduces to Γ′.

Γ, a −→1 Γ Γ, α̂ −→2 Γ Γ, ã −→3 Γ Γ, x : A −→4 Γ

Γ ⊩ 1 ≤ 1 −→5 Γ Γ ⊩ a ≤ a −→6 Γ Γ ⊩ ã ≤ ã −→7 Γ
Γ ⊩ A ≤ ⊤ −→8 Γ Γ ⊩ ⊥ ≤ A −→9 Γ

Γ ⊩ A1 → A2 ≤ B1 → B2 −→10 Γ ⊩ A2 ≤ B2 ⊩ B1 ≤ A1

Γ ⊩ ∀a. A ≤ B −→11 Γ, α̂ ⊩ [α̂/a]A ≤ B

when B ̸= ∀a. B′ and B ̸= ⊤
Γ ⊩ ∀a. A ≤ ∀a. B −→12 Γ, ã ⊩ [ã/a]A ≤ [ã/a]B

Γ ⊩ α̂ ≤ α̂ −→13 Γ
Γ[α̂] ⊩ α̂ ≤ A → B −→14 [α̂1 → α̂2/α̂](Γ[α̂1, α̂2] ⊩ α̂1 → α̂2 ≤ A → B)

when α̂ /∈ FV (A) ∪ FV (B)
Γ[α̂] ⊩ A → B ≤ α̂ −→15 [α̂1 → α̂2/α̂](Γ[α̂1, α̂2] ⊩ A → B ≤ α̂1 → α̂2)

when α̂ /∈ FV (A) ∪ FV (B)

Γ[α̂][β̂] ⊩ α̂ ≤ β̂ −→16 [α̂/β̂](Γ[α̂][]) Γ[α̂][β̂] ⊩ β̂ ≤ α̂ −→17 [α̂/β̂](Γ[α̂][])

Γ[a][β̂] ⊩ a ≤ β̂ −→18 [a/β̂](Γ[a][]) Γ[a][β̂] ⊩ β̂ ≤ a −→19 [a/β̂](Γ[a][])

Γ[β̂] ⊩ 1 ≤ β̂ −→20 [1/β̂](Γ[]) Γ[β̂] ⊩ β̂ ≤ 1 −→21 [1/β̂](Γ[])

Figure 5 Algorithmic Variable and Subtyping Rules.

The second group is about solving existential variables (rule 13) and existential variable
decomposition (rules 14 and 15). Rule 13 is one of the base cases involving existential variables.
Rules 14 and 15 are algorithmic versions of Rule ≤→; they both partially instantiate α̂ to
function types. The domain α̂1 and range α̂2 of the new function type are not determined
immediately: they are fresh existential variables with the same scope as α̂. The occurs-check
condition prevents divergence as usual. For example, without it α̂ ≤ 1 → α̂ would diverge.

The final group consists of rules 16-21, where each rule solves an existential variable
against a basic type. Each rule removes an existential variable and substitutes it with its
solution in the remaining worklist, which preserves well-formedness in the meantime. For
example, Rule 16 solves variable α̂ with β̂ only if β̂ occurs after α̂. It is worth noting that
none of these rules solves α̂ to a subtype variable b̃. As we have discussed, ⊤, ⊥ and subtype
variables are not monotypes, therefore existential variables do not unify with them.

4.3 Algorithmic Typing Rules
Figure 6 shows the algorithmic rules for typing.

Checking Judgments. Rules 22-26 deal with checking judgments. Rule 22 is DSub written in
a continuation-passing-style. The side conditions e ̸= λx. e′ and B ̸= ⊤ prevent overlap with
all other rules. Rules 23, 24 and 26 adapt their counterparts in the syntax-directed system,
where rules 23 and 26 correspond to the new/changed rules introduced in the syntax-directed
system compared to DK’s work. Rule 25 is a special case of D→I, dealing with the case
when the input type is an existential variable, representing a monotype function as in the
syntax-directed system. The same instantiation technique as in rules 14 and 15 applies.

ECOOP 2022

2:20 Elementary Type Inference

Γ −→ Γ′ (cont.) Γ reduces to Γ′.

Γ ⊩ e ⇐ B −→22 Γ ⊩ e ⇒a a ≤ B

when e ̸= λx. e′ and B ̸= ∀a. B′ and B ̸= ⊤
Γ ⊩ e ⇐ ∀a. A −→23 Γ, a ⊩ e ⇐ A

Γ ⊩ λx. e ⇐ A → B −→24 Γ, x : A ⊩ e ⇐ B

Γ[α̂] ⊩ λx. e ⇐ α̂ −→25 [α̂1 → α̂2/α̂](Γ[α̂1, α̂2], x : α̂1 ⊩ e ⇐ α̂2)
Γ ⊩ e ⇐ ⊤ −→26 Γ

Γ ⊩ x ⇒a ω −→27 Γ ⊩ [A/a]ω when (x : A) ∈ Γ
Γ ⊩ (e : A) ⇒a ω −→28 Γ ⊩ ([A/a]ω) ⊩ e ⇐ A

Γ ⊩ (Λa. e : A) ⇒b ω −→29 Γ ⊩ ([∀a. A/b]ω), a ⊩ e ⇐ A

Γ ⊩ () ⇒a ω −→30 Γ ⊩ [1/a]ω

Γ ⊩ λx. e ⇒a ω −→31 Γ, α̂, β̂ ⊩ ([α̂ → β̂/a]ω), x : α̂ ⊩ e ⇐ β̂

Γ ⊩ e1 e2 ⇒a ω −→32 Γ ⊩ e1 ⇒b (b • e2 ⇒⇒a ω)
Γ ⊩ e @C ⇒a ω −→33 Γ ⊩ e ⇒b (b ◦ C ⇒⇒a ω)

Γ ⊩ ∀b. B ◦ C ⇒⇒a ω −→34 Γ ⊩ [([C/b]B)/a]ω
Γ ⊩ ⊥ ◦ C ⇒⇒a ω −→35 Γ ⊩ [⊥/a]ω

Γ ⊩ A → C • e ⇒⇒a ω −→36 Γ ⊩ ([C/a]ω) ⊩ e ⇐ A

Γ ⊩ ∀a. A • e ⇒⇒a ω −→37 Γ, α̂ ⊩ [α̂/a]A • e ⇒⇒a ω

Γ ⊩ ⊥ • e ⇒⇒a ω −→38 Γ ⊩ [⊥/a]ω
Γ[α̂] ⊩ α̂ • e ⇒⇒a ω −→39 [α̂1 → α̂2/α̂](Γ[α̂1, α̂2] ⊩ α̂1 → α̂2 • e ⇒⇒a ω)

Figure 6 Algorithmic Typing Rules.

Inference judgments. Inference judgments accept an expression and return a type. Rules
27-33 deal with type inference judgments. The algorithm uses a continuation-passing-style
encoding, where the output type is passed to the next judgment. When an inference judgment
succeeds with type A, the algorithm continues to work on the inner-chain ω by substituting
a by A in ω. Rule 27 and 30 are base cases (variable and unit), where the inferred type
is passed to its child judgment chain. Rules 28 and 29 infer an annotated expression by
changing into checking mode, therefore another judgment chain is created. Rule 29 deals
with scoped type variables; the type variable a is in scope in e, and corresponds to the rule
DTA∀. Rule 31 infers the type of a lambda expression by introducing α̂, β̂ as the input and
output types of the function, respectively. Rule 32 infers the type of an application by firstly
inferring the type of the function e1. Then the remaining work is delegated to an application
inference judgment, which passes a, representing the return type of the application, to the
remainder of the judgment chain ω. Rule 33 is new: it first infers the type of e, then calls
the type application inference judgment to compute the return type.

J. Zhao and B. C. d. S. Oliveira 2:21

Type Application and Application Inference Judgments. Rules 34 and 35 deal with the
new type application inference judgments. Rule 34 accepts a polymorphic input ∀b. B

and produces its instantiation [C/b]B. Rule 35 returns ⊥ as it can be used as any type.
For example, if we choose to treat ⊥ as the polymorphic type ∀b. ⊥, the result after type
application is ⊥ according to rule 34. Finally, Rules 36-39 deal with application inference
judgments. Rules 36, 37 and 38 behave like rules D∀App, D→App and D⊥App, respectively.
Rule 39 instantiates α̂ to the function type α̂1 → α̂2, just like Rules 14, 15 and 25.

5 Algorithmic Metatheory

This section presents the metatheory of the algorithmic system in Section 4. We show three
main results: soundness, completeness and decidability. Our proofs employ similar techniques
to the ones by Zhao et al. [39], so we only highlight the main results and differences.

5.1 Declarative Worklist and Transfer
To aid in formalizing the correspondence between the declarative and algorithmic systems,
we use a declarative worklist Ω, defined in Figure 4. A declarative worklist Ω has the same
structure as an algorithmic worklist Γ, but does not contain any existential variables α̂.

Worklist Instantiation. We instantiate an algorithmic worklist Γ to the declarative worklist
Ω by instantiating all existential variables α̂ in Γ with well-scoped monotypes τ .

▶ Definition 13. Γ⇝ Ω Γ instantiates to Ω.

Ω⇝ Ω
⇝Ω

Ω ⊢ τ Ω, [τ/α̂]Γ⇝ Ω
Ω, α̂, Γ⇝ Ω

⇝α̂

Rule ⇝α̂ replaces the first (left-most) existential variable with a well-scoped monotype and
repeats the process on the resulting worklist until no existential variable remains and thus
the algorithmic worklist has become a declarative one. In order to maintain well-scopedness,
the substitution is applied to all the judgments and term variable bindings in the scope of α̂.

Declarative Worklist Reduction. A relation Ω −→ Ω′ is defined to reduce all judgments
in the declarative worklists with declarative typing rules. This relation checks that every
judgment entry in the worklist holds using a corresponding conventional declarative judgment.
The typing contexts of declarative judgments are recovered using an auxiliary erasure function
∥Ω∥. The erasure function simply drops all judgment entries from the worklist, keeping
only variable and type variable declarations. Both definitions are available in the extended
version.

5.2 Soundness
Our algorithm is sound with respect to the declarative system. For any worklist Γ that
reduces successfully, there is a valid instantiation Ω that transfers all judgments to the
declarative system.

▶ Theorem 14 (Soundness). If wf Γ and Γ −→∗ ·, then ∃Ω s.t. Γ⇝ Ω and Ω −→∗ ·.

ECOOP 2022

2:22 Elementary Type Inference

The proof proceeds by induction on the derivation of Γ −→∗ ·. Most of the proof
follows Zhao et al. [39]. Algorithmic type application rules are the most interesting change,
because they have a different shape compared to the declarative rules. With the help of
declarative worklist reduction, we can reduce the additional form of type application syntax
and therefore indirectly build a relationship with the declarative system.

5.3 Completeness
Any derivation in the declarative system has an algorithmic counterpart:

▶ Theorem 15 (Completeness). If wf Γ and Γ⇝ Ω and Ω −→∗ ·, then Γ −→∗ ·.

We prove completeness by induction on the derivation of Ω −→∗ · with a similar technique
to the one used by Zhao et al. [39]. New rules, including the ones involve subtype variables
and type applications, do not increase the difficulty of our proof significantly. It is worth
noting that our system forbids the ⊤ and ⊥ types to be instantiated by monotypes. If we
did not pose such restriction, then the following lemma would not hold anymore:

▶ Lemma 16 (Prune Transfer for Instantiation). If (Γ ⊩ α̂ ≤ A → B)⇝ (Ω ⊩ C ≤ A1 → B1)
and ∥Ω∥ ⊢ C ≤ A1 → B1, then α̂ /∈ FV (A) ∪ FV (B).

For example, allowing instantiations like α̂ := ⊤ would make the algorithmic judgment
α̂ → α̂ ≤ α̂ derivable. This lemma is essential to follow the original proof to prove
completeness for the occurs-check condition in rules 14 and 15.

5.4 Decidability
Finally, we show that our algorithm is decidable:

▶ Theorem 17 (Decidability). Given wf Γ, it is decidable whether Γ −→∗ · or not.

Our decidability proof is based on a lexicographic group of induction measures:〈
|Γ|e, |Γ|⇔, |Γ|⊤⊥, |Γ|∀, |Γ|

α̂
, |Γ|→ + |Γ|

〉
on the worklist Γ. Compared with the measures used by Zhao et al. [39], we introduce a new
measure | · |⊤⊥, which counts the total number of ⊤ and ⊥ occurrences. This is required
because judgments like α̂ ≤ ⊤ now do not solve α̂, which breaks the original proof technique.
This type of judgment now reduces the new measure by at least one. The rest of the proof
follows the approach closely. The extended version has detailed explanations of the measures
and proofs. Combining all three main results (soundness, completeness and decidability), we
conclude that the declarative system is decidable by means of our algorithm.

▶ Corollary 18 (Decidability of Declarative Typing). Given wf Ω, it is decidable whether
Ω −→∗ · or not.

6 Discussion

Inferring Top and Bottom Types. F e
<: does not treat the ⊤ and ⊥ types as monotypes,

therefore these types cannot be implicitly instantiated by the type inference algorithm.
However, in certain programming languages, especially OOP languages with downcasts, the
⊤ type can be useful in certain cases and implicit instantiation would be convenient to have.
For example, the following Java program

J. Zhao and B. C. d. S. Oliveira 2:23

var ns = List.of(1, 2, "3");

should instantiate the generic variable A of the List<A> class to Object (note that Object
plays a similar role to ⊤ in Java) to type-check the program. Thus, the inferred type for ns
is List<Object>. In this program, because downcasts are possible in Java, it is plausible that
the programmer intended to have a heterogeneous list of values, that could later be accessed
by doing some type analysis for the elements and downcasting from Object to Integer or
String. We consider such use cases to be a practical example where instantiation with the
top type would be useful in languages like Java. In contrast, in F e

<:, we would need to
explicitly instantiate the type argument. Nonetheless, in a language without downcasts
(such as F e

<:), the declaration of ns above would very likely be a programmer error, since
there would not be much that could be done with a value of type List<Object>. As we have
argued in Section 2.4, there is a tension between inferring types with top and bottom types
and hiding programmer errors: sometimes type errors that would be caught in many type
systems, are instead type-checked by inferring some types with top and bottom types. Our
design decision in F e

<: is not to infer top and bottom types, which avoids hiding such errors
as well as avoiding the technical complexities that arise from inferring such types.

It is possible to have alternative designs for F e
<: that infer top and bottom types as

well. For instance, if we would be aiming at covering common cases that arise in practice
in languages like Java, such as the inference of the type of ns above, we could extend our
syntax-directed system and algorithmic system with the rules:

Ψ ⊢ [⊤/a]A ≤ B B ̸= ⊤
Ψ ⊢ ∀a. A ≤ B

DInst⊤

Γ ⊩ ∀a. A ≤ B −→ Γ ⊩ [⊤/a]A ≤ B when B ̸= ⊤

The two rules above support simple forms of instantiation where the type variable is directly
instantiated with the ⊤ type (a similar approach could be used for ⊥ types). Note that
these rules overlap with the current predicative instantiation rules, and thus introduce
nondeterminism. Implementing the algorithmic rule directly would require some backtracking.
From the theoretical point of view the rules are quite ad-hoc, since they cover only very
specific cases of instantiation with top types. A more theoretically appealing approach would
be to borrow ideas from approaches such as MLSub [6], which can infer types with top and
bottom. However, this would be much more technically challenging. Another direction would
be to complement the global type inference approach of F e

<: with some more local approach
to attempt to infer top and bottom types. We will discuss this approach more next.

Local Impredicative Inference. Implicit impredicative instantiation is an advanced feature
in modern type systems, and it is also supported by the local type inference approach [27].
Unlike top types, which can have some practical use cases in languages like Java, no existing
mainstream OOP languages support higher-ranked systems with first-class polymorphic
functions/values. Thus, there is no need for impredicative instantiations in those languages
today. Nonetheless, future languages may support such feature and it is worthwhile consider-
ing impredicative type inference. Local type inference algorithms are designed to support
impredicative instantiations through information in the neighbor nodes of the syntax tree.
The recent work on Quick Look by [32] instantiates polymorphic types through a similar local
approach and falls back to a global Hindley-Milner-style unification afterwards. Currently,
our system only employs global unification and ignores any local information. We believe that
a promising direction would be to follow the Quick Look approach, preserve the core global

ECOOP 2022

2:24 Elementary Type Inference

inference system of F e
<:, and try to employ a more local approach to infer impredicative

types as well as top and bottom types before introducing unification variables. The main
challenge in this direction is that Serrano et al.’s [32] approach relies on invariant subtyping
for function types. In contrast, we have to deal with contravariance for input types and
covariance for output types.

7 Related Work

This section discusses related work, focusing on the most closely related research on higher-
ranked type inference and local type inference.

Hindley-Milner. The Hindley-Milner (HM) type system [5, 19, 16] was a landmark achieve-
ment in type inference. The constraint-based presentation by Pottier and Rémy [29] for HM
and ML type inference has similarities with the worklist approach and it also keeps precise
scoping of variables. In HM the order of universally quantified variables is irrelevant and
no annotations are required. In contrast, in our work, the order of universally quantified
variables matters, and annotations are necessary for polymorphic functions. Thus, we do
not support Hindley-Milner style generalization. Nevertheless if we assume annotations
of polymorphic expressions, the order-relevance of universally quantified variables is not
problematic. Because of its support for visible type applications [13], GHC Haskell already
distinguishes between specified and generalized type quantification. Specified type quantifica-
tion refers to polymorphic expressions that have explicit type annotations. Like F e

<:, in GHC
type variables in specified quantification are order relevant to be compatible with explicit
type applications. In contrast to Hindley-Milner, F e

<: supports higher-ranked polymorphism,
explicit impredicative type applications and top and bottom types.

Higher-Ranked Polymorphic Type Inference. There has been much work extending HM
while preserving all of its expressive power. In particular, there are several extensions of
HM to System F, which support higher-ranked polymorphism. Since full type inference for
System F is undecidable [38], such extensions need some type annotations or restrictions to
remain decidable. The work on type inference for higher-ranked polymorphism (HRP) can be
divided into two main lines: predicative and impredicative type systems. In predicative type
systems, only monotypes can be inferred. An advantage of predicative type systems is that
the predicative polymorphic subtyping relation is decidable [20], which facilitates the design
of such type systems and type inference algorithms. There are several predicative HRP
type systems [25, 8, 9, 20, 39]. The work in this paper is based on DK’s [8] declarative type
system and the algorithmic formulation by Zhao et al. [39]. However, we support explicit
impredicative type applications and top and bottom types. Such features create various
challenges and, to address some of those challenges, we introduce a novel stable polymorphic
subtyping relation. In contrast, DK adopt the polymorphic subtyping relation by Odersky
and Läufer [20]. In essence, with stable subtyping, the order of type variables becomes
relevant in universal quantification. As a consequence, some forms of subtyping that are
accepted by Odersky and Läufer’s relation are rejected in our type system. Nonetheless, with
those restrictions we retain important properties, such as checking subsumption and stability
of type substitutions, in the presence of new features that are not supported by DK.

Impredicative System F allows instantiation with polymorphic types. Unfortunately, a
subtyping relation with impredicative implicit instantiation is undecidable [3, 35]. Work on
partial impredicative type inference algorithms [17, 18, 36, 33, 32, 14] navigate a variety of

J. Zhao and B. C. d. S. Oliveira 2:25

design tradeoffs for a decidable algorithm. Ideas from Guarded Impredicative Polymorph-
ism [33] and the Quick Look approach [32], are being adopted in GHC 9 for enabling
impredicative instantiation. They make use of local information in n-ary applications to infer
polymorphic instantiations with a relatively simple specification and unification algorithm.
Although not all impredicative instantiations can be handled well, these approaches are useful
in practice. In contrast to this line of work, we do not attempt to infer impredicative types.
Instead, all impredicative instantiations must be explicit. While explicit instantiation is less
convenient, an advantage is flexibility. Approaches that only allow implicit impredicative
instantiation may reject some instantiations that would be possible with explicit instantiation.

Stability. Besides the motivation of supporting a form of impredicative polymorphism,
another motivation for the changes in type inference in GHC 9 has been to simplify the
algorithms and address various issues surrounding subsumption. While we are not aware that
the issues that we have described in Section 2 have been previously identified, there have
been several discussions documenting other issues related to subsumption in GHC 8 [26].
Recently, motivated to understand what would be the best design for instantiation in GHC,
Bottu and Eisenberg [1] have compared four different approaches to instantiation. They
have identified stability properties as an important factor for language designers to take into
consideration when designing languages with implicit instantiation. Stability also plays an
important role in the Cochis calculus [31], where it ensures that the behavior of resolution
(which is a mechanism employed by type classes [37] or Scala implicits [22]) is preserved after
instantiation. Stable subtyping in F e

<: provides a high-level specification of polymorphic
subtyping, which essentially embeds a stability property into the subtyping relation.

Type Inference with Explicit Type Applications. The work on visible type application
(VTA) [13] adds a predicative form of explicit type application to HM and HRP type systems.
This approach has been adopted in GHC 8. As discussed in detail in Section 2, a property
that is not enforced in VTA is checking subsumption. We believe that checking subsumption
is an important property, as it ensures that a program can always be annotated with a
supertype and it can prevent situations where simply inlinings of function definitions can
make a well-typed program ill-typed. The Quick Look approach [32] supports impredicative
visible type application. An important difference is that in Quick Look subtyping of functions
is invariant, whereas in the original VTA approach the standard subtyping rule is used. The
invariant subtyping rule prevents the counter-examples to checking subsumption that we
found in GHC 8, and described in Section 2. Our work shows a different way to prevent such
examples, by employing stable subtyping with a standard subtyping rule for functions. We
believe that there are merits in both approaches. The restrictions adopted by Quick Look do
not affect backward compatibility with the HM type system. In contrast, elementary type
inference does not aim at backwards compatibility with the HM type system. Instead, we
are interested in backward compatibility with extensions of System F with subtyping (such
as F<: [2]). Quick Look would not preserve backward compatibility to such type systems,
which employ a standard subtyping rule for function types.

Local Type Inference. While technically speaking we are closest to predicative HRP, we
are closer in spirit and in goals to local type inference [27, 21]. Like our work, local type
inference does not aim to subsume the HM type system. Local type inference sacrifices
some of the expressive power of type inference, in exchange for the ability to smoothly deal
with features such as top and bottom types and impredicative types. Pierce and Turner

ECOOP 2022

2:26 Elementary Type Inference

considered a language similar to the language that we consider in our work (with top and
bottom types, but no bounded quantification). Like our approach, both implicit and explicit
type applications are supported. Technically speaking, our approach is still a global inference
approach, and thus it is quite different from local type inference. In local type inference,
missing annotations are recovered using only information from adjacent nodes in the syntax
tree, and there are no long-distance constraints such as unification variables. We believe that
an advantage of F e

<: is that it has simple and clear syntax-directed specifications, whereas the
specification of local type inference is more involved, and it is not obvious to programmers
when instantiation works or not. Furthermore, F e

<: allows the inference of lambda expressions
without any contextual type information, as long as the inferred type is a monotype.

Type Inference with Subtyping. Another line of work is extensions of HM with subtyping.
Type systems in presence of subtyping encounter constraints that are not simply equalities
as in HM. Therefore constraint solvers used in HM, where unifications are based on equality,
cannot be easily extended to support subtyping. Instead, constraints are usually collected as
subtyping relations and may delay resolution as the constraints accumulate. Some systems
that are based on constraint types [12, 11], i.e. types expressed together with a set of
constraints τ | {τ1 ≤ τ2}. Unfortunately, such constraints can be quite large and hard to
interpret by programmers. Pottier [30] proposed three methods to simplify constraints,
aiming at improving the efficiency of type inference algorithms and improving the readability
of the resulting types. Inspired by the simplification strategies of Pottier, MLsub [6] suggests
that the data flow on the constraint graph can be reflected directly on types in a richer type
system. Simple-sub [23] further simplifies the algorithm of MLsub and is implemented in
500 lines of code. While being equivalent to MLsub, it is a more efficient variant. In our
work, we avoid subtyping constraints and do not infer types with top and bottom types. If
instantiations with such types are needed, then an explicit type application must be used.
On the other hand, we support higher-ranked polymorphism, and explicit type applications,
which (as far as we know) are not supported by any extensions of HM with subtyping.

8 Conclusion

In this paper, we proposed elementary type inference: a partial form of type inference that
can be used in languages with subtyping that combine implicit instantiation with explicit type
applications. As type systems become more powerful, the inference problem becomes harder,
quickly leading to various undecidable problems. It is clear that some form of type-inference
is needed in most languages to make their use practical. However, it is not necessarily true
that being able to infer more types is always better, especially if there is the possibility to
resort to explicit instantiation. Attempting to infer more types may have the side-effect of
hiding programmer errors, as very general types can be inferred in the presence of advanced
type system features. Moreover, predicatibility of what can be inferred and what cannot is
also an important factor for users of the programming language. Elementary type inference
strikes a compromise. It chooses to infer only monotypes, which are always inferrable, and
makes it easy to understand when the instantiation succeeds or fails. For polytypes (which
include top and bottom), explicit type applications must be used, but no expressive power is
sacrificed. More work is needed to understand what is the right balance between inference,
predicatibility and usability of languages in the future.

J. Zhao and B. C. d. S. Oliveira 2:27

References
1 Gert-Jan Bottu and Richard A. Eisenberg. Seeking stability by being lazy and shallow:

Lazy and shallow instantiation is user friendly. In Proceedings of the 14th ACM SIGPLAN
International Symposium on Haskell, pages 85–97, New York, NY, USA, 2021. Association for
Computing Machinery.

2 L. Cardelli, S. Martini, J.C. Mitchell, and A. Scedrov. An extension of system F with subtyping.
Information and Computation, 109(1):4–56, 1994.

3 Jacek Chrząszcz. Polymorphic subtyping without distributivity. In Luboš Brim, Jozef Gruska,
and Jiří Zlatuška, editors, Mathematical Foundations of Computer Science 1998, pages 346–355,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

4 Maurizio Cimadamore. Jep 101: Generalized target-type inference, 2015. URL: http://
openjdk.java.net/jeps/101.

5 Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings
of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’82, 1982.

6 Stephen Dolan and Alan Mycroft. Polymorphism, subtyping, and type inference in MLsub. In
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, pages 60–72, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3009837.3009882.

7 Jana Dunfield. Elaborating intersection and union types. J. Funct. Program., 24(2-3):133–165,
2014. doi:10.1017/S0956796813000270.

8 Jana Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirectional typechecking
for higher-rank polymorphism. In Proceedings of the 18th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’13, 2013.

9 Jana Dunfield and Neelakantan R. Krishnaswami. Sound and complete bidirectional typecheck-
ing for higher-rank polymorphism with existentials and indexed types. PACMPL, (POPL),
January 2019. arXiv:1601.05106.

10 Jana Dunfield and Neelakantan R. Krishnaswami. Bidirectional typing. ACM Comput. Surv.,
54(5), May 2021.

11 Jonathan Eifrig, Scott Smith, and Valery Trifonov. Sound polymorphic type inference for
objects. In Proceedings of the Tenth Annual Conference on Object-Oriented Programming
Systems, Languages, and Applications, OOPSLA 1995, Austin, Texas, USA, October 15-19,
1995, OOPSLA ’95, pages 169–184, New York, NY, USA, 1995. Association for Computing
Machinery. doi:10.1145/217838.217858.

12 Jonathan Eifrig, Scott Smith, and Valery Trifonov. Type inference for recursively constrained
types and its application to OOP. Electronic Notes in Theoretical Computer Science, 1:132–153,
1995. MFPS XI, Mathematical Foundations of Programming Semantics, Eleventh Annual
Conference. doi:10.1016/S1571-0661(04)80008-2.

13 Richard A. Eisenberg, Stephanie Weirich, and Hamidhasan G. Ahmed. Visible type application.
In Peter Thiemann, editor, Programming Languages and Systems, Berlin, Heidelberg, 2016.
Springer Berlin Heidelberg.

14 Frank Emrich, Sam Lindley, Jan Stolarek, James Cheney, and Jonathan Coates. Freezeml:
Complete and easy type inference for first-class polymorphism. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2020, pages 423–437. Association for Computing Machinery, 2020.

15 Andrew Gacek. The Abella interactive theorem prover (system description). In Proceedings of
IJCAR 2008, Lecture Notes in Artificial Intelligence, 2008.

16 Roger Hindley. The principal type-scheme of an object in combinatory logic. Transactions of
the american mathematical society, 146:29–60, 1969.

17 Didier Le Botlan and Didier Rémy. MLF: Raising ML to the power of system F. In Proceedings
of the Eighth ACM SIGPLAN International Conference on Functional Programming, ICFP
’03, 2003.

ECOOP 2022

http://openjdk.java.net/jeps/101
http://openjdk.java.net/jeps/101
https://doi.org/10.1145/3009837.3009882
https://doi.org/10.1017/S0956796813000270
http://arxiv.org/abs/1601.05106
https://doi.org/10.1145/217838.217858
https://doi.org/10.1016/S1571-0661(04)80008-2

2:28 Elementary Type Inference

18 Daan Leijen. HMF: Simple type inference for first-class polymorphism. In Proceedings of the
13th ACM SIGPLAN International Conference on Functional Programming, ICFP ’08, 2008.

19 Robin Milner. A theory of type polymorphism in programming. Journal of computer and
system sciences, 17(3):348–375, 1978.

20 Martin Odersky and Konstantin Läufer. Putting type annotations to work. In Proceedings
of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’96, 1996.

21 Martin Odersky, Christoph Zenger, and Matthias Zenger. Colored local type inference. In
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’01, pages 41–53, New York, NY, USA, 2001. Association for Computing
Machinery.

22 Bruno C.d.S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and
implicits. In Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications, OOPSLA ’10, pages 341–360, 2010.

23 Lionel Parreaux. The simple essence of algebraic subtyping: Principal type inference with
subtyping made easy (functional pearl). Proc. ACM Program. Lang., 4(ICFP), August 2020.
doi:10.1145/3409006.

24 Simon Peyton Jones and Mark Shields. Lexically-scoped type variables. Draft, 2004. URL:
http://research.microsoft.com/en-us/um/people/simonpj/papers/scoped-tyvars/.

25 Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Mark Shields. Practical
type inference for arbitrary-rank types. Journal of functional programming, 17(1):1–82, 2007.

26 Peyton Jones, Simon. Simplify Subsumption. GHC Proposals, 2020. URL:
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/
0287-simplify-subsumption.rst.

27 Benjamin C. Pierce and David N. Turner. Local type inference. ACM Trans. Program. Lang.
Syst., 22(1):1–44, January 2000.

28 Hubert Plociniczak. Decrypting Local Type Inference. PhD thesis, EPFL, 2016.
29 François Pottier and Didier Rémy. Advanced Topics in Types and Programming Languages,

chapter The Essence of ML Type Inference, pages 387–489. The MIT Press, 2005.
30 François Pottier. Type inference in the presence of subtyping: from theory to practice. PhD

thesis, INRIA, 1998.
31 Tom Schrijvers, Bruno C. d. S. Oliveira, Philip Wadler, and Koar Marntirosian. COCHIS:

Stable and coherent implicits. Journal of Functional Programming, 29:e3, 2019.
32 Alejandro Serrano, Jurriaan Hage, Simon Peyton Jones, and Dimitrios Vytiniotis. A quick

look at impredicativity. Proc. ACM Program. Lang., 4(ICFP), August 2020.
33 Alejandro Serrano, Jurriaan Hage, Dimitrios Vytiniotis, and Simon Peyton Jones. Guarded

impredicative polymorphism. In Proceedings of the 39th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2018, 2018.

34 Zhendong Su, Alexander Aiken, Joachim Niehren, Tim Priesnitz, and Ralf Treinen. The first-
order theory of subtyping constraints. In Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’02, pages 203–216, New York,
NY, USA, 2002. Association for Computing Machinery. doi:10.1145/503272.503292.

35 Jerzy Tiuryn and Pawel Urzyczyn. The subtyping problem for second-order types is undecidable.
In Proceedings 11th Annual IEEE Symposium on Logic in Computer Science, 1996.

36 Dimitrios Vytiniotis, Stephanie Weirich, and Simon Peyton Jones. FPH: First-class poly-
morphism for Haskell. In Proceedings of the 13th ACM SIGPLAN International Conference
on Functional Programming, ICFP ’08, 2008.

37 P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc. In Proceedings of the
16th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’89, pages 60–76, New York, NY, USA, 1989. Association for Computing Machinery.

38 Joe B Wells. Typability and type checking in system F are equivalent and undecidable. Annals
of Pure and Applied Logic, 98(1-3):111–156, 1999.

39 Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. A mechanical formalization of
higher-ranked polymorphic type inference. Proc. ACM Program. Lang., 3(ICFP), July 2019.

https://doi.org/10.1145/3409006
http://research.microsoft.com/en-us/um/people/simonpj/papers/scoped-tyvars/
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0287-simplify-subsumption.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0287-simplify-subsumption.rst
https://doi.org/10.1145/503272.503292

Automatic Root Cause Quantification for Missing
Edges in JavaScript Call Graphs
Madhurima Chakraborty #

University of California, Riverside, CA, USA

Renzo Olivares #

University of California, Riverside, CA, USA

Manu Sridharan #

University of California, Riverside, CA, USA

Behnaz Hassanshahi #

Oracle Labs, Brisbane, Australia

Abstract

Building sound and precise static call graphs for real-world JavaScript applications poses an enormous
challenge, due to many hard-to-analyze language features. Further, the relative importance of these
features may vary depending on the call graph algorithm being used and the class of applications being
analyzed. In this paper, we present a technique to automatically quantify the relative importance
of different root causes of call graph unsoundness for a set of target applications. The technique
works by identifying the dynamic function data flows relevant to each call edge missed by the static
analysis, correctly handling cases with multiple root causes and inter-dependent calls. We apply
our approach to perform a detailed study of the recall of a state-of-the-art call graph construction
technique on a set of framework-based web applications. The study yielded a number of useful
insights. We found that while dynamic property accesses were the most common root cause of missed
edges across the benchmarks, other root causes varied in importance depending on the benchmark,
potentially useful information for an analysis designer. Further, with our approach, we could quickly
identify and fix a recall issue in the call graph builder we studied, and also quickly assess whether a
recent analysis technique for Node.js-based applications would be helpful for browser-based code.
All of our code and data is publicly available, and many components of our technique can be re-used
to facilitate future studies.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases JavaScript, call graph construction, static program analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.3

Related Version Full Version: https://arxiv.org/abs/2205.06780

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.7

Funding This research was supported in part by a gift from Oracle Labs and by the National
Science Foundation under grant CCF-2007024. This research was partially sponsored by the
OUSD(R&E)/RT&L and was accomplished under Cooperative Agreement Number W911NF-20-2-
0267. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the ARL and
OUSD(R&E)/RT&L or the U.S. Government. The U.S. Government is authorized to reproduce and
distribute reprints for Government purposes notwithstanding any copyright notation herein.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and
Behnaz Hassanshahi;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 3; pp. 3:1–3:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mchak009@ucr.edu
mailto:roliv006@ucr.edu
mailto:manu@cs.ucr.edu
mailto:behnaz.hassanshahi@oracle.com
https://doi.org/10.4230/LIPIcs.ECOOP.2022.3
https://arxiv.org/abs/2205.06780
https://doi.org/10.4230/DARTS.8.2.7
https://doi.org/10.4230/DARTS.8.2.7
https://doi.org/10.4230/DARTS.8.2.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

1 Introduction

Effective call graph construction is critically important for JavaScript static analysis, as
JavaScript analysis tools often need to reason about behaviors that span function boundaries
(e.g., security vulnerabilities [26, 27] or correctness of library updates [40]). Unfortunately, call
graph construction for real-world JavaScript programs poses significant challenges, particularly
for client-side code in web applications. Modern web applications are increasingly built using
sophisticated frameworks like React [4] and AngularJS [6].1 Sophisticated recent JavaScript
static analysis frameworks [32, 33, 36, 52] often focus on sound and precise handling of
complex JavaScript constructs. While these systems have advanced significantly, they cannot
yet scale to handle modern web frameworks. There are also a growing number of unsound
but pragmatic call graph analyses designed primarily to give useful results for real-world
code bases [8, 25, 40, 44]. While these techniques have been shown effective in certain
domains, their unsoundness can lead to missing many edges when analyzing framework-
based applications [27], i.e., the analyses can have low recall. For bug-finding and security
analyses, these missing edges are of key concern as they can lead to false negatives like missed
vulnerabilities.

To guide development of better call graph builders, it would be highly useful to know
which language constructs are contributing most to reducing recall for a set of benchmarks of
interest. JavaScript has many different constructs that are typically ignored or only partially
handled by pragmatic static analyses, due to their dynamic nature [49]. Further, there
are complex tradeoffs involved in adding support for these constructs, as a more complete
handling may lead to scalability and precision problems. Analysis designers aiming to improve
results for a set of benchmarks would be helped by quantitative guidance on the relative
importance of different unhandled language features.

This paper presents a novel technique for automatic root cause quantification for missing
edges in JavaScript call graphs. Figure 1 gives an overview of our technique. Given a program,
a static call graph builder enhanced to also export static flow graphs (see Section 2.2), and a
harness for exercising the program, our technique automatically finds missing flows, data
flows of function values that occur at runtime but are not modeled by the static analysis.
Our technique associates a set of missing flows with each missed call graph edge, thereby
indicating which data flows must be handled by the static analysis to discover the missed
edge. The technique correctly accounts for inter-dependent calls, where a call graph edge is
missing due to the absence of other call graph edges.

We further observe that given a missing flow, one can often automatically determine a root
cause label for the flow, indicating which unhandled language construct(s) were responsible
for the flow being missed. Such labeling can be performed at different levels of granularity,
depending on what level of detail is desired by the analysis designer. Given logic to map
missing flows to root cause labels, our technique automatically quantifies the prevalence of
each root cause for the desired benchmarks.

We have implemented our techniques, and we used them to study the recall of two variants
of the approximate call graphs (ACG) algorithm of Feldthaus et al. [25], as implemented in
the WALA framework [58], on a suite of modern web applications. We found the root cause
quantification to provide useful insights, in particular:

To our surprise, a large initial cause of low recall was the lack of models in WALA for a
variety of built-in library functions. By adding models, we were able to increase recall by
up to 5 percentage points.

1 A recent Stack Overflow developer survey shows popularity of these frameworks is growing, with total
usage surpassing older libraries like jQuery [56].

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi 3:3

Program

Instrumented
execution

Dynamic
flow trace

Dynamic
call graph

Static
call graph

Static flow
graph

Call graph
comparison

Missing
edges

Trace
filtering

Dynamic
copies

Flow
graph

matching
Root cause

labeling
Missing
flows

Precision/
Recall

Harness

Static CG
Builder

Root
causes

Figure 1 Overview of our methodology.

After fixing the native models, dynamic property accesses were the largest root cause
of low recall, at 70%. The second-largest root cause varied significantly across the
benchmarks.
We applied a finer-grained root cause labeling for dynamic property accesses, and found
that their property names are computed in a wide variety of ways, with no single dominant
pattern. We studied the potential of a recently-described recall-improving technique for
dynamic property accesses in Node.js programs [44], and found that it would at best have
a small impact for our web-based benchmarks.

Our dynamic call graph and flow trace analyses were challenging to implement due to
JavaScript’s hard-to-analyze language features. JavaScript includes many difficult-to-analyze
features, including (but not limited to) reflective call mechanisms, “native” library methods,
getter/setter methods, and dynamic code evaluation. Pragmatic static analyses often ignore
most of these features, as they do not aim for sound results. However, since we aimed to
study which calls were missed by such analyses and why those calls were missed, our dynamic
analyses had to faithfully capture the behavior of these features, and thereby incurred
significant additional complexity (see Section 4.2).

All of our code and data is publicly available in an artifact [21]. Our infrastructure is
reusable and could be applied to study other static analyses, other benchmarks, and other
platforms (e.g., Node.js). Together, our infrastructure, methodology, and results can help
guide the design of future analyses targeting real-world JavaScript code.

Contributions. This paper makes the following contributions:
We present a novel approach to quantifying the importance of language features causing
low recall in JavaScript call graphs. The approach properly handles missing call graph
edges with multiple root causes, and also inter-dependent calls, where an edge is missing
due to the absence of another edge.

ECOOP 2022

3:4 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

We describe implementations of a dynamic call graph and dynamic flow trace analysis of
function values for JavaScript, both of which handle several hard-to-analyze JavaScript
features.
We present results and key observations from applying our techniques for the ACG
algorithm [25] and a suite of framework-based web applications.

The remainder of this paper is organized as follows. Section 2 provides background, and
Section 3 describes our dynamic analyses. Section 4 presents our technique for automatically
discovering root causes for missing edges. Section 5 gives details of our implementation.
Section 6 describes the setup of our study, and Section 7 presents our results. Section 8
discusses related work, and Section 9 concludes.

2 Background

We first give some background on challenges for JavaScript static analysis and on call graph
construction.

2.1 JavaScript analysis challenges
JavaScript programs often pose particularly difficult challenges for static analysis. JavaScript
includes numerous dynamic and reflective language features that are difficult to analyze, and
unfortunately these features are used often in practice [49]. We briefly present such features
here; see previous work for detailed discussions (e.g., [30, 46, 49, 55]). Tricky features include:

Dynamic Property Accesses: JavaScript object fields, or properties, can be accessed
using the syntactic form x[e], where e is an arbitrary expression evaluating to a string
property name. Determining what memory locations may be accessed by an expression
x[e] (fundamental to tracking data flow) can be a significant analysis challenge. Further,
if e evaluates to a property name that does not exist on x, a write to x[e] creates the
property rather than failing, making precise analysis even more challenging.
Eval: JavaScript allows for evaluating arbitrary strings as code at runtime, most com-
monly via its eval construct or the Function constructor. This dynamically-evaluated
code is known to pose significant problems for static analysis [30, 48].
With: The with construct enables adding arbitrary variable bindings with a dynamically-
constructed map [2]. As with eval, with usage complicates static analysis [46].
Getters and Setters: A JavaScript property may be defined such that accessing the
property actually invokes a getter or setter method with custom logic [12]. This feature
makes it difficult to precisely identify the program locations where a function call can
occur.
Reflective Calls: JavaScript provides reflective methods to pass function parameters
in flexible ways, e.g., binding the this parameter explicitly or passing arguments in an
array [13]. Also, any function may read its formal parameters via a special arguments
array, enabling variadic functions. Finally, any function may be legally invoked with any
number of parameters, independent of how many formal parameters it declares. Together,
these features complicate tracking of inter-procedural data flow.
Native Methods: JavaScript and the web platform provide a large standard library
whose implementation is typically opaque to static analysis; hence, models must be
constructed for a large number of these “native” methods.

While these root causes of difficult analysis are well known, our techniques enable
measurement of their relative impact on call graph recall for a set of target benchmarks.

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi 3:5

2.2 Call graph construction
In a static call graph, nodes represent program methods, and an edge from a to b means that
a may invoke b at runtime.2 The utility of a computed call graph CG can be measured in
terms of precision and recall. Precision measures the number of infeasible edges in CG (edges
for calls that cannot occur in any execution), while recall measures the number of feasible
call edges (those that can occur in some execution) missing from CG. Recall will be 100%
for any sound call graph construction technique, but as noted in Section 1, many practical
techniques sacrifice soundness for improved scalability and precision. It is undecidable to
compute the “ground truth” of possible calls for an arbitrary program, required to measure
precision and recall perfectly. Our evaluation (and previous work [25, 44, 51, 57]) proceeds
by exercising benchmarks using a best-effort process and then studying recall using the
measured dynamic behaviors.

Static Flow Graphs. Our technique also relies on obtaining a static flow graph from the
static call graph analysis, to determine what dynamic data flow of function values was missed
by the static analysis (see Figure 1 and further discussion in Section 4). In a flow graph,
each node represents either a memory location (variables, object properties, etc.), a function
value, or a call sites. Edges in the flow graph are defined as follows: if the call graph analysis
determines that a function value may be read from (abstract) memory location m1 and
then written to location m2 (i.e., it may be directly copied from m1 to m2), the static flow
graph should include an edge from m1 to m2. So, flow graph edges should capture observed
assignments of function values into variables and object properties, and passing of function
values as parameters or return values to capture inter-procedural data flow. Additionally, for
a call mi(...), the flow graph should contain an edge from mi to a “callee” node for the call
site (see example below). With this construction, the static call graph should have an edge
from call site s to function f iff there is a path from f to the callee node for s in the flow
graph.

Graph representations are standard in analyses that track data flow [54]. Further, any
realistic JavaScript call graph construction algorithm must track function data flow, as
JavaScript provides no basis for a cheaper technique (functions cannot be coarsely matched
to possible call sites using types or even function arity). Hence, we expect extraction of flow
graphs from JavaScript call graph analyses will be straightforward.

Example. Figure 2 gives a small running example for illustrative purposes. Line 4 creates
an object with two fields MyName and MyPhone, respectively holding functions f1 and f2. Line 5
reads and invokes f1 using a static property access (the property name is syntactically
evident), whereas line 6 reads and invokes f2 using a dynamic property access.

Figure 3 shows the flow graph constructed by a variant of the call graph builder we
study [25] for the Figure 2 example. Edges represent the possible flow of function f1 to the
variable v1, then the object property MyName, and finally the call at line 5. Given this path,
the static call graph includes an edge from main to f1. In contrast, the edge from the MyPhone
property node to the call on line 6 is missing in Figure 3, due to the dynamic property access.
Our approach can determine that this missing flow graph edge leads to a missing main-to-f2
edge in the call graph, and further reason that a dynamic property access is the root cause
of the missed edge.

2 The call graph also includes information on which instruction in a, or call site, may invoke b.

ECOOP 2022

3:6 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

1 function main() {
2 var v1 = function f1() { return "John"; }
3 var v2 = function f2() { return "555-1234"; }
4 var obj = { MyName: v1, MyPhone: v2 };
5 obj.MyName();
6 obj["My" + "Phone"]();
7 }
8 main();

Figure 2 Small example to illustrate our techniques.

Func(f2)

Var(v2)

Prop(MyPhone)

Callee(6)

Func(f1)

Var(v1)

Prop(MyName)

Callee(5)

Figure 3 Flow graph for Figure 2. The red dashed edge is missing from the graph.

3 Dynamic Analyses

Our technique uses dynamic analyses to determine calls and data flows of function values
occurring in executions of a program; this information is then compared with that in the
static call graph and flow graph to detect missing flows (see Section 4). Here we describe the
dynamic analyses at a high level; we discuss implementation challenges related to complex
JavaScript language constructs (such as those listed in Section 2.1) in Section 5.

Dynamic Call Graphs. A dynamic call graph captures the calls that occurred in an
execution (or set of executions) of a program. As with static call graphs, nodes represent
program methods and edges represent invocations between methods. At a high level,
constructing dynamic call graphs only requires recording the actual functions invoked at each
call instruction in some suitable data structure, and this type of analysis has been built many
times before, including for JavaScript [29]. However, our analysis goes further by exposing
call-related behaviors of some of the tricky JavaScript constructs outlined in Section 2.1,
crucial for a more complete understanding of static call graph recall.

Dynamic Flow Traces. Beyond dynamic call graphs, our technique requires dynamic flow
traces to find gaps in the data flow reasoning of static call graph builders. A dynamic flow
trace logs all data flow and invocation operations performed on function values. The trace
includes an entry for each creation of a function value (e.g., an expression function () { ...
}) and for each function call. It also includes an entry for each read or write of a function

value to or from a variable or object property.
As an example, here is an excerpt of the dynamic flow trace for the code in Figure 2

(some details elided):

Create(f1,2); VarWrite(v1,f1,2);
Create(f2,3); VarWrite(v2,f2,3);
VarRead(v1,f1,4); PropWrite(MyName,f1,4);

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi 3:7

VarRead(v2,f2,4); PropWrite(MyPhone,f2,4);
PropRead(MyName,f1,5); Invoke(f1,5);
PropRead(MyPhone,f2,6); Invoke(f2,6);

Each entry includes information on the function value being accessed and the location of
the access (here, line numbers). For property accesses, our traces only record the accessed
property name, as the call graph techniques we studied in our evaluation do not distinguish
base objects of accesses. The trace could easily be extended to include base object identifiers
if needed to study other analyses.

For handling of higher-order functions, the trace includes entries for parameter passing
and returns of function values. A call passing a function as a parameter is treated as a
“write” of a parameter variable, which can be read via the formal parameter in the callee.
For returns, a return statement “writes” a special variable associated with the function’s
return value, which is “read” at the corresponding call site.

4 Missing Flow Detection

In this section, we describe our technique for discovering the missing flows explaining why a
static call graph is missing an observed dynamic call graph edge. See Figure 1 for our overall
architecture. Given a dynamic flow trace for a program, we first post-process the trace to
discover the relevant dynamic copies for a function call (Section 4.1). Then, our technique
matches these dynamic copies to the static flow graph, and automatically computes the
missing flows relevant to each missing call edge (Section 4.2).

4.1 Finding Relevant Dynamic Copies for a Call
Given a dynamic flow trace and an invocation of function f at a call site, our technique
computes the dynamic copies by which f was invoked at the site. Dynamic copies capture
data flow of function values at runtime – they are the dynamic analogue of the possible data
flow captured in a static flow graph (Section 2.2). A dynamic copy captures one of three
operations on function values: (1) the value is created and then stored in some memory
location; (2) the value is copied from one memory location to another; and (3) the value is
read from a location and invoked. By computing the relevant dynamic copies for a particular
call, our technique can expose which data flows may have been missed by the static analysis.

Pseudocode for finding relevant dynamic copies appears in Algorithm 1. We use sub-
scripted t variables for trace entries. Given an entry tc for a call invoking function f in trace
T , FindDynamicCopies computes a list C of the relevant dynamic copies, starting at the
creation of f and ending at the call. Each dynamic copy is represented in the form tr′

tw−→ tr,
read as: the function was read from memory by tr′ , and then copied to the memory location
read by tr, via write tw. The algorithm proceeds backwards through the trace, starting at tc

and reconstructing step-by-step how f was copied through memory to reach the call site.
Algorithm 1 first finds the read or create operation tr for f most closely preceding tc

in the trace (line 3), corresponding to evaluation of e in an invocation e(...).3 C is then
initialized with tr

invoke−−−−→ tc, with the invoke label indicating this is not a true copy, but
instead the invocation of f .

3 In certain corner cases, the closest preceding operation may not be the correct one; we discuss further
under Limitations.

ECOOP 2022

3:8 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

Algorithm 1 Finding dynamic copies for a call.

1: procedure FindDynamicCopies(T , tc)
2: f ← function invoked by tc

3: tr ← PrecedingReadOrCreate(T, tc, f)
4: C ← [(tr

invoke−−−−→ tc)]
5: while tr is not a Create operation do
6: tw ←MatchingWrite(T, tr, f)
7: tr′ ← PrecedingReadOrCreate(T, tw, f)
8: C ← (tr′

tw−−→ tr) :: C

9: tr ← tr′

10: end while
11: return C

12: end procedure
13: procedure MatchingWrite(T , tr, f)
14: if tr reads variable x then
15: return PrecedingVarWrite(T, tr, f, x)
16: else if tr reads property prop then
17: return PrecedingPropWrite(T, tr, f, prop)
18: else if tr reads formal p of function f ′ then
19: // preceding invoke of f ′ passing f to p

20: return PrecedingInvoke(T, tr, f ′, f, p)
21: else if tr is return value of call to f ′ then
22: // preceding return of f from f ′

23: return PrecedingReturn(T, tr, f ′, f)
24: end if
25: end procedure

The loop at lines 5–10 discovers relevant dynamic copies by matching writes and reads
backward in the trace. First, Algorithm 1 finds the closest-preceding write operation tw that
updated tr’s location, using the MatchingWrite procedure. MatchingWrite’s logic
proceeds in cases, handing variables, object properties, formal parameters, and return values
in turn. For a read of property prop, the pseudocode matches with the most recent write to
prop on any object, matching the heap abstraction used by the call graph builder variants
we study (see Section 6.1). For more precise call graph algorithms, the logic could easily be
updated to also match the exact base object used in the property read operation. Once the
matching write tw is discovered, line 7 finds the closest-preceding read or create tr′ , which
“produced” f for the write, and prepends a dynamic copy tr′

tw−→ tr to C.
As an example, consider the call to f2 on line 6 in Figure 2. Here are the relevant trace

entries for that call visited by Algorithm 1:

Create(f2,3); VarWrite(v2,f2,3);
VarRead(v2,f2,4); PropWrite(MyPhone,f2,4);
PropRead(MyPhone,f2,6); Invoke(f2,6);

Starting from the Invoke entry, the closest preceding read of f2 is the PropRead of MyPhone

on line 6. So, C is initialized with PropRead(MyPhone,f2,6) invoke−−−−→ Invoke(f2,6). The
matching PropWrite for the read occurs on line 4, and its closest preceding read of f2

is the VarRead on line 4. Hence, we prepend a dynamic copy VarRead(v2,f2,4)
tw1−−→

PropRead(MyPhone,f2,6), where tw1 = PropWrite(MyPhone,f2,4). Proceeding similarly,
we reach the creation point of f2 on line 3, prepend a dynamic copy Create(f2,3)

tw2−−→
VarRead(v2,f2,4), where tw2 = VarWrite(v2,f2,3), and terminate.

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi 3:9

Limitations
Algorithm 1 assumes that the most-closely-preceding read of a function f in the trace matches
the subsequent write or invocation involving f . In rare cases with parameter passing, this
assumption may not hold, e.g.:
1 function foo(p, q) { p(); }
2 function bar() {}
3 var x = bar;
4 var y = bar;
5 foo(x, y);

Assume we are trying to discover the dynamic copies for the call to bar on line 1. Here is the
relevant excerpt of the flow trace:

...; VarWrite(x,bar,3); VarWrite(y,bar,4); VarRead(x,bar,5);
VarRead(y,bar,5); Invoke(foo,5); VarRead(p,bar,1); Invoke(bar,1);

For the final Invoke of bar, the closest-preceding read is of formal parameter p. The matching
“write” is the Invoke of foo on line 5. From here, the closest-preceding read of bar is from
variable y, which is not the parameter that gets passed in p’s position. Hence, the analysis
will discover an infeasible dynamic copy from the read of y to the read of p. This simple case
could be handled by using source locations during matching, but in cases involving recursion,
dynamic call stacks would also need to be tracked. We did not observe this behavior in any
of our benchmarks, so we chose to employ the simpler technique of Algorithm 1.

In some cases, the dynamic flow trace may be missing entries relevant to dynamic copies,
due to JavaScript features like native methods and with (Section 2.1) and also implementation
limitations; see Section 5 for details. In such cases, our algorithm returns the subset of the
relevant dynamic copies that it is able to reconstruct, and if possible notes a reason for its
failure to find all copies.

4.2 Flow Graph Matching
Given relevant dynamic copies for a call c missed in the static call graph (discovered based
on comparison with the dynamic call graph), we identify the missing flows for c by matching
the dynamic copies to the static flow graph extracted from the call graph builder. (Section 2
described static flow graphs, and Figure 3 gave an example.) Algorithm 2 gives pseudocode
for finding missing flows in a static flow graph. The routine FindMissingFlows takes as
inputs a list of dynamic copies C produced by FindDynamicCopies in Algorithm 1, a static
call graph CG, and the corresponding static flow graph FG. Its result is a set of missing
flows R, where each missing flow is one of three types: (1) MissingFGNode, indicating a node
is missing in the flow graph, (2) MissingFGPath, indicating a path is missing in the flow graph,
and (3) DependentCall, for when the absence of a flow is due to the absence of another call in
the call graph.

For a dynamic copy tr′
tw−→ tr, the algorithm first tries to identify corresponding flow

graph nodes fgSrc and fgDst (lines 4 and 5). In most cases, this matching is straightforward,
done either by matching code entities or matching an accessed memory location to the flow
graph node that abstracts it (we elide the details). In some cases, the flow graph may not
have a matching node, e.g., due to use of eval or due to an unmodelled property name from
a dynamic property access. In such cases, we record an MissingFGNode entry in the result
(lines 6–11).

If flow graph nodes fgSrc and fgDst are discovered, we next check for a path from fgSrc
to fgDst in the flow graph (line 12). We must check for a path, rather than just an edge,

ECOOP 2022

3:10 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

Algorithm 2 Finding missing flows in a flow graph for a call.

1: procedure FindMissingFlows(C,CG,FG)
2: R← ∅
3: for each dynamic copy tr′

tw−−→ tr ∈ C do
4: fgSrc ← FlowGraphNode(FG, tr′)
5: fgDst ← FlowGraphNode(FG, tr)
6: if fgSrc = null then
7: R← R ∪MissingFGNode(tr′)
8: end if
9: if fgDst = null then

10: R← R ∪MissingFGNode(tr)
11: end if
12: if fgSrc ̸= null ∧ fgDst ̸= null ∧NoPath(FG, fgSrc, fgDst) then
13: R← R ∪MissingFGPath(fgSrc, fgDst, tr′ , tw, tr)
14: end if
15: if tw is a call then
16: f ← function invoked by tw

17: if MissingFromCG(CG, tw, f) then
18: R← R ∪ DependentCall(tw, f)
19: end if
20: end if
21: end for
22: return R

23: end procedure

since the static analysis may use temporary variables and assignments not present in the
source code. If no path is discovered, we note a MissingFGPath entry, retaining information
about the dynamic copy to facilitate root cause labeling.

As an example, consider again the call to f2 in Figure 2, and the corresponding dy-
namic copies described in Section 4.1. In the Figure 3 flow graph for the code, there are
matching nodes for all the copy locations, but there is no path matching the final copy
PropRead(MyPhone,f2,6) invoke−−−−→ Invoke(f2,6). So, the single missing flow computed for
this case is a MissingFGPath entry with the details of this dynamic copy. Given this informa-
tion, a root cause labeler can discover that the flow was missed due to the dynamic property
access; see Section 6.2.

Dependent calls. Lines 15–20 handle dependent calls, where a path corresponding to a
parameter passing or return dynamic copy is missing from the flow graph due to some other
missed call. Consider this example:
1 function f() { ... }
2 var x = { foo: function f2() { return f; } };
3 var y = x["fo"+"o"]();
4 y();

For the optimistic ACG call graph algorithm we use in our evaluation (see Section 6.1), the
calls to f2 at line 3 and to f at line 4 will be missing in the call graph. When finding missing
flows for the line 4 call, a missing path for the function return dynamic copy at line 3 is
discovered. However, the issue with the analysis is not that it does not model returns of
function values; this flow was missed because the call target at line 3 was missed, so no flow
could be discovered from the appropriate callee. Our discovery of missing flows must account
for such cases, to enable accurate quantification of root causes.

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi 3:11

To handle dependent calls, Algorithm 2 checks at line 15 if the “write” operation for the
copy was a call. (Recall from Section 3 that calls are treated as the writes for parameter
passing or function returns.) If so, and if the static call graph is missing the relevant target
for the call (line 17), we add a DependentCall missing flow to the result (line 18).

When counting the frequency of root causes, for dependent calls, we reuse the root causes
for one call as the root causes for the other. For the example above, the dynamic property
access at line 3 is identified as the single root cause for the missing calls at lines 3 and 4. All
results presented in Section 7 precisely account for dependent calls.

Root Cause Labeling. Given a set of missing flows, quantification of root cause prevalence
requires attributing a root cause label to each missing flow. The root cause labels may be
specific to the call graph construction algorithm being studied, and must be developed with
knowledge of the soundness gaps in the algorithm. Additionally, root cause labeling may be
performed with different levels of granularity, depending on what information is required by
the analysis developer. In Section 6.2, we discuss the root cause labeling strategies used in
our example study of the ACG call graph algorithm [25].

5 Implementation

Dynamic analyses. We implemented our dynamic call graph (DCG) and dynamic flow
trace analyses (Section 3) atop the Jalangi framework [53],4 which leverages source code
instrumentation. While this instrumentation approach is more maintainable and portable
than the alternatives, a downside is that the semantics of certain language constructs are not
exposed in a straightforward way at the source level. In spite of source code instrumentation’s
limitations, one of its primary advantages is that it does not require modification of a
JavaScript engine. Production JavaScript engines in browsers are challenging to modify, for
two reasons: (1) they have complex implementations, so any change will require considerable
engineering effort; and (2) they evolve rapidly, making it difficult to maintain an analysis.
We use Jalangi2 to instrument JavaScript programs with our analysis code because it is easy
to maintain and can work across different JavaScript engines. The tool allows us to perform
analyses even when certain fragments of the source code are not instrumented. Our analyses
contain significant extra logic to capture the behavior of several hard-to-analyze constructs
as accurately as possible, despite the limitations of source instrumentation.

As an example, our DCG analysis exposes many callbacks from “native” library functions.
Such callbacks occurred regularly in the benchmarks used in our study, e.g., using Function.
prototype.call, as shown in this small example:
1 function foo() { }
2 foo.call(this);

Line 2 invokes foo via call, but Jalangi does not expose the invocation directly, as it cannot
instrument call. Instead, Jalangi exposes the invocation of call, followed by the start of
execution in foo, but with no explicit invocation of foo. To handle such cases, our DCG
analysis maintains its own representation of the call stack. Upon invocation of a native
method, a marker for the method is pushed on the call stack. Then, at the entry of a
(non-native) method, if the top of our call stack is a native method marker, we record the

4 We use version 2 of Jalangi, available at https://github.com/Samsung/jalangi2.

ECOOP 2022

https://github.com/Samsung/jalangi2

3:12 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

fact that a native callback occurred. For the above case, the dynamic call graph will include
an invocation of the call native method at line 2, and also an invocation of foo from call,
as desired.5

Our DCG analysis also exposes getter and setter calls, and calls to and from dynamically-
evaluated code. For getters and setters, the analysis detects their presence via a library
API [1]. If a getter or setter is detected at a property access, it is treated as a call site and the
call edge is recorded. We leverage Jalangi’s built-in support for dynamic code evaluation via
eval or new Function; the relevant code string gets instrumented at runtime, so our analysis
has visibility into calls into or out of such code.

Our dynamic flow trace analysis also includes special handling of some challenging
JavaScript features. The analysis distinguishes getters and setter calls using specially-marked
Invoke entries, to enable tracking getter and setter use as a root cause. For uses of the
arguments array to access parameters, we generate relevant property write entries at a function
entry as “synthetic” entries (not corresponding to explicit source code). To handle eval-like
constructs, any trace entry from the evaluated code includes a special source location marking
it as from code executed via eval.

JavaScript has a very broad set of features and native methods requiring special handling,
and our dynamic analyses still do not model all such features. For the flow trace analysis, in
certain cases a property write or read occurs in an unmodelled native method, and hence
is missed in the trace. The analysis generates special entries to model memory accesses
performed by commonly-used library methods, such as push and pop on arrays. We have not
fully modeled all reflective constructs like Object.defineProperty [14]. Also, use of the with
construct can thwart our technique, as it is not fully supported by Jalangi. (We note that all
relevant uses of with in our benchmarks appeared within an eval construct,6 posing a severe
challenge for static analysis.)

In terms of performance, we implemented some optimizations to reduce the size of the
dynamic flow trace for larger benchmarks. First, we limited tracing to only those function
values that could be involved in a missing edge in the static call graph, based on the creation
site of the function. Second, we track a unique identifier for each function value using
Jalangi’s shadow memory functionality, and once the call site with the missing static call
graph edge executes, we disable flow tracing for the corresponding value.

To generate dynamic call graphs and flow traces, we exercised our benchmarks manually
and recorded the actions as Puppeteer [15] automation scripts to allow for repeatable runs;
Section 6.3 details the coverage obtained for benchmarks in our study.

Missing Flow Detection. The missing flow detection algorithms of Section 4 are implemented
in 1154 lines of Python code. For the most part, detecting missing flows in the static flow
graph given a dynamic flow trace was straightforward. Some effort was required to match
source locations provided by WALA [58] for JavaScript constructs (our use of WALA is
detailed in Section 6.1) with what was observed by the dynamic analyses. In the process
of ensuring this matching was precise, we contributed a couple of fixes to WALA, and also
found and fixed a longstanding issue with incorrect source locations in the Rhino JavaScript
parser [5].7

5 Our technique does not yet precisely handle cases with multiple levels of native calls, such as Array.
prototype.map.call(...); we plan to add further modeling for such cases in the future.

6 For example, see this code from the Knockout framework: https://tinyurl.com/1jxtrpz3
7 https://github.com/mozilla/rhino/pull/809

https://tinyurl.com/1jxtrpz3
https://github.com/mozilla/rhino/pull/809

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi 3:13

6 Study Setup

Here, we detail the setup of our study of root causes of missed call graph edges for framework-
based web applications. We describe the ACG call graph algorithm used in our study
(Section 6.1), describe how we performed root cause labeling for this algorithm (Section 6.2),
and then present our benchmarks and how they were exercised (Section 6.3).

We note that the main purpose of our study was to show the potential of our techniques
to give useful insights on the relative importance of different root causes for missed static
call graph edges. We do not claim that the results for the benchmarks used in our study will
generalize to any broad class of framework-based web applications. A study of a wider variety
of benchmarks, to obtain generalizable insights on root causes across JavaScript applications,
is beyond the scope of this work.

6.1 The ACG algorithm
In our evaluation, we studied variants of the approximate call graph (ACG) algorithm of
Feldthaus et al. [25]. The ACG algorithm was designed to entirely skip analysis of many
challenging JavaScript language features, while still providing good precision and recall for
real-world programs. ACG leverages the insight that many dynamic property accesses in
JavaScript are correlated [55], with a paired dynamic read and write used to copy a property
from one object to another. By using a field-based handling of object properties [28] (treating
each property as a global variable), ACG could ignore dynamic property accesses entirely
and still provide good recall, assuming most accesses are correlated.

Feldthaus et al. [25] describe pessimistic and optimistic variants of ACG, differing in their
handling of inter-procedural flow. Pessimistic ACG only tracks data flow across procedure
boundaries in limited cases, whereas optimistic ACG performs full inter-procedural tracking.
We performed root cause quantification for both variants in our study.

Our study uses the open-source implementation of ACG in WALA [58]. This implemen-
tation directly builds a flow graph during call graph building, which we serialize alongside
the computed call graph. The WALA implementation also includes partial handling of the
call and apply reflective constructs for parameter passing [13]. In the optimistic variant,
interprocedural flow is handled fully for call, but only return values are handled for apply
(as it passes parameters via arrays, which is hard to analyze). We confirmed via inspection
that the WALA implementation of ACG has no handling of getters and setters, eval, and
with.

6.2 Root Cause Labeling
We implemented root cause labeling for missing flows based on the gaps we observed in
the WALA implementation [58] of the ACG algorithm [25]. For a different algorithm or
implementation, some different root causes may be required, but we expect significant overlap,
as several root causes pertain to challenging language features that many techniques handle
unsoundly (e.g., eval). The referenced root cause names are also used when discussing their
prevalence in Section 7.2.

For MissingFGNode (see Section 4.2), in some cases, there is no node representing the
creation of a function value in the flow graph. If the function was from the standard library,
we assigned the label “Call to unmodelled native function,” as WALA was likely missing a
model for the function. In cases where the function was created via a call to new Function
(unhandled by the ACG implementation), we assigned the label “Creation via Function
constructor.”

ECOOP 2022

3:14 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

In other MissingFGNode cases, the node representing the call site itself is missing. For
this case, a common root cause label is “Call to getter/setter,” as getters and setters are
not modeled by ACG. Also, the “Calls from unmodelled native functions” label captures
cases where an unmodeled native function calls back into application code. Finally, for
a dynamic property access, if the property name is never used as part of a non-dynamic
property access, the flow graph may not have a node for the property, in which case we use
the label “Dynamic Property Access.”

For MissingFGPath, one possible root cause is “Dynamic Property Access,” which can be
identified by the corresponding dynamic reads / writes. For the pessimistic ACG variant,
paths may be missing since the algorithm does not model passing function values as parameters
or returning function values; we use the labels “Parameter Pass” and “Function return” for
these scenarios. For both ACG variants, the “Parameter Pass” label is also used to reflect
passing of parameters in an array via Function.prototype.apply.

In the case of dynamically-evaluated code (the “Use of Eval” and “Eval via new Function”
labels), many relevant nodes may be missing from the static flow graph. We assign an
appropriate root cause in these cases by recording in the flow trace which events occurred in
dynamically-evaluated code (Section 5). Note that we prioritize the eval-related root causes
over others; e.g., if there is a relevant dynamic property access in eval’d code, we will assign
the eval-related root cause, even though it is possible the analysis also could not handle the
property access. We chose this labeling due to the high difficulty of handling eval constructs
in static analysis; for an analysis with significant support for eval a different choice may be
appropriate.

Finally, as noted in Section 4.1, in certain cases we cannot compute all dynamic copies for
a call. For these cases, our technique makes a base-effort attempt to assign an appropriate
root cause label. “Call to bounded function” captures missing handling of the Function
.prototype.bind feature [13]. The “Multiple levels of native functionality” label captures
cases where native methods are invoked reflectively (see Footnote 5). Finally, we identify the
“Use of With” root cause by tracing objects used in with statements and identifying when an
unmatched variable corresponds to a with object property.

As Section 7.2 will show, dynamic property accesses are the most frequent root cause
of missing call graph edges for our benchmarks. To further understand these root-cause
accesses, we also implemented a finer-grained labeling for them, based on the expression
used for the property name. This more granular labeling is described in Section 7.3.

6.3 Benchmarks and Harness

For benchmarks, our study used several programs from the TodoMVC suite [17]. TodoMVC
contains many implementations of a simple web-based todo list application, with each
implementation using a different web framework or language. The suite is designed to help
developers compare different model-view-controller (MVC) frameworks. Because the suite
contains idiomatic implementations of the same functionality across frameworks, it provides
an opportunity to compare sources of missing call graph edges across frameworks.

To test with a larger web application, we also included OWASP Juice Shop [3], an
AngularJs-based program that is a standard benchmark for security analyses. Counting the
size of framework / library code for Juice Shop is difficult, as the code base does not clearly
separate third-party code used as part of the web site from libraries used only to deploy the
site; we conservatively estimated the framework / library code to be greater than 50 kLoC.

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi 3:15

Table 1 Benchmark Statistics.

Total
LoC

Application
LoC

Framework/
Library LoC

Application
Stmt.

Coverage
AngularJs 12091 256 11835 81.08%
Backbone 9003 216 8787 99.74%

KnockoutJs 1044 129 915 98.98%
KnockbackJs 15836 199 15637 99.73%

CanJs 11371 129 11242 100%
React 24855 383 24472 99.21%

Mithril 1433 252 1181 99.61%
Vue 7667 124 7543 97.73%

VanillaJs 751 561 190 98.10%
jQuery 9526 171 9355 99.59%

Juice Shop >65000 15092 >50000 36%

Table 1 gives statistics for our benchmarks. The TodoMVC benchmarks are named based
on the web framework that they use. The TodoMVC applications range from 751–24,855 lines
of code, with framework sizes varying widely. We chose all eight of the JavaScript-framework-
based implementations that worked with our infrastructure.8 We also chose VanillaJS, which
does not use any framework,9 and jQuery, for comparison purposes.

To exercise the TodoMVC applications, we wrote a harness to cover as much application
code as possible, and in the end our script achieved application code statement coverage of
97% or higher for nearly all benchmarks. We studied all uncovered code manually, and found
that it was either dead code or could not be exercised in a single run of the application (e.g.,
for the AngularJs version, a small amount of code would only run if the app were used and
then restarted in offline mode).

For Juice Shop, we were unable to exercise the application beyond fully completing its
initial loading, explaining the significantly lower code coverage. Our infrastructure ran into
scalability issues for deeper runs of Juice Shop, which we hope to fully address in the near
future. Still, simply loading Juice Shop exercised a large amount of code (its flow trace was
nearly 5 times larger than any fully-exercised TodoMVC benchmark), making a study of
missed call edges for the loading portion of the execution interesting on its own.

In terms of running times for our tools, dynamic call graph and flow trace collection
each took between 30 and 60 seconds for each TodoMVC benchmark, varying based on the
amount of code executed; this overhead is comparable to previous Jalangi-based dynamic
analyses [53]. Missing flow detection (Section 4) took time proportional to the size of the flow
trace, ranging from around half a second (for VanillaJS) to around 10 minutes (for React).
Overall running time for Juice Shop was much longer (more than an hour total) due to its
size and the aformentioned scalability bottlenecks it exposed. We expect the missing flow
detection times could be reduced significantly with a more optimized implementation.

8 Some implementations used newer JavaScript language features not yet supported by Jalangi.
9 All implementations use a common base JavaScript library, accounting for the library code in VanillaJS.

ECOOP 2022

3:16 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

7 Results

In this section, we present results from performing root cause quantification for our bench-
marks. The results show that our quantification techniques can provide interesting insights
into the relative prevalence of different root causes for missing call graph edges. We first
give recall measurements for our benchmarks using multiple metrics in Section 7.1. Then,
we discuss the top root cause labels for missed call graph edges in Section 7.2 and insights
gained from this data. Finally, we discuss results from performing a finer-grained labeling
of missing flows related to dynamic property accesses (the most prevalent root cause) in
Section 7.3.

7.1 Recall Measurements
We measured call graph recall for our benchmarks by comparing the ACG static call graphs
with our collected dynamic call graphs. We first describe our methodology, and then present
results. We also measured call graph precision for all benchmarks, but as our new techniques
focus on root causes for low recall, we do not discuss the precision results here; they are
presented in an extended version of the paper [22].

Methodology. We used three different metrics to measure recall, suited to different client
scenarios:

Call site targets: the set of targets at each call site present in the dynamic call graph.
This metric was used in the original ACG paper [25]. Recall is computed for each call
site, and then averaged across call sites to produce recall for a benchmark. This metric is
most relevant to clients like code navigation in an IDE.
Reachable nodes: the set of reachable methods, where roots are the entrypoints in the
dynamic call graph. This metric has been used in previous work [57], and is relevant to
clients like dead-code elimination.
Reachable edges: the set of call graph edges whose source method is present in the
dynamic call graph. This metric is most relevant to clients doing deep inter-procedural
analysis like taint analysis [26].

Given our collected data, we studied the following research questions:
RQ1: How does recall vary across the three metrics?
RQ2: How does recall vary across benchmarks?

Results. Figure 4 gives detailed recall results for WALA’s original ACG implementation
for each TodoMVC benchmark, with results for the pessimistic variant in Figure 4a and
for optimistic in Figure 4b. Average recall across the TodoMVC benchmarks is shown in
Figure 5.

For RQ1, the data show that recall of ACG tends to suffer with more exacting metrics.
The ACG paper [25] used the call site targets metric, and showed that both precision and
recall were typically above 80% for their benchmarks. Figure 5 shows that for our benchmarks,
while recall is above 80% for this metric for both the optimistic and pessimistic variants,
recall decreases for the more exacting metrics, particularly for pessimistic analysis.

For RQ2, Figure 4 shows that recall can vary widely across benchmarks. In Section 7.2
we dig further into these differences, showing that root causes for low recall can also vary
across the benchmarks. For the TodoMVC React benchmark, recall is very high for the
optimistic analysis but quite low for pessimistic. In this case, the high recall for optimistic

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi 3:17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

An
gu
lar
Js

Ba
ckb

on
e

Kn
oc
ko
utJ
s

Kn
oc
kb
ack
Js

Ca
nJs

Re
act

Mi
thr
il

Vu
e

Va
nil
laJ
s

JQ
ue
ry

Call Site Targets Reachable Nodes Reachable Edges

(a) Pessimistic ACG.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

An
gu
lar
Js

Ba
ckb

on
e

Kn
oc
ko
utJ
s

Kn
oc
kb
ack
Js

Ca
nJs

Re
act

Mi
thr
il

Vu
e

Va
nil
laJ
s

JQ
ue
ry

Call Site Targets Reachable Nodes Reachable Edges

(b) Optimistic ACG.

Figure 4 Detailed recall results for our three metrics across the benchmarks.

analysis comes at a cost of very low precision (less than 5% for reachable edges; see the
extended version of the paper [22] for full details). We suspect that some initial imprecision
spirals out of control for optimistic analysis for React, leading to poor precision. Previous
work studied diagnosing imprecision root causes [20, 35, 60]; such a study is out of scope
here. However, improving recall can lead to reduced precision, and this tradeoff must be
minded when devising solutions to improving recall.

For Juice Shop, only the pessimistic ACG variant could run to completion; optimistic
ACG could not complete within 64GB of memory. Pessimistic ACG missed 15,060 edges that
were present in the dynamic call graph. Since our coverage for Juice Shop was significantly
lower than the other benchmarks (see Section 6.3), we do not quantify the precision and
recall of pessimistic ACG for the benchmark, nor do we include it in aggregate statistics.

ECOOP 2022

3:18 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Call site targets Reachable nodes Reachable edges

Pessimistic Recall Optimistic Recall

Figure 5 Average recall across benchmarks for original WALA ACG implementation.

24%

53%

4%

7%

2%
2%

5%

Figure 6 Original root causes for optimistic ACG across TodoMVC, before WALA improvements.

7.2 Root Cause Quantification

We present illustrative results from applying our techniques to quantify prevalence of root
causes for missing call graph edges for our benchmarks. Space does not allow a full presentation
of all results; all experimental data is available in our artifact [21]. Here we focus on the
following questions:

RQ3: What are the most common root causes for missed call graph edges?

RQ4: Does the relative importance of root causes vary across benchmarks?
We compute root causes for each individual missed call edge in the static call graph,
corresponding to the “Reachable edges” metric used to measure recall in Section 7.1. The
color legend for the pie charts appears below Figure 8.

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi 3:19

Using data to improve recall. Figure 6 shows the prevalence of different root causes across
the TodoMVC benchmarks for the optimistic variant of the original ACG implementation
in WALA. When studying these root causes, we were surprised to see that 24% of missed
call edges were due to calls to unmodeled standard library functions. Based on this data,
we modified WALA to include basic models of many of these native functions. This change
improved average recall for the pessimistic analysis by 2 percentage points to 37% (by the
Reachable Edges metric); improvement for optimistic analysis was 5 percentage points, to
76%. These improvements show that quantifying root cause prevalence can guide an analysis
developer to “quick wins” for improving analysis recall. The data in the remainder of this
section were computed using the improved version of WALA ACG.

Top root causes. Turning to RQ3, Figures 7a and 7b respectively show top root causes for
pessimistic and optimistic ACG across the TodoMVC benchmarks (after improving WALA’s
native models). Comparing the two, we see a key difference is that missed calls due to
functions being passed as parameters or returned (the “Parameter Pass” and “Function
return” labels) are significant root causes (totaling 74%) for pessimistic analysis but not
optimistic. This result makes sense, as the key difference between optimistic and pessimistic
ACG is that optimistic analysis tracks interprocedural flow of function values. Given that
74% of missed edges for pessimistic analysis are due to such interprocedural flows, it seems
the best approach to improving pessimistic recall for these benchmarks would be to model
some of these flows, rather than attacking other root causes.

The “Others” label covers a small number of cases (5% overall) where our current scripts
cannot yet find a root cause. In addition to the unhandled constructs and cases described
in Section 5, our automated reasoning failed in rare cases due to a bug in WALA ACG’s
handling of finally blocks. During our work, we identified two other WALA ACG bugs that
were fixed by the maintainers. Overall, our techniques successfully handle more than 95%
of the missing call edges for our benchmarks, and we will continue to improve our tools to
reduce the number of unhandled cases.

Focusing in on Figure 7a, we see that dynamic property accesses are by far the most
prevalent root cause for optimistic analysis of TodoMVC benchmarks at 70%. We dig further
into these property accesses with a finer-grained labeling in Section 7.3. The second-most
prevalent root cause on average is “Eval via new Function” at 10%, but as we shall see next,
the second-highest root cause varies significantly across benchmarks.

Variance across benchmarks. For RQ4, we use illustrative examples to show the variance
in root cause prevalence across benchmarks. Figures 8a–8c respectively show root causes
for the React, Angular, and Vue.js TodoMVC benchmarks, analyzed with optimistic ACG.
While the most-prevalent root cause for each of these benchmarks was dynamic property
accesses, the second-place root cause varies by benchmark: “Eval via new Function” is second
for React, “Call to bounded functions” for AngularJS, and “Call to getter / setter” for Vue.
This benchmark-specific data could provide valuable information to an analysis developer.
E.g., if the developer were primarily trying to improve recall for applications like the Vue
benchmark, it may be more worthwhile to improve handling of getters and setters than if
the applications were more similar to the React benchmark.

Figure 9 shows root causes for the larger Juice Shop benchmark (analyzed with pessimistic
ACG). Unfortunately, Juice Shop exercised gaps in our infrastructure’s handling of tricky
JavaScript constructs more heavily, particularly in the dynamic flow trace analysis. So, we
could not compute proper root causes for 27% of missing call graph edges for Juice Shop.

ECOOP 2022

3:20 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

70%

3%

10%

5%

3%
2%

5%

(a) Optimistic.

18%

3%

55%

2%

19%

(b) Pessimistic.

Figure 7 Improved root causes for ACG variants across TodoMVC, after WALA improvements.

77%

16%

5%

(a) React.

53%

3%
2%

27%

9%

4%

(b) AngularJS.

55%

7%

9%

18%

8%
2%

(c) Vue.

Figure 8 Root causes for three TodoMVC benchmarks for optimistic ACG.

Calls to unmodelled native functions Calls from unmodelled native functions

Eval via new Function Calls to Getters/Setters

Dynamic Property Access

Calls to bounded functions

Parameter Pass Others

Use of Eval

Use of With

Function returnCreation via Function Constructor

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi 3:21

2%

21%

5%

17%

27%

27%

Figure 9 Root causes for pessimistic ACG for Juice Shop.

Still, the remaining data is interesting, particularly when compared to the pessimistic results
for the TodoMVC benchmarks shown in Figure 7b. We see that handling returns of functions
seems to be relatively less important than for the TodoMVC benchmarks, whereas handling
of getters and setters is more important. Though making strong conclusions is difficult given
the number of uncategorized edges in this case, these preliminary data again show the ability
of our technique to expose benchmark-specific insights about causes of low recall.

To summarize, we have shown that our technique for quantifying root causes works across
several benchmarks and can expose the most important root causes in aggregate and the
differences between benchmarks. Since improving recall for JavaScript static analysis on
real-world programs poses so many challenges, we expect improvements for specific types of
benchmarks to prove worthwhile, and the data from our techniques can provide valuable
guidance in how to do so.

7.3 Name Flow for Dynamic Property Accesses

Given the importance of dynamic property accesses as a root cause in Section 7.2, we
performed a finer-grained root cause labeling of these accesses. Our goal was to understand
better how property names are computed for these accesses, to see if some targeted handling
of the property name expressions could be useful. Recent work by Nielsen et al. [44] proposes
just such a technique for analysis of Node.js code, via special handling of property name
expressions that concatenate a string constant prefix or suffix to some other expression.
We hoped to use root cause labeling to see if a similar technique could be effective for our
web-based benchmarks.

We implemented a simple intra-procedural analysis using WALA [58] to label each root-
cause dynamic property access based on how data flows into its property name expression
(for an access x[e], e is the property name expression). Aggregate results appear in Figure 10;
our artifact has the complete data [21]. As shown in Figure 10, property names for root-cause
dynamic accesses have a diverse set of sources. The largest single source are JavaScript’s
for-in loops for iterating over object properties, studied frequently in the literature as a
challenge for static analysis (e.g., [19, 47]). However, they account for only 31% of cases in

ECOOP 2022

3:22 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

For In Loop
32%

Parameter Pass
28%

Other String Concat
10%

Postfix Concat
2%

Prefix Concat
2%

Lexical Read
11%

Property Read
11%

Others
4%

Figure 10 Finer-grained dynamic property access root causes for TodoMVC benchmarks.

total, and many other sources exist. Property names are often passed in from outside the
function containing the access, whether by parameter passing (28%) or variables in enclosing
lexical scopes (12%); handling these cases may require inter-procedural tracking of property
name value flow. Another major source is property reads (12%) (i.e., the property name
is read from another object property), whose handling may again require deep tracking of
value flow.

String concatenation cases comprise 14% of root-cause property name expressions. Only
4% of such expressions in our benchmarks had a string constant prefix or suffix, the type of
expression targeted by Nielsen et al. [44]. Hence, the data show that their technique would
likely have at most a small impact on recall for our benchmarks.

A deeper study of inter-procedural property name value flow could provide further insights
on how these names are computed; this remains as future work. Still, our data show it is
likely that a variety of challenges would need to be addressed to significantly improve ACG’s
recall with respect to dynamic property accesses.

7.4 Threats to Validity

As noted in Section 6, we do not claim generalizability of the results for our benchmarks to
a broader set of JavaScript applications. In our benchmark suite, each individual framework
is primarily exercised by a single TodoMVC benchmark, which may not be representative of
other applications using that framework. Also, though our harness achieves high statement
coverage for the TodoMVC benchmarks (Section 6.3), it is possible that certain application
behaviors in those apps remain unexercised. Our dynamic coverage of Juice Shop was
relatively low due to scalability limitations; more complete coverage is required to make
strong conclusions about relative importance of root causes for that application. Finally, as
noted in Section 5, our tooling still does not handle certain language features completely,
which may have impacted our measurements.

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi 3:23

8 Related Work

Here, we briefly discuss related studies of analysis effectiveness, and also other analysis
frameworks and their applicability to framework-based web applications.

Root cause analysis. Our work was partly inspired by a study of call graph recall for Java
programs by Sui et al. [57]. As in that work, we measure recall with respect to dynamic
analysis measurements, and we aim to determine which constructs are responsible for missing
edges. Sui et al.’s approach used calling-context trees [18] and runtime tagging of reflective
operations to determine language features impacting recall. Since functions are first-class
values in JavaScript, we can trace function data flow directly to make this determination.
Also, due to JavaScript’s dynamic nature, the potential causes of missing edges and their
usage patterns differ significantly from Java’s problematic constructs.

Andreasen et al. present techniques for isolating soundness and precision issues in the
TAJS static analyzer for JavaScript [20]. For finding analysis unsoundness, their technique
creates logs of expression values while executing target programs, and then checks that the
static analysis abstractions account for all such values. When unsoundness is discovered
for a program, delta debugging [61] is employed to find a reduced version of the program
with the same unsoundness. From this reduced program, determining a root cause is often
much simpler. In contrast to their work, which is focused on an analysis that strives for full
soundness, our approach is targeted at analyses with deliberate unsoundness (for practicality),
and aims to quantify the impact of different unsoundness root causes.

Reif et al. [61] present a system that provides methods for exposing sources of unsoundness
in different Java call graph builders and also for measuring how frequently hard-to-analyze
constructs appear in a set of benchmarks, yielding many useful practical insights. A difference
with our work is that our technique can automatically connect specific uses of hard-to-analyze
constructs to the corresponding missed call graph edges. This provides important additional
information for JavaScript, since hard-to-analyze constructs can appear pervasively in
JavaScript code, and not all occurrences cause call graph unsoundness.

Lhoták [37] also presents a comparison of static and dynamic call graphs for Java, aimed
at finding sources of imprecision in the static call graph. Other work [20, 60] used dynamic
analysis to generate traces and find root causes of imprecision in JavaScript static analyses,
and Wei et al. [60] also provides suggestions to fix the root causes of imprecision. Lee et
al. [35] produce a tracing graph by tracking information flow from imprecise program points
backwards, thereby aiding the user to identify main causes of the imprecision. Our work
differs from all of these studies in its focus on recall rather than precision, which necessitates
different techniques.

JavaScript Analyses. Several analysis frameworks use abstract interpretation [24] to handle
the interdependent problem of scalability and precision in JavaScript [32, 33, 36]. These
frameworks have been steadily enhanced with techniques to improve precision and scalability
when analyzing libraries, particularly TAJS [19, 31, 32, 43] and SAFE [34, 35, 36, 46, 47,
50]. While these techniques have shown enormous improvement in analyzing libraries like
jQuery [10] and Lodash [11], they do not yet scale to complex MVC frameworks like React [4].

Other techniques use dynamic information to improve static analysis. Wei and Ryder
introduced blended analysis [59], which uses dynamic analysis to aid static analysis in handling
JavaScript’s dynamic features. The dynamic flow analysis by Naus and Thiemann [41]
generates flow constraints from a training run to infer types in JavaScript applications.

ECOOP 2022

3:24 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

(Their technique finds constraints by tracking operations on values; we determine how values
are copied through memory, an orthogonal problem.) Lacuna [45] utilizes static and dynamic
analysis to detect dead code in JavaScript applications; this work uses ACG and also uses
TodoMVC applications for evaluation. While dynamic information can be very helpful in
static analysis, improving pure static analysis is still desirable, as it can compute results
without instrumenting and running the code and without inputs.

To analyze JavaScript applications that use the Windows runtime and other libraries,
Madsen et al. proposed a use analysis that infers points-to specifications automatically [38].
It is unclear if their analysis will be effective for framework-based applications, where control
flow is mainly driven by the framework, not the application. Also, we study applications using
diverse frameworks from by many different developers, whereas [38] focuses on Windows
libraries. For Node.js, Madsen et al. [39] presented a static analysis using call graphs
augmented to represent event-driven control flow. To scale static analysis in server-side
JavaScript applications in Node.js, Nielsen et al. present a feedback-driven static analysis
to automatically identify the third-party modules that need to be analyzed [42]. Our focus,
however, is on client-side MVC applications that often do not have clean module interfaces.

Other recent systems make use of pragmatic JavaScript static analyzers. The CodeQL
system [7] includes an under-approximate call graph builder for JavaScript [8]. CodeQL’s
analysis is primarily intra-procedural, targeted toward taint analysis, and does not handle
dynamic property accesses.10 Møller et al. [40] describe a system for detecting breaking
library changes in Node.js programs, based on an under-approximate analysis designed for
high recall at the cost of some precision. Nielsen et al. [44] present a pragmatic modular
call-graph construction technique for Node.js programs; we discussed its specialized handling
of property name expressions in Section 7.3. For these approaches, our methodology could
be used to quantify the importance of different causes of reduced recall. Salis et al. recently
presented a pragmatic call graph builder for Python programs [51]; it would be interesting
future work to extend our techniques to Python. Beyond dataflow-based reasoning about
call graphs, other approaches to JavaScript static analysis include AST-based linting [9] and
type inference [16, 23].

9 Conclusions

We have presented novel techniques for quantifying the relative importance of different root
causes of missed edges in JavaScript static call graphs. We instantiated our approach to
perform a detailed study of the results of the ACG algorithm on modern, framework-based
web applications. The study’s results provided numerous insights on the variety and relative
impact of root causes for missed edges. All of our code and data is publicly available. In
future work, we plan to extend the study to other domains; we expect that analyses for
any dynamic language with extensive use of higher-order functions could benefit from our
techniques. We also plan to use the techniques to further develop improved call graph
builders and other JavaScript static analyses.

References
1 MDN Web Docs: Object.getOwnPropertyDescriptor(). https://developer.

mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/
getOwnPropertyDescriptor, 2021. Accessed: 2021-01-11.

10 These details are based on personal communication with Max Schäfer in January 2021.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyDescriptor
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyDescriptor
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/getOwnPropertyDescriptor

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi 3:25

2 MDN Web Docs: with. https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Statements/with, 2021. Accessed: 2021-01-11.

3 OWASP Juice Shop. https://owasp.org/www-project-juice-shop/, 2021. Accessed: 2021-
12-01.

4 React – a JavaScript library for building user interfaces. https://reactjs.org, 2021. Accessed:
2021-01-11.

5 Rhino: JavaScript in Java. https://github.com/mozilla/rhino, 2021. Accessed: 2021-01-11.

6 Angular. https://angular.io, 2022. Accessed: 2022-05-13.

7 CodeQL for research. https://securitylab.github.com/tools/codeql/, 2022. Accessed:
2022-05-13.

8 CodeQL library for JavaScript: Call graph. https://codeql.github.com/docs/
codeql-language-guides/codeql-library-for-javascript/#call-graph, 2022. Accessed:
2022-05-13.

9 ESLint. https://eslint.org, 2022. Accessed: 2022-02-25.

10 jquery. https://jquery.com/, 2022. Accessed: 2022-05-13.

11 Lodash. https://lodash.com/, 2022. Accessed: 2022-05-13.

12 MDN Web Docs: Defining Getters and Setters. https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Guide/Working_with_Objects#defining_getters_and_setters,
2022. Accessed: 2022-05-13.

13 MDN Web Docs: Function. https://developer.mozilla.org/en-US/docs/Web/JavaScript/
Reference/Global_Objects/Function, 2022. Accessed: 2022-05-13.

14 MDN Web Docs: Object.defineProperty(). https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Global_Objects/Object/defineProperty, 2022. Accessed:
2022-05-13.

15 Puppeteer. https://pptr.dev/, 2022. Accessed: 2022-05-13.

16 Tern: Intelligent JavaScript Tooling. https://ternjs.net, 2022. Accessed: 2022-02-25.

17 TodoMVC. https://todomvc.com/, 2022. Accessed: 2022-05-13.

18 Glenn Ammons, Thomas Ball, and James R. Larus. Exploiting hardware performance counters
with flow and context sensitive profiling. In PLDI, pages 85–96, 1997.

19 Esben Andreasen and Anders Møller. Determinacy in static analysis for jQuery. In Proceedings
of the 2014 ACM International Conference on Object Oriented Programming Systems Languages
& Applications, part of SPLASH, OOPSLA, pages 17–31, 2014.

20 Esben Sparre Andreasen, Anders Møller, and Benjamin Barslev Nielsen. Systematic approaches
for increasing soundness and precision of static analyzers. In Proceedings of the International
Workshop on State Of the Art in Program Analysis, SOAP, pages 31–36, 2017.

21 Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Hassanshahi. Artifact
for "Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs", May
2022. doi:10.5281/zenodo.6541325.

22 Madhurima Chakraborty, Renzo Olivares, Manu Sridharan, and Behnaz Hassanshahi. Au-
tomatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs (Extended
Version). arXiv, 2022. arXiv:2205.06780.

23 Satish Chandra, Colin S. Gordon, Jean-Baptiste Jeannin, Cole Schlesinger, Manu Sridharan,
Frank Tip, and Young-Il Choi. Type inference for static compilation of JavaScript. In
Object-Oriented Programming, Systems, Languages and Applications (OOPSLA), 2016.

ECOOP 2022

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/with
https://owasp.org/www-project-juice-shop/
https://reactjs.org
https://github.com/mozilla/rhino
https://angular.io
https://securitylab.github.com/tools/codeql/
https://codeql.github.com/docs/codeql-language-guides/codeql-library-for-javascript/#call-graph
https://codeql.github.com/docs/codeql-language-guides/codeql-library-for-javascript/#call-graph
https://eslint.org
https://jquery.com/
https://lodash.com/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects#defining_getters_and_setters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Working_with_Objects#defining_getters_and_setters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Function
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/defineProperty
https://pptr.dev/
https://ternjs.net
https://todomvc.com/
https://doi.org/10.5281/zenodo.6541325
http://arxiv.org/abs/2205.06780

3:26 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

24 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference Record of
the Fourth ACM Symposium on Principles of Programming Languages, POPL, pages 238–252,
1977.

25 Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Efficient
construction of approximate call graphs for JavaScript IDE services. In International Conference
on Software Engineering, ICSE, pages 752–761, 2013.

26 Salvatore Guarnieri, Marco Pistoia, Omer Tripp, Julian Dolby, Stephen Teilhet, and Ryan
Berg. Saving the world wide web from vulnerable JavaScript. In Proceedings of the 20th
International Symposium on Software Testing and Analysis (ISSTA), pages 177–187, 2011.

27 Behnaz Hassanshahi, Hyunjun Lee, and Paddy Krishnan. Gelato: Feedback-driven and guided
security analysis of client-side web applications. In 29th edition of the IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), 2022.

28 Nevin Heintze and Olivier Tardieu. Ultra-fast aliasing analysis using CLA: A million lines of
C code in a second. In Proceedings of the Conference on Programming Language Design and
Implementation, PLDI, pages 254–263, 2001.

29 Zoltán Herczeg and Gábor Lóki. Evaluation and comparison of dynamic call graph generators
for JavaScript. In Ernesto Damiani, George Spanoudakis, and Leszek A. Maciaszek, editors,
Proceedings of the 14th International Conference on Evaluation of Novel Approaches to Software
Engineering, ENASE 2019, pages 472–479, 2019.

30 Simon Holm Jensen, Peter A. Jonsson, and Anders Møller. Remedying the eval that men do.
In International Symposium on Software Testing and Analysis, ISSTA, pages 34–44, 2012.

31 Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling the HTML DOM and
browser API in static analysis of JavaScript web applications. In Proceedings of the ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE, pages 59–69, 2011.

32 Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for JavaScript. In
Static Analysis, 16th International Symposium, SAS, pages 238–255, 2009.

33 Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons, John
Sarracino, Ben Wiedermann, and Ben Hardekopf. JSAI: a static analysis platform for
JavaScript. In Proceedings of the International Symposium on Foundations of Software
Engineering, FSE, pages 121–132, 2014.

34 Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. Weakly sensitive analysis for JavaScript
object-manipulating programs. Softw. Pract. Exp., 49(5):840–884, 2019.

35 Hongki Lee, Changhee Park, and Sukyoung Ryu. Automatically tracing imprecision causes in
JavaScript static analysis. Art Sci. Eng. Program., 4(2), 2020.

36 Hongki Lee, Sooncheol Won, Joonho Jin, Junhee Cho, and Sukyoung Ryu. Safe: Formal
specification and implementation of a scalable analysis framework for ecmascript. In In
Proceedings of the International Workshop on Foundations of Object Oriented Languages,
FOOL, 2012.

37 Ondrej Lhoták. Comparing call graphs. In Proceedings of the 7th ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE, pages 37–42,
2007.

38 Magnus Madsen, Benjamin Livshits, and Michael Fanning. Practical static analysis of
JavaScript applications in the presence of frameworks and libraries. In Proceedings of the
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE, pages 499–509, 2013.

39 Magnus Madsen, Frank Tip, and Ondřej Lhoták. Static analysis of event-driven Node.js
JavaScript applications. ACM SIGPLAN Notices, 50(10):505–519, 2015.

M. Chakraborty, R. Olivares, M. Sridharan, and B. Hassanshahi 3:27

40 Anders Møller, Benjamin Barslev Nielsen, and Martin Toldam Torp. Detecting locations
in JavaScript programs affected by breaking library changes. Proc. ACM Program. Lang.,
4(OOPSLA):187:1–187:25, 2020. doi:10.1145/3428255.

41 Nico Naus and Peter Thiemann. Dynamic flow analysis for JavaScript. In Trends in Functional
Programming - 17th International Conference, TFP, pages 75–93, 2016.

42 Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier. Nodest: feedback-
driven static analysis of Node.js applications. In Proceedings of the ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE, pages 455–465, 2019.

43 Benjamin Barslev Nielsen and Anders Møller. Value partitioning: A lightweight approach
to relational static analysis for JavaScript. In 34th European Conference on Object-Oriented
Programming, ECOOP, pages 16:1–16:28, 2020.

44 Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. Modular call graph
construction for security scanning of Node.js applications. In Cristian Cadar and Xiangyu
Zhang, editors, ISSTA ’21: 30th ACM SIGSOFT International Symposium on Software
Testing and Analysis, Virtual Event, Denmark, July 11-17, 2021, pages 29–41, 2021. doi:
10.1145/3460319.3464836.

45 Niels Groot Obbink, Ivano Malavolta, Gian Luca Scoccia, and Patricia Lago. An extensible
approach for taming the challenges of JavaScript dead code elimination. In 25th International
Conference on Software Analysis, Evolution and Reengineering, SANER, pages 391–401, 2018.

46 Changhee Park, Hongki Lee, and Sukyoung Ryu. All about the with statement in JavaScript:
removing with statements in JavaScript applications. In Proceedings of the 9th Symposium on
Dynamic Languages, part of SPLASH, DLS, pages 73–84, 2013.

47 Changhee Park, Hongki Lee, and Sukyoung Ryu. Static analysis of JavaScript libraries in a
scalable and precise way using loop sensitivity. Softw. Pract. Exp., 48(4):911–944, 2018.

48 Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The eval that men do - A
large-scale study of the use of eval in JavaScript applications. In Object-Oriented Programming
- 25th European Conference, ECOOP, pages 52–78, 2011.

49 Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the dynamic
behavior of JavaScript programs. In Proceedings of the Conference on Programming Language
Design and Implementation, PLDI, pages 1–12, 2010.

50 Sukyoung Ryu, Jihyeok Park, and Joonyoung Park. Toward analysis and bug finding in
JavaScript web applications in the wild. IEEE Softw., 36(3):74–82, 2019.

51 Vitalis Salis, Thodoris Sotiropoulos, Panos Louridas, Diomidis Spinellis, and Dimitris Mitropou-
los. PyCG: Practical Call Graph Generation in Python. In Proceedings of the 43rd International
Conference on Software Engineering (ICSE), 2021.

52 Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Dynamic determinacy analysis.
In Proceedings of the Conference on Programming Language Design and Implementation, PLDI,
pages 165–174, 2013.

53 Koushik Sen, Swaroop Kalasapur, Tasneem G. Brutch, and Simon Gibbs. Jalangi: a selective
record-replay and dynamic analysis framework for JavaScript. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering, ESEC/FSE, pages 488–498. ACM,
2013.

54 Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav. Alias anal-
ysis for object-oriented programs. In David Clarke, Tobias Wrigstad, and James Noble, editors,
Aliasing in Object-Oriented Programming. Springer, 2013. doi:10.1007/978-3-642-36946-9_
8.

ECOOP 2022

https://doi.org/10.1145/3428255
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1145/3460319.3464836
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8

3:28 Automatic Root Cause Quantification for Missing Edges in JavaScript Call Graphs

55 Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Correlation
tracking for points-to analysis of JavaScript. In Object-Oriented Programming - 26th European
Conference, ECOOP, pages 435–458, 2012.

56 Stack Overflow 2020 Developer Survey: Web Frameworks. https://insights.stackoverflow.
com/survey/2020#technology-web-frameworks, 2020. Accessed: 2022-05-13.

57 Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. On the recall of static call graph
construction in practice. In International Conference on Software Engineering, ICSE, pages
1049–1060, 2020.

58 T.J. Watson Libraries for Analysis (WALA). URL: http://wala.sourceforge.net.

59 Shiyi Wei and Barbara G. Ryder. A practical blended analysis for dynamic features in
JavaScript. Technical Report TR-12-18, Virginia Tech, 2012. URL: https://vtechworks.lib.
vt.edu/handle/10919/19421.

60 Shiyi Wei, Omer Tripp, Barbara G. Ryder, and Julian Dolby. Revamping JavaScript static
analysis via localization and remediation of root causes of imprecision. In Proceedings of the
24th ACM SIGSOFT International Symposium on Foundations of Software Engineering, FSE,
pages 487–498, 2016.

61 Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing input. IEEE
Trans. Software Eng., 28(2):183–200, 2002.

https://insights.stackoverflow.com/survey/2020#technology-web-frameworks
https://insights.stackoverflow.com/survey/2020#technology-web-frameworks
http://wala.sourceforge.net
https://vtechworks.lib.vt.edu/handle/10919/19421
https://vtechworks.lib.vt.edu/handle/10919/19421

Stay Safe Under Panic: Affine Rust Programming
with Multiparty Session Types
Nicolas Lagaillardie #

Department of Computing, Imperial College London, UK

Rumyana Neykova #

Department of Computer Science, Brunel University London, UK

Nobuko Yoshida #

Department of Computing, Imperial College London, UK

Abstract
Communicating systems comprise diverse software components across networks. To ensure their
robustness, modern programming languages such as Rust provide both strongly typed channels,
whose usage is guaranteed to be affine (at most once), and cancellation operations over binary
channels. For coordinating components to correctly communicate and synchronise with each
other, we use the structuring mechanism from multiparty session types, extending it with affine
communication channels and implicit/explicit cancellation mechanisms. This new typing discipline,
affine multiparty session types (AMPST), ensures cancellation termination of multiple, independently
running components and guarantees that communication will not get stuck due to error or abrupt
termination. Guided by AMPST, we implemented an automated generation tool (MultiCrusty) of
Rust APIs associated with cancellation termination algorithms, by which the Rust compiler auto-
detects unsafe programs. Our evaluation shows that MultiCrusty provides an efficient mechanism
for communication, synchronisation and propagation of the notifications of cancellation for arbitrary
processes. We have implemented several usecases, including popular application protocols (OAuth,
SMTP), and protocols with exception handling patterns (circuit breaker, distributed logging).

2012 ACM Subject Classification Software and its engineering → Software usability; Software and
its engineering → Concurrent programming languages; Theory of computation → Process calculi

Keywords and phrases Rust language, affine multiparty session types, failures, cancellation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.4

Related Version Full Version: https://arxiv.org/abs/2204.13464

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.9

Funding The work is supported by EPSRC EP/T006544/1, EP/K011715/1, EP/K034413/1,
EP/L00058X/1, EP/N027833/1, EP/N028201/1, EP/T014709/1 and EP/V000462/1, and NC-
SS/EPSRC VeTSS.

Acknowledgements We thank the ECOOP reviewers for their insightful comments and suggestions,
and (alphabetical order) Zak Cutner, Wen Kokke, Roland Kuhn, Dimitris Mostrous and Martin
Vassor for discussions.

1 Introduction

The advantage of message-passing concurrency is well-understood: it allows cheap horizontal
scalability at a time when technology providers have to adapt and scale their tools and
applications to various devices and platforms. In recent years, the software industry has
seen a shift towards languages with native message-passing primitives (e.g., Go, Elixir and
Rust). Rust, for example, has been named the most loved programming language in the

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 4; pp. 4:1–4:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:n.lagaillardie19@imperial.ac.uk
https://orcid.org/0000-0002-6431-4100
mailto:rumyana.neykova@brunel.ac.uk
https://orcid.org/0000-0002-2755-7728
mailto:n.yoshida@imperial.ac.uk
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2022.4
https://arxiv.org/abs/2204.13464
https://doi.org/10.4230/DARTS.8.2.9
https://doi.org/10.4230/DARTS.8.2.9
https://doi.org/10.4230/DARTS.8.2.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

annual Stack Overflow survey for five consecutive years (2016-20) [49]. It has been used for
the implementation of large-scale concurrent applications such as the Firefox browser, and
Rust libraries are part of the Windows Runtime and Linux kernel. Rust’s rise in popularity
is due to its efficiency and memory safety. Rust’s dedication to safety, however, does not
yet extend to communication safety. Message-passing based software is as liable to errors as
other concurrent programming techniques [50] and communication programming with Rust
built-in message-passing abstractions can lead to a plethora of communication errors [30].

Much academic research has been done to develop rigorous theoretical frameworks for the
verification of message-passing programs. One such framework is multiparty session types
(MPST) [21] – a type-based discipline that ensures concurrent and distributed systems are
safe by design. It guarantees that processes following a predefined communication protocol
(also called a multiparty session) are free from communication errors and deadlocks. Rust
may seem a particularly appealing language for the practical embedding of session types with
its message-passing abstractions and affine type system. The core theory of session types,
however, has serious shortcomings as its safety is guaranteed under the assumption that a
session should run until its completion without any failure. Adapting MPST in the presence
of failure and realising it in Rust are closely intertwined, and raise two major challenges:

Challenge 1: Affine multiparty session types (AMPST). There is an inherent conflict
between the affinity of Rust and the linearity of session types. The type system of MPST
guarantees a linear usage of channels, i.e., communication channels in a session must be
used exactly once. As noted in [30], in a distributed system, it is a common behaviour
that a channel or the whole session can be cancelled prematurely – for example, a node can
suddenly get disconnected, and the channels associated with that node will be dropped. A
naive implementation of MPST cancellation, however, will lead to incorrect error notification
propagation, orphan messages, and stuck processes. The current theory of MPST does not
capture affinity, hence cannot guarantee deadlock-freedom and liveness between multiple
components in a realistic distributed system. Classic multiparty session type systems [21]
do not prevent any errors related to session cancellation. An affine multiparty session type
system should (1) prevent infinitely cascading errors, and (2) ensure deadlock-freedom and
liveness in the presence of session cancellations for arbitrary processes. Although there
are a few works on affine session types, they are either binary [39, 16] or modelling a very
limited cancellation over a single communication action, and a general cancellation is not
supported [19] (see § 6.2, and [33]).

Challenge 2: Realising an affine multiparty channel over binary channels. The extension
of binary session types to multiparty is usually not trivial. The theory assumes multiparty
channels, while channels, in practice, are binary. To preserve the global order specified by a
global protocol, also called the order of interactions, when implementing a multiparty protocol
over binary channels, existing works [22, 40, 44, 6] use code generation from a global protocol
to local APIs, requiring type-casts at runtime on the underlying channels, compromising the
type safety of the host type system. Implementing MPST with failure becomes especially
challenging given that cancellation messages should be correctly propagated across multiple
binary channels.

In this work, we overcome the above two challenges by presenting a new affine multiparty
session types framework for Rust (AMPST). We present a shallow embedding of the theory
into Rust by developing a library for safe communication, MultiCrusty. The library utilises
a new communication data structure, affine meshed channels, which stores multiple binary

N. Lagaillardie, R. Neykova, and N. Yoshida 4:3

channels without compromising type safety. A macro operation for exception handling safely
propagates failure across all in-scope channels. We leverage an existing binary session types
library, Rust’s macros facilities, and optional types to ensure that communication programs
written with MultiCrusty are correct-by-construction.

Our implementation brings three insightful contributions: (1) multiparty communication
safety can be realised by the native Rust type system (without external validation tools); (2)
top-down and bottom-up approaches can co-exist; (3) Rust’s destructor mechanism can be
utilised to propagate session cancellation. All other works generate not only the types but
also the communication primitives for multiparty channels which are protocol-specific. The
crucial idea underpinning the novelty of our implementation is that one can pre-generate the
possible communication actions without having the global protocol; and then use the types
to limit the set of permitted actions. Without this realisation neither (1), nor (2) is possible.

Paper Summary and Contributions

§ 2 outlines the gains of programming with affine meshed channels by introducing our running
example, a Video streaming service, and its Rust implementation using MultiCrusty.

§ 3 establishes the metatheory of AMPST. We present a core multiparty session π-calculus
with session delegation and recursion, together with new constructs for exception handling,
and affine selection and branching (from Rust optional types). The calculus enjoys session-
fidelity (Theorem 3.14), deadlock-freedom (Theorem 3.16), liveness (Theorem 3.17), and
a novel cancellation termination property (Theorem 3.22).

§ 4 describes the main challenges of embedding AMPST in Rust, and the design and implement-
ation of MultiCrusty, a library for safe multiparty communication Rust programming.

§ 5 evaluates the execution and compilation overhead of MultiCrusty. Microbenchmarks
show negligible overhead when compared with the built-in unsafe Rust channels, provided
by crossbeam-channel, and up to two-fold runtime improvement to a binary session
types library on protocols with high-degree of synchronisation. We have implemented,
using MultiCrusty, examples from the literature, and application protocols (see [33]).

Additionally, § 6 discusses related works and concludes. The proofs of our theorems
are included in [33]. Our library is available in this public library: https://github.com/
NicolasLagaillardie/mpst_rust_github/. An ECOOP artifact is also available.

2 Overview: affine multiparty session types (AMPST) in Rust

Framework overview: AMPST in Rust

Figure 1a depicts the overall design of MultiCrusty. Our design combines the top-down [21]
and bottom-up [34] methodologies of multiparty session types in a single framework. Our
bottom-up approach is discussed in details in [33].

The top-down approach enables correctness-by-construction and requires that a developer
specifies a global type (hereafter a global protocol) describing the communication behaviour of
the program. We utilise the Scribble toolchain [47] for writing and verifying global protocols.
The toolchain projects local types for each role in a protocol. We have augmented the
toolchain to further generate those local types into Rust types, i.e., types that stipulate the
behaviour of communication channels.

Our Rust API (MultiCrusty API) integrates both approaches, as illustrated in Figure 1a.
Developers can choose to either (1) write the global protocol and have the Rust types
generated, or (2) write the Rust types manually and check that the types are compatible.

ECOOP 2022

https://github.com/NicolasLagaillardie/mpst_rust_github/
https://github.com/NicolasLagaillardie/mpst_rust_github/

4:4 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

Top-down approach

Global types
in Scribble

Local types\CFSM

project

Bottom-up approach

CFSM are
(in)compatible

CFSM

Rust types

Programs written with MultiCrusty API

generate rewrite

Type checking

k-MC check

(a) MultiCrusty Workflow (top-down).

Client Authenticator Server

alt
RequestVid

RequestVid
SendVid

SendVid

Close
Close

(b) Video streaming service usecase.

Figure 1 Programming with multiparty session types.

1 // generates at compile-time communication primitives for 3-party affine meshed channels
2 gen_mpst!(MeshedChannelsThree, A, C, S);

1 fn client(
2 s: RecC<i32>,
3 i: i32
4) -> R {
5 if (i<MAX) {
6 let s = choose_c!(s,
7 ChoiceA::Video, ChoiceS::

Video)
8 let n = get_video(i);
9 let s = s.send(n)?;

10 let (_,s) = s.recv()?;
11 client(s, i+1)
12 } else {
13 let s = choose_c!(s,
14 ChoiceA::Close, ChoiceS::

Close);
15 s.close()
16 }
17 }

(a) role C .

1 fn auth(s: RecA<i32>)
2 -> R {
3 offer_mpst!(
4 s, {
5 ChoiceA::Video(s)
6 => {
7 let (x,s) = s.recv()?;
8 let s = s.send(x)?;
9 let (x,s) = s.recv()?;

10 let s = s.send(x)?;
11 auth(s)
12 },
13 ChoiceA::Close(s)
14 => {
15 s.close()
16 } }
17)
18 }

(b) role A.

1 fn server(s: RecS<i32>)
2 -> R {
3 offer_mpst!(
4 s, {
5 ChoiceS::Video(s)
6 => {
7 let v = attempt!{{
8 let (x, s) = s.recv()?;
9 let f = get_file(x);

10 read_video_file(f)
11 } catch (e) {
12 cancel(s);
13 panic!("Err: {:?}", e)
14 } }()?;
15 let s = s.send(x)?;
16 server(s)}
17 ChoiceS::Close(s)
18 => {s.close()
19 } }) }

(c) role S.

a!close

a!ReqVideo

a?ResVideo

c?close

s!close

c?ReqVideo s!ReqVideo

s?ResV
ideo

c!ResVideo

a?close

a?ReqVideo

a!ResVideo

Figure 2 Rust implementations and respective CFSMs of role C (a), role A (b) and role S (c).

Note that both approaches rely on concurrent programs written with MultiCrusty API, and
both approaches rely on the Rust compiler to type check the concurrent programs against their
respective types. Overall, the framework guarantees that well-typed concurrent programs
implemented using MultiCrusty API with Scribble-generated types or k-MC-compatible
types, will be free from deadlocks, reception errors, and protocol deviations.

The main primitives of MultiCrusty API are summarised in Table 1. Next, we briefly
explain them through an example. A more detailed explanation is provided in § 4.

N. Lagaillardie, R. Neykova, and N. Yoshida 4:5

2.1 Example: Video streaming service

The Video streaming service is a usecase that can take full advantage of affine multiparty
session types and demonstrate the need for multiparty channels with cancellation. Each
streaming application connects to servers, and possibly other devices, to access services and
follows a specific protocol. To present our design, we use a simplified version of the protocol,
omitting the authentication part, illustrated in the diagram of Figure 1b. The diagram
should be read from top to bottom. The protocol involves three services – an Authenticator
(role A) service, a Server (role S) and a Client (role C). The protocol starts with a choice on
the Client to either request a video or end the session. The first branch is, a priori, the main
service provided, i.e., request for a video. The Client cannot directly request videos from
the Server and has to go through the Authenticator instead. On the diagram, the choice is
denoted as the frame alt and the choices are separated by the horizontal dotted line. The
protocol is recursive, and the Client can request new videos as many times as needed. This
recursive behaviour is represented by the arrow going back on the Client side in Figure 1b.
To end the session, the Client first sends a Close message to the Authenticator, which then
subsequently sends a Close message to the Server.

Affine meshed channels and multiparty session programming with MultiCrusty

The implementations in MultiCrusty of the three roles are given in Figure 2. They closely
follow the behaviour that is prescribed by the protocol. The global protocol does not explicitly
specify cancellation. However, in a distributed setting, timeout or failure can happen at
any time: a request from a CDN network or cloud storage to the server might be a timeout
or the result message might be lost. Our implementation accounts for failure by providing
communication primitives for two different types of session cancellation, called implicit and
explicit: either we run a block of code and upon any error at any point, we go to the catch
branch, or we explicitly test each step.

The implementation of the concurrent programs starts by generating at compile-time all
communication primitives for affine channels between the roles. This is done by the macro
gen_mpst!(MeshedChannelsThree, A, C, S), see line 2 in Figure 2. The macro gen_mpst! takes
two kinds of arguments: a string literal which represents the name of the data structure for
affine meshed channels (MeshedChannelsThree here), and a string literal for each role (A, C
and S here, can be any number of roles).

To explain affine meshed channels and all MultiCrusty communication primitives, we
focus on the implementation for role A given in Figure 2b. The implementations of the
other roles are similar. First, line 1 declares an auth(s) function that is parametric on an
affine meshed channel s of type RecA<i32>, the result type of the function is irrelevant to our
explanation, hence we have simply denoted it by R. The type RecA<i32>, an alias for the full
type described in Figure 6, specifies the operations allowed on s. As mentioned previously,
this type can be either written by the developer or generated by Scribble. We defer the
explanation of the (generated) types to § 4, i.e., the full Rust type is given in Figure 6. For
clarity, here we only give a high-level view of the behaviour for each channel by representing
its respective local session types as a communicating finite state machine (CFSM [4]), where
! (resp. ?) denotes sending (resp. receiving). The CFSMs for each role (channel) can be
seen in Figure 2. For example, c!ResVideo means that role A is receiving from the role C a
message labelled as Video, while s!ReqVideo says that role A sends a message to role S.

ECOOP 2022

4:6 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

Table 1 Primitives provided by MultiCrusty. s is an affine meshed channel; p is a payload of a
given type; I is a subset of all roles in the protocol but the current role; K is a subset of all branches.

Primitives Description

let s = s.send(p)?;
Sends a payload p on a channel s and assigns the continuation
of the session (a new meshed channel) to a new variable s.

let (p, s) = s.recv()?;
Receives a payload p on channel s and assigns the continuation
of the session to a new variable s.

s.close() Closes the channel s and returns a unit type.

offer_mpst!(s, { enumi :: variantk(e) => {...}k∈K })
Role i receives a message label on channel s, and,
depending on the label value which should match
one of the variants variantk of enumi, runs the related block of code.

choose!(s, {enumi :: variantk}i∈I)
Sends the chosen label, which corresponds to variantk,
to all other roles.

attempt! {{ ... } catch(e) { ... }}
Attempts to run the first block of code and, upon error, catches
the error in the variable e and runs the second block of code.

The thread for role A uses an affine meshed channel s to implement the given CFSM
behaviour. In essence, the meshed channel is implemented as an indexed tuple of binary
channels – one binary channel for each pair of interacting processes, i.e., a binary channel
for role A and role S and a binary channel for role A and role C .

The implementation starts by realising a choice: role C broadcasts its choice, which can
either be to request a video at line 7 or to close the connection at line 14 (Figure 2a). Role
C broadcasts the choice to every other role. This choice is received by role A, which will
either receive a Video or a Close label. This behaviour is implemented by the MultiCrusty
macro offer_mpst! (line 3), which is applied to a multiparty channel s and a sum type, either
ChoiceA::Video or ChoiceA::Close here. The behaviour of each branch in the protocol is
implemented as an anonymous function.

Lines 5 – 12 supply such a function that implements the behaviour when role C requests
a Video, while lines 13 – 16 handle the Close request. At each step, only one of the primitives
available in Table 1 (but the attempt! macro) is available, linked to the type of channel s.
Those primitives will either return the expected continuation as well as additional variables
if necessary, such as the payload for recv(), or an error if the operation failed.

The types of the affine meshed channels, as well as the generic types in the declaration
of the MultiCrusty communication functions, enable compile-time detection of protocol
violations. Examples of protocol violations include swapping lines 10 and 9, using another
communication primitive or using the wrong payload type. The Rust type system, on the
other hand, ensures that all affine channels are used at most once. For example, using channel
s twice (without rebinding) will be detected by the compiler. All the errors mentioned above
will be reported as compile-time errors. In the case that an unexpected runtime error occurs,
all roles are guaranteed to terminate safely. This is ensured by two mechanisms – explicit
session cancellation (that can be triggered by the user) and implicit session cancellation (that
is embedded in the MultiCrusty primitives and the channel destructors).

Implicit and explicit cancellations

The processes of role A and role S illustrate resp. implicit and explicit cancellations. The
primitive cancel(s) drops the affine meshed channel s, and its binary channels, making it
inaccessible to other participants. This is convenient when an error related to the computation
aspects of the program occurs. For example, in Figure 2c the session is cancelled in line 12
after an error occurs as a result of reading a corrupted video. We used the attempt!{ {
... } catch(e) { ... } } macro (Rust version of a try-catch block) in lines 7 to 14 to

N. Lagaillardie, R. Neykova, and N. Yoshida 4:7

catch the error message, and explicitly cancel the session. The macro tries to go through
the attempt-block of code, and upon any error in this block, stops the process and calls
the catch(e)-block with the error message e. Line 13 executes a panic!, which allows a
program to terminate immediately and provide feedback to the caller of the program. Calling
cancel(s) then panic! or calling panic! alone will result in the same outcome. Forgetting
both will throw an error because the output type will not match the one of fn server(s),
unless replaced with an Ok(()). In any cases, an error will be thrown on other threads linked
to other roles because role S’s sessions are inaccessible in the catch(e)-block.

Alternatively, we explain implicit cancellation as implemented by role A in Figure 2b.
The construct let x = f()?, as seen in line 7, is Rust’s monadic bind notation for programs
and functions that may return errors: their usual output type is Result<T, Error> where
T is the expected type if everything goes right and Error is the error type returned. For
any program and function returning such type, the users have to unwrap it. The two usual
ways of doing so are by using the ?-operator, or by pattern matching on the result using
match. In our case, if recv() succeeds, the ?-operator unpacks the result and returns the
tuple containing the received payload and the continuation. If recv() fails, the ?-operator
short-circuits, skips the rest of the statements, and returns the error. We use this mechanism
to catch any session cancellation. In the case that a recv() (or send()) does not succeed,
the implementation of the underlying communication primitive will cancel the channel and
broadcast the cancellation to all other binary channels that are part of the session.

Finally, we look at the implementation of role C to demonstrate the final mechanism of
session cancellation. For this purpose, we have to comment out lines 9 – 11 in Figure 2a
or replace them with a panic! as to simulate a wrongly implemented role C . With such
modification, this function will still compile despite the protocol not being fully implemented
(since the last received action from role A is missing, the meshed channel s will be dropped
prematurely). Even in this case, MultiCrusty ensures that all processes will terminate safely,
i.e., all parties are notified that an affine channel has been dropped. Prematurely dropping a
channel can happen due to incorrectly implemented behaviour (as we demonstrated above),
or by unhandled user error, for example, the function get_video() in line 8 can invoke a
panic! because there is no video associated with the index i. Safe session termination is
realised by customising the native destructor Drop in Rust, as proposed for binary meshed
channels by [30]. When an affine meshed channel goes out of scope, the channel destructor is
called, the session is cancelled, dropping every channel value used in the session, and only
then is the memory deallocated. Deallocations, whether they come from a cancellation or a
channel closure, lead to the safe collection of the variables by the stable Rust compiler we
rely on, avoiding memory leaks.

In short, a session can be cancelled for three reasons: (1) an error affecting the computation
aspects of the program, as in Figure 2c; (2) an error during communication, e.g., a timeout
on a channel, as in Figure 2b; or (3) a premature drop of the affine meshed channel due to
incorrect implementation, as in Figure 2a. Our mechanisms for session cancellation cover all
the above cases. In this way, our framework provides affine multiparty session compliance by
ensuring that (1) if all results are returned without failure, the processes follow the given
Scribble global protocol (Theorem 3.14) or (2) once a cancellation happens, all processes in
the same session terminate with an error (Theorem 3.22). We have proven the above results
by formalising affine meshed channels in an extension of a multiparty π-calculus.

ECOOP 2022

4:8 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

3 Affine multiparty session processes for Rust programming

3.1 Affine multiparty session processes
Our calculus (AMPST) is an extension of a full multiparty session π-calculus [46] which
includes session delegation (channel passing) and session recursion. We shade additions
to [46] in this colour .

▶ Definition 3.1. The affine multiparty session π-calculus (AMPST) is defined as
follows:

c, d ::= x
∣∣ s[p] † ::= ∅

∣∣ ? (variable, channel with role p, error, flag)

P , Q ::= 0
∣∣ P | Q

∣∣ (νs) P (inaction, composition, restriction)
? c[q]⊕m⟨d⟩.P

∣∣ ? c[q]
∑

i∈I mi(xi).Pi (affine selection, branching I ̸= ∅)

c[q]⊕m⟨d⟩.P
∣∣ c[q]

∑
i∈I mi(xi).Pi (selection, branching I ̸= ∅)

def D in P
∣∣ X ⟨̃c⟩ (process definition, process call)

try P catch Q
∣∣ cancel(c).P

∣∣ s (catch, cancel, kill)

D ::= X(x̃) = P (declaration of process variable X)

A set P denotes participants: P = {p, q, r, . . . }, and A is a set of alphabets. A channel
c can be either a variable or a channel with role s[p], i.e., a multiparty communication
endpoint whose user plays role p in the session s. c̃ denotes a vector c1c2 . . . cn (n ≥ 1) and
similarly for x̃ and s̃.

The two processes with ? model the option ?-operator in Rust. Process ? c[q]⊕m⟨d⟩.P

performs an affine selection (internal choice) towards role q, using the channel c: if the
message label m with the payload channel d is successfully sent, then the execution continues
as P ; otherwise (if the receiver has failed or timeout), it triggers an exception. The affine
branching (external choice) ? c[q]

∑
i∈I mi(xi).Pi uses channel c to wait for a message

from role q: if a message label mk with payload d is received (for some k ∈ I), then the
execution continues as P k, with xk replaced by d; if not received, it triggers an exception.
Note that message labels mi are pairwise distinct and their order is irrelevant, and variable
xi is bound with scope P i.

The following two failure handling processes follow the program behaviour of Figure 2c.
The try-catch process, try P catch Q, consists of a try process P which is ready to
communicate with parallel composed one; and a catch process Q which becomes active when
a cancellation or an error happens. The cancel process, cancel(c).P , cancels other processes
whose communication channel is c. The kill s kills all processes with session s and is
generated only at runtime from affine or cancel processes.

The other syntax is from [46]. The inaction 0 represents a terminated process (and
is often omitted). The parallel composition P | Q represents two processes that can
execute concurrently, and potentially communicate. The session restriction (νs) P declares
a new session s with a scope limited to process P . The linear selection and the linear
branching can be understood as their affine versions but without failure handling. Process
definition, def X(x̃) = P in Q and process call X ⟨̃c⟩ model recursion: the call invokes X

by expanding it into P , and replacing its formal parameters with the actual ones.
Linear or affine branching and selection are denoted as either † c[q]

∑
i∈I mi(xi).Pi

and † c[q]⊕m⟨d⟩.P . We use fv(P) / fc(P) and dpv(P) / fpv(P) to denote free vari-
ables/channels and bound/free process variables of P . We call a process P such that
fv(P) = fpv(P) = ∅ closed. A set of subjects of P , written sbj(P), is defined as: sbj(0) = ∅;
sbj(P | Q) = sbj(P) ∪ sbj(Q); sbj((νs) P) = sbj(P) \ {s[pi]}i∈I ; sbj

(
† c[q]

∑
i∈I mi(xi).Pi

)
=

sbj(† c[q]⊕m⟨d⟩.P) = {c}; sbj(def X(x̃) = P in Q) = sbj(Q)∪sbj(P)\{x̃} with sbj(X⟨c̃⟩) =
sbj(P{c̃/x̃}); sbj(try P catch Q) = sbj(P); and sbj(cancel(c).P) = {c}.

N. Lagaillardie, R. Neykova, and N. Yoshida 4:9

[R-Com] E1[† s[p][q]
∑

i∈I
mi(xi).Pi] | E2[† s[q][p]⊕mk⟨s′[r]⟩.Q] → Pk

{
s′[r]/xk

}
| Q if k ∈I

[C-?Sel] ? s[p][q]⊕m⟨s′[r]⟩.P → s[p][q]⊕m⟨s′[r]⟩.P | s

[T?Sel] try ? s[p][q]⊕m⟨s′[r]⟩.P catch Q → Q | s

[C-Sel] s[p][q]⊕m⟨s′[r]⟩.P | s → P | s | s′

[C-?Br] ? s[p][q]
∑

i∈I
mi(xi).Pi → s[p][q]

∑
i∈I

mi(xi).Pi | s

[T?Br] try ? s[p][q]
∑

i∈I
mi(xi).Pi catch Q → Q | s

[C-Br] s[p][q]
∑

i∈I
mi(xi).Pi | s → (νs′) (Pk

{
s′[r]/xk

}
| s′) | s s′ ̸∈ fc(Pk) , k ∈ I

[R-Can] E[cancel(s[p]).Q] → s | Q [C-Cat] try P catch Q | s → Q | s ∃r. s[r] = sbj(P)

[R-Def] def X(x1, . . . , xn) = P in (X⟨s1[p1], . . . , sn[pn]⟩ | Q)

→ def X(x1, .., xn) = P in (P {s1[p1]/x1} · ·{sn[pn]/xn} | Q)

[R-Ctx] P → P ′ implies C[P] → C[P ′] [R-Struct] P ≡ P ′ → Q′ ≡ Q implies P → Q

Figure 3 AMPST π-calculus reduction between closed processes (we high-
light the new rules from [46])

The set of subjects is the key definition which enables us to define the typing system for
the try-catch process with recursive behaviours.

▶ Example 3.2 (Subjects of processes). Assume R1 = def X(x) = x[q]⊕m⟨d⟩.0 in X⟨c⟩
which repeats the action at c and emits a message d with label repeatedly interacting with
the dual input (but reduction with this process only happens if there is a corresponding
input at c, i.e., on-demand). We calculate sbj(R1) as:

sbj(def X(x) = x[q]⊕m⟨d⟩.0 in X⟨c⟩) = sbj(X⟨c⟩) ∪ sbj(def X⟨x⟩ = x[q]⊕m⟨d⟩.0)
= sbj(X⟨c⟩) = sbj((x[q]⊕m⟨d⟩.0){c/x}) = {c}

Another example is: sbj(try x[q]⊕m⟨d⟩.0 catch cancel(x[q]).0) = sbj(x[q]⊕m⟨d⟩.0) = {x}.

▶ Remark 3.3 (Syntax and semantics). AMPST extends MPST incorporating some design
choices from [39], aiming to distil the implementation essence of MultiCrusty. The design
of our try-catch process follows the binary affine session types in [39], but models more
cancellations for arbitrary processes with affine branchings/selections and cancel processes
non-deterministically (whose semantics follow the implementation behaviours, see § 4.4). We
list the essential differences from [39].
(1) (Nondeterministic failures) The kill process is a runtime syntax and generated only during

reductions unlike [39]. Our calculus also allows nondeterministic failures caused by either
(1) affine selection/branching or (2) try-catch processes. See [33] for examples.

(2) (Recursion parameterised by linear names) One of the novelties of our formalism which is
not found in [39] is a combination of session recursions, affinity, and interleaved sessions,
i.e., the def agents (linearly parameterised recursions), which are the most technical
part when designing the typing system with try-catch processes. The combination of all
features is absent from [39, 16, 19]: see § 6 for more detailed comparisons.

▶ Definition 3.4 (Semantics). A try-catch context E is: E ::= try E catch P
∣∣ [] and

a reduction context C is: C ::= (νs)C
∣∣ def D in C

∣∣ C | P
∣∣ P | C

∣∣ []. Reduction
→ is inductively defined in Figure 3, which uses the structural congruence ≡ which is
defined by s | s ≡ s and (νs) s ≡ 0 together with other rules in [46].

ECOOP 2022

4:10 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

▶ Remark 3.5 (Nested try-catches and E). The context E is only used for defining the
reductions at the top parallel composed processes, not used nested exception handling like
[16, 19]. Our (typable) try-catch processes allow any form of processes such as recursions,
parallel, session delegations, and restriction/scope opened processes under a guarded process:
R = try s[p][r]⊕m1 .(νs′) (s[p][r]⊕m3⟨s′[r]⟩.0 | try s′[q][r]⊕m2 .0 catch cancel(s′[q]).0)

catch cancel(s[p]).0

See [33] for more typable processes with nested try-catch blocks.

We explain each rule highlighting the new rules.

Communication. Rule [R-Com] is the main communication rule between an affine/linear
selection and an affine/linear branching. Linear selections/branching are placed in the
try position but can interact with affine counterparts. Once they interact, processes are
spawned from try-blocks (notice that E1, E2 are erased after the communication), and
start communicating on parallel with other parallel composed processes. Note that the
context E is discarded after the successful communication.

Error-Cancellation. Rules [C-?Sel] and [C-?Br] model the situations that an error handling
occurs at the affine selection/branching. This might be the case if its counterpart has
failed (hence [R-Com] does not happen) or timeout. It then triggers the kill process at
s. Rules [T?Sel] and [T?Br] model the case that the affine selection/branching are placed
inside the try-block and triggered by the error. In this case, it will go to the catch-block,
generating a kill process.

Cancelling Processes. Rule [C-Sel] cancels the selection prefix s, additionally generating the
kill process at the delegated channel for all the session processes at s′ to be cancelled.
Rule [C-Br] cancels only one of the branches – this is sufficient since all branches contain
the same channels except xi (ensured by rule [T-&] in Figure 4). After the cancellation, it
additionally instantiates a fresh name s′[r] to xk into Pk. The generated kill process at
s′ kills prefixes at s′[r] in Pk{s′[r]/xk}.

Cancellation from Other Parties. Rule [R-Can] is a cancellation and generates a kill process.
Note that the try-catch context E is thrown away. Rule [C-Cat] is prompted to move to
Q by kill s . The side condition sbj(P) ensures that P is a prefix at s (up to ≡ for a
recursive process). All mimic the behaviour of the programs in Figure 2c.

Other Rules. Rules [R-Def], [R-Ctx], and [R-Struct] are standard from [46]. In Figure 3, the two
new rules are for garbage collections of kill processes.

▶ Example 3.6 (Syntax and reductions). A process might be completed, or cancelled in many
ways, and also interacts non-deterministically. We demonstrate the reduction rules using
the running example with a minor modification. We use a nested try-catch block, and for
simplicity we use shorter label names, and we use a constant, i.e., d, as a message payload.

Assume the process for role S is P = ? s[p][q](Q+close(x).0) where
Q = video(x). try ? s[p][q]req(x).try ? s[p][r]⊕res⟨d⟩.0 catch cancel(s[p]).0 catch cancel(s[p]).0

The following shows a possible reduction.

N. Lagaillardie, R. Neykova, and N. Yoshida 4:11

P | s[q][p]⊕video⟨d⟩.s[q][p]⊕req⟨d⟩.s[q][p]res(x).0 (1)

[R-Com] → try (? s[p][q]req(x).try (? s[p][r]⊕res⟨d⟩.0) catch cancel(s[p]).0)
catch cancel(s[p]).0 (2)

| s[q][p]⊕req⟨d⟩.s[q][p]res(x).0 (3)
[R-Com] → try ? s[p][r]⊕res⟨d⟩.0 catch cancel(s[p]).0 | s[q][p]res(x).0 (4)

[T?Sel] → cancel(s[p]).0 | s | s[q][p]res(x).0 (5)
[R-Can] →s | s | 0 | s[q][p]res(x).0 (6)

[C-Br] →s | s | 0 | 0 ≡ s (7)

E6[P6] for Equation (1) is P6 = ? s[p][q]req(x).try ... catch cancel(s[p]).0 and E9[P9]
for Equation (4) is P9 = ? s[p][r]⊕res⟨d⟩.0 both because of rule [C-Cat].

Initially we reduce using the communication rule for the branching and selection. Next,
we apply [R-Com] demonstrating how the affine branching reduces under try. Then we apply
[T?Sel] assuming an error (or a timeout) occurs during the selection of res. This generates
a kill process s and spawns the process in the catch-block. Cancel spawns a kill process
s and hence reduces to s | 0, following rule [R-Can] with E = []. Finally, applying [R-Can]

cancels the linear selection. To conclude, we garbage collect all kill processes. Given that
our initial parallel composition has name restrictions (νs) at the top level, (νs) s ≡ 0.

3.2 Affine multiparty session typing system
Global and local types

The advantage of affine session frameworks is that no change of the syntax of types from
the original system is required. We follow [46] which is the most widely used syntax in the
literature. A global type, written G, G′, . . . , describes the whole conversation scenario of a
multiparty session as a type signature, and a local type, written by S, S′, . . . , represents a
local protocol for each participant. The syntax of types is given as:

▶ Definition 3.7 (Global types). The syntax of a global type G is:

G ::= p→q: {mi(Si).Gi}i∈I

∣∣ µt.G
∣∣ t

∣∣ end

with p ̸=q, I ̸=∅, and ∀i∈I : fv(Si) = ∅. The syntax of local types is:

S, T ::= p&i∈Imi(Si).S′
i

∣∣ p⊕i∈Imi(Si).S′
i

∣∣ end
∣∣ µt.S

∣∣ t

with I ̸=∅, and mi pairwise distinct.
Types must be closed, and recursion variables to be guarded.

m ∈ A corresponds to the usual message labels in the session type theory. Global branching
type p→q: {mi(Si).Gi}i∈I states that participant p can send a message with one of the mi

labels and a message payload type Si to the participant q and that interaction described in
Gi follows. We require p ̸= q to prevent self-sent messages and mi ̸= mk for all i ̸= k ∈ J .
Recursive types µt.G are for recursive protocols, assuming those type variables (t, t′, . . .)
are guarded in the standard way, i.e., they only occur under branching. Type end represents
session termination (often omitted). We write p ∈ roles(G) (or simply p∈G) iff, for some
q, either p→q or q→p occurs in G. The function id(G) gives the participants of G.

ECOOP 2022

4:12 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

For local types, the branching type p&i∈Imi(Si).S′
i specifies the reception of a message

from p with a label among the mi and a payload Si. The selection type p⊕i∈Imi(Si).S′
i is its

dual – its opposite operation. The remaining type constructors are as for global types. We
say a type is guarded if it is neither a recursive type nor a type variable.

The relation between global and local types is formalised by projection [10, 21]. The
projection of G onto p is written G↾p and the standard subtyping relation, ⩽. See [33].

We define typing contexts which are used to define properties of type-level behaviours.

▶ Definition 3.8 (Typing contexts). Θ denotes a partial mapping from process variables to
n-tuples of types, and Γ denotes a partial mapping from channels to types, defined as:

Θ ::= ∅
∣∣ Θ, X:S1, . . . , Sn Γ ::= ∅

∣∣ Γ, c:S

The composition Γ1, Γ2 is defined iff dom(Γ1) ∩ dom(Γ2) = ∅. We write s ̸∈ Γ iff
∀p : s[p] ̸∈ dom(Γ) (i.e., session s does not occur in Γ).We write dom(Γ) = {s}
iff ∀c ∈ dom(Γ) there is p such that c = s[p] (i.e., Γ only contains session s); and
Γ ⩽ Γ′ iff dom(Γ) = dom(Γ′) and ∀c ∈ dom(Γ): Γ(c) ⩽ Γ′(c). We write Γ → Γ′ with
Γ = Γ0, s[p]:q⊕i∈Imi(Si).S′

i, s[q]:p&j∈Jmj(Tj).T ′
j and Γ′ = Γ0, s[p]:S′

i, s[q]:T ′
j where types

are defined modulo unfolding recursive types. We write Γ →∗ Γ′ for a transitive and reflexive
closure of →; and Γ → if there exists Γ′ such that Γ → Γ′.

Next, we define typing context properties defined by its reduction.
We say Γ is safe, written safe(Γ), if φ(Γ) for some safety property φ. Similarly, for

deadlock-freedom (df(Γ)) and liveness plus (live+(Γ)). See [33] for the definitions. The reader
can refer to [46] for more explanations of the typing context properties.

▶ Definition 3.9 (Typing judgement). The typing judgement for processes has the form:

Θ · Γ ⊢ P (with Θ/Γ omitted when empty) (8)

and are defined by the typing rules in Figure 4 with the judgements for process variables
and channels. For convenience, we type-annotate channels bound by process definitions and
restrictions. Note that end(Γ) denotes that Γ only contains type end.

We explain each rule highlighting the new rules from [46].
(Affine) Branching/Selection. [T-&] and [T-⊕] are the standard rules for branching and

selection, which can also type affine branching and selection. Note that the premise Γ
in Θ · Γ, yi :Si, c:S′

i ⊢ Pi in [T-&] ensures that selecting one branch in the reduction rule
defined by [C-Br] is sufficient for ensuring type soundness.

Try-Catch and Cancellation. [T-try] is typing a try process: we ensure P has a unique subject
and catch block process Q has the same session typing (similar with branching). [T-cancel]

generates a kill process at its declared session.
Kill process. [T-kill] types a kill process that appears during reductions: the cancellation of

s[p] is broadcasting the cancellation to all processes which belong to session s.
Recursions. [T-def] and [T-call] are identical to those of [46].
Restriction. Processes are initially typed projecting a global type by [T-init], while running

processes are typed by [T-ν] (see the proof of Theorem 3.12).

N. Lagaillardie, R. Neykova, and N. Yoshida 4:13

Θ(X) = S1, . . . , Sn

Θ ⊢ X :S1, . . . , Sn
[T-X]

S ⩽ S′

c:S ⊢ c:S′ [T-sub] ∀i ∈ 1..n ci :Si ⊢ ci :end
end(c1 :S1, . . . , cn :Sn)

[T-end]
end(Γ)

Θ · Γ ⊢ 0
[T-0]

Γ1 ⊢ c:q&i∈Imi(Si).S′
i ∀i∈I Θ · Γ, yi :Si, c:S′

i ⊢ Pi

Θ · Γ, Γ1 ⊢ † c[q]
∑

i∈I
mi(yi).Pi

[T-&] Θ · Γ1 ⊢ P1 Θ · Γ2 ⊢ P2

Θ · Γ1, Γ2 ⊢ P1 | P2
[T-|]

Γ1 ⊢ c:q⊕m(S).S′ Γ2 ⊢ c′ :S Θ · Γ, c:S′ ⊢ P

Θ · Γ, Γ1, Γ2 ⊢ † c[q]⊕m⟨c′⟩.P
[T-⊕]

Θ · Γ ⊢ P sbj(P) = {c} Θ · Γ ⊢ Q

Θ · Γ ⊢ try P catch Q
[T-try]

end(Γ) 0 ≤ n

Θ · Γ, s[p1]:S1, . . . , s[pn]:Sn ⊢ s
[T-kill]

Θ · Γ ⊢ Q

Θ · Γ, c:S ⊢ cancel(c).Q
[T-cancel]

Θ, X:S1, . . . , Sn · x1 :S1, . . . , xn :Sn ⊢ P Θ, X:S1, . . . , Sn · Γ ⊢ Q

Θ · Γ ⊢ def X(x1 :S1, . . . , xn :Sn) = P in Q
[T-def]

Θ ⊢ X :S1, . . . , Sn end(Γ0) ∀i ∈ 1..n Γi ⊢ ci :Si

Θ · Γ0, Γ1, . . . , Γn ⊢ X⟨c1, . . . , cn⟩
[T-call]

Γ′ = {s[p]:Sp}p∈I s ̸∈ Γ safe(Γ′) Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢ (νs:Γ′) P
[T-ν]

Γ′ = {s[p]:G↾p}p∈roles(G) or end(Γ′) s ̸∈ Γ Θ · Γ, Γ′ ⊢ P

Θ · Γ ⊢ (νs:Γ′) P
[T-init]

Figure 4 Multiparty session typing rules. We highlight the new rules from [46].

▶ Example 3.10 (Typing AMPST processes). To demonstrate the typing rules we type
the inner try process from the reduction example. Let Q = try R catch cancel(s[p]).0
where R = ? s[p][r]⊕res⟨d⟩.0 and d is of type S1 = end. We show that Γ ⊢ Q where
Γ = d:S1, s[p]:S2 with S2 = r⊕res(S1).end.

s[p]:S2 ⊢ s[p]:S2 d:S1 ⊢ d:S1

. . .

s[p]:end ⊢ 0
[T-0]

Γ ⊢ ? s[p][r]⊕res⟨d⟩.0
[T-⊕]

sbj(R) = {s[p]}

. . .
d:S1 ⊢ 0

[T-0]

Γ ⊢ cancel(s[p]).0
[T-cancel]

Γ ⊢ Q
[T-try]

3.3 Properties of affine multiparty session types
This subsection proves the main properties of AMPST processes. We first prove basic
properties such as Subject Congruence and Reduction Theorems, then prove important
properties, session fidelity, deadlock-freedom and liveness. The highlight is cancellation
termination, which guarantees that once an exceptional behaviour is triggered, all parties in
a single session can terminate as nil processes.

Unlike linear-logic based typing systems [39], we do not assume that the typing system is
closed modulo ≡. Instead, we prove closedness of ≡ for tricky cases, e.g., kill and try-catches.

▶ Theorem 3.11 (Subject Congruence). If Θ · Γ ⊢ Q and Q≡P , then we have Θ · Γ ⊢ P .

By Theorem 3.11, AMPST processes satisfy type soundness.

▶ Theorem 3.12 (Subject Reduction). Suppose Θ · Γ ⊢ P and Γ safe. Then, P → P ′ implies
there exists Γ′ such that Γ′ is safe and Γ →∗ Γ′ and Θ · Γ′ ⊢ P ′.

A single agent in a multiparty session s is a participant playing a single role p in s. We
use the definition from [46] except the highlighted part, which now includes affine processes.

ECOOP 2022

4:14 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

▶ Definition 3.13 (A unique role process). Assume ∅ · Γ ⊢ P . We say that P :
1. has guarded definitions iff in each subterm of the form

def X(x1 :S1, . . . , xn :Sn) = Q in P ′, for all i ∈ 1..n, Si ̸⩽ end implies that a
call Y ⟨. . . , xi, . . .⟩ can only occur in Q as subterm of † xi[q]

∑
j∈J mj(yj).Pj or

† xi[q]⊕m⟨c⟩.P ′′ (i.e., after using xi for selection/branching);
2. only plays role p in s, by Γ, iff:

i) P has guarded definitions;
ii) fv(P)=∅;
iii) Γ=Γ0, s[p]:S with S ̸⩽end and end(Γ0);
iv) in all subterms (νs′ :Γ′) P ′ of P , we have Γ′ = s′[p′]:end (for some p′).

We say “P only plays role p in s” iff ∃Γ : ∅·Γ⊢P , and item 2 holds.

Note that by definition, a unique role process in s includes s .
Session fidelity is an important property to ensure liveness and deadlock-freedom, as

well as termination. We extend that in [46] by taking a kill process into account. A set of
unique role processes of a single multiparty session, together with kill processes always make
progress if a typing context has progress, satisfying a protocol compliance.

Below we write Q if Q contains only a parallel composition of kill processes.

▶ Theorem 3.14 (Session Fidelity). Assume ∅·Γ ⊢P , where Γ is safe, P ≡
∣∣
p∈I

Pp | Q , and
Γ =

⋃
p∈I Γp ∪ Γ0 such that, for each Pp, we have ∅· Γp ⊢Pp; and ∅· Γ0 ⊢ Q . Assume that

each Pp is either Pp ≡ 0, or only plays p in s, by Γp. Then, Γ→ implies ∃Γ′, P ′ such that
Γ → Γ′, P →∗ P ′ and ∅·Γ′ ⊢ P ′, with Γ′ safe, P ′ ≡

∣∣
p∈I

P ′
p | Q′ , and Γ′ =

⋃
p∈I Γ′

p ∪ Γ′
0

such that, for each P ′
p, we have ∅· Γ′

p ⊢P ′
p, and each P ′

p is either 0, or only plays p in s, by
Γ′

p; and ∅· Γ′
0 ⊢ Q′ .

By the above theorem, we can prove deadlock-freedom and liveness for a single session
multiparty session in the presence of affine processes.

▶ Definition 3.15 (Deadlock-freedom and liveness).
1. P is deadlock-free iff P →∗ P ′ ̸ → implies P ′ ≡0.
2. P is live iff P →∗ P ′ ≡C[Q] implies:

i) if Q = c[q]⊕m⟨s′[r]⟩.Q′ (for some m, s′, r, Q′), then ∃C′: P ′ →∗C′[Q′]; and
ii) if Q = c[q]

∑
i∈I mi(xi).Q′

i (for some mi, xi, Q′
i), then ∃C′, k ∈ I, s′, r: P ′ →∗

C′[Q′
k{s′[r]/xk}].

Note that liveness is defined for linear selection or linear branching processes which
appear at the top level, i.e., under the reduction context C , not under try-catch construct,
cancel nor affine branching and selection processes.

▶ Theorem 3.16 (Deadlock-freedom). Assume ∅ · Γ ⊢ P , with Γ safe, P ≡
∣∣
p∈I

Pp, each
Pp either Pp ≡ 0, or only playing role p in s. Then, df(Γ) implies that (νs̃:Γ) P with
{s̃} = dom(Γ) is deadlock-free.

As discussed in [46, Definition 5.11], we require live+(Γ) for proving liveness.

▶ Theorem 3.17 (Liveness). Assume ∅ · Γ ⊢ P , with Γ safe, P ≡
∣∣
p∈I

Pp, each Pp either
Pp ≡ 0, or only playing role p in s. Then, live+(Γ) implies that P is live.

Now we consider a user-written Rust program with one session as an initial program.

N. Lagaillardie, R. Neykova, and N. Yoshida 4:15

▶ Definition 3.18 (Initial program). We say ⊢ Q is an initial program if
1. Q ≡ (νs̃:Γ)

∣∣
p∈G

Pp with {s̃} = dom(Γ);
2. Pp only plays p in s;
3. in each subterm of the form, def X(x̃) = Q in P ′, (1) Q is of the form try Q′ catch P ′′;

and (2) P ′′ does not contain any (free or bound) process call.
4. Γ = {s[p]:G↾p}p∈G, Γ′ for some G and end(Γ′);
5. ⊢ Q is derived using [T-init] instead of [T-ν]; and without [T-kill].

Condition (3) ensures that once a process moves to the catch-block, then it ensures finite
computation; (4,5) state that the initial program starts conforming to a global protocol.

▶ Remark 3.19 (Initial processes). Condition (3) does not limit the expressiveness since the
try-block can include infinite computations; and conditions (4,5) imply that an initial program
typed by condition (1) has started. Notice that running (runtime) processes generated from
the initial program are typed using [T-ν] and [T-kill]; hence the proof of the subject reduction
holds with Lemma 3.20 below.

Before proving the main theorems, we state that a set of local types projected from a
well-formed global type satisfy the safety property.

▶ Lemma 3.20 ([46, Lemma 5.9]). Let Γ = {s[p]:G↾p}p∈roles(G). Then safe(Γ), df(Γ) and
live+(Γ).

Now we state the two main theorems of this paper: deadlock-freedom, liveness and
cancellation termination. The cancellation termination theorem states that once a kill signal
is produced by cancellation or affine processes (due to a timeout or an error), then all
processes are enabled to terminate. We start from deadlock-freedom.

▶ Corollary 3.21 (Deadlock-freedom and liveness for an initial program). Suppose ⊢ Q is an
initial program. Then for all P such that Q→∗ P , P is deadlock-free and live.

▶ Theorem 3.22 (Cancellation Termination). Suppose ⊢ Q is an initial program. If Q→∗

C[s] = P ′, then we have P ′ →∗ 0.

▶ Corollary 3.23 (Cancellation Termination of Affine and Cancel Processes). Suppose ⊢ Q is
an initial program.
1. If Q→∗C[cancel(s[p]).Q′] = P ′, then we have P ′ →∗ 0.
2. If Q→∗ C[E[? s[p][q]

∑
i∈I mi(xi).Pi]] = P ′ or Q→∗ C[E[? s[p][q]⊕m⟨s′[r]⟩.P]] = P ′, then

we have P ′ →∗ 0.

▶ Remark 3.24 (Termination theorem). The cancellation termination theorem means that
there always exists a path which leads to 0; and an initial program might not terminate even
if it contains a process with s . This differs from the total termination, i.e., all paths are
finite – a program will definitely stop as 0. However, if we apply fair traversal sets, i.e., fair
scheduling, from [46, Definition 5.5], applying to processes in C[s], we can prove the total
termination. Since these extensions require an introduction of labelled transition systems for
processes, we leave it as future work.

4 Design and implementation of MultiCrusty

4.1 Challenges for the implementation of MultiCrusty

The three main challenges underpinning the implementation of AMPST in Rust are related
to multiparty communications and ensuring correctness for affine channels.

ECOOP 2022

4:16 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

1 pub struct MeshedChannels< S1: Session, S2: Session, R: Role, N: Role> {
2 session1: S1, session2: S, stack: R, name: N }

Figure 5 Generated MeshedChannles structure.

(Challenge 1) Realising a multiparty channel by binary channels. AMPST relies on a
multiparty channel – a channel that can communicate with several roles. In Rust, commu-
nication channels are peer-to-peer, e.g., they are binary [30]. To overcome this limitation,
we extend an encoding of MPST into binary channels [44]. In this encoding, a multiparty
channel can be represented as an indexed tuple of one-shot binary channels used in a sequence
depending on the ordering specified by the type. This design ensures reception error safety by
construction. Since each pair of binary channels is dual, then no communication mismatch can
occur. We piggyback on this result by introducing meshed channels, which reuse an existing
library of binary session types in Rust [30] with built-in duality guarantees. We explain the
implementation of meshed channels in § 4.2. See [33] for usecases that demonstrate how to
use MultiCrusty for programming distributed protocols.

(Challenge 2) Deadlock-freedom, liveness and termination. Duality is unfortunately
insufficient to guarantee deadlock-freedom. The naive decomposition of binary channels leads
to hard to detect deadlock errors [44]. To ensure liveness properties and correct termination
of cancellation behaviour, we integrate MultiCrusty with two state-of-the-art verification
toolchains – Scribble [27] and k-MC [35], that ensures meshed channel types are correct.
The former generates correct meshed channel types in Rust, while the latter verifies a set
of existing meshed channel types. In both cases, well-typed processes implemented using
well-typed meshed channels are free from deadlocks, orphan messages and reception errors.
We display the Rust types for our running example in § 4.3.

(Challenge 3) Affinity with try-catch and optional types. Rust does not have a native
try-catch construct, but macros and optional types. We use them to design and implement
a try-catch block and affine selection and branching. Channels can be implicitly or expli-
citly cancelled, and all processes are guaranteed to terminate gracefully in the event of a
cancellation, avoiding endless cascading errors. We discuss our design choices in § 4.4.

4.2 Meshed Channels in MultiCrusty

A multiparty channel in MultiCrusty is realised as an affine meshed channel (hereafter
meshed channel), which has three ingredients: (1) a list of separate binary channels (one
binary channel for each pair of participants); (2) a stack that imposes the order between
the binary channels; and (3) the name of the role, whose behaviour is implemented by
the meshed channel. Figure 5 shows a generated meshed channel when using the macro
gen_mpst!(MeshedChannels, A, C, S) for a 3-party protocol.

The generated structure, MeshedChannels, holds four fields. The first two fields, session1
and session2, are of type Session which is a binary session type. Therefore, these fields store
binary channels. Session in Rust is a trait and a trait is similar to an interface. The Session
trait can be instantiated to three generic (binary session) types: an End type; a Recv<T, S> or
a Send<T, S> type, with their respective payload of type T and their continuation of a binary
session type S. This has important implications for the design and safety of our system.
Since all pairs of binary channels are created and distributed across meshed channels at the

N. Lagaillardie, R. Neykova, and N. Yoshida 4:17

1 // Declare the name of the role
2 type NameA = RoleA<RoleEnd>;
3 // Binary session types for A and C
4 type AtoCVideo<N> = Recv<N, Send<N, Recv<ChoiceA<N>, End>>
5 // Binary session types for A and S
6 type AtoSVideo<N> = Send<N, Recv<N, End>>;
7 // Declare usage order of binary channels inside a meshed channel
8 type StackAInit = RoleC<RoleEnd>; // for the initial meshed channel
9 type StackAVideo = RoleC<RoleS<RoleS<RoleC<RoleEnd>>>>; // for branch Video

10 // Declare the type of the meshed channel
11 type RecA<N> = MeshedChannels<Recv<ChoiceA<N>, End>, End, StackAInit, NameA>;
12 // Declare an enum with variants corresponding to the different branches, \ie Video and End
13 enum ChoiceA<N> {
14 Video(MeshedChannels<AtoCVideo<N>, AtoSVideo<N>, StackAVideo, NameA>),
15 Close(MeshedChannels<End, End, RoleEnd, NameA>)
16 }

Figure 6 Local Rust types for role A (Authenticator) from Figure 2b.

start of the protocol, the binary type Session enforces that each pair of binary channels
are dual. For example, the binary channel for role S inside the meshed channels for role
A; and the binary channel for role A inside the meshed channels for role S are dual. This
design ensures that, without using any external tools, our system is communication safe, no
reception error can occur. This is insufficient to guarantee deadlock-freedom, which is why
we utilise Scribble or bounded model checking, i.e., k-MC, as an additional verification step.

The rest of the fields of the struct MeshedChannels are stack-like structures, stack and
name, which represent respectively the order of the interactions (in what order the binary
channels should be used) and the associated role. For instance, the behaviour where role
A has to communicate first with role S, then with role C and then the session ends, can
be specified using a stack of type RoleS<RoleC<RoleEnd>>. Note that all stack types such as
RoleS and RoleC are generated singleton types. Role names are codified as RoleX<RoleEnd>
where X is the actual name of the participant. For instance, role A is realised as the singleton
type RoleA<RoleEnd>. We chose this design for its readability and its ease of implementation:
one can guess at a glance the current state of a participant.

The code generation macro gen_mpst! produces meshed channels for any finite number of
communicating processes. For example, in the case of a protocol with four roles, the macro
gen_mpst! will generate a meshed channel with five fields – one field for the binary session
between each pair of participants (which is 3 fields in total), one field for the stack and one
field for the name of the role that is being implemented.

4.3 Types for affine meshed channels
Meshed channel types – MeshedChannels – correspond to local session types. They describe
the behaviour of each meshed channel and specify which communication primitives are
permitted on a meshed channel. To better illustrate meshed channel types, we explain the
type RecA<N> for role A (Authenticator) from Figure 2b. The types are displayed in Figure 6.
The types of the meshed channels for the other roles, i.e., C and S are available in [33].

Following the protocol, the first action on A is an external choice. Role A should receive
a choice from role C of either Video or Close. External choice is realised in MultiCrusty as
an enum with a variant for each branch, where each variant is parameterised on the meshed
channel that will be used for that branch. The enum type ChoiceA<N> in line 13 precisely
specifies this behaviour – two variants with their respective meshed channels. The branch
Close is trivial since no communication apart from closing all channels is expected in this
branch. Hence, the binary channels for S and A, and C and A are all End. The type of the

ECOOP 2022

4:18 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

meshed channel for the branch Video in line 14 is more elaborate. MeshedChannels<AtoCVideo
<N>, AtoSVideo<N>, StackAVideo, NameA> specifies that the type of the binary channel for C
and A is AtoCVideo<N>, the type of the binary channel for role S and role A is AtoSVideo<N>,
the stack of the meshed channel is StackAVideo. The declaration RoleC<RoleS<RoleS<RoleC
<RoleEnd>>>> specifies the order in which binary channels must the used – first the binary
channel with C , then with role S, then with S again, and finally with C . The last argument
specifies that this is a meshed channel for role A.

The meshed channel types can be written either by the developers and verified using an
external tool, k-MC, or generated from a global protocol written in Scribble.

4.4 Exception and cancellation
Exception handling

Rust does not have exceptions. Instead, it has the type Result<T, E> for recoverable errors
and the panic! macro that stops execution when the program encounters an unrecoverable
error. Result<T, E> is a variant type with two constructors: Ok(T) and Err(E) where T and E
are generic type parameters.

We leverage two mechanisms to implement the semantics presented in § 3, both of which
rely on the Result variant type: (1) the ? operator and (2) the attempt!-catch macro. The
? is syntactic sugar for error message propagation. More specifically, each communication
primitive is wrapped inside a Result type. For example, the return type of recv() is Result
<(T, S), Box<dyn Error>>. The call recv() on the multiparty channel s triggers the attempt
of the reception of a tuple containing a payload of type T and a continuation of type S.

If a peer tries to read a cancelled endpoint then an error message is returned. Therefore,
if an error occurs during receive due to, for example, the cancellation of the other end of
the channel, the ? operator stops the recv() function and returns an Err value to the calling
code. Then, the user can decide to handle the error or panic! and terminate the program.

Similarly, the attempt!-catch block is syntactic sugar that allows exception handling over
multiple communication actions. For instance, the attempt! M catch N reduces to its failing
clause N if an error occurs in any of the statements in M. The interested users can try the
online Rust playground that demonstrates the implementation of attempt!-catch using the
and_then combinator [13]. The attempt! M catch N corresponds to the try-catch in § 3.

The implementation follows the behaviour formalised by the reduction rules in § 3. In
particular, it ensures that whenever an error happens, a session is cancelled (s). We utilise
Rust drop mechanism. When a value in Rust goes out of scope, Rust automatically drops
it by calling its destructor: the Drop method. A variable that cannot be cloned, such as
a session s, is out scope when used in a function and not returned, such as when used in
the close() and cancel() functions. We have customised this method by implementing the
Drop trait, which explicitly calls cancel(). If an error occurs, and the meshed channel is
not explicitly cancelled, the meshed channel is implicitly cancelled from its destructor. In
the case of a panic!, the session s will be dropped, alongside all variables within the same
function, when panic! is called. Similarly to the theory, cancel(s) is not mandatory and can
be placed arbitrarily within the process. Calling cancel(s) is mostly used for expressiveness
and mock tests purposes, when a failure, without panic!, needs to be simulated.

Session Cancellation

We discuss all cases involving session cancellation below:

N. Lagaillardie, R. Neykova, and N. Yoshida 4:19

1. Implicit vs explicit cancellation. Receiving on or closing disconnected sessions returns
an error. As a result of the error, the multiparty channel s is cancelled by our underlying
library, and all binary channels associated with s are disconnected. We call this an
implicit cancellation. This behaviour implements rules [C-?Sel] and [C-?Br]. Alternatively,
the user can also cancel the session explicitly.

2. Raising an exception. An error occurs (1) as a result of a communication over a
closed/cancelled channel, (2) as a result of a timeout on a channel, or (3) in case of
an error in the user code. For example the function get_video() can return an error.
Then the user can decide to (1) cancel(s) the session, (2) silently drop the session, or
(3) proceed with the protocol. Even if the user does not explicitly call the cancel(s)
primitive, Rust runtime ensures that the meshed channel is always cancelled in the end.

3. Double cancellation. If a peer tries to cancel a session s that is already cancelled
from another endpoint, then the cancellation is ignored. Note that in our semantics this
behaviour is modelled using the structural congruence rules, namely s | s ≡ s .

4. Cancel propagation. When a session is cancelled, no communication action can be used
subsequently on that channel. The action cancel(s) cancels all binary channels that are
a part of the meshed channel, which precisely simulates the kill process s . When a peer
attempts to receive on a channel, if either side of the channel is cancelled, the operation
returns an error, and the session in scope is dropped. This is exactly the behaviour for the
channels from the crossbeam-channel library, and we inherit and extend this behaviour
to our library. Since our receive happens on a binary channel, our extension ensures that
all other binary channels that are in scope, and the ones that are in the stack, are also
closed. Since these channels are closed, when other peers try to read from them, they
will also encounter an error, and will subsequently close their channels.

5 Evaluations: benchmarks, expressiveness and case studies

We evaluate MultiCrusty in terms of run-time performance (§ 5.1), compilation time
(§ 5.1) and applications (§ 5.2, see [33]). Through this section, we demonstrate the
applicability of MultiCrusty and compare its performance with programs written in binary
sessions and untyped implementations (Bare) using crossbeam-channel. The purpose of the
microbenchmarks is to demonstrate the best and worst-case scenarios for the implementation:
we have not considered performance as a primary consideration in the current implementation.
The results show that rewriting multirole protocols from binary channels to affine meshed
channels can have a performance gain in addition to the safety guarantees provided by MPST.

In summary, MultiCrusty has only a negligible overhead when compared to the built-
in unsafe Rust channels, provided by crossbeam-channel, and up to two-fold runtime
improvement to binary sessions in protocols with high-degree of synchronisation. The source
files of the benchmarks and a script to reproduce the results are included in the artifact.

5.1 Performance
The goal of the microbenchmarks is two-fold. On one hand, it provides assurance
that MultiCrusty does not incur significant overhead when compared to alternative libraries.
The source of the runtime overhead of MultiCrusty can be attributed to: (1) the additional
data structures that are generated (see § 4.2); and (2) checks for cancellation (as outlined in
§ 4.4). We also evaluate the efficiency of MultiCrusty when implementing multiparty (as
opposed to binary) protocols. Multiparty protocols specify interaction dependencies between
multiple threads. It is well-understood that a naive decomposition of multiparty protocol to

ECOOP 2022

4:20 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

name ping-pong ring full-mesh

diagram A1 A2

pong

ping

A1 A2

pong

ping

A3

pong

ping

An

pong

ping
A

B

pingpong

C

ping
pong

ping
pong

Figure 7 Protocols for Microbenchmarks.

a binary one (without preserving interaction dependencies) not only causes race conditions
and wrong results but also deadlocks [44]. One may mitigate this problem by utilising a
synchronisation mechanism, which is an off-the-shelf alternative to meshed channels. We
compare the performance of MultiCrusty and meshed channels to a binary-channels-only
implementation that uses thread-synchronisation.

We compare implementations, written using (1) MultiCrusty API (MPST) without
cancellation; (2) MultiCrusty API with cancellation (AMPST); (3) binary channels, follow-
ing [30] (BC); and (4) a Bare-Rust implementation (Bare) using untyped channels as provided
by the corresponding transport library crossbeam-channel. As a reminder, MultiCrusty
uses [30]’s channels (which are binary only and technically non-meshed), and [30]’s channels
use crossbeam-channel for actually sending and receiving payloads: the scaffolding of
all programs differs only in the final communication primitives used. In addition, the BC
implementations synchronise between threads when messages must be received in order.

Figure 7 shows simple visualisation, displayed for illustrative purpose, of the three
examples that we benchmark. Figure 8 reports the results on runtime performance, i.e., the
time to complete a protocol by the implemented endpoints in Rust, and compilation time,
i.e., the time to compile the implementations for all roles. We stress tested the library up to
20 participants but only show the results up to 10 participants for readability.

Setup: Our machine configurations are AMD OpteronTM Processor 6282 SE @ 1.30 GHz
with 32 cores/64 threads, 128 GB of RAM and 100 GB of HDD with Ubuntu 20.04, and with
the latest version available for Rustup (1.24.3) and the Rust cargo compiler (1.56.0). We use
criterion [29], a popular benchmark framework in Rust. We repeat each benchmark 10000
times and report the average execution time with a fairly narrow confidence interval of 95%.

Ping-pong

benchmark measures the execution time for completing a recursive protocol between two roles
repeatedly increasing the number of executions for request-response unit messages. Figure 8a
displays the running time w.r.t. the number of iterations. This protocol is binary, and this
benchmark measures the pure overhead of MPST implementation. MPST directly reuses the
BC library, adding the structure MeshedChannels on top of it. Since both implementations need
the same number of threads, the benchmark compares only the overhead of MeshedChannels.
Both MPST and AMPST have a linear performance increase compared to BC and Bare. MPST
is about 2.5 times slower than BC and about 6.5 times slower than Bare for 500 iterations.

Ring

protocol, as seen in Figure 7, specifies N roles, connected in a ring, sending one message
in a sequence. This example is sequential and stress tests the usage of numerous binary
channels in an MultiCrusty implementation. Figure 8b displays the running time w.r.t.

N. Lagaillardie, R. Neykova, and N. Yoshida 4:21

100 200 300 400 500
iterations

0

3

6

9

12

15

18

21

24

T
im
e
(m

s)

MPST Binary Crossbeam AMPST

0 250 500
iterations

0

8

16

24

T
im
e
(m

s)

(a)

2 4 6 8 10
roles

0

30

60

(b)

2 4 6 8 10
roles

0

60

120

180

(c)

2 4 6 8 10
roles

35

37

39

T
im

e
(s

)

(d)

2 4 6 8 10
roles

35

45

55

(e)

Figure 8 Execution time (ms) for Ping-pong (a), Ring (b), Mesh (c) and compile time (s) for
Ring (d), Mesh (e).

the number of participants. We measure the time to complete 100 rounds of a message
for an increasing number of roles. This benchmark demonstrates a worst-case scenario
for MultiCrusty since the MPST implementation requires N*N binary channels, hence N*N
interactions at most, meanwhile the other implementations only need 2*N binary channels.
MultiCrusty is increasingly slower than the other implementations following a quadratic
curve. All the implementations are running at the same speed for 2 participants; MPST
becomes almost 2 times slower than BC for 10 participants and almost 3.25 times slower for
20 participants. AMPST implementation has a negligible overhead compared to MPST.

Full-mesh

benchmark measures the execution time for completing a recursive protocol between N roles
mutually exchanging the same message together: for every iteration, each participant sends
and receives once with every other participant. For simplicity, we show the pattern in Figure 7
for three roles only. Figure 8c displays the running time w.r.t. the number of participants.
This is a best-case scenario protocol for MultiCrusty since the protocol requires a lot of
explicit synchronisation if implemented as a composition of binary protocols. The slowdown
of BC is explained by the difference of implementation and the management of threads:
the MultiCrusty needs only one thread for each participant, meanwhile for the binary case,
two threads per pair of interactions are required to ensure that the message causalities are
preserved. All implementations have similar running time for 2 participants but MPST is
about 2.3 times faster than BC, and about 11 times slower than Bare for 10 participants.
The figure only displays the results for up to 10 participants, since this is sufficient to show
the overhead trend. In practice, we measured for up to 20 participants. For reference, at 20
participants, MPST is about 12 times slower than Bare and about 3.75 times faster than BC.
As expected, AMPST has almost the same running time as MPST.

Results summary on execution time

Overall, MultiCrusty is faster than the BC implementation when there are numerous
interactions and participants, thanks to the encapsulation of each participant as a thread;
the worst-case scenario for MultiCrusty is for protocols with many participants but no
causalities between them which results in a slowdown when compared with BC. AMPST adds
a negligible running time due to the simple checking of the status of the binary channels.

ECOOP 2022

4:22 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

Results summary on compilation time

We also compare the compilation time of the three protocols using cargo build. The results
are presented in Figures 8d and 8e. As expected, the more participants there are, the higher
the compilation time for MPST, with up to 40% increase for the full-mesh protocol and only
11% for the ring protocol. We omit the graph for the ping-pong protocol since the number
of iterations does not affect compilation time and the number of generated types, hence the
compilation stays constant at 36.4s (MPST), 36.6s (AMPST), 36.1s (BC) and 36.3s (Bare).

The compilation time of BC and Bare are very close thanks to Rust’s features, a mechanism
to express conditional compilation and optional dependencies. This allows compiling only
specific parts of libraries, instead of the whole libraries, depending on the needs of each file.
For BC and Bare, we only compile MultiCrusty’s default features, meanwhile for MPST and
AMPST, we also compile the macros features, which include heavy blocks of code and new
dependencies for the creation of the new roles, meshed channels and associated functions.

5.2 Expressiveness

We demonstrate the expressiveness and applicability of MultiCrusty by implementing
protocols for a range of applications. We also draw the examples from the session types
literature, well-established application protocols (OAuth, SMTP), and distributed protocols
(logging, circuit breaker). Protocols with more than 5 participants are not considered since
having one global protocol with more participants can quickly become intractable in terms
of protocol logic and is considered bad practice. The global protocols and patterns in the
literature that have many participants are parameterised [6], participants can be grouped in
kinds having the same type. Thereby, this will avoid a combinatorial explosion.

Table 2 displays the examples and related metrics. In particular, we report compilation
time (Check./Comp./Rel.), execution time (Exec. Time), the number of lines of code (LoC)
for implementing all roles in MultiCrusty, the lines of code generated from Scribble (Gen
Types) and the total lines of code (All); the two following columns indicate whether the
protocol involves three participants or more (MP), and if the protocol is recursive (Rec).

We report three compilation times corresponding to the different compilation options in
Rust – cargo check which only type checks the code without producing binaries, cargo
build which compiles the code with binaries and cargo build –release which, in addition,
optimises the compiled artifact. Each recursive protocol is built/checked 100 times, and we
display the average in the table. All protocols are type-checked within 27 seconds, while the
basic compilations range between 36s and 41s and the optimised compilations vary between
80s and 97s. Those results represent the longest time we can expect for the respective
build/check: Rust compilation is iterative, therefore, the usual compilation time should be
shorter. A 30 seconds pause is short enough to not break the flow [9] of the mental headspace
focused on the current task. Building the binaries takes longer, because of two heavy libraries
used by MultiCrusty (tokio [8] and hyper [48]). The execution time of the protocols is
measured by implementing only the communication aspects of the protocol, and orthogonal
computation-related aspects are omitted. The execution time is the time to complete all
protocol interactions, and even for larger protocols, it is negligible.

Table 2 does not contain protocols with more than 5 distinct participants because, in
our experience, whenever more participants are needed, the protocol is parameterised [6].
We leave such extension for future investigation.

N. Lagaillardie, R. Neykova, and N. Yoshida 4:23

Table 2 Selected examples from the literature.

Example (Endpoint) Check./Comp./Rel./Exec. Time LoC Impl. Gen Types/All MP Rec
Three buyers [28] 26.7s / 37.1s / 81.3s / 568 µs 143 37 / 180 ✓ ✓

Calculator [22] 26.5s / 36.9s / 81.3s / 467 µs 136 32 / 168 ✗ ✗

Travel agency [24] 26.5s / 37.6s / 84.8s / 8 ms 200 47 / 247 ✗ ✓

Simple voting [22] 26.3s / 36.7s / 82.4s / 396 µs 207 61 / 268 ✗ ✗

Online wallet [42] 26.4s / 37.8s / 84.4s / 759 µs 231 76 / 307 ✗ ✓

Fibonacci [22] 26.6s / 36.7s / 80.9s / 9 ms 141 23 / 164 ✗ ✓

Video Streaming service (§ 2) 26.3s / 37.4s / 83.0s / 11 ms 104 39 / 143 ✓ ✓

oAuth2 [42] 26.4s / 37.5s / 83.2s / 12 ms 215 61 / 276 ✓ ✓

Distributed logging ([33]) 26.5s / 36.8s / 82.6s / 5 ms 252 59 / 311 ✗ ✓

Circuit breaker ([33]) 26.5s / 38.5s / 87.0s / 18 ms 375 142 / 517 ✓ ✓

SMTP [15] 26.4s / 41.1s / 97.3s / 5 ms 571 143 / 714 ✗ ✓

6 Related work and future work

A vast amount of session types implementations based on theories exist, as detailed in the
recent surveys on language implementations [1] and tools [17]. We discuss closely related
works, focusing on (1) session types implementations in Rust (§ 6.1); (2) MPST top-down
implementations (including other programming languages) (§ 6.2). For related work about
Affine types and exceptions/error handling in session types, see [33].

6.1 Session types implementations in Rust
Binary session types (BST) have been implemented in Rust by [27], [30] and [7], whereas, to
our best knowledge, [11] is the only implementation of multiparty session types in Rust.

[27] implemented binary session types, following [20], while [30] based their library on
the EGV calculus by [16] (See [33]). Both verify at compile-time that the behaviours of two
endpoint processes are dual, i.e., the processes are compatible. The latter library allows to
write and check session typed communications, and supports exception handling constructs.
Rust originally did not support recursive types so [27] had to use de Bruijn indices to
encode recursive session types, while [30] uses Rust’s native recursive types but only handles
failure for recv() actions: according to [30], this is generally the case with asynchronous
implementations. This is because once an endpoint has received several messages, it makes
sense to cancel them at the receiver rather than the sender. In fact, raising an exception on
a send operation in an asynchronous calculus actually breaks confluence.

The library by [27] relies on an older version of Rust, hence we build MultiCrusty on top
of [30]. Notice that we formalised AMPST guaranteeing the MPST properties of MultiCrusty
(such as deadlock-freedom, liveness and cancellation termination), which are not present in [30].
In addition, our benchmarks confirmed that, in protocols where most of the participants
mutually communicate, MultiCrusty is up to two times faster than [30].

[7] introduces their library, Ferrite, that implements BST in Rust, adopting intuitionistic
logic-based typing [5]. The library ensures linear typing of channels, and includes a recently
shared name extension by [2], but cannot statically handle prematurely dropped channel
endpoints. Since Ferrite lacks an additional causal analysis for ensuring deadlock-freedom
by [3], deadlock-freedom and liveness among more than two participants are not guaranteed,
unlike MultiCrusty. Ferrite also lacks documentation and tests, making it hard to use.

[14] presents an implementation of a library for programming typestates in Rust. The
library ensures that Rust programs follow a typestate specification. The tool, however, has
several limitations. Differently than other works on typestates (e.g., typestates in Java [31]),
[14] implements and verifies only binary non-recursive protocols, without a static guarantee
that all branches are exhaustively implemented.

ECOOP 2022

4:24 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

[11] implements MPST using async and await primitives. Their main focus is a perform-
ance analysis of asynchronous message reordering and comparisons of their asynchronous
subtyping algorithm with existing tools, including the k-MC tool [35]. Their algorithm is a
sound approximation of the (undecidable) asynchronous subtyping relation [18], by which
their tool enables to check whether an unoptimised (projected from a global type) CFSM
and its optimised CFSM are under the subtyping relation or not. The main disadvantage
of [11] is that their library depends on external tools for checking not only deadlock-freedom,
but also communication-safety. Differently, MultiCrusty can guarantee dual compatibility
(inherited from [30]) in a multiparty protocol, based on our meshed channels implementation.

Note that all the above implementations, but [11], are limited to binary and no formalism
is proposed in their papers (see Table 3). Unlike MultiCrusty, neither failure handling nor
cancellation termination is implemented or formalised in any of the above-mentioned works.

6.2 Multiparty session types implementations in other languages
We compare implementations of (top-down) MPST, ordered by date of publication, in Table 3,
focusing on statically typed languages: we exclude MPST implementations by runtime
monitoring such as Erlang [41] and Python [12].

The table is composed as follows, row by row:

Languages lists the programming languages introduced or used.
Mainstream language states if the language is broadly used among developers or not.
MPST top-down characterises the framework: Multiparty session types (MPST) or binary

session types (BST). If the implementation allows the user to write MPST global types, it
is called a top-down approach.

Linearity checking describes whether the linear usage of channels is not checked, checked at
compile-time (static) or checked at runtime (dynamic).

Exhaustive choices check indicates whether the implementation can statically enforce the
correct handling of potential input types. ✗ denotes implementations that do not support
pattern-matching to carry out choices (branching) using switch statements on enum types.

Formalism defines the theoretical foundations of the implementations, such as (1) the end
point calculus (the π-calculus (noted as π-cal.) or FJ [25]); (2) the (global) types formalism
without any endpoint calculi (no typing system is given, and no subject reduction theorem
is proved); or (3) no formalism is given (no theory is developed).

Communication safety outlines the presence or the absence of session type-soundness demon-
stration. Four languages, marked as △, provide the type safety only at type level. ✗•

means that the theoretical formalism does not provide linear types, therefore only type
safety of base values is proved.

Deadlock-freedom is a property guaranteeing that all components are progressing or ul-
timately terminate (which correspond to deadlock-freedom in MPST). Four languages
marked by △ proved deadlock-freedom only at the type level. ✓• implies the absence of
a formal link with the local configurations reduced from the projection of a global type. 1

Liveness is a property which ensure that all actions are eventually communicated with other
parties (unless killed by an exception in the case of AMPST).

1 [19] did not prove that any typing context reduced from a projection of a well-formed global type
satisfies a safety property (a statement corresponding to Lemma 3.20). Hence, deadlock-freedom is not
provided for processes initially typed by a given global type. Note that their typing contexts contain
new elements not found in those defined in [23], which weakens the link with the top-down approach.

N. Lagaillardie, R. Neykova, and N. Yoshida 4:25

Table 3 MPST top-down implementations.

[30, 27, 7] [43] [22, 23] [32] [44] [40] [6] [26] [38] [54] [19] [52] [11] MultiCrusty

Language Rust MPI-C Java Java Scala F# Go OCaml Typescript F* EnsembleS Scala Rust Rust
Mainstream

language ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

MPST
Top-Down ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Linearity
check static ✗ dynamic ✗ dynamic dynamic dynamic static static static static dynamic static static

Exhaustive
choices check ✓ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Formalism ✗ ✗ types FJ π-cal. ✗ types π-cal. types types π-cal. π-cal. types π-cal.
Communication

safety ✗ ✗ △ ✓ ✓ ✗ △ ✗• △ △ ✓ ✓ △ ✓

Deadlock
freedom ✗ ✗ △ ✗ ✓ ✗ △ ✗ △ △ ✓• ✓ △ ✓

Liveness ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Cancellation
termination ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Cancellation termination: once a cancellation happens at one of the participants in a multi-
party protocol, the cancellation is propagated correctly, and all processes can terminate.

The Rust implementations in the first column of Table 3 are included for reference.
Most of the MPST implementations [23, 44, 40, 6, 38, 54] follow the methodology given

by [22], which generates Java communicating APIs from Scribble [53, 47]. They exploit
the equivalence between local session types and finite state machines to generate session
types APIs for mainstream programming languages. [22, 23, 44, 40, 6] are not completely
static: they check linearity dynamically. MultiCrusty can check linearity using the built-in
affinity type checking from Rust. [43, 40, 6] do not enforce exhaustive handling of input
types; and [22, 23, 32] rely on runtime checks to correctly handle branching.

[38, 54] provide static checking using the call-back style API generation. MultiCrusty
uses a decomposition of AMPST to BST; in [44], MPST in Scala is implemented combining
binary channels on the top of the existing BST library from [45]. Unlike MultiCrusty, [44]
lacks static linearity check and uses a continuation-passing style translation from MPST into
linear types. [32] implements static type-checking of communication protocols by linking Java
classes and their respective typestate definitions generated from Scribble. Objects declaring
a typestate should be used linearly, but a linear usage of channels is not statically enforced.

All above implementations generate multiparty APIs from protocols. To our know-
ledge, [26] is the only type-level embedding of classic multiparty channels in a mainstream
language, OCaml. However, the library heavily relies on OCaml-specific parametric poly-
morphism for variant types to ensure type-safety. Their formalism lacks linear types and
deadlock-freedom is not formalised nor proved. In addition, this implementation uses a non-
trivial, complicated encoding of polymorphic variant types and lenses, while MultiCrusty
uses the built-in affine type system in Rust.

The work most closely related to ours is [19] which implements handling of dynamic
environments by MPST with explicit connections from [23], where actors can dynamically
connect and disconnect. It relies on the actor-like research language, Ensemble; and generates
endpoint code from Scribble. Their core calculus includes a syntax of the try L catch M

construction where M is evaluated if L raises an exception. The type system follows [51], and
is not as expressive as the previous paper on binary exception handling [16] that extends
the richer type system of GV [37, 36]. Due to this limitation of their base typing system,
and since their main focus is adaptation, there are several differences from AMPST, listed
below: (1) they do not model general failure of multiple (interleaved) session endpoints (such
as failures of selection and branching constructs as shown in rules [C-Sel], [C-Br]); (2) their
try-catch scope (handler) is limited to a single action unlike AMPST and [16] where its scope

ECOOP 2022

4:26 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

can be an arbitrary process P , participants and session endpoints ([R-Cat]); (3) they do not
model any Rust specific ?-options where an arbitrary process P can self-fail ([T-try], [C-?Sel]);
and (4) their kill process is weaker than ours (it is point-to-point, it does not broadcast the
failure notification to the same session).

As a consequence, their progress result ([16, Theorem 18]) is weaker than our theorems
since their configuration can be stuck with an exception process that contains raise, while
our termination theorem (Theorem 3.22) guarantees that there always exists a path such
that the process will move or terminate as 0, cleaning up all intermediate processes which
interact non-deterministically. More precisely, in [16, Theorem 18], a cancellation in a session
is propagated, but raise blocks a reduction when the actor is not involved in a session,
and its behaviour is also stop, meaning it is terminated. Otherwise, the actor will leave
the session and restart. In contrast, MultiCrusty ensures the strong progress properties by
construction (see § 2). We also implemented interleaved sessions (as shown in [33]), where
one participant is involved in two different protocols at the same time.

As part of future work, we would like to develop recovery strategies based on causal
analysis, along the lines of [41]. In addition, it would be interesting to verify role-parametric
session types following [6] in an affine setting. Finally, we plan to study polymorphic meshed
channels with different delivery guarantees such as TCP and UDP.

References
1 Davide Ancona, Viviana Bono, and Mario Bravetti. Behavioral Types in Programming

Languages. Number 2-3 in Foundations and Trends in Programming Languages. Now Publishers
Inc., Hanover, MA, USA, 2016. doi:10.1561/2500000031.

2 Stephanie Balzer and Frank Pfenning. Manifest Sharing with Session Types. Proc. ACM
Program. Lang., 1(ICFP), August 2017. doi:10.1145/3110281.

3 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest Deadlock-Freedom for
Shared Session Types. In Luís Caires, editor, Programming Languages and Systems - 28th
European Symposium on Programming, ESOP 2019, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April
6-11, 2019, Proceedings, volume 11423 of Lecture Notes in Computer Science, pages 611–639,
Cham, 2019. Springer. doi:10.1007/978-3-030-17184-1_22.

4 Daniel Brand and Pitro Zafiropulo. On Communicating Finite-State Machines. J. ACM,
30(2):323–342, 1983. doi:10.1145/322374.322380.

5 Luís Caires and Frank Pfenning. Session Types as Intuitionistic Linear Propositions. In Paul
Gastin and François Laroussinie, editors, CONCUR 2010 - Concurrency Theory, pages 222–236,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. doi:10.1007/978-3-642-15375-4_16.

6 David Castro, Raymond Hu, SungShik Jongmans, Nicholas Ng, and Nobuko Yoshida. Distrib-
uted Programming Using Role-Parametric Session Types in Go: Statically-Typed Endpoint
APIs for Dynamically-Instantiated Communication Structures. Proc. ACM Program. Lang.,
3(POPL), January 2019. Place: New York, NY, USA Publisher: Association for Computing
Machinery. doi:10.1145/3290342.

7 Ruofei Chen and Stephanie Balzer. Ferrite: A Judgmental Embedding of Session Types in
Rust. CoRR, abs/2009.13619, 2020. arXiv:2009.13619.

8 Tokio Contributors. Crate: Tokio, 2021. Last accessed: July 2021. URL: https://crates.
io/crates/tokio.

9 Wikipedia Contributors. Wikipedia: Flow (psychology), 2021. Last accessed: July 2021. URL:
https://en.wikipedia.org/wiki/Flow_(psychology).

10 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global
progress for dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science, 26(2):238–302, 2016. doi:10.1017/S0960129514000188.

https://doi.org/10.1561/2500000031
https://doi.org/10.1145/3110281
https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1145/322374.322380
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.1145/3290342
http://arxiv.org/abs/2009.13619
https://crates.io/crates/tokio
https://crates.io/crates/tokio
https://en.wikipedia.org/wiki/Flow_(psychology)
https://doi.org/10.1017/S0960129514000188

N. Lagaillardie, R. Neykova, and N. Yoshida 4:27

11 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-Free Asynchronous Message
Reordering in Rust with Multiparty Session Types. In 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, volume abs/2112.12693 of PPoPP ’22, pages
261–246. ACM, 2022. doi:10.1145/3503221.3508404.

12 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty session
types and Python. FMSD, 46(3):197–225, 2015. doi:10.1007/s10703-014-0218-8.

13 Rust Developers. Rust: attempt-catch macro, 2018. Last accessed: July
2021. URL: https://play.integer32.com/?version=stable&mode=debug&edition=2018&
gist=95979b17196adbc203c4f563e00d384b.

14 José Duarte and António Ravara. Retrofitting Typestates into Rust, pages 83–91. Association
for Computing Machinery, New York, NY, USA, 2021. doi:10.1145/3475061.3475082.

15 Roy Fielding and Julian Reschke. Hypertext Transfer Protocol (HTTP/1.1): Message Syntax
and Routing. Technical Report RFC7230, RFC Editor, June 2014. doi:10.17487/rfc7230.

16 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional Asynchronous
Session Types: Session Types Without Tiers. Proc. ACM Program. Lang., 3(POPL):28:1–28:29,
January 2019. Place: New York, NY, USA Publisher: ACM. doi:10.1145/3290341.

17 Simon Gay and António Ravara. Behavioural Types: from Theory to Tools. In Behavioural
Types: from Theory to Tools, Automation, Control and Robotics, pages 1–412. Rivers publishers,
Alsbjergvej 10, 9260 Gistrup, Denmark, 2017. doi:10.13052/rp-9788793519817.

18 Silvia Ghilezan, Jovanka Pantović, Ivan Prokić, Alceste Scalas, and Nobuko Yoshida. Precise
Subtyping for Asynchronous Multiparty Sessions. Proc. ACM Program. Lang., 5(POPL),
January 2021. doi:10.1145/3434297.

19 Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty Session Types for
Safe Runtime Adaptation in an Actor Language. In Anders Møller and Manu Sridharan, editors,
35th European Conference on Object-Oriented Programming (ECOOP 2021), volume 194 of
Leibniz International Proceedings in Informatics (LIPIcs), page 30, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2021.12.

20 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type discipline
for structured communication-based programming. In Chris Hankin, editor, Programming
Languages and Systems, ESOP ’98, pages 122–138, Berlin, Heidelberg, 1998. Springer Berlin
Heidelberg. doi:10.1007/BFb0053567.

21 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty Asynchronous Session Types.
SIGPLAN Not., 43(1):273–284, January 2008. doi:10.1145/1328897.1328472.

22 Raymond Hu and Nobuko Yoshida. Hybrid Session Verification Through Endpoint API
Generation. In Perdita Stevens and Andrzej Wasowski, editors, Fundamental Approaches
to Software Engineering, volume 9633, pages 401–418. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2016. doi:10.1007/978-3-662-49665-724.

23 Raymond Hu and Nobuko Yoshida. Explicit Connection Actions in Multiparty Session
Types. In Marieke Huisman and Julia Rubin, editors, Fundamental Approaches to Software
Engineering, volume 10202, pages 116–133. Springer Berlin Heidelberg, Berlin, Heidelberg,
2017. Series Title: Lecture Notes in Computer Science. doi:10.1007/978-3-662-54494-57.

24 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-Based Distributed Programming
in Java. In Jan Vitek, editor, ECOOP’08, volume 5142 of LNCS, pages 516–541, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. doi:10.1007/978-3-540-70592-5_22.

25 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: a Minimal
Core Calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, May 2001.
doi:10.1145/503502.503505.

26 Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty Session Pro-
gramming With Global Protocol Combinators. In Robert Hirschfeld and Tobias Pape, editors,
34th European Conference on Object-Oriented Programming (ECOOP 2020), volume 166 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–9:30, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2020.9.

ECOOP 2022

https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1007/s10703-014-0218-8
https://play.integer32.com/?version=stable&mode=debug&edition=2018&gist=95979b17196adbc203c4f563e00d384b
https://play.integer32.com/?version=stable&mode=debug&edition=2018&gist=95979b17196adbc203c4f563e00d384b
https://doi.org/10.1145/3475061.3475082
https://doi.org/10.17487/rfc7230
https://doi.org/10.1145/3290341
https://doi.org/10.13052/rp-9788793519817
https://doi.org/10.1145/3434297
https://doi.org/10.4230/LIPIcs.ECOOP.2021.12
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/1328897.1328472
https://doi.org/10.1007/978-3-662-49665-724
https://doi.org/10.1007/978-3-662-54494-57
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1145/503502.503505
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9

4:28 Stay Safe Under Panic: Affine Rust Programming with Multiparty Session Types

27 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session Types
for Rust. In Proceedings of the 11th ACM SIGPLAN Workshop on Generic Programming,
WGP 2015, pages 13–22, New York, NY, USA, 2015. Association for Computing Machinery.
doi:10.1145/2808098.2808100.

28 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and Blame Assignment for
Higher-Order Session Types. SIGPLAN Not., 51(1):582–594, January 2016. doi:10.1145/
2914770.2837662.

29 Aparicio Jorge. Crate: Criterion, 2021. Last accessed: July 2021. URL: https://crates.io/
crates/criterion.

30 Wen Kokke. Rusty Variation: Deadlock-free Sessions with Failure in Rust. Electronic
Proceedings in Theoretical Computer Science, 304:48–60, September 2019. doi:10.4204/
eptcs.304.4.

31 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking Protocols
with Mungo and stmungo. In Proceedings of the 18th International Symposium on Principles
and Practice of Declarative Programming, PPDP ’16, pages 146–159, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2967973.2968595.

32 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols
with Mungo and stmungo: A session type toolchain for Java. Science of Computer Programming,
155:52–75, April 2018. Selected and Extended papers from the International Symposium on
Principles and Practice of Declarative Programming 2016. doi:10.1016/j.scico.2017.10.
006.

33 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay safe under panic: Affine
rust programming with multiparty session types, 2022. doi:10.48550/ARXIV.2204.13464.

34 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From Communicating Machines to
Graphical Choreographies. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’15, pages 221–232, New York,
NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2676726.2676964.

35 Julien Lange and Nobuko Yoshida. Verifying Asynchronous Interactions via Communicating
Session Automata. In Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification -
31st International Conference, CAV 2019, volume 11561 of Lecture Notes in Computer Science,
pages 97–117, Cham, 2019. Springer. doi:10.1007/978-3-030-25540-4_6.

36 Sam Lindley and J. Garrett Morris. A Semantics for Propositions as Sessions. In Jan Vitek,
editor, Programming Languages and Systems, pages 560–584, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg. doi:10.1007/978-3-662-46669-8_23.

37 Sam Lindley and J. Garrett Morris. Talking Bananas: Structural Recursion for Session Types.
SIGPLAN Not., 51(9):434–447, September 2016. doi:10.1145/3022670.2951921.

38 Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Generating Interactive
WebSocket Applications in TypeScript. Electronic Proceedings in Theoretical Computer Science,
314:12–22, April 2020. doi:10.4204/EPTCS.314.2.

39 Dimitris Mostrous and Vasco T. Vasconcelos. Affine Sessions. Logical Methods in Computer
Science ; Volume 14, 8459:Issue 4 ; 18605974, 2018. Medium: PDF Publisher: Episciences.org.
doi:10.23638/LMCS-14(4:14)2018.

40 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A Session Type
Provider: Compile-Time API Generation of Distributed Protocols with Refinements in F#.
In Proceedings of the 27th International Conference on Compiler Construction, CC 2018,
pages 128–138, New York, NY, USA, 2018. Association for Computing Machinery. doi:
10.1145/3178372.3179495.

41 Rumyana Neykova and Nobuko Yoshida. Let It Recover: Multiparty Protocol-Induced
Recovery. In Proceedings of the 26th International Conference on Compiler Construction,
CC 2017, pages 98–108, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3033019.3033031.

https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/2914770.2837662
https://doi.org/10.1145/2914770.2837662
https://crates.io/crates/criterion
https://crates.io/crates/criterion
https://doi.org/10.4204/eptcs.304.4
https://doi.org/10.4204/eptcs.304.4
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.1016/j.scico.2017.10.006
https://doi.org/10.48550/ARXIV.2204.13464
https://doi.org/10.1145/2676726.2676964
https://doi.org/10.1007/978-3-030-25540-4_6
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/3022670.2951921
https://doi.org/10.4204/EPTCS.314.2
https://doi.org/10.23638/LMCS-14(4:14)2018
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3033019.3033031

N. Lagaillardie, R. Neykova, and N. Yoshida 4:29

42 Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. Spy: Local Verification of Global
Protocols. In Axel Legay and Saddek Bensalem, editors, Runtime Verification, volume
8174 of LNCS, pages 358–363, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-40787-1_25.

43 Nicholas Ng, Jose Gabriel de Figueiredo Coutinho, and Nobuko Yoshida. Protocols by Default.
In Björn Franke, editor, Compiler Construction, pages 212–232, Berlin, Heidelberg, 2015.
Springer Berlin Heidelberg. doi:10.1007/978-3-662-46663-6_11.

44 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A Linear Decomposition
of Multiparty Sessions for Safe Distributed Programming. In Peter Müller, editor, 31st
European Conference on Object-Oriented Programming (ECOOP 2017), volume 74 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 24:1–24:31, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–LeibnizZentrum fuer Informatik. ISSN: 1868-8969. doi:10.4230/LIPIcs.
ECOOP.2017.24.

45 Alceste Scalas and Nobuko Yoshida. Lightweight Session Programming in Scala. In Shriram
Krishnamurthi and Benjamin S. Lerner, editors, 30th European Conference on Object-Oriented
Programming (ECOOP 2016), volume 56 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 21:1–21:28, Dagstuhl, Germany, 2016. Schloss Dagstuhl–LeibnizZentrum fuer
Informatik. ISSN: 1868-8969. doi:10.4230/LIPIcs.ECOOP.2016.21.

46 Alceste Scalas and Nobuko Yoshida. Less is More: Multiparty Session Types Revisited. Proc.
ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/3290343.

47 Authors Scribble. Scribble home page, 2021. URL: http://www.scribble.org.
48 McArthur Sean. Crate: Hyper, 2021. Last accessed: July 2021. URL: https://crates.io/

crates/hyper.
49 Company StackOverflow. Stackoverflow: 2020 Developer Survey, 2020. Last accessed: July

2021. URL: https://insights.stackoverflow.com/survey/2020.
50 Tengfei Tu, Xiaoyu Liu, Linhai Song, and Yiying Zhang. Understanding Real-World

Concurrency Bugs in Go. In Proceedings of the Twenty-Fourth International Conference
on Architectural Support for Programming Languages and Operating Systems, ASPLOS
’19, pages 865–878, New York, NY, USA, 2019. Association for Computing Machinery.
doi:10.1145/3297858.3304069.

51 Vasco T. Vasconcelos, Simon J. Gay, and António Ravara. Type checking a multithreaded
functional language with session types. Theoretical Computer Science, 368(1):64–87, 2006.
doi:10.1016/j.tcs.2006.06.028.

52 Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A multiparty session typing
discipline for fault-tolerant event-driven distributed programming. Proceedings of the ACM on
Programming Languages, 5(OOPSLA):1–30, October 2021. doi:10.1145/3485501.

53 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The Scribble Protocol
Language. In Martín Abadi and Alberto Lluch Lafuente, editors, Trustworthy Global Computing,
pages 22–41, Cham, 2014. Springer International Publishing. doi:10.1007/978-3-319-05119-
2_3.

54 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida. Stat-
ically Verified Refinements for Multiparty Protocols. Proc. ACM Program. Lang., 4(OOPSLA),
November 2020. doi:10.1145/3428216.

ECOOP 2022

https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1007/978-3-642-40787-1_25
https://doi.org/10.1007/978-3-662-46663-6_11
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1145/3290343
http://www.scribble.org
https://crates.io/crates/hyper
https://crates.io/crates/hyper
https://insights.stackoverflow.com/survey/2020
https://doi.org/10.1145/3297858.3304069
https://doi.org/10.1016/j.tcs.2006.06.028
https://doi.org/10.1145/3485501
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1007/978-3-319-05119-2_3
https://doi.org/10.1145/3428216

How to Take the Inverse of a Type
Daniel Marshall # Ñ

School of Computing, University of Kent, Canterbury, UK

Dominic Orchard # Ñ

School of Computing, University of Kent, Canterbury, UK
Department of Computer Science and Technology, University of Cambridge, UK

Abstract
In functional programming, regular types are a subset of algebraic data types formed from products
and sums with their respective units. One can view regular types as forming a commutative semiring
but where the usual axioms are isomorphisms rather than equalities. In this pearl, we show that
regular types in a linear setting permit a useful notion of multiplicative inverse, allowing us to “divide”
one type by another. Our adventure begins with an exploration of the properties and applications of
this construction, visiting various topics from the literature including program calculation, Laurent
polynomials, and derivatives of data types. Examples are given throughout using Haskell’s linear
types extension to demonstrate the ideas. We then step through the looking glass to discover what
might be possible in richer settings; the functional language Granule offers linear functions that
incorporate local side effects, which allow us to demonstrate further algebraic structure. Lastly, we
discuss whether dualities in linear logic might permit the related notion of an additive inverse.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases linear types, regular types, algebra of programming, derivatives

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.5

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.1

Funding This work is supported by an EPSRC Doctoral Training Award (Marshall) and EPSRC
grant EP/T013516/1 (Verifying Resource-like Data Use in Programs via Types).

Acknowledgements Thanks to Nicolas Wu and Harley Eades III for their valuable comments and
discussion on earlier drafts, and also to the anonymous reviewers for their helpful feedback.

1 Prologue: Consuming with Inverses

Algebraic data types are the bread-and-butter of both the theory and practice of functional
programming. The algebraic view gives rise to vast possibilities for manipulating types, and
for “calculating” programs from their type structure in the Bird-Meertens tradition [7, 8, 37].

Regular types are a subset of algebraic types formed from products ×, sums +, unit 1
and empty types 0, and fixed points, giving rise to polynomial type expressions [37, 40]
and an algebraic structure akin to a commutative semiring. The multiplicative part is by
products and the unit type, and the additive part by sums and the empty type. However,
the semiring laws are relaxed to isomorphisms, e.g., a × (b × c) ∼= (a × b) × c is witnessed by
a bijection between the two ways of associating a triple expressed as pairs. The cardinality
operation |−| (mapping a type to its size) is then a semiring homomorphism (a functor)
from the structure of types to natural numbers, e.g., |a × b| = |a||b|. This provides a useful
technique for understanding when different type expressions are isomorphic by checking if
their cardinalities are equal, a fact leveraged by many a student for decades. In category
theory, we can model regular types as a (commutative) semiring category (or rig category [11])
or a (symmetric) bimonoidal category [26], with semiring rules as natural isomorphisms.
Either way, a rose by any other name is still as sweet.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Daniel Marshall and Dominic Orchard;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 5; pp. 5:1–5:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dm635@kent.ac.uk
https://www.starsandspira.ls
https://orcid.org/0000-0002-4284-3757
mailto:d.a.orchard@kent.ac.uk
https://dorchard.github.io
https://orcid.org/0000-0002-7058-7842
https://doi.org/10.4230/LIPIcs.ECOOP.2022.5
https://doi.org/10.4230/DARTS.8.2.1
https://doi.org/10.4230/DARTS.8.2.1
https://doi.org/10.4230/DARTS.8.2.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 How to Take the Inverse of a Type

Given the rich algebraic analogues and models for types, one may then (perhaps idly)
wonder: if product types are multiplicative, is there a notion of multiplicative inverse for
types which lets us divide one type by another? We show that this question has a rather neat
and simple answer for linear types:

▶ Definition 1. The multiplicative inverse of type τ is the type of functions consuming τ :

τ−1 ≜ τ ⊸ 1

where ⊸ is the linear function type, of functions which use their argument exactly once.

Linear types are an ideal setting for capturing the idea of consumption since linear types
treat values as resources which must be used exactly once – they can never be discarded (no
weakening) or duplicated or shared (no contraction) [20, 51, 55]. Therefore, a function τ ⊸ 1
must consume its argument rather than simply returning a value of the unit type.

Linear regular types have products ⊗ (“multiplicative conjunction”) where each component
of the pair is used exactly once and sums ⊕ (“additive disjunction”) which behave like normal
sum types, though whichever component we are given must of course be used linearly. Linear
regular types again form a commutative semiring structure, with equalities as isomorphisms.

Given τ−1 ≜ τ ⊸ 1, we can immediately consult the standard meaning of multiplicative
inverse with regards to its equational theory: a group extends a monoid (X, •, e) such that
for every x ∈ X there exists an inverse element denoted x−1 ∈ X, for which x • x−1 = e and
x−1 • x = e. If the use of the notation −−1 and the terminology of inverses is warranted
then we could reasonably expect τ−1 ⊗ τ ∼= 1. Given the above definition of inverse, then
one direction of this isomorphism, from τ−1 ⊗ τ to 1, is inhabited via function application:

λ(u, x). u x : (τ−1 ⊗ τ)⊸ 1 (1)

where the first component of the pair consumes the second component. Similarly we can
construct the symmetric version (τ ⊗ τ−1)⊸ 1 by first flipping the components of the pair.

These are the only inhabitants of their types: the multiplicative inverse of τ must consume
the τ value in the other component of the pair due to the constraints of linearity. Indeed,
starting from the goal of defining a multiplicative inverse for a linear type such that the
property τ−1 ⊗ τ ⊸ 1 holds, by “currying” we must have a map from τ−1 to τ ⊸ 1.
Therefore, τ ⊸ 1 is the most natural choice for an inverse to τ , as any other inverse would
first need to be mapped to τ ⊸ 1 in order to consume the value of type τ .

We call equation (1) and its symmetric counterpart lax inverse laws following category
theory terminology: strict structures have equalities, strong have isomorphisms, and lax have
only morphisms in one direction. The rest of the commutative semiring structure of linear
regular types is “strong” as associativity, commutativity, etc. are isomorphisms. However,
for inverses, the opposite direction from 1 to τ−1 ⊗ τ does not exist in general: for any τ

we cannot necessarily form a pair τ−1 ⊗ τ as we do not have an algorithm to construct an
arbitrary τ value nor its consumer. Even if we can inhabit 1⊸ (τ−1 ⊗ τ) for a particular τ

(e.g., if there is a default value for a type and a standard way of consuming its values) this
only forms an isomorphism τ−1 ⊗ τ ∼= 1 in the limited setting of 1-element types. The crux
is that division loses information: τ−1 ⊗ τ ⊸ 1 consumes knowledge of the original τ value.

In a non-linear (“Cartesian”) setting, we could still define inverses in a similar way
as τ−1 ≜ τ → 1, and the lax inverse law τ−1 × τ → 1 would be similarly inhabited by
function application. However, non-linearity makes this definition weaker and less natural,
as ((τ → 1) × τ) → 1 is also inhabited by the function λ(u, x).1 which throws away both
of its arguments and returns the unit value. We could just as easily construct this term of

D. Marshall and D. Orchard 5:3

type (τ−1 × τ) → 1 regardless of the definition we chose for τ−1. It is only by working in the
context of linear types that our notion of inverse is given meaning, as a function τ ⊗ τ−1 ⊸ 1
must use both the term τ and its inverse, for which τ−1 ≜ τ ⊸ 1 is the natural fit.

This definition of τ−1 lets us view types as an algebraic structure which is almost
a semifield; a semifield resembles a semiring except that every nonzero element has a
multiplicative inverse. The terminology of skewness can also be applied here; for example,
a skew monoid is one in which the associativity and unit properties are morphisms rather
than isomorphisms or equalities [48, 50]. Thus our construction could be described as a
“multiplicative skew inverse”. Going forwards we use just “inverse” for brevity.

Roadmap

In this pearl, we explore various applications and consequences of this idea. We begin by
programming with inverses in Haskell via the linear types extension of the Glasgow Haskell
Compiler1 (based on the work of Bernardy et al. [6]), and proceed to consider equations
arising from functions over inverses and other algebraic implications.

One interesting result we uncover is that whilst regular types yield polynomial type
expressions, inverse types yield an analogue of the mathematical generalisation of Laurent
polynomials (Section 4); these differ from ordinary polynomials in that they can have terms of
negative degree, providing a more general notion of exponent for regular types. But inverses
turn out to have applications beyond the merely theoretical; we show inverses allow the
notion of derivatives for regular types (à la McBride [37]) to be generalized, providing the
ability to take the derivative of a type with respect to another type (Section 5). This yields a
way to generate data types with n-holes (holes of n contiguous elements) which we apply to
the common programming idiom of stencil computations.

In the second half, we consider possibilities for developing the algebraic structure of
inverse types further, by working in richer and more expressive settings. It turns out that
the multiplicative inverse becomes an involution (Section 6) if we can express sequentially-
realizable functions [32] which carry out local side effects that are not observable externally.
We demonstrate this using linear session channels à la Lindley and Morris [30] which allow
inverses to do more computationally. We show examples in the modern functional language
Granule which has linear types at its core [42]. This involution also happens to yield a
construction akin to the familiar continuation monad, which we briefly discuss.

Lastly, we show it is also possible to define an additive inverse (Section 7). However, this
requires working in a different setting where products are given by linear logic’s & rather
than ⊗ and similarly sums are ` rather than ⊕. Thus, while we can develop the theory for
each kind of inverse separately, there is not yet any type theory where the two can coexist.

A side aim of this pearl is to popularise the increasing abilities of modern functional
languages to express linear types. For those unfamiliar with linear types and wishing to go
beyond the intuitions here, Appendix A gives some standard typing rules and syntax. We
also provide an artifact2 including all code examples given throughout in both Haskell and
Granule, to aid with understanding and allow for further experimentation.

1 Available as of GHC 9.0.1, https://www.haskell.org/ghc/download_ghc_9_0_1.html, released Feb
2021.

2 https://doi.org/10.5281/zenodo.6275280

ECOOP 2022

https://www.haskell.org/ghc/download_ghc_9_0_1.html
https://doi.org/10.5281/zenodo.6275280

5:4 How to Take the Inverse of a Type

2 Programming with Inverses

We stand at an exciting juncture for our community. Finally, more than 30 years after their
conception in logic [20], linear types are starting to gain a foothold in mainstream functional
programming languages. One such language is Haskell, via GHC’s linear types extension [6]
which uses a graded type system [42] based on annotating function types a %r -> b with their
“multiplicity” r (which can also be understood as a coeffect, or consumption effect [43]), that
describes how many times the argument is used. In Haskell, this can either be 1 representing
linear behaviour or Many representing unrestricted behaviour, including the possibility of 0
uses. We can thus describe inverses and a curried version of the lax inverse law as follows:3

1 type Inverse a = a %1 -> () -- recall () is the unit type 1 of Haskell
2

3 divide :: a %1 -> Inverse a %1 -> ()
4 divide x u = u x

The naming of divide is to evoke the usual intuition associated with groups where a/b = a•b−1

and since this function “actions” the consumption of the first input by the second.
There are other linearly-typed languages in which one could also readily apply our notion

of inverses, e.g., ATS [47], Alms [49], and Quill [39]. Through some translation we can also
represent inverses in languages with more expressive graded type systems, such as Granule [42]
and Idris 2 [10], that can describe linearity as well as other flavours of resourceful data. We
focus on Haskell for now, but the ideas are the same no matter the language.

In the concrete setting of an actual language, we can now give an example inhabitant of
an inverse type. These are typically defined by some pattern matching over all the possible
inputs, where the act of pattern matching on the incoming value consumes the input as it
inspect its value. For example, an inverse to Haskell’s boolean type is given by:

1 boolDrop :: Inverse Bool
2 boolDrop True = ()
3 boolDrop False = ()

The linear-base library for Haskell provides a type class for those types which are “con-
sumable”: inhabitants of the inverse of type a. The instance of Consumable for the boolean
type is the boolDrop function defined explicitly above.

1 class Consumable a where
2 consume :: a %1-> ()
3

4 instance Consumable Bool where
5 consume True = ()
6 consume False = ()

Various built-in types like Int have a “linearly unsafe” implementation which simply drops
the argument rather than, say, consuming a machine integer by matching on the 0 case and
otherwise recursively consuming the integer decremented by 1, which would be safe but slow!
This explicit weakening operation can also be algorithmically generated from a regular type,
following a generic deriving mechanism [23].

3 Note that we first need to enable the linear types extension, by using the pragma {-# LANGUAGE
LinearTypes #-}; this will be left implicit in all of the snippets of Haskell throughout the pearl.

D. Marshall and D. Orchard 5:5

A key aspect of this typing discipline is that we do not want certain types to be consumable
without side effects; for example, file handles, sockets, channels, or any other piece of data
which acts as a proxy for a resource for which there exists some protocol of interaction. In
Section 6, we see more interesting inhabitants of inverse types in a more expressive setting.

We can consider algebraic properties of inverses and understand them through the lens of
linear regular types using this definition, while bearing in mind that our inverses are lax,
and so the properties will hold only in one direction. For example, consider the following
property, which is a simple application of the distributivity of multiplication over addition.

(τ ⊕ 1) ⊗ τ−1 ∼= ((τ ⊗ τ−1) ⊕ τ−1)
⊸ 1 ⊕ τ−1 (2)

We can understand τ ⊕1 as the linear version of the traditional Haskell Maybe data type (called
option in ML), and thus recover the following function definition in Haskell corresponding to
the above (in)equation, giving us a way to distribute an inverse into a Maybe value.

1 maybeNeg :: (Maybe a) %1 -> Inverse a %1 -> Maybe (Inverse a)
2 maybeNeg Nothing u = Just u
3 maybeNeg (Just n) u = letUnit (divide n u) Nothing
4

5 letUnit :: () %1 -> a %1 -> a -- Abstracts ‘let () = t1 in t2‘ - needed since
6 letUnit () x = x -- let bindings are currently always non-linear.

In the second case of maybeNeg, we cannot simply return Nothing since u and n are linearly
typed; we must first apply u to n (via divide) to consume both values. We then want
let () = divide n u in Nothing, but linear let-bindings are not yet implemented (as of
GHC 9.2.2, released in March 2022), so we abstract this pattern as the function letUnit
instead.

3 Calculating with Inverses

Regular types come equipped with various equations governing their operations which can
be used for reasoning about functional programs [18] and even deriving implementations
starting from equational specifications (the Bird-Meertens formalism) [7, 8, 19]. We consider
here analogous equations for calculating with inverses. We explore these equations from the
perspective of the linear λ-calculus with regular types, illustrating some points using Haskell
for convenience. One can freely translate between the two.

In a linear types setting, many of the usual equations governing products are not available
to us, because the “tupling” that combines regular functions f : A → B and g : A → C

into ⟨f, g⟩ : A → (B × C) violates linearity by copying a value of type A, and projections
π1 : A × B → A and π2 : A × B → B violate linearity by discarding one component of a
pair. We can however work with ⊗ as a bifunctor (which lifts f : A⊸ B and g : C ⊸ D to
f ⊗ g : A ⊗ C ⊸ B ⊗ D), and cotupling [h, k] : A ⊕ B ⊸ C (for h : A⊸ C and k : B ⊸ C)
is still available. Thus we have equations for (bi)functoriality of ⊗ and ⊕:

id ⊗ id = id id ⊕ id = id

(f ⊗ g) ◦ (h ⊗ k) = (f ◦ h) ⊗ (g ◦ k) (f ⊕ g) ◦ (h ⊕ k) = (f ◦ h) ⊕ (g ◦ k)

and equations interacting cotupling, injections and the ⊕ bifunctor, e.g., to name a few:

[f, g] ◦ inl = f [f, g] ◦ inr = g [h ◦ inl, h ◦ inr] = h

ECOOP 2022

5:6 How to Take the Inverse of a Type

For brevity we elide the rest as they are not the object here. Appendix A.1 gives the
remaining equations (which are the subset of those from Gibbons [18] that are permitted in
a linear setting). There are various other equations arising from the isomorphisms of regular
types (Section 1), e.g., for the isomorphisms witnessing associativity with α : (A ⊗ B) ⊗ C ⊸
A ⊗ (B ⊗ C) and αi is its converse, then we have equations α ◦ αi = αi ◦ α = id.

Inverse as a functor

A few equations arise from the simple fact that multiplicative inverse is a contravariant
functor, and thus we have a contravariant “map” function via function composition:

1 comap :: (b %1 -> a) %1 -> Inverse a %1 -> Inverse b
2 comap f g = \x -> g (f x)

A functor’s action on a morphism is commonly written using the same symbol as its action
on objects (types), just as seen above for ⊗ and ⊕. However, writing comap applied to f

as f−1 gives the wrong impression: we are not representing the inverse of a function, but
rather lifting a function to work on inverses. We therefore write f⊖1 for comap f to avoid
confusion.4

We therefore have the functoriality equations for inverses:

id⊖1 = id g⊖1 ◦ f⊖1 = (f ◦ g)⊖1

Let div : A ⊗ A−1 ⊸ 1 be the lax inverse law as a function in the linear λ-calculus (the
uncurried form of the function divide :: a -> Inverse a -> () we defined for Haskell earlier).
Given two functions h : A⊸ B, k : B ⊸ A, we then have the following naturality property:

div ◦ (h ⊗ k⊖1) = div

which can be seen more clearly in a diagram as:

A ⊗ A−1

div

##

h ⊗ k⊖1

��
B ⊗ B−1

div
// 1

i.e., transforming a value and its inverse prior to consumption is the same as us just consuming
the original value. This property follows from the definitions. We revisit this law in Section 6
once we introduce consuming functions that can have some (safe-by-linearity) side effect.

Monoidal structure of inverses

The inverse (contravariant) functor also has additional monoidal functor structure, which we
can write in Haskell simply as:

1 munit :: () %1 -> Inverse ()
2 munit () = (\() -> ())
3

4 mmult :: (Inverse a) %1 -> (Inverse b) %1 -> Inverse (a, b)
5 mmult f g = \(a, b) -> letUnit (f a) (g b)

4 We considered using the notation τ⊖1 for types as well, but thought it was too ugly to put everywhere.

D. Marshall and D. Orchard 5:7

i.e., munit consumes a unit value by pattern matching then returning unit (the standard
polymorphic identity function would have worked equally well), and mmult returns a function
that consumes a pair by using f to consume the first component then g to consume the
second. The usual axioms of a (lax) monoidal functor (associativity and unit laws) [34] hold,
interacting with the monoidal structure of ⊗; we detail these axioms in Appendix A.1.

This monoidal functor structure on inverses gives us the simple idea that we can combine
multiple inverses into a composite inverse; in other words, a pair of consumers can be turned
into a consumer of pairs. This satisfies the following equation:

ρ ◦ (div ⊗ div) = div ◦ (id ⊗ mmult) ◦ interchange

where ρ : 1⊗1⊸ 1 collapses units and interchange : (A⊗B)⊗ (C ⊗D)⊸ (A⊗C)⊗ (B ⊗D)
is derived from associativity and commutativity isomorphisms. This rule can be seen more
clearly as a diagram:

(A ⊗ A−1) ⊗ (B ⊗ B)−1

div ⊗ div
��

interchange // (A ⊗ B) ⊗ (A−1 ⊗ B−1)

id ⊗ mmult
��

1 ⊗ 1
ρ

// 1 (A ⊗ B) ⊗ (A ⊗ B)−1
div

oo

i.e., we can perform two inverse eliminations or we can rearrange, combine the inverses into
one, and then apply a single elimination.

The idea of combining products of inverses together leads naturally to notions of expo-
nentiation, but with negative exponents, which we explore next.

4 Exponentiation with Inverses

In the standard semiring of (linear) regular types discussed in Section 1, the type constructors
0, 1, ⊗ and ⊕ generate polynomials over some type meta-variable where terms with exponents
τn are represented by the n-wise product of τ where τ0 = 1. For n ≥ 0, this gives us the
usual positive exponent laws up to isomorphism (using associativity and commutativity):

∀a, b. (a ≥ 0 ∧ b ≥ 0) τa ⊗ τ b ∼= τa+b (exp+)
∀a. (a ≥ 0) σa ⊗ τa ∼= (σ ⊗ τ)a (expσ)

Introducing the multiplicative inverse allows us to generalise these to negative exponents,
and thus to generate Laurent polynomials over types, which differ from ordinary polynomials
in that they can have terms of negative degree [28].

We define exponentiation over a type τ for negative exponents as

∀a.(a ≥ 0) τ−a ≜ (τ−1)a

For example, τ−2 = (τ−1)2 = τ−1 ⊗ τ−1 capturing a pair of inverses.
It is clear that the first exponential law (equation exp+) generalises in the case that both

coefficients are negative, since we define τ−n as a product of n inverses τ−1 in much the
same way that τn represents a product of n values of type τ , i.e.,

∀a, b. (a ≥ 0 ∧ b ≥ 0) τ−a ⊗ τ−b ∼= τ−(a+b) (exp−)

This is an isomorphism as it amounts to re-associating products.

ECOOP 2022

5:8 How to Take the Inverse of a Type

In the case that just one coefficient is negative, our notion of inverse satisfies a generalisa-
tion of the exponentiation law as a lax property:

∀a, b. (a ≥ 0 ∧ b ≥ 0) τa ⊗ τ−b ⊸ τa−b (exp±)

The lax inverse law τ ⊗ τ−1 ⊸ 1 is then a specialisation of the above with a = b = 1 since
τ0 = 1. As another example, consider a = 5 and b = 3; then we can eliminate/consume three
elements of a quintuple to get pairs (a − b = 2). This raises an interesting combinatorial
question about the number of functions inhabiting this type (witnessing this lax property).

▶ Proposition 1. It turns out that the number of possible witnesses of the lax inverse law

τa ⊗ τ−b ⊸ τa−b if a ≥ 0, b ≥ 0 and a ≥ b is simply
(

a

b

)
× (a − b)! = a!

b! .

The intuition for this is that if we have some number a of values and some number b of
inverses, and we have more values than inverses, then we must apply every single inverse
to a value, and the only choice we can make is which values we are going to consume.
Combinatorially there are

(
a
b

)
= a!

b!(a−b)! ways to choose b of the a elements, leaving (a − b)
elements remaining in the end which we can permute in any order (hence the (a − b)! factor
which cancels out). If b ≥ a, then we must instead consume every value, and so conversely
we are simply choosing which a inverses we will use to do this, giving a result of b!

a! .
Thus far in the paper we have examined the linear λ-calculus and linear types in Haskell,

where inverses have no significant computational content beyond consuming a linear value.
However, later in Section 6 we will work in a setting with inverses that incorporate local side
effects. Notice that in such a setting the order in which we apply inverses may be important.
Thus, we also consider the result we obtain when taking this into consideration.

▶ Proposition 2. If reorderings are considered distinct, then the number of possible witnesses
of the lax exponentiation law τa ⊗ τ−b ⊸ τa−b if a ≥ 0, b ≥ 0 and a ≥ b is a factorial (a!).

This is derived by P (a, b) × (a − b)!, i.e. a!
(a − b)! × (a − b)! = a! since again we can “consume”

elements via their inverses in any order, giving the number of permutations P (a, b) of length
b taken from a, and there are (a − b) remaining elements left afterwards to permute. Here we
run through the proof in full, as it is instructive about how to inhabit the law in either case.

Proof. We prove that the number of possible witnesses of the lax exponentiation law is as
given above by induction on b (and recall we assume a ≥ b).

(b = 0) For the base case, we are then considering |τa ⊗ τ0 ⊸ τa−0| = |τa ⊸ τa| since
τ0 = 1. The possible inhabitants of τa ⊸ τa are then just permutations of the a-wise
product of τ and so |τa ⊸ τa| = a!, giving the result here.
(b = 1) We next consider another case where b = 1 since this is instructive (though not
necessary). Here we thus need to find how many ways there are to inhabit τa⊗τ−1 ⊸ τa−1,
i.e., how many ways to “cut out” one τ from an a-wise product of τ .
We can construct a many terms as witnesses for this type by picking any one of the τ

values to consume with the inverse τ−1:

λ((a1, a2, . . . , an), u) = let () = u a1 in (a2, . . . , an) : (τa ⊗ (τ ⊸ 1))⊸ τa−1

λ((a1, a2, . . . , an), u) = let () = u a2 in (a1, a3, . . . , an) : (τa ⊗ (τ ⊸ 1))⊸ τa−1

. . .

λ((a1, a2, . . . , an), u) = let () = u an in (a1, a2, . . . , an−1) : (τa ⊗ (τ ⊸ 1))⊸ τa−1

D. Marshall and D. Orchard 5:9

Whichever witness we choose, one inverse has been applied, so a − 1 of the original
elements remain. These can be permuted in any order, giving a total of a × (a − 1)! = a!
witnesses.
(b = n + 1) (Inductive step) We need to show that |τa ⊗ τ−(n+1) ⊸ τa−(n+1)| = a!.
We know τ−(n+1) ∼= τ−1 ⊗ τ−n as we can simply “split off” one of the n + 1 inverses from
the remaining product of n inverses. Similarly to the base case (b = 0), we first apply this
inverse to any of the elements of τa; there are a possible choices here. This leaves a − 1
of the original elements remaining, and n inverses. Therefore we can reason as follows:

|τa ⊗ τ−(n+1) ⊸ τa−(n+1)|

= |(τa ⊗ τ−1) ⊗ τ−n ⊸ τa−(n+1)| (split off one inverse, as above)

= a × |τa−1 ⊗ τ−n ⊸ τ (a−1)−n| (a ways to apply one inverse)
= a × (a − 1)! (induction with a − 1)
= a! □

Note, a ≥ (n+1) implies (a−1) ≥ n, which is needed to inductively apply the proposition.
Another way to see this intuitively is as follows. For |τa ⊗ τ−b ⊸ τa−b| (with a ≥ b), in order
to find a witness we simply need to arrange the a elements in any order, such that the first b

are assigned to the b inverses and the remaining a − b are left unused. There are a! ways to
arrange the a elements, giving the result. Again, in the case that b ≥ a we just consider the
b inverses instead, assigning inverses to elements, giving a total of b! orderings. ◀

After that divertimento into the inhabitants of the negative exponentiation law (exp±) and its
cardinality, we consider the second exponentiation law (sometimes called power of a product),
which for regular types is the following isomorphism, by commutativity and associativity:

∀a. (a ≥ 0) σa ⊗ τa ∼= (σ ⊗ τ)a (expσ)

For a version of this law with negative exponents, a special case with a = −1 is already
provided by the monoidal functor structure of Section 3 with mmult : σ−1 ⊗ τ−1 ⊸ (σ ⊗ τ)−1

which combines inverses. Composing this with the double-negative-exponents law exp− :
τ−a ⊗ τ−b ∼= τ−(a+b) yields the generalisation to all negative exponents:

∀a. (a ≥ 0) σ−a ⊗ τ−a ⊸ (σ ⊗ τ)−a (exp−σ)

For example, if a = 2 then this is derived as:

σ−2 ⊗ τ−2 α+γ∼= (σ−1 ⊗ τ−1) ⊗ (σ−1 ⊗ τ−1)
mmult⊗mmult
⊸ (σ ⊗ τ)−1 ⊗ (σ ⊗ τ)−1

exp−∼= (σ ⊗ τ)−2

where the isomorphism on the left applies associativity α and commutativity γ.
Overall, negative exponents generalise the “inverses as consumers” story. Given a product

of two exponentiated types, one positive and one negative, then “actioning” the inverses
involves consuming some number of elements of a product, leaving us with the remainder.
This captures the notion of “projection”, where some part of a type is thrown away and some
part is retained. This pattern is relevant next, where having inverses and negative exponents
for regular types allows us to define the derivative of a type with respect to another type.

5 Differentiating with Inverses

With our notion of multiplicative inverse in hand, we can apply other ideas from mathematics
which rely on the presence of division.

ECOOP 2022

5:10 How to Take the Inverse of a Type

First, let’s recall the remarkable feature of regular types (with added type variables) that
one can compute their derivative by applying the laws of Newton-Leibniz calculus [29]. This
produces a companion data type of “one-hole contexts” for the original type, a beautiful idea
due to McBride [37]. For example, for the parametric type α4 (4-tuples with elements all of
the same type) its derivative with respect to α is 4α3, equivalent to α3 + α3 + α3 + α3. The
intuition behind this is that there are four distinct ways in which you can take the original
data type (4-tuples) and remove a single element (creating a hole), leaving the surrounding
context (a triple of the three remaining elements). We can visualise these four possibilities
(each of type α3) as follows, where − represents the “hole” and where x, y, z, w : α:

(−, y, z, w) (x, −, z, w) (x, y, −, w) (x, y, z, −)

We write this derivative as ∂α(α4), i.e., the partial derivative with respect to α keeping other
variables constant (including recursion variables or other type parameters).

This approach can be applied to recursive regular types. For example, McBride’s technique
calculates ∂α(List α) = ∂α(µX.1 + α × X) = (List α) × (List α) representing the idea that a
list with a single hole is equivalent to a pair of lists – the prefix of elements before the hole
and the suffix of elements after the hole. The data type of list zippers (à la Huet [22]) is then
given by α × ∂α(List α) where we have a value α which “fills” the hole position, paired with
its context. It is possible to extend this notion further to consider derivatives of general data
types which act as containers [1] or even data which is in the process of being transformed
from one type to another [38], but here we will concentrate on the simpler cases.

A data type of contexts with two holes can be obtained by repeated differentiation,
i.e., ∂α(∂α(f(α))), and thus we can compute contexts with n holes by taking the n-th
derivative. Such holes are all independent; they can appear anywhere in the type. For
example, ∂α(∂α(List α)) = (List α×(List α×List α))+((List α×List α)×List α), representing
two ways of adding another hole to a list which already has one hole: either we have another
hole in the left sublist or in the right sublist.

Though the derivatives above are based on standard regular types which have the structure
of intuitionistic logic, linear regular types form a semiring in exactly the same syntactic
manner. Thus, the notion of taking the derivative of a type applies equally well in the linear
setting. We consider derivatives of linear regular types going forward, and show that inverses
allow us to define what it means to take a derivative with respect to another type.

First, let’s stay on the firm ground of real analysis. Recall from calculus that we can take
the derivative of a function f with respect to another function g by the following method:

∂g(α)(f(α)) = ∂α(f(α))
∂α(g(α)) (3)

For example, taking f(α) = α4 and g(α) = α2, then:

∂(α2)α
4 = ∂α(α4)

∂α(α2) = 4α3

2α
= 2α2 (4)

Giving this an interpretation in regular types, rather than R, recall α4 is a 4-tuple (a
quadruple) and α2 is a 2-tuple (a pair). Differentiating α4 with respect to α2 yields 2α2

which is the data type capturing the two possible contexts obtained by removing a pair from
the original type, leaving two elements in the remaining context. We call the pair removed
here a 2-hole, as it captures two contiguous (adjacent) holes. Note that this is different to the
case, described earlier, of differentiating with respect to α twice; this gave two independent
holes which did not necessarily have to be contiguous. The resulting type here 2α2 = α2 + α2

can be interpreted as the type of 2-hole contexts, illustrated as:

(−1, −2, z, w) and (x, y, −1, −2) (5)

D. Marshall and D. Orchard 5:11

where −1 and −2 correspond to the two successive components of the 2-hole. We are not
allowed to have the 2-hole splitting the remaining two elements like (x, −1, −2, y); the data
type of 2-hole contexts views the whole type in terms of pairs.

The derivative calculated in (4) was in R and then we interpreted the result as a type.
This however does not generalise well. Consider the derivative of α3 with respect to α2:

∂(α2)α
3 = ∂α(α3)

∂α(α2) = 3α2

2α
= 3

2α

We simplified the result following the axioms of fields here but are left with the unwieldy
3
2 which we cannot meaningfully translate into the realm of types. Using our approach of
multiplicative inverses instead yields a more generally applicable result for regular types.

▶ Definition 2. The derivative of a regular type with respect to another regular type is:

∂g(α)f(α) = ∂αf(α) ⊗ (∂αg(α))−1 (6)

This construction yields the usual derivative of the numerator, paired with a consumer of
the derivative of the denominator.

Returning to the example of taking the derivative of α4 with respect to α2 shown in
equation (4), we instead apply the inverses approach of Definition 2 which yields:

∂α2(α4) = 4α3 ⊗ (2α)−1

This is the type 4α3 of 1-hole contexts for 4-tuples (the four possible triples resulting from
removing one element) paired with an inverse which can be used to consume a further α

value to create a 2-hole. This inverse consumes 2α values, i.e., α ⊕ α, where the α value
is tagged with an extra bit of information to explain to the inverse which element is being
removed to create the 2-hole. We can see this as the four possible 1-holes with an inverse
ι : (2α)−1 which can be actioned to recover the 2-holes for 4-tuples as in equation (5):

(−, y, z, w) ⊗ ι

ι(inr y)

(x, −, z, w) ⊗ ι

ι(inl x)~~

(x, y, −, w) ⊗ ι

ι(inr w)

(x, y, z, −) ⊗ ι

ι(inl z)��
(−, −, z, w) (x, y, −, −)

(7)

with the usual injections inl : A⊸ A ⊕ B and inr : B ⊸ A ⊕ B.
We put all this together in Haskell to define a notion of 1-hole contexts for 4-tuples

(QuadContexts below), which we pair with consumers to create 2-holes (QuadTwoContexts
below):

1 -- Represents 4a^3 (the four possible ways to remove one element from a 4-tuple).
2 data QuadContexts a =
3 Mk1 a a a -- context: -, y, z, w
4 | Mk2 a a a -- context: x, -, z, w
5 | Mk3 a a a -- context: x, y, -, w
6 | Mk4 a a a -- context: x, y, z, -
7

8 data QuadTwoContexts a = Mk (QuadContexts a) (Inverse (Either a a))

We can then use the inverses, as in the above illustration, to map from a 2-hole and a context
back into the original α4 type, implementing the illustration of equation (7):

ECOOP 2022

5:12 How to Take the Inverse of a Type

1 fromContext :: (a, a) %1 -> QuadTwoContexts a %1 -> (a, a, a, a)
2 -- In the first two cases, we put the 2-hole at the start of the 4-tuple.
3 fromContext (h1, h2) (Mk (Mk1 y z w) inv) =
4 letUnit (inv (Right y)) (h1, h2, z, w) -- consume y then fill 2-hole
5

6 fromContext (h1, h2) (Mk (Mk2 x z w) inv) =
7 letUnit (inv (Left x)) (h1, h2, z, w) -- consume x then fill 2-hole
8

9 -- In the second two cases, we put the 2-hole at the end of the 4-tuple.
10 fromContext (h1, h2) (Mk (Mk3 x y w) inv) =
11 letUnit (inv (Right w)) (x, y, h1, h2) -- consume w then fill 2-hole
12

13 fromContext (h1, h2) (Mk (Mk4 x y z) inv) =
14 letUnit (inv (Left z)) (x, y, h1, h2) -- consume z then fill 2-hole

The intuition is that the inverse (2α)−1 (inv above) is used to consume an element of the
4-tuple that overlaps with the hole, with the constructor of Either delineating from which
position we are consuming.

This technique becomes more useful when we want 2-hole contexts in a type which does
not contain an even number of elements–or more generally when we want n-hole contexts
from a data type whose number of elements are not exactly divisible by n. For example, we
can now compute the type of 5-tuples with 2-holes as:

∂(α2)α
5 = 5α4 ⊗ (2α⊸ 1)

The usual interpretation in the real domain would have yielded 5
2 α3 for which we have no

interpretation in regular types. Instead, we can use the inverses approach to yield contexts
of 2-holes for 5-tuples. The resulting equivalent of fromContext then has to capture a final
hole which overlaps the preceding one, to deal with the fact that 5 is not factored by 2.

An even more interesting possibility presents itself, however. Note that the above example
of 2-hole contexts for 4-tuples considers the context to also be chunked into contiguous pairs,
and thus we cannot have the context (x, −1, −2, w) with the 2-hole “in the middle”. However,
such an interpretation should certainly be possible using the inverse approach, as there is
enough information available: in the domain of R, division (multiplying with an inverse) is
a non-injective operation (it destroys information) whereas with regular types, the inverse
preserves the structure of the original type until we apply divide. Indeed, we can define the
following alternate way of mapping the QuadTwoContexts data type back to a 4-tuple:

1 fromContext’ :: (a, a) %1 -> QuadTwoContexts a %1 -> (a, a, a, a)
2 fromContext’ (h1, h2) (Mk (Mk1 y z w) inv) =
3 letUnit (inv (Left h1)) (h2, y, z, w) -- first hole outside the 4-tuple!
4

5 fromContext’ (h1, h2) (Mk (Mk2 x z w) inv) =
6 letUnit (inv (Left x)) (h1, h2, z, w) -- 2-hole at start of the 4-tuple
7

8 fromContext’ (h1, h2) (Mk (Mk3 x y w) inv) =
9 letUnit (inv (Left y)) (x, h1, h2, w) -- 2-hole in middle of the 4-tuple

10

11 fromContext’ (h1, h2) (Mk (Mk4 x y z) inv) =
12 letUnit (inv (Left z)) (x, y, h1, h2) -- 2-hole at end of the 4-tuple

D. Marshall and D. Orchard 5:13

Compared to fromContext, this “shifts” the 2-hole through successive positions of the context,
not requiring that the surrounding context is broken up into pairs. Instead, fromContext’
uses the inverse to consume the extra value always under the left component of the hole,
leaving the remaining four elements as follows:

��h1(h2, y, z, w) (✁x h1, h2, z, w) (x, ✁y h1, h2, w) (x, y, ✁z h1, h2)

with the consumed element shown here in strikethrough. Note in particular the first case
(Mk1) where the deleted element is “outside” the 4-tuple; if we have a 2-hole where the second
hole is at the leftmost position of a 4-tuple, then the first hole refers to data (h1) outside the
4-tuple to the left. We can understand such data as being a “boundary value”, which hints
at an application for n-hole context data types: stencil computations.

n-holes and stencil computations

Typically applied to arrays, a stencil computation traverses each position in an array, reading
a small neighbourhood of elements at and around the “current” position to compute the
corresponding element of a new array. This is used e.g., for image processing (e.g., Gaussian
blur), cellular automata, and the finite-difference method for solving PDEs [25]. The idea can
be generalised to types other than arrays, e.g., trees, graphs, and triangular meshes [41]. The
above notion of a generalised derivative with respect to another type and its interpretation
as a kind of zipper on n-holes captures exactly this structure. In the above example of
α2 ⊗ ∂α2(α4), the 2-hole describes a neighbourhood of two elements, looking in this case
“to the left” (in other words, the neighbourhood comprises the current element and one to
its left in the above interpretation). In the Mk1 case above, the value h1 is the boundary
value when the second hole is positioned at the leftmost point. This is standard for stencil
computations: we need a “halo” of boundary values to compute at a data structure’s edge.

As a more concrete example, consider the discrete Laplace operator over 1-dimensional
arrays. Mathematically, we can describe the operation as taking an array A and computing
the elements at position i in the output array B as follows:

Bi = Ai−1 − 2Ai + Ai+1

(Note this ignores what to do at the boundaries of the array at positions A−1 and An+1).
This can be structured using a local computation over 3-holes, e.g., in Haskell:
1 laplace :: (Float, Float, Float) %1 -> Float
2 laplace (a, b, c) = a - 2*b + c

We can then capture the data type of contexts for the corresponding global traversal of a
data structure (say lists) by computing the 3-hole contexts, e.g.,

∂α3(List α) = ∂α(List α) ⊗ (3α2 ⊸ 1)

which gives us the usual data type of 1-hole contexts plus a way to consume 2 elements,
yielding a gap for 3-holes. A recursive function can then navigate “right” through this data
structure, applying laplace to every 3-hole to compute the values of an output list, giving one
iteration of the discrete Laplace stencil computation. The actual definition of this operation
is less relevant to type inverses so we elide it here, but include it in the accompanying code
artifact for this pearl. The inverse is then needed to map this zipper data structure back to
the original list form, via an operation akin to fromContext’.

Thus, our notion of multiplicative inverse has given us a way to generalise derivatives to
n-holes, which can then be used to capture the “sliding window” of a stencil computation
through any data type.

ECOOP 2022

5:14 How to Take the Inverse of a Type

6 Communicating with Inverses

So far the inhabitants of inverses τ−1 have been rather mundane, consuming their inputs
by pattern matching. We now turn to a richer setting in which some types have an inverse
inhabited by functions which can perform some kind of local side effect. For this we use the
functional language Granule which combines linear and indexed types with graded modal
types [42], though we will mostly leverage just linear types here. We consider richer inverses
first through the question of whether our notion of inverses is an involution.

A function is an involution if it is its own inverse, i.e., f(f(x)) = x. In abstract algebra,
the inverses in groups and fields are automatically involutions.5 In the setting of Granule,
the inverse of a type is also an involution with isomorphism (τ−1)−1 ∼= τ , which might be
surprising given that so far our inverse has been lax.

One direction of the involution isomorphism τ ⊸ (τ−1)−1 is easy via function application.
We give the definition below in Granule, whose syntax closely resembles Haskell’s:

1 type Inverse a = a → ()
2

3 -- i.e. the type expands to a → ((a → ()) → ())
4 invol : ∀ {a : Type} . a → Inverse (Inverse a)
5 invol x = λf → f x

As one can see, the differences between Granule and Haskell are fairly minimal: Granule’s
arrows are linear by default (fans of lollipops ⊸ will just have to squint in code samples!)
whereas in Haskell’s linear types extension the linear multiplicity must be explicitly written.
The remainder of the translation from Haskell to Granule mainly lies in explicitly quantifying
our types and using : rather than Haskell’s :: for our type declarations. If the reader would
like to follow along using Granule for this section, we recommend the latest release.6

Usefully for this pearl, Granule implements a mechanism for algorithmically deriving a
weakening operation for regular types [23]; this can be accessed by writing drop @t for some
type t, so we have for example drop @Bool : Bool → (), providing an inverse.

This direction of the involution isomorphism is of course also well-defined in the linear
λ-calculus and in Haskell. The opposite direction (τ−1)−1 ⊸ τ is much more challenging: in
fact it is not inhabited if we restrict ourselves to the linear λ-calculus or even traditional
non-linear Haskell, but it is instead a sequentially-realizable function [32, 33].

A sequentially-realizable function is one which has outwardly pure behaviour but relies
on a notion of local side effects; these are entirely contained within the body of the function.
Traditionally, sequentially-realizable functions have only been expressible in the ML-family
of languages (which allow unrestricted side effects) but not at all in Haskell. However, in the
context of linear typing, we can now safely re-introduce some side effects via linear references
or linear channels. We show the latter approach, leveraging Granule’s session-typed linear
channels [35] inspired by the GV calculus [54]. The same approach would work equally well
in other implementations of similar calculi, such as Fst [31] or FreeST 2 [3].

Originating from Gay and Vasconcelos [17], further developed by Wadler [54], for which we
use the formulation of Lindley and Morris [30], the GV calculus extends the linear λ-calculus
with a type of channels parameterised by session types [57], which capture the protocol of
interaction allowed over the channel. Granule provides an analogous type of linear channels
LChan : Protocol → Type indexed by protocols, given by the constructors:

5 For a group (X, •, e) then the properties of inverses yield (x−1)−1 • x−1 = e which implies (x−1)−1 •
x−1 • x = x; thus, by the same properties we have (x−1)−1 = x.

6 Examples were tested on https://github.com/granule-project/granule/releases/tag/v0.8.1.0

https://github.com/granule-project/granule/releases/tag/v0.8.1.0

D. Marshall and D. Orchard 5:15

Send : Type → Protocol → Protocol End : Protocol
Recv : Type → Protocol → Protocol

The following primitives are then provided for using these (synchronous) channels:

send : ∀ {a : Type, s : Protocol} . LChan (Send a s) → a → LChan s
recv : ∀ {a : Type, s : Protocol} . LChan (Recv a s) → (a, LChan s)
close : LChan End → ()
forkLinear : ∀ {s : Protocol} . (LChan s → ()) → LChan (Dual s)

This is a subset of the available primitives. We can see that send takes an input channel with
protocol Send a s and an input value a which is sent over the channel to yield a channel
which can be used according to protocol s. The recv function is dual, taking a channel which
is allowed to follow protocol Recv a s, returning a pair of the received a value and a new
channel that can behave as s. The close primitive consumes a channel which is at the end
of a protocol. Lastly, forkLinear spawns a process from the parameter function, which is
applied to a freshly created channel, returning a channel with the “dual” protocol in order to
communicate with the new process. Here, Dual is a type-level function defined:

Dual (Send a s) = Recv a (Dual s) Dual End = End
Dual (Recv a s) = Send a (Dual s)

Interestingly, forkLinear is a combinator relating inverse and duality: (LChan s)−1 ⊸
LChan (s⊥), that is, a function consuming a channel with behaviour s yields a channel with
dual behaviour (denoted by the standard notation ⊥ as in linear logic and the GV calculus).

We now have adequate machinery to define involution in the direction (τ−1)−1 ⊸ τ :

1 involOp : ∀ {a : Type} . Inverse (Inverse a) → a
2 involOp k =
3 let r = forkLinear (λs → k (λx → let c = send s x in close c));
4 (x, c’) = recv r;
5 () = close c’
6 in x

Thus k has type (a → ()) → (), to which the function λx → let c = send s x in close c
is passed; this sends the input x : a on the channel c which is then closed. This channel is
provided by forkLinear, and so k is applied in a process taking one end of the channel to
“sneak out” the value of type a. Outside this, recv waits to receive from the dual end of the
channel returned by forkLinear. The remaining channel is closed and x is returned. A local
side effect is performed within involOp which is not observable externally, but it would not
have been possible to construct the required function without carrying out this effect.

In languages such as ML, an alternate equivalent definition can be given using mutable
references which also resembles Longley’s F combinator [32].

Lastly, the functions invol and involOp form an isomorphism, witnessing τ ∼= (τ−1)−1.
The proof of this can be shown via calculating on the definitions, with details given in
Appendix B. We refer the reader to Lindley et al. [30, 31] for details of how adding session-
typed linear channels to the linear λ-calculus (and linear System F) retains type safety.

Session types based on linear channels can also be represented in Haskell, but they do not
allow us to demonstrate a full isomorphism to the same extent. Here we illustrate the more
challenging direction of the involution using the Priority Sesh library,7 a recent package for

7 Available at https://github.com/wenkokke/priority-sesh

ECOOP 2022

https://github.com/wenkokke/priority-sesh

5:16 How to Take the Inverse of a Type

session-typed communication in Linear Haskell which is itself inspired by the GV calculus [27].
However, note that the two directions cannot quite form an involution here, since everything
must be wrapped up in the linear IO monad for these session types to be used; we cannot
confine the side effects to the function as is possible in Granule.

1 type Inverse’ a = a %1 -> Linear.IO ()
2

3 involOp :: Inverse’ (Inverse’ a) %1 -> Linear.IO a
4 involOp k = do
5 (s, r) <- new
6 void $ forkIO $ k (\z -> send s z)
7 recv r

Continuation monad

A double inverse type (τ−1)−1 = (τ ⊸ 1) ⊸ 1 is also a specialisation of the familiar
continuation monad [52], whose return type is the unit type (the Haskell data type is often
written data Cont r a = Cont ((a -> r) -> r) so this is Cont () a here). The definition
of invol provides the return operation of the monad and the “bind” operator is the usual
definition for the continuation monad:

1 return : ∀ {a : Type} . a → Inverse (Inverse a)
2 return = invol
3

4 bind : ∀ {a b : Type}
5 . Inverse (Inverse a) → (a → Inverse (Inverse b)) → Inverse (Inverse b)
6 bind m k = λc → m (λa → k a c)

A standard way of understanding the use of the continuation monad is to see that its Kleisli
arrows (functions of type a → Inverse (Inverse b)) characterise continuation-passing style
(CPS) programs which can then be sequentially composed. This can be seen via a little
algebraic manipulation:

a → Inverse (Inverse b) ≡ a → ((b → ()) → ()) ∼= (b → ()) → (a → ())

Thus we can see that the Kleisli arrows are CPS-transformed functions of “a → b”. Under
our interpretation, these are the same as functions that map consumers of b to consumers of
a, and the “double inverse” monad gives us a sequential composition for these inverses.

The usual way to “evaluate” a continuation monad computation is to end up with a
value of type Cont r r (i.e., (r -> r) -> r) to which the identity is applied to return the
“final” value of type r. This requires that the r type of the whole Cont r computation is
pre-determined based on what value we want to be able to extract from a continuation monad
computation. For Inverse (Inverse a) we can only apply the identity when a = (), i.e., only
in trivial cases. However, our “double inverse” monad is actually more powerful thanks to
linearity and sequential realizability: we can extract the value of any Inverse (Inverse a)
computation for any a by applying the sequentially-realizable involution function involOp to
extract the a value. This ends up being more flexible than the continuation monad since we
need not pre-determine the continuation “result” type (which for the double inverse is fixed
as unit anyway) and we can extract the value inside the computation at any point.

Thus, viewing the continuation monad through the lens of linear-logical inverses yields
a more flexible continuation-passing style monadic composition. The crucial restriction,
though, is that the continuations must be used linearly.

D. Marshall and D. Orchard 5:17

Calculating with inverses that communicate

Recall the naturality property discussed in Section 2:

A ⊗ A−1

div

##

h ⊗ k⊖1

��
B ⊗ B−1

div
// 1

In Granule with local side effects due to channels, this equation only holds if k ◦ h = id.
Consider the following code where divNat captures the left-bottom path of the diagram:

1 divNat : ∀ {a b : Type} . (a → b) → (b → a) → (a, Inverse a) → ()
2 divNat h k (x, y) = divide (h x) (comap k y)
3

4 example : ∀ {a b : Type} . (a → b) → (b → a) → a → a
5 example h k a =
6 let r = forkLinear (λs → divNat h k (a, λy → let c = send s y in close c));
7 (a’, c’) = recv r;
8 () = close c’
9 in a’

The example function applies divNat inside a forked process where the inverse sends the result
on the channel which is received on the outside. example h k is only the identity function if
k . h = id, e.g., example (λx→ x + 1) (λx→ x - 1) 42 evaluates to 42. Thus, we can see
the power of the local side effects; here inverses can do more than just consume.

7 Additive Inverses

As we have demonstrated, a reasonable definition of inverses exists for product types in the
realm of linear logic. One might therefore wonder whether defining inverses for sum types
(i.e., subtraction) is also feasible. In much the way that defining a multiplicative inverse
almost gives us a semifield of types because some of the identities are lax, being able to
define an additive inverse would similarly give us something closely approximating a ring of
types. The answer as to whether we can do this, however, is somewhat mixed.

The linear regular types we have been using have product types as linear logic’s “mul-
tiplicative conjunction” ⊗ and sum types as “additive disjunction” ⊕. Unfortunately, we
cannot define a sensible additive inverse for this operator. To do so we would need to have
A ⊕ −A ∼= 0. However, defining a map A ⊕ −A⊸ 0 is impossible regardless of the value of
−A, because if A is nonempty then A ⊕ B must also be nonempty which means we cannot
construct a term of type 0. Furthermore, defining a map 0⊸ A ⊕ −A is impossible unless
A = −A = 0, as otherwise we would have to be able to construct some value of either type
A or type −A from nothing. Consequently, linear regular types cannot form a field (with
both multiplicative and additive inverses).

It turns out that the reason it is not possible to define an additive inverse in the context
of standard intuitionistic logic or while using the ⊕ operation offered by linear regular types
is a corollary to a result known as Crolard’s lemma [5]. This lemma states that subtraction
A \ B cannot be defined for disjoint unions in the category of sets unless either A or B is the
empty set. In fact, this result also applies to any operation like ⊕ which allows a free choice
between A and B, so any definition of subtraction with respect to ⊕ must be trivial.

ECOOP 2022

5:18 How to Take the Inverse of a Type

However, defining products as multiplicative conjunction and sums as additive disjunction
as in regular types is not the only possible interpretation we can use for these concepts. We
can just as easily have product types that follow the rules of the & operator, pronounced
“with” and describing “additive conjunction”, and similarly we can have sum types based on
the ` operator, pronounced “par”, which describes “multiplicative disjunction”. This makes
it possible to discuss a closely related setting which we will call coregular types (as these
operations behave in a dual manner to those used to define regular types), with type syntax:

τ ::= τ & τ ′ | τ ` τ ′ | ⊤ | ⊥

where ⊤ and ⊥ are the units for & and ` respectively. The intuition for & is that a& b allows
us to select one of a or b and use it, rather than having access to both at the same time
but having to use each one, as with a ⊗ b. The ` operator is more difficult to understand
intuitively, but one interpretation is that a ` b gives two processes a and b that happen in
parallel, and we have the choice of how to interleave the two processes [4]. The important
thing to keep in mind is that & is dual to ⊕ and ` is dual to ⊗.8

If we consider the coregular ` sum types which do not allow a free choice between
A and B rather than the regular ⊕ sum types, then the outlook for defining an additive
inverse is less bleak: it is possible to define an inverse operation to multiplicative disjunction.
Cointuitionistic linear logic [5] offers an operation called linear subtraction, denoted A \ B

and read “A excludes B”, which acts as the left adjoint of `. Intuitively, we can understand
linear implication in the following way:

A ⊗ B ⊢ C if and only if A ⊢ B ⊸ C

which arises from the categorical notion of adjunctions: (− ⊗ B) is left adjoint to (B ⊸ −).
Dually, linear subtraction can be understood as follows:

A ⊢ B ` C if and only if A \ B ⊢ C

In other words, if A gives us B ` C then A excluding the possibility of B gives us C, and
conversely if A excluding B gives C then from A we can get B ` C.

In this dual setting, we must now find a definition of subtraction from a suitable unit which
acts as the additive inverse we desire. Since linear subtraction is dual to linear implication,
just as we can define implication in terms of the ` connective (i.e. A⊸ B ≡ A⊥ ` B), we
can similarly represent subtraction using the ⊗ connective, as B \ A ≡ B ⊗ A⊥.

Using this representation of linear subtraction, by duality we can show that a nontrivial
inverse to multiplicative disjunction ` exists in the context of linear type theory. Dually
to our definition of an inverse for multiplicative conjunction, we can define an inverse to
multiplicative disjunction as −τ ≜ ⊥ \ τ , via linear subtraction as discussed above.

Similarly to the lax identity τ−1 ⊗ τ ⊸ 1, the additive inverse −τ also satisfies a lax
inverse law, but in the opposite direction:

⊥⊸ τ ` −τ (8)

Via the identity between⊸ and ` and between \ and ⊗ then τ `−τ ∼= τ⊥ ⊸ (⊥⊗τ⊥). If we
had a type system involving both regular and coregular types with a duality operator the above
lax law (8) would be given constructively by the term λb.(λx.(b, x)) : ⊥⊸ τ⊥ ⊸ (⊥ ⊗ τ⊥).

8 Classical linear logic has an involutive duality operator, written (−)⊥, where (A & B)⊥ = A⊥ ⊕ B⊥

and (A ` B)⊥ = A⊥ ⊗ B⊥.

D. Marshall and D. Orchard 5:19

The applications of this identity are less apparent, as we cannot construct a witness for
it in the same way as the lax inverse law from Section 2 given the constraints of having to
choose between working with either regular or coregular types. If we were not constrained
by this limitation, we could have an algebraic structure with all four common mathematical
operations, with ⊥ acting as an additive identity and 1 acting as a multiplicative identity.9
Intuitionistic and cointuitionistic logic can be combined into a single framework, known as
bi-intuitionistic logic, and work on making sense of this through the lenses of type theory and
category theory is ongoing [15]; this could provide a way to combine regular and coregular
types in a single system.

Given the above definitions we can show a lax involution in one direction for additive
inverses. Between multiplicative conjunction and disjunction there is a distribution: (A ⊗
(B ` C))⊸ ((A ⊗ B) ` C) which is not an isomorphism, but it is a valid implication in this
direction [13]. Using this weak distribution, for all τ this lax involution is defined:

−(−τ) ∼= (⊥ \ (⊥ \ τ))
∼= ⊥ ⊗ (⊥ ⊗ τ⊥)⊥

∼= ⊥ ⊗ (1 ` τ)
⊸ (⊥ ⊗ 1) ` τ
∼= ⊥ ` τ
∼= τ

Interestingly, this kind of dichotomy between additive and multiplicative disjunction can also
be seen for conjunction. The multiplicative inverse we have defined for linear regular types
does not behave well if we attempt to apply it to the & operator (additive conjunction). We
cannot define a map A & (A⊸ 1)⊸ 1, because we can only use one of the two components
of the & on the left so we cannot apply the inverse to the A value. Furthermore, similarly to
⊗, we cannot in general define a map in the other direction as we would need to be able to
construct a value of an arbitrary type A from nothing.

In the end, linear logic cannot yet give us a field of types – it can only afford to give
us a ring or half a field (a semifield), but both at once is beyond our current budget. The
semifield interpretation however has the closest intuitions to familiar concepts in functional
programming, and linear regular types are certainly more frequently encountered than
coregular ones in the current programming landscape, hence our focus on them in this pearl.

8 Discussion: Thinking with Inverses

As we near the end of our journey, we remark on some alternate perspectives and approaches,
and some connections with related work.

Curry-Howard with inverses

From a logical standpoint, the (lax) inverse property we have discussed provides a natural
notion of inverse elimination and introduction in a natural deduction logic for a Curry-Howard
correspondent to a type’s inverse:

9 We still cannot, however, form a field even if we use ⊗ and ` as our operations; they do not obey
distributivity, A ⊗ ⊥ ̸∼= ⊥ (note for example that ⊤ ⊗ ⊥ ∼= ⊤), and indeed both types of inverse only
obey lax inverse laws, so the required isomorphisms for a field do not exist.

ECOOP 2022

5:20 How to Take the Inverse of a Type

Γ ⊢ p Γ ⊢ p−1

Γ, Γ′ ⊢ 1
−1 E

Γ, p ⊢ 1
Γ ⊢ p−1 −1 I

i.e., elimination is just a specialised modus ponens and an inverse p−1 is introduced by a
(linear) proof starting with p and concluding 1 – the subproof consumes the assumption p.

Duality

One may consider trying to use the classical linear logic notion of “duality” τ⊥ [20] to provide
multiplicative inverses, but it does not behave accordingly: 1 ⊗ 1⊥ = 1 ⊗ ⊥ = ⊥ but instead
we would like 1 ⊗ 1−1 ∼= 1. However, there are various interesting applications of linear and
classical duality relating call-by-value and call-by-name [53, 45]. These take advantage of
various properties of duality, some of which our inverses do indeed share.

Negative and fractional types

Despite the algebraic manipulation of data types producing a rich source of ideas, inverses
appear to have not had much consideration. One notable thread though is due to James and
Sabry, who consider negative and fractional types in the context of reversible computations
where a reciprocal 1/b “imposes constraints on [its] context” acting as a logical variable [24].
They present a reversible calculus admitting isomorphisms η : 1 ↔ (1/b)×b for all types: with
left-to-right direction producing a fresh logical variable α inhabiting b along with its dual,
and the inverse η−1 corresponding to unification of logical variables. Later they interpret this
categorical semantics computationally [12], defining a sound operational semantics for such
types, in which a negative type represents a computational effect that “reverses execution
flow” and a fractional type represents one that “garbage collects” values or throws exceptions.
This differs from our approach but certainly has some of the same flavour. We cannot
however construct a pair of a b−1 ⊗ b out of thin air for any b.

Cardinalities

As recalled in the introduction, the cardinality operation on types is a semiring homomorphism
from regular types to natural numbers (e.g., |a × b| = |a||b|). So what is the cardinality
of an inverse type? In a Cartesian setting a function τ → 1 simply has cardinality 1 since
|τ → 1| = |1||τ | = 1. In a linear setting without side effects (i.e., linear channels), we can
recover a similar result. As a simple example, consider the boolean type. The cardinality
of Bool is 2 as it has two elements: True and False. The cardinality of Inverse Bool, on
the other hand, is 1; the type has exactly one inhabitant: the boolDrop function shown in
Section 2.

We could however consider a different notion of cardinality that would allow for |τa|×|τ b| =
|τa+b| in general; this statement already holds for a ≥ 0 ∧ b ≥ 0, but now we consider cases
where the types are not necessarily isomorphic. In particular, we can examine the notion of
fractional cardinalities [44, 46] assigning a generalised cardinality of (1/|τ |)m to τ−m.

If we specialise this we can let a = 1 and b = −1 and see that |τ ⊗ τ−1| = |τ | × |τ−1| =
n × (1/n) = 1 = |1|; the two types have the same fractional cardinality even though we only
have a lax map from τ ⊗ τ−1 to 1. Of course, this does not match up with the standard idea
of cardinality on types, as it is clear that τ ⊗ τ−1 has at least as many inhabitants as τ . We
leave an interpretation for this as something for others to ponder.

D. Marshall and D. Orchard 5:21

Taylor series

As we have seen, it is not possible to form a field out of regular types (linear or otherwise),
because the additive operation that permits an inverse is not the same addition which
behaves like the logical ⊕ we would usually want. But it turns out that if we suspend our
disbelief and assume that types do form a field, some results from real analysis can be applied
with surprising success: Taylor series approximations can yield solutions to recursive types.
Consider the recursive definition of lists over elements of type α:

List α = 1 ⊕ (α ⊗ List α)

Through some unjustified algebraic rearrangement we get List α = 1
(1−α) on which we can

compute the Taylor expansion yielding the familiar least fixed-point solution of List α:

List α = 1 ⊕ α ⊕ α2 ⊕ α3 ⊕ . . .

i.e. a list is either empty, or has one element, or has two elements, etc.
This is quite surprising; we must apply the equations of a field to yield a derivation for

this result, using inverses we do not have access to in the realm of regular types, and yet we
end up with a result that makes sense using only regular operations. Whether there is an
interpretation of our inverses that can lend a meaningful foundation to these intermediate
manipulations is unclear, but would certainly be interesting to look into.

One might wonder whether it is coincidental that this result happens to hold true for
lists in particular, but this is not the case. Fiore and Leinster [16] show that, for all complex
numbers t and polynomials p, q1 and q2 with non-negative coefficients (with some restrictions),
then if t = p(t) implies q1(t) = q2(t) the same result also holds up to isomorphism in any
other semiring (as well as for complex numbers), which includes regular types.

This was applied to great effect for the example of finite binary trees to demonstrate
the famous “seven trees in one” result [9], showing that there is a particularly elementary
bijection (involving case distinctions only down to a fixed depth) between the set T of finite
binary trees and the set T 7 of 7-tuples of such trees. It is more difficult to find solutions
to more complex types via this kind of equational reasoning, though, particularly due to
the Abel-Ruffini theorem [2] which states that there is no solution in radicals to general
polynomial equations of degree five or higher.

9 Epilogue

Summary

Taking τ−1 ≜ τ ⊸ 1 yields a useful notion of multiplicative inverse for linear regular types.
We have seen this yields (lax) exponentiation laws in the presence of negative coefficients:

τ ⊗ τ−1 ⊸ 1 τa ⊗ τ−b ⊸ τa−b τ−a ⊗ τ−b ∼= τ−(a+b)

σ−a ⊗ τ−a ⊸ (σ ⊗ τ)−a τ ⊸ (τ−1)−1

for all a ≥ 0, b ≥ 0. The first lax identity is generalised by the second (Section 4). The fourth
is induced by −−1 being a monoidal functor (Section 3). The last lax identity becomes an
isomorphism τ ∼= (τ−1)−1 when sequentially realizable functions are permitted (Section 6).

ECOOP 2022

5:22 How to Take the Inverse of a Type

Fin

The algebraic characteristics of data types have been studied and leveraged since the dawn of
functional programming; we call them “algebraic” data types, after all. In the linear setting,
the idea of consumption as a lax multiplicative inverse has given us a fresh perspective on the
algebraic characterisation of regular linear types. Now that linear typing is becoming more
mainstream, e.g., in Haskell [6], and with closely related ideas arising in languages like Clean
and Rust (the concept of uniqueness which is in some sense dual to linearity [21, 14, 36],
and more sophisticated systems tracking ownership and borrowing [56]), this is now an
ideal time to start taking our algebraic understanding of data types to the next level. This
pearl has been a demonstration of how one weird trick can lead to a journey through many
interesting and diverse areas of our field. We hope that that this has stoked your enthusiasm
for investigating the idea of taking the inverse of a type even further.

References
1 Michael Abbott, Thorsten Altenkirch, Conor Mcbride, and Neil Ghani. ∂ for data: Differenti-

ating data structures. Fundam. Inf., 65(1–2):1–28, January 2005.
2 Niels Henrik Abel. Mémoire sur les equations algébriques, où l’on démontre l’impossibilité

de la résolution de l’équation générale du cinquième degré. 1:28–33, 1824. doi:10.1017/
CBO9781139245807.004.

3 Bernardo Almeida, Andreia Mordido, Peter Thiemann, and Vasco T. Vasconcelos. Polymorphic
context-free session types, 2021. arXiv:2106.06658.

4 Federico Aschieri and Francesco A. Genco. Par means parallel: Multiplicative linear logic
proofs as concurrent functional programs. Proc. ACM Program. Lang., 4(POPL), December
2019. doi:10.1145/3371086.

5 Gianluigi Bellin, Massimiliano Carrara, Daniele Chiffi, and Alessandro Menti. Pragmatic and
dialogic interpretations of bi-intuitionism. Part I. Logic and Logical Philosophy, 23(4):449–480,
2014.

6 Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R Newton, Simon Peyton Jones, and
Arnaud Spiwack. Linear Haskell: practical linearity in a higher-order polymorphic language.
Proceedings of the ACM on Programming Languages, 2(POPL):1–29, 2017.

7 Richard Bird and Oege de Moor. Algebra of Programming. Prentice-Hall, Inc., USA, 1997.
8 Richard S. Bird. Algebraic identities for program calculation. The Computer Journal, 32(2):122–

126, 1989.
9 Andreas Blass. Seven trees in one. Journal of Pure and Applied Algebra, 103(1):1–21, 1995.

10 Edwin Brady. Idris 2: Quantitative Type Theory in Practice. In Anders Møller and Manu
Sridharan, editors, 35th European Conference on Object-Oriented Programming (ECOOP
2021), volume 194 of Leibniz International Proceedings in Informatics (LIPIcs), pages 9:1–
9:26, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.ECOOP.2021.9.

11 Jacques Carette and Amr Sabry. Computing with semirings and weak rig groupoids. In
Proceedings of the 25th European Symposium on Programming Languages and Systems - Volume
9632, pages 123–148, Berlin, Heidelberg, 2016. Springer-Verlag.

12 Chao-Hong Chen and Amr Sabry. A computational interpretation of compact closed categories:
Reversible programming with negative and fractional types. Proc. ACM Program. Lang.,
5(POPL), January 2021. doi:10.1145/3434290.

13 J.R.B. Cockett and R.A.G. Seely. Weakly distributive categories. Journal of Pure and Applied
Algebra, 114(2):133–173, 1997. doi:10.1016/0022-4049(95)00160-3.

14 Edsko de Vries, Rinus Plasmeijer, and David M Abrahamson. Uniqueness typing simplified.
In Symposium on Implementation and Application of Functional Languages, pages 201–218.
Springer, 2007. doi:10.1007/978-3-540-85373-2_12.

https://doi.org/10.1017/CBO9781139245807.004
https://doi.org/10.1017/CBO9781139245807.004
http://arxiv.org/abs/2106.06658
https://doi.org/10.1145/3371086
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9
https://doi.org/10.1145/3434290
https://doi.org/10.1016/0022-4049(95)00160-3
https://doi.org/10.1007/978-3-540-85373-2_12

D. Marshall and D. Orchard 5:23

15 Harley Eades III and Gianluigi Bellin. A cointuitionistic adjoint logic, 2017. arXiv:1708.05896.
16 Marcelo Fiore and Tom Leinster. Objects of categories as complex numbers. Advances in

Mathematics, 190(2):264–277, 2005. doi:10.1016/j.aim.2004.01.002.
17 Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for asynchronous session

types. J. Funct. Program., 20(1):19–50, 2010. doi:10.1017/S0956796809990268.
18 Jeremy Gibbons. Calculating functional programs. In Algebraic and Coalgebraic Methods in

the Mathematics of Program Construction, pages 151–203. Springer, 2002.
19 Jeremy Gibbons. The school of Squiggol - A history of the Bird-Meertens formalism. In

Formal Methods. FM 2019 International Workshops - Porto, Portugal, October 7-11, 2019,
Revised Selected Papers, Part II, pages 35–53, 2019. doi:10.1007/978-3-030-54997-8_2.

20 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, 1987.
21 Dana Harrington. Uniqueness logic. Theoretical Computer Science, 354(1):24–41, 2006.
22 Gérard Huet. The zipper. Journal of Functional Programming, 7(5):549–554, 1997.
23 Jack Hughes, Michael Vollmer, and Dominic Orchard. Deriving distributive laws for graded

linear types. In TLLA/Linearity, 2020.
24 Roshan P James and Amr Sabry. The Two Dualities of Computation: Negative and Fractional

Types. Technical report, Indiana University, 2012.
25 Shoaib Kamil, Kaushik Datta, Samuel Williams, Leonid Oliker, John Shalf, and Katherine

Yelick. Implicit and explicit optimizations for stencil computations. In Proceedings of the 2006
Workshop on Memory System Performance and Correctness, pages 51–60, 2006.

26 G Maxwell Kelly. Coherence theorems for lax algebras and for distributive laws. In Category
seminar, pages 281–375. Springer, 1974.

27 Wen Kokke and Ornela Dardha. Deadlock-free session types in linear Haskell. In Proceedings
of the 14th ACM SIGPLAN International Symposium on Haskell, pages 1–13, 2021.

28 Serge Lang. Algebra. Springer, New York, NY, 2002.
29 Gottfried Wilhelm Leibniz. Nova methodus pro maximis et minimis, itemque tangentibus,

qua nec irrationals quantitates moratur. Acta eruditorum, 1684.
30 Sam Lindley and J Garrett Morris. A semantics for propositions as sessions. In European

Symposium on Programming Languages and Systems, pages 560–584. Springer, 2015.
31 Sam Lindley and J Garrett Morris. Lightweight functional session types. Behavioural Types:

from Theory to Tools. River Publishers, pages 265–286, 2017.
32 John Longley. When is a functional program not a functional program? In ACM SIGPLAN

Notices, volume 34(9), pages 1–7. ACM, 1999.
33 John Longley. The sequentially realizable functionals. Ann. Pure Appl. Log., 117(1-3):1–93,

2002. doi:10.1016/S0168-0072(01)00110-5.
34 Saunders Mac Lane. Categories for the Working Mathematician, volume 5. Springer Science

& Business Media, 2013.
35 Daniel Marshall and Dominic Orchard. Replicate, reuse, repeat: Capturing non-linear

communication via session types and graded modal types. Proceedings of PLACES 2022,
Electronic Proceedings in Theoretical Computer Science, 356:1–11, March 2022. doi:10.4204/
eptcs.356.1.

36 Daniel Marshall, Michael Vollmer, and Dominic Orchard. Linearity and Uniqueness: An
Entente Cordiale. In Ilya Sergey, editor, Programming Languages and Systems, pages 346–375,
Cham, 2022. Springer International Publishing.

37 Conor McBride. The derivative of a regular type is its type of one-hole contexts. Unpublished
manuscript, pages 74–88, 2001.

38 Conor McBride. Clowns to the left of me, jokers to the right (pearl): Dissecting data structures.
SIGPLAN Not., 43(1):287–295, January 2008. doi:10.1145/1328897.1328474.

39 J. Garrett Morris. The best of both worlds: linear functional programming without compromise.
In Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 448–461. ACM, 2016. doi:10.1145/2951913.2951925.

ECOOP 2022

http://arxiv.org/abs/1708.05896
https://doi.org/10.1016/j.aim.2004.01.002
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1007/978-3-030-54997-8_2
https://doi.org/10.1016/S0168-0072(01)00110-5
https://doi.org/10.4204/eptcs.356.1
https://doi.org/10.4204/eptcs.356.1
https://doi.org/10.1145/1328897.1328474
https://doi.org/10.1145/2951913.2951925

5:24 How to Take the Inverse of a Type

40 Peter Morris, Thorsten Altenkirch, and Conor McBride. Exploring the regular tree types. In
International Workshop on Types for Proofs and Programs, pages 252–267. Springer, 2004.

41 Dominic Orchard. Programming contextual computations. Technical report, University of
Cambridge, Computer Laboratory, 2014.

42 Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. Quantitative program
reasoning with graded modal types. Proceedings of the ACM on Programming Languages,
3(ICFP):1–30, 2019.

43 Tomas Petricek, Dominic A. Orchard, and Alan Mycroft. Coeffects: a calculus of context-
dependent computation. In Proceedings of the 19th ACM SIGPLAN International Conference
on Functional Programming, Gothenburg, Sweden, September 1-3, 2014, pages 123–135, 2014.
doi:10.1145/2628136.2628160.

44 James Propp. Euler measure as generalized cardinality. arXiv: Combinatorics, 2002.
45 Ben Rudiak-Gould, Alan Mycroft, and Simon Peyton Jones. Haskell is not not ML. In

European Symposium on Programming, pages 38–53. Springer, 2006.
46 Stephen H. Schanuel. Negative sets have Euler characteristic and dimension. In Aurelio

Carboni, Maria Cristina Pedicchio, and Guiseppe Rosolini, editors, Category Theory, pages
379–385, Berlin, Heidelberg, 1991. Springer Berlin Heidelberg.

47 Rui Shi and Hongwei Xi. A linear type system for multicore programming in ATS. Science of
Computer Programming, 78(8):1176–1192, 2013. doi:10.1016/j.scico.2012.09.005.

48 Kornel Szlachányi. Skew-monoidal categories and bialgebroids. Advances in Mathematics,
231(3-4):1694–1730, 2012.

49 Jesse A. Tov and Riccardo Pucella. Practical affine types. In Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin,
TX, USA, January 26-28, 2011, pages 447–458, 2011. doi:10.1145/1926385.1926436.

50 Tarmo Uustalu, Niccolò Veltri, and Noam Zeilberger. The sequent calculus of skew monoidal
categories. Electronic Notes in Theoretical Computer Science, 341:345–370, 2018.

51 Philip Wadler. Linear types can change the world! In Programming Concepts and Methods,
volume 3(4), page 5. Citeseer, 1990.

52 Philip Wadler. The essence of functional programming. In Proceedings of the 19th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 1–14, 1992.

53 Philip Wadler. Call-by-value is dual to call-by-name. In Proceedings of the eighth ACM
SIGPLAN International Conference on Functional Programming, pages 189–201, 2003.

54 Philip Wadler. Propositions as sessions. Journal of Functional Programming, 24(2-3):384–418,
2014.

55 David Walker. Substructural type systems. Advanced Topics in Types and Programming
Languages, pages 3–44, 2005.

56 Aaron Weiss, Olek Gierczak, Daniel Patterson, and Amal Ahmed. Oxide: The essence of Rust,
2021. arXiv:1903.00982.

57 Nobuko Yoshida and Vasco T Vasconcelos. Language primitives and type discipline for
structured communication-based programming revisited: Two systems for higher-order session
communication. Electronic Notes in Theoretical Computer Science, 171(4):73–93, 2007.

A Regular Linear Types

The type syntax for linear regular types (as discussed in Section 1) is as follows.

τ ::= τ ⊗ τ ′ | τ ⊕ τ ′ | 1 | 0 | X | µX.τ

where X ranges over recursion variables. We mostly focus on the non-recursive subset (just
the first four constructs above), although recursive types make an appearance in Section 5
and we include them here for coherence with the usual description of regular types in the
literature. Throughout we use τ and σ to range over types and also A, B, C, D.

https://doi.org/10.1145/2628136.2628160
https://doi.org/10.1016/j.scico.2012.09.005
https://doi.org/10.1145/1926385.1926436
http://arxiv.org/abs/1903.00982

D. Marshall and D. Orchard 5:25

The typing rules for linear regular types are as follows, which includes their standard
term formers.

x : A ⊢ x : A
var Γ ⊢ t : A ∆ ⊢ t′ : B

Γ, ∆ ⊢ (t, t′) : A ⊗ B
⊗I Γ ⊢ t : A ⊗ B ∆, u : A, v : B ⊢ t′ : C

Γ, ∆ ⊢ let (u, v) = t in t′ : C
⊗E

⊢ ∗ : 11I Γ ⊢ t : 1 ∆ ⊢ t′ : C

Γ, ∆ ⊢ let () = t in t′ : C
1E Γ ⊢ t : A

Γ ⊢ inl t : A ⊕ B
⊕IL

Γ ⊢ t : B

Γ ⊢ inr t : A ⊕ B
⊕IR

Γ ⊢ t : A ⊕ B ∆, u : A ⊢ t′ : C ∆, v : B ⊢ t′′ : C

Γ, ∆ ⊢ case t of inl u → t′ | inr v → t′′ : C
⊕E

Note that in the above we do not include the linear function space τ ⊸ τ ′ since we considered
just the syntax of regular types in Section 1, but linear functions are used throughout the
paper. Their introduction and elimination rules are:

Γ, x : A ⊢ t : B

Γ ⊢ λx.t : A⊸ B

Γ ⊢ t : A⊸ B ∆ ⊢ t′ : A

Γ, ∆ ⊢ t t′ : B

As stated in Section 1, (linear) regular types behave like a commutative semiring, i.e., ⊗
and ⊕ are both commutative and associative with 1 and 0 as their corresponding units, with
distributivity, but all up to isomorphism.
A ⊗ (B ⊗ C) ∼= (A ⊗ B) ⊗ C

A ⊗ B ∼= B ⊗ A

1 ⊗ A ∼= A

A ⊕ (B ⊕ C) ∼= (A ⊕ B) ⊕ C

A ⊕ B ∼= B ⊕ A

A ⊕ 0 ∼= A

A ⊗ (B ⊕ C) ∼= (A ⊗ B) ⊕ (A ⊗ C)
(B ⊕ C) ⊗ A ∼= (B ⊗ A) ⊕ (C ⊗ A)

A ⊗ 0 ∼= 0

All of the above isomorphisms are witnessed by pairs of mutually inverse functions.
Regular types also permit a notion of (positive) exponent, with τa defined inductively as:

τ0 = 1 τa+1 = τ ⊗ τa

The usual positive exponent laws then hold up to isomorphism via associativity and commut-
ativity (and removal of units in the case of the leftmost isomorphism), for all a ≥ 0, b ≥ 0:

τ1 ∼= τ τa ⊗ τ b ∼= τa+b (τa)b ∼= τab (σ ⊗ τ)a ∼= σa ⊗ τa

A.1 Equations
This calculus has equations for (bi)functoriality of ⊗ and ⊕:

id ⊗ id = id id ⊕ id = id

(f ⊗ g) ◦ (h ⊗ k) = (f ◦ h) ⊗ (g ◦ k) (f ⊕ g) ◦ (h ⊕ k) = (f ◦ h) ⊕ (g ◦ k)

The following equations are on the interaction of cotupling, injections and the ⊕ bifunctor,
which are subset of those from Gibbons [18] that are derivable for the coproduct part of
linear regular types:

[f, g] ◦ inl = f [h ◦ inl, h ◦ inr] = h [f, g] ◦ (h ⊕ k) = [f ◦ h, g ◦ k]
[f, g] ◦ inr = g [inl, inr] = id h ◦ [f, g] = [h ◦ f, h ◦ g]

The usual axioms for a (lax) monoidal functor hold for the (contravariant) inverse functor.
These axioms are as follows:
mmult ◦ (munit ⊗ id) ◦ λi = λ⊖1 :A−1 ⊸ (1 ⊗ A)−1

mmult ◦ (id ⊗ munit) ◦ ρi = ρ⊖1 :A−1 ⊸ (A ⊗ 1)−1

mmult ◦ (mmult ⊗ id) ◦ αi = α⊖1◦ mmult ◦(id ⊗ mmult) :A−1⊗(B−1⊗C−1)⊸((A ⊗ B) ⊗ C)−1

where α is associativity and λ : 1 ⊗ A⊸ A and ρ : A ⊗ 1⊸ A (and their inverses λi and ρi)
witness the unit properties of ⊗.

ECOOP 2022

5:26 How to Take the Inverse of a Type

B Involution is an Isomorphism

We show that for all τ , then τ−1 is a sequentially realizable involution up to isomorphism,
i.e., (τ−1)−1 ∼= τ , with τ ⊸ ((τ ⊸ 1)⊸ 1) implemented as λx.λf.f x (see Section 6) and
the converse direction as follows, using the syntax of GV calculus (as formulated by [30])
rather than Granule as shown in Section 6, of type ((τ ⊸ 1)⊸ 1)⊸ τ :

(λk.let (x, c) = recv(fork(λc.k(λx.send c x))) in let () = wait c in x)

In order to prove that τ−1 is an involution up to isomorphism, we need to show that the
functions i : τ ⊸ ((τ ⊸ 1)⊸ 1 and j : ((τ ⊸ 1)⊸ 1)⊸ τ are mutually inverse, or in other
words that j(i(t)) = t : τ and i(j(h)) = h : (τ ⊸ 1)⊸ 1.

We leverage the βη-equality theory of GV based on its operational semantics given by [30],
which is the same operational semantics for channels implemented in Granule [42].

We show both directions separately, as follows:

j(i(t)) = (λk.let (x, c) = recv(fork(λc.k(λx.send c x))) in let () = wait c in x)(λf.f t)
= (let (x, c) = recv(fork(λc.(λf.f t)(λx.send c x))) in let () = wait c in x)
= (let (x, c) = recv(fork(λc.(λx.send c x)t)) in let () = wait c in x)
= (let (x, c) = recv(fork(λc.send c t)) in let () = wait c in x)

Checking the typing of the inner expression, we have:

λc.send c t : Chan(!τ.end!)⊸ Chan(end!)
fork(λc.send c t) : Chan(?τ.end?)

recv(fork(λc.send c t)) : τ ⊗ Chan(end?)

So we have the binding (x, c) : τ ⊗ Chan(end?). Applying the global configuration semantics
of GV [30, Figure 4], we then get the following:

let (x, c) = recv(fork(λc.send c t)) in let () = wait c in x)
(Lift+Fork)⇝ (νc)(let (x, c) = recv c in let () = wait c in x) | (send c t)
(Lift+Send)⇝ (νc)(let (x, c) = (t, c) in let () = wait c in x) | c

(LiftV)⇝ (νc)(let () = wait c in t) | c
(Lift+Wait)⇝ let () = () in t

(LiftV)⇝ t

Thus, j(i(t)) = t : τ as required.
In the opposite direction of the isomorphism we then have, h : (τ−1)−1 with

i(j(h)) = (λx.λf.f x)(let (x, c) = recv(fork(λc.h(λx.send c x))) in let () = wait c in x)
= (λf.f (let (x, c) = recv(fork(λc.h(λx.send c x))) in let () = wait c in x))
= let (x, c) = recv(fork(λc.h(λx.send c x))) in let () = wait c in (λf.f x)

Similarly to the first case, we then have the inner typing:

λx.send c x : τ ⊸ Chan(end!)
h(λx.send c x) : Chan(end!)

fork(h(λx.send c x)) : Chan(?τ.end?)
recv(fork(h(λx.send c x))) : τ ⊗ Chan(end?)

D. Marshall and D. Orchard 5:27

So, again, (x, c) : τ ⊗ Chan(end?).
Applying the global configuration semantics of GV [30, Figure 4], we get:

let (x, c) = recv(fork(λc.h(λx.send c x))) in let () = wait c in (λf.f x)
(Lift+Fork)⇝ (νc) (let (x, c) = recv c in let () = wait c in (λf.f x) | h (λx.send c x))

Recall that h : (τ ⊸ 1) ⊸ 1 therefore we know that h must necessarily use the input
parameter, applying it to some t : τ , therefore after some reduction in h (λx.send c x) we get
some let c′ = send c t in h′ : () and some configuration C in the case that evaluating to this
point had some other communication effects. Note that c′ is not in the free variables of h′

since the session typing tells us it is unused, i.e. c′ : Chan(end!).
Then we get the continuing reduction sequence:

(LiftV∗)⇝∗ (νc) (let (x, c) = recv c in let() = wait c in(λf.f x) | let c′ = send c t in h′ | C)
(Lift+Send)⇝ (νc) (let (x, c) = (t, c) in let() = wait c in(λf.f x) | let c′ = c in h′ | C)

(LiftV)⇝ (νc) (let () = wait c in (λf.f t) | let c′ = c in h′ | C)
(Lift+Wait)⇝ (λf.f t) | h′ | C

The result is a term that behaves like the original h; applying the term t from inside h to
the continuation to f results in a configuration C and has some remaining reduction to do
as h′. Thus i(j(h)) = h : (τ ⊸ 1)⊸ 1 as required.

ECOOP 2022

Compiling Volatile Correctly in Java
Shuyang Liu #

University of California, Los Angeles, CA, USA

John Bender #

Sandia National Laboratories, Albuquerque, NM, USA

Jens Palsberg #

University of California, Los Angeles, CA, USA

Abstract
The compilation scheme for Volatile accesses in the OpenJDK 9 HotSpot Java Virtual Machine
has a major problem that persists despite a recent bug report and a long discussion. One of the
suggested fixes is to let Java compile Volatile accesses in the same way as C/C++11. However, we
show that this approach is invalid for Java. Indeed, we show a set of optimizations that is valid for
C/C++11 but invalid for Java, while the compilation scheme is similar. We prove the correctness of
the compilation scheme to Power and x86 and a suite of valid optimizations in Java. Our proofs are
based on a language model that we validate by proving key properties such as the DRF-SC theorem
and by running litmus tests via our implementation of Java in Herd7.

2012 ACM Subject Classification Software and its engineering → Semantics

Keywords and phrases formal semantics, concurrency, compilation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.6

Related Version Full Version: http://compilers.cs.ucla.edu/papers/compiling-volatile.pdf

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.3

Funding This material is based upon work supported by the National Science Foundation under
Grant No. 1815496.

Acknowledgements We thank Doug Lea for the helpful insights on the Java language semantics
and compilers; we thank Jade Alglave for her precious and detailed help on implementing Java
architecture for Herd; we thank Ori Lahav, Anton Podkopaev and Viktor Vafeiadis for initially
pointing out the issue of the Java Access Modes model; we thank all the reviewers of ECOOP’22 for
their insightful feedback.

1 Introduction

In OpenJDK 9, the Java programming language introduced the VarHandle API with Access
Modes to provide a standard set of operations that gives clear semantics to programs with
shared object fields. Among the four available Access Modes (which we will explain in
Section 3 in detail), programmers are allowed to use Volatile mode to ensure the consistency
of updates on shared variables. Conceptually, the set of Volatile mode accesses in a program is
totally ordered [9]. If all of the accesses in a program are in Volatile mode, then the program
should only have sequentially consistent executions since all accesses in that program are
totally ordered.

Sadly, this basic property of Volatile mode does not hold under the current implementation
of the Java compiler in OpenJDK 9 HotSpot JVM. That is, marking all accesses as Volatile
in a Java program can still result in behaviors that are not sequentially consistent when
compiling to Power [14]. In particular, the C1 and the C2 compilers in HotSpot do not

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Shuyang Liu, John Bender, and Jens Palsberg;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 6; pp. 6:1–6:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sliu44@cs.ucla.edu
https://orcid.org/0000-0002-1601-9086
mailto:jmbende@sandia.gov
mailto:palsberg@ucla.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2022.6
http://compilers.cs.ucla.edu/papers/compiling-volatile.pdf
https://doi.org/10.4230/DARTS.8.2.3
https://doi.org/10.4230/DARTS.8.2.3
https://doi.org/10.4230/DARTS.8.2.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Compiling Volatile Correctly in Java

provide enough synchronization between a Volatile read and a Volatile write when compiling
to the Power architecture. While we leave the details of their respective compilation schemes
to Section 2, when a program includes a sequence of a Volatile read followed by a Volatile
write, there is no hwsync instruction inserted in-between. Without the hwsync, it is possible
for threads to disagree on the orders in which instructions are executed. As a consequence,
the compilation schemes can still cause violations of sequential consistency in programs with
all accesses marked Volatile. We have contacted the maintainers of the OpenJDK about this
issue and a bug report has been filed [17].

One solution is to add the missing hwsync instruction to restore sequential consistency
for Volatile. The resulting compilation scheme is similar to C/C++11 [4], which leads one to
wonder whether Java compilers can simply handle Access Modes the same way as C/C++11
compilers handle atomic memory orders. However, there are significant differences in the
semantics of Volatile access mode and the seq_cst memory order, which leads to differences in
the valid compiler transformations applied to them respectively. In contrast to C/C++11 [6],
Java does not allow certain compiler transformations to be applied to Volatile accesses. For
example, register promotion cannot be applied to memory locations with Volatile accesses
in Java while it can be applied in C/C++11. The differences provide Java programmers
stronger synchronization guarantees and a more intuitive reasoning process: Volatile accesses
(1) are equivalent to inserting fullFence()s, and (2) will not be optimized by the compiler
in unexpected ways. We provide a detailed comparison along with soundness proofs and
examples in Section 5.

While the change to the compilation scheme appears to be simple, the work of verifying
its soundness is challenging. First, the formal language model JAM (hereafter JAM19) [3]
exhibits the same issue as the HotSpot compilers. That is, it cannot guarantee sequential
consistency for programs with all accesses marked Volatile. Therefore, we revise the language
model to fix this issue. To ensure the change to the model is valid we formally verify its key
properties, such as the standard DRF-SC theorem, and leverage a set of empirical litmus tests
via our implementation of Java in Herd7 [1] that keeps the model valid. We call the revised
model JAM21 to distinguish from the original version. Second, the language model defines
the semantics of fullFence() with a total order. However, many target-level architectures
such as the Power memory model [14] only specify a partial observable order among their
synchronization mechanisms (fence cumulativity). Therefore, we develop an intermediate
language model, JAM ′

21, to bridge JAM21 with the target level models. We show that
JAM ′

21 yields the same observable program executions as JAM21 but does not specify a
total order among fullFence()s, which simplifies the proof for compilation correctness.

1.1 Outline

The rest of the paper is structured as follows. Section 2 explains the bug in the current Java
compiler to Power with an example. In Section 3, we explain the formal model that we use
in this paper. Section 4 provides a correctness proof for our proposed compilation scheme to
Power. Section 5 presents a set of program transformations that are valid/invalid for Java
and a comparison with C/C++11. We include a discussion on expected performance impact
in Section 6. Section 7 details some recent related work and finally, Section 8 concludes the
paper.

S. Liu, J. Bender, and J. Palsberg 6:3

1.2 Supplementary Material
The proofs of the theorems appear in this paper are available in the appendices (which are
available in the full version of the paper). The following are also available as artifact of this
paper at https://github.com/ShuyangLiu/ECOOP22-Supplementary-Material.

The extended Herd7 tool suite with the Java architecture.
The litmus tests that appear in this paper.
The Coq proofs for some of the theorems in this paper.

2 The Problem of Compiling Volatile and How to Fix it

In this section we use an example to demonstrate that the approach implemented by the
HotSpot JVM compilers does not provide sequentially consistent semantics even when all
accesses use Volatile mode.

Consider the volatile-non-sc.4 example shown as an execution in Fig.1. In this example,
there are four concurrent threads (P1, P2, P3, and P4) accessing two shared integer variables
(x and y). The notation Wx = 1 means “writing to variable x with value 1”. The notation Rx
= 0 means “reading from variable x and the value returned is 0”. In addition, each variable is
initialized to 0 at the beginning before the threads start execution. The small superscript on
each memory access denotes the access mode that the access uses. For example, Rxv means
“reading with Volatile mode”.

If all of the read and write accesses in this program use Volatile mode, would the reads
ever return the values that are specified in the figure?

According to the specification [9], the program must exhibit sequentially consistent
behavior because all accesses are marked Volatile:

“When all accesses use Volatile mode, program execution is sequentially consistent, in
which case, for two Volatile mode accesses A and B, it must be that A precedes execution
of B, or vice versa.”

Therefore, we are interested in whether the example in Fig. 1 is sequentially consistent.
Sequential consistency, as first defined by [7], requires a total sequential order that preserves
program order and the values returned by the reads are compatible with this total order.
Following the definition, the execution in Fig. 1 does not satisfy sequential consistency. To
see this, we demonstrate a contradiction under the guarantees of sequential consistency.
Consider the following order constraints:
1. By program order, we know that (a) occurs before (b).
2. Since the value (b) gets is the initial value 0, it must occur before (c) writes to the

location y.
3. Then, (d) reads the value written by (c), so (c) occurs before (d).
4. By program order, (d) occurs before (e).
5. Now, looking at P4, we know that the value of x changed from 1 to 2. Therefore, we can

infer that (e) occurs before (a) since (e) is the only write to x with a value of 1 and (a) is
the only write to x with a value of 2.

In this execution, we find a cycle: (a) −→ (b) −→ (c) −→ (d) −→ (e) −→ (a) which
appears in Fig. 1 with the “occurs before” relation represented as edges in the execution
graph. Sequential consistency requires an irreflexive total order among all instructions.
Therefore, the chain formed by the total order should be acyclic, i.e., a valid execution should
not exhibit any cycle in its graph. Thus, this execution is inconsistent under sequential
consistency and should be forbidden.

ECOOP 2022

https://github.com/ShuyangLiu/ECOOP22-Supplementary-Material

6:4 Compiling Volatile Correctly in Java

Figure 1 volatile-non-sc.4 under the sequential consistency model, Forbidden.

Figure 2 volatile-non-sc.4.ppc translated to Power by HotSpot C1, Allowed.

However, despite the promise of sequential consistency given by the source-level Volatile
semantics, the compilation scheme found in the Java compilers for Power allows the example
execution in Fig. 1. To see this, we present the compilation scheme from the C1 compiler
which is the more conservative of HotSpot’s two compilers. We then give a Power-consistent
execution graph corresponding to the example in Fig. 1.

The Power architecture adopts a relaxed memory model and provides fence instructions to
recover sequential consistency. Two main types of fence instructions, the stronger fence hwsync
and the weaker fence lwsync, are usually used by the compilers to enforce synchronization
guarantees. Using lwsync usually gives better performance but the synchronization guarantee
of lwsync is weaker than hwsync. In particular, while both fence instructions carries a set
of writes (Group A writes) when propagating to another thread, lwsync does not require
an acknowledgement to continue executing the instructions after it. On the other hand, a
hwsync requires an acknowledgment marking that it (along with its Group A writes) has
propagated to all threads before proceeding to the next instruction.

The compilation to Power for Volatile accesses on C1 is the following 1:

RV ⇝ hwsync ; lwz ; lwsync

WV ⇝ lwsync ; stw ; hwsync

A Volatile read is compiled to a hwsync instruction followed by a load instruction and a
lwsync instruction; a Volatile write is compiled to a lwsync instruction followed by a store
instruction and a hwsync instruction.

Fig. 2 shows the example from Fig. 1 according the compilation scheme in the C1
compiler2.

1 This compilation scheme was found in the OpenJDK 13 HotSpot compiler and it follows from a previously
inaccurate description in the documentation [9] regarding the semantics of Volatile accesses. We have
contacted the author and the documentation has been corrected in the latest version while the compiler
bug (although reported) is still not fixed at the time of writing.

2 The C2 compiler yields a slightly different compilation scheme for Volatile reads: Instead of inserting a
lwsync fence after the load instruction, it emits a control dependency followed by an isync instruction,
which we denote as ctrlisync. But in this example, the resulting execution graph is effectively the same

S. Liu, J. Bender, and J. Palsberg 6:5

Figure 3 volatile-non-sc.4.ppc translated to Power using the revised compilation scheme, Forbidden.

The Power memory model [14] allows the behavior annotated in Fig. 2. The full trace of
the execution can be found in the full version of this paper. Here we give a brief explanation.
First note that a write operation is split into multiple steps and can be propagated to foreign
threads in different orders if not properly synchronized. Furthermore, the lwsync in P3 is
not sufficient in this case. In particular, the lwsync does not require an acknowledgement
before proceeding to the next instructions and it only requires (c) Wy = 1 to be propagated
when itself needs to be propagated to the thread (the cumulativity of lwsync). Since P4
needs to read from (e) Wx = 1, which is subsequent to (B2), (B2) needs to be propagated to
P4 before (e) Wx = 1 is propagated to P4. The propagation of (B2) lwsync makes sure that
(c) Wy = 1 is propagated to P4 before it can read x (even though it doesn’t really need to
read the value of y). On the other hand, P1 does not have any instructions reads from an
instruction of P3 that comes after (in program order) (B2). Therefore, it does not require (c)
and (B2) to be propagated to it when it executes (b). As a result, (c) can be propagated to
P1 long after reaching P3 and hence letting P3 and P1 have different views of the memory
during the execution. When P1 tries to read the value of y, it can only get an initial value
of 0 since the newer value has not been propagated to P1 yet. Consequently, this non-SC
execution is allowed (consistent) under the Power memory model, despite that the semantics
of the “all-Volatile” source program requires it to be forbidden.

The solution to fix this issue is quite straightforward. Instead of letting Volatile read
be translated using “leading fence” while Volatile write be translated using “trailing fence”,
they should both use the same fence inserting strategy (both leading fence or both trailing
fence).3 Therefore, the correct compiler scheme for Volatile should be:

RV ⇝ hwsync ; lwz ; lwsync

WV ⇝ hwsync ; stw

With the revised compilation scheme we can demonstrate that the example of Fig. 1 is
forbidden in accordance with the required SC semantics. The resulting execution graph is
shown in Fig. 3. While most of this example matches Fig. 2, (B2) now is a hwsync instruction.
As an effect of this change, (B2) is now required to be propagated to every thread and get

as C1’s because the effect of ctrlisync is subsumed into the lwsync or the hwsync instruction that it
follows. In addition, we have simplified the compiled code (such as eliminating the fence instructions at
the beginning or end of the threads and merging consecutive fence instructions) without changing its
semantics for clarity here.

3 Here we choose to show the leading fence strategy for simplicity. However, the trailing fence strategy
is symmetric to leading fence and the same correctness proof works for both conventions given it’s
used consistently (more details can be found in Section 4.1). In practice, it is usually preferable to use
trailing fence strategy for better performance.

ECOOP 2022

6:6 Compiling Volatile Correctly in Java

acknowledged before start executing (e). As a result, at the time when (c) is propagated
to P4 (as a result of the cumulative effect of (B2) just like in Section. 2), it must also have
propagated to P1 due to the acknowledgement required by the hwsync at (B2). Therefore,
it becomes impossible for (b) to read the value 0 because Power requires reads to always
read from the latest value that has been propagated to the thread. That is, this execution is
now forbidden by Power, aligning with the sequentially consistent semantics promised by the
Java Volatile mode. Note that the reasoning is the same if we use a “trailing fence” scheme.
The key is to deploy a fence insertion strategy such that there is a hwsync fence inserted
between every pair of Volatile accesses.

Interestingly, we found similar compilation schemes applied to other architectures in
HotSpot as well. This is not an accident. The source of this compiling behavior stems from
the IR phase of the compiler. At the IR (called the Ideal Graph IR in HotSpot) level, a
Volatile read is translated to a fullFence() followed by an Acquire read; a Volatile write
is translated to a Release write followed by a fullFence(). Then each compiler back end
translates the code further using the corresponding template file that maps the IR to specific
architecture instructions. In the case of Power, a fullFence() is mapped to the hwsync
instruction and Release-Acquire accesses are implemented using the lwsync instruction. While
the example we provide here focuses on the compilation to Power, the more fundamental
issue here is a lack of fullFence() between a Volatile read and a Volatile write at the IR
encoding level. JAM19 aligns with this encoding when specifying the semantics of Volatile
memory operations. As a result, JAM19 also exhibits the same problem. That is, when all
memory accesses are Volatile, JAM19 does not guarantee sequential consistency.

3 Formal Model

In this section we present the revised model JAM21, which we use as our theoretical
foundation for proving compiler correctness in the rest of the paper. We begin by introducing
the basic syntax (Section 3.1) used in the rest of the paper. Then we give the formal definition
of JAM21 in Section 3.2.

3.1 Basic Syntax
We adopt the syntax of [3] and the cat language [1] in addition to some utility functions.

Given a program P ∈ P, there is a set of executions (run-time traces) associated with P .
We call the executions histories of P and use H to denote a single history. Each execution
history consists of sets of memory access events specified by P . In particular:

H.E denotes the whole set of memory events of H.
H.F denotes the whole set of fence events of H.
H.IW denotes the set of initialization writes of H.
H.FW denotes the set of final writes of H

H.W denotes the set of write events in H.
H.R denotes the set of read events in H.
H.RMW denotes the set of read-modify-write events in H.

Note that we treat each RMW events as a single event and H.RMW ⊆ H.W and H.RMW ⊆ H.R. In
addition, for RMW operations such as compare-and-swap (CAS), we assume the operation is
on its success comparison path. They are sometimes implemented using LL/SC instructions
on hardware, which cannot guarantee atomicity if the comparison fails. We assume each
write event to the same memory location has an unique value for simplicity.

S. Liu, J. Bender, and J. Palsberg 6:7

For each memory event i, we define the following utility functions to extract memory
event attributes:

H.AccessMode(i) returns the Access Mode of event i in H.
H.val(i) returns the value of event i in H.
H.loc(i) returns the shared memory location of event i in H.
H.T id(i) returns the thread identifier of which i is executed from

Finally, we use the symbol H to denote the set of all execution histories.
The memory events of each H are related by order relations.
The program order (po) is a partial order relation (po ⊆ H.E × H.E) specified by P . We
use the notation i1

po−−→ i2 to denote the pair of events ⟨i1, i2⟩ related by po and H.po to
denote the set of all pairs relates by po in H.
The reads-from (rf) order is a partial order relation (rf ⊆ H.W × H.R). For each read
event i2, there exists a unique write event i1 such that H.val(i1) = H.val(i2) and
H.loc(i1) = H.loc(i2). We use the notation i1

rf−−→ i2 to denote the pair of events ⟨i1, i2⟩
related by rf and H.rf to denote the set of all pairs relates by rf in H.
Model-Specific relations. There are sets of relations that are specifically defined by the
memory model. They are derived from the event attributes, po, and rf using the semantic
rules of the memory model. We will detail them in the next few sections. We use the
notation i1

R−−→ i2 to denote the pair of events ⟨i1, i2⟩ ∈ H.R.

We also use operations on relations: given relations R1 and R2, we use composition R1;R2,
union R1|R2, intersection R1 & R2, complement ~R1, transitive closure R+

1, and inversion R-1
1 .

We may present an execution history H as a graph. An execution graph consists of a set
of nodes labeled with unique identifiers, and a set of labeled edges. Each labeled node refers
to an executed memory access.

Lastly, we use the notation acyclic(R−−→) to denote that R is acyclic in the execution
history.

3.2 The JAM21 Model
In this section, we present the JAM21 model. The full definition of the relations in JAM21
can be found in the full version of this paper. We explain several excerpts of the formal
model.

There are five available access modes in JAM21: Plain mode, Opaque mode, Release mode,
Acquire mode, and Volatile mode. The synchronization effect of the access modes are partially
ordered using ⊑ :

Plain ⊑ Opaque ⊑ {Release, Acquire} ⊑ Volatile.

3.2.1 Visibility
At the center of JAM21 is the notion of visibility orders (vo). The most basic form of visibility,
vo includes the reads-from (rf) relation. Intuitively, a read has certainly seen the effects of
the write it takes its value from. Otherwise, visibility comes from synchronization4. Both

4 Here, we use the high-level term “synchronization” for any memory consistency guarantee among
instructions. We noticed that the usage of this term might differ outside of this paper. Therefore, we
try to avoid using this term ambiguously to avoid confusion.

ECOOP 2022

6:8 Compiling Volatile Correctly in Java

Volatile (V) and Release(REL)-Acquire(ACQ), (RA as the union) accesses provide synchronization
and thus visibility. Note that Volatile accesses are also included in the set of accesses that are
considered Release-Acquire by the model. Further, vo can be derived from ra or svo orders,
which captures the synchronization effects of Release-Acquire memory events or fences, spush
or volint orders, which capture the synchronization effects of Volatile memory events or
fullFence()s. In addition, the pushto order is trace order (to) restricted to the domain
of spush and volint. Composing pushto with spush or volint emulates the cross-thread
total order among fullFence()s, which is also part of the vo order. Finally, po to the same
location is also included as part of the vo definition.

ra ≜ po ; [REL | V] | [ACQ | V] ; po

svo ≜ po ; [F & REL] ; po ; [W] | [R] ; po ; [F & ACQ] ; po

spush ≜ po ; [F & V] ; po

volint ≜ [V] ; po ; [V]

vvo ≜ rf | svo | ra | spush | volint | pushto ; (spush | volint)

vo ≜ vvo+ | po-loc

Note that the definition of volint has been corrected from JAM19 to ensure sequential
consistency for Volatile.

3.2.2 Coherence
The coherence order, co-jom, is an order among writes to the same location. Coherence
order edges can be derived using the vo order and the po order among memory accesses.

WWco(rel) ≜ {⟨i1, i2⟩ | ⟨i1, i2⟩ ∈ H.rel ∧ i1, i2 ∈ H.W ∧ H.loc(i1) = H.loc(i2) ∧ i1 ̸= i2}

coww ≜ WWco(vo)

cowr ≜ WWco(vo ; rf−1)

corw ≜ WWco(vo ; po)

corr ≜ [O | RA | V] ; WWco(rf ; po ; rf−1) ; [O | RA | V]

co-jom ≜ coww | cowr | corw | corr

Note that co-jom is different from the definition of co in other memory models such
as Power and x86-TSO. Instead of enumerating all possible total coherence order to check
the consistency of a given execution history, JAM21 derives coherence order co-jom among
memory events from their known relations. Therefore, co-jom is a partial order among
writes to the same location in JAM21. We use the notation i1

co-jom−−−−−→ i2 to denote the pair
of events ⟨i1, i2⟩ related by co-jom and H.co-jom to denote the set of all pairs relates by
co-jom in H. We use the simpler name co to denote co-jom when the context is clear.

In addition, different from JAM19, Plain mode reads to the same location ordered by po
can be reordered by compiler and therefore cannot be used to derive co-jom order.

3.2.3 Execution Consistency
Axiomatic models define program semantics as the set of allowed executions. We adopt the
same definition of candidate execution from [1].

S. Liu, J. Bender, and J. Palsberg 6:9

▶ Definition 1 (Consistent Candidate Execution). Given a program P and a memory model
M , an execution history H is a M-consistent candidate execution of P if and only if:

H is a candidate execution of P (specified by the architecture of the programming language
of which P is written in).
H is M-consistent.

We denote the set of all M -consistent candidate executions of P by HistoriesM (P).

We now have all the definitions needed to define execution consistency under JAM21.

▶ Definition 2 (JAM21-consistency). An execution history H is JAM21-consistent if it is
trace coherent and satisfies the following two requirements:
1. No-Thin-Air: po | rf is acyclic. acyclic(po | rf−−−−−→)
2. Coherence.: co-jom is acyclic, acyclic(co-jom−−−−−→)
We say such an execution history H is allowed by JAM21. Otherwise, it is forbidden.

For the JAM21 model, we use HistoriesJAM21(P) to denote the set of all JAM21-
consistent execution histories of P .

JAM21 satisfies a set of properties such as the DRF-SC Theorem. We show the theorems
and the proofs in the full version of this paper.

3.2.4 Validation with Litmus Tests
The experimental validation of the JAM21 model includes two parts.

First, we implement the Java architecture in Herd7. Herd7 [1] was developed to simulate
program executions with user-defined memory models. An architecture in Herd7 provides
the parser for litmus tests written in the language corresponding to the architecture and an
operational semantics of the instructions that appear in litmus tests. Herd7 uses the parser
and the instruction semantics from the architecture to form an internal representation of the
input litmus test and generate the set of all possible executions. Then, Herd7 checks the
consistency of the executions using memory models written in the cat language. As of today,
several mainstream architectures, such as C/C++11 [6], x86 [15], ARM [2], and Power [14],
have been implemented and included in Herd7’s official repository. Unfortunately, Java is
not. JAM19 [3] validated its formalization by mapping memory events to other architectures’
events that exists in the Herd7 repository and run the litmus tests in the architecture’s
language. The mapping roughly captures part of the compilation scheme but it is neither
complete nor proven sound. For example, in its mapping to ARMv8, Volatile accesses are
ignored and not mapped to any memory event. Hence this approach is invalid and the results
cannot be trusted though they show intentions on how JAM19 was expected to behave.
Therefore, we extend the Herd7 tool suite with the Java architecture and translate the set
of litmus tests used for testing JAM19 to Java5. A detailed description of each supported
instruction is shown in the full version of this paper.

Second, we validate the JAM21 model using the Java translation of the set of litmus
tests that was originally used to validate JAM19 and compare their outcomes. The results
are mostly the same as the results from JAM19 except for three cases that are relevant
to the inconsistency issue discussed earlier in this paper because we wish to fix the issue
while keeping other parts of the model unchanged. The three exceptions reveal another

5 Note that not all tests are translatable. For example, for the cases that test address dependencies, there
is no corresponding Java version since the notion of address dependency does not exist in Java. We
drop a small set of litmus tests due to this reason.

ECOOP 2022

6:10 Compiling Volatile Correctly in Java

aspect of the change, accommodating both the leading fence convention and the trailing
fence convention, whereas JAM19 forced the compiler to choose a particular (problematic)
convention. Since the compiler is free to choose either convention, a full synchronisation is
only guaranteed to appear between a pair of Volatile accesses. In effect, certain executions
that was forbidden by JAM19 are allowed by JAM21 since it is no longer guaranteed that
Volatile writes are followed by a full synchronisation and Volatile reads are prepended with a
full synchronisation. In addition, we have added new litmus tests for showing the change
in the semantics of Volatile, volatile-non-sc.4 and volatile-non-sc.5. While JAM19 allows the
non-sequentially consistent behavior, JAM21 correctly forbids them. We further translated
the examples to Power using the problematic compilation scheme, volatile-non-sc.4.ppc and
volatile-non-sc.5.ppc, and the tests are indeed allowed by the Power memory model. Please
see the full version of this paper for a detailed report.

4 Compilation Correctness to Power

In this section, we show that the revised compilation scheme for Power is correct with respect
to the Power memory model [14]. We use an intermediate model for the Java Access Modes
that is observationally equivalent to JAM21, which we call JAM ′

21. We include the detailed
definition of JAM ′

21 and the proofs for their observational equivalence in the full version of
this paper. We use JAM ′

21 to prove that the revised compilation scheme to Power is correct.

4.1 The Power Memory Model
We use the Power memory model defined in Herd7 [1], which consists of the following basic
order definitions (Please see the full version of this paper for the full semantics):

po and rf follows the same definitions as in JAM21 (as described in Section. 3).
co is the union of total orders among writes to the same location. Additionally, if i1 and
i2 are events on different threads and i1

co−−→ i2, then i1
coe−−−→ i2.

ctrl is the control dependency between memory accesses.
ppo is the set of preserved program orders. The detailed definition can be found in the
full version of this paper.
chapo ≜ rfe | fre | coe | (fre ; rfe) | (coe ; rfe)
com ≜ rf | fr | co
po-loc is a subset of po that relates accesses to the same locations.
rmw relates the read and the write access from the same RMW memory event.
hb ≜ ppo | (sync | lwsync) | rfe
propbase ≜ ((sync | lwsync) | (rfe ; (sync | lwsync))) ; hb∗

prop ≜ propbase & (W ∗ W) | (chapo? ; propbase∗ ; sync ; hb∗)
Additional order definitions can be found in the full version of this paper.

▶ Definition 3 (Power Consistency). An execution history H is Power-consistent if it is
trace coherent and satisfies the following six requirements:
1. SC-per-location: po-loc | com is acyclic.
2. Atomicity: rmw & (fre ; coe) is empty.
3. No-Thin-Air: hb is acyclic.
4. Propagation: (co | prop) is acyclic.
5. Observation: fre; prop; hb∗ is irreflexive.
6. SCXX: co | (po & (X ∗ X)) is acyclic (where X denotes atomic accesses)
We say such an execution history H is allowed by Power. Otherwise, it is forbidden.

S. Liu, J. Bender, and J. Palsberg 6:11

getOpaque()⇝ lwz ; cmp ; bc
setOpaque()⇝ stw

getAcquire()⇝ lwz ; lwsync
setRelease()⇝ lwsync ; stw

getVolatile()⇝ hwsync ; lwz ; lwsync
(Or getVolatile()⇝ lwz ; hwsync for trailing fence convention)

setVolatile()⇝ hwsync ; stw
(Or setVolatile()⇝ lwsync ; stw ; hwsync for trailing fence convention)

AcquireFence()⇝ lwsync
ReleaseFence()⇝ lwsync

fullFence()⇝ hwsync
getAndAdd()⇝ hwsync ; _1: ldarx ; add ; stdcx. ; bne _1 ; lwsync

(Or getAndAdd()⇝ lwsync ; _1: ldarx ; add ; stdcx. ; bne _1 ; hwsync for trailing
fence convention)

getAndAddAcquire()⇝ _1: ldarx ; add ; stdcx. ; bne _1 ; lwsync
getAndAddRelease()⇝ lwsync ; _1: ldarx ; add ; stdcx. ; bne _1

Figure 4 Compilation to Power.

4.2 Compilation Scheme

We use the compilation scheme in Fig. 4. Note that this is slightly different from the
compilation scheme found in OpenJDK HotSpot compiler in that each Opaque mode read is
translated to a load instruction followed by a conditional branch. This enables us to ensure
the No-Thin-Air property as it is not guaranteed in the Power memory model. The problem
of Out-of-Thin-Air in axiomatic models has been an active research area for a long time and
there exists various ways to use weaker compilation schemes while still ruling out thin-air
reads. However, it is out of the scope of this paper and here we adopt the stronger scheme for
Opaque mode to simplify the proofs. Additionally, we fix the compilation scheme for Volatile
as suggested in Section 2. Note that both leading fence and trailing fence conventions ensure
a hwsync instruction is inserted between each pair of Volatile mode accesses as long as they
are used consistently (use the same convention for Volatile writes and reads). Therefore, the
proof for the trailing fence convention can be carried out in a very similar way as the proof
for the leading fence convention.

We start our proof by defining a CompilesTo relation over execution histories that relates
source level executions to target level executions. Intuitively, the process of compilation can
be seen as a transformation function on executions from source level to target level. With
the CompilesTo relation, we can characterize a subset of target level executions that are
constructed particularly through the compilation (following a given compilation scheme)
from the source level. Note that at this step we do not check whether the resulting execution
is consistent under the target level memory model, since the consistency of an execution is
checked after the execution is constructed in axiomatic memory models.

▶ Definition 4 (Compilation of an Execution). We define the “CompilesTo” relation ❀⊆ H×H

for the compilation from Java to Power as the following: Given a Java program Psrc, let
Ptgt be the target-level program compiled from Psrc using the compilation scheme in Fig. 4
(using the leading fence convention). Let Hsrc be a candidate execution history of Psrc and
Htgt be a candidate execution history of Ptgt. We say Hsrc ❀ Htgt if:

Htgt.IW = Hsrc.IW

ECOOP 2022

6:12 Compiling Volatile Correctly in Java

Htgt.FW = Hsrc.FW
Htgt.E = Hsrc.E
Htgt.rf = Hsrc.rf
Htgt.po = Hsrc.po
Htgt.co ⊆ Hsrc.to
If i1 ∈ Hsrc.E, irmw ∈ Hsrc.RMW and irmw

po−−→ i1, then irmw
ctrl−−−−→ i1 in Htgt

If i⊒O
R ∈ Hsrc.R, i1 ∈ Hsrc.E and i⊒O

R
po−−→ i1, then iR

ctrl−−−−→ i1 in Htgt

If i1, i2 ∈ Hsrc.E and i1
push−−−−→ i2, then i1

sync−−−−→ i2 for i1, i2 ∈ Htgt.E
If i1, i2 ∈ Hsrc.E and i1

ra−−→ i2, then i1
lwsync−−−−−→ i2 for i1, i2 ∈ Htgt.E

Once we have the source level and target level execution histories, we use the memory
model to check for consistency. A correct compilation, intuitively, should not introduce any
new program behavior. In this context, it means there should not be any execution Hsrc that
is forbidden by the source level memory model being related (by the “CompilesTo” relation)
with a Htgt that is allowed by the target level memory model. That is, if Htgt is consistent
under the target level memory model, then Hsrc should also be consistent under source level
memory model. Formally, we have the following definition (recall that we use HistoriesM (P)
to denote the set of consistent execution histories if a program P under a memory model M).

▶ Definition 5 (Compilation Correctness). Let Psrc be a source program and S be a memory
model that supports the source language, Ptgt be the target program compiled from Psrc using
a compilation scheme and T be a memory model that supports the target language. We say a
compiler that compiles Psrc to Ptgt is correct if for all Htgt ∈ HistoriesT (Ptgt) there exists
a Hsrc ∈ HistoriesS(Psrc) such that Hsrc ❀ Htgt.

4.3 Proof of Compilation Correctness
We leverage an intermediate memory model, JAM ′

21, to prove the compilation correctness to
Power. While the complete definition of JAM ′

21 can be found in the full version of this paper,
it is important to note that JAM ′

21 is observationally equivalent to JAM21, which means
they allow the same visible program behaviors given the same program. Intuitively, each
consistent execution under JAM21 has a corresponding consistent execution under JAM ′

21
with the same set of events and the same observable value on each event. Formally, we give
the following definitions for observational equivalence.

▶ Definition 6 (Observational Equivalence of Execution Histories). Given a program P , let H

and H ′ be two execution histories of P . We say H and H ′ are observationally equivalent
if:

H.IW = H ′.IW
H.FW = H ′.FW
H.E = H ′.E
H.po = H ′.po
H.rf = H ′.rf
∀i ∈ H.E, H.AccessMode(i) = H ′.AccessMode(i)

▶ Definition 7 (Observational Equivalence of Memory Models). Given a program P , let M1
and M2 be two memory models that support the architecture of the programming language
that P is written in. Let HistoriesM1(P) be the set of all M1-consistent candidate executions
of P ; let HistoriesM2(P) be the set of all M2-consistent candidate executions of P . We say
M1 and M2 are observationally equivalent if:

S. Liu, J. Bender, and J. Palsberg 6:13

(⇒) For all H1 ∈ HistoriesM1(P), there exists H2 ∈ HistoriesM2(P) such that H1 is
observationally equivalent to H2.
(⇐) For all H2 ∈ HistoriesM2(P), there exists H1 ∈ HistoriesM1(P) such that H2 is
observationally equivalent to H1.

Then we prove the compilation correctness from JAM ′
21 to Power.

▶ Lemma 8 (JAM ′
21 to Power). Let Psrc be a Java program, Ptgt be the Power program

compiled from Psrc using the compilation scheme in Fig. 4 (with the leading fence convention).
For all Htgt ∈ HistoriesP ower(Ptgt) there exists a Hsrc ∈ HistoriesJAM ′(Psrc) such that
Hsrc ❀ Htgt.

Please see the full version of this paper for the proof.
Finally, we associate JAM21 with JAM ′

21 through the notion of observational equivalence
and prove the compilation correctness from JAM21 to Power.

▶ Theorem 9 (Compilation Correctness to Power (Leading Fence Convention)). The compilation
from Java to Power following the compilation scheme in Fig. 4 (using the leading fence
convention) is correct. That is, let Psrc be a Java program, Ptgt be the Power program
compiled from Psrc using the compilation scheme in Fig. 4 (using the leading fence convention).
For all Htgt ∈ HistoriesP ower(Ptgt) there exists a Hsrc ∈ HistoriesJAM (Psrc) such that
Hsrc ❀ Htgt.

Please see the full version of this paper for the proof.

▶ Corollary 10 (Compilation Correctness to Power (Trailing Fence Convention)). The com-
pilation from Java to Power following the compilation scheme in Fig. 4 (using the trailing
fence convention) is correct. That is, let Psrc be a Java program, Ptgt be the Power program
compiled from Psrc using the compilation scheme in Fig. 4 (using the trailing fence conven-
tion). For all Htgt ∈ HistoriesP ower(Ptgt) there exists a Hsrc ∈ HistoriesJAM (Psrc) such
that Hsrc ❀ Htgt.

Please see the full version of this paper for the proof.

5 Compiler Transformations

One important aspect of compilers is the program transformations that they apply to the
program. A correct compiler transformation should not introduce any new program behavior.
While this is relatively simple for sequential programs, it can yield subtle issues when
applying the same transformations to concurrent programs. A memory model’s task is
then to accommodate a set of common program transformations while still provide intuitive
synchronization guarantees to the programmers. In Section 4 we show that Java and
C/C++11 can use the same compilation scheme to Power (and x86, please see the full version
of this paper). However, Java has a stronger semantics for Volatile comparing to seq_cst
in C/C++11 and can adopt only a strict subset of the transformations that are valid for
C/C++11.

In this section, we use the set of compiler transformations detailed by [6] and compare their
soundness in Java with C/C++11. We provide formal proofs for the sound transformations
and counter-examples for invalid transformations. We conclude this section by discussing
the implications of our results.

To prove a transformation is valid, intuitively, we show that there does not exist a Hsrc

of Psrc such that it is forbidden by JAM21 but the corresponding Htgt of Ptgt is allowed.

ECOOP 2022

6:14 Compiling Volatile Correctly in Java

Transformation C/C++11 Java
Strengthening [Sec. 5.1] ✓ ✓

Sequentialisation [Sec. 5.2] ✓ ✓

Reordering [Sec. 5.3] See Fig. 6
Merging [Sec. 5.4] See Fig. 7
Register Promotion [Sec. 5.5] ✓ For locations that does not

have Volatile access

Figure 5 Compiler Transformations in C/C++11 and Java.

▶ Definition 11 (Valid Program Transformation). Let Psrc be a Java program which has a
set of candidate executions, Histories(Psrc). Let T : H → H be a program transformation
and Htgt = T (Hsrc) for each candidate execution Hsrc of Psrc. Then we say T is valid
under JAM21 if and only if for each Htgt, if Htgt is JAM21-consistent, then Hsrc is also
JAM21-consistent.

The results for Java comparing them C/C++11 [6] are summarized in Fig. 5.

5.1 Strengthening
Strengthening transforms the access mode of accesses to stronger access modes. It is supported
by JAM21 due to the monotonicity property of the memory model. The formal theorem is
the following:

▶ Theorem 12 (Strengthening). Let Htgt an execution of Ptgt, which is obtained from applying
Strengthening to a program Psrc. There exists an execution Hsrc of Psrc such that:

Hsrc.E = Htgt.E
Hsrc.po = Htgt.po
Hsrc.rf = Htgt.rf
∀i ∈ Hsrc.E, Hsrc.AccessMode(i) ⊑ Htgt.AccessMode(i)

If Htgt is JAM21-consistent, then Hsrc is JAM21-consistent.

Proof. By Monotonicity of JAM21, all the constraints in Hsrc are preserved in the strength-
ened execution Htgt. Therefore, if Htgt is JAM21-consistent, so is Hsrc. ◀

5.2 Sequentialisation
Sequentialisation transforms two concurrent accesses into accesses in a single sequential
process. It is natually supported by JAM21 because sequentialisation does not remove any
synchronization from the program.

▶ Theorem 13 (Sequentialisation). Let Psrc be a Java program and Ptgt be a Java program
obtained by performing a sequentialisation operation on a pair of accesses a and b. Let Htgt

be an execution of Ptgt. Then there exists an execution Hsrc of Psrc such that
Hsrc.po ∪ {⟨a, b⟩} = Htgt.po where ⟨a, b⟩ /∈ Hsrc.po and ⟨b, a⟩ /∈ Hsrc.po
Hsrc.rf = Htgt.rf
Hsrc.E = Htgt.E
Hsrc.to = Htgt.to
Hsrc.IW = Htgt.IW
∀i ∈ Hsrc.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)

and if Htgt is JAM21-consistent, then Hsrc is JAM21-consistent.

S. Liu, J. Bender, and J. Palsberg 6:15

Rm2
y Wm2

y RMWm2
y Fm2

Rm1
x m1 ⊑ Opaque m1, m2 ⊑

Opaque ∧
(m1 = Plain ∨
m2 = Plain)

m1 = Plain ∧
m2 ⊑ Acquire

(m1 ⊑ Opaque ∧ m2 =
Release ∧ ∀i, Fm2 po−−→ i ⇒ i /∈
H.W) ∨ (m1 = Acquire ∧ m2 =
Acquire) ∨ (m1 = Acquire ∧
m2 = Release)

Wm1
x m1 ̸= Volatile∨

m2 ̸= Volatile
m2 ⊑ Opaque m2 ⊑ Acquire (m2 = Acquire) ∨ (m2 =

Release ∧ ∀i, Fm2 po−−→ i ⇒
i /∈ H.W) ∨ (m2 = Release ∧
∀i, Fm2 po−−→ i ∧ i ∈ H.W ⇒
AccessMode(i) = Release)

RMWm1
x m1 ⊑ Release m1 ⊑ Release∧

m2 = Plain
- (m1 ⊒ Acquire ∧ m2 =

Acquire) ∨ (m2 = Release ∧
∀i, Fm2 po−−→ i ⇒ (i ∈ H.R ∨
(i ∈ H.W ∧ AccessMode(i) =
Release)))

Fm1 (m1 =
Release) ∨
(m1 =
Acquire ∧
∀i, i po−−→
Fm1 ⇒ i /∈
H.R)

m1 = Release∧
m2 ⊒ Release∨
(m1 =
Acquire ∧
∀i, i po−−→
Fm1 ⇒ i /∈
H.R)

m1 = Release∧
m2 ⊒ Release∨
(m1 =
Acquire ∧
∀i, i po−−→
Fm1 ⇒ i /∈
H.R)

(m1 = Release ∧ m2 =
Acquire) ∨ (m1 = Acquire ∧
∀i, i po−−→ Fm1 ⇒ i /∈ H.R) ∨
(m2 = Release ∧ ∀i, Fm2 po−−→
i ⇒ i /∈ H.W)

Figure 6 Allowed Deordering Pairs in JAM21.

Proof. Assume towards contradiction that Hsrc is not JAM21-consistent. Then there are
two cases: either there is a (po | rf)+ cycle or a co cycle in Hsrc. Whether or not a and b

are included in this cycle, adding a po edge between a and b cannot eliminate this cycle
(although it might introduces new cycles). Therefore, Htgt is also not JAM21-consistent,
contradicting to our assumption. ◀

5.3 Reordering
The operation of reordering can be seen as composing deordering with sequentialisation. Since
we know that sequentialisation is sound in JAM21, we only need to show that deordering is
sound in order to show reordering is sound in JAM21.

Deordering

Deordering is a transformation that turns a pair of accesses related by a po relation into a
pair of concurrent accesses. In effect, it removes an po edge in the execution graph.

First, we adopt the same definition of adjacent events from [6]:

▶ Definition 14 (Adjacent Events). Two events a and b are adjacent in a partial order R if
for all c, we have:

c R−−→ a ⇒ c R−−→ b

b R−−→ c ⇒ a R−−→ c

For Java, the table of allowed reordering two adjacent events (with each row as the first
event and column as the second event) is shown in Fig. 6 (some of the cases are different
from C11 [6] and we have marked them in red). Intuitively, the sound deorderable pairs are
ordered by the po edges that does not impose any synchronization in the program. Therefore,
deordering (removing the po edge) does not introduce new program behavior.

ECOOP 2022

6:16 Compiling Volatile Correctly in Java

Name C/C++11 Java

Read-read Merging Rm; Rm ⇝ Rm Rm⊑Acq; Rm⊑Acq ⇝ Rm

Write-write Merging Wm; Wm ⇝ Wm Wm⊑Rel; Wm⊑Rel ⇝ Wm

Write/RMW-read Merging Wm; Racq ⇝ Wm Wm; Rm⊑Opq ⇝ Wm

Wsc; Rsc ⇝ Wsc ✗

RMWm; Rmr⊑m ⇝ RMWm RMWm; Rm⊑Opq ⇝ RMWm

Write-RMW Merging Wmw⊑m; RMWm ⇝ Wmw Wmw⊑Rel; RMWm❁Vol ⇝ Wmw

RMW-RMW Merging RMWm; RMWm ⇝ RMWm RMWm❁Vol; RMWm❁Vol ⇝ RMWm

Fence-fence Merging Fm; Fm ⇝ Fm Fm; Fm ⇝ Fm

Figure 7 Mergable Pairs in C/C++11 [6] and Java.

To prove that JAM21 supports the reordering shown in this table, we need to prove each
cell shown in the table is valid for JAM21.

▶ Theorem 15 (Deordering). Let Psrc be a Java program and Ptgt be a Java program obtained
by performing a deordering operation on a pair of accesses a and b according to Fig. 6. Let
Htgt be an execution of Ptgt. Then there exists an execution Hsrc of Psrc such that

Hsrc.po = Htgt.po ∪ {⟨a, b⟩} where a and b are po-adjacent
Hsrc.rf = Htgt.rf
Hsrc.E = Htgt.E
Hsrc.to = Htgt.to
Hsrc.IW = Htgt.IW
∀i ∈ Hsrc.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)

and if Htgt is JAM21-consistent, then Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.
Reordering, as mentioned previously, can be decomposed into two steps: deordering and

sequentialisation. Since we have already shown the soundness of the two transformations,
the soundness of reordering follows naturally.

▶ Corollary 16 (Reordering). JAM21 supports the reordering transformation for pairs of
adjacent accesses shown in Fig. 6.

5.4 Merging
Merging transforms two adjacent accesses into one single equivalent access to reduce the
number of memory accesses in the program. We have grouped all types of merging transfor-
mations appeared in C/C++11 [6] here in one section. A summarized result of mergable
pairs comparing with C/C++11 can be found in Fig. 7. The results are mostly similar except
for Volatile. Many merging transformation are invalid for Volatile because they remove the
cross-thread synchronization of Volatile.

S. Liu, J. Bender, and J. Palsberg 6:17

5.4.1 Read-Read Merging
Read-read merging is sometimes done when the compiler is optimizing redundant loads in
the same thread. When we are encountering two consecutive reads to the same location,
the first read is unchanged but the second read becomes a local read without accessing the
memory.

Let a′ and b be two adjacent read accesses reading from the same write access a. a rf−−→ a′

and a rf−−→ b, and a′ po−−→ b. Assuming AccessMode(a′) = AccessMode(b), then
∀i, a′ po−−→ i ⇒ b po−−→ i

∀i, a′ ra−−→ i ⇒ b ra−−→ i

∀i, a′ push−−−−→ i ⇒ b push−−−−→ i

∀j, j po−−→ b ⇒ j po−−→ a′

For executions, this corresponds to the following transformation in the execution graph:
since the value of r1 and r2 are guaranteed to have the same value in Ptgt, we know
that this corresponds to the execution of Psrc where the two read accesses read from the
same write access. Then we want to show that, if Htgt is JAM21-consistent, Hsrc is also
JAM21-consistent.

▶ Theorem 17 (Read-Read Merging). Let Htgt be an JAM21-consistent execution. Let
a ∈ Htgt.R\RMW and let a′ ∈ Htgt.E such that a rf−−→ a′. Let b /∈ Htgt.E. There exists a
Hsrc such that:

Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i po−−→ a} ∪ {⟨b, j⟩ | a po−−→ j}
Hsrc.rf = Htgt.rf ∪ {⟨a′, b⟩}
Hsrc.E = Htgt.E ∪ {b}
Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}
Hsrc.IW = Htgt.IW
∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
b ∈ Hsrc.R
Hsrc.AccessMode(b) = Hsrc.AccessMode(a) ⊑ Acquire

and Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.
Note that JAM21 does not allow read-read merging if the two read accesses are both

Volatile mode reads. We provide an example of this in the full version of this paper.

5.4.2 Write-Write Merging
The write-write merge transformation refers to the program transformation that merges
two consecutive write operations into one by removing the former one. JAM21 support
write-write merge when the access modes of the two writes are the same and they are not
Volatile mode accesses.

Let a and b be the two adjacent writes such that a po−−→ b. We once again have the
properties:

∀i, i po−−→ a ⇒ i po−−→ b

∀j, b po−−→ j ⇒ a po−−→ j

∀i, i ra−−→ a ⇒ i ra−−→ b

We have the following theorem.

▶ Theorem 18 (Write-Write Merging). Let Htgt be an JAM21-consistent execution. Let
b ∈ Htgt.W \RMW and let a /∈ Htgt.E and loc(a) = loc(b) ∧ ∀i ∈ Htgt.W, loc(i) = loc(b) ⇒
val(a) ̸= val(i). There exists a Hsrc such that:

ECOOP 2022

6:18 Compiling Volatile Correctly in Java

Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}
Hsrc.rf = Htgt.rf
Hsrc.E = Htgt.E ∪ {a}
Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}
Hsrc.IW = Htgt.IW
∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
a ∈ Hsrc.W

Hsrc.AccessMode(a) = Hsrc.AccessMode(b) ⊑ Release
and Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.
Note that write-write merging is not valid for Volatile mode writes. We provide an

example of this in the full version of this paper.

5.4.3 Write/RMW-read Merging
The Write/RMW-read merging refers to the program transformation that merges a write/
RMW and a read into a single write/RMW and a local access.

Similarly, the transformation with an RMW operation and a read operation optimizes
the latter read operation to read locally and in effect removes a memory load operation in
the execution graph.

JAM21 only support this transformation when the read operation is (or is weaker than)
Opaque mode which is different from RC11 [6]’s result for C/C++11. We provide a counter-
example in the full version of this paper to show that write/RMW-read merging is invalid
when the read is (or is stronger than) Acquire mode.

▶ Theorem 19 (Write/RMW-Read Merging). Let Htgt be a JAM21-consistent execution. Let
a ∈ Htgt.W and b /∈ Htgt.E. There exists a Hsrc such that:

Hsrc.E = Htgt.E ∪ {b}
b ∈ Hsrc.R
Hsrc.loc(b) = Hsrc.loc(a)
Hsrc.val(b) = Hsrc.val(a)
Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}
Hsrc.rf = Htgt.rf ∪ {⟨a, b⟩}
Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}
Hsrc.IW = Htgt.IW
∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
Hsrc.AccessMode(b) ⊑ Opaque
Please see the full version of this paper for the proof.

5.4.4 Write-RMW Merging
The write-RMW merging refers to the program transformation that merges a write and a
consecutive RMW operation into a write with the value of the RMW. For example, if we
have the following pattern in a program:

x = 1;
x.getAndSet(1,2);

It can be tranformed to:

x = 2;

S. Liu, J. Bender, and J. Palsberg 6:19

Similar to write-write merging, JAM21 supports write-RMW merging when the access
mode of the write is {Opaque, Release} and the access mode of the RMW is {Acquire, Release}.

▶ Theorem 20 (Write-RMW Merging). Let Htgt be a JAM21-consistent execution. Let
b ∈ Htgt.W\Htgt.RMW, a /∈ Htgt.E and v ∈ Val. There exists a Hsrc such that:

Hsrc.E = Htgt.E ∪ {a}
∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
Hsrc.AccessMode(a) ∈ {Opaque, Release}
Hsrc.AccessMode(b) ∈ {Acquire, Release}
Hsrc.loc(b) = Hsrc.loc(a)
b ∈ Hsrc.RMW
Hsrc.val(b) = (Hsrc.val(a), v)
Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i po−−→ b} ∪ {⟨a, j⟩ | b po−−→ j}
Hsrc.rf = Htgt.rf ∪ {⟨a, b⟩}
Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, a⟩ | i to−−→ b} ∪ {⟨a, j⟩ | b to−−→ j}
Hsrc.IW = Htgt.IW

and Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.

5.4.5 RMW-RMW Merging
The RMW-RMW merging transformation refers to the program transformation that merges
two consecutive RMW operations into one such that it has the first RMW’s (expected) read
value and the second RMW’s write value. For example, if we have the following pattern in a
program:

x.getandSet(1,2);
x.getandSet(2,3);

then it might be transformed into:
x.getAndSet(1,3);

The RMW-RMW merging transformation is essentially the same as write-write merging
and read-read merging described previously. Therefore, the set of constraints on valid access
modes for merging is the intersection of the two. That is, two RMWs are mergeable if they are
both Acquire mode or Release mode. For the counter-examples showing this transformation
is invalid for Volatile accesses, please see the examples for write-write and read-read merging.

▶ Theorem 21 (RMW-RMW Merging). Let Htgt be a JAM21-consistent execution. Let
x be a memory location and a ∈ Htgt.E with Htgt.val(a) = (vr, vw), Htgt.loc(a) = x, and
Htgt.AccessMode(a) ∈ {Release, Acquire}. Let b /∈ Htgt.E, there exists a Hsrc such that:

Hsrc.E = Htgt.E ∪ {b}
∀i ∈ Htgt.E, Hsrc.AccessMode(i) = Htgt.AccessMode(i)
Hsrc.val(a) = (vr, v)
Hsrc.val(b) = (v, vw)
Hsrc.loc(b) = x

Hsrc.AccessMode(b) = Hsrc.AccessMode(a) ∈ {Release, Acquire}
Hsrc.po = Htgt.po ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i po−−→ a} ∪ {⟨b, j⟩ | a po−−→ j}
Hsrc.rf = Htgt.rf ∪ {⟨a, b⟩}
Hsrc.to = Htgt.to ∪ {⟨a, b⟩} ∪ {⟨i, b⟩ | i to−−→ a} ∪ {⟨b, j⟩ | a to−−→ j}
Hsrc.IW = Htgt.IW

ECOOP 2022

6:20 Compiling Volatile Correctly in Java

and Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.

5.4.6 Fence-fence Merging
The Fence-fence merging refers to the program transformation that merges two consecutive
fences of the same access mode into one. For example, if we have:

VarHandle.fullFence();
VarHandle.fullFence();

then it can be optimized to:
VarHandle.fullFence();

Since JAM21 is fence-based such that each fence is converted into an edge between
memory accesses, this is trivially supported since the execution graph before and after the
transformation is exactly the same.

5.5 Register Promotion for Non-shared Variable
Register Promotion promotes memory accesses of a non-shared memory location to local
registers. It has the effect of removing memory accesses for thread-local variables. JAM21
only supports register promotion for variables without any Volatile accesses in the program.
For non-Volatile accesses, since the variable is not shared across threads, it is safe to remove
them without worrying about removing synchronization from the program. In contrast,
Volatile accesses impose cross-thread synchronizations with Volatile accesses for other variables,
so removing such accesses can potentially remove important synchronization in the program
and introduce new behaviors that were previously forbidden by the memory model. We
provide a counter-example in this section showing that we cannot promote Volatile accesses
to local register accesses even if the location is only accessed by one thread.

Suppose all accesses to a memory location are in the same thread, the transformation
can be seen as two steps:
1. Weakening the accesses to Plain mode accesses
2. Removing the Plain mode accesses

▶ Theorem 22 (Weakening for non-shared variable). Let Htgt be a JAM21-consistent execution
such that, for all accesses i and j in Htgt.E, loc(i) = loc(j) = x ⇒ Tid(i) = Tid(j) for some
memory location x. In addition, ∀i ∈ Htgt.E, loc(i) = x ⇒ AccessMode(i) = Plain. There
exists an execution Hsrc such that:

Hsrc.E = Htgt.E
Hsrc.po = Htgt.po
Hsrc.rf = Htgt.rf
Hsrc.to = Htgt.to
Hsrc.IW = Htgt.IW
∀i ∈ Hsrc.E, loc(i) = x ⇒ AccessMode(i) ∈ {Release, Acquire}

and Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.

▶ Theorem 23 (Removing Plain accesses for non-shared variable). Let Htgt be a JAM21-
consistent execution. Let x be a memory location and for all i ∈ Htgt.E such that loc(i) = x,
Tid(i) = t for some t. Let a /∈ Htgt.E. There is a Hsrc such that:

S. Liu, J. Bender, and J. Palsberg 6:21

Hsrc.E = Htgt.E ∪ {a}
Hsrc.loc(a) = x

Hsrc.AccessMode(a) = Plain
Hsrc.po ⊃ Htgt.po
for all i ∈ Hsrc.E such that Hsrc.loc(i) = x, i po−−→ a or a po−−→ i

Hsrc.rf = Htgt.rf if a ∈ Hsrc.W \RMW , otherwise, Hsrc.rf = Htgt.rf ∪ {⟨i, a⟩} such
that (i ∈ Hsrc.W) ∧ (loc(i) = x) ∧ (i po−−→ a) ∧ (∀j ∈ Hsrc.E, (loc(j) = x) ∧ (j po−−→ a) ⇒
(j po−−→ i)).
Hsrc.to = Htgt.to
Hsrc.IW = Htgt.IW

and Hsrc is JAM21-consistent.

Please see the full version of this paper for the proof.

Counter Example

We now show a counter example for invalid register promotion on locations with Volatile
accesses. Consider the following program:

Thread0 {
int r1 = X.getOpaque(); // 1
int r2 = X.getOpaque(); // 2

}

Thread1 {
int r3 = Y.getOpaque(); // 1
int r4 = Y.getOpaque(); // 2

}

Thread2 {
X.setOpaque(2);
Z.setVolatile(1);
Y.setVolatile(1);

}

Thread3 {
Y.setVolatile(2);
X.setVolatile(1);

}

An execution with the annotated values in this program is not allowed by JAM21. The
execution graph before the transformation is shown in Fig. 8. First note that the Volatile
access on z also has Release semantics due to the monotonicity of access modes, which yields
the ra edge in Thread 2. The total order among push edges gives use two cases:
1. Wz = 1 vvo−−−→ Wx = 1. Since Wx = 2 ra−−→ Wz = 1 and ra ⊆ vvo and vvo+ ⊆ vo, we have

Wx = 2 vo−−→ Wx = 1, which contradict with the co edge established by the observation
from Thread 0.

2. Wy = 2 vvo−−−→ Wy = 1. This contradict with the co edge established by the observation
from Thread 1.

In both cases there is a contradiction (a co cycle). Therefore, this execution is forbidden by
JAM21.

In this example, the memory location z is only accessed by Thread 2. It maybe tempting
to promote z to a local register on Thread 2 to reduce the number of memory instructions,
which yields the following program:

Thread0 {
int r1 = X.getOpaque();
int r2 = X.getOpaque();

}

Thread1 {
int r3 = Y.getOpaque();
int r4 = Y.getOpaque();

}

Thread2 {
X.setOpaque(2);
int z = 1
Y.setVolatile(1);

}

Thread3 {
Y.setVolatile(2);
X.setVolatile(1);

}

ECOOP 2022

6:22 Compiling Volatile Correctly in Java

Figure 8 Before Register Promotion on Volatile access (Forbidden).

Figure 9 After Register Promotion on Volatile access (Allowed).

The execution graph after the transformation is shown in Fig. 9.
The annotated program behavior becomes allowed by JAM21 after the transformation.

As the execution graph shows, since Volatile accesses also have cross-thread synchronization
effect, we cannot simply weaken it to a Plain access without introducing new program
behaviors.

5.6 Why are many transformations invalid for Volatile?
As we have shown, many local transformations are invalid for Volatile accesses under JAM21.
This is not a surprise and is intended to provide programmers a more intuitive semantics for
Volatile accesses.

First, as we have confirmed with the author of [9], Java’s Access Modes intend equivalent
semantics for Volatile mode and fullFence(). In this way, the programmers can easily
understand the semantics of both once they understand fullFence(). To accurately capture
this intention, JAM21 used a fence-based approach with push order to model Volatile mode.
As we described in Section 3, fullFence() in Java has cross-thread synchronization effects.
As a result, any local program transformation that removes a Volatile access from the
execution graph may also remove its cross-thread synchronization, and might introduce new
program behavior after the transformation. Therefore, those transformations on Volatile
accesses are mostly not allowed by JAM21. On the other hand, the sc fence in C/C++11 [6]
has slightly stronger synchronization effect than sc accesses so that they can be used to
restore sequential consistency when inserted between every pair of accesses. Some of the
transformations are allowed to apply to sc accesses but not to the fence version of the
program.

In addition, restricting the set of possible transformations that is allowed to apply to
Volatile variables can keep the coding process simple for programmers. From the programmers’
perspective, one of the biggest challenges of developing and debugging concurrent programs

S. Liu, J. Bender, and J. Palsberg 6:23

comes from the compiler transformations that introduces surprising program behaviors that
are not observable under sequential consistency. Therefore, restricting the set of possible
transformations on Volatile accesses can restrict the set of surprising program behaviors
that can happen when using Volatile mode, making the development process simpler. From
this perspective, JAM21 provides more synchronization guarantees for Volatile mode than
C/C++11 for sc mode atomic accesses.

Lastly, as we have confirmed with the author of [9], the current implementation of
OpenJDK JVM does not apply those transformations on Volatile accesses.

6 Performance Implications

At the time of writing, the compiler bug [17] has been reported but still not resolved. The
main argument against fixing the bug by inserting the missing fence instruction is that it
may slow down the performance significantly. In this section, we argue that this is not the
case.

The reason we only translated our volatile-non-sc example to Power instructions is
that we only expect changes in the implementation of compilers targeting Power architectures.
There is no need to change the Java compilers for x86 [15] and ARMv8 [13] all thanks to a
property called write atomicity. Write atomicity, or multicopy atomicity, ensures that, when
a write issued by a thread becomes observable by any other thread, it is observable by all
other threads in the system. The issue that we demonstrate in this paper is caused by a
write operation becoming visible to some threads before some other threads. Therefore, this
violation of sequential consistency may only be observed when compiling to non-multicopy
atomic architectures. If the underlying architecture ensures multicopy atomicity, then we
can be sure that all writes are committed in a broadcast style and Release-Acquire semantics
is sufficient. Since x86 [15] and ARMv8 [13] are multicopy atomic, we do not expect the
incorrect program behavior to appear on those architectures. Therefore, no change is needed
in compilers targeting multicopy-atomic architectures. In fact, we give a correctness proof
for x86 in the full version of this paper to concretely show that the current compilation
scheme to x86 is correct with respect to the x86-TSO memory model. Furthermore, the fence
instruction that compilers use to compile to ARMv7 is the DMB SY instruction [8], which
captures the same effects of a fullFence(). The only change that needs to be made is when
compiling to Power instructions. This change might slow down some programs. However,
relative to all other major factors that affect the performance of Java programs, we expect
the impact by this change in compilers to be small.

Furthermore, symmetric to “leading fence” scheme, the “trailing fence” scheme is also
valid. A correct compiler may choose to either of the schemes. Usually one may wish to
choose the “trailing fence” scheme for better performance. In this case, comparing to the
original compilation scheme, the fix only changes the compilation scheme for each Volatile
read:
1. Remove the hwsync in front of the lwz instruction
2. Change the lwsync following the lwz instruction to hwsync
It is easy to see that this fix only requires, in effect, moving the hwsync instructions that
were originally inserted before the lwz instruction, but does not add more. In addition, it
removes the lwsync instructions. Therefore, we do not expect this change to the compilation
scheme to have much performance impact as argued in the discussions in the bug report [17].

On the other hand, the impact of this change for compiler optimizations is unclear. That
is, whether this revised compilation scheme disables some of the compiler optimizations
is still a question. However, since C/C++11 compilers has long adopted this compilation

ECOOP 2022

6:24 Compiling Volatile Correctly in Java

scheme and performance has always been the first priority in their implementations, the
possibility of disabling optimisations is unlikely. We leave a detailed empirical study for
future work.

7 Related Work

7.1 Sequential Consistency Issue in C/C++11
A similar but different issue in C/C++11 memory model for atomic operations with sequen-
tially consistent memory order was pointed out by Manerkar, et al. [11] and Lahav, et al. [6].
In particular, when using the “trailing fence” convention for compiling to Power and ARMv7
on GCC, the intended sequentially consistent semantics for certain atomic accesses can be
lost due to the different placement of fences in the programs. In other words, the previous
C/C++11 memory model was not able to support the two existing compilation schemes on
GCC. On the other hand, JAM19 did not have the same problem. Since JAM19 defined the
semantics of Volatile mode in terms of push orders, which emulates the effect of a full fence,
it already supports and aligned with the existing compilation scheme found on OpenJDK
JVMs.

The problem, however, was that the existing compilation scheme does not give sufficient
synchronization to some programs with all accesses marked as Volatile. Since JAM19 models
the problematic compilation scheme, it is necessary to repair the problem for both the
compiler and the formal model.

7.2 Using Volatile to Restore Sequential Consistency in Java
Due to the complexity of the original Java Memory Model (JMM) [12], a class of bugs
caused by missing “volatile” annotations on certain shared variables, called missing-
annotation bugs, is found across real-world Java applications [10]. Aiming to improve the
safety guarantees of the Java language, volatile-by-default JVM was proposed and developed
by [10] to advocate the idea that variables should have volatile semantics by default and
relaxed semantics by choice. Following their idea, the correctness of volatile (or Volatile mode,
as they are equivalent) semantics become especially important. After all, if we cannot restore
sequential consistency by annotating every variable as volatile (or use Volatile mode for
every access), then volatile-by-default JVM would not be able to ensure intuitive program
behaviors either. As of today, we are not aware of any volatile-by-default JVM for versions
of Java after JDK9. Thus, we suggest that researchers carefully ensure the correctness of
the volatile (or Volatile mode) implementations when implementing such JVM for Java
versions after JDK9.

7.3 Memory Fairness and Compiler Transformations
Recently a declarative definition of memory fairness was proposed for axiomatic relaxed
memory models [5]. As an improvement to the existing definition of thread fairness, the
declarative memory fairness property can be easily integrated into axiomatic models with the
No-Thin-Air restriction and can be used to prove the termination of concurrent algorithms.
We noticed that the original JAM model [3] was published before this definition was proposed
and therefore did not make any assertions regarding memory fairness. We leave it as our
future work to verify whether memory fairness preserves the correctness of the compiler
transformations and the compilation schemes.

S. Liu, J. Bender, and J. Palsberg 6:25

8 Conclusion

In this paper, we have demonstrated that Java can use a compilation scheme that is similar to
C/C++11. On the other hand, one should not simply compile Java’s Access Modes the same
way as C/C++11 compiles atomic memory orders since the formal memory models supports
different compiler optimizations. In the future, we hope the bug can be resolved soon and
the examples in this paper can be added to the Java Concurrency Stress Tests jcstress [16]
tool suite to aid in maintaining the correctness of the OpenJDK HotSpot implementations.

References
1 Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,

testing, and data mining for weak memory. ACM Trans. Program. Lang. Syst., 36(2), July
2014. doi:10.1145/2627752.

2 ARM ARM. Architecture reference manual-armv8, for armv8-a architecture profile. ARM
Limited, Dec, 2017.

3 John Bender and Jens Palsberg. A formalization of java’s concurrent access modes. Proc.
ACM Program. Lang., 3(OOPSLA), October 2019. doi:10.1145/3360568.

4 Peter Sewell Jaroslav Sevcik. C/C++11 mappings to processors. Technical report, University
of Cambridge, October 2016. URL: https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.
html.

5 Ori Lahav, Egor Namakonov, Jonas Oberhauser, Anton Podkopaev, and Viktor Vafeiadis.
Making weak memory models fair. Proc. ACM Program. Lang., 5(OOPSLA), October 2021.
doi:10.1145/3485475.

6 Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing
sequential consistency in C/C++11. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI 2017, pages 618–632, New York,
NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3062341.3062352.

7 L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comput., 28(9):690–691, September 1979. doi:10.1109/TC.1979.
1675439.

8 Doug Lea. The jsr-133 cookbook for compiler writers. http://gee.cs.oswego.edu/dl/jmm/
cookbook.html, 2011. Last modified: Tue Mar 22 07:11:36 2011.

9 Doug Lea. Using jdk 9 memory order modes. http://gee.cs.oswego.edu/dl/html/j9mm.
html, 2018. Last Updated: Fri Nov 16 08:46:48 2018.

10 Lun Liu, Todd Millstein, and Madanlal Musuvathi. A volatile-by-default jvm for server
applications. Proc. ACM Program. Lang., 1(OOPSLA), October 2017. doi:10.1145/3133873.

11 Yatin A Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Margaret Martonosi.
Counterexamples and proof loophole for the c/c++ to power and armv7 trailing-sync compiler
mappings. arXiv preprint arXiv:1611.01507, 2016.

12 Jeremy Manson, William Pugh, and Sarita V. Adve. The java memory model. SIGPLAN
Not., 40(1):378–391, January 2005. doi:10.1145/1047659.1040336.

13 Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell.
Simplifying arm concurrency: Multicopy-atomic axiomatic and operational models for armv8.
Proc. ACM Program. Lang., 2(POPL), December 2017. doi:10.1145/3158107.

14 Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. Understanding
power multiprocessors. In Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’11, pages 175–186, New York, NY, USA, 2011.
Association for Computing Machinery. doi:10.1145/1993498.1993520.

15 Peter Sewell, Susmit Sarkar, Scott Owens, Francesco Zappa Nardelli, and Magnus O. Myreen.
X86-tso: A rigorous and usable programmer’s model for x86 multiprocessors. Commun. ACM,
53(7):89–97, July 2010. doi:10.1145/1785414.1785443.

ECOOP 2022

https://doi.org/10.1145/2627752
https://doi.org/10.1145/3360568
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://www.cl.cam.ac.uk/~pes20/cpp/cpp0xmappings.html
https://doi.org/10.1145/3485475
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TC.1979.1675439
https://doi.org/10.1109/TC.1979.1675439
http://gee.cs.oswego.edu/dl/jmm/cookbook.html
http://gee.cs.oswego.edu/dl/jmm/cookbook.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
http://gee.cs.oswego.edu/dl/html/j9mm.html
https://doi.org/10.1145/3133873
https://doi.org/10.1145/1047659.1040336
https://doi.org/10.1145/3158107
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1785414.1785443

6:26 Compiling Volatile Correctly in Java

16 Aleksey Shipilev. jcstress - the java concurrency stress tests. https://wiki.openjdk.java.
net/display/CodeTools/jcstress, 2017. Last Updated: Wed Dec 05 13:55 2018.

17 Aleksey Shipilev. [JDK-8262877] PPC sequential consistency problem: volatile stores are too
weak. Technical report, OpenJDK Bug System, March 2021. URL: https://bugs.openjdk.
java.net/browse/JDK-8262877.

https://wiki.openjdk.java.net/display/CodeTools/jcstress
https://wiki.openjdk.java.net/display/CodeTools/jcstress
https://bugs.openjdk.java.net/browse/JDK-8262877
https://bugs.openjdk.java.net/browse/JDK-8262877

Functional Programming with Datalog
André Pacak
JGU Mainz, Germany

Sebastian Erdweg
JGU Mainz, Germany

Abstract
Datalog is a carefully restricted logic programming language. What makes Datalog attractive is its
declarative fixpoint semantics: Datalog queries consist of simple Horn clauses, yet Datalog solvers
efficiently compute all derivable tuples even for recursive queries. However, as we argue in this
paper, Datalog is ill-suited as a programming language and Datalog programs are hard to write
and maintain. We propose a “new” frontend for Datalog: functional programming with sets called
functional IncA. While programmers write recursive functions over algebraic data types and sets,
we transparently translate all code to Datalog relations. However, we retain Datalog’s strengths:
Functions that generate sets can encode arbitrary relations and mutually recursive functions have
fixpoint semantics. We also ensure that the generated Datalog program terminates whenever the
original functional program terminates, so that we can apply off-the-shelve bottom-up Datalog
solvers. We demonstrate the versatility and ease of use of functional IncA by implementing a type
checker, a program transformation, an interpreter of the untyped lambda calculus, two data-flow
analyses, and clone detection of Java bytecode.

2012 ACM Subject Classification Software and its engineering → Software notations and tools

Keywords and phrases Datalog, functional programming, demand transformation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.7

1 Introduction

Datalog is a carefully restricted logic programming language that has seen a surge in popularity
in recent years. Originally, Datalog was conceived as a database query language that operates
on finite sets only [15], so that all queries are guaranteed to terminate. Nowadays, Datalog is
being used in a wide array of applications [12], from program analysis [10, 13, 23] to network
monitoring [1] and distributed computing [2, 3]. What makes Datalog so popular is that (i)
there are highly efficient and scalable implementations available and (ii) Datalog programs
are considered declarative. We argue that the latter is partly a misconception: Datalog’s
semantics is declarative, but Datalog’s frontend is not.

Datalog is often primed as being declarative. This can be surprising given that a Datalog
program consists of simple Horn clauses (a0 :- a1, ..., an), where a0 holds if a1 through an

hold. In Datalog, a0 is called the head of the rule and a1, ..., an form the body of the rule.
Both head and body consist of atoms a, which are of the form R(t1, ..., tn) for some relation
R and terms t. A Datalog solver computes the least fixpoint of the Horn clauses such that
the relations R contain all derivable ground tuples, called facts in Datalog. In the initial
fixpoint iteration, the semantics collects all rule heads a0 that have no precondition. In
subsequent fixpoint iterations, the semantics collects all facts that can be derived by applying
rules to previously derived facts. When terms range over finite sets, this fixpoint iteration
terminates in finitely many steps. We concur that Datalog has a declarative semantics,
because programmers do not need to think about how the derivable facts are computed.

The problem of Datalog is its frontend: It is ill-suited as a programming language and
not declarative. Consider we want to construct control-flow graphs as a basis for program
analysis. Figure 1 shows a functional program and a Datalog program that construct the

© André Pacak and Sebastian Erdweg;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 7; pp. 7:1–7:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2022.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Functional Programming with Datalog

// Functional programming
def flow(stm: Stm): Set[(Stm, Stm)] = stm match {

case Assign(x, a) => {}
case Sequence(s1, s2) => flow(s1) ++ flow(s2) ++ {(l1, init(s2)) | l1 in final(s1)}
case If(c, s1, s2) => c match {

case True() => flow(s1) ++ {(stm, init(s1))}
case False() => flow(s2) ++ {(stm, init(s2))}
case _ => flow(s1) ++ flow(s2) ++ {(stm, init(s1)), (stm, init(s2))} }

case While(c, s) => flow(s) ++ {(stm, init(s))} ++ {(l,stm) | l in final(s)} }

// Datalog
flow(Stm, From, To) :- sequence(Stm, Stm1, _), flow(Stm1, From, To).
flow(Stm, From, To) :- sequence(Stm, _, Stm2), flow(Stm2, From, To).
flow(Stm, From, To) :- sequence(Stm, Stm1, Stm2), final(Stm1, From), init(Stm2, To).
flow(Stm, From, To) :- if(Stm, C, Stm1, _), true(C), flow(Stm1, From, To).
flow(Stm, Stm, To) :- if(Stm, C, Stm1, _), true(C), init(Stm1, To).
flow(Stm, From, To) :- if(Stm, C, _, Stm2), false(C), flow(Stm2, From, To).
flow(Stm, Stm, To) :- if(Stm, C, _, Stm2), false(C), init(Stm2, To).
flow(Stm, From, To) :- if(Stm, C, Stm1, _), not true(C), not false(C), flow(Stm1,From,To).
flow(Stm, Stm, To) :- if(Stm, C, Stm1, _), not true(C), not false(C), init(Stm1,To).
flow(Stm, From, To) :- if(Stm, C,_,Stm2), not true(C), not false(C), flow(Stm2,From,To).
flow(Stm, Stm, To) :- if(Stm, C,_,Stm2), not true(C), not false(C), init(Stm2,To).
flow(Stm, From, To) :- while(Stm, _, Stm1), flow(Stm1, From, To).
flow(Stm, Stm, To) :- while(Stm, _, Stm1), init(Stm1, To).
flow(Stm, From, Stm) :- while(Stm, _, Stm1), final(Stm1, From).

Figure 1 Constructing control-flow graphs using functional programming and Datalog.

control-flow graphs for the While language. The functional program uses pattern matching
and set-comprehensions to compute sets of edges similar to [16], whereas the Datalog program
provides rules to constrain the logic variables From and To. The most prominent problem with
Datalog in this example is the lack of structured programming and the duplication of atoms,
especially for if -statements: we must query relation if 8 times, relation true 6 times, and
relation false 6 times. Such Datalog code is hard to write and maintain. Another problem
with programming Datalog is that rules must be range-restricted: Each variable in the head
of a rule must be bound in the body of the rule. This restriction ensures relations can be
computed using Datalog’s least fixpoint semantics. For example, the increment relation
inc(X, Y) :- Y=X+1 would be correctly rejected by Datalog solvers such as Soufflé [20], because
X is not bound in the rule’s body. Datalog programmers need to work around this restriction.

So why would programmers want to use Datalog anyways instead of functional program-
ming? Because of Datalog’s declarative fixpoint semantics, which makes it easy to process
cyclic data structures such as our control-flow graphs from above. For example, we can
compute the transitive control-flow reachability with two simple rules:

flowTrans(Prog, From, To) :- flow(Prog, From, To).
flowTrans(Prog, From, To) :- flow(Prog, From, Inter), flowTrans(Prog, Inter, To).

What is remarkable is that we do not have to implement a termination condition and or
detect when the relations are stable; Datalog takes care of that. This is why Datalog is a
popular implementation language for data-flow analyses that propagate information along
the control-flow graph until reaching a fixpoint [10], despite the shortcomings of its frontend.

In this paper, we design a functional programming language with fixpoint semantics
and propose it as a “new” Datalog frontend: functional IncA. In particular, we show how
functional programs with first-order functions and recursive algebraic data types can be

A. Pacak and S. Erdweg 7:3

def entry_var(stm: Stm, prog: Stm, x: String): Val =
fold(BotVal(), joinVal, {exit_var(pred, prog, x) | (pred,stm) in flow(prog)})

def exit_var(stm: Stm, prog: Stm, x: String): Val = stm match {
case Assign(y, exp) =>

if (x == y) aeval(exp, stm, prog)
else entry_var(stm, prog, x)

case ... }
def aeval(exp: Exp, node: Stm, prog: Stm): Val = exp match {

case Var(x) => entry_var(node, prog, x)
case ... }

Figure 2 A data-flow analysis using functional programming with fixpoint semantics.

faithfully translated to negation-free Datalog. A key idea of our approach is to systematically
track the demand on functions: Which inputs must a function be run on to obtain the
computation’s final result. Since terminating functional programs only consider finitely many
inputs, we can track these inputs in Datalog relations. For programs without algebraic data
types, we can adopt a standard demand transformation [25]. However, for algebraic data
types we need to carefully instrument the demand transformation to encode constructors and
selectors through finite relations. Our translation preserves the semantics of the functional
program and, in particular, the resulting Datalog program terminates whenever the functional
program does. The translation targets Datalog with base types and operations on such types
such as integers, float, strings, booleans as well as algebraic data types. The most common
Datalog dialects such as Soufflé, IncA, Flix and Formulog all support these types. Whenever
we reference Datalog we mean Datalog with the extensions listed above.

Functional IncA replaces Datalog’s logic programming frontend, but we retain Datalog’s
key advantages: relations with fixpoint semantics. Specifically, we extend functional IncA
with set types and set operations (comprehensions, union, and folds) such that programmers
can describe and aggregate over relations. For example, Figure 2 shows a data-flow analysis
implemented in functional IncA. The analysis queries the control-flow graph flow and propa-
gates information about the value of variables (abstracted as intervals) along the control-flow
graph. Note that entry_var, exit_var, and aeval are mutually recursive and that there is no
termination condition (the program diverges under standard functional semantics). Despite
using functional programming as a frontend, all code compiles to Datalog rules, which is a key
advantage of our approach for two reasons. First, programmers can rely on the declarative
Datalog semantics to find the least fixpoint. Second, we can use any existing Datalog solver
to run the program, whereas prior Datalog dialects usually require a custom Datalog solver.

We have implemented functional IncA as part of the incremental Datalog framework
IncA [23]. We translate functional IncA into a Datalog IR and provide two backends:
one targeting IncA directly, the other targeting Soufflé [20]. While the IncA backend
provides incremental re-evaluation after input changes, the Soufflé backend provides better
non-incremental performance. The choice of the backend is transparent for the user of
the frontend, except that Soufflé does not support user-defined aggregations. We have
implemented three case studies using functional IncA. First, we implemented a type checker
for the simply-typed lambda calculus, a type-erasure transformation for the same, and an
interpreter for the untyped lambda calculus. While the encoding of type checkers in Datalog
has recently been explored [17], we are the first to support program transformations and
interpreters for Turing-complete languages in Datalog without relying on an embedded
functional programming language. Second, we implemented textbook reaching definitions
and interval analyses. Both analyses are flow-sensitive and compute a fixpoint over the

ECOOP 2022

7:4 Functional Programming with Datalog

control-flow graph. Last, we implement clone detection of Java bytecode which is represented
as Soufflé facts. We generate abstract syntax trees by querying Soufflé relations. We then
use the abstract syntax trees to determine if two methods are alpha-equivalent in respect to
their identifiers and labels. Our case studies show that functional IncA is expressive and easy
to use. Early performance measurements indicate that reusing established Datalog solvers
yields more efficient execution times.

Practically speaking, we consider functional IncA to be a stepping stone for the compilation
of other languages to Datalog. On one hand, our encoding paves the road for transferring
years of research on functional programming languages to Datalog. For example, we show in
this paper how standard defunctionalization [18] can be used to add first-class functions and
first-class relations to functional IncA. Defunctionalization translates first-class functions to
first-order functions and algebraic data types, which we can then compile to Datalog. On
the other hand, we believe that our methodology for supporting user-defined functions and
user-defined data types can be used to compile domain-specific languages to Datalog. We
leave this avenue of research for future work.

In summary, we present the following contributions:
We identify 5 principles that are necessary for the semantics-preserving translation of
first-order functions to Datalog. We define the translation formally and adapt a demand
transformation. This constitutes the first version of functional IncA (Section 3).
We show how to compile user-defined algebraic data types to Datalog and extend functional
IncA accordingly (Section 4).
We add sets and set operations to functional IncA, extend the translation, and show
how standard defunctionalization can be used to add first-class functions and first-class
relations (Section 6).
We demonstrate the expressiveness and ease of use of functional IncA by implementing a
type checker, program transformation, and interpreter for the lambda calculus (Section 5),
data-flow analyses for the While language (Subsection 7.1), and clone detection of Java
bytecode (Subsection 7.2).
We provide two backends for functional IncA, one targeting the incremental Datalog solver
used by IncA, the other targeting the non-incremental Datalog solver Soufflé (Section 8).

2 Datalog Frontends: State of the Art

We are by far not the first to recognize the shortcomings of Datalog’s frontend. Two opposing
approaches have been explored in prior work to improve the expressiveness and/or usability
of Datalog. We call these approaches backend-first and frontend-first and discuss them below.

Backend-first approach. The backend-first approach uses existing Datalog solvers as a
starting point and extends them with new language features. Usually, extensions considered
in the backend-first approach aim to increase the expressivity of Datalog, but sometimes
also focus on usability. The backend-first approach has a long tradition in Datalog solvers
and some features have become standard nowadays. For example, Datalog solvers support
stratified negation and arithmetic operations, even though neither is part of core Datalog [15].

Modern Datalog solvers provide a range of different extensions that their users can choose
from. For example, Soufflé [19] provides records, algebraic data types, and user-defined
functions; Viatra Query [29], the Datalog solver used by IncA, supports user-defined data
types and recursive aggregation over user-defined functions [22, 23]. While all of these
features improve the frontend and make Datalog programming easier, the core language
design remains the same: Horn clauses.

A. Pacak and S. Erdweg 7:5

Horn clauses (a0 :- a1, ..., an) encode implications (a1 ∧ ... ∧ an → a0). We argue Horn
clauses are inadequate as a programming language, since they inhibit structured programming
and enforce a flat structure. For example, a nested function call res = f(g(h(x))) becomes:

R(x, res) :- h(x, y), g(y, z), f(z, res)

That is, we must flatten the call chain. Or consider an expression that contains nested condi-
tionals (if (b1) x1 else x2) + (if (b2) x3 else x4), which becomes 4 separate Horn clauses:

R(b1, b2, x1, x2, x3, x4, res) :- b1, b2, res = x1 + x3.
R(b1, b2, x1, x2, x3, x4, res) :- b1, !b2, res = x1 + x4.
R(b1, b2, x1, x2, x3, x4, res) :- !b1, b2, res = x2 + x3.
R(b1, b2, x1, x2, x3, x4, res) :- !b1, !b2, res = x2 + x4.

These encodings are cumbersome to work with; they make programming and maintenance
unnecessarily difficult. We would much rather use functional programming as a frontend.

While the backend-first approach does not fundamentally improve Datalog’s frontend, it
has one decisive advantage: It leverages existing solvers. These solvers are often the result of
years of research and engineering. They automatically optimize Datalog programs, employ
highly optimized data structures and algorithms, support profiling and debugging, provide
incremental execution, and more. When designing new Datalog frontends, we should aim to
reuse these systems. However, the state of the art moves in another direction.

Frontend-first approach. Quite a few recent research projects try to improve the frontend
of Datalog by designing new DSLs to be used in its stead. We call these approaches frontend-
first because the newly designed frontend is their starting point. In particular, frontend-first
approaches do not build on top of an existing solver but develop a new solver specific to the
newly designed frontend. This allows for great flexibility in the frontend’s design.

For example, Flix [14] provides a Datalog frontend extended with lattices and monotonic
functions. Flix embeds its Datalog frontend into a functional programming language, where
constraints are first-class and can be generated at run time [13]. Formulog [9] provides a
Datalog frontend extended with a data type for constructing SMT formulas and a constraint
for solving them. While Formulog constraints are not first-class, the Datalog frontend is also
embedded into a functional programming language. In both Flix and Formulog, the Datalog
constraints can invoke functional code to assert a property or to construct new terms. In
Formulog, functional code can also recursively query Datalog relations. While both systems
present interesting designs, they also both implement their own Datalog solvers and do not
benefit from prior engineering efforts.

Datafun [6] proposes a more drastic redesign for Datalog, namely as a higher-order
functional programming language with fixpoint semantics. Datafun functions can accept and
produce relations and the language supports the aggregation over lattices. As such, we believe
Datafun’s frontend is a well-suited replacement for Datalog. However, there are two limiting
factors, First, in contrast to other modern implementations of Datalog, Datafun programs
are constructor-free and enforce termination. While this equips Datafun with a nicer theory,
it is a practical limitation, although one that could be easily eliminated. Second, like Flix
and Formulog above, Datafun provides its own Datalog solver and existing optimizations
and advances in Datalog engines have to be retrofitted to Datafun. For example, semi-naïve
evaluation had to be adapted for Datafun [5], even though it has been the standard bottom-up
evaluation model for a long time [27].

ECOOP 2022

7:6 Functional Programming with Datalog

Our approach: Frontend compilation. We would like to achieve the best of both prior
approaches: Build on top of existing Datalog solvers as in the backend-first approach, but be
free to design functional and domain-specific frontends as in the frontend-first approach. The
solution to this problem is compilation: By compiling the frontend language to Datalog, we
can use existing solvers to run programs. This way, Datalog really becomes the intermediate
representation (IR) of a compiler framework, where different Datalog frontends all generate
the same Datalog IR. This architecture is well-known from existing compiler frameworks
such as LLVM; we propose to adopt it for Datalog.

Although frontend compilation may seem like the obvious solution, it is difficult to
implement. The problem is that Datalog imposes severe restrictions on programs, so that
bottom-up evaluation is well-defined and terminates. When generating Datalog code, we
must adhere to these restrictions. In the remainder of this paper, we show how a first-order
functional language (Section 3) with algebraic data types (Section 4), and sets (Section 6)
can be compiled to Datalog. In doing so, we will solve key challenges regarding user-defined
functions and user-defined data types that can be transferred to other frontends.

3 Compiling First-Order Functions to Datalog

We want to provide a functional-programming frontend for Datalog. In this section, we
tackle the first step in this direction: Compiling user-defined first-order functions to Datalog.
While we already outlined why this is challenging in the introduction, here we revisit the
problem with a more involved example before presenting our solution.

3.1 Compilation by example
In this paper and in our implementation, we use a simple functional frontend language that
features first-order function definitions, let bindings, conditionals, and arithmetic operations.
We also support algebraic data types, set operations, and first-class functions, which we will
explain later. Consider the following recursive factorial function in functional IncA:

def fact(n: Int): Int = if (n == 0) 1 else n * fact(n - 1)

We aim to write functions like this and compile them to Datalog, so that we can use them as
part of larger Datalog programs. A simple strategy gets us close to the desired result:
Principle 1: Functions as relations. It is well-known that functions f : (T1, ..., Tn) -> T

can be encoded as relations f : (T1, ..., Tn, T). We use this encoding of functions.
Principle 2: Control-flow paths as rules. For each path from function entry to function

exit, we generate a rule that describes how inputs translates to outputs. Since control-flow
paths are mutually exclusive in deterministic languages, so are the rules we generate.

When we apply this strategy to our factorial function, we obtain a relation fact: (Int, Int).
Since the fact function has two exits, we derive two rules that collect all conditions and
computations along the path from entry to exit. In doing so, we introduce auxiliary variables
for intermediate results as needed.

fact(n, out) :- n = 0, out = 1.
fact(n, out) :- n != 0, fact(n-1, out’), out = n * out’.

Unfortunately, like in the introduction, the Datalog rules violate range-restrictedness. A
rule is range-restricted if every variable that occurs in the head of the rule is bound in
the body of the rule. Range-restrictedness is an important property for Datalog programs
and a prerequisite for bottom-up evaluation.Datalog engines like Soufflé [20] apply bottom-
up evaluation to exhaustively enumerate all derivable tuples. Usually, this is an efficient

A. Pacak and S. Erdweg 7:7

evaluation strategy, but it diverges for rules that are not range-restricted. In our example,
the second rule is not range-restricted because n is not bound in the body, hence n could be
any integer term. It follows that the fact relation contains infinitely many tuples. Therefore,
Soufflé will reject the Datalog code we generated for the fact function.

It is hardly surprising that functions over (virtually) infinite domains describe (virtually)
infinite relations. So is this approach doomed? To move forward, we make an important
observation: Even though a function may be defined over an infinite domain, any terminating
application of that function will only see finitely many inputs. If we can restrict a function’s
relation to these inputs, the entire relation turns finite and each rule becomes range-restricted.

To determine the relevant inputs of a function, we must consider how the function is
used and what inputs it is applied to. For our factorial example, consider a main call fact(5),
which stipulates that n = 5 is a relevant input of the fact relation. But since fact is recursive,
we must also track which relevant inputs are induced by n = 5. If we collect all relevant
inputs in fact_input = {5,4,3,2,1,0}, we can use this relation to guard the bodies of fact:

run_fact(out) :- fact(5,out).
fact(n, out) :- fact_input(n), n = 0, out = 1.
fact(n, out) :- fact_input(n), n != 0, fact(n-1, out’), out = n * out’.

Note how all rules are range-restricted now. Input variables are range-restricted by the query
of the input relation; output variables are range-restricted because they are functionally
dependent on the input variables. Thus, fact is finite when fact_input is finite.
Principle 3: Input relations as guards. For each function, collect all relevant inputs in an

input relation and use the input relation as a guard for the function’s relation.
Relevant inputs stem from external calls of the function or from recursive calls. Therefore, it
is not easy to collect all relevant inputs in a relation. Fortunately, we can apply an existing
algorithm that is well-known in the Datalog community: the magic-set transformation [8]. The
magic-set transformation was developed to optimize the bottom-up evaluation of terminating
Datalog programs. The key idea of the magic-set transformation is to only derive those tuples
bottom-up that would also be derived by top-down evaluation, where the relevant inputs
are known. To this end, the magic-set transformation generates Datalog rules for auxiliary
relations that prescribe which inputs are relevant. Note that we say “inputs” here because
the relations we care about correspond to functions; in general, the magic-set transformation
collects terms that are known at the call-site during run time. Since function inputs are
always known at the call-site during run time, the magic-set transformation will at least
collect all relevant function inputs. Technically, we apply a more efficient variation of the
magic-set transformation called the demand transformation [25] and we use that name in
the remainder of the paper.
Principle 4: Demand transformation yields input relations. The demand transformation

identifies all relevant inputs for each function in the program. Since all function call-sites
must be known, our compilation strategy is not modular but requires the whole program.

For our example, the demand transformation will generate the following input relation:

fact_input(5).
fact_input(n-1) :- fact_input(n), n != 0.

We obtain one rule for each call of fact. The first rule collects the input of the main
invocation fact(5). The second rule collects the input of the recursive invocation and contains
all constraints leading up to the call. Together, these two rules describe the required relation
fact_input = {5,4,3,2,1,0}. Since fact_input is finite, fact is finite and contains the following
tuples: fact = {(5,120), (4,24), (3,6), (2,2), (1,1), (0,1)}.

ECOOP 2022

7:8 Functional Programming with Datalog

(Functional programs) p ::= F

(functions) F ::= [@main] def f (x : T) : T = e

(expressions) e ::= v | x | let x = e in e | if (e) e else e | f(e) | φ(e)
(values) v ::= base
(types) T ::= Base

Figure 3 Functional IncA with first-order functions, base values, and base functions φ.

(Datalog programs) D ::= r

(rules) r ::= R(t) :- a.

(atoms) a ::= t = t | R(t)
(terms) t ::= v | x | φ(t)
(values) v ::= base

Figure 4 An intermediate representation for Datalog with base values and base functions.

So far, all function inputs were statically known. But we can easily extend our compilation
strategy to support user-provided inputs. To this end, functional IncA allows the declaration
of main functions:

@main def run_fact(n: Int): Int = fact(n)

The demand transformation will correctly propagate the input of run_fact to fact:

fact_input(n) :- run_fact_input(n).
fact_input(n-1) :- fact_input(n), n != 0.

But what is the input of run_fact? The input of run_fact is dynamic and must be provided
by the user of the program. In Datalog, such data lives in the so-called extensional database,
which is filled by the user prior to Datalog execution. We modify the demand transformation
to generate a query of the extensional database for main functions.
Principle 5: Main input in extensional database. For each main function, we add a rule to

the input relation that retrieves dynamic inputs from the extensional database.
For our example, we obtain the following input relation for run_fact:

run_fact_input(n) :- ext_run_fact_input(n).

The user can provide any number of inputs to run_fact as part of the extensional database.
The Datalog engine will propagate those inputs to run_fact_input and fill all relations.

Note that our encoding retains crucial Datalog behavior, such as memoization and reuse.
For example, consider we want to run fact on multiple inputs 5, 7, and 9, all of which we put
into the extensional database. How many tuples will relation fact contain? Since queries
of fact will retrieve existing tuples when possible, the three fact computations will share
all intermediate results and fact will only contain 10 tuples (the largest input plus one). A
similar effect can be observed for functions like Fibonacci, where recursive calls can share
results. All of this is transparent to the user.

3.2 Translating functional programs to Datalog, technically
We now implement Principles 1 and 2 from the previous subsection, that is, we translate
functional programs to Datalog. In the subsequent subsection, we will explain and apply the
demand transformation to implement the remaining principles.

A. Pacak and S. Erdweg 7:9

J.K : e → P(t × P(a))

JvK = {(v, ∅)}

JxK = {(x, ∅)}

Jlet x = e1 in e2K = {(t2, {x = t1} ∪ a1 ∪ a2) | (t1, a1) ∈ Je1K, (t2, a2) ∈ Je2K}

Jif (e1) e2 else e3K = {(t2, {t1 = true} ∪ a1 ∪ a2) | (t1, a1) ∈ Je1K, (t2, a2) ∈ Je2K}

∪ {(t3, {t1 = false} ∪ a1 ∪ a3) | (t1, a1) ∈ Je1K, (t3, a3) ∈ Je3K}

Jf(e1, ..., en)K = {(y, {f(t1, ..., tn, y)} ∪ a1 ∪ ... ∪ an) | (t1, a1) ∈ Je1K, ..., (tn, an)∈JenK}
where y is fresh

Jφ(e1, ..., en)K = {(φ(t1, ..., tn), a1 ∪ ... ∪ an) | (t1, a1) ∈ Je1K, ..., (tn, an) ∈ JenK}

Figure 5 Compiling expressions yields a set of alternative terms, each guarded by constraints.

Jdef f(x : T) : T ′ = eKfun = {f(x, y) :- a, y = t. | (t, a) ∈ JeK} where y is fresh

JF Kprog =
⋃

f∈F JfKfun

Figure 6 Compiling functions to Datalog rules.

Figure 3 defines the syntax of functional IncA. The language consists of first-order
functions, let bindings, conditionals, and function calls. We distinguish calls to user-defined
functions f from calls to base functions φ. Our compilation target is an intermediate
representation (IR) of Datalog extended with base values and base functions as shown in
Figure 4. This Datalog IR is compatible with many existing Datalog solvers, which support
different kind of base functions. Note that we excluded negation from the Datalog IR because
our translation does not require it.

We first translate expressions to Datalog. While an expression is structured and eventually
computes a value, Datalog only provides flat terms. Thus, a nested expression f(g(x)) must be
compiled to a flat term that is guarded by constraints (y2, {g(x, y1), f(y1, y2)}). Since condi-
tional expressions (if (b) f(x) else g(x)) yield alternative values depending on b, compilation in
general yields a set of alternative terms {(y1, {b = true, f(x, y1)}), (y2, {b = false, g(x, y2)})}.
This correponds to Principle 2 from the previous subsection.

Figure 5 defines the translation of expressions as a compositional function J.K. Values v

and variables x directly translate to Datalog values and variables. Let bindings yield the
body’s result under a constraint that binds the let-bound variable. Conditionals compile to
two alternative sets of terms: If the condition is true, the resulting terms are taken from the
then-branch, otherwise they are taken from the else-branch. Calls to user-defined functions
f translate to queries of a relation of the same name f , which has the function’s result as
an additional column in accordance with Principle 1. In contrast, calls to base functions φ

translate to a call of the same function, but passing Datalog terms as arguments.
We use the translation of expressions J.K to compile function definitions J.Kfun and programs

J.Kprog as shown in Figure 6. For a function definition, we compile its body and generate a
separate Datalog rule for each alternative term that the body can yield. The constraints a of
the term become constraints in the generated rule. To compile a whole program, we simply
compile each function and collect the resulting rules.

ECOOP 2022

7:10 Functional Programming with Datalog

For a concrete example, consider the translation of the Fibonacci function to Datalog:
Jdef fib(n) = if (n<2) n else fib(n-1) + fib(n-2)K = { fib(n, y3) :- n<2 = true, y3 = n.,

fib(n, y4) :- n<2 = false, fib(n-1,y1), fib(n-2,y2), y4 = y1+y2. }

The Fibonacci function compiles to two Datalog rules, one for the base case and one for the
recursive case. But is this translation correct?

Translation correctness. We claim that our translation preserves the semantics of the
original functional program. More precisely, we claim that if a function call f(v) evaluates
to w, then the generated Datalog program will also provide w as the only result of the call
under top-down evaluation. Here we must require top-down evaluation for Datalog, since
the generated rules are not necessarily range-restricted yet, which we will fix in the next
subsection. Top-down evaluation is possible nonetheless, because it only explores required
results and uses known values in doing so. Since the values of function arguments are always
known during evaluation, top-down evaluation of the generated Datalog closely corresponds
to function evaluation. However, we did not formalize top-down evaluation and therefore
formulate translation correctness as a conjecture:

▶ Conjecture 1 (Translation correctness). Given a functional program p with a main function
f such that f(v) evaluates to w. Then the top-down evaluation of the Datalog atom f(v, x)
under JpKprog yields a single substitution {x 7→ w}.

A key component for proving this conjecture is to ensure the Datalog constraints behave
deterministically, just like the original expression did:

▶ Lemma 2 (Deterministic atoms). Given an expression e such that JeK={(t1, a1), ..., (tn, an)}
both of the following hold:

i. JeK yields at least one result: a1 ∨ ... ∨ an

ii. JeK yields at most one result: (ai ∧ aj) → ti = tj

Proof. By structural induction over e. The only interesting case are if -expressions, where
(t1 = true) and (t1 = false) are mutually exclusive. ◀

▶ Lemma 3 (Deterministic rules). Given f such that JfKfun ={f(x, y1):- a1., ..., f(x, yn):- an.}
both of the following hold:

i. JfKfun yields at least one result: a1 ∨ ... ∨ an

ii. JfKfun yields at most one result: (ai ∧ aj) → yi = yj

Proof. Follows from Lemma 2. ◀

Note that Conjecture 1 does not make any assertions about non-terminating function calls.
Indeed, some diverging functions compile to terminating Datalog programs. For example,
def f(x) = f(x) compiles to f(x,y) :- f(x,y). While function call f(1) diverges, query f(1, y)

terminates and yields the empty substitution. However, Conjecture 1 ensures terminating
function calls translate to terminating Datalog programs under top-down evaluation.

3.3 Demand-driven bottom-up evaluation
We compile functional programs to Datalog rules that execute well in top-down fashion,
but may diverge under bottom-up evaluation. In bottom-up evaluation, Datalog solvers
exhaustively enumerate all derivable tuples, starting from known facts. For example, the
bottom-up evaluation of the factorial function will start with fact(0,1), from which it can

A. Pacak and S. Erdweg 7:11

derive fact(1,1), fact(2,2), fact(3,6), fact(4,24), and so on. This enumeration will not
terminate, because bottom-up evaluation is unaware of the context in which relation fact

is being used. Accordingly, we cannot apply any of the efficient Datalog solvers that use
bottom-up evaluation, such as Soufflé.

The demand transformation by Tekle and Liu rewrites Datalog rules such that bottom-up
evaluation becomes demand-driven and only computes tuples that are transitively demanded
by the main query [25]. Indeed, bottom-up evaluation of the rewritten Datalog rules computes
exactly the same tuples as top-down evaluation. Since we already asserted that top-down
evaluation computes the correct result for terminating functional programs, the demand
transformation allows us to apply bottom-up evaluation, also yielding the correct result.

We adopt the demand transformation, which transforms a set of Datalog rules in three
steps: compute demand patterns, introduce demand predicates, derive demand rules. In
this section, we replace the first step of the demand transformation to take functional IncA
into account, adopt the second step unchanged, and extend the third step to account for the
inputs of main functions. Later sections will make further changes.

Step 1. We compute demand patterns ⟨g, s⟩, where g is the name of a relation and s ∈ (b | f)∗

is a pattern string that indicates how the relation is queried, namely if an argument occurs
bound or free. For functions, demand patterns can be easily computed by finding all function
calls reachable from the main functions. Formally, given a functional program p, the demand
patterns dp(p) of p is the smallest set such that:

For each main function (@main def g(x1, ..., xn) = ...) in p, we have ⟨g, bnf⟩ ∈ dp(p).
That is, main functions have demand with n bound parameters and one free return value.
If demand pattern ⟨g, s⟩ ∈ dp(p) and g is defined as (def g(...) = e) in p, we have
⟨h, bnf⟩ ∈ dp(p) for each call h(e1, ..., en) in e.

The second and third step of the demand transformation operate on and rewrite the generated
Datalog rules D = JpKprog. In particular, we will make no assumptions about the format of
pattern strings s, so that we can later introduce extensions of Step 1 easily.

Step 2. We introduce demand predicates as guards into existing rules to implement
Principle 3 from Subsection 3.1. Formally, we obtain a rewritten Datalog program guarded(D):

For each ⟨g, s⟩ ∈ dp(p) and each (g(t1, ..., tm) :- a1, ..., an.) in D, we obtain a rule

g(t1, ..., tm) :- g_input_s(t1, ..., tm|s), a1, ..., an.

in guarded(D), where t|s selects those ti that are bound according to pattern string s.
Note that the rules of unreachable functions are dropped and not propagated to guarded(D).

Step 3. In the final step, we must derive those rules that define the input relations g_input_s

to implement Principle 4 and Principle 5 from Subsection 3.1. Formally, we obtain a rewritten
Datalog program demanded(D) from guarded(D) and the original program p as follows:

We retain each rule from guarded(D), such that guarded(D) ⊆ demanded(D).
For each main function (@main def g(x1, ..., xn) = ...) in p, we obtain a rule

g_input_s(x1, ..., xn) :- ext_g_input_s(x1, ..., xn).

in demanded(D), where ext_g_input_s is an extensional relation to be filled by the user.
This implements Principle 5.

ECOOP 2022

7:12 Functional Programming with Datalog

For each rule (g(...) :- a1, ..., an.) in guarded(D) and each ai = h(t1, ..., tm), we obtain

h_input_s(t1, ..., tm|s) :- a1, ..., ai−1

to demanded(D), where s is the pattern string of h(t1, ..., tm), indicating which ti are
bound by the previous constraints a1, ..., ai−1 already.

The demand transformation implements Principles 3 - 5 and ensures that the resulting
Datalog derives the same tuples in bottom-up evaluation as in top-down fashion.

Example. To illustrate, consider again the Fibonacci function with a main call:
def fib(n) = if (n<2) n else fib(n-1) + fib(n-2)
@main def run(x: Int): Int = fib(x)

This program compiles to the following Datalog rules using the translation from Subsection 3.2:
fib(n, y3) :- n<2 = true, y3 = n.
fib(n, y4) :- n<2 = false, fib(n-1,y1), fib(n-2,y2), y4 = y1+y2.
run(x, y5) :- fib(x, y5).

We now apply our demand transformation. First, we derive demand patterns of the program,
which are ⟨run, bf ⟩ and ⟨fib, bf ⟩. Note that all three calls of fib yield the same demand pattern.
Second, we insert demand predicates into the rules according to the demand patterns:
fib(n, y3) :- fib_input_bf(n), n<2 = true, y3 = n.
fib(n, y4) :- fib_input_bf(n), n<2 = false, fib(n-1,y1), fib(n-2,y2), y4 = y1+y2.
run(x, y5) :- run_input_bf(x), fib(x, y5).

Third, to these rules we add the following rules to define the input relations:
run_input_bf(x) :- ext_run_input_bf(x).
fib_input_bf(x) :- run_input_bf(x).
fib_input_bf(n-1) :- fib_input_bf(n), n<2 = false.
fib_input_bf(n-2) :- fib_input_bf(n), n<2 = false, fib(n-1,y1).

The first and second rule are due to the main function run, which receives its input from
the user and propagates it to fib. The third and fourth rule are due to the recursive calls
of fib. Note how we retain all constraints prior to a call. In particular, we retain the first
recursive call of fib as a constraint for the second recursive call of fib, although a smart
compiler might eliminate this constraint subsequently. The resulting Datalog program is
demand-driven and can be executed by standard bottom-up Datalog solvers.

Correctness. The demand transformation yields a Datalog program that derives the exact
same tuples as a top-down evaluation [25]. As of Conjecture 1, top-down evaluation yields
the correct tuples. Hence, so does bottom-up evaluation of the demand-driven Datalog rules:

▶ Corollary 4 (Bottom-up translation correctness). Given a functional program p with a main
function f such that f(v) evaluates to w. Then the bottom-up evaluation of the Datalog
program demanded(JpKprog) yields a database in which the query f(v, x) has a single match
{f(v, w)}.

4 Compiling Algebraic Data Types to Datalog

The functional IncA we presented in the previous section supports user-defined functions
ranging over base types. In this section, we explore how to extend functional IncA to allow
user-defined data types. In particular, we want to faithfully compile recursive functions over
algebraic data types to Datalog rules that existing bottom-up Datalog solvers can execute.

A. Pacak and S. Erdweg 7:13

4.1 Compiling user-defined data types by example
We extend functional IncA to allow recursive definitions of user-defined algebraic data types,
constructor calls, and pattern matching. As a simple example, consider the Peano numbers:

data Nat = Zero() | Succ(Nat)
def plus(m: Nat, n: Nat): Nat = m match {

case Zero() => n
case Succ(pred) => Succ(plus(pred, n)) }

@main def twice(n: Nat): Nat = plus(n, n)

We generate three kind of relations for an algebraic data type:

Constructor relations represent the constructor functions of algebraic data types. We
translate constructor calls in the program to queries of constructor relations, similar to
how we translated regular function calls. In doing so, it is crucial we ensure only finitely
many values are constructed during bottom-up evaluation of the resulting Datalog code.
Selector relations map a constructed value to its constituents. We use selector relations
to implement pattern matching. Importantly, queries of selector relations may never lead
to the construction of new values.
Instance relations enumerate all constructed instances of a data type. They will become
useful when we introduce relational programming in Section 6.

To construct user-defined data at run time, we extend the Datalog IR with a built-in
constructor #constr for each constructor constr. For example, #Succ(#Succ(#Zero())) encodes
two as a Peano number. In practice, there are different ways a Datalog solver can support
such built-in constructors. For example, we can define a generic built-in function that creates
a new value given the constructor’s name and arguments. We have used this approach in
our implementation using IncA, but this would work in any Datalog solver that supports
user-defined built-in functions, including Soufflé, Flix, and Formulog. Alternatively, if a
Datalog solver natively supports algebraic data types, we can use their constructors directly
or encode them using a number representation. For example, Soufflé supports algebraic data
types (but not recursive functions over them) and we can generate a Soufflé data type and
use its constructors. This is to say that adding built-in constructors to the Datalog IR does
not limit the applicability of our approach in practice. Flix, Formulog, IncA and Soufflé have
support for algebraic data. However, they do not support enumerating all instances of a
specific algebraic data type like functional IncA. We will see how to enumerate all instances
of an algebraic data type by utilizing instance relations in Section 6.

For the Peano numbers, we derive the following Datalog rules initially:
// constructor relations
Zero(n) :- n = #Zero().
Succ(p, n) :- n = #Succ(p).

// selector relations
un_Zero(n) :- Zero(n).
un_Succ(n, p) :- Succ(p, n).

// instance relation
Nat(n) :- Zero(n).
Nat(n) :- Succ(_, n).

Note that the rule of the Succ constructor relation is not range-restricted and consequently
cannot be computed bottom-up. However, the rules of the selector and instance relations
merely query the constructor relations. Hence, if we can ensure the constructor relations
remain finite, all three kind of relations will be finite.

Like in the previous section, we seek to apply the demand transformation in order to track
the demand of constructor relations. However, we need to adapt the demand transformation
to account for our encoding of algebraic data types. Specifically, the constructor queries
within the selector and instance relations must be ignored, since they do not actually indicate
additional demand. Moreover, selector and instance relations do not require any rewriting
themselves, because they merely query constructor relations to enumerate constructor tuples.

ECOOP 2022

7:14 Functional Programming with Datalog

Zero(n) :- n = #Zero(). // no demand relation since there are no bound inputs
Succ(p, n) :- Succ_input_bf(p), n = #Succ(p).
Succ_input_bf(y4) :- plus_input_bbf(m, n), un_Succ(m, pred), plus(pred, n, y4).

// selector and instance relations un_Zero, un_Succ, and Nat as above
plus(m, n, out) :- plus_input_bbf(m, n), un_Zero(m), out = n.
plus(m, n, out) :- plus_input_bbf(m, n), un_Succ(m, pred),

plus(pred, n, y4), Succ(y4, y5), out=y5.
plus_input_bbf(n, n) :- twice_input_bf(n).
plus_input_bbf(pred, n) :- plus_input_bbf(m, n), un_Succ(m, pred).

twice(n, out) :- twice_input_bf(n), plus(n, n, out).
twice_input_bf(n) :- ext_twice_input_bf(n).

Zero(n) :- ext_Zero(n).
Succ(p, n) :- ext_Succ(p, n).

Figure 7 Compilation result for the plus and twice functions on Peano numbers.

Figure 7 shows the compilation result after demand transformation for the plus function on
Peano numbers from above. Relation Zero has no demand relation because its demand pattern
⟨Zero, f⟩ does not specify bound inputs. Relation Succ has a demand relation Succ_input_bf

that tracks the invocation of Succ in the recursive case of plus. Importantly, there is no
demand on Succ from the selector or instance relations, as our adaption of the demand
transformation will ensure. Relation plus shows how we compile pattern matching: Each
case becomes an alternative rule that queries the selector. This is sufficient since we assume
pattern matches are complete and overlap-free, so that their order does not matter.

Since twice is a main function, its demand relation queries an extensional input relation as
described in the previous section. This way, users can for example request twice(Succ(Zero())).
But how can our Datalog program deconstruct the user-provided data? Recall that selector
relations simply query constructor relations. Thus, we must include the user-provided
algebraic data in our constructor relations. To this end, we require users to insert algebraic
data in extensional constructor relations. We then generate one additional rule for each
constructor that queries the corresponding extensional constructor relation, as shown at the
end of Figure 7. We need to provide the contents of extensional constructor relations in the
form of tuples consistent with the format supported by the targeted Datalog dialect. In the
case of Soufflé, we insert tuples containing algebraic data and literal values of the Soufflé
language in the extensional constructor relations.

4.2 Extending functional IncA with algebraic data types

Based on the observations from the previous subsection, we add algebraic data types to
functional IncA. We then extend the translation from functional code to Datalog code and
the demand transformation accordingly.

Figure 8 extends the abstract syntax of functional IncA with algebraic data types. For
pattern matching we assume that patterns are complete and overlap-free. We do not change
the syntax of Datalog since we model constructors as built-in functions φ.

We extend the translation of Subsection 3.2 from functional code to Datalog code to
handle algebraic data types as shown in Figure 9. We add a new translation function J.Kdata

for data types and use that when compiling programs in J.Kprog. The translation of functions

A. Pacak and S. Erdweg 7:15

(Functional programs) prog ::= F , d

(data definitions) d ::= data N = c(T, ..., T)
(expressions) e ::= ... | c(e) | e match {case c(x, ..., x) => e}
(types) T ::= ... | N

Figure 8 Extending the frontend syntax with algebraic data types.

JF , dKprog =
⋃

f∈F JfKfun ∪
⋃

d∈d JdKdata

Jc(e1, ..., en)K = {(y, {c(t1, ..., tn, y)} ∪ a1 ∪ ... ∪ an) | (t1, a1)∈ Je1K, ..., (tn, an)∈ JenK}
where y is fresh

Je match {cs}K =
⋃

(case c(x) =>e′)∈cs {(t′, {un_c(t, x)} ∪ a ∪ a′) | (t, a)∈ JeK, (t′, a′)∈ Je′K}

Jdata N = CKdata = {c(x1, ..., xn, y) :- y = #c(x1, ..., xn). | c(T1, ..., Tn) ∈ C}

∪ {c(x1, ..., xn, y) :- y = ext_c(x1, ..., xn, y). | c(T1, ..., Tn) ∈ C}

∪ {un_c(y, x1, ..., xn) :- c(x1, ..., xn, y). | c(T1, ..., Tn) ∈ C}

∪ {N(y) :- c(x1, ..., xn, y). | c(T1, ..., Tn) ∈ C}

Figure 9 Translating algebraic data types to Datalog.

J.Kfun remains the same, but it uses an extended translation for expressions J.K that handles
the new expressions: constructor calls and pattern matching. The translation of constructor
calls is identical to the translation of regular function calls, except the generated code queries
a constructor relation. Pattern matching yields alternative rules for each case, and each case
queries the selector relation un_c to test if the term matches the pattern. The translation of
data types J.Kdata generates rules as described in the previous subsection: rules that invoke
the built-in constructor functions, rules that query the extensional constructor relations,
rules for the selector relations, and rules for the instance relations.

Next, we extend the demand transformation from Subsection 3.3 to consider constructors:

In Step 1, when considering reachable subexpressions h(e1, ..., en), we also generate a
demand pattern ⟨h, b...bf⟩ when g is a constructor.

In Step 2, note that selector and instance relations are never demanded, since we ignored
them in Step 1. Hence, we propagate their rules unchanged to guarded(D).

In the last case of Step 3, we ignore atoms ai = h(t1, ..., tm) that occur in the rules of
selector or instance relations. These atoms always query a constructor relation and we
do not want to treat these queries as demand.

With these modifications, the demand transformation will correctly track the demand
of constructors while ignoring selectors and instance relations. Together, the extended
translation and the demand transformation constitute a compiler for functional IncA with
algebraic data types. Since all rules of the generated Datalog code are range-restricted, we
can run the code with off-the-shelf bottom-up Datalog solvers.

ECOOP 2022

7:16 Functional Programming with Datalog

data Exp = Num(Int) | Lam(String, Type, Exp) | App(Exp, Exp) | Var(String)
data Type = TInt() | TFun(Type, Type)
data UExp = UNum(Int) | ULam(String, Exp) | UApp(Exp, Exp) | UVar(String)
def typeOf(ctx: Ctx, exp: Exp): Maybe[Type] = exp match {

case App(fun, arg) => typeOf(ctx, fun) match {
case Just(TFun(ty1, ty2)) => typeOf(ctx, arg) match {

case Just(argty) => if (eqType(argty, ty1)) Just(ty2) else Nothing()
... }

def erase(exp: Exp): UExp = exp match {
case Num(v) => UNum(v)
case Lam(n, ty, b) => ULam(n, erase(b))
case App(fun, arg) => UApp(erase(fun), erase(arg))
case Var(n) => UVar(n) }

def interp(env: Env, exp: UExp): Maybe[Val] = exp match {
case UApp(fun, arg) => interp(env, fun) match {

case Just(VClosure(param, prog, fenv)) => interp(env, arg) match {
case Just(argv) => interp(BindEnv(param, argv, fenv), body)

... }
@main def run(exp: Exp): Maybe[Val] = typeOf(EmptyCtx(), exp) match {

case Just(ty) => interp(EmptyEnv(), erase(exp))
case Nothing() => Nothing() }

Figure 10 A type checker, type erasure, and interpreter for a lambda calculus with numbers.

5 Case study: Type Checking, Type Erasure, and Interpretation

Functional IncA supports user-defined functions and data types. In this section, we demon-
strate that these features allow us to express interesting computations in Datalog. In
particular, we implement a type checker, type erasure, and an interpreter for a lambda
calculus with numbers as illustrated in Figure 10. These functions compile to complex
Datalog code that could not practically be written by hand.

Figure 10 shows an excerpt of the relevant data types and functions, all of which are
completely standard. In particular, we describe the expressions of the simply typed lambda
calculus Exp and the untyped lambda calculus UExp as algebraic data types. We define a
type checker typeOf as a function in functional IncA, but only show the App case here. Our
implementation supports parametric polymorphism by applying monomorphization before
translating to Datalog. Since the App case has five alternative control-flow paths, this case
alone compiles into five Datalog rules for typeOf. For example, consider the rule generated
for the path that yields Just(ty2):
typeOf(ctx, exp, out0) :-

typeOf_input_bbf(ctx,exp), un_App(exp,fun,arg), typeOf(ctx,fun,o1),
un_JustType(o1,funty), un_TFun(funty,ty1,ty2), typeOf(ctx,arg,o2),
un_JustType(o2,argty), eqType(argty,ty1,o3), o3 == true, JustType(ty2,out0).

This Datalog rule consists of 10 atoms, where the selector predicates ensure that the correct
control-flow path has been chosen. Overall, the typeOf function consists of 24 lines of code,
but compiles to 114 lines of complex Datalog code with mutually dependent relations typeOf

and typeOf_input. These numbers represent the Datalog program after applying optimizations.
In contrast to program optimizations of functional and imperative programs, our Datalog
optimizations reduce the number of rules and atoms instead of increasing them.

Next, we define type erasure as a transformation from Exp to UExp. Although function
erase is completely standard, this is the first program transformation implemented in Datalog
to the best of our knowledge. While erase is guaranteed to terminate, we can also define
functions whose termination is undecidable. Specifically, we implement a standard interpreter
interp for the untyped lambda calculus, which is a Turing-complete language. Indeed, the
Datalog program is only guaranteed to terminate when the original interpreter terminates.

A. Pacak and S. Erdweg 7:17

Overall, the type checker, type erasure, and interpreter comprise 8 algebraic data types
and 7 functions. We compile this code to 65 relations defined by 154 rules that contain
484 atoms in total. These numbers are measured after optimization, where we eliminate
aliases and propagate constants.
Although implementing an interpreter in Datalog may seem to be of little use, this and
similar challenges occur during program analysis regularly. For example, Pacak et al. recently
have shown how to compile typing rules to Datalog to derive incremental type checkers
systematically [17]. They also mention that it is necessary to translate the dynamic semantics
of a language to Datalog in order to support the incremental type checking of a dependently
typed programming language. Similarly, data-flow analyses often need to abstractly interpret
programs, for example, to determine the bounds of numeric variables or the value of a
Boolean condition. Functional IncA can also support such data-flow analyses, but we must
be able to express control-flow graphs and other relations.

6 Mixing Functions and Relations

The previous sections showed how we can use functional programming as a frontend for
Datalog. However, in doing so, we have also lost a key feature of Datalog: relations. Indeed,
functional IncA makes it difficult to encode non-functional relations, such as the edges of
a graph. In the present section, we show how we can elegantly extend functional IncA to
re-introduce relations.

6.1 Computing a control-flow graph functionally
Consider we want to compute the control-flow graph (CFG) of a program as part of a
Datalog-based program analysis. We want to represent the CFG such that it corresponds
to a Datalog relation, so that we can easily compute its transitive closure later. While the
functions of functional IncA compile to Datalog relations, our functions cannot be used to
encode arbitrary relations. In particular, a function (def flow(from: Stm): Stm = e) cannot
handle conditional statements that fork the control flow and connect to multiple successor
statements. To support such relations, we must extend our frontend language.

We want to extend functional IncA in a way that integrates functions and relations ele-
gantly. This is a language-design challenge and therefore naturally somewhat subjective. But
it is the reason why we rejected the first idea that came to mind: to introduce relations next
to functions. For example, a top-level relation (rel flow(from: Stm, to: Stm) :- constraints)

could capture the CFG of a program. The problem is that we are now back at constraint
programming, which is exactly what we wanted to avoid with functional IncA.

We propose a different extension of functional IncA that not only avoids this problem
but that is simpler too: We introduce sets and tuples. Immutable sets and tuples are staple
ingredients of functional programming and programmers already know how to use them.
Moreover, any relation can be encoded as a set containing tuples of related values. Thus, the
only question is if and how we can map functional programs over sets and tuples to Datalog.
But first, let us illustrate how the extended functional IncA can be used.

In their classic textbook, Nielson et al. [16] compute the control flow of a While-statement
through three functions. We can represent these functions in the extended functional IncA
almost verbatim as shown in Figure 11. Here, init is a regular function whereas final and
flow compute sets. A set literal {e1,...,en} constructs a set and set union ++ composes two
sets. For example, final uses these features to compute the final statement of each conditional

ECOOP 2022

7:18 Functional Programming with Datalog

data Exp = ...
data Stm = Assign(String, Exp) | Sequence(Stm, Stm) | If(Exp, Stm, Stm) | While(Exp, Stm)
def init(stm: Stm): Stm = ... // a regular function that finds the statement’s entry
def final(stm: Stm): Set[Stm] = stm match { // finds all of the statement’s exits

case Assign(x, a) => {stm}
case Sequence(s1, s2) => final(s2)
case If(b, s1, s2) => final(s1) ++ final(s2)
case While(b, s) => {stm} }

// flow as seen in Figure 1 (Introduction)

Figure 11 Computing the control-flow graph as a set of tuples in out extended Datalog frontend.

(functions) F ::= ... | [@main] def f (x : T) : Set[T] = s

(set expressions) s ::= {e} | s ++ s | {e|pred} | let x = e in s | if (e) s else s | f(e)
(predicates) pred ::= e | e in s | e in N

(expressions) e ::= ... | fold(f, f, f)

Figure 12 Extended abstract syntax with set and set operations.

branch. Sets can be processed through set comprehensions as shown in the definition of flow

which can be seen in Figure 1. In particular, (x1,...,xn) in set retrieves the elements of set,
binds those x that are free, and tests for membership of those x that are bound.

Our encoding of relations makes it easy to implement computations that exercise Datalog’s
declarative fixpoint semantics, such as transitive closure, cycle detection, and recursive
aggregation. We have already demonstrated such computations in the introduction of this
paper and refrain from repeating them here. Instead, we show how to translate functional
programs with sets and tuples to Datalog.

6.2 Translating tuples and first-order sets to Datalog
The translation of sets and tuples to Datalog is mostly straightforward except for one thing:
neither sets nor tuples are first-class in Datalog. For tuples this is hardly an issue since we
can simply flatten tuples when translating them to Datalog. For example, a function foo(

t: (T1,...,Tn)): (U1,...,Um) becomes a flat relation foo(T1,...,Tn,U1,...,Um), and a function
call foo(e) becomes foo(t1,...,tn,u1,...,um), where e translates to n terms (t1,...,tn) and
the function call yields m result terms (u1,...,um). Although our implementation supports
tuples, we omit tuples from our translation semantics and focus on sets instead.

We want to translate sets to Datalog relations, but relations are first-order in Datalog
and can only appear as top-level definitions. Thus, if we want to support first-class sets in
functional IncA, we need to lift those sets first. For example, to translate a call transitive

({(1,2),(2,3),(3,4)}) to Datalog, we have to translate {(1,2),(2,3),(3,4)} to a top-level
relation that can be queried from within transitive. To achieve this, we propose a clean
solution in two steps:
1. We extend functional IncA first-order sets, which may only appear as function results.

First-order sets translate to first-order relations as shown in the present subsection.
2. The subsequent subsection shows that a standard defunctionalization transformation

simultaneously adds support for first-class functions and first-class sets to functional
IncA.

Figure 12 defines the extended functional IncA, where we introduce first-order sets syn-
tactically through a new non-terminal s. This syntactic differentiation does not replace
type checking of the functional code, but serves to explain which expressions may yield

A. Pacak and S. Erdweg 7:19

J{e}K =
⋃

e∈eJeK

Js1 ++ s2K = Js1K ∪ Js2K

J{e | p1, ..., pn}K = {(t, {t1 = true, ..., tn = true} ∪ a ∪ a1 ∪ ... ∪ an)

| (t, a) ∈ JeK, (t1, a1) ∈ Jp1Kpred , ..., (tn, an) ∈ JpnKpred}

Jfold(finit , fop, fset)K = {(aggregate(fset , toPrimitiveFun(finit), toPrimitiveFun(fop)), ∅)}

JeKpred = JeK

Je in sKpred = {(true, {t1 = t2} ∪ a1 ∪ a2 | (t1, a1) ∈ JeK, (t2, a2) ∈ JsK}

Je in NKpred = {(true, {N(t)} ∪ a | (t, a) ∈ JeK}

Figure 13 Compiling sets and set operations to Datalog.

sets without presenting functional IncA’s type system, which is completely standard and
uninteresting. First-order sets may only occur as the body of a function that yields a set and
within other set expressions. A set comprehension can use predicates pred to check a boolean
condition e, to query another set (e in s), or to query all instances of an algebraic data type
(e in N). Here we finally see why we introduced instance relations for algebraic data types
in Section 4. At last, we can convert a set to an atomic value through fold(finit , fop, fset),
where fset must be the name of a top-level definition.

We extend J.K to also handle set expressions s, and we add a translation function J.Kpred
for predicates. Figure 13 shows both translation functions. A set literal translates to a set of
alternative terms and set union computes the union of alternative terms. A set comprehension
builds all terms t generated by e for which all predicates are true.

We can only translate folds if the targeted Datalog engine supports aggregation over
user-defined functions. In our experience, such user-defined functions must be implemented
in the same language as the Datalog engine (e.g., C++ for Soufflé, a JVM language for
Formulog and IncA). Thus, fold operations are considered built-in functions φ by Datalog
engines. We extend the Datalog IR with aggregation accordingly:

(Datalog terms) t ::= ... | aggregate(R, φ, φ)

All we have left to do is to translate frontend functions f to built-in functions φ, which we
assume function toPrimitiveFun accomplishes. In our implementation, we target IncA and
compile user-defined frontend functions to Scala, which was straightforward. Soufflé does
not support aggregation over user-defined functions, hence we cannot target Soufflé if the
functional IncA program contains fold operations.

6.3 First-class functions and first-class sets
Functional IncA paves the road for transferring insights from functional programming
languages to Datalog. Here, we exemplify this potential by studying defunctionalization in
the context of functional IncA. Defunctionalization [18] is a well-known compilation technique
that compiles higher-order functions into first-order functions and first-class function values
into algebraic data. In particular, defunctionalization generates auxiliary apply functions that
dispatch on the algebraic data to execute the corresponding function body. Since functional
IncA supports first-order functions and algebraic data types, we can apply defunctionalization
to extend functional IncA with first-class functions.

ECOOP 2022

7:20 Functional Programming with Datalog

(expressions) e ::= ... | f | (x : T) ⇒ e | (x : T) ⇒ s | e(e)

(types) T ::= ... | T ⇒ T

Figure 14 Adding first-class functions to our Datalog frontend.

Figure 14 shows how we extend functional IncA’s syntax with first-class functions. A
function value is either a reference to a top-level function f or a lambda. Note that we permit
lambdas to yield sets, since they will translate to first-order functions, which we translate
to first-order relations. Finally, we adapt function application to allow any expressions in
function position.

For example, consider an excerpt from our data-flow analyses of the While language:

def findExps(exp: Exp, f: Exp => Boolean): Set[Exp] = (exp match {
case Var(s) => {}
case Num(i) => {}
case Add(e1, e2) => findExps(e1, f) ++ findExps(e2, f)

}) ++ (if (f(exp)) {exp} else {})
def freevars(exp: Exp): Set[String] = {varName(e) | e in findExps(exp, isVar)}
def availableExps(exp: Exp): Set[Exp] = findExps(exp, (e: Exp) => e match {

case Var(s) => false
case Num(i) => false
case Add(e1, e2) => true })

We define a higher-order function findExps that selects all subexpressions satisfying predicate
f. We use findExps twice, once to find all free variables of an expression and once to find all
non-trivial subexpressions. We implement a standard defunctionalization transformation
that translates this program into a first-order functional program:

data Defun0 = Funref0() | Lambda0()
def applyDefun0(fun: Defun0, e: Exp): Boolean = fun match {

case Funref0() => isVar(e)
case Lambda0() => e match {

case Var(s) => false
case Num(i) => false
case Add(e1, e2) => true } }

def findExps(exp: Exp, f: Defun0): Set[Exp] = (...) ++ (if (applyDefun0(f, exp)) {exp} else
{})

def freevars(exp: Exp): Set[String] = {varName(e) | e in findExps(exp, Funref0())}
def availableExps(exp: Exp): Set[Exp] = findExps(exp, Lambda0())

We can then translate the defunctionalized program to Datalog as described before. Thus,
we have successfully extended functional IncA with first-class functions.

But how does this enable first-class sets? We already added support for first-order sets,
which may only occur as function results. But since first-class functions translate to first-order
functions, first-class functions may also yield sets. Thus, we can encode a first-class set s as
a thunk () => s. For example, we can define a higher-order relation transitive as follows:

def transitive(cfg: () => Set[(Stm, Stm)]): Set[(Stm, Stm)] =
cfg() ++ {(s1,s3) | (s1,s2) in cfg(), (s2,s3) in transitive(cfg)}

@main def transitiveFlow(prog: Stm): Set[(Stm, Stm)] = let cfg = () => flow(prog) in
transitive(cfg)

Since function values become algebraic data, thunk-encoded sets are truly first-class: They
can be assigned to variables and they can be passed as arguments. This shows how functional
IncA permits insights from functional programming languages to carry over to Datalog,
where they can unleash additional benefits.

A. Pacak and S. Erdweg 7:21

def gen(stm: Stm): Set[(String,Maybe[Stm])] = stm match {
case Assign(x, a) => {(x, Just(stm))}
case Sequence(s1, s2) => {}
case If(c, s1, s2) => {}
case While(c, s) => {} }

def retain(stm: Stm, x: String): Boolean = ...
def entry(stm: Stm, prog: Stm): Set[(String, Maybe[Stm])] =

if (stm == init(prog)) {(x, Nothing()) | x in freevarsStm(prog)}
else {(x,d) | (pred, stm) in flow(prog), (x,d) in exit(pred, prog)}

def exit(stm: Stm, prog: Stm): Set[(String,Maybe[Stm])] =
gen(stm) ++ {(x,d) | (x,d) in entry(stm, prog), retain(stm, x)}

@main def allExits(prog: Stm): Set[(Stm, String, Maybe[Stm])] =
{(s,x,d) | s in Stm, (x,d) in exit(s, prog)}

Figure 15 A reaching definitions analysis for the While language that we compile to Datalog.

7 Case Studies: Data-Flow Analyses and Clone Detection

We have presented functional Datalog frontend with relations that compiles to Datalog. In
these final case studies, we want to demonstrate why this design is useful and how it enables
a new way of implementing Datalog-based static analyses. To this end, we implemented
flow-sensitive reaching definitions and interval analyses for the While language in functional
IncA. Additionally, we show how to describe clone detection of Java bytecode.

7.1 Data-Flow Analyses
Figure 15 shows an excerpt of the reaching definitions analysis, which determines where a
variable was last defined. Our analysis implementation is completely standard except that
we use a retain filter in place of the usual kill set. This is because functional IncA does
not support negation yet, which is needed for set difference. We hope to extend functional
IncA with negation in future work, but note that negation in Datalog is far from trivial and
deserves a separate study.

The reaching definitions case study shows how we benefit from using functions and
relations. The main benefit of functions is the ease of implementation in a well-known
programming paradigm, as illustrated by gen in our example. The main benefit of relations is
the implicit fixpoint semantics provided by Datalog. Specifically, note that entry and exit call
each other unconditionally and diverges under functional-programming semantics. However,
Datalog implicitly computes the least fixpoint of relations, which is computable because the
relations are finite: There are only finitely many variables and assignments in any program.
Here, functional IncA reaps the rewards of compiling to Datalog.

In the reaching definitions analysis, the fixpoint computation within entry and exit only
invokes simple functions gen and retain. Therefore, it is reasonable to implement the reaching
definitions in Datalog directly, although we believe functional IncA is easier to use. In
contrast, our second data-flow analysis implements an interval analysis that requires complex
functions to abstractly interpret expressions. We show an excerpt of the interval analysis in
Figure 16 and Figure 2. We use data type Val to represent abstract values and use relations
entry_var and exit_var to map variables to their abstract value. For an Assign statement,
exit_var invokes an abstract interpreter aeval that computes the abstract value of the assigned
expression. Even for this simple While language, the abstract interpreter already consists
of 90 lines of functional code that compile to 342 lines of Datalog code. Moreover, aeval is
part of the fixpoint loop, because it invokes entry_var for variable references, which invokes

ECOOP 2022

7:22 Functional Programming with Datalog

data Val = BotVal() | IntervalVal(Interval) | BoolVal(Bool) | TopVal()
...
// entry_var, exit_var, and aeval as shown in Figure 2 (Introduction)
def add(v1: Val, v2: Val): Val = ...
def addInterval(iv1: Interval, iv2: Interval): Interval = iv1 match {

case TopInterval() => TopInterval()
case IV(l1, h1) => iv2 match {

case TopInterval() => TopInterval()
case IV(l2, h2) => IV(l1 + l2, h1 + h2) } }

def joinVal(v1: Val, v2: Val): Val = ...
def joinInterval(iv1: Interval, iv2: Interval): Interval = iv1 match {

case TopInterval() => TopInterval()
case IV(l1, h1) => iv2 match {

case TopInterval() => TopInterval()
case IV(l2, h2) => widenInterval(IV(Math.min(l1, l2), Math.max(h1, h2))) } }

Figure 16 Interval analysis of the While language using abstract interpretation.

def getStm(inst: Instruction): Set[Stm] = {
InvokeStm(recvExp, meth, args) |

(inst, v) not in _AssignReturnValue,
(inst, _, meth, recv, _) in _VirtualMethodInvocation,
recvExp in getExp(recv),
args in getArgs(inst, 0) } ++ ...

def getExp(v: String): Set[Exp] = ...
def getArgs(inst: Instruction, currentIdx: Int): Set[List[Exp]] = ...
def isStmClone(s1:Stm, s2:Stm, iPairs:NPairs, lPairs:NPairs): Boolean = (s1,s2) match {

case (InvokeStm(r1, m1, a1), InvokeStm(r2, m2, a2)) =>
m1 == m2 && isExpClone(r1, r2, iPairs) && isArgListClone(a1, a2, iPairs)

... }

Figure 17 Clone detection of Shimple Code.

exit_var, which invokes aeval. Therefore, aeval really must translate to Datalog rules and
cannot be represented as a built-in function, because then it could not invoke entry_var.
Finally, note that we use a user-defined function joinVal to aggregate abstract values in
entry_var. In particular, joinVal implements widening on intervals to ensure the analysis
always terminates. All of these concerns are easy to address in functional IncA, because we
can use functional programming while relying on Datalog’s fixpoint semantics.

7.2 Clone Detection

Figure 17 shows an excerpt of how to construct an abstract syntax tree of Shimple
code and apply clone-detection techniques such as testing for alpha-equivalence. Shimple
is a variant of the Java bytecode representation Jimple [28] in SSA form. To access the
Shimple representation, we extend functional IncA to read Soufflé relations, because the
Doop framework [10] generates Soufflé facts. Using Soufflé facts enables us to detect clones
of real-world Java programs. The Soufflé relations are prefixed by an underscore. Technically,
we compile the Soufflé program and the functional program to a single Datalog program.
However, we do not derive demand patterns for relations of the Soufflé program.

The function getStm constructs an abstract syntax tree representation of Shimple code. We
highlight the case for constructing an invocation statement. We only generate an invocation
statement for an instruction inst if it is a virtual method invocation and the instruction does

A. Pacak and S. Erdweg 7:23

not assign a return value for the given instruction. Note that functional IncA does not allow
negation in general. However, it is possible to query Soufflé relations negatively as we do not
apply the demand transformation to Soufflé relations. Hence, the demand transformation
does not introduce negated dependency cycles. We generate the receiver of the method
call by using function getExp which constructs an expression tree given a variable name. At
last, we construct the argument of the given invocation statement by calling getArgs. Note
while getStm, getExp and getArgs have Set as return type, the functions yield singleton sets.
Returning a set is necessary due to the fact that we query Soufflé relations.

Next, we use the constructed abstract syntax trees as a basis to detect clones. We show a
clone-detection function isStmClone which checks if the statements are alpha-equivalent. We
traverse the statements s1 and s2 simultaneously while checking that the statements and
inner expressions are equal. Because we rely on Soufflé relations generated by the Doop
framework [10], we could integrate static analysis information such as points-to information
into clone detection. The case study shows that describing alpha-equivalence of Java bytecode
in a functional style is straightforward. It is possible to realize more sophisticated clone-
detection techniques using functional IncA such as structural diffing [11].

8 Implementation and Performance Evaluation

In this section we will discuss our implementation and do an early performance evaluation.

8.1 Implementation
We implemented functional IncA by compiling it to a Datalog IR provided by the IncA
framework. The Datalog IR can target two different backends namely IncA and Soufflé without
any change to the underlying Datalog solvers VIATRA [29] and Soufflé [20] respectively. Our
compiler generates Datalog code as shown in this paper, including the demand transformation.
This implementation not only demonstrates the feasibility of our design, but also shows how
advantageous it is to reuse existing Datalog solvers. In particular, the VIATRA Datalog solver
supports incrementality: Changes in extensional relations trigger incremental updates in
derived relations. We inherit this incrementality for free. For example, we can run the interval
analysis of Subsection 7.1 incrementally by diffing the input programs and feeding the resulting
patch to IncA [11]. Targeting Soufflé allows us to generate efficient and scalable C++ programs
that run on multi-core machines. However, Soufflé does not support user-defined aggregation,
hence we do not support translating functional IncA programs containing fold operations.
The implementation is available at https://gitlab.rlp.net/plmz/inca-scala.

8.2 Performance Evaluation
We evaluate the performance of functional IncA and show that it is advantageous to use
established solvers instead of implementing custom Datalog solvers for new frontends. We
compare the running times of executing a data-flow analysis for the While language run with
Souffé, IncA, and Formulog. We choose Soufflé and IncA as they are already established
Datalog frameworks. We choose Formulog because it is one representative of the frontend-first
approach which combines first-order ML functions with Datalog by implementing a custom
Datalog solver. Even though IncA uses an incremental Datalog solver VIATRA [29], we do
not measure the incremental performance of IncA which we leave as future work.

The data-flow analysis that we run is an adapted interval analysis. The analysis collects
all integers −100 ≤ i ≤ 100, a variable can be assigned to. Whenever we encounter an integer
i < −100 we return the default value −1000 and when we encounter an integer i > 100 we

ECOOP 2022

https://gitlab.rlp.net/plmz/inca-scala

7:24 Functional Programming with Datalog

return 1000. We implement this cut-off to ensure that the data-flow analysis terminates in
the presence of loops. We have chosen this type of analysis instead of an interval analysis,
because an interval analysis requires user-defined aggregation which Formulog and Soufflé
currently do not support. We implement four different programs as input of the data-flow
analysis. The programs consist of nested while and if statements and are designed in such a
way that a lot of information has to propagated along the edges of the control-flow graph.

For Formulog and IncA, both of which are Datalog solvers that run on the JVM, we
first do 10 warmup runs and then measure 90 runs. We do not measure the time it takes
to initialize the extensional database but only measure the running times of deriving the
intensional database. For Soufflé, we compile an executable and measure the running time of
the compiled Soufflé solver to derive the intensional database 9 times. Note that we do no
warmup for Soufflé programs as they are compiled to C++ and then to executable machine
code. We store the extensional database within input files and do not measure the I/O
actions needed to read those input files. We load the contents of the input files into RAM by
executing the compiled Soufflé program once. Hence, the following measured runs access the
extensional database stored in RAM. We performed our benchmarks on a machine with an
Intel Core i7 at 2.7 GHz with 16 GB of RAM, running 64-bit OSX 11.4, Java 1.14.0_1.

0

100

200

300

400

500

R
un

ni
ng

 T
im

e
(m

s)

Datalog solvers
Soufflé
IncA
Formulog

Program 1 Program 2 Program 3 Program 4

We show the running times of deriving the intensional database in milliseconds for each
program in the figure above. We see that the custom Datalog solver for Formulog is slower
than the established solvers such as Soufflé and IncA for all input programs. The Formulog
solver is ∼ 3.7x slower than the Soufflé solver and ∼ 2.2x slower than the IncA solver. Note
that the compiled executable of Soufflé has the fastest running time of all three solvers. This
shows that is desirable to compile Datalog with functional constructs to already established
Datalog dialects instead of implementing custom solvers for new Datalog frontends if possible.

9 Related Work

We propose functional programming with sets as a frontend for Datalog to replace Datalog’s
traditional constraint programming. This design differs from most prior works, which retain
constraint programming as a basis and add functional aspects on top of it. Our approach has
three advantages: (i) functional programming is easy to use, (ii) we can compute fixpoints
across functions and relations, and (iii) we can reuse existing Datalog solvers. In the remainder
of this section, we discuss related work.

IncA is an incremental Datalog framework that supports recursive aggregation over
user-defined functions and data types [22, 23]. These user-defined functions and data types
must be implemented in a JVM language and cannot query Datalog relations. The original

A. Pacak and S. Erdweg 7:25

frontend of IncA provides a shallow abstraction over Datalog called pattern functions [24].
These pattern functions consist of sequences of constraints and really are not comparable to
the functional programming we support in functional IncA.

Flix [14] exposes constraint programming to the user, but extends it with functional
programming. The runtime system of Flix executes functional code but also contains a custom
Datalog solver. While functional and Datalog aspects are intertwined in Flix, they cannot
interact as tightly as the functions and relations in our approach. Specifically, user-defined
functions cannot recursively query derived relations, as required by our interval analysis.
However, it is also not obvious how to extend our approach to compile Flix to Datalog,
because Flix supports the generation of additional Datalog constraints at run time [13].

Formulog [9] combines first-order ML functions with Datalog and SMT solvers. In
particular, Datalog rules can contain ML expressions and ML code can recursively query
Datalog relations. Formulog’s runtime understands both languages, which is why a custom
Datalog solver was needed that can evaluate ML expressions and Datalog constraints
interleaved. Our approach should naturally extend to Formulog. Indeed, we could add SMT
solving as a built-in function (def solveSMT(spec: String): String) and rely on user-defined
data types for SMT formulae and models, both of which are built-in types in Formulog.

Datafun [6] defines a higher-order functional programming language with sets and fixpoint
semantics. From a language-design perspective, Datafun is the most closely related work.
Both languages support commonly known functional expressions. One difference is how
fixpoint computations are expressed in the surface syntax. Datafun provides a fixpoint
expression which explicitly states over which function a fixpoint will be computed. However,
in functional IncA the fixpoint computation is not explicitly given but implicitly given by
the dependencies between functions. Datafun and functional IncA follow different design
philosophies. Datafun provides a termination guarantee: If a Datafun program is well-typed,
then a unique least fixed point exists and the program will terminate. Our language does
not provide such a guarantee since a well-typed program can still diverge. Consequently,
Datafun is more restrictive to guarantee termination while functional IncA gives developers
more freedom (and responsibility). Datafun requires that the lattice type over which a
fixpoint is computed does not contain an infinite ascending chain. One disadvantage of
Datafun’s design is that some programs that terminate in our system are not accepted by
Datafun. For example, the interval analysis we presented is not well-typed in Datafun as the
interval lattice has an infinite ascending chains. To ensure termination in functional IncA,
we had to introduce widening to break the infinite ascending chains of the interval lattice.
Many interesting static analyses use infinite lattices with infinite ascending chains. Hence,
Datafun cannot be used to express such analyses. While it is an interesting question how
to guarantee termination for as many programs as possible, our system is more viable to
implement real-world programs. Another difference is that Datafun has its own bottom-up
semantics which was recently extended to support semi-naïve evaluation [5]. In contrast,
we translate programs to Datalog and utilize off-the-shelve Datalog solvers, which readily
implement semi-naïve evaluation and other optimizations.

QL [7] is a logic programming language with object-oriented features such as classes and
methods to structure logic programs. QL compiles to Datalog to encode inheritance and
virtual dispatch of member predicates. We also propose to compile to Datalog, but focus on
functional programming with algebraic data types. It would be interesting to see how we
can extend functional IncA with object-oriented features and how these interact.

Mercury [21] is a logic programming language that consists of relations and rules deriving
those relations. Like any Datalog, Mercury also supports the encoding of functions as relations,
but in Mercury users can additionally annotate parameters as inputs and deterministic

ECOOP 2022

7:26 Functional Programming with Datalog

outputs. Mercury implements a custom Datalog solver that exploits such functional relations
by executing them like a deterministic program. It would be interesting to explore generic
Datalog optimizations that exploit functional relations, since we can easily generate the
necessary annotations in functional IncA.

Bloom [2, 3] is a domain-specific language for distributed systems that uses the Datalog
variant Dedalus [4] under the hood. Bloom provides built-in higher-order functions such as
map and reduce that operate over collections. Bloom is embedded in Ruby and user-defined
functions and data types can be written in Ruby, but these user-defined functions cannot
access the contents of relations. Therefore, we cannot describe an interval analysis in the
same style we have shown in the previous section in Bloom.

Soufflé [20] an efficient Datalog solver that can interpret Datalog rules directly or translate
them to C++. It is possible to define user-defined functions as C++ functions, but again
these functions cannot access the contents of relations. Soufflé has support for algebraic data
types, but developers have to ensure that only finitely many values are constructed. For our
use cases, this amounts to encoding the input relations by hand.

10 Conclusion

Datalog is supposedly declarative, but many programs are hard to express as constraints.
We propose functional programming with sets as a new frontend for Datalog that solves this
problem: functional IncA. Specifically, we translate functional IncA programs to Datalog
and employ a demand transformation to ensure the Datalog program terminates whenever
the original program terminates. While users of functional IncA only need to learn a single
functional programming language, they enjoy Datalog’s fixpoint semantics across functions
and relations. Moreover, since all generated code is pure Datalog, we can use off-the-shelve
Datalog solvers rather than building our own. Specifically, we implemented our approach as
a frontend for IncA [23] as well as Soufflé [20] and demonstrated how easy it is to express
complex Datalog programs with it. Our case studies include clone detection of real-world
Java programs, program analyses, a program transformation, and an interpreter, all of which
are easy to express functionally but translate to highly complex Datalog code. We have
shown through early performance measurements that it is indeed desirable to use established
Datalog solvers than implement custom solvers that embed a functional programming
language as Formulog did. In future work, we want to investigate the performance of the
generated Datalog code and study how compiler optimization can help. We also want to
support negation in functional IncA, but the demand transformation potentially breaks the
stratifiability of programs. We want to explore if the solution by Tekle and Liu [26] can be
used. At last, we want to investigate how to properly debug functional IncA programs.

References
1 Serge Abiteboul, Zoë Abrams, Stefan Haar, and Tova Milo. Diagnosis of asynchronous discrete

event systems: datalog to the rescue! In Chen Li, editor, Proceedings of the Twenty-fourth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 13-15,
2005, Baltimore, Maryland, USA, pages 358–367. ACM, 2005. doi:10.1145/1065167.1065214.

2 Peter Alvaro, Tyson Condie, Neil Conway, Khaled Elmeleegy, Joseph M. Hellerstein, and
Russell Sears. Boom analytics: exploring data-centric, declarative programming for the cloud.
In Christine Morin and Gilles Muller, editors, European Conference on Computer Systems,
Proceedings of the 5th European conference on Computer systems, EuroSys 2010, Paris, France,
April 13-16, 2010, pages 223–236. ACM, 2010. doi:10.1145/1755913.1755937.

https://doi.org/10.1145/1065167.1065214
https://doi.org/10.1145/1755913.1755937

A. Pacak and S. Erdweg 7:27

3 Peter Alvaro, Neil Conway, Joseph M. Hellerstein, and William R. Marczak. Consistency
analysis in bloom: a CALM and collected approach. In CIDR 2011, Fifth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA, USA, January 9-12, 2011, Online
Proceedings, pages 249–260. www.cidrdb.org, 2011. URL: http://cidrdb.org/cidr2011/
Papers/CIDR11_Paper35.pdf.

4 Peter Alvaro, William R. Marczak, Neil Conway, Joseph M. Hellerstein, David Maier, and
Russell Sears. Dedalus: Datalog in time and space. In Oege de Moor, Georg Gottlob, Tim
Furche, and Andrew Jon Sellers, editors, Datalog Reloaded - First International Workshop,
Datalog 2010, Oxford, UK, March 16-19, 2010. Revised Selected Papers, volume 6702 of Lecture
Notes in Computer Science, pages 262–281. Springer, 2010. doi:10.1007/978-3-642-24206-9_
16.

5 Michael Arntzenius and Neel Krishnaswami. Seminaïve evaluation for a higher-order functional
language. Proc. ACM Program. Lang., 4(POPL):22:1–22:28, 2020. doi:10.1145/3371090.

6 Michael Arntzenius and Neelakantan R. Krishnaswami. Datafun: A functional Datalog. In
Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 214–227. ACM, 2016. doi:10.1145/2951913.2951948.

7 Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL: object-oriented
queries on relational data. In Shriram Krishnamurthi and Benjamin S. Lerner, editors, 30th
European Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome,
Italy, volume 56 of LIPIcs, pages 2:1–2:25. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.ECOOP.2016.2.

8 Catriel Beeri and Raghu Ramakrishnan. On the power of magic. The Journal of Logic
Programming, 10(3):255–299, 1991. Special Issue: Database Logic Progamming. doi:10.1016/
0743-1066(91)90038-Q.

9 Aaron Bembenek, Michael Greenberg, and Stephen Chong. Formulog: Datalog for SMT-
based static analysis. Proc. ACM Program. Lang., 4(OOPSLA):141:1–141:31, 2020. doi:
10.1145/3428209.

10 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Shail Arora and Gary T. Leavens, editors, Proceedings of the 24th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA, pages 243–262.
ACM, 2009. doi:10.1145/1640089.1640108.

11 Sebastian Erdweg, Tamás Szabó, and André Pacak and. Concise, type-safe, and efficient
structural diffing. In Programming Language Design and Implementation (PLDI). ACM, 2021.

12 Shan Shan Huang, Todd Jeffrey Green, and Boon Thau Loo. Datalog and emerging applications:
an interactive tutorial. In Timos K. Sellis, Renée J. Miller, Anastasios Kementsietsidis, and
Yannis Velegrakis, editors, Proceedings of the ACM SIGMOD International Conference on
Management of Data, SIGMOD 2011, Athens, Greece, June 12-16, 2011, pages 1213–1216.
ACM, 2011. doi:10.1145/1989323.1989456.

13 Magnus Madsen and Ondrej Lhoták. Fixpoints for the masses: programming with first-
class Datalog constraints. Proc. ACM Program. Lang., 4(OOPSLA):125:1–125:28, 2020.
doi:10.1145/3428193.

14 Magnus Madsen, Ming-Ho Yee, and Ondrej Lhoták. From Datalog to Flix: A declarative
language for fixed points on lattices. In Chandra Krintz and Emery Berger, editors, Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages 194–208. ACM, 2016. doi:
10.1145/2908080.2908096.

15 David Maier, K. Tuncay Tekle, Michael Kifer, and David Scott Warren. Datalog: concepts,
history, and outlook. In Michael Kifer and Yanhong Annie Liu, editors, Declarative Logic
Programming: Theory, Systems, and Applications, pages 3–100. ACM / Morgan & Claypool,
2018. doi:10.1145/3191315.3191317.

ECOOP 2022

http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper35.pdf
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1007/978-3-642-24206-9_16
https://doi.org/10.1145/3371090
https://doi.org/10.1145/2951913.2951948
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.1016/0743-1066(91)90038-Q
https://doi.org/10.1016/0743-1066(91)90038-Q
https://doi.org/10.1145/3428209
https://doi.org/10.1145/3428209
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1989323.1989456
https://doi.org/10.1145/3428193
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/2908080.2908096
https://doi.org/10.1145/3191315.3191317

7:28 Functional Programming with Datalog

16 Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of program analysis.
Springer, 1999.

17 André Pacak, Sebastian Erdweg, and Tamás Szabó. A systematic approach to deriving
incremental type checkers. Proc. ACM Program. Lang., 4(OOPSLA):127:1–127:28, 2020.
doi:10.1145/3428195.

18 John C. Reynolds. Definitional interpreters for higher-order programming languages. High.
Order Symb. Comput., 11(4):363–397, 1998. doi:10.1023/A:1010027404223.

19 Bernhard Scholz, Herbert Jordan, Pavle Subotic, and Till Westmann. On fast large-scale
program analysis in Datalog. In Ayal Zaks and Manuel V. Hermenegildo, editors, Proceedings
of the 25th International Conference on Compiler Construction, CC 2016, Barcelona, Spain,
March 12-18, 2016, pages 196–206. ACM, 2016. doi:10.1145/2892208.2892226.

20 Bernhard Scholz, Kostyantyn Vorobyov, Padmanabhan Krishnan, and Till Westmann. A
Datalog source-to-source translator for static program analysis: An experience report. In
24th Australasian Software Engineering Conference, ASWEC 2015, Adelaide, SA, Australia,
September 28 - October 1, 2015, pages 28–37. IEEE Computer Society, 2015. doi:10.1109/
ASWEC.2015.15.

21 Zoltan Somogyi, Fergus Henderson, and Thomas C. Conway. The execution algorithm of
mercury, an efficient purely declarative logic programming language. J. Log. Program., 29(1-
3):17–64, 1996. doi:10.1016/S0743-1066(96)00068-4.

22 Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter. Incrementalizing
lattice-based program analyses in Datalog. Proc. ACM Program. Lang., 2(OOPSLA):139:1–
139:29, 2018. doi:10.1145/3276509.

23 Tamás Szabó, Sebastian Erdweg, and Gábor Bergmann. Incremental whole-program analysis
in Datalog with lattices. In Programming Language Design and Implementation (PLDI). ACM,
2021.

24 Tamás Szabó, Sebastian Erdweg, and Markus Voelter. Inca: a DSL for the definition of incre-
mental program analyses. In David Lo, Sven Apel, and Sarfraz Khurshid, editors, Proceedings of
the 31st IEEE/ACM International Conference on Automated Software Engineering, ASE 2016,
Singapore, September 3-7, 2016, pages 320–331. ACM, 2016. doi:10.1145/2970276.2970298.

25 K. Tuncay Tekle and Yanhong A. Liu. Precise complexity analysis for efficient datalog queries.
In Temur Kutsia, Wolfgang Schreiner, and Maribel Fernández, editors, Proceedings of the
12th International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, July 26-28, 2010, Hagenberg, Austria, pages 35–44. ACM, 2010. doi:10.1145/
1836089.1836094.

26 K. Tuncay Tekle and Yanhong A. Liu. Extended magic for negation: Efficient demand-driven
evaluation of stratified Datalog with precise complexity guarantees. In Bart Bogaerts, Esra
Erdem, Paul Fodor, Andrea Formisano, Giovambattista Ianni, Daniela Inclezan, Germán
Vidal, Alicia Villanueva, Marina De Vos, and Fangkai Yang, editors, Proceedings 35th Interna-
tional Conference on Logic Programming (Technical Communications), ICLP 2019 Technical
Communications, Las Cruces, NM, USA, September 20-25, 2019, volume 306 of EPTCS, pages
241–254, 2019. doi:10.4204/EPTCS.306.28.

27 Jeffrey D. Ullman. Bottom-up beats top-down for Datalog. In Avi Silberschatz, editor,
Proceedings of the Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, March 29-31, 1989, Philadelphia, Pennsylvania, USA, pages 140–149. ACM
Press, 1989. doi:10.1145/73721.73736.

28 Raja Vallee-Rai and Laurie J Hendren. Jimple: Simplifying java bytecode for analyses and
transformations, 1998.

29 Dániel Varró, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, István Ráth, and Zoltán
Ujhelyi. Road to a reactive and incremental model transformation platform: three generations
of the VIATRA framework. Software & Systems Modeling, 15(3):609–629, July 2016. doi:
10.1007/s10270-016-0530-4.

https://doi.org/10.1145/3428195
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1109/ASWEC.2015.15
https://doi.org/10.1109/ASWEC.2015.15
https://doi.org/10.1016/S0743-1066(96)00068-4
https://doi.org/10.1145/3276509
https://doi.org/10.1145/2970276.2970298
https://doi.org/10.1145/1836089.1836094
https://doi.org/10.1145/1836089.1836094
https://doi.org/10.4204/EPTCS.306.28
https://doi.org/10.1145/73721.73736
https://doi.org/10.1007/s10270-016-0530-4
https://doi.org/10.1007/s10270-016-0530-4

Design-By-Contract for Flexible Multiparty Session
Protocols
Lorenzo Gheri # Ñ

Imperial College London, UK

Ivan Lanese # Ñ

Focus Team, University of Bologna, Italy
Focus Team, INRIA, Sophia Antipolis, France

Neil Sayers #

Imperial College London, UK
Coveo Solutions Inc., Canada

Emilio Tuosto # Ñ

Gran Sasso Science Institute, L’Aquila, Italy

Nobuko Yoshida # Ñ

Imperial College London, UK

Abstract
Choreographic models support a correctness-by-construction principle in distributed programming.
Also, they enable the automatic generation of correct message-based communication patterns
from a global specification of the desired system behaviour. In this paper we extend the theory of
choreography automata, a choreographic model based on finite-state automata, with two key features.
First, we allow participants to act only in some of the scenarios described by the choreography
automaton. While this seems natural, many choreographic approaches in the literature, and
choreography automata in particular, forbid this behaviour. Second, we equip communications with
assertions constraining the values that can be communicated, enabling a design-by-contract approach.
We provide a toolchain allowing to exploit the theory above to generate APIs for TypeScript web
programming. Programs communicating via the generated APIs follow, by construction, the
prescribed communication pattern and are free from communication errors such as deadlocks.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Software
and its engineering → Formal software verification

Keywords and phrases Choreography automata, design by contract, deadlock freedom, Communic-
ating Finite State Machines, TypeScript programming

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.8

Related Version Full Version: http://mrg.doc.ic.ac.uk/publications/design-by-contract-
for-flexible-multiparty-session-protocols/

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.21
Software (Source Code): https://github.com/Tooni/CAScript-Artifact

Funding Research partly supported by the EU H2020 RISE programme under the Marie Skłodowska-
Curie grant agreement No 778233. Work partially funded by MIUR project PRIN 2017FTXR7S IT
MATTERS (Methods and Tools for Trustworthy Smart Systems). Lanese and Tuosto are partially
supported by INdAM as members of GNCS (Gruppo Nazionale per il Calcolo Scientifico). The work
is partially supported by EPSRC EP/T006544/1, EP/K011715/1, EP/K034413/1, EP/L00058X/1,
EP/N027833/1, EP/N028201/1, EP/T014709/1 and EP/V000462/1, and NCSS/EPSRC VeTSS.

Acknowledgements We thank the anonymous reviewers for their useful comments and suggestions.
We thank Franco Barbanera for contributing to this work in its early stages. We thank Fangyi Zhou
for their help with building our artifact on top of their software, νScr.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and
Nobuko Yoshida;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 8; pp. 8:1–8:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:l.gheri@imperial.ac.uk
https://sites.google.com/view/lorgheri/home
https://orcid.org/0000-0002-3191-7722
mailto:ivan.lanese@gmail.com
https://www.unibo.it/sitoweb/ivan.lanese/
https://orcid.org/0000-0003-2527-9995
mailto:sayers.neil@gmail.com
https://orcid.org/0000-0003-4718-7290
mailto:emilio.tuosto@gssi.it
https://cs.gssi.it/emilio.tuosto
https://orcid.org/0000-0002-7032-3281
mailto:n.yoshida@imperial.ac.uk
https://www.imperial.ac.uk/people/n.yoshida
https://orcid.org/0000-0002-3925-8557
https://doi.org/10.4230/LIPIcs.ECOOP.2022.8
http://mrg.doc.ic.ac.uk/publications/design-by-contract-for-flexible-multiparty-session-protocols/
http://mrg.doc.ic.ac.uk/publications/design-by-contract-for-flexible-multiparty-session-protocols/
https://doi.org/10.4230/DARTS.8.2.21
https://doi.org/10.4230/DARTS.8.2.21
https://github.com/Tooni/CAScript-Artifact
https://doi.org/10.4230/DARTS.8.2.21
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Design-By-Contract for Flexible Multiparty Session Protocols

1 Introduction

The development of communicating systems is notoriously a challenging endeavour. In
this application domain, both researchers and practitioners consider choreographies a valid
approach to tackle software development (e.g. [28, 40, 1, 4, 15]). Besides being naturally
geared toward scalability (due to the lack of central components), choreographic models have
been specifically conceived to support a correctness-by-construction [28] principle hinging on
the interplay between global and local views. The former is a description of the interactions
among (the role of) participants. We illustrate this through an OnLineWallet (OLW) service,
adapted from [39] and akin to PayPal, used by vendors to process from customers. (See [16]
for a visual model of OLW). This protocol involves three participants: customer, wallet, and
vendor. The former tries first to login into its account on the wallet server. In case of failure,
wallet may ask for a retry, or may decide to deny access. A successful authentication is
communicated by wallet to customer and vendor through the loginOK message; the vendor
then sends a request for payment to customer, who can authorise or reject the transaction.

A natural question to ask is “can the OLW protocol be faithfully realised by distributed
components?” The answer to this question requires a careful formalisation which we carry
out in the next sections. For the moment, we appeal to intuition and interpret realisation as
the existence of a set of components that coordinate with each other exclusively by message-
passing and faithful as the fact that components execute all and only the communications
prescribed by the global view without incurring in communication errors such as deadlocks.
Local views specify the behaviour of each participant “in isolation”. For instance, the local
behaviour of vendor in the OLW protocol is to wait the notification from wallet, send a request
message to customer, and then wait for either a payment or a rejection message from customer.
Note that vendor is “oblivious” of the interactions between customer and wallet. Also, observe
that, if customer fails to authenticate to wallet (e.g., by typing a wrong password), then no
payment request can be made. In this case, it does not make sense to involve vendor in the
protocol. We call the ability to involve a participant only in some branches of a protocol
selective participation.

Rather than an exception, selective participation is a norm in distributed applications,
e.g., for data validation, prevention of server overload, or access control. Consider, e.g.,
services giving public access to some resources while requiring authentication to grant access
to others. Often, the authentication phase is outsourced to external services (e.g., providing
OAuth2.0 [18] and Kerberos [29] authentication). In this case, accesses to public resources
should be oblivious to authentication services while protected resources are not involved in
the communication until the authentication phase is cleared (as for vendor in our example).
Other examples of selective participation emerge from smart contracts for online money
transations (e.g., crowdfunding services as [30]), where participants take part to some stages
of the communication only in case of a positive outcome of some financial operation.

A paramount element for the correctness-by-construction principle is the notion of well-
formedness, namely sufficient conditions guaranteeing the faithful realisation of a protocol.
Actually, choreographies advocate the algorithmic derivation, by projection, of faithful
realisations from well-formed global views [28]. In fact, the so-called top-down choreographic
approach to development consists of (a) the definition of a well-formed global view of the
protocol, (b) the projection of the global view onto local ones, (c) the verification that each
implemented component complies with a local view.

Usually, global views abstract away from local computations; for instance, our descrip-
tion of OWL does not specify how wallet takes the decision of letting customer retry the
authentication or the strategy of customer to authorise or not the payment. Both these (and

L. Gheri, I. Lanese, N. Sayers, E. Tuosto, and N. Yoshida 8:3

q0

q1 q2

q3 q5

client → service : premium client → service : basic
client → service : upgrade

client → bank : payPremium

client → service : confirm

bank → service : transferPremium

Figure 1 Non-well-structured choreography.

the other local) computations are blurred away because they require to specify the data
dependencies that local computations should enforce. As pioneered in [3] in the context of
global types [23], assertion methods can abstractly handle those dependencies by suitably
constraining the payloads of interactions. Roughly, this transfers design-by-contract [35]
methods to message-passing applications by imposing rely-guarantee relations on interactions.
As shown in [3], this poses several challenges due to two main reasons. Firstly, pre-conditions
ensuring the feasibility of some interactions depend on information scattered across dis-
tributed participants. Hence, it is necessary that data flow to participants so that all the
information necessary for a participant to guarantee some assertion is available when needed.
This requires to restrict to history sensitive [3] protocols, namely specifications have to be
such that participants required to guarantee an assertion are aware of the information needed
to satisfy it. Secondly, a careless use of such assertions may lead to inconsistent specifications
so to eventually spoil the realisability of the protocol. This requires to restrict to temporally
satisfiable [3] protocols, where no assertion ever becomes inconsistent during the execution.

Models and results based on the top-down approach to choreography abound in the
literature (see, e.g., the survey [26]). This paper builds on choreography automata (c-
automata) [2]; intutively, a c-automaton is a finite-state machine whose transitions are
labelled by interactions. The use of automata brings several benefits. On the one hand,
automata models are well-known to both academics and industrial computer scientists and
engineers. On the other hand, they allow one to exploit the well-developed theory of automata.
Furthermore, automata do not have syntactic constraints imposed by algebraic models such
as multiparty session types (see, e.g., [22, 44, 7]). Indeed, as noted in [2], c-automata seem
to be more flexible than “syntax”-based formalisms such as global graphs [46] or multiparty
session types. This is due to the fact that, in the latter family, well-formedness is attained
via syntactic restrictions that rule out unrealisable protocols. Indeed, a distinguished feature
of c-automata is that they admit non-well-structured interactions. Let us explain this with
the c-automaton in Fig. 1, modelling a choreography where a client registers to a service
according to two options. If client opts for the basic level, then no payment is due, while the
premium option requires a bank payment. Thus, we have a choice at q0 between the basic
and premium service levels. Then, in state q2 of Fig. 1, client either confirms the choice or
decides to upgrade. (Selective participation is required since the bank only acts in the “left”
run.) In a structured model, the “left” and the “right” runs from q0 to q5 must be different
branches of a choice. But those models cannot encode the upgrade transition that intuitively
allows one to move from one branch to the other, before the end of the choice construct.

Contribution and structure. We provide two main contributions to the theory of c-automata,
as well as an implementation in the setting of TypeScript programming.

ECOOP 2022

8:4 Design-By-Contract for Flexible Multiparty Session Protocols

First, we extend c-automata with selective participation, which, although natural as
seen above, is actually forbidden in many choreographic models (e.g., [22, 44, 7]) including
c-automata [2]. For instance, we will use the OLW protocol, where vendor’s involvement
occurs only on successful authentication, as our running example.

Our second contribution is the definition of asserted c-automata, that is a design-by-
contract framework for c-automata. More precisely, we equip transitions with assertions
constraining the exchanged messages, allowing one to specify such policies. For example,
we can specify that the authentication of OLW customer can fail at most 3 times. At
a glance, asserted c-automata mimick the constructions introduced in [3]. However, the
generalisation of c-automata to selective participation (not featured in [3]) and the greater
flexibility introduced by non well-structured interactions require to address non-trivial
technical challenges that we discuss in § 4.

The last contribution is a toolchain, dubbed CAScr, based on the theory of c-automata
with selective participation developed in this paper. More precisely, CAScr allows one to
specify a protocol using the Scribble framework [21, 38, 48] and to check its well-formedness
relying on our theory. Finally, CAScr generates TypeScript APIs to implement the roles
of the original protocol. To the best of our knowledge, CAScr is the first toolchain that
integrates Scribble with the flexibility of the theory of c-automata.

Our paper is structured as follows. § 2 introduces notions on finite state automata, and in
particular on communicating finite state machines, to model participants, and on c-automata.

§ 3 develops the theory of c-automata. The main novelty w.r.t. [2] is to allow for selective
participation. The resulting framework is more flexible with respect to [2], e.g., it allows
one to prove that the OLW protocol can be faithfully projected. Even in this more general
setting we can prove standard results: the implementation has the same behaviour as the
original specification (Corollary 3.13) and is free from deadlocks (Thm. 3.16). Also, when
focusing on one of the participants the projected system is lock free (Thm. 3.20).

§ 4 develops our second contribution, namely design-by-contract in the setting of c-
automata. More precisely, c-automata are extended with assertions (Def. 4.6) and the
related theory is extended accordingly. Also in this setting the implemented system faithfully
executes its specification (Corollary 4.18) and it is deadlock free (Thm. 4.19).

§ 5 presents CAScr, a novel, full toolchain – from the Scribble [21, 38, 48] specification of
the communication protocol, to the generation of APIs – providing support for distributed web
development in TypeScript and relying on flexible c-automata with selective participation.

Finally, § 6 discusses related work, while § 7 draws some conclusions, and sketches future
directions. Proofs and auxiliary material can be found on the full version of the paper [16].

2 Choreography Automata and Communicating Systems

This section recalls basic notions about automata in general and about choreography automata
(c-automata) [2] and systems of Communicating Finite State Machines (CFSMs) [5] in
particular. Following [2], global views, rendered as c-automata, are projected into systems of
local descriptions modelled as CFSMs. We start by surveying finite-state automata (FSA).

▶ Definition 2.1 (FSA). A labelled transition system (LTS) is a tuple (Q, q0, L, T) where
Q is a set of states (ranged over by s, q, . . .) and q0 ∈ Q is the initial state;
L is a finite set of labels (ranged over by ℓ, . . .);
T ⊆ Q × (L ∪ {ε}) × Q is a set of transitions where ε ̸∈ L is a distinguished label.

A finite-state automaton (FSA) is an LTS whose set of states is finite.

L. Gheri, I. Lanese, N. Sayers, E. Tuosto, and N. Yoshida 8:5

When the LTS A = (Q, q0, L, T) is understood we use the usual notations s1
ℓ−−→ s2 for the

transition (s1, ℓ, s2) ∈ T and s1 −→ s2 when there exists ℓ such that s1
ℓ−−→ s2, as well as −→⋆

for the reflexive and transitive closure of −→. We denote as out(CA, q) the set of transitions
from q in A. We occasionally write q ∈ A and (q, α, q′) ∈ A instead of, respectively, q ∈ Q

and (q, α, q′) ∈ T , and likewise for _ ⊆ _. We recall standard notions on LTSs.

▶ Definition 2.2 (Traces and trace equivalence). A run of an LTS A = ⟨S, s0, L, T ⟩ is a
(possibly empty) finite or infinite sequence π = (si

ℓi−−→ si+1)0≤i≤n of consecutive transitions
starting at s0 (assume n = ∞ if the run is infinite). The trace (or word) of π is the concaten-
ation of the labels trace(π) of the run π, namely trace(π) = ℓ0 · ℓ1 · · · ℓn. As usual, ε denotes
the identity element of concatenation and the trace of an empty run is ε. Function trace(·)
extends homomorphically to sets of runs. Also, s-runs and s-traces of A are, respectively,
runs and traces of ⟨S, s, L, T ⟩. The language of A is L(A) = {trace(π)

∣∣ π is a run of A}; A

accepts w if w ∈ L(A) and A accepts w from s if w ∈ L(⟨S, s, L, T ⟩). LTSs A and B are
trace equivalent if L(A) = L(B).

Bisimilarity [42] is an equivalence relation on LTSs simpler to prove than trace equivalence
which is implied by bisimilarity, and coincides with it for deterministic LTSs.

▶ Definition 2.3 (Bisimulation). Let A = ⟨SA, s0A, L, TA⟩ and B = ⟨SB , s0B , L, TB⟩ be two
LTSs. A relation R ⊆ (SA × SB) ∪ (SB × SA) is a (strong) bisimulation if it is symmetric,
(s0A, s0B) ∈ R, and for every pair of states (p, q) ∈ R and all labels ℓ:

if p
ℓ−−→ p′ then there is q

ℓ−−→ q′ such that (p′, q′) ∈ R

Relation R is a weak bisimulation if it is symmetric, (s0A, s0B) ∈ R, and for every pair of
states (p, q) ∈ R and all labels ℓ:

if p
ℓ−−→ p′ with ℓ ̸= ε then there is a run q

ε−−→
⋆ ℓ−−→ ε−−→

⋆
q′ such that (p′, q′) ∈ R and

if p
ε−−→ p′ then there is a run q

ε−−→
⋆

q′ such that (p′, q′) ∈ R.
If two LTSs are bisimilar then they are also trace equivalent.

A main role in our models is played by interactions built on the alphabet:

Lint ≜
{

p → q : m
∣∣ p ̸= q ∈ P and m ∈ M

}
ranged over by lowercase Greek letters

where P and M are, respectively, sets of participants and of messages. We assume P∩M = ∅.
An interaction p → q : m specifies that participant p sends a message (of type) m to participant
q and participant q receives m. Hence, by construction, each send is paired with a unique
receive and vice versa. In most choreographic models, this forbids to specify message losses,
races, and deadlocks. Adopting the terminology of the session type community (see, e.g., [26]),

with message loss we mean a send that cannot be matched by a receive; this cannot
happen in interactions since p → q : m specifies both the send and the receive together;
with race we mean a configuration where a receiver non-deterministically interacts with
either of two senders (or a sender with either of two receivers), depending on the relative
speed of their execution; this cannot happen since an interaction specifies which send is
supposed to interact with which receive and vice versa (notably, concurrency can take
place without message races, e.g., if participant p sends to participant q and at the same
time c sends to d there is no race);
with deadlock we mean a configuration where two or more participants are blocked waiting
for one another forming cyclic dependencies (e.g., p is waiting for q which waits for c,
which in turns waits for p); this cannot happen either since an interaction specifies which
participant has to send and which one has to receive.

ECOOP 2022

8:6 Design-By-Contract for Flexible Multiparty Session Protocols

All these properties hold by construction in most choreographic models. However, care is
needed to ensure that these properties are preserved when moving from the choreographic
specification to a distributed implementation. Such analysis has been performed for many
choreographic models in the literature (see [26]).

▶ Definition 2.4 (Choreography automata). A choreography automaton (c-automaton) is
an FSA on the alphabet Lint. Elements of L⋆

int ∪ Lω
int are choreography words, subsets of

L⋆
int ∪ Lω

int are choreography languages.

The set of participants of a c-automaton is finite; we denote with PCA (or simply P if CA
is understood) the set of participants of c-automaton CA. Given p → q : m ∈ Lint, we define
ptp(p → q : m) ≜ {p, q} and extend it homorphically to (sets of) transitions. We say that
α, β ∈ Lint are independent, written α ∥ β, if ptp(α) ∩ ptp(β) = ∅.

▶ Example 2.5 (OLW’s c-automaton). The c-automaton

q0M=

q1 q2 q3

q4 q5 q6

q7

q8

c
→

w
:login

c → w : pin

w →
c : retry

w → c : loginDeniedw
→

c
:l

og
in

O
K

w → v : loginOK v → c : request

c
→

w
:authorise

c → w : reject

c → v : pay

c
→

v
: r

ej
ec

t

models the OLW example in § 1. ⌟

We now survey communicating systems [5], our formal model of local views.

▶ Definition 2.6 (Communicating system). A communicating finite-state machine (CFSM)
is an FSA on the set Lact ≜ {pq!m, pq?m | p, q ∈ P and m ∈ M} of actions.

Action pq!m is the send of message m from p to q, while action pq?m is the corresponding
receive. The subjects of an output and an input action, say pq!m and pq?m, are respectively p
and q. A CFSM is p-local if all its transitions have labels with subject p. A (communicating)
system is a map S = (Mp)p∈P assigning a p-local CFSM Mp to each participant p ∈ P. We
require that P ⊆ P is finite and that any participant occurring in a transition of Mp is in P.

We now introduce the notion of projection from c-automata to systems of CFSMs.
Intuitively, projection builds a system aimed at implementing the projected c-automaton.
Similar notions in the literature often take the name of endpoint projection (see, e.g., [23, 7]).

▶ Definition 2.7 (Automata projection). The projection α↓p of an interaction α on p ∈ P is

(p → q : m)↓p= pq!m, (q → p : m)↓p= qp?m, and α↓p= ε for any other label α

Function _↓p extends homomorphically to transitions, runs, and choreography words.
The projection CA ↓p of a c-automaton CA = ⟨S, q0, Lint, T ⟩ on a participant p ∈ P is

obtained by determinising and minimising up-to language equivalence the intermediate CFSM

Ap =
〈
S, q0, Lact,

{
(q α↓p−−−→ q′)

∣∣ q
α−−→ q′ ∈ T

}〉
The projection of CA, written CA↓, is the communicating system (CA↓p)p∈P .

L. Gheri, I. Lanese, N. Sayers, E. Tuosto, and N. Yoshida 8:7

▶ Example 2.8 (Projecting OLW). We instantiate here projection on the c-automaton for
the OLW protocol described in Ex. 2.5. In particular, the intermediate CFSM Av is

q0Av =

q1 q2 q3

q4 q5 q6 q7

q8

ε

ε

ε

ε

ε

wv?loginOK vc!request ε

ε

cv?pay

cv
?r

eje
ct

the determinisation of which yields the following CFSM CA↓v for the vendor participant

Q0CA↓v = Q1 Q2 Q3
wv?loginOK vc!request cv?pay

cv?reject

Noteworthy, due to determinisation, states of the projection correspond to (not neces-
sarily disjoint) sets of states of the starting c-automaton. Indeed, in CA ↓v we have
Q0 = {q0, q1, q2, q3, q4}, Q1 = {q5}, Q2 = {q6, q7, q8}, and Q2 = {q3}. ⌟

We present below the semantics of communicating systems. We consider a synchronous
semantics. Essentially, a system can execute an interaction p → q : m if two of its participants
can provide complementary actions pq!m and pq?m (while the others do not move), and can
take an ϵ action if one of its participant can do it (while the others do not move).

▶ Definition 2.9 (Semantics of communicating systems). Let S = (Mp)p∈P be a communicating
system where Mp = ⟨Sp, q0p, Lact, Tp⟩ for each participant p ∈ P.

A configuration of S is a map s = (qp)p∈P assigning a local state qp ∈ Sp to each p ∈ P.
The semantics of S is the c-automaton JSK = ⟨S, s0, Lint, T ⟩ where

S is the set of configurations of S, as defined above, and s0 : p 7→ q0p for each p ∈ P is
the initial configuration of S
T is the set of transitions

s1
p→q:m−−−−−→ s2 such that

∗ s1(p) pq!m−−−−→ s2(p) ∈ Tp and s1(q) pq?m−−−−→ s2(q) ∈ Tq, and
∗ for all x ∈ P \ {p, q}, s1(x) = s2(x)
s1

ε−−→ s2 such that s1(p) ε−−→ s2(p) ∈ Tp, and for all x ∈ P \ {p}, s1(x) = s2(x).

3 Flexible Choreography Automata

We now introduce a theory of c-automata enabling faithful realisations, which is formalised
as language equivalence between a c-automaton and the semantics of its projection as proved
in Corollary 3.13. However, not all c-automata can be faithfully realised, hence we need to
restrict to well-formed c-automata. Well-formedness is defined as the conjunction of two
properties, well-sequencedness and well-branchedness. Both these properties are inspired
from [2]. However, well-branchedness is generalised to allow participants to act on some of
the scenarios specified by the c-automaton only upon request from other participants. We call
this feature selective participation, since a participant may act on a branch only if selected to
be involved by some other participant. This is disallowed in many choreographic formalisms
(e.g., [22, 44, 7]), including choreography automata [2]. On the other hand, well-sequencedness
is strengthened since the formulation in [2] is not enough to ensure faithful realisations. We
start by defining concurrent transitions, exploited in the definition of well-sequencedness.

ECOOP 2022

8:8 Design-By-Contract for Flexible Multiparty Session Protocols

▶ Definition 3.1 (Concurrent transitions). Two consecutive transitions q
α−−→ q′ β−−→ q′′ are

concurrent if there is q′′′ such that q
β−−→ q′′′ α−−→ q′′.

Essentially, two transitions are concurrent if they give rise to a commuting diamond.

▶ Definition 3.2 (Well-sequencedness). A c-automaton CA is well-sequenced if for each two
consecutive transitions q

α−−→ q′ β−−→ q′′ either
(a) α ̸∥ β, i.e., α and β are not independent (hence ptp(α) ∩ ptp(β) ̸= ∅), or
(b) there is q′′′ such that q

β−−→ q′′′ α−−→ q′′ (i.e., the transitions are concurrent); furthermore
for each transition q′′′ γ−−→ q′′′′, γ ∥ α and γ ∥ β.

Intuitively, well-sequencedness forces the explicit representation of concurrency among
interactions with disjoint sets of participants as commuting diamonds. The second part of
clause (b) in Def. 3.2 rules out the entanglement of choices with commuting diamonds, while
enabling to compose an arbitrary number of independent actions. This condition, absent
in [2], does not allow them to enforce faithful realisations as shown in the next example.

▶ Example 3.3. Consider the c-automaton below.

q0CA =

q1

q2

q3

q4

q5

q6

a → b : m c → d : n

c → b : r

c → d : n a → b : m

c → b : r

c → b : r

c → d : n

a → b : m

In CA ↓, participant c can immediately send r to b, since it is not involved in transition
q0

a→b:m−−−−−→ q1. Similarly, b can immediately receive r from c, since it is not involved in
transition q0

c→d:n−−−−−→ q2. Thus, a transition with label c → b : r is enabled in the initial
configuration of the semantics of CA↓. However, no transition with the same label is enabled
in the initial state of CA, hence the implementation is not faithful. ⌟

The following auxiliary concepts are instrumental in the definition of well-branchedness
(cf. Def. 3.7). Given a word w, pref(w) denotes the set of its prefixes.

▶ Definition 3.4 (Full awareness). Let (π1, π2) be a pair of q-runs of a c-automaton CA.
Participant p ∈ ptp(π1) ∩ ptp(π2) is fully aware of (π1, π2) if there are α1 ̸= α2 ∈ Lint such
that p ∈ ptp(α1) ∩ ptp(α2) and
1. either αh is the first interaction in L(πh) for h = 1, 2
2. or for h ∈ {1, 2} there is a proper prefix π̂i of πi such that trace(π̂1 ↓p) = trace(π̂2 ↓p),

the partners of p in αh are fully aware of (π̂1, π̂2), trace(π̂h)αh ∈ pref(trace(πh)), and αh

does not occur on π3−h.
Intuitively, a participant p is fully aware of two q-runs when able to ascertain which branch
has been taken. This happens either when p itself chooses (1), or when p is informed of the
choice by interacting with some other participant already fully aware of the q-runs (2).

▶ Example 3.5 (Full awareness in OLW). Let us consider the runs π1 = q2
w→c:loginOK−−−−−−−−−→

q4
w→v:loginOK−−−−−−−−−→ q5 and π2 = q2

w→c:loginDenied−−−−−−−−−−−→ q3 of the OLW c-automaton M in Ex. 2.5.
Both w and c are fully-aware of (π1, π2) since they occur in the first interaction in both the
runs (Def. 3.4(1)). Participant v is not fully-aware of (π1, π2) since it occurs on π1 only.

Take now the runs π3 = q6
c→w:reject−−−−−−−→ q8

c→v:reject−−−−−−−→ q3 and π4 = q6
c→w:authorise−−−−−−−−−→

q7
c→v:pay−−−−−−→ q3 in M . As before, both participants w and c are fully-aware of (π3, π4) since

they occur in the first interaction in both the runs. Participant v is fully-aware of (π3, π4) as
well, since its partner c is fully-aware of (q6

c→w:reject−−−−−−−→ q8, q6
c→w:authorise−−−−−−−−−→ q7). ⌟

L. Gheri, I. Lanese, N. Sayers, E. Tuosto, and N. Yoshida 8:9

To establish well-branchedness of a c-automaton we have to ensure that for each choice,
namely for each state with (at least) two non-independent outgoing transitions, and each
participant p, if p has to take different actions in the branches starting from the two transitions,
then p is fully-aware of the taken branch. In principle, such a condition should be checked
on all pairs of coinitial paths. However, this would lead to redundant checks, hence below
we borrow from [2] the notion of q-spans, namely pairs of paths from q on which we will
perform the check. Essentially, we have to handle choices with loops on some branches and
we have to consider “long-enough” branches. More precisely, a q-run in a c-automaton CA is
a pre-candidate q-branch if each of its cycles has at most one occurrence within the whole run
(i.e., if π′ is a q′-run included in π and ending in q′, then π′ has exactly one occurrence in π);
a candidate q-branch is a maximal pre-candidate q-branch with respect to the prefix order.

▶ Definition 3.6 (q-span). A pair (π, π′) of pre-candidate q-branches of CA is a q-span if
1. either π and π′ are cofinal, with no common node but q and the last one;
2. or π and π′ are candidate q-branches with no common node but q;
3. or π and π′ are a candidate q-branch and a loop on q with no other common nodes.

We can now introduce well-branchedness.

▶ Definition 3.7 (Well-branchedness). A c-automaton CA is well-branched if it is deterministic
and for each of its states q there is a partition T1, . . . , Tk of out(CA, q) such that

for all 1 ≤ i ̸= j ≤ k, ptp(Ti) ∩ ptp(Tj) = ∅ and for each q
αi−−−→ qi ∈ Ti, q

αj−−−→ qj ∈ Tj

there exists q′ such that qi
αj−−−→ q′ and qj

αi−−−→ q′

for all 1 ≤ i ≤ k,
⋂

t∈Ti
ptp(t) ̸= ∅ and for all p ∈ ptp(CA) \

⋂
t∈Ti

ptp(t) and q-span
(π1, π2) starting from transitions in Ti, if π1 ↓p ̸= π2 ↓p then either p is fully aware of
(π1, π2) or there is i ∈ {1, 2} such that p ̸∈ ptp(πi) and

1. the first transition in π3−i involving p is with a fully aware participant of (π1, π2) and
2. for all runs π′ such that πiπ

′ is a candidate q-branch of CA the first transition in π′

involving p is with a participant which is fully aware of (π1, π2).
Intuitively, a c-automaton is well-branched if for any state with multiple outgoing transitions
(both clauses in Def. 3.7 trivially hold when out(CA, q) is empty or a singleton) , we can
group them in equivalence classes. Transitions in different classes are concurrent, hence they
give rise to commuting diamonds. Transitions in the same class are choices: one participant,
belonging to all the (initial) transitions, makes the choice, and any other participant p is
either fully aware of the q-runs or it is inactive in some branch πi (condition p ̸∈ ptp(πi)).
In the last case, p has to interact with a fully aware partner (i) on each continuation π′ (if
any) of πi as well as (ii) inside the other branch, π3−i. Intuitively, (i) is necessary to make p
aware of when the choice is fully completed and (ii) on whether the branch on which p needs
to act has been taken. At the price of increasing the technical complexity, the second clause
in Def. 3.7 can be relaxed. Indeed, right now it requires a participant p, occurring in one
branch only, to interact (both in the branch where it occurs and in the continuations after
the merge of the two branches) with a fully-aware participant. We could instead allow p to
interact with a chain of other participants occurring only in the same branch, and such that
the last participant in the chain interacts with a fully-aware participant.

▶ Example 3.8 (OLW is well-branched). Let us show that the c-automaton in Ex. 2.5 is
well-branched. The only states for which well-branchedness is not trivial are q2 and q6 (the
others have at most one outgoing transition). In both the cases we have a single equivalence
class where w and c are in all the first transitions; hence they are both fully-aware in all
the possible spans. Let us check the condition for v. Let us consider q6. There is one

ECOOP 2022

8:10 Design-By-Contract for Flexible Multiparty Session Protocols

q6-span, with branches with states q6, q8, q3 and q6, q7, q3, which fits case 1 in Def. 3.6. As
discussed in Ex. 3.5, in this q6-span v is fully-aware, hence the condition is satisfied. Let
us now consider q2. Here we have a loop with states q2, q0, q1, q2, a candidate q2-branch
with states q2, q3, and two candidate q2-branches with a common prefix (states q2, q4, q5, q6)
and two continuations (states q6, q8, q3 and q6, q7, q3). Any combination of the self-loop with
the candidate q2-branches fit in case 3 in Def. 3.6, while the pairings of the first candidate
q2-branch with any of the others fit in case 1 in Def. 3.6. In the q2-spans above v occurs
only in the one with two continuations. Since there it interacts with c which is fully-aware,
condition 1 in Def. 3.7 holds. Condition 2 holds trivially, since the branches join only in
state q3 which has no outgoing transitions. ⌟

▶ Example 3.9 (Non well-branched c-automata). Consider the c-automaton below.

q0CA =
q1 q2 q3

q4 q5 q6

a → b : l b → c : n c → d : l

a → b : r b → c : n c → d : r

Here, c is not fully-aware since it interacts with b (which is fully-aware) receiving the same
message on both the branches. Hence, its first different interactions are with d, which is not
fully-aware. Indeed, d gets different messages, but from c which is not fully aware either.
Thus, c and d can decide, e.g., to take the lower branch even if a and b took the upper one,
thus producing a trace a → b : l · b → c : n · c → d : r not part of the language of CA. ⌟

▶ Example 3.10 (Non well-branchedness with selective participation). Consider the c-automaton:

q0CA =

q1

q2 q3
a → c : n

a → b : n b → c : n

b → d : n

Here, b occurs in the bottom branch only, interacting with a which is fully-aware, as required.
However, after the merge of the two branches, b interacts with d which is not fully aware,
thus violating condition 2 in Def. 3.7. Indeed the interaction b → d : n is enabled since the
initial configuration, against the prescription of CA. ⌟

▶ Definition 3.11 (Well-formedness). A c-automaton CA is well-formed if it is both well-
sequenced and well-branched.

Well-formed c-automata enjoy relevant properties. First, for each well-formed c-automaton
the semantics of the projection is bisimilar to the starting c-automaton.

▶ Theorem 3.12. CA is bisimilar to JCA↓K for any well-formed c-automaton CA.

An immediate consequence of Thm. 3.12 is that the language of a well-formed c-automaton
coincides with the language of the semantics of its projection.

▶ Corollary 3.13. L(CA) = L(JCA↓K) for any well-formed c-automaton CA.

We now show that projections of well-formed c-automata do not deadlock. To this end,
we need to extend CFSMs with a concept of final state. Intuitively, a state is final in the
projection on some participant p of a given c-automaton CA iff one of the corresponding
states of CA (remember that states of the projection are sets of states of CA) has an outgoing
maximal path along with p is not involved. Formally:

L. Gheri, I. Lanese, N. Sayers, E. Tuosto, and N. Yoshida 8:11

▶ Definition 3.14 (Final states in projected CFSMs). Let CA be a c-automaton and p one of
its participants. A state Q of CA↓p is final if in CA there is q ∈ Q and a candidate q-branch
π such that p ̸∈ ptp(π).
▶ Definition 3.15 (Deadlock freedom). The projection of a c-automaton is deadlock-free
if for each of its reachable configurations s either s has an outgoing transition or, for each
participant p, s(p) is final.
▶ Theorem 3.16 (Projections of well-formed c-automata are deadlock-free). Let CA be a
well-formed c-automaton. Then CA↓ is deadlock-free.
▶ Example 3.17 (C-automaton with deadlock). Consider the c-automaton

q0CA =
q1 q2 q3 q4

q5 q6 q7 q8

a → b : l b → c : n c → d : l c → a : l

a → b : r b → c : n c → d : r c → a : r

c → d : l

c → d : r

obtained by adding the transitions from states q3 and q7 to the one in Ex. 3.9. Disregard the
dashed transitions. If, as discussed in Ex. 3.9, c and d decide to take the bottommost branch
while a and b take the uppermost one, we can reach a configuration s where c wants to send
r to a, but a is only willing to take l. Hence, no transition is possible and we have a deadlock.
Due to Thm. 3.16 this is possible only since the c-automaton is not well-formed. ⌟

We can refine the result above by focusing on a single participant.
▶ Definition 3.18 (Lock freedom). The projection of a c-automaton is lock-free if for each
of its reachable configurations s and each participant p, either s(p) is final or s has at least
an outgoing transition and for each candidate s-branch π we have p ∈ ptp(π).
Lock freedom is strictly stronger than deadlock freedom. Indeed, each configuration s and a
participant p such that s(p) is not final has an outgoing transition, hence it is not a deadlock.
However, there are systems which are deadlock-free but not lock-free, as discussed below.
▶ Example 3.19 (C-automaton with locks (but no deadlock)). Consider again the c-automaton
from Ex. 3.17, including the dashed self-loops. There is now no deadlock, since the configur-
ation s has an outgoing transition, namely a self-loop involving c and d. However, s is a lock
for a. Indeed, it is not final for a, yet a does not take part in the branch corresponding to
the execution of the self-loop.
▶ Theorem 3.20 (Projections of well-formed c-automata are lock-free). Let CA be a well-formed
c-automaton. Then CA↓ is lock-free.

4 Design-by-Contract

We now extend the theory of choreography automata and communicating systems to handle
specifications amenable to predicate over data exchanged through a protocol. The basic idea
is to frame the design-by-contract theory proposed in [3] for global types in the context of
c-automata. This theory advocates global assertions to specify and verify contracts among
participants of a protocol. Taking inspiration from Design-by-Contract (DbC) [35], widely
used in the practice of sequential programming [20, 14], a global assertion is a global type
decorated with logical formulae predicating on the payload carried by interactions. Just as
in the traditional DbC, the use of logical predicates allows one to specify protocols where
the content of messages is somehow constrained.

ECOOP 2022

8:12 Design-By-Contract for Flexible Multiparty Session Protocols

4.1 Asserted choreography automata
To specify protocols that encompass constraints on payloads, we extend c-automata to
asserted c-automata. The structure of messages is reshaped to account for sorted data in
interactions and predicate over the payload of communications. More precisely, the set of
messages M consists of tagged tuples τ ⟨V⟩ where τ is a tag and V = v1 s1, . . . , vh sh is a tuple
of pairwise distinct sorted variables (namely, vi = vj =⇒ i = j for 1 ≤ i ≤ j ≤ h). The set
of variables of V = v1 s1, . . . , vh sh is var(V) ≜ {v1, . . . , vh} and, accordingly var(m) ≜ var(V)
and var(p → q : m) ≜ var(m) are the set of variables of m and of p → q : m respectively.
Intuitively, now an interaction specifies also the sort of the values communicated by the
sender and the “local” variables where the receiver “stores” those values.

▶ Example 4.1 (OLW variable sorts). When asking customer for another login attempt, wallet
can send a message retry ⟨msg string⟩ where the payload msg yields an error message. ⌟

We borrow from [3] (with minor syntactic changes) the first-order logic to specify the
constraints on payloads; the set A of logical formulae are derived from the following grammar

A, B ::=⊤ | ⊥ | ϕ(e1, . . . , en) | ¬A | A ∧ B | A ⊃ B | ∃v s : A (1)

In (1), ϕ ranges over pre-defined atomic predicates with fixed arities and sorts (e.g., bool,
int, etc) [34, §2.8] and e1, . . . , en denote expressions. Instead of fixing a specific language of
expressions, we just assume that they encompass usual data types of programming languages
and variables v. Also, we assume that sorts of expressions can be inferred (hence, we
occasionally omit sorts and tacitly assume that usage of variables is consistent with respect to
their sort). For simplicity, we consider only basic sorts (as in [3]). More complex static data
structures can be handled similarly, while dynamic data structures (e.g., pointers) require to
extend our theory with suitable semantics of value passing (e.g., deep-copy).

Let var(e) be the set of variables occurring in expression e; likewise var(A) denotes the set
of free variables of predicate A ∈ A, while bvar(A) denotes the bound variables in A (defined
in the standard way). Hereafter, assume that var(A) ∩ bvar(A) = ∅.

▶ Example 4.2 (OLW payloads). The payloads of the OLW protocol which we will use
through the paper are those in the following FSA:

q0

q1 q2 q3

q4 q5 q6 q7

q8

c
→

w
:login

⟨account
int⟩

c → w : pin ⟨pin int⟩

w
→

c : retry ⟨msg string⟩

w → c : loginDenied ⟨msg string⟩

w
→

c
:l

og
in

O
K

⟨⟩

w → v : loginOK ⟨⟩ v → c : request ⟨bill int⟩ c → w : authorise ⟨⟩

c → w : reject ⟨⟩

c → v : pay ⟨payment int⟩

c
→

v
: r

ej
ec

t ⟨
⟩

Notice that some messages have empty payloads. ⌟

We will consider FSAs where transitions are decorated with assertions, namely formulae
in A predicating on variables of the FSAs. The interplay between payloads and assertions
requires some care to handle iterative behaviour and the scoping of variables. In fact, we will
need to slightly change the FSA above to handle the iteration of the authentication phase.

Iterative computations require a few more ingredients. First we fix a recursion context ρ

which maps each recursion variable r to a triplet (V, A, q) consisting of

L. Gheri, I. Lanese, N. Sayers, E. Tuosto, and N. Yoshida 8:13

a set of sorted variables V which identify the formal parameters of r,
a predicate A ∈ A, the loop invariant to be maintained through the iteration, and
a state q of the FSA identifying the start of the iteration.

We assume that if ρ(r) = (V, A, q) and ρ(r′) = (V′, A′, q′) then r ̸= r′ implies q ̸= q′ and
V ∩ V′ = ∅. Then we use FSAs on the set L̂int (ranged over by λ), defined as the union of
Lint and the set of recursive calls which are defined as pairs r · ι of a recursive variable and a
map assigning expressions to recursive parameters of r.

▶ Example 4.3 (OLW iteration). Using assertions, the constraint on the authentication phase
of the OLW protocol described in § 1 can be specified as follows:

q′
0 q0

q1 q2 q3

q′
2 q4

r · try 7→ 0

0 ≤ try ≤ 3 c
→

w
:login

⟨account
int⟩

⊤

c → w : pin ⟨pin int⟩

⊤

r · try 7→ try + 1

0 ≤ try ≤ 3

w → c : loginDenied ⟨msg string⟩

try ≥ 3 ∧ msg = "fail"

w
→

c
: r

et
ry

⟨m
sg

st
rin

g⟩

0 ≤ try < 3
∧

msg = "fail"

w →
c : loginOk ⟨⟩

0 ≤
try

≤
3

where ρ(r) = ({try}, 0 ≤ try ≤ 3, q0). The automaton above refines the left part of the
c-automaton in Ex. 4.2. In particular, states with the same names do correspond. States
q′

0 and q′
2 are new (in particular q′

0 is the new initial state), introduced to correctly model
iteration. The assertions on the transitions from states q′

0 and q′
2 model recursive calls where

the try parameter is respectively set to 0 and incremented (cf. Ex. 4.5). ⌟

Transitions t = (q, (λ, A), q′), written as q
λ−−→
A

q′, are interpreted according to their label:
If λ = p → q : m then t (dubbed interaction transition) establishes a rely-guarantee
relation: when t is fired, p guarantees A while q assumes that A holds.
If λ = r · ι then t (dubbed iteration transition) records the invariant A (fixed by the
recursion context ρ) that should be maintained through each loop corresponding to r.

Variable scoping requires attention, as best illustrated by the following example.

▶ Example 4.4 (Confusion). In the following FSA

q0

q1

q2

q3 q′

p → r : τ ⟨v bool⟩

⊤

q → r : τ ⟨w int⟩
⊤q → r : τ ⟨v int⟩

⊤
p → r : τ ⟨u bool⟩

⊤

r → s : τ ⟨y int⟩

y = v mod 2

it is not clear if the assertion on the transition from q3 predicates on the variable v bound in
the interaction between p and r or in the one between q and r, hence its sort is not clear. ⌟

The binding and scoping of variables yield a first difference w.r.t. [3], where syntactic
structures of global assertions facilitate the definition of these notions. The lack of syntactic
structures of c-automata requires instead to introduce constructions to handle variables.

Let us now consider recursion. An FSA A respects a recursion context ρ when there are
no loops without iteration transitions and for each iteration transition t = q

r·ι−−−→
A

q̂ in A

with ρ(r) = (V, A, q̂)

ECOOP 2022

8:14 Design-By-Contract for Flexible Multiparty Session Protocols

(a) t is the only outgoing transition of q and q ̸= q̂ and
(b) either q is the initial state of A or there is a unique transition entering q and it is an

interaction transition.
Condition (a) forbids self-loops while (b) forces iterations to be guarded by interactions.

▶ Example 4.5 (OLW is respectful). The requirements imposed by respectfulness are met by
the FSA in Ex. 4.3. ⌟

For an FSA A = (Q, q0, L̂int × A, T) on L̂int × A, we let SPathA(q) denote the set of simple
paths1 reaching the state q ∈ Q from q0; also, var(q α−−→

A
q′) ≜ var(α) and var(q r·ι−−−→

A
q′) ≜

var(r) ≜ V if ρ(r) = (V, A, q̂). Finally, we say that a transition t ∈ T from a state q ∈ Q fixes
a variable v (in A) if v ∈ var(t) and, for each path π ∈ SPathA(q) there is no transition t′ ∈ π

that fixes v.
The next definition addresses the issues of confusion and respectfulness described above.

▶ Definition 4.6 (Asserted c-automata). An FSA, say CA, on the alphabet L̂int × A such that
1. for each co-final span (π, π′) in CA, if there are t ∈ π and t′ ∈ π′ such that both t and t′

fix v then t and t′ assign the same sort to v
2. CA respects the (fixed) recursion context ρ

3. the underlying c-automaton obtained by removing the assertions from CA is deterministic
is an asserted c-automaton (ac-automaton for short).

Intuitively, one can think of a variable v fixed at a transition t as “local” to the receiver
of the interaction labelling t; also, the sender of the interaction is aware of the value to be
assigned to v. Condition (1) in Def. 4.6 simply avoids confusion on the sort of a variable
when it could be assigned along different paths.

Without loss of generality, we can assume that var(t) ∩ bvar(A) = ∅ for all transitions and
predicates A of an ac-automaton; in fact, such condition can be enforced by simply renaming
bound variables in predicates. Hereafter, we write q

λ−−→ q′ instead of q
λ−−→
⊤

q′.

4.2 Consistent choreography automata
Our interpretation of transitions as rely-guarantee relations requires some care. Indeed, for
a transition t to be viable, participants involved in t must “know” the variables used in t.
In particular, if t is an interaction variable then the sender and receiver in t must “know”
the assertion in t and participants involved in an iteration should “know” the invariant of
the loop. Before formalising this in the next definition, we introduce the auxiliary concept
of assertion of a path of an ac-automaton, which yields the conjunction of all assertions in
π while substituting recursive variables with actual values of recursive calls. Formally, if
t = q1

r·ι−−−→
A

q2 then ∇(t) = ι, otherwise ∇(t) is the empty substitution.
Then the assertion of a path π is defined as A(π) = Aid(π) where

Aι(ε) ≜ ⊤ and Aι(q
λ−−→
A

q′ π) ≜ Aι′ ∧ Aι′(π) with ι′ = ι[∇(q λ−−→
A

q′)]

Namely, the assertion of a path is the conjunct of all the assertions of its transitions once the
recursion parameters are updated with their actual values. We can now define the notion of
knowledge of a variable.

1 A path is simple if no state occurs twice on it.

L. Gheri, I. Lanese, N. Sayers, E. Tuosto, and N. Yoshida 8:15

▶ Definition 4.7 (Knowledge). Let CA be an ac-automaton. A participant p ∈ P knows v at
a transition t = q

λ−−→
A

q′ in CA if
either t fixes v and

(a) if λ ∈ Lint then p ∈ ptp(λ) and
(b) if λ = r · ι with ρ(r) = (V, A, q′) and p is on a cycle from q′ to q′ then v ∈ V

or v ∈ var(A) and there are a variable u and a transition t′ on each path π ∈ SPathCA(q)
such that p knows u at t′ and A(π) ⊃ v = u holds.

Let knwCA(p, t) be the set of variables that p knows at t in CA.

▶ Example 4.8 (OLW knowledge). In the FSA of Ex. 4.2 both vendor and customer know bill
at the outgoing transition of state q5. Also, customer and wallet know the recursion variable
try of the ac-automaton in Ex. 4.3. ⌟

The notion of knowledge in Def. 4.7 is more complex than the one in [3]; this is an effect
of the higher complexity in the notions of binding and scoping of variables. Def. 4.7 is
instrumental to transfer the concept of history-sensitivity introduced in [3] to ac-automata.

▶ Definition 4.9 (History sensitiveness). An ac-automaton CA is history-sensitive if the
following holds for each transition t = q

λ−−→
A

q′ in CA
1. λ = p → q : m implies var(A) ⊆ knwCA(p, t), namely p knows each variable free in A at t.
2. λ = r · ι implies var(r) ⊆ knwCA(p, t) for each p ∈ P occurring on a cycle from q′ to q′.
Condition (1) guarantees that the assertion of a transition cannot predicate on variables not
“accessible” to the participants of the interaction. Condition (2) ensures that participants
involved in a loop are aware of the loop invariant. The notion of history sensitivity in [3]
relies on the fact that participant p knows a variable v on each interaction involving v. Here
instead a weaker notion is adopted since, due to selective participation, the c-automaton may
have a transition fixing v but not involving p.

▶ Example 4.10 (OLW is history-sensitive). The ac-automaton in Ex. 4.3 is history-sensitive.
In particular, note that the variable try in the assertion on the transition from q2 to q3 is
known to customer and wallet since it is in the invariant of the authentication loop. ⌟

For a transition t of an ac-automaton CA to be enabled, it is not enough that the source
state of t is reachable from the initial state of CA. In fact, the transition t can be fired if
the information accumulated by the participants ensures the satisfiability of the assertion
of t. To formalise this notion we introduce the following definitions. Given a state q of an
ac-automaton CA, we let

PCA(q) ≜ {A(π)
∣∣ π run to q in CA and A(π) is satisfiable} (2)

be the set of preconditions of q (in CA) and

ECA(q) ≜
⋃

B∈PCA(q)

 B ⊃
∨

q
λ−−→
A

q′∈CA

∃var(λ) : A

 (3)

be the set of enabling conditions of q (in CA)
Similarly to [3] for global types, progress of ac-automata cannot be guaranteed if there

is a possible computation leading to a state with no enabled transitions. Hence, we adapt
from [3] the notion of temporal satisfiability.

ECOOP 2022

8:16 Design-By-Contract for Flexible Multiparty Session Protocols

▶ Definition 4.11 (Temporal satisfiability). An ac-automaton CA is temporally satisfiable if
for each q ∈ CA reachable from the initial state of CA each formula in ECA(q) is satisfiable.

▶ Example 4.12 (OLW is temporally satisfiable). The ac-automaton in Ex. 4.3 is temporally
satisfiable because the enabling conditions of all the nodes are satisfiable. However, if the
assertion on the transition from q2 to q3 were replaced by e.g., try > 3 ∧ msg = "fail" then
temporal satisfiability would be violated because the precondition of the simple path from q0
to q2 would not entail 0 ≤ try < 3 ∨ try > 3. ⌟

As c-automata, ac-automata are well-formed if they are well-sequenced and well-branched;
these two notions are as for c-automata modulo the presence of assertions, which are
disregarded; see [16] for the formal definitions. Finally, we can define consistent ac-automata.

▶ Definition 4.13 (Consistency). An ac-automaton is consistent if it is history-sensitive,
temporally satisfiable, and well-formed.

4.3 Asserted communicating systems

Projecting ac-automata requires to handle asserted transitions. We therefore extend commu-
nicating systems to asserted communicating systems (a-CSs for short), which basically are
communicating systems where CFSMs are asserted (a-CFSMs for short), namely they have
transitions decorated with formulae in A. The synchronous semantics of a-CSs can be defined
as an LTS similarly to the semantics of communicating systems. In fact, configurations
can be defined as in Def. 2.9 taking into account assertions when synchronising transitions.
This basically means that assertions are used to verify that a sent message guarantees the
expectation of its receiver, that is the assertion the receiver relies upon.

Recall that a prenex normal form is a formula QA where Q is a sequence of quantifiers
and variables (called prefix) and A is a quantifiers-free logical formula (called matrix) [34]. If
A, B ∈ A then A ◦ B is a logical formula obtained by quantifying with the prefix of a prenex
normal form A′ logically equivalent to A the conjunction of B with the matrix of A′. Similarly
to assertions for paths on ac-automata, we define assertions of a run of an a-CFSM

A(ε) ≜ ⊤ and A(q ℓ−−→
A

q′ π) ≜ A ◦ A(π)

The preconditions of a state of an a-CFSM are defined as for ac-automata but for the use of
the assertion function A for CFSMs instead of the corresponding one for ac-automata.

▶ Definition 4.14 (Semantics of a-CS). The semantics of an a-CS S = (Mp)p∈P is the
transition system JSK defined by taking the set of configurations as in Def. 2.9 and as set of
transitions the smallest set including

s1
p→q:m−−−−−→

A
s2 if p, q ∈ P and

s1(p) pq!m−−−−→
A

s2(p) in Mp, s1(q) pq?m−−−−→
B

s2(q) in Mq and, there are A′ ∈ PMp(s1(p))
and B′ ∈ PMq(s1(q)) such that it holds (A′ ⊃ A)∧(B′ ⊃ B)∧(A′ ◦B′ ◦A) ⊃ ∃var(m) : B
and s1(x) = s2(x) for all x ∈ P \ {p, q}

s1
ε−−→
A

s2 if p ∈ P and

s1(p) ε−−→
A

s2(p) in Mp and there is A′ ∈ PMp(s1(p)) such that A′ ⊃ A

and s1(x) = s2(x) for all x ∈ P \ {p}.

L. Gheri, I. Lanese, N. Sayers, E. Tuosto, and N. Yoshida 8:17

Like the projection of communicating systems (cf. Def. 2.7), the projection of a-CSs relies
on the determinisation and minimisation of a-CFSMs. The presence of assertions imposes to
adapt the classical constructions on FSA to a-CFSMs. More precisely, we have to generalise
equality on labels of the form (λ, A). Essentially, this is done by (injectively) renaming the
variables occurring in actions and assertions decorating transitions. For σ an endofunction
on variables and m = τ ⟨v1 s1, . . . , vh sh⟩ let mσ ≜ τ ⟨σ(v1) s1, . . . , σ(vh) sh⟩; we define

εσ ≜ ε and (p → q : m)σ ≜ p → q : m′ where m′ = mσ

Two labels (λ, A) and (λ′, A′) are equivalent, in symbols (λ, A) ∼ (λ′, A′), if there is an
injective substitution of variables such that λ = λ′σ and A is logically equivalent to A′σ. We
will similarly consider equivalence on Lact × A.

The ε-closure of an a-CFSM M = (Q, q0, Lact, T) is the map ε-closM : Q → 2Q×A defined
assigning to each state q of M the set of states reachable with ε-transitions together with
their assertions; more precisely, for each q ∈ Q, ε-closM (q) is the smallest set satisfying

ε-closM (q) ≜ {(q, ⊤)} ∪
⋃

(q′,A)∈ε-closM (q)

{
(q′′, A ◦ A′)

∣∣ q′ ε−−→
A′

q′′ ∈ T
}

(4)

Removal of ε-transitions from an a-CFSM M is computed, using (4), similarly to the classical
algorithm on FSAs ⟨Q, ε-clos(q0), Lact,T⟩ where

Q = {ε-closM (q)
∣∣ q ∈ Q} and

T = {Q
ℓ−−−−−→

A1◦A◦A2
Q′ ∣∣ q1

ℓ−−→
A

q2 ∈ T for some (q1, A1) ∈ Q and (q2, A2) ∈ Q′}

Handling assertions in the determinisation algorithm requires some care. We illustrate the
problem in the following example.

▶ Example 4.15 (Non-determinism & assertions). Consider the two a-CFSMs below

q0M =
q1

q2

ℓ

A

ℓ

B

q0M ′ =

q1

q2

q′

ℓ

A ∧ ¬B
ℓ

A ∧ Bℓ
¬A ∧ B

If both A and B are satisfiable then M has a non-deterministic behaviour. We therefore aim
to define a determinisation algorithm which on M yields something like M ′. Also, the new
state q′ should provide transitions corresponding to both transitions from q1 and q2. ⌟

Let M = (Q, q0, Lact, T) be a CFSM. A state q ∈ Q is non-deterministic on ℓ ∈ Lact if its
derivative in M with respect to ℓ, defined as ∂M (q, ℓ) ≜ {(A, q′)

∣∣ q
ℓ−−→
A

q′ in M}, has more

than one element. Also, if X, Y ⊆ ∂M (q, ℓ) then ∆(X, Y) ≜
∧

(A,q)∈X

A ∧
∧

(B,q)∈Y

¬B. The

determinisation of M is obtained by applying the classical FSA determinisation algorithm to
the ε-closure of the a-CFSM M ′ = (Q′, q0, Lact, T ′ ∪ T ′′ ∪ T ′′′) where

ECOOP 2022

8:18 Design-By-Contract for Flexible Multiparty Session Protocols

Q′ ≜Q ∪
⋃

q∈Q,ℓ∈Lact

{
⟨X⟩

∣∣ q is non-deterministic on ℓ and ∅ ̸= X ⊆ ∂M (q, ℓ)
}

T ′ ≜

{
q

ℓ−−→
A

q′ ∈ T
∣∣ ∂M (q, ℓ) is a singleton

}
T ′′ ≜

⋃
∅̸=X⊆∂M (q,ℓ)

{
q

ℓ−−−−−→
∆(X,Y)

⟨X⟩
∣∣ ∂M (q, ℓ) not a singleton and Y = ∂M (q, ℓ) \ X

}

T ′′′ ≜
⋃

∅̸=X⊆∂M (q,ℓ)

{
⟨X⟩ ℓ−−→

A
q′ ∣∣ there is q

ℓ−−→
A

q′ ∈ T with {q} × A ∩ X ̸= ∅
}

Basically, we (i) introduce a new state ⟨X⟩ for any combination of assertions of ℓ-transitions,
(ii) replace non-deterministic behaviours on ℓ with a set of ℓ-transitions with “disjoint”
assertions, and (iii) let state ⟨X⟩ have the transitions that any of the states q ∈ X has in M .

We remark that the adaptation of the determinisation algorithm is imposed by the use of
a-CFSMs to model local behaviour. This is a main technical difference with respect to [3]
where local types with assertions, which need no determinisation, play the role of a-CFSMs.

The projection of an ac-automaton acts as the projection of c-automata on interactions
and accommodates the variables not known to the participant by existentially quantifying
them. This requires to consider the points in the ac-automaton where variables are fixed.

▶ Definition 4.16 (Projection of ac-automata). The projection on p ∈ P of an asserted
transition t in an ac-automaton CA on P, written t↓CA,p, is defined by:

t↓CA,p =

q
pq!m−−−−→

A
q′ if t = q

p→q:m−−−−−→
A

q′

q
qp?m−−−−→

A
q′ if t = q

q→p:m−−−−−→
A

q′

q
ε−−−−−−−−→

∃X : A(∇(t))
q′ if t = q

λ−−→
A

q′, p ̸∈ ptp(λ), and X = {v ∈ var(A)
∣∣ t fixes v in CA}

The projection of CA on p ∈ P, denoted CA↓p, is obtained by determinising and minimising
up-to-language equivalence the intermediate a-CFSM

Ap =
〈
S, q0, Lact,

{
(q λ−−→

A
q′)↓CA,p

∣∣ q
λ−−→
A

q′ in CA
}〉

where (i) syntactic equality of labels is replaced by ∼ and (ii) ε-transitions are those with
label of the form (ε, A). The projection of CA, written CA↓, is the a-CS (CA↓p)p∈P .

We show that projections of consistent ac-automata yield deadlock-free asserted commu-
nicating systems. The next result corresponds to Thm. 3.12 for ac-automata. The main
differences are (i) that consistency of ac-automata is required (as opposed to well-formedness
for c-automata) and (ii) that an ac-automaton is weakly bisimilar to the corresponding
projected system due to the fact that iterative transitions of the ac-automaton are projected
on ε-transitions.

▶ Proposition 4.17. Any consistent ac-automaton CA is weakly bisimilar to JCA↓K.

As for c-automata, Prop. 4.17 ensures that the language of a consistent ac-automaton
coincides with the language of its projection.

▶ Corollary 4.18. L(CA) = L(JCA↓K) for any consistent ac-automaton CA.

L. Gheri, I. Lanese, N. Sayers, E. Tuosto, and N. Yoshida 8:19

Final states and deadlock freedom of an ac-automaton are defined as for c-automata (cf.
Def. 3.14 and Def. 3.15 respectively) modulo the different labels of transitions.

▶ Theorem 4.19 (Projections of consistent ac-automata are deadlock-free). If CA is a consistent
ac-automaton then CA↓ is deadlock-free.

Observe that Thm. 4.19 requires ac-automata to be consistent; in particular, it requires
history sensitiveness (cf. Def. 4.9) and temporal satisfiability (cf. Def. 4.11). The two
requirements ensure that assertions on the transitions do not spoil deadlock freedom.

5 TypeScript Programming via Flexible C-Automata

We showcase the main theoretical results and constructions in this paper with a tool, CAScr,
the first implementation of Scribble [21, 38, 48] that relies on c-automata, for deadlock-free
distributed programming. CAScr takes the popular top-down approach to system development
based on choreographic models, following the original methodology of Scribble and multiparty
session types [22]. The top-down approach enables correctness-by-construction: a developer
provides a global description for the whole communication protocol; by projecting the global
protocol, APIs are generated from local CFSMs, which ensure the safe implementation of
each participant. The core theory of c-automata from § 3 guarantees deadlock freedom for
the distributed implementation of flexible global protocols. As a first application we target
web development, supporting in particular the TypeScript programming language.

In this section we present our development in three steps:
1. translation of global protocols into choreography automata: for the specification of global

protocols, CAScr relies on the Scribble language, and global Scribble protocols are formally
global multiparty session types protocols [38]; we define a function that maps these into
choreography automata, and discuss the relation between the two formalisms;

2. protocol specification and projections: from the specification of the global protocol,
CAScr generates, through its translation into c-automata and the subsequent projection,
a collection of CFSMs, which are the abstract representation of the communication
behaviour of each participant (cf. part (a), Fig. 3a on page 21);

3. API generation for deadlock-free distributed web development: we discuss our choice of
targeting TypeScript and web development, and illustrate how CAScr provides support
for this (cf. part (b), Fig. 3a on page 21); finally we comment on possible extensions.

5.1 From Multyparty Session Protocols to C-Automata
C-automata and asserted c-automata can be directly produced by the system designer and
fed to our approach to ensure their correct behaviour. However, to improve the usability of
the approach, our implementation, detailed in the next section, integrates c-automata with
the Scribble framework. This framework is based on the theory of global types, hence we
study below the relations between global types and c-automata. The syntax of global types
is given by the following grammar:

G ::= end | µr.G | r | Σi∈Ip → qi : mi; Gi

We simply write p → qi : mi; Gi instead of Σi∈Ip → qi : mi; Gi when I = {i}. In a recursive
type µr.G all occurrences of the recursion variable r in G are bound (this is the only binder
for global types); we moreover assume that the occurrences of r in G are guarded. Hereafter
we assume the so-called Barendregt convention, that is names of bound variables are all
distinct and different from names of free variables.

ECOOP 2022

8:20 Design-By-Contract for Flexible Multiparty Session Protocols

[Choice] Σi∈Ip → qi : mi; Gi

p→qj:mj−−−−−−→ Gj (j ∈ I)

[Rec]
G[µr.G/r] α−−→ G′

µr.G
α−−→ G′

[Pass]
Gj

α−−→ G′
j p, qj ̸∈ ptp(α) ∀j ∈ I

Σi∈Ip → qi : mi; Gi
α−−→ Σi∈Ip → qi : mi; G′

i

Figure 2 LTS semantics over global types.

The operational semantics of global types is the LTS induced by the rules in Fig. 2 where
labels are drawn from the alphabet Lint. Since the semantics of global types is an LTS, it
can be represented as a c-automaton only if it is finite state. Unfortunately, the interplay
between rule [Pass] and recursion allows one to generate infinite state LTSs, as shown below.

▶ Example 5.1 (Infinite-state LTS). Let Ginf = µr.α; (α; r + γ; δ; r + β.end) where δ ∥ α,
δ ∥ γ, α ̸∥ γ, β ̸∥ δ, and β ̸∥ α. Note that the traces (α γ)n are included in the semantics for
all n > 1. Executing (α γ)n results in the following computation:

µr.α; (α; r + γ; δ; r + β.end) α−−→ α; µr.α; (α; r + γ; δ; r) + γ; δ; µr.α; (α; r + γ; δ; r) + β.end
γ−−→ δ; µr.α; (α; r + γ; δ; r + β.end) . . .

γ−−→ δn; µr.α; (α; r + γ; δ; r + β.end)

States δn; µr.α; (α; r + γ; δ; r + β.end) and δm; µr.α; (α; r + γ; δ; r + β.end) are bisimilar only
if n = m. Indeed, one needs to execute n times δ (and an α) before being able to execute β. ⌟

It is worth remarking that the semantics in Fig. 2 yields finite-state LTSs on global types
without consecutive independent transitions, a restriction actually considered in many global
type formalisms, since rule [Pass] never applies. Likewise, the semantics consisting of rules
[Choice] and [Rec] only generates finite-state LTSs.

Function ca(G) below defines a c-automaton with subterms of G as states, G as initial
state, labels in Lint, and transitions inductively defined by the function catr(G) below:

catr(end) = catr(r) = ∅ catr(µr.G) = catr(G) ∪ {(r, ϵ, µr.G), (µr.G, ϵ, G)}
catr(Σi∈Ip → qi : mi; Gi) =

⋃
j∈I

({(Σi∈Ip → qi : mi; Gi, p → qj : mj, Gj)} ∪ catr(Gj))

▶ Proposition 5.2. Let G a global type. The language of ca(G) coincides with the language
generated by rules [Choice] and [Rec] of the semantics of G.

Function caPass(G) below extends ca(G) to deal with the semantics of global types with
rule [Pass]. However, the computed LTS may be infinite state, hence not a c-automaton,
and in this case the function cannot be used in practice. This is, e.g., the case with the global
type in Ex. 5.1. The LTS has G as initial state, labels in Lint, transitions inductively defined
by the function catrPass(G) below, and as states the ones occurring in the transitions:

catrPass(end) = catrPass(r) = ∅
catrPass(µr.G) = catrPass(G) ∪ {(r, ϵ, µr.G), (µr.G, ϵ, G)}

catrPass(Σi∈Iαi; Gi) =
⋃
j∈I

({(Σi∈Iαi; Gi, αj , Gj)} ∪ catrPass(Gj)) ∪⋃
α s.t. Gi

α−−→G′
i
∧αi∥α∀i∈I

{(Σi∈Iαi; Gi, α, Σi∈Iαi; G′
i)} ∪ catrPass(Σi∈Iαi; G′

i)

▶ Proposition 5.3. Let G a global type. The language of caPass(G) coincides with the
language generated by the semantics of G.

L. Gheri, I. Lanese, N. Sayers, E. Tuosto, and N. Yoshida 8:21

User input

Scribble
protocol

Participant declaration:
server and others

CA

WF checks

CFSMs

STScript

Generated APIs for
TypeScript web development

Node.js
(server)

React
(non-server)

ca

projection

(I) (II)

(a) Toolchain of CAScr.

1 global protocol OnlineWallet
2 (role Wallet , role Customer , role Vendor) {
3 rec AuthLoop {
4 login (account : int) from Customer to Wallet ;
5 pin(pin: int) from Customer to Wallet ;
6 choice at Wallet {
7 login_ok () from Wallet to Customer ;
8 login_ok () from Wallet to Vendor ;
9 request (bill: int) from Vendor to Customer ;

10 choice at Customer {
11 authorise () from Customer to Wallet ;
12 pay(payment : int) from Customer to Vendor ;
13 } or {
14 reject () from Customer to Wallet ;
15 reject () from Customer to Vendor ;
16 }
17 } or {
18 login_retry (msg: string) from Wallet to Customer ;
19 continue AuthLoop ;
20 } or {
21 login_denied (msg: string) from Wallet to Customer ;
22 }}}

(b) Scribble Protocol for the OLW.

Figure 3 CAScr: Toolchain and OLW Protocol.

We remark that global types with infinite semantics cannot be implemented faithfully
using communicating systems with the semantics in Def. 2.9. Indeed, a communicating
system has a finite number of configurations, which is O(Sn) where S is the size of the largest
CFSM and n the number of participants.

5.2 Validating Global Protocols with Choreography Automata
The first component of our toolchain is part (I) in Fig. 3a; it allows the user to perform protocol
specification, well-formedness checks, and the generation of CFSMs for each participant.

Let us consider the OLW example: the first step for the user is to specify the global protocol,
OnlineWallet.scr (Fig. 3b), in the Scribble protocol description language, often referred to
as “the practical incarnation of multiparty session types” [21, 38]. The syntax of Scribble
(http://www.scribble.org, https://nuscr.dev/) has a straightforward correspondance
to the syntax of global types, so Scribble implementations of communicating processes will
be supported by multiparty session type theory, and inherit its semantic guarantees. Our
development for part (I) of the toolchain is based on the νScr implementation [48], but
fundamentally differs from this (and other Scribble versions) in two aspects:

the underlying choreographic objects – normating the communication among multiple
participants – are not global types, but c-automata, and
we allow for participants to join the communication at later stage, only in branches where
they are needed (selective participation).

Fig. 3b shows the protocol OnlineWallet.scr for the OLW. Noteworthy, unlike νScr, we
can specify the selective participation of the vendor. In particular, the vendor participant is
involved only in the first branch of the choice (lines 7-12), namely on successful login.

After its specification, the Scribble protocol is translated into a c-automaton, with the
implementation of the function ca from § 5.1 (this is exactly the c-automaton from Ex. 2.5,
§ 2). On this automaton, well-sequencedness and well-branchedness checks are performed.
If the c-automaton passes the above well-formedness checks, it is then projected onto each
participant (Def. 2.7), thus obtaining a collection of CFSMs, whose semantics is equivalent to
the one of the original c-automaton. Both global c-automata and local CFSMs are represented

ECOOP 2022

http://www.scribble.org
https://nuscr.dev/

8:22 Design-By-Contract for Flexible Multiparty Session Protocols

Figure 4 Implementation with the API for wallet in Visual Studio Code.

using the DOT graph description language. Ex. 2.8 from § 2 shows the CFSM obtained by
projection on vendor of the c-automaton for the OLW; for the other participants analogous
CFSMs are obtained. The local CFSM representations provide the communication behaviour
of each participant and, as such, they retain all the information for obtaining deadlock-
free endpoint implementations. Each CFSM is the projection of the global c-automaton
onto one of the communicating participants; from this local automaton, the API for the
implementation of the participant is generated.

5.3 API Generation for Distributed Web Development
Our chosen domain of application is distributed web development. By nature, web services are
distributedly developed and feature communication among multiple participants. In services
where some courses of actions are optional, it is likely that the participation of some role is
also optional (selective participation). Our OLW example is a minimal, yet representative
example that selective participation is commonplace in transactions, auctions, or contracts.
For instance, Kickstarter [30] is a worldwide popular crowdfunding platform where the money
of supporters is given to a project initiator only if the initially set goal is met; otherwise the
money is returned to supporters. In other words, when the deadline is passed, if the goal is
met, only the initiator is involved in the communication, if not, only the supporters are.

More technically, our development builds on and extends STScript [36]. We target
server-centric protocols (based on the WebSocket standard [13]), where one role is chosen
as privileged, the server. The generated APIs are compatible with the Node.js runtime for
server-side endpoints and the React.js framework for browser-side endpoints. The STScript
toolchain in [36] is based on the multiparty session type theory, where there is no privileged
role; hence which role is the server has to be declared by the user. The same holds for
our development based on c-automata. We have discussed in the previous section how the
Scribble protocol in input is translated into a c-automaton and, once well-formedness checks
are performed, projected onto a CFSM for each participant. This CFSM is passed to the
code-generation component of our toolchain (part (II) of Fig. 3a), together with the role in
input and the information about whether it is the server role or not.

Fig. 4 shows an example of the usage of the generated API, when implementing the parti-
cipant wallet in Visual Studio Code (https://code.visualstudio.com/). The autocomplete
function of the editor offers the developer appropriate options, so that the implementation of
the login choice abides by the global discipline of the OnlineWallet protocol.

From an engineering point of view, for developing the part (I) of the toolchain (Fig. 3a)
we have adapted to our theory of c-automata, the codebase of νScr: a recent implementation
of Scribble that offers a toolchain for “language-independent code generation” [48]. However,

https://code.visualstudio.com/

L. Gheri, I. Lanese, N. Sayers, E. Tuosto, and N. Yoshida 8:23

νScr itself does not provide direct support for TypeScript. Hence, the development of part
(II) in Fig. 3a integrates the νScr codebase with STScript. This is is a Scribble extension
– also based on multiparty session types, but relying on the ScribbleJava implementation
http://www.scribble.org. Building the API-generation of CAScr on top of the one of
STScript has been a conventient choice: STScript targets distributed web development directly
and offers a full implementation for generating TypeScript APIs from νScr-projected CFSMs.

The result of our development is CAScr, of which we list the distinctive features.
Scope. CAScr specifically targets TypeScript and enables safe distributed web development.
Input. The user specifies the global protocol in the Scribble language and picks one of
the communicating participants as the server.
Correctness. CAScr relies on the flexible theory of c-automata: the protocol in input is
translated into a c-automaton, which, if well-formed, is then projected onto CFSMs.
APIs Generation. From each CFSM, CAScr generates the TypeScript API for the
respective role.
Safe Endpoint Implementation. The distributed implementation of the participants, using
the generated APIs, is guaranteed to be deadlock and lock free by the underlying theory.

In our first implementation of CAScr (https://github.com/Tooni/CAScript-Artifact),
we provide three simple examples: an “adder” (the client sends to the server, in a loop, two
numbers to be added), a simple contract protocol, and the OLW, which we have used as a
running example, since it carries and shows all the core features of our novel theory, and, in
particular, selective participation (see also the discussion at the beginning of this section).
Furthermore, we have provided a small tutorial in the README file of CAScr, to guide the
user through the implementation of their own protocols.

It is worth mentioning that a first extension of CAScr is under development (see also
[16]): current implementation, based on previous work [49], allows the generation of APIs
for Scribble protocols with assertions. However, the necessary extension of the function ca in
§ 5.1 to assertions, as well as subsequent consistency checks, have not been implemented yet.
While conceptually straightforward, in practice one needs to integrate the CAScr toolchain
with tools manipulating logical formulae such as SAT solvers in order to implement the check
for the consistency property (cf. Def. 4.13).

To conclude, we have developed the first version of Scribble based on choreography
automata. It improves on the flexibility of traditional implementations of multiparty session
types, by accomodating for selective participation, and it integrates previous developments
with our new theory: the νScr toolchain with the TypeScript support provided by STScript.
On the one hand, our toolchain enables verified communication for web development with
selective participation, on the other hand it paves the road to interesting extensions, e.g.,
fully capturing the asynchronous semantics of websockets (see § 7), or supporting assertions
and the design-by-contract approach, as discussed above.

6 Related Work

Conditions similar to our well-branchedness and well-sequencedness arise naturally in invest-
igations on choreographies and their realisability. Uniqueness of choice selector is commonly
imposed syntactically (as in § 5.1) in several multiparty session types (MPSTs) formalisms
(e.g., [22, 3, 9, 45, 49]) and also adopted in global graphs [11, 46], and in choreography
languages in general (cf. the notion of dominant role in [41]). Also, notions close to well-
sequencedness occur quite naturally in “well-behaved” choreographies (e.g., the notion of
well-informedness of [6] in collaboration diagrams). A distinguishing element of our notion of

ECOOP 2022

http://www.scribble.org
https://github.com/Tooni/CAScript-Artifact

8:24 Design-By-Contract for Flexible Multiparty Session Protocols

well-branchedness is that we admit protocols where disjoint groups of participants may concur-
rently engage in a choice. This generalises (and corrects) the notion of well-branchedness in [2]
and, to the best of our knowledge, is not supported in any other choreographic framework.

Global graphs [11, 17, 46, 33] are another model of global specifications. We refer the
reader to [2] for a comparison between c-automata and global graphs.

The first work advocating a design-by-contract framework for MPSTs is [3]. Asserted
c-automata have been strongly inspired by it. In particular, our notion of consistency (cf.
Def. 4.13) can be seen as a generalisation of well-assertedness in [3]. More recently, ideas
similar to the one in [3] have been developed in [49], where refined MPSTs have been proposed.
The results of these papers are in the vein of guaranteeing properties of programs by a
behavioural type system ensuring communication soundness in presence of data dependencies.

Besides the added flexibility of c-automata with respect to structured formalisms discussed
in the Introduction, ac-automata do not suffer from the constraints imposed on global types
in [3, 49]. More precisely, interactions guarding choices in [3, 49] syntactically restrict to a
unique partner of the selector (i.e., the participant choosing the branch to follow). On the
contrary, (asserted) c-automata do not have such restriction. For instance,

q0

q1

q2

q3

p → q : m q → p : n

q → p : n p → q : m

is a well-branched c-automaton which would be ruled out by all the choreography models
based on global types we are aware of. Both [3, 49] rely on a merge operator to guarantee well-
formedness (and projectability) of global types. This is an obstacle for selective participation
which our notion of well-branchedness (cf. Def. 3.7) overcomes. We also note that our notion
of knowledge is more general than the one in [3]. In fact, as observed in [49], the notion of
history sensitivity in [3] does not allow a participant to know variables fixed in interactions it
is not involved in. Like for refined MPSTs, asserted c-automata do not have this limitation
and can in fact deal with protocols like the one in Example 4.1 in [49].

Our theoretical work sees its first application in the development of CAScr, a toolchain for
communication-safe web development. CAScr takes the popular top-down approach, following
the original methodology of MPSTs [22]. The top-down approach enables correctness-by-
construction: a developer provides a global description for the whole protocol; by projecting
the global protocol, APIs are generated from local CFSMs, which ensure the safe implement-
ation of each participant. MPSTs toolchains that take the top-down approach have seen
multiple implementations and targeted a variety of mainstream programming languages, such
as (in no particular order) Java [24, 25, 31], OCaml [27], Go [8], Scala [43, 47], F# [37], F⋆ [49]
and Rust [10, 32]. Like CAScr, most of the above implementations rely on the Scribble pro-
tocol description language [21, 38, 48] (http://www.scribble.org, https://nuscr.dev/).
More relevant to this work is [36], in which the authors develop STScript, a full toolchain
that applies such top-down methodology and targets TypeScript for web development.

All the implementations above are based on MPSTs; they exploit the equivalence between
local types and CFSMs [11, 12] to generate APIs for all the participants. In [25], explicit
connections, similar to our selective participation, have been introduced in Scribble, and
more recently [19] uses an analogous approach to implement adaptations for an actor domain-
specific language. Both [25] and [19] need to add explicit disconnections and connections to
the syntax of Scribble. In CAScr (§ 5), we have integrated the theory of c-automata into the
νScr toolchain [48], to allow for more flexible protocols, where participants may appear only
in selected branches after a choice, with no need to change the Scribble syntax.

http://www.scribble.org
https://nuscr.dev/

L. Gheri, I. Lanese, N. Sayers, E. Tuosto, and N. Yoshida 8:25

7 Conclusion and Future Work

We have presented a flexible framework to describe protocols in a setting of c-automata
combining selective participation to branches of choices and assertions supporting design-by-
contract. This allows us to model non trivial examples such as the OnLineWallet, and ensures
faithful realisability. In fact, we exploited the flexibility of c-automata to generalise well-
branchedness (so to account for selective participation) and to transfer the DbC approach [3]
(so to account for data-aware protocols). Remarkably, the fact that c-automata are finite-state
models does not allow us to fully capture Scribble. Nonetheless, a semi-decidable approach
has been considered (cf. § 5.1) which becomes effective when restricting to protocols without
interplay between consecutive independent interactions and recursion. More precisely, it
should not be possible to split a recursive protocol into groups of interactions with disjoint
participants. This restriction mildly affects applicability: indeed, to faithfully implement
such specifications one would need infinite-state systems of CFSMs, while ours are finite-state.
Also, a clear advantage of our approach is that we can verify more general conditions for
Scribble specifications that can be faithfully mapped on c-automata.

We implemented our theory by allowing Scribble protocols to be translated into c-
automata, checked for well-formedness, and finally used to derive APIs for TypeScript
programming. The flexibility of c-automata has been instrumental to capture Scribble [21, 38,
48] specifications. Scribble notation (and semantics) may be not easy to grasp for practitioners
as it involves a non-trivial amount of technicalities. Hence, defining and understanding
well-formedness conditions on Scribble could not be straightforward.

Our framework can be immediately used in practice in interesting examples: the design
of a variety of existing web services (e.g., for authentication or transactions) include selective
participation; with the OLW implementation, we witness how protocols carrying this feature
can be specified in CAScr (which from these generates APIs for implementations). Nonetheless,
we envisage some extensions (see § 5.3 and [16] for details).

Our focus is on selective participation and design-by-contract. Hence, for simplicity, we
consider synchronous semantics. CAScr builds instead on an asynchronous implementation
of Scribble [36], which makes our results applicable only to protocols in which asynchronous
executions do not break the causal relations imposed by the synchronous semantics so that
choices are affected. This is the case for the case studies in the artifact, including our
running example OLW. The discrepancy disappears if a synchronous transport layer (e.g.,
http) replaces web sockets. To increase the applicability of CAScr – and also because of its
theoretical interest, we plan to extend the results to cover an asynchronous communication
model based on queues. While the general structure of the theory remains the same, well-
branchedness needs to be updated since send and receive actions would not be symmetric
anymore. E.g., a participant that only occurs in one branch of a choice, thanks to selective
participation, needs to interact with a fully-aware participant by performing a receive, while
right now it can also interact through a send action. We conjecture that the extension
to asynchronous semantics does not affect the treatment of DbC in ac-automata. In fact,
assertions are guaranteed by the sender and relied upon by the receiver (hence, the nature of
communication is orthogonal to the flow of data).

Our methodology follows the top-down software development approach of choreographies
(cf. § 1 and § 6). An interesting direction for future work is to develop an analysis of existing
APIs; for instance, by extracting an abstract representation of the API, its conformance
could be checked against a projection of the global specification. Such design would improve
on the applicability of our theory, for analysing and reusing existing developments.

ECOOP 2022

8:26 Design-By-Contract for Flexible Multiparty Session Protocols

References
1 Marco Autili, Paola Inverardi, and Massimo Tivoli. Automated synthesis of service choreo-

graphies. IEEE Softw., 32(1):50–57, 2015. doi:10.1109/MS.2014.131.
2 Franco Barbanera, Ivan Lanese, and Emilio Tuosto. Choreography automata. In COORDIN-

ATION, volume 12134 of Lecture Notes in Computer Science, pages 86–106. Springer, 2020.
3 Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-

contract for distributed multiparty interactions. In Paul Gastin and François Laroussinie,
editors, Concur 2010, volume 6269 of LNCS, pages 162–176. Springer, 2010.

4 Jonas Bonér. Reactive Microsystems - The Evolution Of Microservices At Scale. O’Reilly,
2018.

5 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

6 Tevfik Bultan and Xiang Fu. Specification of realizable service conversations using collaboration
diagrams. Service Oriented Computing and Applications, 2(1):27–39, 2008. doi:10.1007/
s11761-008-0022-7.

7 Marco Carbone and Fabrizio Montesi. Deadlock-freedom-by-design: multiparty asynchronous
global programming. In Roberto Giacobazzi and Radhia Cousot, editors, The 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome,
Italy - January 23 - 25, 2013, pages 263–274. ACM, 2013. doi:10.1145/2429069.2429101.

8 David Castro, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida. Dis-
tributed programming using role-parametric session types in Go: Statically-typed endpoint
APIs for dynamically-instantiated communication structures. Proc. ACM Program. Lang.,
3(POPL), January 2019. doi:10.1145/3290342.

9 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global
progress for dynamically interleaved multiparty sessions. Mathematical Structures in Computer
Science, 26(2):238–302, 2016.

10 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-Free Asynchronous Message
Reordering in Rust with Multiparty Session Types. In 27th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, volume abs/2112.12693 of PPoPP ’22, pages
261–246. ACM, 2022. doi:10.1145/3503221.3508404.

11 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating
automata. In ESOP, volume 7211 of Lecture Notes in Computer Science, pages 194–213.
Springer, 2012. doi:10.1007/978-3-642-28869-2_10.

12 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating auto-
mata: Characterisation and synthesis of global session types. In Fedor V. Fomin, Rūsin, š
Freivalds, Marta Kwiatkowska, and David Peleg, editors, Automata, Languages, and Program-
ming, pages 174–186, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

13 Ian Fette and Alexey Melnikov. The websocket protocol, 2011. URL: https://www.rfc-editor.
org/info/rfc6455.

14 Robert W. Floyd. Assigning meaning to programs. In Proc. Symp. in Applied Mathematics,
volume 19, 1967.

15 Leonardo Frittelli, Facundo Maldonado, Hernán C. Melgratti, and Emilio Tuosto. A
choreography-driven approach to APIs: The OpenDXL case study. In Simon Bliudze and
Laura Bocchi, editors, Coordination Models and Languages - 22nd IFIP WG 6.1 International
Conference, COORDINATION 2020, Held as Part of the 15th International Federated Confer-
ence on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta, June 15-19, 2020,
Proceedings, volume 12134 of Lecture Notes in Computer Science, pages 107–124. Springer,
2020. doi:10.1007/978-3-030-50029-0_7.

16 Lorenzo Gheri, Ivan Lanese, Neil Sayers, Emilio Tuosto, and Nobuko Yoshida. Design-
by-contract for Flexible multiparty session protocols – extended version. Tech-
nical report, Focus Team, University of Bologna/INRIA (Italy) and Gran Sasso
Science Institute (Italy) and Imperial College (UK), May 2022. Full ver-
sion of the ECOOP 2022 paper. URL: http://mrg.doc.ic.ac.uk/publications/
design-by-contract-for-flexible-multiparty-session-protocols/.

https://doi.org/10.1109/MS.2014.131
https://doi.org/10.1007/s11761-008-0022-7
https://doi.org/10.1007/s11761-008-0022-7
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1145/3290342
https://doi.org/10.1145/3503221.3508404
https://doi.org/10.1007/978-3-642-28869-2_10
https://www.rfc-editor.org/info/rfc6455
https://www.rfc-editor.org/info/rfc6455
https://doi.org/10.1007/978-3-030-50029-0_7
http://mrg.doc.ic.ac.uk/publications/design-by-contract-for-flexible-multiparty-session-protocols/
http://mrg.doc.ic.ac.uk/publications/design-by-contract-for-flexible-multiparty-session-protocols/

L. Gheri, I. Lanese, N. Sayers, E. Tuosto, and N. Yoshida 8:27

17 Roberto Guanciale and Emilio Tuosto. Realisability of pomsets. J. Log. Algebraic Methods
Program., 108:69–89, 2019.

18 Dick Hardt. The OAuth 2.0 Authorization Framework. RFC 6749, October 2012. doi:
10.17487/RFC6749.

19 Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty session types for safe
runtime adaptation in an actor language. In Anders Møller and Manu Sridharan, editors, 35th
European Conference on Object-Oriented Programming (ECOOP 2021), volume 194 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 10:1–10:30, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2021.10.

20 Tony Hoare. An axiomatic basis of computer programming. CACM, 12, 1969.
21 Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida.

Scribbling interactions with a formal foundation. In Raja Natarajan and Adegboyega Ojo,
editors, Distributed Computing and Internet Technology, pages 55–75, Berlin, Heidelberg, 2011.
Springer Berlin Heidelberg. doi:10.1007/978-3-642-19056-8_4.

22 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In George C. Necula and Philip Wadler, editors, POPL, pages 273–284. ACM Press, 2008.

23 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

24 Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API genera-
tion. In Perdita Stevens and Andrzej Wąsowski, editors, Fundamental Approaches to Software
Engineering, pages 401–418, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

25 Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types.
In Proceedings of the 20th International Conference on Fundamental Approaches to Software
Engineering - Volume 10202, pages 116–133, Berlin, Heidelberg, 2017. Springer-Verlag. doi:
10.1007/978-3-662-54494-5_7.

26 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, 2016.

27 Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty session program-
ming with global protocol combinators. In Robert Hirschfeld and Tobias Pape, editors, 34th
European Conference on Object-Oriented Programming (ECOOP 2020), volume 166 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 9:1–9:30, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2020.9.

28 Nickolas Kavantzas, Davide Burdett, Gregory Ritzinger, Tony Fletcher, and Yves Lafon.
Web services choreography description language version 1.0. http://www.w3.org/TR/2004/
WD-ws-cdl-10-20041217. Working Draft 17 December 2004.

29 Kerberos 5. https://web.mit.edu/kerberos/krb5-1.19/. Accessed: 14/02/2022.
30 Kickstarter. https://www.kickstarter.com/about. Accessed: 14/02/2022.
31 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols

with Mungo and StMungo. In PPDP, pages 146–159, New York, NY, USA, 2016. Association
for Computing Machinery. doi:10.1145/2967973.2968595.

32 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Stay Safe under Panic: Affine
Rust Programming with Multiparty Session Types. In 36th European Conference on Object-
Oriented Programming, LIPIcs, 2022. in this volume.

33 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical
choreographies. In Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015, pages 221–232. ACM, 2015.

34 Elliot Mendelson. Introduction to Mathematical Logic. Wadsworth Inc., 1987.
35 Bertrand Meyer. Applying “Design by Contract”. Computer, 25(10):40–51, 1992. doi:

10.1109/2.161279.

ECOOP 2022

https://doi.org/10.17487/RFC6749
https://doi.org/10.17487/RFC6749
https://doi.org/10.4230/LIPIcs.ECOOP.2021.10
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1145/2827695
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.1007/978-3-662-54494-5_7
https://doi.org/10.4230/LIPIcs.ECOOP.2020.9
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217
http://www.w3.org/TR/2004/WD-ws-cdl-10-20041217
https://web.mit.edu/kerberos/krb5-1.19/
https://www.kickstarter.com/about
https://doi.org/10.1145/2967973.2968595
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279

8:28 Design-By-Contract for Flexible Multiparty Session Protocols

36 Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Communication-safe
web programming in typescript with routed multiparty session types. In Proceedings of
the 30th ACM SIGPLAN International Conference on Compiler Construction, CC 2021,
pages 94–106, New York, NY, USA, 2021. Association for Computing Machinery. doi:
10.1145/3446804.3446854.

37 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: Compile-time API generation of distributed protocols with refinements in F#.
In Proceedings of the 27th International Conference on Compiler Construction, CC 2018,
pages 128–138, New York, NY, USA, 2018. Association for Computing Machinery. doi:
10.1145/3178372.3179495.

38 Rumyana Neykova and Nobuko Yoshida. Featherweight Scribble, volume 11665 of LNCS, pages
236–259. Springer, Cham, 2019. doi:10.1007/978-3-030-21485-2_14.

39 Rumyana Neykova, Nobuko Yoshida, and Raymond Hu. Spy: Local verification of global
protocols. In Axel Legay and Saddek Bensalem, editors, Runtime Verification, pages 358–363,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

40 Object Management Group. Business Process Model and Notation. http://www.bpmn.org.
41 Zongyan Qiu, Xiangpeng Zhao, Chao Cai, and Hongli Yang. Towards the theoretical foundation

of choreography. In Proceedings of the 16th International Conference on World Wide Web,
WWW 2007, pages 973–982, 2007. doi:10.1145/1242572.1242704.

42 Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University Press,
2011.

43 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition of
multiparty sessions for safe distributed programming. In Peter Müller, editor, 31st European
Conference on Object-Oriented Programming (ECOOP 2017), volume 74 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages 24:1–24:31, Dagstuhl, Germany, 2017.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECOOP.2017.24.

44 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. PACMPL,
3(POPL):30:1–30:29, 2019.

45 Paula Severi and Mariangiola Dezani-Ciancaglini. Observational equivalence for multiparty
sessions. Fundamenta Informaticae, 170:267–305, 2019. URL: http://www.di.unito.it/
~dezani/papers/sd19.pdf.

46 Emilio Tuosto and Roberto Guanciale. Semantics of global view of choreographies. J. Log.
Algebr. Meth. Program., 95:17–40, 2018.

47 Malte Viering, Raymond Hu, Patrick Eugster, and Lukasz Ziarek. A multiparty session typing
discipline for fault-tolerant event-driven distributed programming. Proc. ACM Program. Lang.,
5(OOPSLA), October 2021. doi:10.1145/3485501.

48 Nobuko Yoshida, Fangyi Zhou, and Francisco Ferreira. Communicating finite state machines
and an extensible toolchain for multiparty session types. In Evripidis Bampis and Aris
Pagourtzis, editors, Fundamentals of Computation Theory, pages 18–35, Cham, 2021. Springer
International Publishing.

49 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Statically verified refinements for multiparty protocols. In OOPSLA 2020: Conference on
Object-Oriented Programming Systems, Languages and Applications, number OOPSLA (Article
148) in PACMPL, page 30 pages, New York, NY, USA, 2020. Association for Computing
Machinery. doi:10.1145/3428216.

https://doi.org/10.1145/3446804.3446854
https://doi.org/10.1145/3446804.3446854
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1145/3178372.3179495
https://doi.org/10.1007/978-3-030-21485-2_14
http://www.bpmn.org
https://doi.org/10.1145/1242572.1242704
https://doi.org/10.4230/LIPIcs.ECOOP.2017.24
http://www.di.unito.it/~dezani/papers/sd19.pdf
http://www.di.unito.it/~dezani/papers/sd19.pdf
https://doi.org/10.1145/3485501
https://doi.org/10.1145/3428216

A Deterministic Memory Allocator
for Dynamic Symbolic Execution
Daniel Schemmel #

Imperial College London, UK

Julian Büning #

RWTH Aachen University, Germany

Frank Busse #

Imperial College London, UK

Martin Nowack #

Imperial College London, UK

Cristian Cadar #

Imperial College London, UK

Abstract
Dynamic symbolic execution (DSE) has established itself as an effective testing and analysis technique.
While the memory model in DSE has attracted significant attention, the memory allocator has been
largely ignored, despite its significant influence on DSE.

In this paper, we discuss the different ways in which the memory allocator can influence DSE and
the main design principles that a memory allocator for DSE needs to follow: support for external
calls, cross-run and cross-path determinism, spatially and temporally distanced allocations, and
stability. We then present KDAlloc, a deterministic allocator for DSE that is guided by these six
design principles.

We implement KDAlloc in KLEE, a popular DSE engine, and first show that it is competitive
with KLEE’s default allocator in terms of performance and memory overhead, and in fact significantly
improves performance in several cases. We then highlight its benefits for use-after-free error detection
and two distinct DSE-based techniques: MoKlee, a system for saving DSE runs to disk and later
(partially) restoring them, and SymLive, a system for finding infinite-loop bugs.

2012 ACM Subject Classification Software and its engineering → Software testing and debugging

Keywords and phrases memory allocation, dynamic symbolic execution

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.9

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.13

Funding This project has received funding from the European Research Council under the European
Union’s Horizon 2020 research and innovation program (grant agreement no. 819141 and 966733).

Acknowledgements We would like to thank Jordy Ruiz and the anonymous reviewers for their
valuable feedback on the paper.

1 Introduction

Dynamic symbolic execution (DSE) [11] is a software testing technique that relies on
systematically exploring the execution paths that a program might take, using a constraint
solver to reason about the feasibility of each path.

An important component of a DSE engine is its memory model, which has received
significant attention from the research community [5, 10, 16, 24, 32]. However, one component
of the memory model has been largely ignored: the memory allocator. But the memory

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Daniel Schemmel, Julian Büning, Frank Busse, Martin Nowack, and
Cristian Cadar;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 9; pp. 9:1–9:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.schemmel@imperial.ac.uk
https://orcid.org/0000-0001-8769-7813
mailto:julian.buening@comsys.rwth-aachen.de
https://orcid.org/0000-0003-3917-6858
mailto:f.busse@imperial.ac.uk
https://orcid.org/0000-0003-1661-0439
mailto:m.nowack@imperial.ac.uk
https://orcid.org/0000-0002-1177-0233
mailto:c.cadar@imperial.ac.uk
https://orcid.org/0000-0002-3599-7264
https://doi.org/10.4230/LIPIcs.ECOOP.2022.9
https://doi.org/10.4230/DARTS.8.2.13
https://doi.org/10.4230/DARTS.8.2.13
https://doi.org/10.4230/DARTS.8.2.13
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 A Deterministic Memory Allocator for Dynamic Symbolic Execution

allocator plays a key role in DSE, with a direct influence on its ability to find memory-safety
bugs and ensure deterministic execution, which is needed by several DSE-based techniques.
Furthermore, the memory allocator can impact the performance and memory consumption of
DSE, particularly in the EGT [9] style of DSE, where multiple program paths are concurrently
kept in memory.

The memory allocator influences DSE’s ability to find memory-safety violations because
such errors can sometimes be detected only under certain memory layouts. For instance, a
DSE engine like KLEE [8] may miss a buffer overflow if the pointer overflows into another
memory object or may miss a use-after-free error if another object is allocated at the same
location before a freed pointer is incorrectly dereferenced. In both cases, the final read or
write appears to target valid memory, causing the engine to overlook the error.

The memory allocator influences deterministic execution in two ways: across runs and
across paths. Most obviously, a non-deterministic allocator may impact determinism across
two otherwise identical DSE runs (cross-run determinism). Less obviously, the memory
allocator may also impact determinism across paths if the allocation decisions on one path
influence the allocation decisions on another path (cross-path determinism). Determinism
is important in DSE in many different scenarios. For instance, it makes it possible to
compare multiple DSE configurations, such as using different constraint solvers [22] or search
heuristics [6]. It also facilitates debugging when one needs to execute the same path repeatedly.
Determinism is also important for scenarios that rely on re-runs, such as saving a run to disk
and later restoring it [7], or re-executing events in the context of partial-order reduction for
multi-threaded code [27]. Finally, determinism is also key for scenarios that compare memory
contents across paths, such as finding infinite loops [26] and pruning redundant paths [4].

In this paper, we present KDAlloc, a memory allocator specifically targeting DSE.
KDAlloc is carefully designed to achieve cross-run and cross-path determinism, maximise the
probability of finding memory-safety bugs, keep a low memory and performance overhead, and
allow the interaction with the outside environment. (The latter is an important distinguishing
characteristic of DSE, and refers to its ability to interact with uninstrumented/unavailable
code, such as external libraries and the operating system.)

We implement KDAlloc in KLEE [8], a popular DSE system based on the EGT [9]
approach of keeping multiple paths concurrently in memory. We first show that KDAlloc
is generally competitive with KLEE’s default allocator in terms of performance and memory
overhead, and that using it sometimes leads to significant performance gains. We then
highlight its benefits for use-after-free error detection and in improving two distinct DSE-
based techniques: MoKlee [7], a system for saving DSE runs to disk and later (partially)
restoring them, and SymLive [26], a system for finding infinite-loop bugs.

In summary, the main contributions of this paper are:
1. An investigation of the main properties desirable from a memory allocator in a DSE

context.
2. The design of KDAlloc, a new memory allocator for DSE, and its implementation into

KLEE, a popular DSE system. KDAlloc is available as open source, together with an
associated artifact.

3. An evaluation of KDAlloc in terms of performance and memory overhead, and its
effectiveness on three scenarios: detection of use after free, MoKlee and SymLive.

The rest of the paper is structured as follows. §2 introduces some background information
concerning DSE and its interaction with the memory allocator. §3 defines desired properties
of an allocator for DSE engines. §4 presents the high-level design of KDAlloc, while §5

D. Schemmel, J. Büning, F. Busse, M. Nowack, and C. Cadar 9:3

discusses several implementation details. §6 presents our experimental evaluation, on a
diverse set of 18 benchmark suites with a total of 94 applications; and on two case studies:
MoKlee and SymLive. Finally, §7 discusses related work and §8 concludes.

2 Background

Dynamic symbolic execution (DSE) executes programs on symbolic inputs. On each explored
path, DSE maintains a symbolic store mapping variables to symbolic expressions and a path
condition (PC) which describes the inputs following that path. For example, the symbolic
store might map a program variable x to the symbolic expression λ + 1, while the symbolic
input λ is constrained by the PC such that λ ≥ 0 ∧ λ < 100.

Whenever execution reaches a branch point that depends on the symbolic input (e.g.,
if (x == 0) with x 7→ λ + 1), the path is forked into two new paths: one following the then
side, where the branch condition is added as a conjunct to the PC (PC′ = PC ∧ λ + 1 = 0),
and one following the else side, where the negation of the branch condition is added as a
conjunct to the PC (PC′′ = PC ∧ λ + 1 ̸= 0). If either of these new PCs is unsatisfiable,
execution does not continue along that path, as no concrete input exists which would cause
the program under test to take that path through the program. In the example, x can never
be zero. The symbolic store maps x to the symbolic expression λ + 1, which is constrained to
be in the interval [0, 100), meaning that λ + 1 has to be at least 1. Therefore, the then case
(with PC′ = λ ≥ 0 ∧ λ < 100 ∧ λ + 1 = 0) cannot be triggered.

In the EGT [9] variant of DSE, all paths under exploration are kept in memory as symbolic
states. Each symbolic state stores all the information necessary to continue execution on that
path. In particular, each symbolic state has its own address space: globals, stack and heap.

One distinguishing characteristic of DSE is its ability to interact with the outside envir-
onment, such as external libraries and the operating system. In order to be able to perform
such an external function call, a state needs to share its address space with the address space
of the external library. This imposes an important limitation on the way memory is managed
by the DSE engine, and thus on the memory allocator. For instance, KLEE manages this by
having all states allocate memory in the unique address space of the KLEE process. Note
that while two states with the same parent state may both have an object allocated at the
same address, the object contents are unique to each state and stored in separate, internal
memory buffers. However, before an external function call, the object contents are copied to
their assigned allocation address in the address space of the KLEE process, so that external
functions can work as expected. Similarly, after the external call completes, any changes
made by the external code are propagated back from the KLEE address space to the internal
memory buffers associated with the current state.

3 Design Principles

Traditional memory allocators [2, 13,17,18] are primarily concerned with performance and
memory consumption. To achieve this, allocators try to keep the overhead of the allocator’s
operations low and to reduce memory fragmentation. However, allocator performance
and memory consumption are not the primary considerations in a DSE context, as other
operations overshadow them. Instead, we identify six key principles that need to guide the
design of a memory allocator for DSE:

ECOOP 2022

9:4 A Deterministic Memory Allocator for Dynamic Symbolic Execution

3.1 Support for External Calls
As discussed in §2, the ability to interact with the external environment is one of the main
strengths of DSE. In order to be able to perform an external function call, a state needs to
share its address space with the address space of the external function. Therefore, a memory
allocator for DSE needs to manage not only the virtual address spaces associated with each
state, but also the global address space which is used by external code.

3.2 Cross-run Determinism
One important property of a DSE engine is to have multiple identical runs behave in the
same way. As discussed in the introduction, this makes it possible to compare multiple DSE
configurations, e.g. with different constraint solvers [22]; facilitates debugging; and enables
applications that rely on re-runs, such as saving a run to disk and later restoring it [7].

One reason for which different runs may behave differently is that program behaviour
can depend on the memory layout. One simple example is the memmove function further
described in §6.5, which changes behaviour depending on the relative locations of the source
and destination addresses.

To remove this source of non-determinism, a DSE engine needs to use a cross-run
deterministic memory allocator.

▶ Definition 1 (Cross-run Determinism). A DSE engine or memory allocator is cross-run
deterministic iff its behaviour is the same for each run that is initialised in the same way.

For instance, KLEE provides a simple deterministic memory allocator which internally
allocates (via mmap) a large memory region at a fixed address, and then serves allocations from
this region, never freeing objects. KLEE’s deterministic allocator is cross-run deterministic,
but it is often unusable in practice since it never frees memory.

Of course, a cross-run deterministic memory allocator does not suffice to have a cross-run
deterministic DSE engine, as the latter may have other types of non-determinism (e.g.,
through the interaction with the environment).

3.3 Cross-path Determinism
As discussed in §2, the EGT style of symbolic execution stores multiple symbolic states in
memory. If these symbolic states were to influence one another, the result of the analysis
could suddenly depend on the order in which symbolic states are analysed. This is undesirable,
as it makes it difficult to re-execute individual paths in isolation, which is needed in e.g. a
debugging context or for selectively re-executing program paths.

▶ Definition 2 (Cross-path Determinism). A DSE engine is cross-path deterministic iff the
behaviour of one symbolic state does not impact the behaviour of another.

For a DSE engine to be cross-path deterministic, the memory of each symbolic state must
be managed independently. Otherwise, any allocation would impact the shared memory
allocator state and might change the memory allocation pattern of another symbolic state.

For instance, KLEE provides two allocators: the default one which simply uses the
underlying system allocator, and the deterministic allocator described above. Since the
allocator state is shared across states, none of them is cross-path deterministic, although the
latter is cross-run deterministic.

D. Schemmel, J. Büning, F. Busse, M. Nowack, and C. Cadar 9:5

By contrast, the memory allocator in EXE [10] is cross-path deterministic, because
symbolic forking in EXE uses the UNIX system call fork, which duplicates the allocator’s
state.

3.4 Spatially Distanced Allocations
As noted above, traditional memory allocators aim to reduce memory fragmentation, in order
to decrease the working set of a program and improve cache locality. On the other hand, by
performing compact allocations, they also make it more probable that out-of-bounds accesses
point to other valid objects.

For DSE, the latter is a much more important consideration. First, and as argued before,
performance is a secondary aspect given the other large overheads of DSE. Second, addresses
generated by the allocator are only actually used for the duration of an external function
call, so the effect of the increased fragmentation becomes much less pronounced.

By contrast, finding buffer overflows is an important application of DSE. As most common
out-of-bounds errors result in accesses that are in close proximity to their target object (e.g.,
off-by-one array indices), accessing them should not result in a valid access to a different
object. Instead, allocations should be separated as far as possible to enable the detection of
such overflows.

Our benchmark results, which we believe to be typical for a 2 h run of KLEE, had up to
758 million allocations and up to 412 MiB live in the whole symbolic execution engine, with
up to 134 MiB live in any symbolic state. In a 64-bit address space (even when considering
the 48-bit physical address space that can actually be used), there is a lot of room to spatially
distance those allocations.

We note that the DSE engine can implement other mechanisms to find buffer overflows,
which do not depend on the memory layout. For instance, EXE [10] tracks referent objects
for all pointers. However, in the context of DSE, such mechanisms are unfortunately fragile,
because such tracking information is lost while executing external code.

3.5 Stability
A desired property of a memory allocator for DSE is to have allocations as stable as possible
with respect to slight changes in the allocation pattern. For example, if two paths allocate
the same objects except that one of them temporarily allocates an extra object, a stable
allocator would give the same memory addresses to the common objects on the two paths.

Stability ensures that similar paths have similar memory layouts, improving the effect-
iveness of approaches that compare memory across states [26, 27]; and that similar paths
generate similar queries, improving cache hit rates [8].

Unfortunately, stability is in direct conflict with the objective of having temporally
distanced allocations, which we discuss next.

3.6 Temporally Distanced Allocations
While spatially distancing allocations is important for buffer-overflow detection, temporally
distancing them is important for finding use-after-free errors.

At one extreme, KLEE’s deterministic allocator never frees memory, and thus never
reuses it, reliably detecting all use-after-free errors. At the other end, an allocator that
eagerly reuses memory would miss most use-after-free errors when the DSE engine has no
additional mechanisms for tracking referent objects.

ECOOP 2022

9:6 A Deterministic Memory Allocator for Dynamic Symbolic Execution

1 int *i = malloc (sizeof (int));
2 if (sym)
3 *i = 7;
4 else
5 *i = 42;
6 int *k = calloc (1, sizeof (int));
7 printf ("ext. call: %d/%d", *i, *k);

Global allocator disallows k1 = k2
KDAlloc allows k1 = k2

DSE internal data

7

42

i i

k k1

k2 k

State 1 DSE

Virtual Address Spaces

State 2

Figure 1 Code example with two paths illustrating how the state virtual address spaces are
managed with a global memory allocator vs. KDAlloc.

As mentioned above, temporally distancing allocations is in direct conflict with the
stability goal, as delaying memory reuse makes similar paths have different memory layouts.
For example, if an object is allocated and freed again without any other memory allocation
in between, it may be reused instantly iff allocations are not temporally distanced.

4 Design

Our allocator is guided by all six design principles discussed in §3. In this section, we first
introduce the high-level design behind our allocator and discuss how it aligns with these
design principles.

4.1 State Virtual Address Spaces
DSE engines like KLEE handle the allocated memory of all states via a global allocator. By
contrast, KDAlloc is designed to manage the allocated memory for each state individually.
This means the same virtual addresses can be used by different states, even for objects that
are newly allocated by each state. This independence is a key element to achieve cross-path
determinism and increase stability.

Figure 1 shows the difference between the way memory addresses are handled by a global
allocator vs. KDAlloc. The program has two paths, encoded as two states by the DSE
engine. State 1, shown on the left, runs the path that takes the then side of the branch,
while State 2, shown on the right, runs the path that takes the else side.

Initially, there is a single state, State 1, which runs the malloc at Line 1. The DSE
engine invokes the allocator and returns address i. When the symbolic condition at Line 2 is
reached, another state, State 2, is forked. Immediately after the fork, both states share the
same address space. When State 1 executes Line 3, it writes value 7 at the object allocated
at address i. In a regular program execution, the address space (set of assigned addresses)
and associated memory (the place where data is stored) are tightly connected, but these are
handled separately in DSE. Therefore instead of placing value 7 at address i, State 1 places
it into a separate memory location associated with State 1, as part of the DSE internal data.
When State 2 executes Line 5, the write is handled in a similar way, by placing value 42 into
a separate memory location associated with State 2.

D. Schemmel, J. Büning, F. Busse, M. Nowack, and C. Cadar 9:7

Constants 1 4 8 16 32 64 256 2048 LOB

10 GiB virtual address space

Globals 1 4 8 16 32 64 256 2048 LOB

10 GiB virtual address space

Stack 1 4 8 16 32 64 256 2048 LOB

128 GiB virtual address space

Heap 1 4 8 16 32 64 256 2048 LOB

1024 GiB virtual address space

Figure 2 We decouple constants, globals, stack and heap by using different allocator instances.
Each of these instances allocate virtual address space in the form of a large mmaped area in main
memory that is not backed by physical memory. (Virtual) sizes and base addresses for these are
configurable with defaults suitable for common use. Each allocator instance is divided into 9 bins.
The first 8 bins manage objects up to a maximum size (1–2048 bytes), while the last one, the large
object bin (LOB), manages objects larger than 2048 bytes.

After these assignments, both states go on to execute the calloc at Line 6. It is here
where the allocator makes a key difference. When a global allocator is being employed,
as in KLEE, the two states will always receive distinct addresses, k1 ̸= k2. By contrast,
KDAlloc can return the identical addresses k1 = k2, as it manages addresses individually
for each state. Furthermore, KDAlloc aims to return the same addresses when available,
in order to increase stability.

When an external function call is invoked, as at Line 7, the assigned addresses need to be
populated with the current set of values, so that external calls can find them in the expected
place. In our example, the contents from the internal representation (in yellow) are copied
to the concrete space at addresses i (for both states), k1 (for State 1) and k2 (for State 2).

In KDAlloc, the process is the same. The difference is that the concrete memory is
backed by mmap and shared across the states, allowing the same addresses to be used between
multiple states without them being related.

4.2 Memory Regions
For each state, KDAlloc maintains four memory regions: one for constants, one for globals,
one for the stack and one for the heap. The reason for this separation is to increase stability:
For instance, a change in the dynamic allocations should not impact stack allocations and
vice versa.

4.3 Object Bins
We further divide these memory regions into bins for objects of a certain size: The first bin
is for objects that have a single byte, the second for objects that are larger than 1 byte but
not more than 4 bytes, the third one for objects that are larger than 4 bytes but not more
than 8 bytes and so on up to objects of no more than 2048 bytes. A separate memory bin
called the Large Object Bin (LOB) manages objects larger than 2048 bytes. The reason for
having per-size bins is again to increase stability: In this way, a change in the allocation of
objects within a certain size range does not impact the allocations for objects of other size
ranges. In contrast, the reason for having a LOB is that for most programs only a minority
of allocations are of large size.

ECOOP 2022

9:8 A Deterministic Memory Allocator for Dynamic Symbolic Execution

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1st 1·n
2

2nd −3rd 1·n
4

3·n
4

4th −7th 1·n
8

3·n
8

5·n
8

7·n
8

slots
al

lo
ca

tio
ns 1st

2nd 3rd

4th 6th 7th 5th

Figure 3 The slot allocator scatters object allocations throughout its bin to maximise inter-object
distances. The figure shows a bin with n = 16 slots, and 7 allocations.

The bins managed by KDAlloc for each state are illustrated graphically in Figure 2.
They are grouped into allocator instances (one each for constants, globals, stack, and heap).
We determine the size of per-size bins by dividing the virtual address space assigned to its
allocator instance by the total number of bins in the instance (i.e., 9) and rounding down to
the next power of two. The LOB takes up the remaining virtual address space. The heap
allocator instance, for example, defaults to a region that is subdivided into 8 per-size bins of
64 GiB each, while the LOB spans 512 GiB.

Each bin has its own allocator: the ones handling smaller objects use a slot allocator
(§4.4), while the LOB uses a large object allocator (§4.5).

4.4 Slot Allocator
Each bin except for the LOB uses a slot allocator. A slot allocator divides the bin into n

slots of equal size. For instance, a bin for objects of up to size 8 bytes is divided into n equal
slots of 8 bytes each.

Typical slot allocators would allocate slots consecutively, to reduce fragmentation. As
discussed in §3.4, a more important consideration in DSE is having spatially distanced
allocations to prevent that out-of-bounds accesses point to valid objects. A common approach
is to add fixed-size redzones [19,28] around allocations. Redzones are deliberately unallocated
regions that trigger an error on any access. How far beyond the object bounds an access will
always be detected as out-of-bounds depends on the redzone size.

As we are not held back by traditional fragmentation concerns, our algorithm aims to
maximise the distance between allocations and thus the redzone sizes. The basic idea is
to map the slots to a binary tree that is traversed level by level to identify the next free
slot. Inside each level, nodes are traversed from the outside to the inside, to prevent the
generation of long, monotonically increasing sequences of addresses. The root of this tree is
in the middle slot. Every node divides the space of the parent node into two equally-sized
spaces with the node itself marking the split.

Figure 3 illustrates this graphically. It depicts a bin with 16 slots, showing how slots are
assigned over time. The first allocation is done in the middle slot, slot 8 (row 1 in the figure).
Then, the second allocation is done in the middle of the left-side empty region, on slot 4,
while the third allocation in the middle of the right-side empty region, on slot 12 (row 2).
Finally, allocations 4 to 7 are done in the middle of the remaining regions, at slots 2, 14, 6
and 10 (row 3). With each level, the distance between objects becomes smaller.

D. Schemmel, J. Büning, F. Busse, M. Nowack, and C. Cadar 9:9

On each allocation, this virtual binary tree is checked for slot availability in increasing
level order, and the first available slot is always returned. Even if slots are allocated up to a
level k, slots on lower levels may become available when objects are freed.

4.5 Large Object Allocator
For large allocations, a slot allocator is not ideal, as finding an appropriate slot size is difficult.
If the size chosen is too small, large allocations will not fit, while if the size chosen is very
large, most of the slot will usually be left unused.

To address this, our large object allocator takes another approach to manage the LOB.
For every allocation, the largest free space is split equally, with the allocation placed at
the split point. Similarly to the slot allocator, this algorithm keeps the distance between
neighbouring objects as large as possible whenever an allocation occurs. On a deallocation,
the freed space is merged with the regions to its left and right and returned to the allocator.

4.6 Quarantine
KDAlloc uses a quarantine [19, 28] to maximise the chance of finding use-after-free errors.
That is, when an object is freed, instead of making the freed space available right away,
a pointer to the object is instead placed in a quarantine region of a fixed size. When the
quarantine becomes full, space is returned on a FIFO basis. This differs from other quarantine
implementations in that the condition for releasing an object from the quarantine is not the
total size of the quarantined objects, but rather just their number. We chose this method as
the quarantine only governs the reuse of addresses and, unlike in quarantine implementations
for general purpose allocators, quarantined objects do not take up any space beyond the
metadata itself.

Each of the slot and large object allocators uses its own quarantine, to prevent deallocations
in different bins from interacting with each other.

Choosing the quarantine sizes involves several trade-offs. Most obviously, larger quar-
antines take more space. On the other hand, larger quarantines can lead to the detection
of more use-after-free errors (see §6.4), particularly those with a larger temporal distance
between the deallocation and the invalid use. Quarantines also impact stability. For instance,
consider again the example from §3.5, where two states allocate the same objects except that
one of them allocates an extra object which is immediately freed. Without a quarantine,
after the temporary allocation, the two paths will continue to have identical address spaces.
However, with a quarantine the address spaces will start to differ, as the freed address cannot
be reused immediately.

5 Implementation

We implemented KDAlloc as an alternative allocator in KLEE [8], a popular open-source
DSE engine for LLVM bitcode.1 Our implementation is written in C++ and has around 2K
lines of code (excluding empty lines).

KDAlloc builds on the deterministic allocator from prior work on combining DSE with
a partial-order reduction to symbolically analyse multi-threaded programs [27]. While that
paper has only a superficial description of the deterministic allocator it uses ([27], §3.4), the
allocator is made available as open source.2

1 We use KLEE version 2.2.
2 https://github.com/por-se/por-se/blob/5786633/include/pseudoalloc/pseudoalloc.h

ECOOP 2022

https://github.com/por-se/por-se/blob/5786633/include/pseudoalloc/pseudoalloc.h

9:10 A Deterministic Memory Allocator for Dynamic Symbolic Execution

KDAlloc reuses the basic structure of bitmap-based sized bins combined with a region-
based large object bin, but significantly improves upon that allocator in many ways: Fork
performance and memory usage are significantly improved by the addition of copy-on-write
semantics, especially for the large object bin, which has been redesigned to use a singular
treap with node-level copy-on-write (§5.5) instead of combining multiple std::maps. For
the slot allocator, the scatter function has been improved to not generate long runs of
monotonically increasing addresses (§4.4) due to visiting the implicit binary tree in level-
order. We also completely redesigned how memory pages are returned to the OS after being
used in external function calls (§5.3), as exploratory experiments showed the simple idea of
always returning all pages to the OS immediately after an external function call leads to
significant performance penalties in some cases.

5.1 Allocator Instances
The global and the constant memory regions are each associated with exactly one allocator
that does not fork during the lifetime of KLEE, as the memory allocation of constants and
globals does not change during the runtime of the program. We distinguish between globals
and constants, because globals need to be written out on a per-state basis when an external
function call occurs, while constants can be written only once. Note that, just like KLEE,
we assume external calls are well-behaved, e.g., we do not implement any techniques to
ensure that external function calls do not access memory outside their valid allocations. The
heap and stack memory regions are used to initialise the heap and stack allocators when the
initial state is created from scratch. After this has been done once, the allocators are forked
when the state is forked. The allocator state can be forked efficiently by using a bin-level
copy-on-write (CoW) mechanism. Initially, all bins are unallocated. Once an allocation
happens, the respective bin is created and owned by the allocator. When a symbolic state
is forked, so are the allocator states, which leads to both allocators having a shared CoW
reference to each allocated bin. When an object is (de-)allocated in such a shared bin, the
bin is copied and after that owned. If only one other allocator references the CoW bin, it
regains exclusive access.

KDAlloc uses size information for deallocations, which KLEE provides as part of each
memory object. It is not fundamentally necessary to use sized deallocations; if another
symbolic execution engine does not store the size of the allocation in a similar manner, the
address itself could be used to look up the appropriate bin, at which point a slot allocator
knows the size of the allocation by default (1 slot) and the large object allocator can deduce
the size by finding the empty spaces before and after the allocated object.

5.2 Virtual Memory Regions
The virtual memory regions used to back external function calls are created at user-provided
base addresses. They are mapped as read and write, but non-executable, anonymous, private
and without physical backing pages. Similarly, mainline KLEE’s deterministic allocator
allocates memory in much the same way, except not enforcing the non-backing of pages.3

The fork call is slow, especially when large amounts of memory are involved [1, 21].
To ensure that the impact of the allocator change on KLEE’s usage of fork (to decouple
solvers from the main process) is as small as possible, the memory region is marked as
MADV_DONTFORK. This means that the region will not be available in child processes.

3 https://github.com/klee/klee/blob/7d85ee8/lib/Core/MemoryManager.cpp#L70-L71

https://github.com/klee/klee/blob/7d85ee8/lib/Core/MemoryManager.cpp#L70-L71

D. Schemmel, J. Büning, F. Busse, M. Nowack, and C. Cadar 9:11

5.3 External Function Calls

Mainline KLEE creates an initial buffer when a new memory object is created by the program
under test, which is used to acquire a memory address that can be used for future external
function calls (i.e., calls to uninterpreted functions). When KDAlloc performs an external
function call, it copies the data out to the virtual memory region instead. Since the allocator
performs allocations with maximal distance, it will usually not share memory pages between
allocations. This means, that a one byte allocation will probably require a full page (usually
4096 B) for the duration of the external function call. After the external function call has
been performed, any changes are copied back into the symbolic state, and the physical pages
are not needed anymore.

To reduce memory consumption, we inform the OS that it may reclaim the physical pages
at its leisure by using madvise with MADV_DONTNEED. In Linux, this operation is, however,
relatively costly as its runtime depends on the size of the mapping, not just the number of
active pages. As many external function calls only require a comparatively small number of
pages, we run madvise only once the number of active pages exceeds twice the average number
of pages needed for a single external function call (with a minimum of 1024 pages/4 MiB).
To compute the average of pages needed for one external call, we use an exponential moving
average: avgi+1 = 3·avgi

4 + calli

4 . We approximate the number of pages needed for a single
external function call based on the number of involved objects, by assuming that no two
objects share a memory page, which is often the case as we maximise inter-object spacing. The
total number of pages can be easily determined by using getrusage. We exclude allocations
in the global constants mapping from this mechanism, as they do not change in between
external function calls.

5.4 The Slot Allocator

The slot allocator is used for allocations smaller or equal to 2048 B (§4.4). It uses two
different methods of naming a slot, the position and the index. The position is the actual
address of the allocation relative to the base address of the associated virtual memory region.
The index reflects the node position while traversing the binary tree (§4.4) and is used as an
index into a bitmap that stores whether the slot is currently allocated or not.

Spreading out allocated objects maximises the distances between allocations. When a
maximum of n allocations were live at the same time (including those in quarantine), the
distance between any two allocations and between the beginning or end of the bin and any
allocation is at least size/2⌈log2(n+1)⌉ − slotsize. The slot allocator asserts that the distance
will always be greater than zero, which ensures that no two directly adjacent slots will be
used, which in turn ensures that a slot-allocator administrating slots of size s will always
leave at least s bytes in between any two allocations and to the allocator using the region
before it (slot allocators are assigned ascending regions, so it will also have at least s bytes
unused after the last allocated slot).

While it may seem like this method wastes a lot of memory to increase robustness, this
is only the case when viewed from the program under test and for the duration of external
function calls, when objects of a single state are copied into the virtual memory regions. By
transforming between position and index, the bitmap is kept compact while the managed
objects are spread out.

ECOOP 2022

9:12 A Deterministic Memory Allocator for Dynamic Symbolic Execution

5.5 The Large Object Allocator

As explained in §4.5, the large object allocator manages a number of free regions and performs
allocations in the middle of the largest such free region, splitting it into two. It manages
memory in blocks of 4096 B and ensures that at least one such 4096-B block remains unused
in between any two allocated objects.

Since objects can be of very different sizes, the large object allocator does not utilise a
simple bitmap, but rather uses a treap, i.e., a data structure that is both a search tree and a
max heap, to store free regions. The addresses of the free regions are used as keys in the
search tree and their sizes are used as priorities to organise the max heap. This enables fast
lookups of regions by their address as well as quick identification of the largest one. However,
as there may be multiple equally-sized regions, and therefore multiple regions that contend
for being the largest one, we also use a perfect hash of the addresses as secondary priorities.
Thus, every priority is unique, and the treap assumes a unique shape.

To allocate new memory, the root of the treap (which is also the top of the heap) is
removed. The object is situated in the middle of that free region, and the newly generated
redzones are reinserted into the treap. If the object is larger than the largest free region, or
not large enough to retain redzones of at least 4 KiB before and after, the allocation fails.

To free an allocation, the address of the allocation is used to find the free regions
immediately before and after the object to be freed. These regions are removed from the
treap and combined back into one region, covering both redzones and the object, before
being reinserted.

To save memory, each node of the treap is shared using reference-counted copy-on-write.
Since each node contains references to its children, this means that sub-treaps can be shared
between multiple allocator states.

5.6 Quarantine

The quarantine is a per-bin FIFO queue implemented as a ring buffer that only allocates
when it is needed (i.e., only when the quarantine is neither zero nor infinite) and in use. Each
bin uses its own quarantine queue to prevent deallocations in different bins from flushing
previous deallocations in otherwise unrelated bins. This trade-off comes at a slight increase in
memory overhead, as each bin needs a k-element quarantine buffer to give a global guarantee
that at least the last k deallocations are being delayed by the quarantine.

In §4.6, we discussed the various trade-offs involved in choosing the quarantine sizes.
Based on initial experiments, we have decided on a default value of 8 slots per quarantine,
but kept the size configurable.

6 Evaluation

In this section, we evaluate the overheads and benefits of KDAlloc. After presenting the
experimental setup (§6.1), we measure the memory overhead and performance impact of
KDAlloc by comparing it to the default allocator of mainline KLEE (§6.2) and explore the
root cause of the solver time improvements that were observed in some of the benchmarks
(§6.3). We then evaluate the benefits KDAlloc provides in the context of use-after-free
error detection (§6.4) and two KLEE-based projects: MoKlee (§6.5) and SymLive (§6.6).

D. Schemmel, J. Büning, F. Busse, M. Nowack, and C. Cadar 9:13

Table 1 KLEE benchmarks.

Suite Version Apps
GNU awk 5.1.0 awk
GNU bc 1.07.1 bc
GNU Binutils 2.35.1 9 tools4

GNU Coreutils 8.32 68 tools
GNU datamash 1.7 datamash
GNU Diffutils 3.7 diff

GNU Findutils 4.7.0 find
Libtasn1 4.16.0 asn1Decoding
libTIFF 4.1.0 tiffdump, driver5

libxml2 2.9.10 driver6

GNU M4 1.4.18 m4
GNU Make 4.3 make

ImageMagick 7.0.10-45 magick
oSIP 5.2.0 driver5

GNU sed 4.8 sed
SQLite 3340000 sqlite3
tcpdump 4.9.3 tcpdump
Vorbis Tools 1.4.0 oggenc

Table 2 SymLive benchmarks.

Suite Version Apps
BusyBox 1.27.2 hush, sed, yes
GNU Coreutils 8.25 ptx, tail, yes
GNU regex 0.12 driver
GNU sed 4.4 sed
Toybox 0.7.5 sed, yes

Table 3 MoKlee benchmarks.

Suite Version Apps
GNU Binutils 2.33 readelf
GNU Coreutils 8.31 87 tools
GNU Diffutils 3.7 diff
GNU Findutils 4.7.0 find
GNU Grep 3.3 grep
libspng #2079ef6 driver
tcpdump 4.9.3 tcpdump

6.1 Experimental Setup
To minimise the non-deterministic impact of the environment, we ran all experiments on a
cluster of homogeneous machines (Intel Core i7-4790 @ 3.6 GHz with 16 GiB RAM) with an
equivalent OS/library setup (Ubuntu 18.04). Each experiment is executed inside a Docker
container that allows reproducing a similar execution setup on each machine. For mainline
KLEE and SymLive we use LLVM 11.0 and Z3 4.8.8, whereas MoKlee is linked against
LLVM 3.8 and uses Z3 4.8.4.

All of our experiments are available at https://doi.org/10.5281/zenodo.6540857.

6.2 Memory Consumption and Performance
We implemented KDAlloc as an additional allocator in mainline KLEE 2.2 and tested it
against a diverse set of 18 benchmark suites ranging from basic system utilities to databases
or image processing tools. From each suite, we chose the most representative applications
and test drivers made available in recent KLEE-related publications. In total, we tested 94
applications (Table 1). However, we only used a subset of the GNU Coreutils applications:
We excluded all applications that interfere with our test setup (e.g. chmod, truncate), crash
KLEE due to a known bug in the Z3 front-end (e.g. ptx), are very similar or aliases to other
tools (e.g. dir), or are not compatible with our deterministic thresholds described below (e.g.
fmt).

Comparing two alternative implementations is a non-trivial endeavour, especially with
EGT-style symbolic execution engines. Every change in exploration, memory allocation,
environment, state termination due to memory pressure etc. can cause completely different
executions and invalidate the comparison. Hence, it is of utmost importance to eliminate

4 Binutils: addr2line, ar, elfedit, nm, objdump, ranlib, readelf, size, strip
5 Driver from: https://figshare.com/articles/code/ESEC_FSE_2020_PSPA_artifact/12410231
6 Driver from: https://github.com/davidtr1037/klee-mm-benchmarks

ECOOP 2022

https://doi.org/10.5281/zenodo.6540857
https://figshare.com/articles/code/ESEC_FSE_2020_PSPA_artifact/12410231
https://github.com/davidtr1037/klee-mm-benchmarks

9:14 A Deterministic Memory Allocator for Dynamic Symbolic Execution

ar

expand

000000000000000000000000000444444444444444444444444444 23

0

3000

6000

9000

0 3000 6000 9000
KDAlloc - MaxRSS (MB)

D
ef

au
lt

A
llo

c
-M

ax
R

SS
(M

B
)

(a) DFS – 4 points above the diagonal, 23 points
below the diagonal and none on the diagonal.

ar

asn1Decoding

nm-new

objdumpranlib

strip-new

0000000000000000000000055555555555555555555555 18

0

3000

6000

9000

0 3000 6000 9000
KDAlloc - MaxRSS (MB)

D
ef

au
lt

A
llo

c
-M

ax
R

SS
(M

B
)

(b) RndCov – 5 points above the diagonal, 18
points below the diagonal and none on the diagonal.

Figure 4 MaxRSS for KDAlloc vs the default allocator using different searchers for runs that
are deterministic. Points with relative difference of at least 10% are labelled. Points above the
diagonal are blue and points below the diagonal are red. The number of points above, below and on
the diagonals are noted in each graph.

most sources of non-determinism. We tried to mitigate the issue by slightly modifying KLEE:
First, we replaced all timer-based thresholds by instruction-based thresholds. Second, we
similarly replaced memory-based thresholds by thresholds based on the number of states.
Third, we added more statistics, such as the number of allocations or external function calls,
to evaluate and compare executions.

Initially, we ran each application for 2 h with the default 2 GB memory limit, unmodified
thresholds, and the default allocator. From these runs we derived suitable values for the
more deterministic thresholds for each application. Instead of running experiments for 2 h
with a 2 GB memory limit and logging intervals of e.g. 30 s, we can now use much more
precise descriptions and run an application for n instructions, re-compute coverage every x

instructions, update logs every y instructions and terminate states when we reach a maximum
of z states.

For a few applications such as fmt, we were not able to find a working threshold for the
maximum number of active states, as KLEE’s performance for these applications degrades
from 100k active states to 1-10 states over time. A low threshold leads to an immediate
termination of KLEE whereas a high threshold causes memory exhaustion before the targeted
run time.

After acquiring the thresholds for KLEE’s default exploration strategy (RndCov), a
combination of random-path traversal and a distance-based approach to target uncovered
code [8], we repeated the process for the simpler depth-first search strategy (DFS).

With these more deterministic configurations, we ran each experiment with both explora-
tion strategies (DFS/RndCov) and both allocators five times. We consider an application
deterministic (or comparable) under a search strategy when all ten runs, five for each allocator,
show the same values for core statistics, in particular the same number of instructions, covered
instructions, allocations, queries, and external calls.

D. Schemmel, J. Büning, F. Busse, M. Nowack, and C. Cadar 9:15

ar

expand

tail

22222222222222222222222222210 15

0

2000

4000

6000

8000

0 2000 4000 6000 8000
KDAlloc - Time (s)

D
ef

au
lt

A
llo

c
-T

im
e

(s
)

(a) DFS – 10 points above the diagonal, 15 points
below the diagonal and 2 on the diagonal.

ar

nm-new
objdump

ranlib strip-new

0000000000000000000000018 55555555555555555555555

0

2000

4000

6000

8000

0 2000 4000 6000 8000
KDAlloc - Time (s)

D
ef

au
lt

A
llo

c
-T

im
e

(s
)

(b) RndCov – 18 points above the diagonal, 5
points below the diagonal and none on the diagonal.

Figure 5 Execution time for KDAlloc vs the default allocator using different searchers for runs
that are deterministic. Points with relative difference of at least 10% are labelled. Points above the
diagonal are blue and points below the diagonal are red. The number of points above, below and on
the diagonals are noted in each graph.

To understand the memory consumption of KDAlloc, we recorded the maximum resident
set size (MaxRSS) for all runs, as reported by the Linux kernel. As seen in Figure 4a
for DFS and Figure 4b for RndCov, the two allocators generally use the same amount
of memory. There are several outliers where the differences are slightly larger (but still
small): For most of them KDAlloc consumes less memory, but there is also one case
(asn1Decoding for RndCov) where KDAlloc consumes more. The reason KDAlloc can
consume more memory is through its more expensive metadata when many small allocations
are involved. On the other hand, it can consume less memory since it only uses the buffers
corresponding to the addresses it returns when an external call is performed (in contrast, the
default allocator uses malloc to reserve that space).

To better understand the nature of our benchmarks, we measured several statistics
across all benchmarks and both search heuristics. KDAlloc had to handle up to 758M
allocations (median 11M), allocate up to 5157 MiB (median 97 MiB), and manage up to
5.5M live allocations (median 9154) and 412 MiB (median 625 KiB) of live memory in a
single experiment run. A single state during symbolic execution could perform up to 758M
allocations (yes with DFS) (median 2706), allocate up to 4896 MiB (median 57 KiB), and
keep 7899 allocations (median 640) or 134 MiB (median 16 KiB) live.

In Figure 5a (DFS) and Figure 5b (RndCov) we compare the execution time when
KDAlloc is used (x-axis) with the execution time when the default allocator is used (y-axis).
For most of the tested applications, the execution time is similar. This shows that KDAlloc
does not impose any significant performance overhead. In contrast, all outliers (with a
relative difference of at least 10%) are above the diagonal indicating that KDAlloc can
lead to significant speedups for certain benchmarks.

To explain the potential cause of those positive outliers, we analysed the solving time,
shown in Figure 6a for DFS and Figure 6b for RndCov. The graphs confirm that the main
reason for the speedup achieved by KDAlloc for those benchmarks is the time spent solving
constraints.

ECOOP 2022

9:16 A Deterministic Memory Allocator for Dynamic Symbolic Execution

ar

expand

tail

users

11111111111111111111111111119 777777777777777777777777777

0

2000

4000

6000

8000

0 2000 4000 6000 8000
KDAlloc - Solver Time (s)

D
ef

au
lt

A
llo

c
-S

ol
ve

r
T

im
e

(s
)

(a) DFS – 19 points above the diagonal, 7 points
below the diagonal and 1 on the diagonal.

ar

nm-new

objdump

ranlib strip-new

users

2222222222222222222222217 44444444444444444444444

0

2000

4000

6000

8000

0 2000 4000 6000 8000
KDAlloc - Solver Time (s)

D
ef

au
lt

A
llo

c
-S

ol
ve

r
T

im
e

(s
)

(b) RndCov – 17 points above the diagonal, 4
points below the diagonal and 2 on the diagonal.

Figure 6 Solver time using different searchers for runs that are deterministic with and without
KDAlloc. Points with relative difference of at least 10% are labelled. Points above the diagonal
are blue, points below the diagonal red and points exactly on the diagonal are black. The number of
points above, below and on the diagonals are noted in each graph.

6.3 Solver Time Improvements

At the beginning, we suspected a higher cache-hit rate as the main reason for KDAlloc
speeding up constraint solving. Due to higher stability (§3.5), KDAlloc leads to more
hits in KLEE’s caches (the query cache and the counterexample cache [8, 22]). If query
expressions share common addresses, we may have more identical queries and solutions are
also more likely to be reused, which can have a great impact on caching efficacy [20, 31].
Indeed, the outlier benchmarks show an increased number of hits. However, the relative
difference is small, at just over 0.01% of all queries, and did not explain the overall speedup.

Therefore, we hypothesised that the different addresses returned by KDAlloc may make
a large number of queries easier to solve. To investigate this, we tracked all the solver calls
for KDAlloc and the default allocator and compared their execution time for the expand
benchmark (DFS).

In both configurations, KLEE issued a total of 1,274,757 queries. Of these, 758,079
queries were different, depending on the allocator. We could match all but 2604 of those
queries by mapping the constants that relate to the non-deterministic addresses returned
by the default allocator to the corresponding constants that relate to the deterministic
addresses returned by KDAlloc. The remaining differences were minor and due to sources
of non-determinism that were neither addressed by our work nor had an impact on the
deterministic execution of expand.

While for each individual query the absolute time difference is only a few milliseconds,
many of the queries with deterministic addresses can be solved roughly twice as fast as their
non-deterministic counterpart. With such a large number of queries, these differences add
up and explain the overall solver speedup.

We manually inspected the 100 queries that show the most significant absolute time
improvement. These queries involve bounds checks and constraints on single bytes of a
symbolic file (originating from expand’s main loop) and show high similarity. For these

D. Schemmel, J. Büning, F. Busse, M. Nowack, and C. Cadar 9:17

(Extract w32 0
(Add w64 0xFFFFDDBC00000000 (Select w64 C 0x0000000000000000 0x0000224400000000)))

↓ Extract(Add): (Extract (Add x y)) → (Add (Extract x) (Extract y))
(Add w32 (Extract w32 0 0xFFFFDDBC00000000)

(Extract w32 0 (Select w64 C 0x0000000000000000 0x0000224400000000)))
(Extract w32 0 0xFFFFDDBC00000000) → 0x00000000 and ↓ Extract(Select)

(Add w32 0x00000000
(Select w32 C (Extract w32 0 0x0000000000000000) (Extract w32 0 0x0000224400000000)))

(Extract w32 0 0x0000000000000000) → 0x00000000
(Extract w32 0 0x0000224400000000) → 0x00000000

(Add w32 0x00000000 (Select w32 C 0x00000000 0x00000000))
(Select w32 C 0x00000000 0x00000000) → 0x00000000

(Add w32 0x00000000 0x00000000) = 0x00000000

(a) KDAlloc’s address structure can enable offset reasoning independent of base addresses.

(Extract w32 0
(Add w64 0xFFFFAAAAA7290C00 (Select w64 C 0x0000000000000000 0x0000555558D6F400)))

↓ Extract(Add): (Extract (Add x y)) → (Add (Extract x) (Extract y))
(Add w32 (Extract w32 0 0xFFFFAAAAA7290C00)

(Extract w32 0 (Select w64 C 0x0000000000000000 0x0000555558D6F400)))
(Extract w32 0 0xFFFFAAAAA7290C00) → 0xA7290C00 and ↓ Extract(Select)

(Add w32 0xA7290C00
(Select w32 C (Extract w32 0 0x0000000000000000) (Extract w32 0 0x0000555558D6F400)))

(Extract w32 0 0x0000000000000000) → 0x00000000
(Extract w32 0 0x0000555558D6F400) → 0x58D6F400

(Add w32 0xA7290C00 (Select w32 C 0x00000000 0x58D6F400))

(b) The same simplification is not possible with address-dependent constants from the default allocator.

Figure 7 Example of query simplification enabled by KDAlloc. Steps performed by Z3’s pre-
processing stage are shown in red. The highlighted simplification is only observed with KDAlloc.

queries, we found that the time differences can be explained by the initial pre-processing stage
of Z3 [12], which was able to greatly simplify the queries generated when using KDAlloc
before invoking the core solver.

The top of Figure 7a shows a fragment of one of the queries that depends on the allocator
used and where the address-dependent constants, 0xFFFFDDBC00000000 and 0x224400000000,
were obtained using KDAlloc. The top of Figure 7b shows the same fragment, but with the
address-dependent constants stemming from the default allocator: 0xFFFFAAAAA7290C00 and
0x555558D6F400. The queries are given in the KQuery format,7 where (Select [width]
[condition] [true-expr] [false-expr]) is an if-then-else operation that evaluates to
either true-expr or false-expr (both of the same given width) depending on whether
condition evaluates to true or false. The (Extract [width] [index] [expr]) operation
evaluates to the width least-significant bits taken from expr, omitting the first index bits.
In both fragments, we omit a complex expression denoted by C.

In these fragments, only the lower 32 bits of the result are significant (Extract w32 0).
Using simple rewriting rules, the Extract operation is pushed down to the constants. In the
KDAlloc case, this simplifies the expression enough to remove the Select, leaving a single
constant. In the case of the default allocator, since the two operands that are to be chosen
based on C are not the same, the Select cannot be removed.

7 https://klee.github.io/docs/kquery/

ECOOP 2022

https://klee.github.io/docs/kquery/

9:18 A Deterministic Memory Allocator for Dynamic Symbolic Execution

Listing 1 Whereas KLEE with KDAlloc and a quarantine can detect the use after free at
Line 9 reliably, KLEE with the default allocator can only detect it when the freed space is not
reused in the meantime, e.g. by the second strdup or internal KLEE data structures.

1 char * mallocfree () {
2 char *s = strdup ("A");
3 free(s);
4 char *t = strdup ("B");
5 return s;
6 }

7 int main(void) {
8 char *s = mallocfree ();
9 puts(s);

10 return 0;
11 }

Why do addresses issued by KDAlloc follow those specific patterns? First, the virtual
address spaces are configured to start at addresses with all of the lower 32 bits set to zero.
Next, the way we size our bins (see §4.3), along with the algorithm we use to assign slots
(see §4.4), results in base addresses that are a sum of high powers of two for every object.
As a result, all enquiries about the lower 32 bits of pointers can trivially be rewritten into
reasoning about offsets, without involving the base address.

We also confirmed that STP [15] (another major solver used by KLEE) is able to perform
a similar simplification during its initial pre-processing stage and shows similar improvements
in solving time. We can thus conclude that the addresses returned by KDAlloc can have a
positive effect on query solving time apart from caching.

6.4 Detection of Use-after-free Errors
KLEE can find many memory access violations. Its detection, however, is primarily focused
on out-of-bounds accesses. To detect these, KLEE checks for every memory access whether
the address does not point to a valid object, or in the case of a symbolic address whether it
is possible not to point to a valid object. In such a case, an out-of-bounds error is reported.

If the program under test frees an allocation, its entry is removed from the list of valid
objects in the current state. While many use-after-free (and the related double-free) errors
can be found using this mechanism (i.e. the address does not resolve to a valid object),
KLEE has been shown to sometimes miss even the simplest cases8 or to depend critically on
subtle aspects such as compilation flags9 for their detection.

KLEE’s use-after-free error detection is fragile as it depends on the freed space not
being reused by a subsequent allocation. An example of this is shown in Listing 1. Without
compiler optimisations enabled, KLEE usually fails to detect the use after free at Line 9, as
the underlying default allocator usually reuses the address for the allocation of the string "B"
or one of the local variables in the strdup or puts calls. With Line 4 removed or optimisations
enabled, KLEE is able to find the bug.

KDAlloc, on the other hand, provides a quarantine for deallocated objects (§4.6). As
long as objects remain quarantined, any use-after-free error is guaranteed to be detected. In
addition, KDAlloc greatly enhances the comprehensibility of reported use-after-free errors,
which in baseline KLEE are reported as out-of-bounds accesses. If an address is not resolved
to a valid object, but the location is still marked as allocated in the allocator metadata, we
conclude that it must be in quarantine, and thus it is a use-after-free error.

8 https://www.mail-archive.com/klee-dev@imperial.ac.uk/msg02998.html
9 https://github.com/klee/klee/issues/1434

https://www.mail-archive.com/klee-dev@imperial.ac.uk/msg02998.html
https://github.com/klee/klee/issues/1434

D. Schemmel, J. Büning, F. Busse, M. Nowack, and C. Cadar 9:19

Listing 2 An implementation of the ANSI C function memmove as found in the uClibc10 library.
The pointer values in the comparison at Line 4 depend on the values returned by the underlying
allocator. The default allocator returned different values in the re-execution and caused a divergence.

1 void * memmove (void *dest , const void *src , size_t n) {
2 char *s = (char *) dest;
3 const char *p = (const char *) src;
4 if (p >= s) {
5 while (n) {
6 *s++ = *p++;
7 --n;
8 }
9 } else {

10 while (n) {
11 --n;
12 s[n] = p[n];
13 }
14 }
15

16 return dest;
17 }

Implementing a quarantine for the default allocator is possible [28], but would incur a
significant space penalty for several reasons. First, only a small portion of the quarantined
objects are actually objects from the program under test, as most are allocated by the DSE
engine. Thus, the quarantine would have to be several times as large to provide similar
benefits. Second, this would be a global quarantine, meaning that it would have to be
even larger to provide similar per-state guarantees, even if the symbolic states are visited
uniformly. Finally, such a quarantine causes memory fragmentation, as memory cannot be
reused immediately; in the case of KDAlloc, this causes no additional memory pressure, as
it only fragments the emulated address space of the program under test.

6.5 MoKlee
MoKlee [7] is an extension of KLEE implementing a variant of memoised symbolic

execution [33]. MoKlee provides the ability to save an ongoing DSE run to disk and then
to (partially) restore it back into memory via a fast replay process. More exactly, MoKlee
saves to disk metadata, such as constraint solver results and path information, and re-uses
this information during replay to remove the constraint solving cost. MoKlee can optionally
filter out fully explored path subtrees, in a mode called path pruning.

This approach is applicable to real-world software as long as the engine is able to detect
divergences [7]. Divergences occur when a DSE engine explores different code paths in
different runs, although the controllable inputs are the same. This happens due to values that
are read from the environment (e.g. date/time strings or disk usage) or, more relevant for our
approach, when the execution relies on memory addresses. For instance, the branches taken
to traverse a hash table with pointer values as keys depend on the addresses returned by the
underlying allocator. If the allocator is non-deterministic and the allocation order changes in

10 https://www.uclibc.org/

ECOOP 2022

https://www.uclibc.org/

9:20 A Deterministic Memory Allocator for Dynamic Symbolic Execution

subsequent runs, the insertion order in the hash table changes and branch decisions cannot
be re-used. KLEE’s mmap-based deterministic allocator is shown to reduce divergences
significantly, e.g. for find, but it is not suitable for most applications as it cannot free or
re-use memory [7].

We ported KDAlloc to MoKlee, and added some statistics (e.g. number of external
calls) and an instruction-based threshold for the coverage computation. Most of the other
changes that were necessary for mainline KLEE could be mimicked by similar flags that
were already available in MoKlee. As benchmarks we re-used the 93 applications (Table 3)
provided with the MoKlee artifact.11 The setup is similar to the mainline KLEE experiment:
We start with 2 h memoisation runs using a 2 GB memory limit, as described in the MoKlee
artifact, to find deterministic thresholds for the two exploration strategies (RndCov, DFS).
After that, we re-run the memoisation pass for all applications with both exploration
strategies and both allocators, but using deterministic thresholds. A total of 66 applications
for DFS, respectively 38 applications for RndCov, had the same relevant statistics and
hence executed the same paths with high probability across both allocators. In short, these
runs are comparable.

To measure the influence of both allocators on divergences, we re-executed all memoised
runs with and without path pruning using both exploration strategies as done in the MoKlee
paper. We only omit the results for the non-pruning re-execution of memoised DFS runs
with the RndCov search strategy, as the wide-and-deep shape of DFS execution trees
often cause state explosions and hence state terminations in many benchmarks, making a
comparison meaningless.

We refer to each experiment by the search strategies used during the memoised run
and during replay. For instance DFS/RndCov denotes the experiment where the original
memoised run used DFS, and the replayed run used RndCov.

Firstly, we evaluate the experiments based on comparable memoisation runs. Due to
the nature of these tools, the number of divergences is low and we only observed them in
three applications when re-executed without path pruning: nohup (RndCov/DFS) diverges
in a comparison that checks the maximum number of open file descriptors, whereas shred
(RndCov/DFS) diverges in a comparison of timestamps. Both applications diverge in
exactly the same locations with both allocators and the root causes cannot be prevented by
our allocator. However, du (DFS/DFS) only diverges with the default allocator. The reason
for that is a pointer comparison in the implementation of the standard C function memmove
(Listing 2) to copy bytes between memory areas. Memory areas are allowed to overlap, in
contrast to memcpy, and most C libraries save a temporary buffer by comparing the source
and destination pointers (Line 4). Depending on their order, the algorithm starts copying
either from the front or the back of the areas to prevent overwriting the overlapping area too
early. In our experiment, the default allocator returned different addresses for p and s during
the re-execution, changing the order of both pointers in memory and causing a divergence
that got detected by MoKlee. When a divergence occurs, MoKlee removes the memoised
subtree and the affected subtree needs to be re-explored. In the case of du, a significant
32.5% of the memoised instructions were lost that way. With KDAlloc’s deterministic
allocation on the other hand, both pointers retrieved the same values during re-execution
and the complete memoised run could be re-used.

11 https://zenodo.org/record/3895271

https://zenodo.org/record/3895271

D. Schemmel, J. Büning, F. Busse, M. Nowack, and C. Cadar 9:21

Table 4 Number of source locations with diverging behaviour in applications with differing
memoisation runs across allocators. Different numbers are observed between allocators for the first
three benchmark suites.

DFS RndCov
Suite MoKlee KDAlloc MoKlee KDAlloc
Coreutils 22 12 42 32
Findutils 1 0 1 1
Libspng 0 0 1 0
Binutils 0 0 0 0
Diffutils 0 0 0 0
Grep 0 0 1 1
Tcpdump 0 0 0 0

Secondly, we evaluate the remaining non-comparable applications where the memoisation
runs between allocators differ. Here, we count the number of unique source locations where
divergences occur across re-execution runs (with and without path pruning). As can be seen
in Table 4, with KDAlloc divergences occur in significantly fewer locations for both search
strategies, showing that KDAlloc is effective in preventing memory-related divergences.

Furthermore, in the original MoKlee paper find benefited most from a deterministic
allocator. Our experiments confirm that observation. Starting from a RndCov memoisation
run and re-executing that run without path pruning, KLEE has to terminate 3407 paths due
to divergences with the RndCov exploration strategy (3545 for DFS) whereas KDAlloc
does not observe a single divergence with RndCov and only 3 with DFS. In summary,
KDAlloc reduces the number of diverging paths and hence improves the effectiveness of
memoised symbolic execution.

6.6 SymLive
SymLive [26] is an open-source12 KLEE extension that uses symbolic execution to find
paths that lead to infinite loops. It hashes the symbolic states and checks for repeating
hashes along each path. If such a repetition is found, the program transitions back into a
previous program state: Assuming deterministic program execution, the program under test
has entered an infinite loop, which SymLive reports if it violates a generic liveness property.

The original implementation of SymLive employs KLEE’s default allocator, which is
good enough in many practical applications [26]. The default allocator, however, is not
cross-path deterministic (§3.3), which may prevent SymLive from detecting an infinite loop
in one state if another state prevents address reuse.

The program in Listing 3 is one such example. It conditionally leaks allocations and
prevents forked states from terminating. Its infinite behaviour can be reliably detected using
KDAlloc with the quarantine disabled (the desired configuration in this context), but not
using the default allocator. The example revolves around two pointers, x and p. The former
is initially bound to a memory object, the latter is made symbolic (Line 2). The infinite
loop (Lines 3–6) reassigns x with a freshly allocated memory object (Line 5). If x == p, the
previous pointee is freed just before (Line 4); otherwise it is leaked.

12 https://github.com/COMSYS/SymbolicLivenessAnalysis

ECOOP 2022

https://github.com/COMSYS/SymbolicLivenessAnalysis

9:22 A Deterministic Memory Allocator for Dynamic Symbolic Execution

Listing 3 Leaking memory objects in an infinite loop can hinder its detection in SymLive without
cross-path deterministic allocation.

1 int main(void) {
2 void *x = malloc (1), *p = klee_symbolic_ptr ();
3 while (1) {
4 if (x == p) free(x);
5 x = malloc (1);
6 }
7 }

malloc: a1

x = a1

free[a1]; malloc: a1

x = a1

free[a2]; malloc: a2

a1, x = a2

malloc: a2

a1, x = a2

. . .

λ1 ¬λ1

λ2
¬λ2

1

2 1′

2′

state2 = state1

=⇒ ∞

∞

(a) SymLive with KDAlloc.

malloc: a1

x = a1

free[a1]; malloc: a2

x = a2

malloc: a3

a2, x = a3

λ1

malloc: a4

a1, x = a4

free[a4]; malloc: a5

a1, x = a5

λ2

. . .
¬λ2

¬λ1

.

state2 ̸= state1

≠⇒ ∞
1

2 1′

3 2′

(b) SymLive with default allocator.

Figure 8 States observed by SymLive, using (a) KDAlloc or (b) default allocation, while
executing the example from Listing 3. States are shown with heap operations (top) and allocated
addresses (bottom).

Following the then branch keeps the number of memory objects stable; following the
else branch leads to one leaked memory object per iteration. All paths along which p
eventually equals a pointer returned from the malloc at Line 5 can form an infinite loop,
where that pointer is repeatedly deallocated and allocated again at the same address. As
only this address is ever deallocated, this loop requires immediate address reuse (similar
programs can be crafted for any finite delay in address reuse). KDAlloc can easily detect
this liveness violation when the quarantine is disabled, while KLEE’s default allocator fails
due to cross-path interference.

In Figure 8, we visualise the different behaviours of SymLive with KDAlloc (Figure 8a)
and the default allocator (Figure 8b). In both cases, state 1 corresponds to the initial
malloc (Line 2), and shows a1, the returned address. The symbolic state is then forked at
the branch in Line 4. If the branching condition is false, the new state, state 1′ , differs from
state 1 only by one leaked object and the constraint from the symbolic fork. On the other
hand, if the condition is true, the behaviour differs between the two allocators.

In the case of KDAlloc, the allocator’s internal state was forked along with the state.
Thus, state 2 can reuse a1 after freeing it, even though the address is still allocated in other
states. State 2 therefore compares equal to state 1 and the infinite loop is detected.

In contrast, the default allocator uses a single, global allocator instance, so a1 can only be
reused once it has been deallocated in every symbolic state. Since the addresses are leaked,
this never happens, and state 2 therefore cannot compare equal to state 1 , thus no infinite
loop will be detected. As a result, execution continues into state 3 (and beyond), with
malloc returning another address in each iteration. Irrespective of the allocator, state 1′

behaves the same as state 1 , as the leaked address has no further impact until all possible

D. Schemmel, J. Büning, F. Busse, M. Nowack, and C. Cadar 9:23

allocations have been performed. Thus, with KDAlloc states 1′ and 2′ compare as equal,
as do equivalent states on any further path. However, with the default allocator, states 1′

and 2′ do not compare as equal, nor do equivalent states on any further path.
While this example is crafted specifically to showcase the importance of cross-path

determinism, it is plausible that non-deterministic allocation can cause infinite-loop bugs to
be missed or at least delay their detection significantly in real-world programs. While this
impact is hard to measure, given its low overhead, it is preferable to use KDAlloc with
SymLive to enable or speed up infinite-loop detection.

To confirm that KDAlloc does not break any other (possibly implicit) requirement of
SymLive, we ran it with KDAlloc on the applications from SymLive’s artifact13 (Table 2)
where it was able to detect infinite-loop bugs. For these experiments we stayed close to the
original configuration and used a memory limit of 10 GB. The experiments include toybox,
a package that re-implements (among others) many Coreutils and sed. Repeating these
experiments, we quickly noticed a problem with toybox, which failed with KDAlloc. The
reason for this turned out to be simple: toybox uses a dispatch mechanism that allows users
to call many tools through a single binary, e.g. ./toybox sed. As part of this mechanism,
toybox implements a safeguard that tries to detect whether the stack depth is too high. This
detection, however, is implemented by comparing the integer representation of two pointers
to stack variables from different stack frames, which gives an implementation-defined result
as per the C standard [14]. In our design, which is fully standard-compliant in this regard,
we do not follow a linear, stack-like order when allocating such variables. Additionally, we
try to maximise redzones around each allocation. Together, this leads toybox’s safeguard
to bail out when we use KDAlloc. All toybox utilities can also be built as standalone
binaries, avoiding the dispatch along with its problematic safeguard. We used this (deviating
from the original setup) for all our toybox runs.

Our extension was able to find infinite loops in all applications with the default exploration
strategy. For the various sed implementations, infinite loops were only found for the shorter of
two possible symbolic inputs, as, with the longer inputs, SymLive runs into memory and time
limits (set to 24 h) irrespective of the allocator. We refrained from further exploring which
allocator works better in that case, as KLEE frees up memory by (non-deterministically)
terminating states once its memory limit is reached.

7 Related Work

As a core concept in programming, memory allocation is a well-researched topic [2,13,17,18,30].
In fact, many of the building blocks used to create KDAlloc are well-known methods in this
area of research. For example, separating allocations by size to quickly find the best-fitting
unallocated region [17], combining multiple equally-sized objects into one large run [13],
using bitmaps to denote allocated/free slots in a larger run of equally-sized objects [3, 13],
spacing objects further apart in memory [3,25,28], delaying deallocations in a quarantine
zone [25, 28], and segregating heap data and metadata [3] are all well-established techniques
for designing memory allocators.

However, to the best of our knowledge, these building blocks have never been combined
in such a way, as to fit and support EGT-style dynamic symbolic execution. The closest
work we see is SymMMU [24], which separates the dispatch mechanism for memory accesses
in DSE from its handling policy. However, unlike KDAlloc, SymMMU is not directly
concerned with determinism and stability.

13 https://doi.org/10.5281/zenodo.5771192

ECOOP 2022

https://doi.org/10.5281/zenodo.5771192

9:24 A Deterministic Memory Allocator for Dynamic Symbolic Execution

Common memory-safety checkers, such as AddressSanitizer [28] or Valgrind Memcheck [29]
have largely the same goals w.r.t. error detection via spatial and temporal distancing, but,
while cross-run determinism is of some interest, they have no notion of multiple paths, which
leads them to not consider cross-path determinism, stability, or a method for efficiently
forking the allocator state. KDAlloc takes inspiration from these memory-safety checkers to
detect faults with spatial and temporal distancing, while also considering our remaining goals,
trading away performance and delegating error detection to the underlying DSE engine.

Similar questions and solutions arise when considering fault tolerance in addition to fault
detection. In Rx [23], memory errors in a process are detected and as one potential mitigation
strategy, allocations are moved to different locations on recovery to avoid subsequent crashes.
The Windows Fault Tolerant Heap (FTH) [25] is automatically enabled when a program shows
behaviour related to faults in dynamic memory management. It mitigates potential problems
by utilising a quarantine and additional space between objects. Similarly, DieHard [3]
randomises the heap layout over a large region to probabilistically increase both spatial and
temporal distance between allocated objects.

8 Conclusion

In this paper, we show that the memory allocator can have a significant impact in dynamic
symbolic execution (DSE). We first identify six key design principles – support for external
calls, cross-run and cross-path determinism, spatially and temporally distanced allocations,
and stability – and propose KDAlloc, a memory allocator specifically designed for DSE,
whose design is guided by these principles.

We implemented KDAlloc in KLEE, a popular DSE engine, and show that it has a
neutral or positive impact on memory consumption and performance, while improving use-
after-free error detection and several DSE-based techniques such as MoKlee, an approach
for saving DSE runs to disk and later (partially) restoring them, and SymLive, an approach
for finding infinite-loop bugs.

References
1 Andrew Baumann, Jonathan Appavoo, Orran Krieger, and Timothy Roscoe. A fork() in the

road. In Proc. of the 17th Workshop on Hot Topics in Operating Systems (HotOS’19), May
2019.

2 Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard: A
scalable memory allocator for multithreaded applications. In Proc. of the 9th International
Conference on Architectural Support for Programming Languages and Operating Systems
(ASPLOS’00), November 2000.

3 Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic memory safety for unsafe
languages. In Proc. of the Conference on Programing Language Design and Implementation
(PLDI’06), June 2006.

4 Peter Boonstoppel, Cristian Cadar, and Dawson Engler. RWset: Attacking path explosion in
constraint-based test generation. In Proc. of the 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’08), March-April 2008.

5 Luca Borzacchiello, Emilio Coppa, Daniele Cono D’Elia, and Camil Demetrescu. Memory
models in symbolic execution: key ideas and new thoughts. Software Testing, Verification and
Reliability, 29(8), 2019. doi:10.1002/stvr.1722.

6 Jacob Burnim and Koushik Sen. Heuristics for scalable dynamic test generation. In Proc.
of the 23rd IEEE International Conference on Automated Software Engineering (ASE’08),
September 2008.

https://doi.org/10.1002/stvr.1722

D. Schemmel, J. Büning, F. Busse, M. Nowack, and C. Cadar 9:25

7 Frank Busse, Martin Nowack, and Cristian Cadar. Running symbolic execution forever. In
Proc. of the International Symposium on Software Testing and Analysis (ISSTA’20), July
2020.

8 Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In Proc. of the 8th
USENIX Symposium on Operating Systems Design and Implementation (OSDI’08), December
2008.

9 Cristian Cadar and Dawson Engler. Execution generated test cases: How to make systems
code crash itself. In Proc. of the 12th International SPIN Workshop on Model Checking of
Software (SPIN’05), August 2005. doi:10.1007/11537328_2.

10 Cristian Cadar, Vijay Ganesh, Peter Pawlowski, David Dill, and Dawson Engler. EXE:
Automatically Generating Inputs of Death. In Proc. of the 13th ACM Conference on Computer
and Communications Security (CCS’06), October 2006. doi:10.1145/1455518.1455522.

11 Cristian Cadar and Koushik Sen. Symbolic Execution for Software Testing: Three Decades
Later. Communications of the Association for Computing Machinery (CACM), 56(2):82–90,
2013. doi:10.1145/2408776.2408795.

12 Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proc. of the
14th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’08), March-April 2008.

13 Jason Evans. A scalable concurrent malloc(3) implementation for FreeBSD. In Proc. of the
2006 BSDCan Conference (BSDCan’06), May 2006.

14 International Organization for Standardization. ISO/IEC 9899-1999: Programming Languages—
C, December 1999.

15 Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays. In Proc. of
the 19th International Conference on Computer-Aided Verification (CAV’07), July 2007.

16 Timotej Kapus and Cristian Cadar. A segmented memory model for symbolic execution. In
Proc. of the Joint Meeting of the European Software Engineering Conference and the ACM
Symposium on the Foundations of Software Engineering (ESEC/FSE’19), August 2019.

17 Doug Lea. A memory allocator. http://gee.cs.oswego.edu/dl/html/malloc.html.
18 Maged M. Michael. Scalable lock-free dynamic memory allocation. In Proc. of the Conference

on Programing Language Design and Implementation (PLDI’04), June 2004.
19 Nicholas Nethercote and Julian Seward. Valgrind: A program supervision framework. Electronic

Notes in Theoretical Computer Science, 89(2), 2003.
20 Martin Nowack. Fine-grain memory object representation in symbolic execution. In Proc.

of the 34th IEEE International Conference on Automated Software Engineering (ASE’19),
November 2019.

21 Martin Nowack, Katja Tietze, and Christof Fetzer. Parallel symbolic execution: Merging
in-flight requests. In Proc. of the Haifa Verification Conference (HVC’15), December 2015.

22 Hristina Palikareva and Cristian Cadar. Multi-solver support in symbolic execution. In Proc.
of the 25th International Conference on Computer-Aided Verification (CAV’13), July 2013.

23 Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou. Rx: treating bugs as
allergies—a safe method to survive software failures. In Proc. of the 20th ACM Symposium on
Operating Systems Principles (SOSP’05), October 2005.

24 Anthony Romano and Dawson Engler. SymMMU: Symbolically executed runtime libraries for
symbolic memory access. In Proc. of the 29th IEEE International Conference on Automated
Software Engineering (ASE’14), September 2014.

25 Mark E. Russinovich, David A. Solomon, and Alex Ionescu. Windows®Internals, Part 2.
Microsoft Press, 6th edition, September 2012.

26 Daniel Schemmel, Julian Büning, Oscar Soria Dustmann, Thomas Noll, and Klaus Wehrle.
Symbolic liveness analysis of real-world software. In Proc. of the 30th International Conference
on Computer-Aided Verification (CAV’18), July 2018.

ECOOP 2022

https://doi.org/10.1007/11537328_2
https://doi.org/10.1145/1455518.1455522
https://doi.org/10.1145/2408776.2408795
http://gee.cs.oswego.edu/dl/html/malloc.html

9:26 A Deterministic Memory Allocator for Dynamic Symbolic Execution

27 Daniel Schemmel, Julian Büning, César Rodríguez, David Laprell, and Klaus Wehrle. Symbolic
partial-order execution for testing multi-threaded programs. In Proc. of the 32nd International
Conference on Computer-Aided Verification (CAV’20), July 2020.

28 Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. Address-
Sanitizer: A fast address sanity checker. In Proc. of the 2012 USENIX Annual Technical
Conference (USENIX ATC’12), June 2012.

29 Julian Seward and Nicholas Nethercote. Using Valgrind to detect undefined value errors with
bit-precision. In Proc. of the 2005 USENIX Annual Technical Conference (USENIX ATC’05),
April 2005.

30 Matthias Springer and Hidehiko Masuhara. DynaSOAr: A parallel memory allocator for
object-oriented programming on GPUs with efficient memory access. In Proc. of the 33rd
European Conference on Object-Oriented Programming (ECOOP’19), July 2019.

31 David Trabish, Shachar Itzhaky, and Noam Rinetzky. Address-aware query caching for symbolic
execution. In Proc. of the IEEE International Conference on Software Testing, Verification,
and Validation (ICST’21), April 2021.

32 David Trabish and Noam Rinetzky. Relocatable addressing model for symbolic execution.
In Proc. of the International Symposium on Software Testing and Analysis (ISSTA’20), July
2020.

33 Guowei Yang, Corina S. Păsăreanu, and Sarfraz Khurshid. Memoized symbolic execution.
In Proc. of the International Symposium on Software Testing and Analysis (ISSTA’12), July
2012.

Accumulation Analysis
Martin Kellogg #

University of Washington, Seattle, WA, USA

Narges Shadab #

University of California, Riverside, CA, USA

Manu Sridharan #

University of California, Riverside, CA, USA

Michael D. Ernst #

University of Washington, Seattle, WA, USA

Abstract
A typestate specification indicates which behaviors of an object are permitted in each of the
object’s states. In the general case, soundly checking a typestate specification requires precise
information about aliasing (i.e., an alias or pointer analysis), which is computationally expensive.
This requirement has hindered the adoption of sound typestate analyses in practice.

This paper identifies accumulation typestate specifications, which are the subset of typestate
specifications that can be soundly checked without any information about aliasing. An accumulation
typestate specification can be checked instead by an accumulation analysis: a simple, fast dataflow
analysis that conservatively approximates the operations that have been performed on an object.

This paper formalizes the notions of accumulation analysis and accumulation typestate specifica-
tion. It proves that accumulation typestate specifications are exactly those typestate specifications
that can be checked soundly without aliasing information. Further, 41% of the typestate specifications
that appear in the research literature are accumulation typestate specifications.

2012 ACM Subject Classification Software and its engineering → Formal software verification

Keywords and phrases Typestate, finite-state property

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.10

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.22

Funding This research was supported in part by the National Science Foundation under grants
CCF-2007024 and CCF-2005889, DARPA contract FA8750-20-C-0226, a gift from Oracle Labs, and
a Google Research Award.

Acknowledgements Thanks to Max Willsey, Gus Smith, and the anonymous reviewers for their
helpful feedback on early drafts.

1 Introduction

A typestate specification [58] associates a finite-state machine (FSM) with program values of
a given type. As a value transitions through the states of the FSM, different operations are
enabled or disabled; that is, the FSM encodes a behavioral specification for the type.

A typestate analysis checks that a program follows a typestate specification – that is,
the program does not attempt to perform a disabled operation. Typestate analyses are well-
studied in the literature, and have been deployed for many purposes, including enforcing a
locking discipline [28, 17], verification of Windows device drivers [12], and preventing security
vulnerabilities [50]. However, sound typestate analyses – those with no false negatives – are
rarely deployed in practice; for example, a recent paper [21] describing how AWS has deployed

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Martin Kellogg, Narges Shadab, Manu Sridharan, and
Michael D. Ernst;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 10; pp. 10:1–10:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kelloggm@cs.washington.edu
mailto:nshad001@ucr.edu
mailto:manu@cs.ucr.edu
mailto:mernst@cs.washington.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2022.10
https://doi.org/10.4230/DARTS.8.2.22
https://doi.org/10.4230/DARTS.8.2.22
https://doi.org/10.4230/DARTS.8.2.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Accumulation Analysis

closed open

error

open()

close()

read()

close(), read()
open()

Figure 1 The typestate automaton for a File object that can be re-opened after being closed.
This typestate specification is not an accumulation typestate system: soundly enforcing it statically
requires an alias analysis.

a typestate-based analysis at cloud-scale explicitly omits soundness as a goal. However,
building a sound analysis is an important goal: without a soundness guarantee, an analysis
might find some bugs, but could not guarantee that no more bugs remain.

A key barrier to sound typestate analyses is the need to reason about aliasing. Consider
the classic example [28, 70, 59, 25, 29, 62, 67, 57, 69, 66, 1, 49, 16, 38, 2, 15, 72, 19, 20] of a
File object, whose typestate is specified in Figure 1, and the following program in a Java-like
imperative language:

1 File f = new File (...);
2 f.open ();
3 File g = f; // f and g are aliases after this line is executed
4 g.close ();
5 f.read (); // an error occurs when this line is executed

On line 3, the shared object – which both aliases f and g refer to – is in the open typestate.
When g.close() is called on line 4, the state of the underlying object transitions to the
closed state. It is therefore an error when f.read() is called on line 5. However, if a static
typestate analysis analyzing this program does not consider that f and g are aliased, then the
analysis’s estimate of f’s typestate does not transition to the closed state, and the analysis
unsoundly concludes that the call on line 5 is safe – that is, the analysis suffers from a false
negative.

For a sound typestate analysis, there are two high-level approaches to handling aliasing:
restrict how the programmer creates aliases (e.g., via ownership types [14, 55] or access
permissions [7]), or use a sound inter-procedural may-alias analysis that conservatively over-
approximates which program variables might be aliases. In practical imperative programming
languages with unrestricted aliasing, inter-procedural may-alias analysis is NP-hard [41], and
scaling alias analysis to real programs while maintaining acceptable precision remains an
open research problem. State-of-the-art analyses often run for an hour or more on practical
programs [60].

In recent work [35, 37], we proposed bespoke accumulation analyses that soundly and
modularly solve specific problems traditionally addressed with typestate. An accumulation
analysis collects operations – corresponding to typestate transitions – that have definitely
occurred on a given program expression. For example, an accumulation analysis could check
the property “before calling read() on a File, call open().” The accumulation analysis would

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:3

record on which expressions open() had definitely been called, and forbid calls to read()
that did not occur via such expressions. Note that this is a weaker property than the full
specification in Figure 1 – it does not forbid “read after close” defects.

Unlike a traditional typestate analysis, an accumulation analysis is sound without any
aliasing information. This means that checking a specification with an accumulation analysis
is cheaper – often by an order of magnitude or more – than checking that same specification
with a general-purpose typestate analysis. Further, effective incremental analysis – i.e.,
modularity – is possible for an accumulation analysis, because no whole-program alias
analysis is needed. Practical accumulation analyses do use limited, cheap, local aliasing
information to improve precision; see Section 5.1. A practical accumulation analysis using
limited aliasing information is sound because no aliasing information at all is required for
soundness.

Our prior work argued informally that our accumulation analyses are sound, despite
their lack of alias reasoning, due to the monotonicity of the particular typestate properties
being checked. However, we neither formalized our arguments nor generalized our arguments
beyond the specific problems that we targeted. Though our prior work has demonstrated
good empirical results – running quickly and finding many real bugs – its soundness claim
relies on accumulation analyses being sound without any aliasing information.

The primary goals of this paper are to prove that accumulation analysis does not require
aliasing information, to demarcate exactly those typestate specifications that can be soundly
checked via an accumulation analysis, and to explore how common such specifications are.
Our hope is that analysis designers facing typestate-like problems in the future can use our
work to determine whether the property they are interested in is an accumulation property,
and hence could be verified without resorting to an expensive, whole-program alias analysis.

Our contributions are:
a formal definition of an accumulation analysis (Section 3.1);
a formal definition of an accumulation typestate system, and a proof that the properties
checkable via accumulation analysis are all accumulation typestate properties (Section 3.2);
a proof that a typestate system can be checked soundly by a typestate analysis that does
no aliasing reasoning if and only if it is an accumulation typestate system (Section 3.3);
a literature survey of work on typestate analysis, from which we collected 1,355 typestate
specifications and determined that 41% of them are accumulation typestate specifications
(Section 4); and
a discussion of the practical issues related to implementing a useful accumulation analysis,
and an implementation of a generic accumulation analysis (Section 5).

2 Background: What Is Typestate?

In a standard type system, the type of an expression is immutable throughout the program
and the set of operations available on the expression is correspondingly immutable. However,
type systems fail to capture the behavioral specifications of many real-world objects that
change over time. For example, a chess pawn might become a queen and gain new movement
operations, a caterpillar might become a chrysalis and lose the ability to crawl before
eventually becoming a butterfly and gaining the ability to fly, or a File might be opened and
gain the ability to be read. In each of these examples, the logical identity of the object stays
the same, but its state – and what that state enables it to do – changes. Typestate [58] extends
types to account for possible state changes by encoding the various states and behaviors of a
type as a finite-state machine – the typestate automaton for that type. Formally:

ECOOP 2022

10:4 Accumulation Analysis

▶ Definition 1. A typestate automaton A = (Σ, S, s0, δ, e) for type τ is a finite-state
machine. The language Σ is the set of operations, such as method calls, that can be performed
on τ . The states S are called typestates; s0 ∈ S is the initial state. The edges defined by the
transition table δ are called transitions and correspond to the effect of operations. There is a
distinguished error state e ∈ S. Each typestate has k = |Σ| outgoing transitions; none, some,
or all of these transitions may be to the error state e or may be self-loops. The error state e

has only self-loops – that is, the error state is a trap state.

At every step during the execution of a program, each value/object of type τ is in one of
the typestates of the typestate system.

▶ Definition 2. An operation is an event that may cause an object to change state. Every
type has a set of operations that can be performed on it, but not all operations are necessarily
legal in all states. Traditionally, operations are method calls. However, they can be generalized
to include any other event, such as assigning a field or a reference going out of scope.

Without loss of generality, we represent typestate automata as having no distinguished
accepting states (or, equivalently, all non-error states are accepting). If a typestate automaton
were to have one or more accepting states, we could transform it to have no accepting states
but encode the same behavioral specification in the following way: add a “go out of scope”
transition to each typestate; in accepting states (and the error state), this is a self-loop
transition, but in non-accepting states, this is a transition to the error state.

▶ Definition 3. A typestate system is the pair of a typestate automaton and the corres-
ponding type τ whose safe usage it encodes.

As an example of a typestate system, Figure 1 shows the automaton, and the type is File.
Note how each edge is labeled with the corresponding operation. A double circle around the
state represents the distinguished error state e. We always draw all transitions, with the
exception of those from the error state (which are, by definition, always self-loops).

This paper considers only static typestate analyses. Dynamic run-time monitoring to
detect typestate violations exists, but a run-time monitor – like any dynamic analysis – cannot
prevent errors before they happen. See Section 6 for more details on related techniques that
are outside the scope of the present work.

3 Definitions and Proofs

This section has three goals. First, Section 3.1 formally defines accumulation analysis in a
way that is consistent with prior work. Second, Section 3.2 defines an accumulation typestate
system and shows that every accumulation analysis has a corresponding accumulation
typestate system. Finally, Section 3.3 proves that accumulation typestate systems are exactly
those typestate systems that can be soundly checked by a static typestate analysis with no
aliasing information – that is, a typestate-like analysis that assumes that no aliasing occurs
in the program.

3.1 Accumulation Analysis
First, we formalize the notion of an accumulation analysis, as used in prior work [35, 37]:1

1 Our definition is consistent with but not identical to the definitions used in prior work. See Section 6.1.

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:5

▶ Definition 4. An accumulation analysis is a static program analysis that approximates,
for each in-scope expression x of type τ at each program point, a set of operations S that
have definitely occurred on the value to which x refers.

An accumulation analysis has one or more goals. A goal is a pair ⟨g, E⟩ where g is the
goal operation and E is a set of enabling operations.

Informally, an accumulation analysis enforces that a goal operation g does not occur until
after every enabling operation e ∈ E for g has already occurred.

An operation in an accumulation analysis is defined identically to an operation in a
typestate automaton (Definition 2).

▶ Definition 5. A sound accumulation analysis must issue an error if some goal operation
may occur before its enabling operations. More formally, it must issue an error if, for some
expression x of type τ and some operation g, both of the following are true:
1. There exists at least one goal ⟨g, _⟩ – that is, g is a goal operation.
2. There exists an execution of the program where the set of operations S that have actually

occurred on the value of x before an occurrence of g on x is not a superset of one of the
enabling sets for g. That is, where there does not exist some goal ⟨g, E⟩ such that S ⊇ E.

Intuitively, a sound accumulation analysis is “accumulating” enabling operations, and
once everything in the enabling set is accumulated, there is no way to “disable” the goal
operation. For example, if g is a goal operation for some goal ⟨g, E⟩, an object must first
perform some set of operations to make g legal (i.e., the operations in E), and once g becomes
legal, it stays legal.

Note that soundness, as in Definition 5, only precludes false negative warnings. It says
nothing about whether the accumulation analysis might issue a false positive, and a trivially-
sound “accumulation analysis” could simply issue an error any time a goal operation might
be executed. In practice, a useful accumulation analysis tracks whether the transitions in an
enabling set have occurred, and it permits the goal operation if they have.

Note that if an accumulation analysis has multiple goals, their goal operations may or
may not be the same. Multiple goals with the same goal operation are useful to express
disjunctive specifications. For example, prior work [35] used the disjunctive specification
“call either withOwners() or withImageIds() before calling describeImages().”

3.2 Relationship Between Typestate and Accumulation
Next, we need to describe the relationship between a typestate system and an accumulation
analysis. As an aid to doing so, we introduce the following:

▶ Definition 6. An error-inducing sequence in a typestate automaton T is a sequence
of transitions S = t1, . . . , ti such that T is in the error state after all transitions in S are
applied (and not before).

▶ Definition 7. An accumulation typestate system is a typestate system such that for
any error-inducing sequence S = t1, . . . , ti, all subsequences (including both contiguous and
non-contiguous subsequences) of S that end in ti also result in the typestate automaton being
in the error typestate. That is, all subsequences of S that end in ti are also error-inducing.

Intuitively, an accumulation typestate system is any typestate system whose error-inducing
paths are closed under subsequence so long as the final error-inducing operation is held
constant. That is, removing operations from the beginning or middle of an error-inducing
sequence always produces another error-inducing sequence.

ECOOP 2022

10:6 Accumulation Analysis

Algorithm 1 A decision procedure for checking whether or not a given typestate automaton T

is an accumulation typestate automaton. The complexity of the algorithm is O(max(n log n, en))
where n is the number of states and e is the number of edges.

1: procedure IsAccumulation(T)
2: // FindErrorInducingTransitions returns all transitions into the error state.
3: U ← FindErrorInducingTransitions(T)
4: // E and Esubseq are finite-state automata. ∀ X, Union(∅, X) = X.
5: E ← ∅
6: Esubseq ← ∅
7: for ui ∈ U do
8: // ErrorInducingAutomatonVia is an automaton that accepts a sequence of
9: // transitions S iff S followed by ui causes an error in the original automaton T .

10: // Its implementation contains two steps: (1) modify T so that states from which
11: // ui is error-inducing are accepting, and then (2) minimize and return the result.
12: Ei ← ErrorInducingAutomatonVia(ui, T)
13: // Subsequences produces the automaton that accepts the subsequence language
14: // for the input automaton, which Higman’s theorem guarantees exists.
15: Esubseq(i) ← Subsequences(Ei)
16: // Concat produces an automaton that accepts iff it receives a sequence
17: // that the input automaton accepts followed by the concatenated transition.
18: E ← Union(E, Concat(Ei, ui))
19: Esubseq ← Union(Esubseq, Concat(Esubseq(i), ui))
20: // AcceptSameLanguage is true iff the two automata accept the same language.
21: return AcceptSameLanguage(E, Esubseq)

Note that a vacuous sound typestate analysis such as “issue an error at every program
statement” is trivially enforcing an accumulation typestate system. The typestate automaton
that such an analysis enforces only has transitions to the error state, so all sequences are
error-inducing.

This definition leads to a decision procedure (Algorithm 1) for determining whether a
given typestate system T is an accumulation typestate system. Consider all error-inducing
operations U = {u1, . . . , un}. The elements of U are the final transitions for every error-
inducing sequence in the automaton of T . For any ui ∈ U , let Ei be the language2 of the
error-inducing sequences of operations in T that end in ui, with the last transition removed
(i.e., the ui transition that leads to the error typestate). Let Esubseq(i) be the language of
subsequences of Ei. Let E =

⋃n
i=1 Ei ∗ ui and Esubseq =

⋃n
i=1 Esubseq(i) ∗ ui. That is, E is

the union of all error-inducing paths in T , and Esubseq is the union of all subsequences of
error-inducing paths in T that end in the same transition as the corresponding error-inducing
path from which they were derived. By Definition 7, if and only if E and Esubseq recognize
the same language, T is an accumulation typestate system.

It is easy to check whether E and Esubseq recognize the same language, because both are
regular. E is regular, because it can be recognized by T ’s automaton, if the error typestate is
converted to an accepting state. Since there are finitely-many operations, any Ei and Esubseq(i)
have a finite alphabet. Higman’s theorem [31] says that the language of the subsequences

2 Throughout, we will abuse notation and refer to both languages and their corresponding language-
recognizers by the same name.

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:7

of any language over a finite-alphabet is regular. Therefore, any Esubseq(i) is also regular.
Esubseq is regular because regular languages are closed under both union and concatenation.
So, the procedure for checking whether a typestate automaton is an accumulation typestate
automaton is as easy as checking whether the two finite state machines for E and Esubseq
recognize the same language.

▶ Theorem 8. Every accumulation analysis has a corresponding accumulation typestate
system.

Proof. Consider some accumulation analysis acc with goals (g1, E1), . . . , (gn, En) over type
τ . The corresponding accumulation typestate system is the pair of the type τ and the
accumulation typestate automaton constructed by the following procedure:
1. Create an error state error with a self-loop transition for each operation on τ .
2. Let PE be the powerset of E, where E =

⋃n
i=1 Ei is the union of the enabling sets

E1, . . . , En. For each element S of PE , create a corresponding state and label it with S.
Note that S refers to both the member of PE and the corresponding state.

3. Make the state that is labeled by the empty set be the start state of the automaton.
4. For each state S ∈ PE and for each transition te ∈ E, add a transition from state S to

state S ∪ {te} labeled te. (This transition might be a self-loop.)
5. Let G = {g1, . . . , gn} be the set of goal transitions. For each element gi of G and for each

state S ∈ PE :
If there exists a goal ⟨gi, Ei⟩ such that Ei ⊆ S,

then add a self-loop transition to S labeled gi if it does not already have a
transition labeled gi. (It might have such a transition if gi is both an enabling
transition and a goal transition.)

Else if such a goal does not exist,
add a transition from S to the error state labeled gi, removing a transition labeled
gi if one already exists.

6. For each operation t on τ such that t /∈ G and t /∈ E – that is, for each operation that is
neither a goal operation nor an enabling operation – add a self-loop transition labeled t

to each non-error state. (Recall that the error state already has self-loop transitions for
each operation, added in step 1.)

The resulting accumulation typestate automaton encodes the same behavior as the original
accumulation analysis. ◀

Note that this construction is a existence proof, not an efficient translation: it does induce
an exponential blowup in the number of states. A practical accumulation analysis does not
track states directly – rather, it tracks only the enabling sets – so state explosion is not a
problem in practice.

3.3 Soundness Without Aliasing
This section proves that accumulation typestate systems are exactly the typestate systems
that are soundly checkable without reasoning about aliasing (i.e., by a typestate analysis
with no aliasing information, which we will formally define in Definition 14):

▶ Theorem 9. A typestate system T = (A, τ) is an accumulation typestate system if and
only if there exists a typestate analysis with no aliasing information that can soundly check T .

The high-level intuition behind the proof of Theorem 9 is the consequence of two facts:

ECOOP 2022

10:8 Accumulation Analysis

without using aliasing information, a typestate analysis observes only a subsequence of
the actual operations that are applied to the object to which some expression refers, and
accumulation typestate automata are exactly those that are error-closed under sub-
sequence, when the last transition is held constant.

The formal proof is split into Lemmas 16 and 17 (which are the forward and backward
directions of the bi-implication respectively), and appears in Section 3.3.2. Section 3.3.1
defines the supporting machinery of the proof: the language, relevant definitions, etc.

Accumulation analyses as defined in Section 3.1 (and therefore as defined in prior
work [35, 37]) are sound without access to aliasing information:

▶ Corollary 10. An accumulation analysis, even without aliasing information, is sound.

Proof. Convert the accumulation analysis to an accumulation typestate system via the
procedure in the proof of Theorem 8. By Theorem 9, the accumulation typestate system can
be soundly checked. ◀

An important consequence of the ability to soundly check an accumulation typestate
system with no aliasing information is that approaches that utilize limited aliasing inform-
ation are also sound. In practice, analyses can compute inexpensive, typically local, alias
information to improve precision (i.e., to avoid issuing false positive warnings); see Section 5.1.

3.3.1 Preliminaries
This section introduces the machinery used to prove Theorem 9.

3.3.1.1 Language

We will prove Theorem 9 over a core calculus that represents a simple imperative programming
language. This language contains the essential parts of a programming language related to
typestate checking and aliasing – method calls, fields, and assignments.

A program P in this language is a statement s of one of the following kinds:
an assignment: xi := xj .
a field load: xi := xj.fk.
a field store: xi.fj := xk.
a method call: xi.mj().
a statement sequence: si ; sj .

Source code variables range from x_1 to x_n, where n is some positive integer. Statements
may only refer to variables in that range. There is a single type T . Each variable refers to a
value – that is, a particular object instance – of type T . We use xi, xj , . . . as metavariables for
arbitrary variables in the range x_1,. . .,x_n. T has methods m_1 to m_k and a corresponding
typestate automaton A whose k operations are exactly the methods m_1 to m_k. A method call
statement can only refer to methods in T . We use mi, mj , . . . as metavariables for arbitrary
methods in T . Each object of type T has fields f_1 to f_m, where m is some positive integer.
Load and store statements may only refer to fields in this range. Each field refers to some
value of type T . We use fi, fj , . . . as metavariables for arbitrary fields in T .

To simplify the presentation and proofs, this language lacks conditionals, loops, method
bodies, return values, etc. – which makes precise alias and typestate analysis trivial. However,
our algorithms are general (they do not take advantage of the straight-line nature of the
code) and can be extended to a richer language without changing the essence of the proof.
Section 5.2 discusses practical concerns when implementing an accumulation analysis for a
real programming language.

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:9

⟨ρ, σ, τ⟩ ⊢ xi := xj ⇓ ⟨ρ[xi 7→ ρ(xj)], σ, τ ⟩
ASSIGN

⟨ρ, σ, τ⟩ ⊢ xi := xj .fk ⇓ ⟨ρ[xi 7→ σ(⟨ρ(xj), fk⟩)], σ, τ ⟩
LOAD

⟨ρ, σ, τ⟩ ⊢ xi.fj := xk ⇓ ⟨ρ, σ[⟨ρ(xi), fj⟩ 7→ ρ(xk)], τ⟩
STORE

⟨ρ, σ, τ⟩ ⊢ t′ = succ(τ (ρ(xi)), mj , A) t′ ̸= error

⟨ρ, σ, τ⟩ ⊢ xi.mj() ⇓ ⟨ρ, σ, τ [ρ(xi) 7→ t′]⟩
CALL

⟨ρ, σ, τ⟩ ⊢ si ⇓ ⟨ρ′, σ′, τ ′⟩ ⟨ρ′, σ′, τ ′⟩ ⊢ sj ⇓ ⟨ρ′′, σ′′, τ ′′⟩
⟨ρ, σ, τ⟩ ⊢ si; sj ⇓ ⟨ρ′′, σ′′, τ ′′⟩

SEQ

Figure 2 The big-step dynamic semantics of the language expressed as inference rules. The
notation µ[x 7→ y] means that the map µ is updated so that x maps to y. M ⊢ s ⇓ M ′ means that
executing statement s in machine-state M results in machine-state M ′.

3.3.1.2 Dynamic Semantics

To execute a program, we maintain a machine state ⟨ρ, σ, τ⟩ composed of an environment
(ρ) mapping each variable to a value of type T , a store (σ) mapping each value–field pair
to a value, and a typestate store (τ) mapping each value to a typestate in A. The initial
environment maps each xi to a distinct value vj . The initial store maps each value–field
pair ⟨vi, fj⟩ to a distinct value vk. The initial typestate store maps each value vi to the
start typestate s0 of A.3 Executing a statement in machine state ⟨ρ, σ, τ⟩ either produces
an updated machine state ⟨ρ′, σ′, τ ′⟩, or it terminates the program in an error if any value’s
entry in the typestate store would be A’s error typestate. The dynamic semantics (Figure 2)
are as follows:

For an assignment xi := xj , produce a new machine state with an updated environment:
ρ′(xi) = ρ(xj) (rule ASSIGN).
For a field load xi := xj.fk, produce a new machine state with an updated environment:
ρ′(xi) = σ(ρ(xj), fk) (rule LOAD).
For a field store xi.fj := xk, produce a new machine state with an updated store:
σ′(ρ(xi), fj) = ρ(xk) (rule STORE).
For a call xi.mj(), let t′ = succ(τ(ρ(xi)), mj , A). That is, t′ is the successor typestate in
A when transition mj occurs in the current typestate of the value that xi is a reference to.
If t′ is not the error typestate, produce a new machine state with an updated typestate
store: τ ′(ρ′(xi)) = t′ (rule CALL). If t′ is the error typestate, the semantics “get stuck”
and the program terminates in an error.
For a sequence si ; sj , first execute si. If the program terminates in an error while
executing si, the semantics for the sequence statement “get stuck.” Otherwise, let
⟨ρ′, σ′, τ ′⟩ be the machine state after executing si. Execute sj in ⟨ρ′, σ′, τ ′⟩ (rule SEQ).

3 Initializing all variables before a program starts simplifies the language by removing the need for a new
expression.

ECOOP 2022

10:10 Accumulation Analysis

3.3.1.3 Sound Typestate Analysis

▶ Definition 11. A typestate analysis is a static program analysis. Its inputs are a program
P and a typestate system T = (A, τ). It reports call statements within P that may cause the
program to terminate in an error when running P .

▶ Definition 12. A typestate analysis is sound if it reports each call statement that causes
the program to terminate in an error at run time in any execution of the program.

3.3.1.4 Representation of Aliasing

Suppose that a typestate analysis has access to two oracle functions MustOracle(xi, s) and
MayOracle(xi, s) for aliasing information. Each oracle takes a variable xi and a program
statement s and returns a list of names – variables or arbitrarily-nested field load expressions
– that the input variable must (respectively, may) alias before the given statement.

MustOracle returns a list of names that definitely do alias xi at s. More formally, for
a sound oracle, if the list returned by MustOracle(xi, s) contains xj , then xi and xj are
definitely aliased before statement s on all executions. If the list does not contain xj , then
xi and xj may or may not be aliased before s. A trivial MustOracle that always returns an
empty list is sound.

MayOracle returns a list of names that might or might not alias xi at s. More formally,
for a sound oracle, if the list returned by MayOracle(xi, s) does not contain xj , then xi and
xj are definitely not aliased before statement s on all executions. If the list does contain xj ,
then xi and xj may or may not be aliased before s. A trivial MayOracle that always returns
every in-scope name in the program is sound.

These oracles can represent an external alias analysis, an on-demand alias analysis,
aliasing tracking built into the typestate analysis, etc. If the oracles are sound, then for
all xi and s, MustOracle(xi, s) ⊆ MayOracle(xi, s). For a traditional typestate analysis (as
defined in section 3.3.1.5) to be sound for an arbitrary typestate system such as the File
example in Figure 1, both oracles must be sound.4

3.3.1.5 Definition of Typestate Analysis

A typestate analysis is a fixpoint analysis that can be viewed as a dataflow analysis or an
abstract interpretation. It operates by maintaining a set of abstract stores, one for each
program point. An abstract store is a map from names to sets of estimated typestates. We
write ϕs(xi) for the estimated typestates of name xi before program statement s, and ϕ′

s(xi)
for those after. For any sequencing statement r;s, for all xi, ϕ′

r(xi) = ϕs(xi). The notation
ϕ̂s(xi.∗) means all names in ϕs that begin with xi.

At the beginning of the analysis, at every program point, the abstract store maps all
names5 to the set containing only the start state s0 of the typestate automaton A. Then, the
analysis processes each statement s using the following rules (which also appear in Figure 3)
until the set of abstract stores reaches a fixpoint:

4 For the language of section 3.3.1.1, it is trivial to construct a sound alias analysis that never includes
a name in the result of a MayOracle query unless the corresponding MustOracle query would also
include that name. In a richer programming language, the MayOracle is necessary to handle analysis
imprecision and control flow joins.

5 An analysis may use widening, abstraction, or iterative expansion of maps to handle the fact that the
set of names is infinite.

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:11

ϕs ⊢ ∀n ∈ ϕ̂s(xi.∗), n′ = n[xj/xi] ∧ T ′
n′ = ϕs(n′)

ϕ′
s = ϕs[∀n ∈ ϕ̂s(xi.∗), n 7→ T ′

n′]
ϕs ⊢ xi := xj ⇓ ϕ′

s

TS-ASSIGN

ϕs ⊢ ∀n ∈ ϕ̂s(xi.∗), n′ = n[xj .fk/xi] ∧ T ′
n′ = ϕs(n′)

ϕ′
s = ϕs[∀n ∈ ϕ̂s(xi.∗), n 7→ T ′

n′]
ϕs ⊢ xi := xj .fk ⇓ ϕ′

s

TS-LOAD

ϕs ⊢ ∀n ∈ ϕ̂s(xi.fj .∗), n′ = n[xk/xi.fj] ∧ T ′
n′ = ϕs(n′)∧

Amust
n = MustOracle(n, s) ∧Amay

n = MayOracle(n, s)
ϕ′

s = ϕs[∀n ∈ ϕ̂s(xi.fj .∗), n 7→ T ′
n′][∀an ∈ Amust

n , an 7→ T ′
n′]

[∀bn ∈ Amay
n −Amust

n , bn 7→ T ′
n′ ∪ ϕs(bn)]

ϕs ⊢ xi.fj := xk ⇓ ϕ′
s

TS-STORE

ϕs ⊢ T = ϕs(xi) T ′ =
⋃

t∈T
succ(t, mj , A)

Amust = MustOracle(xi, s) Amay = MayOracle(xi, s)
ϕ′

s = ϕs[xi 7→ T ′][∀a ∈ Amust , a 7→ T ′][∀b ∈ Amay −Amust , b 7→ T ′ ∪ ϕs(b)]
ϕs ⊢ xi.mj() ⇓ ϕ′

s

TS-CALL

ϕs ⊢ si ⇓ ϕ′
si

ϕ′
si

= ϕsj
ϕsj
⊢ sj ⇓ ϕ′

s

ϕs ⊢ si; sj ⇓ ϕ′
s

TS-SEQ

Figure 3 Inference rules for a traditional, sound typestate analysis. Each rule applies to some
statement s, which appears in the consequent. The notation x[y/z] means “x with each z replaced
by y.” The notation ϕ̂s(xi.∗) means all names in ϕs that begin with xi.

For an assignment xi := xj , for each n ∈ ϕ̂s(xi.∗), let n′ = n[xj/xi] – that is, n′ is n with
its xi replaced by xj – and let T ′

n′ = ϕs(n′), the abstract value of n′ in the pre-state. The
analysis updates the abstract store after s so that n is mapped to T ′

n′ : ϕ′
s(n) := T ′

n′ (rule
TS-ASSIGN). For all other names m in ϕs where m /∈ ϕ̂s(xi.∗), the analysis copies the
entry from the previous abstract store: ϕ′

s(m) := ϕs(m).
For a load statement xi := xj.fk, for each n ∈ ϕ̂s(xi.∗), let n′ = n[xj .fk/xi] and let
T ′

n′ = ϕs(n′). The analysis updates the abstract store after s so that n is mapped to T ′
n′ :

ϕ′
s(n) := T ′

n′ (rule TS-LOAD). For all other names m in ϕs where m /∈ ϕ̂s(xi.∗), the
analysis copies the entry from the previous abstract store: ϕ′

s(m) := ϕs(m).
For a store statement xi.fj := xk, for each n ∈ ϕ̂s(xi.fj .∗), let n′ = n[xk/xi.fj] and let
T ′

n′ = ϕs(n′). Then, for each n and its n′ and T ′
n′ , the analysis performs the following

steps (rule TS-STORE):
1. The analysis updates the abstract store after s so that n is mapped to T ′

n′ : ϕ′
s(n) := T ′

n′ .
2. The analysis queries MustOracle(n, s) (call the result Amust

n). For each an ∈ Amust
n ,

the analysis performs a strong update to the abstract store: ϕ′
s(an) := T ′

n′ .
3. The analysis queries MayOracle(n, s) (call the result Amay

n). For each element bn in
Amay

n − Amust
n – that is, variables that may be aliases but are not guaranteed to be

aliases – the analysis performs a weak update to the abstract store so that it maps bn

to T ′
n′ ∪ ϕs(bn): ∀bn ∈ Amay

n −Amust
n , ϕ′

s(bn) := T ′
n′ ∪ ϕs(bn).

ECOOP 2022

10:12 Accumulation Analysis

For all other names m in ϕs where m /∈ ϕ̂s(xi.fj .∗) ∧ ∀Amay
n , m /∈ Amay

n , the analysis
copies the entry from the previous abstract store: ϕ′

s(m) := ϕs(m).
For a call statement xi.mj(), let T ′ =

⋃
t∈ϕs(xi). The analysis performs the following

steps (rule TS-CALL):
1. If any t′ ∈ T ′ is error, the analysis reports an error for the statement. Note that while

the dynamic semantics (Figure 2) do not permit any value to be in the error typestate
(the program crashes instead), this analysis approximates the semantics statically.

2. The analysis updates the abstract store so that ϕ′
s(xi) := T ′.

3. The analysis queries MustOracle(xi, s) (call the result Amust). For each a ∈ Amust ,
the analysis performs a strong update to the abstract store: ϕ′

s(a) := T ′.
4. The analysis queries MayOracle(xi, s) (call the result Amay). For each b ∈ Amay−Amust ,

the analysis performs a weak update to the abstract store: ϕ′
s(b) := T ′ ∪ ϕs(b).

For a sequence s = si ; sj , the analysis first analyzes si, and then analyzes sj with the
resulting abstract store (rule TS-SEQ)). (Note that the analysis does not terminate in
the case of an error, but keeps reporting errors on subsequent statements.)

This standard formulation of a traditional typestate analysis is sound for any arbitrary
typestate system, as long as its aliasing oracles are sound:

▶ Theorem 13. A traditional typestate analysis is sound if its MustOracle and MayOracle
functions return sound results.

Proof. By co-induction on the dynamic semantics (Figure 2) and the rules for a traditional
typestate analysis (Figure 3). The key invariant is that the actual typestate to which a name
refers on any particular execution at some statement is always in the abstract store. ◀

3.3.1.6 Typestate Analysis with No Aliasing Information

▶ Definition 14. A typestate analysis with no alias information is a typestate analysis
whose MustOracle and MayOracle functions return empty lists for all arguments.

Intuitively, a typestate analysis “with no alias information” assumes that no aliasing
occurs in the program – even when making such an assumption is unsound.

A typestate analysis with no alias information has a simpler method call rule: it never
updates its abstract store in response to an aliasing query, so steps 3 and 4 may be omitted.
Similarly, there is a simpler store rule: only the n ∈ ϕ̂s(xi.fj .∗) need to be updated, because
all MayOracle and MustOracle queries (unsoundly) return false.

Informally, having no aliasing information means that the analysis might not be aware
that one or more transitions have occurred on the value to which some expression refers,
because those operations occurred via an alias. That is, the analysis’s estimate of the
typestate of an expression that actually refers (at run time) to a value v in typestate t is
must include a typestate reachable by a subsequence of the sequence of transitions that
results in τ(v) being t. Stated more formally:

▶ Lemma 15. Let R = ϕs(xi) be the set of estimated typestates produced by a typestate
analysis with no aliasing information for a variable xi before a statement s. Let S be the
trace of an arbitrary execution leading up to some occurrence of s, and let t = τ(ρ(xi)) be
the typestate of the actual value to which xi refers before that occurrence of s. Applying S to
the automaton leads to typestate t. There exists a typestate r ∈ R such that applying some
subsequence of S leads to r. That is, there is some estimated typestate r ∈ R that is reachable
by a subsequence of the transitions that lead to t.

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:13

init b_ok

error

a()

b()

a(), b()

Figure 4 An accumulation typestate automaton for the property “call a() before calling b()”.

ϕs ⊢ ϕ′
s = ϕs[xi 7→ s0]

ϕs ⊢ xi := xj .fk ⇓ ϕ′
s

TS-LOAD-FIX

Figure 5 A modified load rule for a typestate analysis with no aliasing information, which
preserves Lemma 15. s0 is the start state of the automaton A being checked.

Stated another way, Lemma 15 says that for every possible trace S through the program
that reaches s, there is at least one r ∈ R that “corresponds to” S, in the sense that r is
reachable by a subsequence of S.

Lemma 15 is not quite true of a typestate analysis as defined in Figure 3: field loads do
not necessarily preserve it. Because the store rule is unsound due to the unsoundness of the
aliasing oracles, the entry in the abstract store for a given field may not actually be related
to the value to which that name refers, due to possible aliasing. For example, consider the
following program, being analyzed with respect to the “only call b() after a()” typestate
automaton in Figure 4 (note that “Estimated state” and “Actual state” columns only show
entries for names that are relevant to the problem):

Program Estimated state (ϕs)6 Actual state (τ)7

x2 = x1 {x1.f 7→init, x2.f 7→init} {x1.f 7→init, x2.f 7→init}
x3.a() {x1.f 7→init, x2.f 7→init, x3 7→b_ok} {x1.f 7→init, x2.f 7→init, x3 7→b_ok}
x1.f = x3 {x1.f 7→b_ok, x2.f 7→init, x3 7→b_ok} {x1.f 7→b_ok, x2.f 7→init, x3 7→b_ok}
x2.f = x4 {x1.f 7→b_ok, x2.f 7→init} {x1.f 7→init, x2.f 7→init}
x5 = x1.f {x1.f 7→b_ok, x2.f 7→init, x5 7→b_ok} {x1.f 7→init, x2.f 7→init, x5 7→init }
x5.b() {x1.f 7→b_ok, x2.f 7→init, x5 7→b_ok} {x1.f 7→init, x2.f 7→init, x5 7→init }

This program (left side of the table above) leads to Lemma 15 being untrue at the final
statement, because the actual state of x5 (init) is not reachable from the estimated state
(b_ok). The key issue is aliasing: x1 and x2 are aliases, so x1.f and x2.f actually refer to the
same value. When x2.f is re-assigned to x4, the actual value to which x1.f refers changes –
but with no aliasing information, the typestate analysis is unaware, leading to the problem.

Note that this problem applies to arbitrary typestate systems: both accumulation
typestate systems and non-accumulation typestate systems. Lemma 15 discusses both.

6 Entries in ϕs are single-element sets. For simplicity of presentation, set notation has been elided.
7 Keys in τ are values. For simplicity of presentation, the necessary lookups in ρ and σ have been elided.

ECOOP 2022

10:14 Accumulation Analysis

There is a simple solution to this problem that makes Lemma 15 hold for a typestate
analysis with no aliasing information: update the load rule so that the analysis assumes
that all loads return a value whose typestate is the start state of the automaton (rule
TS-LOAD-FIX in Figure 5).

This rule trivially preserves Lemma 15 for field loads, and corresponds with how accu-
mulation analyses handle field loads in practice (see Section 5.2). Our proof assumes this
simpler load rule for the typestate analysis with no aliasing information. However, note
that this rule would make a traditional typestate analysis unsound (i.e., this rule makes
Theorem 13 untrue): in an arbitrary typestate analysis, the start state is not necessarily a
safe default assumption. A useful property of accumulation typestate automata, however, is
that every operation which might ever lead to an error on any path must necessarily lead to
an error from the start state – otherwise, the definition of accumulation typestate automaton
could not be met when considering the empty subsequence.

We now prove Lemma 15 (see Appendix A for the full proof):

Proof. By co-induction on the dynamic semantics and the rules for a typestate analysis
with no aliasing information. The interesting cases are method calls, assignments, and loads.
Method calls preserve the inductive invariant via the inductive hypothesis. Assignments
preserve the inductive invariant because the left-hand side’s estimate is updated to the
right-hand side’s estimate, which also preserves the invariant by the inductive hypothesis.
Loads preserve the inductive invariant only because of the modified rule described above,
which says that after a load, the estimate is always the start state, which trivially preserves
the invariant. ◀

3.3.2 Proof of Theorem 9
The proof is split into two parts – the forwards and backwards direction of the bi-implication,
which are Lemmas 16 and 17, respectively.

▶ Lemma 16. T is an accumulation typestate system =⇒ there exists a sound typestate
analysis with no aliasing information that can check T .

Proof. The proof is by contradiction. Suppose that an arbitrary typestate analysis with no
aliasing information (as defined by Definition 14) for an accumulation typestate system T

is unsound. That is, suppose that it fails to issue an error at some method call statement
s = xi.mj(), but the program terminates in an error in some execution e, because τ(ρ(xi))
after s would be error.

Let vi = ρ(xi). That is, xi actually refers to vi at8 s on execution e. mj must be the
transition that would lead vi to enter the error typestate at the call xi.mj(), because the
program would have already terminated if some other transition might have caused vi to
enter the error state before s was reached. Let R′ = ϕ′

s(xi) be the analysis’s estimate of the
possible typestates of xi after the call statement is executed. Because the analysis did not
issue an error at s, R′ must not contain the error typestate.

Since R′ does not contain the error typestate after observing mj , then mj must have
been a legal transition on each typestate in the analysis’ pre-state estimate R = ϕs(xi).
By Lemma 15, there is some typestate r ∈ R that is reachable via some subsequence of
the transitions that led to the actual typestate t = τ(ρ(xi)) that vi was in during e before
transition mj was applied.

8 s must be a method call statement, so vi is the same before and after s.

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:15

The typestate r is reachable by a subsequence of the sequence of transitions that actually
occurred on vi that led it to reach t, but mj is a legal transition in r. This is a contradiction:
mj must be both an error-inducing and a legal transition in r. mj must be an error-inducing
transition in r by the definition of an accumulation typestate system (Definition 7): mj must
be an error-inducing transition in typestates reachable via subsequences of the transitions
that lead to t, including r. But, mj must also be a legal transition in r because the analysis
did not issue an error when its estimate included r. Since one transition cannot be both
error-inducing and legal, by contradiction, the analysis must have been sound. ◀

▶ Lemma 17. T is an accumulation typestate system ⇐= there exists a sound typestate
analysis with no aliasing information that can check T .

Proof. The proof is by contradiction. Suppose that there is a typestate analysis with no
aliasing information that can soundly check a typestate system T that is not an accumulation
typestate system. Since T is not an accumulation typestate system, there exists some
sequence of transitions S = t1, . . . , ti that ends in an error typestate that has a subsequence
S′ that ends in ti that does not end in an error typestate. Let D be the difference between
S′ and S: the sequence of transitions that appear in S but do not appear in S′.

Construct a program P with two variables xS′ and xD. The first statement in P is xD

:= xS′ , which aliases these expressions. Then augment the program in the following manner:
for each transition t ∈ S, if t is an element of S′, then add the statement xS′ .t() to P .
Otherwise, add the statement xD.t() to P .

Because xS′ and xD were aliased by P ’s first statement, we know that they both point
to a single value v to which every transition in S has been applied by the end of P ; thus, P

terminates in an error when the final transition ti is applied. However, no error is issued:
the analysis will not issue an error for xS′ .ti(), which is the program statement that causes
the error, because the sequence R that was applied to xS′ is a legal sequence of transitions
(and the error-inducing transition ti is guaranteed to be in S′, not in D, by definition).
This is a contradiction of our original premise that a typestate analysis with no aliasing
information could soundly check T : an error-inducing transition (ti) occurs, but the analysis
with no aliasing information fails to issue an error. Thus, T must have been an accumulation
typestate system. ◀

3.4 Discussion: Accumulating Sets vs. Accumulating Subsequences
Section 3 uses the term “accumulation” to refer to two subtly different things. Accumula-
tion analyses (Definition 4) compute sets of operations. Accumulation typestate systems
(Definition 7) are defined by (sub)sequences of operations.

Definition 4 of accumulation analysis uses sets because that is how accumulation analysis
is defined and implemented in prior work [35, 37]. For an alternate definition of accumulation
analysis in terms of subsequences, each goal operation would have an enabling sequence
rather than an enabling set. Implementing an accumulation analysis based on this alternate
definition would allow us to check “accumulation-like” properties that cannot be expressed
as sets. For example, such an analysis could soundly check a property such as “call a() at
least twice before calling b()” (i.e., a goal transition enabled by counting) or a property such
as “call a() and b(), in that order, before calling c()” (i.e., a goal transition enabled by
ordering). This generalization of the concept of accumulation from the specific accumulation
analyses used in prior work is one of our contributions.

In our literature survey (Section 4), we found three specifications with a goal transition
enabled by ordering, but we did not find any enabled by counting. For example, in Figure 12
of [56], the authors describe a mined typestate specification for the Java KeyAgreement

ECOOP 2022

10:16 Accumulation Analysis

API. This API contains a method generateSecret(). Calling generateSecret() before init()
and doPhase() is an error, so generateSecret() is a goal transition. However, init() and
doPhase() also must be ordered: calling doPhase() before init() is also an error. The other
two specifications in the literature (which appear in [56, 22]) that rely on ordering had a
similar character to this example: describing some multi-stage initialization property where
the initialization steps must be performed in some specific order.

4 Literature Survey

This section aims to answer the research question: RQ1: What fraction of typestate
problems can be solved modularly with an accumulation analysis?

We will approximate the answer by using the population of typestate problems that
appear in the scientific literature. Note that this is likely to be an under-approximation of
incidence in practice, because scientific papers usually address the most complex problems.

We performed a literature survey of papers in the research literature since 2000 that
contain typestate specifications. We chose the year 2000 because a similar survey [18], which
we discuss in section 4.2.2.1, was published in 1999. For each typestate specification that
we discovered, we used the decision procedure in Algorithm 1 to determine whether the
specification was an accumulation typestate system – and therefore soundly analyzable without
any aliasing information by Theorem 9. The vast majority of the papers that we analyzed
use typestate for some small number of examples. We report on these papers in aggregate
and describe specific, common examples (Section 4.2.1). There are two outliers [18, 4] that
reported on categories containing hundreds of specifications, which we discuss in detail
(Section 4.2.2).

The remainder of this section details our methodology, discusses the results, and gives
examples of specifications that can and cannot be checked via accumulation.

4.1 Methodology
We searched Google Scholar for papers since 2000 whose full-text includes “typestate”,
resulting in 1,760 hits. (We originally included “type-state” and “type state” as search terms,
but discovered no computer science results in the first 100 hits for each that “typestate” did
not also return.) We discarded any paper that was not published in the research track of a
reputable computer science conference or journal or was duplicative with another paper in the
dataset (e.g., for work with both a conference paper and a journal extension, we only included
the journal extension), resulting in a set of 187 papers. The authors are familiar with the
relevant conferences and journals in programming languages and software engineering, and
we used our judgment for these, erring on the side of inclusivity. For conferences or journals
outside PL and SE, we included papers in any venue with a CORE ranking of A or A*.

We then examined each of the remaining papers in detail and recorded how many typestate
specifications they contained, which specifications those were, and which of the specifications
were accumulation typestate systems. When recording which specifications occurred in
each paper we examined, we also recorded whether the specifications were duplicates of
specifications that appeared in other papers. Among the papers we examined, 102 (≈ 55% of
those examined closely, and ≈ 6% of all Google Scholar hits) contained one or more typestate
specifications. The venues that contributed papers with one or more typestate specifications
to this study are: ECOOP (12), ESEC/FSE (12), ICSE (12), OOPSLA (10), PLDI (8),
ISSTA (7), ASE (6), POPL (5), CCS (4), SAS (4), TOSEM (4), TSE (4), CC (2), ASPLOS
(1), CAV (1), EuroSys (1), ICPC (1), IWACO (1), SAC (1), SOSP (1), TOPLAS (1), VMCAI
(1), WWW (1).

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:17

Table 1 The results of the literature survey. “TSA” stands for “TypeState Automata”; “ATSA”
stands for “Accumulation TypeState Automata”. All specification counts are without de-duplication.

Dataset Source TSA ATSA ATSA%
Papers since 2000 with <20 TSAs 101 scientific papers 302 67 22%
Dwyer et al. (1999) [18] 34 papers, tools, students 511 306 60%
Beckman et al. (2011) [4] 4 real Java projects 542 182 34%
Total All of the above 1355 555 41%

4.2 Results
Table 1 summarizes the results. This paper’s artifact9 contains our analysis of each relevant
paper. The artifact also contains a finite-state machine for each typestate problem (as defined
in Section 4.2.1 below) we saw and the list of the papers we saw it in.

4.2.1 Papers Containing Examples
These 101 papers contain 302 specifications, with a mean of 3 and a median of 2.

22% of these specifications are accumulation typestate systems. However, there is a
significant amount of duplication between the papers in this dataset – many papers use the
same few examples of typestate automata to motivate their general work on typestate.

We de-duplicated the typestate automata in these papers by combining instances of
the same automaton into a single typestate problem: for example, we counted every one
of the 19 papers that we observed using the classic File example (Figure 1) as a single
instance of the File typestate problem. Considering problems rather than specifications, we
found that these 101 papers only contain 114 problems. Of those 114, 31 are accumulation
typestate problems (27%), indicating that there is slightly more duplication among the
non-accumulation typestate specifications. Perhaps this is because papers dealing with
general typestate analysis want to motivate their use of an alias analysis – which requires
at least one non-accumulation typestate example. We discuss this discrepancy further in
Section 4.3.

Next, we give the three most common examples of typestate problems that are accumula-
tion and are not accumulation typestate systems.

4.2.1.1 Examples of Typestate Problems That Are Accumulation

The problem of detecting resource leaks (Figure 6) appears 16 times across 14 papers10 [17,
39, 72, 37, 64, 42, 43, 13, 21, 19, 3, 1, 63, 51]. This problem was already known to be
accumulation [37].

The need to call a distinguished initialization method on an object after its constructor
finishes but before using it appears 7 times across 4 papers [24, 17, 57, 69]. For example,
when using a Socket object, one must call connect() before using it to send data (Figure 7).

A third common accumulation problem is that of object initialization: before an object is
fully constructed, all of its logically-required fields must be set to reasonable values (Figure 8).
This pattern appears 6 times across 6 papers [35, 36, 54, 21, 27, 30]. A variant of this problem

9 https://doi.org/10.5281/zenodo.5771196
10We tried to stay as true as possible to the story each paper presented, which is why some automata

appear multiple times in the same paper. The paper treated them differently, but we believe them to
be the same example. For instance, [17] discusses memory leaks and leaked sockets, which are both
resource leaks.

ECOOP 2022

https://doi.org/10.5281/zenodo.5771196

10:18 Accumulation Analysis

open closed

error

close()

go out of scope

go out of scope, close()

Figure 6 The typestate automaton for a resource leak, which is an accumulation typestate
problem.

unconn. conn.

error

connect()

send()

send(), connect()

Figure 7 The typestate automaton for connecting a socket before sending data using it, which is
an accumulation typestate problem.

– which arises when using the builder pattern – was known to be accumulation [35]. However,
our literature survey has shown that bespoke analyses for other kinds of object initialization
are also, in effect, bespoke accumulation analyses. For example, masked types [54] are a
type system for ensuring that before a constructor exits, all non-null fields of the constructed
class have been set to non-null values. This type system can be viewed as an accumulation
analysis: the goal transition is the end of the constructor, and the enabling operations are
the setting of the fields.

4.2.1.2 Examples of Typestate Problems That Are Not Accumulation

The most common non-accumulation typestate problem is “don’t read or write to a stream
or file after it is closed” (Figure 9), which appeared 31 times across 17 papers [24, 8, 10, 46,
25, 57, 5, 6, 53, 34, 44, 19, 71, 45, 69, 68, 11]. This problem is related to the file specification
in Figure 1, but is slightly weaker – it assumes that the file is never re-opened. That this
example is not accumulation demonstrates that accumulation typestate automata are a
different category than automata without loops other than self-loops (a category that includes
both this one and the three accumulation typestate examples in section 4.2.1.1).

“Do not update a collection while iterating over it” (Figure 10) appeared 21 times across
14 papers [9, 65, 47, 26, 51, 68, 8, 10, 33, 32, 52, 53, 7, 46]. This property is representative of
an important class of properties that are never accumulation typestate systems: “disable x

after y” properties that forbid the programmer from performing operation x once operation y

has been performed. The key reason that these properties cannot be checked without aliasing
information – and are therefore not accumulation – is that that the “disabling” operation
(“start iterating” in this example) might be performed through any alias, but once it occurs,
“update” must be prevented for all aliases.

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:19

nonenew Builder()

foo

bar

allerror

setFoo()

setBar()

build()

setFoo()

setBar()
build()

setFoo()

setBar()

build()

setFoo(), setBar(),
build()

Figure 8 The typestate automaton for setting the required fields of an object before it is built,
which is an accumulation typestate problem. This instance of the general pattern is specifically for
a builder-pattern-style object construction pattern of a class with two required fields foo and bar.

open closed error
close()

read(),
write()

close()read(), write()

Figure 9 The typestate automaton for not reading or writing a stream after it has been closed,
which is not an accumulation typestate problem.

stop’d it’ing error

start iterating

stop iterating

update

next()update, next()

Figure 10 The typestate automaton for not updating a collection during iteration, which is not
an accumulation typestate problem. Note that this automaton includes operations that are not
method calls (e.g., “start iterating”, which can refer to a while loop, a for loop, a map or filter
operation, etc.).

ECOOP 2022

10:20 Accumulation Analysis

The classic full file specification (Figure 1) appeared 20 times across 19 papers [28, 70,
59, 25, 29, 62, 67, 57, 69, 66, 1, 49, 16, 38, 2, 15, 72, 19, 20]. Some parts of this specification
could be enforced with an accumulation analysis if a slightly different design had been chosen
for the API. In particular, if files could not be re-opened once they had been closed, enforcing
“only call close after open” and “only call read after open” would become accumulation
properties. Since most programmers usually create a new File object rather than re-using
an existing one, this restriction would not be particularly burdensome, but would enable
easier analysis.

4.2.2 Papers With Many Typestates
This section discusses two papers that report on large collections of typestate automata.

4.2.2.1 Patterns in Property Specifications for Finite-State Verification

The first paper reports on 555 typestate-like specifications collected from a survey of 34
papers from the scientific literature, verification tool authors, and students in 1999 [18].
These 555 specifications were not de-duplicated. This paper inspired us to conduct the
updated survey in Section 4.2.1. Because it precedes the start date for our survey, it is not
included in the 187 papers in Section 4.2.1. We include its data here for completeness, and
to discuss the differences between their results and ours (Section 4.3).

The primary goal of the paper was to categorize “finite-state properties” – that is, those
expressible as finite-state machines – into patterns to help users of verification tools that take
an FSM as input (such as typestate verifiers) create their own specifications by instantiating
existing patterns. They categorized 511 of the 555 specifications into eight “patterns.” Our
analysis of these patterns is that instances of 5 of the 8 are always accumulation typestate
systems (Existence, Precedence, Chain Precedence, Response, Chain Response), and some
instances of a 6th (Bounded Existence, when the property is “at least” rather than “exactly”
or “at most”) are, as well. The 5 “always accumulation” patterns account for 306 of the 511
specifications that were categorized (60%).

4.2.2.2 An Empirical Study of Object Protocols in the Wild

The second paper [4] studies the object protocols – that is, the behavioral specifications – of
all classes in four large, open-source Java projects (one of which is the Java standard library).
They also categorized these specifications based on common characteristics, much like the
previous study, but they created their own set of categories.

The found 648 object protocols, which were not de-duplicated. We exclude their “type
qualifier” category (106 specifications), which contains classes that behave as one of a fixed
set of subtypes and can never change state. The remaining 542 protocols are typestate
specifications.

Instances of their most common category, Initialization, are always accumulation typestate
specifications. This category contains 182 of the 542 protocols (34%). The other 6 categories
(66%) are not accumulation.

4.3 Discussion
Both of the papers that reported on large sets of typestate properties included larger
proportions of accumulation properties than our literature survey found otherwise. One
possible explanation is that papers on novel analysis techniques tend to include “exciting” or

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:21

“challenging” problems – and, in the case of general typestate analysis, those problems usually
involve aliasing (perhaps to justify the need for an alias analysis when analyzing an arbitrary
typestate system, as we do in Section 1 in reference to Figure 1). Another possible explanation
is that neither of the papers that reported on large sets of specifications de-duplicated their
specifications, so maybe they contain many duplicate accumulation properties. When we
de-duplicated the specifications in Section 4.2.1, we found that non-accumulation typestate
properties tended to be duplicated more often than accumulation typestate properties. This
suggests that our results may be understating the prevalence of accumulation properties. If
our results understate how common accumulation properties are in practice, that is good
news for practitioners interested in applying verification: we have shown that accumulation
properties are easier to check than general typestate properties.

Beckman et al. [4] is the most relevant to practical programmers interested in deploying
accumulation analysis. A promising avenue of future work would be a similar study to
Beckman et al.’s [4] (section 4.2.2.2) on a larger corpus of software combined with automation
of our decision procedure for checking whether a typestate specification is accumulation,
which would permit a more reliable estimate of the percentage of typestate specifications
that appear in practice that are accumulation.

Another observation is the relationship between different typestate specifications of the
same type. For example, three of the examples we gave in Section 4.2.1 are applicable to File
objects: resource leaks (Figure 6), the classic file specification (Figure 1), and reading/writing
a closed file (Figure 9). Enforcing all these properties with a single typestate analysis would
necessarily require alias analysis, but enforcing just the resource leak property does not –
and the same might be true of other partial specifications, such as “only call read after open”
– especially if files cannot be re-opened after being closed. We suspect this may be a reason
why prior work did not identify a category equivalent to accumulation: many accumulation
properties are sub-properties of the full typestate specification of the relevant type. That
said, accumulation properties are often interesting on their own – resource leaks, for example,
are harder to detect dynamically than most other types of misuses of files – and we have
shown that they are easier to enforce statically.

5 Practicality of Accumulation Analysis

We implemented a general accumulation checker for Java using the Checker Framework [48]
and have made it publicly available.11 We have re-implemented the bespoke “accumulation
for the builder pattern” analysis from our prior work [35] on top of it, and our “accumulation
for resource leaks” analysis [37] used the general infrastructure from its inception. An
accumulation analysis could be implemented modularly using any sound program analysis
technique: dataflow analysis, abstract interpretation, type systems, etc. We chose a type
system for convenience, and because types are naturally modular: type annotations on
procedure boundaries and fields act as summaries, and local type inference infers operations
that may have occurred within each procedure. Our implementation tracks enabling sets
rather than enabling sequences (see Section 3.4).

We tested our implementations on the test suites of the bespoke analyses from our prior
work and on the case studies that those papers describe, and found that the implementations
using the common framework produced the expected results. The test suites contain both

11 https://checkerframework.org/manual/#accumulation-checker

ECOOP 2022

https://checkerframework.org/manual/#accumulation-checker

10:22 Accumulation Analysis

positive examples (i.e., expected errors) and negative examples (i.e., safe code). The test
suites consist of 153 source files comprising 5,452 lines of non-comment, non-blank Java code.
The case studies together comprise 635,006 lines of non-comment, non-blank Java code.

Our prior work also demonstrates the utility and practicality of accumulation analyses
(see Section 6.1). Here are some examples from prior work:

An accumulation analysis for verifying the absence of an initialization-related security
vulnerability had 100% recall (as this paper proves, the accumulation analysis was sound!)
and 82% precision – 16 true bugs vs. 3 false positives – in 9 million non-comment,
non-blank lines of Java code (table 1 of [35]).
An accumulation analysis for verifying the absence of resource leaks had 100% recall and
26% precision on 3 pieces of distributed-systems infrastructure used as a benchmark by
prior work (table 4 of [37]). This compares favorably to the 13% recall and 25% precision
achieved by an unsound heuristic bug-finder and the 7% recall and 50% precision achieved
by a state-of-the-art typestate-based analysis that uses a (very slow) whole-program alias
analysis. This precision might seem disappointing for a bug-finding tool, but we think it
is acceptable for a verification tool – especially for an important and difficult problem
such as resource leaks.

If the low precision of 26% for resource leaks is primarily due to lack of whole-program
alias analysis – that is, if precision is much higher with comprehensive aliasing information –
then there might be little point in running an accumulation analysis: it might be better to
run a slow standard typestate analysis and reduce the human effort to examine false positives.
This is not the case, however. We examined each false positive in [37] to determine its
cause. Even with a hypothetical alias analysis that can reason precisely and flow-sensitively
about the contents of collection data structures like lists or maps (which is known to be
very challenging), the typestate analysis would achieve only 34% precision. A more realistic
state-of-the-art (and still slow) alias analysis would give less than half of that benefit. Proving
the absence of resource leaks is a difficult problem, and aliasing is not the only complication
– other significant causes of false positives included bugs in the underlying analysis platform,
the need to reason about nullness, and the need to reason about boolean logic.

5.1 Aliasing in Practical Accumulation Analyses
A benefit of the accumulation analysis approach is that the core accumulation analysis
(Definition 4) is sound even without any alias reasoning, by Corollary 10. But it is easy
to utilize aliasing information that is readily available (or cheap to compute) to improve
precision. In practice, using some aliasing information is necessary to achieve acceptable
precision, and untracked aliasing is usually the single biggest cause of remaining false positives
even after acceptable precision has been achieved.

Our prior work [35, 37] used cheap, targeted must-alias reasoning to improve the precision
– that is, the false positive rate – of the analyses. For example, section 4.3 of [35] and sections
3–5 of [37] give lightweight aliasing analyses. These lightweight alias analyses compute only
the aliasing information necessary to remove false positives that occurred in practice for
these analyses, which makes them much cheaper than computing precise aliasing information
for all variables (of types with typestate automata) in the program, as a whole-program alias
analysis would.

Our general accumulation checker includes both the suite of built-in cheap sound must-
alias analyses from prior work and hooks for analysis developers to add further aliasing
information.

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:23

5.2 Handling Other Features of Real Programming Languages
The core calculus in section 3.3.1.1 does not model features that are present in a practical
programming language, including unanalyzed dependencies, open programs, class definitions,
conditionals, inheritance, etc. Our formalism already handles some of these: for example,
handling conditionals requires a may-aliasing oracle and estimated sets of typestates rather
than a single typestate, both of which our formalism includes. Extending our proofs to other
features is straightforward and does not require new proof techniques.

An advantage of accumulation analysis is that in practice it is possible to soundly handle
code with unknown or “arbitrarily-bad” effects – including unmodeled features of the target
language – by reverting to a safe default, in the same manner as an abstract interpretation
might “go to top” in the presence of side effects. For example, if a call to an un-analyzed
method might re-assign a field, an accumulation analysis can conservatively assume that
that field’s value is in the typestate automaton’s start state after the call. This is sound
as a consequence of Lemma 15 and the definition of accumulation (in the same manner
as Lemma 16): the start state is necessarily a sound default assumption, because all goal
transitions must be forbidden in it.

By contrast, in a non-accumulation typestate system it is not sound to fall back to the
automaton’s start state. For example, consider the File example in Figure 1: the start state
is closed, where open() is a legal call. But treating all field reads as returning closed files
would not be sound, because if the underlying File value was actually in the open state, a
sound analysis should issue an error for a subsequent call to open().

An advantage of our choice of a pluggable type system to implement our accumulation
analyses is that the “start state” of a field can be changed by changing its declared type to
specify a different typestate. This restricts that field to only contain values whose typestates
are in the states reachable from the declared typestate – that is, the sub-automaton composed
of states reachable from the declared type. For the accumulation analyses we implemented,
we found that this ability to refine a field’s declared type to be sufficient to enable precise
analysis of field reads.

6 Related Work

6.1 Previous Work on Accumulation
Our prior work [35, 37] uses accumulation analyses to solve specific typestate-like problems
(object initialization via the builder pattern and resource leak prevention). One of these [35]
gives an informal relationship between accumulation and typestate: we claimed that a
typestate automaton can be checked with an accumulation analysis if “(1) the order in which
operations are performed does not affect what is subsequently legal, and (2) the accumulation
does not add restrictions; that is, as more operations are performed, more operations become
legal.” We did not substantiate this definition with a proof, and it is not quite equivalent to
the definition of an accumulation typestate system we use in this paper, which does permit
some kinds of ordering properties (see Section 3.4). This paper makes more precise claims
and provides a proof that the analyses are sound (Corollary 10).

6.2 Heap Monotonic Typestates
Heap-monotonic typestates [22] are a class of typestate that, like accumulation typestate
systems, do not require aliasing information for soundness. A heap monotonic typestate
system is one in which the statically observable invariants of the relevant type become
monotonically stronger as an object transitions through its typestates. Every heap-monotonic
typestate system is an accumulation typestate system.

ECOOP 2022

10:24 Accumulation Analysis

The present work goes further than the work on heap-monotonic typestates in three
important ways. First, we have shown exactly which typestate systems (the accumulation
typestate systems) can be checked without aliasing; heap-monotonic typestate systems were
proven to be sound without aliasing information, but not proven to encompass all typestate
systems that can be soundly checked without aliasing. Second, we have surveyed the literature
to locate examples of typestate systems that can be checked soundly without aliasing; the
paper on heap-monotonic typestates gives a few examples, but no procedure for discovering
more. Third, we have implemented practical accumulation analyses: the prior work on
heap-monotonic typestates was, to the best of our knowledge, entirely theoretical.

6.3 Other Categories of Typestate Systems

Others have identified interesting sub-categories of typestate systems that may be amenable
to different kinds of analysis. While as far as we are aware we are the first to identify
the accumulation typestate systems, the omission-closed typestate systems [23] are a close
relative. An omission-closed typestate system is one in which every subsequence of every
valid (i.e., not ending in the error state) path is also a valid path. In other words, omission-
closed properties are those whose valid paths are closed under subsequence. By contrast,
accumulation typestate systems are those whose error-inducing paths are closed under
subsequence, if the last error-inducing transition is held constant. Unlike accumulation
typestate systems, not all omission-closed typestate systems can be checked soundly without
aliasing: for example, the typestate system for a File object whose FSM is defined by the
regular expression “read*;close” is omission-closed, but cannot be checked soundly without
aliasing information, because it is an error to call “close” more than once – or, put another
way, “close” disables itself. Omission-closed typestate properties are of interest because they
can be verified in polynomial time for shallow programs – programs where all pointers are
“single-level”: that is, where no pointer refers to a value that itself contains a pointer.

6.4 Typestate Surveys

Section 4.2.2 describes two previous papers that report on large quantities of typestate
specifications [4, 18]. We have extended their work by surveying 101 papers that neither of
those works considered and locating all typestates within them, and by identifying which
typestate systems are accumulation typestate systems.

6.5 Practical Typestate Analyses

There have been many attempts to improve the scalability of typestate analyses. We mention
only some of the most recent here. Rapid [21] is a modern typestate analysis built at AWS.
Rapid’s scalability is a design choice: it is intentionally unsound and therefore scales by
not tracking all aliasing. Another recent example is Grapple [72], which uses a novel graph-
reachability algorithm and a modern alias analysis together. Some of Grapple’s optimizations
make it unsound despite access to aliasing information. Because Grapple does track aliasing,
it scales much poorly than accumulation-based systems: for example, Grapple is more
than an order of magnitude slower than an accumulation-based approach to resource-leak
detection [37].

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:25

6.6 Typestate With Aliasing Restrictions
Another method to avoid the need to do an expensive whole-program alias analysis is to limit
the programmer’s use of aliasing. Examples include linear or affine type systems [16, 61], role
analysis [40], ownership types [14, 55], and access permissions [7]. Accumulation analyses,
unlike all of these approaches, do not impose any restrictions on the programming model.

6.7 Other Work on Typestate
Typestate is well-studied in the scientific literature, and there is not space to give a full
survey here. However, our artifact12 mentions all the papers that we examined as part of
our literature survey (Section 4).

7 Conclusion

Soundly checking an accumulation typestate system is significantly cheaper than soundly
checking an arbitrary typestate system because it is not necessary to compute exhaustive
aliasing information. Since the expense of computing exhaustive aliasing information has
been a key barrier for the adoption of sound typestate analyses in practice, we believe that
accumulation analysis is a promising approach for the estimated 41% (Table 1) of typestate
specifications that are actually accumulation typestate specifications. Typestate analysis
designers or users can use our work to check whether their specification is an accumulation
typestate specification, and if it is, they can use an accumulation analysis – gaining an order
of magnitude or more in analysis speed at only a small cost in precision.

References
1 Stephen Adams, Thomas Ball, Manuvir Das, Sorin Lerner, Sriram K. Rajamani, Mark Seigle,

and Westley Weimer. Speeding up dataflow analysis using flow-insensitive pointer analysis. In
International Static Analysis Symposium, pages 230–246. Springer, 2002.

2 Jonathan Aldrich, Joshua Sunshine, Darpan Saini, and Zachary Sparks. Typestate-oriented
programming. In Proceedings of the 24th ACM SIGPLAN conference companion on Object
oriented programming systems languages and applications, pages 1015–1022, 2009.

3 Matthew Arnold, Martin Vechev, and Eran Yahav. Qvm: An efficient runtime for detecting
defects in deployed systems. In Proceedings of the 23rd ACM SIGPLAN conference on
Object-oriented programming systems languages and applications, pages 143–162, 2008.

4 Nels E. Beckman, Duri Kim, and Jonathan Aldrich. An empirical study of object protocols
in the wild. In European Conference on Object-Oriented Programming, pages 2–26. Springer,
2011.

5 Kevin Bierhoff and Jonathan Aldrich. Lightweight object specification with typestates. ACM
SIGSOFT Software Engineering Notes, 30(5):217–226, 2005.

6 Kevin Bierhoff and Jonathan Aldrich. Modular typestate checking of aliased objects. ACM
SIGPLAN Notices, 42(10):301–320, 2007.

7 Kevin Bierhoff, Nels E. Beckman, and Jonathan Aldrich. Practical API protocol checking
with access permissions. In European Conference on Object-Oriented Programming, pages
195–219. Springer, 2009.

8 Eric Bodden. Efficient hybrid typestate analysis by determining continuation-equivalent states.
In 2010 ACM/IEEE 32nd International Conference on Software Engineering, volume 1, pages
5–14. IEEE, 2010.

12 https://doi.org/10.5281/zenodo.5771196

ECOOP 2022

https://doi.org/10.5281/zenodo.5771196

10:26 Accumulation Analysis

9 Eric Bodden, Laurie Hendren, and Ondřej Lhoták. A staged static program analysis to
improve the performance of runtime monitoring. In European Conference on Object-Oriented
Programming, pages 525–549. Springer, 2007.

10 Eric Bodden, Patrick Lam, and Laurie Hendren. Finding programming errors earlier by
evaluating runtime monitors ahead-of-time. In Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of software engineering, pages 36–47, 2008.

11 Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In 2011 33rd
International Conference on Software Engineering (ICSE), pages 241–250. IEEE, 2011.

12 Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado, Periklis Akritidis, Austin
Donnelly, Paul Barham, and Richard Black. Fast byte-granularity software fault isolation.
In Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles, pages
45–58, 2009.

13 Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. Practical memory leak detection
using guarded value-flow analysis. In Proceedings of the 28th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 480–491, 2007.

14 Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. Ownership types: A survey. In
Aliasing in Object-Oriented Programming. Types, Analysis and Verification. Springer, Berlin,
Heidelberg, 2013.

15 Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive program verification in
polynomial time. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 57–68, 2002.

16 Markus Degen, Peter Thiemann, and Stefan Wehr. Tracking linear and affine resources with
Java(X). In European Conference on Object-Oriented Programming, pages 550–574. Springer,
2007.

17 Robert DeLine and Manuel Fähndrich. Enforcing high-level protocols in low-level software.
In Proceedings of the ACM SIGPLAN 2001 conference on Programming language design and
implementation, pages 59–69, 2001.

18 Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in property specifica-
tions for finite-state verification. In International Conference on Software Engineering, pages
411–420, 1999.

19 Matthew B. Dwyer, Madeline Diep, and Sebastian Elbaum. Reducing the cost of path
property monitoring through sampling. In 2008 23rd IEEE/ACM International Conference on
Automated Software Engineering, pages 228–237. IEEE, 2008.

20 Matthew B. Dwyer and Rahul Purandare. Residual dynamic typestate analysis exploiting
static analysis: results to reformulate and reduce the cost of dynamic analysis. In Proceedings
of the twenty-second IEEE/ACM international conference on Automated software engineering,
pages 124–133, 2007.

21 Michael Emmi, Liana Hadarean, Ranjit Jhala, Lee Pike, Nicolás Rosner, Martin Schäf, Aritra
Sengupta, and Willem Visser. RAPID: Checking API usage for the cloud in the cloud. In
Proceedings of the 29th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 1416–1426, 2021.

22 Manuel Fähndrich and K. Rustan M. Leino. Heap monotonic typestates. In IWACO 2003: In-
ternational Workshop on Aliasing, Confinement and Ownership in object-oriented programming,
pages 58–72, Darmstadt, Germany, July 2003.

23 John Field, Deepak Goyal, G. Ramalingam, and Eran Yahav. Typestate verification: Abstrac-
tion techniques and complexity results. In International Static Analysis Symposium, pages
439–462. Springer, 2003.

24 Stephen J. Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel Geay. Effective
typestate verification in the presence of aliasing. ACM Transactions on Software Engineering
and Methodology (TOSEM), 17(2):1–34, 2008.

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:27

25 Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers. In Proceedings
of the ACM SIGPLAN 2002 Conference on Programming language design and implementation,
pages 1–12, 2002.

26 Asya Frumkin, Yotam M. Y. Feldman, Ondřej Lhoták, Oded Padon, Mooly Sagiv, and Sharon
Shoham. Property directed reachability for proving absence of concurrent modification errors.
In International Conference on Verification, Model Checking, and Abstract Interpretation,
pages 209–227. Springer, 2017.

27 Mark Gabel and Zhendong Su. Testing mined specifications. In Proceedings of the ACM
SIGSOFT 20th International Symposium on the Foundations of Software Engineering, pages
1–11, 2012.

28 Qi Gao, Wenbin Zhang, Zhezhe Chen, Mai Zheng, and Feng Qin. 2ndStrike: toward manifesting
hidden concurrency typestate bugs. ACM Sigplan Notices, 46(3):239–250, 2011.

29 Ronald Garcia, Éric Tanter, Roger Wolff, and Jonathan Aldrich. Foundations of typestate-
oriented programming. ACM Transactions on Programming Languages and Systems (TO-
PLAS), 36(4):1–44, 2014.

30 Christian Haack and Erik Poll. Type-based object immutability with flexible initialization. In
European Conference on Object-Oriented Programming, pages 520–545. Springer, 2009.

31 Graham Higman. Ordering by divisibility in abstract algebras. Proceedings of the London
Mathematical Society, 3(1):326–336, 1952.

32 Jeff Huang, Qingzhou Luo, and Grigore Rosu. GPredict: Generic predictive concurrency
analysis. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering,
volume 1, pages 847–857. IEEE, 2015.

33 Dongyun Jin, Patrick O’Neil Meredith, Dennis Griffith, and Grigore Rosu. Garbage collection
for monitoring parametric properties. ACM SIGPLAN Notices, 46(6):415–424, 2011.

34 Pallavi Joshi and Koushik Sen. Predictive typestate checking of multithreaded Java programs.
In 2008 23rd IEEE/ACM International Conference on Automated Software Engineering, pages
288–296. IEEE, 2008.

35 Martin Kellogg, Manli Ran, Manu Sridharan, Martin Schäf, and Michael D. Ernst. Verifying
object construction. In ICSE 2020, Proceedings of the 42nd International Conference on
Software Engineering, pages 1447–1458, Seoul, Korea, May 2020.

36 Martin Kellogg, Martin Schäf, Serdar Tasiran, and Michael D. Ernst. Continuous compliance.
In ASE 2020: Proceedings of the 35th Annual International Conference on Automated Software
Engineering, pages 511–523, Melbourne, Australia, September 2020.

37 Martin Kellogg, Narges Shadab, Manu Sridharan, and Michael D. Ernst. Lightweight and
modular resource leak verification. In ESEC/FSE 2021: The ACM 29th joint European
Software Engineering Conference and Symposium on the Foundations of Software Engineering
(ESEC/FSE), Athens, Greece, August 2021.

38 Naoki Kobayashi. Types and higher-order recursion schemes for verification of higher-order pro-
grams. In Proceedings of the 36th annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 416–428, 2009.

39 Goh Kondoh and Tamiya Onodera. Finding bugs in Java Native Interface programs. In
Proceedings of the 2008 international symposium on Software testing and analysis, pages
109–118, 2008.

40 Viktor Kuncak, Patrick Lam, and Martin Rinard. Role analysis. In Proceedings of the 29th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages 17–32,
2002.

41 William Landi and Barbara G. Ryder. Pointer-induced aliasing: A problem classification.
In POPL ’91: Proceedings of the Eighteenth Annual ACM Symposium on Principles of
Programming Languages, pages 93–103, Orlando, FL, January 1991.

42 Wei Le and Mary Lou Soffa. Marple: Detecting faults in path segments using automatically
generated analyses. ACM Transactions on Software Engineering and Methodology (TOSEM),
22(3):1–38, 2013.

ECOOP 2022

10:28 Accumulation Analysis

43 Junhee Lee, Seongjoon Hong, and Hakjoo Oh. Memfix: static analysis-based repair of memory
deallocation errors for C. In Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 95–106, 2018.

44 Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. Program tailoring: Slicing by sequential
criteria. In 30th European Conference on Object-Oriented Programming (ECOOP 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

45 Filipe Militao, Jonathan Aldrich, and Luís Caires. Rely-guarantee protocols. In European
Conference on Object-Oriented Programming, pages 334–359. Springer, 2014.

46 Nomair A. Naeem and Ondrej Lhoták. Typestate-like analysis of multiple interacting objects.
ACM Sigplan Notices, 43(10):347–366, 2008.

47 Mangala Gowri Nanda, Christian Grothoff, and Satish Chandra. Deriving object typestates
in the presence of inter-object references. In Proceedings of the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications, pages 77–96,
2005.

48 Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and Michael D. Ernst.
Practical pluggable types for Java. In ISSTA 2008, Proceedings of the 2008 International
Symposium on Software Testing and Analysis, pages 201–212, Seattle, WA, USA, July 2008.

49 Hila Peleg, Sharon Shoham, Eran Yahav, and Hongseok Yang. Symbolic automata for static
specification mining. In International Static Analysis Symposium, pages 63–83. Springer, 2013.

50 Goran Piskachev, Tobias Petrasch, Johannes Späth, and Eric Bodden. AuthCheck: Program-
state analysis for access-control vulnerabilities. In International Symposium on Formal Methods,
pages 557–572. Springer, 2019.

51 Michael Pradel, Ciera Jaspan, Jonathan Aldrich, and Thomas R. Gross. Statically checking
API protocol conformance with mined multi-object specifications. In 2012 34th International
Conference on Software Engineering (ICSE), pages 925–935. IEEE, 2012.

52 Rahul Purandare, Matthew B. Dwyer, and Sebastian Elbaum. Monitor optimization via
stutter-equivalent loop transformation. In Proceedings of the ACM international conference
on Object oriented programming systems languages and applications, pages 270–285, 2010.

53 Rahul Purandare, Matthew B. Dwyer, and Sebastian Elbaum. Optimizing monitoring of
finite state properties through monitor compaction. In Proceedings of the 2013 International
Symposium on Software Testing and Analysis, pages 280–290, 2013.

54 Xin Qi and Andrew C. Myers. Masked types for sound object initialization. ACM SIGPLAN
Notices, 44(1):53–65, 2009.

55 Rust team. Rust programming language. https://www.rust-lang.org/, 2021. Accessed 30
November 2021.

56 Sharon Shoham, Eran Yahav, Stephen J. Fink, and Marco Pistoia. Static specification
mining using automata-based abstractions. IEEE Transactions on Software Engineering,
34(5):651–666, 2008.

57 Johannes Späth, Karim Ali, and Eric Bodden. IDEal: Efficient and precise alias-aware dataflow
analysis. Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–27, 2017.

58 Robert E. Strom and Shaula Yemini. Typestate: A programming language concept for
enhancing software reliability. IEEE TSE, SE-12(1):157–171, January 1986.

59 Joshua Sunshine, Karl Naden, Sven Stork, Jonathan Aldrich, and Éric Tanter. First-class
state change in Plaid. In OOPSLA 2011, Object-Oriented Programming Systems, Languages,
and Applications, pages 713–732, Portland, OR, USA, October 2011.

60 Tian Tan, Yue Li, Xiaoxing Ma, Chang Xu, and Yannis Smaragdakis. Making pointer analysis
more precise by unleashing the power of selective context sensitivity. Proceedings of the ACM
on Programming Languages, 5(OOPSLA):1–27, 2021.

61 Jesse A. Tov and Riccardo Pucella. Practical affine types. ACM SIGPLAN Notices, 46(1):447–
458, 2011.

https://www.rust-lang.org/

M. Kellogg, N. Shadab, M. Sridharan, and M. D. Ernst 10:29

62 Cláudio Vasconcelos and António Ravara. From object-oriented code with assertions to
behavioural types. In Proceedings of the Symposium on Applied Computing, pages 1492–1497,
2017.

63 Haowei Wu, Shengqian Yang, and Atanas Rountev. Static detection of energy defect patterns
in android applications. In Proceedings of the 25th International Conference on Compiler
Construction, pages 185–195, 2016.

64 Tianyong Wu, Jierui Liu, Zhenbo Xu, Chaorong Guo, Yanli Zhang, Jun Yan, and Jian Zhang.
Light-weight, inter-procedural and callback-aware resource leak detection for android apps.
IEEE Transactions on Software Engineering, 42(11):1054–1076, 2016.

65 Xusheng Xiao, Gogul Balakrishnan, Franjo Ivančić, Naoto Maeda, Aarti Gupta, and Deepak
Chhetri. Arc++: effective typestate and lifetime dependency analysis. In Proceedings of the
2014 International Symposium on Software Testing and Analysis, pages 116–126, 2014.

66 Guoqing Xu, Nick Mitchell, Matthew Arnold, Atanas Rountev, Edith Schonberg, and Gary
Sevitsky. Scalable runtime bloat detection using abstract dynamic slicing. ACM Transactions
on Software Engineering and Methodology (TOSEM), 23(3):1–50, 2014.

67 Greta Yorsh, Eran Yahav, and Satish Chandra. Generating precise and concise procedure
summaries. In Proceedings of the 35th annual ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 221–234, 2008.

68 Hengbiao Yu, Zhenbang Chen, Ji Wang, Zhendong Su, and Wei Dong. Symbolic verification of
regular properties. In 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE), pages 871–881. IEEE, 2018.

69 Lu Zhang and Chao Wang. Runtime prevention of concurrency related type-state violations in
multithreaded applications. In Proceedings of the 2014 International Symposium on Software
Testing and Analysis, pages 1–12, 2014.

70 Xin Zhang, Mayur Naik, and Hongseok Yang. Finding optimum abstractions in parametric
dataflow analysis. ACM SIGPLAN Notices, 48(6):365–376, 2013.

71 Yufeng Zhang, Zhenbang Chen, Ji Wang, Wei Dong, and Zhiming Liu. Regular property
guided dynamic symbolic execution. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, volume 1, pages 643–653. IEEE, 2015.

72 Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu, Kai Wang,
Guoqing Harry Xu, Linzhang Wang, and Xuandong Li. Grapple: A graph system for
static finite-state property checking of large-scale systems code. In EuroSys, pages 1–17, 2019.

A Proof of Lemma 15

This appendix contains the full proof of Lemma 15, which appears in section 3.3.1.6 and is
used by Lemma 16, the forwards direction of the proof of Theorem 9. We begin by restating
Lemma 15:

▶ Lemma 15. Let R = ϕs(xi) be the set of estimated typestates produced by a typestate
analysis with no aliasing information for a variable xi before a statement s. Let S be the
trace of an arbitrary execution leading up to some occurrence of s, and let t = τ(ρ(xi)) be
the typestate of the actual value to which xi refers before that occurrence of s. Applying S to
the automaton leads to typestate t. There exists a typestate r ∈ R such that applying some
subsequence of S leads to r. That is, there is some estimated typestate r ∈ R that is reachable
by a subsequence of the transitions that lead to t.

The proof is by co-induction on the dynamic semantics of the language in Figure 2 and
the definition of a typestate analysis with no aliasing information in Definition 14, with one
change to its rule for load operations (rule TS-LOAD-FIX in Figure 5). In particular, the
load rule our typestate analysis with no aliasing uses in this proof is the following:

ECOOP 2022

10:30 Accumulation Analysis

For a load statement s, where s is xi := xj.fk, let s0 be the start state of the automaton
A which is being checked. The analysis updates its estimate for xi so that it is mapped
to s0: ϕ′

s(xi) := so. For all other names m in ϕs where m ̸= xi, the analysis copies the
entry from the previous abstract store: ϕ′

S(m) := ϕs(m).

(See the discussion of why this modified rule is necessary in section 3.3.1.6, after the
original statement of Lemma 15.)

Proof.
Base case: when a program begins executing, the dynamic semantics say that all names
refer to values in the start state. A typestate analysis with no aliasing information estimates
that at a program’s entry point, all names are in the start state, as well. Trivially, the start
state is reachable by the same sequence of operations as itself.

Case assignment: For an assignment s, where s is xi := xj , the invariant is preserved
by the inductive hypothesis. Consider that by the inductive hypothesis, the invariant is
preserved for xj . Then consider the rule used by the typestate analysis with no aliasing
information for an assignment: every mention of xi in the abstract store is replaced by xj .
Further, the dynamic semantics for an assignment require that the previous value of xi is no
longer accessible via xi: xi after the assignment refers only to xj . Since xi and xj after the
assignment are treated entirely the same, but the abstract store is otherwise unchanged by
the analysis, what was true of xj before the statement is true for xi after.

Case load: The special load rule TS-LOAD-FIX trivially guarantees that the invariant is
preserved: the start state is reachable by a subsequence of the operations that reach any
other state (in particular, by the empty subsequence).

Case store: This rule trivially preserves the invariant, because the invariant must be
maintained only for the estimates for variables – not for fields – and rule TS-STORE only
updates estimates for fields.

Case method call: For a method call s = xi.mj(), only steps 1 and 2 of rule TS-CALL are
applied, because a typestate analysis with no aliasing information never performs strong or
weak updates on possible aliases. The invariant is preserved via the inductive hypothesis: for
xi itself, let r1 be the element of R that is reachable by a subsequence of the actual sequence
S in the inductive hypothesis. The analysis updates its estimate to include r1 + mj (that
is, the sequence r1 followed by the transition mj). After s is executed, the actual sequence
is S + mj , and since we know that r1 is reachable by a subsequence of S, r1 + mj must be
reachable by a subsequence of S + mj – the same subsequence used to reach r1, with mj

added on. For any aliases of xi, the inductive hypothesis also guarantees that the invariant
holds: the estimate contains some r that is a subsequence of S, and any subsequence of S is
also a subsequence of S + mj .

Case sequence: For a sequence, the invariant is trivially preserved by induction. ◀

Concolic Execution for WebAssembly
Filipe Marques #

Instituto Superior Técnico, University of Lisbon, Portugal
INESC-ID Lisbon, Portugal

José Fragoso Santos # Ñ

Instituto Superior Técnico, University of Lisbon, Portugal
INESC-ID Lisbon, Portugal

Nuno Santos # Ñ

Instituto Superior Técnico, University of Lisbon, Portugal
INESC-ID Lisbon, Portugal

Pedro Adão # Ñ

Instituto Superior Técnico, University of Lisbon, Portugal
Instituto de Telecomunicações, Aveiro, Portugal

Abstract
WebAssembly (Wasm) is a new binary instruction format that allows targeted compiled code written
in high-level languages to be executed by the browser’s JavaScript engine with near-native speed.
Despite its clear performance advantages, Wasm opens up the opportunity for bugs or security
vulnerabilities to be introduced into Web programs, as pre-existing issues in programs written in
unsafe languages can be transferred down to cross-compiled binaries. The source code of such
binaries is frequently unavailable for static analysis, creating the demand for tools that can directly
tackle Wasm code. Despite this potentially security-critical situation, there is still a noticeable lack of
tool support for analysing Wasm binaries. We present WASP, a symbolic execution engine for testing
Wasm modules, which works directly on Wasm code and was built on top of a standard-compliant
Wasm reference implementation. WASP was thoroughly evaluated: it was used to symbolically test
a generic data-structure library for C and the Amazon Encryption SDK for C, demonstrating that
it can find bugs and generate high-coverage testing inputs for real-world C applications; and was
further tested against the Test-Comp benchmark, obtaining results comparable to well-established
symbolic execution and testing tools for C.

2012 ACM Subject Classification Software and its engineering → Software testing and debugging;
Security and privacy → Formal methods and theory of security

Keywords and phrases Concolic Testing, WebAssembly, Test-Generation, Testing C Programs

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.11

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.20

Funding The authors were supported by national funds through Fundação para a Ciência e a
Tecnologia (UIDB/50008/2020, Instituto de Telecomunicações, and UIDB/50021/2020, INESC-ID
multi-annual funding), projects INFOCOS (PTDC/CCI-COM/32378/2017) and DIVINA (CMU/T-
IC/0053/2021), and by the European Commission under grant agreement number 830892 (SPARTA).

Acknowledgements We are grateful to Carolina Costa with whom we designed a preliminary version
of WASP and its concolic semantics as part of her M.Sc. thesis [22].

1 Introduction

WebAssembly (Wasm) [30] is a binary instruction format designed to be the new standard
compilation target for the Web and is now supported by all major browser vendors, enabling
Web applications to run with near-native speed. As a result, Web applications are increasingly
being ported into Wasm to reap its performance benefits. In particular, Wasm has been
adopted in server-side runtimes [13, 1, 20], IoT platforms [31], and in edge computing [34].

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Filipe Marques, José Fragoso Santos, Nuno Santos, and
Pedro Adão;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 11; pp. 11:1–11:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:filipe.s.marques@tecnico.ulisboa.pt
https://orcid.org/0000-0002-2555-5382
mailto:jose.fragoso@tecnico.ulisboa.pt
https://web.ist.utl.pt/jose.fragoso/
https://orcid.org/0000-0001-5077-300X
mailto:nuno.m.santos@tecnico.ulisboa.pt
https://syssec.gsd.inesc-id.pt/people/Nuno_Santos.html
https://orcid.org/0000-0001-9938-0653
mailto:pedro.adao@tecnico.ulisboa.pt
http://web.ist.utl.pt/pedro.adao/
https://orcid.org/0000-0002-4049-1954
https://doi.org/10.4230/LIPIcs.ECOOP.2022.11
https://doi.org/10.4230/DARTS.8.2.20
https://doi.org/10.4230/DARTS.8.2.20
https://doi.org/10.4230/DARTS.8.2.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Concolic Execution for WebAssembly

The compilation of unsafe languages to Wasm opens up the opportunity for the introduc-
tion of new classes of bugs and security vulnerabilities into the setting of Web programs, as
such issues in the original programs can be transposed to Wasm binaries via compilation [23].
This is the case, for example, of buffer overflows [50], format string bugs [9], and use-after-free
errors [29]. By exploiting such flaws [25], cyber attackers have access to a widened surface for
launching their attacks on the Web. These include cross-site scripting attacks by exploiting
client-side code [50], or code injection attacks by targeting vulnerabilities in server-side code
(e.g., powered by Node.js). In addition, Wasm itself can be used for writing malware, e.g.,
web keyloggers [49], or crypto-miners [59]. Importantly, Wasm binaries are often integrated
directly into Web applications, with developers not having access to the corresponding source
code. In this scenario, developers must analyse stand-alone Wasm code to test it against
potential security vulnerabilities and other types of execution errors.

Symbolic execution [15, 5] is a program analysis technique that allows for the exploration
of multiple program paths by running the given program using symbolic values instead
of concrete ones. It has successfully been applied to finding a wide range of security
vulnerabilities and other types of bugs in many high-level and intermediate languages,
including C [14, 28], Java [54], and JavaScript [61, 60, 26]. Nonetheless, to the best of our
knowledge, there are only two tools for symbolically executing Wasm code: WANA [73]
and Manticore [51]. Both these tools are, however, mainly targeted at the analysis of smart
contracts and have important limitations that constraint their application to stand-alone
Wasm modules. WANA [73] is in preliminary development stages and can only be applied
to EOSIO and Ethereum smart contracts, since it does not include a symbolic execution
engine for Wasm that can be run on its own. Manticore [51] has recently gained support for
Wasm [33], but has not yet been systematically evaluated on Wasm code. Furthermore, its
application to Wasm modules requires the manual setup of a complex Python script for each
possible input memory, making it cumbersome and difficult to automate.

We present the WebAssembly Symbolic Processor, WASP, a novel concolic execution
engine for testing Wasm (version 1.0) modules. WASP follows the so-called concolic dis-
cipline [28, 64], combining concrete execution with symbolic execution and exploring one
execution path at a time. However, unlike most concolic execution engines [65, 79, 64, 63],
which are implemented via program instrumentation, we implement WASP by instrumenting
the Wasm reference interpreter developed by Haas et al. [30]. To this end, we lift the authors’
reference interpreter from concrete values to pairs of concrete and symbolic values. By moving
the instrumentation to the interpreter level, we open up the possibility for a range of optim-
isations in the context of concolic execution. In this paper, we explore two such optimisations:
(1) application of algebraic simplifications to byte-level symbolic expressions generated by
memory interactions (§3.3); and (2) shortcut restarts for failed assumption statements (§3.4).
Finally, we formalise our concolic analysis as a small-step concolic semantics, which we use
to both guide the implementation of WASP and describe its mathematical underpinnings.
This semantics is an additional contribution of the paper as we are not aware of any such
formalisation of concolic execution for a low-level language.

While our first goal is for WASP to be able to analyse stand-alone Wasm modules, we
also aim for it to be used as a common platform for building symbolic analyses for high-level
programming languages that compile to Wasm. In a nutshell, if one wants to use WASP to
enable a symbolic execution engine for a given language, one has to accomplish the following
two tasks. First, the symbolic primitives of WASP, such as the declaration of assertions,
assumptions, and the creation of symbolic variables, must be exposed at the source-language
level and properly connected to the corresponding WASP primitives via compilation. Second,

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:3

one must guarantee that either the code of the required runtime libraries is available for
symbolic execution or that WASP includes symbolic summaries that model the behaviour
of those libraries. In order to demonstrate the viability of this approach, we use it to build
WASP-C, a new symbolic execution framework for testing C programs. WASP-C shows that,
with a relatively small effort (≈ 800 LOC), we were able to build a new concolic engine for C
that is able to analyse industry-grade code and obtain results comparable to well-established
symbolic execution and testing tools for C, such as KLEE [14] and VeriFuzz [7].

We evaluate WASP in the five following ways: (1) We compare the performance of WASP
with that of Manticore [51] in the analysis of a stand-alone Wasm B-tree data structure [22].
We demonstrate that WASP outperforms Manticore, its only competitor tool. (2) We use
WASP-C to symbolically test Collections-C [52], a widely-used generic data structure library
for C previously tested using the Gillian-C tool [26]. WASP-C found three bugs during the
testing process, including a previously unknown bug that Gillian-C did not detect. Also,
WASP-C is more efficient than Gillian-C, completing the symbolic analysis of the library
14% faster. (3) We run WASP-C against the Test-Comp [10] benchmark, obtaining results
comparable to well-established symbolic execution and testing tools for C, such as KLEE [14]
and VeriFuzz [7]. If we compare the results we obtained for WASP-C against those obtained
for the tools submitted for the 2021 Competition on Software Testing (TestComp 2021 [11]),
we conclude that WASP-C is the third-best tool in the cover-error category and the sixth-best
tool in the cover-branches category out of a total of twelve tools (with WASP included).
(4) We measure the impact of the proposed optimisation techniques on the performance of
WASP by comparing the execution times obtained for WASP with the optimisations enabled
against those obtained with them disabled. Results indicate the proposed optimisations are
essential for WASP’s performance. (5) We use WASP-C to symbolically test the Amazon
Encryption SDK [67], generating a high-coverage test suite for that library and demonstrating
that WASP-C scales to industry-grade code.

Our evaluation is mostly focused on WASP-C due to the fact that there is no symbolic
benchmark for stand-alone Wasm modules. However, according to a recent study [35], most
Wasm code on the Web (≈ 65%) comes from C/C++ applications. In this light, we believe
it is appropriate to center the analysis of the performance of WASP on compiled C code.

Contributions. In summary, the contributions of this work are three-fold: (1) WASP, a
concolic execution engine for Wasm (§3); (2) WASP-C, a symbolic execution framework for
testing C programs built on top of WASP (§3.5); and (3) three symbolic datasets for evaluating
symbolic execution tools for Wasm, covering different types of symbolic reasoning (§4).

2 Background

In this section we give an overview of Wasm, focusing on its syntax and semantics, together
with a high-level introduction to symbolic execution with a particular emphasis on the
concolic approach followed in this paper.

2.1 WebAssembly
WebAssembly [30, 57] is a low-level bytecode format that offers compact representation,
efficient validation and compilation, and ensures safe execution with minimal overhead. Wasm
is not tied up to any specific hardware, being language-, hardware- and platform-independent.
Like other assembly languages, it is mainly used as a compilation target for high-level
languages, such as C/C++ or Rust, allowing for code written in a range of languages to be
run on web browsers with significant speed improvements compared to JavaScript [78].

ECOOP 2022

11:4 Concolic Execution for WebAssembly

Value Types Function Types
t ::= i32 | i64 | f32 | f64 tf ::= t∗ → t∗

Instructions
e ::= unreachable | nop | drop | select | t.const | t.unopt | t.binopt | t.testopt | t.relopt |

t.cvtop t_sx? | {get|set|tee}_local i | {get|set}_global i | t.load (tp_sx?) a o |
t.store tp? a o | current_memory | grow_memory | block tf e∗ end |
loop tf e∗ end | if tf e∗ else e∗ end | br i | br_if i | br_table i+ | return |
call i | call_indirect tf

Imports Exports Functions
im ::= import “name” “name” ex ::= export “name” f ::= ex∗ func tf local t∗ e∗ |

ex∗ func tf im

Figure 1 Simplified Wasm abstract syntax, as presented in [30].

Syntax. A WebAssembly binary takes the form of a module. A Wasm module includes a
collection of Wasm functions, together with the declaration of their shared global variables
and the specification of the linear memory where the functions and global variables are
loaded. Computation is based on a stack machine; Wasm instructions interact with the
stack by pushing values onto the stack or popping values out of the stack. A Wasm module
is executed by an embedder, e.g., the host JavaScript engine that defines how modules are
loaded, resolves imports and exports between modules, and handles I/Os, timers, and traps.

The syntax of Wasm programs is given in Figure 1 and includes: functions f , instructions
e, values c, value types t, and function types tf . Wasm has four primitive types, all readily
available on common hardware: machine-integers and IEEE 754 floating-point numbers [36],
each with a 32- and 64-bit variant. Wasm makes no distinction between signed and unsigned
integers; instead, instructions have a sign extension to indicate how to interpret the generated
integer values. Wasm variables can be either local, belonging to the execution context of a
function, or global, belonging to the entire module. Wasm does not have “named” variables;
instead, both local and global variables are indexed by integer values. The primary storage
of a Wasm module is a large array of bytes, commonly referred to as linear memory. The
initial memory size is fixed. However, memories can be programmatically grown. In contrast
to most stack machines, Wasm has structured control flow constructs, ensuring that humans
can easily interpret Wasm code and that no irreducible loops [32] are encountered. Wasm
instructions can be divided into the following categories:

Stack instructions: the instruction drop for popping the value at the top of the stack;
the instruction const for pushing a value onto the stack; the unary and binary operator
instructions for applying the corresponding operators to the value(s) at the top of the
stack, replacing that(those) value(s) with the obtained result. Operator instructions
include the standard relational, arithmetic, and boolean operators.
Variable instructions: the instructions set_local and set_global for updating the
values of local and global variables; the instructions get_local and get_global for
retrieving the values of local and global variables, placing them at the top of the stack;
and the instruction tee_local for setting the value of a local variable to the value at the
top of the stack without removing that value from the stack.
Memory instructions: the instructions load and store for loading and storing primitive
values from and to memory; the instruction grow_memory for increasing the size of the
current memory one page at a time – page size is fixed at 64 KiB; and the instruction
current_memory for obtaining the size of the current memory.
Control flow instructions: the standard control-flow instructions: loop, if and block,
br, return, call; and the Wasm-specific control-flow instructions call_indirect, used
to implement dynamic dispatch at the Wasm level, and br_tbl, used to implement the
standard switch statement.

The reader is referred to [30] for a thorough account of the syntax of Wasm.

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:5

2.2 Symbolic Execution
Symbolic execution is a program analysis technique used to explore all feasible paths of a
program up to a bound [41]. Instead of running a program using concrete values, symbolic
execution engines run the given program with symbolic inputs. Every time the symbolic
execution engine hits a conditional expression with a symbolic guard, the engine forks the
current execution to be able to explore both branches. For each execution path, the symbolic
execution engine builds a first order formula, called path condition, which accumulates the
constraints on the symbolic inputs that direct the execution along that path. In particular,
every time a conditional instruction is symbolically executed, the current path condition is
extended with its guard in the “then” branch and with the negation of its guard in the “else”
branch. Symbolic execution engines rely on an underlying SMT solver to check the feasibility
of execution paths and the validity of the assertions supplied by the developer. An execution
path is said to be feasible if it can be realised by at least one concrete path and an assertion
holds at a given program point if it is implied by the path condition at that point.

Concolic Execution. Concolic execution is a special variation of symbolic execution in
which one pairs up a concrete execution with a symbolic execution to avoid interactions with
the underlying SMT solver by exploring one execution path at a time [28, 64]. Concolic
execution engines assign concrete values to symbolic inputs and execute the given program
both concretely and symbolically at the same time, following only the concrete path but
constructing the path condition corresponding to that path as in pure symbolic execution.
The constructed path condition is instrumental to concolic execution as it captures the
conditions that must hold for the execution to take the explored path. More specifically,
it can be used to generate new concrete inputs for symbolic variables that will force the
exploration of a different path. To this end, one needs to negate the obtained path condition
and query the underlying SMT solver for a model of the obtained formula. By keeping track
of all the path conditions generated via concolic execution, the engine can enumerate all
program execution paths up to a bound, with the advantage of only having to interact with
the underlying constraint solver one time per explored path. Note that in purely symbolic
execution, the engine must query the constraint solver every time it hits a branching point
in order to determine whether or not its then- and else- branches are feasible.

Concolic Execution: Example. Let us now take a look at how concolic execution works in
practice. Consider the C program given in Figure 2a. This program is annotated with a final
assert statement, which is supposed to hold independently of the values of variables x and y.
Hence, in order to determine whether or not the assertion always holds, one has to explore
all feasible execution paths of the program, which we illustrate in Figure 2b in the form of
an execution tree. In the tree, we depict in green the leaf nodes corresponding to execution
paths for which the assertion holds and in red those corresponding to paths for which it does
not. The final assertion does not hold for the left-most path. To see this, consider the inputs
x = 1 and y = 4. These inputs cause variables a and b to be both assigned to 6, violating
the final assertion. Below, we explain how these inputs can be discovered.

As there are three possible execution paths, there will be three concolic executions, each
corresponding to a different execution path. In the following, we will refer to these executions
as concolic iterations. During the first concolic iteration, the concrete values associated with
the symbolic variables of the program are picked non-deterministically from the set of all
concrete values of their corresponding types. For this example, we will assume that x and y

are respectively set to 0 and 2. These inputs cause the concolic execution engine to explore
the rightmost path of the execution tree, generating the final path condition: x ≤ 0.

ECOOP 2022

11:6 Concolic Execution for WebAssembly

1 int main() {
2 int a = 4, b = 2;
3 int x = symb(), y = symb();
4 if (x > 0) {
5 b = a + 2;
6 if (x < y)
7 a = (x * 2) + y;
8 }
9 assert(a != b);

10 }

(a) Symbolic C program. (b) Execution tree for program in Listing 2a.

Figure 2 Concolic execution example.

Before the second concolic iteration, the concolic execution engine queries the underlying
constraint solver for a model for the symbolic inputs that satisfies the formula x > 0,
corresponding to the negation of the first path condition. Let us assume that the solver
returns the model x = 1 and y = 0. These inputs cause the concolic execution engine to
explore the middle path, generating the path condition: (x > 0) ∧ (x ≥ y).

Before the third concolic iteration, the engine queries the solver for a model for the
symbolic inputs that satisfies the negation of both path conditions found so far:

(x > 0) ∧ ((x ≤ 0) ∨ (x < y)) ≡ (x > 0) ∧ (x < y)

Assume that the solver outputs the model x = 1 and y = 2. These inputs cause the concolic
execution engine to explore the leftmost path of the execution tree. Observe that this model
does not immediately trigger the assertion violation, since the final values of a and b do not
coincide (a = 4 and b = 6). In order to understand how the concolic execution engine finds
the model that violates the assertion, one has to consider the concolic state at the point
where the assert statement is encountered, which is given below:

x 7→ (1, x) y 7→ (2, y) a 7→ (4, 2× x + y) b 7→ (6, 6) PC ≡ (x > 0) ∧ (x < y)

Given this concolic state, the expression a ̸= b evaluates to the concrete value true and the
symbolic value (2× x + y) ̸= 6. In order to establish that the assertion holds, the concolic
execution engine must prove that the symbolic expression being asserted is implied by the
current path condition; put formally:

(x > 0) ∧ (x < y)⇒ (2× x + y) ̸= 6

In order to check the validity of this implication, the concolic execution engine queries the
underlying constraint solver for the satisfiability of its negation:

(x > 0) ∧ (x < y) ∧ (2× x + y) = 6

which is satisfied by the model x = 1 and y = 4, disproving the implication and witnessing
the assertion failure.

3 WASP

This section presents our concolic execution engine for Wasm named WASP. We begin by
describing the architecture of WASP (§3.1). Next, we explain the concolic semantics (§3.2)
and memory model (§3.3) at the core of WASP. Then, we introduce an optimised version of
the proposed concolic semantics (§3.4) and conclude with a brief overview of WASP-C (§3.5).

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:7

WebAssembly Symbolic Processor

AST

WA

if
JSON

Test
suite

JSON
Analysis
Report

Z3 ModelZ3 Formula

Z3

Wasm Formulas

Logical Env

Concolic
Interpreter

Concolic Loop

Small-Step
Semantics

First Order
Solver

Enc/Decoding

Formulas

Concolic
Domains

Values

Stores

Input Output

Extended
Parser

Concolic
instr.

Wasm
Syntax

Figure 3 High-level architecture of WASP.

3.1 Overview

The goal of WASP is to explore multiple execution paths of the program to be analysed in
order to uncover potential execution errors. To this end, the Wasm programs given to WASP
must be annotated with first order assertions to be validated by WASP. WASP explores
all the execution paths of the given program up to a pre-established depth. If no assertion
failure is found, WASP provides a bounded verification guarantee. Otherwise, it outputs a
concrete counter-model that triggers that failure.

WASP was developed on top of the Wasm reference interpreter [56], which we extended
with symbolic facilities according to the high-level architecture described in Figure 3. In
particular, we extended the original code-base of the reference interpreter with: (1) parsing
facilities for the symbolic instructions required for declaring and reasoning over symbolic
inputs; (2) a new concolic interpreter module, implementing the main concolic loop and the
concolic execution of Wasm instructions; (3) a new concolic state module, implementing
the main data structures we use to represent Wasm’s concolic values, stacks, and memories;
and (4) a dedicated first order solver used to encode the logic of WASP into the logic of its
underlying SMT solver, Z3 [24].

Let us now take a look at how WASP concolically executes the Wasm program given
as input. Firstly, the given program is parsed by our Extended Parser, generating an
abstract syntax tree that is then passed to the Concolic Interpreter. The Concolic Interpreter
implements the main concolic execution loop exploring one execution path at a time and
generating for each path its corresponding path condition. The interpreter executes the given
program by concolically evaluating one instruction at a time following the small-step concolic
semantics presented in §3.2. Concolic execution requires the interpreter to keep track of both
the program’s concrete and symbolic states. To this end, we combine the concrete domains
of the original reference interpreter with new symbolic domains modelling Wasm’s symbolic
values, stacks and memories. At the end of each concolic iteration, the Concolic Interpreter
must interact with Z3 to determine the concrete values of the symbolic inputs for the next
concolic iteration. This requires converting the logical formulas constructed by WASP into
the logic of Z3. This is done by a dedicated First Order Solver that essentially translates
WASP formulas into Z3 formulas using the Z3 OCaml bindings.

ECOOP 2022

11:8 Concolic Execution for WebAssembly

3.2 Concolic Execution Semantics
We define a concolic semantics of Wasm, which we use to guide the implementation of the
concolic interpreter at the core of WASP. Our semantics operates on concolic states, which
can be viewed as pairs of concrete and symbolic states. Concolic states are therefore inhabited
by both concrete and symbolic values. Formally, symbolic values are given by the grammar:

ŝ := c | x̂ | ⊖ (ŝ) | ⊕ (ŝ, ŝ) | ⊗ (ŝ, ŝ, ŝ)

Symbolic values include: Wasm concrete values c, symbolic variables x̂, and various Wasm
unary and binary operators, respectively ranged by ⊖ and ⊕. Additionally, there is a ternary
operator ⊗ reserved for symbolic byte expressions. As discussed above, we extended the
syntax of Wasm with various instructions for creating and reasoning over symbolic values.
In the formalism, we model the following three instructions:

e ::= · · · | sym_assume | sym_assert | t.symbolic

Where: t.symbolic is used to create a symbolic value of type t; sym_assume is used to add
the constraint on top of the stack to the current path condition; and sym_assert is used to
check whether the constraint on top of the stack is implied by the current path condition.

Before proceeding to the description of the concolic semantics, we must first define
concolic states. A concolic state is composed of: (1) a concolic memory µ, mapping integer
addresses to pairs of concrete bytes and symbolic bytes; (2) a concolic local store ρ, mapping
local variable indexes to pairs of concrete and symbolic values (e.g., ρ = [0 7→ (2, ŷ)]); (3)
a concolic global store δ mapping global variable indexes to pairs of concrete and symbolic
values (e.g., δ = [0 7→ (2, ŷ)]); (4) a concolic stack st, consisting of a sequence of pairs
of concrete and symbolic values (e.g., st = (2, ŷ) :: (0, x̂)); (5) a symbolic environment ε

mapping symbolic variables to concrete values (e.g., ε = [x̂ 7→ 0, ŷ 7→ 2]); and (6) a path
condition π keeping track of all the constraints on which the current execution has branched
so far. All concolic domains are obtained by lifting the respective concrete domains, as
defined in [30], from concrete values to pairs of concrete and symbolic values. For instance,
while a concrete local store maps local variable indexes to concrete values, a concolic local
store maps local variable indexes to pairs of concrete and symbolic values. In contrast to the
concolic domains, symbolic environments do not have a counterpart in concrete execution.
The concolic interpreter uses the symbolic environment to link the program’s symbolic
variables to their concrete values, essentially storing the bindings of the symbolic variables
computed at the beginning of each concolic iteration.

The concolic semantics makes use of computation outcomes [26] to capture the flow of
execution. We consider five types of outcomes: (1) the non-empty continuation outcome
Cont(e), signifying that the execution of the current instruction generated a new instruction
to be executed next; (2) the empty continuation outcome Cont, signifying that the execution
may proceed to the next instruction; (3) the trap outcome Trap, signifying that the execution
of the current instruction generated a Wasm trap; (4) the failed assertion outcome AsrtFail,
signifying that the execution of the current instruction resulted in an assertion failure; and
(5) the failed assumption outcome AsmFail, signifying that the execution of the current
instruction resulted in an assumption failure. The concolic domains are summarised below.

Concolic Semantic Domains
Local Store ρ : i32 → c × ŝ
Stack st : (c × ŝ) list
Logical Env ε : x̂ → c
Path Cond π
Global Store δ : i32 → c × ŝ
Memory µ : i32 → c × ŝ

Outcome o ::= Cont(e) | Cont | Trap |
AsrtFail | AsmFail

Symbolic Expr ŝ ::= c | x̂ | ⊖ (ŝ) | ⊕ (ŝ, ŝ) |
⊗(ŝ, ŝ, ŝ)

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:9

Load
n = size(t) (c, ŝ′) = load_bytes(µ, k + o, n)

t.load o, (k, ŝ) :: st, µ ⇒cs (c, ŝ′) :: st, µ, Cont

Store
µ′ = store_bytes(µ, k + o, (c, ŝ))

t.store o, (k, ŝk) :: (c, ŝ) :: st, µ ⇒cs st, µ′, Cont

GetLocal
get_local i, ρ, st ⇒cs ρ, ρ(i) :: st, Cont

SetLocal
ρ′ = ρ[i 7→ (c, ŝ)]

set_local i, ρ, (c, ŝ) :: st ⇒cs ρ′, st, Cont

SymAssert-CFail
c = 0

sym_assert, ρ, (c, ŝ) :: st, ε, π ⇒cs AsrtFail

SymAssert-SFail
c ̸= 0 (π ∧ (ŝ = 0)) SAT

sym_assert, (c, ŝ) :: st, π ⇒cs st, π, AsrtFail

SymAssert-Pass
c ̸= 0 (π ∧ (ŝ = 0)) UNSAT

sym_assert, (c, ŝ) :: st, π ⇒cs st, π, Cont

SymAssume-Fail
st = (c, ŝ) :: st′ c = 0 π′ = π ∧ (ŝ = 0)

sym_assume, st, π ⇒cs st′, π′, AsmFail

SymAssume-Pass
st = (c, ŝ) :: st′ c ̸= 0 π′ = π ∧ (ŝ ̸= 0)

sym_assume, st, π ⇒cs st′, π′, Cont

Symbolic-Fresh
x̂ /∈ dom(ε) i ∈ t ε′ = ε[x̂ 7→ i]

t.symbolic x̂, st, ε ⇒cs (i, x̂) :: st, ε′, Cont

Symbolic
x̂ ∈ dom(ε)

t.symbolic x̂, st, ε ⇒cs (ε(x̂), x̂) :: st, ε, Cont

Figure 4 Fragment of WebAssembly concolic semantics: non-control-flow instructions.

We formalise the concolic semantics of Wasm instructions using a semantic judgement of
the form: e, ρ, st, ε, π, δ, µ ⇒cs ρ′, st′, ε′, π′, δ′, µ′, o meaning that the concolic evaluation of
the instruction e in the local store ρ, stack st, symbolic environment ε, path condition π,
global store δ, and memory µ results in a new local store ρ′, stack st′, logical environment ε′,
path condition π′, global store δ′, memory µ′, and outcome o. Figures 4 and 5 present a
selection of the semantic rules. In the presentation of the rules, we omit the elements of
the configuration that are neither updated nor inspected by the current rule, writing, for
instance, e, ρ, st ⇒cs ρ′, st′, o to mean e, ρ, st, ε, π, δ, µ ⇒cs ρ′, st′, ε, π, δ, µ, o. The selected
concolic rules are explained below.

Load. This rule first computes the concrete address whose value is to be loaded from memory
by adding the given offset parameter o to the concrete memory address k at the top of
the stack. Then, the concolic pair stored at the real memory address k + o is loaded from
memory using the auxiliary function load_bytes and placed at the top of the stack. The
function load_bytes, explained in §3.3, receives as parameter not only the memory µ

and the concrete address k + o but also the size n of the memory chunk to be loaded,
which is determined using the auxiliary function size.

Store. This rule pops the first two concolic pairs out of the stack, with the second one
denoting the value to be stored and the first one the memory address where to store
it. Then, the rule computes the real memory address k + o by adding the given offset
parameter o to the concrete address k. Next, it uses the function store_bytes, explained
in §3.3, for storing the concolic pair (c, ŝ) at k + o. In contrast to load_bytes, the
function store_btyes does not require the size of the value to be stored which can be
determined from the value c.

SymAssert. The SymAssert rules look at the value c on top of the stack (c, ŝ) :: st. If c = 0
(CFail), it immediately raises AsrtFail and the interpreter stops. Otherwise, it checks if
that the current path condition implies that the the value on top of the stack is different

ECOOP 2022

11:10 Concolic Execution for WebAssembly

If-True
st = (c, ŝ) :: st′ c ̸= 0 π′ = π ∧ (ŝ ̸= 0)

o = Cont (block tf e∗
1)

if tf e∗
1 else e∗

2, st, π ⇒cs st′, π′, o

If-False
st = (c, ŝ) :: st′ c = 0 π′ = π ∧ (ŝ = 0)

o = Cont (block tf e∗
2)

if tf e∗
1 else e∗

2, st, π ⇒cs st′, π′, o

Tbl-Brk-In
st = (k, ŝ) :: st′ π′ = π ∧ (ŝ = k)

br_table jk
1 j j∗

2 , st, π ⇒cs st′, π′, Cont (br j)

Tbl-Brk-Out
st = (c, ŝ) :: st′ c ≥ k π′ = π ∧ (ŝ ≥ k)
br_table jk

1 j, st, π ⇒cs st′, π′, Cont (br j)

Call Indirect - Found
st = (j, ŝ) :: st′ π′ = π ∧ (ŝ = j)
funcs(j) =

(
func tf local t∗ e∗)

call_indirect tf , st, π ⇒cs st′, π′, Cont (call j)

Call Indirect - Not-Found
st = (j, ŝ) :: st′ j /∈ domtf (funcs)

π′ = π ∧ (ŝ ̸∈ domtf (funcs))
call_indirect tf, st, π ⇒cs st′, π′, Trap

Figure 5 Fragment of WebAssembly concolic semantics: control-flow instructions.

from 0; formally: π ⇒ (ŝ ̸= 0). Checking the validity of π ⇒ (ŝ ̸= 0) is equivalent to
checking the satisfiability of ¬(π ⇒ (ŝ ̸= 0)); formally: π ⇒ (ŝ ̸= 0) is valid if and only if,
¬(π ⇒ (ŝ ≠ 0)) is not satisfiable. Simplifying ¬(π ⇒ (ŝ ̸= 0)), we obtain the formula
π ∧ (ŝ = 0). Hence, the rule checks if the formula π ∧ (ŝ = 0) is satisfiable, in which case
(SFail) the assertion fails and the outcome AsrtFail produced; otherwise (Pass), the
assertion holds and the program may continue, as given by the outcome Cont.

SymAssume. The SymAssume rules check the value c on top of the stack, which is expected
to be different from 0. Hence, if c = 0 (Fail), the current concolic iteration can be
discarded as it is not relevant to the programmer. To achieve this, the semantics leaves
the current concolic state unchanged, generating the outcome AsmFail and extending the
current path condition with the formula ŝ = 0. If c ̸= 0 (Pass), the concolic execution
may proceed, simply conjuncting the formula ŝ ̸= 0 with the current path condition.

Symbolic. The Symbolic-Fresh and Symbolic rules are used for the creation of a symbolic
variable of the type t, named x̂. If the variable x̂ is already present in the mappings of
the symbolic environment, x̂ ∈ dom(ε), then this variable already exists and its mapped
value is inserted on top of the stack (ε(x̂), x̂) :: st. If x̂ does not exist in the symbolic
environment a new entry is created, where x̂ is mapped to a random value i of type t,
resulting in the new symbolic environment ε′ = ε[x̂→ i], and (i, x̂) being put on top of
the stack.

If. The If rule analyses the concrete value c on top of the stack (c, ŝ) :: st. If c ̸= 0, then the
path condition is conjoined with the symbolic expression associated with the value on top
of the stack π ∧ (ŝ ̸= 0). The resulting outcome is a block with the set of instructions
e∗

1, corresponding to the “then” branch. If c = 0, the opposite happens, the resulting
path condition is π ∧ (ŝ = 0), and the outcome is a block with the set of instructions e∗

2,
corresponding to the “else” branch.

Table-Break. The Tbl-Brk rules first check the integer value k at the top of the stack and
then inspect the list, j1, . . . , jn, of argument indices. If k ≤ n (Table-Break-In), the
semantics simply obtains the (k+1)-th index, jk+1, and returns the outcome Cont (br jk+1)
to transfer the control to the jk+1 enclosing block. If k > n (Table-Break-Out), the
semantics proceeds as in the previous case but with the index jn. For instance, the
execution of (br_table 4, 3, 2, 1) with the integer 2 on top of the stack generates the
outcome Cont (br 2), while its execution with 7 on top of the stack generates Cont (br 1).
At the symbolic level, both rules extend the path condition with information about index
taken. The concolic semantics of br follows directly from its concrete semantics given
in [30] as this rule does not interact with the symbolic elements of the concolic state.

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:11

Algorithm 1 Concolic interpreter main loop.

1 function ConcolicExecute(e, ρ, st, δ, µ)
2 Π, π ← true, true

3 while Π is SAT ∧ belowLimit() do
4 εi ← Model(π)
5 e, ρ, st, εi, π, δ, µ⇒∗

cs ρ′, st′, ε′, π′, δ′, µ′, o

6 if o = Error then
7 return false
8 Π← Π ∧ ¬π′

9 return true

Call-Indirect. The Call Indirect rules first check the integer index j at the top of the
stack and inspect the function table to obtain the corresponding function. The Found
rule models the case in which the j-th function exists and its type coincides with the
one provided to the call instruction. In this case, the semantics simply generates the
outcome Cont (call j), indicating that the j-th function is to be executed next with
no extra check. The Not-Found rule models the case in which either the j-th function
does not exist or its type does not coincide with the given argument. In this case, the
semantics generates the Trap outcome. At the symbolic level, both rules extend the
current path condition. The Found rule is straightforward, simply recording the index
of the executed function. The Not-Found rule is slightly more convoluted. Instead
of simply recording the failing index (ŝ = j), it records all possible failing indexes
(ŝ ̸∈ domtf(funcs)), preventing the concolic loop from generating concrete inputs that
lead to new illegal calls at that execution point. Analogously to the br instruction, the
concolic semantics of call also follows directly from its concrete semantics given in [30].

3.2.1 Concolic Loop
Concolic execution engines execute a given program multiple times in order to explore all
possible execution paths. Algorithm 1 presents WASP’s main concolic loop. To generate
new concrete inputs at the end of each concolic iteration, the concolic interpreter maintains
a global path condition Π representing all the execution paths that remain to be explored.
At the beginning of each concolic iteration, the satisfiability of the global path condition is
checked with the help of Z3. If Π is satisfiable, Z3 returns a model, which the engine uses
to construct a new symbolic environment, mapping the symbolic variables of the program
being analysed to new concrete values. If Π is not satisfiable, the execution stops, given that
all possible execution paths have already been explored. Initially, Π is set to true, meaning
that all paths still have to be explored. At the end of each iteration, the engine updates
the global path condition to Π ∧ ¬π′, where π′ is the final path condition of the iteration at
hand. By adding ¬π′ to the global path condition, we prevent that future concolic iterations
go down the same execution path as the current iteration.

3.2.2 Concolic Execution Example
To illustrate how the proposed concolic semantics works in practice, let us consider the

Wasm program given in Figure 6a. This program results from the compilation of the C
program given in Figure 2a. For clarity, we represent the given program in Wasm Textual
Format (WAT), in which program variables are associated with string identifiers instead of

ECOOP 2022

11:12 Concolic Execution for WebAssembly

1 (func $main
2 ;; init x=symb(), y=symb(),
3 ;; a=4, b=2...
4 (i32.const 0)
5 (i32.gt_s)
6 (if
7 (then
8 (i32.const 6)
9 (local.set $b)

10 (local.get $x)
11 (local.get $y)
12 (i32.lt_s)
13 (if
14 (then
15 (local.get $x)
16 (i32.const 2)
17 (i32.mul)
18 (local.get $y)
19 (i32.add)
20 (local.set $a)))))
21 (local.get $a)
22 (local.get $b)
23 (i32.ne)
24 (sym_assert))

(a) Wasm program for Listing 2a.

conf. 1

conf. 2

conf. 4

conf. 5

conf. 6

conf. 7

conf. 3

(b) Concolic execution flow diagram for the program
in Listing 6a, executing the sequence of instructions
indicated in lines: 4-6, and 21-24.

Figure 6 Concolic execution example in WASP.

integer indices. Figure 6b illustrates the concolic iteration corresponding to the right-most
path of the execution tree in Figure 2b, with each node in the flow diagram representing a
configuration of the concolic semantics. We represent the path condition π, local store ρ,
execution stack st, and the current instruction to be executed. The symbolic environment,
linear memory, and global store are not represented as they are not manipulated by the
program. Specifically, the execution depicted in Figure 6b represents a concolic iteration
of the program where the symbolic variables x and y are concretely assigned to 0 and 2,
respectively. In this case, the first if-statement of the corresponding C program (i.e., x > 0)
is false, causing the program to jump to the final assert instruction which holds (i.e., a ̸= b).
In the compiled Wasm program listed in Figure 2a, this if-statement corresponds to the
Wasm instructions shown in lines 4-6. The concolic execution of these instructions leads to
the first three configurations depicted in the flow diagram (confs. 1-3). The final assertion is
translated to the lines 21-24 of the Wasm program, whose execution corresponds to the last
four configurations in the flow diagram (confs. 4-7). At the end of the concolic iteration,
WASP negates the obtained path condition, π = x̂ ≤ 0, in order to generate the inputs for
the next concolic iteration as explained in the previous sub-section.

3.3 Symbolic Memory

To concolically execute Wasm code, WASP requires the ability to reason at the byte-level
granularity. This requirement is important because Wasm code often needs to operate
over the in-memory representation of data at the finer-grained level of bytes or bits. One
such example is given in Listing 7b, which shows a real-world function for converting the
endianness of a 32-bit unsigned integer. To help explain the example, let us first consider
the corresponding C function given in Listing 7a. This example receives an unsigned integer
parameter x and returns the unsigned integer obtained by swapping the order of the bytes
of x. Before proceeding to the description of the example, recall that: (1) the union data

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:13

1 unsigned int swap(unsigned int x) {
2 union {
3 unsigned int i; char c[4];
4 } src, dst;
5 src.i = x;
6 dst.c[3] = src.c[0];
7 dst.c[2] = src.c[1];
8 dst.c[1] = src.c[2];
9 dst.c[0] = src.c[3];

10 return dst.i;
11 }

(a) Endianness swap function, taken from [46].

1 (func $swap (param $x i32) (result i32)
2 (local $src i32) (local $dst i32)
3 (local.get $src)
4 (local.get $x)
5 (i32.store)
6 (local.get $dst)
7 (local.get $src)
8 (i32.load8_u offset=0)
9 (i32.store8 offset=3)

10 ;; ...
11 (return))

(b) Snippet of the Wasm program resulting from
the compilation of the program in Listing 7a.

Figure 7 Symbolic byte manipulation example.

type is used for storing different data types in the same memory segment; (2) in a standard
32-bit architecture, characters are represented by one byte and integers by four bytes; and
(3) local variables are stored in the stack segment of the C memory.

The swap function first declares two variables src and dst, which can hold either an
unsigned integer or an array of four characters. Note that, the two members of this union
take exactly the same space, 4 bytes. Then, it copies the four bytes of x to the segment of
memory referenced by src. Next, it copies each individual byte of src to the segment of
memory referenced by dst in reverse order; that is the last byte of src will be the first byte
of dst and so on and so forth. Finally, the function returns the integer value of dst.

Note that, the same segment of memory is accessed differently depending on the member
of the union type that is used to interact with it. If one uses the union member i, one
reads/writes four bytes from/into the corresponding memory segment. Conversely, if one uses
the union member c, one reads/writes a single byte from/into the corresponding memory
segment. This example clearly demonstrates the need for byte-level reasoning in SE tools.

Byte-Level Operators. In order to reason about byte-level memory operations, we make
use of the operators concat and extract, which work as follows:

The expression concat(ŝ1, ŝ2) denotes the bit-vector resulting from the concatenation of
the bit-vectors denoted by ŝ1 and ŝ2. For instance, concat(0xBE, 0xEF) = 0xBEEF.
The expression extract(ŝ, h, l) denotes the bit-vector corresponding to the bytes of the
bit-vector denoted by ŝ that occur in [l, h[. This means that the expression extract(ŝ, h, l)
denotes a bit-vector of size h− l. For instance, extract(0xBEEF, 1, 0) = 0xEF.

Given that our underlying Z3 encoding represents all primitive types as bit-vectors, the
encoding of these operators into the logic of Z3 is trivial as they have equivalent Z3 operators.

Byte-Addressable Memory. Note that our concolic Wasm memory is a mapping from
integer indexes, representing concrete memory addresses, to pairs of concrete and symbolic
bytes. This means that before we store a given value in memory, we have to obtain the
expressions denoting its corresponding bytes. Conversely, when loading a primitive type from
memory, we must concatenate the symbolic expressions denoting its component bytes to
obtain the symbolic expression that denotes the full value. To do this, we enlist two helpers:

The function store_bytes(µ, l, (c, ŝ)), that individually unpacks each concrete and
symbolic byte from the value pair (c, ŝ), using the extract operator, and then sequentially

ECOOP 2022

11:14 Concolic Execution for WebAssembly

stores the obtained concrete and symbolic bytes into the segment of µ pointed to by the
l, resulting in a new symbolic memory µ′.
The function load_bytes(µ, l, n), that sequentially loads n concrete and symbolic bytes
from the concolic memory at address l and concatenates them using the concat operator,
resulting in a new concolic pair of the form (c, ŝ).

We mathematically formalise the functions store_bytes and load_bytes in the table below.

Memory Operations
StoreBytes
n = |c| ci = extract(c, i, i − 1)|ni=1 ŝi = extract(ŝ, i, i − 1)|ni=1

store_bytes(µ, l, (c, ŝ)) = µ [l + (i − 1) 7→ (ci, ŝi)] |ni=1

LoadBytes
(ci, ŝi) = µ(l + (i − 1))|ni=1 c = concat(c1, . . . , cn) ŝ = concat(ŝ1, . . . , ŝn)

load_bytes(µ, l, n) = (c, ŝ)

Byte-level Simplifications. While the concrete application of the operators extract and
concat always yields a fully resolved concrete value, it is often not possible to resolve the
application of these operators to symbolic values. For instance, the application of concat to
two symbolic values ŝ1 and ŝ2 simply yields the symbolic expression concat(ŝ1, ŝ2). As every
time WASP interacts with the heap, it applies byte-level operators to the values being stored
or loaded, concolic execution rapidly increases the complexity of the symbolic expressions
handled by the program. This constitutes a serious problem as the additional complexity
introduced by byte-level operators is detrimental to the overall performance of WASP. To
counter this issue, we apply two simple algebraic simplifications to symbolic values, every
time a symbolic value is loaded from memory. The simplification rules are captured by the
following algebraic identities:

h− l = size(type(ŝ))⇒ extract(ŝ, h, l) = ŝ (1)
concat(extract(ŝ, h, m), extract(ŝ, m, l)) = extract(ŝ, h, l) (2)

3.4 Shortcut Restarts

Programmers often need to test their functions not for all inputs but only for those that
satisfy a specific set of constraints. In WASP, this can be done using the sym_assume
instruction, which filters out all execution paths for which the symbolic inputs do not satisfy
the given constraints. As explained in §3.2, whenever the symbolic interpreter encounters an
assume statement whose constraint does not hold, it discards the current concolic iteration
as it is not relevant for the developer. This design is, however, inherently inefficient as it
requires WASP to restart the concolic execution of the program every time an assumption
fails. To help understand this problem, let us consider the C program given in Figure 8a.
This program starts with a sequence of n assumptions over its five symbolic variables. In the
worst-case scenario, where every assumption fails, WASP would have to restart the analysis
n times before actually starting executing the program. As a result, WASP would have
to execute O(n2) lines of code and query Z3 n times before reaching the first meaningful
concolic iteration, as illustrated by the execution tree given in Figure 8b.

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:15

int function_test() {
int x = symb(), y = symb();
int u = symb(), v = symb();
int w = symb();
// Setup assumptions (Asm)
sym_assume(x >= 0); // Asm1
sym_assume(y >= 0); // Asm2
...
sym_assume(w != v); // Asmn
// Program starts here
...

}

(a) Chained assumptions that do not affect the
path condition set.

(b) Execution tree for the example in Listing 8a,
where the red nodes imply a restart in WASP.

Figure 8 Example of assumption handling in WASP.

To solve this problem, we propose an adaptation of the concolic semantics of SymAssume
given in Figure 4, which avoids the need for restarting the concolic execution from the
beginning of the program whenever a failed assumption is reached. The concolic semantics
of the assume instruction is captured by the rules given and described below.

Optimised SymAssume Semantic Rules
SymAssume-Fail

c = 0 (π ∧ ŝ) UNSAT
sym_assume, ((c, ŝ) :: st), π ⇒cs ρ, (¬ŝ ∧ π), AsmFail

SymAssume-Pass1
c ̸= 0

sym_assume, ((c, ŝ) :: st), π ⇒cs st, (ŝ ∧ π), Cont

SymAssume-Pass2
c = 0 ε′ = model(π ∧ ŝ) (ρ′, st′, δ′, µ′) = update_model(ε′, (ρ, st, δ, µ))

sym_assume, ρ, ((c, ŝ) :: st), ε, π, δ, µ ⇒cs ρ′, st′, ε′, (ŝ ∧ π), δ′, µ′, Cont

SymAssume-Fail. This rule is analogous to its previous version given in Figure 4. The
difference is that now the current concolic execution is only terminated if there is no
model for the conjunction of the current path condition and the formula being assumed,
π ∧ ŝ. In this case, the current execution is incompatible with the assumed formula,
meaning that it must be discarded.

SymAssume-Pass1. This rule is identical to its previous version given in Figure 4.
SymAssume-Pass2. This rule is the core of our proposed optimisation. It is applied when

the current concrete execution does not satisfy the formula being assumed but the current
path condition, π, is compatible with the assumed formula, ŝ. In this case, WASP queries
Z3 for a model for π ∧ ŝ and uses this model to build a new symbolic environment, ε′,
that satisfies the assumption. Then, WASP has to update all the concolic domains of
the program in order for them to be consistent with the new symbolic environment, ε′.
To this end, we make use of a function update_model that receives as input a symbolic
environment ε′ and a concolic state, generating a new concolic state, obtained by updating
the concrete values of the input state according to the supplied symbolic environment.

3.5 WASP-C
WASP can also be adopted as a tool for indirectly analysing C programs. This section presents
WASP-C, a symbolic execution framework to test C programs using WASP. WASP-C takes
as input C programs annotated with assumptions and assertions and outputs a test suite. A

ECOOP 2022

11:16 Concolic Execution for WebAssembly

Output

Annotated
Wasm
Module

WASP-C

.C

Input
C Pre-processor

.C*

Wasm
Post-processor

JSON
Test
suite

JSON
Analysis
Report

WASP

.h
+

wasp.h

Modified
C Program

Compilation
Module

(1) (2)

Compiler

WA.a
libc.a module

(3)

Wasm
Module

Figure 9 WASP-C high-level architecture.

test suite is a list of test cases, each corresponding to a JSON file, mapping the symbolic
variables in the test to their corresponding concrete values. Each test case captures a different
execution path of the program to be analysed. Since WASP does not directly operate over
the C source code, WASP-C is comprised of three modules whose end goal is to generate a
Wasm program for WASP to analyse.

WASP-C is implemented in python and is composed of three essential modules: a
C Pre-processor, a Compilation Module, and a Wasm Post-processor, which interact with
each other according to the high-level architecture described in Figure 9. Using WASP as a
submodule, WASP-C concolically executes C programs as follows. First, the C Pre-processor
parses the given program using a standard C parser called pycparser [8], generating an abstract
syntax tree (AST) that is then sent to a specialised C visitor (step 1). Our specialised C
visitor traverses the AST, replacing binary operators such as logical ANDs and ORs with
specific function calls to avoid spurious branching. Then the AST is exported back to a C
program, which is subsequently compiled into Wasm by the Compilation Module (step 2).
Lastly, the Wasm Post-processor processes the obtained Wasm module so as to inject the
appropriate WASP symbolic primitives (step 3).

4 Evaluation

We evaluate WASP with respect to five evaluation questions: (EQ1) How does WASP
compare to the existing symbolic execution tools for Wasm? (EQ2) Can WASP-C be used to
detect bugs in C data structures? (EQ3) Can WASP-C support different types of symbolic
reasoning? (EQ4) What are the performance gains of our proposed optimisation techniques?
and (EQ5) Can WASP-C scale to industry-grade code?

When it comes to EQ1, we compare WASP against Manticore [51] as it is the only
symbolic execution tool that can directly be applied to Wasm binaries; the other existing
tool, WANA [73], works only on EOSIO and Ethereum smart contracts, not including a
stand-alone symbolic execution engine for Wasm that can be run on its own.

All experiments were performed on a server with a 12-core Intel Xeon E5–2620 CPU
and 32GB of RAM running Ubuntu 20.04.2 LTS. For the constraint solver, we employed Z3
v4.8.1. For compiling our benchmarks, we used clang v10.0.0 as part of the LLVM compiler
toolchain kit v10.0.0, which includes: opt, the LLVM optimiser and analyser; l lc, the LLVM
static compiler; and wasm-ld, the Wasm version of l ld, which is the LLVM object linker.
For each execution of WASP, we use the flag -u which disables WASP’s type checker, set a
timeout of 15 minutes, and limit the executing process to 15GiB of memory.

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:17

1 3 6

-2 -1 0 2 4 5 7

Node 1

Node 2 Node 3 Node 4 Node 5

(a) Example of a B-tree with t = 4.

0 4 8 12 64KiB

(ii)

(i)

(b) Memory layout of a fully filled node (n =
d−1). (i) B-tree metadata: degree, no. of nodes,
and root address. (ii) B-tree node: leaf node b,
no. of keys, key values, and children addresses.

Page 0: Tree Info

Page 1: Node 1

Page 2: Node 2

Page 3: Node 3

0 4 8 12 65,536

4 5 65,536

false

true

true

3

3

1

-2 -1 0

1 3 6

2

65,536 65,540 65,544 65,556 65,572 131,072

131,072 196,608

131,072 131,076 131,080 131,092 131,108 196,608

196,608 196,612 196,616 196,628 196,644 262,144

(c) Memory layout of the first three nodes in Fig-
ure 10a.

Figure 10 Memory layout of a simple B-tree.

4.1 EQ1: Comparison with Manticore
To compare WASP with Manticore, we use both these tools to symbolically analyse a
custom-made Wasm implementation of a B-tree data structure developed by C. Costa [22]
and inspired by that of Watt et al. [75]. This data structure allows us to effectively test the
scalability of both engines with respect to code size (≈ 4000 LoC) and the complexity of
the generated formulas. In the following, we first give a high-level description of the B-tree
implementation and the experimental set-up and then present the obtained results.

B-Tree Implementation. B-trees are n-ary self-balancing trees typically used in the im-
plementation of storage systems [55]. B-trees have a fixed branching factor d, denoting the
maximum number of children that internal nodes may have. B-tree nodes store at most d−1
keys; internal nodes additionally store the pointers to their respective children. Intuitively, it
is as if each internal node stores one key in between each two consecutive child pointers. The
keys stored inside a B-tree are arranged so that: (1) the keys of every node are ordered; and
(2) each key ki stored in between the pointers pi and pi+1 of an internal node is greater than
all the keys stored in the node pointed to by pi and less than those stored in the one pointed
to by pi+1. B-trees must additionally satisfy various other invariants; the reader is referred
to [21] for a thorough account of B-trees and their properties. Figure 10a shows a B-tree
with branching factor d = 4. The tree contains one internal node (Node 1) and four leaf
nodes (Nodes 2 to 5), with the internal node storing three keys. Observe that, for instance,
the second key stored in Node 1 (key 3) is greater than the single key stored in Node 3 (key
2) and less than both keys stored in Node 4 (keys 4 and 5).

The B-tree implementation we use [22], as that of Watt et al. [75], only holds 32-bit
integer keys. Each B-tree node is kept in a separate memory page according to the memory
layout given in Figure 10b. Each memory page stores: (1) a flag b, indicating if it represents
a leaf node; (2) an integer n, denoting the number of keys that the node holds; and (3)
n keys, k1, . . . , kn. Additionally, each internal node stores n+1 child pointers, p1, . . . , pn+1.
The implementation uses an extra memory page for keeping metadata information about the
B-tree, namely: its branching factor d, number of nodes nnodes, and address of the root node
aroot . Figure 10c shows the memory layout of the first three nodes of the B-tree presented in
Figure 10a together with the extra memory page used to store its meta-information. The
B-tree implementation comes with four main functions: (1) $createBTree(d) for creating
an empty B-tree with the specified degree; (2) $insertBTree(t, k) for inserting the key
k into the tree t; (3) $searchBTree(t, k) for checking if the tree t holds the key k; and
(4) $deleteBTree(t, k) for deleting the key k from the tree t.

ECOOP 2022

11:18 Concolic Execution for WebAssembly

Table 1 Results WASP and Manticore applied to our B-tree benchmarks.

nu = 1 nu = 2 nu = 3
no npaths TWASP (s) TMcore (s) ×TWASP npaths TWASP (s) TMcore (s) ×TWASP npaths TWASP (s) TMcore (s) ×TWASP

2 3 0.14 2.69 ×19.2 12 1.19 22.78 ×19.1 60 15.54 260.95 ×16.8
3 4 0.55 6.31 ×11.5 20 5.04 77.13 ×15.3 120 47.52 802.42 ×16.9
4 5 2.10 11.29 ×5.4 30 8.79 170.04 ×19.3 210 137.14 1,886.55 ×13.8
5 6 1.45 18.95 ×13.1 42 16.41 340.32 ×20.7 336 286.15 4,041.37 ×14.1
6 7 2.40 35.65 ×14.8 56 29.05 627.98 ×21.6 504 696.35 8,046.52 ×11.6
7 8 7.11 54.61 ×7.7 72 51.09 1,161.62 ×22.7 720 2,003.00 15,803.34 ×7.9
8 9 6.90 90.63 ×13.1 91 74.53 1,948.36 ×26.1 – – – –
9 10 11.18 133.68 ×12.0 110 113.74 2,976.56 ×26.2 – – – –

Experimental Setup. In order to compare the performance of WASP against that of
Manticore, we use the symbolic test suite of [22]. All symbolic tests follow the same code
template but use a varying number of symbolic values, of which some are constrained to be
ordered. In the following, we use no and nu to denote respectively the number of ordered
and unordered symbolic values used in each test.

Results. Table 1 presents the results obtained when running our symbolic test suite with
WASP and Manticore. The number of ordered symbolic values used by the tests varies
between 2 and 9 and the number of unordered values between 1 and 3; i.e., 2 ≤ no ≤ 9
and 1 ≤ nu ≤ 3. For each pair (no, nu), we provide: the number of explored paths (npaths);
the execution time for WASP (TWASP); the execution time for Manticore (TMcore); and the
WASP speed-up with respect to Manticore. As expected, the number of explored paths
increases exponentially with the number of unordered symbolic values. This is reflected in
the time taken by both engines to complete the analysis. For instance, WASP takes more
than 30 minutes to run the test with no = 7 and nu = 3, while taking less than one minute
to run the test with no = 7 and nu = 2.

Most significantly, from Table 1, we observe that WASP is consistently faster than
Manticore, achieving a speed-up that ranges from 5.4× to 26.2× and averages 15.8×. We
conjecture that WASP is able to outperform Manticore for two main reasons: (1) Manticore
performs static symbolic execution, which means that it interacts more often with the
underlying SMT solver and makes more intensive use of memory; and (2) Manticore is
primarily written in Python which is significantly slower than OCaml.1

4.2 EQ2: Detecting Bugs in C Data Structures
To investigate whether WASP-C can detect bugs in complex C data structures, we used it to
symbolically test Collections-C, a generic data structure library obtained from GitHub [4],
which includes a variety of data structures, such as arrays, lists, ring buffers, and queues. In
total, it implements ten different data structures spanning just over 11k LoC. The symbolic
test suite we used to evaluate WASP on Collections-C comes from the Gillian project [26], in
the context of which Collections-C was symbollically tested using Gillian-C, an instantiation
of the Gillian framework for the C language. Gillian’s authors developed a symbolic test
suite that they run against Collections-C. This symbolic test suite consists of 161 symbolic
test programs targeting the various data structure algorithms included in Collections-C.

Here, we test two different versions of Collections-C, a version with bugs previously found
by the authors of Gillian-C,2 henceforth buggy version, and the version resulting from the

1 http://roscidus.com/blog/blog/2014/06/06/python-to-ocaml-retrospective
2 Version with the 2 bugs identified by Gillian-C: https://github.com/srdja/Collections-C/pull/119

and https://github.com/srdja/Collections-C/pull/123.

http://roscidus.com/blog/blog/2014/06/06/python-to-ocaml-retrospective
https://github.com/srdja/Collections-C/pull/119
https://github.com/srdja/Collections-C/pull/123

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:19

Table 2 Results for Gillian-C and WASP-C applied to corrected version of Collections-C.

Baseline WASP-C
Category ni TGil (s) TWASP (s) Tloop (s) Tsolver (s) avg_paths S

(
TGil

TWASP

)
Slist 37 8.34 9.06 6.21 0.85 2 0.92

Pqueue 2 4.79 0.34 0.19 0.05 1 14.09
Stack 2 1.55 0.21 0.06 0.00 1 7.38
Deque 34 8.08 6.43 3.89 1.03 2 1.25
Array 21 7.00 7.00 5.41 1.44 5 1.00
Queue 4 2.11 1.99 1.69 0.18 4 1.06

RingBuffer 3 1.43 0.31 0.07 0.00 1 4.62
Treeset 6 7.07 4.89 4.43 1.43 7 1.45

Treetable 13 12.07 5.02 4.04 1.61 5 2.40
List 37 21.77 30.01 27.18 11.65 6 0.73

Total 159 74.21 65.26 53.17 18.24 34 1.14

correction of those two bugs,3 henceforth corrected version. Essentially, we use WASP-C
to execute 161 symbolic test programs developed in the context of the evaluation of the
Gillian-C project both against the buggy and corrected version of Collections-C.

Experimental Procedure. We performed two experiments: in the first, we use Gillian-C
and WASP-C to execute the symbolic test suite on the corrected version of Collections-C;
and in the second, we used the two tools to execute the two error-triggering symbolic tests
on the buggy version of Collections-C.

Experiment 1. Table 2 presents the results of Experiment 1, where we use both Gillian-C
and WASP-C to test the corrected version of Collections-C. We present the obtained results
for each data structure included in Collections-C, showing for each of them: the number
of tests (ni), the total execution time for Gillian-C (TGil), the total execution time for
WASP (TWASP

4), the total time spent in the concolic interpreter (Tloop), the total time in
the constraint solver (Tsolver), the average number of paths explored (avg_paths), and the
speedup between TGil and TWASP (S). From the table we observe that, overall, WASP is
1.14× faster than Gillian-C at analysing the complete benchmark suite. And, in 7 out the 10
categories, WASP completes the program analysis faster than Gillian-C (i.e., TW ASP < TGil).
We conjecture that this performance gain is due to WASP’s analysis, i.e., Gillian-C performs
static symbolic execution while WASP performs concolic execution, which is faster since it
requires fewer interactions with the underlying solver.

During Experiment 1 WASP-C found a new heap-overflow bug in the Pqueue data
structure. We confirmed the bug with a concrete test using AddressSanitizer [66], reported
it to the developers, and fixed it via a pull request, which has already been accepted by the
library’s main developer.5 The bug was caused by an integer overflow that subsequently
leads to an array-out-of-bounds heap access. WASP-C is able to detect this bug because it
models C integers using Z3 bit-vectors, whereas Gillian only used mathematical reals at the
time of testing.6

Experiment 2. Table 3 presents the results of experiment two, where we use Gillian-C and
WASP-C to test the two bug-triggering tests for the buggy version of Collections-C. Since

3 Corrected version: https://github.com/srdja/Collections-C.
4 Note that, TWASP = Tloop + Tparse and Tloop = Tsolver + Tinterpretation. Where the parsing and in-

terpretation times, respectively Tparse and Tinterpretation, were omitted from the table due to space

ECOOP 2022

https://github.com/srdja/Collections-C

11:20 Concolic Execution for WebAssembly

Table 3 Bug-finding statistics for Collections-C bugs by WASP and Gillian-C.

Test Vulnerability TGil (s) TWASP (s) Tloop (s) Tsolver (s) npaths S

array_test_remove Found 1.40 0.20 0.08 0.03 1 7.00
list_test_zipIterAdd Found 0.57 0.40 0.18 0.00 1 1.42

Total 2/2 1.97 0.60 0.26 0.03 2 3.28

there were only two tests, each triggering a different bug, each row in the table represents a
different bug. For each bug, we indicate whether or not WASP found the bug; the remaining
columns have the same meaning as in Table 2. As the table indicates, WASP-C is able to
detect the bugs discovered by Gillian-C.

4.3 EQ3: Different Types of Symbolic Reasoning
To investigate our third evaluation question, we test WASP-C against the Test-Comp
benchmark suite (Test-Comp) [10] and compare its results with those obtained for the
testing tools submitted to the 2021 Test-Comp Competition [11]. The Test-Comp test suite
is organised into different categories with each focusing on a different type of symbolic
reasoning. For instance, the categories Arrays, BitVectors and Loops respectively aim at
reasoning about array operations, bit-operations, and loops and recursion.

Test-Comp defines two types of testing tasks: (1) Cover-Branches tasks, whose goal is to
generate a set of concrete tests that cover the greatest possible number of program branches,
and (2) Cover-Error tasks, whose goal is to generate at least one set of inputs that lead the
execution of the given program to an execution error.

Test-Comp defines a scoring system to classify testing tools depending on how well they
perform on both types of tasks. Essentially, a tool is assigned three scores, one for each type
of task and a global score. Below, we provide further details on the scoring system.

Experimental Setup. We separately evaluate WASP-C on the Cover-Branches and Cover-
Error tasks. For each task, we assign WASP-C a global score computed as in Test-Comp.
For Cover-Branches, the assigned score represents the coverage of the generated test suites.
For Cover-Error, the assigned score represents the number of bugs found. For both tasks we
present the results for each testing category (e.g., Arrays, BitVectors, ControlFlow, and so
on). We obtain the global score for all analysed categories by applying a weighted average
on the individual scores of each category according to the number of tests in that category.

Results. Table 4 presents the evaluation results per category for the Cover-Branches and
Cover-Error tasks, respectively, and compares the results obtained for WASP-C with those
obtained for the 11 tools submitted to Test-Comp 2021: FuSeBMC [2], CMA-ES Fuzz [40],
CoVeriTest [12], HybridTiger [58], KLEE [14], Legion [48], LibKluzzer [44], PRTest [45],
Symbiotic [18], TracerX [37], and VeriFuzz [7]. The table shows the minimum and maximum
recorded scores obtained for the 11 submitted tools, and the score and rank obtained by
WASP-C.7 Furthermore, in order to better compare WASP-C’s results with those of the

constraints.
5 Bug fix for heap-overflow bug: https://github.com/srdja/Collections-C/pull/148.
6 Gillian has been since extended with support for mathematical integers and can now detect the bug.
7 Cover-Error has no results for C11 and C12 because these categories have no Cover-Error tasks.

https://github.com/srdja/Collections-C/pull/148

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:21

Table 4 Results for both meta categories: Coverage-Branches and Cover-Error.

Cover-Branches Cover-Error
Category Min Max WASP-C Rank Min Max WASP-C Rank
C1.Arrays 96 296 245/380 4th 0 96 89/100 4th

C2.BitVectors 13 40 35/57 7th 0 10 7/10 2th
C3.ControlFlow 3 18 33/54 1st 0 11 29/32 1st

C4.ECA 0 12 4/27 8th 0 16 7/18 6th
C5.Floats 16 103 78/202 7th 0 32 21/32 5th
C6.Heap 19 90 80/136 7th 0 47 41/55 7th
C7.Loops 152 424 403/572 4th 0 138 127/156 4th

C8.Recursive 9 38 27/51 8th 0 19 9/20 7th
C9.Sequentialized 0 71 25/39 9th 0 101 75/107 9th

C10.XCSP 0 97 56/100 10th 0 53 54/59 1st
C11.Combinations 0 180 28/210 7th – – – –

C12.MainHeap 51 204 175/226 8th – – – –

Score 411 1389 1090 6th 0 405 360 3rd

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10C11C12
0

20

40

60

80

Po
in

ts

WASP

(a) Box plot for Cover-Branches.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
0

20

40

60

80

100

Po
in

ts

WASP

(b) Box plot for Cover-Error.

Figure 11 Box plots: Test-Comp coverage results.

other tools, Figures 11a and 11b plot the results, normalising the scores of all tools in each
category and highlighting WASP-C’s score with a red dot. For Cover-Branches and Cover-
Error, WASP-C ranked sixth and third, respectively, ranking fourth overall. These results
demonstrate that WASP-C’s symbolic reasoning is on par with state-of-the-art symbolic
execution and testing tools for C.

Finally, comparing the CPU time for the top 6 scoring tools in [11], WASP-C was the
fifth-fastest tool in the Cover-Error category among these tools (with a total time of 26
hours) and the second-fastest tool in the Cover-Branches category (with a total time of 310
hours). Overall, WASP-C is the second-fastest tool among the top 6 scoring tools, finishing
its analyses in about 326 hours and ranking fourth in terms of scoring (note that KLEE, the
fastest tool, ranked sixth in terms of scoring). We further note that the tools we compare
WASP-C against were executed on a superior testbed. Test-Comp’s testbed is a computing
cluster consisting of 168 machines; each test-generation run was executed on an otherwise
wholly unloaded, dedicated machine to achieve precise measurements. Each machine had
one Intel Xeon E3-1230 v5 CPU, with eight processing units each, a frequency of 3.4GHz
and 33GB of RAM. This setting is superior to the one in which we run WASP-C: a single
server with an Intel Xeon E5–2620 CPU, a frequency of 2.5GHz and 32GB of RAM.

ECOOP 2022

11:22 Concolic Execution for WebAssembly

Table 5 Experimental evaluation of OPTMem and OPTRestart.

TWASP (h) Tsolver (h) npaths nsolver avgcmds(M) no. ass. fls
Benchmark on off on off on off on off on off on off

OPTMem 32 71 1.80 0.04 16,196 261 15,975 26 603 7.6 106 3
OPTRestart 46 58 17.00 29.00 17,677 73,972 39,810 73,641 132 132 275 255

4.4 EQ4: WASP Optimisations
We introduce two optimisation techniques: (1) application of algebraic simplifications to
byte-level symbolic expressions generated by memory interactions (§3.3); and (2) shortcut
restarts for failed assumption statements (§3.4). In the following, we refer to the former
technique as OPTMem and to the latter as OPTRestart. To investigate the effectiveness of
these optimisations, we compare the execution times obtained for WASP-C when they are
enabled (on) against those obtained when they are disabled (off).

Experimental Setup. For each optimisation technique, we have selected a subset of the 2021
Test-Comp benchmark suite [11] with the relevant features. For OPTMem, we have selected
the four Test-Comp sub-categories with the highest number of calls to heap-manipulating
functions (e.g. malloc and calloc), whereas for the OPTRestart, we have have selected the
four sub-categories with the highest number of assume statements.

Results. Table 5 presents the results obtained for both optimisation techniques, showing:
the total execution time of WASP (TWASP); the total solver time (Tsolver); the total number
of explored paths (npaths); the total number of calls to Z3 (nsolver); the average number of
executed Wasm instructions (avgcmd); and the total number of triggered assertion violations.
The values of all metrics are given with the corresponding technique turned on and off.

With OPTMem on, WASP completes the analysis in less 39 hours (32 vs 71), explores
62 times more paths, and discovers 35 times more assertion violations. The main effect of
this optimisation is to reduce the size of concolic states by reducing the size of the symbolic
expressions that they store. This reduction enables WASP to interpret more instructions per
unit of time (5, 234.6 i/s vs 30.0 i/s), as it has been demonstrated that symbolic execution
throughput is severely impacted by intensive memory usage [17].

With OPTRestart on, WASP completes the analyses in less 12 hours and discovers 20
more assertion violations. The main effect of this optimisation is that it allows WASP to
explore fewer execution paths by ignoring the paths that lead to failed assumptions, thereby
leaving more time for the exploration of relevant paths.

4.5 EQ5: Scalability to Industry-Grade Code
To investigate our fifth evaluation question, we use WASP-C to obtain a comprehensive test
suite for part of the C implementation of the AWS Amazon Encryption SDK [67], a highly-
used cryptographic library that powers, for instance, the Amazon DynamoDB Encryption
Client [3]. The AWS Encryption SDK for C is a library for the encryption and decryption
of data that implements complex data structures and algorithms in the C language. This
library is challenging to analyse as it uses various cryptographic functions that current SMT
solvers cannot tackle. The library comes with a benchmark suite of bounded verification
proofs designed to be checked with the CBMC bounded model checker [42], which can be

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:23

Table 6 Benchmark results applying WASP-C to the AWS Encryption SDK for C.

Category ni npaths Tloop (s) Tsolver (s) TWASP (s) Coverage

Md 2 3 0.12 0.04 0.18 60.8
Decrypt 3 151 48.81 9.03 49.00 54.4

Edk 5 194 366.83 4.64 367.13 60.2
Cmm 5 558 1,793.00 60.43 1,794.00 66.6

Private 3 962 1,792.53 406.06 1,793.11 55.0
Keyring 10 1,382 1,145.89 213.67 1,146.56 70.8
Misc-ops 7 3,851 1,907.59 134.81 1,908.18 48.5

Total 35 7,101 7,054.77 828.68 7,058.16 59.5

easily turned into symbolic tests to enable the generation of a concrete test suite for the
library. We consider 35 verification proofs totalling 2.3k LoC. The library itself contains
multiple C files totalling just under 40k LoC.

Experimental Procedure. Our experimental procedures analyse the benchmark suite
without constraining the number of paths explored during concolic execution and with
a timeout of 15 minutes. We choose these settings to enable WASP to freely analyse every
path of a program. Note that not all symbolic tests will take 15 minutes to be executed, as
some tests do not loop on symbolic values and therefore have a finite execution tree.

Results. Table 6 presents the results of running the created symbolic test suite on seven
modules of the AWS Encryption SDK for C organised by the data structure or algorithm that
they are testing. Additionally, tests for generic data structures like lists or hash tables and
generic operations like getters/setters go into the Misc-ops module as they are not specific
to the encryption library. For each module, we present the number of tests targeting that
module (ni), the total number of paths explored (npaths), the total time spent in the concolic
loop (Tloop), the total time spent in Z3 (Tsolver), the total analysis time (TWASP), and the line
coverage obtained. The table shows that, in total, WASP-C analyses the benchmark suite
in just under two hours and obtains roughly 60% of line coverage of the library’s functions.
In contrast to the data structures in Md, which are mainly populated with concrete values
and are therefore quickly analysed, the data structures Edk, Cmm, Private, and Keyring
take a significant amount of time to be analysed as they mainly operate on symbolic values.
Unsurprisingly, the symbolic tests in the former group trigger much fewer symbolic execution
paths than those in the latter. Note that analyses finish quickly in the Decrypt module
that tests decryption operations due to the small inputs given to these operations, typically,
strings with one or two characters at most.

As our symbolic test suite is automatically obtained from the bounded verification proofs
that come with the AWS Encryption SDK for C, its coverage is limited by the structure of the
bounded inputs considered in the proofs. As most proofs only consider well-formed inputs,
our symbolic test suite does not cover most of the library’s code for handling ill-formed
inputs. In the future, we plan to write additional tests to obtain 100% line coverage.

5 Related Work

Semantics of Wasm. Haas et al. [30] proposed a small-step operational semantics for Wasm
together with a type system for checking the safety of stack operations. Later, Watt [74]
mechanised both the semantics and the type system introduced in [30] using the Isabelle

ECOOP 2022

11:24 Concolic Execution for WebAssembly

theorem prover [53] and exposing several issues in the official Wasm specification. The
authors of [75] then introduced Wasm Logic, a program logic for modular reasoning about
heap-manipulating Wasm programs. In contrast to Wasm’s native type system, Wasm
Logic can be used to establish the safety of heap operations. However, it cannot yet reason
about real-world Wasm code as it has not been automated. Very recently, Watt et al. [76]
introduced two new mechanisations of the specification of Wasm following the new official
W3C standard [72]; one developed in Isabelle and the other in the Coq [70] theorem prover.

Program Analyses for Wasm. Since the proposal of the Wasm standard [57], various
program analyses have been designed for tackling the specificities of the language. Most of
these analyses aim at the verification/testing of security properties and can broadly be divided
into two main categories: static analyses [77, 68], which analyse stand-alone Wasm modules
without the need to execute them, and dynamic analyses [69, 68], which instrument the given
module to enforce the desired security property. Among the static analyses, we highlight:

CT-Wasm [77], a type-driven extension of Wasm for provably secure implementation
of cryptographic algorithms, which enforces information flow security and resistance to
timing side-channel attacks through the use of security types;
Wassail [68], an information flow analysis for Wasm based on a standard data-flow analysis,
which the authors evaluate on a benchmark comprising 30 C programs.

Neither CT-Wasm nor Wassail can precisely reason about Wasm programs that interact with
the memory, as they both assume that the values stored in memory are always confidential.
In the future, we would like to study how to take advantage of WASP to improve the precision
of information flow analysis for Wasm using, for instance, the self-composition technique [6]
for the generation of vulnerability-triggering inputs.

Among the dynamic analyses for Wasm, we highlight the following two taint-tracking
tools: TaintAssembly [27] and the tool presented in [69]. TaintAssembly [27] is a modification
of the V8 JavaScript engine for performing basic taint tracking by adding a taint label to
function parameters, local variables, and linear memory cells. In [69], the authors present a
JavaScript virtual machine (VM) to interpret and run Wasm code, capable of monitoring
the flow of sensitive information through taint tracking. However, neither TaintAssembly
nor the JavaScript VM described in [69] can accurately track information flows in Wasm, as
the former does not propagate indirect taint in comparison operators and the latter does not
support floating-points in Wasm. Additionally, these tools are not ideal for testing generic
Wasm code as they require concrete inputs to trigger the illegal information flows in the given
program. A possible direction for future work is to combine WASP with a taint tracking
tool, using WASP to generate inputs.

Symbolic Execution. Symbolic execution has been extensively used to find crucial errors
and vulnerabilities in a broad spectrum of programming languages, such as C [28], C++ [14],
Java [64], and Python [19]. Regarding the Web, there are several state-of-the-art tools for
symbolically executing JavaScript code [60, 61, 62, 47, 65], demonstrating the need for such
tools for the validation and testing of modern Web applications.

Symbolic execution tools can be divided into two main classes: static and dynamic/con-
colic [5]. Static symbolic execution engines, such as [41, 54, 39, 71, 60, 61], explore the entire
symbolic execution tree up to a pre-established depth, while concolic execution engines, such
as [14, 28, 64, 17, 62, 47, 65], usually work by pairing up a concrete execution with a symbolic
execution and exploring one execution path at a time. An advantage of concolic execution
over static symbolic execution is that concolic execution requires less frequent interactions

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:25

with the solver and a simpler memory model. There is a vast body of research on both
static and concolic symbolic execution tools for a wide variety of programming languages,
see [5, 15, 16] for comprehensive surveys on the topic. In the following, we give a detailed
account of the only two existing symbolic execution tools for Wasm other than WASP.

WANA [73] is a cross-platform smart contract vulnerability detection tool employed to
find vulnerabilities in EOSIO [43] and Ethereum smart contracts [38]. WANA is based on
static symbolic execution and operates over Wasm bytecode. To detect vulnerabilities in
smart contracts, WANA comes with three heuristics for EOSIO smart contracts and four for
Ethereum smart contracts. Unlike WASP, WANA lacks a stand-alone symbolic execution
engine for Wasm. Hence, it is not possible to run WANA on arbitrary Wasm code without
refactoring its internal architecture. For this reason, we were unable to evaluate WANA on
our B-tree implementation and compare its performance with those of WASP and Manticore.

Manticore [51] is a symbolic execution framework for binaries and smart contracts.
Manticore is highly flexible, supporting a wide range of binaries and computing environments,
including Wasm bytecode. When it comes to Wasm, Manticore does not expose dedicated
primitives for constructing and reasoning over symbolic values at the source language level.
Symbolic inputs and constraints are created as part of a complex Python script that must be
written for each test [33], which initialises the symbolic state and calls the appropriate Wasm
module. This process does not scale for a broad evaluation, as one would have to manually
write a python script for each symbolic test. Nonetheless, we compare the performance of
WASP with that of Manticore [51] in the analysis of a stand-alone Wasm implementation of
a B-tree data structure, demonstrating that WASP is consistently faster.

6 Conclusion

In this paper, we presented WASP, a novel concolic execution engine for testing Wasm
modules. To the best of our knowledge, WASP is the first symbolic execution tool to
analyse complex WebAssembly code for general-purpose applications. Prior existing tools for
symbolically executing Wasm code [51, 73] were only evaluated on smart contracts, which are
simpler and therefore easier to analyse than general-purpose applications. On top of WASP,
we also developed WASP-C, a symbolic execution framework to test C programs symbolically
using WASP. We have extensively evaluated our tools. Our results show that WASP: (1)
can detect bugs in complex data structure libraries, being able to find a previously unknown
bug in a widely-used generic data structure library for C; (2) supports different types of
symbolic reasoning, having comparable performance to well-established symbolic execution
and testing tools for C; and (3) can scale to industry-grade code, being able to generate a
high-coverage test suite for the Amazon Encryption SDK for C.

References

1 Syrus Akbary and Ivan Enderlin. Wasmer: Run any code on any client [online]. Accessed
27th-October-2021. URL: https://wasmer.io.

2 Kaled M. Alshmrany, Rafael S. Menezes, Mikhail R. Gadelha, and Lucas C. Cordeiro.
FuSeBMC: A White-Box Fuzzer for Finding Security Vulnerabilities in C Programs (Competi-
tion Contribution). In Fundamental Approaches to Software Engineering, 2021.

3 AWS. Amazon DynamoDB Encryption Client [online]. Accessed 28th-October-2021. URL:
https://docs.aws.amazon.com/crypto/latest/userguide/awscryp-service-ddb-client.
html.

ECOOP 2022

https://wasmer.io
https://docs.aws.amazon.com/crypto/latest/userguide/awscryp-service-ddb-client.html
https://docs.aws.amazon.com/crypto/latest/userguide/awscryp-service-ddb-client.html

11:26 Concolic Execution for WebAssembly

4 Sacha Ayoun, Alexis Marinoiu, and Petar Maksimović. Collections-C for symbolic test-
ing with Gillian-C [online]. Accessed 15th-December-2020. URL: https://github.com/
GillianPlatform/collections-c-for-gillian [cited 15th December 2020].

5 Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi.
A survey of symbolic execution techniques. ACM Computing Surveys, 2018.

6 Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-
composition. Mathematical Structures in Computer Science, 2011.

7 Animesh Basak Chowdhury, Raveendra Kumar Medicherla, and Venkatesh R. VeriFuzz:
Program Aware Fuzzing. In Tools and Algorithms for the Construction and Analysis of
Systems, 2019.

8 Eli Bendersky. pycparser [online]. Accessed 1st-November-2021. URL: https://github.com/
eliben/pycparser.

9 John Bergbom. Memory safety: old vulnerabilities become new with WebAssembly. Technical
report, Forcepoint, December 2018.

10 Dirk Beyer. International Competition on Software Testing (Test-Comp). In Tools and
Algorithms for the Construction and Analysis of Systems, 2019.

11 Dirk Beyer. Status Report on Software Testing: Test-Comp 2021. In Fundamental Approaches
to Software Engineering, 2021.

12 Dirk Beyer and Marie-Christine Jakobs. CoVeriTest: Cooperative Verifier-Based Testing. In
Fundamental Approaches to Software Engineering, 2019.

13 Ruben Bridgewate. Node v12.3.0 [online]. Accessed 27th-October-2021. URL: https://
nodejs.org/en/blog/release/v12.3.0.

14 Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and Automatic
Generation of High-Coverage Tests for Complex Systems Programs. In USENIX Conference
on Operating Systems Design and Implementation, 2008.

15 Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Pasareanu, Koushik Sen,
Nikolai Tillmann, and Willem Visser. Symbolic execution for software testing in practice:
preliminary assessment. In International Conference on Software Engineering, 2011.

16 Cristian Cadar and Koushik Sen. Symbolic execution for software testing: Three decades later.
Communications of the ACM, 2013.

17 Sang Kil Cha, Thanassis Avgerinos, Alexandre Rebert, and David Brumley. Unleashing
Mayhem on Binary Code. In IEEE Symposium on Security and Privacy, 2012.

18 Marek Chalupa, Jakub Novák, and Jan Strejcek. Symbiotic 8: Parallel and targeted test
generation. Fundamental Approaches to Software Engineering, 2021.

19 Ting Chen, Xiao-song Zhang, Rui-dong Chen, Bo Yang, and Yang Bai. Conpy: Concolic exe-
cution engine for python applications. In Algorithms and Architectures for Parallel Processing,
2014.

20 Lin Clark. Standardizing WASI: A system interface to run WebAssembly outside the
web [online]. Accessed 27th-October-2021. URL: https://hacks.mozilla.org/2019/03/
standardizing-wasi-a-webassembly-system-interface.

21 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

22 C. Costa. Concolic execution for WebAssembly. Master’s thesis, Instituto Superior Técnico,
Universidade de Lisboa, 2020. Master’s Thesis.

23 Michael Pradel Daniel Lehmann, Johannes Kinder. Everything Old is New Again: Binary
Security of WebAssembly. In USENIX Security Symposium, 2020.

24 Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient SMT Solver. In Tools and Algorithms
for the Construction and Analysis of Systems, 2008.

25 Jonathan Foote. Hijacking the control flow of a WebAssembly program [on-
line]. Accessed 27th-October-2021. URL: https://www.fastly.com/blog/
hijacking-control-flow-webassembly [cited 27th October 2021].

https://github.com/GillianPlatform/collections-c-for-gillian
https://github.com/GillianPlatform/collections-c-for-gillian
https://github.com/eliben/pycparser
https://github.com/eliben/pycparser
https://nodejs.org/en/blog/release/v12.3.0
https://nodejs.org/en/blog/release/v12.3.0
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface
https://www.fastly.com/blog/hijacking-control-flow-webassembly
https://www.fastly.com/blog/hijacking-control-flow-webassembly

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:27

26 José Fragoso Santos, Petar Maksimović, Sacha-Élie Ayoun, and Philippa Gardner. Gillian,
Part I: A Multi-Language Platform for Symbolic Execution. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, 2020.

27 William Fu, Raymond Lin, and Daniel Inge. Taintassembly: Taint-based information flow
control tracking for WebAssembly. arXiv preprint, 2018.

28 Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated random testing.
In ACM SIGPLAN Conference on Programming Language Design and Implementation, 2005.

29 GoogleSecurityResearch. Google Chrome 73.0.3683.103 - ’WasmMemoryObject::Grow’ Use-
After-Free [online]. Accessed 27th-October-2021. URL: https://www.exploit-db.com/
exploits/46968 [cited 27th October 2021].

30 Andreas Haas, Andreas Rossberg, Derek L. Schuff, Ben L. Titzer, Michael Holman, Dan
Gohman, Luke Wagner, Alon Zakai, and JF Bastien. Bringing the web up to speed with
WebAssembly. In ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, 2017.

31 Adam Hall and Umakishore Ramachandran. An execution model for serverless functions at
the edge. In Tools and Algorithms for the Construction and Analysis of Systems, 2019.

32 Paul Havlak. Nesting of reducible and irreducible loops. ACM Transactions on Programming
Languages and Systems, 1997.

33 Eric Hennenfent. Symbolically Executing WebAssembly in Manticore [online].
Accessed: 30th-November-2021. URL: https://blog.trailofbits.com/2020/01/31/
symbolically-executing-webassembly-in-manticore.

34 Pat Hickey. Announcing Lucet: Fastly’s native WebAssembly compiler and
runtime [online]. Accessed 27th-October-2021. URL: https://www.fastly.com/blog/
announcing-lucet-fastly-native-webassembly-compiler-runtime.

35 Aaron Hilbig, Daniel Lehmann, and Michael Pradel. An Empirical Study of Real-World
WebAssembly Binaries: Security, Languages, Use Cases. In Proceedings of the Web Conference,
2021.

36 IEEE. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Revision of IEEE
754-2008), 2019.

37 Joxan Jaffar, Rasool Maghareh, Sangharatna Godboley, and Xuan-Linh Ha. Tracerx: Dynamic
symbolic execution with interpolation (competition contribution). Fundamental Approaches to
Software Engineering, 2020.

38 Bhaskar Kashyap. Introduction to smart contracts [online]. Accessed: 30th-November-2021.
URL: https://ethereum.org/en/developers/docs/smart-contracts.

39 Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. Generalized symbolic execution
for model checking and testing. In Tools and Algorithms for the Construction and Analysis of
Systems, 2003.

40 H. Kim. Fuzzing with stochastic optimization. Master’s thesis, LMU Munich, 2020. Bachelor’s
Thesis.

41 James C. King. Symbolic execution and program testing. Communications of the ACM, 1976.
42 Daniel Kroening and Michael Tautschnig. CBMC – C Bounded Model Checker. In Tools and

Algorithms for the Construction and Analysis of Systems, 2014.
43 Daniel Larimer and Brendan Blumer. EOS.IO Technical White Paper [online]. Ac-

cessed: 30th-November-2021. URL: https://github.com/EOSIO/Documentation/blob/
master/TechnicalWhitePaper.md.

44 Hoang M. Le. LLVM-based Hybrid Fuzzing with LibKluzzer (Competition Contribution). In
FASE, 2020.

45 Thomas Lemberger. Plain random test generation with PRTest. International Journal on
Software Tools for Technology Transfer, 2020.

46 Xavier Leroy, Andrew W. Appel, Sandrine Blazy, and Gordon Stewart. The CompCert
Memory Model, Version 2. Research Report RR-7987, INRIA, June 2012. URL: https:
//hal.inria.fr/hal-00703441.

ECOOP 2022

https://www.exploit-db.com/exploits/46968
https://www.exploit-db.com/exploits/46968
https://blog.trailofbits.com/2020/01/31/symbolically-executing-webassembly-in-manticore
https://blog.trailofbits.com/2020/01/31/symbolically-executing-webassembly-in-manticore
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://ethereum.org/en/developers/docs/smart-contracts
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://github.com/EOSIO/Documentation/blob/master/TechnicalWhitePaper.md
https://hal.inria.fr/hal-00703441
https://hal.inria.fr/hal-00703441

11:28 Concolic Execution for WebAssembly

47 Guodong Li, Esben Andreasen, and Indradeep Ghosh. SymJS: Automatic symbolic testing of
JavaScript web applications. In ACM SIGSOFT International Symposium on Foundations of
Software Engineering, 2014.

48 Dongge Liu, Gidon Ernst, Toby Murray, and Benjamin I. P. Rubinstein. Legion: Best-
First Concolic Testing (Competition Contribution). In Fundamental Approaches to Software
Engineering, 2020.

49 Aishwarya Lonkar and Siddhesh Chandrayan. The dark side of WebAssembly [online]. Ac-
cessed 27th-October-2021. URL: https://www.virusbulletin.com/virusbulletin/2018/
10/dark-side-webassembly [cited 27th October 2021].

50 Brian McFadden, Tyler Lukasiewicz, Jeff Dileo, and Justin Engler. Security Chasms of WASM.
Technical report, NCC Group, August 2018.

51 Mark Mossberg, Felipe Manzano, Eric Hennenfent, Alex Groce, Gustavo Grieco, Josselin
Feist, Trent Brunson, and Artem Dinaburg. Manticore: A user-friendly symbolic execution
framework for binaries and smart contracts, 2019. arXiv:1907.03890.

52 Srđan Panić. Collections-C [online]. Accessed 5th-July-2021. URL: https://github.com/
srdja/Collections-C [cited 5th July 2021].

53 Lawrence C Paulson. Isabelle [online]. Accessed 27th-November-2021. URL: https://
isabelle.in.tum.de.

54 Corina S. Păsăreanu and Neha Rungta. Symbolic PathFinder: Symbolic Execution of Java
Bytecode. In IEEE/ACM International Conference on Automated Software Engineering, 2010.

55 Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-Tree Filesystem. ACM
Transactions on Storage, 2013.

56 Andreas Rossberg. WebAssembly Reference Interpreter [online]. Accessed 3rd-December-
2020. URL: https://github.com/WebAssembly/spec/tree/master/interpreter [cited 3rd
December 2020].

57 Andreas Rossberg. WebAssembly Core Specification. Technical report, W3C, 2019. URL:
https://www.w3.org/TR/wasm-core-1.

58 Sebastian Ruland, Malte Lochau, and Marie-Christine Jakobs. HybridTiger: Hybrid Model
Checking and Domination-based Partitioning for Efficient Multi-Goal Test-Suite Generation
(Competition Contribution). In Fundamental Approaches to Software Engineering, 2020.

59 Jan Rüth, Torsten Zimmermann, Konrad Wolsing, and Oliver Hohlfeld. Digging into browser-
based crypto mining. In Internet Measurement Conference, 2018.

60 José Fragoso Santos, Petar Maksimović, Théotime Grohens, Julian Dolby, and Philippa
Gardner. Symbolic execution for JavaScript. In International Symposium on Principles and
Practice of Declarative Programming, 2018.

61 José Fragoso Santos, Petar Maksimović, Gabriela Sampaio, and Philippa Gardner. JaVerT 2.0:
compositional symbolic execution for JavaScript. Proceedings of the ACM on Programming
Languages, 2019.

62 Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCamant, and Dawn
Song. A symbolic execution framework for JavaScript. In IEEE Symposium on Security and
Privacy, 2010.

63 Koushik Sen and Gul Agha. CUTE and jCUTE: Concolic Unit Testing and Explicit Path
Model-Checking Tools. In CAV, 2006.

64 Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A Concolic Unit Testing Engine for C.
ACM SIGSOFT Software Engineering Notes, 2005.

65 Koushik Sen, George Necula, Liang Gong, and Wontae Choi. MultiSE: Multi-path symbolic
execution using value summaries. In Joint Meeting on Foundations of Software Engineering,
2015.

66 Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov. Ad-
dressSanitizer: A Fast Address Sanity Checker. In USENIX Conference on Annual Technical
Conference, 2012.

https://www.virusbulletin.com/virusbulletin/2018/10/dark-side-webassembly
https://www.virusbulletin.com/virusbulletin/2018/10/dark-side-webassembly
http://arxiv.org/abs/1907.03890
https://github.com/srdja/Collections-C
https://github.com/srdja/Collections-C
https://isabelle.in.tum.de
https://isabelle.in.tum.de
https://github.com/WebAssembly/spec/tree/master/interpreter
https://www.w3.org/TR/wasm-core-1

F. Marques, J. Fragoso Santos, N. Santos, and P. Adão 11:29

67 Amazon Web Services. AWS Encryption SDK for C. https://github.com/aws/
aws-encryption-sdk-c. Accessed: 2021-09-08.

68 Quentin Stiévenart and Coen De Roover. Compositional Information Flow Analysis for
WebAssembly Programs. In IEEE International Working Conference on Source Code Analysis
and Manipulation. IEEE, 2020.

69 Aron Szanto, Timothy Tamm, and Artidoro Pagnoni. Taint tracking for WebAssembly. arXiv
preprint, 2018.

70 The Coq Development Team. The Coq Proof Assistant [online]. Accessed 27th-November-2021.
URL: https://coq.inria.fr.

71 Emina Torlak and Rastislav Bodik. A lightweight symbolic virtual machine for solver-aided
host languages. In ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2014.

72 W3C. W3C WebAssembly Core Specification [online]. Accessed 27th-November-2021. URL:
https://www.w3.org/TR/wasm-core-1.

73 Dong Wang, Bo Jiang, and W. K. Chan. WANA: Symbolic Execution of Wasm Bytecode for
Cross-Platform Smart Contract Vulnerability Detection, 2020. arXiv:2007.15510.

74 Conrad Watt. Mechanising and verifying the WebAssembly specification. In ACM SIGPLAN
International Conference on Certified Programs and Proofs, 2018.

75 Conrad Watt, Petar Maksimovic, Neelakantan R. Krishnaswami, and Philippa Gardner. A
program logic for first-order encapsulated WebAssembly. In Alastair F. Donaldson, editor,
European Conference on Object-Oriented Programming, 2019.

76 Conrad Watt, Xiaojia Rao, Jean Pichon-Pharabod, Martin Bodin, and Philippa Gardner. Two
Mechanisations of WebAssembly 1.0. In Formal Methods, 2021.

77 Conrad Watt, John Renner, Natalie Popescu, Sunjay Cauligi, and Deian Stefan. CT-Wasm:
Type-driven Secure Cryptography for the Web Ecosystem. Proceeding of the ACM on Pro-
gramming Languages, 2019.

78 WebAssembly. WebAssembly FAQ [online]. Accessed: 29th-October-2021. URL: https:
//webassembly.org/docs/faq.

79 Shu-Hung You, Robert Bruce Findler, and Christos Dimoulas. Sound and complete concolic
testing for higher-order functions. In ESOP, 2021.

ECOOP 2022

https://github.com/aws/aws-encryption-sdk-c
https://github.com/aws/aws-encryption-sdk-c
https://coq.inria.fr
https://www.w3.org/TR/wasm-core-1
http://arxiv.org/abs/2007.15510
https://webassembly.org/docs/faq
https://webassembly.org/docs/faq

Defining Corecursive Functions in Coq Using
Approximations
Vlad Rusu #

Inria, Lille, France

David Nowak #

Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Abstract
We present two methods for defining corecursive functions that go beyond what is accepted by the
builtin corecursion mechanisms of the Coq proof assistant. This gain in expressiveness is obtained
by using a combination of axioms from Coq’s standard library that, to our best knowledge, do
not introduce inconsistencies but enable reasoning in standard mathematics. Both methods view
corecursive functions as limits of sequences of approximations, and both are based on a property of
productiveness that, intuitively, requires that for each input, an arbitrarily close approximation of
the corresponding output is eventually obtained. The first method uses Coq’s builtin corecursive
mechanisms in a non-standard way, while the second method uses none of the mechanisms but
redefines them. Both methods are implemented in Coq and are illustrated with examples.

2012 ACM Subject Classification Theory of computation → Functional constructs

Keywords and phrases corecursive function, productiveness, approximation, Coq proof assistant

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.12

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.2

1 Introduction

Coq [1] is a proof assistant based on the Calculus of Inductive Constructions. Coinductive
constructions (coinductive types, relations, and proofs, and corecursive functions) have
been included in Coq’s underlying theory [11]. However, these constructions are limited.
Corecursive functions must conform to a syntactical guardedness criterion requiring that, up
to standard reductions, calls to the function under definition occur directly under constructors
of the coinductive representing the codomain of the function of interest. Such functions are
total and by consequence are accepted by Coq.

The guardedness criterion is best illustrated by an example. Consider the set of streams S

over a set A, which, intuitively, are infinite sequences of elements of A separated by the
constructor _ · _. The head (resp. the tail) of a stream s is the first element of s (resp. the
stream obtained from s by removing its first element). Consider also a predicate p on A, and
the following function filter , which takes a stream s ∈ S as input and aims at producing
as output a stream that contains the elements of s that satisfy p. Since its output is an
(infinite) stream the function does not terminate.

filter s := if p(head s) then (head s) · (filter (tail s)) else filter (tail s)

The first self-call to filter in the function’s body falls directly under a call to the constructor
_ · _. It is therefore syntactically guarded by the constructor. In the second self-call, the
constructor is not present; the second call is not syntactically guarded. Overall, the above
function definition fails to satisfy the syntactical “guarded-by-constructors” criterion because
of the second self-call.

V1.1

A
rt
ifa

cts Available

ECOOP

© Vlad Rusu and David Nowak;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 12; pp. 12:1–12:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Vlad.Rusu@inria.fr
https://orcid.org/0000-0002-3495-2232
mailto:David.Nowak@univ-lille.fr
https://doi.org/10.4230/LIPIcs.ECOOP.2022.12
https://doi.org/10.4230/DARTS.8.2.2
https://doi.org/10.4230/DARTS.8.2.2
https://doi.org/10.4230/DARTS.8.2.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Defining Corecursive Functions in Coq Using Approximations

To see why the syntactical guardedness criterion is important, consider a stream in s ∈ S

such that none of its elements satisfy p. Then, filter s is not a stream – none of the elements
in the input are kept in the output. The unguarded call is responsible for this. Hence, filter
is not a total function from S to S, and Coq’s guardedness criteria rightfully reject it because
Coq only accepts total functions.

However, by restricting its domain to the set S′ of streams s′ such that infinitely many
elements of s′ satisfy p, the filter function becomes a total function from S′ to S. Intuitively,
the guarded call, which copies an element in the input into the output, is called infinitely
many times and thus produces an (infinite) stream. Such a function could, in principle, be
accepted by Coq; however, Coq does not have automatic mechanisms to realize this. Its
builtin syntactical criteria are automatic, sound (i.e. all functions that fulfill them are total),
but restricted since they reject some total functions.

Let us take a closer look at the argument for the totality of filter restricted to S′. Consider
an arbitrary stream s′ ∈ S′. At the beginning, i.e., before filter s′ starts computing, obviously,
nothing is known about the value of output. This continues to be the case while the function
processes successive elements of s′ that do not satisfy p, because such elements are not
kept in the output. However, eventually, an element of s′, say, a, which does satisfy p, is
encountered. It is kept in the output, which becomes a · (filter (tail . . .)), i.e., a stream about
which something is known: its first element. Thus, one starts with a situation for which
nothing is known about the output, and, eventually, the first element of the output becomes
known. By repeating these observations one can see that, eventually, any finite prefix of
the output becomes known. By viewing a finite prefix of a stream as an approximation of
the stream in question, and by interpreting a longer prefix as a closer approximation of a
stream than a shorter prefix, we can rephrase the argument for the totality of our function as:
for each input, an arbitrarily close approximation of the corresponding output is eventually
produced. This condition is called productiveness, and it is the condition that our function
(and, in general, corecursive functions) needs to fulfill in order to be total. We note that in
the literature about corecursive functions this condition (under various formulations) is well
known, to the point that it has become folklore; but, to our best knowledge, it has not yet
been formalized.

What is, then, the relation between guardedness and productiveness? To see this, consider
the function filter′ s := if p(head s) then (head s) · (filter ′ (tail s)) else dummy · filter ′ (tail s),
in which the second self-call is now also guarded by the constructor _ · _ by having elements
of the input that do not satisfy the predicate replaced by some dummy value in the output.
The effect of this guarded definition is that for each input, the next call produces a closer
approximation of the output. Since “next” is a particular case of “eventually”, the overall
effect of guardedness is to ensure productiveness and therefore totality, in a syntactical (thus,
automatically checkable) and conservative way.

Contributions

In this paper we propose a formal definition of productiveness that captures the corresponding
intuitive notion, and two methods for defining corecursive functions in which productiveness
is a key ingredient. Essentially, productiveness restricts the manner in which a sequence of
approximating functions converges to the function under definition, and the two methods
offer two different ways for building the sequence of approximating functions. Both methods
enable the definition of corecursive functions beyond what Coq accepts by default. Both
methods have been implemented in Coq and are illustrated by examples. Their additional
expressiveness is obtained thanks to axioms from Coq’s standard library, which, to our best

V. Rusu and D. Nowak 12:3

knowledge, do not introduce inconsistencies. The difference between the methods lies in
the amount of Coq builtin coinductive features they reuse: the first method reuses them
extensively, while the second method uses none but redefines them.The Coq development is
available at https://project.inria.fr/ecoop2022/.

The rest of the paper is organized as follows. A theoretical part (Sections 2-4) presents
a formal notion of productiveness and our two corecursive function-definition methods
in a language-agnostic manner. We emphasize that knowing Coq is not necessary for
understanding the theory. Section 5 gives details of the Coq implementation that are not
visible in the theory but are essential in the implementation, such as the combination of
axioms imported from the standard library that enable reasoning in standard mathematics.
Section 6 concludes and discusses related and future work.

2 A formal notion of productiveness

We start with some basic definitions used in the rest of the paper. Consider a set C and a
partial order ⪯ on C. We denote by ≺ the relation defined by t ≺ t′ iff t ⪯ t′ and t ̸= t′.

▶ Definition 1. A sequence (si)i∈N of elements of C is
increasing whenever for all i ∈ N, si ⪯ si+1;
strictly increasing, whenever for all i ∈ N, si ≺ si+1;
stabilizing to c ∈ C whenever there exist m ∈ N such that for all i ≥ m, si = c, and
stabilizing whenever it is stabilizing to some c ∈ C;
ascending whenever it is increasing and non-stabilizing.

▶ Remark. A sequence is ascending iff it is increasing and has a strictly increasing subsequence.
The following is one of the several existing definitions of a complete partial order (CPO) :

▶ Definition 2. A CPO consists of a set C, a partial order ⪯ on C, and an element ⊥ ∈ C

satisfying ∀t ∈ T , ⊥ ⪯ t, such that that any increasing sequence of elements of T has a least
upper bound.

We call the least upper bound of an increasing sequence (sn)n∈N the limit of the sequence,
hereafter denoted by lim[(sn)n∈N].

▶ Example 3. Any set A can be organized as a CPO (A ∪ {⊥A}, ⪯A, ⊥A) by choosing some
value ⊥A /∈ A and by defining ⪯A as the smallest relation on A ∪ {⊥A} satisfying ⊥A ⪯A a

for all a ∈ A and a′ ⪯A a′ for all a′ ∈ A ∪ {⊥A}. The properties of orders (reflexivity,
anti-symmetry, transitivity) hold trivially. Any increasing sequence (an)n∈N stabilizes to
some a ∈ A∪{⊥A}, and the limit of the sequence is the value to which the sequence stabilizes.
This CPO is called the flat CPO of A.

In the rest of the paper the maximal elements of a CPO with respect to its order shall play
an important role: that of “well-defined corecursive values”. This view is consistently held
ahead in the paper.

The following definition is our formal notion of productiveness. It restricts the manner in
which a sequence of functions “converges” to a given function.

▶ Definition 4. Given a sequence of functions (fn)n∈N having the same domain D and
codomain C, such that the codomain is organized as a CPO (C, ⪯, ⊥), we say that the sequence
(fn)n∈N productively converges whenever for all x ∈ D, the sequence (fn x)n∈N is increasing
and its limit lim[(fn x)n∈N] is maximal w.r.t. the order ⪯. The limit of the sequence (fn)n∈N
is by definition the function f : D → C such that for all x ∈ D, f x = lim[(fn x)n∈N]. We
call (fn)n∈N the sequence of approximating functions for the limit function f .

ECOOP 2022

https://project.inria.fr/ecoop2022/

12:4 Defining Corecursive Functions in Coq Using Approximations

▶ Remark. The image of the domain D by functions f constructed as in Definition 4 is
included in the set of maximal elements of C, which, as said earlier, play the role of well-
defined corecursive values. This justifies us calling “corecursive” the limits of productively
converging sequences (fn)n∈N.

▶ Remark. We now justify why Definition 4 captures the informal definition of productiveness.
For each x ∈ D, the increasing sequence (fn x)n∈N is either stabilizing or non-stabilizing.
The values x ∈ D for which (fn x)n∈N stabilizes are inputs on which f terminates. The
values x ∈ D for which (fn x)n∈N does not stabilize are such that the increasing sequence
(fn x)n∈N is ascending: it has a strictly increasing subsequence (fni

x)i∈N such that for all
i ∈ N, fni x ≺ fni+1 x, i.e., fni x and fni+1 x both are approximations of the sequence’s
limit f x, but fni+1 x is a strictly closer approximation of f x than fni

x. Thus, (fn x)n∈N
produces, as n grows, arbitrarily close approximations of the output f x. This captures the
intuition of productiveness: the ability to eventually produce, for each input, arbitrarily close
(and, in case of termination, exact) approximations of the corresponding output.

The next two sections present two methods for obtaining CPOs and corecursive functions as
limits of sequences of approximating functions. The first method reuses as much as possible
Coq’s builtin mechanisms for corecursion. The second one replaces these mechanisms by
other constructions.

3 First method

In this approach the carrier set of the CPO being defined is the set of terms of a type
coinductively defined by Coq and the limits of increasing sequences in the CPO are Coq
builtin corecursive functions. The approximating sequences for the corecursive functions
under definition use a functional for the function in question. We illustrate the approach by
defining the filter function on streams.

3.1 CPOs as coinductive types
▶ Example 5. The set S of streams (a.k.a infinite lists) over a base set A ∪ {⊥A} can
be organized as a CPO as follows. First, the flat CPO (A ∪ {⊥A}, ⪯A, ⊥A) is built as in
Example 3. Then, the set S is defined to be the set of terms of a certain coinductive type,
which, conceptually, are built by applying the following rule a countably infinite number
of times : a · s ∈ S whenever a ∈ (A ∪ {⊥A}) and s ∈ S. This simultaneously defines the
constructor function _ · _ : (A ∪ {⊥A}) × S → S.

Then, we define the constant stream ⊥ ∈ S as the stream satisfying the equation
⊥ = ⊥A · ⊥. This is an example of a corecursive definition, which is accepted by Coq, since
the occurrence of ⊥ in the right-hand side is guarded by (a direct call to) the constructor
_ · _. On the set S we define the functions head and tail by head(a · s) = a and tail(a · s) = s.
We also define the nth element of a stream by induction: nth 0 s = head s and nth (n + 1) s =
nth n (tail s). Regarding the order relation ⪯, it is the relation on S defined “pointwise”, by
s1 ⪯ s2 iff for all n ∈ N, nth n s1 ⪯A nth n s2.

Then, we define the limit lim[(sn)n∈N] of an increasing sequence of streams (sn)n∈N

by lim[(sn)n∈N] = (limA[(head sn)n∈N]) · (lim[(tail sn)n∈N]). That is, the head of the limit
of a sequence of streams is the limit (in A ∪ {⊥A}) of the heads of the streams in the
sequence, and the tail of the limit is the limit (in S) of the tails of the streams in the
sequence. This is another example of a corecursive function, and one that can be defined
in Coq using the tool’s builtin constructions for corecursion, because in the right-hand side

V. Rusu and D. Nowak 12:5

of lim[(sn)n∈N] = (limA[(head sn)n∈N]) · (lim[(tail sn)n∈N]) the call to lim is guarded by the
constructor _ · _. In order to prove that the defined limit is indeed the least upper bound
one can, e.g., reduce that property to a “pointwise” one, i.e., first proving that for all m ∈ N
, nth m (lim[(sn)n∈N)] = (limA[(nth m sn)n∈N]) and then using the fact that limA computes
least upper bounds in the flat CPO of A. Finally, we note that the limits of ascending
sequences of streams over A ∪ {⊥A} are streams over A (i.e., they do not contain any ⊥A),
and are maximal with respect to ⪯.

▶ Remark. As illustrated by the above example, the maximal elements in CPOs play the
role of “well defined” corecursive values, since they do not contain ⊥ subterms, themselves
interpreted as “undefined”. The ascending sequences “push away” ⊥ subterms, to the effect
that, in their limit, all such subterms have been eliminated. Since ⊥ is interpreted as
“undefined”, terms containing ⊥ are “partially defined”, and “pushing ⊥ away” amounts to
producing “better defined” values.
▶ Remark. The ability to define a CPO using Coq’s builtin mechanisms relies on the ability of
those mechanisms to accept the definitions of limits as corecursive functions. This works for
many interesting coinductive datatypes (streams, colists, possibly infinite binary trees, . . .)
but not in general. For coinductive datatypes that are mutually dependent with inductive
datatypes, the limits may require corecursive functions that contain self-calls guarded not
by constructors of the coinductive datatype, but by recursive functions on the inductive
datatype. Such “improperly guarded” functions are rejected by Coq. A second method
presented ahead in the paper deals with such difficult cases.
▶ Remark. The construction in Example 5 is not the only way to organize streams over a set
A into a CPO. Another possibility is to define the set of streams S as the set obtained by
applying the rules ⊥ ∈ S and a · s ∈ S if a ∈ A and s ∈ S for a finite or a countably infinite
number of times. In this definition ⊥ is a constructor (unlike ⊥ in Example 5 where it was
a defined function). The order relation and the notion of limit are also slightly different.
We chose the construction in Example 5 because it has fewer technical complications: for
example, the head function is total in Example 5, but partial in the alternative construction,
which makes it more complicated to define.

3.2 Approximating sequences using functionals
This method assumes a functional F : (D → C) → D → C for the function of interest. The
functional may be obtained, e.g., from an attempt to define the function f : D → C of
interest directly in Coq, via a statement of the form f := Ff . It is, of course, assumed that
the attempt failed – i.e., it failed the guardedness criteria – otherwise one would just define
f directly in Coq.

▶ Example 6. Consider the set S of streams over A ∪ {⊥A} as in Example 5 and assume
a predicate p : A ∪ {⊥A} → {true, false} such that p ⊥A = false. Let D be the subset of S

consisting of streams s over A, such that p (nth n s) = true for infinitely many n ∈ N. The
following pseudocode statement is an attempt to define the filter function over D, which
computes the substream of values satisfying p:

filter s := if p(head s) then (head s) · (filter (tail s)) else filter (tail s)

Equivalently, the function could be defined by filter := F filter where F is the pseudocode for
the functional below, which takes a function as input and produces an (anonymous) function
as output:

F f := λ s. if p(head s) then (head s) · (f (tail s)) else f (tail s)

ECOOP 2022

12:6 Defining Corecursive Functions in Coq Using Approximations

These definitions, when translated to Coq syntax, are rejected by the tool, because they
fail the guardedness criterion: the call to filter in the “else” case is not guarded by the
constructor _ · _.

We show below an alternative way in which a functional F can be used for uniquely defining
the function, say, f , of interest, while ensuring that the fixpoint equation f = F f holds.
Assume a CPO (C, ⪯, ⊥). We extend the order ⪯ from C to functions D → C by f1 ⪯ f2 iff
f1 x ⪯ f2 x for all x ∈ D.

▶ Definition 7. A functional F : (D → C) → D → C is increasing if for all f1, f2 : D → C,
f1 ⪯ f2 implies Ff1 ⪯ Ff2.

▶ Example 8. The functional F from the previous example is increasing. Indeed, consider
two functions f1, f2 : D → S, with D, S as in the example in question (in particular,
S is organized as a CPO as in Example 5) and assume f1 ⪯ f2. We have to show that
F f1 s ⪯ F f2 s for all s ∈ D. If p (head s) = true then F f1 s = (head s) · f1 (tail s) and
F f2 s = (head s) · f2 (tail s); and F f1 s ⪯ F f2 s because f1 ⪯ f2 implies in particular
f1 (tail s) ⪯ f2 (tail s), and then (head s) · f1 (tail s) ⪯ (head s) · f2 (tail s) holds thanks to
the definition of ⪯. If p (head s) = false then F f1 s = f1 (tail s), F f2 s = f2 (tail s), and
F f1 s ⪯ F f2 s is just f1 (tail s) ⪯ f2 (tail s), established above.

Assume again a CPO (C, ⪯, ⊥) and a functional F : (D → C) → D → C. Let ⊥⊥: D → C be
the constant function such that ⊥⊥ x = ⊥, for all x ∈ D, and let F n : (D → C) → D → C

be the functional inductively defined by F 0f = f and, for all n ∈ N, F n+1f = F (F nf).

▶ Definition 9. A functional F : (D → C) → D → C is productive whenever it is increasing
and the sequence of functions (F n ⊥⊥)n∈N productively converges (cf. Definition 4).

Calling productive a functional satisfying the above definition is justified by the fact that it
generates a sequence of functions that productively converges. Its limit is characterized by
the following theorem.

▶ Theorem 10. If a functional F is productive then lim[(F n ⊥⊥)n∈N] is the unique fixpoint
of F .

Proof. Let the type of the functional be (D → C) → D → C. By Definition 4, for all x ∈ D,
the sequence (F n ⊥⊥ x)n∈N is increasing and its limit is maximal w.r.t. ⪯. Hence, for all
x ∈ D, lim[(F n ⊥⊥ x)n∈N] exists, and let f : D → C be defined by f x = lim[(F n ⊥⊥ x)n∈N]
for all x ∈ D.

We first show that f is a fixpoint of F , i.e., f = Ff , which amounts to proving that
for all x ∈ D, f x = F f x. We fix an arbitrary x ∈ D. By definition of f , f x is maximal,
hence, in order to prove f x = F f x it is enough to prove f x ⪯ F f x. Moreover f x is the
least upper bound of (F n ⊥⊥ x)n∈N, hence, in order to show that f x ⪯ F f x it is enough
to prove that F f x is an upper bound of the sequence (F n ⊥⊥ x)n∈N. This is proved by
case analysis: For n = 0, F 0 ⊥⊥ x = ⊥ ⪯ F f x, and, for n > 0, we have that for all y ∈ D,
F n−1 ⊥⊥ y ⪯ f y because f y is an upper bound for the sequence (F k ⊥⊥ y)k∈N, which, since
F is increasing, implies that for all y ∈ D, F (F n−1 ⊥⊥) y = F n ⊥⊥ y ⪯ F f y. Setting y := x

in the previous relation proves that F f x is an upper bound of the sequence (F n ⊥⊥ x)n∈N
also in the case n > 0, and the proof of the fact that f is a fixpoint of F is completed.

Next, we show that f is the only fixpoint of F . Assume a solution f ′ of the fixpoint
equation; we show f = f ′. Note that it is enough to show f ⪯ f ′, i.e., f x ⪯ f ′ x for all
x ∈ D, because from the latter by the maximality of f x we obtain f x = f ′ x for all x ∈ D,
i.e., the desired f = f ′.

V. Rusu and D. Nowak 12:7

Moreover, in order to prove that f x ⪯ f ′ x for all x ∈ D, it is enough to prove that f ′ x is
an upper bound for the sequence (F n ⊥⊥ x)n∈N, because by definition f x is the least upper
bound of the sequence. Hence, what we have to prove is that for all n ∈ N , (for all x ∈ D,
F n ⊥⊥ x ⪯ f ′ x), which is done by induction on n. The base case n = 0 is trivial, as it
amounts to showing that for all x ∈ D, ⊥ ⪯ f ′ x. In the inductive step, we have the inductive
hypothesis that for all x ∈ D, F n ⊥⊥ x ⪯ f ′ x. By using the fact that F is increasing we
obtain that for all x ∈ D , F n+1 ⊥⊥ x = F (F n ⊥⊥) x ⪯ F f ′ x = f ′ x, which proves the
inductive step. That was what remained to prove; the proof of the theorem is complete. ◀

The productiveness condition is more convenient to establish via the following sufficient
conditions.

▶ Definition 11. A CPO (C, ⪯, ⊥) is a CPO+ if each ascending sequence has a maximal
limit.

▶ Example 12. Per the observation at the end of Example 5, the CPO of streams is a CPO+.

▶ Lemma 13. Assume a CPO+ (C, ⪯, ⊥) having the set of maximal elements K ⊆ C, and
a functional F : (D → C) → D → C. Then, F is productive whenever it is increasing and,
for all x ∈ D:

either there exists n ∈ N such that F n ⊥⊥ x ∈ K;
or, for all n ∈ N, there exists m ∈ N with n < m such that F n ⊥⊥ x ≺ F m ⊥⊥ x.

Proof. By Definitions 4 and 9, we have to show that for all x ∈ D, the sequence (F n ⊥⊥ x)n∈N
has a limit in K. We first prove that the sequence is increasing, i.e., for all n ∈ N, by induction
on n. In the base case n = 0, we have, for each x ∈ D, F 0 ⊥⊥ x =⊥⊥ x = ⊥ ⪯ F 1 ⊥⊥ x,
which settles this case. For the inductive step, we assume that for each x ∈ D, F n ⊥
⊥ x ⪯ F n+1 ⊥⊥ x and prove that, again for each x ∈ D, F n+1 ⊥⊥ x ⪯ F n+2 ⊥⊥ x. We
have F n+1 ⊥⊥ x = F (F n ⊥⊥) x and since F is increasing, using the induction hypothesis
F (F n ⊥⊥) x ⪯ F (F n+1 ⊥⊥) x = F n+2 ⊥⊥ x holds for each x ∈ D, which proves the induction
step and the fact that the sequence is increasing.

Hence, the sequence (F n ⊥⊥ x)n∈N has a limit; we just have to show the limit is in K.
if there exists n ∈ N such that F n ⊥⊥ x ∈ K, then, since the sequence is increasing and
by definition of maximality, for all m ≥ n, F m ⊥⊥ x = F n ⊥⊥ x ∈ K; and the limit is
F n ⊥⊥ x ∈ K as required.
if, for all n ∈ N, there exists m ∈ N with n < m such that F n ⊥⊥ x ≺ F m ⊥⊥ x: we
first note that each F n ⊥⊥ x must be in C \ K (otherwise the hypothesis for this case is
contradicted). Hence, the sequence has a strictly increasing subsequence, or, equivalently,
the sequence is ascending. Since we have assumed that (C, ⪯, ⊥) is a CPO+ the limit of
the sequence of interest is, again, in K. ◀

▶ Example 14. We prove using Lemma 13 that the functional F : (D → S) → D → S for the
filter function from Example 6 is productive. We have already established that it is increasing
and that the CPO (S, ⪯, ⊥) is a CPO+. We prove the condition at the second item the
statement of Lemma 13, i.e., for all x ∈ D and n ∈ N, there exists m ∈ N with n < m such
that F n ⊥⊥ x ≺ F m ⊥⊥ x, which amounts to finding a strictly increasing sequence of natural
numbers (ni)i∈N such that F ni ⊥⊥ x ≺ F ni+1 ⊥⊥ x for all i ∈ N. This is where we use the
fact that D is the set of streams x for which, given a predicate p : (A ∪ {⊥A}) → {true, false}
on the base type of S with p ⊥A = false, it holds that p (nth n x) = true for infinitely many
n ∈ N. We first prove by induction on n that F n ⊥⊥= ffilter n where ffilter = λn.λx.(if n =
0 then ⊥ else (if p(head x) then (head x)·(ffilter (n−1) (tail x)) else ffilter (n−1) (tail x))) is a

ECOOP 2022

12:8 Defining Corecursive Functions in Coq Using Approximations

recursive, “finite approximation” of the corecursive filter function that we are trying to define.
Then, we notice that if p(head x) = true then ffilter (n + 1) x = (head x) · (ffilter n (tail x),
and if p(head x) = false then ffilter (n + 1) x = ffilter n (tail x). That is, for the positions
in the sequence x where p holds, the output of ffilter “grows”, and for the positions where
p does not hold, the output of ffilter stays the same. Finally, for all i ∈ N, let ni be i-th
position where p holds in x; this gives us the strictly increasing sequence (ni)i∈N such that
F ni ⊥⊥ x = ffilter ni x ≺ ffilter ni+1 x = F ni+1 ⊥⊥ x for all i ∈ N. Hence, using Lemma 13
we have established that the functional F = λ f.λ s. if p(head s) then (head s) · (f (tail s))
else f (tail s) is productive. Using Theorem 10 we obtain that F has a unique fixpoint; we
call filter the fixpoint in question. The fixpoint equation states that filter s = if p(head s)
then (head s) · (filter (tail s)) else filter (tail s) for all x ∈ D. We note that D being the set of
streams having infinitely many positions satisfying the filtering predicate is essential: outside
this domain the functional F is not productive and one cannot use Theorem 10 as above to
define the filter function.

Summarizing, what we have obtained in the present section is a method by which
corecursive functions can be defined in Coq – details about the Coq implementation are
given in Section 5 – even when the functions are not directly accepted by Coq because they
do not satisfy Coq’s builtin criteria for corecursive definitions. A function defined using our
approach is abstract (it involves limits of ascending sequences in a certain CPO), but is the
unique one satisfying the equation induced by its functional. We use the term “validation”
for the process by which one can gain confidence that a given definition is the adequate one;
one can reasonably claim that uniquely satisfying its fixpoint equation is the best validation
possible for a corecursive function.

Finally, we note that from the user’s point of view, by using our approach one gets
the same result that one would have gotten if Coq had directly accepted the corecursive
definition. Our definitions are not executable because they use axioms – i.e., the term
filter s is not automatically reduced to the term if p(head s) then (head s) · (filter (tail s))
else filter (tail s) by Coq – but, in order to avoid nontermination, such reductions are not
performed in Coq-builtin corecursive definitions either: one still has to prove a fixpoint
equation and manually perform, e.g., rewriting with it in order to reduce it.

4 Second method

When the technique presented for in the previous section fails, we need to replace Coq’s
builtin mechanisms for coinduction, which no longer fulfill their role, by other constructions.

4.1 CPOs built by completion
The main idea is to start from the “finite subset” of the intended CPO and from an order
relation on the given subset, and to “complete” them with values that are the equivalence
classes of ascending sequences, according to a certain equivalence relation. We illustrate the
notions introduced in this section by giving an alternative construction of a CPO of streams,
different from the construction based on Coq’s builtin mechanisms seen in the previous
section. We also show an example where the present construction of a CPO is essential
because Coq’s builtin mechanisms for coinduction fail.

▶ Definition 15. Given a set C◦ and an order ⪯◦ on it, a measure on (C◦, ⪯◦) is a function
µ : C◦ → N such that for all x, y ∈ C◦, x ≺◦ y implies µ x < µ y.

V. Rusu and D. Nowak 12:9

That is, that the measure is compatible with the relation ≺◦. It is then easy to prove that a
measure is also compatible with ⪯◦: x ⪯◦ y implies µ x ≤ µ y.

▶ Example 16. Consider the set L of finite lists over a base set A, inductively defined by
the rules nil ∈ L and a · l ∈ L whenever a ∈ A and l ∈ L. Define an order on L by l1 ⪯L l2
iff l1 is a prefix of l2. Then, the function length mapping each list to its length is a measure
on (L, ⪯L).

▶ Remark. For ascending sequences (sn)n∈N, the sequence (µ sn)n∈N is a sequence of natural
numbers that tends to infinity. This is the main reason why we chose natural numbers as
measure values.

▶ Definition 17. Two sequences (sn)n∈N and (s′
n)n∈N of elements of C◦ are in the ∼ relation

whenever for all N ∈ N there exist n ∈ N and x ∈ C◦ such that x ⪯◦ sn, x ⪯◦ s′
n, and

µ x ≥ N .

A common predecessor of two elements is, in our approach, an “under-approximation” of the
two elements. Thus, two sequences are in the ∼ relation whenever there there is a sequence
of pointwise “under-approximations” of two sequences, whose measures tend to infinity. In
some sense, the pointwise “difference” between the sequences intuitively tends to “nothing”1.
In order to show that ∼ restricted to ascending sequences is an equivalence, the following
property of an order is required:

▶ Definition 18. An order ⊑ on a set A is weakly total whenever for all a ∈ A, the restriction
of ⊑ to the set {a′ ∈ A|a′ ⊑ a} is total.

▶ Example 19. The prefix order ⪯L on lists over a set A is weakly total: when l1 and l2 are
both prefixes of a given list l then, if length l1 ≤ length l2, l1 ⪯L l2 holds, otherwise, l2 ⪯l l1
holds. If A contains two elements a1 ̸= a2, the order is not total, as [a1; a2] and [a2; a1] are
incomparable.

▶ Lemma 20. Assuming a set C◦ and a weakly total order ⪯◦ on C◦, the restriction of the
relation ∼ from Definition 17 to ascending sequences of elements of C◦ is an equivalence
relation.

Proof. For reflexivity, we use the fact that the sequence (µ sn)n∈N of measures of an ascending
sequence (sn)n∈N tends to infinity, hence, for each N there is n ∈ N such that µ sn ≥ N ,
and we take x := sn in Definition 17 to show (sn)n∈N ∼ (sn)n∈N. For symmetry, it is
enough to note that Definition 17 is a symmetrical statement in (sn)n∈N, (s′

n)n∈N . For
transitivity assume (sn)n∈N ∼ (s′

n)n∈N and (s′
n)n∈N ∼ (s′′

n)n∈N. Fix an arbitrary N ∈ N. By
Definition 17, there exist m, m′ ∈ N and y, y′ ∈ C◦ such that y ⪯◦ sm, y ⪯◦ s′

m, y′ ⪯◦ s′
m′ ,

y′ ⪯◦ s′′
m′ , and µ y, µ y′ ≥ N . Since the sequences are increasing, we have y, y′ ⪯◦ s′

(max m m′)
and since ⪯◦ is weakly total, y ⪯◦ y′ or y′ ⪯◦ y. Assume y ⪯◦ y′. Then, for the arbitrarily
chosen N , we set n := (max m m′) and x := y in Definition 17 and, since the sequences are
increasing, we obtain (sn)n∈N ∼ (s′′

n)n∈N. The other case (y′ ⪯◦ y) is similar. ◀

The next lemma gives a useful sufficient condition for the equivalence of ascending sequences.

1 This intuition can be formalized using a notion of distance, thus turning C◦ into a metric space. We
have tried but discarded that approach because is complicates matters (one now has an order, a distance,
and a measure, which have to satisfy certain properties) without any other benefit that perhaps a better
intuition for the notion of equivalence.

ECOOP 2022

12:10 Defining Corecursive Functions in Coq Using Approximations

▶ Lemma 21. Given two ascending sequences (sn)n∈N and (s′
n)n∈N, if for all k ∈ N there

exists m ∈ N such that sk ⪯ s′
m, then (sn)n∈N ∼ (s′

n)n∈N.

Proof. Fix an arbitrary N ∈ N. Since (sn)n∈N is ascending, there exists k ∈ N such that
µ sk ≥ N . From the hypothesis we obtain m ∈ N such that sk ⪯◦ s′

m. Let n := (max k m)
and x := sk. Since the sequences are increasing, x ⪯ sn, x ⪯◦ s′

n, and from µ sk ≥ N we
obtain µ x ≥ N . Hence, for all N ∈ N there are n ∈ N, x ∈ C◦ such that x ⪯◦ sn, x ⪯◦ s′

n,
µ x ≥ N . By Def. 17, (sn)n∈N ∼ (s′

n)n∈N. ◀

▶ Remark. The reverse implication in Lemma 21 does not hold in general: there exists
sequences (sn)n∈N and (s′

n)n∈N such that for all n, m ∈ N, sn and s′
m are incomparable, yet

(sn)n∈N ∼ (s′
n)n∈N because the sequences have in common another sequence that pointwise

under-approximates them and whose measure tends to infinity, i.e., they obey Definition 17.
The latter is the proper definition of equivalence: if instead we had taken for all k ∈ N there
exists m ∈ N such that sk ⪯ s′

m as in Lemma 21 we would be distinguishing certain sequences
– namely, those that have a common sequence of under-approximations whose sizes tend to
infinity, yet are pointwise incomparable – that should not be distinguished, because pointwise
the difference between them becomes “negligible”.

▶ Definition 22. Assuming a set C◦ and a weakly total order relation ⪯◦ on C◦, the
completion of the set and its order to a set C and an order ⪯ on C are defined as follows:

C = C◦ ∪ K, where K is the set of equivalence classes modulo ∼ of ascending sequences
of elements in C◦:
⪯ is the smallest relation on C satisfying

for all x, y ∈ C◦, x ⪯ y if x ⪯◦ y;
for all x, y ∈ K, x ⪯ y if x = y;
for all x ∈ C◦ and y ∈ K, x ⪯ y if for all (sn)n∈N ∈ y, there exists m ∈ N such that
x ⪯◦ sm.

This definition deserves a few comments. First, K is defined as equivalence classes of
ascending sequences because, on the one hand, the sequences have to be increasing because
they need to have limits – as we shall see, the set K will be a set of limits – and, on the
other hand, they are non-stabilizing because if one sequence were stabilizing to a value, e.g.,
v ∈ C◦ then the limit (also v) of the sequence being also in K would imply a nonempty
intersection of C◦ and K, which we wish to avoid. Second, the relation ⪯ is an order relation
(this is established by Lemma 23 below). It is a conservative extension of ⪯◦, and elements
in K are in the order iff they are equal. Combined with the fact that there is no situation in
which x ⪯ y for x ∈ K and y ∈ C◦, we obtain that the elements in K are maximal w.r.t. ⪯.
Like in the case of the CPO of streams in an earlier example, the maximal elements play
the role of “well-defined corecursive values”. Finally, the third case defining the relation ⪯
requires an explanation. An element x (in C◦) is in the order with an equivalence class y

of ascending sequences (in K) whenever each sequence in the class “overtakes” x at some
position m ∈ N according to the base relation ⪯◦. Combined with the fact that (sn)n∈N is
increasing, this implies that the sequence overtakes x for all positions n ≥ m. Several results
hereafter (Lemma 24, Theorem 26, Theorem 32) critically depend on the proposed definition
of the ⪯ relation.

▶ Lemma 23. Assume a measure µ on (C◦, ⪯◦) like in Definition 15, with ⪯◦ a weakly
total order. Then, with C and ⪯ being the completions of C◦ and ⪯◦ respectively, given in
Definition 22, the relation ⪯ on C is an order.

V. Rusu and D. Nowak 12:11

Proof. Reflexivity is trivial since ⪯ amounts to ⪯◦ on C◦ and to equality on K, both of
which are reflexive. For anti-symmetry, we note that it reduces to the anti-symmetry of ⪯◦,
because the nontrivial remaining case has the form “x ⪯ y and y ⪯ x for x ∈ C◦ and y ∈ K

implies x = y”, which holds because its premise y ⪯ x is impossible. Let us now consider
transitivity, thus, x ⪯ y and y ⪯ z. There are only four possibilities when those relations can
hold:
1. x, y, z ∈ C◦, in which case the transitivity of ⪯ reduces to that of ⪯◦;
2. x, y ∈ C◦ and z ∈ K, which implies x ⪯◦ y and, given the definition of y ⪯ z for x an

element and z a equivalence class of ascending sequences, from the fact that any sequence
in z overtakes y at some position, we obtain thanks to x ⪯◦ y that the sequence also
overtakes x at the same position, which implies x ⪯ z and settles this case;

3. x ∈ C◦ and y, z ∈ K: then, y ⪯ z implies y = z, and transitivity follows easily;
4. x, y, z ∈ K, in which case the transitivity of ⪯ follows from that of equality. ◀

The following lemma gives a useful alternative definition for the order ⪯ in a particular case.

▶ Lemma 24. For all x ∈ C◦ and ascending sequences (sn)n∈N of elements of C◦, x ⪯
[(sn)n∈N]∼ iff there exists m ∈ N such that x ⪯ sm.

Proof. By Definition 22, x ⪯ [(sn)n∈N]∼ means: for all (s′
n)n∈N ∈ [(sn)n∈N]∼, there exists

m ∈ N such that x ⪯◦ s′
n. The “only if” direction is trivial since obviously (sn)n∈N ∈

[(sn)n∈N]∼. We thus focus on the “if” direction. By hypothesis, there exists m ∈ N such
that x ⪯◦ sm. Choose an arbitrary (s′

n)n∈N ∈ [(sn)n∈N]∼, i.e., (s′
n)n∈N ∼ (sn)n∈N. By

Definition 17, there exists x′ ∈ C◦ and m′ ∈ N such that x′ ⪯◦ sm′ , x′ ⪯◦ s′
m′ and µ x′ > µ x.

Since the sequences are increasing, we obtain x, x′ ⪯◦ s(max m, m′). From the latter and the
weak totality of ⪯◦ we obtain x ⪯◦ x′ or x′ ⪯◦ x. But x′ ⪯◦ x contradicts the established
µ x′ > µ x. Hence, x ⪯◦ x′ and then x ⪯◦ s′

m′ follows from x′ ⪯◦ s′
m′ by transitivity.

Summarizing, for the arbitrarily chosen sequence (s′
n)n∈N ∈ [(sn)n∈N]∼ we found m′ ∈ N

such that x ⪯◦ s′
m′ř. But this is x ⪯ [(sn)n∈N]∼ by definition; which proves the lemma. ◀

▶ Definition 25. Given a set C◦ and weakly total order ⪯◦ on C◦, consider the completion
of C◦ to C and of ⪯◦ to ⪯ as in Definition 22. For an increasing sequence (sn)n∈N of
elements of C, we define lim[(sn)n∈N] as follows:

if the sequence stabilizes at a value, say, v ∈ C, then lim[(sn)n∈N] = v;
otherwise, the sequence does not stabilize, which implies that for all n ∈ N, sn ∈ C◦, and
we define lim[(sn)n∈N] = [(sn)n∈N]∼, i.e., the equivalence class of the sequence w.r.t. the
relation ∼.

Note that in the second case of the above definition it is essential that the ascending sequence
(sn)n∈N be composed of elements of C◦ because ∼ is only an equivalence for such sequences.

▶ Theorem 26. Assume a measure on (C◦, ⪯◦) like in Definition 15, with ⪯◦ a weakly
total order. Then, with C and ⪯ being the completions of C◦ and ⪯◦ respectively, given in
Definition 22, and with the limits of increasing sequences introduced in Definition 25, the
triple (C, ⪯, ⊥) is a CPO.

Proof. In order to prove the theorem we have to prove that the limits of increasing sequences
proposed in Definition 25 are least upper bounds. Consider an increasing sequence (sn)n∈N
of elements of C.

if the sequence stabilizes to some value v ∈ C then the proposed limit v is an upper bound
for the (increasing) sequence. To show that it is the least such bound, assume another
upper bound w; then, in particular, v ⪯ w because v is an element of the sequence.

ECOOP 2022

12:12 Defining Corecursive Functions in Coq Using Approximations

if the sequence does not stabilize then it is ascending, and as already observed before,
sn ∈ C◦ for all n ∈ N, and the proposed limit is the equivalence class [(sn)n∈N]∼.

We first show that [(sn)n∈N]∼ is an upper bound for (sn)n∈N: sk ⪯ [(sn)n∈N]∼ for all
k ∈ N. We apply Lemma 24 with x := sk: there exists m := k such sk ⪯ sm, which
implies sk ⪯ [(sn)n∈N]∼.
Then, we show that [(sn)n∈N]∼ is the least upper bound for (sn)n∈N. Assume any upper
bound w ∈ C, thus, sk ⪯ w for all k ∈ N. Suppose first that w ∈ C◦. Since (sn)n∈N is
ascending, it has a strictly increasing subsequence (sni)i∈N. Now, w is also an upper
bound for the subsequence, hence, sni

⪯ w for all i ∈ N, and due to the properties of
the measure, µ sni

⪯ µ w for all i ∈ N. But this is impossible, since the sequence of
measures of a strictly increasing sequence is a strictly increasing sequence of natural
numbers, which tends to infinity. Hence, w ∈ C◦ is impossible. It follows that w ∈ K,
i.e., w = [(s′

n)n∈N]∼ for some ascending sequence (s′
n)n∈N. From our hypothesis sk ⪯ w

for all k ∈ N, we obtain that for all k ∈ N there exists m ∈ N such that sk ⪯◦ s′
m. Using

Lemma 21, (sn)n∈N ∼ (s′
n)n∈N, i.e., [(sn)n∈N]∼ = [(s′

n)n∈N]∼ = w and in particular
[(sn)n∈N]∼ ⪯ w. Since the upper bound w was chosen arbitrarily, we have proved
that [(sn)n∈N]∼ is the least upper bound for (sn)n∈N. The proof of the theorem is
complete. ◀

▶ Example 27. Going back to the example of finite lists, their prefix order, and the measure
defined by lengths of lists, the constructions in this section enable us to build a CPO of lists
and streams. The streams are not defined by Coq corecursive functions (as in the earlier
construction in Section 3) but by equivalence classes of ascending sequences of lists. One
important difference in practice is that, unlike the approach in Section 3, the constructor
_ · _ is not directly available for streams, and the functions head and tail do not have simple
definitions. All three functions can be defined, and the standard relations between them
can be proved, with some effort; but having them readily available as in the approach from
Section 3 is preferable. We now give an example where that approach fails.

▶ Example 28. The set T of Rose trees over a set A is coinductively definable in Coq by
the rules ⊥ ∈ T and tree a l ∈ T whenever a ∈ A and l is a list over T . Note the mixture of
coinduction and induction: the trees are defined coinductively, but their definition relies on
inductively defined lists.

When t = tree a l we define label t = a and forest t = l; when t = ⊥ we define
label t = ⊥A (the least element in the flat CPO of A) and let forest t be the singleton
[⊥A]. Assuming an order ⪯T on T , the limit of an increasing sequence (tn)n∈N of Rose
trees would naturally be defined as lim[(tn)n∈N] = ⊥ if tn = ⊥ for all n ∈ N and
lim[(tn)n∈N] = tree (limA[(label tn)n∈N]) (map lim (forest tn)n∈N) otherwise. This corecursive
definition of limits is not guarded by constructors, since the corecursive call to lim occurs
under the map function, which is not a constructor but a defined function. Hence, the
definition of limits of increasing sequences of Rose trees is rejected by Coq, and without
limits there is no CPO.

▶ Example 29. One can define and organize the set T = F ∪ R, with F the set of finite
trees and R that of Rose trees, in a CPO using the approach described in this section.
We first define the finite trees F over A inductively, by the rules ⊥ ∈ F and tree a l ∈ F

whenever a ∈ A and l is a list over F . The measure function is the tree’s height, recursively
defined by height ⊥ = 0 and height (tree a l) = 1 + max (map height l) where max computes
the maximum value in a list of natural numbers. The order relation is based on the
following recursive function, whose effect is to “cut” a given finite tree t at given depth n:

V. Rusu and D. Nowak 12:13

cut = λn.λt.if n = 0 or t = ⊥ then ⊥ else tree (label t) (map (cut (n − 1)) (forest t)); we then
define the order relation ⪯F by t1 ⪯F t2 whenever t1 = cut(height t1) t2. The set R of Rose
trees consists of equivalence classes of ascending sequences of finite trees. We have proved
in Coq that all the requirements presented earlier in this section for obtaining a CPO for
T = F ∪ R hold.

By contrast, a perhaps more natural definition of the “prefix order” ⪯′F by t1 ⪯′F t2
whenever t1 = ⊥ or t1 = tree a l1, t2 = tree a l2, length l1 = length l2 and for all n < length l1,
nth n l1 ⪯′F nth n l2 fails to meet the critical weak totality requirement (Definition 18). Indeed,
e.g., for t′, t′′ ≠ ⊥, t = tree a [t′, t′′], t1 = tree a [t′, ⊥] and t2 = tree a [⊥, t′′] satisfy t1 ⪯′F t

and t2 ⪯′F t, yet t1 and t2 are incomparable. Without weak totality there is no sequence
equivalence and ultimately no CPO2.

4.2 Approximating sequences without functionals
In Section 3.2 the approximating sequence (fn)n∈N for defining a function was defined using a
functional, which used functions over streams (such as the constructor _ ·_) that were readily
available in Coq, due to the fact that the CPO for streams had been defined as a builtin
Coq coinductive type. However, in the case of CPOs built by completion, such constructors
are no longer available. One can try to replace them by defined functions, but this may
turn out to be excessively difficult. For instance, in the CPO of Example 29, extending the
constructor tree from finite trees F to a fully defined function tree : A → list T → T , with
T = F ∪ R, is difficult: each of the trees in its second argument of type list T may be a finite
tree in F or a Rose tree in R – an equivalence class of ascending sequences of elements in
F . Even when all elements in the list are equivalence classes, it is not clear how the result –
again, an equivalence class of ascending sequence of elements in F – can be built.

Hence, we have to make do without constructors or defined functions replacing them. This
severely limits the functionals that one may write, making the functional-based definition of
corecursive functions from Section 3.2 essentially useless. Example 31 below illustrates this
issue. In this section we present an approach that does not require a functional, but does
require a “finite version” f◦ of the corecursive function f under definition, which moreover
has to satisfy a productiveness requirement.

▶ Definition 30. Assume two CPOs (D, ⪯D, ⊥D) and (C ⪯C , ⊥C) defined as in Theorem 26,
thus, their base sets are decomposed as C = C◦ ∪ KC and D = D◦ ∪ KD. Then, a function
f◦ : D◦ → C◦ is productive whenever, for all increasing sequences (xn)n∈N of elements in
D◦ that have a limit in KD, the sequence (f◦xn)n∈N of elements in C◦ is also increasing
and has a limit in KC .

▶ Remark. Definition 30 of a productive function implies the function is also increasing. It
also implies that the function maps ascending sequences to ascending sequences. Calling
such a function productive is justified by the fact that it generates a sequence of functions
that productively converges according to Definition 4. This sequence is built as follows: for
all x ∈ KD, choose an arbitrary ascending sequence (xn)n∈N ∈ x; and set (fn x) = (f◦xn) for
all n ∈ N. Then, (fn)n∈N productively converges according to Definition 4: for all x ∈ KD,
(fn x)n∈N is increasing and its limit is in KC .

2 Our earlier attempt with metric spaces also required a weakly total order for obtaining a proper notion
of distance.

ECOOP 2022

12:14 Defining Corecursive Functions in Coq Using Approximations

▶ Example 31. In the CPO of finite and Rose trees from Example 29, the sets C◦ and D◦

from the above definition are both the set F of finite trees. Consider the following recursive
endofunction of F : mirror◦ =λt.if t =⊥ then ⊥ else tree (label t)(map mirror◦ (rev (forest t))),
where rev is the function that computes the reverse of a list. As its name indicates, the
function computes the “mirror image” of finite trees. We have defined this function in Coq
and have proved that it is productive according to Definition 30, using the fact that the
mirror◦ function preserves the height of its argument.

Note how the functional for mirror◦: λϕ t.if t = ⊥ then ⊥ else tree (label t)(map ϕ (rev (forest t)))
uses the constructor tree. Writing the corresponding functional for a full mirror function
for both finite and Rose trees would require a corresponding defined function tree : A →
list T → T . As stated above, such a function is hard to define. Hence our alternative solution
avoiding these issues.

The following theorem states that productive functions map equivalent ascending sequences
in their domain to equivalent ascending sequences in their codomain.

▶ Theorem 32. In the context of Definition 30, let ∼D denote the equivalence relation on
ascending sequences in the CPO (D, ⪯D, ⊥D) (cf. Definition 17, Lemma 20). Let ∼C denote
the corresponding equivalence in (C ⪯C , ⊥C). Then, for any pair of equivalent ascending
sequences (sn)n∈N ∼D (s′

n)n∈N and any productive function f◦ : D◦ → C◦, we have the
equivalence (f◦sn)n∈N ∼C (f◦s′

n)n∈N.

Proof. By Definition 22 and Theorem 26 the equivalence class [(sn)n∈N]∼D
is the least upper

bound of (sn)n∈N and the equivalence class [(s′
n)n∈N]∼D

is the least upper bound of (s′
n)n∈N.

Since the two sequences are equivalent, we have the equality [(sn)n∈N]∼D
= [(s′

n)n∈N]∼D
. In

particular, it follows that [(s′
n)n∈N]∼D

is an upper bound for (sn)n∈N , thus for all n ∈ N,
sn ⪯D [(s′

n)n∈N]∼D
and by Lemma 24, (i): for all n ∈ N, there exists m ∈ N such that

sn ⪯◦
D s′

m. Since f◦ is productive, it is also increasing, and thus from (i) we obtain (ii):
for all n ∈ N , there exists m ∈ N such that f◦sn ⪯◦

C f◦s′
m. Using Lemma 21 we obtain

(f◦sm)m∈N ∼C (f◦s′
m)m∈N, which proves the lemma. ◀

The above result enables us to define functions f : KD → C as limits of approximating
sequences (fn : KD → C)n∈N. The definition of each of the functions fn below depends on an
arbitrary choice for a representative in its argument (which is an equivalence class), however,
thanks to the above theorem, the limit (i.e. the defined function f) does not depend on that
choice. The functions are built as in the Remark following Definition 30: for all x ∈ KD,
choose an arbitrary ascending sequence (xn)n∈N ∈ x; and set (fn x) = (f◦xn) for all n ∈ N.
We have observed that (fn)n∈N productively converges according to Definition 4; its limit is
[(f◦xn)∈N]∼C

∈ KC , which, by above theorem, is independent of the choice for (xn)n∈N ∈ x.
Hence, the limit f := λx.lim[(fn x)n∈N] is also independent on the initial choice.

Of course, the natural question that arises regards validation: do the functions thus
defined match the intention of the user? Unlike the case of functional-based corecursive
functions in an earlier section, we do not have a functional and a fixpoint equation as
validation mechanisms. A certain degree of confidence in the definition of f is already
obtained from the (assumed) confidence in f◦ – as we have f([(xn)n∈N]∼D

) = [(f◦xn)n∈N]∼C

– and from the independence of choice of representative from Theorem 32. The confidence
can be improved by proving properties of f that the user expects.

▶ Example 33. By applying the above process to the mirror◦ function from Example 31,
and noting that in this case KD = KC = R (the set of Rose trees), we obtain a well-defined
function mirror : R → R. To increase confidence in this function we prove that the mirror

V. Rusu and D. Nowak 12:15

function “reverses” positions in Rose trees. A position p is a finite sequence of natural
numbers, and in a given tree t it indicates the label (in the set A ∪ ⊥A, if we consider trees
over A) obtained by navigating in the tree, starting from the root and choosing children
indexed by the successive numbers in p. Let pos p t be the label in question (or ⊥A, since the
position may “overflow”). A function pos_rev is also defined, which like pos takes a position
p and a tree t and navigates the tree from root to children, but unlike pos, the children are
chosen “backwards” (counting back starting from the last child) instead of forwards. We have
then proved that for all positions p and trees t (finite or Rose), pos p (mirror t) = pos_rev p t,
meaning that, intuitively, mirror “reverses” all positions in the tree. The proofs were
performed by first defining finite versions pos◦ and pos_rev◦ for the new functions involved,
then proving pos◦p (mirror◦f) = pos_rev◦p f for finite trees f , and finally proving that the
corresponding property on Rose trees reduces to that on finite trees whose height is large
enough (here, larger the length of the list p). The Coq proofs are available in the companion
Coq development.

5 Implementation

The corecursive function-definition methods presented in Sections 2–4 have been implemented
in the Coq proof assistant. The implementation has two motivations. The first one is ensuring
that the results are sound, i.e., no case has been forgotten in a proof, and no assumption
was left implicit. This is a standard motivation for using a proof assistant. The second
motivation aims at providing Coq itself with stronger mechanisms for corecursive definitions
than the builtin ones available in the tool. This is achieved at the cost of assuming several
axioms from Coq’s standard library; we state which axioms were used, where, and for what
purpose. To our best knowledge the combination of axioms we imported from the standard
library does not introduce inconsistencies (cf. [8, Chapter 12]).

Understanding the rest of this section requires knowledge about Coq’s inductive and
coinductive types, recursive and corecursive definitions, and its module system.

5.1 Sequences
Some notions are used by both methods. The main concept is that of sequences over a given
type, encoded as functions from the natural numbers to the type in question. The fact that
an element belongs to a sequence (parameterized by a given type) is also defined using an
existential quantifier.
Definition Seq {A:Type }: Type := nat -> A
Definition sin{A:Type }(a:A)(q: Seq(A:=A)): Prop := exists i, a = q i.

Then, given a relation R (i.e., a binary predicate, of type A->A->Prop), the various kinds
of sequences from Definition 1 (increasing, strictly increasing, stabilizing, ascending) are
defined. Next, the fact that a value lub_val is the least upper bound (w.r.t. a relation R) of
a sequence q is defined as
Definition lub{A:Type} (R:A-> A-> Prop) (lub_val : A) (q:Seq(A:=A)) :=
(forall a, sin a q -> R a lub_val) /\
(forall lub_val ’,(forall a,sin a q-> R a lub_val ’)-> R lub_val lub_val ’).

The definition of lub is only relevant for order relations R, and will only be used for such
relations. For the first method these definitions are enough. The second method requires the
property noted in the Remark following Definition 1: if R is an order, then a sequence is
ascending if and only if it is increasing and has a strictly increasing sequence. This one-line
property required quite a few intermediary lemmas in order to be formally proved, using
classical logic and the following axiom:

ECOOP 2022

12:16 Defining Corecursive Functions in Coq Using Approximations

Axiom constructive_indefinite_description : forall (A:Type) (P:A->Prop),
(exists x, P x) -> {x:A | P x}.

This axiom, from Coq’s standard library, enables one to “choose” an element P satisfying
a predicate P just based on the knowledge that P is satisfiable. In informal mathematical
reasoning this is often implicitly assumed. In a Coq formal development, however, it has to
be explicitly assumed. Here we use it in order to turn a total relation into a function having
the relation in question as its graph:
Lemma functional_choice : forall (A B:Type) (R:A->B->Prop),
(forall x:A, exists y:B, R x y)->(exists f:A->B, forall x:A, R x (f x)).

The constructive_indefinite_description axiom occurs several times in the Coq de-
velopment.
▶ Remark. We have not formalized Definition 4 of productive convergence of sequences of
functions. That definition is useful in the paper for a unified presentation of the two methods
and for giving the intuitive notion of productiveness a mathematical meaning. In Coq these
motivations do not apply.

5.2 First method
This method reuses Coq’s builtin coinduction mechanisms for organizing coinductive types
as CPOs.

5.2.1 Stream CPO
The Coq definition for the stream CPO closely follows the approach outlined in Example 5.
First, the flat CPO over a given type A (cf. Example 3) is encoded using Coq’s option type.
A relation leo on this type is also defined, which we prove to be an order relation, having
None as the bottom element:
Inductive option (A:Type): Type := None: option A | Some: A -> option A.
Inductive leo{A:Type} : option A -> option A -> Prop :=
| leo_none : forall a, leo None a
| leo_some : forall a, leo (Some a) (Some a)

In Example 3, None was denoted by ⊥A and leo was denoted by the infix symbol _ ⪯A _.
Then, a lemma states that for each increasing sequence in the leo order, there exists a least
upper bound:
Lemma leo_lub {A:Type} :
forall (q:Seq (A:= option A)), increasing leo q-> exists b,lub leo b q.

The least upper bound of a sequence is obtained using constructive_indefinite_description:
Definition limF{A:Type }(q:Seq(A:= option A))(H: increasing leo q):=

constructive_indefinite_description _ (leo_lub q H).

Next, a stream over a type T is obtained by applying the constructor scons to an element in
T and another stream over T. The stream bot, which is an infinite repetition of None, is also
defined.
CoInductive Stream {T:Type} := scons : T -> Stream -> Stream .
CoFixpoint bot{T:Type }: Stream (T:=T) := scons None bot.

In Example 5 the constructor scons is denoted by an infix operation _ ·_ and bot is denoted
by ⊥. The head (hd) and tail (tl) of a stream are also defined, in the expected manner.

V. Rusu and D. Nowak 12:17

Next comes the order relation on streams. In Example 5 the order _ ⪯ _ was defined
pointwise. We here give an alternative, coinductive definition, and prove that the two
definitions are equivalent.
CoInductive les{T:Type} : Stream (T:=T)-> Stream (T:=T)-> Prop :=
les_def : forall a b s s’, leo a b-> les s s’-> les(scons a s)(scons b s ’).

Next, the limit of an increasing sequence of streams over the flat CPO of a given set is
defined by:
CoFixpoint lim{A:Type }(q:Seq(A:= Stream (T:= option A)))(H: increasing les q)
:= scons

(proj1_sig (limF(fun n => hd(q n))(increasing_smap_hd q H)))
(lim(fun n => tl(q n))(increasing_smap_tl q H)).

The function is parameterized by base type A of the underlying flat CPO. The type of the
argument q is a sequence of streams over the flat order of A. The function takes a second
argument: a proof that the sequence is increasing w.r.t. the order les of streams. The
function returns a stream, built with scons, whose head is the limit (limF, in the flat CPO)
of a stream that consists in mapping the head of streams to the sequence q, and whose tail
is the (corecursively called) limit of the sequence of streams obtained by mapping the tail of
streams to the sequence q. There are also some proof terms being used for ensuring that the
various sequences whose limits are being invoked are increasing. Finally, we prove that the
proposed limit is the actual least upper bound of an increasing sequence:
Lemma lim_lub {A:Type }(q:Seq(A:= Stream (T:= option A)))(H: increasing les q):
lub les (lim q H) q.

We also formalize the main artifact in the first method for corecursive function definition –
Theorem 10, which says that a productive functional has a unique fixpoint. For productiveness
we use the more convenient sufficient conditions given by Lemma 13. These conditions are
placed in a Coq module type, which can be seen as an interface that other modules need to
implement in order to benefit from the results implied by the conditions (here, the function
definition method embodied in Theorem 10).

5.2.2 The filter function on streams
The proposed functional for the filter function for streams over a type A is written as follows:
Definition Filter (f:S-> Stream (T:= option A))(s: S): Stream (T:= option A):=
if P (head s) then
scons (head s) (f (tail s))
else f (tail s).

where S:= {s:Stream(T:=option A)|forall n,exists m,n<=m ∧ P(nth m q)=true} is
the subtype of streams that have an infinite number of elements satisfying the filtering
predicate P: option A-> bool, and head, tail are the restrictions of the hd, resp. tl
functions on streams to the subtype S. We prove the conditions in Lemma 13, which enables
us to use the Coq formalization of Theorem 10 and to define a function filter satisfying
the two following theorems:
Theorem filter_fix : forall s, bisim (filter s)(Filter (filter s))
Theorem filter_fix_unique : forall f ,(forall s,bisim (f s) (Filter f s))->

forall s,bisim (filter s)(f s).

The theorems state the existence and uniqueness of filter as the unique fixpoint of Filter...
except for the fact that instead of the expected equality we get bisimulation, coinductively
defined as follows:

ECOOP 2022

12:18 Defining Corecursive Functions in Coq Using Approximations

CoInductive bisim{T: Type }: Stream (T:=T) -> Stream (T:=T) -> Prop :=
| bisim_def : forall a s1 s2 , bisim s1 s2 -> bisim (scons a s1)(scons a s2).

In the presentation of the first function-definition method from Section 3 we allowed ourselves,
for simplicity of notation, to use equality instead of bisimulation. When translating informal
mathematical reasoning to Coq such notation abuses and other similar approximations are
revealed. Bisimulation is the natural equality between streams; by contrast, the standard
equality of Coq is too strong. We note that, after having proved that bisimulation is a
congruence relation, by importing a certain library (Setoid) one can perform rewriting with
the fixpoint “equation” filter_fix in Coq.

Other examples

The companion Coq development also contains a definition of the stream of Fibonacci numbers,
which, like the filter function is not accepted by Coq’s builtin coinduction mechanisms. There
is also a construction for a CPO of colists, which can be seen as the union of finite lists and
streams. Accordingly, colists have a constructor nil for the empty colist, in addition to bot
and scons like in the above definition of streams. The filter function on colists, defined as
the unique fixpoint of a certain functional, turns out to be quite different from the filter
function of streams: it is total on the subtype of “well-formed” colists (those that do not
contain bot) and uses a non-executable “oracle” to determine whether its current argument
is such that none of its elements satisfy the filtering predicate. If this is the case, the function
returns nil, otherwise, it behaves like the filter function for streams.

5.3 Second method
Unlike the first method, in which each individual coinductive type has to be organized as
a CPO, the second method provides a generic construction of CPOs, if some assumptions
are met. Particular CPOs can be defined as instances of the generic notions, by providing
definitions and lemmas that instantiate the assumptions. Corecursive functions between
CPOs can then be defined.

5.3.1 Generic CPO
The generic construction of CPOs requires a set Cc (C◦, in Section 4.1), a least element, and
an order relation ordc (for ⪯◦), which must be weakly total. There is also a measure mu (for
µ) compatible with the strict order. These requirements are gathered in a Coq module type:

Parameter Cc: Type.
Parameter bot: Cc.
Parameter ordc: Cc -> Cc -> Prop.
Parameter bot_is_least : forall x,ordc bot x.
Parameter ordc_refl : forall x,ordc x x.
Parameter ordc_trans : forall x y z,ordc x y->ordc y z->ordc x z.
Parameter ordc_antisym : forall x y,ordc x y->ordc y x->x=y.
Parameter ordc_wtot : forall x y z,ordc x z->ordc y z->ordc x y\/ ordc y x.
Parameter mu: Cc -> nat.
Parameter mu_sordc : forall x y,ordc x y-> x<>y-> mu x<mu y.

The type Cc is “extended” to a type C by adding equivalence classes of ascending sequences
of elements in Cc, and the order ordc is extended to a relation ord, which is then proved to
be an order:

V. Rusu and D. Nowak 12:19

Inductive C:Type :=
|elt: forall (e:Cc),C
|cls: forall (ec: EqClass),C.
Inductive ord : C-> C-> Prop :=
| elt_elt : forall e1 e2 ,ordc e1 e2 -> ord (elt e1)(elt e2)
| elt_cls : forall e ec ,

(forall t, in t ec -> exists n, ordc e (nth t n))->
ord (elt e)(cls ec)

| cls_cls : forall ec ,ord (cls ec)(cls ec).

More information about our encoding of equivalence classes is given at the end of this section.
The type C is obtained by “wrapping” elements in Cc into a constructor elt and equivalence
classes into a constructor cls. The relation ord has three cases, corresponding the three cases
by which ⪯◦ is extended to ⪯ in Definition 22. Then, the limit of an increasing sequence of
elements in C is defined:
Definition lim (s:Seq(T:=C))(H: increasing ord s):C :=

match (excluded_middle_informative (stabilizing s)) with
| left stab =>

let (c, _) := constructive_indefinite_description _ stab in c
|right nostab =>

(cls (class_of (exist _ (fun n => extract_elt (s n))
(conj (extract_elt_incr _ Hinc nostab)

(incr_nostab_nostab _ Hinc nostab))))) end.

Like in Definition 25, the code for lim needs to decide whether its argument s is stabilizing or
not. This is not decidable, because a decision procedure would have to examine a whole infinite
sequence. We make it decidable by proving a theorem called excluded_middle_informative
stating that every proposition is decidable: forall P,{P}+{∼P} – a consequence of classical
logic and constructive_indefinite_description. Applying that theorem to (stabilizing s)
leads to two cases: if the sequence is stabilizing (with stab being a proof of stabilization) then
the value to which it stabilizes is “fetched” by constructive_indefinite_description.
If the sequence is not stabilizing (with nostab being a proof of non-stabilization) then,
intuitively the equivalence class of s should be returned – except for the fact that s is
a sequence over C and we only have equivalence classes of ascending sequences over Cc.
Various wrappers, conversion operations, and proof terms are used to produce the adequate
equivalence class. Of course, none of these details were visible in the mathematical definition
of the limit (Definition 25), but in Coq all the details are exposed. The proof of the fact that
lim actually computes the least upper bound of its argument amounts to a similar exposure
and management of many details, none of which is visible in the mathematical statements –
Theorem 26 and its proof.

On equivalence classes

There is no universally accepted way for expressing equivalence classes modulo a given
equivalence relation in Coq. One option, supported by the tool’s standard library, is to
use setoids, which are a triple consisting of a type, a binary relation on the type, and
a proof that the relation is an equivalence. This approach is mainly used to obtain a
generalized rewriting, using the setoid’s equivalence relation (which moreover needs to be
proved to be a congruence for the contexts under which rewriting is desired) instead of
equality. For example, rewriting using bisimulation of streams falls in this category. However,
in the present context, we just need equivalence classes for their own sake. Rewriting is
not an issue, and using the powerful but complicated machinery of setoids did not seem
cost-effective. We therefore opted for a more direct approach that uses axioms from the

ECOOP 2022

12:20 Defining Corecursive Functions in Coq Using Approximations

standard library: constructive_indefinite_description for obtaining a representative
of a class; functional extensionality (two functions are equal iff they are pointwise equal) and
propositional extensionality (propositional equality coincides with equivalence) for proving
that if two elements are in the equivalence relation they are in the same equivalence class. In
standard mathematics these properties are implicitly assumed, but in Coq they have to be
explicitly assumed since they are not provable otherwise.

5.3.2 The CPO of finite and Rose trees
In order to obtain this CPO the parameters of the generic CPO (the type Cc, the relation
ordc, the function mu, and the various constraints relating them) have to be instantiated
with actual definitions and lemmas. This essentially amounts to encoding the content of
Example 29 in Coq. The hardest part was establishing that the relation ordc is transitive;
several nontrivial lemmas about cutting trees at given heights had to be proved. Perhaps the
most difficult part of all the development effort was to convince ourselves that weak totality
of the order is a crucial requirement, and therefore to abandon the apparently natural “prefix
order”, also defined in Example 29, which does not have this property.

5.3.3 The mirror function
Defining a function using the second method is composed of a generic part, which assumes two
generic CPOs and a function between their “finite parts” that has to satisfy a productiveness
constraint (Definition 30). Accordingly, in Coq we write a module type where such a function
and its productiveness requirement are assumed. Any module that implements that module
type gains access to the corecursive function definition method described at the end of
Section 4.2. A recursive fmirror function between finite trees is written in such a module,
and by the generic mechanism described above, this function is transformed into a corecursive
function mirror between Rose trees.

Finally, to gain confidence in the obtained definition we define functions fpos and
fpos_rev (cf. Example 33) that compute labels at given positions in finite trees; transform
these functions into pos and pos_rev that do the corresponding operations on Rose trees;
and prove the following lemma:
Lemma mirror_pos : forall p t, pos p (mirror t) = pos_rev p t.

6 Conclusion, related work, and future work

This paper presents two methods for defining corecursive functions that go beyond the
guarded-by-constructor setting available in the Coq proof assistant. The first method
reuses the dedicated coinduction mechanisms available in Coq, which works as long as the
underlying coinductive datatypes are not mutually dependent with inductive types. The
second method is not subject to this restriction, as it does not rely on Coq’s coinduction
mechanisms but redefines them, at the cost of some additional work. Both methods have in
common the interpretation of maximal values in CPOs as well-defined corecursive values, and
they both rely on a mathematical notion of productiveness that captures the corresponding
intuitive notion of productiveness (the ability of a function to eventually generate, for each
input, an arbitrarily close approximation of the corresponding output). Both methods are
implemented in Coq and are illustrated by defining corecursive functions that Coq’s dedicated
mechanisms reject. This gain in expressiveness is obtained at the cost of using axioms from

V. Rusu and D. Nowak 12:21

the standard library of Coq, which are known not to introduce inconsistencies: using them
amounts to losing constructiveness, but gaining access to standard mathematical reasoning.
Both methods were presented independently of Coq; especially the second one, which is
independent from Coq’s builtin mechanisms for corecursion, could be implemented in other
proof assistants. An interesting target is Lean [14], a dependently-typed language and proof
assistant that includes the additional feature of quotient types that would naturally encode
equivalence classes in the second method.

The methods we propose transform a problem currently without solution (defining
corecursive functions that do not satisfy the guardedness condition) into a problem that
is solvable: defining and reasoning about functions that approximate the function under
definition. In practice the approximating functions are recursive, as can be seen from the
examples in the paper (Examples 14 and 31) and from the additional ones in the companion
Coq development. Now, if for a given corecursive function the corresponding approximating
recursive functions are difficult to reason about, then applying our methods may be difficult.
However, most of the difficulty does not arise from the methods, but from the intrinsic
complexity of the corecursive function being defined.

Comparison with related work

We start with classical results and with their applications for the purpose of defining functions.
Kleene’s fixpoint theorem [19, Chapter 5] can be used to define functions as least fixpoints of
continuous functionals over CPOs. A functional is continuous if it commutes with least upper
bounds. The least fixpoint is the least upper bound of an increasing sequence of functions,
obtained by iterating the functional starting from the constant “bottom” function. This has
been formalized and used for defining recursive functions in Coq [5]. Unsurprisingly, they
use the same kinds of axioms as we do.

In our first method we use the same iteration as in Kleene’s fixpoint theorem to obtain a
fixpoint, but require productiveness instead of continuity; and we obtain a unique fixpoint,
not just a least fixpoint. The stronger fixpoint result, and the fact that productiveness is a
natural requirement for corecursive functions, suggest that our method is well-adapted for
the purpose of defining such functions.

Our second method has similarities with the classical construction of the real numbers
based on equivalence classes of Cauchy sequences of rational numbers [10, Appendix A].
However, Cauchy sequences over a base set require the base set to be organized as a metric
space, with a distance function satisfying certain properties. An approach for defining
corecursive functions based on Cauchy sequences is mentioned in [13]. They use another
classical result (Banach’s fixpoint theorem [2]) to define corecursive functions as unique
fixpoints of eventually contracting functionals. By contrast, we organize the base set as a
CPO, use ascending sequences instead of Cauchy sequences, and (in the second method) do
not use functionals, but a “finite version” of the corecursive function under definition, which
has to satisfy a certain productiveness requirement to ensure a proper definition.

We now present related work about corecursion in proof assistants and similar formalisms.
In Coq, corecursive function definitions have to satisfy a guardedness-by-constructors criterion.
This criterion ensures a strong version of productiveness, namely, that each evaluation step
produces a strictly closer approximation of the final result than the previous steps. By
contrast, productiveness only requires that eventually a strictly closer approximation is
obtained. In some cases, a function that is productive but unguarded can be transformed
into an equivalent, guarded function. This has been done for the filter function on streams
in [3] and generalized in [4] to other unguarded functions. Their idea is to use an ad-hoc

ECOOP 2022

12:22 Defining Corecursive Functions in Coq Using Approximations

predicate stating that the definition under study is, in some sense, productive. However,
their approach does not use a general, formal notion of productiveness, nor does it handle
the case where corecursive calls are guarded by some non-constructor function, like the
mirror function for Rose trees presented in this paper. Our approach is not subject to these
limitations. In other related work, a constructive version of the CPO of streams in Coq is
mentioned in [16] in the context of a coinductive formalization of Kahn networks. However,
the author does not use her formalization of CPO to extend the class of corecursive stream
functions admissible by Coq.

We note that coinductive proofs in Coq, which by default are subject to the same syntactical
requirements as corecursive functions, can be performed using more relaxed, semantical
requirements by using parameterized coinduction implemented in the Paco extension of
Coq [12]. We have tried to adapt parameterized coinduction to corecursive function definition,
but have given up because we found that it is not adaptable. Parameterized coinduction
works for coinductive proofs, because, there, witness terms do not matter – any term of the
right type will do. By contrast, in corecursive functions, witness terms do matter, since they
expresses what the function is supposed to compute.

Agda [20] is also a dependently-typed programming language and proof assistant that
offers support for corecursive function definition. In the core tool there is a guardedness
checker similar to that of Coq, but more liberal as it allows, e.g., the definition of two
mutually dependent functions, one of which is recursive and the other one, corecursive. This
enables it to accept the definition of the mirror function on Rose trees, which Coq does not
accept. Extensions to Agda with sized types [18] provide users with a uniform, automatic
way of handling termination and productiveness, based on type annotations written by the
user. The current implementation of sized types in Agda is unsound (cf. [20, chapter Safe
Agda] and https://github.com/agda/agda/issues/2820).

Isabelle/HOL [21] is another major proof assistant which supports corecursive function
definition. A guardedness criterion (there called primitive corecursion) similar to that of Coq
and Agda is implemented [6], based on bounded natural functors, a conservative extension of
Higher Order Logic. The framework has further been extended to accept function definitions
that go beyond primitive corecursion [7]. Isabelle/HOL now accepts function definitions
where corecursive calls can be guarded by functions other than constructors, provided the
functions are proved to be friendly (essentially, a friendly function needs to destruct at most
one constructor of input to produce one constructor of output). Unguarded corecursive calls,
such as those in the filter function on streams, are also accepted, provided they are proved to
eventually produce a constructor of output. Like in our approach, all proof obligations are
the responsibility of the user. They have the additional advantage of using no supplementary
axioms, as those of Higher Order Logic are expressive enough.

Beyond generic proof assistants, support for corecursion also exists in tools targeting
particular languages. For example, Dafny is a specification and verification language dedicated
to the C# language, which has support for corecursive function definition [15], based on a
guardedness criterion similar to those existing in the already mentioned tools. Coinductive
proofs are also supported.

Finally, beyond the area of formal verification, it is very worth mentioning the Haskell
functional language, which offers support for corecursive function definition by means of lazy
evaluation.

https://github.com/agda/agda/issues/2820

V. Rusu and D. Nowak 12:23

Future work

We have encountered corecursive functions that are productive yet do not obey the guarded-
by-constructors criterion in our planned future work. The Prelude dataflow synchronous
programming language [9] has a flow sampling construction whose semantics is best described
using a filter function on colists (which we have defined in the companion Coq development as
an instance of our first method). This opens the way to a mechanized semantics of Prelude in
Coq, which would then enable program verification and semantically correct code generation
for the language. While formalizing in Coq the paper [17] about the semantics of dataflow
languages we have encountered unguarded corecursive functions on streams that can also
be defined using our first method. More speculative future work includes a comparison and
possible cross-fertilization of our approach with the sized-type approach of Agda and the
bounded-natural-functor approach of Isabelle/HOL.

References
1 The Coq Proof Assistant. URL: https://coq.inria.fr/.
2 S. Banach. Sur les opérations dans les ensembles abstraits et leur applications aux équations

intégrales. Fundam. Math., 3:133–181, 1922.
3 Y. Bertot. Filters on coinductive streams, an application to Eratosthenes’ sieve. In Typed

Lambda Calculi and Applications, 7th International Conference, TLCA 2005, Nara, Japan,
April 21-23, 2005, Proceedings, volume 3461 of Lecture Notes in Computer Science, pages
102–115, 2005.

4 Y. Bertot and E. Komendantskaya. Inductive and coinductive components of corecursive
functions in Coq. In Proceedings of the Ninth Workshop on Coalgebraic Methods in Computer
Science, CMCS 2008, Budapest, Hungary, April 4-6, 2008, volume 203 of Electronic Notes in
Theoretical Computer Science, pages 25–47, 2008.

5 Y. Bertot and V. Komendantsky. Fixed point semantics and partial recursion in Coq. In
Proceedings of the 10th International ACM SIGPLAN Conference on Principles and Practice
of Declarative Programming, July 15-17, 2008, Valencia, Spain, pages 89–96, 2008.

6 J. Biendarra, J. C. Blanchette, M. Desharnais, L. Panny, A. Popescu, and D. Traytel. Defining
(Co)datatypes and Primitively (Co)recursive Functions in Isabelle/HOL. URL: https://
isabelle.in.tum.de/doc/datatypes.pdf.

7 J. C. Blanchette, A. Bouzy, A. Lochbihler, A. Popescu, and D. Traytel. Defining
Nonprimitively (Co)recursive Functions in Isabelle/HOL. URL: https://isabelle.in.tum.
de/dist/Isabelle2021/doc/corec.pdf.

8 A. Chlipala. Certified Programming with Dependent Types. MIT Press, 2013.
9 J. Forget. A Synchronous Language for Critical Embedded Systems with Multiple Real-Time

Constraints. PhD thesis, Institut Supérieur de l’Aéronautique et de l’Espace, Toulouse, France,
2009.

10 S. R. Ghorpade and B. V. Limaye. A Course in Calculus and Real Analysis. Undergraduate
Texts in Mathematics. Springer, 2018.

11 E. Giménez. Codifying guarded definitions with recursive schemes. In Types for Proofs and
Programs, International Workshop TYPES’94, Båstad, Sweden, June 6-10, 1994, Selected
Papers, volume 996 of Lecture Notes in Computer Science, pages 39–59. Springer, 1994.

12 C.-K. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. The power of parameterization in coinductive
proof. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 193–206. ACM, 2013.

13 D. Kozen and N. Ruozzi. Applications of metric coinduction. Log. Methods Comput. Sci., 5(3),
2009.

14 The Lean Proof Assistant. URL: https://leanprover.github.io/.

ECOOP 2022

https://coq.inria.fr/
https://isabelle.in.tum.de/doc/datatypes.pdf
https://isabelle.in.tum.de/doc/datatypes.pdf
https://isabelle.in.tum.de/dist/Isabelle2021/doc/corec.pdf
https://isabelle.in.tum.de/dist/Isabelle2021/doc/corec.pdf
https://leanprover.github.io/

12:24 Defining Corecursive Functions in Coq Using Approximations

15 K. Rustan M. Leino and M. Moskal. Co-induction simply - automatic co-inductive proofs in a
program verifier. In FM 2014: Formal Methods - 19th International Symposium, Singapore,
May 12-16, 2014. Proceedings, volume 8442 of Lecture Notes in Computer Science, pages
382–398. Springer, 2014.

16 C. Paulin-Mohring. A constructive denotational semantics for Kahn networks in Coq. Available
at https://www.lri.fr/~paulin/PUBLIS/paulin07kahn.pdf.

17 T. Uustalu and V. Vene. The essence of dataflow programming. In Programming Languages
and Systems, Third Asian Symposium, APLAS 2005, Tsukuba, Japan, November 2-5, 2005,
Proceedings, volume 3780 of Lecture Notes in Computer Science, pages 2–18. Springer, 2005.

18 N. Veltri and N. van der Weide. Guarded recursion in agda via sized types. In 4th International
Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24-30,
2019, Dortmund, Germany, volume 131 of LIPIcs, pages 32:1–32:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2019.

19 G. Winskel. The Formal Semantics of Programming Languages, an introduction. MIT Press,
1993.

20 The Agda Proof Assistant. https://agda.readthedocs.io/en/v2.6.2/getting-started/
what-is-agda.html.

21 The Isabelle/HOL Proof Assistant. URL: https://isabelle.in.tum.de/.

https://www.lri.fr/~paulin/PUBLIS/paulin07kahn.pdf
https://agda.readthedocs.io/en/v2.6.2/getting-started/what-is-agda.html
https://agda.readthedocs.io/en/v2.6.2/getting-started/what-is-agda.html
https://isabelle.in.tum.de/

REST: Integrating Term Rewriting with Program
Verification
Zachary Grannan #

University of British Columbia, Vancouver, Canada

Niki Vazou #

IMDEA Software Institute, Madrid, Spain

Eva Darulova1 #

Uppsala University, Sweden

Alexander J. Summers #

University of British Columbia, Vancouver, Canada

Abstract
We introduce REST, a novel term rewriting technique for theorem proving that uses online termination
checking and can be integrated with existing program verifiers. REST enables flexible but terminating
term rewriting for theorem proving by: (1) exploiting newly-introduced term orderings that are
more permissive than standard rewrite simplification orderings; (2) dynamically and iteratively
selecting orderings based on the path of rewrites taken so far; and (3) integrating external oracles
that allow steps that cannot be justified with rewrite rules. Our REST approach is designed
around an easily implementable core algorithm, parameterizable by choices of term orderings and
their implementations; in this way our approach can be easily integrated into existing tools. We
implemented REST as a Haskell library and incorporated it into Liquid Haskell’s evaluation strategy,
extending Liquid Haskell with rewriting rules. We evaluated our REST implementation by comparing
it against both existing rewriting techniques and E-matching (as used in most SMT solvers) and by
showing that it can be used to supplant manual lemma application in many existing Liquid Haskell
proofs.

2012 ACM Subject Classification Theory of computation → Program verification

Keywords and phrases term rewriting, program verification, theorem proving

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.13

Related Version Extended Version: https://arxiv.org/abs/2202.05872 [26]

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.12

Funding This work was supported by the Juan de la Cierva grants IJC2019-041599-I, the HaCrypt
ONR project N00014-19-1-2292, and the ERC starting grant CRETE (101039196). We acknowledge
the support of the Natural Sciences and Engineering Research Council of Canada (NSERC).

Acknowledgements We thank Jonathan Chan, Eric Conlon, Rui Ge, Paulette Koronkevich and the
anonymous reviewers for their helpful and constructive feedback.

1 Introduction

For all disjoint sets s0 and s1, the identity (s0 ∪ s1) ∩ s0 = s0 can be proven in many ways.
Informally accepting this property is easy, but a machine-checked formal proof may require
the instantiation of multiple set theoretic axioms. Analogously, further proofs relying on this

∗ This work was partly done while the author was at MPI-SWS.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Zachary Grannan, Niki Vazou, Eva Darulova, and
Alexander J. Summers;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 13; pp. 13:1–13:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zgrannan@cs.ubc.ca
https://orcid.org/0000-0002-7042-7013
mailto:niki.vazou@imdea.org
https://orcid.org/0000-0003-0732-5476
mailto:eva.darulova@it.uu.se
https://orcid.org/0000-0002-6848-3163
mailto:alex.summers@ubc.ca
https://orcid.org/0000-0001-5554-9381
https://doi.org/10.4230/LIPIcs.ECOOP.2022.13
https://arxiv.org/abs/2202.05872
https://doi.org/10.4230/DARTS.8.2.12
https://doi.org/10.4230/DARTS.8.2.12
https://doi.org/10.4230/DARTS.8.2.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 REST: Integrating Term Rewriting with Program Verification

identity may themselves need to apply it as a previously-proven lemma. For example, proving
functional correctness of any program that relies on a set data structure typically requires
the instantiation of set-related lemmas. Manual instantiation of such universally quantified
equalities is tedious, and the burden becomes substantial for more complex proofs: a proof
author needs to identify exactly which equalities to instantiate and with which arguments;
in the context of program verification, a wide variety of such lemmas are typically available.
Given this need, most program verifiers provide some automated technique or heuristics for
instantiating universally quantified equalities.

For the wide range of practical program verifiers that are built upon SMT solvers
(e.g., [35, 23, 51, 39, 47, 45]), quantified equalities can naturally be expressed in the SMT
solver’s logic. However, relying solely on such solvers’ E-matching techniques [19] for quantifier
instantiation (as the majority of these verifiers do) can lead to both non-termination and
incompletenesses that may be unpredictable [34] and challenging to diagnose [7]. Theory
and techniques for proving termination and completeness of encodings using E-matching
for equality reasoning is relatively unexplored [21]; the inherent treatment of terms modulo
equalities makes standard term orderings based on term structure unsound.

A classical alternative approach to automating equality reasoning is term rewriting [28],
which can be used to encode lemma properties as (directed) rewrite rules, matching terms
against the existing set of rules to identify potential rewrites; the termination of these systems
is a well-studied problem [16]. Although SMT solvers often perform rewriting as an internal
simplification step, verifiers built on top typically cannot access or customize these rules,
e.g., to add previously-proved lemmas as rewrite rules. By contrast, many mainstream proof
assistants (e.g., Coq [11], Isabelle/HOL [40], Lean [5]) provide automated, customizable term
rewriting tactics. However, the rewriting functionalities of mainstream proof assistants either
do not ensure the termination of rewriting (potentially resulting in divergence, for example
Isabelle) or enforce termination checks that are overly restrictive in general, potentially
rejecting necessary rewrite steps (for example, Lean).

In this paper, we present REST (REwriting and Selecting Termination orderings): a novel
technique that equips program verifiers with automatic lemma application facilities via
term rewriting, enabling equational reasoning with complementary strengths to E-matching-
based techniques. While term rewriting in general does not guarantee termination, our
technique weaves together three key technical ingredients to automatically generate and
explore guaranteed-terminating restrictions of a given rewriting system while typically
retaining the rewrites needed in practice: (1) REST compares terms using well-quasi-orderings
derived from (strict) simplification orderings; thereby facilitating common and important
rules such as commutativity and associativity properties. (2) REST simultaneously considers an
entire family of term orderings; selecting the appropriate term ordering to justify rewrite steps
during term rewriting itself. (3) REST allows integration of an external oracle that generates
additional steps outside of the term rewriting system. This allows the incorporation of
reasoning steps awkward or impossible to justify via rewriting rules, all without compromising
the termination and relative completeness guarantees of our overall technique.

Contributions and Overview. We make the following contributions:
1. We design and present a new approach (REST) for applying term rewriting rules and

simultaneously selecting appropriate term orderings to permit as many rewriting steps as
possible while guaranteeing termination (Sec. 3).

2. We introduce ordering constraint algebras, an abstraction for reasoning effectively about
multiple (and possibly infinitely many) term orderings simultaneously (Sec. 4).

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:3

Name Formula
idem-union X ∪X = X

idem-inter X ∩X = X

empty-union X ∪ ∅ = X

empty-inter X ∩ ∅ = ∅
commut-union X ∪ Y = Y ∪X

symm-inter X ∩ Y = Y ∩X

distrib-union (X ∪ Y) ∩ Z = (X ∩ Z) ∪ (Y ∩ Z)
distrib-inter (X ∩ Y) ∪ Z = (X ∪ Z) ∩ (Y ∪ Z)
assoc-union X ∪ (Y ∪ Z) = (X ∪ Y) ∪ Z

Figure 1 Set identities used for examples in this section. Variables X, Y, Z are implicitly quantified.
We write the binary functions ∪, ∩ infix; along with (nullary) ∅ these are fixed function symbols.

3. We introduce and formalize recursive path quasi-orderings (RPQOs) derived from the
well-known recursive path ordering [15] (Sec. 4.1.2). RPQOs are more permissive than
classical RPOs, and so let us prove more properties.

4. We formalize and prove key results for our technique: soundness, relative completeness,
and termination (Sec. 5).

5. We implement REST as a stand-alone library, and integrate the REST library into Liquid
Haskell to facilitate automatic lemma instantiation (Sec. 6).

6. We evaluate REST by comparison to other term rewriting tactics and E-matching-based
axiomatization, and show that REST can simplify equational reasoning proofs (Sec. 7).

We discuss related work in Sec. 8; we begin (Sec. 2) by identifying five key challenges of a
reliable and automatic integration of term rewriting into a program verification tool.

2 Five Challenges for Automating Term Rewriting

In this section, we describe five key challenges that naturally arise when term rewriting is
used for program verification and outline how REST is designed to address them. To illustrate
the challenges, we use simple verification goals that involve uninterpreted functions and the
set operators (∅, ∪, ∩) that satisfy the standard properties of Figure 1. The variables x, y, z

are implicitly quantified2 in these rules. In formalizations of set theory, such properties may
be assumed as (quantified) axioms, or proven as lemmas and then used in future proofs.

Term rewriting systems (defined formally in Sec. 5) are a standard approach for formally
expressing and applying equational reasoning (rewriting terms via known identities). A term
rewriting system consists of a finite set of rewrite rules, each consisting of a pair of a source
term and a target term, representing that terms matching a rule’s source can be replaced
by corresponding terms matching its target. For example, the rewrite rule X ∪ ∅ → X can
replace set unions of some set X and the empty set with the corresponding set X. Rewrite
rules are applied to a term t by identifying some subterm of t which is equal to a rule’s
source under some substitution of the source’s free variables (here, X, but not constants
such as ∅); the subterm is then replaced with the correspondingly substituted target term.
This rewriting step induces an equality between the original and new terms. For instance,
the example rewrite rule above can be used to rewrite a term f(s0 ∪ ∅) into f(s0), inducing
an equality between the two.

2 over sets; we omit explicit types in such formulas, whose type-checking is standard.

ECOOP 2022

13:4 REST: Integrating Term Rewriting with Program Verification

Rewrite rules classically come with two restrictions: the free variables of the target
must all occur in the source and the source must not be a single variable. This precludes
rewrite rules which invent terms, such as ∅ → X ∩ ∅, and those that trivially lead to infinite
derivations. Under these restrictions, the first four identities induce rewrite rules from
left-to-right (which we denote by e.g., idem-inter→), while the remaining induce rewrite
rules in both directions (e.g., assoc-union→ vs. assoc-union←).

Next, we present a simple proof obligation taken from [36] in the style of equational
reasoning (calculational proofs) supported in the Dafny program verifier [35].

▶ Example 1. We aim to prove, for two sets s0 and s1 and some unary function f on sets,
that, if the sets are disjoint (that is, s1 ∩ s0 = ∅), then f((s0 ∪ s1) ∩ s0) = f(s0).

Equational Proof: f((s0 ∪ s1) ∩ s0) = f((s0 ∩ s0) ∪ (s1 ∩ s0)) (distrib-union→)
= f(s0 ∪ (s1 ∩ s0)) (idem-inter→)
= f(s0 ∪ ∅) (disjointness ass.→)
= f(s0) (empty-union→)

(Possible Term Ordering, as explained shortly: RPO instance with ∩ > ∪)

This manual proof closely follows the user annotations employed in the corresponding
Dafny proof [36]; the application of the function f serves only to illustrate equational
reasoning on subterms. Every step of the proof could be explained by term rewriting, hinting
at the possibility of an automated proof in which term rewriting is used to solve such proof
obligations. In particular, taking the term rewriting system naturally induced by the set
identities of Figure 1 along with the assumed equality expressing disjointness of s0 and s1
results in a term rewriting system in which the four proof steps are all valid rewriting steps.

In the remainder of the section, we consider what it would take to make term rewriting
effective for reliably automating such verification tasks. Perhaps unsurprisingly, there are
multiple problems with the simplistic approach outlined so far. The first and most serious is
that term rewriting systems in general do not guarantee termination; a proof search may
continue indefinitely by repeatedly applying rewrite rules. For example, the rules distrib-union
and distrib-inter can lead to an infinite derivation (s0 ∪ s1) ∩ s2 → (s0 ∩ s2) ∪ (s1 ∩ s2)→
(s0 ∪ (s1 ∩ s2)) ∩ (s2 ∪ (s1 ∩ s2))→ . . .

Challenge 1: Unrestricted term rewriting systems do not guarantee termination.

To ensure termination (as proved in Theorem 22) REST follows the classical approach of
restricting a term-rewriting system to a variant in which sequences of term rewrites (rewrite
paths) are allowed only if each consecutive pair of terms is ordered according to some term
ordering which rules out infinite paths.

For example, Recursive path orderings (RPOs) [15] define well-founded orders >T on
terms T based on an underlying well-founded strict partial order > on function symbols.
Intuitively, such orderings use > to order terms with different top-level function symbols,
combined with the properties of a simplification order [14] (e.g., compatibility with the
subterm relation). Different choices of the underlying > parameter yield different RPO
instances that order different pairs of terms; in particular, potentially allowing or disallowing
certain rewrite paths.

In Example 1, an RPO based on a partial order where ∩ > ∪ and ∩ > ∅ permits all the
rewriting steps, that is, the left-hand-side of each equation is greater than the right-hand-side.

Sadly, this ordering will not permit the rewriting steps required by our next example.

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:5

▶ Example 2. We aim to prove, for two sets s0 and s1 and some unary function f on sets,
that, if s1 is a subset of s0 (that is, s0 ∪ s1 = s0), then f((s0 ∩ s1) ∪ s0) = f(s0).

Equational Proof: f((s0 ∩ s1) ∪ s0) = f((s0 ∪ s0) ∩ (s1 ∪ s0)) (distrib-inter→)
= f(s0 ∩ (s1 ∪ s0)) (idem-union→)
= f(s0 ∩ (s0 ∪ s1)) (commut-union→)
= f(s0 ∩ s0) (subset ass.→)
= f(s0) (idem-inter→)

(Possible Term Ordering: RPQO instance, explained shortly, with ∪ > ∩)

An RPO based on an ordering where ∩ > ∪ (as required by Example 1) will not permit the
first step of this proof (since the RPO ordering first compares the top level function symbols).
Instead, this step requires an RPO based on an ordering where ∪ > ∩. To accept both this
proof step and the Example 1 we need different restrictions of the rewrite rules for different
proofs; in particular, different rewrite paths may be ordered according to RPOs that are
based on different function orderings.

To generalize this problem we will call RPOs a term ordering family that is parametric
with respect to the underlying function ordering. Thus, a concrete RPO term ordering (called
an instance of the family) is obtained after the parametric function ordering is instantiated.
With this terminology, the next challenge can be stated as follows:

Challenge 2: Different proofs require different term orderings within a family.

Note that enumerating all term orderings in a term ordering family is typically impractical
(this set is often very large and may be infinite). To address this challenge, REST uses a novel
algebraic structure (Sec. 4.2) to allow for an abstract representation of sets of term orderings
with which one can efficiently check whether any instance of a chosen term ordering family
can orient the necessary rewrite steps to complete a proof.

Going back to Example 2, the RPO instance with ∪ > ∩ will permit all the steps, apart
from the commutativity axiom expressed by (commut-union→). To permit this step we need
an ordering for which t1 ∪ t2 >T t2 ∪ t1. But for RPO instances, as well as for many other
term orderings, the terms t1 ∪ t2 and t2 ∪ t1 are equivalent and thus cannot be oriented;
associativity axioms are also similarly challenging. Since many proofs require such properties,
it is important in practice for rewriting to support them.

Challenge 3: Strict orderings restrict commutativity and associativity steps.

To address this challenge REST relaxes the strictness constraint by requiring the chosen term
ordering family to consist (only) of thin well-quasi-orderings (Def. 5). Intuitively, such
orderings permit rewriting to terms which are equal according to the ordering, but such
equivalence classes of terms must be finite. In Sec. 4 we show how to lift well-known families
of term orderings to more-permissive families of thin well-quasi-orders. In particular, we show
how to lift RPOs to a particularly powerful family of term orderings that we call recursive
path quasi-orderings (RPQOs) (Def. 10), whose instances allow us to accept Example 2.

Despite the permissiveness of RPQOs, there remain some rewrite derivations that will
be rejected by all term orderings in the RPQO family. For example, consider the following
proof that set union is monotonic with respect to the subset relation:

ECOOP 2022

13:6 REST: Integrating Term Rewriting with Program Verification

▶ Example 3. We aim to prove, for sets s0, s1, and s2, that, if s1 is a subset of s0 (that is,
s0 ∪ s1 = s0), then (s2 ∪ s1) ∪ (s2 ∪ s0) = s2 ∪ s0.

Equational Proof: (s2 ∪ s1) ∪ (s2 ∪ s0) = s2 ∪ (s1 ∪ (s2 ∪ s0)) (assoc-union←)
= s2 ∪ ((s1 ∪ s2) ∪ s0) (assoc-union→)
= s2 ∪ ((s2 ∪ s1) ∪ s0) (commut-union→)
= s2 ∪ (s2 ∪ (s1 ∪ s0)) (assoc-union←)
= s2 ∪ (s2 ∪ (s0 ∪ s1)) (commut-union→)
= s2 ∪ (s2 ∪ s0) (subset ass.→)
= (s2 ∪ s2) ∪ s0 (assoc-union→)
= s2 ∪ s0 (idem-union→)

(Possible Term Ordering: any KBQO instance)

The above rewrite rule steps cannot be oriented by any RPQO, but are trivially oriented
by a quasi-ordering that is based on the syntactic size of the term, e.g., a quasi-ordering
based on the well-known Knuth-Bendix family of term orderings [31]. Yet, a Knuth-Bendix
quasi-ordering (KBQO, defined in Sec. 4) cannot be used on our previous two examples;
fixing even a single choice of term ordering family would still be too restrictive in general.

Challenge 4: Some proofs require different families of term orderings.

To address this challenge, REST (Sec. 3.2) is defined parametrically in the choice and repre-
sentation of a term ordering family.

Finally, although equational reasoning is powerful enough for these examples, general
verification problems usually require reasoning beyond the scope of simple rewriting. For
example, simply altering Example 1 to express the disjointness hypothesis instead via
cardinality as |s0∩ s1| = 0 means that, to achieve a similar proof, reasoning within the theory
of sets is necessary to deduce that this hypothesis implies the equality needed for the proof;
this is beyond the abilities of term rewriting.

Challenge 5: Program verification needs proof steps not expressible by rewriting.

To address this challenge, our REST approach allows the integration of an external oracle that
can generate equalities not justifiable by term rewriting (Sec. 3.3).

3 The REST Approach

We develop REST to tackle the above five challenges and integrate a flexible, expressive, and
guaranteed-terminating term rewriting system with a verification tool. REST consists of an
interface that defines term orderings and an algorithm that explores the terminating rewrite
paths. In Sec. 3.1 we describe the representation of term orderings in REST and how they
address Challenges 2 and 4. In Sec. 3.2 we describe the REST algorithm that is parametric to
these orderings and Sec. 3.3 describes the integration with external oracles (Challenge 5).

3.1 Representation of Term Orderings in REST

Rather than considering individual term orderings, REST operates on indexed sets (families)
of term orderings (whose instances must all be thin well-quasi-orderings [Def. 5]).

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:7

▶ Definition 4 (Term Ordering Family). A term ordering family Γ is a set of thin well-quasi-
orderings on terms, indexed by some parameters P . An instance of the family is a term
ordering obtained by a particular instantiation of P .

For example, the recursive path ordering is defined parametrically with respect to a
precedence on function symbols, and therefore defines a term ordering family indexed by
this choice of function symbol ordering.

A core concern of REST is determining whether any instance of a given term ordering
family can orient a rewrite path. However, term ordering families cannot directly compare
terms; doing so requires choosing an ordering inside the family. The root of Challenge 2
is that choosing an ordering in advance is too restrictive: different orderings are necessary
to complete different proofs. The idea behind REST’s search algorithm is to address this
challenge by simultaneously considering all orderings in the family when considering rewrite
paths and continuing the path so long as it can be oriented by any ordering.

To demonstrate the technique, we show how REST’s approach can be derived from a
naïve algorithm. The purpose of the algorithm is to determine if any ordering in a family Γ
can orient a path t1 → . . .→ tn; i.e., if there is a >T ∈ Γ such that t1 >T . . . >T tn.

orients : (Set O × List T)→ Bool
orients(Γ, ts) =

os := Γ; (1)
for i ∈ 1 to |ts| − 1 {

os := {>T ∈ os | tsi >T tsi+1}; (2)
if (os = ∅) (3)

return false;
}
return true;

orients : (OCA× List T))→ Bool
orients(⟨⊤, refine, sat⟩, ts) =

c := ⊤;
for i ∈ 1 to |ts| − 1 {

c := refine(c, tsi, tsi+1);
if (not(sat(c)))

return false;
}
return true;

Figure 2 Two algorithms that determine if an ordering in the term ordering family Γ can orient
a path of terms ts. Left presents the naïve, exhaustive algorithm. Right is using the ordering
constraint algebra ⟨⊤, refine, sat⟩ that returns true iff an ordering in Γ can orient ts without explicitly
constructing any term orderings. Ois the type of a term ordering.

The naïve algorithm is depicted on the left of Figure 2. The naïve algorithm works
iteratively, computing the set of orderings os that can orient an increasingly-long path,
short-circuiting if the set becomes empty. The algorithm enumerates each ordering in Γ
and compares terms with each ordering (potentially multiple times). Unfortunately, this
enumeration is not practical: some term ordering families have infinite or prohibitively large
numbers of instances. REST avoids these issues by allowing the set of term orderings to be
abstracted via a structure called an Ordering Constraint Algebra (OCA, Def. 14 of Sec. 4.2).

An OCA for a term ordering family Γ consists of a type C along with four parameters
γ : C → P(Γ), ⊤ : C, refine : C → T → T → C, and sat : C → Bool. C is a type whose
elements represent subsets of Γ. The function γ is the concretisation function of the OCA,
not needed programmatically but instead defining the meaning of elements of C in terms
of the subsets of the term ordering family they represent. The remaining three functions
correspond to the operations on sets of term orderings used in lines (1), (2), and (3) of the
naïve algorithm. ⊤ represents the set of all term orderings in Γ, refine(c, t, u) filters the set of
orderings represented by c to include only those where t >T u, and sat(c) is a predicate that
returns true if the set of orderings represented by c is nonempty. Figure 2 on the right shows

ECOOP 2022

13:8 REST: Integrating Term Rewriting with Program Verification

REST : (OCA×R× T × (T → Set T))→ Set T
REST(⟨⊤, refine, sat⟩, R, t0, E) =

o := ∅;
p := [([t0],⊤)];
while (p is not empty){

pop(ts, c) from p;
t := last ts;
o := o ∪ {t};
foreach (t′such that t′ ̸∈ ts ∧ (t→R t′ ∨ t′ ∈ E(t))){

if (t′ ∈ E(t) ∨ (t→R t′ ∧ sat(refine(c, t, t′)))){
push (ts ++ [t′], refine(c, t, t′)) to p

}
}
}
return o;

Figure 3 The REST algorithm.

how the ordering constraint algebra can be used to perform an equivalent computation to the
naïve algorithm, without explicitly instantiating sets of term orderings. The OCA plays a role
similar to abstract interpretation in a program analysis, where C is an abstraction over sets of
term orderings, and the results of the abstract operations on C correspond to their concrete
equivalents. Namely, we have γ(⊤) = Γ, γ(refine(c, tl, tr)) = {≽ | ≽ ∈ γ(c) ∧ tl ≽ tr}, and
sat(c) ⇔ γ(c) ̸= ∅.

The ordering constraint algebra enables three main advantages compared to direct
computation with sets of term orderings:
1. The number of term orderings can be very large, or even infinite, thus making enumeration

of the entire set intractable.
2. An OCA can provide efficient implementations for refine and sat by exploiting properties

of the term ordering family. Comparing terms using the constituent term orderings
requires repeating the comparison for each ordering, despite the fact that most orderings
will differ in ways that are irrelevant for the comparison.

3. The OCA does not impose any requirements on the type of C or the implementation
of ⊤, refine, and sat. For example, an OCA can use ⊤ and refine to construct logical
formulas, with sat using an external solver to check their satisfiability. Alternatively,
it could define C to be sets of term orderings that are reasoned about explicitly, and
implement ⊤, refine, and sat as the operations of the naïve algorithm.

We now describe how the REST algorithm uses the OCA to explore rewrite paths.

3.2 The REST Algorithm
Figure 3 presents the REST algorithm. The algorithm takes four parameters. The first
parameter is an OCA ⟨⊤, refine, sat⟩, as discussed above. The algorithm’s second parameter,
R, is a finite set of term rewriting rules (not required to be terminating); for example, we
could pass the oriented rewrite rules corresponding to Figure 1. The third parameter t0 is
the term from which term rewrites are sought. The final parameter E acts as an external
oracle, generating additional rewrite steps that need not follow from the term rewriting rules
R. To simplify the explanation, we will initially assume that E = λt.∅, i.e., this parameter

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:9

f(s0) f(s0) f(s0)

f(s0) f(s0 s0)f(s0)

f(s0 (s1 s0)) f((s0 s0))

f((s0 s0) (s1 s0))

f((s0 s1) s0)
(x y) z (x z) (y z)

x x x s1 s0

s1 s0 x x x x x

x x xx xx x

f((s0) (s0)

f((s0 (s1 s0)) (s0 (s1 s0)))

f((s0 s1) (s0 s0))

Figure 4 A visualization of REST running on the term from Example 1. Each path through the
tree shown represents a rewrite path uncovered by our algorithm; the edge labels show the rewrite
rule applied. The red dotted lines indicate rewrite steps rejected by REST.

has no effect. Our algorithm produces a set of terms, each of which are reachable by some
rewrite path beginning from t0, and for which some ordering allows the rewrite path. The
algorithm addresses Challenge 1 (termination; Theorem 22) because every path must be
finite: no ordering could orient an infinite path.

REST operates in worklist fashion, storing in p a list of pairs (ts, c) where ts is a non-empty
list of terms representing a rewrite path already explored (the head of which is always t0)
and c tracks the ordering constraints of the path so far. The set o records the output terms
(initially empty): all terms discovered equal to t0 via the rewriting paths explored.

While there are still rewrite paths to be extended, i.e., p is not empty, a tuple (ts, c) is
popped from p. REST puts t, i.e., the last term of the path, into the set of output terms o

and considers all terms t′ that are: (a) not already in the path and (b) reachable by a single
rewrite step of R (or returned by the function E explained later). The crucial decision of
whether or not to extend a rewrite path with the additional step t→ t′ is handled in the if
check of REST. This check is to guarantee termination: the sat check enforces that we only
add rewrite steps which would leave the extended path still justifiable by some term ordering.

Figure 4 visualizes the rewrite paths explored by our algorithm for a run corresponding to
the problem from Example 1, using the OCA for the recursive path quasi-ordering (Sec. 4.2)3.
The manual proof in Example 1 corresponds to the right-most path in this tree; the other
paths apply the same reasoning steps in different orders. In our implementation, we optimize
the algorithm to avoid re-exploring the same term multiple times unless this could lead to
further rewrites being discovered (cf. Sec. 6).

The arrow from the root of the tree to its child corresponds to the first rewrite REST

applies: f((s0 ∪ s1)∩ s0)→ f((s0 ∩ s0)∪ (s1 ∩ s0)). This rewrite step can only be oriented by
RPQOs with precedence ∩ > ∪; therefore applying this rewrite constrains the set of RPQOs
that REST must consider in subsequent applications. For example, the rewrite to the left child
of f((s0 ∩ s0) ∪ (s1 ∩ s0)) can only be oriented by RPQOs with precedence ∪ > ∩. Since no
RPQO can have both ∩ > ∪ and ∪ > ∩, no RPQO can orient the entire path from the root;
REST must therefore reject the rewrite. On the other hand, the rewrite to the right child can
be oriented by any RPQO where s0 > ∅, s1 > ∅, or ∩ > ∅. The path from the root can thus
continue down the right-hand side, as there are RPQOs that satisfy both ∩ > ∪ and the
other conditions. The subsequent rewrites down the right-hand side do not impose any new
constraints on the ordering: f((s0 ∩ s0) ∪ ∅) >T f(s0 ∩ s0) >T f(s0) in all RPQOs.

3 We omit the commutativity rules from this run, just to keep the diagram easy to visualize, but our
implementation handles the example easily with or without them.

ECOOP 2022

13:10 REST: Integrating Term Rewriting with Program Verification

Similarly, REST will prove Example 2 but will reject Example 3 when the input OCA
represents RPQO orderings. As shown in our benchmarks (Table 2 of Sec. 7), Example 3 is
solved by REST with an OCA for the Knuth-Bendix term ordering family.

3.3 Integrating an External Oracle
Finally, to tackle Challenge 5, we turn to the (so far ignored) third parameter of the algorithm,
the external oracle E . In the example variant presented at the end of Sec. 2, such a function
might supply the rewrite step s0 ∩ s1 → ∅ by analysis of the logical assumption |s0 ∩ s1| = 0,
which goes beyond term-rewriting. More generally, any external solver capable of producing
rewrite steps (equal terms) can be connected to our algorithm via E . In our implementation
in Liquid Haskell, we use the pre-existing Proof by Logical Evaluation (PLE) technique [52],
which complements rewriting with the expansion of program function definitions, under
certain checks made via SMT solving. Our only requirements on the oracle E are that it is
bounded (finitely-branching) and strongly normalizing (cf. Sec. 5).

Our algorithm therefore flexibly allows the interleaving of term rewriting steps and
external oracle steps; we avoid the potential for this interaction to cause non-termination by
conditioning any further rewriting steps on the fact that the entire path (including the steps
inserted by the oracle) can be oriented by at least one candidate term ordering.

The combination of our interface for defining term orderings via ordering constraint
algebras, a search algorithm that effectively explores all rewrites enabled by the orderings,
and the flexible possibility of combination with external solvers via the oracle parameter
makes REST very adaptable and powerful in practice.

4 Well-Quasi-Orderings and the Ordering Constraint Algebra

Term orderings are typically defined as strict well-founded orderings; this requirement ensures
that rewriting will obtain a normal form. However, as mentioned in Challenge 3, the
restriction to strict orderings limits what can be achieved with rewriting. In this section we
describe the derivation of well-quasi-orderings from strict orderings (Sec. 4.1) and introduce
Knuth-Bendix quasi-orderings (Sec. 4.1.1) and recursive path quasi-orderings (Sec. 4.1.2),
two novel term ordering families respectively based on the classical recursive path and
Knuth-Bendix orderings. In addition, we formally introduce ordering constraint algebras
(Sec. 4.2) and use them to develop an efficient ordering constraint algebra for RPQOs.

4.1 Well-Quasi-Orderings
We define well-quasi-orderings in the standard way.

▶ Definition 5 (Well-Quasi-Orderings). A relation ⩾ is a quasi-order if it is reflexive and
transitive. Given elements t and u in S, we say t ≈ u if t ⩾ u and u ⩾ t. A quasi-order ⩾ is
also characterized as:
1. WQO, when for all infinite chains x1, x2, . . . there exists an i, j, i < j such that xj ⩾ xi,
2. thin, when forall t ∈ S, the set {u ∈ S | t ≈ u} is finite, and
3. total, when for all t, u ∈ S either t ⩾ s or s ⩾ t.

Well-quasi-orderings are not required to be antisymmetric, however the corresponding
strict part of the ordering must be well-founded. Hence, a WQO derives a strict ordering over
equivalence classes of terms; REST also requires that these equivalence classes are finite (i.e.,
the ordering is thin). With this requirement, REST guarantees termination by exploring only

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:11

duplicate-free paths. Many simplification orderings can be converted into more permissive
WQOs. Intuitively, given an ordering >o its quasi-ordering derivation also accepts equal
terms, so we denote it as ⩾o. We next present two such derivations.

4.1.1 Knuth-Bendix Quasi-Orderings (KBQO)

The Knuth-Bendix ordering [31] is a well-known simplification ordering used in the Knuth-
Bendix completion procedure. Here, we present a simplified version of the ordering, used by
REST that is using ordering to only compare ground terms.

▶ Definition 6. A weight function w is a function F → N, where w(f) > 0 for all nullary
functions symbols, and w(f) = 0 for at most one unary function symbol. w is compatible with
a quasi-ordering ⩾F on F if, for any unary function f such that w(f) > 0, we have f >F g

for all g. w(t) denotes the weight of a term t, such that w(f(t1, . . . , tn)) = w(f)+
∑

1⩽i⩽n

w(ti).

▶ Definition 7 (Knuth-Bendix ordering (KBO) on ground terms). The Knuth-Bendix Order-
ing >kbo for a given weight function w and compatible precedence order ⩾F is defined as
f(t1, . . . , tm) = t >kbo u = g(u1, . . . , un) iff w(t) ⩾ w(u), and 1) w(t) > w(u), or 2) f >F g,
or 3) f ⩾F g and (t1, . . . , tm) >kbolex (u1, . . . , un). Where >kbolex performs a lexicographic
comparison using >kbo as the underlying ordering.

Intuitively, KBO compares terms by their weights, using ⩾F and the lexicographic
comparison as “tie-breakers” for cases when terms have equal weights. However, as ⩾ is
already a well-quasi-ordering on N, we can derive a more general ordering by removing these
tie-breakers and the need for a precedence ordering at all.

▶ Definition 8 (Knuth-Bendix Quasi-ordering (KBQO)). Given a weight function w, the
Knuth-Bendix quasi-ordering ⩾kbo is defined as t ⩾kbo u iff w(t) ⩾ w(u).

The resulting quasi-ordering is simpler to implement and more permissive: t >kbo u

implies t ⩾kbo u; and also enables arbitrary associativity and commutativity axioms as
rewrite rules, since it only considers the weights of the function symbols and no structural
components of the term. One caveat is that REST operates on well-quasi-ordering that are
thin (Def. 5), so it can only consider KBQOs with w(f) > 0 for all unary function symbols f .

However, the fact that KBO and KBQO largely ignore the structure of the term in their
comparison has a corresponding downside: it is not possible to orient distributivity axioms, or
many other axioms that increase the number of symbols in a term. Therefore, we have found
that a WQO derived from the recursive path ordering [15] to be more useful in practice.

4.1.2 Recursive Path Quasi-Orderings (RPQO)

In this section, we define a particular family of orderings designed to be typically useful for
term-rewriting via REST. Our family of orderings is a novel extension of the classical notion
of RPO, designed to also be more compatible with symmetrical rules such as commutativity
and associativity (cf. Challenge 3, Sec. 2).

Like the classical RPO notions, our recursive path quasi-ordering (RPQO) is defined in
three layers, derived from an underlying ordering on function symbols:

The input ordering ≽F can be any quasi-ordering over F .

ECOOP 2022

13:12 REST: Integrating Term Rewriting with Program Verification

The corresponding multiset quasi-ordering ≽M(X) lifts an ordering ≽X over X to an
ordering ≽M(X) over multisets of X. Intuitively T ≽M(X) U when U can be obtained
from T by replacing zero or more elements in T with the same number of equal (with
respect to ≽X) elements, and replacing zero or more elements in T with a finite number
of smaller ones (Def. 9).
Finally, the corresponding recursive path quasi-ordering ≽rpo is an ordering over terms.
Intuitively f(ts) ≽rpo g(us) uses ≽F to compare the function symbols f and g and the
corresponding ≽M(rpo) to compare the argument sets ts and us (Def. 10).

Below we provide the formal definitions of the multiset quasi-ordering and recursive path
quasi-ordering respectively generalized from the multiset ordering of [18] and the recursive
path ordering [15] to operate on quasi-orderings. For all the three orderings, we write
xl < xr

.= xl ̸≽ xr and xl > xr
.= xl ≽ xr ∧ xr ̸≽ xl.

▶ Definition 9 (Multiset Ordering). Given a ordering ≽X over a set X, the derived multiset
ordering ≽M(X) over finite multisets of X is defined as T ≽M(X) U iff: 1) U = ∅, or 2)
t ∈ T ∧ u ∈ U ∧ t ≈ u ∧ (T − t) ≽M(X) (U − u), or 3) t ∈ T ∧ (T − t) ≽M(X) (U \ {u ∈
U | u <X t}).

▶ Definition 10 (Recursive Path Quasi-Ordering). Given a basic ordering ≽F , the recursive
path quasi-ordering (RPQO) is the ordering ≽rpo over T defined as follows: f(t1, . . . , tm) ≽rpo
g(u1, . . . , un) iff: 1) f >F g and {f(t1, . . . , tm)} >M(rpo) {u1, . . . , un}, or 2) g >F f and
{t1, . . . , tm} ≽M(rpo) {g(u1, . . . , un)}, or 3) f ≈ g and {t1, . . . , tm} ≽M(rpo) {u1, . . . , un}.

▶ Example 11. As a first example, any RPQO ≽T used to restrict term rewriting will accept
the rule X + Y → Y + X, since X + Y ≽T Y + X always holds. Since the top level function
symbol is the same + ≈ +, by Def. 10 (3) we need to show {X, Y } ≽M(rpo) {Y, X}. By
Def. 9 (2) (choosing both t and u to be X), we can reduce this to {Y } ≽M(rpo) {Y }; the same
step applied to y reduces this to showing ∅ ≽M(rpo) ∅ which follows directly from Def. 9 (1).

From this example, we can see that both X + Y ≽rpo Y + X and Y + X ≽rpo X + Y hold,
in this case independently of the choice of input ordering ≽F on function symbols. In our
next example, the choice of input ordering makes a difference.

▶ Example 12. As a next example, we compare the terms s(X) + Y and s(X + Y). Now
that the outer function symbols are not equal, the order relies on the ordering between +
and s. Let’s assume that + >F s. Now to get s(x) + y ≽rpo s(X + Y), the first case of
Definition 10 further requires {s(X)+Y } >M(rpo) {X+Y }, which holds if s(X)+y >rpo X+Y .
The outermost symbol for both expressions is +, so we must check the multiset ordering:
{s(X), Y } >M(rpo) {X, Y }, which holds because by case splitting on the relation between
s and X, we can show that s(X) is always greater than X. In short, if + >F s, then
s(X) + Y ≽rpo s(X + Y).

Developing on our RPQO notion (Def. 10), we consider the set of all such orderings that
are generated by any total, well-quasi-ordering over the operators. We prove that such term
orderings satisfy the termination requirements of Theorem 22. Concretely:

▶ Theorem 13. If ≽F is a total, well-quasi-ordering, then 1) ≽rpo is a well-quasi-ordering,
2) ≽rpo is thin, and 3) ≽rpo is thin well-founded.

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:13

4.2 Ordering Constraint Algebras
Ordering constraint algebras play a crucial role in the REST algorithm (Sec. 3.2), by enabling
the algorithm to simultaneously consider an entire family of term orderings during the
exploration of rewrite paths. In this section, we provide a formal definition for ordering
constraint algebras and describe the construction of an algebra for the RPQO.

▶ Definition 14 (Ordering Constraint Algebra). An Ordering Constraint Algebra (OCA) over
the set of terms T and term ordering family Γ, is a tuple A(T,Γ)

.= ⟨C, γ,⊤, refine, sat⟩, where:
1. C, the constraint language, can be any non-empty set. Elements of C are called constraints,

and are ranged over by c.
2. γ, the concretization function of A(T,Γ), is a function from elements of C to subsets of Γ.
3. ⊤, the top constraint, is a distinguished constant from C, satisfying γ(⊤) = Γ.
4. refine, the refinement function, is a function C → T → T → C, satisfying (for all c, tl, tr)

γ(refine(c, tl, tr)) = {≽ | ≽ ∈ γ(c) ∧ tl ≽ tr}.
5. sat, the satisfiability function, is a function C → Bool, satisfying (for all c) sat(c) =

true ⇔ γ(c) ̸= ∅.
The functions ⊤, refine, and sat are all called from our REST algorithm (Figure 3) and must be
implemented as (terminating) functions to implement REST. Specifically, REST instantiates the
initial path with constraints c = ⊤. When a path can be extended via a rewrite application
tl →R tr, REST refines the prior path constraints c to c′ .= refine(c, tl, tr). Then, the new term
is added to the path only if the new constraints are satisfiable (sat(c′) holds); that is, if c′

admits an ordering that orients the generated path. The function γ need not be implemented
in practice; it is purely a mathematical concept that gives semantics to the algebra.

Given terms T and a finite term ordering family Γ, a trivial OCA is obtained by letting
C = P(Γ), and making γ the identity function; straightforward corresponding elements ⊤,
refine, and sat can be directly read off from the constraints in the definition above.

However, for efficiency reasons (or in order to support potentially infinite sets of orderings,
which our theory allows), tracking these sets symbolically via some suitably chosen constraint
language can be preferable. For example, consider lexicographic orderings on pairs of
constants, represented by a set T of terms of the form p(q1, q2) for a fixed function symbol p

and q1, q2 chosen from some finite set of constant symbols Q. We choose the term ordering
family Γ = {≽lex(≽) | ≽ is a total order on Q} writing ≽lex(≽) to mean the corresponding
lexicographic ordering on p(q1, q2) terms generated from an ordering ≽ on Q.

A possible OCA over these T and Γ can be defined by choosing the constraint language
C to be formulas: conjunctions and disjunctions of atomic constraints of the forms q1 > q2
and q1 = q2 prescribing conditions on the underlying orderings on Q. The concretization
γ is given by γ(c) = {≽lex(≽) | ≽ satisfies c}, i.e., a constraint maps to all lexicographic
orders generated from orderings of Q that satisfy the constraints described by c, defined in
the natural way. We define ⊤ to be e.g., q = q for some q ∈ Q. A satisfiability function sat
can be implemented by checking the satisfiability of c as a formula. Finally, by inverting the
standard definition of lexicographic ordering, we define:

refine(c, p(q1, q2), p(r1, r2)) = c ∧ (q1 > r1 ∨ (q1 = r1 ∧ q2 > r2))

Using this example algebra, suppose that REST explores two potential rewrite steps
p(a1, a2)→ p(b1, a2)→ p(a1, a1). Starting from the initial constraint c0 = ⊤, the constraint
for the first step c1

.= refine(c0, p(a1, a2), p(b1, a2)) = a1 > b1 ∨ (a1 = b1 ∧ a2 > a2) is
satisfiable, e.g., for any total order for which a1 > b1. However, considering the subsequent
step, the refined constraint c2

.= refine(c1, p(b1, a2), p(a1, a1)), computed as c2 = c1 ∧ (a2 >

ECOOP 2022

13:14 REST: Integrating Term Rewriting with Program Verification

a2 ∨ (a2 = a2 ∧ b1 > a1)) is no longer satisfiable. Note that this allows us to conclude that
there is no lexicographic ordering allowing this sequence of two steps, even without explicitly
constructing any orderings.

We now describe an OCA for RPQOs (Sec. 4.1.2), based on a compact representation of
sets of these orderings.

An Ordering Constraint Algebra for ≽rpo

The OCA for RPQOs enables their usage in REST’s proof search. One simple but computa-
tionally intractable approach would be to enumerate the entire set of RPQOs that orient a
path; continuing the path so long as the set is not empty. This has two drawbacks. First, the
number of RPQOs grows at an extremely fast rate with respect to the number of function
symbols; for example there are 6, 942 RPQOs describing five function symbols, and 209, 527
over six [29]. Second, most of these orderings differ in ways that are not relevant to the
comparisons made by REST.

Instead, we define a language to succinctly describe the set of candidate RPQOs, by
calculating the minimal constraints that would ensure orientation of the path of terms;
REST continues so long as there is some RPQO that satisfies the constraints. Crucially
the satisfiability check can be performed effectively using an SMT solver without actually
instantiating any orderings.

Before formally describing the language, we begin with some examples, showing how the
ordering constraints could be constructed to guide the termination check of REST.

▶ Example 15 (Satisfiability of Ordering Constraints). Consider the following rewrite path
given by the rules r1

.= f(g(X), Y)→ g(f(X, X)) and r2
.= f(X, X)→ f(k, X):

f(g(h), k)→r1 g(f(h, h))→r2 g(f(k, h))

To perform the first rewrite REST has to ensure that there exists an RPQO ≽rpo such that
f(g(h), k) ≽rpo g(f(h, h)). Following from Definition 10, we obtain three possibilities:
1. f >F g and {f(g(h), k)} >M(rpo) {f(h, h)}, or
2. g >F f and {g(h), k} ≽M(rpo) {g(f(h, h))}, or
3. f ≈ g and {g(h), k} ≽M(rpo) {f(h, h)}.
We can further simplify these using the definition of the multiset quasi-ordering (Def. 9).
Concretely, the multiset comparison of (1) always holds, while the multiset comparisons of
(2) and (3) reduce to k >F f ∧ k >F g ∧ k >F h. Thus, we can define the exact constraints
c0 on ≽rpo to satisfy f(g(h), k) ≽rpo g(f(h, h)) as

c0
.= f >F g ∨ (k >F f ∧ k >F g ∧ k >F h)

Since there exist many quasi-orderings satisfying this formula (trivially, the one containing
the single relation f >F g), the first rewrite is satisfiable.

Similarly, for the second rewrite, the comparison g(f(z, z)) ≽rpo g(f(k, z)) entails the
constraints c1

.= z ≽F k. To perform this second rewrite the conjunction of c0 and c1
must be satisfiable. Since the second disjunct of c0 contradicts c1, the resulting constraints
f >F g ∧ z ≽F k is satisfiable by an RPQO, thus the path is satisfiable.

▶ Example 16 (Unsatisfiable Ordering Constraint). As a second example, consider the rewrite
rules r1

.= f(x) → g(s(x)) and r2
.= g(s(x)) → f(h(x)). These rewrite rules can clearly

cause divergence, as applying rule r1 followed by r2 will enable a subsequent application of
r1 to a larger term. Now let’s examine how our ordering constraint algebra can show the
unsatisfiability of the diverging path:

f(z)→r1 g(s(z)) ̸→r2 f(h(z))

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:15

f(z) ≽rpo g(s(z)) requires c0
.= f > g ∧ f > s which is satisfiable, but g(s(z)) ≽rpo f(h(z))

requires c1
.= (g ⩾ f ∧ g ⩾ h)∨ (g ⩾ f ∧ s ⩾ h)∨ (s > f ∧ s > h), which, although satisfiable,

conflicts with c0. Since no RPQO can satisfy both c0 and c1, the rewrite path is unsatisfiable.

Having primed intuition through the examples, we now present a way to compute such
constraints. First, it is clear that we can define an RPQO based on the precedence over
symbols F . Therefore, we define our language of constraints to include the standard logical
operators as well as atoms representing the relations between elements of F , as:

CF
.= f >F g | f ≈ g | CF ∧ CF | CF ∨ CF | ⊤ | ⊥

Next, we lift our definition of RPQO and the multiset quasi-ordering to derive functions:
rpo : T → T → CF , and mul : (T → T → CF)→M(T)→M(T)→ CF . rpo is derived by
a straightforward translation of Def. 10:

rpo(f(t1, . . . , tm), g(u1, . . . , un)) = f >F g ∧ mul′(rpo, {f(t1, . . . , tm)}, {u1, . . . , un}) ∨
g >F f ∧ mul(rpo, {t1, . . . , tm}, {g(u1, . . . , un)}) ∨

f ≈ g ∧ mul(rpo, {t1, . . . , tm}, {u1, . . . , un})

where mul′ is the strict multiset comparison: mul′(f, T, U) = mul(f, T, U) ∧ ¬mul(f, U, T).
¬ : CF → CF inverts the constraints, with ¬(f >F g) = f ≈ g ∨ g >F f and ¬(f ≈ g) =
f >F g ∨ g >F f ; the other cases are defined in the typical way.

The definition for mul is more complex. Recall that T ≽M(X) U when U can be obtained
from T by replacing zero or more elements in T with the same number of equal (with respect
to ≽X) elements, and by replacing zero or more elements in T with a finite number of smaller
ones. Therefore each justification for {t1, . . . , tm} ≽M(X) {u1, . . . , un} can be represented by
a bipartite graph with nodes labeled t1, . . . , tm and u1, . . . , un, such that:
1. Each node ui has exactly one incoming edge from some node tj .
2. If a node ti has exactly one outgoing edge, it is labeled either GT or EQ.
3. If a node ti has more than one outgoing edge, it is labeled GT.

mul(f, {t1, . . . , tm}, {u1, . . . , un}) generates all such graphs: for each graph converts each
labeled edge (t, u, EQ) to the formula f(t, u) ∧ f(u, t), each edge (t, u, GT) to the formula
f(t, u)∧¬f(u, t), and finally joins the formulas for the graph via a conjunction. The resulting
constraint is defined to be the disjunction of the formulas generated from all such graphs.

Having defined the lifting of recursive path quasi-orderings to the language of constraints,
we define our ordering constraint algebra A(T ,Γ) as the tuple ⟨CF ,⊤, refine, γ, sat⟩ where:

refine(c, t, u) = c ∧ rpo(t, u),
Γ is the set of all RPQOs,
γ(c) is the set of RPQOs derived from the underlying quasi-orders ≽F that satisfy c, and
sat(c) = true if and only if there exists a quasi-order ≽F satisfying c.

That A(T ,Γ) is an OCA, i.e., satisfies the requirements of Def. 14, follows by construction.
Namely, the function rpo(t, u) produces constraints c such that, for any RPQO ≽rpo, t ≽rpo u

if and only if its underlying ordering ≽F satisfies c.
Having shown that using RPQOs as a term ordering is useful for theorem proving, satisfies

the necessary properties for REST, and admits an efficient ordering constraint algebra, we
continue our formal work by stating and proving the metaproperties of REST.

ECOOP 2022

13:16 REST: Integrating Term Rewriting with Program Verification

5 REST Metaproperties: Soundness, Completeness, and Termination

We now present the correctness, completeness, and termination of the REST algorithm defined
in Figure 3. Here we only state the formal results; the detailed proofs can be found in [26].
Our formalism of rewriting is standard; based on that of Klop [30] (details in our extended
version [26]). For a set of rewrite rules R, we v →R w iff v →r w for some r ∈ R. For oracle
functions (from terms to sets of terms) E , we write t→E t′ iff t′ ∈ E(t). We write t→R+E t′

if t→R t′ or t→E t′. For a relation → we write →∗ for its reflexive, transitive closure. A
path t1, . . . , tn is an indexed list of terms. A binary relation ≽ orients a path t1, . . . , tn if
∀i, 1 ≤ i < n, ti ≽ ti+1.
Soundness of REST means that any term of the output (u ∈ REST(A, R, t0, E)) can be derived
from the original input term by some combination of term rewriting steps from R and steps
via the oracle function E (in other words, t0 →∗

R+E u).

▶ Theorem 17 (Soundness). For all R, u, and t0, if u ∈ REST(A, R, t0, E), then t0 →∗
R+E u.

Completeness of REST would naïvely be that, for any terms t0 and u, if t0 →∗
R+E u then

u is in our output (u ∈ REST(A, R, t0, E)). This result doesn’t hold by design, since REST

explores only paths permitted by at least one instance of its input term ordering family.
We prove this relative completeness result in two stages. First (Theorem 18), we show that
completeness always holds if all steps only involve the external oracle. Second (Theorem 19),
we prove relative completeness of REST with respect to the provided term ordering family.

▶ Theorem 18 (Completeness w.r.t. E). For all R, u, t0, if t0 →∗
E u, then u ∈ REST(A, R, t0, E).

▶ Theorem 19 (Relative Completeness). For all R, u, and t0, if t0 →∗
R+E u and there exists

an ordering ≽ ∈ γ(⊤) that orients the path justifying t0 →∗
R+E u, then u ∈ REST(A, R, t0, E).

Termination of REST requires conditions on the external oracle E and the ordering constraint
algebra A. Next, we formally define these requirements and state termination of REST.

▶ Definition 20 (Well-Founded A). For ordering constraint algebras A = ⟨C,⊤, refine, sat, γ⟩,
for c, c′ ∈ C, we say c′ strictly refines c (denoted c′ ⊏A c) if c′ = refine(c, t, u) for some
terms t and u, and γ(c′) ⊂ γ(c). Then, we say A is well-founded if ⊏A is.

Down every path explored by REST, the tracked constraint is only ever refined; well-foundedness
of A guarantees that finitely many such refinements can be strict.

We note that if the OCA describes a finite set of orderings, then it is trivially well-founded:
⊂ is well-founded on finite sets. For example, the ordering constraint algebra for RPQOs
(Sec. 4.2) is well-founded when the set of functions symbols F is finite, as there are a only a
finite number of possible RPQOs over a finite set of function symbols.

▶ Definition 21 (Normalizing & Bounded E). A relation tl → tr is normalizing if it does not
admit an infinite path and bounded if for each tl it only admits finite tr.

Note that any deterministic, terminating external oracle is both normalizing and bounded.

▶ Theorem 22 (Termination). For any finite set of rewriting rules R, if: 1)→E is normalizing
and bounded, 2) A is well-founded, and 3) the refine and sat functions of A are decidable
(implemented to always-terminate), then, for all terms t0, REST(A, R, t0, E) terminates.

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:17

{-@ example1 :: s0 : Set → { s1 : Set | IsDisjoint s0 s1 } → f : (Set → a) → { f ((s0

\/ s1) /\ s0) = f s0 } @-}

example1 :: Set → Set → (Set → a) → Unit

example1 s0 s1 f =

f ((s0 \/ s1) /\ s0) ? distribUnion s0 s1 s0

=== f ((s0 /\ s0) \/ (s1 /\ s0)) ? idemInter s0

=== f (s0 \/ (s1 /\ s0)) ? symmInter s1 s0

=== f (s0 \/ (s0 /\ s1)) -- Disjoint

=== f (s0 \/ emptySet) ? emptyUnion s0

=== f s0

*** QED

Figure 5 Liquid Haskell version of the proof from Example 1.

6 Implementation of REST

We implemented REST as a standalone library, of 2337 lines of Haskell code (Sec. 6.1) and we
integrated this library into Liquid Haskell [51] (Sec. 6.2) to automate lemma applications.

6.1 The REST Library
Our REST library is available on Hackage [25] and can be used directly by other Haskell
projects. The library is designed modularly; for example, a client of the library can decide to
use REST only for comparing terms via an OCA, without also using the proof search algorithm
of Sec. 3.2. In addition, our library has a small code footprint and can be used with or
without external solvers, making it ideal for integration into existing program analysis tools.

Furthermore, we include in the library built-in helper utilities for encoding and solving
constraints on term orderings. Although the library enables integration of arbitrary solvers; it
provides several built-in solvers for constraints on finite WQOs and also provides an interface
for solving constraints with external SMT solvers. These utilities comprise the majority of
the code in the REST library (1369 out of the 2337 lines).

Our implementation defines the OCA interface of Sec. 4.2 and provides three built-in
instances for RPQOs, LPQOs (derived from the Lexicographic path ordering), and KBQOs
(Sec. 4.1.1). The helper utilities included in the library enable a concise implementation of
these OCAs: the three OCA implementations consist of 200 lines of code in total.

To facilitate debugging and evaluation of OCAs, the library also provides an executable
that visualizes the rewrite paths that REST explores when using the OCA to compute the
rewrite paths from a given term. For example, Figure 4 was produced using this functionality.

6.2 Integration of REST in Liquid Haskell
We used REST to automate lemma application in Liquid Haskell. Here we start with a brief
overview of Liquid Haskell (Sec. 6.2.1), then present how REST is used to automate lemma
instantiations (Sec. 6.2.2) and how it interacts with Liquid Haskell’s automation (Sec. 6.2.3).

6.2.1 Liquid Haskell and Program Lemmas
Liquid Haskell performs program verification via refinement types for Haskell; function types
can be annotated with refinements that capture logical/value constraints about the function’s
parameters, return value and their relation. For example, the function example1 in Figure 5
ports the set example of Example 1 to Liquid Haskell, without any use of REST. User-defined
lemmas amount to nothing more than additional program functions, whose refinement types

ECOOP 2022

13:18 REST: Integrating Term Rewriting with Program Verification

express the logical requirements of the lemma. The first line of the figure is special comment
syntax used in Liquid Haskell to introduce refinement types; it expresses that the first
parameter s0 is unconstrained, while the second s1 is refined in terms of s0: it must be some
value such that IsDisjoint s0 s1 holds. The refinement type on the (unit) return value
expresses the proof goal; the body of the function provides the proof of this lemma. The
proof is written in equational style; the ? annotations specify lemmas used to justify proof
steps [50]. The penultimate step requires no lemma; the verifier can discharge it based on
the refinement on the s1 parameter.

6.2.2 REST for Automatic Lemma Application in Liquid Haskell
We apply REST to automate the application of equality lemmas in the context of Liquid
Haskell. The basic idea is to extract a set of rewrite rules from a set of refinement-typed
functions, each of which must have a refinement type signature of the following shape:
{-@ rrule :: x1:t1 → . . . → xn:tn → {v:() | el = er } @-}

In particular, the equality el = er refinement of the (unit) return value generates potential
rewrite rules to feed to REST, in both directions. Let FV (e) be the free variables of e,
if FV (er) ⊆ FV (el) and el ̸∈ {x1, . . . , xn} then el → er is generated as a rewrite rule.
Symmetrically, if FV (el) ⊆ FV (er) and er ̸∈ {x1, . . . , xn} then er → el is generated as a
rewrite rule. These rewrite rules are fed to REST along with the current terms we are trying
to equate in the proof goal; any rewrites performed by REST are fed back to the context of
the verifier as assumed equalities.

REST is using Liquid Haskell to ensure that the rewrite rules are correct. The body of
rrule provides an proof (machine-checked by Liquid Haskell) that the equality el = er holds.
Such proofs can themselves use REST’s rewrites, but mutual dependencies are not permitted,
e.g., if rrule1 is proved using rrule2, then rrule2’s proof cannot use rrule1.

Selective Activation of Lemmas: Local and Global Rewrite Rules. In our Liquid Haskell
extension, the user can activate a rewrite rule globally or locally, using the rewrite and
rewriteWith pragmas, resp.. For example, with the below annotations

{-@ rewrite global @-} {-@ rewriteWith theorem [local] @-}

the rule global will be active when verifying every function in the current Haskell module,
while the rule local is used only when verifying theorem.

Lemma Automation. Using our implementation, the same Example 1 proven manually in
Figure 5 can be alternatively proven (with all relevant rewrite rules in scope) as follows:
{-@ example1 :: s0 : Set → { s1 : Set | IsDisjoint s0 s1 } → f : (Set → a)

→ { f ((s0 \/ s1) /\ s0) = f s0 } @-}

example1 s0 s1 _ = ()

The proof is fully automatic: all required lemmas are handled by REST. Integrating REST into
Liquid Haskell required around 500 lines of code, mainly for surface syntax.

6.2.3 Mutual PLE and REST Interaction
Liquid Haskell includes the Proof by Logical Evaluation (PLE) [52] tactic that automatically
expands terminating functions. PLE expands function calls into single cases of their (possibly
conditional) bodies exactly when the SMT can prove that a unique case definitely applies.
In our implementation, PLE plays the role of its external oracle (cf. Sec. 3). Since PLE is
proven terminating [52], the termination of this collaboration is also guaranteed (cf. Sec. 5).

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:19

Table 1 Comparison of REST with existing theorem provers. LH+ is Liquid Haskell with rewriting.
The potential outcomes are ✓, followed by the runtime, when the property is proved; loop when no
answer is returned after 300 sec; and fail when the property cannot be proven. Isa+ is Isabelle/HOL

with Sledgehammer.

Property LH+ Coq Agda Lean Isabelle Zeno Isa+

Diverge ✓0.62s loop loop fail loop ✓0.47s ✓7.58s
Plus AC ✓1.13s loop loop fail fail ✓0.54s ✓4.30s
Congruence ✓0.69s ✓0.22s ✓26.10s ✓0.36s ✓3.86s fail ✓4.39s

PLE takes as input a set F of (provably) terminating, user-defined function definitions
that it iteratively evaluates. Meanwhile, REST is provided with the rewrite rules extracted
from in-scope lemmas in the program (cf. Sec. 6.2.2); these two techniques can then generate
paths of equal terms including steps justified by each technique. For example, consider the
following simple lemma countPosExtra, stating that the number of strictly positive values in
xs ++ [y] is the number in xs, provided that y <= 0, and a lemma stating that countPos of
two lists appended gives the same result if their orders are swapped.
{-@ lm :: xs : [Int] → ys : [Int] → { countPos (xs ++ ys) = countPos (ys ++ xs) } @-}

{-@ rewriteWith countPosExtra [lm] @-}

{-@ countPosExtra :: xs : [Int] → {y : Int | y <= 0 } →
{ countPos (xs ++ [y]) = countPos xs } @-}

countPosExtra :: [Int] → Int → ()

countPosExtra _ _ = () -- proof is fully automatic!

The proof requires rewriting countPos(xs ++ [y]) first via lemma lm (by REST), expanding
the definition of ++ twice (via PLE) to give countPos(y:xs), and finally one more PLE step
evaluating countPos, using the logical fact that y is not positive. Note that the first step
requires applying an external lemma (out of scope for PLE) and the last requires SMT
reasoning not expressible by term rewriting. The two techniques together allow for a fully
automatic proof.

7 Evaluation

Our evaluation seeks to answer three research questions:
§ 7.1: How does REST compare to existing rewriting tactics?
§ 7.2: How does REST compare to E-matching based axiomatization?
§ 7.3: Does REST simplify equational proofs?

We evaluate REST using the Liquid Haskell implementation described in Sec. 6. In Sec. 7.1,
we compare our implementation’s rewriting functionality with that of other theorem provers,
with respect to the challenges mentioned in Sec. 2. In Sec. 7.2, we compare against Dafny [35]
by porting Dafny’s calculational proofs to Liquid Haskell. Finally, in Sec. 7.3, we port proofs
from various sources into Liquid Haskell both with and without rewriting, and compare the
performance and complexity of the resulting proofs.

7.1 Comparison with Other Theorem Provers
To compare REST with the rewriting functionality of other theorem provers, we developed three
examples to test the five challenges described in Sec. 2 and compare our implementation to that
of other solvers. We chose to evaluate against Agda [41], Coq [11], Lean [5], Isabelle/HOL [40],

ECOOP 2022

13:20 REST: Integrating Term Rewriting with Program Verification

and Zeno [46], as they are widely known theorem provers that either support a rewrite
tactic, or use rewriting internally. Agda, Lean, and Isabelle/HOL allow user-defined rewrites.
In Lean and Isabelle/HOL, the tactic for applying rewrite rules multiple times is called
simp; for simplification. Agda, Coq, and Isabelle/HOL’s implementation of rewriting can
diverge for nonterminating rewrite systems [11, 1, 40]. On the other hand, Lean enforces
termination, at least to some degree, by ensuring that associative and commutative operators
can only be applied according to a well-founded ordering [4]. Zeno [46] does not allow for
user-defined rewrite rules, rather it generates rewrites internally based on user-provided
axioms. Sledgehammer [38, 44, 43] is a powerful tactic supported by Isabelle/HOL that (on
top of the built-in rewriting) dispatches proof obligations to various external provers and
succeeds when any of the external provers succeed; this tactic operates under a built-in
(customizable) timeout.
1. Diverge tests how the prover handles the challenges 1 and 5: restricting the rewrite system

to ensure termination and integrating external oracle steps. This example encodes a
single (terminating) rewrite rule f(X)→ g(s(s(X))) and terminating, mutually recursive
definitions for f and g. However, the combination of the rules and function expansions
can cause divergence. The proof follows directly from the function definitions.

2. Plus AC tests the challenges 2 and 3 by encoding a task that requires a permissive term
ordering. This example encodes p, q, and r, user-defined natural numbers, and requires
that expressions such as (p + q) + r can be rewritten into different groupings such as
(r + q) + p, via associativity and commutativity rules.

3. Congruence is an additional test to ensure that the implementation of the rewrite system
is permissive enough to generate the expected result. This test evaluates a basic expected
property, that the expressions f(g(t)) and f(g′(t)) can be proved equal if there exists a
rewrite rule of the form g(X)→ g′(X).

We present our results in Table 1. As expected, Coq, Agda, and Isabelle/HOL diverge on
the first example, as they do not ensure termination of rewriting. Lean does not diverge, but
it also fails to prove the theorem. Unsurprisingly, the commutativity axiom of Plus AC causes
theorem provers that don’t ensure termination of rewriting to loop. Although Lean ensures
termination, it does not generate the necessary rewrite application in every case, because
it orients associative-commutative rewriting applications according to a fixed order. With
the exception of Zeno, all of the theorem provers tested were able to prove the necessary
theorem for the final example. Our implementation succeeds on these three examples by
implementing a permissive termination check based on non-strict orderings.

The only two tools that proved all three examples are our implementation and Isabelle’s
Sledgehammer. The latter combines many techniques which go beyond term rewriting.
Nonetheless, our novel approach provides a clear and general formal basis for incorporation
with a wide variety of verifiers and reasoning techniques (due to its generic definition and
formal requirements) and comes with strong formal guarantees for such combinations. In
particular, REST guarantees termination and relative completeness, which Sledgehammer (via
its timeout mechanism) does not.

7.2 Comparison with E-matching
To evaluate REST against the E-matching based approach, we compared with Dafny [35],
a state-of-the-art program verifier. Dafny supports equational reasoning via calculational
proofs [36] and calculation with user-defined functions [2]. We ported the calculational proofs
of [36] to Liquid Haskell, using rewriting to automatically instantiate the necessary axioms.

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:21

7.2.1 List Involution
Figure 6 shows an example taken directly from Dafny [36], proving that the reverse operation
on lists is an involution, i.e., ∀xs.reverse(reverse(xs)) = xs. In this example, both Liquid
Haskell and Dafny operate on inductively defined lists with user-defined functions ++
and reverse. The original Dafny proof goes through via the combination of a manual
application of a lemma called ReverseAppendDistrib (stating that for all lists xs and ys,
reverse(xs ++ ys) = reverse(ys) ++ reverse(xs)) and induction on the size of the list.

Using REST’s term rewriting, Liquid Haskell is able to simplify the proof, with PLE
expanding the function definitions for reverse and append, and REST applying the necessary
equality reverse (reverse xs ++ [x]) = reverse [x] ++ reverse (reverse xs).

In Dafny, a similar simplification of the calculational proof is not possible; the proof
fails if the manual equality steps are simply removed. We experimented further and found
that the lemma ReverseAppendDistrib can be alternatively encoded as a user-defined axiom
which, by itself, does not appear to cause trouble for E-matching, and with this change
alone the proof succeeds without the need for this single lemma call. On the other hand, the
equalities must still be mentioned for the calculational proof to succeed. Perhaps surprisingly,
removing these intermediate equality steps caused Dafny to stall4; analysis with the Axiom
Profiler [7] indicated the presence of a (rather complex) matching loop involving the axiom
ReverseAppendDistrib in combination with axioms internally generated by the verifier itself.
This illustrates that achieving further automation of such E-matching-based proofs is not
straightforward, and can easily lead to performance difficulties due to matching loops which
can be hard to predict and understand, even in this state-of-the-art verifier. By contrast,
REST can automatically provide the necessary equality steps without risking divergence.

7.2.2 Set Properties
Figure 7 shows the Dafny and Liquid Haskell proofs for the implication s0∩s1 = ∅ =⇒ f((s0∪
s1) ∩ s0) = f(s0). Dafny uses a calculational proof to show the equality (s0 ∪ s1) ∩ s0 = s0,
seemingly by applying distributivity. In fact, the distributivity aspect is not relevant to
the proof; rather, the set equality in the proof syntax causes Dafny to instantiate the set
extensionality axiom discharging the proof. It is for this reason that Dafny requires an extra
proof step to prove f((s0 ∪ s1) ∩ s0) = f(s0), as this term does not include an equality
on sets, but rather on applications of f . Dafny’s set axiomatization does not include the
distributivity axiom, as such an axiom could easily lead to matching loops.

REST’s termination property allows arbitrary lemmas to be encoded as rewrite rules; in
this case rewriting with the distributivity lemma can complete the proof.

In conclusion, we have shown that REST’s rewriting can be used as an alternative to
E-matching based axiomatization. Furthermore, the termination guarantee of REST enables
axioms that may give rise to matching loops to, instead, be encoded as rewrite rules.

7.3 Simplification of Equational Proofs
Finally, we evaluate how REST can simplify equational proofs. We chose to include the set
example from [36] (described in Sec. 7.2.2), data structure proofs from [50], examples from
the Liquid Haskell test suite, as well as our own case study. We developed each example
in Liquid Haskell both with and without rewriting, and compared the timing and proof

4 We include this version in the Appendix of our extended paper [26].

ECOOP 2022

13:22 REST: Integrating Term Rewriting with Program Verification

lemma LemmaReverseTwice(xs: List)

ensures reverse(reverse(xs)) == xs;

{

match xs {

case Nil =>

case Cons(x, xrest) =>

calc {

reverse(reverse(xs));

reverse(append(reverse(xrest), Cons(x, Nil)));

{ ReverseAppendDistrib(reverse(xrest), Cons(x, Nil)); }

append(reverse(Cons(x, Nil)), reverse(reverse(xrest)));

{ LemmaReverseTwice(xrest); }

append(reverse(Cons(x, Nil)), xrest);

append(Cons(x, Nil), xrest);

xs;

}

}

}

(a) Calculation-style proof in Dafny, from [36].

{-@ involutionP :: xs:[a] → {reverse (reverse xs) == xs } @-}

{-@ rewriteWith involutionP [distributivityP] @-}

involutionP [] = ()

involutionP (x:xs) = involutionP xs

(b) An equivalent proof implemented in Liquid Haskell extended with REST.

Figure 6 List Involution proofs in Liquid Haskell and Dafny.

complexity. Each proof using rewriting was evaluated using each different ordering constraint
algebras built-in to our Haskell REST library. The proofs in [50] were selected because they
require induction, expansion of user-defined functions, and equational reasoning steps to
prove properties about trees and lists. The examples from the Liquid Haskell test suite were
taken to evaluate the rewriting across a range of representative proofs.

Our DSL case study evaluates the performance of our implementation using a larger set
of rewrite rules, by verifying optimizations for a simple programming language, containing
statements (i.e., print, sequence, branches, repeats and no-ops) and expressions (i.e., constants,
variables, arithmetic and boolean expressions) using 23 rewrite rules. Our rewriting technique
can prove the kind of equivalences used in techniques such as supercompilation [8, 54, 48],
by encoding the basic equality axioms as rewrite rules and using them to prove more
complicated theorems. A full list of the axioms and proved theorems are available in our
extended version [26]. We note that we encoded arithmetic operations as uninterpreted SMT
functions, so that the built-in arithmetic theory of the SMT does not aid proof automation.

We present our results in Table 2. By using rewriting, we were able to eliminate all but
two of the non-inductive axiom instantiations, while maintaining a reasonable verification
time. As expected, no ordering constraint algebra was able to complete all the proofs using
rewriting; however, each proof could be verified with at least one of them.

The test cases LH-FingerTree and LH-MapReduce required manual axiom instantiations be-
cause the structure of the term did not match the rewrite rule for the axiom. LH-MapReduce,
requires proving the identity op (f (take n is)) (mapReduce n f op (drop n is)) = f is.
An inductive lemma application generates the background equality mapReduce n f op (drop

n is) = f (drop n is), and a rewrite matching the term op (f (take n is)) (f (drop n

is)) must be instantiated to complete the proof. However, since the background equality

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:23

lemma Proof<a>(s0: set<int>, s1: set<int>, f: set<int> → a)

requires s0 * s1 == {}

ensures f((s0 + s1) * s0) == f(s0) {

calc {

(s0 + s1) * s0; (s0 * s0) + (s1 * s0);

s0;

}

}

(a) Proof in Dafny using built-in set axiomatization.

{-@ assume unionEmpty :: ma : Set → {v : () | ma \/ emptySet = ma } @-}

{-@ assume intersectComm :: ma : Set → mb : Set → {v : () | ma /\ mb = mb /\ ma } @-}

{-@ assume intersectSelf :: s0 : Set → { s0 /\ s0 = s0 } @-}

{-@ assume unionIntersect :: s0 : Set → s1 : Set → s2 : Set

→ { (s0 \/ s1) /\ s2 = (s0 /\ s2) \/ (s1 /\ s2) } @-}

{-@ rwDisjoint :: s0 : Set → {s1 : Set | IsDisjoint s0 s1} → { s0 /\ s1 = emptySet } @-}

{-@ example1 :: s0 : Set → { s1 : Set | IsDisjoint s0 s1 } → f : (Set → a) →
{ f ((s0 \/ s1) /\ s0) = f s0 } @-}

example1 s0 s1 _ = ()

(b) An equivalent proof implemented in Liquid Haskell, with a user-defined axiomatization of sets.

Figure 7 Set Proofs in Liquid Haskell and Dafny.

is neither a rewrite rule nor an evaluation step, the necessary term op (f (take n is)) (f

(drop n is)) never appears. Therefore, it is necessary to manually instantiate the lemma.
As future work, a limited form of E-matching [12] could address this issue in the general case.

In conclusion, we’ve shown that extending Liquid Haskell to use REST enables rewriting
functionality not subsumed by existing theorem provers, that REST is effective for axiom
instantiation, and that REST can simplify equational proofs.

8 Related Work

Theorem Provers & Rewriting. Term rewriting is an effective technique to automate
theorem proving [27] supported by most standard theorem provers. § 7.1 compares, by
examples, our technique with Coq, Agda, Lean, and Isabelle/HOL. In short, our approach is
different because it uses user-specified rewrite rules to derive, in a terminating way, equalities
that strengthen the SMT-decidable verification conditions required for program verification.

SMT Verification & Rewriting. Our rewrite rules could be encoded in SMT solvers as
universally quantified equations and instantiated using E-matching [12], i.e., a common
algorithm for quantifier instantiation. Without careful choice of user-specified triggers,
E-matching can lead to hard-to-predict an unstable performance, including non-termination
due to axioms generating new instantiations indefinitely in a matching loop. [34] refers to
this unpredictable behavior of E-matching as the “the butterfly effect” and partially addresses
it by detecting formulas that could give rise to simple matching loops. However, as we show
in Sec. 7.2.1, guaranteeing termination in general remains subtle, fundamentally due to the
fact that every equality generates a (potentially-infinite) equivalence class of terms available
in the solver’s search. Our approach circumvents unpredictability by using the terminating
REST algorithm to instantiate the rewrite rules outside of the SMT solver.

ECOOP 2022

13:24 REST: Integrating Term Rewriting with Program Verification

Table 2 Results from simplification of proofs with rewriting. Set-Dafny is the set example
from[36], Set-Mono describes a similar property. List and Tree are equational proofs from [50].
DSL is the program equivalence case study. The remaining proofs are from the Liquid Haskell test
suite folder tests/pos, excluding those using only inductive or mutually inductive lemmas. Orig. is
the number of non-inductive lemma applications in the original proof. Cut is the number of lemma
applications that were removed by rewriting; where Cut is the same as Orig., all non-inductive
lemma applications have been removed. Rules is the number of axioms encoded as rewrite rules.
Time (Orig.) is verification time in seconds for the original proof. LPQO and KBQO are OCAs
derived from the Lexicographic Path Ordering and Knuth-Bendix ordering respectively, and Fuel is
an OCA allowing up to 5 rewrite applications per proof goal.

Name Orig. Cut Rules Time
Orig. RPQO LPQO KBQO Fuel

Set-Dafny 4 4 5 1.11s ✓1.15s ✓1.19s ✗1.13s ✓1.22s
Set-Mono 7 7 4 1.16s ✗1.40s ✗1.41s ✓1.47s ✓1.60s
List 3 3 3 2.46s ✓3.17s ✗4.21s ✗2.24s ✓3.54s
Tree 3 3 3 1.61s ✓2.64s ✓3.40s ✓3.08s ✓3.12s
DSL 43 43 23 2.89s ✓5.46s ✗3.85s ✗4.19s ✓6.54s
LH-FingerTree 2 1 1 5.55s ✓5.60s ✓5.57s ✓5.64s ✓5.95s
LH-T1013 1 1 1 1.11s ✓1.06s ✓1.00s ✓1.02s ✓1.06s
LH-T1025 2 2 2 1.03s ✓1.05s ✓1.08s ✓1.07s ✓1.13s
LH-T1548 1 1 1 1.45s ✓1.33s ✓1.38s ✓1.32s ✓1.45s
LH-T1660 1 1 1 1.09s ✓1.12s ✓1.12s ✓1.12s ✓1.20s
LH-MapReduce 4 3 2 14.38s ✓29.50s ✓518.91s ✓28.49s ✗Timeout

Z3 [13] and CVC4 [6] are state-of-the-art SMT solvers; both support theory-specific rewrite
rules internally. Recent work [42] enables user-provided rewrite rules to be added to CVC4.
However, using the SMT solver as a rewrite engine offers little control over rewrite rule
instantiation, which is necessary for ensuring termination.

Rewriting in Haskell. Haskell itself has used various notions of rewriting for program
verification. GHC supports the RULES pragma with which the user can specify unchecked,
quantified expression equalities that are used at compile time for program optimization. [10]
proposes Inspection Testing as a way to check such rewrite rules using runtime execution and
metaprogramming, while [22] prove rewrite rules via metaprogramming and user-provided
hints. In a work closely related to ours, Zeno [46] is using rewriting, induction, and further
heuristics to provide lemma discovery and fully automatic proof generation of inductive
properties. Unlike our approach, Zeno’s syntax is restricted (e.g., it does not allow for
existentials) and it does not allow for user-provided hints when automation fails. HALO [53]
enables Haskell verification by converting Haskell into logic and using an SMT solver to
verify user-defined formulas. However, this approach relies on SMT quantifiers to encode
user functions, thus the solver can diverge and verification becomes unpredictable.

Termination of Rewriting and Runtime Termination Checking. Early work on proving
termination of rewriting using simplification orderings is described in [15]. More recent work
involves dependency pairs [3] and applying the size-change termination principle [33] in the
context of rewriting [49]. Tools like AProVE [24] and NaTT [56] can statically prove the
termination of rewriting. In contrast, REST is not focused on statically proving termination
of rewriting; rather it uses a well-founded ordering to ensure termination at runtime. This

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:25

approach enables integration of arbitrary external oracles to produce rewrite applications, as a
static analysis is not possible in principle. Furthermore, our approach enables nonterminating
rewriting systems to be useful: REST will still apply certain rewrite rules to satisfy a proof
obligation, even if the rewrite rules themselves cannot be statically shown to terminate.

We used a well-quasi-ordering [32] because it enables rewriting to terms that are not strictly
decreasing in a simplification ordering. WQOs are commonly used in online termination
checking [37], especially for program optimization techniques such as supercompilation [9].

Equality Saturation. In our implementation, REST passes equalities to the SMT environment,
ultimately used for equality saturation via an E-graph data structure [20]. Equality satura-
tion has also been used for supercompilation[48]. REST does not currently exploit equality
saturation (unless indirectly via its oracle). However, as future work we might explore local
usage of efficient E-graph implementations. (e.g., [55]) for caching the equivalence classes
generated via rewrite applications.

Associative-Commutative Rewriting. Traditionally, enforcing a strict ordering on terms
prevents the application of rewrite rules for associativity or commutativity (AC); this problem
motivates REST’s use of well-quasi orders. However, another solution is to omit the rules and
instead perform the substitution step of rewriting modulo AC. Termination of the resulting
system can be proved using an AC ordering [17]; the requirement is that the ordering respects
AC: for all terms t′ AC-equivalent to t and u′ AC-equivalent to u, t > u implies t′ > u′.

REST’s use of well-quasi-orderings enables AC axioms to be encoded as rewrite rules,
guaranteeing completeness if the AC-equivalence class of a term is a subset of the equivalence
class induced by the ordering. This is a significant practical benefit as it does not require
REST to identify AC symbols and treat them differently for unification.

However, treating AC axioms as rewrite rules can lead to an explosion in the number of
terms obtained via rewriting. As future work, it could be possible to extend REST to support
AC rewriting and unification in order to reduce the number of explicitly instantiated terms.

9 Conclusion

We presented REST, a novel approach to rewriting that uses an online termination check that
simultaneously considers entire families of term orderings via Ordering Constraint Algebras.
We defined our algebra on well-quasi orderings that are more permissive than standard
simplification orderings and demonstrated how to derive well-quasi orderings from well-
known simplification orderings. We proved correctness, relative completeness, and (online)
termination of REST and implemented it as a small Haskell library suitable for integration
with existing verification tools. To evaluate REST we integrated our implementation with
Liquid Haskell and showed that the resulting system compares well with existing rewriting
techniques and can substantially simplify equational proofs.

References

1 Agda Developers. The Agda Language Reference, version 2.6.1, 2020. Available electronically
at https://agda.readthedocs.io/en/v2.6.1/language/index.html.

2 Nada Amin, K Rustan M Leino, and Tiark Rompf. Computing with an smt solver. In
International Conference on Tests and Proofs, pages 20–35. Springer, 2014.

ECOOP 2022

https://agda.readthedocs.io/en/v2.6.1/language/index.html

13:26 REST: Integrating Term Rewriting with Program Verification

3 Thomas Arts and Jürgen Giesl. Termination of term rewriting using dependency pairs.
Theoretical Computer Science, 236(1):133–178, April 2000. doi:10.1016/S0304-3975(99)
00207-8.

4 Jeremy Avigad, Leonardo de Moura, and Soonho Kong. Theorem Proving in Lean, Release
3.20.0, September 2020. p 73. URL: https://leanprover.github.io/theorem_proving_in_
lean/theorem_proving_in_lean.pdf.

5 Jeremy Avigad, Gabriel Ebner, and Sebastian Ullrich. The Lean Reference Manual, Release
3.3.0, 2018. URL: https://leanprover.github.io/reference/lean_reference.pdf.

6 Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanovi’c,
Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh Gopalakrishnan and
Shaz Qadeer, editors, Proceedings of the 23rd International Conference on Computer Aided
Verification (CAV ’11), volume 6806 of Lecture Notes in Computer Science, pages 171–177.
Springer, July 2011. Snowbird, Utah. URL: http://www.cs.stanford.edu/~barrett/pubs/
BCD+11.pdf.

7 N. Becker, P. Müller, and A. J. Summers. The axiom profiler: Understanding and debugging
smt quantifier instantiations. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS) 2019, LNCS, pages 99–116. Springer-Verlag, 2019.

8 Maximilian Bolingbroke and Simon Peyton Jones. Supercompilation by evaluation. SIGPLAN
Not., 45(11):135–146, September 2010. doi:10.1145/2088456.1863540.

9 Maximilian Bolingbroke, Simon Peyton Jones, and Dimitrios Vytiniotis. Termination combi-
nators forever. In Proceedings of the 4th ACM symposium on Haskell, pages 23–34, 2011.

10 Joachim Breitner. A promise checked is a promise kept: inspection testing. In Nicolas
Wu, editor, Proceedings of the 11th ACM SIGPLAN International Symposium on Haskell,
Haskell@ICFP 2018, St. Louis, MO, USA, September 27-17, 2018, pages 14–25. ACM, 2018.
doi:10.1145/3242744.3242748.

11 The Coq Development Team. The Coq Reference Manual, version 8.11.2, 2020. Available
electronically at http://coq.inria.fr/refman.

12 Leonardo de Moura and Nikolaj Bjørner. Efficient e-matching for smt solvers. In Frank
Pfenning, editor, Automated Deduction – CADE-21, pages 183–198, Berlin, Heidelberg, 2007.
Springer Berlin Heidelberg.

13 Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International
conference on Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340. Springer, 2008.

14 Nachum Dershowitz. A note on simplification orderings. Information Processing Letters,
9(5):212–215, 1979. doi:10.1016/0020-0190(79)90071-1.

15 Nachum Dershowitz. Orderings for term-rewriting systems. Theoretical computer science,
17(3):279–301, 1982.

16 Nachum Dershowitz. Termination of rewriting. Journal of symbolic computation, 3(1-2):69–115,
1987.

17 Nachum Dershowitz, Jieh Hsiang, N Alan Josephson, and David A Plaisted. Associative-
commutative rewriting. In IJCAI, pages 940–944, 1983.

18 Nachum Dershowitz and Zohar Manna. Proving termination with multiset orderings. In Her-
mann A. Maurer, editor, Automata, Languages and Programming, Lecture Notes in Computer
Science, pages 188–202, Berlin, Heidelberg, 1979. Springer. doi:10.1007/3-540-09510-1_15.

19 David Detlefs, Greg Nelson, and James B. Saxe. Simplify: A theorem prover for program
checking. J. ACM, 52(3):365–473, May 2005. doi:10.1145/1066100.1066102.

20 David Detlefs, Greg Nelson, and James B Saxe. Simplify: a theorem prover for program
checking. Journal of the ACM (JACM), 52(3):365–473, 2005.

21 Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich. Adding decision
procedures to smt solvers using axioms with triggers. Journal of Automated Reasoning,
56(4):387–457, 2016.

https://doi.org/10.1016/S0304-3975(99)00207-8
https://doi.org/10.1016/S0304-3975(99)00207-8
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover.github.io/theorem_proving_in_lean/theorem_proving_in_lean.pdf
https://leanprover.github.io/reference/lean_reference.pdf
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
http://www.cs.stanford.edu/~barrett/pubs/BCD+11.pdf
https://doi.org/10.1145/2088456.1863540
https://doi.org/10.1145/3242744.3242748
http://coq.inria.fr/refman
https://doi.org/10.1016/0020-0190(79)90071-1
https://doi.org/10.1007/3-540-09510-1_15
https://doi.org/10.1145/1066100.1066102

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:27

22 Andrew Farmer, Neil Sculthorpe, and Andy Gill. Reasoning with the hermit: Tool support
for equational reasoning on ghc core programs. In Proceedings of the 2015 ACM SIGPLAN
Symposium on Haskell, Haskell ’15, pages 23–34, New York, NY, USA, 2015. Association for
Computing Machinery. doi:10.1145/2804302.2804303.

23 Jean-Christophe Filliâtre and Andrei Paskevich. Why3—where programs meet provers. In
Matthias Felleisen and Philippa Gardner, editors, Programming Languages and Systems
(ESOP), volume 7792 of Lecture Notes in Computer Science, pages 125–128. Springer, 2013.

24 Jürgen Giesl, Cornelius Aschermann, Marc Brockschmidt, Fabian Emmes, Florian Frohn,
Carsten Fuhs, Jera Hensel, Carsten Otto, Martin Plücker, Peter Schneider-Kamp, et al. Ana-
lyzing program termination and complexity automatically with aprove. Journal of Automated
Reasoning, 58(1):3–31, 2017.

25 Zachary Grannan. rest-rewrite: Rewriting library with online termination checking, 2022.
URL: https://hackage.haskell.org/package/rest-rewrite.

26 Zachary Grannan, Niki Vazou, Eva Darulova, and Alexander J. Summers. Rest: Integrating
term rewriting with program verification (extended version), 2022. arXiv:2202.05872.

27 Jieh Hsiang, Hélène Kirchner, Pierre Lescanne, and Michaël Rusinowitch. The term rewriting
approach to automated theorem proving. The Journal of Logic Programming, 14(1):71–99,
October 1992. doi:10.1016/0743-1066(92)90047-7.

28 Gerard Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems. In Proceedings of the 18th Annual Symposium on Foundations of Computer Science,
SFCS ’77, pages 30–45, USA, 1977. IEEE Computer Society. doi:10.1109/SFCS.1977.9.

29 OEIS Foundation Inc. The On-Line Encyclopedia of Integer Sequences, 2022. A000798:
Number of different quasi-orders (or topologies, or transitive digraphs) with n labeled elements.
URL: https://oeis.org/A000798.

30 J. W. Klop. Term Rewriting Systems, pages 1–116. Oxford University Press, Inc., USA, 1993.
31 Donald E Knuth and Peter B Bendix. Simple word problems in universal algebras. In

Automation of Reasoning, pages 342–376. Springer, 1983.
32 Joseph B Kruskal. The theory of well-quasi-ordering: A frequently discovered concept.

Journal of Combinatorial Theory, Series A, 13(3):297–305, November 1972. doi:10.1016/
0097-3165(72)90063-5.

33 Chin Soon Lee, Neil D. Jones, and Amir M. Ben-Amram. The size-change principle for
program termination. In Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL ’01, pages 81–92, New York, NY, USA, 2001.
Association for Computing Machinery. doi:10.1145/360204.360210.

34 K. R. M. Leino and Clément Pit-Claudel. Trigger Selection Strategies to Stabilize Program
Verifiers. In Swarat Chaudhuri and Azadeh Farzan, editors, Computer Aided Verification,
Lecture Notes in Computer Science, pages 361–381, Cham, 2016. Springer International
Publishing. doi:10.1007/978-3-319-41528-4_20.

35 K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness.
In Proceedings of the 16th International Conference on Logic for Programming, Artificial
Intelligence, and Reasoning, LPAR’10, pages 348–370, Berlin, Heidelberg, 2010. Springer-
Verlag.

36 K Rustan M Leino and Nadia Polikarpova. Verified calculations. In Working Conference on
Verified Software: Theories, Tools, and Experiments, pages 170–190. Springer, 2013.

37 Michael Leuschel. Homeomorphic Embedding for Online Termination of Symbolic Methods. In
Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, Torben Æ. Mogensen, David A. Schmidt,
and I. Hal Sudborough, editors, The Essence of Computation, volume 2566, pages 379–403.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002. Series Title: Lecture Notes in Computer
Science. doi:10.1007/3-540-36377-7_17.

38 Jia Meng and Lawrence C Paulson. Translating higher-order clauses to first-order clauses.
Journal of Automated Reasoning, 40(1):35–60, 2008.

ECOOP 2022

https://doi.org/10.1145/2804302.2804303
https://hackage.haskell.org/package/rest-rewrite
http://arxiv.org/abs/2202.05872
https://doi.org/10.1016/0743-1066(92)90047-7
https://doi.org/10.1109/SFCS.1977.9
https://oeis.org/A000798
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1016/0097-3165(72)90063-5
https://doi.org/10.1145/360204.360210
https://doi.org/10.1007/978-3-319-41528-4_20
https://doi.org/10.1007/3-540-36377-7_17

13:28 REST: Integrating Term Rewriting with Program Verification

39 P. Müller, M. Schwerhoff, and A. J. Summers. Viper: A verification infrastructure for
permission-based reasoning. In VMCAI, 2016.

40 Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assistant
for Higher-Order Logic. Springer-Verlag, 2020.

41 Ulf Norell. Dependently typed programming in agda. In Proceedings of the 6th International
Conference on Advanced Functional Programming, AFP’08, pages 230–266, Berlin, Heidelberg,
2008. Springer-Verlag.

42 Andres Nötzli, Andrew Reynolds, Haniel Barbosa, Aina Niemetz, Mathias Preiner, Clark
Barrett, and Cesare Tinelli. Syntax-guided rewrite rule enumeration for smt solvers. In Mikoláš
Janota and Inês Lynce, editors, Theory and Applications of Satisfiability Testing – SAT 2019,
pages 279–297, Cham, 2019. Springer International Publishing.

43 Lawrence C Paulson and Kong Woei Susanto. Source-level proof reconstruction for interactive
theorem proving. In International Conference on Theorem Proving in Higher Order Logics,
pages 232–245. Springer, 2007.

44 Lawrence C Paulsson and Jasmin C Blanchette. Three years of experience with sledgehammer,
a practical link between automatic and interactive theorem provers. In Proceedings of the 8th
International Workshop on the Implementation of Logics (IWIL-2010), Yogyakarta, Indonesia.
EPiC, volume 2, 2012.

45 Julien Signoles, Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, and Boris
Yakobowski. Frama-c: a software analysis perspective. Formal Aspects of Computing, 27,
October 2012. doi:10.1007/s00165-014-0326-7.

46 William Sonnex, Sophia Drossopoulou, and Susan Eisenbach. Zeno: An automated prover
for properties of recursive data structures. In Cormac Flanagan and Barbara König, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages 407–421, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

47 Nikhil Swamy, Catalin Hritcu, Chantal Keller, Aseem Rastogi, Antoine Delignat-Lavaud,
Simon Forest, Karthikeyan Bhargavan, Cédric Fournet, Pierre-Yves Strub, Markulf Kohlweiss,
Jean-Karim Zinzindohoué, and Santiago Zanella-Béguelin. Dependent types and multi-monadic
effects in F*. In 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL), pages 256–270. ACM, January 2016. URL: https://www.fstar-lang.
org/papers/mumon/.

48 Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. Equality saturation: a new
approach to optimization. In POPL ’09: Proceedings of the 36th annual ACM SIGPLAN-
SIGACT symposium on Principles of Programming Languages, pages 264–276, New York, NY,
USA, 2009. ACM. doi:10.1145/1480881.1480915.

49 René Thiemann and Jürgen Giesl. Size-Change Termination for Term Rewriting. In Rewriting
Techniques and Applications, 14th International Conference, RTA 2003, Valencia, Spain,
June 9-11, 2003, Proceedings, volume 2706, pages 264–278, March 2007. doi:10.1007/
3-540-44881-0_19.

50 Niki Vazou, Joachim Breitner, Rose Kunkel, David Van Horn, and Graham Hutton. Theorem
proving for all: equational reasoning in liquid Haskell (functional pearl). In Proceedings
of the 11th ACM SIGPLAN International Symposium on Haskell, Haskell 2018, pages 132–
144, St. Louis, MO, USA, September 2018. Association for Computing Machinery. doi:
10.1145/3242744.3242756.

51 Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones.
Refinement types for haskell. In Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming, ICFP ’14, pages 269–282, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2628136.2628161.

52 Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip
Wadler, and Ranjit Jhala. Refinement reflection: Complete verification with smt. Proc. ACM
Program. Lang., 2(POPL), December 2017. doi:10.1145/3158141.

https://doi.org/10.1007/s00165-014-0326-7
https://www.fstar-lang.org/papers/mumon/
https://www.fstar-lang.org/papers/mumon/
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1007/3-540-44881-0_19
https://doi.org/10.1007/3-540-44881-0_19
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/3242744.3242756
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141

Z. Grannan, N. Vazou, E. Darulova, and A. J. Summers 13:29

53 Dimitrios Vytiniotis, Simon Peyton Jones, Koen Claessen, and Dan Rosén. Halo: Haskell to
logic through denotational semantics. In Proceedings of the 40th annual ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages 431–442, 2013.

54 Philip Wadler. Deforestation: transforming programs to eliminate trees. Theoretical Computer
Science, 73(2):231–248, 1990. doi:10.1016/0304-3975(90)90147-A.

55 Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and
Pavel Panchekha. Egg: Fast and extensible equality saturation. Proceedings of the ACM on
Programming Languages, 5(POPL):1–29, 2021.

56 Akihisa Yamada, Keiichirou Kusakari, and Toshiki Sakabe. Nagoya termination tool. In
Rewriting and Typed Lambda Calculi, pages 466–475. Springer, 2014.

ECOOP 2022

https://doi.org/10.1016/0304-3975(90)90147-A

Static Analysis for AWS Best Practices in Python
Code
Rajdeep Mukherjee !

Amazon Web Services, San Jose, CA, USA

Omer Tripp !

Amazon Web Services, San Jose, CA, USA

Ben Liblit !

Amazon Web Services, Arlington, VA, USA

Michael Wilson !

Amazon Web Services, Seattle, WA, USA

Abstract
Amazon Web Services (AWS) is a comprehensive and broadly adopted cloud provider. AWS SDKs
provide access to AWS services through API endpoints. However, incorrect use of these APIs can
lead to code defects, crashes, performance issues, and other problems. AWS best practices are a set
of guidelines for correct and secure use of these APIs to access cloud services, allowing conformant
clients to fully reap the benefits of cloud computing.

We present static analyses, developed in the context of a commercial service for detection of code
defects and security vulnerabilities, to identify deviations from AWS best practices. We focus on
applications that use the AWS SDK for Python, called Boto3. Precise static analysis of Python cloud
applications requires robust type inference for inferring the types of cloud service clients. However,
Boto3’s “Pythonic” APIs pose unique challenges for type resolution, as does the interprocedural style
in which service clients are used. We offer a layered approach that combines multiple type-resolution
and tracking strategies in a staged manner: (i) general-purpose type inference augmented by type
annotations, (ii) interprocedural dataflow analysis expressed in a domain-specific language, and (iii)
name-based resolution as a low-confidence fallback. Across >3,000 popular Python GitHub repos
that make use of the AWS SDK, our layered type inference system achieves 85% precision and 100%
recall in inferring Boto3 clients in Python client code.

Additionally, we use real-world developer feedback to assess a representative sample of eight
AWS best-practice rules. These rules detect a wide range of issues including pagination, polling,
and batch operations. Developers have accepted more than 85% of the recommendations made by
five out of eight Python rules, and almost 83% of all recommendations.

2012 ACM Subject Classification Theory of computation → Program analysis; Computer systems
organization → Cloud computing

Keywords and phrases Python, Type inference, AWS, Cloud, Boto3, Best practices, Static analysis

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.14

Related Version Extended Version: https://arxiv.org/abs/2205.04432

1 Introduction

Amazon Web Services (AWS) is a comprehensive and broadly adopted cloud provider. AWS
best practices are a set of guidelines for correct, secure, and performant usage of AWS cloud
SDKs. Python is used extensively to build applications on top of the AWS cloud, using
the AWS SDK for Python, called Boto3. We report on our experience developing static
analyses to enforce AWS best practices in Boto3-based Python applications. These rules are
evaluated as part of a commercial cloud service, Amazon CodeGuru Reviewer (henceforth,
CodeGuru) [9], that runs static analysis on customer code to detect security vulnerabilities,
optimization opportunities, and other defects. Figure 1 shows the CodeGuru architecture.

© Rajdeep Mukherjee, Omer Tripp, Ben Liblit, and Michael Wilson;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 14; pp. 14:1–14:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mukherr@amazon.com
https://orcid.org/0000-0002-8179-4396
mailto:omertrip@amazon.com
https://orcid.org/0000-0002-2393-854X
mailto:liblit@amazon.com
https://orcid.org/0000-0002-2245-2839
mailto:wilsonzy@amazon.com
https://doi.org/10.4230/LIPIcs.ECOOP.2022.14
https://arxiv.org/abs/2205.04432
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Static Analysis for AWS Best Practices in Python Code

programs type inference programs annotated
with Boto3 client types static analyzers

GitHub BitBucket

bugs found no bugs found
type annotation from Boto3 type stubs
combined with Pyright’s type inference

interprocedural dataflow analysis
expressed in a custom query language

Figure 1 High-level overview of CodeGuru.

CodeGuru supports Java and Python, and integrates with different code hosting platforms
including GitHub and BitBucket. CodeGuru supports three code scanning modes:

Incremental: A code review is created automatically when a pull request is raised.
Full: The entire codebase is analyzed.
CI/CD: The entire codebase is analyzed as part of CI/CD workflows.

1.1 Importance of AWS Best Practices
Deviation from AWS best practices can lead to large-scale operational failures. Consequences
include race conditions leading to service outage or auto-ticketing errors; authorization
and authentication errors; broken throttling mechanisms that impose unexpected loads on
services, thereby leading to high latency or timeouts; missing or incorrect error handling
leading to billing errors; and many other severe problems. Risks are commonly discovered by
manual inspection or testing. However, many such cases can be detected, and prevented, by
applying static analysis to clients of the AWS SDK. The AWS best practices rules that we
have developed alert developers to such defects during code review, before customer impact.

We provide lower-bound metrics to give an idea of CodeGuru’s throughput. In an average
week, CodeGuru analyzes ≫ 10, 000 pull requests (PRs) containing ≫ 1, 000, 000 lines of
code across ≫ 100, 000 files, and provides ≫ 1, 000 AWS best practices recommendations
due to ≫ 100 different static analysis detectors.

1.2 Scope
CodeGuru supports AWS best practices for both Java and Python. We focus on Python
given its dynamic nature and lack of strict static typing. For precise enforcement of AWS
best practices, it is essential to identify function calls into the AWS SDK, and which service
in particular is used. Java reveals this information through static types, but in Python this
information is not available by default: a challenging start for our analyses.

We describe several on-demand type resolution strategies and combinations thereof.
We consider three core approaches: (1) Boto3 type stubs, in combination with general-
purpose type inference, to resolve types when processing the Python AST; (2) on-demand
interprocedural dataflow tracking, in both the forward and the backward directions, to
check whether the receiver of a function call corresponds to a given AWS service; and (3) a
lightweight over-approximation that simply checks whether the called function’s name is
compatible with a given AWS service’s API. We present the approaches themselves and more

R. Mukherjee, O. Tripp, B. Liblit, and M. Wilson 14:3

advanced algorithms that combine these approaches. We also provide technical details on
the underlying infrastructure that enabled us to implement these approaches: CodeGuru’s
code representation and language for rule specification.

1.3 Main Contributions
This principal contributions of this paper are as follows. (1) We offer an on-demand type
resolution strategy, which we demonstrate as effective in the case of Python clients of the
AWS SDK. (2) In support of the above-mentioned strategy, we present the intermediate
representation (IR) and query language used by the CodeGuru service. (3) We describe a
representative sample of the AWS best practices rule suite running as part of the CodeGuru
service. (4) We share our evaluation on 3,027 GitHub repositories, and real-world feedback
we received from developers, to validate our approach.

1.4 Paper Structure
The rest of the paper is organized as follows. Section 2 discusses related work. In Section 3,
we present background about the Boto3 SDK. Section 4 shows several examples that motivate
the need for advanced type inference. Sections 5 and 6 lay down the technical infrastructure
for our approach in describing, respectively, the code representation and query language
that we use to express Python AWS best practices rules. Section 7 describes the different
type inference capabilities we have developed, based both on Boto3 type stubs and data-flow
tracking. In Section 8 we examine eight representative Python AWS best practices rules.
Section 9 states our research hypotheses and reports on experiments to assess the efficacy of
our type inference strategies. Section 10 concludes and outlines future research.

2 Related Work

Different approaches have been taken to infer Python type annotations, and formalize Python
semantics more generally. We review approaches based on program analysis as well as
machine learning, and compare these approaches with CodeGuru.

2.1 Classical Program Analysis
Widely used Python type checkers include mypy [25], Pyre [15], pytype [20], and Pyright [26].
These tools rely on manual type annotations provided by developers, augmented with
varying forms of type inference. However, retrofitting type annotations onto large libraries or
applications can be tedious and error-prone. Other prior work places more emphasis on static
analysis [10, 16, 17, 22, 27, 32] or dynamic analysis [34] to reduce reliance on human-authored
annotations. Our initial search for supporting infrastructure found that many published tools
have failed to keep up with recent Python releases, or omit support for key Python features
such as exceptions [16] or recursion [27]. We opted to use Pyright as our baseline, as Pyright
is both actively maintained and has a rather advanced inference engine (see Section 7.1).
In spite of these advantages, Pyright alone proved unsatisfactory for our cloud application
domain. The details, as conveyed in Section 9, may serve to highlight challenges for other
developers of general-purpose type inference engines.

When writing type annotations, Python developers often focus on function signatures:
arguments and return values. Some research tools mirror this bias, such as TypeWriter [30].
Xu et al. [36] present a probabilistic type inference system, but the accuracy of probabilistically
inferred types for Python variables is limited. Our work requires accurate types for variables,
making these two approaches unsuitable.

ECOOP 2022

14:4 Static Analysis for AWS Best Practices in Python Code

Any attempt to statically analyze Python code must contend with the intricacies of the
Python language. Notable efforts to formalize Python semantics include those by Smeding [33],
Politz et al. [29] and Köhl [24]. Smeding’s work predates Python type annotations, while
neither Politz et al. nor Köhl mention them in any way. These omissions are not surprising,
as type annotations have only limited effects on runtime behavior. Thus, these codifications
of Python semantics offer little insight regarding the type-inference challenges addressed here.
Our approach is neither sound nor complete (see Section 5.4), so a standard type-soundness
theorem relating static types to runtime semantics does not apply.

In the specialized domain of machine learning, where Python is perhaps the most popular
language, WALA Ariadne [13] analyzes Python specifically to infer the dimensions and types
of tensors. Like Ariadne, our work is motivated by a specific application domain, and even a
specific framework: Ariadne focuses on machine learning using TensorFlow [1]; CodeGuru
focuses on cloud computing using Boto3. Ariadne’s solution entails both a custom type
system and an analysis to infer it. Our approach builds upon standard Python types and
type annotations. While we crafted our analysis strategy to match idiomatic Boto3 use,
these idioms are not exclusive to Boto3 client code. Therefore our layered approach may be
more broadly applicable.

2.2 Machine Learning
PYInfer [12] uses deep learning to generate type annotations for Python. PYInfer fuses
deep learning with static analysis such as PySonar2 to infer types for variables as well as
function-level types in Python. All of these techniques either require labelled type annotations
or employ a static analyzer to generate the initial annotations from Python repositories in
order to train the deep neural network. However, type resolution for Boto3 service clients is
non-trivial due to the reasons mentioned above.

JSNice [31], DeepTyper [23], and LambdaNet [35] use deep learning to generate type
annotations for JavaScript and/or TypeScript. LambdaNet’s authors note that TypeScript
is an inviting target because “plenty of training data is available in terms of type-annotated
programs.” In principle, similar strategies may be applicable to Python. However, it is
unclear whether the available corpus of type-annotated Python Boto3 client programs is
large enough for effective training in practice.

3 Background on Boto3: the AWS SDK for Python

This section describes the AWS service clients in the AWS SDK for Python, also called
“Boto3”. [4]

3.1 Clients and Resources: Low- and High-Level APIs
Boto3 has two distinct levels of APIs:

Client (or “low-level”) APIs provide one-to-one mappings to the underlying HTTP API
operations.

Resource APIs hide explicit network calls but instead provide resource objects and collections
to access attributes and perform actions. Resources represent an object-oriented interface
to AWS. They provide a higher-level abstraction than the raw, low-level calls made by
service clients.

R. Mukherjee, O. Tripp, B. Liblit, and M. Wilson 14:5

A low-level service client can be created by passing the name of service as an argument
to the boto3.client method. [7] For example, the Python statement, s3_client = boto3.client('s3'),
creates a low-level client for the Amazon Simple Storage Service (S3). Conversely, a service
resource can be created by passing the name of service as an argument to the SDK boto3.resource
method. [8] For example, the Python statement, s3_client = boto3.resource('s3'), creates an
Amazon S3 service resource. It is also possible to access the low-level client from an existing
resource, as in:

s3_resource = boto3.resource('s3')
s3_client = s3_resource.meta.client

Alternatively, to use service resources, one can invoke the resource() method of a Session and
pass in a service name. For example, one can create an Amazon S3 service resource using:

session = boto3.session.Session()
s3_resource = session.resource('s3')

Service clients give access to service operations by calling methods on a client. For example,
suppose s3_client is an S3 client. Then one can create an S3 bucket, with the bucket name
passed via an argument, using:

response = s3_client.create_bucket(Bucket=bucket_name)

3.2 Boto3 Type Stubs
Boto3-stubs provides full type annotations for Boto3. [14] In particular, Boto3-stubs provides
annotations for a Client type, ServiceResource, and Resource type for each AWS service. It also
provides annotations for a Waiter type, and a Paginator type for each service. With help from
Boto3-stubs, several Python type-checking tools can discover types for multiple flavors of
client construction calls such as boto3.client, boto3.session, session.client, and session.session.

3.3 API Specifications From Boto3
Some of the AWS best practice rules that are presented in this paper use an external
configuration that provides a specification of some service-specific fragment of the complete
Boto3 API. This specification includes an API name, type, the service name the API
belongs to, and few other attributes that are relevant for the rule. We refer to these external
configurations as API specifications. One such example is presented in Section 9. API
specifications are automatically extracted from Boto3 API models. [6] These API models
have specific traits, such as, Pagination, Batch, Deprecated, Waiters, or mutual-exclusion,
which help determine the characteristics of the API. We extract relevant API traits from
API models across Boto3 services to construct the complete API specification to enforce.
These API specifications are then used by the best practice rules for analyzing client code.

4 Motivating Examples

This section presents an example that motivate the need for sophisticated type inference
to recover the types of AWS service clients in real-world Python applications. The type
annotations in Figure 2 are obtained from Pyright with Boto3 type stubs, which are on lines
with the prefix “#→”.

ECOOP 2022

14:6 Static Analysis for AWS Best Practices in Python Code

import boto3

class Example(object):
def get_sns_client():

return boto3.resource("sns")

def M1():
sns_arn = os.environ['PUBLISH']
client = get_sns_client()
#→ client: SNSServiceResource
M2(client, topic, subscription)
return client.Topic(sns_arn)

def M2(client, topic, subscription):
topic = client.topic(topic)
#→ (variable) client: Any

Figure 2 Example of a Python application code using Boto3.

▶ Example 1. Consider the Python code snippet in Figure 2. Here, the Boto3 client is
returned by get_sns_client(). Its type is SNSServiceResource, marked in bold in method M1. This
type correctly identifies client as a client for the Amazon Simple Notification Service (SNS).
Figure 2 creates client using the boto3.resource() API which gives an object-oriented interface
to SNS. [8]. The client flows into M2 via a function parameter. M2 uses client to make API
call, topic(). Unfortunately, Pyright was unable to assign client a precise type, leaving it
typed simply as the generic Any inside M2. Inference falls short here because Pyright cannot
guarantee that client must always be an SNSServiceResource in every possible call to M2. This
is safe but, for our purposes, unfortunate: an untyped client cascades into untyped topic and
subscription, leaving us with nothing useful to analyze for any of the API calls in M2.

Type resolution of the variable client requires sophisticated type inference coupled with a
domain-aware preference for finding Boto3 clients wherever they might arise and be used for
API interaction. In this paper, we present a technique that combines Pyright’s type inference
with a custom interprocedural dataflow analysis to infer types in such cases.

Furthermore, these API names are exactly the same in Google’s Pub/Sub cloud service [19]
and AWS’s SNS service. Our study shows that the names of some cloud service APIs are
exactly the same for cloud services from different commercial cloud vendors (AWS, Google,
Tencent, etc.). Thus, precise resolution of service clients’ types is extremely important for
static analysis of Python applications that use these cloud SDKs.

5 Program Representation

Our analysis represents each program as a collection of per-function graphs called MU
graphs.1 A MU graph roughly corresponds to a data-dependence graph overlaid with a
control-flow (not control-dependence) graph (CFG). As in prior work that used similar
representations [2, 3], we find this representation useful for finding API misuse defects where
both the data flowing into an operation and the order of operations are important.

1 “MU” originally stood for “misuse”, and is pronounced as the name of the Greek letter µ.

R. Mukherjee, O. Tripp, B. Liblit, and M. Wilson 14:7

5.1 MU-Graph Nodes
MU graphs contain five kinds of nodes. Entry nodes represent the start of a function’s
execution: one per MU graph. Exit nodes represent the end of a function’s execution:
one per MU graph. Control nodes represent branched control flow, such as a conditional
statement or loop. Action nodes represent individual execution steps, such as multiplying
two values or calling a function. Data nodes represent local variables or synthetic temporary
values within compound expressions.

Per-node metadata identifies specific uses of these general categories. For example, we
distinguish a multiplication action from a function-call action, or an if-statement control
node from a while-statement control node.

Multiple assignments to the same local variable use multiple data nodes, as in static
single assignment (SSA) form. ϕ action nodes are added as needed to represent converging
data flows, such as when both branches of an if statement modify the same variable.

5.2 MU-Graph Edges
Control edges order execution among entry, exit, control, and action nodes. No data node
is ever the source or target of a control edge. Thus, discarding all data nodes and non-control
edges would reduce a MU graph to a traditional CFG. Data edges represent movement of
data among control and action nodes, and are further categorized as follows:

Condition edges flow from a data node into a control node, representing the information
used to decide how execution continues. For example, a condition edge flows from the value
of an if statement’s predicate to the control node for the statement itself. Definition edges
flow from an action to a data node defined by that action. For example, a definition edge
from a multiplication action to a data node d indicates that d receives the result of that
multiplication. Parameter edges flow from a data node into an action node. For example,
a binary multiplication action is the target of two parameter edges, one for each operand. A
function call action is the target of one parameter edge for each actual argument. Receiver
edges flow from a data node into a method-calling action node. These highlight the special
role of implicit self or this arguments. Callee edges flow from a data node into a call action
node, identifying the function to be called. For example, in handlers[event](), an indexing
action to fetch handlers[event] would define some temporary data node holding the function to
call. A callee edge would then flow from that data node to the call action.

Edges carry additional role-specific metadata. For example, the two control edges that
depart from an if statement’s control node are marked to distinguish the true and false
branches. Multiple parameter edges leading to the same action node are ordered, thereby
distinguishing an action’s first parameter from its second, third, and so on.

5.3 Overall Properties
In the MU representation, data can only flow from data nodes to control/action nodes, and
vice versa. Data edges never connect pairs of data nodes directly. Informally, each action
node receives zero or more data nodes as inputs, and may provide an output that flows across
a definition edge into some other data node. In x + y ∗ z, the multiplication action defines an
anonymous data node, which in turn flows into the addition action as a parameter.

Figure 3 illustrates several MU-graph features in the representation of x ∗= x − 1, or
equivalently x = x ∗ (x − 1). Solid control edges establish evaluation order as in a CFG:
subtraction before multiplication, each represented as a rectangular action node. Elliptic
data nodes represent two versions of x: x1 before the assignment and x2 after. Additional

ECOOP 2022

14:8 Static Analysis for AWS Best Practices in Python Code

entry - * exit

x1

1 x2temp

param
1

pa
ram

2 def

param 1

pa
ra

m
2

def

Figure 3 The MU-graph representation of x ∗= x − 1. Entry and exit nodes are trapezoidal;
action nodes are rectangular; data nodes are elliptic. Control edges are solid; data edges are dashed.

data nodes represent the literal 1 and a temporary value. The initial value x1 is a parameter
to both mathematical operations, and is distinct from the final value x2. The “temp” data
node is defined by the subtraction and is also a parameter to the multiplication. Notice that
data and non-data nodes strictly alternate along data paths: data nodes provide inputs to
action or control nodes, and action nodes’ outputs define data nodes.

5.4 Using Pyright for Best-Effort Graph Construction

Pyright is “a fast type checker meant for large Python source bases.” [26] Pyright is primarily
used behind-the-scenes by Python IDEs, or as a command-line linter/checker. However,
Pyright’s sophisticated type inference and robust handling of incomplete or incorrect programs
make it ideally suited for our purposes as well. MU graph construction begins with a parsed
abstract syntax tree (AST) provided by Pyright. We traverse the AST, synthesizing and
combining MU graph fragments in a roughly bottom-up manner.

For data nodes, we rely on Pyright to provide static type information and name resolution.
Given Python’s dynamic nature, these are both best-effort. Inferred static types can be
imprecise, absent, or wrong; names can be aliased or accessed covertly via reflection. We
attempt no alias analysis or points-to analysis beyond that implicitly performed by Pyright
itself. Pyright’s best-effort types are available on data nodes that represent named variables
as well as those that represent intermediate values, such as the “temp” node in Figure 3.

We flatten data node types to their string representations, such as "int" or "MyClass" or
"(int, str) −> tuple[int, str]". Stringification discards internal structure, but allows MU graphs
to accommodate essentially any type grammar, even from non-Python languages. Types as
strings are also forgiving of incomplete programs: we might know that a piece of data is an
instance of MyClass even if we know nothing about MyClass’s internal structure or provenance.

The entire process of building MU graphs proceeds, best-effort, even when confronted with
imports of missing modules, calls to unknown functions, etc. We represent each questionable
operation as some reasonable fallback (e.g., as an empty statement), and move on. Python
also contains syntactically ambiguous constructs, such as overloaded operators or the myriad
uses of “.”. We disambiguate these using types whenever possible, or heuristics when necessary.
These approximations mean that we are neither sound nor complete in general. However,
these same approximations allow us to provide a representation that is useful in practice
when absolute guarantees are not required.

R. Mukherjee, O. Tripp, B. Liblit, and M. Wilson 14:9

CustomRule rule = new CustomRule.Builder()
.withName("MathExp")
.withComment("For small floats `x`, the subtraction in `exp(x) − 1` can result in a loss of precision.")
.withAllOf(

b −> b.withMethodCallFilter(".∗math\\.exp").withDefinitionTransform().as("MathExpResult"),
b −> b.withConstantDataFilter("1").as("ConstantOne")

)
.check()
.withActionFilter("\\−")
.withDirectDataFromIdFilter("MathExpResult")
.withDirectDataFromIdFilter("ConstantOne")
.build();

Figure 4 GQL rule for identifying suboptimal use of the math.exp function.

5.5 From Functions to Programs
The construction process described in Section 5.4 yields one MU graph for each named (def)
or anonymous (lambda) function. For each script, also create MU graph that represents
execution of that script’s top-level statements.

We aggregate these per-function MU graphs to reflect static program structure. Each
Python class contains a dictionary of named methods; each script contains a dictionary of
named top-level classes and functions; and so on. We do not build a static call graph, since
not all downstream consumers of MU graphs require one. However, we organize and manage
the MU graph collection in such a way as to facilitate callee resolution later, if needed.

6 Query Language

Working directly atop the MU representation in authoring analysis rules misses important
reuse opportunities. We have therefore designed and implemented an API, dubbed the Guru
Query Language (GQL), to enable encapsulation, optimization and reuse of a wide variety
of analysis constructs. GQL is implemented as a Java library whose main interface with
the analysis builder is the CustomRule class. CustomRule instances are created using the fluent
builder pattern [18], where builder calls correspond to reasoning steps in the rule. A rule
object can be evaluated at different scopes, from entire code bases to single functions. This
is an important source of flexibility, which owes to the MU representation and its support
for partial programs. (See Section 5.4.) Rule evaluation yields a RuleEvaluationResult for every
type and function that the rule visits, which includes rich information on whether, and if
relevant where and how, rule evaluation has failed.

As an illustration of GQL syntax, we refer the reader to Figure 4, where a rule that
identifies suboptimal use of the math.exp function is shown. Here is a simple example of what
the rule checks for:

def foo():
import math
return math.exp(1e−10) − 1

Rule definition begins by setting the rule’s name and user-facing comment text. The
following steps, up to the check statement, are preconditions that the rule checks for.
Specifically, the withAllOf statement ensures that all the subrules nested within it evaluate
successfully, where these check for math.exp calls as well as the presence of the constant value
1. The matches are stored into variables (or IDs), to enable downstream reuse thereof, using
the as operation. The actual check, or postcondition, is the rule section after the check step.

ECOOP 2022

14:10 Static Analysis for AWS Best Practices in Python Code

It establishes whether there is a subtraction operation that the node defined by math.exp,
along with the constant 1, flow into directly (that is, without the mediation of any other
action).

6.1 Rule Evaluation
In what follows, we use standard notation, G = (V, E), when referring to MU graphs. Unless
stated otherwise, the graphs we mention are specifically MU graphs.

As illustrated above, a GQL rule is an implication relation, pre =⇒ post. As such, rule
evaluation is satisfied either when pre is not satisfied or when both pre and post are satisfied.
pre and post are both sequences [op] of operations.

An operation op : P(V) 7→ P(V) is a function whose domain and codomain are both node
sets: V = {n : ∃G = (V, E). n ∈ V }. As an example, a filter operation that matches against
calls to a function named “foo” evaluates to foo call nodes within the incoming node set, if
any, or else ∅.

Given node n, let Gn denote the graph containing n, and Gn.V the complete set of nodes
that Gn contains. Operations op satisfy the following two invariants:
1. ∀N ⊆ V . op(N) ⊆

⋃
n∈N Gn.V . That is, application of an operation to a node set N

cannot “exceed” the set of nodes due to the graphs containing the nodes in N .
2. op(∅) = ∅. That is, application of an operation to the empty node set yields the empty

node set.

Given rule r = [op1, . . . , opk] =⇒ [opk+1, . . . , opn] and input graph G = (V, E), we
denote the node set flowing into opj as σj−1. The node sets are defined as follows:

σi =

V if i = 0
∅ if i = k ∧ opk(σk−1) = ∅
V if i = k ∧ opk(σk−1) ̸= ∅
opi(σi−1) otherwise

Per the first case, precondition evaluation starts from the complete set of graph nodes
(V). Per the second and third cases, the transition from precondition to postcondition is
either trivial if the precondition has not been satisfied (second case), or – analogously to
precondition evaluation – postcondition evaluation starts from V (third case). Any other
transition along the operation sequence is simply an application of the operation to its
incoming node set.

Rule evaluation is successful if and only if (i) a prefix of pre evaluates to ∅ (in which case
the precondition is not satisfied); or (ii) both pre and post evaluate to non-empty node sets
(in which case the precondition and postcondition are both satisfied).

To add color to the formal description so far, rule evaluation is essentially a process of
matching against a pattern, or semantic property, where a non-empty node set is a match
frontier that feeds into the next reasoning step. Failure to maintain a non-empty match
frontier means that the given (pre or post) condition is not satisfied by the input function.

6.2 Rule Structure
While our formal presentation above of GQL rules is as logical implication relationships,
in practice a rule object has additional information and structure. A GQL rule consists
of four sections, as follows: (i) setup: the rule’s name, and the comment (or description)

R. Mukherjee, O. Tripp, B. Liblit, and M. Wilson 14:11

associated with the rule; (ii) function matcher : a rule can optionally define criteria when to
be evaluated, for example based on function name, attributes, annotations, containing type,
parameter types, and so on; (iii) precondition: the sequence of operations up to the check
builder step; and (iv) postcondition: the sequence of operations following the check builder
step.

Since GQL rules follow the fluent builder pattern, there is risk that users would miss,
misuse, or misorder rule constructs or sections. For example, the user might build a rule
lacking a check step; forget to set the rule’s name; or try to apply incompatible filters in
succession. To ensure rule integrity, we employ a hybrid solution that combines metadata
contributed by operations with runtime checking. Operations expose a “signature”, as
explained in Section 6.4, such that improper compositions can be detected and localized
ahead of rule evaluation.

6.3 Language- and Domain-specific Rule Constructs

Beyond the core GQL constructs, which are applicable across different programming languages
and problem domains, there are reusable albeit language- or domain-specific constructs.
As an example, constructs like withNamedArgumentsTransform or withUnpackedArgumentsTransform
are useful for Python rules, but do not apply to Java. GQL enables such constructs to be
organized into subclasses of CustomRule, such as PythonCustomRule, while containing CustomRule
to the core analysis constructs.

This approach has several important advantages. First, we avoid API bloat by distributing
analysis constructs across more than just CustomRule. Second, we avoid misuse errors due to
a construct being used outside its intended context, for example a Python analysis construct
used in a rule that targets Java programs. Finally, GQL extensions sometimes introduce
dependencies. We have implemented, for example, a CustomRule extension in the domain of
data leaks, where some of the analysis constructs rely on an ML model to predict whether
a given data access is retrieving sensitive information. These dependencies should not be
forced on GQL users outside the given domain.

6.4 GQL Operations

We now take a closer look at the different operations that comprise GQL rules. These divide
into 4 categories, discussed below in turn. Beyond the information in this section, we refer the
reader to the accompanying technical report for a more detailed description of the operation
categories as well as examples from each category [28].

For safety and fault localization, GQL requires that operations be annotated with their
signature, which states the types of nodes that they accept as input and yield as output.
(See Section 5.) The withReceiverTransform operation, for example, accepts as input action
(and more specifically, call) nodes, and outputs data nodes. If a user attempts to compose
operations incorrectly, for example by routing the output of a withDataByNameFilter operation to
withReceiverTransform, then GQL identifies the violation at runtime and generates a meaningful
failure message that localizes it and explains why rule evaluation has been terminated. We are
currently in the process of shifting the failure left to rule building time, and as a longer-term
objective, compile time.

ECOOP 2022

14:12 Static Analysis for AWS Best Practices in Python Code

6.4.1 Core Operations
Core operations apply to all rules, regardless of their scope and logic. Some of the
core operations, in particular check and as, have already been explained in the context
of Figure 4. Additional core operations include the ability to reset the match frontier,
interleave instrumentation (for example, for debugging or profiling purposes), read and write
mutable auxiliary state, and so on.

6.4.2 Filter Operations
A filter operation f satisfies the invariant: ∀V ∈ V . f(V) ⊆ V . That is, a filter operation
selects a subset of the input node set. Its result cannot exceed the incoming set.

GQL offers a wide selection of built-in filters. Beyond withActionFilter, withMethodCallFilter,
withConstantDataFilter and withDirectDataFromIdFilter that are used in Figure 4, there are filters
for matching against control structures, constants, actions with specific arguments (like
constants or null/None), and so on.

The GQL filter operations – almost without exception – are defined using a unary
predicate ranging over nodes, and as such, filtering is done point-wise. As an example,
withMethodCallFilter is instantiated through a predicate that accepts action (and specifically,
call) nodes where the callee matches the provided regex specification. A common practice
with filter operations is to compose them, which enables refinement in pattern matching. An
example of that is the consecutive withDirectDataFromIdFilter operations in the rule in Figure 4.

6.4.3 Transform Operations
Transform operations enable the transition from a given match frontier to another frontier
that derives from it. For example, a frontier that consists of function calls can be transformed
to the respective arguments or receivers, or the values defined by the calls, as illustrated
with withDefinitionTransform in Figure 4.

GQL offers many built-in transform operations. Examples include withArgumentsTransform,
which transforms an action node to its respective arguments; withControlDependenciesTransform,
which transforms a node to its set of control dependencies; withDataDependenciesTransform
(resp. withDataDependentsTransform), which transforms a node to its set of (transitive) data
dependencies (resp. dependents); and withReceiverTransform, which transforms a call node to
the receiver (if available).

6.4.4 Second-order Operations
Logical structures and operators are necessary to express certain rule logic in a precise and
concise manner. As a simple example, the user may wish to check if a given function call
"zoo" has a receiver of type either Foo or Bar. Another use case, illustrated in Figure 4, is the
need to check that several conditions are all met through withAllOf.

To enable such control and logical structures, GQL exposes second-order operations.
These are operations that are themselves parameterized by one or more rules, which we refer
to as subrules.

As an illustration, here is the GQL syntax for the above example:
.withMethodCallFilter("zoo")
.withOneOf(

b −> b.withReceiverByTypeFilter("Foo"),
b −> b.withReceiverByTypeFilter("Bar"))

The withOneOf construct evaluates to the first subrule that yields a non-empty result, or else
it evaluates to ∅.

R. Mukherjee, O. Tripp, B. Liblit, and M. Wilson 14:13

6.5 Interprocedural Analysis
As noted above, GQL provides the ability to perform interprocedural analysis through the
withInterproceduralMatch construct and several specializations thereof. The underlying call-
graph representation resolves call sites on demand, per the CHA call-graph construction
algorithm [21], based on the (i) name of the callee, (ii) number of arguments, and (iii)
argument types. Though the CHA algorithm is known to be imprecise [11], we have rarely
seen cases where that was the cause of imprecision in GQL rule evaluation. We hypothesize
that this is because (i) interprocedural analysis is run at file or package scope, but not
beyond, so there is less room for error, plus (ii) imprecision in interprocedural analysis is
potentially mitigated by other rule steps.

At a high level, the interprocedural tracking algorithm performs a fixpoint computation
starting from the seeding function graph and matched nodes therein. At each step, the
argument rule is applied to match against additional nodes. The algorithm is parametric,
enabling the user to decide the scope (intra-class, intra-file, or entire codebase) and direction
(forward or backward) for tracking. In the forward direction, the algorithm transitions from
a call site to the callees and from a function’s exit to callers. In the backward direction, the
algorithm transitions from a function’s entry to call sites and from call-site definitions (for
example, x = foo(), where x is tracked) to callee exits.

Functional summaries are utilized to avoid redundant computation. In the forward
direction, these document the relationship between a call-site argument and the definition
(if exists) plus other arguments. In the backward direction, the summary documents the
relationship between the definition and call-site arguments.

A more complete, and technical, explanation of the GQL interprocedural tracking
algorithm is available in the accompanying technical report [28]. The description there
ties into a pseudocode description of the algorithm.

6.6 Dataflow Analysis
Beyond its interprocedural capabilities, GQL also has built-in support for several flavors
of dataflow analysis, including slicing and taint tracking.2 These build directly on top of
the data edges exposed by the MU representation, in conjunction with the interprocedural
matching algorithm described above.

The main feature that the GQL dataflow analysis provides beyond a standard fixpoint
algorithm over the dataflow relation is the ability to specify matchers on graph edges to tag
them with unique roles: passthrough (data flows across the call site), blocking (an edge being
either a sanitizer or a validator), side effecting (data flows into the receiver of a call), or
reading (data flows from the receiver to the definition). The user-provided specification is
then enforced as part of the fixpoint algorithm.

7 Type Inference for Boto3 Clients

As explained in Section 3.1, a Python AWS application creates an AWS service client by
passing the name of the service as an argument to one of two distinct levels of APIs. The
use of these multiple API flavors, the interactions between them, and the use of strings as
service selectors, all pose challenges for type inference.

2 GQL additionally features finite state machine (FSM) and typestate analysis, though these involve not
just dataflow but also control-flow reasoning. These capabilities are not consumed by the rules that we
discuss later in the paper, so we suffice by noting them here.

ECOOP 2022

14:14 Static Analysis for AWS Best Practices in Python Code

Regardless of which API is used, AWS service clients are ultimately just data values. Like
any other data, service clients can be stored in class variables, assigned into global variables,
returned from functions, and so on. Code might use a service client locally within a single
function or globally within or even across the files that comprise the complete application.
The complexity of these definition–use chains (DU chains) further complicates type inference.

In this section, we present different type inference strategies that can be used in this
challenging application domain.

7.1 Pyright’s Type Inference With Boto3-Stubs
Pyright supports type inference for function return values, instance variables, class variables,
local variables, and global variables. Pyright’s inference engine uses several advanced type
inference techniques, such as a flexible model of “type assignability”, inferred types for self
and cls, parameterized generic types, including both polymorphic container types as well as
optional types, union types representing arbitrary sets of possible types, overloaded function
types as a special case of union types for ad hoc polymorphic functions, literal types, such
Literal["str"] as a subtype of str that represents only the string literal "s3", and few others.

A full discussion of these capabilities is outside of the scope of this paper, and in any
case Pyright is not our contribution. We treat Pyright’s type inference engine as a powerful,
featureful, but opaque black box.

If Pyright cannot infer the type of some symbol, then that symbol’s type is set to Any. This
fallback type is a useful warning marker that lets inference consumers (such as CodeGuru)
recognize cases where Pyright type inference fell short.

Type inference can incur significant computation overhead for large code bases. Also,
Pyright cannot always infer correct types without some outside help. Hence, type annotations
are a practical requirement for building a robust type inference system. We use third-party
type stubs, called Boto3-stubs [14], that provide full type annotations for Boto3. Pyright
ingests type annotations provided by Boto3-stubs to further enhance and constrain its type
inference.

Figure 2 give an examples of Pyright’s Type Inference with Boto3-stubs (denoted by the
prefix “#→”). However, in Figure 7, Pyright fails to infer a precise type for s3_client in the
method load_df_from_s3, instead giving it the fallback Any type.

7.2 Type Inference Using Custom Dataflow Rules
As an alternative to Pyright, we have used GQL to implement custom inference rules based
on dataflow analysis. These rules do not provide universal, generic type inference. Instead,
they focus on idiomatic, interprocedural Boto3 usage patterns that Pyright’s general-purpose
engine fails to address. There are a total of ten GQL-based custom dataflow rules, among
which only one is intraprocedural rule and rest nine are interprocedural rules. For illustration
purpose, we select few representative interprocedural GQL rules that have low to medium
complexity (in terms of number of operations in the rules) and that performs dataflow
analysis at file-scope or package-scope.

7.2.1 Representative Examples of Interprocedural Rules
Each GQL rule in Figures 5–6 implements some form of interprocedural dataflow analysis.
Each operates on a function graph and matching API nodes along with the receiver nodes
of calls to the corresponding APIs. For example, in Figure 7, one relevant API node is

R. Mukherjee, O. Tripp, B. Liblit, and M. Wilson 14:15

builder −> builder
.withInterproceduralMatch(

new InterproceduralMatchOperation.InterproceduralMatchSpec(
/∗ scope = ∗/ InterproceduralMatchOperation.Scope.FILE_FORWARD_REACHABLE,
/∗ stopOnFirstMatch = ∗/ false,
/∗ visitAllNodes = ∗/ false),

bb −> bb.withDataDependentsTransform(
/∗ isTransitive = ∗/ true,
/∗ isInterprocedural = ∗/ true))

.withOneOf(
bc −> getBoto3Client(bc, service)

)

Figure 5 Rule example using forward, interprocedural dataflow.

builder −> builder
.withInterproceduralMatch(

new InterproceduralMatchOperation.InterproceduralMatchSpec(
/∗ scope = ∗/ InterproceduralMatchOperation.Scope.FILE_BACKWARD_REACHABLE,
/∗ stopOnFirstMatch = ∗/ false, /∗ visitAllNodes = ∗/ false),
bb −> bb.withDataDependenciesTransform(

/∗ isTransitive = ∗/ true, /∗ isInterprocedural = ∗/ true))
.withOneOf(bc −> getBoto3Client(bc, service))

Figure 6 Rule example using backward, interprocedural dataflow.

get_object, for which the corresponding receiver node is s3_client. Our strategy for resolving
call actions to callees is name-based: we match the name of the API entry point (callee) in
the code against API specifications that are extracted from Boto3.

Figure 5 shows one such rule. The scope of this rule’s interprocedural match operation
is FILE_FORWARD_REACHABLE, which directs GQL to track dataflow forward using a “data
dependents” transform operation that transforms from incoming nodes to nodes that are
data dependent on them, including in other functions. The result of this interprocedural
tracking is then checked to determine if it matches one of the known flavors of Boto3 clients
(low-level or object-oriented), by calling the utility methods inside the withOneOf operation.

The rule in Figure 6 implements interprocedural backward dataflow analysis, comple-
mentary to the forward analysis of Figure 5. For the backward version, tracking is specified
as FILE_BACKWARD_REACHABLE. This scope directs the interprocedural analysis to perform
backward dataflow tracking using a “data dependencies” transformer that transforms from
incoming nodes to nodes that are data dependent on them, including in other functions.
Similar to the previous rule, this rule’s withOneOf clause then checks whether the result of
backward interprocedural tracking matches one of the known flavors of Boto3 clients.

7.2.2 Example of Type Inference Using Custom Dataflow Rules
Figure 7 shows a Python code snippet with variable- and function-level type annotations

from Pyright. The type of s3_client in the method write_df_to_s3_location is correctly inferred
as S3Client: an Amazon S3 service client. This client is passed via input parameter to the
method load_df_from_s3. In absence of the type annotation for the input parameter, Pyright
could not infer the type of s3_client (denoted by Any), inside the method load_df_from_s3.

However, one of our custom dataflow rules can resolve the type of s3_client in method
load_df_from_s3. The applicable rule starts from a matching API node, s3_client.get_object,
where the type of the receiver node s3_client needs to be determined. Recall that the matching

ECOOP 2022

14:16 Static Analysis for AWS Best Practices in Python Code

def write_df_to_s3_location(file_path, bucket_name, metadata, sep=None):
s3_client = create_s3_client()
#→ s3_client: S3Client
load_df_from_s3(s3_client, bucket=bucket_name, path="")
s3_client.put_object(Body=file_path, Bucket=bucket_name)

def create_s3_client():
return Boto3.client("s3")
#→ create_s3_client: () −> S3Client

def load_df_from_s3(s3_client, bucket, path):
raw_data = s3_client.get_object(Bucket=bucket, Key=object_path)
#→ s3_client: Any

Figure 7 Type annotation for AWS client passed by input parameter.

API node is obtained by matching the name of the API against the API specification
extracted from Boto3. Starting from a matching API node, the rule uses a “parameter
transform” operation that transforms incoming nodes to the parameters of the respective
functions. This rule then uses a “backward data dependencies” transform that transforms
from incoming nodes to their data dependencies, including in other functions. The rule’s
result includes the node s3_client in the method write_df_to_s3_location, whose type is already
known to be S3Client. It is worth noting that the type of s3_client could also be inferred by a
stand-alone custom dataflow rule (in absence of type annotations from Pyright). However,
the rule specification would be more complex. We prefer to augment Pyright’s capabilities
rather than replace them.

7.3 Layered Type Inference
The example in Figure 7 shows that a hybrid approach for type inference can combine custom
dataflow rules with Pyright’s type inference to resolve types that Pyright cannot resolve by
itself. Each of these type inference approaches have complementary strengths. This quality
suggests a layered approach for type inference that combines these strategies in a staged
manner. Our layered approach first uses Pyright’s type inference with Boto3 stubs to infer
type annotations for at least some Boto3 clients. Per Section 5.4, data nodes in MU graphs
carry type metadata reflecting Pyright’s inference results. If the type of an API call of
interest is already known, then that may be sufficient to recognize that the API belongs to
Boto3. If the type of the API call of interest is unknown, then our layered approach deploys
custom dataflow rules to infer client types. Section 9 presents our empirical evaluation of the
strengths and limitations of this layered approach.

8 AWS Best Practices Rules

In this section, we describe a representative sample of eight rules that detect different
types of defects related to usage of the Boto3 API. These rules cover approximately 200
public-facing AWS services. All Python AWS best practices rules (as well as most other
CodeGuru rules) are implemented atop GQL (see Section 6), and follow the same rule
evaluation mechanism that is discussed in Figure 4. Of the eight rules discussed in this
section, we focus in particular on two rules – concerning pagination and batchable APIs – to
enable thorough discussion of rule syntax and sample detections.

R. Mukherjee, O. Tripp, B. Liblit, and M. Wilson 14:17

def sync_ddb_table(source_ddb, destination_ddb):
response = source_ddb.scan(TableName="table1")
for item in response['Items']:

destination_ddb.put_item(TableName="table2", Item=item)

Figure 8 Non-compliant Pagination Example.

def sync_ddb_table(source_ddb, destination_ddb):
response = source_ddb.scan(TableName=="table1")
for item in response['Items']:

destination_ddb.put_item(TableName="table2", Item=item)
Keeps scanning until LastEvaluatedKey is null
while "LastEvaluatedKey" in response:

response = source_ddb.scan(TableName="table1",
ExclusiveStartKey=response["LastEvaluatedKey"])

for item in response['Items']:
destination_ddb.put_item(TableName="table2", Item=item)

Figure 9 Correct Pagination Example.

Worthy of mention is our ability, thanks to the AWS best practices rules and their
detections, to form an effective collaboration between the CodeGuru and AWS SDK teams.
From our side, the collaboration consists of frequent feedback to the SDK team (either
conveying developer feedback or trends that we observe across multiple detections). From the
AWS SDK team’s side, our rules and detection technologies pose as a platform to promote
awareness of new features, for example the SDK V2 pagination feature.

8.1 Detecting Misuse of Paginated APIs
The pagination trait is implemented by over 1,000 APIs belonging to >150 AWS services.
This trait is commonly used when the result set due to a query is too large to fit within
a single response. For the complete set of results, a pagination token is used to perform
iterative requests and receive the response in parts. Developers who are not aware of this
trait might mistakenly suffice with a single request/response result, as illustrated in Figure 8.

Here the scan call is used to read items from an Amazon DynamoDB table, where put_item
saves those items to another DynamoDB table. The scan API implements the pagination trait.
However, the code neglects to check for additional results beyond the initial batch, which
is clearly wrong. Our pagination rule detects the missing pagination in this example, and
generates a recommendation to iterate on the complete result set through the LastEvaluatedKey
token available through response. A compliant version of the code, consistent with this
recommendation is shown in Figure 9.

8.2 Error Handling for Batch Operations
More than 20 AWS services expose batch APIs, which enable bulk request processing. Batch
operations can succeed without throwing an exception even if processing fails for some items.
Therefore, a recommended best practice is to explicitly check for failures in the response due
to the batch API call. We illustrate incorrect and correct usages of batch APIs in Figures 10
and 11, respectively.

The rule for detection of batch operations where failures are not checked is shown in
Figure 12. Like many other CodeGuru rules, in particular in the AWS best practices category,
this rule is parameterized by a configuration. (See Section 9 for an example.)

ECOOP 2022

14:18 Static Analysis for AWS Best Practices in Python Code

def noncompliant():
sqs = boto3.client('sqs', 'us−west−2')
sqs.send_message_batch()

Figure 10 Incorrect Error handling for Batch Operation example.

def compliant():
sqs = boto3.client('sqs', 'us−west−2')
response = sqs.send_message_batch()
if "Failed" in response:

raise SendMessageToSQSFailure("Failed")

Figure 11 Correct Error handling for Batch Operation example.

The rule’s precondition searches for batch API calls per the configuration, then transforms
from the calls to their respective receivers, which are stored into variable AWS_CLIENT.
Backward propagation, in an attempt to relate these receiver nodes to applicable Boto3
services, then takes place through the getBoto3 call.

The postcondition loads the batch API call, stored as variable BATCH_API_CALL, then
checks whether the result of the call is ignored through withOutputIgnoredFilter. This filter
checks whether the call node(s) flowing into it define(s) a node that has no outgoing edges.

8.3 Other Representative Rules
We now switch to additional rules in the AWS best practices category, and provide an
explanation of what they each check for.

Use waiters in place of polling API: Waiters are utility methods that make it easy to wait
for a resource to transition into a desired state by abstracting out the polling logic into a
simple API call. The waiters interface provides a custom delay strategy to control the
sleep time between retries, as well as a custom condition on whether polling of a resource
should be retried. Our rules detect code that appears to be waiting for a resource before
it runs. In such cases, it recommends using the waiters feature to help improve efficiency.

Detect missing None check on cached response metadata: Response metadata represents
additional information included with a response from AWS. Response metadata varies by
service, but all services return an AWS request ID that can be used in the event a service

PythonCustomRule.Builder()
.withMethodCallFilter(config.api)
.as(BATCH_API_CALL)
.withReceiverTransform()
.as(AWS_CLIENT)
.reset()
.withClosure(
/∗ Pre−condition: Match that the type of API is a Boto3 client ∗/
b −> getBoto3Client((PythonCustomRule) b, serviceId, AWS_CLIENT))
/∗ CHECK ∗/
.check()
/∗ Post−condition: Check that the output of Boto3 API is ignored ∗/
.withId(BATCH_API_CALL)
.withOutputIgnoredFilter()
.build();

Figure 12 Rule to check for batch API calls sans failure checking.

R. Mukherjee, O. Tripp, B. Liblit, and M. Wilson 14:19

call isn’t working as expected. If the code attempts to access the response metadata,
ResponseMetadata, without performing a None check on the response object, then this might
cause a NoneType error. To prevent this, our rule recommends adding a None check on the
response object before accessing the response metadata.

Detect failed records in Kinesis PutRecords: The put_records operation in AWS Kinesis
service might fail, thereby causing loss of records. This rule detects if the code handles
the failed records from the put_records operation. In the absence of such handling of failed
records, the rule recommends checking the FailedRecordCount in the put_records response
to see if there are failed records in the response. A failed record includes ErrorCode and
ErrorMessage values. If failed records are found, the rule recommends adding them into
the next request.

Detect deprecated APIs: This rule detects usage of deprecated APIs in Python application
code. A total of 107 deprecated API specifications are extracted from Boto3, identified
from the use of deprecated trait in the API models. These API specifications are fed into
the rule for detecting deprecated APIs in real world Python code.

Detect inefficient/redundant API chains: The rule for inefficient/redundant API chains
detects usage of less performant APIs or outdated APIs, an API call chain that could be
replaced with a single API call, a manual pagination operation where the SDK provide a
Paginator API to automatically perform the pagination, and much more.

Detect expensive client object construction in Lambda handler: This rule detects a Boto3
client that is initialized from a Lambda handler. In order to speed up Boto3 client
initialization and minimize the operational cost of the Lambda function, the rule
recommends creating the client at the level of the module that contains the handler, and
then reusing it between invocations. This is stated in the best practices for the lambda
handler. [5]

9 Experimental Results

In this section, we report on experiments to validate our approach for on-demand resolution
of Python types. Our experiments are guided by the following research hypotheses:
Hypothesis 1: Skipping type inference, instead relying solely on function names and argu-

ments, is insufficient since that might lead to excessively many false positive detections.
Hypothesis 2: The dataflow-based and Pyright-with-stub-based resolution strategies have

complementary strengths.
Hypothesis 3: A staged approach that combines dataflow and stubs with name-based

resolution as a low-confidence fallback is effective.
Hypothesis 4: The AWS best practices rules, running atop the staged algorithm, are

sufficiently precise, efficient and actionable to provide value during code review.

We note that beyond type inference, once a function call is confirmed to invoke a given
AWS service, most of the rules are straightforward and do not require complex and/or
interprocedural analysis to detect incorrect or suboptimal use of the AWS API. There are
few exceptions, where the actual rule’s logic can be imprecise, but overall the correctness of
type inference is a good proxy for the correctness of a rule finding.

We illustrate rule dependence on identification of the Boto3 service being invoked using
the JSON snippet below, taken from our service’s production configuration. The “Missing
Pagination” rule, whose specification is described in the snippet, searches for paginated
functions like list_dataset_groups in the specific context of the forecast AWS service. Recall that
these API specifications are automatically extracted from the API models in Boto3.

ECOOP 2022

14:20 Static Analysis for AWS Best Practices in Python Code

Table 1 Number of type resolutions due to each of the resolution strategies.

Strategy Confidence Description Type Resolution Count Precision

1 1.0 Pyright with Boto3 type stubs 2,293 100 %
2 1.0 Dataflow tracking 3,065 100 %
3 0.5 API name based resolution 5,403 54 %

{
"expectedPaginationMethods": [

"IsTruncated",
"NextToken"

],
"paginatedMethod": "list_dataset_groups",
"resultKeys": [

"DatasetGroups"
],
"serviceId": "forecast"

}

We have evaluated the strategies described in Section 7 using a dataset consisting of 3,027
public GitHub repositories. These repositories were selected based on the following criteria:
(1) The repository contains Python source files (at least 3, and with a total of at least 100
lines of code). (2) The repository has an MIT or Apache license. (3) The repository has a
rating of 3 stars or more. (4) The repository makes use of the AWS SDK.

9.1 Performance of Resolution Strategies in Isolation
To examine the first two hypotheses laid out above, we begin by computing precision and
recall for the different type resolution strategies in isolation. Precision is measured as the
proportion of correct (TP) versus incorrect (FP) type resolutions, and recall is measured as
the proportion of correct (TP) versus missed (FN) type resolutions. In what follows, we use
the notation t[s] to refer to the type of SDK service client s.

9.1.1 Type-Resolution Strategies
We consider 3 different strategies for resolution of t[s]:
Strategy 1: Use Pyright’s type inference in conjunction with third-party Boto3 type stubs.

This strategy potentially recover types beyond the boundaries of a single function.
Strategy 2: Use interprocedural dataflow analysis, combining backward and forward queries.
Strategy 3: Match against the API name without attempting to resolve the type of the

receiver, which is an over-approximate yet cheap approach.

9.1.2 Results
Table 1 shows the number of resolutions due to each of the strategies when applied to the
GitHub dataset. To gain qualitative insight into the results, and how many of the type
resolutions are accurate, we manually reviewed 50 Boto3 client detections, selected at random,
for each of the three strategies for a total of 150 detections. Reviewers consisted of five senior
engineers and scientists, all expert users of the Boto3 library.

R. Mukherjee, O. Tripp, B. Liblit, and M. Wilson 14:21

Our qualitative analysis suggests that strategies 1 and 2 are highly precise, as reported in
the “Precision” column of Table 1. All 50 cases sampled for manual review were judged as
correct. By contrast, for strategy 3, only 54% of the samples (27 out of 50) were correct.
By definition, strategy 3 achieves 100% recall and thus establishes an upper bound on the
number of false negatives due to strategies 1 and 2.

The set of detections obtained from strategy 1 and strategy 2 are not exactly the same,
and they do not subsume each other: some strategy-1 detections are omitted by strategy 2,
and vice versa. Out of 27 true positive detections from strategy 3, 19 detections are also
obtained from strategy 1 and strategy 2 combined. The remaining 8 detections (30%) are
exclusive to strategy 3.

9.1.3 Discussion
We consider the pros and cons of the three strategies in light of these results.

Strategy 1 uses third-party Boto3 type stubs, together with Pyright’s type inference
to resolve AWS SDK clients. Unlike strategy 2, where type resolution occurs during rule
evaluation, strategy 1’s Pyright-derived types are available before rule evaluation, during MU
graph construction. This allows type resolution to run once rather than on every application
of every rule: a major performance boost.

On the negative side, strategy 1 suffers from low recall, as shown in the “Type Resolution
Count” column of Table 1. This is due to the different ways in which AWS SDK clients
are obtained, and in particular, the common case of passing them as function parameters.
Pyright does not search for callers of the function, thus assigning Any as the type of the
parameters unless annotations are explicitly provided.

Moving to strategy 2, the ability to perform backward dataflow tracking addresses the
challenge of passing AWS SDK clients as function parameters. Duplication of work on type
resolution is mitigated by a staged algorithm that first attempts intraprocedural resolution,
then performs tracking at the file level, and finally at the level of the entire codebase. From
our experience, and performance measurements, the staged algorithm is quite effective. Like
strategy 1, strategy 2 retains full precision, yet has much higher recall as shown in the “Type
Resolution Count” column of Table 1.

In spite of its overall effectiveness, strategy 2 – which tracks dataflow through local
variables – can miss cases where the client is stored as a field or global variable. These cases
are handled by strategy 1.

Our analysis of the gaps between strategies 1 and 2 is confirmed experimentally. In line
with hypothesis 2, we have found 60 detections that are exclusive to strategy 1 and 832
detections that are exclusive to strategy 2.

Finally, the low precision of strategy 3 (just over 50%) confirms hypothesis 1. At the
same time, the computational cost of strategy 3 is virtually zero, and thanks to its simplicity,
it is able to sometimes completely bypass complex tracking scenarios that are beyond the
power of strategies 1 and 2. An example is given in Figure 13, where neither strategy 1
nor strategy 2 is able to recognize that self._ec2_client is a Boto3 client in the body of the
ec2_client.describe_snapshots(∗∗kwargs) method. Strategy 3 succeeds here simply by recognizing
describe_snapshots as the name of an AWS SDK client API method.

To make use of strategy 3 in spite of its approximate nature, we “penalize” detections
due to this strategy by assigning a confidence score of 0.5 to those detections compared
to 1.0 if the detection is due to strategies 1 or 2, as shown in the “Confidence” column of
Table 1. The exact value of 0.5 is arbitrary, but serves to distinguish the lower-confidence

ECOOP 2022

14:22 Static Analysis for AWS Best Practices in Python Code

class AwsClient(object):
def __init__(self, ∗args, ∗∗kwargs):

self._boto3client = None
super(AwsClient, self).__init__(∗args, ∗∗kwargs)

def create_ec2_client(self, context=None):
#→ (method) create_ec2_client:

(self: Self@AwsClient, context=None) −> Any
return boto3.client('ec2')

def get_aws_client(self, context):
if not self._boto3client:

ec2_client = self.create_ec2_client(context)
#→ (variable) ec2_client: Any

return self._boto3client

def describe_snapshots(self, ∗∗kwargs):
response = self._ec2_client.describe_snapshots(∗∗kwargs)
#→ (variable) _ec2_client: Any

Figure 13 Detections from Strategy 3 that strategies 1 and 2 miss.

detections of strategy 3 from the higher-confidence detections of strategies 1 or 2. This is in
line with our earlier comment that the correctness of type resolution is a good proxy for the
correctness of a detection.

9.2 Performance of Combined Resolution Strategies
The results in Section 9.1.1 suggest that there is benefit in combining the different strategies
in light of their complementary strengths. Starting from this motivation, we report here on
experiments with “hybrid” resolution strategies, which we refer to as configurations.

9.2.1 Type Resolution Configurations
We consider two configurations: High Confidence (HC) runs strategy 1, then strategy 2
where needed to complement strategy 1. Mixed Confidence (MC) runs strategies 1 and 2 in
the same fashion as HC, but rather than giving up if both fail, proceeds to strategy 3 in an
attempt to generate a low-confidence detection.

CodeGuru uses the confidence score to rank the detections as per the “Confidence” column
in Table 1. Detections from strategy 1 and strategy 2 rank higher than detections from
strategy 3 thanks to their higher confidence score. CodeGuru imposes different restrictions and
limitations on detectors, in particular with regard to the overall number of detections, which
means that in the presence of sufficiently many high-confidence detections, low-confidence
detections are suppressed. By implication, low-confidence MC detections are not always
reported to the user.

9.2.2 Results
Table 2 reports results for both configurations, running against the dataset of 3,027 GitHub
repositories. The total time for running each configuration is close to 5 hours.

In line with hypothesis 2, the HC configuration generates more detections than strategies
1 or 2 in isolation. The total number of detections due to the HC configuration is 60 more
than strategy 2: exactly the number of detections that are exclusive to strategy 1.

R. Mukherjee, O. Tripp, B. Liblit, and M. Wilson 14:23

Table 2 Type Inference Configurations.

Configuration Strategies Description Number of Detections

HC 1, 2 Pyright with stubs followed by dataflow 3,125
MC 1, 2, 3 All layers 5,403

Moving to the MC configuration, the number of detections that it generates is identical
to strategy 3 in isolation, which is expected. The important difference, however, is that most
(that is, 3,125) of the detections have high confidence, with only 2,278 detections relying on
strategy 3.

Projecting from the detections we sampled and triaged, we estimate that the MC
configuration has a precision score of 0.85 along with perfect recall, whereas the HC
configuration has perfect precision but a recall score of roughly 0.72 (with the assumption
that 54% of the findings found by MC but not HC are true positives). This analysis supports
hypothesis 3, which favors use of strategy 3 as part of the combined strategy rather than
relying only on the high-confidence strategies.

9.3 Real-world Feedback on the Rules
Beyond our offline study, we also report on data from the field driven by comments that
CodeGuru has left on code reviews in production. CodeGuru posts comments on code reviews
just as a human reviewer would. We have augmented the comment UI with a feedback menu,
so that a developer can optionally rate a detection as “Useful”, “Not Useful” or “Not Sure”
and/or provide free-form textual feedback. These feedback mechanisms give the CodeGuru
team insight into the performance of different detectors and enable detector tuning over time.

For AWS best practices, each CodeGuru comment contains two key fields:

1. One or two paragraphs explain what the issue is, and why fixing it is important. For
example, in the case of a batch operation whose output is ignored, the explanation states
that even if some items are not processed successfully, the batch operation might still
complete successfully without raising an exception.

2. A “Learn More” hyperlink directs the user to the appropriate section in the Boto3 online
documentation for complete information on the API in question.

We provide lower-bound metrics to give a sense of the size of CodeGuru’s input funnel.
In the studied time period of 10 weeks, CodeGuru analyzed ≫ 1, 000, 000 lines of code. We
applied ≫ 10 detectors, yielding ≫ 10, 000 AWS best practice recommendations, which we
reported to ≫ 1, 000 developers.

We note that by definition, the codebases involved in this study are all live (undergoing
code reviews and modifications). These are Python cloud services and applications that
make use of Boto3, where the developers are industry practitioners with Python and cloud
background. Hence we assign high weight to their feedback on CodeGuru detections.

In CodeGuru, we measure acceptance as an indication of whether or not developers have
found a given rule’s review comments useful. Given a set of “Useful” (U), “Not Useful” (NU)
and “Not Sure” (NS) ratings, we compute acceptance as the ratio |U |

|U |+|NU |+|NS| , where by
|U | we mean the number of “Useful” feedback points, and analogously for NU and NS . Note,
importantly, that we conservatively treat “Not Sure” the same as “Not Useful”.

ECOOP 2022

14:24 Static Analysis for AWS Best Practices in Python Code

Table 3 Acceptance rate per rule from developer feedback during code review.

Rule Acceptance Rate

Detect missing Pagination 75.0 %
Data loss in Batch APIs 100.0 %
Use Waiters instead of Polling APIs 52.0 %
Detect failed Records in Kinesis PutRecords 100.0 %
Detect deprecated APIs 88.9 %
Detect usage of inefficient/redundant API chains 85.7 %
Missing None check on cached response metadata 85.7 %
Detect expensive client object construction in Lambda handler 75.8 %

Table 4 Breakdown of the detections from Table 3 by confidence level.

Proportion of Detections

Detection Group High Confidence Low Confidence

All 88 % 12 %
Accepted 93 % 7 %
Not Accepted 84 % 16 %

Table 3 shows the acceptance data for eight of the Python AWS best practices rules for a
time period of 10 weeks. We obtained ≫ 100 feedback points from a population of ≫ 100
developers through the feedback UI described above. As reported in Table 3, developers
accepted over 85% of the recommendations made by five out of the eight rules, and almost
83% of the overall recommendations.

Only one of the eight rules, “Use Waiters instead of Polling APIs”, has an acceptance
rate below 75%. Our analysis of this rule’s performance, including communication with
some of the developers who left feedback on its detections, suggests that the gap between
acceptance and correctness is important. Developers often acknowledge the detection as
correct, but push back for one or more of the following reasons: (1) The intent of the PR is
different, and they prefer not to merge multiple unrelated changes into the same PR. (2)
The change is applicable, but requires upgrading the codebase to use the latest AWS Python
SDK, which again exceeds the scope of the PR. (3) The change is not applicable, since the
code in question is test code or there is no concern about polling in the given context. It is
worth adding that outside the time period reported here, we have seen multiple weeks where
acceptance rate for “Use Waiters instead of Polling APIs” was high.

Overall, acceptance data from the field supports hypothesis 3 in showing that developers
mostly find the detections by to the Python AWS best practices rules useful. These are made
using the MC configuration, which integrates all three of the resolution strategies described
in Section 9.1.1.

From our conversations with developers, the textual feedback they provided, and our own
review of some of the detections and their corresponding feedback, we have identified two
main factors that contribute to the usefulness of our rules: (1) Missed features: SDK changes
across versions, in particular new features, are sometimes missed by developers. Pagination,
retry and error handling are examples of such features, where developers not familiar with
these built-in capabilities sometimes implement “manual” mechanisms instead. Another

R. Mukherjee, O. Tripp, B. Liblit, and M. Wilson 14:25

example is manual polling versus the recommended use of the waiter utility. (2) Missed
expectations: Developers sometimes assume, rather than verify, the functionality of a given
API or the role of a given parameter. An example is the QueryResponse::hasItems method, whose
(boolean) return value is sometimes incorrectly interpreted to mean that the response contains
a non-empty collection of items, where what is in fact meant is that response defines an Items
property. To make sure whether any items are contained in the response, the developer needs
to also check Items::isEmpty. Mistakes like this can lead to large-scale operational failures.

Table 4 reports the breakdown, by confidence level (high versus low), for the detections in
Table 3. In sharp contrast to the distribution due to strategy 3 from the offline study, where
approximately 45% of the detections had a low confidence score, the hybrid inference strategy
leans heavily towards high-confidence detections (88% of all detections). This is consistent
with the suppression policy described above, in Section 9.2.1, for low-confidence detections.
The tradeoff that the hybrid strategy offers in the presence of confidence-based suppression
is appealing, in that low-confidence detections are typically shadowed by high-confidence
detections, which limits the impact of such detections on precision and allows them to play an
important role in pushing coverage upwards when high-confidence detections are absent. Also
note, from Table 4, that the proportion of low-confidence detections among “Not Accepted”
detections is higher compared to “Accepted” detections (16% versus 7%), which is consistent
with the data from the offline study.

Overall, our analysis of detections from the field, and how these map back to the hybrid
strategy, are in support of hypothesis 4. Developers tend to view our AWS best practices
recommendations as useful. Most of the recommendations build on high-confidence type
inference, with some remaining cases benefiting from the low-confidence resolution strategy.

10 Conclusion and Future Work

We have presented an industrial-strength framework for precise static analysis of Python
applications that use AWS cloud services. In support of this goal, we have developed a
novel type inference system for identifying and tracking AWS service clients in real-world
Python applications. Our Python MU graph IR is suitable for building a wide range of
static analyses or best-practice rules for Python applications. Furthermore, the Guru Query
Language provides the right level of abstraction with its encapsulation, optimization and
reuse features to develop static analysis rules that can be evaluated at different scopes, from
single functions to entire applications.

Experiments on 3,027 open-source Python GitHub repositories show that individual
inference strategies have complementary strengths. The most effective solution, then, is
a layered approach that combines Pyright with Boto3 stubs, custom dataflow analysis in
GQL, and name-based resolution as a low-confidence fallback. Our layered strategy achieves
85% precision and 100% recall in typing relevant Boto3 values in Python client code. The
ultimate authorities on the value of our approach are real-world developers, with no ties to
the authors. Those developers accepted more than 85% of the recommendations made by
five out of eight rules, and roughly 83% of the recommendations on average.

In the future, we plan to extend and generalize our type inference infrastructure to other
rule suites and properties that apply to Python programs. We are also examining ways
to reuse our work on Python on-demand type inference when adding support for other
dynamically typed languages.

ECOOP 2022

14:26 Static Analysis for AWS Best Practices in Python Code

References
1 Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg,
Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner, Paul A. Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: A
system for large-scale machine learning. In Kimberly Keeton and Timothy Roscoe, editors,
12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016,
Savannah, GA, USA, November 2-4, 2016, pages 265–283. USENIX Association, 2016. URL:
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi.

2 Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and Mira Mezini. Investigating
next steps in static API-misuse detection. In Margaret-Anne D. Storey, Bram Adams, and
Sonia Haiduc, editors, Proceedings of the 16th International Conference on Mining Software
Repositories, MSR 2019, 26-27 May 2019, Montreal, Canada, pages 265–275. IEEE / ACM,
2019. doi:10.1109/MSR.2019.00053.

3 Sven Amann, Hoan Anh Nguyen, Sarah Nadi, Tien N. Nguyen, and Mira Mezini. A systematic
evaluation of static API-misuse detectors. IEEE Trans. Software Eng., 45(12):1170–1188, 2019.
doi:10.1109/TSE.2018.2827384.

4 Amazon Web Services. AWS SDK for Python (Boto3) [online]. URL: https://aws.amazon.
com/sdk-for-python/ [cited 2022-05-12].

5 Amazon Web Services. Best practices for working with AWS Lambda functions: Function code
[online]. URL: https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html#
function-code [cited 2022-05-12].

6 Amazon Web Services. Boto3 - the AWS SDK for Python [online]. URL: https://github.
com/boto/boto3 [cited 2022-05-12].

7 Amazon Web Services. Boto3 developer guide: Low-level clients [online]. URL: https://boto3.
amazonaws.com/v1/documentation/api/latest/guide/clients.html [cited 2022-05-12].

8 Amazon Web Services. Boto3 developer guide: Resources [online]. URL: https://boto3.
amazonaws.com/v1/documentation/api/latest/guide/resources.html [cited 2022-05-12].

9 Amazon Web Services. What is Amazon CodeGuru Reviewer? [online]. URL: https:
//docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html [cited 2022-05-12].

10 Davide Ancona, Massimo Ancona, Antonio Cuni, and Nicholas D. Matsakis. RPython: a
step towards reconciling dynamically and statically typed OO languages. In Pascal Costanza
and Robert Hirschfeld, editors, Proceedings of the 2007 Symposium on Dynamic Languages,
DLS 2007, October 22, 2007, Montreal, Quebec, Canada, pages 53–64. ACM, 2007. doi:
10.1145/1297081.1297091.

11 David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual function calls.
In Lougie Anderson and James Coplien, editors, Proceedings of the 1996 ACM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages & Applications (OOPSLA
’96), San Jose, California, USA, October 6-10, 1996, pages 324–341. ACM, 1996. doi:
10.1145/236337.236371.

12 Siwei Cui, Gang Zhao, Zeyu Dai, Luochao Wang, Ruihong Huang, and Jeff Huang. PYInfer:
Deep learning semantic type inference for Python variables. CoRR, abs/2106.14316, 2021.
arXiv:2106.14316.

13 Julian Dolby, Avraham Shinnar, Allison Allain, and Jenna M. Reinen. Ariadne: analysis for
machine learning programs. In Justin Gottschlich and Alvin Cheung, editors, Proceedings
of the 2nd ACM SIGPLAN International Workshop on Machine Learning and Programming
Languages, MAPL@PLDI 2018, Philadelphia, PA, USA, June 18-22, 2018, pages 1–10. ACM,
2018. doi:10.1145/3211346.3211349.

14 Vlad Emelianov. mypy_boto3_builder: Type annotations builder for boto3 compatible
with VSCode, PyCharm, Emacs, Sublime Text, pyright and mypy [online]. URL: https:
//vemel.github.io/mypy_boto3_builder/ [cited 2021-12-01].

15 Facebook. Pyre [online]. URL: https://pyre-check.org/ [cited 2021-11-30].

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.1109/MSR.2019.00053
https://doi.org/10.1109/TSE.2018.2827384
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html#function-code
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html#function-code
https://github.com/boto/boto3
https://github.com/boto/boto3
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/clients.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/clients.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/resources.html
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/resources.html
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html
https://doi.org/10.1145/1297081.1297091
https://doi.org/10.1145/1297081.1297091
https://doi.org/10.1145/236337.236371
https://doi.org/10.1145/236337.236371
http://arxiv.org/abs/2106.14316
https://doi.org/10.1145/3211346.3211349
https://vemel.github.io/mypy_boto3_builder/
https://vemel.github.io/mypy_boto3_builder/
https://pyre-check.org/

R. Mukherjee, O. Tripp, B. Liblit, and M. Wilson 14:27

16 Levin Fritz and Jurriaan Hage. Cost versus precision for approximate typing for Python.
In Ulrik Pagh Schultz and Jeremy Yallop, editors, Proceedings of the 2017 ACM SIGPLAN
Workshop on Partial Evaluation and Program Manipulation, PEPM 2017, Paris, France,
January 18-20, 2017, pages 89–98. ACM, 2017. doi:10.1145/3018882.3018888.

17 Aymeric Fromherz, Abdelraouf Ouadjaout, and Antoine Miné. Static value analysis of Python
programs by abstract interpretation. In Aaron Dutle, César A. Muñoz, and Anthony Narkawicz,
editors, NASA Formal Methods - 10th International Symposium, NFM 2018, Newport News,
VA, USA, April 17-19, 2018, Proceedings, volume 10811 of Lecture Notes in Computer Science,
pages 185–202. Springer, 2018. doi:10.1007/978-3-319-77935-5_14.

18 Erich Gamma, Richard Helm, Ralph E. Johnson, and John M. Vlissides. Design patterns:
Abstraction and reuse of object-oriented design. In Oscar Nierstrasz, editor, ECOOP’93 -
Object-Oriented Programming, 7th European Conference, Kaiserslautern, Germany, July 26-30,
1993, Proceedings, volume 707 of Lecture Notes in Computer Science, pages 406–431. Springer,
1993. doi:10.1007/3-540-47910-4_21.

19 Google. Google Cloud Pub/Sub documentation [online]. URL: https://cloud.google.com/
pubsub/docs [cited 2022-05-12].

20 Google. pytype [online]. URL: https://google.github.io/pytype/ [cited 2021-11-30].
21 David Grove and Craig Chambers. A framework for call graph construction algorithms. ACM

Trans. Program. Lang. Syst., 23(6):685–746, 2001. doi:10.1145/506315.506316.
22 Mostafa Hassan, Caterina Urban, Marco Eilers, and Peter Müller. MaxSMT-based type

inference for Python 3. In Hana Chockler and Georg Weissenbacher, editors, Computer
Aided Verification - 30th International Conference, CAV 2018, Held as Part of the Federated
Logic Conference, FloC 2018, Oxford, UK, July 14-17, 2018, Proceedings, Part II, volume
10982 of Lecture Notes in Computer Science, pages 12–19. Springer, 2018. doi:10.1007/
978-3-319-96142-2_2.

23 Vincent J. Hellendoorn, Christian Bird, Earl T. Barr, and Miltiadis Allamanis. Deep learning
type inference. In Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu, editors,
Proceedings of the 2018 ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, ESEC/SIGSOFT FSE 2018,
Lake Buena Vista, FL, USA, November 04-09, 2018, pages 152–162. ACM, 2018. doi:
10.1145/3236024.3236051.

24 Maximilian A. Köhl. An executable structural operational formal semantics for Python.
Master’s thesis, Saarland University, December 2020. URL: https://arxiv.org/abs/2109.
03139.

25 Jukka Lehtosalo, Guido van Rossum, Ivan Levkivskyi, and Michael J. Sullivan. mypy - optional
static typing for Python [online]. URL: http://mypy-lang.org/ [cited 2021-11-30].

26 Microsoft. Pyright: Static type checker for Python [online]. URL: https://github.com/
microsoft/pyright [cited 2021-11-30].

27 Raphaël Monat, Abdelraouf Ouadjaout, and Antoine Miné. Static type analysis by abstract
interpretation of Python programs. In Robert Hirschfeld and Tobias Pape, editors, 34th
European Conference on Object-Oriented Programming, ECOOP 2020, November 15-17, 2020,
Berlin, Germany (Virtual Conference), volume 166 of LIPIcs, pages 17:1–17:29. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ECOOP.2020.17.

28 Rajdeep Mukherjee, Omer Tripp, Ben Liblit, and Michael Wilson. Static analysis for AWS best
practices in Python code. CoRR, abs/2205.04432, 2022. doi:10.48550/arXiv.2205.04432.

29 Joe Gibbs Politz, Alejandro Martinez, Matthew Milano, Sumner Warren, Daniel Patterson,
Junsong Li, Anand Chitipothu, and Shriram Krishnamurthi. Python: the full monty. In
Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes, editors, Proceedings of the
2013 ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA,
October 26-31, 2013, pages 217–232. ACM, 2013. doi:10.1145/2509136.2509536.

ECOOP 2022

https://doi.org/10.1145/3018882.3018888
https://doi.org/10.1007/978-3-319-77935-5_14
https://doi.org/10.1007/3-540-47910-4_21
https://cloud.google.com/pubsub/docs
https://cloud.google.com/pubsub/docs
https://google.github.io/pytype/
https://doi.org/10.1145/506315.506316
https://doi.org/10.1007/978-3-319-96142-2_2
https://doi.org/10.1007/978-3-319-96142-2_2
https://doi.org/10.1145/3236024.3236051
https://doi.org/10.1145/3236024.3236051
https://arxiv.org/abs/2109.03139
https://arxiv.org/abs/2109.03139
http://mypy-lang.org/
https://github.com/microsoft/pyright
https://github.com/microsoft/pyright
https://doi.org/10.4230/LIPIcs.ECOOP.2020.17
https://doi.org/10.48550/arXiv.2205.04432
https://doi.org/10.1145/2509136.2509536

14:28 Static Analysis for AWS Best Practices in Python Code

30 Michael Pradel, Georgios Gousios, Jason Liu, and Satish Chandra. TypeWriter: neural type
prediction with search-based validation. In Prem Devanbu, Myra B. Cohen, and Thomas
Zimmermann, editors, ESEC/FSE ’20: 28th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, Virtual Event, USA,
November 8-13, 2020, pages 209–220. ACM, 2020. doi:10.1145/3368089.3409715.

31 Veselin Raychev, Martin T. Vechev, and Andreas Krause. Predicting program properties from
“big code”. In Sriram K. Rajamani and David Walker, editors, Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2015,
Mumbai, India, January 15-17, 2015, pages 111–124. ACM, 2015. doi:10.1145/2676726.
2677009.

32 Michael Salib. Starkiller : a static type inferencer and compiler for Python. PhD thesis,
Massachusetts Institute of Technology, May 2004.

33 Gideon Joachim Smeding. An executable operational semantics for Python. Master’s thesis,
Universiteit Utrecht, 2008. URL: http://www.cs.uu.nl/education/scripties/scriptie.
php?SID=INF/SCR-2008-029.

34 Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. Design and evaluation
of gradual typing for python. In Andrew P. Black and Laurence Tratt, editors, DLS’14,
Proceedings of the 10th ACM Symposium on Dynamic Languages, part of SLASH 2014,
Portland, OR, USA, October 20-24, 2014, pages 45–56. ACM, 2014. doi:10.1145/2661088.
2661101.

35 Jiayi Wei, Maruth Goyal, Greg Durrett, and Isil Dillig. LambdaNet: Probabilistic type inference
using graph neural networks. In 8th International Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL: https:
//openreview.net/forum?id=Hkx6hANtwH.

36 Zhaogui Xu, Xiangyu Zhang, Lin Chen, Kexin Pei, and Baowen Xu. Python probabilistic type
inference with natural language support. In Thomas Zimmermann, Jane Cleland-Huang, and
Zhendong Su, editors, Proceedings of the 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016,
pages 607–618. ACM, 2016. doi:10.1145/2950290.2950343.

https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/2676726.2677009
https://doi.org/10.1145/2676726.2677009
http://www.cs.uu.nl/education/scripties/scriptie.php?SID=INF/SCR-2008-029
http://www.cs.uu.nl/education/scripties/scriptie.php?SID=INF/SCR-2008-029
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/2661088.2661101
https://openreview.net/forum?id=Hkx6hANtwH
https://openreview.net/forum?id=Hkx6hANtwH
https://doi.org/10.1145/2950290.2950343

What If We Don’t Pop the Stack? The Return of
2nd-Class Values
Anxhelo Xhebraj
Purdue University, West Lafayette, IN, USA

Oliver Bračevac
Purdue University, West Lafayette, IN, USA

Guannan Wei
Purdue University, West Lafayette, IN, USA

Tiark Rompf
Purdue University, West Lafayette, IN, USA

Abstract
Using a stack for managing the local state of procedures as popularized by Algol is a simple but
effective way to achieve a primitive form of automatic memory management. Hence, the call stack
remains the backbone of most programming language runtimes to the present day. However, the
appealing simplicity of the call stack model comes at the price of strictly enforced limitations: since
every function return pops the stack, it is difficult to return stack-allocated data from a callee
upwards to its caller – especially variable-size data such as closures.

This paper proposes a solution by introducing a small tweak to the usual stack semantics. We
design a type system that tracks the underlying storage mode of values, and when a function returns
a stack-allocated value, we just don’t pop the stack! Instead, the stack frame is de-allocated together
with a parent the next time a heap-allocated value or primitive is returned. We identify a range of
use cases where this delayed-popping strategy is beneficial, ranging from closures to trait objects to
other types of variable-size data. Our evaluation shows that this execution model reduces heap and
GC pressure and recovers spatial locality of programs improving execution time between 10% and
25% with respect to standard execution.

2012 ACM Subject Classification Software and its engineering → General programming languages

Keywords and phrases Call stack, closures, stack allocation, memory management, 2nd-class values,
capabilities, effects

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.15

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.26

Funding This work was supported in part by NSF awards 1553471, 1564207, 1918483, 1910216, and
DOE award DE-SC0018050.

Acknowledgements We thank the anonymous reviewers for their insightful comments.

1 Introduction

Using a call stack to manage activation records of procedures was one of the great advances
in the design and implementation of programming languages. Discovered by Bauer in the
1950s [11] and popularized by Dijkstra and others in the design of Algol in the 1960s [23, 29],
the call stack enabled general recursion by supporting multiple concurrent activations of the
same function [23], a significant gain in expressiveness over early Fortran dialects and other
languages of the time. The call stack also provides a simple but effective form of automatic
memory management, which makes it the backbone of almost every programming language
runtime to the present day (with some notable exceptions, e.g., SML/NJ [4, 37]).

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Anxhelo Xhebraj, Oliver Bračevac, Guannan Wei, and Tiark Rompf;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 15; pp. 15:1–15:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECOOP.2022.15
https://doi.org/10.4230/DARTS.8.2.26
https://doi.org/10.4230/DARTS.8.2.26
https://doi.org/10.4230/DARTS.8.2.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

However, the appealing simplicity of the call stack model comes at the price of strictly
enforced limitations. Since every function return pops the stack, it is difficult to return
stack-allocated data from a callee upwards to its caller – especially variable-size data such as
closures. Existing language implementations sidestep this issue by allocating return values
beyond a small fixed size on the heap (forgoing benefits of stack allocation such as guaranteed
timely deallocation), by trying to infer or bound the size of returned values and reserving
sufficient space in the parent stack frame (not always possible and sometimes wasteful), or by
abandoning the rigid call stack altogether in favor of more flexible structures such as stacks of
resizable regions (with overall increased complexity and loss of performance predictability).

This work is based on the observation that in cases where returning a stack-allocated
value is desired, the value’s lifetime is typically still bounded, it just needs to live a little
bit longer than the procedure that allocated it. So, what would happen if we just don’t pop
the stack and delay it until one of the callers resets the stack, popping multiple frames at
once? It turns out that this surprisingly simple idea can be made to work rather well. When
returning a stack-allocated value, we retain the callee stack frame, essentially treating it
as a block allocated as part of the parent stack frame. The stack is reset once a primitive
or heap-allocated value is returned, resulting in joint deallocation of multiple stack frames.
We present a type system that tracks the underlying storage type of references to guide
reclamation decisions. The key safety invariant is that heap-allocated data does not contain
stack references, and that stack references only point upward, not downward.

The central appeal of this “delayed popping” strategy is its simplicity and attractive
power-to-weight ratio. Since the approach constitutes only a minor adjustment to the
ubiquituous call stack model, it should be easy to add to almost any language implementation
supporting stack allocation. All the necessary safety checks can be retrofitted onto existing
type systems that track scoped lifetimes of values. In particular, we extend Osvald et al.’s [45]
λ1/2 type system for tracking 2nd-class values, achieving considerable gains in expressiveness
(e.g., curried 2nd-class functions [16]). Delayed popping and returning variable-size data
on the stack benefit a variety of uses cases, ranging from closures to trait objects to other
types of data. Reducing heap and GC pressure and increasing spatial locality significantly
improves end-to-end execution time. Certain classes of programs previously dominated by
GC overhead can now run entirely on the stack.

In summary, this paper makes the following contributions:
We discuss the problem of returning stack-allocated values and describe our solution of
delaying stack frame reclamation informally using examples (Section 2).
We present the λ

1/2
←↩ type system for tracking storage-mode qualifiers. To ensure validity

of references in the presence of both heap and stack references, we attach simple qualifiers
to types [25] and restrict stack-allocated values to a 2nd-class status (Section 3).
We present the operational semantics of our model, and we establish key properties: (1)
type safety: well-typed programs do not go wrong, (2) memory separation: 1st-class
values do not refer to 2nd-class values, (3) stack allocation: 2nd-class values can be
stack-allocated with delayed popping (Section 4). We have mechanized the proofs in Coq.
We present compiler implementations of our approach (1) in Scala Native [50] with an
LLVM backend using a shadow stack, and (2) in MiniScala with an x86-64 backend using
the native call stack (Section 5).
We provide in-depth discussions of extensions and uses cases, e.g., support for paramet-
ric polymorphism (including abstracting over storage modes), on-stack mutable data,
programming with capabilities, and how we overcome limitations of previous work on
2nd-class values and existing language implementations (e.g., Rust) when returning
variable-size data on the stack (Section 6).

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:3

We evaluate our system on a variety of benchmarks showing speedups between 10%
and 25% and present two in-depth case studies on static memory management for deep
learning workloads and parser combinators (Section 7).

We discuss related work in Section 8 and conclude in Section 9. Our artifacts (implementation,
Coq proofs) are available online at https://github.com/angelogeb/scala-native.

2 The Return of Stack-Allocated Values

Since the days of Algol [11, 23, 29], stack-allocated activation records (stack frames) are
the core data structure for implementing multiple activations of the same function. Stack
frames are instantiated when performing a function call and used for: (1) storing the return
address of the calling procedure, (2) passing the parameters to the called procedure, (3)
storing temporary local variables that are de-allocated at the end of the procedure, and (4)
passing returned values back to the caller. In this paper we are interested in (3), the stack
allocation of values, and (4), passing values back to the calling procedure on the stack.

The goal: returning stack-allocated data. While dealing with stack-allocated primitives
of a fixed size (such as 4 or 8 bytes) is trivial, returning stack-allocated compound data types
raises some issues. Consider computing the norm of the sum of two vectors ∥v1 + v2∥2 using
a library that provides the functions add and norm:
norm(add(v1, v2))

The function add needs to return an array denoting the sum of v1 and v2. However, returning
an array typically requires allocating its storage on the heap, unless one is willing to copy a
potentially sizable chunk of memory repeatedly between stack positions. Heap allocation
is not ideal in this case either because the lifetime of the value is known: it is immediately
consumed by norm. Moreover, the allocation will have to be reclaimed in ways that are unsafe
(manually), have a performance penalty (garbage collection or reference counting) or require
more complicated type systems based on lifetimes and borrowing.

Destination-passing style: a manual workaround. To work around this issue, code bases
written in Fortran or C from the domain of High Performance Computing (HPC) often
design functions such as add in Destination-Passing Style (DPS) [33, 51]. In this setting,
every function that needs to return an array accepts a pre-allocated result buffer as argument,
so that the caller is in control of the result’s memory management:
@stack val vout = new Vec[f32](v1.length)
add(v1, v2, vout)
norm(vout)

We use Scala Native in this paper, but the discussion equally applies to any language that
supports stack allocation. We use the @stack val . . . annotation to denote stack-allocated
values, building on a recently proposed type system by Osvald et al. [45] to guarantee
that such “2nd-class” values do not escape. In C, the example could be equivalently
written using a local array declaration or explicitly using the stack allocation primitive
alloca(v1.length * sizeof(float)), although without any safety checking. We describe our
model, including the type system, in more detail in Section 2.2. The DPS implementation of
norm and add is shown in Figure 1a.

In the example above, the caller decides to allocate the result buffer on the stack, which
means that the buffer will be de-allocated automatically at the end of the scope. However,
this comes with downsides too – we lose the ability to write expression-oriented code like
norm(add(v1, v2)) or perhaps norm(v1 + v2) with proper operator overloading, and potential

ECOOP 2022

https://github.com/angelogeb/scala-native

15:4 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

sharing of buffers can lead to subtle bugs. For example, a call like movingAverage(vin=v, vout=v)

would produce an incorrect value, since the output at index i depends on the input at index
i-1, which would have been overwritten by the previous iteration:
def movingAverage(vin: Vec[f32] @stack, vout: Vec[f32] @stack) = {
for (i <- 1 until (vin.length - 1))
vout(i) = (vin(i - 1) + vin(i) + vin(i + 1)) / 3

}

Variable-size data: the key limitation of destination passing. In the case of add, it is
possible for the caller to provision memory for the callee and allocate the result buffer on the
stack, but there are cases where this is not possible and we have to rely on the heap instead.
Consider a program that has to deserialize data using a utility function readNextGroup which
reads a data-dependent number of bytes from a stream:
def readNextGroup(f: FStream) = {
val len = readInt(f) // data-dependent
val res = new Vec[Byte](len) 1⃝ // alloc
readBytes(res, len)
res

}

def deserialize(f: FStream): Tree = {
val buf = readNextGroup(f) // unknown result size:
buf(0) match { // can’t pre-allocate!
case I32_TAG => atoi(buf)
...

} }

Unlike the add example, the result’s size is data dependent and therefore it is not possible to
manage memory in DPS, unless we were to break modularity and function boundaries by
inlining. Instead, the code must allocate the result buffer on the heap (1⃝). Both examples
need to work around the inability to return short-lived dynamically sized objects on the stack.

Closures: a particular important case of variable-size data. The sizing restriction of the
strict stack discipline also conflicts with higher-order functions. Programming languages
based on stack environments rely on types to compute a value’s storage size. However, a
closure’s type does not describe its closing environment and, unlike the array examples,
a solution attempt would neccessarily involve some form of defunctionalization [22] and
intensional type analysis, again breaking modularity.
def useCurried(f: Int => Int => Int) = {
val g = f(10) // unknown result size:
... // can’t pre-allocate!

}

val (x, y) = ...
useCurried(_ => (_ => 1) 1⃝)
useCurried(a => (b => a * x + b * y) 2⃝)

In the program above, the size of the closure g returned by f is statically unknown. In the
first call, the returned closure (1⃝) has a trivial size. In the second call, the returned closure
(2⃝) captures x and y and therefore has a larger size than (1⃝). Pre-allocating memory for g

would require knowing all possible closures that can be returned and reserving space required
for the largest one. In most cases this is infeasible, therefore returning closures requires
forgoing stack allocations and relying extensively on the heap (see also Section 6.7).

Problem summary: always popping the stack is inflexible. The root of the problem is that
every function is required to pop its stack frame immediately when returning. Under a strict
stack discipline it is possible to return a value on the stack only if its size can be statically
upper-bounded at the call site. In such cases, storage for the returned value is reserved on
the caller’s stack frame, a reference to the storage is passed to the callee and a copy of the
returned value is performed by the callee (DPS). This is necessary to ensure that a function
return resets the top of the stack to what it was before the function call.

2.1 A Partial Solution: 2nd-class Values and Selective CPS Conversion
Before looking at ways to relax the strict invariant that every function must pop its stack
frame immediately when returning, we consider strategies that inspired our solution.

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:5

Selective CPS conversion to extend stack lifetime. In the presence of higher-order
functions, we can eschew the problem of returning by transforming programs to Continuation-
Passing Style (CPS) [47]. Rather than passing a destination address to the caller as in DPS,
we pass a callback (the continuation) to receive the result address. The CPS transformation
enables rewriting programs that return function values into equivalent programs where
functions appear only in argument positions or as operands in call expressions (in the style
of Algol) [24], including all cases that return compound data types of unknown size [38].

We can rewrite function add in CPS as shown in Figure 1b. Operationally the CPS
transformation delays the reclamation of add’s activation record to the point where the
continuation k returns. Instead of returning a value on the stack, add accepts a continuation
that can use the “returned” value in non-escaping fashion. Figure 1c illustrates the stack
behavior after the CPS rewrite. Before the call to add, run pushes the arguments on the stack
(1⃝). In 2⃝, add has allocated the array on the stack and passes its reference to norm. After
norm returns, both add’s and run’s stack frame will be reclaimed (3⃝).

This solution achieves our initial goal, i.e., add can now “return” variable-size data.
Importantly, the CPS transformation should be selective [40, 49, 7] since transforming all
definitions into CPS would eliminate the call stack altogether [8, 38]. However, the solution
is not ideal because it requires (1) selective non-local transformations of the code, and (2)
it might result in even more heap allocations if continuations are not dealt with properly.
Nevertheless, the CPS version of the program shows what is required to return variable-size
stack-allocated values – deferring the de-allocation of the stack frame of the callee and a
type system that ensures validity of stack references.

Tracking non-escaping values in types. The λ1/2 type system by Osvald et al. [45] allows
to implement this pattern safely. Their system qualifies values as “2nd class” through the
@local annotation on types (we use @stack to denote the same in this paper). Such 2nd-class
values are not allowed to escape their defining scope, i.e., their lifetimes follow a strict stack
discipline. The λ1/2 type system enforces that:
1. 1st-class functions may not refer to 2nd-class values through free variables.
2. Functions may not return 2nd-class values.
3. 2nd-class values may not be stored in mutable variables or object fields.
This ensures that 2nd-class references are used in a non-escaping fashion. The key safety
invariant is that heap-allocated data is “1st class” and does not contain stack references, and
that stack references only point upward, not downward. CPS preserves the precise stack
behavior of 2nd-class values [19]. Crucially, λ1/2 disallows returning 2nd-class values to
maintain strict stack safety. A key contribution of this paper is to lift this restriction in a
sound way, leading to a model of delayed reclamation of stack frames that exhibits the same
desired behavior as the selective CPS conversion, but in direct style.

2.2 Our Solution: Delay Popping in Direct Style, Using Type Qualifiers
Based on the preceding insights, we propose a model to allow returning short-lived stack-
allocated values for which sizes are unknown at compile time for programs in direct style,
by allowing functions to return references to their stack frame and using Osvald-style [45]
storage-mode qualifiers to guide stack reclamation.

Figure 1d shows the implementation of addNorm in direct style using storage modes. When
add returns vout, its stack frame is retained, relaxing the too strict stack discipline. To this
end, we enrich Osvald et al.’s type system [45] with @stack qualifiers on function return types.
These qualifiers drive the operational behavior in crucial ways:

ECOOP 2022

15:6 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

def norm(v: Vec[f32] @stack): f32 = ...
def add(v1 : Vec[f32] @stack, v2: Vec[f32] @stack, res: Vec[f32] @stack): Unit = {
for (i <- 0 until v1.length)
res(i) = v1(i) + v2(i)

}
def addNorm(v1: Vec[f32] @stack, v2: Vec[f32] @stack): f32 = {
@stack val vout = new Vec[f32](v1.length)
add(v1, v2, vout)
norm(vout)

}

(a) Destination passing style: having the caller preallocate storage is a standard workaround for “returning”
stack-allocated values. This approach only works if the caller knows the (maximum) size of the result.
def add[T](v1: Vec[f32] @stack, v2: Vec[f32] @stack, k: (Vec[f32] @stack => T) @stack): T = { 1⃝
@stack val vout = new Vec[f32](v1.length)
for (i <- v1.length)
vout(i) = v1(i) + v2(i)

k(vout) 2⃝
}
def addNorm(v1: Vec[f32] @stack, v2: Vec[f32] @stack): f32 = {
add(v1, v2, norm 3⃝)

} 4⃝

(b) “Returning” a value on the stack through a selective CPS transform. The stack is managed as depicted
in (c). Before the call to add, addNorm pushes the arguments on the stack (1⃝). In 2⃝ add allocates the
array on the stack and passes its reference to norm. After norm’s return (3⃝), both add’s and addNorm’s
stack frame will be reclaimed (4⃝).

v2

v1

k

v2

v1

addNorm

add

v2

v1

k

v2

v1

addNorm

add

vout:

vout

norm

v2

v1

k

v2

v1

addNorm

add

vout

norm

v2

v1

k

v1

v2

addNorm

add

vout

norm

1 2 3 4

vout: vout:

(c) Stack behavior of selective CPS version (b) when addNorm is called with references to the argument
arrays v1, v2 on the stack: right after entering add’s body (1⃝), after calling the continuation norm (2⃝),
after norm’s return (3⃝) and after addNorm’s return (4⃝). Grey portions of the stack are free.
def add(v1: Vec[f32] @stack, v2: Vec[f32] @stack): Vec[f32] @stack = { 1⃝
@stack val vout = new Vec[f32](v1.length)
for (i <- v1.length)
vout(i) = v1(i) + v2(i)

vout
}
def addNorm(v1: Vec[f32] @stack, v2: Vec[f32] @stack): f32 = {
norm(add(v1, v2) 2⃝) 3⃝

} 4⃝

(d) Returning a value on the stack through storage modes. After 1⃝, add’s stack frame is retained to later
be popped when addNorm returns (4⃝). The stack behavior is the one depicted in (c) without k.

.

Figure 1 Alternatives for stack-allocated arrays: DPS (a), selective CPS (b) and its stack behavior
(c), direct style with storage modes (d). Storage modes emulate the selective CPS stack behavior.

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:7

1. When returning a 2nd-class value, do not pop the stack.
2. In that situation, defer the deallocation of the callee’s stack frame to a point where a

caller further up the stack returns a 1st class value.
3. When returning a 1st-class value, reset the stack as usual; this will reclaim all stack

frames allocated by callees.
This strategy is safe because 1st-class values cannot refer to 2nd-class ones, and 2nd-class
values do not escape other than through the return path, emulating the CPS stack behavior
(Figure 1). We break with the convention that the top of the stack remains unchanged after
function applications returning @stack-qualified values. It is important to note that this does
not interfere in major ways with the caller’s stack layout. As long as the caller maintains a
pointer to the start of its own stack frame, it can treat the remaining callee stack frame like
any other piece of stack-allocated data and continue allocating at the current stack pointer,
pointing to the end of the stack frame (see also Section 5).

Controlling allocations through storage-mode qualifiers. We provide further examples
to showcase our programming model. We assume a call-by-value language with primitive
types, compound types (e.g., closures and arrays), and automatic memory management,
representative of languages like Java, OCaml, or Scala. Values are either constants of
primitive types or references to values of compound types (either allocated on the stack or a
heap). Closures capture the smallest environment by value and store it in the closure object.

Stack bindings and storage modes. Values can be allocated on the stack through @stack

bindings. In the following example inc1 is a stack-allocated closure:
def add1(l: List[Int]) = { // : List[Int] => List[Int]
@stack val inc1 = i => i + 1 // : (Int => Int) @stack
map(l, inc1) // : List[Int]

}
add1(List(1,2,3,4)) // = List(2,3,4,5)

Stack bindings induce a @stack annotation on the type of the bound variable, called storage-
mode qualifiers. Stack bindings can be omitted if they can be inferred from types, e.g., we
can equivalently annotate inc1 with a type ascription:
val inc1: (Int => Int) @stack = i => i + 1

where the @stack qualifier is attached to the function type. We can also rewrite the body of
add1 more concisely as
map(l, i => i + 1) // stack allocation inferred

and let type inference assign the desired storage mode to the function argument of map, as
explained next.

Storage-mode statics. While unannotated values (1st-class values) can be used freely, the
type system ensures that @stack-qualified values do not escape into 1st class contexts, i.e.,
non-@stack-qualified positions. For the example above, the type of map’s second argument
must be @stack qualified as shown below (1⃝):
def map[I, O](l: List[I], f: (I => O) @stack 1⃝): List[O] = l match {
case Nil => Nil
case Cons(h, t) => Cons(f(h), map(t, f))

}

However, the @stack qualifier only restricts the uses of f but does not mandatorily induce a
stack allocation, i.e., we can still pass heap-allocated functions to map (see also Section 6.2):
val f = (v: Int) => v + 10 // closure allocated on the heap
map(l, f) // ok

ECOOP 2022

15:8 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

def filter(l: List[Int] @stack, f: (Int => Boolean) @stack): List[Int] @stack = l match {

case Nil => Nil
case Cons(h, t) =>
val t’ = filter(t, f)
if (f(h)) Cons(h, t’) else t’

}
def run(l: List[Int]): Boolean = { 1⃝

val l’ = filter(l, x % 2 == 0)
2⃝ sum(l’) > 0
}
val l = List(1,2,3,4,5)
run(l)

2

•

3

1

4

5

⊥

2

•

4

l

l’

...

filter ⊥

sum

run1

•

•

•

HeapStack

1

2

l:

...

f
f:

l

run2

Figure 2 Example program that returns a list on the stack. filter’s stack frame is retained after
its return (shown in cyan). Note that filter also works with heap-allocated list arguments.

This is achieved by the subtyping relationship @heap <: @stack where unqualified types T have
an implicit qualifier @heap (1st class). Storage modes and their static semantics ensure that
heap-allocated objects do not refer to stack-allocated ones.

Storage-mode dynamics. Storage modes permit returning variable-size data on the stack
by retaining the callee’s stack frame when it returns a @stack-qualified value. The stack frame
is popped once reaching a caller returning a @heap-qualified value. We support returning any
type of variable-size data, even recursive ones such as lists (Figure 2), the filter function
builds the result list on the stack. After the call to filter, the execution returns to run with
the updated stack pointer (2⃝). The returned list is passed as an argument to sum, which will
execute its body and pop its stack frame. Once run returns, it will pop its stack frame, too
(since it returns a @heap-qualified value1), which also contains filter’s stack frame.

Values with a @stack qualifier are 2nd class. As noted above, storage modes are an instance
of Osvald et al.’s 2nd-class values [45]. Their work proposed to reintroduce 2nd-class values
in the style of Algol’s procedure parameters to implement capabilities for safe exceptions
and, more generally, effect checking. To achieve this, their type system accepts only function
definitions that have 1st-class return types to ensure that capabilities conform to the strict
stack discipline. However, this is restrictive and inhibits many use cases where a returned
value has to close over a 2nd-class argument, such as currying over a capability.

Our work removes this limitation and employs qualifiers, not only to ensure the validity
of references but also to change the runtime behavior of the stack.

3 The λ
1/2
←↩ Storage-Mode Qualifier Calculus

We formalize storage modes in the λ
1/2
←↩ -calculus, an extension of the λ1/2-calculus by Osvald

et al. [45], which distinguishes between 1st-class and 2nd-class values.2 In the λ1/2 system,
functions cannot return 2nd-class values, implying strict stack-based 2nd-class lifetimes. Our
λ

1/2
←↩ -calculus eliminates this restriction, yielding considerable gains in expressiveness, e.g, it

supports currying of functions that take 2nd-class arguments, whereas λ1/2 does not. We
prove type soundness for λ

1/2
←↩ with respect to the standard call-by-value semantics of the

λ-calculus. This lays the groundwork for proving stronger results about memory invariants,
such as safety and correctness of stack allocation with delayed popping (Section 4).3

1 Scalar primitives are always 1st class (@heap qualified) and therefore can be used freely.
2 Our system also scales to F<:-style parametric polymorphism using path-dependent types (cf. [61]).
3 We mechanized these result in Coq, available at https://github.com/angelogeb/scala-native.

https://github.com/angelogeb/scala-native

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:9

Syntax λ
1/2
←↩

q ::= 1 | 2 t ::= c | x | λx.t | t t T ::= B | T q → T q Γ ::= ∅ | Γ, x : T q

Γ[≤q] := {x : T qx ∈ Γ | qx ≤ q}

Subtyping Rules T q1 <: T q2

q1 ≤ q2

Bq1 <: Bq2
SRfl

T q3
3 <: T q1

1 T
q2

2 <: T
q4

4 q5 ≤ q6

(T q1
1 → T

q2
2)q5 <: (T q3

3 → T
q4

4)q6
SFun

Typing Rules Γ ⊢ t : T q

Γ ⊢ c : Bq TCst
Γ(x) = T q

Γ ⊢ x : T q TVar
Γ[≤q], x : T q1

1 ⊢ t : T2
q2

Γ ⊢ λx.t : (T q1
1 → T

q2
2)

q TAbs

Γ ⊢ t1 : (T q1
1 → T

q2
2)

2
Γ ⊢ t2 : T q1

1

Γ ⊢ t1 t2 : T
q2

2

TApp Γ ⊢ t : T q1
1 T q1

1 <: T q2
2

Γ ⊢ t : T q2
2

TSub

Figure 3 The λ
1/2
←↩ type system. Differences to Osvald et al.’s system [45] are highlighted .

3.1 Syntax and Typing Rules
Terms in λ

1/2
←↩ (Figure 3) can be constant literals of base types, variables, functions, and

applications. We annotate types with storage-mode qualifiers q. These can be “1” denoting
a 1st-class/heap-allocated result, or “2” denoting a 2nd-class/stack-allocated result. Storage
modes are totally ordered, where 1 ≤ 2.

Typing environments Γ (Figure 3) come with the usual lookup operator Γ(x) = T q and a
filter operator Γ[≤q] that returns all the assumptions x : T qx in Γ satisfying qx ≤ q.

The type system (Figure 3) is an extension of the simply-typed λ-calculus (STLC) with
subtyping plus storage-mode qualifiers on types. Qualifiers propagate through the subtyping
rules, essentially allowing the use of 1st-class terms in positions where 2nd-class terms are
expected (SRfl), and they are subject to the usual contravariance in function domains and
covariance in function codomains (SFun). Filtering the typing context when typing function
bodies (TAbs) ensures that 1st-class functions do not capture 2nd-class values.4

The subtle yet crucial difference to Osvald et al.’s λ1/2-calculus is that λ
1/2
←↩ also attaches

qualifiers to codomains of function types, granting more degrees of freedom when typing
functions (TAbs) and applications (TApp); e.g., this enables currying of 2nd-class parameters.

3.2 Type Soundness of Standard Small-Step Evaluation
We use the standard call-by-value (cbv) single-step reduction of the λ-calculus, and prove
type soundness via progress and preservation lemmas [60]. The proofs require reflexivity and
transitivity of subtyping, as well as weakening and narrowing lemmas, which are standard.

▶ Theorem 1 (Progress). Given a closed term t that is well-typed ∅ ⊢ t : T q then either t is
a value or else there exists t′ such that t −→ t′.

Proof. By induction on the derivation ∅ ⊢ t : T q , using canonical forms lemmas. ◀

4 For simplicity, the base system lacks recursive functions. These can be readily added by allowing
self-references in lambdas (λf (x).t), adding f : (T q1

1 → T q2
2)q to the body’s context in TAbs, and

generalizing TApp to make use of q.

ECOOP 2022

15:10 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

Big-Step Evaluation: Standard and Instrumented H ⊢ t ⇓q v

t ::= c | xq | λxq.tq | t t v ::= c | ⟨H, λxq1 .tq2 ⟩ H ::= ∅ | H, xq : v

H[≤q] := {(xqx : v) ∈ H | qx ≤ q}

H ⊢ c ⇓q c
QECst

H[≤q](xq1) = v

H ⊢ xq1 ⇓q v
QEVar

H ⊢ λxq1 .tq2 ⇓q ⟨H[≤q], λxq1 .tq2 ⟩
QEAbs

H ⊢ t1 ⇓2 ⟨H′, λxq2 .tq3
3 ⟩ H ⊢ t2 ⇓q2 v2 H′, xq2 : v2 ⊢ t3 ⇓q3 v3 q3 ≤ q

H ⊢ t1 t2 ⇓q v3
QEApp

Figure 4 Two big-step semantics for λ
1/2
←↩ using environments. (1) Excluding teal parts: the

standard call-by-value big-step semantics of the λ-calculus. (2) Including teal parts: a more
restrictive semantics that internalizes storage modes in the term syntax and checks storage modes.

▶ Theorem 2 (Preservation). Given a closed term t that is well-typed with type T q, i.e.,
∅ ⊢ t : T q , if t steps to t′, t −→ t′, then ∅ ⊢ t′ : T q .

Proof. By induction on the derivation ∅ ⊢ t : T q , using the usual lemmas for inversion of
typing and preservation under substitution. ◀

From progress and preservation, we can establish type soundness of the evaluation semantics
induced by the single-step reduction relation [60].

4 Memory Properties

We have established in Section 3.2 that “well-typed λ
1/2
←↩ programs do not go wrong” in terms

of the cbv λ-calculus reduction semantics. While already important, this only asserts that
well-typed λ

1/2
←↩ terms do not exhibit the runtime errors of the ordinary λ-calculus. However,

we need to prove further memory properties: (1) 1st-class values never close over 2nd-class
values, and (2) delayed popping of the stack is safe. The solution is refining the semantics to
check for more runtime errors, and prove that type soundness still holds.

4.1 1st-Class Values Never Capture 2nd-Class Values

As a first refinement, we let the term syntax carry explicit qualifier annotations q (obtainable
from typing derivations) and define a new “instrumented” evaluation semantics checking
for class violations at runtime, resulting in the calculus λ

1/2
q←↩ (Figure 4, semantics 2). It

augments the standard big-step semantics of the cbv λ-calculus with the colored parts.
We check for qualifier mismatches in lookup (rule QEVar) and that the qualifier of a

closure’s function body agrees with the one under evaluation (rule QEApp). When building
closures in rule QEAbs, only a subset of the environment is captured, which is enforced
by filtering the environment with the current class context q. These changes (1) implicitly
partition H into a 1st- and 2nd-class environment, and (2) make evaluation stuck if a
1st-class/heap-allocated value captures a 2nd-class/stack-allocated value.

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:11

Proof technique. We model Wright and Felleisen’s “strong soundness” notion [60] using a
total evaluator function5 in the style of Siek [52] and Amin and Rompf [3]

evalq : N → H → t → (Done (Val v | Wrong) | Timeout)

which, given a fuel value k ∈ N and a runtime environment H, evaluates a term to a result r

that can be either (1) Timeout if the fuel is not enough to complete the evaluation, or (2)
Done Wrong in case of a runtime error, or (3) Done (Val v) for a result value v. Here, evalq

implements the big-step evaluation relation H ⊢ t ⇓q v (Figure 4), i.e., H ⊢ t ⇓q v if and only
if there is a fuel value k ∈ N such that evalq k H t = Done (Val v).

Type soundness implies memory separation. The strong soundness proof depends on
well-typed values (v : T q) and well-formed environments (Γ ⊨ H), defined below. The key
property is demanding that well-typed closures capture only values below or at their assigned
class, and nothing else, as follows:

c : Bq

Γ ⊨ H H[≤q] = H Γ, x : T q1
1 ⊢ t : T q2

2

⟨H, λxq1 .tq2⟩ : (T q1
1 → T q2

2)q ∅ ⊨ ∅
Γ ⊨ H v : T q

Γ, x : T q ⊨ H, xq : v

▶ Theorem 3 (Strong Soundness). The λ
1/2
←↩ type system is sound with respect to the instru-

mented big-step semantics (Figure 4, semantics 2): For all q, and for all k, if evalq does not
time out, then its result is a well-typed value:

Γ ⊢ t : T q Γ ⊨ H evalq k H t′ = Done r

r = Val v v : T q

Proof. By induction on the fuel value k, and case analysis on the term t, using helper lemmas
to establish soundness of environment lookup. ◀

Intuitively, due to value typing and the extra class violation checks in the instrumented
semantics, the strong soundness Theorem 3 implies:

▶ Corollary 4. Well-typed 1st-class functions never capture 2nd-class values.

Proof. By Theorem 3 and the definition of well-typed values for 1st-class function types. ◀

4.2 Stack-based Evaluation with Deferred Popping is Safe
As a further refinement, we design a semantics where 2nd-class bindings follow a delayed stack
discipline and thus permit a corresponding practical call-stack implementation. Figure 5
shows the evaluation rules of the refined semantics with stacks. The big-step relation
H, S ⊢ t ⇓q

s v ⊣ S′ accepts as input an environment H, a stack S, a term t, and qualifier q,
producing an output value v and a new stack S′. The stack is effectively a piece of state,
threaded through computations. An environment H is an association list as usual while a
stack S is a list of frames, where a frame Φ is also an association list of bindings. Stacks are
snoc lists, with the head element having the largest index. Occasionally, we use the notation
Φ0 . . . Φk to visualize the stack and the corresponding index of each frame. The environment
lookup (H, Φ)(xq) depends on the variable’s qualifier q (rules EVarH and EVarS), e.g., we
look up 2nd-class variables in the topmost stack frame. The same applies for environment
extension (H, Φ) ⊕ xq : v (cf. [61] for their formal definitions).

5 This proof style is more succinct for proving the sought-after runtime invariants, because it models
closures explicitly. The switch to big step is justifiable, because small- vs. big-step semantics, and
substitution- vs. environment-based semantics are known to be equivalent [13, 1, 20].

ECOOP 2022

15:12 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

Stack-based Big-Step Evaluation H, S ⊢ t ⇓q
s v ⊣ S

Pointer ptr ::= k | ⊥ List Lk ::= ∅−1 | (Lk−1, xq : v)k

Frames/Env. Φ, H ::= L Stack S ::= ∅ | (S, Φ)
Value v ::= c | ⟨H, ptr , λxq1 .tq2 ⟩ k, i ∈ N

ECst

H, S ⊢ c ⇓
q

s c ⊣ S

EVarH
(H,∅)(x1) = v

H, S ⊢ x1 ⇓ 1
s v ⊣ S

EVarS
(H, Φ)(xq) = v

H, (S, Φ) ⊢ xq ⇓ 2
s v ⊣ (S, Φ)

EAbsH

H, S ⊢ λxq1 .tq2 ⇓ 1
s ⟨H, ⊥ , λxq1 .tq2 ⟩ ⊣ S

EAbsS

H, (S, Φ) ⊢ λxq1 .tq2 ⇓ 2
s ⟨H, |S| , λxq1 .tq2 ⟩ ⊣ (S, Φ)

EAppH
H, S ⊢ t1 ⇓2

s ⟨H′, ptr , λxq2 .t
1
3 ⟩ ⊣ S′

Φ = lookup(S′, ptr)
H, S′ ⊢ t2 ⇓q2

s v2 ⊣ S′′

(H, (S′′, Φ)) ⊕ xq2 : v2 ⊢ t3 ⇓ 1
s v3 ⊣ S′′′

H, S ⊢ t1 t2 ⇓ 1
s v3 ⊣ S

EAppS
H, S ⊢ t1 ⇓2

s ⟨H′, ptr , λxq2 .tq3
3 ⟩ ⊣ S′

Φ = lookup(S′, ptr)
H, S′ ⊢ t2 ⇓q2

s v2 ⊣ S′′

(H, (S′′, Φ)) ⊕ xq2 : v2 ⊢ t3 ⇓q3
s v3 ⊣ S′′′

H, S ⊢ t1 t2 ⇓ 2
s v3 ⊣ S′′′

Figure 5 λ
1/2
q←↩ big-step stack semantics. Important details regarding evaluation are highlighted :

(1) the evaluation relation is classified with a qualifier; (2) closures retain a pointer indicating the
stack they capture; (3) stack is also an “output” of the relation and is not popped in rule EAppS.

In contrast to the instrumented semantics (Figure 4), closures now contain a pointer ptr
into the stack, which can be either ⊥ (1st-class closures) or a natural number for the k-th
stack frame (2nd-class closures). The lookup(S, ptr) operator (EAppH, EAppS) retrieves
the k-th stack frame in S, if ptr = k ∈ N, and otherwise a fresh stack frame if ptr = ⊥.

Most rules are similar to their counterparts in Figure 4 and only read the input stack
without updating it. When evaluating a 2nd-class function (EAbsS), its closure records
the pointer |S| to the topmost frame. In contrast, a 1st-class function is not supposed to
close over 2nd-class values and thus does not retain a pointer (⊥ in EAbsH). Both rules for
1st- and 2nd-class application (EAppH and EAppS) look up the closure’s stack frame given
its pointer and push it on top of the current stack to evaluate the function body. 1st-class
application (EAppH) pops the stack after evaluating the body, i.e., the output stack equals
the input stack S. In contrast, 2nd-class application (EAppH) just does not pop the stack,
since the result v3 might close over new 2nd-class bindings introduced during the body’s
evaluation. We define evalqs as the fuel-based interpreter corresponding to the stack-based
evaluation relation.

Equivalence of stack and environment semantics implies safety. It is easy to recognize
that the two semantics are equivalent in the sense that 2nd-class bindings are factored out of
a common environment into an explicit stack and can only be captured through a pointer
by closures. To this end, we define an equivalence relation S ⊢ r1 ∼ r2 which relates the
value, error, and divergence cases of the two semantics under a stack S. An environment H
is equivalent to H, Φ if all of its values are equivalent to the values in the stack environment
and vice versa (cf. [61] for the formal definition).

Equivalence is with respect to a stack because values in the stack semantics may capture
2nd-class references through stack pointers. Therefore, to relate them to values of the
instrumented semantics, we must look up the right stack frame.

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:13

▶ Theorem 5 (Equivalence of evalq and evalqs). The instrumented environment semantics
(Figure 4) and stack semantics (Figure 5) are equivalent, including timeout and error cases:

(S, Φ) ⊢ H ∼ H, Φ evalq k H t = r1 evalqs k H (S, Φ) t = (r2, S′)
S′ ⊢ r1 ∼ r2

Proof. By induction on fuel value k and case analysis on term t. ◀

▶ Corollary 6 (Strong Soundness). The λ
1/2
←↩ type system is sound with respect to the stack-

based evaluation semantics with delayed popping (Figure 5).

Proof. By the soundness Theorem 3 for the instrumented semantics and the equivalence
Theorem 5, well-typed λ

1/2
←↩ terms never evaluate to Wrong. ◀

Equivalence and soundness imply that well-typed λ
1/2
←↩ terms exhibit all the desired memory

properties in the stack-based semantics. It is thus safe to “just not pop the stack”:

▶ Corollary 7 (Separation of environment and stack). Evaluating well-typed λ
1/2
←↩ terms never

leaks stack references: If evalqs k H (S, Φ) t = (r, S′) for well-formed H and (S, Φ), then (1)
all H′ encountered during evaluation contain no stack pointers, and (2) if r = Done (Val v),
then all stack pointers in v are valid in S′.

Hence, 2nd-class bindings can be safely implemented using a deferred stack discipline.

5 Implementation

We implement our system as an extension of Scala Native [50], a compiler backend for Scala
that produces native code using LLVM [34]. Memory is managed at runtime by a non-copying
variant of the Immix garbage collector [14]. We also implement our system in the MiniScala
compiler used for teaching compiler classes at the authors’ institution.

5.1 Scala Native
Scala Native compiles to LLVM which implements a fixed set of calling conventions and
prohibits stack manipulation. Instead of allocating the @stack values on the system stack we
rely on a shadow stack.

Shadow stack. Using a shadow stack simplifies the implementation, and allows us to
implement the allocation scheme in any language and runtime. In addition, it optimizes
memory usage of functions returning stack-qualified values, since only the returned value’s
storage is retained, while all other temporary stack values are reclaimed as usual.

The code generation is type directed but fairly simple: on entering functions that return
a heap-qualified value we, instantiate a new stack frame in the shadow stack by first saving
the previous top of the stack and then marking the new one. Shadow-stack allocations
store the value in the current top of the stack, updating the stack pointer. When returning
a heap-qualified value, the top of the shadow stack is reset to the top when entering the
function. Since only frames for functions that return heap-qualified values are instantiated,
calls to functions that return a stack-qualified value will update the stack pointer. In other
words, our allocation strategy is similar to inlining regarding memory effects. Shadow-stack
operations are inserted in a source Scala program as a source-to-source transformation. We
insert calls for marking the top of the stack and resetting it.

ECOOP 2022

15:14 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

Type system. We implement our type system as a compiler plugin for Scala’s type system.
The @stack qualifier is defined through the more general @mode annotation as shown below:
class mode[T] extends TypeConstraint
type stack = mode[Any]; type heap = mode[Nothing]

When type checking T @mode[Q1] <: U @mode[Q2] the type checker checks T <: U and Q1 <: Q2

similarly to what is shown in the typing rules (Figure 3). Further implementation aspects
(e.g., function signatures with qualifiers) closely follow those in [45]. The @mode annotation
can be used to implement forms of storage-mode polymorphism (cf. Section 6.2).

5.2 MiniScala

MiniScala is a language and compiler which is used for teaching the compiler classes at the
authors’ institution. It differs from Scala Native in directly generating x86-64 assembly
instead of LLVM, and in an overall greatly reduced feature set suitable for education, with a
much simpler implementation of the type system and other components.

Native call stack. Following standard x86-64 conventions, the caller maintains a frame
pointer (FP) pointing to the start of its own stack frame. The stack pointer (SP) points to
the end of the stack, marking the point where fresh allocations can occur. Local variables
are adressed FP-relative, i.e., as offsets of the frame pointer. Using this setup, a caller can
treat a callee stack frame remaining after a call like any other piece of stack-allocated data,
and continue allocating at the current stack pointer. Popping the caller stack frame will
reset both FP and SP, and therefore reclaim all embedded callee stack frames, too.

Type system. In contrast to Scala Native, which can infer types based on bidirectional
constraint propagation and resolution [44], MiniScala relies exclusively on a straightforward
bidirectional typing algorithm without constraint generation. The simplicity of the algorithm
means that generally more type annotations are required in user code than in full Scala.

Storage-mode polymorphism. MiniScala uses a simple erasure implementation of generics,
and supports storage-mode polymorphism using allocator functions, but does not implement
specific support to manage stack growth in generic code paths. Runtime dispatch on storage-
mode witnesses could be added with reasonable implementation effort (cf. Section 6.2).

6 Discussion and Extensions

6.1 Tail calls

The stack-based semantics (Figure 5) does not model tail calls for simplicity and uniformity,
i.e., function calls always create a fresh stack frame on top of the current one (EAppH and
EAppS). However, it is possible to propagate tail contexts together with the qualifier q. Tail
contexts calling a closure with a 1st-class argument can reuse the stack from its creation
time, which is accessible from the captured stack pointer. Thus, we retain constant-space tail
calls. This is safe since (1) all captured values at the closure’s creation time are present, and
(2) 1st-class parameters do not capture stack bindings. Tail calls with 2nd-class arguments
cannot be optimized this way, as the argument may have been allocated anywhere on the
stack, including in the current frame.

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:15

6.2 Storage-Mode Polymorphism

Basic subtyping. The subtyping relationship @heap <: @stack already provides some degree
of polymorphism, allowing us to call functions accepting @stack parameters with @heap

arguments. This encourages annotating non-escaping arguments as @stack since callers can
pass both @heap- or @stack-qualified values. But naive subtype polymorphism has drawbacks:
If we declare a function to return @stack, then (1) this does not guarantee that the return
value is actually allocated on the stack, and (2) function returns cannot pop the stack
anymore. It is thus desirable to introduce a proper notion of storage-mode polymorphism.

Parametric polymorphism. Having additional degrees of polymorphism is useful for two
reasons: (1) dealing with higher-order functions, and (2) parameterizing where specific values
are allocated. For example, we would like to generalize vector addition (Figure 1d) so that its
result is allocated on the stack or on the heap. For case (1), we can use F<:-style parametric
polymorphism for storage modes, which is readily available in Scala’s type system. We
rephrase @heap and @stack as @mode[Q], where Q ∈ {Heap, Stack}. For example, consider the
higher-order function logged:
def logged[Q](f: (Int => Int) @mode[Q]): (Int => Int) @mode[Q] =
{ x => val res = f(x); println(res); res }

The type parameter Q abstracts over the storage mode in the function’s signature, and we
can refer to it using the @mode[Q] annotation. Reusing Scala’s type language for storage-mode
polymorphism permits expressing more complex relationships among qualifiers. In the
example below, the subtype bound on Q3 requires it to subsume both Q1 and Q2:
def compose[Q1, Q2, Q3 >: Q1 with Q2](
f1: (Int => Int) @mode[Q1], f2: (Int => Int) @mode[Q2]

): (Int => Int) @mode[Q3] = x => f2(f1(x))

It is also possible to avoid explicit qualifier constraints altogether and have a type-system
extension that infers the constraints from the body and checks them at call sites.

Parametric polymorphism for 2nd-class values has been studied by Osvald et al. [45],
and we can build on their D1/2

<: -calculus, a variant of D<:, which is a core calculus for
a subset of Scala [3, 2, 48]. This system can encode F<: with 1st-class type values and
path-dependent types. Their encoding carries over to our setting, resulting in an analogous
D1/2←↩

<: -calculus [61]. This system abstracts over types and qualifiers separately.

Stack growth in generic code paths. Some operational aspects of storage-mode poly-
morphism require careful consideration. For a polymorphic return storage @mode[Q], what
code should a compiler generate? Keep or pop the function’s stack frame when it returns?
Consider a call tree of storage-polymorphic functions. If we instantiate Q = Stack we would
expect the stack to grow, but what about Q = Heap?

There are three options: (1) no popping at all, (2) popping when polymorphic code returns
to monomorphic code, and (3) popping throughout. A standard erasure implementation
forces option (1), since only an instantiation Q = Stack can be assumed. Option (2) requires
“compensation code” at call sites of parametric functions, delegating some of the stack-
popping machinery to the caller instead of the callee. Option (3) can be achieved through
monomorphization (i.e., compile-time specialization), or by tracking a runtime witness for
each storage-mode parameter, making the popping decision via runtime dispatch.

ECOOP 2022

15:16 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

// Storage-mode polymorphic vector addition (type signature):
def add[Q](v1: Vec[f32] @stack, v2: Vec[f32] @stack): Vec[f32] @mode[Q] =
{ val vout = new Vec[f32](v1.length); for (i <- v1.length) { vout(i) = v1(i) + v2(i) }; vout }

def addH(v1: Vec[f32] @stack,
v2: Vec[f32] @stack) =

{
markStack()
val vout = allocH(v1.length)
...
resetStack()
vout // : Vec[f32] @heap

}

(a) Monomorphization (heap).

def addS(v1: Vec[f32] @stack,
v2: Vec[f32] @stack) =

{
// do not mark stack
val vout = allocS(v1.length)
...
// do not reset stack
vout // : Vec[f32] @stack

}

(b) Monomorphization (stack).

def add[Q](v1: Vec[f32] @stack,
v2: Vec[f32] @stack,

implicit m: Storage[Q]) = {
m.markPoly()
val vout = m.alloc(v1.length)
...
m.resetPoly()
vout // : Vec[f32] @mode[Q]

}

(c) Dynamic dispatch (witness).

Figure 6 Achieving polymorphic allocation and stack growth behavior at runtime via (a,b)
monomorphization, (c) dynamic dispatch with a storage-mode witness parameter. Exception return
paths are elided in all three versions. Dynamic dispatch can be achieved using object or function
indirection as shown, or, defunctionalized and inlined, as conditional dispatch on a single tag bit.

Monomorphization. This requires generating different versions of the parametric function
for each distinct instantiation it is called with. Figures 6a, 6b show the specialized version of
add for heap respectively stack storage mode. The code is ideal since there is no overhead and
stack management code can be generated for option (3), at the cost of a blowup in code size.

Parametric stack/heap allocation with runtime witness. To avoid the issues with monomor-
phization one can instead create runtime witnesses for storage modes and pass those as extra
arguments. While avoiding code duplication, some dispatch overhead is induced at runtime.
We can also abstract over allocation policies in a storage-polymorphic way. Figure 6c ab-
stracts over different allocators and whether the result buffer is on add’s stack frame or on
the heap. Passing an allocator works for explicit data structures (e.g., arrays), but closure
allocation requires compiler support.

6.3 Levels Beyond Stack and Heap: Tracking Effect Capabilities
We inherit Osvald et al’s. [45] ability to include arbitrary lattices between 1st class (bottom)
and 2nd class (top) via subtyping and phantom types [35]. Operationally, this type hierarchy
can be interpreted as encoding lattices of stacks, for example:

type Heap = Nothing // 1st class
type Stack = Any // 2nd class
type RS1 <: Stack // phantom types
type RS2 <: Stack
type RH <: RS1

Stack

RS1 RS2

RH

Heap

Stack

RS2

RS1
RH

Heap

Lifetime +−

Closures at a given level ℓ close over values at the same or a descendant level, and popping
the ℓ stack pops all its descendant stacks. It would be an interesting extension to map
individual storage levels to separate physical runtime stacks. But even in the absence of
such runtime support, there are interesting use cases of fine-grained lattices for structuring
application code, including user-managed stack/heap region allocation policies.

Beyond memory management, our λ
1/2
←↩ -calculus supports programming with capabilities,

and forms of lightweight effect polymorphism as proposed by [45], such as the familiar
withFile example in Figure 7. Our system is strictly more expressive, as we support returning

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:17

// Capabilities: 1 <: R <: RW <: 2
type CanR = CanRead @mode[R]
type CanRW = CanWrite @mode[RW]

// File I/O:
trait File(val path: String) {
def read(implicit c: CanR): Byte
def write(implicit c: CanRW): Unit

}

def withFile[U](...)(f: (File @mode[R] => U) @stack): U
def parReduce[U](...)(f: ((U, U) => U) @mode[R]): U
withFile("foo.txt") { f =>
parReduce(1 to 1000) { (a, b) =>
f.read() // ok: ‘R‘ can capture ‘R‘
f.write() // error: ‘R‘ can’t capture ‘RW‘!

}
f.write() // ok: ‘2‘ can capture ‘RW‘

}

Figure 7 Tracking effect capabilities (example from [45]). Files support read and write methods
requiring implicit capabilities, arranged in a privilege lattice; withFile provides a non-escaping file
to a block which has full privileges. The nested parReduce block has only reading privileges.

2nd-class values. Lack of this ability impedes composability in practice, e.g., it is not possible
to partially apply functions to capabilities. This issue inspired various solutions in related
calculi [16, 43, 17, 15]. This paper shows that it can also be solved soundly and effectively
with a small adjustment to the original system, namely allowing functions to return 2nd-class
values. For example, the system now supports lazy collections in 2nd-class contexts:
withFile("foo.txt") { file =>
val it = List(1,2,3,4).iterator.map(n => n + file.read().toInt) // iterator capturing file
it.next() + it.next() // ok (rejected in Osvald et al.’s system)

}

Finally, the example in Figure 7 also shows uses of nested scopes with different privilege
levels, distinguishing read from write in the nested parReduce block, while maintaining the
scoping guarantees of withFile. We have not seen evidence how other related works (e.g.,
capture types [15, 43] or reachability types [10]) can support this example with the same
guarantees, so we pose it as a design challenge for works that seek to incorporate lightweight
capability systems into realistic languages.

6.4 Stack References in Mutable Data Structures
One restriction we inherit from Osvald et al.’s system [45] is that 2nd-class values cannot be
stored in mutable references/variables. Clearly, we do not want to store a stack reference in
a heap-allocated mutable variable. But what about on-stack mutable variables? We have to
be careful, since a reference could escape and be used after the containing stack frame is
deallocated, e.g., if it was assigned to a variable further up the stack. However, assigning
to on-stack variables is safe as long as the right-hand side was pushed on the stack before
the variable. The key safety invariant is that stack references may only point upward, not
downward. While a full solution for comparing lifetimes of variables seems possible using
ownership [31, 59, 18, 41] or reachability types [10], this would add significant complexity.
Still, partial solutions are possible using local reasoning on a best-effort basis, e.g., permitting
assignments to variables within the same function.

Example: on-stack coroutines. Figure 8 shows a lowering transformation of a high-level
coroutines API (adapted from [54]) to a stack-based implementation without heap allocations.
To the left is the initial program in direct style, where a decoder continuously decompresses
and feeds a character stream to a parser coroutine, encoded by delimited control operators
shift/reset [21]. The getChar function for requesting the next character suspends the parser
and transfers control back to the decoder, storing the parser’s continuation in a shared
mutable reference emit, which is invoked by the decoder once the next character is available.
The shared state and the reified continuation should move from the heap onto the stack.

ECOOP 2022

15:18 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

// Produce a stream of characters:
def decoder() {
while (true) {
var c = getRawChar()
if (c == EOF) break
if (c == 0xFF) { // decompress
var len = getRawChar()
c = getRawChar()
while (len > 0)
emit(c) // transfer control to parser

len -= 1
} else
emit(c) // transfer control to parser

}
emit(EOF) // transfer control to parser

}
// Consume characters:
def parser(): Unit = reset {
var c: Char = ’_’
while (c != EOF) { 1⃝
c = getchar()
if (c != EOF) {
if (c.isLetter) {
do { 2⃝
addToToken(c)
// transfer control to decoder
c = getChar()

} while (c.isLetter)
gotToken(WORD)

}
addToToken(c); gotToken(PUNCT)

}
}

}
parser(); decoder()

// Read a character from stdin:
def getRawChar() = StdIn.readChar()
// Store parser continuation:
@stack private var emit: Char => Unit = _

// Suspend and wait for decoder:
def getChar() = shift {
(k: (Char => Unit) @stack) =>
emit = k

}
// After inlining & selective CPS transformation:
def parser(): Unit @stack = {
var c: Char = ’_’
var f1: (Char => Unit) @stack = null
var f2: (Char => Unit) @stack = null
def doWhileGetChar(c1: Char) = { 2⃝
c = c1; if (c.isLetter) dowhile()

}
def doWhile(): Unit =
{ addToToken(c); emit = f1 }

def outWhileGetChar(c1: Char) = { 1⃝
c = c1
if (c != EOF) {
if (c.isLetter) {
doWhile(); gotToken(WORD)

}
addToToken(c)
gotToken(PUNCT)

}
outWhile()

}
def outWhile(): Unit = if (c != EOF) emit = f2
f1 = x => doWhileGetChar(x)
f2 = x => outWhileGetChar(x)
outWhile()

}

Figure 8 On-stack coroutines example. Left: read, decompress, and parse data from a stream
using coroutines parser and decoder (adapted from [54]). Right: transformation of parser into
mutually recursive functions with stack-allocated closures. The red and blue parts belong to the
transformed outer (1⃝) and inner loop (2⃝), respectively.

A key question is how to track the lifetimes of the continuations. We generally do not
know the dynamic extent and hence would require storage on the heap. However, in this case
we know the lifetime of the emit variable and may thus store the continuations on the stack.

The final concern is avoiding stack overflows from continued invocations of emit, and indeed
it is possible to let this program run in constant stack space. This requires a few standard
transformations (Figure 8, right), i.e., inlining getchar, compiling the nested loops (1⃝ and
2⃝) into mutually tail-recursive functions, and a selective CPS conversion for shift/reset

using Cong et al.’s [19] technique based on 2nd-class functions.

6.5 Use-Site Driven Inference of Storage Modes
Passing a function expression to a higher-order function that expects a (potentially) stack-
allocated closure will cause the closure to be indeed allocated on the stack:
map(list, v => v + 10) // stack allocated

However, pulling out the function into a separate definition will cause it to be heap allocated:
val f = (v: Int) => v + 10 // heap allocated
map(list, f)

Unless the definition is marked explicitly for stack allocation:
@stack val f = (v: Int) => v + 10 // stack allocated
map(list, f)

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:19

// Example program:
fn f<F: FnOnce() -> i32>(g: F) {
g();

}
let (t, mut s) = (1, 42);
f(|| { s += &t; s });

// Program after closure conversion:
fn f(g: Anon1) { g.call_once(()); }
let (t, mut s) = (1, 42);
f(Anon1 {s: &mut s, t: &t});

// Closure representation:
struct Anon1<’a>{
s: &’a mut i32,
t: &’a i32

}
impl<’a> FnOnce<()> for Anon1<’a> {
type Output = i32; extern "rust-call"
fn call_once(self, _unit: ()) -> i32 {

*self.s += self.t;

*self.s
} }

Figure 9 Closure conversion in Rust.

It is easy to propagate storage-mode information from uses to definitions in a local scope,
and automatically convert local declarations to stack allocation that would otherwise default
to heap allocation, if they are never used in a truly 1st-class way. This analysis can be
implemented in a single pass, without fixpoint computation, if the definitions are already
well-typed under the more general mode.

6.6 Function vs. Block Scope as Retention Boundary
For the most part of this paper, we have focused on functions as one particular control-flow
construct, but it is also worth considering how stack growth and reclamation should behave
in other block-scoped constructs, including loops.

Naively extending the lifetime of stack values to the function scope instead of the closest
surrounding block scope would lead to exactly the same behavior as the alloca intrinsic in
C. Notably, this would inhibit allocating stack values inside of a loop since it would quickly
overflow the stack (left):
while (i < n) {
@stack val tmp = new Vec[f32](10)
use(tmp)

}

@inline def block(f: () => Unit) = f()
while (i < n) {
block { ... }

}

Even without specific compiler support, it is possible to overcome this issue directly at the
user level by using higher-order functions to denote block structure [32] (right). A block is
simply a function that accepts a closure that is immediately applied.

Since the return type of f is @heap qualified, its stack-frame will be popped at the end
of its body, making the program above run in constant stack space. Clearly, an equivalent
transformation can be easily realized inside a compiler just as well.

6.7 Stack Allocation for Closures and Other Anonymous Structures
A crucial application of storage mode qualifiers is in the context of closures and more generally
in returning anonymous structures implementing a specific trait. In both cases, the absence
of a concrete type at the call-site inhibits pre-allocating space on the caller’s stack frame for
the returned value. In this section, we investigate the challenges of compiling traits/interfaces
for stack allocations in modern languages with stack environments like Rust.

Closure expansion in Rust. Figure 9 shows an example program in Rust, where a function
f calls its closure parameter g, along with the program’s closure conversion. The concrete
argument for f is an anonymous closure that captures two stack-allocated variables by
reference. First, note that f is monomorphized for the specific closure type which will be
passed by value. Second, the closure desugars into the struct Anon1, where its fields represent
the captured environment, and the method call_once represents the closure’s body.

ECOOP 2022

15:20 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

// OK: returned stack-allocated closure
fn captureByV<F: Fn(i32) -> i32>(f: F)
-> impl Fn(i32) -> i32 {
move |v| f(v) + 10

}
// Error: the returned closure is a union
fn cond(a: i32, b: i32) -> impl Fn(i32) -> i32 {
if (b != 0) { |v| a * v + b }
else { |v| a * v }

}

// Error: impl in nested position 1⃝
fn spicy_curry() -> impl Fn(i32) ->
(impl 1⃝ Fn(i32) -> i32) {
|a| move |b| a + b

}
// Error : recursive closure requires boxing
fn omega(i: i32) -> impl Fn(i32) -> i32 {
let res = omega(i - 1);
move |v| res(v) + 1

}

Figure 10 Valid and invalid returns of stack-allocated closures in Rust.

Limitations. To support stack allocation of closure objects (structs) the Rust compiler must
be able to compute the size of the closure environment statically. In Figure 9, this is made
possible by monomorphization, e.g., Anon1 has the size of two i32 references (the captured
variables). This treatment of closures restricts their uses in return position. When generating
code for a call to a function that returns a stack-allocated closure, the compiler has to reserve
space for the returned closure in the caller’s frame. However, it cannot know the size, because
function types do not convey anything about the result’s captured environment.

To mitigate this issue, Rust introduced abstract return types, which allow returning
anonymous stack-allocated structs (e.g., captureByV in Figure 10). However, this feature
comes with its own limitations – only a value of a single concrete type can be returned. The
concrete return type is only superficially anonymous: the compiler tracks it to compute the
required size for the stack allocation. This disallows certain programs (Figure 10), where
the returned closure is data dependent (cond), or when a stack-allocated closure is returned
from another closure (spicy_curry). The first problem can be addressed by pessimistically
preallocating the size of the maximum closure that will be returned. The second one cannot
be solved – the Rust compiler relies on the fact that it can always identify the concrete
underlying type for any impl type. Allowing it in nested positions breaks this property.
Another problem is that captured environments can be recursive (omega in Figure 10) in
which case Rust requires a boxed representation on the heap.

Storage-modes solution. All the examples in Figure 10 are supported by our system. For
example, the spicy_curry definition can be implemented as
val curry: (i32 => (i32 => i32) @stack 1⃝) @stack = a => b => a + b

The @stack qualifier in the return type of a closure (1⃝) renders it impossible to identify the
size of the returned value at compile time, unless a whole-program analysis is performed.
This is not at all required with storage modes, e.g., the following definition allows both
separate compilation and partial applications yielding closures of unknown size:

// Module 1:
def f(g: (i32 => (i32 => i32)@stack)): i32 =
// Closure of unknown size:
val g’ = g(10)
g’(2)

// Module 2:
f(v1 => v2 => v1 + v2) // ok

// Module 3:
def incBy(v: i32): (i32 => i32) @stack =
if (v == 0) { x => x }
else { // recursive closure
val rec = incBy(v - 1)
{ x => rec(x) + 1 }

}
f(incBy(_)) // ok

Closures are not the only instance where storage modes are effective. Another one is in the
context of lazy iterators, where a sequence of operations such as fold ◦ map would generate
intermediate iterators which will eventually be consumed. The Rust implementation of such
combinators relies on returning concrete monomorphized structures so that they can be stack
allocated. Storage-mode qualifiers achieve this in a more straightforward manner:

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:21

class Linear(s: (Int, Int)) extends Layer {
val W = Tensor.randn(s._1 :: s._2 :: Nil) // weights
val b = Tensor.randn(s._1 :: Nil) // biases
type TensorCPS = (Tensor @stack => Unit) @stack 3⃝ => Unit
def apply(x: Tensor @stack 1⃝): TensorCPS @stack 2⃝ = { k =>
val h = Tensor.matmuladd(W, x, b) // forward pass
k(h) // ... continuation ...
Tensor.∇matmuladd(h.∇, W, x, b) // backward pass

}
}

Figure 11 Definition of a linear layer where h is allocated on the stack by matmuladd and is freed
on returning along the backward pass.

def map[A, B](it: Iter[A] @stack, f: (A => B) @stack): Iter[B] @stack =
new Iter[B] { def hasNext = it.hasNext; def next() = f(it.next()) }

Finally, the stack semantics introduced by storage-mode qualifiers enables compilers to avoid
treating alloca as an intrinsic and define it as a library function:
def alloca[T](n: Int): Array[T] @stack

7 Evaluation

In this section, we show how storage modes can improve memory management of larger pro-
grams. We first describe two case studies, differentiable programming and parser combinators,
and then conclude with an in-depth evaluation of storage-mode-annotated programs.

7.1 Case Study: Differentiable Programming
While storage modes are widely applicable for returning short-lived variable-size data, they
are also useful for arena-style memory management. For example, computing gradients in
differentiable programming requires keeping the intermediate tensors produced by operations
in the forward pass of the dataflow graph until the operation node is traversed in the backward
pass. The forward and backward pass are executed multiple times on different input tensors.
Peak memory usage can be statically upper-bounded. However, the dataflow graph can be
data dependent. Therefore, storage for intermediate tensors cannot be statically resolved.
Instead, it has to be managed dynamically. Deep learning frameworks handle this by building
a separate allocator with reference counting for managing the allocations in the graph.

Here we take a different approach, and implement a differentiable program using delimited
continuations à la Wang et al. [58, 57]. Every primitive operation of the model (e.g., linear
operators) takes a continuation denoting the rest of the forward and backward pass of the
model. Figure 11 shows the definition of a linear layer that computes l(x) = Wl · x + bl.
Ignoring the @stack annotations, applying the linear layer first computes Wl · x + bl through
matmuladd producing the tensor h. It then calls the continuation which will eventually update
the gradient field h.∇ of h and finally computes and accumulates the gradients for W and b.

Since the argument of function apply is annotated with @stack (1⃝), its returned function
of type TensorCPS must also be @stack (2⃝). It cannot capture the argument otherwise. We
also note that since the continuation k is used in a non-escaping fashion, it can be annotated
as @stack (3⃝). Finally, the tensor returned by matmuladd is also stack allocated. The full type
of the returned function is (((Tensor @stack => Unit)@stack)=> Unit)@stack. Since its return
type is not @stack annotated but its body calls a function that returns a @stack-annotated

ECOOP 2022

15:22 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

class MLP(shapes: List[(Int, Int)]) {
val (l1, l2, l3) = . . .
def apply(x: Tensor) =
for {
z1 <- l1(x)
h1 <- σ(z1)
z2 <- l2(h1)
h2 <- σ(z2)
o <- l3(h2)

}
yield o

}
...

val mlp = MLP(. . .)
for (i <- 0 until epochs) {
for ((x, y) <- data) {
grad { x =>
for {
o <- mlp(x)
ℓ <- loss(y, o)

} yield ℓ
}(x)
pars.foreach(optimize(_, η))

}
}

Figure 12 Fully differentiable program (multi-layer perceptron, MLP) with training loop. Inter-
mediate values are stored on the stack and de-allocated eagerly during the backward pass. MLP is
visualized in a dataflow graph.

// Infix stack-function arrow:
type =@>[-A,+B] = (A => B) @stack

// On-stack parser type:
type SP[+U] = Parser[U] @stack

trait Result[+T] {
def map[U](f: T =@> U): Result[U]
def andThen[U](f: T =@> SP[U]): Result[U]
def append[U >: T](alt: => Result[U]): Result[U]

}

@stack
class Parser[+T](val f: Input =@> Result[T]) {
def flatMap[U](g: T =@> SP[U]): SP[U] =
new Parser(f(_).andThen(g))

def map[U](g: T =@> U): SP[U] =
new Parser(f(_).map(g))

def |[U >: T](p: => SP[U]): SP[U] =
new Parser(in => f(in).append(p(in)))

def ~[U](p: => SP[U]): SP[(T, U)] =
this.flatMap(a => p.map(b => (a, b)))

}

Figure 13 On-stack parser combinators. Intermediate parser objects are short-lived. Making
them stack-allocated reduces ephemeral heap allocations and fragmentation.

result, the compiler will insert marking and release instructions. This results in every stack
allocation happening in the execution of this function to be deallocated when returning. This
is safe because the continuation k uses the tensor h in a non-escaping fashion.

Figure 12 shows a fully differentiable program in our model. The for expressions are
Scala’s syntax for monadic comprehensions. Every temporary allocation performed by li or
σ is discarded after the backward operation of the respective layer as shown for the Linear

layer before. The dataflow graph in the center depicts the apply function of the MLP class to
the left. We represent continuations as dashed gray boxes. To the right is a program training
an MLP instance. The program achieves arena-style memory management only through stack
allocations and storage-mode qualifiers that ensure validity of references. The program is
lightweight in annotations since those can be inferred given the definitions in Figure 11.

7.2 Case Study: Parser Combinators
The differentiable programming case study (Section 7.1) allocates most of the data on the
stack (e.g., intermediate tensors). Yet, storage modes are also beneficial for interleaving stack
and heap allocation. An interesting example where this occurs is parser combinators.

Consider the definition of Parser in Figure 13. A parser produces a Result[U] which can
be either Failure or Success. Parsers are built by combining other “base” parsers through
combinators such as alternation | and sequencing ~. For instance, the latter produces a
parser that first applies a parser f on the input and then applies another parser p on the
rest of the input producing two outputs. Note that the combinators’ arguments are by-name
which enables recursive parsers.

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:23

All Parser instantiations are allocated on the stack. This means that values closed over
by parsers can also be marked as @stack (e.g., g in flatMap). To understand how the @stack

annotations affect the computation, consider the following example that parses the strings
matching the regular expression (ab)*: def (ab)* = (lit("ab") ~ (ab)*) | lit("").

The lit combinator allocates a parser that recognizes the argument string. The recursive
call is passed by name as argument to the ~ combinator, meaning that it will produce an
allocation only when forced in the body of the newly built parser. Since parser functions have
type (Input => Result[T]), the allocations of Parser happening on the stack will be reclaimed
on return. During the evaluation of (ab)* on an input string, each recursive call will push a
new parser object on the stack. Once the full input has been consumed, each stack-allocated
parser object will be popped during the return path of the recursive calls.

Annotating Parser objects as @stack is beneficial in two ways: (1) it reduces the amount
of ephemeral allocations on the heap, reducing overhead induced by collections, and (2) it
reduces heap fragmentation. Running a parser results in alternating allocations of long-lived
objects (the parsed results) and short-lived intermediate Parser objects. Many runtimes (e.g.,
Java and OCaml) handle this with generational garbage collection, allocating new objects in
“young” regions and moving them to “old” regions once they stay reachable for long enough.
In contrast, storage modes reduce heap fragmentation without relying on any assumption
about the underlying heap memory management.

7.3 Performance Evaluation

We evaluate our storage-mode implementation in Scala Native (Section 5) on a range of
benchmarks:
1. filter: This benchmark executes the code described in Section 2.2, which allocates the

filtered list on the stack. The list size is 50 and 1/3 of the items are kept.
2. flatten: This benchmark flattens a binary tree of height 5 (32 nodes) by first building a

tree of closures on the stack and then builds the list on the heap.
3. curry: A loop that curries a function.
4. parser: On-stack parser combinators, where parsed return values are heap allocated.
5. graph: Simulates insertions and deletions of edges and nodes on a graph. Insertions

happen at a higher probability (55%) than deletions. At each insertion, the maximum
distance between any 2 adjacent nodes is computed for the updated node. The graph is
represented through adjacency lists on the heap. The maximum distance is computed
using nested stack-allocated iterators.

6. mlp is the code shown in Section 7.1; most of the structures are stack allocated.
We compare each program annotated with @stack to its counterpart without @stack annotations.
Everything else (compiler options, number of runs, etc.) remains unchanged. Benchmarks
are compiled with Scala Native [50] generating LLVM byte code, which is then compiled
through LLVM v10.0 with -O2. The benchmarks were run on a Intel Core i5-6300HQ CPU @
2.30GHz on Ubuntu 20.04 LTS, Linux Kernel v5.11.0. All benchmarks stress the underlying
memory management subsystem.

End-to-end runtime improvement. The table in Figure 14 shows averages and standard
deviations of run times and the speedup for each benchmark. Each benchmark starts from
a clean state and is run in a hot loop. The storage-modes version of each benchmark
outperforms the unannotated version, and we observe average speedups of up to 25%.

ECOOP 2022

15:24 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

avg avg
(@stack) std std

(@stack)
avg

speedup

flatten (µs) 1.57 1.31 1.55 1.57 1.20x
mlp (ms) 859.27 702.12 2.99 4.58 1.22x
curry (µs) 22.14 20.24 6.82 4.94 1.09x
parser (µs) 707.25 563.68 59.94 79.95 1.25x
graph (ms) 32.66 28.14 3.39 2.10 1.16x
filter (µs) 86.43 77.78 16.48 14.29 1.11x

flatte
n

mlp
curry

parse
r

graph
filte

r
0

10

20

30

40

50

H
ea

p
O

ve
rh

ea
d

(%
of

to
ta

l)

29
.8

2

30
.7

7

39
.4

8

32
.6

7

16
.6

5

7.
03

26
.4

2

19
.7

7

32
.6

9

25
.2

5

12
.8

7

3.
23

alloc

heap

stack

Figure 14 Run time comparison of annotated vs. unannotated programs. The chart shows the
overhead of memory management as percentage of the total running time: “alloc” represents heap
management in the unannotated version, and “heap + stack” represents heap and shadow stack
management for the annotated version.

Table 1 Memory management evaluation. Columns show the number of GC executions, maximum
shadow stack depth in bytes, time spent in the marking phase and sweeping phase.

mode collections stack depth mark sweep
(bytes) median (µs) total (ms) median (µs) total (ms)

flatten - 11126 0 16.79 200.82 15.33 177.20
@stack 4950 2520 17.06 91.32 15.78 81.45

mlp - 363 0 40.27 15.85 151.56 58.06
@stack 116 18944 42.48 5.33 143.35 17.94

curry - 1128 0 14.23 18.16 15.41 19.11
@stack 342 40 14.76 5.87 15.04 5.62

graph - 22 0 723.46 15.03 840.10 14.78
@stack 14 416 1590.99 20.51 515.47 6.69

filter - 967 0 16.65 18.16 16.29 17.01
@stack - - - - - -

parser - 51 0 21.36 1.15 15.66 0.88
@stack 18 28448 21.58 0.49 16.40 0.33

Memory management overhead. The bar chart in Figure 14 shows the overhead percentage
of memory management as computed through perf v5.11.22 [28] with frequency -F 30000.
Such a percentage is the number of times a memory management function activation record
was alive during execution over the total samples of the stack. Bars on the left are percentages
for the unannotated program, using the heap for most structures while bars on the right are
the ones of the annotated program. Both percentages are scaled with respect to the running
time of the unannotated program. The bars on the right of each benchmark are partitioned
in the overhead for managing the heap (bottom) and the overhead for managing the stack
(top). The size of these partitioned bars are also proxy metrics for the amount of allocations
that happen on the stack for the annotated program. Overall, storage modes reduce the
memory management overhead, since garbage collection is reduced.

Garbage collection behavior. Table 1 shows important statistics about the underlying
memory management subsystem. First, we note that the number of times a collection is
triggered in each benchmark is dramatically reduced. The median time for the marking and
sweeping phases of each collection is shown in the table. The total time spent in marking and
sweeping is more than halved, producing the performance improvements shown in Table 1.

An outlier is the increase in median time for marking in the graph benchmark. This is
because a collection is triggered only after the heap is at maximum capacity. For the @stack

version, this happens later in time, since ephemeral allocations due to iterators are stack
allocated. At this point, the heap-allocated graph is larger and marking is more costly.

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:25

Currently, shadow-stack allocations are implemented as calls to an external function. It
would be possible to further improve performance by optimization passes that exploit the
non-escaping behavior imposed by the type system. Also, the marking phase of the GC
still has to traverse the shadow stack (similarly to the call stack) to find heap roots. Hence,
languages without GC can benefit even more from storage modes. For example, Swift uses
reference counting, and making closure arguments non-escaping yields major performance
improvements [53], which prompted the designers to make closure arguments non-escaping
by default. Our storage modes provide strictly more benefits: not only can arguments be
non-escaping, but so can be function return values, and they may be of variable size.

8 Related Work

Our work is inspired by Osvald et al. [45], who argued in favor of reintroducing 2nd-class values
in modern programming languages. Instead of relying on escape analysis, they introduce
λ1/2, a language with qualified types where variables can be restricted to 2nd-class status,
ensuring non-escaping behavior. The typing rules ensure that 2nd-class values follow a strict
stack discipline and have been employed to model scoped capabilities [45, 46, 17, 43], in
compiler intermediate representations for efficient compilation [19], and as compiler directives
to improve stack allocation of closures [6]. We remove the limitation of their type system by
enabling the return of 2nd-class values, which increases their composability, e.g., allowing
currying over 2nd-class values. To achieve that, we propose a provably sound, relaxed stack
semantics. Finally, instead of using the type system only for capability checking on the
JVM version of Scala, we employ it for stack allocation on Scala Native [50] and provide an
evaluation regarding the performance benefits of the system.

The problem of implementing programming language environments through a stack or a
heap dates back to the Algol and LISP communities in the 70s. The LISP community named
the problem as the “Funarg problem” [39] and the Algol community named it “Retention vs.
deletion strategy” [12]. These works investigated the problem of escaping stack references in
the presence of higher-order functions. Fischer [24] proved that the retention and deletion
strategies were equally expressive by providing a transformation later recognized as one of
the discoveries of CPS [47]. Our work combines these ideas, dealing with stack references
through storage modes and returning variable-size data by implementing a delayed “deletion”
strategy inspired by the corresponding selective CPS transformation [19].

The implementation of the shadow stack resembles Obstacks [26], which are “bump”
memory allocators where allocation and deallocation is managed by pointer adjustments.
The Obstacks API can be used as an architecture-independent lowering target to implement
shadow stacks, but it does not come with static guarantees of its own.

Banerjee and Schmidt [9] designed a static criterion to approximate the runtime shape of
the environment and determine whether a term could be evaluated using a single-stack environ-
ment. Their work extends the “simple expression” work of Georgeff [27]. Appel and Shao [5]
argued in favor of fully allocating activation records on the heap.

Our approach is the first to enable stack allocation of variable-size data in direct style
and can be retrofitted into language implementations relying on stack environments. The
effectiveness of stack allocation has been investigated, among others, by Baker in the
implementation of Scheme [8]. Efforts to add stack allocation are currently underway in
many languages, including C♯ [36], Swift [53], and OCaml [42, 30].

Closely related to our work are region-based systems as proposed by Tofte and Talpin [55,
56]. While storage modes can be translated to a region calculus, our implementation relies on a
simpler type system and does not require designing the language around region-based memory

ECOOP 2022

15:26 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

management. Compared to region-based memory management with explicit annotations,
our solution is lightweight in terms of annotations. To ameliorate the annotation burden,
region calculi are equipped with region inference. Storage modes are intentionally explicit to
provide the programmer control over the stack, but also integrate well with type inference
in languages that support it. Our work shows benefits in terms of performance, especially
for compiled languages that automatically manage memory through garbage collection or
reference counting. Nonetheless, storage modes are also compatible with type systems based
on principles of ownership and borrowing, such as Rust’s [31, 59], and can be beneficial
to support variable-size data when compiling for embedded systems without support for
dynamic heap allocations.

9 Conclusions

This paper addresses the problem of returning variable-size data in languages with stack
environments. Our approach relies on storage modes, which are lightweight type annota-
tions that guide stack allocations and de-allocations. The evaluation of storage modes as
implemented in the Scala-Native compiler shows that our approach is beneficial for both
reducing heap fragmentation, GC overhead and improving spatial locality. Storage modes
can be implemented in high-level languages such as Swift and Scala to reduce heap pressure
or in low-level languages such as Rust to promote uses of abstractions without paying the
heap penalty.

References
1 Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard. A functional corre-

spondence between evaluators and abstract machines. In PPDP, pages 8–19. ACM, 2003.
doi:10.1145/888251.888254.

2 Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The essence
of dependent object types. In A List of Successes That Can Change the World, volume 9600
of Lecture Notes in Computer Science, pages 249–272. Springer, 2016. doi:10.1007/978-3-3
19-30936-1_14.

3 Nada Amin and Tiark Rompf. Type soundness proofs with definitional interpreters. In POPL,
pages 666–679. ACM, 2017. doi:10.1145/3009837.3009866.

4 Andrew W. Appel. Garbage collection can be faster than stack allocation. Inf. Process. Lett.,
25(4):275–279, 1987. doi:10.1016/0020-0190(87)90175-X.

5 Andrew W. Appel and Zhong Shao. Empirical and analytic study of stack versus heap cost
for languages with closures. J. Funct. Program., 6(1):47–74, 1996. doi:10.1017/S095679680
000157X.

6 Apple Inc. Closures – The Swift Programming Language (Swift 5.4), May 2021. URL:
https://web.archive.org/web/20220501162412/https://docs.swift.org/swift-book/La
nguageGuide/Closures.html.

7 Kenichi Asai and Chihiro Uehara. Selective CPS transformation for shift and reset. In PEPM,
pages 40–52. ACM, 2018. doi:10.1145/3162069.

8 Henry G. Baker. CONS should not CONS its arguments, part II: Cheney on the M.T.A. ACM
SIGPLAN Notices, 30(9):17–20, September 1995. doi:10.1145/214448.214454.

9 Anindya Banerjee and David A. Schmidt. Stackability in the simply-typed call-by-value lambda
calculus. Sci. Comput. Program., 31(1):47–73, 1998. doi:10.1016/S0167-6423(96)00040-8.

10 Yuyan Bao, Guannan Wei, Oliver Bračevac, Yuxuan Jiang, Qiyang He, and Tiark Rompf.
Reachability types: tracking aliasing and separation in higher-order functional programs. Proc.
ACM Program. Lang., 5(OOPSLA):1–32, 2021. doi:10.1145/3485516.

https://doi.org/10.1145/888251.888254
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1016/0020-0190(87)90175-X
https://doi.org/10.1017/S095679680000157X
https://doi.org/10.1017/S095679680000157X
https://web.archive.org/web/20220501162412/https://docs.swift.org/swift-book/LanguageGuide/Closures.html
https://web.archive.org/web/20220501162412/https://docs.swift.org/swift-book/LanguageGuide/Closures.html
https://doi.org/10.1145/3162069
https://doi.org/10.1145/214448.214454
https://doi.org/10.1016/S0167-6423(96)00040-8
https://doi.org/10.1145/3485516

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:27

11 Friedrich L. Bauer. The cellar principle of state transition and storage allocation. IEEE Ann.
Hist. Comput., 12(1):41–49, 1990. doi:10.1109/MAHC.1990.10004.

12 Daniel M. Berry. Block structure: Retention or deletion? (extended abstract). In STOC,
pages 86–100. ACM, 1971. doi:10.1145/800157.805041.

13 Malgorzata Biernacka and Olivier Danvy. A concrete framework for environment machines.
ACM Trans. Comput. Log., 9(1):6, 2007. doi:10.1145/1297658.1297664.

14 Stephen M. Blackburn and Kathryn S. McKinley. Immix: a mark-region garbage collector
with space efficiency, fast collection, and mutator performance. In PLDI, pages 22–32. ACM,
2008. doi:10.1145/1375581.1375586.

15 Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward Lee, Ondrej Lhoták,
and Martin Odersky. Tracking captured variables in types. CoRR, abs/2105.11896, 2021.
arXiv:2105.11896.

16 Jonathan Immanuel Brachthäuser, Philipp Schuster, Edward Lee, and Aleksander Boruch-
Gruszecki. Effects, capabilities, and boxes: from scope-based reasoning to type-based reasoning
and back. Proc. ACM Program. Lang., 6(OOPSLA):1–30, 2022. doi:10.1145/3527320.

17 Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. Effects as ca-
pabilities: effect handlers and lightweight effect polymorphism. Proc. ACM Program. Lang.,
4(OOPSLA):126:1–126:30, 2020. doi:10.1145/3428194.

18 Dave Clarke, Johan Östlund, Ilya Sergey, and Tobias Wrigstad. Ownership types: A survey. In
Aliasing in Object-Oriented Programming, volume 7850 of Lecture Notes in Computer Science,
pages 15–58. Springer, 2013. doi:10.1007/978-3-642-36946-9_3.

19 Youyou Cong, Leo Osvald, Grégory M. Essertel, and Tiark Rompf. Compiling with con-
tinuations, or without? whatever. Proc. ACM Program. Lang., 3(ICFP):79:1–79:28, 2019.
doi:10.1145/3341643.

20 Olivier Danvy. Defunctionalized interpreters for programming languages. In ICFP, pages
131–142. ACM, 2008. doi:10.1145/1411204.1411206.

21 Olivier Danvy and Andrzej Filinski. Abstracting control. In LISP and Functional Programming,
pages 151–160. ACM, 1990. doi:10.1145/91556.91622.

22 Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In PPDP, pages 162–174.
ACM, 2001. doi:10.1145/773184.773202.

23 Edsger W. Dijkstra. Recursive Programming. Numerische Mathematik, 2(1):312–318, December
1960. doi:10.1007/BF01386232.

24 Michael J. Fischer. Lambda calculus schemata. In Proving Assertions About Programs, pages
104–109. ACM, 1972. doi:10.1145/800235.807077.

25 Jeffrey S. Foster, Manuel Fähndrich, and Alexander Aiken. A theory of type qualifiers. In
PLDI, pages 192–203. ACM, 1999. doi:10.1145/301618.301665.

26 Free Software Foundation, Inc. The GNU C Library–Obstacks, 2003. URL: https://web.ar
chive.org/web/20220509075117/https://www.gnu.org/software/libc/manual/html_node
/Obstacks.html/.

27 Michael P. Georgeff. Transformations and reduction strategies for typed lambda expressions.
ACM Trans. Program. Lang. Syst., 6(4):603–631, 1984. doi:10.1145/1780.1803.

28 Brendan Gregg. Linux Perf Examples, 2020. URL: https://web.archive.org/web/202205
09003430/https://www.brendangregg.com/perf.html.

29 Sten Henriksson. A brief history of the stack. In SIGCIS Workshop, 2009.
30 Jane Street. Memory management, 2022. URL: https://web.archive.org/web/2022040108

0322/https://signalsandthreads.com/memory-management/.
31 Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: securing

the foundations of the rust programming language. Proc. ACM Program. Lang., 2(POPL):66:1–
66:34, 2018. doi:10.1145/3158154.

32 Peter J. Landin. Correspondence between ALGOL 60 and Church’s Lambda-notation: part I.
Commun. ACM, 8(2):89–101, 1965. doi:10.1145/363744.363749.

ECOOP 2022

https://doi.org/10.1109/MAHC.1990.10004
https://doi.org/10.1145/800157.805041
https://doi.org/10.1145/1297658.1297664
https://doi.org/10.1145/1375581.1375586
http://arxiv.org/abs/2105.11896
https://doi.org/10.1145/3527320
https://doi.org/10.1145/3428194
https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1145/3341643
https://doi.org/10.1145/1411204.1411206
https://doi.org/10.1145/91556.91622
https://doi.org/10.1145/773184.773202
https://doi.org/10.1007/BF01386232
https://doi.org/10.1145/800235.807077
https://doi.org/10.1145/301618.301665
https://web.archive.org/web/20220509075117/https://www.gnu.org/software/libc/manual/html_node/Obstacks.html/
https://web.archive.org/web/20220509075117/https://www.gnu.org/software/libc/manual/html_node/Obstacks.html/
https://web.archive.org/web/20220509075117/https://www.gnu.org/software/libc/manual/html_node/Obstacks.html/
https://doi.org/10.1145/1780.1803
https://web.archive.org/web/20220509003430/https://www.brendangregg.com/perf.html
https://web.archive.org/web/20220509003430/https://www.brendangregg.com/perf.html
https://web.archive.org/web/20220401080322/https://signalsandthreads.com/memory-management/
https://web.archive.org/web/20220401080322/https://signalsandthreads.com/memory-management/
https://doi.org/10.1145/3158154
https://doi.org/10.1145/363744.363749

15:28 What If We Don’t Pop the Stack? The Return of 2nd-Class Values

33 James R. Larus. Restructuring Symbolic Programs for Concurrent Execution on Multiprocessors.
PhD thesis, California Univ., Berkeley, Dept. of Electrical Engineering and Computer Sciences,
May 1989.

34 Chris Lattner and Vikram S. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. In CGO, pages 75–88. IEEE Computer Society, 2004. doi:
10.1109/CGO.2004.1281665.

35 Daan Leijen and Erik Meijer. Domain specific embedded compilers. In DSL, pages 109–122.
ACM, 1999.

36 Microsoft. C♯ language reference – stackalloc expression, 2022. URL: https://web.archive.
org/web/20220405070936/https://docs.microsoft.com/en-us/dotnet/csharp/language
-reference/operators/stackalloc.

37 James S. Miller and Guillermo Juan Rozas. Garbage collection is fast, but a stack is faster.
Technical report, Massachusetts Institute of Technology, 1994.

38 James H. Morris. A bonus from van Wijngaarden’s device. Commun. ACM, 15(8):773, August
1972. doi:10.1145/361532.361558.

39 Joel Moses. The function of FUNCTION in LISP, or why the FUNARG problem should be
called the environment problem. Technical report, Massachusetts Institute of Technology,
USA, 1970. URL: http://hdl.handle.net/1721.1/5854.

40 Lasse R. Nielsen. A selective CPS transformation. In MFPS, volume 45 of Electronic Notes in
Theoretical Computer Science, pages 311–331. Elsevier, 2001. doi:10.1016/S1571-0661(04)8
0969-1.

41 James Noble, Jan Vitek, and John Potter. Flexible alias protection. In ECOOP, volume 1445 of
Lecture Notes in Computer Science, pages 158–185. Springer, 1998. doi:10.1007/BFb0054091.

42 OCaml Community. OCaml discourse: Add support for stack allocation, 2021. URL:
https://web.archive.org/web/20210125181231/https://discuss.ocaml.org/t/add-sup
port-for-stack-allocation/7039.

43 Martin Odersky, Aleksander Boruch-Gruszecki, Jonathan Immanuel Brachthäuser, Edward
Lee, and Ondrej Lhoták. Safer exceptions for scala. In SCALA@SPLASH, pages 1–11. ACM,
2021. doi:10.1145/3486610.3486893.

44 Martin Odersky, Christoph Zenger, and Matthias Zenger. Colored local type inference. In
POPL, pages 41–53. ACM, 2001. doi:10.1145/360204.360207.

45 Leo Osvald, Grégory M. Essertel, Xilun Wu, Lilliam I. González Alayón, and Tiark Rompf.
Gentrification gone too far? affordable 2nd-class values for fun and (co-)effect. In OOPSLA,
pages 234–251. ACM, 2016. doi:10.1145/2983990.2984009.

46 Leo Osvald and Tiark Rompf. Rust-like borrowing with 2nd-class values (short paper). In
SCALA@SPLASH, pages 13–17. ACM, 2017. doi:10.1145/3136000.3136010.

47 John C. Reynolds. The discoveries of continuations. LISP and Symbolic Computation,
6(3):233–247, November 1993. doi:10.1007/BF01019459.

48 Tiark Rompf and Nada Amin. Type soundness for dependent object types (DOT). In OOPSLA,
pages 624–641. ACM, 2016. doi:10.1145/2983990.2984008.

49 Tiark Rompf, Ingo Maier, and Martin Odersky. Implementing first-class polymorphic delimited
continuations by a type-directed selective CPS-transform. In ICFP, pages 317–328. ACM,
2009. doi:10.1145/1596550.1596596.

50 Denys Shabalin. Scala native, 2015. URL: https://web.archive.org/web/20220318165107
/https://scala-native.readthedocs.io/en/latest/.

51 Amir Shaikhha, Andrew W. Fitzgibbon, Simon Peyton Jones, and Dimitrios Vytiniotis.
Destination-passing style for efficient memory management. In FHPC@ICFP, pages 12–23.
ACM, 2017. doi:10.1145/3122948.3122949.

52 Jeremy Siek. Type Safety in Three Easy Lemmas, 2013. URL: https://web.archive.org/we
b/20220308042857/https://siek.blogspot.com/2013/05/type-safety-in-three-easy-l
emmas.html.

https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://web.archive.org/web/20220405070936/https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/stackalloc
https://web.archive.org/web/20220405070936/https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/stackalloc
https://web.archive.org/web/20220405070936/https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/stackalloc
https://doi.org/10.1145/361532.361558
http://hdl.handle.net/1721.1/5854
https://doi.org/10.1016/S1571-0661(04)80969-1
https://doi.org/10.1016/S1571-0661(04)80969-1
https://doi.org/10.1007/BFb0054091
https://web.archive.org/web/20210125181231/https://discuss.ocaml.org/t/add-support-for-stack-allocation/7039
https://web.archive.org/web/20210125181231/https://discuss.ocaml.org/t/add-support-for-stack-allocation/7039
https://doi.org/10.1145/3486610.3486893
https://doi.org/10.1145/360204.360207
https://doi.org/10.1145/2983990.2984009
https://doi.org/10.1145/3136000.3136010
https://doi.org/10.1007/BF01019459
https://doi.org/10.1145/2983990.2984008
https://doi.org/10.1145/1596550.1596596
https://web.archive.org/web/20220318165107/https://scala-native.readthedocs.io/en/latest/
https://web.archive.org/web/20220318165107/https://scala-native.readthedocs.io/en/latest/
https://doi.org/10.1145/3122948.3122949
https://web.archive.org/web/20220308042857/https://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
https://web.archive.org/web/20220308042857/https://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html
https://web.archive.org/web/20220308042857/https://siek.blogspot.com/2013/05/type-safety-in-three-easy-lemmas.html

A. Xhebraj, O. Bračevac, G. Wei, and T. Rompf 15:29

53 Swift Community. Use stack allocation for Swift closures #21933. URL: https://github.c
om/apple/swift/pull/21933/#issuecomment-454980737.

54 Simon Tatham. Coroutines in C, 2000. URL: https://web.archive.org/web/202204280711
40/https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html.

55 Mads Tofte and Jean-Pierre Talpin. Implementation of the typed call-by-value λ-calculus using
a stack of regions. In POPL, pages 188–201. ACM Press, 1994. doi:10.1145/174675.177855.

56 Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Inf. Comput.,
132(2):109–176, 1997. doi:10.1006/inco.1996.2613.

57 Fei Wang, James M. Decker, Xilun Wu, Grégory M. Essertel, and Tiark Rompf. Backpropaga-
tion with callbacks: Foundations for efficient and expressive differentiable programming. In
NeurIPS, pages 10201–10212, 2018.

58 Fei Wang, Daniel Zheng, James M. Decker, Xilun Wu, Grégory M. Essertel, and Tiark Rompf.
Demystifying differentiable programming: shift/reset the penultimate backpropagator. Proc.
ACM Program. Lang., 3(ICFP):96:1–96:31, 2019. doi:10.1145/3341700.

59 Aaron Weiss, Olek Gierczak, Daniel Patterson, Nicholas D. Matsakis, and Amal Ahmed.
Oxide: The Essence of Rust. arXiv:1903.00982 [cs], August 2020. arXiv:1903.00982.

60 Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Inf.
Comput., 115(1):38–94, 1994. doi:10.1006/inco.1994.1093.

61 Anxhelo Xhebraj, Oliver Bračevac, Guannan Wei, and Tiark Rompf. What if we don’t pop the
stack? The return of 2nd-class values (extended version). Technical report, Purdue University,
2022.

ECOOP 2022

https://github.com/apple/swift/pull/21933/#issuecomment-454980737
https://github.com/apple/swift/pull/21933/#issuecomment-454980737
https://web.archive.org/web/20220428071140/https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
https://web.archive.org/web/20220428071140/https://www.chiark.greenend.org.uk/~sgtatham/coroutines.html
https://doi.org/10.1145/174675.177855
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1145/3341700
http://arxiv.org/abs/1903.00982
https://doi.org/10.1006/inco.1994.1093

Maniposynth:
Bimodal Tangible Functional Programming
Brian Hempel # Ñ

University of Chicago, IL, USA

Ravi Chugh # Ñ

University of Chicago, IL, USA

Abstract
Traditionally, writing code is a non-graphical, abstract, and linear process. Not everyone is com-
fortable with this way of thinking at all times. Can programming be transformed into a graphical,
concrete, non-linear activity? While nodes-and-wires [71] and blocks-based [3] programming envi-
ronments do leverage graphical direct manipulation, users perform their manipulations on abstract
syntax tree elements, which are still abstract. Is it possible to be more concrete – could users instead
directly manipulate live program values to create their program?

We present a system, Maniposynth, that reimagines functional programming as a non-linear
workflow where program expressions are spread on a 2D canvas. The live results of those expressions
are continuously displayed and available for direct manipulation. The non-linear canvas liberates
users to work out-of-order, and the live values can be interacted with via drag-and-drop. Incomplete
programs are gracefully handled via hole expressions, which allow Maniposynth to offer program
synthesis. Throughout the workflow, the program is valid OCaml code which the user may inspect
and edit in their preferred text editor at any time.

With Maniposynth’s direct manipulation features, we created 38 programs drawn from a
functional data structures course. We additionally hired two professional OCaml developers to
implement a subset of these programs. We report on these experiences and discuss to what degree
Maniposynth meets its goals of providing a non-linear, concrete, graphical programming workflow.

2012 ACM Subject Classification Software and its engineering → Integrated and visual development
environments; Software and its engineering → Visual languages; Software and its engineering →
Programming by example; Human-centered computing → Human computer interaction (HCI)

Keywords and phrases direct manipulation, tangible programming, programming user interfaces

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.16

Figure 1 A list length function implemented in Maniposynth.

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Brian Hempel and Ravi Chugh;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 16; pp. 16:1–16:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brian@brianhempel.com
http://brianhempel.com/
mailto:rchugh@cs.uchicago.edu
http://people.cs.uchicago.edu/~rchugh/
https://doi.org/10.4230/LIPIcs.ECOOP.2022.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Bimodal Tangible Functional Programming

Funding This work was supported by U.S. NSF grant Direct Manipulation Programming Systems
(CCF-1651794).

Acknowledgements We extend our gratitude to Justin Lubin for advice (so far ignored) about
caching during synthesis, Byron Zhang for feedback on the presentation, Matt Teichman for providing
hardware, Kartik Singhal for technical support, and the user study participants for their great
patience with bugs and for the invaluable feedback they provided.

1 Introduction

Graphical, direct manipulation interfaces [66] are the paradigm most users are familiar with
when they operate computers. Graphical interfaces are powerful and vastly extend the reach
of computing. Nevertheless, the most powerful computer activity – programming – has proven
resistant to manifestation in a graphical, direct manipulation form. Most programming
is primarily a text-only activity. Can general-purpose programming be reimagined in a
graphical, direct manipulation interface? Experts might find productivity gains and novices
might find a more approachable environment to accomplish their goals.

Most existing graphical programming approaches present the abstract syntax tree (AST)
elements as items to be manipulated with the cursor. Nodes-and-wires programming environ-
ments [71], such as LabVIEW [55], present program expressions as boxes whose inputs and
outputs are connected by wires. Blocks-based environments, such as Scratch [62], present
the program expressions as puzzle pieces that snap together. And structure editors, such
as Barista [42], allow certain manipulations of program expressions as structured entities
rather than as a naive string of text. All these approaches center the AST as the object
of interaction. Even more concrete than AST elements, however, are the values a program
produces during execution. Humans are concrete thinkers before we are abstract thinkers,
and teachers know that the best way to explain is through examples. So, is there a way to
write programs via direct manipulation on values instead of on AST elements?

The Eros environment [19] demonstrated a compelling answer to this question. Eros
reimagined the programming space not as a program in text (as in traditional coding) nor as
a draftsman’s drawing of operations connected by wires (as in nodes-and-wires programming),
but as a 2D canvas of malleable values. These tangible values (TVs) were primarily partially
applied functions, rendered with (graphically editable) example arguments for their unapplied
inputs, with the corresponding example output displayed below. The user could select the
output of one TV, the input of another TV (of corresponding type), and compose the two
together into a new TV.

Eros highlighted that non-linear editing and pure functional programming are complemen-
tary. Without side effects, the order of computation is negligible. The user may gather the
parts they need in any order and worry later about how to assemble them. Alas, the standard
practice of writing functional programs as linear, textual code obscures this opportunity for
non-linearity. Placing values on a 2D canvas instead highlights it.

Non-linearity matters. Not all humans are linear thinkers, and not even all programmers
think linearly at all times. (How often are large blocks of code written top-to-bottom from
scratch?) A non-linear environment can offer a creative space more inviting to folks whose
standard workflow naturally entails concrete exploration rather than abstract planning.

While Eros highlighted how non-linear editing dovetails with pure functional programming,
its mechanism for composing TVs may tip the balance too far from the abstract in favor
of the concrete. Once a value has been composed, it obscures how it came to be. TVs are

B. Hempel and R. Chugh 16:3

labeled with a brief expression, but this one line is inadequate for any computation of modest
size. Moreover, once composed, how does one change the computation that produced a TV?
Value manipulation alone may be inadequate for carefully specifying abstract algorithms.
Perhaps there is a middle ground that allows both non-linear, concrete direct manipulation
on values and traditional editing of ordinary code. That middle ground is the subject of this
paper. In particular, we seek to answer the question:

How can the approachability of non-linear direct manipulation on concrete values be
melded with the time-proven flexibility of text-based coding?

Design Goals. We aim to create a programming interface with the following properties:

(a) Value-Centric. Like Eros, and unlike most visual programming environments, we want
values – not AST elements – to be centered in the display and, as much as possible, be
the object of the user’s direct manipulations.

(b) Non-Linear. To support non-linear thinkers and exploratory programming, we want to
allow the user to gather the parts they need out of order, and compose them later.

(c) Synthesis. How to integrate recent advances in program synthesis into a practical
workflow remains an open question. A value-centric interface is a natural environment
to specify assertions on those displayed values and to fulfill those assertions with a
synthesizer – we want to explore this.

(d) Bimodal. Ideally, a visual programming environment would not sacrifice the unique
affordances of textual code – its concision and its amenability to an ecosystem of existing
tooling (such as text editors, language servers, and version control). We want to offer
a bimodal interface that simultaneously offers a non-linear graphical editing interface
alongside a text-editable, traditional representation of the program’s code.

Contributions. To show how value-centric non-linear editing can meld with traditional
text-based programming, we implemented a value-centric, non-linear, bimodal programming
environment with synthesis features called (The Magnificent) Maniposynth. We demon-
strate both how non-linear visual editing can integrate with linear code, as well as show
novel editing features made possible by the value-centric display.

To gain an initial understanding of the system, we implemented an external corpus of 38
example programs. For additional insights, we conducted an in-depth exploratory study with
two external professional functional programmers, whose feedback informed the evolution
of Maniposynth. We describe their use of the tool and discuss additional observations
through investigative lenses from the Cognitive Dimensions of Notation framework [25].

Section 2 introduces Maniposynth with a running example. Section 3 describes the
technical implementation of the tool and the synthesizer. Section 4 presents insights from
implementing a corpus of examples and the qualitative user study. Section 5 presents related
work, and Section 6 discusses avenues for continued exploration.

2 Overview Example

To provide an overview of Maniposynth, we follow a fictional programmer named Baklava
as she re-implements the list length function from scratch. Figure 1 shows the final result.
A video of this example, as well as an artifact to follow along, are available online [32].

ECOOP 2022

16:4 Bimodal Tangible Functional Programming

Figure 2 List literals
in autocomplete menu.

Figure 3 Tangible values (TVs) for the example list binding and the
example call to length.

Maniposynth is a locally running web application designed to be opened in a web
browser alongside the user’s preferred text editor. Baklava creates a blank text file named
length.ml on her computer, starts Maniposynth in that directory, and navigates to
http://localhost:1111/length.ml in her web browser. She positions her browser window
side-by-side with Visual Studio Code [53] and is ready to begin.

2.1 List Length, Without Synthesis
To start, Maniposynth displays a blank white 2D canvas. Because Maniposynth is a live
programming environment, Baklava starts by creating an example list so she can see the
length operation on concrete data. Double-clicking on the canvas opens up a text box to
add new code; Baklava does so and types an open bracket [. Because writing example data
is common in Maniposynth, concrete literals up to a fixed size are offered as autocomplete
options (auto-generated from the data constructors in scope, Figure 2). Baklava selects the
list literal [0; 0; 0] from the autocomplete options and hits Enter.

In the code, a new let-binding for the list is inserted at the top-level of length.ml and
automatically given the name int_list. On the canvas, this binding is represented as a box
displaying (in clockwise order, Figure 3, left) the binding pattern (int_list), the binding
expression ([0 ; 0 ; 0]), and the result value below (also [0; 0; 0], but bigger).
These three elements together in a box form a tangible value in Maniposynth. The box
may be repositioned on the 2D canvas, and the coordinates of the position are stored in the
code as an AST attribute annotation on the binding, written [@@pos 152, 49] in the code.
Arbitrary attribute annotations are supported by the standard OCaml AST which allow
these properties to be preserved across program transformations. Baklava has installed a VS
Code plugin to dim these attributes in the code to avoid becoming distracted by them.

To begin work on the length function, Baklava now creates an example call to the
function: on the canvas, she double-clicks to add new code and types length int_list. As
before, a new binding is inserted in the code (named length_int) and an associated tangible
value (TV) appears on the canvas (Figure 3, right).

The length_int TV has two differences from the previous int_list TV. First, its result
value (displayed as ?, explained below) has a yellow background – this indicates the result is
not simply a constant introduced in the expression: it came from computation elsewhere.
Second, the int_list variable usage in the TV’s expression bears a superscript indicating
the value of int_list, namely [0; 0; 0].

In Maniposynth, using an undefined variable – in this case, length – automatically
inserts a new let-binding (TV) for that variable. Because Baklava used length as a function,
a new function skeleton was inserted in the code (let length x1 = (??)).

Function TVs are displayed specially on the canvas (Figure 4). Immediately below the
function name, a function IO grid displays the function input and output values encountered
during execution. Immediately below the IO grid is a blank white area which is a subcanvas

http://localhost:1111/length.ml

B. Hempel and R. Chugh 16:5

Figure 4 Tangible value for the function skeleton binding let length x1 = (??).

(a)
TRS OeYeO - dUag LWePV fURP Whe PeQXV abRYe, RU dRXbOe-cOLcN beORZ WR ZULWe cRde

inW_liVW = [0 ; 0 ; 0]

leQgWh
[1

ReWXrn
+

ReWXUQ e[SUeVVLRQ(V) aQd YaOXe(V)

("")

Uec

BLQdLQgV LQVLde fXQcWLRQ - dUag ZhaW \RX ZaQW beORZ, RU dRXbOe-cOLcN WR ZULWe cRde

lengWh_inW = lengWh inW_liVW

 Undo (Z) Redo (Z) if (??) When (??) elVe (??) lengWh (??) (??) :: (??) Some (??) Ok (??) WrXe FP_]ero Open_Zronl\ ()

(b)
TRS OeYeO - dUag LWePV fURP Whe PeQXV abRYe, RU dRXbOe-cOLcN beORZ WR ZULWe cRde

inW_liVW = [0 ; 0 ; 0]

leQgWh
[1

ReWXrn
+

ReWXUQ e[SUeVVLRQ(V) aQd YaOXe(V)

("")

BLQdLQgV LQVLde fXQcWLRQ - dUag ZhaW \RX ZaQW beORZ, RU dRXbOe-cOLcN WR ZULWe cRde

lengWh_inW = OeQgWh iQW_OiVW

 UQdR (Z) RedR (Z) if (??) WheQ (??) eOVe (??) OeQgWh (??) (??) :: (??) SRPe (??) ON (??) WUXe FP_]eUR OSeQ_ZURQO\ ()

if (??) WheQ (??) eOVe (??)

(??) = (??)

(??) && (??)

(??) __ (??)

(??) + (??)

(??) @ (??)

LiVW.PaS (??) (??)

LiVW.ƓOWeU (??) (??)

(??) < (??)

(??) <= (??)

(??) > (??)

(??) >= (??)

(c)
TRS OeYeO - dUag LWePV fURP Whe PeQXV abRYe, RU dRXbOe-cOLcN beORZ WR ZULWe cRde

inW_liVW = [0 ; 0 ; 0]

leQgWh
[1

ReWXrn
+

ReWXUQ e[SUeVVLRQ(V) aQd YaOXe(V)

("")

BLQdLQgV LQVLde fXQcWLRQ - dUag ZhaW \RX ZaQW beORZ, RU dRXbOe-cOLcN WR ZULWe cRde

lengWh_inW = OeQgWh iQW_OiVW

 UQdR (Z) RedR (Z) if (??) WheQ (??) eOVe (??) OeQgWh (??) (??) :: (??) SRPe (??) ON (??) WUXe FP_]eUR OSeQ_ZURQO\ ()

if (??) WheQ (??) eOVe (??)

(??) = (??)

(??) && (??)

(??) __ (??)

(??) + (??)

(??) @ (??)

LiVW.PaS (??) (??)

LiVW.ƓOWeU (??) (??)

(??) < (??)

(??) <= (??)

(??) > (??)

(??) >= (??)

TRS OeYeO - dUag LWePV fURP Whe PeQXV abRYe, RU dRXbOe-cOLcN beORZ WR ZULWe cRde

inW_liVW = [0 ; 0 ; 0]

leQgWh
[1

ReWXrn
+

ReWXUQ e[SUeVVLRQ(V) aQd YaOXe(V)

("")

BLQdLQgV LQVLde fXQcWLRQ - dUag ZhaW \RX ZaQW beORZ, RU dRXbOe-cOLcN WR ZULWe cRde

lengWh_inW = lengWh inW_liVW

 Undo (Z) Redo (Z) if (??) When (??) elVe (??) lengWh (??) (??) :: (??) Some (??) Ok (??) WrXe FP_]ero Open_Zronl\ ()

lengWh (??)
(d)

Figure 5 (a) The toolbar, including menus for (b) skeleton expressions, (c) functions defined in
the current file, and expressions auto-generated from data types in scope, e.g. the lists shown in (d).

for the bindings (TVs) inside the function, of which there are none yet. Below the subcanvas
is a (non-movable) TV for the return expression and overall result value of the function.
Currently the function return expression is a hole expression, written (??). Hole expressions
are placeholders, expected to be filled in later. For this reason, they are displayed larger than
normal expressions (to make them easier targets for clicking) and have a slowly pulsing red
background (to remind the user that the program is unfinished). While the (??) syntax is
supported by OCaml’s editor tooling (Merlin [6] and its language server protocol wrapper [26]),
programs with holes are ordinarily not executable. To continue to provide live feedback in the
presence of holes, Maniposynth evaluates hole expressions (??) to a hole value, displayed
as ?. This hole value ? is the current return value of the function shown below (??) – in
green because it was introduced by the immediate expression above – and also shown in the
“Return” row of the IO grid as well as, back on the main top-level canvas, in the result value
of the length int_list function call.

Baklava does not like the default x1 parameter name in the length function and wants
to rename it. Most items in Maniposynth can be double-clicked to perform a text edit.
Baklava double-clicks the pink-background x1 to rename the variable (patterns are pink),
and writes the name list instead. Figure 6a shows the code at this point.

ECOOP 2022

16:6 Bimodal Tangible Functional Programming

(a) (b)

(c) (d)

Figure 6 Creating a recursive call. (a) Code before. (b) Dragging a new length call into the
length function. (c) Resulting code and (d) resulting length function TV.

A goal of Maniposynth is to allow non-linear editing – the ability to make incremental
progress toward a solution. Baklava knows she must make a recursive call to the length
function, so, without thinking hard about what might come after, she decides to add
length (??) inside length. She could double-click and type this code, but typing (??)
requires some finger gymnastics. Maniposynth supports a large number of drag-and-drop
interactions. Any green expression can be dragged to a new location to duplicate that
expression: dropping on an existing expression (e.g. a hole) replaces the existing expression,
while dropping on a (sub)canvas inserts a new binding (TV). Values and patterns can also be
dragged to expressions or (sub)canvases – when hovering over a value or pattern, a tooltip
shows what expression will be inserted. Finally, a toolbar at the top of the window (Figure 5a)
offers menus containing skeleton expressions: the first menu offers common expressions such
as if (??) then (??) else (??) (Figure 5b); the second menu offers functions defined in
this file (Figure 5c); and the remaining menus offer constructors and automatically generated
example values of the types in scope (e.g. Figure 5d; the expressions are the same as those
offered by autocomplete). User-defined custom data types, if any, also appear as menus.

Baklava drags length (??) from the toolbar into the subcanvas for her length function
(Figure 6b). A length2 = length (??) binding is created in the code (Figure 6c) and an
associated TV appears inside length (Figure 6d). Maniposynth also changes the top-level
let length = ... into let rec length =

Because (??) produces hole value ? instead of crashing, the length function is now diverg-
ing as length (??) calls length (??) which calls length (??) and so on. Maniposynth
uses fueled execution to cut off infinite loops and keep functioning. In the function IO grid,
extra columns show these calls (Figure 6d), but other than understanding why these extra
columns are there, Baklava need not mind that her program is momentarily divergent.

B. Hempel and R. Chugh 16:7

(a)

(b)

(c)

Figure 7 (a) A “Destruct” button appears when the cursor hovers over an input that is an ADT
value. (b) Code and TV for length function after destructing the [0; 0; 0] input value. (c) After
dragging the tail value [0; 0] to the red hole argument (??) for the recursive length call.

Baklava wants the recursive call to operate on the tail of the input list. When she moves
the cursor over the input list in the IO grid, a “Destruct” button appears (Figure 7a), which
she clicks. As shown in Figure 7b, a match statement (i.e. case split) is added, with holes for
the return expression of each branch. On the display, there are a number of visual changes.
In the IO grid, hd and tail pink subscripts appear inside the input list [0; 0; 0], labeling
the subvalues that are now bound to names by the match statement. To make these bindings
even clearer, they are also represented as two new TVs in the function subcanvas. Finally,
the function now has two possible return expressions: both appear as (non-movable) TVs at
the bottom of the function, one is grayed out indicating it is not the branch taken when the
input is [0; 0; 0] (the column currently selected in the IO grid). Above the two return TVs
is an indication of the scrutinee, “← list →”, which allows editing of the scrutinee expression.

Now that the list tail is exposed on the subcanvas, Baklava drags it (either the pink
tail name or the [0; 0] value below it) onto the hole in length (??), transforming it
into length tail. In her code, the binding is moved from the top-level of the function into
the branch in which tail exists (Figure 7c). Because Maniposynth embraces non-linear
editing, the user should not have to worry about binding order – bindings will automatically
be shuffled around as necessary to place items in the appropriate scope.

The additional calls from the recursion appear in the function IO grid, each still returning
hole value ? (Figure 7c, right). Baklava would like to edit the base case, so she looks for the
column in the IO grid where the input is [], and then clicks that column to bring that call
frame into focus. Call frames are effectively equivalent to runtime stack frames. The TVs not
executed on that call are grayed out (hd, tail, length2, and the return for the hd::tail

ECOOP 2022

16:8 Bimodal Tangible Functional Programming

Figure 8 Autocompleting to a value in scope.

branch). Baklava double-clicks the no longer grayed-out return expression (??) for the base
case and sets it to the constant 0. (She could also have double-clicked the green-background
hole value ?; values are rendered with a green background when double-clicking them will
effect an edit on the expression immediately above.)

Baklava now clicks the second-to-last call frame in the IO grid to bring into focus the call
where the input is [0]. The return expression for this branch is still (??). She notes that
the TV for the length tail call now displays a result value of 0. Baklava double-clicks the
return expression (??) and, after typing “1 + ” she pauses (Figure 8). When she began to
type, Maniposynth recolored the displayed values in scope using different colors, and now,
looking at the autocomplete options, she sees 1 + 0, 1 + 0, and 1 + 0 among the possible
autocompletions – each with a different color 0 corresponding to a similarly colored 0 value
elsewhere on screen. The maroon 0 is the return from length tail, so she chooses that.
The branch return expression becomes 1 + length2, and Baklava can now see in the IO
grid that her function returns the correct value for all inputs (Figure 1).

2.2 Undo and Delete
Maniposynth supports undo/redo. Additionally, any expression may be selected by a single
click and then transformed to a hole by pressing the Delete key. Entire let-binding TVs can
similarly be selected and deleted, removing them from the program. Uses of the binding must
be deleted before deleting the binding itself – otherwise Maniposynth will immediately
recreate a binding to satisfy the unbound variable uses.

2.3 Value-Centric Shortcuts, and Synthesis
There are usually multiple ways to complete a task in Maniposynth. Below are a few
variations Baklava might have performed instead.

B. Hempel and R. Chugh 16:9

(a) (b)

Figure 9 (a) A satisfied and unsatisfied assertion. (b) An undesired synthesis result. After
rejecting the return expressions (or the entire case split), the next result will be correct.

Drag-to-Extract. To extract the list tail for use in a recursive call to length, Baklava clicked
“Destruct” on the input value and dragged the resulting tail name to the length (??) call.
The explicit “Destruct” step can be skipped. Because Maniposynth aims is to make values
live as much as possible, subvalues can also be manipulated. Baklava could have hovered
over the portion of the input list [0; 0; 0] that is the tail of that list, namely ; 0; 0],
and dragged that subvalue directly to her length (??) call without pressing “Destruct”.
The destruction will be performed automatically, producing the same code.

Autocomplete-to-Extract. Similarly, visible subvalues are also offered as autocompletions.
Perhaps the fastest way to create list length is, immediately after the length function
skeleton is created, to double-click the return hole expression, type “1 + length ”, and
then finish the new expression by selecting ; 0; 0], the tail of the input list, from the
autocomplete options. The expression 1 + length tail and the needed pattern match will
be inserted, leaving only the base case to fill in.

Assertions. Baklava started with an example call to length. To remind herself of the goal,
she could have created an assertion instead: typing length [0; 0; 0] = 3 on the top-level
canvas will add an assert statement instead of a named binding. Assertions are rendered in
red when unsatisfied, and both the expected result (in blue) and the actual result (in black)
are shown. When satisfied, an assertion turns green and its result is hidden (Figure 9a).
Assertions can also be added via the function IO grid: clicking the “+” button at the right
of the IO grid creates a new column in the grid, allowing Baklava to fill in input values and
expected output. Upon hitting enter, the column is reified by adding a new assertion at the
top-level, so that the function is indeed called with the specified arguments.

Program Synthesis. Assertions facilitate programming by example (PBE) [28], a workflow
currently available in Microsoft Excel [27] but not yet in ordinary programming settings.
After asserting length [0; 0; 0] = 3, Baklava might have clicked the “Synth” button in

ECOOP 2022

16:10 Bimodal Tangible Functional Programming

Read on
HTTP request

Write
after action

Editor Web BrowserManiposynthCode File

Poll for change, or
Request an action

Rendered HTML
Parsed
AST

if polled

Run w/Camlboot
Trace
Log HTML

New
AST

if action Perform action

Render

New
CodeUnparse

Figure 10 Maniposynth architecture overview.

the lower-right corner of the UI. Maniposynth will use type-and-example based synthesis
(inspired by Myth [59]) to guess hole fillings until the assertion is satisfied or the synthesizer
gives up (after between 10 and 40 seconds). The synthesizer incorporates a simple statistics
model and other heuristics to improve result quality (Section 3.4). In this scenario, with only
the single assertion, Maniposynth instantly finds a filling that creates the proper case split,
but places 3 in the base case and length tail in the recursive case (Figure 9b). The result is
incorporated into the code, but presented to Baklava with buttons prompting her to “Accept”
or “Reject” parts of the synthesized expression. Rejected expressions are transformed back
into holes, with an annotation telling the synthesizer to avoid that expression in the future.
Baklava accepts the case split, but rejects its two return expressions. When she clicks “Synth”
again, the desired return expressions are discovered she accepts them.

3 Implementation

The main features of Maniposynth now demonstrated, next we describe how it works.

3.1 Architecture Overview

Maniposynth is a web application written in ∼8600 lines of OCaml (excluding the inter-
preter) and ∼2000 lines of Javascript. OCaml’s compiler tools and AST data types are
used to handle parsing, type-checking, type environment inspection, and pretty printing of
modified code. Modified code is further beautified by running it through ocamlformat [4] if
the user has it installed. Comments are (unfortunately) discarded by OCaml’s parser.

For displaying live feedback, we need to run the program and log the runtime values
flowing through the code. We modified the OCaml interpreter from the Camlboot [12] project
to emit a trace of all runtime values at all execution steps. We also performed additional
modifications to handle holes and assertions (described in the next section).

After Maniposynth runs the code via our modified Camlboot, Maniposynth associates
runtime values from the logged execution trace with program expressions, and then renders
HTML which is displayed in the browser. Almost all OCaml-specific logic is handled server-
side. The client-side Javascript only handles TV positioning and standard GUI interaction
logic. When the user performs an action, the Javascript sends the action to the server via
HTTP, the code is modified on disk, and the server prompts the browser to reload the page
to re-render the display. The browser also polls the server via HTTP so that when the file is
changed on disk, the display will refresh. This overall architecture is outlined in Figure 10.

Below, we describe our modified Camlboot interpreter, then how bindings are reordered
to provide a non-linear experience, and lastly the mechanics of the synthesizer.

B. Hempel and R. Chugh 16:11

3.2 Interpreter
Maniposynth needs to provide live runtime values. We base Maniposynth on the OCaml
interpreter in the Camlboot [12] project, an experiment in bootstrapping the OCaml compiler.
The Camlboot OCaml interpreter is written in OCaml and represents all values as an ordinary
OCaml algebraic data type (ADT), which allows inspecting their type and structure at
runtime, at the cost of somewhat slower execution relative to compiled code. We modified
Camlboot to handle holes and assertions, and to log runtime values during execution.

Supported Subset. Unmodified, the Camlboot interpreter will run a large subset of OCaml.
The tooling and display in Maniposynth, however, currently only fully supports a smaller
subset, shown in Figure 11. At the top-level, programs in Maniposynth are expected to
consist only of type declarations followed by (potentially recursive) let-bindings; assertions
are expected to occur only at the top-level. Only single-name patterns have full UI support
(although internal operations such as free variable analysis account for nested patterns).
Supported expressions include holes, base value constants, argument-less, single-argument,
and multi-argument constructors, variable usages, function introductions with an unlabeled
parameter, multi-argument function applications, (potentially recursive) let-bindings, tuples,
if-then-else, and pattern match case splits. Case splits are only fully supported on constructors.

Records do not have complete UI support. User-defined modules, opening modules,
imperative functions, and object-oriented features are currently unsupported.

The swath of supported syntax was enough to cover the kinds of data structure manipu-
lations we explored in our evaluation. During the user study exercises, participants rarely
missed the unsupported syntax. Even so, for the tool to become practical for everyday use,
the users noted it would need to support modules and imperative programming.

Holes and Bombs. It is best for the user if live feedback is available even if the program is
incomplete. While we could have the interpreter crash on the first hole, that may still be too
restrictive, e.g. if the expression is new and is still dead code, then the presence of the hole
should be inconsequential to the rest of execution. A thorough solution would be to adopt
the Hazelnut Live semantics, which describes how to evaluate around holes [58]. When holes
reach elimination position, terms become stuck (e.g. What should hole plus hole be? Or
which case branch should we take when the scrutinee is a hole?). Hazelnut Live evaluates
around the term by, effectively, turning the stuck term into a value which is propagated
until it causes another term to become stuck, and so on. While this can offer intriguing UI
possibilities in its own right (outlined in [58]), it requires displaying stuck terms to users as
if they are values. Maniposynth may do so eventually, but our display is already full of
elements to keep track of. Asking users to make sense of stuck terms, displayed far from
their origin, might be confusing.

Programs P ::= type t = T B

Types T ::= (from OCaml)
Top-Level B ::= let x = e

Bindings | let rec x1 = e1

| let () = assert (e1 = e2)
Patterns p ::= C | C x | C (x1, xi)

Exp. e ::= (??) | c | C | C e | C (e1, ei)
| x | fun x → e | e1 ei | x ei

| let x = e1 in e2

| let rec x1 = e1 in eb

| (e1, e2, ei)
| if e1 then e2 else e3

| match e1 with p → ei

Figure 11 The subset of OCaml fully supported by Maniposynth. Overlines denote zero or
more instances of the syntactic element. Unsupported expressions and patterns are displayed but do
not have full UI support. The synthesizer (Section 3.4) emits only those forms displayed in blue.

ECOOP 2022

16:12 Bimodal Tangible Functional Programming

Maniposynth adopts a middle ground that does not allow terms to become stuck. The
hole expression (??) introduces a hole value ? that remembers the introduction location and
captures a closure. (This closure is not displayed, but is occasionally used during synthesis.)
Hole values propagate through evaluation. If a hole value reaches elimination position (e.g.
? + ?), we resolve the expression to a special Bomb value (displayed as). Similarly, if
a Bomb reaches elimination position, another Bomb is produced. In this way, execution
continues and expressions unrelated to the unfinished code still provide live feedback.

Finally, to prevent infinite loops from inhibiting live feedback, Maniposynth uses fueled
execution to abort when the right-hand side of a binding takes too long to execute. Each
top-level let-binding is allocated 1000 units of fuel (execution steps), and each non-top-level
let-binding reserves 50 units for later execution in case the binding diverges. When the
interpreter runs out of fuel on a binding, all patterns at the binding are bound to Bomb,
and execution continues if any fuel remains. Divergence is moderately common, because
recursive call skeletons like length (??) from the Overview Example will repeatedly call
the function with a hole value. Thus it is important that execution bypasses the divergence
with some fuel reserved so that later TVs will still show live values in the display.

Assertion Logging. When an assertion is encountered during execution, ordinarily OCaml
would throw an exception if the asserted expression returns false. Instead, Maniposynth logs
the result for later, but never raises an exception. Only equality comparisons are supported
for now; unsupported assertions are skipped. The expected expression (the right-hand side),
the subject expression (the left-hand side), and the result values of both are logged. Logged
assertions are used both for synthesis and to display blue expected values to the user wherever
that same expression and value is encountered during execution (Figure 9a).

Tracing. In addition to assertions, Maniposynth also logs other execution information
needed for display. Our interpreter records information in two places: each execution step is
entered into a global log, and we tag side information onto runtime values.

At each execution step and at each pattern bind we add a log entry to a global trace,
recording the current AST location, the call frame number (from a global counter incremented
upon each function call), the result value or value being pattern matched against, and the
execution environment of bound variables. When producing the display, this information is
queried to discover which values flowed through which locations and under which call frames,
and the appropriate values are rendered.

For convenience, we also store extra information on values. On values we log the type
of the value when it is introduced (or returned from a built-in external primitive such as
addition) so we have a concrete type associated with the value even if it is later used in a
polymorphic context. To the value we also attach a list of frame numbers and AST locations
of the expressions and patterns the value passes through, to, e.g., conveniently interrogate
where a value was first introduced. For example, to display function closure values, we find
where the closure was bound to a name and display that name as the rendered value.

These mechanisms are sufficient to render the live feedback in Maniposynth. Extensive
logging might be expected to slow down execution. But when applied to the small programs
tested at present, HTML rendering tends to take longer than the initial execution. Overall,
the Maniposynth server is generally able to provide a response in under 200ms.

B. Hempel and R. Chugh 16:13

let a = 1

let c () =
 let x = (a, b, c, d) in
 let a = 0 in
 x

let b = 2

?

let a = 1

let b = 2

let rec c () =
 let a = 0 in
 let d = (!") in
 let x = (a, b, c, d) in
 x

let a = 1

let c () =
 let x = (a, b, c, d) in
 let a = 0 in
 x

let b = 2

let a = 1

let c () =
 let x = (a, b, c, d) in
 let a = 0 in
 x

let b = 2

?

let a = 1

let b = 2

let rec c () =
 let a = 0 in
 let d = (!") in
 let x = (a, b, c, d) in
 x

let a = 1

let c () =
 let x = (a, b, c, d) in
 let a = 0 in
 x

let b = 2

let a = 1

let c () =
 let x = (a, b, c, d) in
 let a = 0 in
 x

let b = 2

?

let a = 1

let b = 2

let rec c () =
 let a = 0 in
 let d = (!") in
 let x = (a, b, c, d) in
 x

let a = 1

let c () =
 let x = (a, b, c, d) in
 let a = 0 in
 x

let b = 2

(a) (b) (c)

Figure 12 (a) A program. (b) How Maniposynth interprets what each variable usage refers to.
(c) The reordering Maniposynth performs. The bindings of a and b are moved up so they are in
scope, c is marked as recursive, and d is created.

3.3 Fluid Binding Order

A primary goal of Maniposynth is to offer a non-linear editing experience. We do not want
users to have to worry about binding ordering. If the user sees a name on the 2D canvas,
they should be able to reference that name in the expression they are editing even if, in the
written code, that name is introduced later in the program.

To support this non-linear workflow, only limited variable shadowing is supported. All
names are assumed to be unique within each top-level definition. Names may (initially) be out
of order. Figure 12a presents an example. As shown in Figure 12b, Maniposynth interprets
each of the variable uses in (a, b, c, d) different from standard OCaml. Although there
is a top-level binding a = 1 in scope, the use of a in (a, b, c, d) refers to the binding
a = 0 below it, because Maniposynth is agnostic about the order of names within a
top-level definition (within the top-level definition c). The variable b, however, does not
have a definition within c, so its usage refers to the top-level binding b = 2, despite being
(momentarily) out of scope. Similarly, the usage of c refers to the top-level binding for c,
although the binding is not (yet) marked recursive. The variable d has no binding.

To reify these references as valid OCaml, after every user action Maniposynth reorders
bindings, move bindings into match statement branches (not shown here), and adds a rec
flag on bindings that refer to themselves. Only single recursion can be inferred for now
(multiple recursion may be added manually in the text editor). Figure 12c shows the result
for this code example. The nested definition of a is moved before x, the top-level definition
of b is moved up as well, the binding for c is marked as recursive, and a new definition is
added for the missing variable d.

When creating a new definition for an undefined variable, if it is used as a function in an
application the new variable is bound to a function skeleton with the appropriate number of
parameters. Here, d is not used as a function and is initialized as a simple hole (??).

The overall effect of the above reordering is that users rarely need to think about binding
order in their code. They can use the displayed TVs as if they are all visible to each other.

3.4 Synthesizer

As discussed in the Overview Example, Maniposynth includes a programming by example
(PBE) workflow to help users finish their incomplete code. Here we detail the program
synthesizer’s operation and our design choices in its implementation.

ECOOP 2022

16:14 Bimodal Tangible Functional Programming

The Maniposynth synthesizer does not contain any new “big” ideas, but the design was
carefully chosen for our setting. To be as practical as possible, we had four goals:

(a) Few examples. To reduce user burden, we would like the synthesizer to operate with
few examples. For example, Myth [59] also targeted an OCaml subset, but required
that user-provided examples include all needed recursive calls – e.g. length [0;0] = 2,
length [0] = 1, and length [] = 0. This “trace completeness” requirement is bur-
densome; we would like our synthesizer to operate with only one or two examples.

(b) No type annotations. Similarly, Myth and its successor Smyth [48] require holes to
have types before synthesis, which requires manual annotation. We would like to relieve
the user of this responsibility and operate without explicit type annotations.

(c) As simple as possible. The primary goal of Maniposynth is to explore non-linear
editing, not synthesis per se, so we wanted to keep our synthesizer as simple as possible.
For now, we did not adapt Smyth because, although it appropriately relaxes the trace-
completeness requirement, Smyth utilizes a complicated synthesis schedule and requires
the Hazelnut Live machinery [58] for evaluating around holes.

(d) Quality results. When given only a few examples, synthesizers are notorious for
producing simple but undesirable results (for example, “January, Febuary, Maruary” [2])
which limits their utility. This problem is compounded when the synthesizer is asked to
operate in practical environments with many variables in scope, rather than unrealistic
bare minimal execution environments often used for synthesizer benchmarks. Our
synthesizer should operate with the OCaml standard Pervasives library open in the
execution environment so the synthesizer may choose to use, for example, addition and
subtraction. We adopt statistics and heuristics to make this tractable.

Myth used types and examples to dramatically reduce the search space and to intelligently
introduce case splits. To meet the above goals, we built a Myth-like synthesizer, but we
relax the trace-completeness requirement and instead rely on a statistics model to guess
more likely terms sooner. Our target language subset, the statistics model, the synthesis
operation, and our other heuristic choices are described below.

Synthesizable Subset. The blue expression and pattern forms in Figure 11 describe the
OCaml subset that the synthesizer may produce to fill holes in the program. It can introduce
functions, match expressions, constants (drawn from a corpus), variable uses, function calls
with a variable in function position, constructor uses, and if-then-else expressions.

Statistics Model. Naively, guess-and-check will produce a large number of programs the
user is unlikely to want. Incorporating a statistics model guides the synthesizer to guess more
likely programs sooner and can speed up synthesis by multiple orders of magnitude [45, 39].
It also has the potential to offer more reasonable results when fewer examples are given.

We model program likelihood using a probabilistic context-free grammar (PCFG). A
PCFG is a grammar with a probability assigned to each production rule. For our synthesizer,
we derived the probabilities of the production rules from a corpus of OCaml code – namely, the
source files required to build the OCaml native compiler. The overall probability of a program
term is the product of the probability of the production rule of the term with (recursively)
the probability of all its subterms. Identifiers are handled specially: an identifier’s probability
is based on how spatially close it is to its introduction pattern in the code.

For example, the most likely term (i.e. what the synthesizer should guess first) is always
the most recently introduced variable. The production rule for an identifier has a probability
of 52%, the probability that the identifier is local is 73%, and the probability a local identifier
is the most recently introduced variable is 31%, for an overall probability of 12%.

B. Hempel and R. Chugh 16:15

Type-Directed Refinement. Myth divides synthesis into two processes. Type-directed
refinement introduces program sketches – either data constructor applications, function
introductions, or case splits – at holes based on the type at the hole and the types of
variables in scope (to find an appropriate scrutinee for a match). These sketches contain
further holes to fill (i.e. for the function body and the match branches). Type-directed
refinement alternates with type-directed guessing, which performs simple type-constrained
term enumeration to fill remaining holes (guessing will not introduce functions or match
statements).

Maniposynth uses type-based refinement to introduce functions and insert case splits
(data constructors are instead handled in the guessing process). Maniposynth refines a hole
into a function zero to three times (i.e. supporting up to three arguments) before possibly
introducing a single case split. The user can add further case splits with the “Destruct”
button. Introducing functions is rarely needed in practice because, in the Maniposynth UI,
undefined variables are inserted with a function skeleton.

Type-Directed Guessing. After refinement, terms are enumerated (guessed) at holes up to
a probability bound [44] according to the PCFG. During term enumeration, the probability
bound is treated as a resource. When the probability is exhausted, no further enumeration
occurs on a subtree. If a candidate subterm’s probability is above the final bound, the
remaining probability is available for enumerating sibling terms.

Within a hole, term enumeration is type-directed, starting from the type of the hole.
Leveraging OCaml’s type checking machinery, subterms are unified during the enumeration
process to narrow the type. For example, if a hole has type int and the synthesizer guesses
a call to max, of type ’a → ’a → ’a, the return type will be unified with int and the
synthesizer will only guess terms of type int for the arguments.

Initial sketches often have polymorphic types unhelpful for synthesis. For example, the
length function has type ’a → ’b in let length x1 = (??). To tighten these bounds
before term enumeration, input and output types of functions are speculatively chosen
based on the examples. If the user asserts that length [0] = 1, then length is given the
speculative type int list → int. Speculative types are removed after term enumeration in
case the final code has a more general inferred type (’a list → int in this case).

To produce more natural results, Maniposynth limits where constants may appear. A
term is estimated to be non-constant if it uses an introduced function parameter or variable
introduced under the outermost enclosing function. At most one hole may be constant,
and, when introducing a function call, at least one argument must be non-constant. Term
enumeration avoids constants in locations where inserting one would violate these rules.

Non-Linearity. To follow the non-linear behavior of Maniposynth, the guessing process
also guesses variable names that are not in lexical scope but could be moved into scope via
Maniposynth’s binding reordering algorithm (Section 3.3). The reordering algorithm is
applied before testing whether a candidate program satisfies all assertions.

Final Heuristics. Finally, when all holes have been filled with type-appropriate terms within
the probability bound, the candidate program is accepted if:

(a) All assertions are satisfied. (Fueled execution is used when checking assertions.)
(b) At most one hole is filled with a constant.
(c) All introduced function parameters are used.
(d) The result at a hole has not previously been rejected by the user.
(e) Execution of the examples encounters all filled hole locations (i.e. the execution path

does not somehow avoid a hole).

ECOOP 2022

16:16 Bimodal Tangible Functional Programming

If no satisfying hole fillings are found at the initial probability bound and a 10 second
timeout has not been reached, guessing is restarted with a new bound 1/20 of the old. If there
is a valid candidate program, the program with highest probability is returned. Enumeration
within a given probability bound is not precisely from highest to lowest probability, however,
so a timeout will not interrupt a round of synthesis until the full space of that probability
bound is explored. Thus, the timeout the user experiences varies between 10 and 40 seconds.

4 Evaluation

To evaluate to what degree Maniposynth meets its goal of providing value-centric, non-
linear editing, we performed two evaluations. In one, an expert user (the first author) used
Maniposynth to implement 38 functions from the exercises and homework of a functional
data structures course [56]. In the second, to provide additional qualitative insights on the
operation of the tool, we hired two professional OCaml programmers, guiding and observing
them as they used Maniposynth to implement a subset of the above functions.

4.1 Study Setups
The first six lessons of the course [56] cover natural numbers (via an ADT), various list
functions, leaf trees, binary trees, binary search trees, and a form of binary search tree that also
records on each node the minimum value of all its descendants. We excluded the six functions
on this specialized tree because of time constraints. The course exercises and homework
spanned 38 functions on the remaining data structures. The first author implemented
each of these functions in Maniposynth with the code editor hidden. Maniposynth was
configured to log the number and kinds of actions performed. We report on these in the next
section. Our aim was to show that the Maniposynth interface was able to implement these
exercises and to discover if there were any obvious trouble points.

For our user study, we advertised on https://discuss.ocaml.org/ and hired two
professional OCaml programmers for three sessions each. Sessions were spread over three
weeks, with each session lasting two hours. Participant 1 (P1) and Participant 2 (P2)
had 5 and 11 years, respectively, of professional OCaml experience. The participants
ran Maniposynth on their own computers alongside their preferred text editor (Vim for
both). The study facilitator connected via video conference and recorded the sessions.
Participants implemented their choice of exercises from the list, or suggested their own task
to complete. The facilitator provided varying amounts of guidance throughout, starting with
close guidance to teach the tool and transitioning to less intervention as participants became
more comfortable. After each exercise and at the end of each session, participants discussed
a series of questions posed by the facilitator. In concert with Maniposynth’s four design
principles – value-centric operation, non-linearity, supporting synthesis, and bimodality –
we aimed to gain insights about the following four research questions, along with three
supplemental questions:

RQ1. How do users interact with the live values?
RQ2. How do users work non-linearly?
RQ3. How do users interact with program synthesis?
RQ4. How do users interact with their text editor?
SQ1. What are the pain points? How might the system be improved?
SQ2. Are participants comfortable enough to complete a task without guidance?
SQ3. What else can we learn via the lenses of the Cognitive Dimensions of Notations [25]?

https://discuss.ocaml.org/

B. Hempel and R. Chugh 16:17

Figure 13 Maniposynth beautifies tree-like values.

For each participant, the first session introduced the tool without synthesis, the second
session introduced synthesis (before the synthesizer had a statistics model), and the third
session concluded with the tool as presented here. Based on participant feedback, we fixed
bugs and made improvements between each session.

4.2 Results
Example Corpus Implementation. The expert implementer spent about 4.5 hours total –
working in fullscreen with their text editor hidden – implementing the 38 functions, resulting
in about 550 lines of code (including AST annotations and examples written for live feedback,
but excluding whitespace). A quantitative summary of these example exercises is shown
in Table 1. There are often many paths to a correct implementation, so to constrain the
workflow the implementer did not use synthesis, and did not use the ordinary text editor
except to copy an earlier function into a later exercise (in case of dependencies) or when
Maniposynth crashed on the given code (e.g. when the implementer tried to raise an
exception in unreachable code that turned out to be reachable!). Note that for the functions
operating on tree-like data types (ADTs with multiple children of the same recursive type),
Maniposynth’s live display helpfully draws the trees as trees (Figure 13).

Primarily, these 38 examples show that the Maniposynth UI is expressive enough
to create these programs. We also noticed two qualitative takeaways from the exercises.
First, although we believe bimodality is an important property for the grounding and long-
term practicality of the tool, it is possible to hide the text editor and work entirely in
Maniposynth. Second, even with live feedback available, it is not always used – a theme
that reemerged in our user study. We now discuss these two observations in more detail.

The non-linearity machinery largely worked – the implementer did not have trouble with
binding order. Even so, they were careful to name extracted subvalues well, because the
positioning of the extracted TVs on the 2D display did not (by default) reflect the items’
positions in the original data structure. Particularly for nested matches, there were sometimes
a large number of these extracted values displayed and it was hard to keep track of them.
The implementer found it helpful to reposition the extracted TVs (the TVs representing case
split branch patterns) to reflect those original positions. Ordinary textual code for case split
patterns would provide some of these positional cues without manual interaction.

On a few exercises requiring nested match statements, Maniposynth initially created the
wrong nested match structure; with the non-linear display, this is hard to notice and requires
thinking about the match nesting structure shown in the return TVs area. Regardless, the
implementer worked around the trouble by undoing and triggering the destructions differently.

The second observation from these examples is that the implementer noticed that they
seem to flip between two mental modes: these modes correspond roughly to focusing on
displayed values versus focusing on expressions. In the value-oriented mode, the implementer
would put their attention on the live values to consider if the code is operating correctly;

ECOOP 2022

16:18 Bimodal Tangible Functional Programming

Table 1 Example exercises, with lines of code, number of assertions, time in minutes, number of
mouse actions (excluding selection and undo/redo), number of keyboard interactions (e.g. typing
in a textbox), number of undo/redo/deletions, number of type errors encountered, and number of
times Maniposynth crashed and the file had to be repaired in the text editor.

Function LOC Asserts Time Mouse Keybd Un/Re/Del TypeErr Crash
nat_plus 5 0.8 6 5
nat_minus 8 1.9 6 11
nat_mult 9 1.4 8 6
nat_exp 13 2.1 9 6
nat_factorial 13 1.6 8 4
nat_map_sumi 10 2.6 11 5 1
count 9 1.9 9 11
length 4 0.3 1 7
snoc 8 1 2.4 8 12 2
reverse 8 1.5 4 9
nat_list_max 17 4.6 23 21
nat_list_sum 13 1.1 9 4
fold 9 3.2 14 6
shuffles 14 14.5 25 28 2
contains 9 2.2 10 13 1
distinct 16 2.4 9 11 2
foldl 10 1 1.5 10 6 1
foldr 8 1 1.8 10 5
slice 12 3 9.8 19 22 4
append 8 1 1.4 7 9
sort_by 21 3 6.2 17 29
quickselect 13 1 13.1 19 38 1 1
sort 16 3 5.6 11 32 2
ltree_inorder 12 1 2.9 7 20 1 1
ltree_fold 13 1 3.1 13 13
ltree_mirror 11 1 4.4 12 6 1 1
bst_contains 14 3 6.6 11 32 1
bst_contains2 17 5 10.4 20 41 2
btree_join 34 2 61.7 82 64 51 2
bst_delete 36 2 14.4 31 24 4
bstd_valid 29 3 32.2 63 100 4 1
bstd_insert 18 2 8.0 38 23 3
bstd_count 21 1 7.6 15 32 1
bst_in_range 31 3 9.3 23 39 3
btree_enum 29 3 19.2 31 51 6 3
btree_height 15 1 1.9 11 14
btree_pretty 14 1 3.7 4 21 4
btree_same_shape 19 1 8.1 14 34 7
Total 566 44 277.6 628 814 97 13 3

in the expression-oriented mode, the implementer would read expressions and simulate the
computer’s operation in their head. As a matter of discipline, the implementer was trying
to push themselves to consider and use the live values, but nevertheless often reverted to
thinking only about the expressions instead. We have three hypotheses for why there seems
to be a tendency to revert to focusing on expressions instead of values.

Hypothesis A: Expressions are a concise language to represent abstractions, and program-
ming is, fundamentally, abstract. Concrete values do not directly represent the abstraction.

Hypothesis B: Seasoned programmers have many years of experience reading code and
simulating the computer in their head. Our brains have adapted to it, and it feels natural.

Hypothesis C: Maniposynth did not provide enough live feedback and forced the imple-
menter to consider the expressions. In some cases this was immediately true: Maniposynth
currently only displays the first and last three call frames, with no option to see the others, so
sometimes relevant values were in unavailable call frames. Additionally, when initially trying
to figure out what algorithm was needed at all, the implementer found it easier to work out
the initial algorithm sketch in their head rather than guess and check in Maniposynth.

All three reasons likely contributed to the tendency to put attention back on expressions
rather than values. A similar theme was observed in the user study, which we now discuss.

B. Hempel and R. Chugh 16:19

RQ1. How do users interact with the live values? Value-oriented focus versus the “old
way” of expression-oriented focus is a theme that appeared in several participant interactions.
For example, despite values featuring prominently in the display, it took until after the entire
first exercise for P2 to fully realize they were looking at and working with live values. In
another scenario, P1 and the facilitator together spent an embarrassingly long time trying to
find a bug in an insert_into_sorted_list helper. After finding the bug they realized that,
had they carefully inspected the live values, they might have found the bug much sooner.
Additionally, P2 observed that they are so used to reading trees as long lines of text (e.g.
Node (Leaf 2, Node (Leaf 2, Leaf 3))) that they were subtly repelled by the “much
more readable” beautified 2D rendering of tree values (Figure 13).

Even so, participants still did use the live display and expressed appreciation for it. For
example, P2 noted that the live display ameliorated the need to write large amounts of tree
pretty-printing code to perform printf-debugging.

Live values require the user to switch call frames to see other example function calls, or
calls that hit a different branch in the code. This was not always natural for participants. In
the first session, P2 admitted to sometimes being confused about what branch they were
looking at. And, despite gaining moderate proficiency with the tool by the end of the study,
P2 still remarked that it was hard to think about how you can flip between frames. How to
modify the display to help clarify this operation remains an open question.

RQ2. How do users work non-linearly? We want to know how programmers adapt to
Maniposynth’s non-linear style. The tool requires a number of “inside-out” (P1) changes
in thought, such as creating an example before defining a function, providing expressions
without naming them first, and not worrying about let-binding order. By the end of the
study, participants were familiar with these concepts but did not necessarily start out that
way. For example, in the first session P1 had trouble remembering to create functions by first
providing an example call, but by the end of the study was doing so without any prompting
from the facilitator. P1 also initially had trouble finding particular variable definitions on
the screen but felt more comfortable by the second session. Near the end of the second
session P2 expressed, “I want a let binding. . . I don’t have any confidence I can make let
bindings,” despite having successfully done so many times by double-clicking the subcanvas
or dragging values into the subcanvas. P2 instantly understood after a quick reminder from
the facilitator, but it is notable that even after around three hours with the tool it had not
quite sunk in that most TVs are let-bindings.

At the end of the study, we asked participants about writing expressions without naming
them first. P1 expected to prefer being required to always provide a name; P2 was unsure, but
noted that Maniposynth’s default names had improved from the first version they used. In
particular, at P2’s behest we hard-coded the default names for list destruction to be hd::tail
instead of the original type-based a2::a_list2. Even so, we rediscovered that naming was
important in programming. Function skeletons are still inserted with generic parameter
names, e.g. fun x2 x1 -> (??), which are both unhelpful and backwards. This indeed
resulted in user mistakes, and is a point to improve in future versions of Maniposynth.

Despite a few troubles, both participants were positive overall about the non-linear
workflow. P1 noted the non-linear style “fits a lot more with how I like to write code,” and
P2 said, “I like it, I’m excited about it.”

ECOOP 2022

16:20 Bimodal Tangible Functional Programming

Table 2 User study participant interaction with synthesis, reporting the number of exercises using
synthesis, the number of invocations of the synthesizer, the mean number of assertions and holes
when invoked, and the usefulness of results: the percentage of invocations in which the synthesizer
returned no result (timeout or crash), returned a result that was completely rejected by the user,
and returned a result that was at least partially accepted by the user.

Mean Mean % No % Useless % Useful
Participant #Ex #Synth #Assert #Hole Result Result Result
P1 7 52 3.3 2.0 48% 35% 17%
P2 7 46 3.1 1.0 30% 54% 15%
Total 14 96 3.2 1.6 40% 44% 16%

RQ3. How do users interact with program synthesis? We introduced participants to
the synthesizer in the second session, at which point it lacked a statistics model (instead
enumerating terms by size) and did not offer “Accept / Reject” buttons (instead requiring
the user to Undo upon undesired results); these were added for the final session. We wanted
to learn how comfortable users were with providing assertions and using the synthesizer.

Participants were familiar with writing assertions. In the first session, the facilitator
only introduced participants to providing example function calls, not asserting on their
results. Despite this, unprompted, both participants wanted to make assertions once they
had an example to work with. When assertions were formally introduced, participants were
generally comfortable providing examples, although P1 would occasionally write assertions
in a polymorphic form, e.g. foldl f acc [] = acc, which would insert new blank bindings
for f and acc on the canvas and P1 would have to recover from the mistake. Even so, P1
appreciated that Maniposynth encouraged them to write in a test-driven development
(TDD) style, and suspected it prevented them from making simple errors. When asked if
they had trouble writing assertions, P2 responded, “I had trouble not making assertions,”
because P2 enjoyed toying with the synthesizer, but P2 did observe that constructing trees
was a little tricky. Maniposynth currently only beautifies tree values, not tree expressions.
Overall, when we asked how laborious it was to create examples on a scale of 1 to 10, P1
and P2 responded with 2 and 4, respectively. Providing assertions was not a bottleneck.

The facilitator introduced synthesis to the participants with the list length example,
which left a positive first impression on the participants. Synthesis was somewhat less helpful
after the length example. Overall, the participants invoked the synthesizer a total of 96
times (6.9 times per exercise), with only 16% of those invocations returning a result that
the user partially or fully accepted (Table 2). Despite the low success rate, participants
appreciated the synthesizer enough when it succeeded that they were not overly bothered
when it did not, and were therefore comfortable invoking synthesis many times.

Before the addition of the “Accept / Reject” buttons in the third session there was also
no feedback in Maniposynth that clearly indicated what had changed – P1 admitted to
looking at their Vim window to ascertain what the synthesizer produced. The addition of
the “Accept / Reject” interface was appreciated by participants and P1 noted they did keep
their focus more on the Maniposynth window.

Overall, the facilitator’s impression was that the participants were comfortable trying
to use synthesis, but did not necessarily obtain mastery of it, in part because synthesis is
opaque. P1 noted, “It is really hard to know whether synthesis is failing because I have
posed the problem in an incorrect way or synthesis is failing because I haven’t given it a lot
of information. But the process of trying to give it more information is very illuminating
in terms of whether my conception of the problem is wrong.” P2 initially felt that working

B. Hempel and R. Chugh 16:21

with the synthesizer was unfamiliar but remained intrigued by its potential, saying, “It was
kind of awkward at first. It sort of seemed like a cool trick but there were parts where it
would actually complete the program which was kind of nice even though it was not like a
very trivial program. That’s a neat feature.” These experiences suggest that synthesis in this
setting is a viable workflow, despite its initial unfamiliarity.

RQ4. How do users interact with their text editor? Participants were allowed to use
their text editor, but the heavy focus on learning Maniposynth meant that they only did
so only as a last resort. P1 estimated they spent about 40% of their time looking at Vim
when trying to figure out what was going on, but, by the end of the third session, only felt
the need to edit in Vim on particularly tricky errors. P2 also felt more comfortable in Vim,
“When I was really stuck, I felt self-conscious and I was like, “Alright I’ll just figure this out
in Vim quickly.” It’s faster, probably, I’ve got years of experience doing that.”

Part of the promise of bimodal editing is that one can do this! Even so, Maniposynth
may be over-reliant on only using shapes and colors to differentiate different kinds of elements,
which may have driven the participants to look at their Vim window to understand what
was happening instead of relying solely on the Maniposynth display.

SQ1. What are the pain points? How might the system be improved? Participants had
trouble keeping track of all the elements on the display. Maniposynth relies on colors and
shapes to distinguish the multitude of different UI elements: expressions, values, function
parameters, assertions, expected values, return expressions, patterns, let-bindings (TVs), and
different (sub)canvases that hold let-bindings. Both participants expressed a desire for more
explicit labeling of what all these different elements were. After the first session, we added
labels on the subcanvases (“Top level”, “Bindings inside function”, “Return expression(s) and
value(s)”) which P1 expressed appreciation for. We hoped those would obviate the need for
more labeling, but at the end of the final session participants still desired clearer markings.

SQ2. Are participants comfortable enough to complete a task without guidance? After
each exercise we asked participants if they felt comfortable completing the next task without
assistance from the facilitator. By the end of the final session P2 was comfortable with
minimal assistance, whereas P1 still felt the need for help. Although P1 understood the tool
well, they still stumbled over different small issues such as UI corner cases and accidentally
trying to edit a parent expression in the subexpression editor (discussed in SQ3 below).

SQ3. What else can we learn using the lenses of Cognitive Dimensions of Notations?
This framework [25] comprises thirteen lenses for qualitatively assessing design trade-offs.
Below, we report a subset of our observations from considering these lenses.

Diffuseness (How noisy is the display?) Maniposynth stores extra information, such as
2D binding coordinates and previously rejected synthesized expressions, as annotations in
the OCaml code. Although Maniposynth includes a syntax highlighting rule that will gray
out these AST annotations, the rule only works in VS Code with the Highlight extension [69]
installed. P1 opined that, “All the annotations do make it less attractive to try to do stuff
in Vim.” Rejected expressions were particularly confusing because they appeared in their
entirety in the code, albeit wrapped with [@not ...]. Participants would sometimes read
these large expressions thinking it was the code they were writing. After the study, we
modified Maniposynth to instead store a short hash of the rejected expression.

ECOOP 2022

16:22 Bimodal Tangible Functional Programming

Secondary Notation (Is there non-semantic notation to convey extra meaning?) Currently,
Maniposynth does not support comments. P1 missed having comments, while P2 did not.

Viscosity (How hard is it to make changes?) Three main scenarios arose where changes
were difficult. First, editing a base case requires that some execution hits the base case,
otherwise the base case can never be focused; this was occasionally a hindrance and might be
addressed either by adding a “phantom call frame” that focuses the case without a concrete
execution or by automatically synthesizing an example that hits the case. Second, once
an expression was in the program, it was hard to wrap the existing expression with some
new expression; it would be better if there were a mechanism to indicate whether a new
drag-and-dropped expression should replace or wrap the old. Finally, although subexpressions
can be text-edited by double-clicking them on the display, only that subexpression is opened
for editing. Sometimes participants (and the first author) would start editing a subexpression
but realize they needed to edit a parent instead. We have since changed Maniposynth to
open the entire parent for editing but with the clicked subexpression initially selected.

Visibility (Is everything needed visible? Can items be juxtaposed?) Element positioning
in Maniposynth proved tricky, because elements will change size based on the size of the
values in the TVs – multiple large trees in the function IO grid, for example, can make a
function take up the whole window. Participants did have to move assertions around. P2 used
a large screen and expected their functions to grow rightward: P2 would position assertions
far to the right of their nascent function. P2 also expressed the desire for snap-to-grid so they
could align their TVs perfectly. P1 used a smaller screen which may have caused trouble:
at one point P1 was trying to debug and realized after-the-fact that they had scrolled the
IO grid offscreen – had it been onscreen and they looked at it, they might have found their
mistake quicker. One possible mitigation is to scale down large values.

5 Related Work

Several systems share our goal to center live program values in the programming workflow.

Programming by Demonstration (PBD). In this interaction paradigm, the user demon-
strates an algorithm step-by-step, resulting in a program. The first PBD system, Pyg-
malion [67], targeted generic programming and, like Maniposynth, displayed the live values
in scope as the object of user actions. For example, a function call with missing arguments
was represented as an icon on the canvas. When all arguments were supplied, the icon was
replaced with a display of its result value. To use that result value, the user dragged the
value to where they wanted to use it. Recursion was supported. Although the 2D canvas
was non-linear, Pygmalion treated the program as an imperative, step-by-step movie over
time and did not offer a corresponding always-editable text representation.

Like Pygmalion, Pictorial Transformations (PT) [35] also offered program construction
via step-by-step manipulation of live program values. PT allowed the user to customize visu-
alizations, and was generally more expressive than Pygmalion, supporting more complicated
algorithms including those involving lists. Later PBD systems were usually more domain-
specific [13, 47], although ALVIS Live [37] targeted iterative array algorithms by demonstra-
tion, notably representing the resulting program in editable text. Unlike Maniposynth,
ALVIS Live generated imperative code and could not offer non-linear editing – UI buttons
were needed to allow users to move backwards and forwards in the timeline.

Some empirical evidence of benefits from a value-centric workflow was provided by the
Pursuit PBD system for shell scripting [54]. In that work, a comic-strip style representation
of a program – with before and after values in the frames of a comic-strip-enabled users

B. Hempel and R. Chugh 16:23

to more accurately generate programs compared to a more textual representation. On the
other hand, when Frison [1] compared student performance between Python Tutor [29],
providing editable code plus live output, and AlgoTouch [22], providing non-editable code
plus PBD on values, they found students performed comparably in either environment. An
analogous comparison in ALVIS Live also found similar overall student performance when
using text or PBD [38]. These results can be interpreted either way: pessimistically, that
value-centric manipulation is not clearly better; or optimistically, that despite non-editable
code, value-centric editing performs as well as ordinary programming. Even so, a PBD
environment may aid in avoiding initial fumbling with syntax and in discovering what a
tool can do: Hundhausen et al. [38] found that on the first task, users in the PBD condition
worked faster, more accurately, and spent less time consulting documentation.

Malleable Live Objects. In the object-oriented paradigm, the Self [72] language and
environment displayed live objects graphically, allowing messages to be sent via direct
manipulation (demonstrated in video form in [70]). Although value-centric, the interactions
provided by Self and related systems, e.g. the Morphic UI framework [49], differ from all
other systems discussed here in that manipulations in Self-like systems modify state, not the
algorithm.

Like Self, the “Direct Programming” prototype [18] by Edwards allows users to directly
invoke actions on displayed values, but, unlike Self, reified these actions in a script, blurring
the line between running a program and modifying it. Also blurring the line between runtime
interaction and coding, Boxer [15] was a non-linear programming environment displaying
nested boxes on a 2D canvas. A box could contain a comment, code, a value, or serve as a
graphics buffer for drawing. Boxes can be edited via code or by user interaction, enabling a
workflow that mixes program runtime interaction with program creation. Boxer aimed for
its interface to be an approachable computational medium, resulting in design choices that
differ from Maniposynth. Boxer is not bimodal – the displayed boxes are the program –
and state and code are mixed. Also, box results are not automatically rendered. Code boxes
must be manually invoked and must write their results to another box, but Boxer includes
mechanisms for configuring keys or mouse buttons to trigger particular boxes.

Live Nodes-and-Wires. In 2D nodes-and-wires programming [71], nodes usually represent
transformations (expressions) and the wires represent dataflow (values). Consequently,
nodes-and-wires environments do not necessarily display live values, although some systems
do output live values below the nodes (e.g. natto.dev [65]). Among these environments,
Enso [20], formerly known as Luna, is also bimodal like Maniposynth, offering both textual
and graphical representations for editing the program.

PANE [34] flips the usual node-and-wires paradigm, instead using example values for
nodes and locates transformations (expressions) on wires, placing values more at the center
of attention compared to its peers. Example values can be clicked to invoke operations on
them. PANE does not, however, maintain an editable text representation of the program.

Live Programming. Like Maniposynth, traditional live programming research seeks to
augment ordinary, text-based coding with display of live program values, although the
displayed values are read-only. There are a growing number of such systems. Python
Tutor [29] is a popular teaching tool for visualizing program state in Python and other
languages. Bret Victor’s Inventing on Principle presentation [73] demonstrated several live
programming environments and served as inspiration for later work [40, 46]. Edwards [17]

ECOOP 2022

16:24 Bimodal Tangible Functional Programming

showed how examples can be incorporated into the IDE for live execution, and Babylonian-
style Programming [61] explored how to better manage multiple examples – individual
examples could be switched on and off, an interaction we could adopt in Maniposynth to
selectively reduce the number of values shown in the function IO grids.

In-Editor PBE/PBD. Like our programming by example (PBE) synthesizer, recent work
explores PBE and PBD interactions in textual environments. Several systems generate
code within a computational notebook via manipulation of visualized values. Wrex [16]
adapts the FlashFill [27] PBE workflow to Pandas dataframes in Jupyter notebooks – after
demonstrating examples of a desired data transformation in a dataframe spreadsheet view,
Wrex outputs readable Python code. Similarly, the PBD systems B2 [75], mage [41], and
Mito [14] transform step-by-step interactions on displayed notebook values into Python code.
For a Haskell notebook environment, Vital [30, 31] offers copy-paste operations on visualized
algebraic data type (ADT) values, which are realized by changing the textual code in the
appropriate cell. Like Maniposynth, graphical interactions in Vital can extract subvalues
via pattern matching, although Vital’s workflow focuses on modifying single values in place
rather than building up computations like in Maniposynth. While these notebook systems
provide some manipulation of intermediate values, none offer fine-grained non-linearity.

For more ordinary IDE settings, CodeHint [24], SnipPy [21], and JDial [36] provide
synthesis interactions in the live context of the user’s incomplete code. With CodeHint,
users set a breakpoint in their Java program and describe a property about a desired value –
CodeHint enumerates method calls in the execution environment at the breakpoint to find a
satisfying expression. Like Maniposynth, CodeHint uses a statistics model to rank results.
Notably, users with CodeHint were significantly faster and more successful at completing
given tasks than users without. For Python, SnipPy [21] adapts the Projection Boxes tabular
display of runtime values [46] to perform PBE in the context of live Python values. The
authors validated that users successfully used the synthesizer to complete portions of given
tasks. JDial [36] records variable values during execution of an imperative Java program
and allows the programmer to directly change incorrect values in the trace. The program is
repaired to match the corrections via sketch-based synthesis [68]. JDial, however, is limited
to small program repairs and does not offer program construction features.

Bidirectional, Bimodal Programming. Some systems represent programs as ordinary text,
but also allow direct manipulation on program outputs to be back-propagated to change the
original code. Usually, these changes are “small” changes to literals in the program – such
as numbers [11, 43, 50, 23], strings [74, 64, 43, 50], or lists [50]. More full-featured program
construction via output manipulations is available in a few systems for programs that output
graphics, such as APX [51], Transmorphic [63], and Sketch-n-Sketch [33].

Although Maniposynth also centers values as subjects for manipulation, we do not yet
apply bidirectional techniques to deeply back-propagate a change on a value – direct changes
on a value are only allowed when it was introduced as a literal in the immediately associated
expression. An earlier version of Maniposynth did support limited back-propagation,
which we disabled because it caused trouble in the user study: manipulating a value would
inconspicuously change a literal in a very different part of the program. Determining an
understandable meaning of such direct changes on a value remains an avenue for future work.
While the bidirectional programming community offers the “least change” principle [52],
that minimal changes should be performed to maintain a constraint, in the context of a

B. Hempel and R. Chugh 16:25

full program a change may cause confusion not because of its magnitude but because the
item changed is far from the user’s focus. Revealing that far-away code by popping open a
“bubble” [7, 8] or “portal” [9] may be one way to help make the change understandable.

6 Future Work and Conclusion

Scaling Up. So far, Maniposynth has been applied only to small, side-effect-free programs.
Running larger programs requires managing traces efficiently, and handling practical programs
requires managing side effects such as input/output and mutation.

Tracing has the potential to consume a considerable amount of memory: every execution
step produces a new portion of the trace. Currently, traces are all stored in RAM. Future
tracing could instead write to persistent storage. Furthermore, for a large program, only a
small portion of the trace will likely be needed at a time. Tracing can be skipped for code
outside the region of interest. When needed, missing portions of the trace could be rebuilt on
demand via program replay, which can be accomplished efficiently by periodically dumping
the program state during the initial execution and replaying from a checkpoint as needed [5].

Support for side effects requires both changes to the UI in addition to technical engineering.
Side effects are necessarily linear, whereas Maniposynth’s UI is currently based around a free-
form, unordered 2D canvas. One UI possibility is to have each imperative statement spatially
divide its (sub)canvas into “before” and “after” – TVs spatially above the imperative statement
are executed before it, and TVs below are executed afterwards. For the implementation,
careful interception and logging of system calls can record all program I/O and enable
deterministic replay, even for large programs [57]. In Maniposynth, recording and replaying
side effects could be handled in the interpreter rather than at the system call level.

Value-Oriented Thinking. We hypothesize that expression-oriented and value-oriented
modes of thinking are distinct states of mind, and experienced programmers tend towards the
former. An intriguing possibility for future work is to experimentally validate that expression-
oriented and value-oriented thinking are actually modes – i.e. the activity of considering
values discourages considering expressions, and vice versa. More immediately, there are
possible changes to Maniposynth that might encourage more value-focused interaction.

One experiment is to change the display of variable uses so that, instead of the name
of the variable, its current value is shown instead, with the name as a tooltip or subscript.
This change might nudge users out of the expression-oriented mode of thinking back towards
value-oriented thinking. An intriguing corollary experiment was requested by P1. To keep
track of their provenance, P1 wanted values to be drawn with unique colors all the time,
rather than only when autocomplete menus were open. Another possibility is, when the cursor
is over a variable usage, to highlight the TV where the variable is defined. We would like to
explore these display choices, as well as other opportunities for “linked” visualizations [60].

Finally, while dragging items onto an expression is quite useful, dragging items onto
values is currently less so. When working through the examples, the implementer dragged
some item onto a value on only 4 occasions, compared to dragging onto an expression 209
times. In the future, dragging a value to a value might open a menu of possible ways to
combine the values. Ideally, programmers should be able to customize the available actions,
as in Vital [31] which includes an API for this purpose.

Maniposynth currently focuses on interactions on relatively small values. Larger data
sets might be more more conveniently displayed and manipulated in a spreadsheet-style view
– Flowsheets [10] demonstrates one such approach, albeit without program synthesis.

ECOOP 2022

16:26 Bimodal Tangible Functional Programming

Conclusion. How close is Maniposynth to achieving its goals of providing a value-centric,
non-linear programming environment? Based on the examples we implemented and feedback
from our study participants, Maniposynth largely succeeded at providing useful live values.
The non-linear features functioned moderately well – users rarely had to think about binding
order – but Maniposynth was not immediately learnable and would benefit from more
explicit labeling of the various kinds of elements on the canvas.

Overall, building on the insight from Eros [19] that non-linearity complements functional
programming, Maniposynth shows that non-linearity can be maintained even when the
program is ordinary code. Our emphasis on textual code has resulted in Maniposynth
currently being somewhat more expression-centric than Eros. As described above, there are
many possible ways Maniposynth might become more value-centric, to further our vision
to make programming feel like a tangible process of molding and forming.

References
1 Michel Adam, Moncef Daoud, and Patrice Frison. Direct Manipulation versus Text-based

Programming: An Experiment Report. In Conference on Innovation and Technology in
Computer Science Education (ITiCS), 2019.

2 Haytham Amairah. Wrong Pattern for Filling Month Names. https://techcommunity.
microsoft.com/t5/excel/flash-fill-wrong-pattern-for-filling-month-names/m-p/
355213, 2019.

3 Andrew Begel. LogoBlocks: A Graphical Programming Language for Interacting with the
World, 1996. Advanced Undergraduate Project, MIT Media Lab.

4 Josh Berdine, Guillaume Petiot, hhugo, and contributors. Ocamlformat. https://github.
com/ocaml-ppx/ocamlformat, 2021.

5 Bob Boothe. Efficient Algorithms for Bidirectional Debugging. In Conference on Programming
Language Design and Implementation (PLDI), 2000. doi:10.1145/349299.349339.

6 Frédéric Bour, Thomas Refis, Gemma Gordon, Simon Castellan, and contributors. Merlin.
https://github.com/ocaml/merlin, 2021.

7 Andrew Bragdon, Steven P. Reiss, Robert Zeleznik, Suman Karumuri, William Cheung,
Joshua Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola, Jr. Code
Bubbles: Rethinking the User Interface Paradigm of Integrated Development Environments.
In International Conference on Software Engineering (ICSE), 2010.

8 Andrew Bragdon, Robert Zeleznik, Steven P. Reiss, Suman Karumuri, William Cheung, Joshua
Kaplan, Christopher Coleman, Ferdi Adeputra, and Joseph J. LaViola, Jr. Code Bubbles: A
Working Set-based Interface for Code Understanding and Maintenance. In Conference on
Human Factors in Computing Systems (CHI), 2010.

9 Alexander Breckel and Matthias Tichy. Embedding Programming Context into Source Code.
In International Conference on Program Comprehension (ICPC), 2016. doi:10.1109/ICPC.
2016.7503732.

10 Glen Chiacchieri. F-F-F-Flowsheets v2 !
!
!
 demo. https://www.youtube.com/watch?v=
y1Ca5czOY7Q, 2017.

11 Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. Programmatic and Direct
Manipulation, Together at Last. In Conference on Programming Language Design and
Implementation (PLDI), 2016.

12 Naëla Courant, Julien Lepiller, and Gabriel Scherer. camlboot. https://github.com/
Ekdohibs/camlboot/, 2020.

13 Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieberman, David Maulsby, Brad A.
Myers, and Alan Turransky, editors. Watch What I Do: Programming by Demonstration. MIT
Press, 1993.

14 Jacob Diamond-Reivich. Mito: Edit a Spreadsheet. Generate Production Ready Python. In
LIVE Workshop, 2020.

https://techcommunity.microsoft.com/t5/excel/flash-fill-wrong-pattern-for-filling-month-names/m-p/355213
https://techcommunity.microsoft.com/t5/excel/flash-fill-wrong-pattern-for-filling-month-names/m-p/355213
https://techcommunity.microsoft.com/t5/excel/flash-fill-wrong-pattern-for-filling-month-names/m-p/355213
https://github.com/ocaml-ppx/ocamlformat
https://github.com/ocaml-ppx/ocamlformat
https://doi.org/10.1145/349299.349339
https://github.com/ocaml/merlin
https://doi.org/10.1109/ICPC.2016.7503732
https://doi.org/10.1109/ICPC.2016.7503732
https://www.youtube.com/watch?v=y1Ca5czOY7Q
https://www.youtube.com/watch?v=y1Ca5czOY7Q
https://github.com/Ekdohibs/camlboot/
https://github.com/Ekdohibs/camlboot/

B. Hempel and R. Chugh 16:27

15 Andrea A. diSessa and Harold Abelson. Boxer: A Reconstructible Computational Medium.
Communications of the ACM (CACM), 1986.

16 Ian Drosos, Titus Barik, Philip J Guo, Robert DeLine, and Sumit Gulwani. Wrex: A Unifed
Programming-by-Example Interaction for Synthesizing Readable Code for Data Scientists.
Conference on Human Factors in Computing Systems (CHI), 2020.

17 Jonathan Edwards. Example Centric Programming. In Conference on Object-Oriented
Programming Languages, Systems, and Applications (OOPSLA), 2004. doi:10.1145/1028664.
1028713.

18 Jonathan Edwards. Direct Programming. https://vimeo.com/274771188, 2018.
19 Conal Elliott. Tangible Functional Programming. In International Conference on Functional

Programming (ICFP), 2007. URL: http://conal.net/papers/Eros/.
20 Enso. Enso. https://enso.org/.
21 Kasra Ferdowsifard, Allen Ordookhanians, Hila Peleg, Sorin Lerner, and Nadia Polikarpova.

Small-Step Live Programming by Example. In Symposium on User Interface Software and
Technology (UIST), 2020.

22 Patrice Frison. A Teaching Assistant for Algorithm Construction. In Conference on Innovation
and Technology in Computer Science Education (ITiCS), 2015.

23 Koumei Fukahori, Daisuke Sakamoto, Jun Kato, and Takeo Igarashi. CapStudio: An Interactive
Screencast for Visual Application Development. In Conference on Human Factors in Computing
Systems (CHI), Extended Abstracts, 2014.

24 Joel Galenson, Philip Reames, Rastislav Bodík, Björn Hartmann, and Koushik Sen. CodeHint:
Dynamic and Interactive Synthesis of Code Snippets. In International Conference on Software
Engineering (ICSE), 2014.

25 Thomas R. G. Green and Marian Petre. Usability Analysis of Visual Programming En-
vironments: A Cognitive Dimensions Framework. J. Vis. Lang. Comput., 1996. doi:
10.1006/jvlc.1996.0009.

26 Rudi Grinberg, Andrey Popp, Rusty Key, Louis Roché, Oleksiy Golovko, Sacha Ayoun,
cannorin, Ulugbek Abdullaev, Thibaut Mattio, and Max Lantas. OCaml-LSP. https:
//github.com/ocaml/ocaml-lsp, 2021.

27 Sumit Gulwani. Automating String Processing in Spreadsheets Using Input-Output Examples.
In Symposium on Principles of Programming Languages (POPL), 2011.

28 Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. Program Synthesis. Foundations and
Trends in Programming Languages, 2017. doi:10.1561/2500000010.

29 Philip J. Guo. Online Python Tutor: Embeddable Web-based Program Visualization for Cs
Education. In Technical Symposium on Computer Science Education (SIGCSE), 2013.

30 Keith Hanna. Interactive Visual Functional Programming. In International Conference on
Functional Programming (ICFP), 2002.

31 Keith Hanna. A Document-Centered Environment for Haskell. In International Workshop on
Implementation and Application of Functional Languages (IFL), 2005.

32 Brian Hempel. The Magnificent Maniposynth. http://maniposynth.org, 2022.
33 Brian Hempel, Justin Lubin, and Ravi Chugh. Sketch-n-Sketch: Output-Directed Programming

for SVG. In Symposium on User Interface Software and Technology (UIST), 2019.
34 Joshua Horowitz. PANE: Programming with Visible Data. In LIVE Workshop, 2018. URL:

http://joshuahhh.com/projects/pane/.
35 Yen-Teh Hsia and Allen L. Ambler. Programming Through Pictorial Transformations. In

International Conference on Computer Languages, 1988.
36 Qinheping Hu, Roopsha Samanta, Rishabh Singh, and Loris D’Antoni. Direct Manipulation

for Imperative Programs. In Static Analysis Symposium (SAS), 2019.
37 Christopher D. Hundhausen and Jonathan Lee Brown. What You See Is What You Code: A

live Algorithm Development and Visualization Environment for Novice Learners. Journal of
Visual Languages and Computing, 2007. doi:10.1016/j.jvlc.2006.03.002.

ECOOP 2022

https://doi.org/10.1145/1028664.1028713
https://doi.org/10.1145/1028664.1028713
https://vimeo.com/274771188
http://conal.net/papers/Eros/
https://enso.org/
https://doi.org/10.1006/jvlc.1996.0009
https://doi.org/10.1006/jvlc.1996.0009
https://github.com/ocaml/ocaml-lsp
https://github.com/ocaml/ocaml-lsp
https://doi.org/10.1561/2500000010
http://maniposynth.org
http://joshuahhh.com/projects/pane/
https://doi.org/10.1016/j.jvlc.2006.03.002

16:28 Bimodal Tangible Functional Programming

38 Christopher D. Hundhausen, Sean Farley, and Jonathan Lee Brown. Can Direct Manipulation
Lower the Barriers To Computer Programming and Promote Transfer of Training? An
Experimental Study. ACM Trans. Comput. Hum. Interact., 2009. doi:10.1145/1592440.
1592442.

39 Ruyi Ji, Yican Sun, Yingfei Xiong, and Zhenjiang Hu. Guiding Dynamic Programing Via
Structural Probability for Accelerating Programming by Example. Proc. ACM Program. Lang.,
(OOPSLA), 2020. doi:10.1145/3428292.

40 Saketh Kasibatla and Alex Warth. Seymour: Live Programming for the Classroom. In LIVE
Workshop, 2017.

41 Mary Beth Kery, Donghao Ren, Fred Hohman, Dominik Moritz, Kanit Wongsuphasawat,
and Kayur Patel. mage: Fluid Moves Between Code and Graphical Work In Computational
Notebooks. In Symposium on User Interface Software and Technology (UIST), 2020.

42 Andrew J. Ko and Brad A. Myers. Barista: An Implementation Framework for Enabling New
Tools, Interaction Techniques and Views in Code Editors. In Human Factors in Computing
Systems (CHI), 2006.

43 Kevin Kwok and Guillermo Webster. Carbide Alpha, 2016. URL: https://alpha.trycarbide.
com/.

44 A. H. Land and A. G. Doig. An automatic method of solving discrete programming problems.
Econometrica, 1960.

45 Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. Accelerating Search-based Program
Synthesis using Learned Probabilistic Models. In Conference on Programming Language
Design and Implementation (PLDI), 2018.

46 Sorin Lerner. Projection Boxes: On-the-fly Reconfigurable Visualization for Live Programming.
Conference on Human Factors in Computing Systems (CHI), 2020.

47 H. Lieberman, editor. Your Wish is My Command: Programming by Example. Morgan
Kaufmann Publishers Inc., 2001.

48 Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. Program Sketching with Live
Bidirectional Evaluation. Proc. ACM Program. Lang., (ICFP), 2020. doi:10.1145/3408991.

49 John H. Maloney and Randall B. Smith. Directness and Liveness In the Morphic User Interface
Construction Environment. In Symposium on User Interface Software and Technology (UIST),
1995.

50 Mikaël Mayer, Viktor Kunčak, and Ravi Chugh. Bidirectional Evaluation with Direct Manip-
ulation. Proceedings of the ACM on Programming Languages (PACMPL), Issue OOPSLA,
2018.

51 Sean McDirmid. A Live Programming Experience. In Future Programming Work-
shop, Strange Loop, 2015. https://www.youtube.com/watch?v=YLrdhFEAiqo. URL:
https://onedrive.live.com/download?cid=51C4267D41507773&resid=51C4267D41507773%
2111492&authkey=AMwcxdryTyPiuW8.

52 Lambert Meertens. Designing Constraint Maintainers for User Interaction. https://www.
kestrel.edu/people/meertens/pub/dcm.pdf, 1998.

53 Microsoft. Visual studio code. https://code.visualstudio.com, 2022.
54 Francesmary Modugno, Albert T. Corbett, and Brad A. Myers. Graphical Representation of

Programs In a Demonstrational Visual Shell - An Empirical Evaluation. ACM Trans. Comput.
Hum. Interact., 1997. doi:10.1145/264645.264659.

55 National Instruments. Labview. URL: https://www.ni.com/en-us/shop/labview.html.
56 Tobias Nipkow and Mohammad Abdulaziz. Functional Data Structures (in2347). https:

//github.com/nipkow/fds_ss20/tree/daae0f92277b0df86f34ec747c7b3f1c5f0a725c, 2020.
Technische Universität München.

57 Robert O’Callahan, Chris Jones, Nathan Froyd, Kyle Huey, Albert Noll, and Nimrod Par-
tush. Engineering Record and Replay for Deployability. In USENIX Annual Technical
Conference, 2017. URL: https://www.usenix.org/conference/atc17/technical-sessions/
presentation/ocallahan.

https://doi.org/10.1145/1592440.1592442
https://doi.org/10.1145/1592440.1592442
https://doi.org/10.1145/3428292
https://alpha.trycarbide.com/
https://alpha.trycarbide.com/
https://doi.org/10.1145/3408991
https://www.youtube.com/watch?v=YLrdhFEAiqo
https://onedrive.live.com/download?cid=51C4267D41507773&resid=51C4267D41507773%2111492&authkey=AMwcxdryTyPiuW8
https://onedrive.live.com/download?cid=51C4267D41507773&resid=51C4267D41507773%2111492&authkey=AMwcxdryTyPiuW8
https://www.kestrel.edu/people/meertens/pub/dcm.pdf
https://www.kestrel.edu/people/meertens/pub/dcm.pdf
https://code.visualstudio.com
https://doi.org/10.1145/264645.264659
https://www.ni.com/en-us/shop/labview.html
https://github.com/nipkow/fds_ss20/tree/daae0f92277b0df86f34ec747c7b3f1c5f0a725c
https://github.com/nipkow/fds_ss20/tree/daae0f92277b0df86f34ec747c7b3f1c5f0a725c
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan
https://www.usenix.org/conference/atc17/technical-sessions/presentation/ocallahan

B. Hempel and R. Chugh 16:29

58 Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. Live Functional Programming
with Typed Holes. In ACM SIGPLAN Symposium on Principles of Programming Languages
(POPL), 2019.

59 Peter-Michael Osera and Steve Zdancewic. Type-and-Example-Directed Program Synthesis.
In Conference on Programming Language Design and Implementation (PLDI), 2015.

60 Roly Perera, Minh Nguyen, Tomas Petricek, and Meng Wang. Linked Visualisations Via
Galois Dependencies. Proc. ACM Program. Lang., (POPL), 2022. doi:10.1145/3498668.

61 David Rauch, Patrick Rein, Stefan Ramson, Jens Lincke, and Robert Hirschfeld. Babylonian-
style Programming - Design and Implementation of An Integration of Live Examples
Into General-purpose Source Code. Art Sci. Eng. Program., 2019. doi:10.22152/
programming-journal.org/2019/3/9.

62 Mitchel Resnick, John Maloney, Andrés Monroy-Hernández, Natalie Rusk, Evelyn Eastmond,
Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian Silverman, and Yasmin
Kafai. Scratch: Programming for All. Communications of the ACM (CACM), 2009.

63 Robin Schreiber, Robert Krahn, Daniel H. H. Ingalls, and Robert Hirschfeld. Transmorphic:
Mapping Direct Manipulation to Source Code Transformations. HPI/Potsdam University,
2017.

64 Christopher Schuster and Cormac Flanagan. Live Programming by Example: Using Direct
Manipulation for Live Program Synthesis. In LIVE Workshop, 2016.

65 Paul Shen. natto.dev. https://natto.dev/.
66 Ben Shneiderman. Direct Manipulation: A Step Beyond Programming Languages. Computer,

August 1983.
67 David Canfield Smith. Pygmalion: A Creative Programming Environment. PhD thesis,

Stanford University, 1975.
68 Armando Solar-Lezama. Program Synthesis by Sketching. PhD thesis, UC Berkeley, 2008.
69 Fabio Spampinato. Highlight VS Code Extension. https://marketplace.visualstudio.com/

items?itemName=fabiospampinato.vscode-highlight, 2021.
70 Sun Microsystems. Self: The movie;. http://www.smalltalk.org.br/movies/self.html,

1995.
71 William Robert Sutherland. The On-line Graphical Specification of Computer Procedures.

PhD thesis, Massachusetts Institute of Technology, 1966.
72 David M. Ungar and Randall B. Smith. Self: The Power of Simplicity. In Conference on

Object-Oriented Programming Languages, Systems, and Applications (OOPSLA), 1987.
73 Victor, Bret. Inventing on Principle, 2012. URL: https://vimeo.com/36579366.
74 Xiaoyin Wang, Lu Zhang, Tao Xie, Yingfei Xiong, and Hong Mei. Automating Presentation

Changes in Dynamic Web Applications via Collaborative Hybrid Analysis. In International
Symposium on the Foundations of Software Engineering (FSE), 2012.

75 Yifan Wu, Joseph M. Hellerstein, and Arvind Satyanarayan. B2: Bridging Code and Interactive
Visualization In Computational Notebooks. In Symposium on User Interface Software and
Technology (UIST), 2020.

ECOOP 2022

https://doi.org/10.1145/3498668
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://doi.org/10.22152/programming-journal.org/2019/3/9
https://natto.dev/
https://marketplace.visualstudio.com/items?itemName=fabiospampinato.vscode-highlight
https://marketplace.visualstudio.com/items?itemName=fabiospampinato.vscode-highlight
http://www.smalltalk.org.br/movies/self.html
https://vimeo.com/36579366

Synchron – An API and Runtime for Embedded
Systems
Abhiroop Sarkar #

Chalmers University of Technology, Gothenburg, Sweden

Bo Joel Svensson #

Chalmers University of Technology, Gothenburg, Sweden

Mary Sheeran #

Chalmers University of Technology, Gothenburg, Sweden

Abstract
Programming embedded applications involves writing concurrent, event-driven and timing-aware
programs. Traditionally, such programs are written in machine-oriented programming languages like
C or Assembly. We present an alternative by introducing Synchron, an API that offers high-level
abstractions to the programmer while supporting the low-level infrastructure in an associated runtime
system and one-time-effort drivers.

Embedded systems applications exhibit the general characteristics of being (i) concurrent, (ii)
I/O–bound and (iii) timing-aware. To address each of these concerns, the Synchron API consists
of three components – (1) a Concurrent ML (CML) inspired message-passing concurrency model,
(2) a message-passing–based I/O interface that translates between low-level interrupt based and
memory-mapped peripherals, and (3) a timing operator, syncT, that marries CML’s sync operator
with timing windows inspired from the TinyTimber kernel.

We implement the Synchron API as the bytecode instructions of a virtual machine called
SynchronVM. SynchronVM hosts a Caml-inspired functional language as its frontend language, and
the backend of the VM supports the STM32F4 and NRF52 microcontrollers, with RAM in the order
of hundreds of kilobytes. We illustrate the expressiveness of the Synchron API by showing examples
of expressing state machines commonly found in embedded systems. The timing functionality
is demonstrated through a music programming exercise. Finally, we provide benchmarks on the
response time, jitter rates, memory, and power usage of the SynchronVM.

2012 ACM Subject Classification Computer systems organization → Embedded software; Software
and its engineering→ Runtime environments; Computer systems organization→ Real-time languages;
Software and its engineering → Concurrent programming languages

Keywords and phrases real-time, concurrency, functional programming, runtime, virtual machine

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.17

Related Version Full Version: https://tinyurl.com/ymert8v2

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.25

archived at swh:1:dir:6d5121ddfdfcec8add38fae75de4d51c6b194690

Funding This work was funded by the Swedish Foundation for Strategic Research (SSF) under the
project Octopi (Ref. RIT17-0023) and by the Chalmers Gender Initiative for Excellence.

1 Introduction

Embedded systems are ubiquitous. They are pervasively found in application areas such as
the internet of things, industrial machinery, automobiles, robotics, etc. Embedded systems
applications tend to embody three common characteristics:

V1.1

A
rt
ifa

cts Available

ECOOP

© Abhiroop Sarkar, Bo Joel Svensson, and Mary Sheeran;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 17; pp. 17:1–17:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sarkara@chalmers.se
https://orcid.org/0000-0002-8991-9472
mailto:joels@chalmers.se
https://orcid.org/0000-0003-0363-1206
mailto:mary.sheeran@chalmers.se
https://orcid.org/0000-0003-2509-0957
https://doi.org/10.4230/LIPIcs.ECOOP.2022.17
https://tinyurl.com/ymert8v2
https://doi.org/10.4230/DARTS.8.2.25
https://doi.org/10.4230/DARTS.8.2.25
https://archive.softwareheritage.org/swh:1:dir:6d5121ddfdfcec8add38fae75de4d51c6b194690;origin=https://github.com/SynchronVM/SynchronVM;visit=swh:1:snp:a66ea48e0f8c6730744c246122208f9dac01ccef;anchor=swh:1:rev:bb5d6ddd85fddc13a3cc2bab7770185ecd2a7062
https://doi.org/10.4230/DARTS.8.2.25
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Synchron – An API and Runtime for Embedded Systems

1. They are concurrent in nature.
2. They are predominantly I/O–bound applications.
3. A large subset of such applications are timing-aware.
Programming applications with the above characteristics involves low-level hardware inter-
actions via callback-based driver APIs. Such programs tend to be expressed in low-level
languages like C in the form of complex state machines, which often results in difficult-to-
maintain and elaborate state-transition tables. Moreover, C programmers use error-prone
shared-memory primitives like semaphores and locks to mediate interactions that occur
between the callback-based driver handlers.

In modern microcontroller runtimes, like MicroPython [12] and Espruino (Javascript) [37],
higher-order functions can be used to handle callback-based APIs. However, a common
pitfall in these languages is the chaining of nested callback handlers, which leads to a form of
accidental complexity known as callback-hell [20]. Such programs have a non-linear control
flow and are difficult to express, read and maintain.

We present Synchron, an API and accompanying runtime that aims to address the above
concerns about callback-hell and shared-memory concurrency while targeting the three earlier
mentioned characteristics of embedded programs by a combination of:
1. A message-passing–based concurrency model inspired from Concurrent ML.
2. A message-passing–based I/O interface that unifies concurrency and I/O.
3. A notion of time that fits the message-passing concurrency model.
Concurrent ML (CML) [25] builds upon the synchronous message-passing–based concurrency
model CSP [16] but adds the feature of composable first-class events. Events allow the
programmer to tailor new concurrency abstractions and express application-specific protocols.
Moreover, a synchronous concurrency model renders linear control-flow to a program, as
opposed to bottom-up, non-linear control flow exhibited by asynchronous callback APIs.

Synchron extends CML’s message-passing API for software processes to I/O and hardware
interactions by modelling the external world as a process through the spawnExternal operator.
As a result, the standard message-passing functions such as send, receive etc. become
usable for I/O interactions, such as asynchronous driver interrupts. The overall API design
allows efficient scheduling and limited power usage of programs via an associated runtime.

For timing, Synchron introduces the syncT operator that allows the specification of
baseline and deadline times for communication between message-passing processes. The
logical timing model endowed by this operator helps the prevention of jitter associated with
the execution of real-time, periodic applications.

The Synchron API is implemented in the form of a bytecode-interpreted virtual machine
(VM) called SynchronVM. Internally, the SynchronVM runtime manages the scheduling
and timing of the various processes, interrupt handling, memory management, and other
bookkeeping infrastructure. Notably, the runtime system features a low-level bridge interface
that translates low-level hardware interrupts or memory-mapped I/O into software messages,
enabling application-level processes to use the message-passing API for low-level I/O.

Contributions
We identify three characteristic behaviours of embedded applications, namely being
(i) concurrent, (ii) I/O–bound, and (iii) timing-aware, and propose a combination of
abstractions, the Synchron API (Section 3), that address these requirements.
Message-passing–based I/O. Synchron’s message-passing API combines concurrency
and callback–based I/O to a single interface. A software message or a hardware interrupt
is identical in the Synchron API, providing the programmer with a simpler message-
based framework to express concurrent hardware interactions. We show the I/O API in
Section 3.2 and describe the core runtime algorithms to support this API in Section 4.

A. Sarkar, B. J. Svensson, and M. Sheeran 17:3

Declarative state machines for embedded systems. Combining CML primitives
with our I/O interface presents a declarative framework to express state machines. We
illustrate this through case studies using the Synchron API in Sections 6.1 and 6.2.
Evaluation. We implement the Synchron API and its associated runtime within a
virtual machine, SynchronVM, described in Section 5. We illustrate the practicality and
expressivity of our API by presenting three case studies in Section 6 that runs on the
STM32 and NRF52 microcontroller boards. Finally, we show response time, memory and
power usage, jitter rates, and load testing benchmarks on the SynchronVM in Section 7.

2 Motivation

Concurrency and I/O. Embedded system applications are primarily I/O-bound in nature.
The low-level I/O-interface provided by hardware drivers is typically callback-based. The
callback style of programming is complicated but offers benefits when it comes to energy
efficiency. Registering a callback with an Interrupt Service Routine (ISR) allows the processor
to go to sleep and conserve power until the interrupt arrives.

Callback-based programming renders a non-linear control flow to embedded system
programs, which is best handled via concurrent threads as provided by ZephyrOS, ChibiOS
or FreeRTOS. These programs tend to be error-prone and hard to maintain. The problems
are compounded by the fact that C is not an intrinsically concurrent language and handles
concurrency through ad-hoc language extensions.

Time. A close relative of concurrent programming for embedded systems is real-time
programming. Embedded systems applications such as digital sound cards routinely exhibit
behaviour where the time of completion of an operation determines the correctness of the
program. C handles real-time applications via the underlying OS APIs.

Typical real-time APIs support prioritised threads. For instance, the FreeRTOS Task
API allows a programmer to define a static priority number for each thread. As the number
of concurrent threads grows, a limited range of priority numbers (1 – 5) results in clashes in
thread priorities. Another common risk with priority-based systems is to run into the priority
inversion problem [31], which can have fatal consequences in hard real-time scenarios. On the
other hand, high-level language platforms for embedded systems (such as MicroPython [12])
typically lack native language support for timing-aware computations.

Problem Statement. We believe there exists a gap for a high-level language that can express
concurrent, I/O–bound, and timing-aware programs for programming resource-constrained
embedded systems. We outline our key idea to address this gap below.

2.1 Key Ideas
Our key idea is the Synchron API, which adopts a synchronous message-passing concurrency
model and extends the message-passing functionality to all I/O interactions. Synchron also
introduces baselines and deadlines for the message-passing, which consequently brings in a
notion of time into the API. The resultant API is a collection of nine operations that can
express (i) concurrency, (ii) I/O, and (iii) timing in a uniform and declarative manner.

The external world as processes. The Synchron API models all external drivers as pro-
cesses that can communicate with the software layer through message-passing. Synchron’s
spawnExternal operator treats an I/O peripheral as a process and a hardware interrupt as
a message from the corresponding process. Fig. 1 illustrates the broad idea.

ECOOP 2022

17:4 Synchron – An API and Runtime for Embedded Systems

Figure 1 Interaction between software and
hardware processes via the Synchron API.

Figure 2 Dynamic priority change when us-
ing the syncT operation.

This design relieves the programmer from writing complex callback handlers to deal
with asynchronous interrupts. The synchronous message-passing–based I/O renders a linear
control-flow to I/O-bound embedded-system programs, allowing the modelling of state
machines in a declarative manner. Additionally, the message-passing framework simplifies
the hazards of concurrent programming with shared-memory primitives (like FreeRTOS
semaphores) and the associated perils of maintaining intricate locking protocols.

Hardware-Software Bridge. The Synchron runtime enables the seamless translation between
software messages and hardware interrupts. The runtime does hardware interactions through
a low-level software bridge interface, which is implemented atop the drivers supplied by an
OS like Zephyr/ChibiOS. The bridge layer serialises all hardware interrupts into the format
of a software message, thereby providing a uniform message-passing interaction style for both
software and hardware messages.

Timing. The final key component of the Synchron API is the real-time function, syncT,
that instead of using a static priority for a thread (like Ada, RT-Java, FreeRTOS, etc.),
borrows the concept of a dynamic priority specification from TinyTimber [19].

The syncT function specifies a timing window by stating the baseline and deadline
of message communication between processes. Synchron’s timing model assumes that
computation takes zero time, so the time required for communication determines the timing
window of execution of the entire process. As the deadline of a process draws near, the
Synchron runtime can choose to dynamically change the priority of a process while it is
running. Fig. 2 illustrates the idea of dynamic priority-change where a scheduler can choose
to prioritise a second process over a running, timed process, although the running process
has a deadline in the future. The preemptive Synchron runtime enables this API.

The combination of syncT, spawnExternal and the CML-inspired synchronous message-
passing concurrency model constitutes the Synchron API that allows declarative specification
of embedded applications. We suggest that this API is an improvement, in terms of
expressivity, over the currently existing languages and libraries on embedded systems and
provide illustrative examples to support this in Section 6. We also provide benchmarks on
the Synchron runtime in Section 7. Next, we discuss the Synchron API in more detail.

A. Sarkar, B. J. Svensson, and M. Sheeran 17:5

3 The Synchron API

3.1 Synchronous Message-Passing and Events
Synchron adopts the synchronous message-passing API of Concurrent ML (CML) [25] –

1 spawn : (() -> ()) -> ThreadId
2 channel : () -> Channel a
3 send : Channel a -> a -> Event ()
4 recv : Channel a -> Event a
5 sync : Event a -> a

In the above type signatures, the type parameter, a, indicates a polymorphic type. The
call to spawn allows the creation of a new process whose body is represented by the (() → ())
type. The channel () call creates a blocking channel along which a process can send or
receive messages. A channel blocks until a sender has a corresponding receiver and vice-versa.

Notable in the above API is the value of type Event returned by the send and recv calls.
The central idea of an event is to break the act of synchronous communication into two steps:

(i) Expressing the intent of communication as an event-value
(ii) Synchronously communicating between the sender and receiver via the event-value

The first step above, accomplished through send and recv, results in the creation of a
type of value called an Event. An event is a first-class value in the language that represents
deferred communication. Reppy describes events as “first-class synchronous operations” [25].
Given a value of type Event, the second step of synchronising between processes and the
consequent act of communication is accomplished via the sync : Event a -> a operation.

Furthermore, CML provides the choose operator to express multi-party communication
(type signature shown below). The semantics of choose involves racing between two or more
synchronous operations and choosing the one that succeeds first. Further compositional
combinators, like wrap, enable higher-order composition of events.

1 choose : Event a → Event a → Event a
2 wrap : Event a → (a → b) → Event b

The advantage of representing communication as a first-class value is that event-based
combinators can be used to build more elaborate communication protocols. For instance -

1 protocol : Event ()
2 protocol =
3 choose (send c1 msg1) (wrap (recv c2) (λ msg2 -> sync (send c3 msg2)))

Using events, the above protocol involving multiple sends and receives was expressible
as a procedural abstraction while still having the return type of Event (). A consumer
of the above protocol can further use the nondeterministic choice operator, choose, and
choose among multiple protocols. This combination of a composable programming style
and multiprocess program design allows this API to represent callback-based, state machine
oriented programs in a declarative manner.

Comparisons between Events and Futures. The fundamental difference between events and
futures is that of deferred communication and deferred computation respectively. A future
aids in asynchronous computations by encapsulating a computation whose value is made
available at a future time. On the other hand, an event represents deferred communication as
a first-class entity in a language. Using the wrap combinator, it is possible to chain lambda
functions capturing computations that should happen post-communication as well. However,
events are fundamentally building blocks for communication protocols.

ECOOP 2022

17:6 Synchron – An API and Runtime for Embedded Systems

3.2 Input and Output

In the Synchron API, I/O is expressed using the same events as are used for inter-process
communication. Each I/O device is connected to the running program using a primitive
we call spawnExternal as a hint that the programmer can think of, for example, an LED
as a process that can receive messages along a channel. Each external process denotes an
underlying I/O device that is limited to send and receive messages along one channel.

1 spawnExternal : Channel a -> Driver -> ExternalThreadId

The first parameter supplied to spawnExternal is a designated fixed channel along which
the external process shall communicate. The second argument requires some form of identifier
to uniquely identify the driver. This identifier for a driver tends to be architecture-dependent.
For instance, when using low-level memory-mapped I/O, reads or writes to a memory address
are used to communicate with a peripheral. So the unique memory address would be an
identifier in that case. On the other hand, certain real-time operating systems (such as
FreeRTOS or Zephyr) can provide more high-level abstractions over a memory address. In the
Synchron runtime, we number each peripheral in a monotonically increasing order, starting
from 0. So our spawnExternal API becomes:

1 type DriverNo = Int
2 spawnExternal : Channel a -> DriverNo -> ExternalThreadId

To demonstrate the I/O API in the context of asynchronous drivers, we present a standard
example of the button-blinky program. The program matches a button state to an LED so
that when the button is down, the LED is on, otherwise the LED is off:

Listing 1 Button-Blinky using the Synchron API.
1 butchan = channel ()
2 ledchan = channel ()
3

4 glowled i = sync (send ledchan i)
5

6 f : ()
7 f = let _ = sync (wrap (recv butchan) glowled) in f
8

9 main = let _ = spawnExternal butchan 0 in
10 let _ = spawnExternal ledchan 1 in f

Listing 1 above spawns two hardware processes – an LED process and a button process.
It then calls the function f which arrives at line 7 and waits for a button press. During
the waiting period, the scheduler can put the process to sleep to save power. When the
button interrupt arrives, the Synchron runtime converts the hardware interrupt to a software
message and wakes up process f. It then calls the glowled function on line 4 that sends a
switch-on message to the LED process and recursively calls f infinitely.

The above program represents an asynchronous, callback-based application in an entirely
synchronous framework. The same application written in C, on top of the Zephyr OS, is
more than 100 lines of callback-based code [11]. A notable aspect of the above program is
the lack of any non-linear callback-handling mechanism. Aside from abstracting away the
interrupt-handling mechanism, the program is highly extensible; adding a new interrupt
handler is as simple as defining a new function.

A. Sarkar, B. J. Svensson, and M. Sheeran 17:7

3.3 Programming with Time
In a real-time scenario, a programmer wants to precisely control the response-time of certain
operations. So the natural intuition for real-time C-extensions like FreeRTOS Tasks or
languages like Ada is to delegate the scheduling control to the programmer by allowing them
to attach a priority level to each process.

The priority levels involved decide how a tie is broken by the scheduler. However, with
a small fixed number of priority levels, it is likely for several processes to end up with the
same priority, leading the scheduler to order them fairly again within each level.

Another complication that crops up in the context of priorities is the priority inversion
problem [31]. Priority inversion is a form of resource contention where a high-priority thread
gets blocked on a resource held by a low-priority thread, thus allowing a medium priority
thread to take advantage of the situation and get scheduled first. The outcome of this
scenario is that the high-priority thread gets to run after the medium-priority thread, leading
to possible program failures.

The Synchron API admits the dynamic prioritisation of processes, drawing inspiration
from the TinyTimber kernel [21]. TinyTimber specifies a timing window as a baseline and
deadline time, and a scheduler can use this timing window to determine the runtime priority
of a process. The timing window expresses the programmer’s wish that the operation is
started at the earliest on the baseline and no later than the deadline.

In Synchron, a programmer specifies a timing window (of the wall-clock time) during
which they want message synchronisation, that is the rendezvous between message sender
and receiver, to happen. We do this with the help of the timed-synchronisation operator,
syncT, with the type signature syncT : Time -> Time -> Event a -> a.

Comparing the type signature of syncT with that of sync :

1 syncT : Time -> Time -> Event a -> a
2 sync : Event a -> a

The two extra arguments to syncT specify a lower and upper bound on the time of
synchronisation of an event. The two arguments to syncT, of type Time, express the relative
times calculated from the current wall-clock time. The first argument represents the relative
baseline – the earliest time instant from which the event synchronisation should begin. The
second argument specifies the relative deadline, i.e. the latest time instant (starting from the
baseline), by which the synchronisation should start. For instance,

1 syncT (msec 50) (msec 20) timed_ev

means that the event, timed_ev, should begin synchronisation at the earliest 50 milliseconds
and the latest 50 + 20 milliseconds from now. The now concept is based on a thread’s
local view of what time it is. This thread-local time (Tlocal) is always less than or equal to
wall-clock time (Tabsolute). When a thread is spawned, its thread-local time, Tlocal, is set to
the wall-clock time, Tabsolute.

While a thread is running, its local time is frozen and unchanged until the thread executes
a timed synchronisation, a syncT operation where time progresses to Tlocal + baseline.

1 process1 _ =
2 let _ = s1 in -- Tlocal = 0
3 let _ = s2 in -- Tlocal = 0
4 let _ = syncT (msec 50) (usec 10) ev1 in
5 process1 () -- Tlocal = 50 msec

ECOOP 2022

17:8 Synchron – An API and Runtime for Embedded Systems

The above illustrates that the untimed operations s1 and s2 have no impact on a thread’s
view of what time it is. In essence, these operations are considered to take no time, which is
a reference to logical time and not the physical time. Synchron shares this logical timing
model with other systems such as the synchronous languages [8] and ChucK [35].

In practice, this assumption helps control jitter in the timing as long as the timing
windows specified on the synchronisation are large enough to contain the execution time
of s1, s2, the synchronisation step and the recursive call. Local and absolute time must
meet up at key points for this approach to work. Without the two notions of time meeting,
local time would drift away from absolute time in an unbounded fashion. For a practical
implementation of syncT, a scheduler needs to meet the following requirements:

The scheduler should provide a mechanism for overriding fair scheduling.
The scheduler must have access to a wall-clock time source.
A scheduler should attempt to schedule synchronisation such that local time meets up
with absolute time at that instant.

We shall revisit these requirements in Section 5 when describing the scheduler within the
Synchron runtime. Next, we shall look at a simple example use of syncT.

Blinky
The well-known blinky example, shown in Listing 2, involves blinking an LED on and off at
a certain frequency. Here we blink once every second.

Listing 2 Blinky using the syncT operation.
1 ledchan = channel ()
2

3 sec n = n * 1000000
4 usec n = n -- the unit -time in the Synchron runtime
5

6 foo : Int -> ()
7 foo val =
8 let _ = syncT (sec 1) (usec 1) (send ledchan val) in
9 foo (not val) -- not flips 1 to 0 and 0 to 1

10

11 main = let _ = spawnExternal ledchan 1 in foo 1

In the above program, foo is the only software process; a single external hardware process
for the LED driver communicates via the ledChan channel. Line 8 is the critical part of the
logic that sets the period of the program at 1 second, and the recursion at Line 9 keeps the
program alive forever. We discuss a more involved example using syncT in Section 6.3.

4 Synchronisation Algorithms

The synchronous nature of message-passing is the foundation of the Synchron API. In this
section, we describe the runtime algorithms, in an abstract form, that enable processes to
synchronise. The Synchron runtime implements these algorithms, which drives the scheduling
of the various software processes.

In Synchron, we synchronise on events. Events, in our API, fall into the categories of
base events and composite events. The base events are send and recv and events created
using choose are composite.

1 composite_event = choose (send c1 m1) (choose (send c2 m2) (send c3 m3))

A. Sarkar, B. J. Svensson, and M. Sheeran 17:9

From the API’s point of view, composite events resemble a tree with base events in the
leaves. However, for the algorithm descriptions here, we consider an event to be a set of base
events. An implementation could impose an ordering on the base events that make up a
composite event. Different orderings correspond to different event-prioritisation algorithms.

In the algorithm descriptions below, a Channel consists of two FIFO queues, one for
send and one for recv. These queues store process identities. While blocked on a recv on a
channel, that process’ id is stored in the receive queue of that channel; likewise for send and
the send-queue. Synchronous exchange means that messages themselves do not need to be
maintained on a queue.

Additionally, the algorithms below rely on there being a queue of processes that are
ready to execute. This queue is called the readyQ. In the algorithm descriptions, handling
of wrap has been omitted. A function wrapped around an event specifies an operation that
should be performed after synchronisation has been completed. Also, we abstract over the
synchronisation of hardware events. As a convention, self refers to the process from which
the sync operation is executed.

4.1 Synchronising events
The synchronisation algorithm that performs the API operation sync accepts a set of base
events. It searches the set of events for a base event that has a sender or receiver blocked
(ready to synchronise) and passes the message between sender and receiver. Algorithm 1
provides a high-level view of the synchronisation algorithm.

The first step in synchronisation is to see if there exists a synchronisable event in the set
of base events. The findSynchronisableEvent algorithm is presented in Algorithm 2.

If the findSynchronisableEvent algorithm is unable to find an event that can be synchron-
ised, the process initiating the synchronisation is blocked. The process identifier then gets
added to all the channels involved in the base events of the set. This is shown in Algorithm 3.

After registering the process identifiers on the channels involved, the currently running
process should yield its hold on the CPU, allowing another process to run. The next process
to start running is found using the dispatchNewProcess algorithm in Algorithm 4.

When two processes are communicating, the first one to be scheduled will block as the
other participant in the communication is not yet waiting on the channel. However, when
dispatchNewProcess dispatches the second process, the findSynchronisableEvent function will
return a synchronisable event and the syncNow operation (see Algorithm 5) does the actual
message passing.

Algorithm 1 The synchronisation algorithm.
Data: event : Set
ev ← findSynchronisableEvent(event);
if ev ̸= ∅ then

syncNow(ev);
else

block(event);
dispatchNewP rocess();

end

4.2 Timed synchronisation of events
Timed synchronisation is handled by a two-part algorithm – the first part (Algorithm 6) runs
when a process is executing the syncT API operation, and the second part (Algorithm 7) is
executed later, after the baseline time specified in the syncT call is reached.

ECOOP 2022

17:10 Synchron – An API and Runtime for Embedded Systems

Algorithm 2 The findSynchronisableEvent function.
Data: event : Set
Result: A synchronisable event or ∅
foreach e ∈ event do

if e.baseEventT ype == SEND then
if ¬isEmpty(e.channelNo.recvq) then

return e
end

else if e.baseEventT ype == RECV then
if ¬isEmpty(e.channelNo.sendq) then

return e
end

else return ∅; /* Impossible case */
end
return ∅ ; /* No synchronisable event found */

Algorithm 3 The block function.
Data: event : Set
foreach e ∈ event do

if e.baseEventT ype == SEND then
e.channelNo.sendq.enqueue(self);

else if e.baseEventT ype == RECV then
e.channelNo.recvq.enqueue(self);

else Do nothing; /* Impossible case */
end

Algorithm 4 The dispatchNewProcess function.
if readyQ ̸= ∅ then

process← dequeue(readyQ);
currentP rocess = process;

else
relinquish control to the underlying OS

end

Algorithm 5 The syncNow function.
Data: A base-event value - event
if event.baseEventT ype == SEND then

receiver ← dequeue(event.channelNo.recvq);
deliverMSG(self, receiver, msg) ; /* pass msg from self to receiver */
readyQ.enqueue(self);

else if event.baseEventT ype == RECV then
sender ← dequeue(event.channelNo.sendq);
deliverMSG(sender, self, msg) ; /* pass msg from sender to self */
readyQ.enqueue(sender);

else Do nothing; /* Impossible case */

A. Sarkar, B. J. Svensson, and M. Sheeran 17:11

These algorithms rely on there being an alarm facility based on absolute wall-clock time,
which invokes Algorithm 7 at a specific time. The alarm facility provides the operation
setAlarm used in the algorithms below. The algorithms also require a queue, waitQ, to hold
processes waiting for their baseline time-point.

Algorithm 6 The time function.
Data: Relative Baseline = baseline, Relative Deadline = deadline
Twakeup = self.Tlocal + baseline;
if deadline == 0 then

Tfinish = Integer.MAX; /* deadline = 0 implies no deadline */
else

Tfinish = Twakeup + deadline;
end
self.deadline = Tfinish;
baselineabsolute = Tabsolute + baseline;
deadlineabsolute = Tabsolute + baseline + deadline;
cond1 = Tabsolute > deadlineabsolute;
cond2 = (Tabsolute ≥ baselineabsolute)&&(Tabsolute ≤ deadlineabsolute);
cond3 = baseline < ϵ; /* platform dependent small time period */
if baseline == 0 ∨ cond1 ∨ cond2 ∨ cond3 then

readyQ.enqueue(currentT hread);
dispatchNewP rocess();
return;

end
setAlarm(Twakeup);
waitQ.enqueue(self).orderBy(Twakeup);
dispatchNewP rocess();

The handleAlarm function in Algorithm 7 runs when an alarm goes off and, at that point,
makes a process from the waitQ ready for execution. When the alarm goes off, the scheduler
either preempts the running process or lets it complete using the earliest deadline first policy.
In the absence of a running process, the process coming from the waitQ is scheduled.

Algorithm 7 The handleAlarm function.
Data: Wakeup Interrupt
timedP rocess← dequeue(waitQ);
Tnow = timedP rocess.baseline;
timedP rocess.Tlocal = Tnow;
if waitQ ̸= ∅ then

timedP rocess2 ← peek(waitQ); /* Does not dequeue */
setAlarm(timedP rocess2.baseline);

end
if currentP rocess == ∅; /* No process currently running */
then

currentP rocess = timedP rocess;
else

if timedP rocess.deadline < currentP rocess.deadline then
/* Preempt currently running process */
readyQ.enqueue(currentP rocess);
currentP rocess = timedP rocess;

else
/* Schedule timed process to run after currentProcess */
readyQ.enqueue(timedP rocess);
currentP rocess.Tlocal = Tnow; /* Avoids too much time drift */

end
end

ECOOP 2022

17:12 Synchron – An API and Runtime for Embedded Systems

5 Implementation in SynchronVM

The algorithms of Section 4 are implemented within the Synchron runtime. The Synchron
API and runtime are part of a larger programming platform that is the bytecode-interpreted
virtual machine called SynchronVM [2], which builds on the work by Sarkar et al. [26].

The execution unit of SynchronVM is based on the Categorical Abstract Machine
(CAM) [7]. CAM supports the cheap creation of closures, as a result of which SynchronVM can
support a functional language quite naturally. CAM was chosen primarily for its simplicity
and availability of pedagogical resources [15].

5.1 System Overview
The software architecture of SynchronVM consists of three parts – (1) the frontend, (2) the
middleware and (3) the backend.

The frontend is a statically-typed, eager, Caml-like functional language with Hindley-
Milner type inference. Polymorphic types are monomorphised as part of the compilation and
there is a lambda-lifting pass to reducce heap-allocation of closures.

In the middleware the frontend language is compiled down to an untyped intermediate
representation (IR) based on lambda-calculus. The IR is then compiled into bytecode
operations for the virtual machine.

The backend of the system is the bytecode interpreting virtual machine, currently based
on the categorical abstract machine [15] . The VM uses a standard non-moving, mark-and-
sweep garbage collector for automated memory management and support for closures. In
addition, the VM implements a low-level bridge interface that exposes hardware units to
programs as processes that communicate using message passing.

5.1.1 Concurrency, I/O and Timing bytecode instructions
For accessing the operators of our programming interface as well as any general runtime-based
operations, SynchronVM has a dedicated bytecode instruction – CALLRTS n, where n is a
natural number to disambiguate between operations. Table 1 shows the bytecode operations
corresponding to our programming interface.

Table 1 Concurrency, I/O and Timing bytecodes.

spawn CALLRTS 0
channel CALLRTS 1
send CALLRTS 2

recv CALLRTS 3
sync CALLRTS 4
choose CALLRTS 5

spawnExternal CALLRTS 6
wrap CALLRTS 7

syncT CALLRTS 8;
CALLRTS 4

Notably, the syncT operation gets compiled into a sequence of two instructions. The
first instruction in the syncT sequence is CALLRTS 8 which corresponds to Algorithm 6 in
Section 4. When the process is woken up by Algorithm 7, the process program counter lands
at the next instruction which is CALLRTS 4 (sync).

5.2 Message-passing with events
All forms of communication and I/O in SynchronVM operate via synchronous message-passing.
However, a distinct aspect of SynchronVM’s message-passing is the separation between the
intent of communication and the actual communication. A value of type Event indicates the
intent to communicate.

A. Sarkar, B. J. Svensson, and M. Sheeran 17:13

An event-value, like a closure, is a concrete runtime value allocated on the heap. The
fundamental event-creation primitives are send and recv, which Reppy calls base-event
constructors [25]. The event composition operators like choose and wrap operate on these
base-event values to construct larger events. When a program attempts to send or receive
a message, an event-value captures the channel number on which the communication was
desired. When this event-value is synchronised (Section 4), we use the channel number
as an identifier to match between prospective senders and receivers. Listing 3 shows the
heap representation of an event-value as the type event_t and the information that the
event-value captures on SynchronVM.

Listing 3 Representing an Event in SynchronVM.
1 typedef enum {
2 SEND , RECV
3 } event_type_t ;
4

5 typedef struct {
6 event_type_t e_type ; // 8 bits
7 UUID channel_id ; // 8 bits
8 } base_evt_simple_t ;
9

10 typedef struct {
11 base_evt_simple_t evt_details ; // stored with 16 bits free
12 cam_value_t wrap_func_ptr ; // 32 bits
13 } base_event_t ;
14

15 typedef struct {
16 base_event_t bev; // 32 bits
17 cam_value_t msg; // 32 bits; NULL for recv
18 } cam_event_t ;
19

20 typedef heap_index event_t ;

An event is implemented as a linked list of base-events constructed by applications of the
choose operation. Each element of the list captures (i) the message that is being sent or
received, (ii) any function that is wrapped around the base-event using wrap, (iii) the channel
being used for communication and (iv) an enum to distinguish whether the base-event is a
send or recv. Fig 3 visualises an event upon allocation to the Synchron runtime’s heap.

Figure 3 An event on the SynchronVM heap.

The linked-list, as shown above, is the canonical representation of an Event-type. It can
represent any complex composite event. For instance, if we take an example composite event
that is created using the base-events, e1, e2, e3 and a wrapping function wf1, it can always
be rewritten to its canonical form.

1 choose e1 (wrap (choose e2 e3) wf1)
2 -- Rewrite to canonical form --
3 choose e1 (choose (wrap e2 wf1) (wrap e3 wf1))

The choose operation can simply be represented as consing onto the event list.

ECOOP 2022

17:14 Synchron – An API and Runtime for Embedded Systems

5.3 The scheduler

SynchronVM’s scheduler is a hyrbid of cooperative and preemptive scheduling. For applica-
tions that do not use syncT, the scheduler is cooperative in nature. Initially the threads are
scheduled in the order that the main method calls them.

1 main = let _ = spawn thread1 in
2 let _ = spawn thread2 in
3 let _ = spawn thread3 in ...

The scheduler orders the above in the order of thread1 first, thread2 next and thread3
last. As the program proceeds, the scheduler relies on the threads to yield their control
according to the algorithms of Section 4. When the scheduler is unable to find a matching
thread for the currently running thread that is ready to synchronise the communication, it
blocks the current thread and calls the dispatchNewProcess() function to run other threads
(see Algorithm 1). On the other hand, when synchronisation succeeds, the scheduler puts
the message-sending thread in the readyQ and the message-receiving thread starts running.

The preemptive behaviour of the scheduler occurs when using syncT. For instance, when
a particular untimed thread is running and the baseline time of a timed thread has arrived,
the scheduler then preempts the execution of the untimed thread and starts running the
timed thread. A similar policy is also observed when the executing thread’s deadline is later
than a more urgent thread; the thread with the earliest deadline is chosen to be run at that
instance. Algorithm 7 shows the preemptive components of the scheduler.

The SynchronVM scheduler also handles hardware driver interactions via message-passing.
The structure that is used for messaging is shown below:

Listing 4 A SynchronVM hardware message
1 typedef struct {
2 uint32_t sender_id ;
3 uint32_t msg_type ;
4 uint32_t data;
5 Time timestamp ;
6 } svm_msg_t ;

The svm_msg_t type contains a unique sender id for each driver that is the same as the
number used in spawnExternal to identify that driver. The 32 bit msg_type field can be
used to specify different meanings for the next field, the data. The data is a 32 bit word.
The timestamp field of a message struct is a 64 bit entity, explained in detail in Section 5.5.
When the SynchronVM scheduler has all threads blocked, it uses a function pointer called
blockMsg, which is passed to it by the OS that starts the scheduler, to wait for any interrupts
from the underlying OS (more details in Section 5.4). Upon receiving an interrupt, the
scheduler uses the SynchronVM runtime’s handleMsg function to handle the corresponding
message. The function internally takes the message and unblocks the thread for which the
message was sent. The general structure of SynchronVM’s scheduler is shown in Algorithm 8.

Algorithm 8 The SynchronVM scheduler.
Data: blockMsg function pointer
∀threads set Tlocal = Tabsolute;
svm_msg_t msg;
while True do

if all threads blocked then
blockMsg(&msg);
handleMsg(msg);

else
interpret(currentT hread.P C);

end
end

A. Sarkar, B. J. Svensson, and M. Sheeran 17:15

The Tlocal clock is initialised for each thread when starting up the scheduler. Also notable
is the blockMsg function that relinquishes control to the underlying OS, allowing it to save
power. When the interrupt arrives, the handleMsg function unblocks certain thread(s) so
that when the if..then clause ends, in the following iteration the else clause is executed
and bytecode interpretation continues. We next discuss the low-level bridge connecting the
Synchron runtime to the underlying OS.

5.4 The Low-Level Bridge
The low-level bridge specifies two interfaces that should be implemented when writing
peripheral drivers to use with SynchronVM. The first contains functions for reading and
writing data synchronously to and from a driver. The second is geared towards interrupt-based
drivers that asynchronously produce data.

The C-struct below contains the interface functions for reading and writing data to a
driver as well as functions for checking the availability of data.

1 typedef struct ll_driver_s {
2 void * driver_info ;
3 bool is_synchronous ;
4 uint32_t (* ll_read_fun)(struct ll_driver_s *this , uint8_t *, uint32_t);
5 uint32_t (* ll_write_fun)(struct ll_driver_s *this , uint8_t *, uint32_t);
6 uint32_t (* ll_data_readable_fun)(struct ll_driver_s * this);
7 uint32_t (* ll_data_writeable_fun)(struct ll_driver_s * this);
8 UUID channel_id ;
9 } ll_driver_t ;

The driver_info field in the ll_driver_t struct can be used by a driver that implements
the interface to keep a pointer to lower-level driver specific data. For interrupt-based
drivers, this data will contain, among other things, an OS interoperation struct. These OS
interoperation structs are shown further below. A boolean indicates whether the driver is
synchronous or not. Next, the struct contains function pointers to the low-level driver’s
implementation of the interface. Lastly, a channel_id identifies the channel along which the
driver is allowed to communicate with processes running on top of SynchronVM.

The ll_driver_t struct contains all the data associated with a driver’s configuration
in one place and defines a set of platform and driver independent functions for use in the
runtime system, shown below:

1 uint32_t ll_read (ll_driver_t *drv , uint8_t *data , uint32_t data_size);
2 uint32_t ll_write (ll_driver_t *drv , uint8_t *data , uint32_t data_size);
3 uint32_t ll_data_readable (ll_driver_t *drv);
4 uint32_t ll_data_writeable (ll_driver_t *drv);

The OS interoperation structs, mentioned above, are essential for drivers that asynchron-
ously produce data. We show their Zephyr and ChibiOS versions below:

1 typedef struct zephyr_interop_s {
2 struct k_msgq *msgq;
3 int (* send_message)(struct zephyr_interop_s * this , svm_msg_t msg);
4 } zephyr_interop_t ;
5

6 typedef struct chibios_interop_s {
7 memory_pool_t * msg_pool ;
8 mailbox_t *mb;
9 int (* send_message)(struct chibios_interop_s * this , svm_msg_t msg);

10 } chibios_interop_t ;

In both cases, the struct contains the data that functions need to set up low-level message-
passing between the driver and the OS thread running the SynchronVM runtime. Zephyr
provides a message-queue abstraction that can take fixed-size messages, while ChibiOS

ECOOP 2022

17:16 Synchron – An API and Runtime for Embedded Systems

supports a mailbox abstraction that receives messages that are the size of a pointer. Since
ChibiOS mailboxes cannot receive data that is larger than a 32-bit word, a memory pool of
messages is employed in that case. The structure used to send messages from the drivers is
the already-introduced svm_msg_t struct, given in Listing 4.

5.5 The wall-clock time subsystem
Programs running on SynchronVM that make use of the timed operations rely on there
being a monotonically increasing timer. The wall-clock time subsystem emulates this by
implementing a 64bit timer that would take almost 7000 years to overflow at 84MHz frequency
or about 36000 years at 16MHz. The timer frequency of 16MHz is used on the NRF52 board,
while the timer runs at 84MHz on the STM32.

SynchronVM requires the implementation of the following functions for each of the
platforms (such as ChibiOS and Zephyr) that it runs on:

1 bool sys_time_init (void * os_interop);
2 Time sys_time_get_current_ticks (void);
3 uint32_t sys_time_get_alarm_channels (void);
4 uint32_t sys_time_get_clock_freq (void);
5 bool sys_time_set_wake_up (Time absolute);
6 Time sys_time_get_wake_up_time (void);
7 bool sys_time_is_alarm_set (void);

The timing subsystem uses the same OS interoperation structs as drivers do and thus
has access to a communication channel to the SynchronVM scheduler. The interoperation is
provided to the subsystem at initialisation using sys_time_init.

The key functionality of the timing subsystem is the ability to set an alarm at an absolute
64-bit point in time. Setting an alarm is done using sys_time_set_wake_up. The runtime
system queries the timing subsystem to check if an alarm is set and at what specific time.

The low-level implementation of the timing subsystem is highly platform dependent at
present. But on both Zephyr and ChibiOS, the implementation is currently based on a single
32-bit counter configured to issue interrupts at overflow, where an additional 32-bit value is
incremented. Alarms can only be set on the lower 32-bit counter at absolute 32-bit values.
Additional logic is needed to translate between the 64-bit alarms set by SynchronVM and
the 32-bit timers of the target platforms. Each time the overflow interrupt happens, the
interrupt service routine checks if there is an alarm in the next 32-bit window of time and
in that case, enables a compare interrupt to handle that alarm. When the alarm interrupt
happens, a message is sent to the SynchronVM scheduler in the same way as for interrupt
based drivers, using the message queue or mailbox from the OS interoperation structure.

Revisiting the requirements for implementing syncT (Section 3.3), we find that our
scheduler (1) provides a preemptive mechanism to override the fair scheduling, (2) has access
to a wall-clock time source, and (3) implements an earliest-deadline-first scheduling policy
that attempts to match the local time and the absolute time.

5.6 Porting SynchronVM to another RTOS
For porting SynchronVM to a new RTOS, one needs to implement – (1) the wall-clock time
subsystem interface from Section 5.5, (2) the low-level bridge interface (Section 5.4) for each
peripheral, and (3) a mailbox or message queue for communication between asynchronous
drivers and the runtime system, required by the time subsystem.

Our initial platform of choice was ZephyrOS for its platform-independent abstractions.
The first port of SynchronVM was on ChibiOS, where the wall-clock time subsystem was
254 lines of C-code. The drivers for LED, PWM, and DAC were about 100 lines of C-code
each.

A. Sarkar, B. J. Svensson, and M. Sheeran 17:17

6 Case Studies

Finite-State Machines with Synchron
We will begin with two examples of expressing state machines (involving callbacks) in the
Synchron API. Our examples are run on the NRF52840DK microcontroller board containing
four buttons and four LEDs. We particularly choose the button peripheral because its drivers
have a callback-based API that typically leads to non-linear control-flows in programs.

6.1 Four-Button-Blinky
We extend the button-blinky example (see Listing 1) to produce a one-to-one mapping between
four LEDs and four buttons such that button1 press lights up LED1, button2 lights up LED2,
button3 lights up LED3 and button4 lights up LED4 (while the button releases switch off
the corresponding LEDs).

The state machine of button-blinky is a standard two-state automaton that moves from the
ON-state to OFF on button-press and vice versa. Now, for the four button-LED combinations,
we have four state machines. We can combine them using the choose operator.

Listing 5 shows the important parts of the logic. The four state machines are declared in
Lines 1 to 4, and their composition happens in Line 6 using the choose operator.

Listing 5 The Four-Button-Blinky program expressed in the Synchron API.
1 press1 = wrap (recv butchan1) (λ x -> sync (send ledchan1 x))
2 press2 = wrap (recv butchan2) (λ x -> sync (send ledchan2 x))
3 press3 = wrap (recv butchan3) (λ x -> sync (send ledchan3 x))
4 press4 = wrap (recv butchan4) (λ x -> sync (send ledchan4 x))
5

6 anybutton = choose press1 (choose press2 (choose press3 press4))
7

8 program : ()
9 program = let _ = sync anybutton in program

6.2 A more intricate FSM
We now construct a more intricate finite-state machine involving intermediate states that can
move to an error state if the desired state-transition buttons are not pressed. For this example
a button driver needs to be configured to send only one message per button press-and-release.
So there is no separate button-on and button-off signal but one signal per button.

In this FSM, we glow the LED1 upon consecutive presses of button1 and button2. We
use the same path to turn LED1 off. However, if a press on button1 is followed by a press of
button 1 or 3 or 4, then we move to an error state indicated by LED3. We use the same
path to switch off LED3. In a similar vein, consecutive presses of button3 and button4 turns
on LED2 and button3 followed by button 1 or 2 or 3 turns on the error LED – LED3. Fig. 4
shows the FSM diagram of this application, omitting self-loops in the OFF state.

Figure 4 A complex state machine.

ECOOP 2022

17:18 Synchron – An API and Runtime for Embedded Systems

Listing 6 shows the central logic expressing the FSM of Fig 4 in the Synchron API. This
FSM can be viewed as a composition of two separate finite state machines, one on the left
side of the OFF state involving LED2 and LED3 and one on the right side involving LED1
and LED3. Once again, we use the choose operator to compose these two state machines.

Listing 6 The complex state machine running on the SynchronVM.
1 errorLed x = ledchan3
2

3 fail1ev = choose (wrap (recv butchan1) errorLed)
4 (choose (wrap (recv butchan3) errorLed)
5 (wrap (recv butchan4) errorLed))
6

7 fail2ev = choose (wrap (recv butchan1) errorLed)
8 (choose (wrap (recv butchan2) errorLed)
9 (wrap (recv butchan3) errorLed))

10

11 led1Handler x =
12 sync (choose (wrap (recv butchan2) (\x -> ledchan1)) fail1ev)
13

14 led2Handler x =
15 sync (choose (wrap (recv butchan4) (\x -> ledchan2)) fail2ev)
16

17 led : Int -> ()
18 led state =
19 let fsm1 = wrap (recv butchan1) led1Handler in
20 let fsm2 = wrap (recv butchan3) led2Handler in
21 let ch = sync (choose fsm1 fsm2) in
22 let _ = sync (send ch (not state)) in
23 led (not state)

In Listing 6, the led1Handler1 and ledHandler2 functions capture the intermediate
states after one button press, when the program awaits the next button press. The error
states are composed using the choose operator in the functions fail1ev and fail2ev.

The compositional nature of our framework is visible in line no. 21 where we compose
the two state machines, fsm1 and fsm2, using the choose operator. Synchronising on this
composite event returns the LED channel (demonstrating a higher-order approach) on which
the process should attempt to write. This program is notably a highly callback-based, reactive
program that we have managed to represent in an entirely synchronous framework.

6.3 A soft-realtime music playing example

We present a soft-realtime music playing exercise from a Real-Time Systems course, expressed
using the Synchron API. We choose the popular nursery rhyme – “Twinkle, Twinkle, Little
Star”. The program plays the tune repeatedly until it is stopped.

The core logic of the program involves periodically writing a sequence of 1’s and 0’s to
a DAC driver. However, to make the produced note sound musical to the human ear, the
periodic rate at which our process writes to the DAC driver is important, and this is where
the real-time aspect of the application comes in. The human ear recognises a note produced
at a certain frequency as a musical note. Our sound is generated at the 196Hz G3 music key.

Listing 7 shows the principal logic of the program expressed using the Synchron API.
Note that we use syncT to describe a new temporal combinator after that determines the
periodicity of this program. The list twinkle (line 10) holds the 28 notes in the twinkle song
and the list durations (line 11) provides the length of each note.

A. Sarkar, B. J. Svensson, and M. Sheeran 17:19

Listing 7 The Twinkle, Twinkle tune expressed using the Synchron API.
1 msec t = t * 1000
2 usec t = t
3 after t ev = syncT t 0 ev
4 -- note frequencies
5 g = usec 2551 -- a = 2273 usecs , b = 2025 usecs and so on
6

7 hn = msec 1000 -- half note
8 qn = msec 500 -- quarter note
9

10 twinkle = [g, g, d, d, e, e, d....] -- 28 notes
11 durations = [qn , qn , qn , qn , qn , qn , hn]
12

13 dacC = channel ()
14 noteC = channel ()
15

16 playerP : List Int -> List Int -> Int -> () -> ()
17 playerP melody nt n void =
18 if (n == 29)
19 then let _ = after (head nt) (send noteC (head twinkle)) in
20 playerP (tail twinkle) durations 2 void
21 else let _ = after (head nt) (send noteC (head melody)) in
22 playerP (tail melody) (tail nt) (n + 1) void
23

24 tuneP : Int -> Int -> () -> ()
25 tuneP timePeriod vol void =
26 let newtp =
27 after timePeriod (choose (recv noteC)
28 (wrap (send dacC (vol * 4095))
29 (λ _ -> timePeriod))) in
30 tuneP newtp (not vol) void
31

32 main = let _ = spawnExternal dacC 0 in
33 let _ = spawn (tuneP (head twinkle) 1) in
34 let _ = spawn (playerP (tail twinkle) durations 2) in ()

The application consists of two software processes and one external hardware process. We
use two channels – dacC to communicate with the DAC and noteC to communicate between
the two software processes. Looking at what each software process is doing –

playerP. This process runs at the rate of a note’s length. For a quarter note it wakes up
after 500 milliseconds (1000 msecs for a half note), traverses the next element of the twinkle
list and sends it along the noteC channel. It circles back after completing all 28 notes.

tuneP. This process creates the actual sound. Its running rate varies depending on the
note that is being played. For instance, when playing note C, it will write to the DAC at a
rate of 1911 microseconds-per-write. However, upon receiving a new value along noteC, it
changes its write frequency to the new value resulting in changing the note of the song.

7 Benchmarks

7.1 Interpretive overhead measurements
We characterise the overhead of executing programs on top of SynchronVM, compared to
running them directly on either Zephyr or ChibiOS, by implementing button-blinky directly
on top of these operating systems and measuring the response-time differences.

We compare the interrupt-based button-blinky implementation of Zephyr and ChibiOS
with the corresponding SynchronVM program. The interrupt-based approach (as opposed to
polling) keeps the low-level implementation in Zephyr and ChibiOS similar to SynchronVM
and indicates the interpretive and other overheads in SynchronVM.

ECOOP 2022

17:20 Synchron – An API and Runtime for Embedded Systems

The data in charts presented here is collected using an STM32F4 microcontroller based
testing system connected to either the NRF52 or the STM32F4 system under test (SUT).
The testing system provides the stimuli, sets the GPIO (button) to either active or inactive
and measures the time it takes for the SUT to respond on another GPIO pin (symbolising
the LED). The testing system connects to a computer displaying a GUI and generates the
plots used in this paper. Each plot places measured response times into buckets of similar
time, and shows the number of samples falling in each bucket as a vertical bar. Each bucket
is labelled with the average time of the samples it contains.

0 10 20 30 40 50
Time (us)

0

200

400

600

800

Fr
eq

ue
nc

y

ChibiOS

SynchronVM

(a) Response time comparison between a C-code
implementation using ChibiOS against the same
program on SynchronVM (running on ChibiOS).
Data obtained on the STM32F4 microcontroller.
Uses 1000 samples.

0 20 40 60 80
Time (us)

0

200

400

600

800

1000

Fr
eq

u
en

cy

SynchronVM

Zephyr (MQ)

(b) Response time comparison between a C-code
implementation using Zephyr OS against the same
program on SynchronVM (running on Zephyr).
Data obtained on the NRF52 microcontroller.
Uses 1000 samples.

Figure 5 Button-blinky response times comparison between C and SynchronVM.

Fig. 5a shows the SynchronVM response time in comparison to the implementation of
the program running on ChibiOS using its mailbox abstraction (MB). There the overhead is
about 3x. Fig. 5b compares response times for SynchronVM and the Zephyr message queue
based implementation (MQ), and shows an overhead of 2.6x.

7.2 Effects of Garbage Collection
This experiment measures the effects of garbage collection on response time by repeatedly
running 10000 samples for different heap-size configurations of SynchronVM. A smaller heap
should lead to more frequent interactions with the garbage collector, and the effects of the
garbage collector on the response time should magnify.

As a smaller heap is used, the number of outliers should increase if the outliers are
due to garbage collection. The following table shows the number of outliers at each size
configuration for the heap used, and there is an indication that GC is the cause of outliers.

Heap size (bytes) 256 512 1024 2048 4096 8192
Outliers NRF52

on Zephyr 3334 1429 811 491 0 81

Outliers STM32
on ChibiOs 3339 1430 810 491 0 80

Figures 6 and 7 show the response-time numbers across the heap sizes of 8192, 4096, 2048,
1024, 512 and 256 bytes. A general observable trend is that as the heap size decreases and
GC increases, the response time numbers hover towards the farther end of the X-axis. This

A. Sarkar, B. J. Svensson, and M. Sheeran 17:21

trend is most visible for the heap size of 256 bytes, which is our smallest heap size. Note that
we cannot collect enough sample data for response-time if we switch off the garbage collector
(as a reference value), as the program would very quickly run out of memory and terminate.

25.589

26.1221

46.38

46.9132

47.4463

47.9794

Time (us)

0

2000

4000

6000

8000

Fr
eq

ue
nc

y

1024

2048

256

4096

512

8192

Figure 6 Response time measurements at different sizes of the heap to identify effects of garbage
collection. This data is collected on the STM32F4 microcontroller running SynchronVM on top of
ChibiOS. Each bucket size is approx 0.533us. Uses 10000 samples.

80.6064

143.117

144.762

146.407

148.053

Time (us)

0

2000

4000

6000

8000

10000

Fr
eq

ue
nc

y

1024

2048

256

4096

512

8192

Figure 7 Response time measurements at different sizes of the heap to identify effects of garbage
collection. This data is collected on the NRF52 microcontroller running SynchronVM on top of the
Zephyr OS. Each bucket size is approx 1.65us. Uses 10000 samples.

7.3 Memory Footprint
SynchronVM resides on the Flash memory of a microcontroller. On Zephyr, a tiny C
application occupies 17100 bytes, whereas the same SynchronVM application occupies 49356
bytes, which gives the VM’s footprint as 32256 bytes. For ChibiOS, the C application takes
18548 bytes, while the SynchronVM application takes 53868 bytes. Thus, SynchronVM takes
35320 bytes in this case. Hence, we can estimate SynchronVM’s rough memory footprint at
32 KB, which will grow with more drivers.

7.4 Power Usage
Fig. 8 shows the power usage of the NRF52 microcontroller running the button-blinky
program for three implementations. The first is a polling version of the program in C. The
second program uses a callback-based version of button-blinky [11]. The last program is
Listing 1 running on SynchronVM. The measurements are made using the Ruideng UM25C
ammeter. We collect momentary readings from the ammeter after the value has stabilised.

Notable in Fig. 8 is the polling-based C implementation’s use of 0.0175 Watts of power in
a button-off state, whereas SynchronVM consumes five times less power (0.0035 Watts).

ECOOP 2022

17:22 Synchron – An API and Runtime for Embedded Systems

Polling in C Callback in C SynchronVM
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

LED on

LED off

W
at

ts

Figure 8 Power usage measured on the NRF52 microcontroller.

This is comparable to the callback-based C implementation’s use of 0.003 Watts. Integ-
rating the power usage over time will likely make the difference between SynchronVM and
the callback-based C version more noticeable. However, we believe that the simplicity and
declarative nature of the Synchron-based code provide a fair tradeoff.

7.5 Jitter and Precision
Jitter can be defined as the deviation from true periodicity of a presumably periodic signal,
often in relation to a reference clock signal. We want to evaluate how our claims of syncT
reducing jitter pans out in practice.

Listing 8 below is written in a naive way to illustrate how jitter manifests in programs.
Figure 9a shows what the oscilloscope draws, set to persistent mode drawing while sampling
the signal from the Raspberry Pi outputs.

The Raspberry Pi program reads the status of a GPIO pin and then inverts its state
back to that same pin. The program then goes to sleep using usleep for 400us. The goal
frequency was 1kHz and sleeping for 400us here gave a roughly 1.05kHz signal. The more
expected sleep time of 500us to generate a 1kHz signal led, instead, to a much lower frequency.
So, the 400us value was found experimentally.

1 while (1) {
2 uint32_t state = GPIO_READ (23);
3 if (state) {
4 GPIO_CLR (23);
5 } else {
6 GPIO_SET (23);
7 }
8 usleep (400);
9 }

10 // main method and other setup
elided

Listing 8 Raspberry Pi C code.

11 ledchan = channel ()
12

13 foo : Int -> ()
14 foo val =
15 let _ = syncT 500 0 (send

ledchan val)
16 in foo (not val)
17

18 main =
19 let _ = spawnExternal ledchan 1
20 in foo 1

Listing 9 SynchronVM 1KHz wave code.

Listing 9 shows the same 1kHz frequency generator for SynchronVM. Note that, in this
case, specifying a baseline of 500us led to a 1kHz wave (Fig. 9b). In comparison, a 400us
period in Listing 8 generated a roughly 1kHz wave, owing to additional delays of the system.

7.6 Load Test
The SynchronVM program in the previous section could produce a 1kHz-wave with no jitter.
However, the only operation that the program did was produce the square wave. In this
section, we want to test how much computational load can be performed by Synchron while
producing the square wave. We emulate the workload using the following program.

A. Sarkar, B. J. Svensson, and M. Sheeran 17:23

(a) Illustrating the amount of jitter on the square
wave generated from the Raspberry Pi by setting
the oscilloscope display in persistent mode.

(b) A 1kHz square wave generated using Syn-
chronVM running on the STM32F4 with no jitter.

Figure 9 A 1 kHz frequency generator on the Raspberry PI (in C) and STM32 (Synchron).

21 load i n =
22 let _ = fib_tailrec n in
23 let _ = syncT 8000 0 (send

ledchan i)
24 in load (not i)

25 loop i a b n =
26 if i == n then a
27 else loop (i+1) (b) (a+b) n
28

29 fib_tailrec n = loop 0 0 1 n

1000 500 250 125 62.5
0

20

40

60

80

100

120

140

160

180
Load

Frequency

Figure 10 Load testing SynchronVM with the nth fibonacci number function.

At a given frequency, it is possible to calculate only up to a certain Fibonacci number
while generating the square wave at the desired frequency. For example, when generating a
62.5 Hz wave, it is only possible to calculate up to the 155th Fibonacci number. If the 156th
number is calculated, the wave frequency drops below 62.5 Hz.

Fig. 10 plots the nth Fibonacci numbers that can be calculated against the square wave
frequencies that get generated without jitters. Our implementation of fib_tailrec involves
2 addition operations, 1 equality comparison and 1 recursive call. So, calculating the 155th
Fibonacci number involves 155 ∗ 4 = 620 major operations. The trend shows that the load
capacity of SynchronVM grows linearly as the desired frequency of the square wave is halved.

7.7 Music Program Benchmarks
We now provide some benchmarks on the music program from Section 6.3. Figure 11 shows
CPU usage, average time it takes to allocate data and total time spent doing allocations in a
1 minute window. The values used in the chart come from the second minute of running

ECOOP 2022

17:24 Synchron – An API and Runtime for Embedded Systems

16384 15360 14336 13312 12288 11264 10240 9216 8192 7168 6144 5120 4096 3072
0

20

40

60

80

100

120

140

160

180

CPU %

Allocation avg. (us)

Allocation time tot (ms)

Heap Size

Figure 11 CPU usage and allocation trends over a 1 minute window for Listing 7.

the music application. The values from the first minute of execution are discarded as those
would include the startup phase of the system. The amount of heap made available to the
runtime system is varied from a roomy 16384 bytes down to 3072 bytes.

The sweep phase of our garbage collector is intertwined with the allocations phase. Hence,
instead of showing the GC time, the chart shows statistics related to all allocations that take
a measurable amount of time using the ChibiOS 10KHz system timer. All allocations taking
less than 100us are left out of the statistics (and not counted towards averaging).

The data in Fig. 11 shows that CPU usage of the music application is pretty stable at
around 8 percent over the one minute window. It increases slightly for the very small heap
sizes and ends up at nearly 10 percent at the smallest heap size that can house the program.

In terms of allocation, the average time of an allocation (in usecs) increases when the
probability of a more expensive allocation increases, which in turn increases with small heap
sizes. In the last data series, the total amount of time spent in allocations (in msecs) grows
considerably as the heap size drops below 7168 bytes – an indicator of increased GC activity.

Programming Complexity. This music application ports a Real-Time Systems course
exercise written in C using the TinyTimber kernel [19]. The TinyTimber-based C program
(excluding the kernel) is around 600 lines of code. In comparison, our entire program,
along with the library functions, stands at 74 lines. The most time-consuming part of the
port was modifying the core logic in terms of message-passing. A major gain is that the
interrupt-handling and other I/O management routines are invisible to the programmer. The
user-defined timing operator, after, further enables the concision of the program.

7.8 Discussion
Our benchmarks, so far, show promising results for power, memory, and CPU usage. How-
ever, SynchronVM’s response time is 2-3x times slower than native C code, which needs
improvement. We attribute the slowness to the CAM-based execution engine, which we hope
to mitigate by moving to a ZAM-based machine [18].

Our synthetic load test (Fig. 10) indicates that the VM can support around 150 operations
for applications that operate around 250Hz (such as humanoid balance bots [9], autonomous
vehicle platforms [34]). Our music program falls in the range of 200-500 Hz, and SynchronVM

A. Sarkar, B. J. Svensson, and M. Sheeran 17:25

could sustain that frequency without introducing any jitter. There exist other untimed,
aperiodic applications with much lower frequencies where SynchronVM could be applicable.
Examples include smart home applications [32], monitoring systems [13], etc.

The Synchron API chooses a synchronous message-passing model, unlike actor-based
systems, like Erlang, that support an asynchronous message-passing model with each process
containing a mailbox. We believe that a synchronous message-passing policy is better suited
for embedded systems for the following reasons:

1. Embedded systems are highly memory-constrained, and asynchronous send semantics
assume the unboundedness of an actor’s mailbox, which is a poor assumption in the
presence of memory constraints. Once the mailbox becomes full, message-sending becomes
blocking, which is already the default semantics of synchronous message-passing.

2. Acknowledgement is implicit in synchronous message-passing systems, in contrast to
explicit message acknowledgement in asynchronous systems that leads to code bloat.
Additionally, forgetting to remove acknowledgement messages from an actor’s mailbox
can lead to memory leaks.

8 Limitations and Future Work

In this section, we propose future work to improve the Synchron API and runtime.

8.1 Synchron API limitation
Deadline miss API. Currently, the Synchron API cannot represent actions that should
happen if a task were to miss its deadline. We envision adapting the negative acknowledgement
API of CML to represent missed-deadline handlers for Synchron.

8.2 SynchronVM limitations
Memory management. A primary area of improvement is upgrading our stop-the-world mark
and sweep garbage collector and investigating real-time garbage collectors like Schism [23].
Another relevant future work would be investigating static memory-management schemes
like regions [30] and techniques combining regions with GC [14].

Interpretation overhead. A possible approach to reducing our interpretation overhead
could be pre-compiling our bytecode to machine code (AOT compilation). Similarly, dynamic
optimization approaches like JITing could be an area of investigation.

Priority inversions. Although TinyTimber-style dynamic priorities might reduce priority
inversion occurrences, they can still occur on the SynchronVM. Advanced approaches like
priority inheritance protocols [27] need to be experimented with on our scheduler.

9 Related Work

Among functional languages running on microcontrollers, there exists OCaml running on
OMicroB [33], Scheme running on Picobit [29] and Erlang running on AtomVM [5]. Synchron
differs from these projects in the aspect that we identify certain fundamental characteristics
of embedded systems and accordingly design an API and runtime to address those demands.
As a result, our programming interface aligns more naturally to the requirements of an
embedded systems application, in contrast with general-purpose languages like Scheme.

ECOOP 2022

17:26 Synchron – An API and Runtime for Embedded Systems

The Medusa [3] language and runtime is the inspiration behind our uniform framework
of concurrency and I/O. Medusa, however, does not provide any timing based APIs, and
their message-passing framework is based on the actor model (See Section 7.8).

In the real-time space, a safety-critical VM that can provide hard real-time guarantees
on Real-Time Java programs is the FijiVM [24] implementation. A critical innovation of
the project was the Schism real-time garbage collector [23], from which we hope to draw
inspiration for future work on memory management.

RTMLton [28] is another example of a real-time project supporting a general-purpose
language like SML. RTMLton adapts the MLton runtime [36] with ideas from FijiVM to enable
handling real-time constraints in SML. CML is available as an SML library, so RTMLton
provides access to the event framework of CML but lacks the uniform concurrency-I/O model
and the syncT operator of Synchron.

The Timber language [6] is an object-oriented language that inspired the syncT API of
Synchron. Timber was designed for hard real-time scenarios; related work on estimating
heap space bounds [17] could perhaps benefit our future research.

The WebAssembly project (WASM) has spawned sub-projects like WebAssembly Micro
Runtime (WAMR) [1] so that languages that compile to WASM can run on microcontrollers.
Notable here is that while several general-purpose languages, like JavaScript, can execute
on ARM architectures by compiling to WebAssembly, they lack the native support for the
concurrent, I/O-bound, and timing-aware programs that is naturally provided by our API
and its implementation. Reactive extensions of Javascript, like HipHop.js [4], are being
envisioned to be used for embedded systems.

Another related line of work is embedding domain-specific languages like Ivory [10] and
Copilot [22] in Haskell to generate C programs that can run on embedded devices. This
approach differs from ours in the aspect that two separate languages dictate the programming
model of an EDSL – the first being the DSL itself and the second being the host language
(Haskell). We assess that having a single language (like in Synchron) provides a more uniform
programming model to the programmer. However, code-generating EDSLs have very little
runtime overheads and, when fully optimised, can produce high performance C.

10 Conclusion

In this paper, we have presented Synchron – an API and runtime for embedded systems, which
we implement within the larger SynchronVM. We identified three essential characteristics
of embedded applications, namely being concurrent, I/O–bound, and timing-aware, and
correspondingly designed our API to address all three concerns. Our evaluations, conducted
on the STM32 and NRF52 microcontrollers, show encouraging results for power, memory
and CPU usage of the SynchronVM. Our response time numbers are within the range of
2-3x times that of native C programs, which we envision being improved by moving to a
register-based execution engine and by using smarter memory-management strategies. We
have additionally demonstrated the expressivity of our API through state machine-based
examples, commonly found in embedded systems. Finally, we illustrated our timing API by
expressing a soft real-time application, and we expect further theoretical investigations on
the worst-case execution time and schedulability analysis on SynchronVM.

References
1 WAMR – WebAssembly Micro Runtime, 2019. URL: https://github.com/

bytecodealliance/wasm-micro-runtime.
2 Synchron Virtual Machine, 2022. URL: https://github.com/SynchronVM/SynchronVM.

https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/SynchronVM/SynchronVM

A. Sarkar, B. J. Svensson, and M. Sheeran 17:27

3 Thomas W. Barr and Scott Rixner. Medusa: Managing Concurrency and Communication in
Embedded Systems. In Garth Gibson and Nickolai Zeldovich, editors, 2014 USENIX Annual
Technical Conference, USENIX ATC ’14, Philadelphia, PA, USA, June 19-20, 2014, pages
439–450. USENIX Association, 2014. URL: https://www.usenix.org/conference/atc14/
technical-sessions/presentation/barr.

4 Gérard Berry and Manuel Serrano. Hiphop.js: (A)Synchronous reactive web programming. In
Alastair F. Donaldson and Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN
International Conference on Programming Language Design and Implementation, PLDI 2020,
London, UK, June 15-20, 2020, pages 533–545. ACM, 2020. doi:10.1145/3385412.3385984.

5 Davide Bettio. AtomVM, 2017. URL: https://github.com/bettio/AtomVM.
6 Andrew P Black, Magnus Carlsson, Mark P Jones, Richard Kieburtz, and Johan Nordlander.

Timber: A programming language for real-time embedded systems. Technical report, OGI
School of Science and Engineering, Oregon Health and Sciences University, Technical Report
CSE 02-002. April 2002, 2002.

7 Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The Categorical Abstract Machine. In
Jean-Pierre Jouannaud, editor, Functional Programming Languages and Computer Architecture,
FPCA 1985, Nancy, France, September 16-19, 1985, Proceedings, volume 201 of Lecture Notes
in Computer Science, pages 50–64. Springer, 1985. doi:10.1007/3-540-15975-4_29.

8 Robert de Simone, Jean-Pierre Talpin, and Dumitru Potop-Butucaru. The Synchronous
Hypothesis and Synchronous Languages. In Richard Zurawski, editor, Embedded Systems
Handbook. CRC Press, 2005. doi:10.1201/9781420038163.ch8.

9 Ahmed Elhasairi and Alexandre N. Pechev. Humanoid Robot Balance Control Using the
Spherical Inverted Pendulum Mode. Frontiers Robotics AI, 2:21, 2015. doi:10.3389/frobt.
2015.00021.

10 Trevor Elliott, Lee Pike, Simon Winwood, Patrick C. Hickey, James Bielman, Jamey Sharp,
Eric L. Seidel, and John Launchbury. Guilt free ivory. In Ben Lippmeier, editor, Proceedings
of the 8th ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada,
September 3-4, 2015, pages 189–200. ACM, 2015. doi:10.1145/2804302.2804318.

11 Zephyr examples. Zephyr button blinky, 2021. URL: https://pastecode.io/s/szpf673u.
12 Damien George. Micropython, 2014. URL: https://micropython.org/.
13 R. Kingsy Grace and S. Manju. A Comprehensive Review of Wireless Sensor Networks

Based Air Pollution Monitoring Systems. Wirel. Pers. Commun., 108(4):2499–2515, 2019.
doi:10.1007/s11277-019-06535-3.

14 Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining Region Inference and Garbage
Collection. In Jens Knoop and Laurie J. Hendren, editors, Proceedings of the 2002 ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Berlin,
Germany, June 17-19, 2002, pages 141–152. ACM, 2002. doi:10.1145/512529.512547.

15 Ralf Hinze. The Categorical Abstract Machine: Basics and Enhancements. Technical report,
University of Bonn, 1993.

16 C. A. R. Hoare. Communicating Sequential Processes. Commun. ACM, 21(8):666–677, 1978.
doi:10.1145/359576.359585.

17 Martin Kero, Pawel Pietrzak, and Johan Nordlander. Live Heap Space Bounds for Real-
Time Systems. In Kazunori Ueda, editor, Programming Languages and Systems - 8th Asian
Symposium, APLAS 2010, Shanghai, China, November 28 - December 1, 2010. Proceedings,
volume 6461 of Lecture Notes in Computer Science, pages 287–303. Springer, 2010. doi:
10.1007/978-3-642-17164-2_20.

18 Xavier Leroy. The ZINC experiment: an economical implementation of the ML language. PhD
thesis, INRIA, 1990.

19 Per Lindgren, Johan Eriksson, Simon Aittamaa, and Johan Nordlander. TinyTimber, Reactive
Objects in C for Real-Time Embedded Systems. In 2008 Design, Automation and Test in
Europe, pages 1382–1385, 2008. doi:10.1109/DATE.2008.4484933.

ECOOP 2022

https://www.usenix.org/conference/atc14/technical-sessions/presentation/barr
https://www.usenix.org/conference/atc14/technical-sessions/presentation/barr
https://doi.org/10.1145/3385412.3385984
https://github.com/bettio/AtomVM
https://doi.org/10.1007/3-540-15975-4_29
https://doi.org/10.1201/9781420038163.ch8
https://doi.org/10.3389/frobt.2015.00021
https://doi.org/10.3389/frobt.2015.00021
https://doi.org/10.1145/2804302.2804318
https://pastecode.io/s/szpf673u
https://micropython.org/
https://doi.org/10.1007/s11277-019-06535-3
https://doi.org/10.1145/512529.512547
https://doi.org/10.1145/359576.359585
https://doi.org/10.1007/978-3-642-17164-2_20
https://doi.org/10.1007/978-3-642-17164-2_20
https://doi.org/10.1109/DATE.2008.4484933

17:28 Synchron – An API and Runtime for Embedded Systems

20 Tommi Mikkonen and Antero Taivalsaari. Web Applications - Spaghetti Code for the 21st
Century. In Walter Dosch, Roger Y. Lee, Petr Tuma, and Thierry Coupaye, editors, Proceedings
of the 6th ACIS International Conference on Software Engineering Research, Management
and Applications, SERA 2008, 20-22 August 2008, Prague, Czech Republic, pages 319–328.
IEEE Computer Society, 2008. doi:10.1109/SERA.2008.16.

21 Johan Nordlander. Programming with the TinyTimber kernel. Luleå tekniska universitet, 2007.
22 Lee Pike, Alwyn Goodloe, Robin Morisset, and Sebastian Niller. Copilot: A Hard Real-Time

Runtime Monitor. In Howard Barringer, Yliès Falcone, Bernd Finkbeiner, Klaus Havelund,
Insup Lee, Gordon J. Pace, Grigore Rosu, Oleg Sokolsky, and Nikolai Tillmann, editors,
Runtime Verification - First International Conference, RV 2010, St. Julians, Malta, November
1-4, 2010. Proceedings, volume 6418 of Lecture Notes in Computer Science, pages 345–359.
Springer, 2010. doi:10.1007/978-3-642-16612-9_26.

23 Filip Pizlo, Lukasz Ziarek, Petr Maj, Antony L. Hosking, Ethan Blanton, and Jan Vitek. Schism:
fragmentation-tolerant real-time garbage collection. In Benjamin G. Zorn and Alexander
Aiken, editors, Proceedings of the 2010 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2010, Toronto, Ontario, Canada, June 5-10, 2010, pages
146–159. ACM, 2010. doi:10.1145/1806596.1806615.

24 Filip Pizlo, Lukasz Ziarek, and Jan Vitek. Real time Java on resource-constrained platforms
with Fiji VM. In M. Teresa Higuera-Toledano and Martin Schoeberl, editors, Proceedings of the
7th International Workshop on Java Technologies for Real-Time and Embedded Systems, JTRES
2009, Madrid, Spain, September 23-25, 2009, ACM International Conference Proceeding Series,
pages 110–119. ACM, 2009. doi:10.1145/1620405.1620421.

25 John H. Reppy. Concurrent ML: Design, Application and Semantics. In Peter E. Lauer,
editor, Functional Programming, Concurrency, Simulation and Automated Reasoning: In-
ternational Lecture Series 1991-1992, McMaster University, Hamilton, Ontario, Canada,
volume 693 of Lecture Notes in Computer Science, pages 165–198. Springer, 1993. doi:
10.1007/3-540-56883-2_10.

26 Abhiroop Sarkar, Robert Krook, Bo Joel Svensson, and Mary Sheeran. Higher-Order
Concurrency for Microcontrollers. In Herbert Kuchen and Jeremy Singer, editors, MPLR
’21: 18th ACM SIGPLAN International Conference on Managed Programming Languages
and Runtimes, Münster, Germany, September 29-30, 2021, pages 26–35. ACM, 2021.
doi:10.1145/3475738.3480716.

27 Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority Inheritance Protocols: An
Approach to Real-Time Synchronization. IEEE Trans. Computers, 39(9):1175–1185, 1990.
doi:10.1109/12.57058.

28 Bhargav Shivkumar, Jeffrey C. Murphy, and Lukasz Ziarek. RTMLton: An SML Runtime for
Real-Time Systems. In Ekaterina Komendantskaya and Yanhong Annie Liu, editors, Practical
Aspects of Declarative Languages - 22nd International Symposium, PADL 2020, New Orleans,
LA, USA, January 20-21, 2020, Proceedings, volume 12007 of Lecture Notes in Computer
Science, pages 113–130. Springer, 2020. doi:10.1007/978-3-030-39197-3_8.

29 Vincent St-Amour and Marc Feeley. PICOBIT: A Compact Scheme System for Microcontrollers.
In Marco T. Morazán and Sven-Bodo Scholz, editors, Implementation and Application of
Functional Languages - 21st International Symposium, IFL 2009, South Orange, NJ, USA,
September 23-25, 2009, Revised Selected Papers, volume 6041 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2009. doi:10.1007/978-3-642-16478-1_1.

30 Mads Tofte and Jean-Pierre Talpin. Region-based Memory Management. Inf. Comput.,
132(2):109–176, 1997. doi:10.1006/inco.1996.2613.

31 Hideyuki Tokuda, Clifford W. Mercer, Yutaka Ishikawa, and Thomas E. Marchok. Priority
Inversions in Real-Time Communication. In Proceedings of the Real-Time Systems Symposium
- 1989, Santa Monica, California, USA, December 1989, pages 348–359. IEEE Computer
Society, 1989. doi:10.1109/REAL.1989.63587.

https://doi.org/10.1109/SERA.2008.16
https://doi.org/10.1007/978-3-642-16612-9_26
https://doi.org/10.1145/1806596.1806615
https://doi.org/10.1145/1620405.1620421
https://doi.org/10.1007/3-540-56883-2_10
https://doi.org/10.1007/3-540-56883-2_10
https://doi.org/10.1145/3475738.3480716
https://doi.org/10.1109/12.57058
https://doi.org/10.1007/978-3-030-39197-3_8
https://doi.org/10.1007/978-3-642-16478-1_1
https://doi.org/10.1006/inco.1996.2613
https://doi.org/10.1109/REAL.1989.63587

A. Sarkar, B. J. Svensson, and M. Sheeran 17:29

32 Blase Ur, Elyse McManus, Melwyn Pak Yong Ho, and Michael L. Littman. Practical Trigger-
Action Programming in the Smart Home. In Matt Jones, Philippe A. Palanque, Albrecht
Schmidt, and Tovi Grossman, editors, CHI Conference on Human Factors in Computing
Systems, CHI’14, Toronto, ON, Canada - April 26 - May 01, 2014, pages 803–812. ACM,
2014. doi:10.1145/2556288.2557420.

33 Steven Varoumas, Benoît Vaugon, and Emmanuel Chailloux. A Generic Virtual Machine
Approach for Programming Microcontrollers: the OMicroB Project. In 9th European Congress
on Embedded Real Time Software and Systems (ERTS 2018), 2018.

34 Benjamin Vedder, Jonny Vinter, and Magnus Jonsson. A Low-Cost Model Vehicle Testbed
with Accurate Positioning for Autonomous Driving. J. Robotics, 2018:4907536:1–4907536:10,
2018. doi:10.1155/2018/4907536.

35 Ge Wang and Perry R. Cook. ChucK: A Concurrent, On-the-fly, Audio Programming
Language. In Proceedings of the 2003 International Computer Music Conference, ICMC
2003, Singapore, September 29 - October 4, 2003. Michigan Publishing, 2003. URL: http:
//hdl.handle.net/2027/spo.bbp2372.2003.055.

36 Stephen Weeks. Whole-program compilation in MLton. In Andrew Kennedy and François
Pottier, editors, Proceedings of the ACM Workshop on ML, 2006, Portland, Oregon, USA,
September 16, 2006, page 1. ACM, 2006. doi:10.1145/1159876.1159877.

37 Gordon Williams. Espruino, 2012. URL: http://www.espruino.com/.

ECOOP 2022

https://doi.org/10.1145/2556288.2557420
https://doi.org/10.1155/2018/4907536
http://hdl.handle.net/2027/spo.bbp2372.2003.055
http://hdl.handle.net/2027/spo.bbp2372.2003.055
https://doi.org/10.1145/1159876.1159877
http://www.espruino.com/

Direct Foundations for Compositional Programming
Andong Fan1 #

Zhejiang University, Hangzhou, China

Xuejing Huang1 #

The University of Hong Kong, China

Han Xu #

Peking University, Beijing, China

Yaozhu Sun #

The University of Hong Kong, China

Bruno C. d. S. Oliveira #

The University of Hong Kong, China

Abstract
The recently proposed CP language adopts Compositional Programming: a new modular program-
ming style that solves challenging problems such as the Expression Problem. CP is implemented on
top of a polymorphic core language with disjoint intersection types called F+

i . The semantics of F+
i

employs an elaboration to a target language and relies on a sophisticated proof technique to prove
the coherence of the elaboration. Unfortunately, the proof technique is technically challenging and
hard to scale to many common features, including recursion or impredicative polymorphism. Thus,
the original formulation of F+

i does not support the two later features, which creates a gap between
theory and practice, since CP fundamentally relies on them.

This paper presents a new formulation of F+
i based on a type-directed operational semantics

(TDOS). The TDOS approach was recently proposed to model the semantics of languages with
disjoint intersection types (but without polymorphism). Our work shows that the TDOS approach
can be extended to languages with disjoint polymorphism and model the full F+

i calculus. Unlike the
elaboration semantics, which gives the semantics to F+

i indirectly via a target language, the TDOS
approach gives a semantics to F+

i directly. With a TDOS, there is no need for a coherence proof.
Instead, we can simply prove that the semantics is deterministic. The proof of determinism only uses
simple reasoning techniques, such as straightforward induction, and is able to handle problematic
features such as recursion and impredicative polymorphism. This removes the gap between theory
and practice and validates the original proofs of correctness for CP. We formalized the TDOS variant
of the F+

i calculus and all its proofs in the Coq proof assistant.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Intersection types, disjoint polymorphism, operational semantics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.18

Related Version Extended Version: https://arxiv.org/abs/2205.06150

Supplementary Material Supplements can be found as follows:
Software (ECOOP 2022 approved artifact): https://doi.org/10.4230/DARTS.8.2.4
Software (Coq formalization): https://github.com/andongfan/CP-Foundations
Software (Online demo of CP implementation): https://plground.org

Funding This research was funded by the University of Hong Kong and Hong Kong Research Grants
Council projects number 17209519, 17209520 and 17209821.

Acknowledgements We thank the anonymous reviewers and Wenjia Ye for their helpful comments.

1 The first two authors contributed equally to this work.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Andong Fan, Xuejing Huang, Han Xu, Yaozhu Sun, and
Bruno C. d. S. Oliveira;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 18; pp. 18:1–18:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:afan2018@zju.edu.cn
https://orcid.org/0000-0003-2124-9625
mailto:xjhuang@cs.hku.hk
https://orcid.org/0000-0002-8496-491X
mailto:1800012917@pku.edu.cn
https://orcid.org/0000-0002-2548-6866
mailto:yzsun@cs.hku.hk
mailto:bruno@cs.hku.hk
https://doi.org/10.4230/LIPIcs.ECOOP.2022.18
https://arxiv.org/abs/2205.06150
https://doi.org/10.4230/DARTS.8.2.4
https://github.com/andongfan/CP-Foundations
https://plground.org
https://doi.org/10.4230/DARTS.8.2.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Direct Foundations for Compositional Programming

1 Introduction

Compositional Programming [46] is a recently proposed modular programming paradigm.
It offers a natural solution to the Expression Problem [42] and novel approaches to modu-
lar pattern matching and dependency injection. The CP language adopts Compositional
Programming. In CP, several new programming language constructs enable Compositional
Programming. Of particular interest for this paper, CP has a notion of typed first-class
traits [5], which are extended in CP to also enable a form of family polymorphism [16].

The semantics of CP and its notion of traits is defined via an elaboration to the core
calculus F+

i [7]: a polymorphic core language with a merge operator [34] and disjoint
intersection types [30]. The elaboration of traits is inspired by Cook’s denotational semantics
of inheritance [12]. In the denotational semantics of inheritance, the key idea is that
mechanisms such as classes or traits, which support self-references (a.k.a. the this keyword
in conventional OOP languages), can be modeled via open recursion. In other words, the
encoding of classes or traits is parametrized by a self-reference. This allows late binding of self-
references at the point of instantiation and enables the modification and composition of traits
before instantiation. Instantiation happens when new is used, just as in conventional OOP
languages. When new is used, it essentially closes the recursion by binding the self-reference,
which then becomes a recursive reference to the instantiated object. In the denotational
semantics of inheritance, new is just a fixpoint operator.

The semantics of the original formulation of F+
i [7] itself is also given by an elaboration

into Fco, a System F-like language with products. Unlike F+
i , Fco has no subtyping or

intersection types, and it has a conventional operational semantics. The main reason for F+
i

to use elaboration is that F+
i has a type-dependent semantics: types may affect the runtime

behavior of a program. The elaboration semantics for F+
i seems like a natural choice, since

this is commonly seen in various other type-dependent languages and calculi. For instance,
the semantics of type-dependent languages with type classes [43], Scala-style implicits [29]
or gradual typing [40] all usually adopt an elaboration approach. In contrast, in the past,
more conventional direct formulations using an operational semantics have been avoided for
languages with a type-dependent semantics. The appeals of the elaboration semantics are
simple type-safety proofs, and the fact that they directly offer an implementation technique
over conventional languages without a type-dependent semantics.

There are also important drawbacks when using an elaboration semantics. One of them
is simply that more infrastructure is needed for a target language (such as Fco) and its
associated semantics and metatheory. Moreover, the elaboration semantics is indirect, and
to understand the semantics of a program, we must first translate it to the target language
(which may be significantly different from the source) and then reason in terms of the
target. More importantly, besides type-safety, another property that is often desirable for an
elaboration semantics is coherence [35]. Many elaboration semantics are non-deterministic:
the same source program can elaborate into different target programs. If those different
programs have a different semantics, then this is problematic, as it would imply that the
source language would have a non-deterministic or ambiguous semantics. Coherence ensures
that even if the same program elaborates to different target expressions, the different target
expressions are semantically equivalent, eventually evaluating to the same result.

For some languages, including F+
i , proving coherence is highly non-trivial and hard to

scale to common programming language features. For the original F+
i , the proof of coherence

comes at the cost of simple features such as recursion and impredicative polymorphism. The

A. Fan, X. Huang, H. Xu, Y. Sun, and B. C. d. S. Oliveira 18:3

proof of coherence for F+
i is based on a logical relation called canonicity [6]. Together with a

notion of contextual equivalence, the two techniques are used to prove coherence. The use
of logical relations is a source of complexity in the proof and the reason why recursion and
impredicative polymorphism have not been supported. For recursion, in principle, the use of
a more sophisticated step-indexed logical relation [3] may enable a proof of coherence, at the
cost of some additional complexity. However, due to the extra complexity, this was left for
future work. For impredicative polymorphism, Bi et al. [7] identified important technical
challenges, and it is not known if the proof can be extended with such a feature.

The absence of recursion and impredicative polymorphism creates a gap between theory
and practice, since CP fundamentally relies on them. Moreover, the proofs of correctness
of CP rely on the assumption that F+

i with recursion and impredicative polymorphism
would preserve all the properties of F+

i . Impredicative polymorphism is needed in CP to
allow the types of traits with polymorphic methods to be used as type parameters for other
polymorphic functions. Recursion is needed in CP because the denotational semantics uses
fixpoint operators to instantiate traits. In addition, the fixpoint operators must be lazy;
otherwise, self-references can easily trigger non-termination. Therefore, a call-by-name (CBN)
semantics is more natural and also assumed in the CP encoding of traits. However, the
semantics of the Fco calculus is call-by-value (CBV) and, by inheritance, the elaboration
semantics of F+

i has a CBV semantics as well.
This paper presents a new formulation of F+

i based on a type-directed operational semantics
(TDOS) [20]. The TDOS approach has recently been proposed to model the semantics of
languages with disjoint intersection types (but without polymorphism). Although F+

i is not
a new calculus, we revise its formulation significantly in this paper. Our new formulation of
F+

i is different from the original one in three aspects. Firstly, the semantics of the original F+
i

is given by elaborating to Fco, while our semantics for F+
i is a direct operational semantics.

Secondly, our new formulation of F+
i supports recursion and impredicative polymorphism.

Finally, we employ a call-by-name evaluation strategy.
Our work shows that the TDOS approach can be extended to languages with disjoint

polymorphism and model the complete F+
i calculus with recursion and impredicative poly-

morphism. Moreover, there is no need for a coherence proof. Instead, we can simply prove
that the semantics is deterministic. The proof of determinism uses only simple reasoning
techniques, such as straightforward induction, and is able to handle problematic features
such as recursion and impredicative polymorphism. Thus, this removes the gap between
theory and practice and validates the original proofs of correctness for the CP language.
Figure 1 contrasts the differences in terms of proofs and implementation of CP using Zhang
et al.’s original work and our own work. We formalized the TDOS variant of the F+

i calculus,
together with its type-soundness and determinism proof in the Coq proof assistant. Moreover,
we have a new implementation of CP based on our new reformulation of F+

i .
In summary, the contributions of this work are:

CBN F+
i with recursion and impredicative polymorphism. This paper presents a

CBN variant of F+
i extended with recursion and impredicative polymorphism.

Determinism and type-soundness for F+
i using a TDOS. We prove the type-

soundness and determinism of F+
i using a direct TDOS. These proofs validate the proofs

of correctness previously presented for CP by Zhang et al. [46].
Technical innovations. Our formulation of F+

i has various technical innovations over
the original one, including a new formulation of subtyping using splittable types [22] and
more flexible term applications.

ECOOP 2022

18:4 Direct Foundations for Compositional Programming

elaboration

CP

type-safety

coherence

assuming call-by-name,

recursion, and impredicative

polymorphism

elaboration

Fi
+

type-safety

coherence

indirect semantics

call-by-value

having neither recursion nor

impredicative polymorphism

Fco

type-soundness

determinism

direct semantics

Fi
+

type-soundness

determinism

direct semantics

call-by-name

having recursion and

impredicative polymorphism

CP proof flow by

Zhang et al.

CP proof flow in

our work

Figure 1 Contrasting the flow of results for CP using the original formulation, and our work.

Implementation and Mechanical formalization. We formalized the TDOS variant
of the F+

i calculus, together with its type-soundness and determinism proof in the Coq
proof assistant. We also have a new implementation of CP built on top of a TDOS
formulation of F+

i available at https://plground.org. The full Coq formalization and
the extended version of this paper are available at:

https://github.com/andongfan/CP-Foundations

2 Motivations and Technical Innovations

In this section, we introduce Compositional Programming by example and show how CP
traits elaborate to F+

i expressions. After that, we will discuss the practical issues that
motivate us to reformulate F+

i , as well as technical challenges and innovations.

2.1 Compositional Programming by Example
To demonstrate the capabilities of Compositional Programming, we show how to solve a
variant of the Expression Problem [42] in the CP language. Our solution is adapted from
the original one by Zhang et al. [46]. In this variant, in addition to the usual challenge of
extensibility in multiple directions, we also consider the problem of context evolution [25, 37],
so the interpreter may require different contextual information for different features of the
interpreter. The CP language allows a modular solution to both challenges, which also
illustrates some key features in Compositional Programming, including first-class traits [5],
nested composition [6], and disjoint polymorphism [2].

Examples are based on a simple expression language, and the goal is to perform various
operations over it, such as evaluation and free variable bookkeeping. The expression language
consists of numbers, addition, variables, and let-bindings. Besides CP code, we also provide
analogous Haskell code in the initial examples so that readers can connect them with existing
concepts in functional languages.

Compositional interfaces. First, we define the compositional interface for numeric literals
and addition. The compositional interface at the top of Figure 2a is similar to Haskell’s
algebraic data type at the top of Figure 2b. Exp is a special kind of type parameter in CP
called a sort, which serves as the return type of both constructors Lit and Add. Sorts will

https://plground.org
https://github.com/andongfan/CP-Foundations

A. Fan, X. Huang, H. Xu, Y. Sun, and B. C. d. S. Oliveira 18:5

type NumSig<Exp> = {
Lit : Int → Exp;
Add : Exp → Exp → Exp;

};

type Eval Ctx = { eval : Ctx → Int };
evalNum Ctx = trait implements

NumSig<Eval Ctx> ⇒ {
(Lit n).eval _ = n;
(Add e1 e2).eval ctx =

e1.eval ctx + e2.eval ctx;
};

(a) CP code.

data Exp where
Lit :: Int → Exp
Add :: Exp → Exp → Exp

type Eval ctx = ctx → Int

eval :: Exp → Eval ctx
eval (Lit n) _ = n
eval (Add e1 e2) ctx =

eval e1 ctx + eval e2 ctx

(b) Haskell counterpart.

Figure 2 Initial expression language: numbers and addition.

be instantiated with concrete representations later. Internally, sorts are handled differently
from normal type parameters [46]. In accordance with the compositional interface, we can
then define how to evaluate the expression language.

Polymorphic contexts. As shown in the middle of Figure 2a, the type Eval declares a
method eval that takes a context and returns an integer. Ctx is a type parameter that can
be instantiated later, enabling particular traits to assume particular contextual information
for the needs of various features. The technique is called polymorphic contexts [46] in
Compositional Programming.

Compositional traits. The trait evalNum in Figure 2a is parametrized by a type parameter
Ctx. Note that, in CP, type parameters always start with a capital letter, while regular
parameters are lowercase. The trait evalNum implements the compositional interface NumSig
by instantiating it with the sort Eval Ctx. Traits are the basic reusable unit in CP, which
are usually type-checked against compositional interfaces. In this trait, we use a lightweight
syntax called method patterns to define how to evaluate different expressions. Such a definition
is analogous to pattern matching in Figure 2b. Since Lit and Add do not need to be conscious
of any information in the context, the type parameter Ctx is unconstrained. The only thing
that we can do to the polymorphic context is either to ignore it (like in Lit) or to pass it to
recursive calls (like in Add).

More expressions. Adding more constructs to the expression language is awkward in Haskell
because algebraic data types are closed. However, language components can be modularly
declared in CP. Two new constructors, Let and Var, are declared in the second compositional
interface VarSig, as shown in Figure 3. Then the two traits implement VarSig using method
patterns for the new constructors. Since the two new expressions need to inspect or update
some information in the context, we expose the appropriate Env part to evalVar, while the
remaining context is kept polymorphic. This is achieved with the disjointness constraint [2]
Ctx*Env in evalVar. A disjointness constraint denotes that the type parameter Ctx is
disjoint to the type Env. In other words, types that instantiate Ctx cannot overlap with the
type Env. Also note that the notation { ctx with env = ... } denotes a polymorphic
record update [9]. In the code for let-expressions, we need to update the environment in the
recursive calls to extend it with a new entry for the let-variable.

ECOOP 2022

18:6 Direct Foundations for Compositional Programming

type VarSig<Exp> = {
Let : String → Exp → Exp → Exp;
Var : String → Exp;

};

type Env = { env : String → Int };
evalVar (Ctx*Env) = trait implements VarSig<Eval (Env&Ctx)> ⇒ {

(Let s e1 e2).eval ctx = e2.eval
{ ctx with env = insert s (e1.eval ctx) ctx.env };

(Var s).eval ctx = lookup s ctx.env;
};

Figure 3 Adding more expressions: variables and let-bindings.

type FV = { fv : [String] };
fv = trait implements ExpSig<FV> ⇒ {

(Lit n).fv = [];
(Add e1 e2).fv = union e1.fv e2.fv;
(Let s e1 e2).fv = union e1.fv (delete s e2.fv);
(Var s).fv = [s];

};

evalWithFV (Ctx*Env) = trait implements ExpSig<FV ⇒ Eval (Env&Ctx)> ⇒ {
(Lit n).eval _ = n;
(Add e1 e2).eval ctx = e1.eval ctx + e2.eval ctx;
(Let s e1 e2).eval ctx = if elem s e2.fv

then e2.eval { ctx with env = insert s (e1.eval ctx) ctx.env }
else e2.eval ctx;

(Var s).eval ctx = lookup s ctx.env;
};

Figure 4 Adding more operation: free variable bookkeeping and another version of evaluation.

Intersection types. Independently defined interfaces can be composed using intersection
types. For example, ExpSig below is an intersection of NumSig and VarSig, containing all of
the four constructors:

type ExpSig<Exp> = NumSig<Exp> & VarSig<Exp>;
-- = { Lit : ...; Add : ...; Let : ...; Var : ... };

More operations. Not only can expressions be modularly extended, but we can easily add
more operations. In Figure 4, a new trait fv modularly implements a new operation that
records free variables in an expression. Here, union and delete are two library functions
for arrays. The modular definition of fv is quite natural in functional programming, but it
is hard in traditional object-oriented programming. We have to modify the existing class
definitions and supplement them with a method. This is typical of the well-known Expression
Problem. In summary, we have shown that Compositional Programming can solve both
dimensions of this problem: adding expressions and operations.

A. Fan, X. Huang, H. Xu, Y. Sun, and B. C. d. S. Oliveira 18:7

Dependency injection. Besides the Expression Problem, Figure 4 also shows another
significant feature of CP: dependency injection. In evalWithFV, a new implementation of
evaluation is defined with a dependency on free variables. The method pattern for Let will
check if s appears as a free variable in e2. If so, it evaluates e1 first as usual; otherwise, we
do not need to do any computation or update the environment since s is not used at all.
Note that the compositional interface ExpSig is instantiated with two types separated by a
fat arrow (⇒) (⇒ was originally denoted by % in Zhang et al.’s implementation of CP). FV
on the left-hand side is the dependency of evalWithFV. In other words, the definition of
evalWithFV depends on another trait that implements ExpSig<FV>. The static type checker
of CP will check this fact later at the point of trait instantiation. With such dependency
injection, we can call e2.fv even if evalWithFV does not have an implementation of fv. In
other words, evalWithFV depends only on the interface of fv (the type FV), but not any
concrete implementation.

Self-type annotations. Before we show how to perform the new version of the evaluation
over the whole expression language, we want to create a repository of expressions for later
use. We expect that these expressions are unaware of any concrete operation, so we use a
polymorphic Exp type to denote some abstract type of expressions. The code that creates
the repository of expressions is1:

repo Exp = trait [self : ExpSig<Exp>] ⇒ {
num = Add (Lit 4) (Lit 8);
var = Let "x" (Lit 4) (Let "y" (Lit 8) (Add (Var "x") (Var "y")));

};

To make constructors available from the compositional interface, we add a self-type annotation
to the trait repo. The self type annotation [self : ExpSig<Exp>] imposes a requirement
that the repo should finally be merged with some trait implementing ExpSig<Exp>. This
requirement is also statically enforced by the static type checker of CP. This is the second
mechanism in Compositional Programming to modularly inject dependencies.

Nested trait composition. With the language components ready, we can compose them
using the merge operator [14], which in the CP language is denoted as a single comma (,).
First, we show how to compose the old version of the evaluation:

exp = new repo @(Eval Env) , evalNum @Env , evalVar @Top;
exp.var.eval { env = empty } --> 12

Since the context has evolved after we add variables, we pass different type arguments to
the two traits to make the final context consistent. The final context type is Env, so we
pass Env to evalNum and Top to evalVar. Type arguments are prefixed by @ in CP. A more
interesting example is to merge the new version of evaluation with free variable bookkeeping:

exp’ = new repo @(Eval Env & FV) , evalWithFV @Top , fv;
exp’.var.eval { env = empty } --> 12

After the trait composition, both operations (eval and fv) are available for expressions that
are built with the four constructors (Lit, Add, Let, and Var). Note that here fv satisfies
the dependency of evalWithFV. If no implementation of the type FV is present in the

1 In Zhang et al.’s original work [46], the new operator must be added before every constructor. However,
our new implementation will implicitly insert new (see Section 2.2 for details).

ECOOP 2022

18:8 Direct Foundations for Compositional Programming

dependency

evalWithFV

Lit

+ eval

repo

+ num

+ var , =

Add

+ eval

Let

+ eval

Var

+ eval

fv

Lit

+ fv

Add

+ fv

Let

+ fv

Var

+ fv

,

exp'

+ num + var

Lit

+ eval

+ fv

Add

+ eval

+ fv

Let

+ eval

+ fv

Var

+ eval

+ fv

Figure 5 Visualization of nested composition.

composition, there would be a type error, since the requirement for evalWithFV would not
be satisfied. The composition of the three traits is nested because the two methods nested in
the four constructors are composed, as visualized in Figure 5. With nested trait composition,
the Expression Problem is elegantly solved in Compositional Programming. Moreover, we
allow context evolution using a relatively simple way with polymorphic contexts.

Impredicative polymorphism. Another feature of CP is that it allows the creation of objects
with polymorphic methods, similar to most OOP languages with generics where classes
can contain polymorphic methods (like Java). However, for this to work properly, CP
must support impredicative polymorphism (the ability to instantiate type parameters with
polymorphic types) as System F does. For example, consider:

type Poly = { id : forall A. A → A };
idTrait = trait implements Poly ⇒ { id = ΛA. \(x:A) → x };

(new idTrait).id @Poly -- impredicative

While accepted by our variant of CP and F+
i , such polymorphic instantiations are forbidden

in the original formulation of F+
i .

2.2 Elaborating CP to F+
i

Under the surface of CP, the foundation for Compositional Programming is the F+
i calculus.

We present the key features in F+
i and take a closer look at the connection between CP and

F+
i expressions. Here we focus on the elaboration of traits, which are the most important

aspect of this paper. We refer curious readers to the work by Zhang et al. [46] for the full
formulation of the type-directed elaboration of CP.

Key features of the F+
i calculus. F+

i is basically a variant of System F [17,33] extended
with intersection types and a merge operator. In the F+

i calculus, we denote the merge
operator with a double comma (, ,) (instead of the single comma notation in CP), following
the original notation proposed by Dunfield [14]. The merge operator allows us to introduce
terms of intersection types. For example, 1 , , true is a term of type Int & Bool. Moreover,
record concatenation, which is used to encode multi-field traits, is encoded as merges of
records in F+

i . Thus, multi-field records are represented as merges of multiple single-field
records. However, to ensure determinism of operational semantics, not all terms can be
merged with each other. We impose a disjointness check when typing merges: a merge can
only type check when the types of the terms being merged are disjoint, ensuring that every
part in a merge can be distinguished by its type. For traits, for example, the disjointness
restriction ensures that traits cannot have two fields/methods with the same name m and
overlapping types, which could otherwise lead to ambiguity when doing method lookup. Here,

A. Fan, X. Huang, H. Xu, Y. Sun, and B. C. d. S. Oliveira 18:9

we show an example of ambiguity if there is no disjointness check. With intersection types,
both A & B ≤ A and A & B ≤ B are valid. Therefore, a merge 1 , , 2 of type Int & Int can be
typed with Int, but at runtime, two different values of type Int are found. Thus, an expression
such as (1 , , 2)+1 could evaluate to either 2 or 3. Since we wish for a deterministic semantics,
we use disjointness to prevent such forms of ambiguity. On the other hand, (1 , , true)+1 type
checks because Int and Bool are disjoint, and it evaluates to 2 unambiguously. A disjointness
constraint can also be added to a type variable in a System F-style polymorphic type, such
as ∀X ∗ Int. X & Int. Moreover, to support unrestricted intersection types like Int & Int, the
disjointness check is relaxed to consistency for certain terms, so that merges with duplications
like 1 , , 1 are allowed.

Elaborating traits into F+
i . The elaboration of traits is inspired by Cook’s denotational

semantics of inheritance [12]. To use a concrete example, we revisit the trait repo defined in
Section 2.1. Both the creation and instantiation of traits are included in the definition of
repo:
repo Exp = trait [self : ExpSig<Exp>] ⇒ {

num = Add (Lit 4) (Lit 8);
var = ...

};

The CP code above is elaborated to corresponding F+
i code of the form:

repo = ΛExp. λ(self : ExpSig<Exp>).
let $Lit = self.Lit in let $Add = self.Add in
let $Let = self.Let in let $Var = self.Var in

{ num = fix self:Exp. $Add (fix self:Exp. $Lit 4 self)
(fix self:Exp. $Lit 8 self) self } ,,

{ var = ... };

The type parameter Exp in the repo trait is expressed by a System-F-style type lambda
(ΛX. e). Note that CP employs a form of syntactic sugar for constructors to allow concise
use of constructors and avoid explicit uses of new. The source code Add (Lit 4) (Lit 8)
is first expanded into new $Add (new $Lit 4) (new $Lit 8), which insert new operators.
Next we describe the elaboration process of creating and instantiating traits:

Creation of traits: A trait is elaborated to a generator function whose parameter is
a self-reference (like self above) and whose body is a record of methods;
Instantiation of traits: The new construct is used to instantiate a trait. Uses of new
are elaborated to a fixpoint which applies the elaborated trait function to a self-reference.
In the definition of the field num there are three elaborations of new. For instance, the
CP code new $Lit 4 corresponds to the F+

i code fix self:Exp. $Lit 4 self.

It is clear now that our trait encoding is heavily dependent on recursion, due to the
self-references employed by the encoding. However, the original F+

i [7] does not support
recursion, which reveals a gap between theory and practice.

2.3 The Gap Between Theory and Practice
Our primary motivation to reformulate F+

i is to bridge the gap between theory and practice.
The original formulation of F+

i lacks recursion, impredicative polymorphism and uses the
traditional call-by-value (CBV) evaluation strategy. However, the recent work of CP assumes a
different variant of F+

i that is equipped with fixpoints and the call-by-name (CBN) evaluation.
It is worthwhile to probe into the causes of such differences.

ECOOP 2022

18:10 Direct Foundations for Compositional Programming

Non-triviality of coherence. Recursion is essential for general-purpose computation in
programming. More importantly, our encoding of traits requires recursion. For example,
new e is elaborated to fix self. e self. However, adding recursion to the original version
of F+

i turns out to be highly non-trivial. The original F+
i is defined using an elaboration

semantics. A fundamental property of F+
i is coherence [35], which states that the semantics

is unambiguous. Coherence is non-trivial due to the presence of the merge operator [14]. To
prove coherence, a logical relation, called canonicity [7], is used to reason about contextual
equivalence in the original work of F+

i . For example, with contextual equivalence, we can
show that the two possible elaborations for the same F+

i source expression into Fco are
contextually equivalent:

1 : Int & Int : Int ⇝ fst (1, 1) 1 : Int & Int : Int ⇝ snd (1, 1)

Two typing derivations lead to two elaborations in this example, which pick different sides of
the merge. However, both elaborated expressions will be reduced to 1 eventually.

Unfortunately, the proof technique for coherence based on logical relations does not
immediately scale to recursive programs and programs with impredicative polymorphism.
A possible solution, known from the research of logical relations, is to move to a more
sophisticated step-indexed form of logical relations [1]. However, this requires a major
reformulation of the proofs and metatheory of the original F+

i , and it is not clear whether
additional challenges would be present in such an extension. Thus, the lack of the two
features in the theory of the original F+

i remains a serious limitation since only terminating
programs and predicative polymorphism are considered. In other words, we cannot encode
traits as presented in Section 2.2 in the original F+

i . To get around this issue and enable the
encoding of traits, Zhang et al. [46] simply assumed an extension of F+

i with recursion and
their proof of coherence for CP was done under the assumption that the original F+

i with
recursion was coherent or deterministic.

Our work rectifies this gap in the theory of Compositional Programming and the CP
language. We reformulate F+

i using a direct type-directed operational semantics [22] that
allows recursion and prove that the semantics is deterministic. Thus, our reformulation of
F+

i can serve as a target language to encode traits and validate the proofs of the elaboration
of CP in terms of F+

i with recursion. In addition, our approach gives a semantics to F+
i

directly, instead of relying on an indirect elaboration semantics to a System F-like language.

Evaluation strategies. Most mainstream programming languages use CBV, but CBN is a
more natural evaluation strategy for object encodings such as Cook’s denotational semantics
of inheritance. As stated by Bruce et al. in their work on object encodings [8]:

“Although we shall perform conversion steps in whatever order is convenient for the
sake of examples, we could just as well impose a call-by-name reduction strategy. (Most
of the examples would diverge under a call-by-value strategy. This can be repaired at
the cost of some extra lambda abstractions and applications to delay evaluation at
appropriate points.)”

In our elaboration of traits, we adopt a similar approach to object encodings. For example,
consider the following CP expression:

type A = { l1 : Int; l2 : Int };
new (trait [self : A] ⇒ { l1 = 1; l2 = self.l1 })

A. Fan, X. Huang, H. Xu, Y. Sun, and B. C. d. S. Oliveira 18:11

which is elaborated to the following (slightly simplified) F+
i expression:

fix self :A. {l1 = 1} , , {l2 = self .l1}

The trait expression is elaborated to a function, and the new expression turns the function
into a fixpoint. Unfortunately, this expression terminates under CBN but diverges under
CBV. If evaluated under CBV, the variable self will be evaluated repeatedly, despite the
fact that only self .l1 is used:

fix self :A. {l1 = 1} , , {l2 = self .l1}
↪→ {l1 = 1} , , {l2 = (fix self :A. {l1 = 1} , , {l2 = self .l1}).l1}
↪→ {l1 = 1} , , {l2 = ({l1 = 1} , , {l2 = (fix self :A. {l1 = 1} , , {l2 = self .l1}).l1}).l1}
↪→ · · ·

We may tackle the problem of non-termination by wrapping self-references in thunks, but
CBN provides a simpler and more natural way. In our CBN formulation of F+

i , {l = e} is
already a value (instead of {l = v}), so we do not need to further evaluate e:

fix self :A. {l1 = 1} , , {l2 = self .l1}
↪→ {l1 = 1} , , {l2 = (fix self :A. {l1 = 1} , , {l2 = self .l1}).l1}

The l2 field is further evaluated only when a record projection is performed:

(fix self :A. {l1 = 1} , , {l2 = self .l1}).l2
↪→ ({l1 = 1} , , {l2 = (fix self :A. {l1 = 1} , , {l2 = self .l1}).l1}).l2
↪→ (fix self :A. {l1 = 1} , , {l2 = self .l1}).l1
↪→ ({l1 = 1} , , {l2 = (fix self :A. {l1 = 1} , , {l2 = self .l1}).l1}).l1
↪→ 1

This example illustrates how our new CBN formulation of F+
i avoids non-termination of trait

instantiation.

2.4 Technical Challenges and Innovations
The main novelty of our reformulation of F+

i is the use of a type-directed operational
semantics [20] instead of an elaboration semantics. With a TDOS, adding recursion and
impredicative polymorphism to our proof of determinism is trivial. Our work is an extension
of the λ+

i calculus [22] which adapts the TDOS approach. We also follow the subtyping
algorithm design in λ+

i . While λ+
i supports BCD-style distributive subtyping [4], the addition

of disjoint polymorphism does bring some technical challenges. Moreover, there are some
smaller changes to F+

i that enable us to type-check more programs and improve the design
of the original F+

i . We will give an overview of the technical challenges and innovations next.

The role of casting. A merge like 1 , , true has multiple meanings under different types (e.g.
Int or Bool). Eventually, we have to extract some components via the elimination of merges,
which is a key issue when designing a direct operational semantics for a calculus with the
merge operator. A non-deterministic semantics could allow e1 , , e2 ↪→ e1 and e1 , , e2 ↪→ e2
without any constraints, at the cost of losing both type preservation and determinism [14].

ECOOP 2022

18:12 Direct Foundations for Compositional Programming

To obtain a non-ambiguous and type-safe semantics, we follow the TDOS approach [20]:
which uses (up)casts to ensure that values have the right form during reduction. In a TDOS,
there is a casting relation, which is used in the reduction rule for annotated values:

v ↪→A v′

v :A ↪→ v′ Step-annov

Casting enables us to drop certain parts from a term (e.g., 1 , , true ↪→Int 1). Very often,
it is necessary for us to do so to satisfy the disjointness constraint. Consider a function
λx : Int. x , , false. For its body to be well-typed, x cannot contain a boolean. Hence, when
the function is applied to 1 , , true, we cannot directly substitute the argument in. Instead, it
is wrapped by (and later cast to) Int to resolve the potential conflict.

((λx : Int. x , , false) : Int & Bool → Int & Bool) (1 , , true)
↪→ ((1 , , true) : Int , , false) : Int & Bool
↪→ (1 , , false) : Int & Bool
↪→ 1 , , false

TDOS and function annotations. In casting, values in a merge are selected based on
type information. In the absence of runtime type-checking, we need to know the type
of input value syntactically to match it with the target type. Thus, functions must be
accompanied by type annotations. The previous work λ+

i [22] defines the syntax of functions
like λx . e : A → C . While the original argument type A is always kept during reduction,
λ+

i ’s casting relation may generate a value that has a proper subtype of the requested type:
λx . e :A → C ↪→B1→B2 λx . e :A → B2. We make casting more precise with a more liberal
syntax in F+

i . We allow bare abstractions λx :A. e while λ+
i does not. Our casting relation

requires lambdas to be annotated (λx :A. e) :B, but the full annotation B does not have to
be a function type. For example, (λx : Int. x , , true) : (Int → Int) & (Int → Bool) still acts as a
function, and is equivalent to (λx : Int. x , , true) : Int → Int & Bool.

Algorithmic subtyping with disjoint polymorphism. F+
i extends BCD-style distributive

subtyping [4] to disjoint polymorphism. ∀X ∗ Int. X & Int represents the intersection of
some type X and Int assuming X is disjoint to Int. Like arrows or records, such universal
types distribute over intersections. Hence, (∀X ∗ Int. X) & (∀X ∗ Int. Int) is a subtype of
∀X ∗ Int. X & Int. A well-known challenge in supporting distributivity in the BCD-style
subtyping is to obtain an algorithmic formulation of subtyping. There have been many efforts
to eliminate the explicit transitivity rule to obtain an algorithmic formulation [26, 31, 39].
Compared with the original F+

i [7], we employ a different subtyping algorithm design, using
splittable types [21]. This approach employs a type-splitting operation (B ◁ A ▷ C) that
converts a given type A to an equivalent intersection type B & C , for example, A → B1 & B2
is split to A → B1 and A → B2. The subtyping algorithm uses type splitting whenever an
intersection type is expected in the conventional algorithm for subtyping without distributivity,
and therefore handles distributivity smoothly and modularly. For space reasons, the novel
algorithmic subtyping approach is discussed in the extended version of the paper.

Enhanced subtyping and disjointness with more top-like types. Unlike previous systems
with disjoint polymorphism [2, 7], we add a context in subtyping judgments to track the
disjointness assumption X ∗ A whenever we open a universal type ∀X ∗ A. B, similar to the
subtyping with F-bounded quantification. The extra information enhances our subtyping:
we know a type must be a supertype of Top, if it is disjoint with Bot. This also fixes the
following broken property in the original F+

i , as we now have more types that are top-like.

A. Fan, X. Huang, H. Xu, Y. Sun, and B. C. d. S. Oliveira 18:13

▶ Definition 2.1 (Disjointness specification). If A is disjoint with B, any common supertypes
they have must be equivalent to Top.

Keeping this property is necessary for us to obtain a deterministic operational semantics.
Meanwhile, we prove our subtyping and disjointness relations are decidable in Coq. Note
that in the original F+

i , the decidability of the two relations was proved manually, although
the rest of the proof was mechanized.

3 The F+
i Calculus and Its Operational Semantics

This section introduces the F+
i calculus, including its static and dynamic semantics.

3.1 Syntax
The syntax of F+

i is as follows:

Types A, B, C ::= X | Int | Top | Bot | A & B | A → B | ∀X ∗ A. B | {l :A}
Checkable terms p ::= λx :A. e | ΛX . e | {l = e}
Expressions e ::= p | x | i | ⊤ | e : A | e1 , , e2 | fix x :A. e | e1 e2 | e A | e.l
Values v ::= p | p :A | i | ⊤ | v1 , , v2

Term contexts Γ ::= · | Γ, x :A
Type contexts ∆ ::= · | ∆, X ∗ A

Types. Types include the Top type and the uninhabited type Bot. Intersection types are
created with A & B. Disjoint polymorphism, a key feature of F+

i , is based on universal types
with a disjointness quantifier ∀X ∗ A. B, expressing that the type variable X is bound inside
B and disjoint to type A. {l :A} denotes single-field record types, where l is the record label.
Multi-field record types are desugared to intersections of single-field ones [36]:

{l1 : A1; . . . ; ln : An} ≜ {l1 : A1} & · · · & {ln : An}

Expressions. As we will explain later with the typing rules, some expressions do not have
an inferred type (or principal type), including lambda abstractions, type abstractions, and
single-field records. We use metavariable p to represent these expressions, which with optional
annotations, are values. Also, note that expressions inside record values do not have to
be a value since our calculus employs call-by-name. The merge operator , , composes two
expressions to make a term of an intersection type. The top value ⊤ can be viewed as a
merge of zero elements. Fixpoint expressions fix x :A. e construct recursive programs. The
type annotation A denotes the type of x as well as the whole expression. Like record types,
multi-field records are desugared to merges of single-field ones:

{l1 = e1; . . . ; ln = en} ≜ {l1 = e1} , , . . . , , {ln = en}

Contexts. We have two contexts: Γ tracks the types of term variables; ∆ tracks the
disjointness information of type variables, which follows the original design of F+

i . We use
∆ ⊢ A, ⊢ ∆, and ∆ ⊢ Γ judgments for the type well-formedness and the context well-
formedness (defined in the extended version of the paper). For multiple type well-formedness
judgments, we combine them into one, i.e., ∆ ⊢ A, B means ∆ ⊢ A and ∆ ⊢ B.

ECOOP 2022

18:14 Direct Foundations for Compositional Programming

∆ ⊢ A <: B (Declarative Subtyping)

DS-refl
⊢ ∆ ∆ ⊢ A

∆ ⊢ A <: A

DS-trans
∆ ⊢ A <: B ∆ ⊢ B <: C

∆ ⊢ A <: C

DS-top
⊢ ∆ ∆ ⊢ A
∆ ⊢ A <: Top

DS-bot
⊢ ∆ ∆ ⊢ A
∆ ⊢ Bot <: A

DS-and
∆ ⊢ A <: B ∆ ⊢ A <: C

∆ ⊢ A <: B & C

DS-andl
⊢ ∆ ∆ ⊢ A, B
∆ ⊢ A & B <: A

DS-andr
⊢ ∆ ∆ ⊢ A, B
∆ ⊢ A & B <: B

DS-arrow
∆ ⊢ A2 <: A1 ∆ ⊢ B1 <: B2

∆ ⊢ A1 → B1 <: A2 → B2

DS-distArrow
⊢ ∆ ∆ ⊢ A, B, C

∆ ⊢ (A → B) & (A → C) <: A → B & C

DS-topArrow
⊢ ∆

∆ ⊢ Top <: Top → Top

DS-rcd
∆ ⊢ A <: B

∆ ⊢ {l :A} <: {l :B}

DS-distRcd
⊢ ∆ ∆ ⊢ A, B

∆ ⊢ {l :A} & {l :B} <: {l :A & B}

DS-topRcd
⊢ ∆

∆ ⊢ Top <: {l :Top}

DS-all
∆ ⊢ A2 <: A1 ∆, X ∗ A2 ⊢ B1 <: B2

∆ ⊢ ∀X ∗ A1. B1 <: ∀X ∗ A2. B2

DS-topAll
⊢ ∆

∆ ⊢ Top <: ∀X ∗ Top. Top

DS-distAll
⊢ ∆ ∆ ⊢ A ∆, X ∗ A ⊢ B1, B2

∆ ⊢ (∀X ∗ A. B1) & (∀X ∗ A. B2) <: ∀X ∗ A. (B1 & B2)

DS-topVar
X ∗ A ∈ ∆ ∆ ⊢ A <: Bot

∆ ⊢ Top <: X

Figure 6 Declarative subtyping rules.

3.2 Subtyping
Figure 6 shows our subtyping relation, which extends BCD-style subtyping [4] with disjoint
polymorphism, records, and the bottom type. Compared with the original F+

i , we add a
context to track type variables and their disjointness information. The context not only
ensures the well-formedness of types, but is also important to our new rule DS-topVar.
An equivalence relation (Definition 3.1) is defined on types that are subtype of each other.
These equivalent types can be converted back and forth without loss of information.

▶ Definition 3.1 (Type equivalence). ∆ ⊢ A ∼ B ≜ ∆ ⊢ A <: B and ∆ ⊢ B <: A.

For functions (rule DS-arrow) and disjoint quantifications (rule DS-all), subtyping
is covariant in positive positions and contravariant in negative positions. The intuition is
that type abstractions of the more specific type (subtype) should have a looser disjointness
constraint for the parameter type. ∀X ∗Top. A denotes that there is no constraint on X , since
Top is disjoint to all types. On the contrary, Bot is the strictest constraint. It is useful in types
like ∀X ∗ {l :Bot}. A which expresses that X does not contain any informative field of label
l [44]. For intersection types, rules DS-andl, DS-andr, and DS-and axiomatize that A & B
is the greatest lower bound of A and B. As a typical characteristic of BCD-style subtyping,
type constructors distribute over intersections, including arrows (rule DS-distArrow),
records (rule DS-distRcd) and disjoint quantifications (rule DS-distAll).

Another feature of BCD subtyping, which is often overlooked, is the generalization of
top-like types, i.e. supertypes of Top.

A. Fan, X. Huang, H. Xu, Y. Sun, and B. C. d. S. Oliveira 18:15

▶ Definition 3.2 (Specification of top-like types). ∆ ⊢⌉A⌈ ≜ ∆ ⊢ A ∼ Top.

Initially, top-like types include Top and intersections like Top & Top. But the BCD
subtyping adds Top → Top to it via rule DS-topArrow, as well as A → Top for any type
A due to the contravariance of function parameters. Rule DS-topArrow can be viewed
as a special case of rule DS-distArrow where intersections are replaced by Top (one can
consider it as an intersection of zero components). Like the original F+

i , we extend this idea
to universal types and record types (rules DS-topAll and DS-topRcd).

The most important change is the rule DS-topVar. This rule means that a type variable
is top-like if it is disjoint with the bottom type. Every type B is a common supertype of B
itself and Bot. If B is disjoint with Bot, then it must be top-like. We proved that subtyping
is decidable via an equivalent algorithmic formulation.

The discussion about algorithmic subtyping is in the extended version of the paper.

▶ Lemma 3.3 (Decidability of subtyping). ∆ ⊢ A <: B is decidable.

Disjointness. The notion of disjointness (Definition 2.1), defined via subtyping, is used in
the original F+

i , as well as calculi with disjoint intersection types [30]. We proved that our
algorithmic definition of disjointness (written as ∆ ⊢ A ∗ B, in the extended version of the
paper) is sound to a specification in terms of top-like types.

▶ Lemma 3.4 (Disjointness soundness). If ∆ ⊢ A ∗ B then for all type C that ∆ ⊢ A <: C
and ∆ ⊢ B <: C we have ∆ ⊢⌉C⌈.

Informally, two disjoint types do not have common supertypes, except for top-like types.
This definition is motivated by the desire to prevent ambiguous upcasts on merges. That is,
we wish to avoid casts that can extract different values of the same type from a merge. Thus
in F+

i and other calculi with disjoint intersection types, we only allow merges of expressions
whose only common supertypes are types that are (equivalent to) the top type. For instance,
consider the merge (1 , , true) , , (2 , , ‘c’). The first component of the merge (1 , , true) has
type Int & Bool, while the second component (2 , , ‘c’) has type Int & Char. This merge is
problematic because Int is a supertype of the type of the merge (Int & Bool) & (Int & Char),
allowing us to extract two different integers by casting the two terms to Int. Fortunately, our
disjointness restriction rejects such merges since the supertype Int is not top-like.

3.3 Bidirectional Typing
The type system of F+

i is bidirectional [15], where the subsumption rule is triggered by type
annotations. Calculi with a merge operator are incompatible with a general subsumption rule
because it cancels disjointness checking. For example, with a general subsumption rule, we
can directly use 1 , , true as a term of type Int since Int & Bool <: Int. Then, merging 1 , , true
with the term false would type-check since disjointness simply checks whether the static types
of merging terms are disjoint, and Int is disjoint with Bool. But now, the merge contains two
booleans, which would lead to ambiguity if later we wish to extract a boolean value from the
merge. The key issue is that a general subsumption rule loses static type information that is
necessary to reject ambiguous merges. A bidirectional type system solves this problem by
having a more restricted form of subsumption that only works in the checking mode where
the type is provided. A more detailed description of the problem for calculi with the merge
operator can be found in Huang et al.’s work [22]. We should also remark that this issue
of incompatibility with a general subsumption rule is not unique to calculi with a merge
operator. It shows up, for instance, in calculi with gradual typing [41] and calculi with record
concatenation and subtyping [9].

ECOOP 2022

18:16 Direct Foundations for Compositional Programming

Typing modes ⇔ ::= ⇐ | ⇒
Pre-values u ::= i | ⊤ | e :A | u1 , , u2

∆; Γ ⊢ e ⇔ A (Bidirectional Typing)

Typ-top
⊢ ∆ ∆ ⊢ Γ

∆; Γ ⊢ ⊤ ⇒ Top

Typ-lit
⊢ ∆ ∆ ⊢ Γ
∆; Γ ⊢ i ⇒ Int

Typ-var
⊢ ∆ ∆ ⊢ Γ x : A ∈ Γ

∆; Γ ⊢ x ⇒ A

Typ-abs
∆ ⊢ B1 <: A

∆; Γ, x :A ⊢ e ⇐ B2

∆; Γ ⊢ λx :A. e ⇐ B1 → B2

Typ-tabs
∆ ⊢ Γ

∆, X ∗ A; Γ ⊢ e ⇐ B
∆; Γ ⊢ ΛX . e ⇐ ∀X ∗ A. B

Typ-rcd
∆; Γ ⊢ e ⇐ A

∆; Γ ⊢ {l = e} ⇐ {l :A}

Typ-app
∆; Γ ⊢ e1 ⇒ A

A▷ B → C ∆; Γ ⊢ e2 ⇐ B
∆; Γ ⊢ e1 e2 ⇒ C

Typ-tapp
∆; Γ ⊢ e ⇒ B

B ▷ ∀X ∗ C1. C2 ∆ ⊢ A ∗ C1

∆; Γ ⊢ e A ⇒ C2[X 7→ A]

Typ-proj
∆; Γ ⊢ e ⇒ A

A▷ {l :C}

∆; Γ ⊢ e.l ⇒ C

Typ-merge
∆ ⊢ A ∗ B

∆; Γ ⊢ e1 ⇒ A ∆; Γ ⊢ e2 ⇒ B
∆; Γ ⊢ e1 , , e2 ⇒ A & B

Typ-mergev
⊢ ∆ ∆ ⊢ Γ u1 ≈ u2

·; · ⊢ u1 ⇒ A ·; · ⊢ u2 ⇒ B
∆; Γ ⊢ u1 , , u2 ⇒ A & B

Typ-inter
∆; Γ ⊢ e ⇐ A
∆; Γ ⊢ e ⇐ B

∆; Γ ⊢ e ⇐ A & B

Typ-fix
∆; Γ, x :A ⊢ e ⇐ A

∆; Γ ⊢ fix x :A. e ⇒ A

Typ-anno
∆; Γ ⊢ e ⇐ A

∆; Γ ⊢ (e :A) ⇒ A

Typ-sub
∆; Γ ⊢ e ⇒ A ∆ ⊢ A <: B

∆; Γ ⊢ e ⇐ B

Figure 7 Bidirectional typing rules for F+
i .

Typing. As presented in Figure 7, there are two modes of typing: synthesis (⇒) and
checking (⇐). We use ⇔ as a metavariable for typing modes. ∆; Γ ⊢ e ⇔ A indicates
that under type context ∆ and term context Γ, the expression e has type A in mode ⇔. A
bidirectional type system directly provides a type-checking algorithm. ∆, Γ, e are all inputs
in both modes. Type synthesis generates a unique type as the output (also called the inferred
type), while type checking takes a type as an input and examines the term.

▶ Lemma 3.5 (Uniqueness of type synthesis). If ∆; Γ ⊢ e ⇒ A1 and ∆; Γ ⊢ e ⇒ A2 then
A1 = A2.

Conversion of typing modes happens in rule Typ-sub. With it, a term with inferred type
A can be checked against any B that is a supertype of A. Compared to the original F+

i ,
fixpoints are new. They model recursion with a self-reference (x in fix x :A. e). Other than
this, rule Typ-fix is almost the same as rule Typ-anno. It checks the expression e by the
annotated type A, with assumption that x has type A in e.

Checking abstractions, type abstractions, and records. To check a function λx : A. e
against B1 → B2 by rule Typ-abs, we track the type of the term variable as the precise
parameter type A, and check if e can be checked against B2. B1 must be a subtype of A

A. Fan, X. Huang, H. Xu, Y. Sun, and B. C. d. S. Oliveira 18:17

A▷ B (Applicative Distribution)

AD-andArrow
A1 ▷ B1 → C1 A2 ▷ B2 → C2

A1 & A2 ▷ B1 & B2 → C1 & C2

AD-andRcd
A1 ▷ {l :B1} A2 ▷ {l :B2}

A1 & A2 ▷ {l :B1 & B2}

AD-andAll
A1 ▷ ∀X ∗ B1. C1 A2 ▷ ∀X ∗ B2. C2

A1 & A2 ▷ ∀X ∗ B1 & B2. (C1 & C2)

AD-refl

A▷ A

Figure 8 Applicative distribution rules.

to guarantee the safety of the function application. The type-checking of type abstractions
ΛX . e works by tracking the disjointness relation of the type variable with the context and
checking e against the quantified type B. Typing of records works similarly. Additionally,
there is a rule Typ-inter, which checks an expression against an intersection type by
seperately checking the expression against the composing two types. With this design, we
allow λx : Int. x , , true to be checked against (Int → Int) & (Int → Bool).

Application, record projection, and conversion of applicable types. It is not surprising
that a merge can act as a function. But in the original F+

i , this requires annotations since
the expression being applied in an application must have an inferred arrow type. Our
design, following the λ+

i calculus [22], allows a term of an intersection type to directly apply,
as long as the intersection type can be converted into an applicable form. For example,
(Int → Int) & (Int → Bool) is converted into (Int & Int) → (Int & Bool), which is a supertype
of the former. When inferring the type of the application e1 e2, rule Typ-app first converts
the inferred type of e1 into an arrow form B → C and then checks the argument e2 against
B. If the check succeeds, the whole expression has inferred type C .

In F+
i , we have three applicable forms: arrow types, record types, universal types. Like

rule Typ-app, the typing of type application and record projection also allows the applied
term to have an intersection type, and relies on applicative distribution to convert the type.

Applicative distribution A ▷ B (defined in Figure 8) takes type A and generates a
supertype B that has an applicable form. The first three rules bring all parts of the
input intersection type together. For example, assuming that we apply several merged
functions whose types are A1 → B1, A2 → B2, ..., An → Bn, the combined function type
is (A1 & ... & An) → (B1 & ... & Bn). It is equivalent to the input type only when A1, A2,
..., and An are all equivalent. Essentially, applicative distribution (A ▷ B) is a subset of
subtyping (A <: B). The supertype is selected to ensure that when a merge is applied to
an argument, every component in the merge is satisfied. Although each one of the three
first rules overlaps with the reflexivity rule, for any given type, at most one result has an
applicable form.

Since merges are treated as a whole applicable term, programmers can extend functions
via a compositional approach without modifying the original implementation. It also enables
the modular extension of type abstractions and especially records, which play a core role in
the trait encoding used in Compositional Programming.

Davies and Pfenning also employ a similar design in their bidirectional type system
for refinement intersections [13]. Their type conversion procedure respects subtyping as
well. Instead of combining function types, it makes use of A & B <: A and A & B <: B to
enumerate components in intersections and uncover arrows.

ECOOP 2022

18:18 Direct Foundations for Compositional Programming

Arguments arg ::= e | A | {l}
Evaluation contexts E ::= [] e | [] A | [] .l | [] , , v | v , , [] | [] : A

v • arg ↪→ u (Parallel Application)

PApp-abs
B ▷ C1 → C2 e2 ⇝A u

(λx :A. e1) :B • e2 ↪→ (e1[x 7→ u]) :C2

PApp-tabs
A▷ ∀X ∗ B1. B2

(ΛX . e) :A • C ↪→ (e[X 7→ C]) : (B2[X 7→ C])

PApp-proj
A▷ {l :B}

{l = e} :A • {l} ↪→ e :B

PApp-merge
v1 • arg ↪→ u1 v2 • arg ↪→ u2

v1 , , v2 • arg ↪→ u1 , , u2

e1 ↪→ e2 (Small-Step Semantics)

Step-papp
v • e ↪→ u

v e ↪→ u

Step-pproj
v • {l} ↪→ u

v.l ↪→ u

Step-ptapp
v • A ↪→ u

v A ↪→ u

Step-fix

fix x :A. e ↪→ e[x 7→ fix x :A. e] :A

Step-annov
pre-value v v ↪→A v′

v :A ↪→ v′

Step-merge
e1 ↪→ e′

1 e2 ↪→ e′
2

e1 , , e2 ↪→ e′
1 , , e′

2

Step-cntx
e ↪→ e′

E [e] ↪→ E [e′]

Figure 9 Small-step semantics rules.

Typing merges with disjointness and consistency. Well-typed merges always have inferred
types. There are two type synthesis rules for merges, both combining the inferred types of
the two parts into an intersection. Typ-merge requires the two subterms to have disjoint
inferred types, like 1 , , true. Typ-mergev relaxes the disjointness constraint to consistency
checking (written as u1 ≈ u2) to accept overlapping terms like 1 , , 1. Such duplication
is meaningless to users but may appear during evaluation. In fact, rule Typ-mergev is
designed for metatheory properties, and not to allow more user-written programs [22]. We
will state the formal specification of consistency in Section 4.1 and show how it is involved
in the proofs of determinism and type soundness. Informally, consistent merges cause no
ambiguity in the runtime. For practical reasons, we only consider pre-values (defined at the
top of Figure 7) in consistency checking, for which the inferred type can be told directly.
The algorithms for disjointness and consistency are presented in the extended version of the
paper. In general, disjointness and consistency avoid introducing ambiguity of merges, and
enable a deterministic semantics for F+

i .

3.4 Small-Step Operational Semantics
We specify the call-by-name reduction of F+

i using a small-step operational semantics in
Figure 9. Step-papp, Step-pproj, and Step-ptapp are reduction rules for application and
record projection. They trigger parallel application (defined in the middle of Figure 9) of
merged values to the argument. Rule Step-fix substitutes the fixpoint term variable with
the fixpoint expression itself. Note that the result is annotated with A. With the explicit
type annotation, the result of reduction preserves the type of the original fixpoint expression.

A. Fan, X. Huang, H. Xu, Y. Sun, and B. C. d. S. Oliveira 18:19

Through rule Step-annov, values are cast to their annotated type. Such values must also
be pre-values. This is to filter out checkable terms p including bare abstractions or records
without annotations, as p :A is a form of value itself and thus should not step.

A merge of multiple terms may reduce in parallel, as shown in rule Step-merge. Only
when one side cannot step, the other side steps alone, as suggested by the evaluation context
E , , v and v , , E . Rule Step-cntx is the reduction rule of expressions within an evaluation
context. Since the rule can be applied repeatedly, we only need evaluation contexts of depth
one (shown at the top of Figure 9). Our operational semantics substitutes arguments wrapped
by type annotations into function bodies, while it forbids the reduction of records since
records are values.

Parallel application. Parallel application is at the heart of what we call nested composition
in CP. It provides the runtime behavior that is necessary to implement nested composition,
and it reflects the subtyping distributivity rules at the term level. A merge of functions is
treated as one function. The beta reduction of all functions in a merge happens in parallel
to keep the consistency of merged terms. For type abstractions or records, things are similar.
The parallel application handles these applicable merges uniformly via rule PApp-merge.
To align record projection with the other two kinds of application, we define arguments which
abstract expressions, types, and record labels (at the top of Figure 9). In rule PApp-abs,
the argument expression is wrapped by the function argument type before we substitute
it into the function body. Parallel application of type abstractions substitutes the type
argument into the body and annotates the body with the substituted disjoint quantified type.
Rule PApp-proj projects record fields. Note these three rules have types to annotate the
result, since in Typ-abs, Typ-tabs, and Typ-rcd we only type the expression e inside in
checking mode. With an explicit type annotation, the application preserves types.

Splittable types. Before explaining wrapping or casting, we first introduce splittable
types [22], which are a key component of our algorithmic formulations of various relations.
Ordinary types are the basic units, values of ordinary types can be constructed without the
merge operator. As defined at the top of Figure 10, ordinary types do not have intersection
types in positive positions. By contrast, splittable types are isomorphic to appropriate
intersections. Recall that in BCD-style distributive rules, arrows distribute over intersection,
making Int → Int & Bool equivalent to the intersection (Int → Int) & (Int → Bool). Therefore
we say that the former type splits into the latter two arrow types. In Figure 10, we extend
the type splitting algorithm of λ+

i to universal types in correspondence to the distributive
subtyping rules (rule DS-distArrow, rule DS-distRcd, and rule DS-distAll). It gives a
decision procedure to check whether a type is splittable or ordinary.

▶ Lemma 3.6 (Type splitting loses no information). If ⊢ ∆ and ∆ ⊢ A and B ◁A▷ C then
∆ ⊢ A ∼ B & C .

Expression wrapping. Rules for expression wrapping (e ⇝A u) are listed in the middle of
Figure 10. Basically, it splits the type A when possible, annotates a duplication of e by each
ordinary part of A, and then composes all of them. The only exception is that it never uses
top-like types to annotate terms, to avoid ill-typed results like {l = 1} : Int → Top, but rather
generates a normal value whose inferred type is that top-like type, like (λx : Int. ⊤) : Int → Top
(via the top-like value generating function [[A◦]], defined in the extended version of the paper).

ECOOP 2022

18:20 Direct Foundations for Compositional Programming

Ordinary types A◦, B◦, C◦ ::= X | Int | Top | Bot | A → B◦ | ∀X ∗ A. B◦ | {l :A◦}

B ◁ A▷ C (Splittable Types)

Sp-arrow
C1 ◁ B ▷ C2

A → C1 ◁ A → B ▷ A → C2

Sp-rcd
C1 ◁ B ▷ C2

{l :C1}◁ {l :B}▷ {l :C2}

Sp-all
C1 ◁ B ▷ C2

∀X ∗ A. C1 ◁ ∀X ∗ A. B ▷ ∀X ∗ A. C2

Sp-and

A◁ A & B ▷ B

e ⇝A u (Expression Wrapping)

EW-top
· ⊢⌉A◦⌈

e ⇝A◦ [[A◦]]

EW-anno
· ⊢ ¬⌉B◦⌈

e ⇝B◦ e :B◦

EW-and
B1 ◁ A▷ B2 e ⇝B1 u1 e ⇝B2 u2

e ⇝A u1 , , u2

v1 ↪→A v2 (Casting)

Cast-int

i ↪→Int i

Cast-top
· ⊢⌉A◦⌈

v ↪→A◦ [[A◦]]

Cast-mergel
v1 ↪→A◦ v′

v1 , , v2 ↪→A◦ v′

Cast-merger
v2 ↪→A◦ v′

v1 , , v2 ↪→A◦ v′

Cast-anno
· ⊢ ¬⌉B◦⌈ · ⊢ A <: B◦

e :A ↪→B◦ e :B◦

Cast-and
B1 ◁ A▷ B2 v ↪→B1 v1 v ↪→B2 v2

v ↪→A v1 , , v2

Figure 10 Type splitting, expression wrapping and value casting rules.

Casting. Casting (shown in Figure 10) is the core of the TDOS, and is triggered by the
Step-annov rule. Recalling that only values that are also pre-values will be cast, we can
always tell the inferred type of the input value and cast it by any supertype of that inferred
type. The definition of casting uses the notion of splittable types. In rule Cast-and, the
value is cast under two parts of a splittable type separately, and the results are put together
by the merge operator. The following example shows that a merge retains its form when
cast under equivalent types.

((λx : Int. x) : Int → Int) , , ((λx : Int. true) : Int → Bool)
↪→(Int→Int) & (Int→Bool) ((λx : Int. x) : Int → Int) , , ((λx : Int. true) : Int → Bool)
↪→Int→Int & Bool ((λx : Int. x) : Int → Int) , , ((λx : Int. true) : Int → Bool)

In the latter case, the requested type is a function type, but the result has an intersection
type. This change of type causes a major challenge for type preservation.

For ordinary types, rule Cast-int casts an integer to itself under type Int. Under any
ordinary top-like type, the cast result is the output of the top-like value generator. The
casting of values with annotations works by changing the type annotation to the casting (not
top-like) supertype. Rule Cast-mergel and rule Cast-merger make a selection between
two merged values. The two rules overlap, but for a well-typed value, the casting result is
unique.

A. Fan, X. Huang, H. Xu, Y. Sun, and B. C. d. S. Oliveira 18:21

Example. We show an example to illustrate the behavior of our semantics:
Let f := λx : Int & Top. x , , false in
((f : (Int & Top → Int) & (Int & Top → Bool)) : Int & Bool → Int & Bool) (1 , , true)

↪→∗ {by rules Step-annov, Cast-and, and Cast-anno}
(f : Int & Bool → Int) , , (f : Int & Bool → Bool) (1 , , true)

↪→∗ {by rules Step-papp, EW-and, EW-anno, and EW-top}
(((1 , , true) : Int , , ⊤) , , false) : Int , , (((1 , , true) : Int , , ⊤) , , false) :Bool

↪→∗ {by rules Step-merge, Step-annov, Cast-int, Cast-mergel, and Cast-merger}
1 , , false

This example shows that a function with a splittable type will be cast to a merge of two
copies of itself with different type annotations, i.e., two split results. The application of a
merge of functions works by distributing the argument to both functions. Finally, casting
selects one side of the merge under the annotated type. From this example, we can see that
without the precise parameter annotation of a lambda function (here Int & Top), there is no
way to filter the argument 1 , , true, causing a conflict.

4 Type Soundness and Determinism

In this section, we show that the operational semantics of F+
i is type-sound and deterministic.

In F+
i , determinism also plays a key role in the proof of type soundness. Proving progress is

straightforward and is discussed in the extended version of the paper.

4.1 Determinism
A common problem with determinism for calculi with a merge operator is the ambiguity
of selection between merged values. In our system, ambiguity is removed by employing
disjointness and consistency constraints on merges via typing.

▶ Definition 4.1 (Consistency specification). v1 ≈spec v2 ≜ For all type A that v1 ↪→A v′
1

and v2 ↪→A v′
2 then v′

1 = v′
2.

Two values in a merge have no conflicts as long as casting both values under any type
leads to the same result. This specification allows v1 and v2 to contain identical expressions
(may differ in annotations), and terms with disjoint types as such terms can only be cast
under top-like types, and the cast result is only decided by that top-like type.

▶ Lemma 4.2 (Top-like casting is term irrelevant). If · ⊢⌉A⌈ and v1 ↪→A v′
1 and v2 ↪→A v′

2
then v′

1 = v′
2.

This is because casting only happens when the given type is a supertype of the cast value’s
type, and disjoint types only share top-like types as common supertypes (Lemma 3.4).

▶ Lemma 4.3 (Upcast only). If ·; · ⊢ v ⇒ B and v ↪→A v′ then · ⊢ B <: A.

With consistency, casting all well-typed values leads to a unique result. The remaining reduc-
tion rules, including expression wrapping and parallel application, are trivially deterministic.

▶ Lemma 4.4 (Determinism of casting). If ·; · ⊢ v ⇒ B and v ↪→A v1 and v ↪→A v2, then
v1 = v2.

▶ Theorem 4.5 (Determinism of reduction). If ·; · ⊢ e ⇒ A and e ↪→ e1 and e ↪→ e2 then
e1 = e2.

ECOOP 2022

18:22 Direct Foundations for Compositional Programming

A ≲ B (Isomorphic Subtyping)

IS-refl

A ≲ A

IS-and
B1 ◁ B ▷ B2 A1 ≲ B1 A2 ≲ B2

A1 & A2 ≲ B

Figure 11 Isomorphic subtyping.

4.2 Preservation

Retaining preservation is challenging. When typing merges, we need to satisfy the extra side
conditions in rules Typ-merge and Typ-mergev: disjointness and consistency. While the
former only depends on types, the latter needs special care.

Consistency. As discussed in Section 3.4, casting may duplicate terms. For example,
1 ↪→Int & Int 1 , , 1 by rule Cast-and. Rule Typ-mergev is a relaxation of rule Typ-merge
to type such merges. We have to ensure any two merged casting results are consistent:

▶ Lemma 4.6 (Value consistency after casting). If ·; · ⊢ v ⇒ C and v ↪→A v1 and v ↪→B v2
then v1 ≈ v2.

Then we need to make sure that consistency is preserved during reduction.

▶ Lemma 4.7 (Reduction keeps consistency). If ·; · ⊢ u1 ⇒ A and ·; · ⊢ u2 ⇒ B and u1 ≈ u2
then

if u1 is a value and u2 ↪→ u′
2 then u1 ≈ u′

2;
if u2 is a value and u1 ↪→ u′

1 then u′
1 ≈ u2;

if u1 ↪→ u′
1 and u2 ↪→ u′

2 then u′
1 ≈ u′

2.

Besides, when parallel application substitutes arguments into merges of applicable terms
or projects the wished field, consistency is preserved as well. This requirement enforces us to
define consistency not only on values but also on pre-values since the application transforms
a value merge into a pre-value merge.

▶ Lemma 4.8 (Parallel application keeps consistency). If ·; · ⊢ v1 ⇒ A and ·; · ⊢ v2 ⇒ B and
v1 ≈ v2 and v1 • arg ↪→ u1 and v2 • arg ↪→ u2 then u1 ≈ u2 when

arg is a well-typed expression;
or arg is a label;
or arg is a type C ; we know A▷ ∀X ∗ A1. A2 and B ▷ ∀X ∗ B1. B2; and · ⊢ C ∗ A1 & B1.

Our algorithmic formulation of consistency (u1 ≈ u2, presented in the extended version of
the paper) keeps the above properties and is sound to the specification (Definition 4.1). The
basic idea is to tear all merges apart and compare every component from u1 and u2. They
are either the same expression with different annotations or have disjoint types.

▶ Lemma 4.9 (Consistency soundness). If v1 ≈ v2 then v1 ≈spec v2.

A. Fan, X. Huang, H. Xu, Y. Sun, and B. C. d. S. Oliveira 18:23

Isomorphic subtyping. In F+
i , types are not always precisely preserved by all reduction

steps. Specifically, when we cast a value v ↪→A v′ (in rule Step-annov) or wrap a term
e ⇝A u (in rule PApp-abs), the context expects v′ or u to have type A, but this is not
always true. In our casting rules shown at the bottom of Figure 10, most values will be
reduced to results with the exact type that we want, except for rule Cast-and. The inferred
type of the result is always an intersection, which may differ from the original splittable type.
To describe the change of types during reduction accurately, we define isomorphic subtyping
(Figure 11). If A ≲ B, we say A is an isomorphic subtype of B. The following lemma shows
that while the two types in an isomorphic subtyping relation may be syntactically different,
they are equivalent under an empty type context (i.e. · ⊢ A <: B and · ⊢ B <: A).

▶ Theorem 4.10 (Isomorphic subtypes are equivalent). If A ≲ B then · ⊢ A ∼ B.

With isomorphic subtyping, we define the preservation property of casting, expression
wrapping, and parallel application as follows.

▶ Lemma 4.11 (Casting preserves typing). If ·; · ⊢ v ⇒ A and v ↪→B v′ then there exists a
type C such that ·; · ⊢ v′ ⇒ C and C ≲ B.

▶ Lemma 4.12 (Expression wrapping preserves typing). If ·; · ⊢ e ⇐ B and · ⊢ B <: A and
e ⇝A u then there exists a type C such that ·; · ⊢ u ⇒ C and C ≲ A.

▶ Lemma 4.13 (Parallel application preserves typing). If ·; · ⊢ v • arg ⇒ A and v • arg ↪→ u
then there exists a type B such that ·; · ⊢ u ⇒ B and B ≲ A.

Of course, we can prove that the result of casting always has a subtype (or an equivalent
type) of the requested type instead of an isomorphic subtype. But it would be insufficient
for type preservation of reduction. In summary, if casting or wrapping generates a term of
type B when the requested type is A, we need B to satisfy:

B is a subtype of A because we want a preservation theorem that respects subtyping.
For any type C , A ∗ C implies B ∗ C . This is for the disjointness and consistency checking.
If A converts into an applicable type C , then B converts into an applicable type too.

Finally, with the lemmas above and isomorphic subtyping, we have the type preservation
property of F+

i . That is, after one or multiple steps of reduction (↪→∗), the inferred type of
the reduced expression is an isomorphic subtype. Therefore, for checked expressions, the
initial type-checking always succeeds.

▶ Theorem 4.14 (Type preservation with isomorphic subtyping). If ·; · ⊢ e ⇔ A and e ↪→∗ e′

then there exists a type B such that ·; · ⊢ e′ ⇔ B and B ≲ A.

▶ Corollary 4.15 (Type preservation). If ·; · ⊢ e ⇔ A and e ↪→∗ e′ then ·; · ⊢ e′ ⇐ A.

5 Related Work

In the following discussion, sometimes we attach the publication year to its calculus name for
easy distinction. For instance, F+

i ’19 means the original formulation of F+
i by Bi et al. [7].

The merge operator, disjoint intersection types and TDOS. The merge operator for
calculi with intersection types was proposed by Reynolds [34]. His original formulation came
with significant restrictions to ensure that the semantics is not ambiguous. Castagna [11]
showed that a merge operator restricted to functions could model overloading. Dunfield [14]

ECOOP 2022

18:24 Direct Foundations for Compositional Programming

λ,, λi’16 Fi λ+
i ’18 F+

i ’19 λi λ+
i F+

i

Disjointness
Unrestricted Intersections
Determinism / Coherence No Coh. Coh. Coh. Coh. Det. Det. Det.
Recursion
Direct Semantics
Subject Reduction - - - -
Distributive Subtyping
Disjoint Polymorphism
Evaluation Strategy CBV CBV CBV CBV CBV CBV CBV CBN

Figure 12 Summary of intersection calculi with the merge operator.
(= yes, = no, - = not applicable).

proposed a calculus, which we refer to as λ,,, with an unrestricted merge operator. While
powerful, λ,, lacked both determinism and subject reduction, though type safety was proved
via a type-directed elaboration semantics.

To address the ambiguity problems in Dunfield’s calculus, Oliveira et al. [30] proposed
λi’16, which only allows intersections of disjoint types. With that restriction and the use
of an elaboration semantics, it was then possible to prove the coherence of λi’16, showing
that the semantics was not ambiguous. Bi et al. [6] relaxed the disjointness restriction,
requiring it only on merges, in a new calculus called λ+

i ’18 (or NeColus). This enabled
the use of unrestricted intersections in λ+

i ’18. In addition, they added a more powerful
subtyping relation based on the well-known BCD subtyping [4] relation. The new subtyping
relation, in turn, enabled nested composition, which is a fundamental feature of Compositional
Programming. Unfortunately, both unrestricted intersections and BCD subtyping greatly
complicated the coherence proof of λ+

i ’18. To address those issues, Bi et al. turned to an
approach based on logical relations and a notion of contextual equivalence.

To address the increasing complexities arising from the elaboration semantics and the
coherence proofs, Huang et al. [20, 22] proposed a new approach to model the type-directed
semantics of calculi with a merge operator. The type-directed elaboration in λi’16 and
λ+

i ’18 is replaced by a direct type-directed operational semantics (TDOS). In the new TDOS
formulations of λi and λ+

i , coercive subtyping is removed since subtyping no longer needs to
generate explicit coercion for the elaboration to a target calculus. Instead, runtime implicit
(up)casting is used. This is implemented by the casting relation, which was originally called
typed reduction. Our work adopts TDOS and adds disjoint polymorphism. Disjoint poly-
morphism is used in Compositional Programming to enable techniques such as polymorphic
contexts. We also change the evaluation strategy from call-by-value (CBV) to call-by-name
(CBN), motivated by the elaboration of trait instantiation in Compositional Programming.
Otherwise, with a CBV semantics, many uses of trait instantiation would diverge.

Calculi with disjoint polymorphism. Disjoint polymorphism was originally introduced in
a calculus called Fi by Alpuim et al. [2]. A disjointness constraint is added to universal
quantification in order to allow merging components whose type contains type variables.
Later, Bi et al. [7] augment it with distributive subtyping in the F+

i ’19 calculus. In addition,
the bottom type is added, and unrestricted intersection types are also allowed to fully encode
row and bounded polymorphism [44]. Compared to F+

i ’19, our new formulation of F+
i adopts a

direct semantics, based on a TDOS approach, where simpler proofs of determinism supersede
the original proofs of coherence. As a result, recursion and impredicative polymorphism
can be easily added. Both features are important to fully support the trait encoding in
Compositional Programming. A detailed comparison of calculi with a merge operator, which
summarizes our discussion on related work, can be found in Figure 12.

A. Fan, X. Huang, H. Xu, Y. Sun, and B. C. d. S. Oliveira 18:25

F+
i versus F<:. There are quite a few typed object encodings in the literature [8], most

of which are based on F<: [10]. As it is not our goal in this paper to encode full OOP in
F+

i , we will not compare our trait encoding with other object encodings. However, it is still
interesting to compare F+

i with F<:. Some disadvantages of F<: have been studied in the
literature. It has been shown that, with bounded quantification, the subtyping of F<: is
undecidable [32], and some useful operations like polymorphic record updates [9] are not
directly supported. F+

i does not have these drawbacks. F+
i has decidable subtyping. For F<:

the most common decidable fragment is the so-called kernel F<: variant [10]. Xie et al. [44]
have shown that kernel F<: is encodable in F+

i . Therefore the bounded quantification that
is present in kernel F<: can be expressed in F+

i as well. In addition, polymorphic record
updates can be easily encoded without extra language constructs. For example, concerning a
polymorphic record that contains an x field among others (rcd : { x: Int } & R), the
record update { rcd with x = 1 } can be encoded in F+

i as { x = 1 } ,, (rcd : R).
In other words, we can rewrite whichever fields we want and then merge the remaining
polymorphic part back.

F+
i versus row-polymorphic calculi. Row polymorphism provides an alternative way to

model extensible record types in System F-like calculi. There are many variants of row-
polymorphic calculi in the literature [9, 19, 24, 38]. Among them, the most relevant one with
respect to our work is λ|| by Harper and Pierce [19]. Disjoint quantification has a striking
similarity to constrained quantification in λ||. Their compatibility constraint plays a similar
role to disjointness in our system. Furthermore, their merge operator (||) can concatenate
either two records like our merge operator (, ,) or two record types like our intersection
type operator (&). However, their compatibility constraint and merge operator are only
applicable to record types, while we generalize them to arbitrary types. λ|| has no subtyping
and does not allow for distributivity and nested composition either. Disjoint polymorphism
also subsumes the form of row polymorphism present in λ|| as demonstrated by Xie et al. [44].
We refer to Xie et al.’s work for an extended discussion of the relationship between F+

i and
various other row polymorphic calculi.

Semantics for type-dependent languages. The elaboration semantics approach is commonly
used to model the semantics of type-dependent languages and calculi. The appeals of the
elaboration semantics are simple type-safety proofs, and the fact that they directly offer an
implementation technique over conventional languages without a type-dependent semantics.
For instance, the semantics of type-dependent languages with type classes [18,43], Scala-style
implicits [27,29] or gradual typing [40] all use an elaboration semantics. In contrast, in the
past, more conventional direct formulations using an operational semantics have been avoided
for languages with a type-dependent semantics. A problem is that the type-dependent
semantics introduces complexity in the formulation of an operational semantics since enough
type information should be present at runtime and type information needs to be properly
propagated. Early work on the semantics of type classes [23, 28], for instance, attempted
to employ an operational semantics. However, those approaches had significant practical
restrictions in comparison to conventional type classes. The TDOS approach has shown
how to overcome important issues when modeling the direct semantics of type-dependent
languages. An important advantage of the TDOS approach is that it removes the need for
non-trivial coherence proofs. The TDOS approach has also been recently shown to work for
modeling the semantics of gradually typed languages directly [45].

ECOOP 2022

18:26 Direct Foundations for Compositional Programming

6 Conclusion

In this paper, we presented a new formulation of the F+
i calculus and showed how it serves

as a direct foundation for Compositional Programming. In contrast to the original F+
i , we

adopt a direct semantics based on the TDOS approach and embrace call-by-name evaluation.
As a result, the metatheory of F+

i is significantly simplified, especially due to the fact
that a coherence proof based on logical relations and contextual equivalence is not needed.
In addition, our formulation of F+

i enables recursion and impredicative polymorphism,
validating the original trait encoding by Zhang et al. [46]. We proved the type-soundness and
determinism of F+

i using the Coq proof assistant. Our research explores further possibilities
of the TDOS approach and shows some novel notions that could inspire the design of other
calculi with similar features.

Although F+
i is already expressive enough to work as a core calculus of the CP language,

some useful constructs like type operators are missing. We leave the extension of type-level
operations for future work. Another interesting design choice that we want to explore is to
lazily evaluate both sides of merges, just like what we have done for record fields, which can
help avoid some redundant computation on the unused side of a merge.

References
1 Amal Ahmed. Step-indexed syntactic logical relations for recursive and quantified types. In

European Symposium on Programming (ESOP), 2006.
2 João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. Disjoint polymorphism. In European

Symposium on Programming (ESOP), 2017.
3 Andrew W. Appel and David McAllester. An indexed model of recursive types for foundational

proof-carrying code. ACM Trans. Program. Lang. Syst., 23(5):657–683, September 2001.
4 Henk Barendregt, Mario Coppo, and Mariangiola Dezani-Ciancaglini. A filter lambda model

and the completeness of type assignment. The journal of symbolic logic, 48(04):931–940, 1983.
5 Xuan Bi and Bruno C. d. S. Oliveira. Typed First-Class Traits. In European Conference on

Object-Oriented Programming (ECOOP), 2018.
6 Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. The Essence of Nested Composition.

In European Conference on Object-Oriented Programming (ECOOP), 2018.
7 Xuan Bi, Ningning Xie, Bruno C. d. S. Oliveira, and Tom Schrijvers. Distributive disjoint

polymorphism for compositional programming. In European Symposium on Programming
(ESOP), 2019.

8 Kim B Bruce, Luca Cardelli, and Benjamin C Pierce. Comparing object encodings. In
International Symposium on Theoretical Aspects of Computer Software, pages 415–438. Springer,
1997.

9 Luca Cardelli and John C Mitchell. Operations on records. In International Conference on
Mathematical Foundations of Programming Semantics, 1989.

10 Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471–523, 1985.

11 Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions
with subtyping. In Conference on LISP and Functional Programming, 1992.

12 William R. Cook. A Denotational Semantics of Inheritance. PhD thesis, Brown University,
1989.

13 Rowan Davies and Frank Pfenning. Intersection types and computational effects. In Interna-
tional Conference on Functional Programming (ICFP), 2000.

14 Jana Dunfield. Elaborating intersection and union types. Journal of Functional Programming
(JFP), 24(2-3):133–165, 2014.

A. Fan, X. Huang, H. Xu, Y. Sun, and B. C. d. S. Oliveira 18:27

15 Jana Dunfield and Neel Krishnaswami. Bidirectional typing. ACM Comput. Surv., 54(5), May
2021. doi:10.1145/3450952.

16 Erik Ernst. Family polymorphism. In European Conference on Object-Oriented Programming
(ECOOP), 2001.

17 Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Université Paris 7, 1972.

18 Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L. Wadler. Type
classes in haskell. ACM Trans. Program. Lang. Syst., 18(2):109–138, March 1996.

19 Robert Harper and Benjamin Pierce. A record calculus based on symmetric concatenation. In
Principles of Programming Languages (POPL), 1991.

20 Xuejing Huang and Bruno C. d. S. Oliveira. A type-directed operational semantics for
a calculus with a merge operator. In Robert Hirschfeld and Tobias Pape, editors, 34th
European Conference on Object-Oriented Programming (ECOOP 2020), volume 166 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 26:1–26:32, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ECOOP.2020.26.

21 Xuejing Huang and Bruno C d S Oliveira. Distributing intersection and union types with
splits and duality (functional pearl). Proceedings of the ACM on Programming Languages,
5(ICFP):1–24, 2021.

22 Xuejing Huang, Jinxu Zhao, and Bruno C. d. S. Oliveira. Taming the merge operator. Journal
of Functional Programming, 31:e28, 2021. doi:10.1017/S0956796821000186.

23 Stefan Kaes. Parametric overloading in polymorphic programming languages. In H. Ganzinger,
editor, ESOP ’88, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

24 Daan Leijen. Extensible records with scoped labels. Trends in Functional Programming,
5:297–312, 2005.

25 Sheng Liang, Paul Hudak, and Mark Jones. Monad transformers and modular interpreters. In
Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on principles of programming
languages, pages 333–343, 1995.

26 Fabian Muehlboeck and Ross Tate. Empowering union and intersection types with integrated
subtyping. In OOPSLA, 2018.

27 Martin Odersky, Olivier Blanvillain, Fengyun Liu, Aggelos Biboudis, Heather Miller, and
Sandro Stucki. Simplicitly: Foundations and applications of implicit function types. Proc.
ACM Program. Lang., 2(POPL), December 2017.

28 Martin Odersky, Philip Wadler, and Martin Wehr. A second look at overloading. In Proceedings
of the Seventh International Conference on Functional Programming Languages and Computer
Architecture, FPCA ’95, pages 135–146, New York, NY, USA, 1995. Association for Computing
Machinery.

29 Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and
implicits. In William R. Cook, Siobhán Clarke, and Martin C. Rinard, editors, Proceedings
of the 25th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2010, October 17-21, 2010, Reno/Tahoe, Nevada,
USA, pages 341–360. ACM, 2010. doi:10.1145/1869459.1869489.

30 Bruno C. d. S. Oliveira, Zhiyuan Shi, and João Alpuim. Disjoint intersection types. In
International Conference on Functional Programming (ICFP), 2016.

31 Benjamin C Pierce. A decision procedure for the subtype relation on intersection types with
bounded variables. Technical report, Carnegie Mellon University, 1989.

32 Benjamin C Pierce. Bounded quantification is undecidable. Information and Computation,
112(1):131–165, 1994.

33 John C Reynolds. Towards a theory of type structure. In Programming Symposium, pages
408–425. Springer, 1974.

34 John C Reynolds. Preliminary design of the programming language forsythe. Technical report,
Carnegie Mellon University, 1988.

ECOOP 2022

https://doi.org/10.1145/3450952
https://doi.org/10.4230/LIPIcs.ECOOP.2020.26
https://doi.org/10.1017/S0956796821000186
https://doi.org/10.1145/1869459.1869489

18:28 Direct Foundations for Compositional Programming

35 John C. Reynolds. The coherence of languages with intersection types. In Lecture Notes in
Computer Science (LNCS), pages 675–700. Springer Berlin Heidelberg, 1991.

36 John C Reynolds. Design of the programming language forsythe. In ALGOL-like languages,
pages 173–233. Birkhauser Boston Inc., 1997.

37 Tom Schrijvers and Bruno C. d. S. Oliveira. Monads, zippers and views: virtualizing the
monad stack. In Proceedings of the 16th ACM SIGPLAN international conference on functional
programming, pages 32–44, 2011.

38 Mark Shields and Erik Meijer. Type-indexed rows. In Proceedings of the 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’01, pages 261–275, New
York, NY, USA, 2001. Association for Computing Machinery. doi:10.1145/360204.360230.

39 Jeremy G. Siek. Transitivity of subtyping for intersection types. CoRR, abs / 1906.09709,
2019. arXiv:1906.09709.

40 Jeremy G Siek and Walid Taha. Gradual typing for functional languages. In Scheme and
Functional Programming Workshop, 2006.

41 Jeremy G. Siek and Walid Taha. Gradual typing for objects. In Erik Ernst, editor, ECOOP
2007 - Object-Oriented Programming, 21st European Conference, Berlin, Germany, July 30 -
August 3, 2007, Proceedings, volume 4609 of Lecture Notes in Computer Science, pages 2–27.
Springer, 2007.

42 Philip Wadler. The expression problem. Java-genericity mailing list, 1998.
43 Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In

Conference Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 11-13, 1989, pages 60–76. ACM Press, 1989. doi:
10.1145/75277.75283.

44 Ningning Xie, Bruno C d S Oliveira, Xuan Bi, and Tom Schrijvers. Row and bounded
polymorphism via disjoint polymorphism. In 34th European Conference on Object-Oriented
Programming (ECOOP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

45 Wenjia Ye, Bruno C. d. S. Oliveira, and Xuejing Huang. Type-directed operational semantics
for gradual typing. In Anders Møller and Manu Sridharan, editors, 35th European Conference
on Object-Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual
Conference), volume 194 of LIPIcs, pages 12:1–12:30. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2021.

46 Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. Compositional programming. ACM
Transactions on Programming Languages and Systems (TOPLAS), 43(3):1–61, 2021.

https://doi.org/10.1145/360204.360230
http://arxiv.org/abs/1906.09709
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283

Low-Level Bi-Abduction
Lukáš Holík # Ñ

FIT, Brno University of Technology, Czech Republic

Petr Peringer # Ñ

FIT, Brno University of Technology, Czech Republic

Adam Rogalewicz # Ñ

FIT, Brno University of Technology, Czech Republic

Veronika Šoková # Ñ

FIT, Brno University of Technology, Czech Republic

Tomáš Vojnar # Ñ

FIT, Brno University of Technology, Czech Republic

Florian Zuleger # Ñ

Faculty of Informatics, TU Wien, Austria

Abstract
The paper proposes a new static analysis designed to handle open programs, i.e., fragments of
programs, with dynamic pointer-linked data structures – in particular, various kinds of lists – that
employ advanced low-level pointer operations. The goal is to allow such programs be analysed
without a need of writing analysis harnesses that would first initialise the structures being handled.
The approach builds on a special flavour of separation logic and the approach of bi-abduction. The
code of interest is analyzed along the call tree, starting from its leaves, with each function analysed
just once without any call context, leading to a set of contracts summarizing the behaviour of the
analysed functions. In order to handle the considered programs, methods of abduction existing in
the literature are significantly modified and extended in the paper. The proposed approach has been
implemented in a tool prototype and successfully evaluated on not large but complex programs.

2012 ACM Subject Classification Theory of computation Ñ Separation logic; Theory of computation
Ñ Logic and verification; Software and its engineering Ñ Formal software verification

Keywords and phrases programs with dynamic linked data structures, programs with pointers,
low-level pointer operations, static analysis, shape analysis, separation logic, bi-abduction

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.19

Related Version Extended Version: arXiv:2205.02590 [22]

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.11

Funding The Czech authors were supported by the project 20-07487S of the Czech Science Foundation,
the FIT BUT internal project FIT-S-20-6427, and L. Holík by the ERC.CZ project LL1908.

1 Introduction

Programs with complex dynamic data structures and pointer operations are notoriously
difficult to write and understand. This holds twice when a need to achieve the best possible
performance drives programmers, especially those working in the C language on which we
concentrate, to start using advanced low-level pointer operations such as pointer arithmetic,
bit-masking information on pointers, address alignment, block operations with blocks that are
split to differently sized fields (of size not known in advance), which can then be merged again,
and reinterpreted differently, and so on. It may then easily happen that the resulting programs

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Lukáš Holík, Petr Peringer, Adam Rogalewicz,
Veronika Šoková, Tomáš Vojnar, and Florian Zuleger;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 19; pp. 19:1–19:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:holik@fit.vut.cz
https://www.fit.vut.cz/person/holik/
https://orcid.org/0000-0001-6957-1651
mailto:peringer@fit.vut.cz
https://www.fit.vut.cz/person/peringer/
https://orcid.org/0000-0002-8264-8307
mailto:rogalew@fit.vut.cz
https://www.fit.vut.cz/person/rogalew/
https://orcid.org/0000-0002-7911-0549
mailto:isokova@fit.vut.cz
https://www.fit.vut.cz/person/isokova/
https://orcid.org/0000-0003-1980-7245
mailto:vojnar@fit.vut.cz
https://www.fit.vut.cz/person/vojnar/
https://orcid.org/0000-0002-2746-8792
mailto:florian.zuleger@tuwien.ac.at
https://informatics.tuwien.ac.at/people/florian-zuleger
https://orcid.org/0000-0003-1468-8398
https://doi.org/10.4230/LIPIcs.ECOOP.2022.19
http://arxiv.org/abs/2205.02590
https://doi.org/10.4230/DARTS.8.2.11
https://doi.org/10.4230/DARTS.8.2.11
https://doi.org/10.4230/DARTS.8.2.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Low-Level Bi-Abduction

contain nasty errors, such as null-pointer dereferences, out-of-bound references, double free
operations, or memory leaks, which can manifest only under some rare circumstances, may
escape traditional testing, and be difficult to discover once the program is in production.

To help discover such problems (or show their absence), suitable static analyses with
formal roots may help. However, the problem of analysing programs with dynamic pointer-
linked data structures, sometimes referred to as shape analysis, belongs among the most
difficult analysis problems, which is related to a need of efficiently encoding and handling
potentially infinite sets of graph structures of in-advance unknown shape and unbounded
size, corresponding to the possible memory configurations.

Moreover, the problem becomes even harder when one needs to analyse not entire
programs, equipped with some analysis harness generating instances of the data structures
to be handled, but just fragments of code, which simply start handling some dynamic data
structures through pointers without the structures being initialised first. At the same time,
in practice, the possibility of analysing code fragments is highly preferred since programmers
do not like writing specialised analysis harnesses for initialising data structures of the code to
be analysed (not speaking about that writing such harnesses is error-prone too). Moreover,
the possibility of analysing code fragments can also help scalability of the analysis since it
can then be performed in a modular way.

In this paper, we propose a new analysis designed to analyse programs and even fragments
of programs with dynamic pointer-linked data structures that can use advanced low-level
pointer-manipulating operations of the form mentioned above. In particular, we concentrate
on sequential C programs without recursion and without function pointers manipulating
various forms of lists – singly-linked, doubly-linked, circular, nested, and/or intrusive, which
are perhaps the most common kind of dynamic linked data structures in practice.

Our approach uses a special flavor of separation logic (SL) [33, 24] with inductive list
predicates [2] to characterize sets of program configurations. To be able to handle code
fragments, we adopt the principle of bi-abductive analysis proposed over SL for analysing
programs without low-level pointer operations in [6, 7]. Our work can thus be viewed as an
extension of the approach of [6, 7] to programs with truly low-level operations (i.e., pointer
arithmetic, bit-masking on pointers, block operations with blocks of variable size, their
splitting to fields of in-advance-not-fixed size, merging such fields back, and reinterpreting
them differently, etc.). As will become clear, handling such programs requires rather non-
trivial changes to the abduction procedure used in [6, 7] – intuitively, one needs new analysis
rules for block splitting and merging, new support for operations such as pointer plus, pointer
minus, or block operations (like memcpy), and also modified support for operations like
memory allocation or deallocation (to avoid deallocation of parts of blocks). Moreover, to
support splitting of memory blocks to parts, gradually learning their bounds and fields, and
to allow for embedding data structures into other data structures not known in advance (as
commonly done, e.g., in the so-called intrusive lists), we even switch from using the traditional
per-object separating conjunction in our SL to a per-field separating conjunction (as used, e.g.,
in [14] in the context of analysing so-called overlaid data structures), requiring separation
not on the level of allocated memory blocks but their fields. As an additional benefit, our
usage of per-field separating conjunction then allows us to represent more compactly even
some operations on traditional data structures (without low-level pointer manipulation).

As common in bi-abductive analyses, we analyse programs, or their fragments, along their
call tree, starting from the leaves of the call tree (for the time being, we assume working with
non-recursive programs only). Each function is analysed just once, without any knowledge
about its possible call contexts. For each function, the analysis derives a set of so-called

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:3

contracts, which can then be used when this function is called from some other function
higher up in the call hierarchy. A contract for a function f is a pair pP,Qq where P is a
precondition under which f can be safely executed (without a risk of running into some
memory error such as a null-dereference), and Q is a postcondition that is guaranteed to be
satisfied upon exit from f provided it was called under the given precondition. Both P and
Q are described using our flavor of SL. In fact, as also done in [6, 7], our analysis runs in
two phases: the first phase derives the preconditions, while the second phase computes the
postconditions. Like in [6, 7], the computed set of contracts may under-approximate the set
of all possible safe preconditions of f (e.g., some extreme but still safe preconditions need
not be discovered). However, for each computed contract pP,Qq, the post-condition Q is
guaranteed to over-approximate all configurations that result from calling the function under
the pre-condition P .

We have implemented our approach in a prototype tool called Broom. We have applied
the tool to a selection of code fragments dealing with various kinds of lists, including very
advanced implementations taken from the Linux kernel as well as the intrusive list library (for
a reference, see our experimental section). Although the code is not large in the number of
lines of code, it contains very advanced pointer operations, and, to the best of our knowledge,
Broom is currently the only analyser that is capable of analysing many of the involved
functions.

Related work

In the past (at least) 25 years there have appeared numerous approaches to automated shape
analysis or, more generally, analysis of programs with unbounded dynamically-linked data
structures. These approaches differ in the formalisms used for encoding sets of configurations
of programs with such data structures, in their level of automation, classes of supported
data structures, and/or properties of programs that are targeted by the analysis: see, e.g.,
[25, 34, 2, 37, 9, 39, 38, 20, 10, 3, 16, 21, 31].

Not many of the existing approaches offer a reasonably general support of low-level pointer
operations (such as pointer arithmetic, address alignment, masking information on pointers,
block operations, etc.). Some support of low-level pointer operations appears in multiple
of these approaches, but it is often not much documented. In fact, such a support often
appears in some ad hoc extension of the tool implementing the given approach only, without
any description whatsoever. According to the best of our knowledge, the approach of [16],
based on so-called symbolic memory graphs (SMGs), currently provides probably the most
systematic and generic solution for the case of programs with low-level pointer operations
and various kinds of linked lists (including advanced list implementations such as those used
in the Linux kernel). Specialised approaches to certain classes of low-level programs, namely,
memory allocators, then appear, e.g., in [5, 19].

In this work, we get inspired by some of the analysis capabilities of [16], but we aim
at removing one of its main limitations – namely, the fact that it cannot be applied to a
fragment of code. Indeed, [16] expects the analysed program to be closed, i.e., the analysed
functions must be complemented by a harness that initializes all the involved data structures,
which severely limits applicability of the approach in practice (since programmers are often
reluctant to write specialised analysis harnesses).

Approaches allowing one to analyse open code, i.e., code fragments, with dynamic linked
data structures are not frequent in the literature. Perhaps the best known of these works is
the approach of bi-abduction based on separation logic with (possibly nested) list predicates

ECOOP 2022

19:4 Low-Level Bi-Abduction

proposed in [6, 7] and currently available in the Infer analyser [4].1 This approach is another
of the approaches that inspired our work, and we will be referring to various technical details
of that paper later on. However, despite Infer contains some support of pointer arithmetic, it
is not very complete (as our experiments will show), and the approach presented in [6, 7]
does not at all study low-level pointer operations of the form that we aim at in this paper.
Moreover, it turns out that adding a support of such operations (e.g., dealing with blocks
of memory of possibly variable size, splitting them to fields of variable size, merging such
fields back and reinterpreting their contents differently, having pointers with variable offsets,
supporting rich pointer arithmetic, etc.) requires rather non-trivial changes and extensions
to the bi-abduction mechanisms used in [6, 7].

An approach of second-order bi-abduction based also on separation logic was proposed
in [28] and several follow-up papers such as [11]. The authors consider recursive programs
with pointers and propose a calculus for automatic derivation of sets of equations describing
the behaviour of particular functions. A solution of such a set of equations leads to a set
of contracts for the considered functions. The technique is in some sense quite general –
unlike [6, 7] and unlike our approach, it can even automatically learn recursive predicates
describing the involved data structures, including trees, skip lists, etc. Moreover, the
derivation of the equations is a cheap procedure, and no widening is needed, again unlike
in [6, 7] and unlike in our approach. On the other hand, finding a solution of the generated
equations is a hard problem, and the authors provide a simple heuristic designed for a specific
shape of the equations only, which fails in various other cases.

Finally, we mention the Gillian project, a language-independent framework based on
separation logic for the development of compositional symbolic analysis tools, including
tools for whole-program symbolic execution, verification of annotated code, as well as bi-
abduction [36, 35, 30, 29]. The works on Gillian concentrate on the generic framework it
develops, and the published description of the supported bi-abductive analysis, perhaps most
discussed in [35], is unfortunately not very detailed. In particular, it is not clear whether and
how much the approach supports the low-level features of pointer manipulation that we are
aiming at here (e.g., pointer arithmetic, bit-masking on addresses, etc.). According to the
source code that we were able to find in the Gillian repository, the examples mentioned in
the part of [35] devoted to bi-abduction do not use low-level pointer manipulation features
such as pointer arithmetic. It is also mentioned in [35] that Gillian supports bi-abduction up
to a predefined bound only, whereas we do not require such a bound. Further, in contrast to
the present work, [35] assumes that the size of memory chunks being dynamically allocated
is known, and the complex reasoning needed to resolve this issue is left for the future.

We also note that there is a vast body of work on automated decision procedures for
various fragments of separation logic and problems such as satisfiability and entailment –
see, e.g., [18, 23, 26, 27, 17]. However, it is not immediate how to apply these logics inside
a program analysis tool. This is because the best (i.e., logically weakest) solution to the
abduction problem φ˚r?s |ù ψ, which is a central problem for compositional program analyses,
with ˚ being the separating conjunction, is given by the formula φ´̊ψ, which makes use
of the magic wand operator ´̊ , and the cited logics do not provide support for the magic
wand. This is for principle reasons: it has been observed in the literature that magic wand
operators are “difficult to eliminate” [1]; further, it has been shown that adding only the

1 The approach [6, 7] mentions a generalisation to other classes of data structures, but – to the best of
our knowledge – this extension has not been implemented and evaluated, and so it is not clear how well
it would work in practice.

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:5

singly-linked list-segment predicate to a propositional separation logic that includes the magic
wand already leads to undecidability of the satisfiability problem [13]. A notable exception is
the recent work [32] on a new semantics for separation logic, which enables decidability of a
propositional separation logic that includes the magic wand and the singly-linked list-segment
predicate (and also discusses applications to the abduction problem); however, the fragment
considered in [32] is not expressive enough to cover the low-level features considered in this
work such as, pointer arithmetic, memory blocks, etc., and, at present, it is unclear whether
the decidability result can be extended to a richer logic. For the above reasons, we will
in this paper not target a complete procedure for the (bi-)abduction problem, but rather,
following [6, 7], develop approximate procedures and evaluate their usefulness in our case
studies.

Main contributions of the paper

The paper proposes a new approach for automated bi-abductive analysis of programs and
fragments of programs with pointers, different kinds of linked lists, and low-level memory
operations. The approach is formalised, implemented in a prototype tool, and experimentally
evaluated. In summary, we make the following contributions:

A specialised dialect of separation logic suitable for automated abductive analysis of
programs with lists and low-level memory operations (we use a separating conjunction
between single fields and not whole memory blocks as in related approaches, and support
fields of unknown and even variable size as well as unknown block boundaries).
Contracts for basic programming statements that reflect our low-level memory model
(see, e.g., the contracts of the malloc and free statements), and support for specific
statements that permit low-level pointer manipulation (e.g., pointer addition).
A set of rules for automated abductive analysis, which not only includes variants of
rules from related approaches, but also new kinds of rules required for handling low-level
memory operations (e.g., block splitting).
A prototype implementation that supports bit-precise reasoning based on a reduction of
(un-)satisfiability of separation logic to (un-)satisfiability of SMT over the bit-vectors.
An experimental evaluation of the approach on a number of challenging programs.

2 An Illustration of the Approach on an Example

Before we start with a systematic description of our approach, we present its core ideas on an
example. We attempt to informally explain the involved notions, yet, due to the complexity
of the issues, some prior knowledge of separation logic with inductive list predicates, e.g., [2],
and ideally also bi-abduction analysis [6, 7] is helpful.

As our illustrative example, we consider the code manipulating cyclic doubly-linked lists
shown in Fig. 1.2 The example is inspired by the principle of intrusive lists (as used, e.g., in
Linux kernel lists) where all list operations are defined on some simple list-linking structure
that is then nested into user-defined structures. It is these user-defined structures that carry
the data actually stored in the lists. The list manipulating functions, however, know nothing
about these larger structures. However, the fact that contracts (summaries) derived for

2 The code is written in C. Our later presented low-level programming language for which we will formalise
our approach is not C but rather close to some of the intermediate languages used when compiling C.
We, however, feel that describing the example in such a language would not be very understandable.
Moreover, all constructions used in our example can be translated to the later considered language.

ECOOP 2022

19:6 Low-Level Bi-Abduction

functions dealing with the small linking structures are later to be applied on the larger,
user-defined structures is already problematic for some existing analyses.

In the code of our illustrative example, the function init_dll creates an initial cyclic
doubly-linked list consisting of a single node. The function insert_after can then insert a
new element into the list after its item pointed by l.

Let us note that while the code of the example in Fig. 1 may seem to not use pointer
arithmetic, the code in fact uses pointer arithmetic on the level of the intermediate code we
analyse. Indeed, each expression x–>field is translated to *(x+offsetof(field)). It is of
course true that once all the types and fields are known and fixed, one can avoid dealing with
pointer arithmetic in this case. On the other hand, the fact that we systematically handle it
through pointer arithmetic allows us to smoothly handle even the cases when the types and
offsets stop being known and/or constant (upon which approaches based on dealing with
field names fail).

As indicated already in the introduction, we analyse the given code fragment according
to its call tree, starting from the leaves (assuming there is no recursion). Each function
is analysed just once, without any call context. If successful, the analysis derives a set
of contracts for the given function where each contract is a pair pP,Qq consisting of a
(conjunctive) pre-condition and (a possibly disjunctive) post-condition. In our introductory
example, we will restrict ourselves to the simplest case, namely, having a single, purely
conjunctive contract. In the contracts, both the pre- and post-condition are expressed as SL
formulae. The analysis is compositional in that contracts derived for some functions are then
used when analysing functions higher up in the call hierarchy (moreover, we will view even
particular pointer manipulating statements as special atomic functions and describe them by
pre-defined contracts).

We begin the illustration of our analysis by analysing the init_dll function. We start
the analysis by annotating the first line by the pair px “ X,x “ Xq. In this pair, the first
component is the so-far derived pre-condition of the function, and the second component is
the current symbolic state of the function under analysis. Here, the variable X records the
value of the program variable x at the beginning of the function. While x will be changing
in the function, X will never change, and we will be able to gradually generate constraints
on its value to express what must hold for x at the entry of the function.

After symbolically executing the statement x->next = x, we derive that the address
X must correspond to some allocated memory, containing some unknown value L1. This
gives us the pre-condition X ÞÑ L1 that is an SL formula stating exactly the fact that X
is allocated and stores the value L1. The symbolic state is then advanced to say that X is
allocated and stores the value X, i.e., it points to itself, which is encoded as X ÞÑ X in SL.

After the subsequent statement x->prev = x, assuming that we work with 64 bit (i.e., 8
bytes) wide addresses, we add to the precondition the fact that the memory address X ` 8 is
allocated as well. Moreover, the formula bpXq “ bpX ` 8q says that X and X ` 8 belong
to the same memory block, i.e., they were, e.g., allocated using one malloc statement (in
fact, we use bpXq to denote the – so-far unknown – base address of the block). The symbolic
state is updated by the fact that the value at the address X ` 8 is also equal to X, i.e.,
X ` 8 ÞÑ X.

Since there are no further statements in the function, there is no branching, no loops,
and all the statements are deterministic, the final contract for the function is unique and
consists of the final pre-condition P ” X ÞÑ L1 ˚X ` 8 ÞÑ L2 ˚ bpXq “ bpX ` 8q ˚ x “ X

and the post-condition Q ” X ÞÑ X ˚X ` 8 ÞÑ X ˚ bpXq “ bpX ` 8q ˚ x “ X obtained from
the final symbolic state. Here, we use “˚” to denote a per-field separating conjunction, which,

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:7

struct dll { struct dll *next, *prev; };
struct emb dll {int value; struct dll link; };

void init dll(struct dll *x) {
P ” x “ X, Q ” x “ X

x–¿next = x;
P ” X ÞÑ L1 ˚ x “ X, Q ” X ÞÑ X ˚ x “ X

x–¿prev = x;
P ” X ÞÑ L1 ˚X ` 8 ÞÑ L2 ˚ bpXq “ bpX ` 8q ˚ x “ X,
Q ” X ÞÑ X ˚X ` 8 ÞÑ X ˚ bpXq “ bpX ` 8q ˚ x “ X

} summary:
P ” X ÞÑ L1 ˚X ` 8 ÞÑ L2 ˚ bpXq “ bpX ` 8q ˚ x “ X,
Q ” X ÞÑ X ˚X ` 8 ÞÑ X ˚ bpXq “ bpX ` 8q ˚ x “ X

void insert after(struct dll *l, *j) {
P ” l “ L ˚ j “ J, Q ” l “ L ˚ j “ J

struct dll *n = l–¿next;
P ” L ÞÑ N ˚ l “ L ˚ j “ J, Q ” L ÞÑ N ˚ l “ L ˚ j “ J ˚ n “ N

j–¿next = n;
P ” L ÞÑ N ˚ J ÞÑ B1 ˚ l “ L ˚ j “ J, Q ” L ÞÑ N ˚ J ÞÑ N ˚ l “ L ˚ j “ J ˚ n “ N

j–¿prev = l;
P ” L ÞÑ N ˚ J ÞÑ B1 ˚ J ` 8 ÞÑ B2 ˚ bpJq “ bpJ ` 8q ˚ l “ L ˚ j “ J,
Q ” L ÞÑ N ˚ J ÞÑ N ˚ J ` 8 ÞÑ L ˚ bpJq “ bpJ ` 8q ˚ l “ L ˚ j “ J ˚ n “ N

l–¿next = j;
P ” L ÞÑ N ˚ J ÞÑ B1 ˚ J ` 8 ÞÑ B2 ˚ bpJq “ bpJ ` 8q ˚ l “ L ˚ j “ J,
Q ” L ÞÑ J ˚ J ÞÑ N ˚ J ` 8 ÞÑ L ˚ bpJq “ bpJ ` 8q ˚ l “ L ˚ j “ J ˚ n “ N

n–¿prev = j;
P ” L ÞÑ N˚J ÞÑ B1˚J`8 ÞÑ B2˚N`8 ÞÑ B3˚bpJq “ bpJ`8q˚bpNq “ bpN`8q˚l “ L˚j “ J,
Q ” L ÞÑ J ˚ J ÞÑ N ˚ J ` 8 ÞÑ L ˚N ` 8 ÞÑ J ˚ bpJq “ bpJ ` 8q ˚ bpNq “ bpN ` 8q ˚ l “ L ˚

j “ J ˚ n “ N
} summary:

P ” L ÞÑ N ˚J ÞÑ B1 ˚J `8 ÞÑ B2 ˚N `8 ÞÑ B3 ˚bpJq “ bpJ `8q ˚ bpNq “ bpN `8q ˚ l “ L˚ j “ J,
Q ” L ÞÑ J ˚ J ÞÑ N ˚ J ` 8 ÞÑ L ˚N ` 8 ÞÑ J ˚ bpJq “ bpJ ` 8q ˚ bpNq “ bpN ` 8q ˚ l “ L ˚ j “ J

int main() {
P ” emp, Q ” emp

struct emb dll *x = malloc(sizeof(struct emb dll));
P ” emp, Q ” DX. X ÞÑ Jr24s ˚X “ bpXq ˚ x “ X

init dll(&(x–¿link));
P ” emp, Q ” DX,L1. X ÞÑ Jr8s˚L1 ÞÑ L1 ˚L1`8 ÞÑ L1 ˚X “ bpXq “ bpL1q “ bpL1`8q˚
L1 “ X ` 8 ˚ x “ X

struct emb dll *i = malloc(sizeof(struct emb dll));
P ” emp, Q ” DI,X,L1. I ÞÑ Jr24s ˚X ÞÑ Jr8s ˚L1 ÞÑ L1 ˚L1`8 ÞÑ L1 ˚L1 “ X`8˚X “

bpXq “ bpL1q “ bpL1 ` 8q ˚ I “ bpIq ˚ x “ X ˚ i “ I

init dll(&(i–¿link));
P ” emp, Q ” DI,X,L1, L2. i ÞÑ Jr8s ˚ L2 ÞÑ L2 ˚ L2 ` 8 ÞÑ L2 ˚ X Ñ Jr8s ˚ L1 ÞÑ

L1 ˚ L1 ` 8 ÞÑ L1 ˚ L2 “ I ` 8 ˚ L1 “ X ` 8 ˚ X “ bpXq “ bpL1q “ bpL1 ` 8q ˚ I “ bpIq “

bpL2q “ bpL2 ` 8q ˚ x “ X ˚ i “ I

insert after(&(x–¿link), &(i–¿link));
P ” emp, Q ” DI,X,L1, L2. I ÞÑ Jr8s˚L2 ÞÑ L1 ˚L2`8 ÞÑ L1 ˚X ÞÑ Jr8s˚L1 ÞÑ L2 ˚L1`

8 ÞÑ L2˚L2 “ I`8˚L1 “ X`8˚X “ bpXq “ bpL1q “ bpL1`8q˚I “ bpIq “ bpL2q “ bpL2`8q˚
x “ X ˚ i “ I

. . .
}

Figure 1 An illustrative example of a code working with cyclic doubly-linked lists and its analysis.
The C expressions like ptr->field can be seen as syntactic sugar for expressions using pointer
arithmetic of the form *(ptr + offsetof(field)). The epXq predicates representing the end of
the block pointed by X are dropped from the pP,Qq pairs for simplicity.

ECOOP 2022

19:8 Low-Level Bi-Abduction

intuitively, means that while the addresses X and X ` 8, which are allocated by the formulae
X ÞÑ L1 and X ` 8 ÞÑ L2, may – though need not – belong to a single memory block, the
values stored at these addresses within the block do not overlap.3

The same principles are then used for the computation of the contracts for the
insert_after and main functions. Here, let us just highlight a situation that happens,
e.g., upon the j->next = n statement of insert_after. Notice that, in its case, the so-far
computed precondition P must be extended by the new requirement J ÞÑ B1, stating that J
must be allocated, and Q is then extended by the fact J ÞÑ N , which is the effect of executing
the given statement. At the same time, however, the rest of the previously computed symbolic
state of the program Q stays untouched (in general, only some part may be preserved). Given
the current symbolic state Q and a statement, the problem of deriving which precondition is
missing and which part of the state will remain untouched is denoted as the bi-abduction
problem, and a procedure looking for its solution is a bi-abduction procedure. The computed
missing part of the pre-condition is called the anti-frame, and the computed part of the
current symbolic state not modified by the statement being executed is called the frame.

When analysing the main function, one does already need not re-analyse the init_dll
and insert_after functions – instead, one simply uses their contracts. For simplicity, we
assume here that malloc always succeeds, and hence even main is deterministic. After the
execution of malloc, we use the special predicate x ÞÑ Jr24s to express that a sequence of 24
bytes of undefined contents was allocated. We allow such blocks (as well as all other kinds of
blocks that arise during the analysis) be split to smaller parts whenever this is needed for
applying a contract of some function (or statement). That happens, e.g., on lines b and d

of the main function where the block X ÞÑ Jr24s created by malloc is split to 3 fields as
described by X ÞÑ Jr8s ˚X ` 8 ÞÑ Jr8s ˚X ` 16 ÞÑ Jr8s. The last two of the fields then
match the precondition of init_dll, and the first one becomes a frame (untouched by the
function).

Without now going into further details, we note that analysing more complex functions
requires one to solve multiple more problems. For example, if there appears some non-
determinism, one needs to start working with contracts with disjunctive post-conditions
and even with sets of such contracts. If the code contains loops, one needs to prevent the
analysis from diverging while generating more and more points-to predicates. For that, one
can use widening in the form of a list abstraction. The resulting over-approximation may
then, however, render some generated pre-/post-condition pairs unsound, leading to a need
to run another phase of the analysis that will start from the computed pre-conditions and
check, without using abduction any more, what post-condition the code can really guarantee.
We discuss all these issues in the extended version of this paper [22].

However, before proceeding, let us stress how significantly the above-mentioned use of
the per-field separation distinguishes our approach from its predecessor bi-abduction analysis
[6, 7]. That analysis would use whole-block predicates of the form X ÞÑ dllpnext : A, prev : Bq
to describe instances of struct dll, while we use the formula X ÞÑ A ˚X` 8 ÞÑ B ˚bpXq “

bpX ` 8q. The per-field separating conjunction allows us to (1) express partial information
about a block and (2) infer a precondition where two (or more) fields can be in the same
block as well as in different blocks. Point 1 helps us to generate contracts of functions where
we do not know the exact sizes of the allocated block – e.g., init_dll does not require the

3 In a formula a ÞÑ b ˚ c ÞÑ d with a per-object separating conjunction, a and c are two distinct objects
allocated in memory (while b and d need not be allocated and may coincide). With a per-field separating
conjunction, a and c are allowed to be non-overlapping fields of the same allocated object.

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:9

pointer x to point to an instance of struct dll, it can be, e.g., used on larger structures,
such as, e.g., struct emb_dll, that embed the original structure. Point 2 is used in the
contract of insert_after where the formula L ÞÑ N ˚ N ` 8 ÞÑ B3 describes a memory
where it may be that L “ N as well as L ‰ N . The contract for insert_after can then be
applied on a circular doubly-linked list consisting of a single item (L “ N) as well on lists
consisting of more items (L ‰ N) – see the figure below for an illustration.

L N L=N

Note that when one uses the whole-block predicate, the precondition of insert_after in
the form L ÞÑ dllpnext : N, prev : _q˚N ÞÑ dllpnext : _, prev : B3q˚J ÞÑ dllpnext : B1, prev :
B2q requires L ‰ N , and hence it is not covering the two above mentioned cases. One can of
course sacrifice performance of the analysis and generate multiple contracts by modifying the
abduction rules – e.g., one can non-deterministically introduce an alias L “ N before inferring
the anti-frame on line v of main to get the pre-condition L ÞÑ dllpnext : L, prev : _q ˚L “ N .
Introducing such non-determinism is, however, costly. That is why, as we will see in our
experiments, it is not done in tools such as Infer, which can then cause that such tools will
miss some function contracts (or generate incomplete contracts that will not be applicable in
some common cases: such as insertion into a list of length 1).

An additional example is provided in the technical report [22], where pointer arithmetic
and bit-masking are directly visible in the C-code.

3 Memory Model

In the following, we introduce the memory model that we use in this paper. Values are
sequences of bytes, i.e., Val “ Byte`, where bytes are 8-bit words. Sequences of bytes can be
interpreted as numbers – either signed or unsigned, which we leave as a part of the operations
to be applied on the sequences (including conversion operations). We designate a subset of
the values Loc “ ByteN

Ď Val as locations where N ě 1 is the byte-width of words of a given
architecture and where byte sequences to be interpreted as locations are always understood
as unsigned. The null pointer is represented by 0 P Loc in our memory model.

We will use so-called stack-block-memory triplets (SBM triplets for short) as configurations
of our memory model in order to define the operational semantics of programs (and also to
define the semantics of our separation logic later on):

Stack. We assume some set of variables Var where each variable x P Var has some fixed
positive size, denoted as sizepxq. Then, Stack is the set of total functions Var Ñ Val such
that each variable is mapped to a byte sequence whose length is according to the size of the
variable, i.e., for each stack S P Stack and variable x P Var , we have Spxq P Bytesizepxq.

Memory. Mem is the set of partial functions Loc á Byte that define the contents of
allocated memory locations.

Blocks. We use Interval “ t rl, uq | l ă u where l, u P Locu to denote intervals of
subsequent memory locations where we include the lower bound and exclude the upper
bound. Intuitively, an interval rl, uq P Interval will denote which locations were allocated at
the same time (and must thus also be deallocated together, can be subtracted using pointer

ECOOP 2022

19:10 Low-Level Bi-Abduction

subtraction, etc.). Block “ t rl, uq P Interval | l ‰ 0u are intervals whose lower bound is
not 0 (recall that null is represented by 0 P Loc in our memory model). Blocks Ď p2finq

Block

is the set of all finite sets of non-overlapping blocks, i.e., for all B P Blocks and for all
rl1, u1q, rl2, u2q P B such that either l1 ‰ l2 or u1 ‰ u2, we have that either u1 ď l2 or
u2 ď l1.

Configurations. Config consists of all triplets pS,B,Mq P Stack ˆ Blocks ˆMem such that
the set of allocated blocks and the locations whose contents is defined are linked as follows:

For every ℓ P Loc s.t. Mpℓq is defined, there is a block rl, uq P B s.t. ℓ P rl, uq.4

We introduce functions bB , eB : Loc Ñ Loc, parameterized by some set of blocks B P

Blocks, which return the base or end address, respectively, of the block to which a given
location belongs, i.e., given some ℓ P Loc, we set bBpℓq “ l in case there is some rl, uq P B
with ℓ P rl, uq, and bBpℓq “ 0, otherwise. Likewise for eBpℓq.

Axioms. For later use, we note that, building on the above notation, we can express
the requirements for locations to be within their associated block and for blocks to be
non-overlapping in the form of the following two axioms:

@ℓ. bBpℓq “ 0_ bBpℓq ď ℓ ă eBpℓq

@ℓ, ℓ1. p0 ă bBpℓq ă eBpℓ
1q ď eBpℓq _ 0 ă bBpℓ

1q ă eBpℓq ď eBpℓ
1qq Ñ

bBpℓq “ bBpℓ
1q ^ eBpℓq “ eBpℓ

1q

Notation. Given a (partial) function f , f ra ãÑ bs denotes the (partial) function identical to
f up to f ra ãÑ bspaq “ b. Moreover, f ra ãÑ Ks denotes the (partial) function identical to f
up to being undefined for a.

4 A Low-level Language and Its Operational Semantics

We now state a simple low-level language together with its operational semantics. The
language is close to common intermediate languages into which programs in C are compiled
by compilers such as gcc or clang. We assume that a type checker ensures that variables
of the right sizes are used, guaranteeing, in particular, that the left-hand side (LHS) and
right-hand side (RHS) of an assignment are of the same size or that the dereference operator
is only applied to locations. We do not include the operators of item access (. and ->) nor
indexing ([]) into our language as their usage can be compiled to using pointers, pointer
arithmetic, and the dereference operator (*) as indeed commonly done by compilers. Likewise,
we do not include the address-of operator (&) whose usage can be replaced by storing all
objects whose address should be derived via & into dynamically allocated memory, followed
by using pointers to such memory, as also done automatically by some compilers. Further,
we assume the sizeof and offsetof operators be resolved and transformed to constants.

We now present the statements of our low-level language together with their operational
semantics. The semantics is defined over configurations, which we introduced in the previous
section. The semantics maintains the following invariant:

4 Note that we do not require the reverse, i.e., that all locations of a block are allocated. This is because
our separation logic is set up to work with partially allocated blocks. In particular, the separating
conjunction needs to break up blocks into partial blocks. We note, however, that the semantics of our
programming language maintains the invariant that each block is always fully allocated.

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:11

For every rl, uq P B and every ℓ P rl, uq, Mpℓq is defined.

We start with rules describing various assignment statements possibly combined with
pointer dereferences either on the LHS or RHS. In the rules (and further on), we use M rℓ, ℓ1q
to denote the byte sequence MpℓqMpℓ` 1q ¨ ¨ ¨Mpℓ1 ´ 1q:

pS,B,Mq
x:“k
ÝÝÝÑ pSrx ãÑ ks, B,Mq for some value k P Val

pS,B,Mq
x:“y
ÝÝÝÑ pSrx ãÑ Spyqs, B,Mq

pS,B,Mq
x:“˚y
ÝÝÝÝÑ if bBpSpyqq “ 0 or Spyq ` sizepxq ą eBpSpyqq,

then error else pSrx ãÑ M rSpyq, Spyq ` sizepxqqs, B,M q

Note that, in the case of x :“ ˚y, one needs to read sizepxq bytes from the adress Spyq. This
is impossible if the condition Spyq ` sizepxq ą eBpSpyqq holds.

pS,B,Mq
˚x:“y
ÝÝÝÝÑ if bBpSpxqq “ 0 or Spxq ` sizepyq ą eBpSpxqq,

then error else pS,B,M rrSpxq, Spxq ` sizepyqq ãÑ Spyqsq

We continue by memory allocation. We treat 0-sized allocations as an error.5 For non-
zero-sized allocations, the allocation can always fail and return null, otherwise the successfully
allocated memory block is initialized with some arbitrary value6:

pS,B,Mq
x“mallocpzq
ÝÝÝÝÝÝÝÝÑ if Spzq “ 0 then error else either pSrx ãÑ nulls, B,Mq or

pSrx ãÑ ℓs, B Y trℓ, ℓ` Spzqqu,M rrℓ, ℓ` Spzqq ãÑ ksq for some k P ByteSpzq and ℓ ą 0
such that ℓ` Spzq ď 28N and rℓ, ℓ` Spzqq does not overlap with any rl, uq P B

The calloc function, which nullifies the allocated block, can be defined analogically to
malloc, by just changing M rrℓ, ℓ ` Spzqq ãÑ ks to M rrℓ, ℓ ` Spzqq ãÑ 0Spzqs. The realloc
function, which shrinks or enlarges a block, possibly moving it to a different memory location,
can be reduced to a sequence of other statements, and so we do not introduce it explicitly
for brevity.

The deallocation of memory is modelled by the following rule:7

pS,B,Mq
freepxq
ÝÝÝÝÝÑ if Spxq ‰ bBpSpxqq then error

else pS,BztrSpxq, eBpSpxqqqu,M rrSpxq, eBpSpxqqq ãÑ Ksq

The low-level language further contains a collection of binary and unary operations
denoted as bop and uop, respectively. The operations of adding an offset to a pointer (ptrplus)
and pointer subtraction (ptrsub) are special and handled separately. The operation ptrplus
for adding a (possibly negative) offset to a pointer requires its pointer argument to be defined,

5 The C standard says that the behaviour in this case is user-defined, the allocation can return null or a
non-null value, which, however, cannot be dereferenced. However, since such an allocation is usually
suspicious, many analysers flag it as an error/warning. We adopt the same approach, but if need be,
the rules could be changed to handle such allocations according to the standard.

6 Notice that 28N gives the largest address that can be expressed using words with the byte-width N .
7 Notice that we do not need a rule for deallocating zero-sized blocks since we do not allow such blocks to

be created.

ECOOP 2022

19:12 Low-Level Bi-Abduction

and, in accordance with the C standard, the result must be within the appropriate memory
block plus one byte (i.e., it may point just behind the end of the block).8 The operation ptrsub
for pointer subtraction is special in that it requires its pointer operands to be defined, to have
the same base, and to point inside an allocated block or just behind its end. We also support
the memcpy statement (and can simulate the memmove statement). To encode conditional
branching arising from conditional statements or loops, we introduce the assume statement
that models conditions x ’ y for ’ P t“,‰,ď,ă,ě,ąu. We allow functions without a return
value, not referring to global variables, having parameters passed by reference only, with
the names of the parameters unique to each function, and not having local variables. We
also introduce the assert statement that is similar to the assume statement, but it checks
at runtime whether the specified condition holds, and it fails if this is not the case. The
operational semantics of all these statements can be found in [22].

5 Separation Logic

We now introduce a separation logic that supports reasoning about low-level memory models
as introduced earlier. Our separation logic (SL) has the following syntax:

φ ::“ ε1 ÞÑ ε2 | ε1 ÞÑ krε2s | ε1 ÞÑ Jrε2s | φ1 ˚ φ2 | φ1 _ φ2 | lsΛpx,yqpε1, ε2q |

dlsΛpx,y,zqpε1, ε2, ε
1
1, ε

1
2q | emp | true | ε1 ’ ε2 | Dx.φ

’ ::“ “|‰|ď|ă|ě|ą ε ::“ k | x | bpεq | epεq | uop ε | ε1 bop ε2

Variables and Values. Our SL formulae are stated over the same set of variables Var and
values Val that we introduced in the definition of our memory model. In particular, the
variables x, y, z and the values k of our SL formulae are drawn from Var and Val, respectively.

Size. Variables, values, operators, and expressions in our logic are typed by their size. We
will only work with formulae where the variables and values respect the sizes expected by
the involved operations and predicates. For every expression ε, we denote by sizepεq the size
of the value to which this expression may evaluate. We remark on the choice of working
with fixed sizes: We intentionally do not permit variables of variable size because (1) such
variables are typically not supported by low-level languages and (2) variables of variable size
allow one to model strings, which would make our language vastly more powerful (allowing
one to model all kinds of string operations)9.

Points-To Predicates. The points-to predicate ε1 ÞÑ ε2 denotes that the byte sequence
ε2 is stored at the memory location ε1. Due to we are working with expressions of fixed
size, every model of ε1 ÞÑ ε2 must allocate exactly sizepε2q bytes. In addition, we introduce
two restricted cases of points-to predicates where the RHS is of parametric size: namely,
ε1 ÞÑ krε2s and ε1 ÞÑ Jrε2s that allow us to say that ε1 points to an array of ε2 bytes that
either all have the same constant value k or have any value, respectively. These predicates
allow us to, e.g., express that some block of memory is nullified, which is often crucial to

8 We are aware that this requirement is not respected in some real-life pograms, such as, e.g., the
implementation of lists in Linux. We will later mention that our approach can be relaxed to handle
such cases too.

9 We believe that extending our later presented analysis to such variables is possible (by recording the
length of the target object as another parameter of the points-to predicate), but we leave it for future
work in order not to complicate the basic approach we propose.

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:13

x y ...

ε1 ε2

Λpx, yq

y x z ...

ε2 ε1 ε11 ε12

Λpx, y, zq

Figure 2 An illustration of the meaning of the lsΛpx,yqpε1, ε2q and dlsΛpx,y,zqpε1, ε2, ε
1
1, ε

1
2q formulae.

know when analysing advanced implementations of dynamic data structures [16]. We lift the
notion of size to the RHS of these points-to predicates as follows: sizepkrysq “ sizepJrysq “ y.
In ε1 ÞÑ krε2s, we require k to be a single byte, i.e., sizepkq “ 1.

Notation. Given a formula φ, we write varpφq to denote the free variables of φ (as usual
a variable is free if it does appear within an existential quantification). Further, given an
expression ε, we write varpεq for all variables appearing in ε.

Terminology. We call formulae that do not contain the disjunction operator (_) symbolic
heaps. We will mostly work with symbolic heaps in this paper. Disjunctions of symbolic
heaps will be only used on the RHS of (some) contracts. We call formulae that do not
contain existential quantification (D) quantifier-free. Our SL contains the relational predicates
ε1 ’ ε2, which include equality and disequality; these predicates are traditionally called
pure in the separation logic literature. We follow this terminology and call any separating
conjunction of such predicates a pure formula.

List-Segment Predicates. List segments in our SL are parameterized by a segment predicate
Λpx, yq or Λpx, y, zq for singly-linked or doubly-linked lists, respectively; see Fig. 2 for an
illustration of the semantics of lsΛpx,yqpε1, ε2q and dlsΛpx,y,zqpε1, ε2, ε

1
1, ε

1
2q for Λpx, yq ” x ÞÑ y

and dlsΛpx,y,zq ” x ÞÑ z ˚ x` 8 ÞÑ y. We note that our list-segment predicates only have two
or three free variables, respectively, which prevents the logic from, e.g., describing non-global
heap objects shared by list elements. However, more parameters could be introduced in a
similar fashion to other works [2]. We have not done so here since it would complicate the
notation, and we take this issue as orthogonal to the techniques we propose.

Binary and Unary Operators. uop and bop denote some arbitrary set of binary and unary
operators, respectively. We assume this set to include at least the usual operators (`, ´, ˚,
&, |, . . .) available in low-level languages as well as a special substring operator ¨r¨, ¨q on
byte sequences where kri, jq for some k “ b0 ¨ ¨ ¨ bl´1 P Bytel and 0 ď i ď j ď l denotes the
byte sequence bi ¨ ¨ ¨ bj´1. Since we work with variables of fixed size, we basically assume a
version of each uop and bop for every possible operand size. We further remark that unary
operators uop can be used for modelling the casting to different sizes.

Semantics. We now define the semantics of our SL over SBM triplets pS,B,Mq P Config:

pS,B,Mq |ù ε1 ÞÑ ε2 iff
dompMq “ rJε1KS,B , Jε1KS,B ` sizepε2qq and M rJε1KS,B , Jε1KS,B ` sizepε2qq “ Jε2KS,B

where

JkKS,B “ k, JxKS,B “ Spxq, JbpεqKS,B “ bBpJεKS,Bq, JepεqKS,B “ eBpJεKS,Bq,

Juop εKS,B “ uoppJεKS,Bq, and Jε1 bop ε2KS,B “ Jε1KS,B bop Jε2KS,B

ECOOP 2022

19:14 Low-Level Bi-Abduction

pS,B,Mq |ù ε1 ÞÑ krε2s iff
dompMq “ rJε1KS,B , Jε1KS,B ` Jε2KS,Bq and M rJε1KS,B ` is “ k for all 0 ď i ă Jε2KS,B

pS,B,Mq |ù ε1 ÞÑ Jrε2s iff dompMq “ rJε1KS,B , Jε1KS,B ` Jε2KS,Bq

We remark on the difference between the three points-to predicates: the predicate ε1 ÞÑ ε2
fixes the exact sequence of bytes ε2 that is stored from location ε1 onwards, and the number
of bytes is known (the size of ε2); the predicate ε1 ÞÑ krε2s states that there are ε2 number
of bytes stored from location ε1 onwards (note that the number of bytes ε2 is symbolic), and
each of these bytes equals k; and the predicate ε1 ÞÑ Jrε2s works in the same way except
that the bytes stored are not fixed.

pS,B,Mq |ù φ1 ˚ φ2 iff there are some M1,M2 with M “M1 ZM2, pS,B,Miq |ù φi

pS,B,Mq |ù φ1 _ φ2 iff pS,B,Mq |ù φ1 or pS,B,Mq |ù φ2

pS,B,Mq |ù emp iff dompMq “ H pS,B,Mq |ù true always holds

pS,B,Mq |ù ε1 ’ ε2 iff dompMq “ H and Jε1KS,B ’ Jε2KS,B

We point out that pure formulae constrain the heap to be empty. This is typically not
required by separation logics that support classical (non-separating) conjunction at least on
pure sub-formulae. However, we exclude the classical conjunction in order to simplify the
presentation and hence need to constrain the heap of pure formulae to be empty.

pS,B,Mq |ù Dx.φpxq iff there is some v P Val
and a fresh variable u P Var s.t. pSru ãÑ vs, B,Mq |ù φpuq

pS,B,Mq |ù lsΛpx,yqpε1, ε2q iff pS,B,Mq |ù ε1 “ ε2 or
pS,B,Mq |ù ε1 ‰ ε2 ˚ true and there is some ℓ P Loc

and a fresh variable u P Var s.t. pSru ãÑ ℓs, B,Mq |ù Λpε1, uq ˚ lsΛpx,yqpu, ε2q

pS,B,Mq |ù dlsΛpx,y,zqpε1, ε2, ε
1
1, ε

1
2q iff pS,B,Mq |ù ε1 “ ε12 ˚ ε2 “ ε11 or

pS,B,Mq |ù ε1 ‰ ε12 ˚ ε2 ‰ ε11 ˚ true and there is some ℓ P Loc and a fresh variable
u P Var such that pSru ãÑ ℓs, B,Mq |ù Λpε1, u, ε2q ˚ dlsΛpx,y,zqpu, ε1, ε

1
1, ε

1
2q

Satisfiability and Entailment. We say that an SL formula φ is satisfiable iff there is a model
pS,B,Mq such that pS,B,Mq |ù φ. We say that an SL formula φ1 entails an SL formula
φ2, denoted φ1 |ù φ2, iff we have that pS,B,Mq |ù φ2 for every model pS,B,Mq such that
pS,B,Mq |ù φ1.

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:15

Restrictions on the Segment Predicates. From now on, we put further restrictions on the
segment predicates Λpx, yq and Λpx, y, zq: (1) Λ needs to be of the shape Dx1, . . . , xk.φ for
some quantifier-free symbolic heap φ. Intuitively, this condition is required since quantifier-
free symbolic heaps are the formulae on which the symbolic execution described in Section 6
is based on and the existential quantification allows to hide some nested data. (2) Λ needs
to be block-closed in the sense defined below.

Block-closedness. A formula φ is block-closed iff, for all pS,B,Mq |ù φ and ℓ P dompMq,
we have that rbpℓq, epℓqq Ď dompMq. Intuitively, block-closedness ensures that all points-to
assertions in a formula add up to whole blocks. We require block-closedness in order to
ensure that list-segments correspond to our intuition and connect different memory blocks
(i.e., we exclude models where multiple or all nodes of list-segments belong to the same
block). Technically, the requirement of block-closedness makes it easier to formulate rules for
materialisation of list-segment nodes in the abduction procedure and for entailment checking.
We leave lifting the restriction of block-closedness for future work. A sufficient condition for
block-closedness, which is easy to check, is that all points-to assertions in φ can be organized
in groups εi ÞÑ Υi, for 1 ď i ď n, where Υ represents either y, krys, or Jrys, such that
εi “ εi´1 ` sizepΥiq for all 1 ă i ď n, and φ implies that epε1q ´ bpε1q “

ř

i“1..n sizepΥiq.

6 Contracts of Functions and Their Generation

Our analysis is based on generating contracts of functions along the call tree, starting from
its leaves. The contracts summarize the semantics of the functions under analysis. We may
also compute multiple contracts for the same function where each contract provides a valid
summary of the function; the contracts might, however, differ in the preconditions under
which they apply.

6.1 Contracts of Functions
We assume a set of variables Var “ PVar ZLVar that is partitioned into two disjoint infinite
set of program variables PVar and logical variables LVar (also called ghost variables). For
functions fpx1, . . . , xnq with parameters xi, we always require x1, . . . , xn P PVar (we assume
that x1, . . . , xn are the only variables occurring in the body of f). To summarize the semantics
of a function fpx1, . . . , xnq, we use (sets of) contracts of the form tP ufpx1, . . . , xnqtQu where

the pre-condition P is a quantifier-free symbolic heap, and
the post-condition Q is a disjunction of formulas of the form DUQ.pQfree ˚ Qeqq such
that Qfree is a quantifier-free symbolic heap with varpQfreeq Ď LVar , Qeq is the formula
x1 “ ε1 ˚ ¨ ¨ ¨ ˚ xn “ εn for some expressions εi with varpεiq Ď LVar , and UQ “

pvarpQfree ˚ Qeqq X LVarqzvarpP q. Note that every disjunct of the post-condition Q

describes the heap by a formula over the logical variables (the formula Qfree) and fixes
the values of the program variables in terms of expressions over the logical variables (the
formula Qeq) where all logical variables that do not appear in the pre-condition P are
existentially quantified (on the other hand, those logical variables that appear in the
pre-condition may be implicitly considered as universally quantified).
We call a contract conjunctive if the post-condition Q ” Q1 _ ¨ ¨ ¨ _Ql consists of a single
disjunct (i.e., l “ 1), and disjunctive otherwise.

Soundness of contracts. We will now state what it means for a contract to be sound. As
usual we stipulate that configurations satisfying the pre-condition lead to configurations
satisfying the post-condition. In addition, we also require that we can always add a frame

ECOOP 2022

19:16 Low-Level Bi-Abduction

to the pre-/post-condition, i.e., a formula describing a part of the heap untouched by
the function10. Here, a frame F is any symbolic heap with varpF q Ď LVar . A contract
tP ufpx1, . . . , xnqtQu is called sound iff, for all frames F , all triples pS,B,Mq such that
pS,B,Mq |ù F ˚ P , and all executions of fpx1, . . . , xnq that start from pS,B,Mq and end in
some configuration pS1, B1,M 1q11, it holds that pS1, B1,M 1q |ù F ˚Q.

6.2 Contracts for Basic Statements

We give below contracts for the basic statements of our programming language stated as
functions (basic statements may be viewed as special built-in functions). For simplicity (and
w.l.o.g.), we assume that it never happens that the same variable appears both at the LHS
and RHS of an assignment12. Recall that emp is implicit in all otherwise pure constraints
(and so we do not need to repeat it):

Function assignpx, yq with the body x :“ y:

ty “ Y u assignpx, yq tx “ Y ˚ y “ Y u.

Function constkpxq with the body x :“ k:

tempu constkpxq tx “ ku.

Function loadpx, yq with the body x :“ ˚y:

ty “ Y ˚ Y ÞÑ zu loadpx, yq tx “ z ˚ y “ Y ˚ Y ÞÑ zu

with Qfree ” Y ÞÑ z and Qeq ” x “ z ˚ y “ Y .
Function storepx, yq with the body ˚x :“ y:

tx “ X ˚ y “ Y ˚ X ÞÑ zu storepx, yq tx “ X ˚ y “ Y ˚ X ÞÑ Y u

with Qfree ” X ÞÑ Y and Qeq ” x “ X ˚ y “ Y .
Function mallocpx, yq that either succeeds or fails to allocate memory through x :“
mallocpyq:

ty “ Y u mallocpx, yq tx “ null ˚ y “ Y _ Du. x “ u ˚ νpu, Y q ˚ y “ Y u

where νpu, Y q “ u ÞÑ JrY s ˚ bpuq “ u ˚ epuq “ u` Y . Note that either Qfree ” νpu, Y q

and Qeq ” x “ u ˚ y “ Y or Qfree ” emp and Qeq ” x “ null ˚ y “ Y . A very similar
contract can be used for calloc, just with u ÞÑ JrY s changed to u ÞÑ 0rY s. We remark
that the contracts for malloc and calloc are the only disjunctive contracts among the
contracts for the basic statements of our programming language.
Function freepxq called with the null argument:

tx “ X ˚ X “ nullu freepxq tx “ X ˚ X “ nullu

Function freepxq called over a non-null argument:

tx “ X ˚ X ÞÑ Jrys ˚ bpXq “ X ˚ epXq “ X ` yu freepxq tx “ Xu

10 That is, we directly incorporate the well-known frame rule from the separation-logic literature into
our notion of soundness. We choose to do so for economy of exposition and for making the paper
self-contained. As an alternative one could derive the validity of the frame rule from the fact that all
contracts of the basic statements, as stated in Section 6.2, are local actions in the sense of [8] (which is
equivalent to Lemma 1 stated in this paper).

11 Note that dompS1
q “ dompSq and that we have S1

pxq “ Spxq for all x P LVar because logical variables
do not occur in the program and hence are never updated.

12We may assume this because assignments such as x :“ ˚x can always be rewritten to the sequence
y :“ ˚x;x :“ y (at the cost of introducing a fresh variable y).

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:17

Note that a block to be freed may be split into multiple fields at the time of freeing. We,
however, do not need to deal with this issue here since the later presented bi-abduction
rules will split the LHS of the contract of free such that it can match the fragmented
block.
Functions assignboppx, y, zq with the body x :“ y bop z for binary operators bop (and
likewise for unary operators uop):

ty “ Y ˚ z “ Zu x :“ y bop z tx “ Y bopZ ˚ y “ Y ˚ z “ Zu

Function ptrpluspx, y, zq with the body x :“ y ptrplus z for the case when the result is
within the block of the pointer to which an offset is added:

ty “ Y ˚ z “ Z ˚ φY,Zu x :“ y ptrplus z tx “ Y ` Z ˚ y “ Y ˚ z “ Z ˚ φY,Zu

for φY,Z ” bpY q ‰ 0 ˚ bpY q “ bpY ` Zq ˚ epY q “ epY ` Zq.
Function ptrpluspx, y, zq with the body x :“ y ptrplus z for the case when the result points
one byte past the block of the pointer to which an offset is added:

ty “ Y ˚ z “ Z ˚ φY,Zu x :“ y ptrplus z tx “ Y ` Z ˚ y “ Y ˚ z “ Z ˚ φY,Zu

for φY,Z ” bpY q ‰ 0 ˚ Y ` Z “ epY q.
Function ptrsubpx, y, zq with the body x :“ y ptrsub z:

ty “ Y ˚ z “ Z ˚ φY,Zu x :“ y ptrsub z tx “ Y ´ Z ˚ y “ Y ˚ z “ Zu

for φY,Z ” bpY q ‰ 0 ˚ bpY q ď Z ď epY q.
Function assume’py, zq with the body assumepy ’ zq:

ty “ Y ˚ z “ Zu assumepy ’ zq ty “ Y ˚ z “ Z ˚ y ’ zu

Function assert’py, zq with the body assertpy ’ zq:

ty “ Y ˚ z “ Z ˚ y ’ zu assertpy ’ zq ty “ Y ˚ z “ Z ˚ y ’ zu

Finally, the contract for memcpy is more complex, and we defer it to [22] for space reasons.
We now state the soundness of the contracts for the basic statements of our programming
language:

▶ Lemma 1. Let stmt be a basic statement and let tP u fpx1, . . . , xnq tQu be a contract for
stmt as stated above. Then, the contract is sound, i.e., for all frames F , all configurations
pS,B,Mq such that pS,B,Mq |ù F ˚ P , and all executions of fpx1, . . . , xnq that start from
pS,B,Mq and end in some configuration pS1, B1,M 1q, it holds that pS1, B1,M 1q |ù F ˚Q.

Proof. Direct from the semantics of our programming language as stated in Section 4. ◀

6.3 Contract Generation
We now sketch the generation of contracts for an arbitrary user-defined function fpx1, . . . , xnq.
Our analysis proceeds along the call tree, starting from its leaves. Hence, we can assume to
already have computed contracts for nested function calls. (Recall that, in this paper, we limit
ourselves to non-recursive functions.) We derive contracts by (forward) symbolic execution.
The symbolic execution starts at the beginning of f and maintains a pair of formulae P
and Q, representing the so-far computed part of the pre-condition of the function f and
the current symbolic state. The symbolic execution will guarantee that configurations that
satisfy P lead to configurations satisfying Q after executing the so-far analysed statements.
P and Q will change throughout the symbolic execution because we keep restricting the

ECOOP 2022

19:18 Low-Level Bi-Abduction

precondition P and advancing the symbolic state Q. The symbolic execution is set up such
that the program variables x1, . . . , xn may be updated, while all other variables will never
be modified (but, of course, fresh variables may be introduced and assigned at any time).
The symbolic execution is initialised by introducing fresh logical variables X1, . . . , Xn and
setting P ” Q ” x1 “ X1 ˚ ¨ ¨ ¨ ˚ xn “ Xn. In each step, the symbolic execution needs to
solve a bi-abduction problem in order to advance the symbolic state Q with regard to the
contract of a function call or a basic statement. The bi-abduction procedure might discover
that the current symbolic state Q does not suffice to safely call the function, in which case
either a strengthening of the precondition P is returned or the procedure fails. We describe
our procedure for solving the abduction problem (the procedure for discovering missing
pre-conditions) in the next section, and refer the reader to our technical report [22] for the full
bi-abduction procedure. In order to derive sound contracts, we follow the two-round analysis
approach of [7]: The first round (called PreGen in [7]) infers a set of pre-/post-condition
pairs pP,Qq, but there is no guarantee about the soundness of the inferred pP,Qq. For
each pre-/post-condition pair pP,Qq computed in the first round, the second round (called
PostGen in [7]) discards the post-condition Q and re-starts the symbolic execution from the
pre-condition P not allowing the strengthening of the pre-condition throughout the symbolic
execution, which either fails or results in a set of pre-/post-condition pairs pP,Q1q, . . . , pP,Qlq.
In the latter case, we return pP,Q1 _ ¨ ¨ ¨ _Qlq, which is guaranteed to be a sound contract.

We refer an interested reader to our technical report [22] for the details on how we
implement the two-round analysis of [7] and for accompanying examples.

7 Bi-Abduction Procedure

We now state our rules for computing a solution to the abduction problem. In the below
rules, we will use the notation φ ˚ rM s Ź ψ to denote that we are deriving the solution M to
the abduction problem φ ˚ r?s |ù ψ. The rules are to be applied in the stated order.13

We start with a rule allowing us to learn missing pure constraints.

learn-pure
φ ˚ π ˚ rM s Ź ψ

φ ˚ rπ ˚M s Ź ψ ˚ π
π pure

The match rule presented below allows one to match points-to predicates from the LHS
and RHS that have the same source location (ε “ ε1) and points-to fields ζ, ζ 1 of the same
size. Then we learn that the target fields are the same too. We note here that this rule is
as a special case of the split-pt-pt-right rule presented further on, but we show it here
as an easy case to start from. We discharge entailment checks of the form φ1 |ù φ2 ˚ true

where φ2 is a pure formula (e.g. ε “ ε1) by checking unsatisfiability of the formula ψ1 ^␣ψ2
where ψi is a translation of the SL formula φi to bitvector logic. The translation procedure
is sketched in our technical report [22].

match
φ ˚ ζ “ ζ 1 ˚ rM s Ź ψ

φ ˚ ε ÞÑ ζ ˚ rζ “ ζ 1 ˚M s Ź ψ ˚ ε1 ÞÑ ζ 1
sizepζq “ sizepζ 1

q and φ |ù ε “ ε1
˚ true

13 As for non-determinism within single rules, which can sometimes be applied in multiple ways, our
implementation currently uses the first applicable option (with backtracking to the other options only in
case that the first option turns out to result in an unsatisfiable abduction strategy). A better strategy
is an open question for future research.

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:19

offsets

0

...

...

bpεq

ε

ε` l

...

...

bpε1q

ε1

ζ

ζ 1r0, kq

ζ 1rk, k ` lq

ζ 1rk ` l, l1q

ζ 1

z

l

k

Figure 3 An illustration of the split-pt-pt-right rule where z “ l1 ´ k ´ l.

offsets

0

...

...

bpεq

ε

ε` l

...

...

bpε1q

ε1

ζ

mrε´ ε1s

mrls

mrzs

mrκs

Figure 4 An illustration of the split-pt-bl-right rule where z “ κ´ pε´ ε1
q ´ l.

As illustrated in Fig. 3, the next presented split-pt-pt-right rule allows one to deal
with pointers ε, ε1 to fields ζ, ζ 1 that lie at possibly different addresses but within blocks of
the same base address. Moreover, the RHS target field ζ 1 can be larger. In this case, the
field ζ 1 is split to three byte sequences ζ 1r0, kq, ζ 1rk, k ` lq, and ζ 1rk ` l, l1q, some of which
can be empty, and the middle byte sequence is matched with the LHS target field ζ. (We
recall that kri, jq denotes the substring of k that starts at index i and ends at index j.)

split-pt-pt-right
φ ˚ ζ “ ζ 1rk, k ` lq ˚ rM s Ź ψ ˚ ε1 ÞÑ ζ 1r0, kq ˚ pε` lq ÞÑ ζ 1rk ` l, l1q

φ ˚ ε ÞÑ ζ ˚ rζ “ ζ 1rk, k ` lq ˚M s Ź ψ ˚ ε1 ÞÑ ζ 1
C

In the above rule, the condition C requires that there are some k, l, l1 P N with φ |ù bpεq “

bpε1q ˚ ε “ ε1 ` k ˚ true, sizepζq “ l, sizepζ 1q “ l1, and l ` k ď l1. We note that, in the
above formulation of the rule split-pt-pt-left, we assume 0 ă k and k ` l ă l1 in order
to avoid cluttering the rule by additional case distinctions; in the case of 0 “ k or k ` l “ l1,
however, we need to remove ε1 ÞÑ ζ 1r0, kq or pε` lq ÞÑ ζ 1rk` l, l1q, respectively, from the RHS
of the premise of the rule. There is a symmetric rule split-pt-pt-left for the LHS.

The split-pt-bl-right rule presented below and illustrated in Fig. 4 is an analogy of
the rule split-pt-pt-right presented above, but, this time, with the RHS field, which is
being split, of non-constant size. The rule covers both types of such fields that we allow:
sequences of bytes of undefined values (then m “ J in the rule) or sequences of the same
byte (then m P Byte).

split-pt-bl-right
φ ˚ χ ˚ rM s Ź ψ ˚ ε1 ÞÑ mrε´ ε1s ˚ pε` lq ÞÑ mrzs ˚K

φ ˚ ε ÞÑ ζ ˚ rχ ˚M s Ź ψ ˚ ε1 ÞÑ mrκs
C

ECOOP 2022

19:20 Low-Level Bi-Abduction

Above, we require that m “ J and χ ” emp, or m P Byte and χ ” ζ “ ml. Further,
sizepζq “ l, C requires that φ |ù bpεq “ bpε1q ˚ ε1 ď ε ˚ ε ` l ď ε1 ` κ ˚ true, z is some
fresh variable with sizepzq “ N , and K ” z “ κ ´ pε ´ ε1q ´ l. There is a symmetric rule
split-pt-bl-left for the LHS.

We now present an analogy of the above rule for the case when we need to split a field of
constant size that appears on the RHS. In order to be able to split the RHS field we will also
require the LHS field to be of constant size.

split-bl-pt-right
φ ˚ χ ˚ rM s Ź ψ ˚ ε1 ÞÑ ζ 1r0, kq ˚ pε` lq ÞÑ ζ 1rk ` l, l1q

φ ˚ ε ÞÑ mrκs ˚ rχ ˚M s Ź ψ ˚ ε1 ÞÑ ζ 1
C

In the above rule, the condition C requires that there are some k, l, l1 P N with φ |ù κ “

l ˚ true, φ |ù bpεq “ bpε1q ˚ ε “ ε1 ` k ˚ true, sizepζ 1q “ l1, and k ` l ď l1. In the rule,
either m “ J and χ ” emp, or m P Byte and χ ” ζ 1rk, k ` lq “ ml. There is a symmetric
rule split-bl-pt-left for the LHS.

We are finally getting to the split-bl-bl-right rule that matches two fields that are
both of non-constant sizes while splitting the RHS field if need be.

split-bl-bl-right
φ ˚ rM s Ź ψ ˚ ε1 ÞÑ m1rε´ ε1s ˚ ε` κ ÞÑ m1rzs ˚K

φ ˚ ε ÞÑ mrκs ˚ rM s Ź ψ ˚ ε1 ÞÑ m1rκ1s
C

In the rule, either m1 “ J or m “ m1. Further, C is the condition that requires φ |ù bpεq “

bpε1q ˚ ε1 ď ε ˚ ε` κ ď ε1 ` κ1 ˚ true and K ” z “ κ1 ´ pε´ ε1q ´ κ. As before, there is
also a symmetric rule split-bl-bl-left for splitting on the LHS.

Next, we present a rule that allows one to match a points-to predicate on the LHS against
a singly-linked list segment on the RHS. In fact, the rule does not directly perform the
matching, but it facilitates it by materialising the first cell out of the list segment. The
matching itself (possibly combined with splitting) is then performed by the above rules.
We expect that the cells of the list segment are described using a formula of the form
Λpx, yq ” Du1, . . . , uk.λpx, y, u1, . . . , ukq.

slseg-pt-ls-right
φ ˚ ε ÞÑ ζ ˚ rM s Ź ψ ˚ λrε1{x, z{y, z1{u1, . . . , zk{uks ˚ lsΛpx,yqpz, ζ

1q

φ ˚ ε ÞÑ ζ ˚ rM s Ź ψ ˚ lsΛpx,yqpε
1, ζ 1q

C

Above, C is the condition that φ |ù bpεq “ bpε1q ˚ true and z, u1, . . . , uk are some fresh
variables.

We next present a version of the above rule for the case of a list segment on the LHS.
Note that, in this case, we must require the list segment be non-empty. In the rule, C is the
condition that φ |ù bpεq “ bpε1q ˚ ε ‰ ζ ˚ true and z, u1, . . . , uk are some fresh variables.

slseg-pt-ls-left
φ ˚ λrε{x, z{y, z1{u1, . . . , zk{uks ˚ lsΛpx,yqpz, ζq ˚ rM s Ź ψ ˚ ε1 ÞÑ ζ 1

φ ˚ lsΛpx,yqpε, ζq ˚ rM s Ź ψ ˚ ε1 ÞÑ ζ 1
C

The following rule allows one to remove from the LHS a list segment that forms an
initial part of a list segment that appears on the RHS. The condition C requires that
φ |ù ε “ ε1 ˚ true and that Λpx, yq |ù Λ1px, yq14.

14 We note that this kind of entailment query cannot be discharged in the way we sketched above for the
case when the RHS of the entailment is a pure formula (intuitively, one would need some negation over
SL). However, such queries can be discharged by a slight modification of the bi-abduction procedure
presented in this section – for details see our technical report [22].

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:21

slseg-ls-ls
φ ˚ rM s Ź ψ ˚ lsΛ1px,yqpζ, ζ

1q

φ ˚ lsΛpx,yqpε, ζq ˚ rM s Ź ψ ˚ lsΛ1px,yqpε
1, ζ 1q

C

The further rule allows one to remove a possibly empty list segment from the RHS. A
corresponding rule for list segments of the LHS is only needed for entailment checking
(cf. [22]).

slseg-remove-right
φ ˚ rM s Ź ψ

φ ˚ rM s Ź ψ ˚ lsΛpx,yqpε, ζq
φ |ù ε “ ζ ˚ true

We have similar rules for doubly-linked lists as the ones stated above, which we omit here
for ease of exposition (we point out that dllseg-pt-ls-left and dllseg-pt-ls-right
come in two versions because a doubly-linked list can be unrolled from the left as well as
from the right).

Next, we state a rule that allows one to finish the abduction process.

learn-finish
φ ˚ rψs Ź ψ ˚ true

φ ˚ ψ is satisfiable

The side condition “φ ˚ ψ is satisfiable” is intended to ensure that the abduction solution
ψ does not lead to useless contracts: a contract tφ ˚ ψu fp¨ ¨ ¨ q t¨ ¨ ¨ u with φ ˚ ψ unsatisfiable
does not have a configuration that satisfies its pre-condition! Unfortunately, we only have an
approximate procedure for checking the satisfiability of symbolic heaps (see our technical
report [22]). However, contracts with an unsatisfiable pre-condition are still sound. Hence,
we employ the best-effort strategy of using our approximate procedure to prevent as many
useless abduction solutions as possible in order to minimize the number of inferred contracts.

Finally, we state two rules of “last resort” that involve quite some guessing and hence can
mislead the abduction process and make it fail (or lead to its exponential explosion when all
possible variants of applying the rules are attempted). Intuitively, they allow one to claim
equal fields whose equality is not known, but whose disequality is not known either (moreover,
in the weaker case, one also checks that it can be shown that the fields lie within the same
memory block).

alias-weak
φ ˚ χpεq ˚ ε “ ε1 ˚ rM s Ź ψ ˚ χ1pε1q

φ ˚ χpεq ˚ rε “ ε1 ˚M s Ź ψ ˚ χ1pε1q
C1

alias-strong
φ ˚ χpεq ˚ ε “ ε1 ˚ rM s Ź ψ ˚ χ1pε1q

φ ˚ χpεq ˚ rε “ ε1 ˚M s Ź ψ ˚ χ1pε1q
C2

In the rules, χpxq and χ1pxq are any predicates of the form x ÞÑ _, ls_px,_q, dls_px,_,_,_q,
or dls_p_,_, x,_q. Further, C1 is the condition that φ |ù bpεq “ bpε1q ˚ true and that not
φ |ù ε ‰ ε1 ˚ true. On the other hand, C2 requires that not φ |ù ε ‰ ε1 ˚ true only.

The alias-weak/strong rules are used in the following situations:
There is no other applicable rule. Instead of failing due to the impossibility of applying
other rules, we try to introduce an alias (if possible, by the alias-weak rule) and continue
with the abduction using the match, split, or slseg/dllseg rules.
We wish to infer multiple abduction solutions. In such a case, whenever learn-finish is
applicable, we use it to derive one abduction solution, record it, revert learn-finish, and
then try to derive other solutions by applying an alias rule, followed by applying the
other rules again.

ECOOP 2022

19:22 Low-Level Bi-Abduction

We now state the correctness of the abduction procedure:

▶ Theorem 2. Let M be any solution computed by the abduction rules, i.e., we have
φ ˚ rM s Ź ψ. Then, φ ˚M |ù ψ.

Proof. We prove the property by induction on the number of rule applications. We observe
that the claim holds for the axiom, i.e., the rule learn-finish). We further note that, for
all non-axiomatic rules of the shape

rule-name
φ1 ˚ rM 1s Ź ψ1

φ ˚ rM s Ź ψ
C,

we have that φ1 ˚M 1 |ù ψ1 implies φ ˚M |ù ψ (under the condition C). Hence, the claim
holds. ◀

Moreover, we observe that the antiframe M is guaranteed to be a quantifier-free symbolic
heap in case the input φ to the abduction procedure is a quantifier-free symbolic heap (the
abduction rules maintain this shape of φ).

▶ Example 3. We consider the abduction problem

X ÞÑ a ˚X ` 8 ÞÑ z ˚ r?s |ù Y ÞÑ u ˚ Y ` 8 ÞÑ w ˚ u ÞÑ v ˚X “ Y ˚ true.

Its solution by our abduction rules looks as follows:

learn-pure
match

match
learn-finish

X “ Y ˚ a “ u ˚ z “ w ˚ ru ÞÑ vs Ź u ÞÑ v ˚ true

X ` 8 ÞÑ z ˚ X “ Y ˚ a “ u ˚ rz “ w ˚ u ÞÑ vs Ź Y ` 8 ÞÑ w ˚ u ÞÑ v ˚ true

X ÞÑ a ˚ X ` 8 ÞÑ z ˚ X “ Y ˚ ra “ u ˚ z “ w ˚ u ÞÑ vs Ź Y ÞÑ u ˚ Y ` 8 ÞÑ w ˚ u ÞÑ v ˚ true

X ÞÑ a ˚ X ` 8 ÞÑ z ˚ rX “ Y ˚ a “ u ˚ z “ w ˚ u ÞÑ vs Ź Y ÞÑ u ˚ Y ` 8 ÞÑ w ˚ u ÞÑ v ˚ X “ Y ˚ true

8 Implementation and Experimental Evaluation

We have implemented the proposed techniques in a prototype tool called Broom. Its source
code is publicly available15 under GNU GPLv3. The tool itself is implemented in OCaml.
The SMT queries produced by the tool are answered using the Z3 solver [12]. The front-end
of Broom is based on Code Listener [15], a framework providing access to the intermediate
code of a compiler (as, e.g., gcc).

Our approach requires one to answer entailment queries φ1 |ù φ2 at several points. If φ2
is pure, we translate φ1 ^ ␣φ2 from SL into the bitvector theory and ask the underlying
SMT solver. However, this cannot be easily done when φ2 contains a spatial predicate
(our fragment of SL is not closed under negation). While it might be possible to develop a
general (sound and complete) entailment procedure, e.g., extending [26], we decided to use
an approximation based on similar principles as our bi-abduction procedure. We give details
of the translation of SL to the bitvector theory as well as of our more general approximated
entailment procedure in our technical report [22].

We note that, in the implementation of Broom, we relaxed the requirement put on the
ptrplus operation of our minilanguage (Sec. 4), which requires that the pointer resulting
from the expression y ` z stays within the allocated block – i.e., bpSBpyqq ď SBpyq `

SBpzq ď epSBpyqq. According to the C standard, the relaxation of this condition leads to

15 https://pajda.fit.vutbr.cz/rogalew/broom

https://pajda.fit.vutbr.cz/rogalew/broom

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:23

undefined behaviour, but it is often used in low-level system code as, e.g., in the Linux list
implementation. In our implementation, we allow pointers to have values outside of the
allocated blocks, but we explicitly track their provenance (i.e., the basis wrt which they are
defined) using the b predicate.

Broom comes with a number of parameters that can be set for the analysis, with the
most important being the following ones:

Solver timeouts: Timeouts of the underlying solver can be set separately for symbolic
execution, widening, and formula simplification. Using a timeout, one can balance between
speed and precision. With a lower timeout, the analysis is faster, but some functions
need not be fully analysed due to an abduction or widening failure. The default timeouts
used in our later presented experiments are 2000ms for the symbolic execution, 200ms for
widening, and 100ms for formula simplification.
Number of loop unfoldings: A limit on the number of loop unfoldings is used to stop the
loop analysis when a fixpoint is not computed within a given number of loop iterations.
Then, either no contract or partial contracts are returned. The default value used in our
experiments is 5.
Abduction strategy: The abduction strategy can be set as follows: In the standard
configuration, it follows the order of rules presented in Sec. 7. The tool also supports
an alternative strategy where the alias-weak/strong rules are used to derive multiple
abduction solutions as discussed in Sect. 7. This may lead to an exponential blow-up in
the number of contracts for particular functions (a lot of them useless) together with a
blowup of the running time. On the other hand, this strategy allows us to fully verify some
of our most complicated code fragments (namely, the intrusive lists discussed below). As
a part of our future research, we would like to study some heuristically-driven application
of this strategy that would not explore so many useless contracts.

Finally, we would like to stress that Broom is now in a stage of a very early prototype,
intended mainly to illustrate the theoretical potential of our technique, with huge space
for performance optimizations. As a primary source of possible optimisations, we see the
way how Broom interacts with the SMT solver (the cost of SMT queries represents a very
significant part of the cost of the entire analysis). One way that we see as highly promising
for optimisations in this direction is to use static pre-evaluation of some SMT queries – if one
can statically evaluate a query, an expensive solver call can be avoided. This can significantly
limit the number of SMT queries and improve the running time. We have already partially
implemented some static pre-evaluation for the φ |ù ε “ ε1 ˚ true queries within match/split
abduction rules, which alone reduced the running time by 25 % at some examples. Further
optimization possibilities then lie, e.g., in incremental solving, caching solver results, and/or
introducing heuristics to decrease the amount of nondeterminism in the abduction rules. As
for the last mentioned possibility, especially in the case of the match/split rules there can
be several candidate predicates ε ÞÑ ζ on the LHS and several candidate predicates ε1 ÞÑ ζ 1

on the RHS, which one needs to consider, and it would be very helpful to have some guidance
in this process.

8.1 Experiments
We evaluate our tool Broom on a set of experiments in which we analyse various fragments of
list manipulating code. Since Broom is in a highly prototypical stage, we do not venture into
analysing large code bases. Instead, we concentrate on shorter but complex code highlighting
what our approach implemented in the tool can handle (and what other tools do typically

ECOOP 2022

19:24 Low-Level Bi-Abduction

not manage).
The considered code was pre-processed in the following ways: (1) All appearances of the so-

far unsupported constructions &var and var.next were replaced by p_var and p_var->next,
respectively, where p_var = alloca(sizeof(*p_var)). (2) We replaced for loops with
integer bounds by non-deterministic while loops because our abstraction and entailment
are currently very limited when working with integers. Both of the above is planned to
be resolved within our future work. Further, we analysed all the code assuming that heap
allocation always succeeds.

The experiments were run on a machine with an Intel i7-4770 processor with 32 GiB of
memory. The current implementation of Broom uses a single core only. We compare our
results with those of Infer v1.1.016 and Gililan (PLDI’20 version)17, which are the only tools
we are aware of that can analyse at least some of the code we are interested in. We note
that Infer was running with debug information enabled (using the command infer run -
-debug) as we wanted to manually check the obtained contracts. The debug option may
increase the running time of Infer, but, as one can see in Table 1, the running times are not
an issue for Infer.

Table 1 presents a comparison of the results obtained using Broom, Infer, and Gillian on
our collection of list-manipulating code fragments.18 To get the results, Broom was used with
its standard abduction strategy where the alias-weak/alias-strong rules are used only if
no other rule is applicable. For each of the cases, the table gives first the total number of
functions that the benchmark consists of. Next to it, separately for Broom, Infer, and Gillian,
we give the time the tools took for the analysis. Further, we list the number of functions for
which the respective tool produced a non-trivial contract. There are up to three numbers in
the form a{b{c (b or c can be omitted), representing the number of functions for which the
respective tool computes (a) complete contracts, (b) sound but only partial contracts, and
(c) error contracts – i.e., preconditions under which a given function is bound to fail, which
are provided by Gillian only. Finally, we also provide a remark whether the tool reported
some error (or whether it itself hit some internal error). The expected and really obtained
analysis results are encoded as follows (including internal errors of an analyser): OK= no
error found19, DF= double free, ML= memory leak, IE= internal error, PE= internal parsing
error.

We now discuss the individual cases in more detail – when doing so, we concentrate on
comparing the results of Broom with those of Infer that can get somewhat closer to the
results of Broom:

circ-DLL: This example deals with a simple implementation of circular doubly-linked
lists (whose part is, in fact, used as the running example in Fig. 1). The code includes
functions for inserting the first element, inserting another element after an existing one,
and for removing elements. Apart from that there is a higher-level function that inserts
the first element, the second element, and them removes one of them.20 The code contains

16 https://github.com/facebook/infer/releases/tag/v1.1.0
17 https://github.com/GillianPlatform/Gillian/releases/tag/PLDI20
18 All the code is available together with our tool.
19 We note that, as far as our experience reaches, Gillian produces its error contracts whenever there is a

risk of a null-pointer dereference. In many cases, e.g., in the Linux list library, the error summaries
provide a correct result, which, however, does not take into account the fact that the library is designed
such that the appropriate functions are never called with a null argument. At the same time, Gillian
may miss real, higher-level errors present in the code, which were those we expected to be reported. In
such cases, we say in the table in the column for obtained results that the (expected) error was not
found.

20 This function can be viewed as an analysis harness while we were stressing that our analysis does not

https://github.com/facebook/infer/releases/tag/v1.1.0
https://github.com/GillianPlatform/Gillian/releases/tag/PLDI20

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:25

Table 1 Experiments with the standard abduction strategy of Broom and a comparison with
results obtained from Infer and Gillian.

Name Exp. Fncs Broom Infer Gillian
result total T Fncs Res T Fncs Res T Fncs Res

[s] contr [s] contr [s] contr
circ-DLL ML 4 6 4 ML 0.5 1/1 IE 1.2 1/0/2 OK
circ-DLL-err DF 4 6 4 DF 0.5 1/1 IE 1.2 1/0/2 OK
circ-DLL-embedded OK 4 9 4 OK 0.5 1/2 IE 0.6 0 PE
Linux-list-1 ML 11 56 10 ML 1.5 2/3 OK 0.6 0 PE
Linux-list-2 OK 11 42 11 OK 0.7 1/6 IE 0.6 0 PE
Linux-list-2-err ML 11 28 11 ML 0.6 1/6 IE 0.6 0 PE
Linux-list-all OK 23 267 21/2 OK 1.0 7/15 IE 44 8/0/9 OK
intrusive-list OK 15 99 10/5 OK 0.7 4/3 OK 0.6 0 PE
intrusive-list-min OK 9 45 6/2 OK 0.7 1/3 IE 0.6 0 PE
intrusive-list-smoke OK 20 133 10/5 OK 0.9 4/3 OK 0.6 0 PE

no pointer arithmetic nor any other advanced features. It is intended to show that even
in such a case our abduction rules restated wrt [6, 7] can bring some advantage. Namely,
this is a consequence of that our use of the per-field separation allows us to cover more
shapes of the data structures within a single contract. Indeed, as discussed already in
Sect. 2, it produces a single contract for insertion into a cyclic list with one element and
with more elements. Infer cannot use the same reasoning and since it primarily favours
scalability, it will come with a contract for inserting into lists with at least two elements.
Consequently, it then fails to analyse the top level function. As for the memory leak
reported by Broom, it is a real error caused by that one of the introduced elements is not
deleted.
circ-DLL-err is a variation on circ-DLL into which we introduced a double-free error.
circ-DLL-embedded is another variation on circ-DLL in which the list implementation
from circ-DLL is used as a basis of a simple intrusive list in which the list structure with
the linking fields from circ-DLL is nested into a larger data structure.
Linux-list-1 is our first experiment with intrusive lists in the form they are used in the
Linux kernel (for some more impression about Linux lists, see Fig. 5). This particular
code comes in particular from the benchmark suite of the Predator analyser [16].21 The
code contains multiple different functions for initialisation of the lists, for inserting into
it, and for traversing the lists. The top-level code that is present then creates a circular
Linux list nested into another circular Linux list. As can be from Fig. 5, the code involves
pointer arithmetic (even in a form not supported by the C standard), and the use of
nested structures leads to an application of our block splitting rules. The only function
that Broom fails to handle is the function for traversing the entire list – the reason is
that our so-far quite simple implementation of list abstraction fails in this case, and the
otherwise correct computation diverges (which we, however, believe to be solvable in the

need such a harness. Here, we would like to stress that this indeed holds – none of the considered tools
needs (nor in any way uses) the top-level function to be able to analyze the other functions. We use
the harness as a model of any higher-level code using the list. Moreover, it allows us to show that the
contracts that got generated for the particular functions are not complete enough, which shows up in
the inability of the appropriate tool to analyse the higher-level functions.

21We note here that Predator can analyse the code, but – unlike Broom, Infer, or Gillian – it entirely
relies on that the code is closed, i.e., it comes with a main function and has no further inputs.

ECOOP 2022

19:26 Low-Level Bi-Abduction

list_head

next

list_head list_head

prev

next next

prev prev

my_item my_item

offset

y

head x
// moving to the next item
y = (struct my_item *)(

(char *)x->next -
offsetof(struct my_item,

link)
);

// testing, if it is head
if (head != &y->link) ...

Figure 5 An illustration of the Linux list data structure. The gray boxes represent the linking
structure list_head that is nested into a user-defined structure my_item, whose instances the user
needs to be linked into a list. List-manipulating functions know nothing about the user-defined
structures: they work with the linking structures only. The user data are accessible through pointer
arithmetic only. Note that the head node of the list does not have the user-defined envelope. The
code shown on the right illustrates how the list is traversed. Note also that when one passes from the
last element pointed by x to its successor (hence back to the head), the involved pointer arithmetic
causes that the pointer y will be pointing out of the allocated space, which is, however, correct since
it will never be dereferenced (just used for further pointer arithmetic).

close future – indeed, we can get fully inspired by the abstraction used in Predator; the
concrete list abstraction used is not specific for our approach). The memory leak reported
is a real one – it comes from the top-level function that does not destroy the list.
Linux-list-2 is a variation on the above case. It contains functions for an initialisation
of a Linux list, inserting elements at its tail, and for deleting the elements. The top-level
function initializes the list, inserts several elements, traverses the elements one by one,
and deletes them.
Linux-list-2-err is a variation on Linux-list-2 where one of the inserted elements is
not deleted and hence a memory leak is caused.
Linux-list-all contains the entire collection of functions defined for working with Linux
lists without any top-level function. The collection includes functions for different kinds
of insertion of elements, removal of elements, swapping of elements (both within a list and
between lists), moving to the end or to another list, rotation, splicing, etc. We can see
that Broom produced complete contracts for many more of the functions. The contracts
from Infer often do not cover cases of lists of length 0 or 1. In one of the remaining cases,
Infer produced no result; and for the last one, it produced a partial result (that appears
not to cover one of the branches of the function).
intrusive-list is the intrusive list library22. See Fig. 6 for an illustration how the
data structure and the code looks like. Apart from features seen already above (pointer
arithmetic and a need to deal with linking fields embedded into larger structures with
a need to apply block splitting), the code contains also bit-masking. In particular, one
bit of the next pointers is used to mark pointers back to the head node, thus effectively
marking the “end” of the circular list. A further intricacy of the code is that the insertion
into the list touches three nodes that may be different but that may also collapse into
a single node. In the case of the Linux list, we have mentioned a similar situation but
with two nodes only. Having three nodes that possibly collapse is not only beyond the

22 Described in the Patrick Wyatt’s blog post “Avoiding game crashes related to linked lists”, http://
www.codeofhonor.com/blog/avoiding-game-crashes-related-to-linked-lists, on September 9th,
2012, and implemented in https://github.com/robbiev/coh-linkedlist.

http://www.codeofhonor.com/blog/avoiding-game-crashes-related-to-linked-lists
http://www.codeofhonor.com/blog/avoiding-game-crashes-related-to-linked-lists
https://github.com/robbiev/coh-linkedlist

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:27

list

next

link link

prev

next next

prev prev

person person

off

y

offset:off

s
e
n
ti
n
e
l
+

1

x

off
// offset from
// a node pointer
// to a link structure
size_t off = (size_t) x -

((size_t)x->prev->next
& ~1);

// link of the next node
y = (link *)(

(size_t)lnk->next
& ~1 + off

);

Figure 6 An illustration of the intrusive list data structure. The code fragment shown to the
right of the figure gives the code used in the function link_get_next to obtain the linking structure
of the next node. Note the use of the pointer arithmetic including bit-masking (to clear the bit
whose bit-masking on the next pointers is used to denote the sentinel node of the list).

capabilities of Infer but also Broom if it is used with its basic abduction strategy. This
is the reason why some of the contracts produced by Broom are also not complete in
this case (e.g., effectively allowing insertion into a list with more than one node only).
We will, however, show below that Broom can resolve the problem when using more
power of the alias-weak/alias-strong rules, though for the price of quite increased
runtime requirements. As for Infer, it is clearly visible that its coverage of the functions is
much weaker (interestingly, we noticed that it completely ignored the bit-masking when
deriving some of the contracts).
intrusive-list-min contains a subset of the functions considered above (for initializing
a list, inserting an element, removing an element) together with a top-level function
utilising these functions. Essentially, the intention here was to create an as small as
possible example of the given kind already problematic for Infer. Again, even Broom
cannot handle it fully under its standard abduction strategy.
intrusive-list-smoke contains the entire intrusive list library from above together
with several top-level functions provided by the author to test the library. The tests use
structures modelling some personal records to be linked into a list via the embedded
linking structures. They create a few such records, link them into a list, traverse them
(forward/backward), and destroy the list.

We now proceed to our experiments with the alias-weak/alias-strong rules. As we
have said above, these rules involve a lot of guessing. Hence, if they are used to explore various
possible abduction solutions based on different aliasing scenarios, the running time may
grow considerably, but it may resolve situations that are otherwise not resolved. To confirm
this, we have applied Broom with the strategy of using the alias-weak/alias-strong rules
to explore different possible abduction solutions with different possible aliasing scenarios
on the intrusive list case study. The results are shown in Table 2. The first row concerns
the experiment intrusive-list-min discussed already above. At that time, we noted that
Broom could not fully handle some of the intrusive list functions since they required it
to merge three possibly independent nodes into a single one. As can be seen in Table 2,
with the help of the alias-weak/alias-strong rules, Broom does fully manage even this
problem (though the runtime grew a lot). The next two rows – intrusive-list-min-2
and intrusive-list-min-3 – are variations on the previous case where we intentionally
introduced some bugs, which were correctly discovered. Finally, the last row shows a

ECOOP 2022

19:28 Low-Level Bi-Abduction

Table 2 Experiments with alias-weak/alias-strong in Broom.

Name Expected result Fncs total T [m] Funcs contr Res
intrusive-list-min no error 9 46 9 no error found
intrusive-list-min-2 memory leak 9 47 9 memory leak
intrusive-list-min-3 double free 9 49 9 double free
intrusive-list-smoke no error 20 505 16 no error found

significant improvement even for the entire library of intrusive lists together with its “smoke”
tests.

To sum up, we believe that, despite the highly prototypical nature of Broom, the presented
experiments show that the proposed approach is indeed capable of handling code that is
beyond the capabilities of other currently existing approaches.

9 Conclusion and Future Works

We have presented a new SL-based bi-abduction analysis capable of analysing fragments of
code that manipulates with various forms of dynamic linked lists implemented using advanced
low-level pointer operations. This includes operations such as pointer arithmetic, bit-masking
on pointers, block operations, dealing with blocks of in-advance-unknown size, splitting them
into fields of not-fixed size, which can then be merged again, etc. Although our approach
builds on a body of previous research, especially, [2, 6, 7, 16], it extends it significantly to
handle the mentioned features. In particular, to be able to handle the considered kind of
code, we build on a flavor of SL that uses a per-field separating conjunction instead of a
per-object separating conjunction, and we also introduce a number of new abduction rules
that allow us to deal with pointer arithmetic, block splitting and merging, and so on. We
have implemented the proposed approach in a prototype tool Broom. Despite Broom is a
very early prototype, our experiments with it allowed us to handle code fragments that are –
to the best of our knowledge – out of the capabilities of currently existing analysers.

We believe that there is a lot of space for further improvements of our results in the future.
First, we would like to significantly optimize Broom to make it applicable to larger code bases.
Here, we are thinking of applying many of the low-level optimisations applied in other tools of
a similar kind (replacing as many as possible of SMT queries by answering them using simple
static rules, using incremental SMT solving, caching as much information as possible, etc.).
Next, we would like to explore possibilities how to reduce the amount of non-determinism
present in the abduction when the alias-weak/strong rules are applied. The goal is to
preserve as much as possible of the power of these rules but reduce the cost of applying
them. Perhaps, we could rely here partially on some pre-defined heuristics and partially
even on some techniques from machine learning, which are now being applied even in SMT
solvers and elsewhere. Next, we would like to significantly improve our implementation of
list abstractions (inspired, e.g., by [16]) as well as numerical abstractions. Last but not least,
we would also like to think of adding support for other classes of dynamic data structures
than lists.

References

1 Andrew W. Appel. Program Logics - for Certified Compilers. Cambridge University Press,
2014.

L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:29

2 J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’Hearn, T. Wies, and H. Yang. Shape
Analysis for Composite Data Structures. In Proc. of CAV’07, volume 4590 of LNCS. Springer,
2007.

3 A. Bouajjani, C. Drăgoi, C. Enea, and M. Sighireanu. Accurate Invariant Checking for
Programs Manipulating Lists and Arrays with Infinite Data. In Proc. of ATVA’12, volume
7561 of LNCS. Springer, 2012.

4 C. Calcagno and D. Distefano. Infer: An Automatic Program Verifier for Memory Safety of C
Programs. In Proc. of NFM’11, volume 6617 of LNCS. Springer, 2011.

5 C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Beyond Reachability: Shape Abstraction
in the Presence of Pointer Arithmetic. In Proc. of SAS’06, volume 4134 of LNCS. Springer,
2006.

6 C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional Shape Analysis by Means
of Bi-Abduction. In Proc. of POPL’09. ACM, 2009.

7 C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional Shape Analysis by Means
of Bi-Abduction. Journal of the ACM, 58(6), 2011.

8 Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and abstract
separation logic. In LICS, pages 366–378. IEEE Computer Society, 2007.

9 B.-Y.E. Chang, X. Rival, and G.C. Necula. Shape Analysis with Structural Invariant Checkers.
In Proc. of SAS’07, volume 4634 of LNCS. Springer, 2007.

10 W.-N. Chin, C. David, H.H. Nguyen, and S. Qin. Automated Verification of Shape, Size
and Bag Properties via User-defined Predicates in Separation Logic. Science of Computer
Programming, 77(9), 2012.

11 C. Curry, Q. Loc Le, and S. Qin. Bi-Abductive Inference for Shape and Ordering Properties.
In Proc. of ICECCS’19. IEEE, 2019.

12 L.M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proc. of TACAS’08, volume
4963 of LNCS. Springer, 2008.

13 Stéphane Demri, Étienne Lozes, and Alessio Mansutti. The effects of adding reachability
predicates in propositional separation logic. In FoSSaCS, volume 10803 of Lecture Notes in
Computer Science, pages 476–493. Springer, 2018.

14 C. Drăgoi, C. Enea, and M. Sighireanu. Local Shape Analysis for Overlaid Data Structures.
In Proc. of SAS’13, volume 7935 of LNCS. Springer, 2013.

15 K. Dudka, P. Peringer, and T. Vojnar. An Easy to Use Infrastructure for Building Static
Analysis Tools. In Proc. of EUROCAST’11, volume 6927 of LNCS. Springer, 2011.

16 K. Dudka, P. Peringer, and T. Vojnar. Byte-Precise Verification of Low-Level List Manipulation.
In Proc. of SAS’13, volume 7935 of LNCS. Springer, 2013.

17 M. Echenim, R. Iosif, and N. Peltier. Unifying Decidable Entailments in Separation Logic
with Inductive Definitions. In Proc. of CADE’21, volume 12699 of LNCS. Springer, 2021.

18 C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar. Compositional Entailment Checking for a
Fragment of Separation Logic. In Proc. of APLAS’14, volume 8858 of LNCS. Springer, 2014.

19 B. Fang and M. Sighireanu. Hierarchical Shape Abstraction for Analysis of Free List Memory
Allocators. In Proc. of LOPSTR’16, volume 10184 of LNCS. Springer, 2016.

20 J. Heinen, T. Noll, and S. Rieger. Juggrnaut: Graph Grammar Abstraction for Unbounded
Heap Structures. In Proc. of TSS’09, volume 266 of ENTCS. Elsevier, 2010.

21 L. Holík, O. Lengál, J. Šimáček, A. Rogalewicz, and T. Vojnar. Fully Automated Shape
Analysis Based on Forest Automata. In Proc. of CAV’13, volume 8044 of LNCS. Springer,
2013.

22 L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger. Low-Level
Bi-Abduction, 2022. arXiv:2205.02590.

23 R. Iosif, A. Rogalewicz, and T. Vojnar. Deciding Entailments in Inductive Separation Logic
with Tree Automata. In Proc. of ATVA’14, volume 8837 of LNCS. Springer, 2014.

24 S. Ishtiaq and P.W. O’Hearn. Separation and Information Hiding. In Proc. of POPL’01. ACM,
2001.

ECOOP 2022

http://arxiv.org/abs/2205.02590

19:30 Low-Level Bi-Abduction

25 J.L. Jensen, M.E. Jørgensen, M.I. Schwartzbach, and N. Klarlund. Automatic Verification of
Pointer Programs Using Monadic Second-order Logic. In Proc. of PLDI’97. ACM, 1997.

26 J. Katelaan and F. Zuleger. Beyond Symbolic Heaps: Deciding Separation Logic With Inductive
Definitions. In Proc. of LPAR’11, volume 73 of EPiC Series in Computing. EasyChair, 2020.

27 Q. Loc Le. Compositional Satisfiability Solving in Separation Logic. In Proc. of VMCAI’21,
volume 12597 of LNCS. Springer, 2021.

28 Q. Loc Le, C. Gherghina, S. Qin, and W.-N. Chin. Shape Analysis via Second-Order Bi-
Abduction. In Proc. of CAV’14, volume 8559 of LNCS. Springer, 2014.

29 P. Maksimovic, S.-É. Ayoun, J.F. Santos, and P. Gardner. Gillian, Part II: Real-World
Verification for JavaScript and C. In Proc. of CAV’21, volume 12760 of LNCS. Springer, 2021.

30 P. Maksimovic, J.F. Santos, S.-É. Ayoun, and P. Gardner. Gillian: A Multi-Language Platform
for Unified Symbolic Analysis, 2021. arXiv:2105.14769.

31 V. Malik, M. Hruška, P. Schrammel, and T. Vojnar. Template-Based Verification of Heap-
Manipulating Programs. In Proc. of FMCAD’18. IEEE, 2018.

32 Jens Pagel and Florian Zuleger. Strong-separation logic. In ESOP, volume 12648 of Lecture
Notes in Computer Science, pages 664–692. Springer, 2021.

33 J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc. of
LICS’02. IEEE, 2002.

34 M. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic. ACM
Transactions on Programming Languages and Systems, 24(3), 2002.

35 J.F. Santos, P. Maksimovic, S.-É. Ayoun, and P. Gardner. Gillian: Compositional Symbolic
Execution for All, 2020. arXiv:2001.05059.

36 J.F. Santos, P. Maksimovic, S.-É. Ayoun, and P. Gardner. Gillian, Part I: A Multi-Language
Platform for Symbolic Execution. In Proc. of PLDI’20. ACM, 2020.

37 T. Wies, V. Kuncak, K. Zee, A. Podelski, and M. Rinard. On Verifying Complex Properties
using Symbolic Shape Analysis. In Proc. of HAV’07, 2007.

38 H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P.W. O’Hearn. Scalable
Shape Analysis for Systems Code. In Proc. of CAV’08, volume 5123 of LNCS. Springer, 2008.

39 K. Zee, V. Kuncak, and M.C. Rinard. Full Functional Verification of Linked Data Structures.
In Proc. of PLDI’08. ACM, 2008.

http://arxiv.org/abs/2105.14769
http://arxiv.org/abs/2001.05059

Functional Programming for Distributed Systems
with XC
Giorgio Audrito # Ñ

University of Turin, Italy

Roberto Casadei # Ñ

University of Bologna, Cesena, Italy

Ferruccio Damiani # Ñ

University of Turin, Italy

Guido Salvaneschi # Ñ

Universität St. Gallen, Switzerland

Mirko Viroli # Ñ

University of Bologna, Cesena, Italy

Abstract
Programming distributed systems is notoriously hard due to – among the others – concurrency,
asynchronous execution, message loss, and device failures. Homogeneous distributed systems consist
of similar devices that communicate to neighbours and execute the same program: they include
wireless sensor networks, network hardware, and robot swarms. For the homogeneous case, we
investigate an experimental language design that aims to push the abstraction boundaries farther,
compared to existing approaches.

In this paper, we introduce the design of XC, a programming language to develop homogeneous
distributed systems. In XC, developers define the single program that every device executes and
the overall behaviour is achieved collectively, in an emergent way. The programming framework
abstracts over concurrency, asynchronous execution, message loss, and device failures. We pro-
pose a minimalistic design, which features a single declarative primitive for communication, state
management, and connection management. A mechanism called alignment enables developers to
abstract over asynchronous execution while still retaining composability. We define syntax and
operational semantics of a core calculus, and briefly discuss its main properties. XC comes with
two DSL implementations: a DSL in Scala and one in C++. An evaluation based on smart-city
monitoring demonstrates XC in a realistic application.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Functional constructs; Theory of computation → Operational semantics; Theory of
computation → Type structures; Computing methodologies → Distributed programming languages

Keywords and phrases Core calculus, operational semantics, type soundness, Scala DSL

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.20

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.8
Software (XC/Scala DSL): https://github.com/scafi/artifact-2021-ecoop-xc

archived at swh:1:dir:b8f42b1ff5725d1af15c4ee5fce324e6cd54da4a
Software (XC/Scala SmartC case study): https://github.com/scafi/artifact-2021-ecoop-smartc

archived at swh:1:dir:1eb857ef9c19996a73bdd2ceb61c583b953b42b7

Funding This work was supported by the EU/MUR FSE REACT-EU PON R&I 2014-2022
(CCI2014IT16M2OP005), the Swiss National Science Foundation (SNSF, No. 200429), the Hessian
LOEWE initiative emergenCITY, and the Ateneo/CSP “Bando ex post 2020”.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Giorgio Audrito, Roberto Casadei, Ferruccio Damiani,
Guido Salvaneschi, and Mirko Viroli;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 20; pp. 20:1–20:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:giorgio.audrito@unito.it
http://giorgio.audrito.info/#!/research/
https://orcid.org/0000-0002-2319-0375
mailto:roby.casadei@unibo.it
https://robertocasadei.github.io/
https://orcid.org/0000-0001-9149-949X
mailto:ferruccio.damiani@unito.it
http://www.di.unito.it/~damiani/
https://orcid.org/0000-0001-8109-1706
mailto:guido.salvaneschi@unisg.ch
https://programming-group.com/
https://orcid.org/0000-0002-9324-8894
mailto:mirko.viroli@unibo.it
https://www.unibo.it/sitoweb/mirko.viroli/en
https://orcid.org/0000-0003-2702-5702
https://doi.org/10.4230/LIPIcs.ECOOP.2022.20
https://doi.org/10.4230/DARTS.8.2.8
https://doi.org/10.4230/DARTS.8.2.8
https://github.com/scafi/artifact-2021-ecoop-xc
https://archive.softwareheritage.org/swh:1:dir:b8f42b1ff5725d1af15c4ee5fce324e6cd54da4a;origin=https://github.com/scafi/artifact-2021-ecoop-xc;visit=swh:1:snp:0f2008647d128cede89ff7e03e87a3aa97079809;anchor=swh:1:rev:15767b19c8405a68e1a032d5a701a9466f89cd2e
https://github.com/scafi/artifact-2021-ecoop-smartc
https://archive.softwareheritage.org/swh:1:dir:1eb857ef9c19996a73bdd2ceb61c583b953b42b7;origin=https://github.com/scafi/artifact-2021-ecoop-smartc;visit=swh:1:snp:b61170708e564a7a147e34e1317bcc7f8f894f17;anchor=swh:1:rev:9a5c3db0e5d66aabaec578bc6b3b1d52839af9af
https://doi.org/10.4230/DARTS.8.2.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Functional Programming for Distributed Systems with XC

1 Introduction

Programming distributed systems is notoriously hard because they require reasoning about
a number of issues that inevitably arise in this setting, including concurrency, remote
communication, asynchronous execution, message loss and device failures.

The design of programming languages for distributed systems attempts to address these
issues by carefully combining cases where (i) programmers are given explicit control over
certain aspects of distribution, (ii) the design employs abstraction to hide low level mechanisms
from developers. A well-known example of explicit control is fault tolerance in the actor
model, where developers can define a reaction strategy in case of failures (through the
so-called actor supervision hierarchy) [3]. However, the actor model abstracts over placement
and – at least in the original actor model – actors communicate with actors on the same
machine the same way they do with a remote actor. Similar combinations of abstraction
and explicit control position other distributed programming languages in the design space.
For example, in the MPI model for HPC, processes are organized in topologies and can
explicitly send messages close to them in such topology [45]. In Partitioned Global Address
Space Languages [28], the programming model abstracts over the memory separation across
processes. Pub-sub systems abstract over the binding between message sender and receivers
ensuring that senders and receivers can seamlessly join and leave the system [31]. In summary,
the design of these programming models stems from a combination of explicit control ensured
to the user and details that are abstracted over.

An important class of distributed systems are homogeneous and situated, i.e., they are
composed of similar devices that communicate with “neighbours”, and execute similar
programs. This property has been observed, e.g., in distributed systems for hierarchical
control of network routing [37], crowd management by handheld devices [16], Wireless
Sensor Network (WSN) connectivity management [36] and gossip-based data aggregation
[35], task allocation in robot swarms [18, 46], and coordination of enterprise servers [24].
More applications are emerging, pushed by the scientific and technological trends of the
Internet of Things (IoT) and of Cyber-Physical Systems (CPS) [47], and of the coordination
of mobile agents [40]. Crucially, “homogeneity” in large-scale systems also stems from the case
where each device runs a program from a predefined set – corresponding to a homogeneous
configuration with a single program with an initial branch.

In this paper, we address the issue of programming such a class of homogeneous systems.
Over time, several approaches have been proposed to address these kinds of systems, including
spatial computing [29], ensemble-based programming [27, 1], and, notably, field-based comput-
ing [49, 38, 40], where the overall distributed system behaviour is understood as producing a
computational field, i.e., a map from network nodes to values. Inspired by these works, we
investigate XC, a novel programming language design that captures their essence (as detailed
in Section 7) into a single construct aiming to abstract over low-level concerns developers
face in distributed systems, while allowing differentiated messages to neighbours. We show a
design where concurrency, asynchronicity, network communication, message loss, and failures
do not need to be handled explicitly. Thanks to a mechanism that is referred to as alignment,
distributed programs written in this style retain composability even if devices operate fully
independently, waking up, executing the program and communicating asynchronously at
arbitrary times and frequencies. Messages from other devices are processed homogeneously,
hence developers do not need to separately handle the case when a message is lost or a device
fails: such lost message is simply not part of the (homogeneous) computation. All required
computational mechanisms can be unified into a single declarative construct called exchange,
which provides (i) access to neighbours’ values, (ii) persistence of information for subsequent
executions, (iii) communication with neighbours, and (iv) compositional behaviour.

G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 20:3

To summarise, this paper provides the following contributions:
We describe the design of XC, a programming language for homogeneous distributed
systems that abstracts over concurrency, network communication, message loss, and device
failures. Crucially, XC retains compositionality even with asynchronous communication,
thanks to alignment.
We show that XC can effectively capture a number of applications in distributed systems,
including distributed protocols such as gossiping, finding an optimised communication
channel, and common applications in self-organizing systems.
We provide a formalization of a core calculus for XC, including syntax and operational
semantics, and briefly discuss its main properties.
We implement XC as publicly available Scala and C++ internal DSLs, together targeting
a number of different execution platforms.
In addition to the applications above, we evaluate our approach on a case study demon-
strating XC’s applicability to real-world scenarios and its compositionality, and answering
two research questions: (RQ1) whether the decentralised execution of the XC program
on each device induces the desired collective behaviour; and (RQ2) to what extent such
behaviour can be expressed by composition of simpler functions.

The paper is structured as follows. Section 2 introduces XC design, Section 3 demon-
strates XC through examples, Section 4 presents the formalization, Section 5 discusses the
implementation, Section 6 evaluates XC, Section 7 compares XC to the related work, Section 8
concludes and outlines future research directions.

2 XC Language Design

2.1 System model
Asynchronous, round-based execution and communication. We consider devices that
send/receive messages with (physical or logical) neighbours. The set of neighbours of any
device can change dynamically to model, e.g., spatial movement, failures, and network
delay. Existing homogeneous systems (cf. [15]) typically work with devices that repeatedly
execute a computation aimed at producing a message for some neighbours, whereas message
reception is asynchronous. Therefore, we abstract device behaviour through a notion of
(execution) round, whereby a device independently “fires” and “atomically executes” a XC
program, then it sends a resulting message to neighbours before waiting to execute the
round again – sometimes we say it “wakes up”, execute the round, and then “go back to
sleep”. The behaviour of each device in the network is developed as a single program1. Such
execution rounds may occur at comparable periodic intervals on all devices but there is no
such assumption in general (every device may have its own scheduling of rounds). Indeed, a
device can run out of battery and never wake up again, or it can restart waking up after
a long time if the battery gets charged. In summary, rounds – hence the communication
among devices – are entirely asynchronous.

Last-message buffering and dropping. The messages received by a sleeping device queue
up in a buffer. When the device wakes up, it executes a XC program that processes such
messages, producing new messages to send out. Such messages are eventually processed by
the neighbours when they wake up for their next round. For example, in the system execution

1 This approach is often referred to as macroprogramming [44] or multi-tier programming [50]. It does not
restrict realisable behaviours as devices can still exhibit different executions of the same program.

ECOOP 2022

20:4 Functional Programming for Distributed Systems with XC

�훅4

�훅1

�훅2

�훅3

ε1 ε2

1
2

3

5

6

Figure 1 XC system model.

in Figure 1, there are four devices δ1 to δ4. In the considered time span, device δ2 wakes up
twice and performs two computation rounds, ϵ1 and ϵ2. Grey arrows indicate messages that
get lost and are never received. The computation ϵ2 processes three messages, received from
δ4, δ3, and δ1 while δ2 was asleep. After the computation, δ2 sends out a message to δ3 and
to δ1. The order of messages from a same sender is preserved but, other than that, there are
very few assumptions on messages. If a device δ1 runs multiple rounds before a device δ2 even
runs a single round, δ2 sees only the message received from the last round of δ1, i.e., newly
received messages from a same sender overwrite older ones. Also, messages are not removed
from the buffer after reading them, unless they expire (i.e., are deemed too old according to
any pre-established criterion) or unless they are replaced by a new message from the same
device, allowing messages to (possibly) persist across rounds. The XC design abstracts over
the specific expiration criteria: common choices include removing messages after each read,
or after a validity time elapses. This time interval is highly application-specific and stems
from a trade-off between (i) tolerance to communication delays and failures, and (ii) recovery
speed after truthful changes on data and neighbourhoods.

When a device δ wakes up, it usually does not find messages from every other device in
the system: (i) another device may be too far to send a message to δ; (ii) messages may get
lost; (iii) devices may disappear or fail; (iv) a device may reboot, losing its queue of received
messages; (v) δ may deem messages from some devices to be expired. Crucially, XC does not
require distinguishing among those cases. When a device wakes up, it finds some messages
from (the most recent available execution round of) some other devices. The devices for
which a message is available in a certain round are the neighbours for that round.

This system model and the terminology associated to it (e.g., “send message to a
neighbour”) is adopted throughout the paper. These design choices make XC agnostic to the
actual communication channel, topology creation and discovery mechanism: e.g., push or
pull, broadcast or point-to-point. For example, the same programming model would apply
even if a device, after waking up, contacts the neighbours to fetch their current value in
a pull fashion. Instead, in a network of micro-controller devices, Bluetooth 5.0 extended
advertisements could be used to share data with neighbour devices in physical proximity,
without an explicit discovery mechanism, as the topology is induced by the messages that
are actually received. Such an implementation would also grant causal consistency [2]. On
the other hand, a network of higher-end devices may communicate point-to-point over IP,
with discovery mechanisms based on broadcasted messages or rendezvous servers.

2.2 XC’s key data type: Neighbouring Values
Datatypes in XC. XC features two kinds of values. Local values ℓ include traditional types
A like float, string or list. Neighbouring values (nvalues) are a map w from device identifiers δi

to corresponding local values ℓi, with a default ℓ, written ℓ[δ1 7→ ℓ1, ... , δn 7→ ℓn]. A nvalue is

G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 20:5

used to describe the (set of) values received from and sent to neighbours. In highly decoupled
distributed systems only a few neighbours may occasionally produce a value. The devices
with an associated entry in the nvalue are hence usually a subset of all devices, e.g., because
a device is too far to provide a value or the last provided value has expired. The default is
used when a value is not available for some reason as will be discussed later (e.g., if a device
just appeared and has not yet produced a value). For this reason, it is convenient to adopt
the notation above and read it “the nvalue w is ℓ everywhere (i.e., for all neighbours) except
for devices δ1, ... , δn with values ℓ1, ... , ℓn.

To exemplify nvalues, in Figure 1, upon waking up for computation ϵ2, δ2 may process
a nvalue w = 0[δ4 7→ 1, δ3 7→ 2, δ1 7→ 3], corresponding to the messages carrying the scalar
values 1, 2, and 3 received when asleep from δ4, δ3, and δ1. The entries for all other devices
default to 0. After the computation, δ2 may send out the messages represented by the nvalue
w′ = 0[δ3 7→ 5, δ1 7→ 6]; so that 5 is sent to δ3, 6 is sent to δ1, and 0 is sent to every other
device (such as a newly-connected device with no dedicated value yet). We also use the
notation w(δ′) for the local value ℓ′ if δ′ 7→ ℓ′ is in w, or the default local value ℓ of w otherwise,
reflecting the interpretation of nvalues as maps with a default. For instance, w′(δ1) = 6
and w′(δ2) = 0. To help the reader, in code snippets, we underline the variables holding
neighbouring values, and, similarly, we underline a primitive type A to indicate the type of a
nvalue w = ℓ[δ1 7→ ℓ1, ... , δn 7→ ℓn] where ℓ, ℓ1, ... ℓn have type A.

Nvalues generalize local values. A local value ℓ can be automatically converted to a nvalue
ℓ[] with a default value for every device. In fact, the distinction between local values and
nvalues is only for clarity: local values can be considered equivalent to nvalues where all
devices are mapped to a default value. In the formalization (Section 4) local values and
nvalues are treated uniformly. Functions on local values are implicitly lifted to nvalues, by
applying them on the maps’ content pointwise. For example, given w1 = 0[δ4 7→1, δ3 7→2] and
w2 = 1[δ4 7→2], we have w3 = w1 + w2 = 1[δ4 7→3, δ3 7→3]. Note that δ3 7→3 in w3 is due to the
fact that δ3 7→2 in w1 and δ3 has default value 1 in w2. Using also the automatic promotion
of local values to nvalues, we have that w1 + 1 = 0[δ4 7→1, δ3 7→2] + 1 = 1[δ4 7→2, δ3 7→3].

Operations on nvalues. Besides pointwise manipulation, nvalues can be folded over, similar
to a list, through built-in function nfold(f : (A,B) → A, w : B, ℓ : A) : A, where the
function f is repeatedly applied to neighbours’ values in a field w (thus excluding the
value for the self device), starting from a base local value ℓ. For instance, assume that
δ2 is performing a nfold operation, with the current set of neighbours {δ1, δ3}. Then
nfold(+, w1, 10) = 10 + w1(δ1) + w1(δ3) = 10 + 0 + 2, where w1 = 0[δ4 7→ 1, δ3 7→ 2] is as
above. As nvalues should be agnostic to the ordering of the elements (i.e., the ordering of
the identifiers δ′), we usually assume that f is associative and commutative.

Sensors and actuators. Since XC programs may express the collective behaviour of homo-
geneous systems situated in some (physical or computational) environment, the devices are
typically equipped with sensors and actuators. Sensors, in particular, are meant to provide
access to contextual and environmental information. These can be accessed by the program
through built-in functions as shown in next sections. In a round, similarly to how messages
are considered, the program is executed against the most recent sample of sensor values. On
the other hand, actuators can be run at the end of the round against the program output
(which may collect all the desired actuation commands).

▶ Example 1 (Distance estimation). A node can estimate its distance from another node in
the network by leveraging an existing estimate n provided by its neighbours. To this end, one

ECOOP 2022

20:6 Functional Programming for Distributed Systems with XC

Name Type scheme Description
Communication:

exchange (A, (A) → (T, A)) → T Exchanges messages
Neighbouring value manipulation:

nfold ((A, B) → A, B, A) → A Folding of a neighbouring value
self (A) → A Extract the self-message

updateSelf (A, A) → A Update the self-message
Sensors used in examples:

uid num Unique device identifier
senseDist num Distance estimates to neighbours

Point-wise operators:
+ ,- , * , / (num, num) → num Arithmetic operators

and, or (bool, bool) → bool Boolean operators
==, <=, >= (A, A) → bool Relational operators2

mux (bool, A, A) → A Multiplexer operator
pair (A, B) → (A, B) Pair creation
fst ((A, B)) → A First element of a pair
snd ((A, B)) → B Second element of a pair

Constructors:
−1, 0, 0.25, 1, Infinity num Numeric constructors

True, False bool Boolean constructors
Pair (A, B) → (A, B) Pair constructor

Figure 2 XC: name, type scheme and description of built-in data constructors and functions.

selects the minimum (using nfold with starting value Infinity) of neighbours’ estimates n
increased by the relative distance estimates senseDist (provided by a sensor in the device).

1 def distanceEstimate(n) { // has type scheme: (num) → num
2 nfold(min, n + senseDist, Infinity)
3 }

Notice that n and senseDist sum up neighbour-wise; if neighbour δ shares estimate n(δ),
the node’s best estimate from that neighbour is n(δ) + senseDist(δ). The minimum among
all estimates is selected, or Infinity if no neighbour is available. ⌟

Additional built-in operations on nvalues are self(w : A) : A, which returns the local
value w(δ) in w for the self device δ, and updateSelf(w : A, ℓ : A) : A which returns a
nvalue equal to w except for the self device δ – updated to ℓ. The substitution notation
stand for defaulted map updates, so that updateSelf(w, ℓ) = w[δ 7→ ℓ]. Indeed, the notation
ℓ[δ1 7→ ℓ1, ...] for nvalues can be understood as a substitution updating ℓ (the map equal to ℓ
everywhere) by associating ℓn to δn.

XC operators on nvalues behave uniformly on neighbours to encourage uniform behaviour
on each element of a nvalue. This approach is idiomatic in XC and results in a more resilient
behaviour – inherently tolerate changes of neighbourhoods between rounds. Yet, non-uniform
behaviour can be encoded via built-in function uid (combined with communication primitives,
Section 2.3), which provides the unique identifier δ of the current device.

Figure 2 shows a summary of every built-in function used in this paper. Constructors
and point-wise operators are standard; the multiplexer operator mux(ℓ1, ℓ2, ℓ3) returns ℓ2 if ℓ1
is True, ℓ3 otherwise. We also omit pair and use the shortcut (v1, v2) for pair construction,
and use infix notation for binary operators whenever convenient. Built-ins for neighbouring
values has just been discussed. We introduce the exchange operator in the next section.

2.3 Communication in XC: Exchange
XC features a single communication primitive exchange(ei, (n) => return er send es) which
de-sugars to exchange(ei, (n) => (er, es)) and is evaluated as follows. (i) the device computes
the local value ℓi of ei (the initial value). (ii) it substitutes variable n with the nvalue w of

2 The generic A type in relation-based operators is not allowed to be a function type.

G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 20:7

messages received from the neighbours for this exchange, using ℓi as default. The exchange
returns the (neighbouring or local) value vr from the evaluation of er. (iii) es evaluates to
a nvalue ws consisting of local values to be sent to neighbour devices δ′, that will use their
corresponding ws(δ′) as soon as they wake up and perform their next execution round.

Often, expressions er and es coincide, hence we provide exchange(ei, (n) => retsende) as
a shorthand for exchange(ei, (n) => (e, e)). Another common pattern is to access neighbours’
values, which we support via nbr(ei, es) = exchange(ei, (n) => return n send es). In
nbr(ei, es), the value of expression es is sent to neighbours, and the values received from
them (gathered in n together with the default from ei) are returned as a nvalue, thus
providing a view on neighbours’ values of es.

It is crucial for the expressivity of XC that exchange (hence nbr) can send a different
value to each neighbour, to allow custom interaction, as exemplified below. Next, we show
the self-organising distance algorithm which showcases the interplay of exchange and nfold.

▶ Example 2 (Ping-pong counter). The following function produces a neighbouring value of
“connection counters” with neighbours, i.e., it associates every neighbour to the number of
times a mutual connection has been established with it.

1 def ping-pong() { // has type scheme: () → num
2 exchange(0, (n) => retsend n + 1)
3 }

Every time a device evaluates ping-pong, it first gathers a neighbouring value w associating
neighbours to their respective connection counter – 0 is for newly connected devices. Expres-
sion n + 1 is computed substituting w for n, incrementing each such counter (including for
newly connected devices, which now map to 1). The resulting value w + 1 is both returned
by the expression and shared with neighbours. As long as a connection between two devices
is maintained, each receives a connection counter from the other and increments it before
sending it back – overall counting the messages bouncing back-and-forth. Once a connection
between devices breaks and the corresponding messages expire, the connection counter resets
to 0, then starts increasing again in case a connection is re-established. Crucially, the program
sends different values to neighbours to keep a distinct connection counter with each. ⌟

▶ Example 3 (Self-organising distance). Computing the minimum distance from any device of
the network to a set of source devices results in a gradient structure [10]. Gradients are a key
self-organisation pattern with several applications like estimating long-range distances and
providing directions to move data along minimal paths. Function distanceTo offers a simple
implementation, consisting of a distributed version of the Bellman-Ford algorithm [26].

1 def distanceTo(src) { // has type scheme: (bool) → num
2 exchange(Infinity, (n) => retsend mux(src, 0, distanceEstimate(n)))
3 }

Its repeated application in a (possibly mobile) network of devices stabilises to the expected
distances from devices where src is true. The exchange expression in the body updates
a local estimate of the distance by (i) using Infinity as default distance; (ii) returning
distance zero on source devices; (iii) in other devices, selecting the minimum of neighbours’
estimates increased by the relative distance estimates (Example 1). If such estimated distance
is d, then d is both shared with neighbours (as a constant map with the same estimate
d for every neighbour) and returned by the function. Operator mux (i.e., a strict version
of if that computes both its branches, and then selects the output of one of them as
result based on the condition) is needed, as sources, though returning 0, must also evaluate

ECOOP 2022

20:8 Functional Programming for Distributed Systems with XC

XC program tree

average
nbr

nfold
nbr

nfold

exchange

exchange δ1

δ2

δ3

de
vi

ce
s

time

alignment of expressions

Figure 3 XC alignment mechanism for Example 4.

function call distanceEstimate (thus sharing their value n). Any change in the network
(e.g., due to failure, mobility, dynamic joining) directly affects the domain of n, hence the
local computation and eventually the whole network – resulting in inherent adaptiveness.

⌟

2.4 Compositionality through alignment
If a program executes multiple exchange-expressions, XC ensures through alignment that the
messages are dispatched to corresponding exchange-expressions across rounds.

▶ Example 4 (Neighbour average). The following function average computes the weighted
average of a value across the immediate neighbours of the current device:

1 def average(weight, value) { // has type scheme: (num) → num
2 val totW = nfold(+, nbr(0, weight), weight);
3 val totVl = nfold(+, nbr(0, weight*value), weight*value);
4 totV / totW
5 }

First, the total weight of neighbours is computed in Line 2, by first producing a nvalue of
neighbours’ weights through nbr(0, weight), and then reducing it to its total by nfold,
using weight as base value to ensure that the weight of the current device is also considered.
A similar operation is performed in Line 3, where the products weight*value of neighbours
(including the current device) are added. The weighted average is then obtained as totV /
totW and returned by the function.

This function contains two calls to nbr, which in turn perform calls to the exchange
built-in, both with messages of type num. XC ensures that the messages from the different
communicating routines are correctly dispatched to neighbours, each used only in the
corresponding call to exchange in the neighbours, thus not mixing values and weights. ⌟

XC ensures that the values produced by an exchange are processed by the corresponding
exchange in the next round, i.e., the exchange in the same position in the AST and in the
same stack frame. Considering both the AST and the stack frame ensures that exchange
operations are correctly aligned also in case of branches, function calls and recursion. Figure 3
demonstrates alignment. Top-left is a tree representation of the XC program in Example 4,
accounting for stack frames and children in the AST. The larger box with multiple compart-
ments denotes the AST of a function, considering only exchange, nfold, and functions using

G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 20:9

them. Top-right is a system execution. Dotted arrows connect a round (circle) to the next
on the same device, and curly arrows denote messages. Within each round we show a tree
corresponding to the one top-left. Note that all rounds execute the same tree. Bottom-left
zooms into two rounds of different devices evaluating average with fully aligned program
executions: corresponding expressions at the same tree locations interact and consider each
other among neighbouring values. Red dashed arrows connecting exchange expressions that
belong to different rounds show this interaction. We will discuss partial alignment in the next
section, after introducing conditionals. Alignment is a crucial feature in XC because it enables
functional composition of distributed behaviour, ensuring that messages are transparently
dispatched in the correct way, as exemplified in the following.

▶ Example 5 (Fire detection). Function closestFire returns the distance from the closest
likely fire (if any), by relying on the simpler functions average and distanceTo, based on
arguments temperature and smoke which we can assume to be provided by available sensors.

1 def closestFire(temperature, smoke) { // has type scheme: (num, num) → num
2 val trust = nfold(+, 1, 1);
3 val hot = average(trust, temperature) > 60;
4 val cloudy = average(trust, smoke) > 10;
5 distanceTo(hot and cloudy)
6 }

In Line 2 the function establishes a trust level for the node, which is proportional to
the number of neighbours of that node (thus considering central nodes as more relevant),
computed as nfold(+, 1, 1). Line 3 checks whether the average temperature, weighted by
trust, is above 60 degrees Celsius. Similarly, Line 4 checks whether the average concentration
of smoke, also weighted by trust, is above 10%. Finally, Line 5 computes distances to places
where both conditions are met (high temperature and smoke) through function distanceTo.
Several exchange calls are evaluated by both the average and distanceTo functions: thanks
to alignment, the messages processed by each of them are those generated by the same ones
in previous rounds of neighbouring devices. ⌟

2.5 Conditionals
XC supports if (cond) {e1} else {e2} conditional expressions. Crucially, their semantics
interplays with the communication semantics of XC. Since only the exchange operations in
the same position within the AST and stack frame align, with a conditional, an exchange
aligns only across the devices that take the same branch. Thus, while evaluating an XC sub-
expression, we consider only aligned neighbours, that are round neighbours which evaluated the
same sub-expression (as AST and stack frame). Non-aligned neighbours are never considered
in the evaluation of the sub-expression, e.g., for the construction of the w of received messages
in an exchange, or for determining which values of a nvalue should be folded over by a
nfold. As a result, a conditional expression splits the network into two non-communicating
sub-networks, each evaluating a different branch without cross-communication.

▶ Example 6 (Domain-isolated distance computations). Consider a connected network of
service requesters and providers. Suppose these nodes are dynamically split into two domains:
those involved in local computations (local) and those offloading computations (not local)
to gateways, special service providers which provide cloud access. We may want to compute
the distance to gateways without considering the devices involved in local computations.

1 def distanceToGateways(local, gateway) { // has type scheme: (bool, bool) → num
2 if (local) { Infinity } else { distanceTo(gateway) }
3 }

ECOOP 2022

20:10 Functional Programming for Distributed Systems with XC

XC program tree

distanceInServiceProvisioning distanceTo
distanceTo

distanceEstimate
exchange

nfold

distanceEstimate
exchange

nfold

δ1

δ2

δ3

de
vi

ce
s

time

partial alignment of expressions

Figure 4 XC alignment mechanism with conditionals for Example 6.

During a round, the program evaluates to Infinity on devices where local is true. Such
devices are considered “obstacles” to avoid. On devices where local is false, the program
evaluates distanceTo(gateway), which consist of an exchange-expression (c.f. Example 3).
Devices in the local group do not compute such exchange expression, and do not contribute
to the assessment of distances: distanceTo is executed in isolation on non-locals.

Now suppose we would like the local subgroup to compute distances from local requester
s, and the other subgroup to still compute distances from gateways, excluding in such
computations the devices of the complementary group.

1 // has type scheme: (bool, bool, bool) → bool
2 def distanceInServiceProvisioning(local, requester, gateway) {
3 if (local) { distanceTo(requester) } else { distanceTo(gateway) }
4 }

In this case, in any round, only a single exchange expression is computed, always in the same
position in the AST (corresponding to a call of function distanceTo). However, the messages
exchanged by devices in the local group must not be matched with those exchanged by
device outside the local group, otherwise every device would just compute their distance
from the closest local requester or non-local gateway, which is not the intended behaviour.
Luckily, XC grants that this does not happen, as exchange expressions arising from different
branches have different stack frames, hence happen in separate interaction domains. ⌟

Figure 4 shows partial alignment for Example 6. At the top, we show the program tree
for distanceInServiceProvisioning. Note that conditionals are not visible here. Bottom-
right, we show a system execution: in each round, only one of the distanceTo branches is
executed – the branch that has not been evaluated is dashed. Bottom-left, we zoom into two
rounds of devices that align only partially: they evaluate some common expression which is
fully aligned (red dashed arrow), then follow a different branch where there is no alignment.
Notice that alignment occurs on the execution of function distanceInServiceProvisioning
but no actual data is exchanged (since no evaluated exchange or nfold expression is aligned).

G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 20:11

2.6 Fault tolerance in XC
The abstractions discussed so far allow and encourage developers to write XC programs that
are resilient to failures. In case a node fails or a message gets lost in inter-node communication,
the exchange handles the failure transparently from programmers: the node simply does
not show up among the neighbours of a given node in the next alignment. With exchange,
developers specify the logic to collectively operate over the neighbours’ messages, and make
no assumptions on their number or identity, while being encouraged to express the behaviour
homogeneously through point-wise operations and nfold. As a result, in XC it is idiomatic
to write programs with implicit fault tolerance and resilience to devices that dynamically join
and leave the set of neighbours (e.g., because they physically change location), transparently
from programmers. Programming resilient behaviour can also take advantage of functional
composition: simpler resilient blocks can be composed together, building complex applications
while retaining fault-tolerance. However, it is important to note that XC does not provide
guarantees on fault tolerance by itself. Being a Turing-complete language, non-resilient
behaviour can inevitably be programmed, although mostly non-idiomatically: guarantees on
idiomatic subsets of the language may be provided, as briefly discussed in Section 4.

3 XC at Work

We now show XC in action by means of example applications in areas like WSNs, IoT, and
large-scale CPS. The examples are chosen to (i) highlight how composition in XC, enabled
by alignment, allows programmers to divide and incrementally deal with the complexity
of expressing distributed adaptive behaviour; and (ii) show that the expressiveness of XC
enables the encoding of advanced algorithms (e.g., with self-organisation properties); and
(iv) present reusable components used later in our evaluation (Section 6).

▶ Example 7 (Gossip). The function gossipEver spreads the information associated to an
event (e.g., pressing a button) through a network. It consists of a single exchange expression
executed on every device.

1 def gossipEver(event) { // has type scheme: (bool) → bool
2 exchange(False, (n) => retsend nfold(or, n, self(n) or event))
3 }

The first argument of the exchange (Line 2) sets the initial value to False for n (and
thus for newly-connected devices, including for the current device in its first round). The
second argument is a lambda, whose parameter n is the nvalue representing the gossips of
neighbouring devices (including the current device itself, for which n includes the gossip
value in its previous round). Function nfold collapses the neighbours’ gossips through binary
operation or (checking whether there is any gossip equal to true), with the starting value
self(n) or event which is true if either the current device had a true gossip in its previous
round (i.e., self(n) is true) or a true value is fed right now (event). The resulting value,
the new gossip for the device, is both returned by the function and sent to each neighbour.

⌟

Notice that the gossip function is agnostic to the network structure and it avoids explicit
message management. Its repeated application by a (possibly mobile) network of devices
realises the expected behaviour, returning true in every device after a button has been pressed
anywhere in the network as soon as possible, that is, as soon as the fastest chain of messages
from the originating event is able to reach the device.

ECOOP 2022

20:12 Functional Programming for Distributed Systems with XC

This function is fully decentralised and every device executes the same logic. Yet, gossip
only spreads a Boolean event, and once the gossip becomes true, there is no way to flip it to
false again. Arbitrary data types and reversibility, require one to break symmetry: some
devices (leaders) act as sources of truth, and the others will receive their most recent data
through a broadcast routine, such as the following.

▶ Example 8 (Broadcast). Function broadcast below implements the propagation of the
value at nodes of minimal dist outwards, along minimal paths ascending dist. We assume
that dist is produced by a function such as distanceTo (Example 3).

1 def broadcast(dist, value, null) { // has type scheme: (num, A, A) → A
2 val selfRank = (dist, uid);
3 val nbrRank = nbr(selfRank, selfRank);
4 val bestRank = nfold(min, nbrRank, selfRank);
5 val parent = nbrRank == bestRank;
6 exchange(value, (n) =>
7 val selfKey = (value==null, selfRank);
8 val nbrKey = (n==null, nbrRank);
9 val res = snd(nfold(min, (nbrKey, n), (selfKey, value)));

10 return res
11 send mux(nbr(False, parent), res, null)
12)
13 }

First each device identifies a single parent device, as the neighbour having the minimal rank,
computed in bestRank (Line 4). Such rank is a pair of dist and uid (Line 2), ordered
lexicographically, ensuring that the parent is the neighbour of minimal distance to the
knowledge source (using uid to break ties). The chosen parent is encoded as the only
neighbour for which a true value is present in nvalue parent (Line 5).

Then, an exchange expression sorts out the broadcast received from parent devices,
propagating the result to children. The value of the device for the current round is computed
in res (Line 9), and is taken from the neighbour with the minimum key, i.e., minimum rank
for a non-null value (we assume that False < True). For the current device, we use the
argument value (Line 7). For neighbours, we use the value received from them in n (Line 8).
The resulting value res is returned by exchange and by the whole function, (Line 10). This
(possibly band-consuming) value is sent only to neighbours which selected the current device
as parent, that is, neighbours where nbr(False, parent) is true. Every other neighbour
receives null instead (possibly lighter to transmit): the selection over values and nulls is
performed per-neighbour by built-in operator mux (Line 11). ⌟

The function broadcast above uses differentiated messages to neighbours to reduce the
network load. This result is achieved by sending values only to the neighbours that actually
need them, using placeholder null values for the others. In case the message propagation
does not need to reach every device of the network, but only some targets, this load can be
further reduced by restricting the broadcast into a channel, as we explain next.

▶ Example 9 (Broadcast into a Channel). The function channelBroadcast selects a region
channel of a given width connecting a source device with a destination device dest, and
performing a broadcast within the region.

1 // has type scheme: (bool, bool, num, A, A) → A
2 def channelBroadcast(source, dest, width, value, null) {
3 val ds = distanceTo(source);
4 val dd = distanceTo(dest);
5 val channel = ds + dd <= broadcast(ds, dd, Infinity) + width;
6 if (channel) { broadcast(ds, value, null) } else { null }
7 }

G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 20:13

The channel region is computed through the geometrical definition of ellipse (Line 5): the sum
of the distances ds towards source and dd towards destination (computed by distanceTo,
Lines 3-4) should surpass the distance between source and destination by at most width for
devices in the channel. The distance between source and destination is obtained through
broadcast(ds, dd, Infinity): the parameter ds of the broadcast defines that values
should be propagated from the source outwards; and the value propagated is the parameter
dd, as it is evaluated in the source (and thus the distance between source and destination).
Then, a conditional is used to selectively broadcast the value in the source outwards only in
the channel region – null elsewhere (Line 6). ⌟

The example illustrates functional composition: channelBroadcast composes several
instances of distanceTo (Example 3) and broadcast (Example 8) to realise a more complex
behaviour. Also, the composition preserves the self-organising properties of its constituent
parts, hence it able to automatically adapt to changes in source, dest, width, and topology
(because, e.g., of mobility or failure).

So far, we have presented functions to build a communication structure to disseminate
information over the network. Yet, we haven’t addressed the problem of collecting such
information, especially in the non-trivial case where it is obtained by inspecting the whole
network (or part of it).

▶ Example 10 (Information collection). The collect algorithm (inspired by [8]) aggregates
the value currently present in the network, via an arithmetic or an idempotent accumulator,
progressively in a network towards a source node – identified as the zero-value of a gradient
dist (cf. Example 3). The result is updated when values change, unlike Example 7 where a
true cannot revert to false.

1 def weight(dist, radius) { // has type scheme: (num, num)→num
2 max(dist-nbr(0,dist),0)*(radius-senseDist)
3 }
4 def normalise(w) { // has type scheme: (num) → num
5 w / nfold(+, w, 0)
6 }
7 // has type scheme: (num, num, A, (A, A) → A, (A, num) → A) → A
8 def collect(dist, radius, value, accumulate, extract) {
9 exchange(value, (n) =>

10 val loc = accumulate(n, value); // local estimate
11 return loc
12 send extract(loc, normalize(weight(dist, radius)))
13)
14 }

The exchange construct (Line 9) handles neighbour-to-neighbour propagation of partial
accumulates. First, it applies accumulate (Line 10) to aggregate the local value with
the received partial accumulates n into loc; this is the result of collect (Line 11). In
other words, the idea is that the local partial accumulate is obtained by accumulating
the partial accumulates of neighbours. Then, it computes a normalised weight (Line 12),
via functions weight and normalise, measuring neighbour reliability, using this weight
to extract from loc the partial accumulates to send to neighbours (Line 12). Function
weight (Line 1) is parametrised by a gradient value dist and value radius representing the
maximum communication range for neighbour interaction; so, the expression is non-negative
and the computed weight is larger for neighbours farther from the communication boundaries
(i.e., less likely to be lost as neighbours) and closer to the source of the collection. In
normalise (Line 4), normalisation of weights w is achieved by dividing the computed weights

ECOOP 2022

20:14 Functional Programming for Distributed Systems with XC

for neighbours by the sum of the neighbours’ weights. Depending on the nature of the
aggregation (arithmetic or idempotent, e.g., sum or minimum), different accumulate and
extract functions are used: in the former case, the value is multiplied by the weight:

1 def accumulate(v, l) { nfold(+, v, l) } // has type scheme: (A, A) → A
2 def extract(v, w) { v * w } // has type scheme: (A, num) → A

In the latter case, we choose to either send the value or not (also increasing efficiency as in
Example 8) depending on whether the weight exceeds a given threshold:

1 def accumulate(v, l) { nfold(min, v, l) } // has type scheme: (A, A) → A
2 def extract(v, w) { mux(w >= 0.25, v, Infinity) } // has type scheme: (A, num) → A

Improvements over [8] are both stylistic (cleaner code) and in the precision of weights, since
in [8] they had to be indirectly (and approximately) deduced on the receiving end. ⌟

▶ Example 11 (Smart City Monitoring). We consider SmartC, a scenario of smart city
monitoring, where devices cooperate with neighbours to process and relay information in
the distributed system. This is achieved by the collective execution of an XC program. The
system consists of detectors, non-mobile nodes (e.g., smart traffic lights) that collect in a
bounded surrounding area the contributions of other possibly mobile devices that we call
data-providers (e.g., buses or people with wearables). Data-providers exhibit a local warning
value, which signals a need for intervention. Detectors collect warning values and compute a
mean warning in their area: when the mean warning exceeds some threshold, then they also
collect logs from data-providers and dispatch collected data towards the closest operations
centre. The operations centre might be several hops away from the source, so we want to
“broadcast” data hop-by-hop along a short “path” of devices – but without flooding the
whole network. The system (i) collects and routes data from nodes closer than a certain
range towards the closest detector; (ii) lets detectors compute the mean levels of warning of
the corresponding areas; (iii) lets detectors collect and aggregate logs if their mean warning
exceeds a certain threshold; and (iv) creates self-healing broadcast channels from detectors to
the closest operations centres. This logic is implemented by function smartC (Figure 5), which
reuses distanceTo, collect, broadcast and channelBroadcast (Examples 3 and 8–10).

Function smartC is defined in terms of local values representing parameters for the
algorithm (e.g., warningThreshold) or varying inputs (e.g., localLog, which denotes a set
of log items for a node), which can be thought of as provided by sensors and may change
dynamically. The algorithm works as follows. First, a gradient of distances from detectors is
computed in the system (Line 3). The nodes that are inspected are only those for which the
gradient value is less than inspectionRadius (Line 4). Then, two different behaviours are
defined based on whether a node is inspected or not (Line 6). Nodes not inspected just return
nullReport (Lines 5 and 18). In the domain of inspected nodes, including the detector, a
collection process is activated (Line 7 to 10) in order to let the detector obtain the sum of
warning and the number of devices in the area. With such information, the detector can
process the mean warning (Line 11) and decide whether the warning level is high (Line 12):
such a decision (warning significance) is broadcast from the detector to the rest of the area
(Line 13), as a kind of notification to the devices in the surroundings. Also, depending on
whether the warning level is high (Line 14 to 16), it either collects the logs from all the nodes
in the area (Line 15), or not. In any case, a broadcast on a channel is performed to resiliently
communicate the report (set of logs) from the detector to the operations centre (Line 19).

⌟

G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 20:15

1 def smartC(isDetector, isOpsCentre, channelWidth, inspectionRadius, commRadius,
2 localWarning, warningThreshold, localLog, nullLog, logCat) {
3 val detectorDist = distanceTo(isDetector);
4 val inspected = detectorDist < inspectionRadius;
5 val nullReport = (uid, 0, nullLog);
6 val report = if (inspected) {
7 val (sumWarning,numNodes) = collect(detectorDist, commRadius, (localWarning, 1.0),
8 (v, l) => (nfold(+, fst(v), fst(l)), nfold(+, snd(v), snd(l))),
9 (v, w) => (fst(v)*w, snd(v)*w)

10);
11 val meanWarning = sumWarning / numNodes;
12 val localWarning = meanWarning > warningThreshold;
13 val warning = broadcast(detectorDist, localWarning, False);
14 val logs = if (warning) {
15 collect(detectorDist, commRadius, localLog, logCat, (v, w) => v)
16 } else { nullLog };
17 (uid, meanWarning, logs)
18 } else { nullReport };
19 channelBroadcast(isDetector, isOpsCentre, channelWidth, report, nullReport)
20 }

Figure 5 Possible XC implementation of a smart city monitoring application.

4 Formalisation of XC

In this section we present a formalisation of the core concepts introduced in this paper
through Featheweight XC (FXC), a minimal calculus for XC. By virtue of its minimality, FXC
is particularly convenient for proving properties both of the language as a whole and of
algorithms and fragments of it, such as: type soundness and determinism with respect to
let-polymorphic typing, denotational characterisation of expressions as space-time values [7],
with functional compositionality of global behaviour. We further discuss XC expressivity and
resilience properties (inherited from results in literature) in Section 7.

4.1 Syntax
Figure 6 (top) shows the syntax of FXC. As in [34], the overbar notation indicates a (possibly
empty) sequence of elements, e.g., x is short for x1, ... , xn (n ≥ 0). Note that the syntax
induces a standard functional language, with no peculiar features for distribution: distribution
is nonetheless apparent in the operational semantics. An FXC expression e can be either:

a variable x;
a (possibly recursive) function fun x(x){e}, which may have free variables;
a function call e(e);
a let-style expression val x = e; e;
a local literal ℓ, that is either a built-in function b, a defined function fun x(x){e} without
free variables, or a data constructor c applied to local literals (possibly none);
an nvalue w, as described in Section 2.2.

FXC can be typed using standard let-polymorphism for higher-order languages, without
distinguishing between types for local values and types for neighbouring values. This is
accomplished by promoting local values to nvalues, and designing constructs and built-in
functions of the language to always accept nvalues for their arguments (more details on this
in Section 4.2, Device semantics). As local and neighbouring types are not distinguished by
FXC, in this section we avoid underlying neighbouring values and their types. Free variables
are defined in a standard way (Figure 6, middle), and an expression e is closed if FV(e) = ∅.
Programs are closed expressions without nvalues as sub-expressions. Indeed, nvalues only
arise in computations, and are the only values produced by evaluating (closed) expressions.

ECOOP 2022

20:16 Functional Programming for Distributed Systems with XC

Syntax:
e ::= x

∣∣ fun x(x){e}
∣∣ e(e)

∣∣ val x = e; e
∣∣ ℓ ∣∣ w expression

w ::= ℓ[δ 7→ ℓ] nvalue

ℓ ::= b
∣∣ fun x(x){e}

∣∣ c(ℓ) local literal

b ::= exchange
∣∣ nfold

∣∣ self
∣∣ updateSelf

∣∣ uid
∣∣ ... built-in function

Free variables of an expression:
FV(x) = {x} FV(ℓ) = FV(w) = ∅ FV(fun x0(x1, ... , xn){e}) = FV(e) \ {x0, ... , xn}
FV(e0(e1,...,en))=

⋃
i=0...nFV(ei) FV(val x = e; e′) = FV(e) ∪ FV(e′) \ {x}

Syntactic sugar:
(x) => e ::= fun y(x){e} where y is a fresh variable

def x(x){e} ::= val x = fun x(x){e};
if(e){e⊤} else {e⊥} ::= mux(e, () => e⊤, () => e⊥)()

Figure 6 Syntax (top), free variables (middle) and syntactic sugar (bottom) for FXC expressions.

The syntax in Figure 6 (top) diverges partially from the one used in Sections 2 and 3.
However, the full syntax of XC can be recovered by defining missing constructs as syntactic
sugar. Besides some standard simplifications (infix notation for binary operators, omitted
parenthesis in 0-ary constructors, implicit pair constructor), some non-trivial encoding is
described in Figure 6 (bottom). In particular, lambda expressions can be converted into
fun-expressions with a fresh name, and defined functions can be encoded as a let expression
binding the function name. Branching can be encoded by abstracting the code in the branches,
selecting one of them with the mux operator and then applying it.

4.2 Operational semantics
The operational semantics is defined as (i) a big-step device semantics, providing a formal
account of the computation of a device within one round; and (ii) a small-step network
semantics, formalising how different device rounds communicate.

Device semantics. Figure 7 presents the device semantics, formalised by judgement δ;σ; Θ ⊢
e ⇓ w; θ, to be read as “expression e evaluates to nvalue w and value-tree θ on device δ with
respect to sensor values σ and value-tree environment Θ”, where:

w is called the result of e;
θ is an ordered tree with nvalues on some nodes (cf. Figure 7 (top)), representing messages
to be sent to neighbours by tracking the nvalues produced by exchange-expressions in e,
and the stack frames of function calls;
Θ collects the (non expired) value-trees received by the most recent firings of neighbours
of δ, as a map δ1 7→ θ1, ..., δn 7→ θn (n ≥ 0) from device identifiers to value-trees.

We assume every function expression fun x(x){e} occurring in the program is annotated with
a unique name τ before the evaluation starts. Then, τ will be the name for the annotated
function expression funτ x(x){e}, and b the name for a built-in function b.

The syntax of value-trees and value-tree environments is in Fig. 7 (top). The rules for
judgement δ;σ; Θ ⊢ e ⇓ v; θ (Fig. 7, middle) are standard for functional languages, extended
to evaluate a sub-expression e′ of e w.r.t. the value-tree environment Θ′ obtained from Θ
by extracting the corresponding subtree (when present) in the value-trees in the range of

G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 20:17

Auxiliary definitions:
θ ::= ⟨θ⟩

∣∣ w⟨θ⟩ value-tree σ sensor state
Θ ::= δ 7→ θ value-tree environment δ device identifier

πi(⟨θ1, ... , θn⟩) = θi πi(w⟨θ1, ... , θn⟩) = θi πi(δ 7→ θ) = δ 7→ πi(θ)

δ 7→ θ |f =
{
δi 7→ θi | θi = w⟨θ′⟩, name(w(δi)) = name(f)

} name(b) = b
name(funτ x(x){e}) = τ

Evaluation rules: δ;σ; Θ ⊢ e ⇓ w; θ
[E-NBR]

δ;σ; Θ ⊢ w ⇓ w; ⟨⟩
[E-LIT]

δ;σ; Θ ⊢ ℓ ⇓ ℓ[]; ⟨⟩

[E-VAL]
δ;σ;π1(Θ) ⊢ e1 ⇓ w1; θ1
δ;σ;π2(Θ) ⊢ e2[x := w1] ⇓ w2; θ2

δ;σ; Θ ⊢ val x = e1; e2 ⇓ w2; ⟨θ1, θ2⟩

[E-APP]
δ;σ;πi+1(Θ) ⊢ ei ⇓ wi; θi for all i ∈ 0, ... , n
δ;σ;πn+2(Θ |f) ⊢ f(w1, ... , wn) ⇓∗ wn+1; θn+1 where f = w0(δ)

δ;σ; Θ ⊢ e0(e1, ... , en) ⇓ wn+1; f[]⟨θ0, ... , θn+1⟩

Auxiliary evaluation rules: δ;σ; Θ ⊢ f(w) ⇓∗ w; θ
[A-FUN] δ;σ; Θ ⊢ e[x := funτ x(x){e}, x := w] ⇓ w; θ

δ;σ; Θ ⊢ funτ x(x){e}(w) ⇓∗ w; θ
[A-UID]

δ;σ; Θ ⊢ uid() ⇓∗ δ; ⟨⟩

[A-XC]
Θ = δ 7→ w⟨...⟩ w = wi[δ 7→ w(δ)]
δ;σ;π1(Θ) ⊢ wf (w) ⇓ (wr, ws); θ

δ;σ; Θ ⊢ exchange(wi, wf) ⇓∗ wr; ws⟨θ⟩

[A-SELF]

δ;σ; Θ ⊢ self(w) ⇓∗ w(δ); ⟨⟩

[A-FOLD]
Θ = δ1 7→ θ1, ... , δn 7→ θn ℓ0 = w3(δ)
δ;σ; ∅ ⊢ w1(ℓi−1, w2(δi)) ⇓ ℓi[]; θ if δi ̸= δ else ℓi = ℓi−1

δ;σ; Θ ⊢ nfold(w1, w2, w3) ⇓∗ ℓn[]; ⟨⟩
· · ·

Figure 7 Device (big-step) operational semantics of FXC.

Θ. This alignment process is modelled by the auxiliary “projection” functions πi (for any
positive natural number i) (Fig. 7, top). When applied to a value-tree θ, πi returns the
i-th sub-tree θi of θ. When applied to a value-tree environment Θ, πi acts pointwise on the
value-trees in Θ.

The alignment process ensures that the value-trees in the environment Θ always correspond
to the evaluation of the same sub-expression currently being evaluated. To ensure this match
holds (as said before, of the stack frame and position in the AST), in the evaluation of a
function application f(w), the environment Θ is reduced to the smaller set Θ |f of trees which
corresponded to the evaluation of a function with the same name (as defined in Fig. 7 (top)).

Rule [E-NBR] evaluates an nvalue w to w itself and the empty value-tree. Rule [E-LIT]

evaluates a local literal ℓ to the nvalue ℓ[] and the empty value-tree. Rule [E-VAL] evaluates a
val-expression, by evaluating the first sub-expression with respect to the first sub-tree of the
environment obtaining a result w1, and then the second sub-expression with respect to the
second sub-tree of the environment, after substituting the variable x with w1.

Rule [E-APP] is standard eager function application: the function expression e0 and each
argument ei are evaluated w.r.t. πi+1(Θ) producing result vi and value-tree θi. Then, the
function application itself is demanded to the auxiliary evaluation rules, w.r.t. the last
sub-tree of the trees corresponding to the same function: πn+2(Θ |f). The auxiliary rule
[A-FUN] handles the application of fun-expression, which evaluates the body after replacing the

ECOOP 2022

20:18 Functional Programming for Distributed Systems with XC

Network configuration (sensors/environment/result fields) and action labels:
Σ ::= δ 7→ σ sensors field N ::= ⟨Σ; Ψ;ψ⟩ network configuration
Ψ ::= δ 7→ Θ environment field
ψ ::= δ 7→ w result field act ::= δ

∣∣ δδ′
∣∣ conf action label

Notations for restriction and update of a sensors/environment/result field m:
m |X = m′ s.t. dom(m′) = dom(m) ∩X and m′(δ) = m(δ)

m[m′] = m′′ s.t. dom(m′′) = dom(m) ∪ dom(m′), m′′(δ) =
{
m′(δ)if δ ∈ dom(m′)
m(δ) otherwise

Transition rules: N
act−−→ N

[N-FIRE] Θ = filter(Ψ(δ)) δ; Σ(δ); Θ ⊢ emain ⇓ w; θ Θ′ = Θ[δ 7→ θ]
⟨Σ; Ψ;ψ⟩ δ−→ ⟨Σ; Ψ[δ 7→ Θ′];ψ[δ 7→ w]⟩

[N-RECV] θ = Ψ(δ)(δ) Θ′ = Ψ(δ′)[δ 7→ θ]
⟨Σ; Ψ;ψ⟩ δδ′

−−→ ⟨Σ; Ψ[δ′ 7→ Θ′];ψ⟩
[N-CONF] δ = dom(Σ′) Ψ0 = δ 7→ ∅

⟨Σ; Ψ;ψ⟩ conf−−−→ ⟨Σ′; Ψ0[Ψ |δ];ψ |δ⟩

Figure 8 Network (small-step) operational semantics of FXC.

arguments x with their provided values w, and the function name x with the fun-expression
itself. Rules [A-UID] and [A-SELF] trivially encode the behaviour of the uid and self built-
ins. Rule [A-XC] evaluates an exchange-expression, realising the behaviour described at the
beginning of Section 2.3. Notation w1[δ 7→ w(δ)] is used to represent the nvalue w1 after
the update for each i of the message for δi with the custom message wi(δ). The result is
fed as argument to function wf : the first element of the resulting pair is the overall result,
while the second is used to tag the root of the value-tree. Rule [A-FOLD] encodes the nfold
operators. First, the domain of Θ is inspected, giving a (sorted) list δ1, ... , δn. An initial local
value ℓ0 is set to the “self-message” of the third argument. Then, a sequence of ℓi is defined,
each by applying function w1 to the previous element in the sequence and the value w2(δi)
(skipping δ itself). The final result ℓn is the result of the application, with empty value-tree.
Auxiliary rules for the other available built-in functions are standard, do not depend on the
environment, hence have been omitted.

Network semantics. The evolution of a whole network of devices executing a program emain

is formalised by transitions N act−−→ N ′, which reads “network configuration N evolves to
network configuration N ′ by a transition with label act”. The syntax of network configurations
and action labels is in Figure 8 (top). A network configuration N is a triple ⟨Σ; Ψ;ψ⟩, where:

Σ maps each device δ of the network to a sensors status σ, representing the status of
sensors of δ at a given time (for any choice of a representation of sensor status σ);
Ψ maps each device δ of the network to a value-tree environment Θ, collecting the (non
expired) value-trees received by the most recent firings of neighbours of δ;
ψ is a partial mapping that, at any given time, maps devices δ of the network to the
nvalue w produced by their most recent firings (if any such firing already happened).

We remark that, for each device δ, the sensors status Σ(δ), the value-tree environment Ψ(δ)
and the nvalue ψ(δ) are locally stored in the device δ – there is no global memory.

Each transition N
act−−→ N ′ consists of one of these three different evolution steps:

if act = δ, it formalises the round of device δ, and the memorisation of the resulting
nvalue w and value-tree θ in the device’s local store;

G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 20:19

if act = δδ′ with δ ̸= δ′, it formalises that device δ′ receives a value-tree θ from δ;
if act = conf, it formalises an overall change of the network configuration as (possible)
change of sensor status of devices and (possible) entering/leaving of devices in the network.

A sequence of transitions ⟨∅; ∅; ∅⟩ act1−−→ ...
actn−−−→ Nn thus represents the operational evolution

of a network. The transition rules of the semantics of a program emain are given in Figure 8
(bottom). Rule [N-FIRE] formalises a computation round of device δ: given the locally-
available sensors status Σ(δ) and value-tree environment filtered out of expired value-trees
Θ = filter(Ψ(δ)), it uses the device semantics judgement to obtain the nvalue w and value-tree
θ produced by the round. Then, it uses w to update ψ(δ), and uses θ to update Θ(δ)
(thus modelling immediate reception of the self-message). The filtering function filter(·)
is a parameter of the calculus, meant to clear out old stored values from the value-tree
environments in Ψ, usually based on space/time tags attached to value-trees.

Rule [N-RECV] formalises the reception of a value-tree from device δ by another device
δ′. The message conceptually dispatched is the value-tree θ corresponding to δ obtained
from the value-tree environment Ψ(δ) of δ itself. On the recipient side, the received message
θ is locally associated to δ in the value-tree environment Ψ(δ′) of δ′. Even though rule
[N-RECV] dispatches the same message θ to any recipient δ′, an optimised implementation
could compress received messages by collapsing each received nvalue w within θ to the message
w(δ′) for δ′, discarding the rest before storing it in the local memory.

Rule [N-CONF] formalises an update of the sensor status of devices and entering/leaving of
devices (auxiliary notations m |X and m[m′] are in Fig. 8, second frame, representing domain
restriction and pointwise update of maps). Given a new sensors mapping Σ′, the resulting
network configuration contains exactly the devices δ in the domain dom(Σ′) of Σ′. This is
achieved by reducing the result field ψ to the new set of devices through ψ |δ, constructing
an environment field Ψ0 mapping every δ to the empty environment ∅, then reducing the
existing environment field Ψ to the new set of devices through Ψ |δ, and finally using this
to overwrite the values in Ψ0. Note that the reboot of a device δ can be modelled by two
applications of rule [N-CONF]: one removing δ from the network configuration and another
re-inserting it. When a device δ is removed from the network, the content of its local memory
(sensors, messages, result) are lost.

5 Implementation

We implemented a Scala and a C++ version of XC. The Scala version has been developed
as an extension of ScaFi [22], and aims at showcasing the DSL and maximize portability
to different platforms, including simulators. The C++ version has been developed as an
extension of FCPP [5], and has consequently been integrated into the main FCPP distribution.
This version targets performance and devices with limited resources. Running experiments
on real IoT devices with the C++ version is still work in progress.

5.1 Scala DSL
We provide an implementation of XC as a DSL embedded into the Scala language3 because of
its cross-platform support [30], popularity for building distributed systems [33], and advanced
support for internal DSLs [4]. This implementation has been developed as an extension of

3 The Scala DSL is publicly available under the Apache 2.0 license at https://github.com/scafi/
artifact-2021-ecoop-xc and permanently as an archived artifact on Zenodo [21].

ECOOP 2022

https://github.com/scafi/artifact-2021-ecoop-xc
https://github.com/scafi/artifact-2021-ecoop-xc

20:20 Functional Programming for Distributed Systems with XC

ScaFi [22]. The DSL is organized into a few core XC constructs and a library of reusable
functions. The core constructs (cf. Figure 6) are declared by a Scala trait with the following
interface:

1 trait XCLang {
2 def branch[T](cond: NValue[Boolean])(th: => NValue[T])(el: => NValue[T]): NValue[T]
3 def exchange[T](init: NValue[T])(f: NValue[T] => (NValue[T],NValue[T])): NValue[T]
4 }

The if/ else of XC is modelled as a branch function to avoid conflicts with Scala’s if. The
two branches are call-by-name parameters, as usual. A neighbour value is implemented as a
class with a default message and a concrete map of messages for other devices.

1 class NValue[T](val defaultMessage: T, val customMessages: Map[ID,T] = Map.empty) {
2 def fold[V>:T](init: V)(f: (V,V)=>V): NValue[V] = // ...
3 def map2[R,S](other: NValue[R])(m: (T,R)=>S): NValue[S] = // ...
4 // more built-ins ... (cf. Figure 2)
5 }

We leverage Scala implicit conversions and extension methods [25], imported by mixing in
XCLib, to automatically convert values of type T to NValues of Ts and, e.g., to extend NValues
of Numerics to accept operators like + (to combine nvalues point-wise). An abstract class
XCProgram[T] requires programmers to override the method main:T. Moreover, it exposes
methods sense and senseNeighbour to subclasses for retrieving local and neighbouring
values from the execution environment. For instance, the gradient program (Example 3) can
be encoded as follows.

1 object gradient extends XCProgram[Double] with XCLib {
2 def main =
3 exchange(Double.PositiveInfinity)(n =>
4 mux(sense[Boolean]("source")){ 0.0 }{
5 (n + senseNeighbour("distance")).fold(Double.PositiveInfinity)(Math.min)
6 })
7 }

An XCProgram[T] models a single local computation. As discussed (Section 2.1), a XC
system involves multiple devices repeatedly acquiring context, computing the round, and
propagating messages to neighbours. The execution environment provides a context with
values from the sensors for the built-in sensing functions (cf. Figure 2) and with the messages
from the neighbours. For example, the following code shows the execution on a device:

1 while(true) {
2 val sensorData = getData() // implementation-specific
3 val messagesFromNeighbours = getMessages() // implementation-specific
4 val context = Context(sensorData, messagesFromNeighbours)
5 val (output, messageCollection) = gradient.fire(context)
6 process(output) // implementation-specific
7 propagate(messageCollection) // implementation-specific
8 }

Note that in this implementation message communication occurs only before (Line 3) and
after (Line 7) the firing (Line 5) to ensure that the exchange within the round are all executed
atomically w.r.t. the messages that are received and sent by the device (Section 2.1). The
details of a system implementation depends on the target deployment. Example deployments
that could be implemented include a peer-to-peer network of IoT devices (where each node
handles computation and communication with neighbours), a collection of thin IoT devices
connected to the cloud (where only sensor and actuator data flows between the IoT nodes
and the cloud, which is responsible for running computations and internally handling the

G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 20:21

1 FUN bool gossipEver(ARGS, bool event){ CODE
2 return nbr(CALL, false, [&](field<bool> n){
3 return any_hood(CALL, n) or event;
4 });
5 }

Figure 9 Implementation of the gossipEver function in C++/XC.

message passing), or a simulator (where physical and/or logical devices are virtualised).
What these implementations must do in order to support a XC system is providing the
implementation-specific functions of the listing above: getData() to obtain values from the
local environment, getMessages() to retrieve messages from neighbours (e.g., a peer node
may keep them in a buffer, a cloud platform may use an in-memory database service, a
simulator may use an ad-hoc map-like data structure), process() to drive actuations (e.g.,
locally on a node, or through a command on a cloud back-end), and propagate() to send
exported data to neighbours (e.g., through a direct message to the neighbour, or through a
write on shared state in simulations or cloud).

5.2 C++ DSL
We implemented XC as a C++ DSL4, by extending FCPP [5]. This implementation is
designed for (i) efficiency, and (ii) custom architectures. For (i), we rely on C++’s compile-
time optimization and execution on the bare metal. We also performed careful profiling to
manually optimize crucial parts of the library. For neighbouring values, we use vector<T>
(having two sorted lists for ids and values) from C++ STL – which is more efficient than hash
maps for linear folding and point-wise operations. For communication, we serialise messages
and pass them to the network driver (for low level devices this is usually a non-standard API
where one can configure the byte content of the message and the transmission power). For (ii)
we exploit that C/C++ compilers are usually available for custom architectures, while also
aiming to minimise the amount of dependencies, to ease the deployment. For instance, the
implementation includes its own serialisation header, compile-time type inspection utilities,
multi-type valued maps, option types, quaternions, tagged tuples, etc.

Compared to the Scala implementation, the embedding of XC into C++ is more verbose,
thus requiring additional effort for development (see Figure 9 for a code sample). We are
currently working on testing this implementation on several different back-ends, including:

processing of XC algorithms on large graph-based data in HPC;
deployment on microcontroller architectures with either Contiki OS or MIOSIX.

No external dependencies are needed for those back-ends.

6 Evaluation

In this section, we evaluate XC.5 The goal is to show that (RQ1) the decentralised execution
of the XC program on each device results in the desired collective behaviour and that (RQ2)
the overall behaviour can be expressed by composing functions of collective behaviour that

4 The C++ DSL is publicly available under the Apache 2.0 license at: https://fcpp.github.io.
5 The simulation framework, its description, and instructions for reproducing the experiments are

publicly available at https://github.com/scafi/artifact-2021-ecoop-smartc and permanently as
an archived artifact on Zenodo [20].

ECOOP 2022

https://fcpp.github.io
https://github.com/scafi/artifact-2021-ecoop-smartc

20:22 Functional Programming for Distributed Systems with XC

(a) Communication structures are in place (inspec-
tion area and channel from detector to operations
centre). Sensors detect some dangerous situation.

(b) A blackout destroys the original channel. The
channel self-repairs by circumventing the obstacle.

Figure 10 Two snapshots of the SmartC case study.

correctly combine thanks to alignment. The evaluation does not focus on the efficiency
of fault recovering because this aspect is application-dependent – not language-dependent.
For instance, the recovery time for a channel depends on the algorithms used to compute
distances and broadcasts, relative to the network assumptions.

SmartC case study. We consider a simulation of the SmartC scenario described in Ex-
ample 11, and we implement it both in the Scala and C++ DSLs (the results in this section
refer to the Scala implementation). We believe that other application domains, such as
cyber-physical systems (CPS) and wireless sensor networks (WSN), would not pose funda-
mentally different challenges compared to the considered scenario: WSN focus on information
flows, which is part of the case study, and CPS emphasize on actuation, which could be a
simple variant of the scenario, e.g., where agents move according to the gathered reports.
In the simulation setup, 600 devices each running the XC program communicate with every
neighbour currently in a 50-metre range once per second. We consider a single detector
and a single operations centre. The simulator enables the collection of data exported at the
individual nodes (i.e., the program Example 11 is extended with simulation-specific code).
We measure, every second, the actual (instantaneous) mean warning in the inspection area
(using an oracle, namely a process that can inspect the simulated system at any instant) and
the mean warning measured by the operations centre. We consider the average result over
30 simulations varying the actual displacement of devices and scheduling offsets. We inject
a blackout event that disconnects a set of devices from the system, hence disrupting the
channel. Figure 10 shows two snapshots of the simulation with devices (black dots), detector
(red dot), sensors within the area inspected by the detector (green dots), operations centre
(magenta dot), and inoperable devices (cyan dots). Semi-transparent red squares denote
the warning level locally perceived by sensors. Blue squares are nodes in the channel from
detector to operations centre.

Results. Figure 11 shows that the mean warning received by the operations centre (blue)
during a run approximates the actual warning in the inspected area (magenta). The jags in
the second blue wave are due to perturbations (exacerbated by the obstacle) that temporarily
destroy the channel in a few simulations, while delays depend on the firing frequency and
communication hops (from inspection area edges to detector to operations centre).

G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 20:23

0 50 100 150 200 250 300
Time

0.0

0.5

1.0

1.5

2.0

2.5

3.0 mean warning in area (truth)
mean warning at collector

Figure 11 Execution of SmartC.

For (RQ1), this result shows that the XC program enables the system to self-organise in
such a way that the operations centre can acquire the mean warning level aggregated by the
detector, in spite of environmental changes and perturbations induced by mobility and failure.
For (RQ2), we remark that the self-organising behaviour resulting from the XC program in
SmartC is achieved by direct composition of several reusable blocks of collective behaviour,
namely distanceTo, broadcast, collect, and channelBroadcast (cf. Example 11).

Comparison with other programming models. Additionally, to get a sense of the benefit
of the XC implementation w.r.t. other programming models, we re-implemented functions
distanceTo and channel (a version of channelBroadcast without the final broadcast) with
actors and pub-sub6. Essentially, the intuition of the XC advantage in terms of expressiveness
lies in the implicit declaration of data exchange for each building block usage, instead of
the more explicit and verbose message handling/sending (for actors) and topic forging with
event consuming/producing (for pub-sub). Despite field calculi have been studied in a series
of papers [49], no systematic comparison (e.g. via formal translation) with other approaches
has been previously carried out. There are two challenges: (i) very few works target the
kind of distributed systems (e.g. self-organisation) targeted by XC, hence a comparison
needs to consider general-purpose languages and a wide spectrum of software designs; (ii)
system behaviour unfolds by the interplay of device semantics and network semantics (cf.
Section 4.2), which are brittle to neatly separate in other approaches. Though, we can here
focus on a comparison among (i) a pub-sub “idiomatic” solution, SPS, (ii) a pub-sub XC-like
solution SPSXC with a design inspired by XC, and (iii) an XC solution SXC. This allows us to
draw some interesting indications on the compactness that programming in XC can provide.

The core programs are 82, 28, 22 LoC long. In SPS, the logic spreads over multiple
subscription handlers, while in SPSXC and SXC the core logic is neatly separated. The SPS
version uses 4 handlers (and crucially, any additional field would need a further handler), 2
sends, and 4 publishes, while SPSXC uses 2, 1, and 3 resp. Also, SPS keeps 6 state variables
for the input context of a device–SPSXC only 3. W.r.t. SXC, SPSXC has a coding overhead due
to the topics management and to the more brittle handling of neighbour data, of about 27%
more LoC, 73% more words, and 35% more method calls. Finally, the main limitation of
SPS is the loss of compositionality, the inter-dependence between the different computations
of fields, and the fragility that stems from the management of change propagation.

6 The paradigm comparison is publicly available at:
https://github.com/metaphori/aggregate-paradigm-comparison.

ECOOP 2022

https://github.com/metaphori/aggregate-paradigm-comparison

20:24 Functional Programming for Distributed Systems with XC

7 Related work

We organize related work by first providing a high-level perspective on field-based coordination.
Next we describe approaches based on ensembles and attribute-based communication, which
are close to our solution but adopt fundamentally different design choices. Finally, we
compare in detail with field calculi and briefly discuss abstraction and compositionality.

Field-based coordination. Field-based coordination, as a paradigm to develop self-organising
systems, originate from two main research areas: spatial computing [29], where the idea
of aggregate computing [16] emerged, and coordination models and languages [39]. Two
surveys cover these two perspectives. The work in [15] reviews various DSLs ranging from
multi-agent modelling to WSNs with respect to how they measure and manipulate space-
time, model physical evolution and computation, and (meta-)manipulate computation itself.
More recently, [49] outlines the historical development from tuple-based and field-based
coordination to field calculi, covering the state of the art and future challenges within
aggregate computing research. The latter work also reviews various formalisations of field
computations. As discussed later, XC subsumes the constructs of field calculi as of [48, 6]
and so has a potential as foundation for field-based coordination, and as lingua franca to
describe distributed algorithms for large-scale systems, and specifically for self-organisation.

Ensembles and attribute-based communication. Recently, field-based coordination is
also framed as a paradigm for collective adaptive systems (CAS) [32], which is a further
application target for self-organisation techniques in general. There, related approaches
include ensemble-based engineering [19, 27] and attribute-based communication [1]. Ensemble
approaches leverage the notion of ensemble, i.e., a dynamic group of components typically
specified through a membership relationship, for CAS programming. De Nicola et al. propose
SCEL [27], a process-algebraic approach where systems are made of components, i.e., processes
with an attribute-based interface for addressing their state (knowledge) and evolving by
executing actions on predicated groups of target components; actions provide ways to read,
retrieve, put information, and to create new components. AbC [1] captures the essence of
attribute-based interaction of SCEL: components are (parallel compositions of) processes
associated with an attribute environment, and actions are guarded through predicates over
such attributes. Attribute-based communication approaches exploit attributes labelling
devices and matching mechanisms to dynamically define sets of recipients for multi-casts, to
promote coordination in CASs. This is also possible in field calculi, but it is made much
simpler by the selective communication mechanism in XC, a key contribution of this paper.

Field calculi. Field calculi, surveyed in [49], assume a neighbouring relationship for con-
nectivity and, upon that, enable defining dynamic groups of devices by exploiting branching
and recursion. However, interaction is not based on attribute matching but on execution of
the same functions (alignment) involving communication constructs like exchange.

In the following we compare XC with the field calculus (FC) [48, 6], which is the reference
model for computational fields [49], also implemented by DSLs like ScaFi [22, 23] and
FCPP [5, 13]. FC features two separate kinds of values (and types): local values (of local
type) and neighbouring values (of field type). XC combines these into a single class of nvalues
v = ℓ[δ 7→ ℓ]. In particular, local values are equivalent to nvalues ℓ[] without custom messages,
and neighbouring values are equivalent to nvalues with any valid default message. This
unification allows a simpler type system and, crucially, differentiated messages to neighbours.

G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 20:25

By interpreting FC values as nvalues, all FC message-exchanging constructs (nbr, rep [48]
and share [6]) can be modelled within XC: nbr is the same defined function introduced in
Section 2.2, just restricted to operate on local values only; share corresponds to an exchange
with retsend restricted to operate on local values only; and rep(e1){(x) => e2} can be
translated to exchange(e1, (x) => retsend e2[x := self(x)]). Notice that the converse
translation is not possible, as nbr, rep or share expressions with arguments of neighbouring
type have no defined behaviour in FC. Thus, nbr and exchange in XC are strictly more
expressive than their corresponding FC counterparts nbr and share: they can be used with
expressions producing nvalues with custom messages to model differentiated messages.

The properties for subsets of the field calculus (FC), as surveyed in [49], include eventual
recovery and stabilisation after transient changes (self-stabilisation) [48], independence of the
results from the density of devices [17], real-time error guarantees [12], efficient monitorability
of spatio-temporal logic properties [9, 11], and ability to express all physically consistent
computations (space-time universality) [7]. The fact that every FC program can be encoded
within XC, automatically imports all these results into XC and paves the way towards future
extensions to XC programs not expressible in FC.

Abstraction and compositionality. XC’s mechanism to send and receive messages to/from
neighbours provides a high-level programming model for message passing which abstracts over
failures (cf. Section 2.6) and is reminiscent of shared memory models. Namely: (i) nodes work
on a fixed snapshot of incoming messages once the round starts (because message exchange
occurs only between rounds) and (ii) messages can be overwritten or read multiple times
until they expire, resulting in a model similar to shared memory. This combination, thanks to
the alignment property (a distinctive feature of XC and field calculi, which enables functional
composition as illustrated in Sections 2.4 and 2.5), achieves an abstraction level that it is
not available in the competing spatial computing approaches (surveyed, e.g., in [15, 49]) or
shared memory models (surveyed, e.g., in [42, 43]).

8 Conclusion and Outlook

In this paper, we introduce the design of XC, a programming language for homogeneous
distributed systems that abstracts over a number of traditional issues in developing distributed
applications, including faults, lost messages, and asynchronicity. XC’s minimal design features
only one communication primitive. We show that despite its simplicity, XC can capture a
number of communication patterns in homogeneous distributed systems and it is effective
for writing large scale distributed software.

The design of XC, through nvalues and the new semantic construct exchange, opens
interesting directions for future work. First, we plan to characterise XC programs enjoying
two fundamental properties: self-stabilisation [48], and density independence [17], as the
ability of a field computation to converge with the density of devices filling space. Second,
works such as [48] define combinators, namely, general field functions implementing key
behavioural elements of information diffusion, collection, and degradation, the composition
of which turns out to define a number of interesting higher-level functions. We plan to devise
new such building blocks with XC, e.g. to realise sparse choice of leaders [41] and consensus
[14]. Finally, we are currently assessing the impact of XC constructs on real-world application
programming, thanks to our porting in Scala and C++.

ECOOP 2022

20:26 Functional Programming for Distributed Systems with XC

References
1 Yehia Abd Alrahman, Rocco De Nicola, and Michele Loreti. Programming interactions in

collective adaptive systems by relying on attribute-based communication. Science of Computer
Programming, 192, 2020. doi:10.1016/j.scico.2020.102428.

2 Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. Causal
memory: Definitions, implementation, and programming. Distributed Comput., 9(1):37–49,
1995. doi:10.1007/BF01784241.

3 Joe Armstrong. Erlang. Commun. ACM, 53(9), September 2010. doi:10.1145/1810891.
1810910.

4 Cyrille Artho, Klaus Havelund, Rahul Kumar, and Yoriyuki Yamagata. Domain-specific
languages with Scala. In ICFEM, volume 9407 of Lecture Notes in Computer Science, pages
1–16. Springer, 2015. doi:10.1007/978-3-319-25423-4_1.

5 Giorgio Audrito. FCPP: an efficient and extensible field calculus framework. In Proceedings
of the 1st International Conference on Autonomic Computing and Self-Organizing Systems,
ACSOS, pages 153–159. IEEE Computer Society, 2020. doi:10.1109/ACSOS49614.2020.00037.

6 Giorgio Audrito, Jacob Beal, Ferruccio Damiani, Danilo Pianini, and Mirko Viroli. Field-based
coordination with the share operator. Logical Methods in Computer Science, 16(4), 2020.
doi:10.23638/LMCS-16(4:1)2020.

7 Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Mirko Viroli. Space-time universality
of field calculus. In Coordination Models and Languages, volume 10852 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2018. doi:10.1007/978-3-319-92408-3_1.

8 Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Danilo Pianini, and Mirko Viroli.
Optimal resilient distributed data collection in mobile edge environments. Computers &
Electrical Engineering, 2021. doi:10.1016/j.compeleceng.2021.107580.

9 Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, Volker Stolz, and Mirko Viroli. Adaptive
distributed monitors of spatial properties for cyber-physical systems. J. Syst. Softw., 175:110908,
2021. doi:10.1016/j.jss.2021.110908.

10 Giorgio Audrito, Roberto Casadei, Ferruccio Damiani, and Mirko Viroli. Compositional blocks
for optimal self-healing gradients. In Self-Adaptive and Self-Organizing Systems (SASO), 2017,
pages 91–100. IEEE, IEEE Computer Society, 2017. doi:10.1109/SASO.2017.18.

11 Giorgio Audrito, Ferruccio Damiani, Volker Stolz, Gianluca Torta, and Mirko Viroli. Distrib-
uted runtime verification by past-CTL and the field calculus. J. Syst. Softw., 187:111251, 2022.
doi:10.1016/j.jss.2022.111251.

12 Giorgio Audrito, Ferruccio Damiani, Mirko Viroli, and Enrico Bini. Distributed real-time
shortest-paths computations with the field calculus. In 2018 IEEE Real-Time Systems
Symposium (RTSS), pages 23–34. IEEE Computer Society, 2018. doi:10.1109/RTSS.2018.
00013.

13 Giorgio Audrito, Luigi Rapetta, and Gianluca Torta. Extensible 3D simulation of aggregated
systems with FCPP. In 24th International Conference on Coordination Models and Languages,
Proceedings, Lecture Notes in Computer Science. Springer, 2022. To appear.

14 Jacob Beal. Trading accuracy for speed in approximate consensus. Knowledge Eng. Review,
31(4):325–342, 2016. doi:10.1017/S0269888916000175.

15 Jacob Beal, Stefan Dulman, Kyle Usbeck, Mirko Viroli, and Nikolaus Correll. Organizing
the aggregate: Languages for spatial computing. In Formal and Practical Aspects of Domain-
Specific Languages: Recent Developments, chapter 16, pages 436–501. IGI Global, 2013.
doi:10.4018/978-1-4666-2092-6.ch016.

16 Jacob Beal, Danilo Pianini, and Mirko Viroli. Aggregate programming for the Internet of
Things. IEEE Computer, 48(9), 2015. doi:10.1109/MC.2015.261.

17 Jacob Beal, Mirko Viroli, Danilo Pianini, and Ferruccio Damiani. Self-adaptation to device
distribution in the Internet of Things. ACM Transactions on Autonomous and Adaptive
Systems, 12(3):12:1–12:29, 2017. doi:10.1145/3105758.

https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.1007/BF01784241
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1145/1810891.1810910
https://doi.org/10.1007/978-3-319-25423-4_1
https://doi.org/10.1109/ACSOS49614.2020.00037
https://doi.org/10.23638/LMCS-16(4:1)2020
https://doi.org/10.1007/978-3-319-92408-3_1
https://doi.org/10.1016/j.compeleceng.2021.107580
https://doi.org/10.1016/j.jss.2021.110908
https://doi.org/10.1109/SASO.2017.18
https://doi.org/10.1016/j.jss.2022.111251
https://doi.org/10.1109/RTSS.2018.00013
https://doi.org/10.1109/RTSS.2018.00013
https://doi.org/10.1017/S0269888916000175
https://doi.org/10.4018/978-1-4666-2092-6.ch016
https://doi.org/10.1109/MC.2015.261
https://doi.org/10.1145/3105758

G. Audrito, R. Casadei, F. Damiani, G. Salvaneschi, and M. Viroli 20:27

18 Arne Brutschy, Giovanni Pini, Carlo Pinciroli, Mauro Birattari, and Marco Dorigo. Self-
organized task allocation to sequentially interdependent tasks in swarm robotics. Auton.
Agents Multi Agent Syst., 28(1):101–125, 2014. doi:10.1007/s10458-012-9212-y.

19 Tomás Bures, Ilias Gerostathopoulos, Petr Hnetynka, Jaroslav Keznikl, Michal Kit, and
Frantisek Plasil. DEECO: an ensemble-based component system. In Symposium on Compon-
ent Based Software Engineering (CBSE), pages 81–90. ACM, 2013. doi:10.1145/2465449.
2465462.

20 Roberto Casadei. scafi/artifact-2021-ecoop-smartc: v1.2, 2022. doi:10.5281/ZENODO.6538822.
21 Roberto Casadei. scafi/artifact-2021-ecoop-xc: v1.2, 2022. doi:10.5281/ZENODO.6538810.
22 Roberto Casadei, Mirko Viroli, Giorgio Audrito, and Ferruccio Damiani. FScaFi : A core

calculus for collective adaptive systems programming. In ISoLA (2), volume 12477 of Lecture
Notes in Computer Science, pages 344–360. Springer, 2020. doi:10.1007/978-3-030-61470-6_
21.

23 Roberto Casadei, Mirko Viroli, Giorgio Audrito, Danilo Pianini, and Ferruccio Damiani.
Engineering collective intelligence at the edge with aggregate processes. Eng. Appl. Artif.
Intell., 97:104081, 2021. doi:10.1016/j.engappai.2020.104081.

24 Shane S. Clark, Jacob Beal, and Partha P. Pal. Distributed recovery for enterprise services.
In 2015 IEEE 9th International Conference on Self-Adaptive and Self-Organizing Systems,
Cambridge, MA, USA, September 21-25, 2015, pages 111–120. IEEE Computer Society, 2015.
doi:10.1109/SASO.2015.19.

25 Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and
implicits. In SIGPLAN Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 341–360. ACM, 2010. doi:10.1145/1869459.1869489.

26 Soura Dasgupta and Jacob Beal. A Lyapunov analysis for the robust stability of an adaptive
Bellman-Ford algorithm. In Decision and Control (CDC), 2016 IEEE 55th Conference on,
pages 7282–7287. IEEE, 2016. doi:10.1109/CDC.2016.7799393.

27 Rocco De Nicola, Michele Loreti, Rosario Pugliese, and Francesco Tiezzi. A formal approach
to autonomic systems programming: The SCEL language. ACM Trans. Auton. Adapt. Syst.,
9(2):7:1–7:29, 2014. doi:10.1145/2619998.

28 Mattias De Wael, Stefan Marr, Bruno De Fraine, Tom Van Cutsem, and Wolfgang De Meuter.
Partitioned global address space languages. ACM Computing Surveys, 47(4), May 2015.
doi:10.1145/2716320.

29 André DeHon, Jean-Louis Giavitto, and Frédéric Gruau, editors. Computing Media and
Languages for Space-Oriented Computation, volume 06361 of Dagstuhl Seminar Proceedings,
2007. URL: http://drops.dagstuhl.de/portals/06361.

30 Sébastien Doeraene. Cross-platform language design in Scala.js (keynote). In SCALA@ICFP,
page 1. ACM, 2018. doi:10.1145/3241653.3266230.

31 Patrick Th. Eugster, Pascal A. Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. The
many faces of publish/subscribe. ACM Comput. Surv., 35(2), June 2003. doi:10.1145/857076.
857078.

32 Alois Ferscha. Collective adaptive systems. In UbiComp/ISWC Adjunct, pages 893–895. ACM,
2015. doi:10.1145/2800835.2809508.

33 Debasish Ghosh, Justin Sheehy, Kresten Krab Thorup, and Steve Vinoski. Programming
language impact on the development of distributed systems. J. Internet Serv. Appl., 3(1):23–30,
2012. doi:10.1007/s13174-011-0042-y.

34 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM Transactions on Programming Languages and Systems,
23(3), 2001. doi:10.1145/503502.503505.

35 Márk Jelasity, Alberto Montresor, and Özalp Babaoglu. Gossip-based aggregation in large
dynamic networks. ACM Trans. Comput. Syst., 23(3):219–252, 2005. doi:10.1145/1082469.
1082470.

ECOOP 2022

https://doi.org/10.1007/s10458-012-9212-y
https://doi.org/10.1145/2465449.2465462
https://doi.org/10.1145/2465449.2465462
https://doi.org/10.5281/ZENODO.6538822
https://doi.org/10.5281/ZENODO.6538810
https://doi.org/10.1007/978-3-030-61470-6_21
https://doi.org/10.1007/978-3-030-61470-6_21
https://doi.org/10.1016/j.engappai.2020.104081
https://doi.org/10.1109/SASO.2015.19
https://doi.org/10.1145/1869459.1869489
https://doi.org/10.1109/CDC.2016.7799393
https://doi.org/10.1145/2619998
https://doi.org/10.1145/2716320
http://drops.dagstuhl.de/portals/06361
https://doi.org/10.1145/3241653.3266230
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/2800835.2809508
https://doi.org/10.1007/s13174-011-0042-y
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/1082469.1082470
https://doi.org/10.1145/1082469.1082470

20:28 Functional Programming for Distributed Systems with XC

36 Pushpendu Kar, Arijit Roy, and Sudip Misra. Connectivity reestablishment in self-organizing
sensor networks with dumb nodes. ACM Trans. Auton. Adapt. Syst., 10(4):28:1–28:30, 2016.
doi:10.1145/2816820.

37 Naomi Kuze, Daichi Kominami, Kenji Kashima, Tomoaki Hashimoto, and Masayuki Murata.
Hierarchical optimal control method for controlling large-scale self-organizing networks. ACM
Trans. Auton. Adapt. Syst., 12(4):22:1–22:23, 2018. doi:10.1145/3124644.

38 Alberto Lluch-Lafuente, Michele Loreti, and Ugo Montanari. Asynchronous distributed
execution of fixpoint-based computational fields. Log. Methods Comput. Sci., 13(1), 2017.
doi:10.23638/LMCS-13(1:13)2017.

39 Thomas W. Malone and Kevin Crowston. The interdisciplinary study of coordination. ACM
Comput. Surv., 26(1):87–119, 1994. doi:10.1145/174666.174668.

40 Marco Mamei and Franco Zambonelli. Programming pervasive and mobile computing applica-
tions with the TOTA middleware. In Pervasive Computing and Communications, 2004, pages
263–273. IEEE, 2004. doi:10.1109/PERCOM.2004.1276864.

41 Yuanqiu Mo, Jacob Beal, and Soura Dasgupta. An aggregate computing approach to self-
stabilizing leader election. In International Workshops on Foundations and Applications of
Self* Systems (FAS*W), pages 112–117. IEEE, 2018. doi:10.1109/FAS-W.2018.00034.

42 Christine Morin and Isabelle Puaut. A survey of recoverable distributed shared virtual memory
systems. IEEE Trans. Parallel Distributed Syst., 8(9):959–969, 1997. doi:10.1109/71.615441.

43 Hamid Mushtaq, Zaid Al-Ars, and Koen Bertels. Survey of fault tolerance techniques for
shared memory multicore/multiprocessor systems. In International Design and Test Workshop
(IDT), pages 12–17. IEEE, 2011. doi:10.1109/IDT.2011.6123094.

44 Ryan Newton and Matt Welsh. Region streams: Functional macroprogramming for sensor
networks. In Workshop on Data Management for Sensor Networks, pages 78–87, 2004.
doi:10.1145/1052199.1052213.

45 Torsten Hoefler on behalf of the MPI Forum. MPI: A message-passing interface standard,
version 2.2. Specification, Message Passing Interface Forum, September 2009. URL: http:
//www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf.

46 H. Van Dyke Parunak, Sven Brueckner, Robert S. Matthews, and John A. Sauter. Pheromone
learning for self-organizing agents. IEEE Trans. Syst. Man Cybern. Part A, 35(3):316–326,
2005. doi:10.1109/TSMCA.2005.846408.

47 Rajiv Ranjan, Omer F. Rana, Surya Nepal, Mazin Yousif, Philip James, Zhenya Wen, Stuart L.
Barr, Paul Watson, Prem Prakash Jayaraman, Dimitrios Georgakopoulos, Massimo Villari,
Maria Fazio, Saurabh Kumar Garg, Rajkumar Buyya, Lizhe Wang, Albert Y. Zomaya, and
Schahram Dustdar. The next grand challenges: Integrating the internet of things and data
science. IEEE Cloud Comput., 5(3):12–26, 2018. doi:10.1109/MCC.2018.032591612.

48 Mirko Viroli, Giorgio Audrito, Jacob Beal, Ferruccio Damiani, and Danilo Pianini. Engineering
resilient collective adaptive systems by self-stabilisation. ACM Trans. Model. Comput. Simul.,
28(2):16:1–16:28, 2018. doi:10.1145/3177774.

49 Mirko Viroli, Jacob Beal, Ferruccio Damiani, Giorgio Audrito, Roberto Casadei, and Danilo
Pianini. From distributed coordination to field calculus and aggregate computing. J. Log.
Algebraic Methods Program., 109, 2019. doi:10.1016/j.jlamp.2019.100486.

50 Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. Distributed system development
with ScalaLoci. Proc. ACM Program. Lang., 2(OOPSLA):129:1–129:30, 2018. doi:10.1145/
3276499.

https://doi.org/10.1145/2816820
https://doi.org/10.1145/3124644
https://doi.org/10.23638/LMCS-13(1:13)2017
https://doi.org/10.1145/174666.174668
https://doi.org/10.1109/PERCOM.2004.1276864
https://doi.org/10.1109/FAS-W.2018.00034
https://doi.org/10.1109/71.615441
https://doi.org/10.1109/IDT.2011.6123094
https://doi.org/10.1145/1052199.1052213
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
http://www.mpi-forum.org/docs/mpi-2.2/mpi22-report.pdf
https://doi.org/10.1109/TSMCA.2005.846408
https://doi.org/10.1109/MCC.2018.032591612
https://doi.org/10.1145/3177774
https://doi.org/10.1016/j.jlamp.2019.100486
https://doi.org/10.1145/3276499
https://doi.org/10.1145/3276499

PEDroid: Automatically Extracting Patches from
Android App Updates
Hehao Li #

Shanghai Jiao Tong University, China

Yizhuo Wang #

Shanghai Jiao Tong University, China

Yiwei Zhang #

Shanghai Jiao Tong University, China

Juanru Li # Ñ

Shanghai Jiao Tong University, China

Dawu Gu #

Shanghai Jiao Tong University, China

Abstract
Identifying and analyzing code patches is a common practice to not only understand existing bugs
but also help find and fix similar bugs in new projects. Most patch analysis techniques aim at
open-source projects, in which the differentials of source code are easily identified, and some extra
information such as code commit logs could be leveraged to help find and locate patches. The task,
however, becomes challenging when source code as well as development logs are lacking. A typical
scenario is to discover patches in an updated Android app, which requires bytecode-level analysis.
In this paper, we propose an approach to automatically identify and extract patches from updated
Android apps by comparing the updated versions and their predecessors. Given two Android apps
(original and updated versions), our approach first identifies identical and modified methods by
similarity comparison through code features and app structures. Then, it compares these modified
methods with their original implementations in the original app, and detects whether a patch is
applied to the modified method by analyzing the difference in internal semantics. We implemented
PEDroid, a prototype patch extraction tool against Android apps, and evaluated it with a set of
popular open-source apps and a set of real-world apps from different Android vendors. PEDroid
identifies 28 of the 36 known patches in the former, and successfully analyzes 568 real-world app
updates in the latter, among which 94.37% of updates could be completed within 20 minutes.

2012 ACM Subject Classification Software and its engineering → Software evolution

Keywords and phrases Diffing, Patch Identification, Android App Analysis, App Evolution

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.21

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.24

Funding This work was supported by the National Key Research and Development Program of
China (No.2020AAA0107803).

Acknowledgements We are grateful to our reviewers for their valuable support and suggestions.

1 Introduction

Android apps nowadays are published at an unprecedented rate and many developers
frequently update their apps for a variety of reasons such as helping maintain the robustness
or introducing more competitive features. An update usually leads to multiple modifications
of the app, some of which are used to improve the functionality or performance, while a
significant type of modifications is to fix bugs in apps. This type of modifications, also known
as patches, reflect how the developers fix the bug. Researchers not only learn the causes

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Hehao Li, Yizhuo Wang, Yiwei Zhang, Juanru Li, and Dawu Gu;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 21; pp. 21:1–21:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lihehao@sjtu.edu.cn
mailto:mr.wang-yz@sjtu.edu.cn
mailto:yyyyyyw@sjtu.edu.cn
mailto:jarod@sjtu.edu.cn
https://sjtu.lijuanru.com/
mailto:dwgu@sjtu.edu.cn
https://doi.org/10.4230/LIPIcs.ECOOP.2022.21
https://doi.org/10.4230/DARTS.8.2.24
https://doi.org/10.4230/DARTS.8.2.24
https://doi.org/10.4230/DARTS.8.2.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 PEDroid: Automatically Extracting Patches from Android App Updates

of bugs but also discover and fix similar bugs [19, 23, 22] in other apps through analyzing
the information carried by patches. However, it is often unclear for analysts how Android
app developers repair existing defects for lack of detailed commit logs, especially for security
participants who do not have access to the source code. Thus, the gap between the updated
apps and patches hinders the analysis of patches.

To the best of our knowledge, few approaches effectively identify patches against Android
updates (i.e., the original and updated versions of an app). A common and simple way
to retrieve existing patches is crawling from bug-tracking systems of open-source projects,
such as GitHub Issue Tracker [16], where the detailed commit messages or bug reports are
available to determine whether the modified methods contain patches. This approach does
not work on closed-source apps that have less information to explain the reasons for updates.
The descriptions about the updates of closed-source apps often only claim what feature has
been added or some bugs have been repaired, but do not further explain the type, cause,
and repair information of the bugs. On the other hand, compared with the open-source
project, the closed-source app has a much larger amount and accounts for the majority of
Android apps. As for binary-level analysis, SPAIN [45] focuses on patches in C binaries,
but the huge difference between procedure-oriented and object-oriented program languages
makes it unable to apply on Android apps.

Another problem to identify patches at bytecode level is how to locate modified methods
in updates. Previous works [45, 38] of patch analysis on C binary utilize BinDiff [7] to
achieve the goal. However, there exist few accurate diffing tools on bytecode of Android apps,
due to the popularity of code obfuscation (e.g., using ProGuard [30] to protect bytecode).
Most works only implement coarse-grained similarity comparison [6, 49, 39, 47] cross apps,
which cannot locate the modified methods between two versions of an app, while other
works [20, 43, 33] link the original methods with their updated versions by method names
which cannot resist obfuscation techniques.

To address the above problems, in this paper, we propose a bytecode-level patch extraction
approach, named PEDroid, to automatically locate the patches in updates of Android apps.
The workflow of PEDroid consists of two phases: 1) locating the modified methods in two
versions of an app, and 2) identifying patches among the modified methods. In phase 1,
given the original and updated versions of an Android app, PEDroid first calculates the
method-level matching relations based on features extracted from bytecode and the structure
of the app. The method-level matching relation refers to the two versions of the same method,
including identical and modified methods. With the matching relations, it filters out the
identical methods whose features are identical and focuses on the modified methods. To
identify patches in phase 2, we propose an effective approach to determine the patches from
two aspects: 1) the call sites of the modified methods, and 2) the difference in internal
semantics. In particular, PEDroid analyzes the call sites of the modified methods using a
static taint analysis to check whether the methods use external values (i.e., external inputs
or results from other methods). Then, it compares the internal semantics of the two versions
of the modified methods through aligning the same operations of external values within the
two methods and analyzing the modification related to these operations. Finally, PEDroid
identifies the patches whose modification is used to fix the processing logic before these
operations or handle the errors generated by them.

We evaluated PEDroid on two datasets of Android apps: the first set contains 13
updates of popular open-source apps, and the second one contains 568 real-world updates.
We first tested PEDroid on the open-source dataset to evaluate its effectiveness. PEDroid
achieves a recall of 92% in differential analysis, and successfully identifies 28 of 36 patches
in patch identification. The results show that our approach effectively locates the modified
methods and identifies patches. Then, PEDroid ran on the second dataset and successfully

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:3

extracted 98,591 patches. Through a further manual analysis, we confirmed several types of
patches including security check addition, date usage correcting, error handling, etc. For the
time cost, 63.91% of the updates were analyzed within 5 minutes, 83.98% were completed
within 10 minutes, and 94.37% were completed within 20 minutes. It shows that PEDroid
is capable of discovering rich types of patches in real-world apps.

In summary, our work includes the following contributions:
We propose a novel approach to extract patches from the neighboring versions of Android
apps, and implement PEDroid based on the approach, which labels the identical and
modified methods in given APK files, and then identifies patches among all modified
methods. To the best of our knowledge, PEDroid is the first work that extracts patches
from updates of close-sourced Android apps.
Due to the lack of a standard benchmark to evaluate the accuracy of differential analysis
and patch identification, we collected a dataset with 13 updates of 6 popular open-source
apps, which contains 36 patches and 47 non-bugfix updates. The dataset can be used as
a benchmark for future works to evaluate the performance of patch extraction.
We also evaluate the applicability of PEDroid on 568 real-world app updates. 98,591
patches are discovered by PEDroid, including various types (e.g. adding security checks,
correcting data usage). All updates are successfully analyzed and 94.37% can be completed
within 20 minutes.

2 Related Works

2.1 Diffing in Android
Diffing is a common technique to compare the difference between two programs. There
are numerous works to diff two versions of a program at the source code level. Git-diff
tool [11] defaults input is sequential and cannot handle the changes in text order, for example,
the different order of methods in a class between compilation. Furthermore, it cannot
resist the broadly-used renaming obfuscation (e.g., ProGuard[30]) for sensitiveness to all
characters in the text. GumTree [9] diffs two versions of abstract syntax tree (AST) of a
single Java source code file and considers the different order. However, it provides only a
fine-grained diffing between two class files but no method-level matching relations on apps.
To retrieve matching relations, some works [32, 33, 43] link two versions of a method by
defined patterns, and involves method names in patterns or similarity comparison. But it
cannot either handle changes that do not follow these patterns or deal with bytecode with
little symbolic information. Schäfer et al. [31] propose an approach to extract matching
relations of methods in framework by their usage (e.g. calling and extension) in apps, which
builds on the framework or test cases provided by developers. But for all methods in apps,
a large proportion will be ignored by the approach. Therefore, these existing diffing tools
cannot meet our requirements to locate the modified methods on bytecode.

Apart from these diffing tools, there are many bytecode-level approaches to detect
similarity between two Android apps. Many previous works only extract coarse-grained
features from code to resist obfuscation. For example, only method signatures are extracted
as code features in several works [6, 49, 39, 47], which makes them unable to discover the
modification within a method. To achieve the goal of comparing the similarity at the method
level, SimiDroid [20] defaults the two methods with the same signatures (i.e., class name,
method name, parameter and return types) as matched methods. Hence, the approach cannot
resist renaming obfuscation. Another similarity comparison technique [8] only focusing on
single methods also obtains inaccurate results. For example, method a and b of class A in the
updated version are matched with method b of class B and method c of class C in the original
version. Therefore, a more precise approach to matching at the method level is necessary.

ECOOP 2022

21:4 PEDroid: Automatically Extracting Patches from Android App Updates

2.2 Patch Identification
Most existing works on patch analysis focus on open-source projects. The keyword-based
approach is the most common way to identify patches, and they collect patches directly from
open-source project repositories by parsing reports with predefined keywords (e.g., bug, error
and fault) in their issue tracking systems [26, 24, 37, 21, 17, 40]. Different from open source
projects that provide formatted and exact code update information, released apps usually
do not provide detailed descriptions about changed methods. Instead, they just give some
brief comments about update information1 or even nothing [29]. Hence, it is hard to locate
relevant code snippets just by these text descriptions. In addition, Xinda Wang et al. [38]
adopt a matching learning-based technique to identify security patches in open-source C
projects. They conclude basic, syntactic, and semantic features of changes and train models
by open-source patch datasets. However, due to the commercial competition between apps
and the prevention of attackers carrying out attacks, few developers open security issues to
promote research and analysis. Therefore, the lack of datasets makes it difficult to implement
effectively on closed-source Android apps.

As for previous efforts at binary level, Xu et al. [44] generate function signatures for known
patches to match, which is unlikely to discover unknown patches. SPAIN [45] identifies patches
based on the heuristic that patches are less likely to introduce new semantics than other
modifications, and they use the difference of registers, flags, and memory between before and
after code snippets to represent the semantics. However, since the object-oriented program
language (e.g., Java) is used, most registers in Android apps point to object references, and
operations are usually implemented by API or method invocation instead of calculation.
Therefore, the semantics of Android bytecode cannot be represented by numerical differences
and such an approach is inapplicable in Android apps. To our best knowledge, there is no
effective way to identify patches on Android apps.

3 Overview

The goal of our work is to understand patches and the corresponding bugs, and automatically
extract patches from Android app updates. While there are a variety of ways to do so, we seek
to design an applicable, automated and systematic approach. In this section, we first discuss
various challenges we need to solve (Section 3.1), then give corresponding solutions against
these challenges (Section 3.2), and finally describe the overview of our tool (Section 3.3).

3.1 Challenges
There will be a number of challenges in order to achieve our goal and these include:

Challenge 1. How to obtain code features. In order to retrieve matching relations, we first
calculate code feature similarity. One of the most used code features between two version
apps is the sequences of instructions, which describes the project updates by comparing
the text line by line [11]. Another common code feature is method signature [20, 43, 33].
However, both the two features could not be applied to represent Android bytecode due to
the compilers, obfuscators and even developer customization. Hence, only code order or the
method signatures is not feasible in our work. Therefore, we have to first determine how to
retrieve the code features.

1 App developers usually describe the app update briefly (e.g., “Fixed some bugs”) in the WHAT’S NEW
section of a mobile app homepage.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:5

Challenge 2. How to retrieve the matching relations. Having the method features,
the next step is to retrieve the matching relations to locate the methods that are of our
interest. Since the patches are usually used to update apps, we focus on the modified
methods. Unfortunately, existing studies could not retrieve matching relations at the method
level concretely. Some works only detect re-used components (e.g., third-party library) by
coarse-fine similarity comparison [6, 49, 39, 47] or retrieve specific matched methods by
patterns and method name [20, 43, 33]. Hence, a more precise approach to matching at the
method level is necessary.

Challenge 3. How to identify patches in modified methods. Having obtained the modified
methods, we still need to further identify the patches. Since the lack of commit logs and
open-source databases, the existing works [26, 24, 37, 21, 17, 40] cannot be applied to
Android updates. And other approaches are also inapplicable because of the huge difference
between procedure-oriented language and object-oriented program languages [45] or the aim
to discover specific patches against our purpose [44]. Hence, how to identify the patches
from modified methods is another challenge.

3.2 Solutions
As previously mentioned, if we intend to perform patch identification in Android apps, we
have to face lots of challenges. Fortunately, we have obtained the following insights to address
the above challenges.

Solution 1. Extracting features after removing noisy changes. Instead of calculating
similarity directly on bytecode through code instruction sequences and method signatures,
we combine multiple strategies to extract stable code features which eliminate the noisy
changes caused by obfuscation and compilation. Specifically, two steps are involved. First,
we replace volatile identifiers with specific labels to resist renaming obfuscation. Second, we
divide bytecode into different code units and sort order-independent units, including basic
blocks2, fields and methods, to normalize the order.

Solution 2. Matching guided by positional relationships. We observed that most of the
code is identical between app updates, especially for the updates with small version upgrades.
Thus, to pinpoint the matching relations and further locate the modified methods, our key
insight is to utilize the positional relationships in the program structure to assist in matching
the modified code. Specifically, we first locate packages containing identical code features in
different versions as matched packages. And then we utilize the package hierarchy 3 of the
matched packages and similarity comparison to determine the matching relations of other
packages. All matched packages are used to further determine the matching relations of
classes and methods. Finally, those matched methods with different features are considered
as modified methods.

Solution 3. Identifying patches by pinpointing buggy operation. Most unexpected beha-
viors of the methods are caused by the incorrect handle of the input, and the corresponding
patches in the updated version are used to fix incorrect usage or handle the errors. Especially,

2 a straight-line code sequence with no branches in except to the entry and no branches out except at the
exit

3 a tree of packages and their subpackages. It is like directory structures.

ECOOP 2022

21:6 PEDroid: Automatically Extracting Patches from Android App Updates

the input comes from not only external inputs (e.g., network I/O and user interaction) but
also unexpected results returned from other methods. We call them external values. Our
insight to identifying the patch is that a patch usually fixes the processing logic before the
buggy operation or handles the errors generated by the buggy operation, while the target of
operation tends to involve external values. Thus, we try to locate the buggy operation to
identify patches. To achieve it, we first analyze the usage of the modified methods to check
whether they use the external values, then align the original operations of external values
within the two methods, and finally determine the patch by specific semantic changes. Such
changes are indicated by the original operations which have different dependencies between
two versions or result in extra error handling (i.e., exit or exception capture) of the method,
and the operation is pinpointed as a buggy operation.

Example. To better illustrate the insight used in Solution 3, we give the motivating
examples in Figure 1. The example in Figure 1a fixes the processing logic for the input by
adding checks. In this case, the parameter path is the input of the method, and it usually
accepts an external value when invoked, so Line 4 which indirectly depends on path is an
operation of external values. Since the dependencies of Line 4 are modified, the operation is
pinpointed as a buggy operation as our insight. Similarly, another example in Figure 1b is
identified for its handling the exception generated by the deleting operation in the patch
code, which is different from the original version.

private void patch1(String path) {
File file = new File(path);
if(file.exists()) {

file.delete();
}else{

Log.e("Tag", "Cannot find target file.");
}

}

1

2

3 +

4

5 +

6 +

7 +

8

(a) Fix processing logic before a buggy operation.

private void patch2(String path) {
File file = new File(path);
try {

file.delete();
} catch (Exception e){

Log.e("Tag", "Cannot delete target file.");
}

}

1

2

3 +

4

5 +

6 +

7 +

8

(b) Handle errors generated by a buggy operation.

Figure 1 Examples of two types of patches. Statements with green background are added snippets
in updated version.

3.3 Framework Overview

Based on the solutions to the three challenges, we design PEDroid, the first patch extraction
tool on Android updates. Figure 2 depicts the workflow of PEDroid, which consists of two
phases:

1. Differential analysis. PEDroid first establishes the structure of apps and extracts
features of disassembly code (in Section 4.1). Then, it uses the package as the unit to
match between the two versions of the app (in Section 4.2), and finally extracts the
matching relations at the method level (in Section 4.3).

2. Patch identification. PEDroid extracts the modified methods in the results of
differential analysis, and checks whether it is affected by external values at each call site
(in Section 5.1). It then locates the operation of the external values within the method
and analyzes the modification related to the operations. PEDroid reports the patch if
the modification is used to fix the processing logic or handle the errors (in Section 5.2).

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:7

Structure Construction
& Feature Extraction

Package-level
Matching

Matching Relation
Extraction

Call Site AnalysisInternal Semantic Comparison

original version

updated version

patch reports

Data Flow Analysis

original version

updated version

Dependency Analysis

Call Site Matching

Class-level
Matching

Method-level
Matching

Basic Block Matching

caller

call site info Taint AnalysisPatch
Identifying

Phase 1: Differential Analysis

Phase 2: Patch Identification

tainted
states

Figure 2 The workflow of PEDroid.

4 Differential Analysis

In this section, we present the design principles of differential analysis, as well as the adopted
techniques. PEDroid retrieves method-level matching relations between APK updates
through three steps: structure construction and feature extraction, package-level matching,
and matching relation extraction.

4.1 Structure Construction & Feature Extraction
The first step of differential analysis is to disassemble the Android app and establish the app
structure, including package hierarchy, classes, and code elements in classes (e.g., methods).
First, PEDroid builds the relations among packages and classes by the directory structures
of the disassembled app, where directories correspond to packages and files correspond to
classes. Then, it parses the file content and extracts details of each class, such as fields and
methods. Especially, since many nested classes (e.g., inner classes, local classes, anonymous
classes, and lambda expressions) contain less information, matching them respectively will
lead to false positives. To eliminate it, PEDroid recovers the nested relations and treats them
as subunits of the classes they belong to. In detail, PEDroid retrieves it through system
annotations from the decompiled class files, i.e., Ldalvik/annotation/MemberClasses,
Ldalvik/annotation/EnclosingClass, Ldalvik/annotation/EnclosingMethod.

After app structure construction, PEDroid builds code features from the bottom up
according to the structure. Specifically, we adopt two strategies to make the feature stable.
1. Replacing volatile identifiers.

To remove the volatile parts in code, we use the specific labels to fuzz types and the
instructions. First, because types contain volatile identifiers, PEDroid only retains the
primitive types and framework types, and replaces others by label X to remove the noise

Listing 1 Example for fuzzy type. Landroid/content/Context is a framework-type and V (i.e.,
void) is a primitive type. Lcom/text/example is replaced by X.
Original : <init >(Landroid / content / Context ;Lcom/test/ example ;)V
Fuzzy : <init >(Landroid / content / Context ;X)V

ECOOP 2022

21:8 PEDroid: Automatically Extracting Patches from Android App Updates

Table 1 Rules for fuzzy instruction.

Type Label Original instruction Fuzzy instruction
Register R mov v0, v1 mov R, R
Label L if-eqz :const_0 if-eqz :L
Resouce ID N const v0, 0x7f112222 const R, N
Method/Class
(except Android API) X invoke-virtual p0, Lcom/test/example;->call()V invoke-virtual R, X

brought by the identifiers, when extracting types involving some code elements such as
fields. In this way, PEDroid converts them into the fuzzy type. For example, List 1 gives
an example of fuzz types in a method signature. For instructions, PEDroid replaces
the different types of the operand with the different labels, as shown in Table 1. Each
processed instruction is called fuzzy instruction.
In detail, PEDroid extracts the following feature elements for different code units:

Basic Block. The feature of a basic block consists of all the fuzzy instructions in the
basic block.
Method. The feature of a method includes method access flags, fuzzy types of all
parameters, and the features of all basic blocks in the method.
Field. The feature of a field is a string consisting of access flags, fuzzy type, and the
non-default initialization value. The default initialization values (i.e. null, ‘’, 0, etc.)
and names of fields are ignored.
Class. The feature of a class includes the fuzzy types of superclass and interfaces, the
features of fields, methods, and nested classes.

2. Normalizing orders.
The order-independent features such as the features of basic blocks and methods are
sorted to normalize the order. It is because the extracted features without normalizing will
be different because of the different orders between the two versions. Since these changes
are caused by compilation rather than developers, we eliminate them. To normalize the
order of fuzzy instructions with a basic block, PEDroid analyzes the dependencies of
registers and sorts the order of sequential instructions without dependencies on each other.
For independent units (including basic blocks, methods, fields, and classes), PEDroid
directly sorts the features of the same types of the included units. For example, the
features of basic blocks are sorted and then become a part of the method feature.

After extracting features and normalizing the order, PEDroid calculates the overall
feature of each unit by hashing all the orderly features to represent the unit. Hence, the
overall feature of a unit is calculated based on the overall hash of the included units, rather
than all the feature elements of each included unit. And PEDroid records the overall
features and feature elements of all units and the inclusion relations between the units.

4.2 Package-level Matching
With the app structure and the features of code elements, PEDroid calculates the matching
relations between packages based on the package hierarchy, which is the sub-graph of the app
structure. Specifically, PEDroid extracts identical classes, which are the two classes with
identical features. And then it locates identical packages having at least one identical class.
Among the rest packages, PEDroid utilizes their positional relations with the identical
packages on the two package hierarchy to search for matching candidates, and treats the
packages with the greatest similarity as similar packages. In summary, it includes two steps:
identical package matching and similar package matching.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:9

Identical Package Matching

PEDroid builds an identical package collection PKGiden, which stores the identical package
pairs. To achieve it, PEDroid first finds out the identical classes. Especially, only when the
overall feature of the class in the updated version is unique and the same as the unique feature
in the original version, the two version classes are regarded as identical classes. Packages
with one or multiple identical classes are considered identical, and the two packages are
added to PKGiden as a pair. According to these rules, PEDroid obtains the matching
pair collection PKGiden of the identical packages, which maps an updated package to all
the original packages considered to be identical. That means a package may have multiple
identical classes to different packages of another version.

Similar Package Matching

Based on the identical package collection PKGiden and package hierarchy, PEDroid matches
similar packages by different positional relationships. Algorithm 1 represents our approach
to determine similar packages from candidates. In detail, PEDroid first discovers the
candidates by the positions of matched packages (which are initially identical packages) on
package hierarchy and then selects the packages with the greatest similarity among candidates
as similar packages.

Algorithm 1 Searching similar packages in all candidates.
Input: Candidates set Candidatesim

Output: Similar packages P KGsimi

P KGsimi ← ∅
map1 : mapping new version packages to all candidates packages in old version
map2 : mapping old version packages to all candidates packages in new version
for ⟨p1, p2⟩ in Candidatesim do

map1[p1].add(p2)
map2[p2].add(p1)

end
for ⟨p1, candidates1⟩ in map1 do

p2 ← get most similar package in candidates1 of p1
candidates2 ← map2[p2]
p

′

1 ← get most similar package in candidates2 of p2

if p1 == p
′

1 then
P KGsimi.add(⟨p1, p2⟩)

end
end
return P KGsimi

Similarity Calculation. PEDroid quantifies similarity based on the similarity between
features. Since the feature is extracted from the bottom up, the similarity between the upper
units involves their bottom units. That means, before calculating the similarity of the units,
the matching relations between their included units should be obtained. For example, the
similarity of classes is calculated based on the matching relations between the methods in
the target classes. The matched units are called peer units. Besides the included units, other
feature elements of the same type in a unit are also regarded as peer units, such as the access
flags of methods. Furthermore, to reflect the amount of information, we introduce the length
of feature in similarity calculation, which means the number of basic elements contained in
the feature. For example, the length of features of a basic block is the number of extracted
instructions. Specifically, we define three types of similarity at different levels as follows:

ECOOP 2022

21:10 PEDroid: Automatically Extracting Patches from Android App Updates

Method-level Similarity. The proportion of the sum of the lengths of identical features to
the total length of features of the method.

Class-level Similarity. The weighted average of the similarity between peer units where the
weight is the length of features. If the class has nested classes, the similarity is added
with the sum of the similarities of all nested classes.

Package-level Similarity. The sum of the similarity of peer units between two packages.

To support similarity calculation of packages, we propose the matching algorithm to
retrieve the matching relations between classes in two packages and methods in two classes
in Algorithm 2. PEDroid calculates the similarity between each two of the target units (i.e.,
classes or methods). It sorts the similarity scores from high to low and selects the matching
pairs in turn. If the similarity of a pair is greater than THRESHOLD, the two units in
the pair are considered similar. Considering the trade-off between false positives and false
negatives, we set THRESHOLD as 0.15.

Algorithm 2 Matching relation construction at the class/method level.
Input: Members set S1, S2 in matching targets T1, T2, similarity threshold THRESHOLD
Output: Matching relationship set R
L← ∅
for m1 in S1 do

for m2 in S2 do
s← similarity between m1 and m2
L.put(s, ⟨m1, m2⟩)

end
end
sort L by similarity from highest to lowest
R← ∅
for s, ⟨m1, m2⟩ in L do

if (s > THRESHOLD) and (R have no pair containing m1 or m2) then
R.add(⟨m1, m2⟩)

end
end
return R

Positional Relationships. A package acts as the namespace, and it usually includes a collec-
tion of classes or sub-packages with similar functions. Therefore, the positional relationships
between nodes in the package hierarchy indicate the relations on function. Moreover, if a
subtree, consisting of a package and all its sub-packages, represents a third-party library,
which is relatively independent, changes in structure generally happen within the library.
Hence, two nodes with identical child nodes (or descendants) may be similar or belong to
the same library.

PEDroid first retrieves candidates by three close positional relationships, i.e., the
packages that have identical parent, child, or sibling packages. The nodes, which have
closer relations to others, are first considered to be potentially similar. PEDroid builds
the candidate collection Candidatesim according to the three positional relationships to
identical packages in PKGiden, and then selects the most similar pairs to build the matching
collection PKGsimi.

For the nodes which cannot be matched through the close positional relationships,
PEDroid obtains the similar collection PKG

′

simi through the more general positional
relationships in the package hierarchy, i.e., the ancestors and descendants. Algorithm 3 gives
the approach to find the ancestors with matched descendants and then locate candidates
by the distance to the matched ancestors. In detail, the process of matching has a loop

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:11

to search for candidates and find the most similar ones. Before the loop starts, PEDroid
retrieves a set PKGancient by the matched packages. It collects the node pairs having at
least one matched pair in the descendant nodes. For the ith subround, PEDroid considers
the nodes, whose ancestor nodes with distance i are a pair in PKGancient, to be candidates
and adds them into Candidate

′

sim. And then it obtains similar packages from Candidate
′

sim

by Algorithm 1, and adds the pairs into PKG
′

simi. Until all similar packages are found or
the number of rounds exceeds the depth of the package hierarchy, the matching process is
stopped.

Algorithm 3 Matching by the ancestors and descendants.
Input: Unmatched packages in new and old version P1,P2, two versions of hierarchy H1, H2,

matched packages set P KGmatched

Output: Similar packages P KG
′

simi

P KGancient ← ∅
for ⟨p1, p2⟩ in P KGmatched do

for k = 0 .. min(level(H1, p1), level(H2, p2)) do
a1 ← kth ancestor of p1 in H1

a2 ← kth ancestor of p2 in H2
P KGancient.add(⟨a1, a2⟩)

end
end
R1, R2 ← P1, P2

P KG
′

simi ← ∅
for i = 0 .. min(height(H1), height(H2)) do

Candidate
′

sim ← ∅
for p1 in R1 do

for p2 in R2 do
if i > min(level(H1, p1), level(H2, p2)) then

continue
end
a1 ← ith ancestor of p1 in H1

a2 ← ith ancestor of p2 in H2
if ⟨a1, a2⟩ in P KGancient then

Candidate
′

sim.add(⟨p1, p2⟩)
end

end
end
matched← get matched packages from candidate collection Candidate

′

sim

P KG
′

simi.union(matched)
for ⟨p1, p2⟩ in matched do

R1.remove(p1)
R2.remove(p2)

end
end
return P KG

′

simi

4.3 Matching Relation Extraction

With the results of package matching, PEDroid obtains matching relations (i.e. Identical
and Similar) at class and method level in matched packages. The identical classes are
obtained by the identical overall features of classes, while the similar classes in identical
packages collected in PKGiden are matched by similarity as Algorithm 2. For the similar
packages in PKGsimi and PKG

′

simi, the matching relations between classes have been
calculated and cached during the matching process, and can be extracted directly.

ECOOP 2022

21:12 PEDroid: Automatically Extracting Patches from Android App Updates

Except for the matching relations, the unmatched classes/methods in the updated version
of the app are classified as New, and those in the original version are classified as Deleted.
Therefore, by calculating the similarity, the classes and their methods in the two packages
are finally divided into four categories: Identical, Similar, New and Deleted.

5 Patch Identification

In this section, we introduce how PEDroid distinguishes whether a modified method contains
a patch after locating the modified methods. Since the insight is that a patch usually fixes
the processing logic before the buggy operation or handles the errors generated by the buggy
operation, while the target of operation tends to involve external values, PEDroid analyzes
the two version methods from two aspects: 1) the call sites of the methods and 2) the
difference of internal semantics. Through the analysis of the call sites, PEDroid could check
whether the method uses external values. Through internal semantic analysis, it locates
the variables carrying external values and the original operations of these variables in the
modified methods to discover potential buggy operations, and then identifies the two types
of modification.

5.1 Call Site Analysis
In order to find the modified methods using external values, PEDroid employs static
intra-procedural taint analysis to analyze the call sites of all modified methods. Compared
with inter-procedural analysis which is more accurate but brings unacceptable overhead,
the intra-procedural analysis is more suitable for us to analyze the real-world apps. And to
alleviate the limitation that intra-procedural analysis cannot find external values explicitly
or implicitly passed between functions, PEDroid takes the parameters and member variable
as taint sources.

Since static taint analysis has been studied well, we omit its technical details for brevity
here. In the following, we only describe the strategies how PEDroid selects sources and
sinks and then propagates the taint.
Taint Sources. PEDroid marks the variables that may carry external values as taint

sources, including parameters, member variables, and return values of method invocation
statements. As a part of external values, return values of other methods are marked
as sources, and external input could also be obtained by return values of Android API.
Especially, the return value of the constructor method (i.e., <init>, <clinit>) without
other sources is excluded for its purpose is initialization. Both the parameters and member
variables could introduce external values from other methods, so PEDroid treats them
as sources to avoid missing reports.

Taint Sinks. The modified methods are sinks of our taint analysis to find out whether the
modified methods use external values at the call sites. PEDroid directly retrieves the
methods classified as Similar in Section 4.3 and marks them as sinks.

Taint propagation. PEDroid mainly focuses on two types of statements, i.e., assignment
and invocation, to propagate the taint.

Assignment. If the right-hand side expression is tainted, the left-hand side value is
also tainted.
Invocation. Due to the limitation of intra-procedural analysis, it is unknown how
the taint values propagate in the callee. PEDroid specifies that if a parameter is
tainted, the return value and instance (if any) are also tainted, but PEDroid does
not consider the possibility of taint propagation between method parameters to reduce
false positives.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:13

void CallerA(int arg){
int a = this.A;
int b = 0;
sink(arg, a, b);

}

void CallerB(){
int a = 10, b = 1;
int c = d();
sink(a, b, c);

}

Figure 3 Example for result extraction in call site analysis.

After taint propagation, PEDroid extracts the tainted states of the modified methods.
For the tainted call sites, PEDroid records the indexes of all the tainted parameters and the
caller. And the taint states of different call sites of a method will not be merged to reduce
false positives. Figure 3 gives an example where method sink has two call sites in method
CallerA and CallerB. In this case, PEDroid separately records that the first and second
parameters of sink are tainted in CallerA and the third parameter is tainted in CallerB,
rather than regards that all the parameters are tainted. This is because sink may only
trigger a bug at the call site of CallerA and the invocation by CallerB has nothing to do
with the bug. So, the operations of the third parameter in method sink can be ignored. On
the other hand, CallerB may be a new method or the call site in CallerB may be newly
introduced for feature enhancement. The operations of the third parameter within sink
method are modified so that it can adapt to new features. Therefore, merging them will
bring false positives.

In addition, Android callback techniques would bring false negatives to the approach,
because callback methods are invoked in Android frameworks. They are driven by Android
lifecycle events (e.g., onCreate), user interactions (e.g., onClick) and so on. To alleviate this
problem, we collect the names of all Android callback methods in advance, and PEDroid
treats the overriding callback methods as having identical call sites whose parameters are
used to pass external values.

5.2 Internal Semantic Comparison
Based on the analysis of the call sites of modified methods, PEDroid identifies the patches
through internal semantic comparison. Specifically, our aim is to find out whether the
modification is used for correcting the processing logic or handling the errors. The former
is indicated by the different dependencies of original operations, so PEDroid extracts the
control and data dependencies and then compares the dependencies between two versions.
As for the latter, PEDroid takes two cases into consideration. The first case is adding an
exception capture operation to catch the exception generated by original operations. The
second is adding checks of the return value of the original operation, while a branch of the
check is a aborting block which aborts execution of the method when an error occurs. To
identify the case, PEDroid searches for the aborting blocks by exits of methods:
1. a basic block ends with exception throwing;
2. a basic block contains only a return statement or logging and return where logging is

often used to record the errors.
We implement it on the top of Soot [34]. And for illustration purpose, we take the patch
in Figure 1a as example and give their Control flow graphs (CFG) in Figure 4. In detail,
PEDroid compares the internal semantics through the following steps:

Step 1. Call site matching. With the modified methods and their usage, PEDroid matches
the call sites between two versions to obtain all similar usage of the method in the app.
Specifically, it matches the call sites whose callers have been identified as Identical or
Similar in Section 4.3. According to the matching results, PEDroid analyzes each pair

ECOOP 2022

21:14 PEDroid: Automatically Extracting Patches from Android App Updates

virtualinvoke $r2.<java.io.File:
boolean delete()>();
return;

staticinvoke <android.util.Log: int
e(java.lang.String,java.lang.String)>(…);
return;

$r0 := @this: com.Example;

$r1 := @parameter0: java.lang.String;

$r2 = new java.io.File;
specialinvoke $r2.<java.io.File: void <init>(java.lang.String)>($r1); [$r1->$r2]
$z0 = virtualinvoke $r2.<java.io.File: boolean exists()>(); [$r2->$z0]
if $z0 == 0 goto

1

2

N1

N2 N3

(a) Fixed version of example code.

$r0 := @this: com.Example;

$r1 := @parameter0: java.lang.String;

$r2 = new java.io.File;

specialinvoke $r2.<java.io.File: void <init>(java.lang.String)>($r1); [$r1->$r2]

virtualinvoke $r2.<java.io.File: boolean delete()>();

return;

O1
1

2

(b) Buggy version of example code.

Figure 4 CFGs of the two versions of methods in Figure 1a. The example code is displayed in
Soot intermediate representation. Registers in pink font indicate they depend on affected parameters,
and the data flows are labeled after the statement as well. The bold statements are candidates of
buggy operations.

of the call sites respectively in the following steps. It is because the matched call sites
represent the identical usage of the methods and different usage should be separately
analyzed as discussed in Section 5.1.

Step 2. Data flow analysis. To find usage of the tainted parameters within the method,
PEDroid performs forward data flow analysis in the modified method to locate all
statements which use the variables directly or indirectly dependent on these parameters.
It retrieves data flows through assignment and invocation statements, where the rules are
similar to propagation discussed in Section 5.1. We call the located statements affected
statements. In Figure 4, the statements with pink registers are affected statements.

Step 3. Basic block matching. To improve the accuracy of dependency comparison,
PEDroid aligns the basic blocks between the two versions of methods, instead of
matching at the statement level. Alignment is based on the statements in basic blocks
and the structure of CFG whose nodes are basic blocks. Due to the complexity of
solving the graph matching problem, we adopt a simplified strategy that utilizes the
breadth-first traversal orders of CFG to flatten the graph and aligns the blocks by LCS
(longest common subsequence). The identical basic blocks are the blocks with identical
representative statements including return, if, exception, method invocation, and array
operations and constant values in statements.
After alignment, the blocks between two matched blocks (or entry/exit) are also regarded
as matched blocks that may have many-to-many matching relations. In the example,
there are three-to-one matching relationships between basic blocks which map from the
basic blocks N1, N2 and N3 to O1.
And with the matching relations between basic blocks, PEDroid collects the aborting
blocks which have no identical basic block. Therefore, the basic block N3 is located when
analyzing the example.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:15

Step 4. Dependency analysis. With the matching relations between basic blocks, PEDroid
obtains the matched statements and then filters the subset marked in Step 2. The subset
of matched statements are the original operations of the external values in the methods
and includes the buggy operations we focus on. We bold these statements in the examples
in Figure 4. To pinpoint which operations among the candidates (i.e., matched statements
in the subset) are modified satisfying our insight, PEDroid analyzes the dependency of
two types of statements.
1. To distinguish the changes to fix processing logic, PEDroid extracts control and

data dependencies of each candidate in original and updated versions, which will be
compared in the next step.

2. To distinguish the changes to handle errors, PEDroid analyzes the data dependency
of if statements. Specifically, if the predecessors of the aborting blocks located in Step
3 end with a if statement, PEDroid searches for sources of registers compared in the
statement, where the sources are the assignment statements defining these registers. If
a candidate is found, PEDroid will record it as having an error value check. In the
example, although N3 is an aborting block, the register compared is irrelevant to any
candidates, so it is filtered out in this step.

Step 5. Patch identifying. Finally, PEDroid determines patches by checking two types of
specific changes:
1. To check the changes for fixing the processing logic, PEDroid compares the depend-

encies between the original and updated methods. In particular, it compares the
control and data dependencies of each candidate. A patch is reported if a difference in
dependencies is found.
In Figure 4, the candidate ① has the identical control and data dependencies between
the original and updated versions, so it is not a buggy operation. But the dependencies
of the candidate ② are modified where the file existence check is added in the updated
version. Hence, PEDroid identifies it.

2. To check the changes for handling errors, PEDroid respectively identifies two cases.
First, if an exception capture is added and its predecessors contain a candidate, it is
identified as a patch. And the second case is identified by the candidate that has an
error value check in the updated version but no such check in the original version.

6 Evaluation

6.1 Dataset
In the experiment, we collected two datasets, the manually selected open-source Android
projects from GitHub [12] named dBench, and APK files of pre-installed apps extracted from
Android phones. The former is used to measure the accuracy and effectiveness of PEDroid,
and the latter is used to evaluate the applicability to real-world apps and check whether
PEDroid can discover patches on real-world apps.

dBench: we selected apps and their updates by manually reading the commit message of
the projects on GitHub, and then downloaded the release version APK files for testing,
to achieve the effect on the real-world apps as far as possible. The policy for selecting
updates is as follows:
1. For modification of each method in an update, detailed commits can be found so that

we can determine whether a commit is used to fix a bug by the title, description, or
related issue;

ECOOP 2022

21:16 PEDroid: Automatically Extracting Patches from Android App Updates

2. This version update has at least one patch and one non-bugfix update (e.g., code
refactoring and feature enhancement). Especially, PEDroid focuses on the patches
which lead to the method change and filters out other commits (e.g., configure files).

Finally, dBench includes 6 projects with a total of 13 updates, as shown in Table 7 and
Table 8. In the tables, we also list the filtered commit IDs and whether they are marked
as patches. It includes a total of 83 commits, of which 36 are marked as patches. Table 2
shows the size of APK files in each update, where the size is represented by the number
of classes and methods in updated versions.

Table 2 The number of classes and methods of applications in dBench. ProjectName_un is
corresponding to each update in Table 7 and 8 for short.

Update Classes Methods
markor_u1 4,339 31,561
markor_u2 4,443 32,202
gpstest_u1 2,103 15,510
gpstest_u2 3,165 22,527
gpstest_u3 3,165 22,527
MaterialFiles_u1 5,822 29,637
MaterialFiles_u2 5,824 29,632
MaterialFiles_u3 7,624 42,316
andotp_u1 3,011 22,424
andotp_u2 3,996 29,155
gnucash_u1 6,688 47,398
gnucash_u2 6,690 47,414
anki_u1 14,332 135,646

Pre-installed apps: we collected pre-installed apps as a real-world app dataset. Because
of the privilege permissions of pre-installed apps, the defect will lead to more serious
problems. Moreover, these apps cover various categories (except games), so comprehensive
types of apps can be analyzed. In detail, we collected mobile phones from six mainstream
Android mobile device manufacturers, including Huawei, Motorola, Oneplus, Samsung,
Vivo, and Xiaomi. In the first step, we regularly monitored app updates, and used the
tool ADB [1] to pull the APK files from phones to the computer. For the preliminarily
collected APK files, we removed duplicate files with the same hash value. Then, we used
the tool keytool [18] to analyze the certificates of APK files, and then filtered out apps
that are not signed by the vendor. Finally, the number of unique apps in our real-world
dataset is 187. We regard the different APK files of an app with the minimum version
gap as an update, and a total of 568 app updates are collected. The detailed amount and
distribution of updated versions are shown in Table 3.

Table 3 The collected updates of pre-installed applications.

Huawei Motorola Oneplus Samsung Vivo Xiaomi Total
App 42 5 25 8 28 79 187

Update 105 6 28 10 75 342 568
Major upgrade 30 1 9 0 3 34 77
Minor upgrade 16 3 6 0 19 127 171
Small update 59 2 13 10 53 181 320

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:17

6.2 Setup
Differential analysis is implemented in Python, and we disassemble the Dex bytecode of
APK files by the tool baksmali. For patch identification, our taint analysis is based on the
taint engine provided by Find Security Bugs [10], and the analysis of internal semantics is
implemented in Java on top of Soot [34], a framework for analyzing and transforming Java
and Android apps. In addition, PEDroid would not identify whether modified methods in
the standard libraries (e.g., Android Support Library) are patches because the changes in
these methods are to provide compatibility between different versions.

The experiments were performed on a server running Ubuntu 18.04 x64 with two Intel
Xeon Gold 5122 Processors (each has eight logical cores at 3.60 GHz) and 128GB RAM.

6.3 Effectiveness
To measure the effectiveness of differential analysis and patch identification, we conducted a
controlled experiment on dBench.

6.3.1 Results
In total, PEDroid found 429 modified methods which are classified as Similar after differen-
tial analysis and then reported 60 out of them are patches. Based on the related commits
and manual analysis, the accuracy of the results will be further evaluated in Section 6.3.3
and 6.3.4. In this section, we will discuss the intermediate results and effectiveness of each
phase of PEDroid.

Matching relations. 2,706 identical packages are found after identical package matching.
During similar package matching, 36 packages were matched using parent-child and sibling-
sibling relationships and one package was matched by ancestors and descendants. Although
only one package was matched by ancestors and descendants on dBench, its parent package
has no class to determine the similarity resulting in having no matched package, while it
has no child or sibling package, so the close relationships cannot indicate the candidates for
matching. Hence, matching based on ancestors and descendants is necessary for our design.
In these small updates, most packages can be matched by the identical classes, and both two
approaches based on positional relationships work in the process.

By class-level matching, 36,811 classes were classified as Identical, 251 classes were
classified as Similar, 69 classes were classified as New, and 23 classes are classified as Deleted.
Among Similar classes used to locate the modified methods, we found one pair of classes
had the wrong matching relation. Between the two classes in the pair, a class is derived from
another class in the updated version, which leads to a similar implementation and confuses
matching. Unfortunately, it finally caused wrong matching relations between methods.

Modified method usage. In the call site analysis, we found a total of 1,071 call sites of
Similar methods in updated versions, but only 893 call sites in original versions. It indicates
that new call sites are introduced in the updated version of the app. Our consideration of
filtering call sites in Section 5.2 is necessary.

PEDroid discovered 251 unique methods using external values by taint analysis, and
54 additional methods through the name of callback methods. We conducted a manual
analysis on the filtered methods to identify false negatives. We found that most of them were
filtered out because they used no external values or had no call sites (e.g., changes in the

ECOOP 2022

21:18 PEDroid: Automatically Extracting Patches from Android App Updates

updated third-party libraries). As for false negatives, call sites of 12 methods were missing
in the taint analysis. Among them, four were overriding methods because PEDroid failed
to find the correct callee at the call site, and the rest came from the lack of accuracy in
the implementation of taint analysis. On the other hand, due to the limitations of callback
method identification, 22 callback methods could not be found, of which three methods are
customized methods by developers, and 19 methods are unrecognized due to obfuscation. In
short, due to the limitations of implementation, the usage of some modified methods can not
be found in analysis, most of which are caused by callbacks.

6.3.2 Performance
The time cost of each update is shown in Figure 5. PEDroid completed every analysis
in 6 minutes, where taking up to 336 seconds to analyze the update anki_u1. According
to the data in Table 2 and Figure 5, it is obvious that the time cost is greatly affected
by the size of APK files. Most of the time was spent on analyzing the call sites, up to
80.7% (MaterialFiles_u1). It is because that PEDroid checks every method in the app
for searching the usage of the modified methods.

54.41

62.59

33.28

22.74

21.98

112.33

114.19

143.47

41.02

58.16

101.26

104.22

270.73

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

markor_u1

markor_u2

gpstest_u1

gpstest_u2

gpstest_u3

MaterialFiles_u1

MaterialFiles_u2

MaterialFiles_u3

andotp_u1

andotp_u2

gnucash_u1

gnucash_u2

anki_u1

Time Cost (s)

Disassembly Differential analysis Call site analysis Dependency comparison

72.08

80.96

45.80

38.29

37.85

137.72

140.28

176.40

55.65

77.69

126.02

129.85

336.39

Figure 5 Time cost of each step on dBench.

6.3.3 Differential analysis
To evaluate the accuracy of differential analysis, we use the commits as the ground truth
to check whether the modified methods are found by PEDroid. Especially, among the
commits, we focus on the modifications that cause semantic changes. It means that some
modifications such as renaming identifiers and merging two statements into one in commits
will be ignored. In total, 238 methods have been modified by developers in dBench.

6.3.3.1 Accuracy

Table 4 reports the detailed results of our accuracy evaluation on dBench, PEDroid classified
429 methods into Similar category, where 234 methods belong to the project and 195 methods
change with the upgrade of third-party libraries. Among the 238 modified methods, PEDroid
successfully identified 221 of them, where 17 modified methods were missing. On the other
hand, PEDroid mistakenly classified 13 pairs of methods as Similar.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:19

It is obvious that the wrong matching relations will lead to both false negatives and
false positives. For example, if two pairs (A, A

′) and (B, B
′) are modified methods, the

wrong relation (A, B
′) brings a false positive and two false negatives to the results. Before

illustrating the false negatives and the false positives, we conducted a manual analysis of the
incorrect results and summarized the causes for wrong matching relations between methods.
Method inlining or extraction. Method inlining would merge multiple methods into one

method, and extraction splits a method into multiple methods. In this case, PEDroid
matches one of the methods with the highest similarity, which may wrongly match the
new (or deleted) method and the long method of the other version.

Similar implementation. The implementation of some methods is very similar for their sim-
ilar functions. It leads to similar extracted features, which confuse similarity calculation.
When matching methods with similar implementation, the results may be crossed.

Large changes. The proportion of method body changes is large, especially for the methods
with few features (e.g., only one or two basic blocks in the method body), the little
change of code can lead to large changes in the extracted features. It leads to the correct
matching relation can not be calculated, and the modified method is matched with
irrelevant methods with partially the same features.

In the reported Similar methods, 13 pairs have wrong matching relations. Among them, five
pairs are caused by the first reason, six pairs are caused by the second reason, and two are
caused by the third reason.

The false negative refers to missing reports of modified methods. Among 17 false negatives,
13 of them are caused by wrong matching relations, which have been discussed before. Two
false negatives were classified as New and Deleted by mistake due to large changes. The rest
two were classified as Identical because the extracted features could not reflect the changes.

As for false positives, it indicates New/Deleted/Identical methods which are incorrectly
classified as Similar methods, and Similar pairs with wrong matching relations. Especially,
numbers in parentheses in Table 4 are the number of pairs with wrong matching relations. It
shows that all the false positives came from the wrong matching relations.

6.3.3.2 Obfuscation-resistant

To address renaming obfuscation techniques is very important for our design. For example,
the method example() in class Example was renamed with A.a() in the original version but
B.b() in the updated version, which are different. Even if some of APK files in dBench do
not enable the obfuscator, the third-party libraries it depends on are generally obfuscated.
To evaluate how renaming obfuscation techniques influence apps, we counted the different
method signatures (i.e., class name, method identifier, parameters, and return value of a
method) between the original and updated version methods. Only in the Similar results,
135 of 429 Similar methods (31.5%) have different signatures. Moreover, based on manual
analysis, only one signature is renamed by developers, and all the others are caused by
compilation and obfuscation. It shows that the renaming obfuscation is commonly applied in
apps, and PEDroid can resist it to a certain extent.

6.3.3.3 Comparison with previous works

We compared our approach with the previous works, including Androdiff [8], components
of Androguard [3], and SimiDroid [20]. They can also provide method-level diffing between
two versions of apps, and divide the results into four categories: Identical, Similar, New and
Deleted. We used the same dataset dBench for experiment. The results are shown in Table 4.

ECOOP 2022

21:20 PEDroid: Automatically Extracting Patches from Android App Updates

Table 4 Comparison with Androguard and SimiDroid. The Total in the table indicates the
number of reported methods, and the TPL and the Project indicate the reported similar methods
in project source code and third-party library, respectively. The T PP , F NP , F PP and RecallP

indicate the accuracy in project code.

Tool Total TPL Project T PP F NP F PP RecallP

Androdiff 816 525 291 105 133 186(16) 44.12%
SimiDroid 2111 1550 561 138 100 423(18) 57.98%
PEDroid 429 195 234 221 17 13(13) 92.86%

It is obvious that PEDroid identified much more modified methods as well retrieved less
wrong matching relations, with the highest recall of 92.86%. Especially, the other two tools
incorrectly regarded a large number of Identical methods as modified methods. Although it
does not mislead patch identification, the overhead would be greatly increased. So, PEDroid
is much better than the other tools.

Androdiff adopts the normalized compression distance algorithm to calculate the similarity
of the two methods and extracts the instruction sequence of the basic block as the feature of
the method. However, it can not resist the subtle changes caused by compilation, and most
of the false positives come from the changes in the resource ID influenced by compilations. In
addition, the tool does not consider the overall feature of a class and only performs similarity
matching from the instructions at the method level.

SimiDroid also provides code-level similarity comparison, but it assumes that methods
with identical signatures have matching relations between two versions. So, renaming
obfuscation techniques have a great impact on this approach. It is the reason why SimiDroid
reports much more modified methods than the other two tools, where it treats two unrelated
methods as matched and detects the changes between them.

6.3.4 Patch identification

PEDroid discovered 60 patches, where 50 of them belong to the projects and 10 methods are
in third-party libraries. Similar to the evaluation of differential analysis, we only evaluated
the accuracy of code changes in the projects without the ground truth of third-party libraries.

6.3.4.1 Accuracy

To evaluate the accuracy of PEDroid in identifying patches, we manually identified all
the patches and non-bugfix updates of all the 13 updates by analyzing their commits on
GitHub. As shown in Table 7 and Table 8, among all the 83 commits in dBench, a total of
36 commits are identified as patch, where 47 commits are non-bugfix updates, including 35
feature updates and 12 code refactorings.

Among 36 commits containing patches, PEDroid successfully identified 28 patches during
patch identification and missed eight, while it incorrectly identified seven of the 47 non-bug
updates as patches. In particular, a commit could be associated with multiple modified
methods. As for the amount at the method level, 41 methods were correctly identified as
patches, and nine were false positives.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:21

False negatives. The false negatives could be generally divided into three categories:
1. Deficiency in implementation. Four of eight false negatives come from the false negatives

of call site analysis described in Section 6.3.1. It is caused by the obfuscated name of
callbacks and overriding methods.

2. Code refactoring. We found that some patches are also accompanied by code refactoring,
where the modified dependencies are encapsulated in a new method. So, PEDroid could
not discover it by intra-procedural analysis, which brings two false negatives.

3. Limitation of insight. There are two false negatives that do not meet our insight. One is
to modify the constant value in a static constructor. Another one is to add text on UI
which only involves a method invocation addition without modifying any dependency.

False positives. Seven non-bugfix updates are incorrectly classified. Similarly, we also
divide them into three categories:
1. Deficiency in implementation. One false negative comes from incorrectly matching

between basic blocks. It results in different extracted dependencies at different usage of
an external value.

2. Code refactoring. The code refactoring also leads to dependency modification, which
brings two false positives to the results.

3. Irrelevant dependency modification. Four of the false positives are due to dependency
modification irrelevant to patches. Three of them are caused by the added control
dependencies, where two are to check and adapt different Android versions and one is
to add a branch to enhance the feature. And the other one is introduced by the added
number of parameters of the callee, which leads to the addition of data dependencies.

6.3.4.2 Comparison with other works

Since there is no previous work to distinguish patches from other code changes in Android
apps, we evaluated whether the tool using pre-defined patterns could detect the related bugs
to find out these patches. Spotbugs [35] is a state-of-the-art tool that can detect more than
400 types of bugs. Find security bugs [10] is a plugin of Spotbugs, which can detect 141
different vulnerabilities on Java and Android apps.

First, we applied dBench on the tool SpotBugs with its component Find Security Bugs,
and detected the original and updated versions of the app updates respectively. Then we
found out the difference of the bug reports between two versions with the method-level
matching relations generated by differential analysis. Finally, only two different bug reports
were found, and they belonged to one commit. It is because detecting bugs according to
manually defined patterns has limitations which cannot discover the unknown bugs.

6.4 Applicability
6.4.1 Performance
PEDroid extracted a total number of 98,591 patches from the dataset. In detail, 45,805
patches were identified in 320 small updates, 31,549 patches were identified in 171 minor
upgrades and 21,237 patches were identified in 77 major upgrades. The time cost is shown
in Figure 6a, where the updates are grouped by the size of APK files (e.g., the first group
consists of updates with the number of classes less than 3000, and so on). It shows that size
of apps has a great impact on the overhead of PEDroid, especially for patch identification.
Since the number of updates in each group is different, Figure 6a also gives the number.

ECOOP 2022

21:22 PEDroid: Automatically Extracting Patches from Android App Updates

3 6 9 12 15 20 25 30 40 50 60 70
APK Size (k classes)

0

250

500

750

1000

1250

1500

1750

2000
Ti

m
e

Co
st

 (s
)

34.7
120.2 166.5 222.9 297.2

449.6
565.6 579.0

926.2
1023.3

1484.1

1992.1

0

20

40

60

80

100

Th
e

nu
m

be
r o

f u
pd

at
es

105
111

76

65

49
58

37
26

16
6

14
5

Differential analyis
Patch identification
Number of uptates

(a) Time cost of analyzing updates with different sizes.

63.91%

20.07%

7.92%

2.46%

5.63%

0~5 min

5~10 min

10~15 min

15~20 min

>20 min

(b) Distribution of time cost of ana-
lyzing updates.

Figure 6 Performance on real world dataset.

Furthermore, the time cost distribution of updates is given in Figure 6b. It is concluded that
63.91% of updates could be analyzed within 5 minutes, 83.98% of apps could be analyzed
within 10 minutes, and 94.37% could be analyzed within 20 minutes.

6.4.2 Analysis of Extracted Patches
In order to illustrate that PEDroid can help the analysis based on patches, we made a
further analysis to understand the patches extracted from updates of the pre-installed apps.

6.4.2.1 Discovered Patches

To demonstrate that PEDroid can extract effective patches from the real-world apps, we first
randomly selected several reports on pre-installed apps for manual analysis. We discovered
many typical cases of patches, and the security check addition appears most among them,
which confirms the conclusion of the previous work [41]. Another common repair case is
adding an exception-capture operation to prevent the app from crashing. In this section, we
discuss the typical cases and how they improve the security and stability of apps.

Security check. Adding security checks is a common way to fix bugs. This type of patch
can be detected because a new control dependency is always added. Due to complex
scenarios such as network communication, local data access, and user interaction, the
added security check also has various purposes, where two of the most common cases
are checking whether the referenced object is null to avoid NullPointerException, and
calling TextUtils.isEmpty to prevent empty strings. In addition, we show two typical
cases of adding black and white list checks to discuss the security improvement by checking
addition.
Figure 7(a) gives a patch with a white list check. The method has @JavascriptInterface
annotation, which means that it can be invoked by web pages in WebView. In the fixed
version of the method, the domain name of the web page which invokes this method is
checked, and only the domain names in the white list are allowed to use this method,
which increases the security.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:23

(a) white list (b) black list

(c) data processing

(d) field addition to record status

Figure 7 Case Study for common patches.

-
-

-
-
+
+

+
+

public class CaseClass {
static {

CaseClass.CRPYT_IV_BYTE = new byte[]{34, 0x20, 33, … , 35, 0x20, 0x20};
CaseClass.CRPYT_KEY_BYTE = new byte[]{33, 34, 35, … , 35, 34, 33};
...

}
public CaseClass(Context arg2) {

...
this.mCryptoUtil.init(this.mContext);
this.CRPYT_IV_BYTE = this.mCryptoUtil.initIV();
this.CRPYT_KEY_BYTE = this.mCryptoUtil.initKey();
this.loadData();

}
protected void loadData() {

...
String iv = Cryptor.xorKey(Case3Class.CRPYT_IV_BYTE);
String key = Cryptor.xorKey(Case3Class.CRPYT_KEY_BYTE);
String iv = Cryptor.xorKey(this.CRPYT_IV_BYTE);
String key = Cryptor.xorKey(this.CRPYT_KEY_BYTE);
String data = new String(Cryptor.decrypt(iv, key, Base64.decode(cipher, 0)), "utf-8");
...

}
}

Figure 8 Case Study for hard-coded key removal.

The function of the method in Figure 7(b) is to download files. The security check at line
3 is added to resolve a vulnerability. The method checkSpecialChars checks whether
there are special characters in the file name. The existence of these special characters
could lead to path traversal vulnerability. Once these special characters are detected, this
method returns directly and does not continue downloading the target file.

Data processing. Figure 7(c) gives an example of modification of data dependencies to
correct data processing. In the buggy version, the blank characters are not trimmed after
obtaining the path of the directory. As a result, the corresponding library cannot be
found and the function is unavailable. This patch will be reported through modification
of data dependencies extracted from the invocation of the constructor of File.

Field addition for status recording. This patch is applied to check before resource access
or release and sets the field to the corresponding value when resources are required and
released. The case is found through the inconsistency of control dependencies. The case
is shown in Figure 7(d).

ECOOP 2022

21:24 PEDroid: Automatically Extracting Patches from Android App Updates

Hard-coded key removal. A security patch of discarding the usage of hard-coded keys is
given in Figure 8. The decryption key and IV used in the original version are hard-coded
and defined in the static constructor (<clinit>). The updated version is generated in
the constructor (<init>). PEDroid identified the patch by comparing dependencies
between the two versions of the method loadData. In the buggy version, the hard-coded
key and IV are static member variables of the class, and its acquisition has nothing to
do with the affected parameter this. But in the fixed version, the decryption key and
IV are generated at runtime, which are bound to the object instance, and have a data
dependency on the parameter this which uses external values.

In addition to the examples of modifying the processing logic listed above, handling the
errors is also commonly encountered in our manual analysis, including the error value check
to end wrong execution and exception capture to prevent crashes. Since these cases are easy
to understand, we would not list them here. Especially, exception capture will be further
discussed later.

6.4.2.2 Application of Patches

Based on the typical patches, we further identified similar patches to find out what patches
are frequently applied to fix bugs and whether the developers make the mistakes commonly.
Specifically, we selected the five simple patch cases found in the manual analysis and used
the buggy and fixed versions of the method and the potential buggy operations in reports to
determine whether the patch is the same type as the cases. For security checks, we collected
two common types, i.e., the addition of null and TextUtils.isEmpty check before the
buggy operation. And we located the added invocation of trim which was used to correct
the data processing of a buggy operation. Similarly, when a check of a boolean field is added
and the state of the field is modified around the buggy operation, the check would be marked
as field addition for status recording. For exception capture, we focused not only on the
addition of exception capture but also on the types of exceptions.

Table 5 shows the usage of different types of common patches in all the extracted patches.
It is reported that the check of null reference is added most commonly, similar to the results
of our manual analysis. Even if we only searched a simple case of correcting data processing
(i.e., string trimming), we still found that several developers at different vendors, made the
same mistake and repaired it. It shows that it is a feasible means to summarize the problems
that have been repaired to find similar problems in other apps.

Table 5 Usage of common
patches in updates.

Type Total

Null Reference 7682
Empty String 1409
Status Record 269
String Trimming 23
Exception 6289

Table 6 Top 10 most common types of added exception
catching.

Type Total
Ljava/lang/Exception 3838
Ljava/lang/Throwable 1353
Ljava/io/IOException 1212
Ljava/lang/IllegalArgumentException 663
Lorg/json/JSONException 633
Ljava/lang/RuntimeException 457
Ljava/lang/NumberFormatException 284
Ljava/lang/IllegalStateException 234
Ljava/lang/IllegalAccessException 225
Ljava/lang/SecurityException 223

In addition, we analyzed exception-capture patches and found the types of exceptions
that are easily ignored during development. Table 6 gives the top 10 most common types
among our extracted patches and the number of exception-capture patches corresponding to

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:25

each type. Especially, a patch could add the capture of multiple types of exceptions at the
same time, so the exception-capture patches counted in Table 5 may be counted multiple
times in Table 6. It shows that developers often simply use the basic type Exception to
catch all types of exceptions, as well Throwable which can catch both exceptions and errors.
As for other types of exceptions, the capture of IOException is patched most frequently
in the extracted patches because it can be thrown by unexpected behaviors in a variety of
scenarios including network and file I/O. The exceptions are easy to be accidentally missed
by developers.

7 Discussion

7.1 Limitation and Future works
In the following, we discuss limitations and future works to improve the accuracy of the
analysis performed by PEDroid.

First, PEDroid is designed to resist the renaming obfuscation because it has been
broadly used by many Android applications. However, to be sensitive to code changes and
efficiently retrieve matching relations, PEDroid chooses to retain features of instructions in
the method body and utilizes package trees to assist the matching process. Given our current
design, some advanced obfuscations can impede PEDroid to a certain degree. For example,
some obfuscation tools can move a sub-package from one package to another, so as to modify
the package hierarchy. Considering commonly-used obfuscators such as ProGuard do not
totally break package structures, and our approach does not require the package structures
to be exactly identical, we believe the selected strategies are acceptable in practice.

Second, PEDroid is mainly designed based on static intra-procedural analysis considering
applicability to real-world apps. However, only analyzing the data dependencies and original
operations within a single method could bring both false positives and false negatives,
especially when meeting code refactoring. Meanwhile, the more precise usage of external
values is more likely obtained through the inter-procedural taint analysis. We believe the
inter-procedural feature could be implemented by considering method invocation, which is
an interesting future work.

Third, PEDroid tries to find out patches and the corresponding bugs without manually
defined patterns [19] or generated signatures of known patches or bugs [44]. Although the
approach could not cover patches of all types of bugs (e.g., the two false negatives beyond the
insight), it could make up for the gap in this research field to a certain degree. And we have
evaluated the effectiveness by running our approach on dBench, and identified most patches.
The results on the real-world dataset also show that rich types of bugs can be discovered
through this approach.

7.2 Usage of Extracted Patches
In the paper, we discovered some typical cases of bugs and patches in Android apps and
summarized the rules by manually analyzing the patches to distinguish them. Similarly, several
APR (Automated Program Repair) techniques adopt manually defined code transformation
schema to automatically repair bugs in Android apps [48, 25, 42, 5, 36]. Therefore, it is
feasible to summarize new schemas through the analysis of the extracted patches and then
apply them to APR. In addition, lots of efforts focus on learning from the existing patches
which require no manually defined templates and empirical knowledge [17, 40, 26, 24, 37, 21].
However, these works are all designed for repairing source code rather than bytecode. We
believe that our work can make up for the lack of learning data sets to promote the proposal
of the technique on bytecode.

ECOOP 2022

21:26 PEDroid: Automatically Extracting Patches from Android App Updates

The extracted patches can also be used to detect similar bugs. Some binary-level similarity
detection and code reuse detection techniques [15, 46] can take the buggy version of patched
methods as the comparison target and detect whether there are similar problems in other
apps.

8 Conclusion

We propose an approach to extract bytecode-level patches from Android apps, which includes
two phases: obtaining the modified methods from the neighboring versions of Android
apps and identifying patches among them. To achieve the first step and resist name-based
obfuscation, we employ similarity comparison at the method level based on code features
and the structure of the app. We design an approach to detect patches by analyzing the
usage and internal semantics of the original and updated versions of methods. We applied
the approach to extract patches from 13 updates of open-source projects and identified
28/36 patches. To evaluate the applicability to real-world apps, we further performed an
experiment on the real-world dataset, which is proved that this approach can find various
types of patches within a reasonable amount of time.

References
1 Android debug bridge (adb), accessed: November 2021. URL: https://developer.android.

com/studio/command-line/adb.
2 Open source two-factor authentication for android, accessed: November 2021. URL: https:

//github.com/andOTP/andOTP.
3 androguard, accessed: November 2021. URL: https://code.google.com/archive/p/

androguard/.
4 Ankidroid: Anki flashcards on android. your secret trick to achieve superhuman information

retention, accessed: November 2021. URL: https://github.com/ankidroid/Anki-Android.
5 Tanzirul Azim, Iulian Neamtiu, and Lisa M. Marvel. Towards self-healing smartphone software

via automated patching. In ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, pages 623–628. ACM,
2014.

6 Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library detection in android
and its security applications. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016, pages 356–367. ACM,
2016.

7 Bindiff, accessed: November 2021. URL: https://www.zynamics.com/bindiff.html.
8 Anthony Desnos. Android: Static analysis using similarity distance. In 45th Hawaii Inter-

national International Conference on Systems Science (HICSS-45 2012), Proceedings, 4-7
January 2012, Grand Wailea, Maui, HI, USA, pages 5394–5403. IEEE Computer Society,
2012.

9 Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Montperrus.
Fine-grained and accurate source code differencing. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14, pages 313–324, New
York, NY, USA, 2014. ACM.

10 Find security bugs, accessed: November 2021. URL: https://find-sec-bugs.github.io/.
11 git-difftool documentation, accessed: November 2021. URL: https://git-scm.com/docs/

git-difftool.
12 Github: Where the world builds software, accessed: November 2021. URL: https://github.

com/.

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://github.com/andOTP/andOTP
https://github.com/andOTP/andOTP
https://code.google.com/archive/p/androguard/
https://code.google.com/archive/p/androguard/
https://github.com/ankidroid/Anki-Android
https://www.zynamics.com/bindiff.html
https://find-sec-bugs.github.io/
https://git-scm.com/docs/git-difftool
https://git-scm.com/docs/git-difftool
https://github.com/
https://github.com/

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:27

13 Gnucash for android mobile companion application, accessed: November 2021. URL: https:
//github.com/codinguser/gnucash-android.

14 open-source android gnss/gps test program, accessed: November 2021. URL: https://github.
com/barbeau/gpstest.

15 Steve Hanna, Ling Huang, Edward XueJun Wu, Saung Li, Charles Chen, and Dawn Song.
Juxtapp: A scalable system for detecting code reuse among android applications. In Detection
of Intrusions and Malware, and Vulnerability Assessment - 9th International Conference,
DIMVA 2012, Heraklion, Crete, Greece, July 26-27, 2012, Revised Selected Papers, volume
7591 of Lecture Notes in Computer Science, pages 62–81. Springer, 2012.

16 Project planning for developers, accessed: November 2021. URL: https://github.com/
features/issues.

17 Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. Shaping program
repair space with existing patches and similar code. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam, The
Netherlands, July 16-21, 2018, pages 298–309. ACM, 2018.

18 keytool, accessed: November 2021. URL: https://docs.oracle.com/javase/8/docs/
technotes/tools/unix/keytool.html.

19 Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch generation
learned from human-written patches. In 35th International Conference on Software Engineering,
ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pages 802–811. IEEE Computer Society,
2013.

20 Li Li, Tegawendé F. Bissyandé, and Jacques Klein. Simidroid: Identifying and explaining
similarities in android apps. In 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, Australia,
August 1-4, 2017, pages 136–143. IEEE Computer Society, 2017.

21 Yi Li, Shaohua Wang, and Tien N. Nguyen. Dlfix: context-based code transformation learning
for automated program repair. In ICSE ’20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020, pages 602–614. ACM, 2020.

22 Yi Li, Shaohua Wang, Tien N. Nguyen, and Son Van Nguyen. Improving bug detection via
context-based code representation learning and attention-based neural networks. Proc. ACM
Program. Lang., 3(OOPSLA):162:1–162:30, 2019.

23 Xuliang Liu and Hao Zhong. Mining stackoverflow for program repair. In 25th International
Conference on Software Analysis, Evolution and Reengineering, SANER 2018, Campobasso,
Italy, March 20-23, 2018, pages 118–129. IEEE Computer Society, 2018.

24 Fan Long, Peter Amidon, and Martin Rinard. Automatic inference of code transforms for
patch generation. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pages 727–739.
ACM, 2017.

25 Siqi Ma, David Lo, Teng Li, and Robert H. Deng. Cdrep: Automatic repair of cryptographic
misuses in android applications. In Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, AsiaCCS 2016, Xi’an, China, May 30 - June 3,
2016, pages 711–722. ACM, 2016.

26 Siqi Ma, Ferdian Thung, David Lo, Cong Sun, and Robert H. Deng. Vurle: Automatic
vulnerability detection and repair by learning from examples. In Computer Security - ESORICS
2017 - 22nd European Symposium on Research in Computer Security, Oslo, Norway, September
11-15, 2017, Proceedings, Part II, volume 10493 of Lecture Notes in Computer Science, pages
229–246. Springer, 2017.

27 Text editor - notes & todo (for android), accessed: November 2021. URL: https://github.
com/gsantner/markor.

28 Material design file manager for android, accessed: November 2021. URL: https://github.
com/zhanghai/MaterialFiles.

29 Stuart McIlroy, Nasir Ali, and Ahmed E. Hassan. Fresh apps: an empirical study of frequently-
updated mobile apps in the google play store. Empir. Softw. Eng., 21(3):1346–1370, 2016.

ECOOP 2022

https://github.com/codinguser/gnucash-android
https://github.com/codinguser/gnucash-android
https://github.com/barbeau/gpstest
https://github.com/barbeau/gpstest
https://github.com/features/issues
https://github.com/features/issues
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://github.com/gsantner/markor
https://github.com/gsantner/markor
https://github.com/zhanghai/MaterialFiles
https://github.com/zhanghai/MaterialFiles

21:28 PEDroid: Automatically Extracting Patches from Android App Updates

30 Shrink your java and android code, accessed: November 2021. URL: https://www.
guardsquare.com/proguard.

31 Thorsten Schäfer, Jan Jonas, and Mira Mezini. Mining framework usage changes from
instantiation code. In International Conference on Software Engineering (ICSE), pages
471–480, New York, NY, USA, 2008. ACM.

32 Danilo Silva, João Paulo da Silva, Gustavo Jansen de Souza Santos, Ricardo Terra, and
Marco Tulio Valente. Refdiff 2.0: A multi-language refactoring detection tool. IEEE Trans.
Software Eng., 47(12):2786–2802, 2021.

33 Danilo Silva and Marco Tulio Valente. Refdiff: Detecting refactorings in version histories. In
Proceedings of the 14th International Conference on Mining Software Repositories, MSR ’17,
pages 269–279. IEEE Press, 2017.

34 Soot – A java optimization framework, accessed: November 2021. URL: https://github.
com/soot-oss/soot.

35 Spotbugs, accessed: November 2021. URL: https://spotbugs.github.io/.
36 Shin Hwei Tan, Zhen Dong, Xiang Gao, and Abhik Roychoudhury. Repairing crashes in

android apps. In Proceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 187–198. ACM, 2018.

37 Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and
Denys Poshyvanyk. An empirical study on learning bug-fixing patches in the wild via neural
machine translation. ACM Trans. Softw. Eng. Methodol., 28(4):19:1–19:29, 2019.

38 Xinda Wang, Kun Sun, Archer L. Batcheller, and Sushil Jajodia. Detecting “0-day” vul-
nerability: An empirical study of secret security patch in OSS. In 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2019, Portland, OR,
USA, June 24-27, 2019, pages 485–492. IEEE, 2019.

39 Yan Wang, Haowei Wu, Hailong Zhang, and Atanas Rountev. ORLIS: obfuscation-resilient
library detection for android. In Proceedings of the 5th International Conference on Mobile
Software Engineering and Systems, MOBILESoft@ICSE 2018, Gothenburg, Sweden, May 27 -
28, 2018, pages 13–23. ACM, 2018.

40 Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshyvanyk.
Sorting and transforming program repair ingredients via deep learning code similarities. In 26th
IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER
2019, Hangzhou, China, February 24-27, 2019, pages 479–490. IEEE, 2019.

41 Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu. Precisely characterizing security
impact in a flood of patches via symbolic rule comparison. In 27th Annual Network and
Distributed System Security Symposium, NDSS 2020, San Diego, California, USA, February
23-26, 2020. The Internet Society, 2020.

42 Jiayun Xie, Xiao Fu, Xiaojiang Du, Bin Luo, and Mohsen Guizani. Autopatchdroid: A
framework for patching inter-app vulnerabilities in android application. In IEEE International
Conference on Communications, ICC 2017, Paris, France, May 21-25, 2017, pages 1–6. IEEE,
2017.

43 Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-oriented design differen-
cing. In 20th IEEE/ACM International Conference on Automated Software Engineering (ASE
2005), November 7-11, 2005, Long Beach, CA, USA, pages 54–65. ACM, 2005.

44 Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu. Patch based vulnerability
matching for binary programs. In Proc. 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), Virtual Event, USA, 2020. ACM.

45 Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song. SPAIN:
security patch analysis for binaries towards understanding the pain and pills. In Proceedings
of the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017, pages 462–472. IEEE / ACM, 2017.

46 Dongjin Yu, Jie Wang, Qing Wu, Jiazha Yang, Jiaojiao Wang, Wei Yang, and Wei Yan.
Detecting java code clones with multi-granularities based on bytecode. In 41st IEEE Annual
Computer Software and Applications Conference, COMPSAC 2017, Turin, Italy, July 4-8,
2017. Volume 1, pages 317–326. IEEE Computer Society, 2017.

https://www.guardsquare.com/proguard
https://www.guardsquare.com/proguard
https://github.com/soot-oss/soot
https://github.com/soot-oss/soot
https://spotbugs.github.io/

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:29

47 Jiexin Zhang, Alastair R. Beresford, and Stephan A. Kollmann. Libid: reliable identification
of obfuscated third-party android libraries. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019, Beijing, China, July
15-19, 2019, pages 55–65. ACM, 2019.

48 Mu Zhang and Heng Yin. Appsealer: Automatic generation of vulnerability-specific patches for
preventing component hijacking attacks in android applications. In 21st Annual Network and
Distributed System Security Symposium, NDSS 2014, San Diego, California, USA, February
23-26, 2014. The Internet Society, 2014.

49 Yuan Zhang, Jiarun Dai, Xiaohan Zhang, Sirong Huang, Zhemin Yang, Min Yang, and Hao
Chen. Detecting third-party libraries in android applications with high precision and recall.
In 25th International Conference on Software Analysis, Evolution and Reengineering, SANER
2018, Campobasso, Italy, March 20-23, 2018, pages 141–152. IEEE Computer Society, 2018.

A Dataset

A.1 dBench
dBench includes six popular open source Android apps on GitHub shown as Table 7 and 8.
Except for markor with 900+ stars, other projects have 1k-4.4k stars.

ECOOP 2022

21:30 PEDroid: Automatically Extracting Patches from Android App Updates

Table 7 Updates in dBench and all commits – part.1.

Project Old Version New Version Commit id Bug fix

markor[27]

2.2.3 2.2.5

5b53574c88888ecbcc4b5c712d26a4c0e4f89650 %

464579b59047bbacb2f9fb7edb9fb9563a9dfe2c %

35e25bff0de3521a41c4574561b958a8068fafa1 %

d0a5103223430e7af925a48f49affa0ae64ef83b %

37a9c135e7a2502f8ce1b6b463614a7c10168816 "

9dd83708e49f45d85e2c4f3ef9cc21a3019d327d %

cbd37234b587222c974b29a196f54c8f20f08b77 %

14cd95d37d0c12bacb2bd290bdee07d4a949ea24 "

47cff19dd5030d2c3ce470ce525fb2ab20f19727 %

22b7681cb52eb4f820c1bd036683b102be144b82 %

57745bb82ef225223e6780f65bc0d5dabf81cead "

2.3.1 2.3.3

11895e5554c59033927a7fb5e8139797165a703d "

e182dcc64057cd5f1bd8ac63492de4fa6f2f6658 "

51e8febed782e824ae4953bc266777828afc076e "

2f5352c59e8e1edc15ad7825d3b50d0980ec70b1 %

46d9165b0a6f3a6a6e243fb2e8c4417c9bab0666 "

c9a9cc7736084355cc422b3822a8da61d58b9569 "

d24f2cb29d76422d5e01f69d9b01b1ff78c8c8db %

63808c166aef82aaee2ed5ca67dd8a10eb2fa054 %

df02630b66914176f28d07a32ccde9478d20742c %

6e2b07c7c1b61718904096245f9106fd14b1447e %

f725a85011fc9342d37f55c58ba35926a94b6d0a %

76184b2aa73a215d7e5c66a3dfee6db8f8cfad1d %

27a0e8506abcdcaf2d7801493712eafb4e6ffbd7 %

gpstest[14]

3.7.4 3.8.0 0b47fca1a9f06017b6d319269764ac6cec9b1f7b "

8ed5b31c8e356b79cfe8b8bba49a10156101f758 %

3.9.5 3.9.6
c14a1025d6026aebef5747fb53eb28e891b02501 "

944733d36f44451096823200242f0ebdd5ef02c6 "

396c52a796e924cc5507bb087b4eadd684806fda %

3.9.6 3.9.7 70d8ec5197117660e6251945e804829e5221dbbe "

5625b632c4a60767950f61651629d09c8cb9fbe2 %

MaterialFiles[28]

1.0.0-beta.11 1.0.0-rc.1

b864874d87450591f20562f1e240ff228393c554 %

cfcfce564e42db79a7668dbedab978a35dd01e1e "

e0f488a7950402ac6464dae451b7a462898af316 %

8480642ddf39521eff7f30a79c5d1feec5a7d4cb "

2c379913b0cf6272e1b60da265a3f7ab32cfdaaf %

0d98dc34fc1cee5908514aa8eb8679f82c3d36dc "

1.0.0 1.0.1

fdd9940d98974b8291496922ddb98714162b0ccc %

041d384eed4cdc85d16ef063dd966a300b3b4769 %

428fab2cb24512e90d6d94e781134e85de29c104 "

fbc862d8a80bca16365dd8cfc42f0f846b0b2935 "

c81f380f4ec11071f139f3993987b15d3cb4a77c "

4b14cefb59d746822e1f31a92ecf46e15c2d88ff %

1.2.0 1.2.1

a5c07bc764c0678d423594ff454349ab63def5aa %

fc22c3ada63c8392b1dcced1c96d818404ba140b "

b78c799aa0f356d551c12904f07e2c9dfd3aba8e %

0f0d306e5db2e2afea257449c050936c5a60a5c0 "

d4918e0c5a3e11d0f7e49033aa3625c5b5138da9 %

618806bafcf6cc424b84471d485744f96dba4b4b "

ac8ca9988f761b5e8cdf7d0ecbd47d215540d145 "

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:31

Table 8 Updates in dBench and all commits – part.2.

Project Old Version New Version Commit id Bug fix

andOTP[2]

0.2.6 0.2.7

77655b610897eb59e6ff7fcc4f13454f34b4a86d %

f0518a265c858414b74ef84e2e8bd945a96ad59a %

dd97ac87f059f8c1498d17d7c99ac6dc70068ea5 %

f41eb620aadb3dd203f923d934ce1f6da713c901 %

cbdced2df1d5ab5fd35d17c7230b60a89d3d4012 %

247f4e938ed6def7668e3259c81a6fc9e1dd5db0 %

842d49b68f86412d246c9ab9a8d59dcbc11c4f8c %

ce696861c7497a67c72be0a315fc9d1e5cbd0489 "

0.7.1 0.7.1.1

73f8c14ec389a2ad8c2a61edef2bcfd4b4894b70 "

cdc54028b3395401fa65665bc5e01e6a279071d3 %

c1d6c6b2b8c01fbfb3a0ab7ba5b3c247bf80cd3f %

5215308a1afcf774499850967450725201dbb1c9 %

gnucash-android[13]

2.1.1 2.1.2

57241e8c064302a215aa74501e0dc1ba31e6a096 "

1794882757a37c108c4b4cf40f6876aa7a51c87d "

dae1caf7078bdd3e425e25cbfd5a37eb2309e0e6 "

f81ad6067a4136b34ccfc277cd21913682a3ce31 "

a363eebaff01f7fdadbda5edc661aa35133a450a %

404759620a5a33cecf0bf836fe5802401eacf4d6 "

2.1.2 2.1.3

ff894a5ce5901bafc8626279d09278efc229ef23 %

6048bd8d0604370a38189dad9ba451aa121fc7bb "

a6aa211734accf94664da91316cf6e26bed0de92 "

b2e9bf7f38a287985656e48ec6b13979a070dcd0 %

d790b805ec17fd22ab4566ae1d24cefe72486e36 "

724a686177798685112a02fcc3873873fb7a9595 "

952cb2b697b9bd946437e19db4597d23b3446f55 "

Anki-Android[4] 2.16alpha24 2.16alpha25

a38503e08c0a8f0445adb527a015aa3a82cd4404 %

672c44eb664284339b697bff27ec8b37925c3c31 "

5135b06f4ca61cb15f75973362e2d25340925524 %

09430ad55c4186f5d9e52848005965270360308d %

81d1d134863b8ab2c0560f9f11148b6a91996c0d "

99ea713f780a428332990d3e5b7033d714a3ffad %

b7d283f96fd3922806beb5eeb499e475f034d5a8 %

0f7b0bebed9539c6ee46608539be23c2e5db4780 %

ECOOP 2022

Ferrite: A Judgmental Embedding of Session
Types in Rust
Ruo Fei Chen #

Independent Researcher, Leipzig, Germany

Stephanie Balzer #

Carnegie Mellon University, Pittsburgh, PA, USA

Bernardo Toninho #

NOVA LINCS, Nova University Lisbon, Portugal

Abstract
Session types have proved viable in expressing and verifying the protocols of message-passing systems.
While message passing is a dominant concurrency paradigm in practice, real world software is written
without session types. A limitation of existing session type libraries in mainstream languages is
their restriction to linear session types, precluding application scenarios that demand sharing and
thus aliasing of channel references. This paper introduces Ferrite, a shallow embedding of session
types in Rust that supports both linear and shared sessions. The formal foundation of Ferrite
constitutes the shared session type calculus SILLS, which Ferrite encodes via a novel judgmental
embedding technique. The fulcrum of the embedding is the notion of a typing judgment that allows
reasoning about shared and linear resources to type a session. Typing rules are then encoded as
functions over judgments, with a valid typing derivation manifesting as a well-typed Rust program.
This Rust program generated by Ferrite serves as a certificate, ensuring that the application will
proceed according to the protocol defined by the session type. The paper details the features and
implementation of Ferrite and includes a case study on implementing Servo’s canvas component in
Ferrite.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation →
Type theory; Software and its engineering→ Domain specific languages; Software and its engineering
→ Concurrent programming languages

Keywords and phrases Session Types, Rust, DSL

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.22

Related Version Technical Report: https://arxiv.org/abs/2009.13619 [7]

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.14

Funding Stephanie Balzer : National Science Foundation Award No. CCF-1718267.
Bernardo Toninho: FCT/MCTES grant NOVALINCS/BASE UIDB/04516/2020.

1 Introduction

Message-passing is a dominant concurrency paradigm, adopted by mainstream languages such
as Erlang, Scala, Go, and Rust, putting the slogan “Do not communicate by sharing memory;
instead, share memory by communicating” [13] into practice. In this setting, messages are
exchanged along channels, which can be shared by several senders and receivers. Type
systems in such languages typically allow channels to be typed, specifying and constraining
the types of messages they may carry (e.g. integers, strings, sums, references, etc.).

An aspect inherent to message-passing concurrency that is not captured in mainstream
type systems, however, is the idea of a protocol. Protocols dictate the sequencing and types
of messages to be exchanged. To express and enforce such protocols, session types [14, 15, 16]

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Ruo Fei Chen, Stephanie Balzer, and Bernardo Toninho;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 22; pp. 22:1–22:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:soares.chen@maybevoid.com
https://orcid.org/0000-0001-5796-4386
mailto:balzers@cs.cmu.edu
mailto:btoninho@fct.unl.pt
https://orcid.org/0000-0002-0746-7514
https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://arxiv.org/abs/2009.13619
https://doi.org/10.4230/DARTS.8.2.14
https://doi.org/10.4230/DARTS.8.2.14
https://doi.org/10.4230/DARTS.8.2.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Ferrite: A Judgmental Embedding of Session Types in Rust

were introduced. Session typing disciplines assign types to channel endpoints according to
their intended usage protocols in terms of sequencing of input/output actions (e.g. “send
an integer and, afterwards, receive a string”) and branching/selection actions (e.g. “receive
either a buy message and process the payment; or a cancellation message and abort the
transaction”), ensuring the action sequence is followed correctly and thus, adherence to the
protocol. Thanks to their correspondence to linear logic [4, 44, 43, 42, 26, 5] session types
enjoy a strong logical foundation and ensure, in addition to protocol adherence (session
fidelity), the existence of a communication partner (progress). Session types have also been
extended with safe sharing [1, 2, 3] to accommodate multi-client scenarios that are rejected
by exclusively linear session types.

Despite these theoretical advances, session types have not (yet) been adopted at scale.
While various session type embeddings exist in mainstream languages such as Java [18, 17],
Scala [39], Haskell [38, 34, 20, 27], OCaml [32, 19], and Rust [21, 25, 8, 9], all of these
embeddings lack support for multi-client scenarios that mandate controlled aliasing in
addition to linearity.

This paper introduces Ferrite [6], a shallow embedding of session types in Rust. In
contrast to prior work, Ferrite supports both linear and shared session types, with protocol
adherence guaranteed statically by the Rust compiler. Ferrite’s underlying theory is based
on the calculus SILLS introduced in [1], which develops the logical foundation of shared
session types. As a matter of fact, Ferrite encodes SILLS typing derivations as Rust functions,
through a technique we dub judgmental embedding. Through our judgmental embedding,
a type-checked Ferrite program yields a Rust program that corresponds to a SILLS typing
derivation and thus the proof of protocol adherence.

In order to faithfully encode SILLS typing in Rust, this paper further makes several
technical contributions to emulate advanced typing features, such as higher-kinded types,
by a skillful combination of traits (type classes) and associated types (type families). For
example, Ferrite supports recursive (session) types in this way, which are limited to recursive
structs of a fixed size in plain Rust. A combination of type-level natural numbers with
ideas from profunctor optics [33] are also used to support named channels and labeled
choices. We adopt the idea of lenses [11] for selecting and updating individual channels in
an arbitrary-length linear context. Similarly, we use prisms for selecting a branch out of
arbitrary-length choices. Whereas session-ocaml [32] has previously explored the use of n-ary
choice through extensible variants in OCaml, we are the first to connect n-ary choice to
prisms and non-native implementation of extensible variants. Notably, the Ferrite codebase
remains entirely in the safe fragment of Rust, with no (direct) use of unsafe features.

Given its support of both linear and shared session types, Ferrite is capable of ex-
pressing any session-typed program in Rust. We substantiate this claim by providing an
implementation of Servo’s canvas component with the communication layer within Ferrite.

This work makes the following contributions: (i) the design and implementation of Ferrite,
an embedded domain-specific language (EDSL) for writing session-typed programs in Rust;
(ii) with support of both linear and shared sessions, guaranteed to be observed by type
checking; (iii) a novel judgmental embedding of custom typing rules in a host language with
the resulting program carrying the proof of successful type checking; (iv) an encoding of
arbitrary-length choice in terms of prisms and extensible variants in Rust; (v) an empirical
evaluation based on a full implementation of Servo’s canvas component in Ferrite.

All typing rules and their encoding as well as further materials of interest to an inquisitive
reader are provided in our companion technical report [7].

R. F. Chen, S. Balzer, and B. Toninho 22:3

Table 1 Overview of session types and terms in SILLS together with their operational meaning.
Subscripts L and S denote linear and shared sessions, resp., where m, n ∈ {L, S}.

Session type Process term
current cont current cont Description

cL:⊕ {l:AL} cL:ALh cL.lh ; P P provider sends label lh along cL

case cL of l⇒ Q Qh client receives label lh along cL

cL:N{l:AL} cL:ALh case cL of l⇒ P Ph provider receives label lh along c

cL.lh ; Q Q client sends label lh along cL

cL:Am ⊗BL cL:BL send cL dm; P P provider sends channel dm:Am along cL

ym ← recv cL; Qym Qdm client receives channel dm:Am along cL

cL:Am ⊸ BL cL:BL ym ← recv cL; Pym Pdm provider receives channel dm:Am along cL

send cL dm; Q Q client sends channel dm:Am along cL

cL:1 - close cL - provider sends “end” along cL

wait cL; Q Q provider receives “end” along cL

cL:↓S
LAS cS:AS cS ← detach cL; PxS PcS provider sends “detach cS” along cL

xS ← release cL; QxS QcS client receives “detach cS” along cL

cS:↑S
LAL cL:AL cL ← acquire cS; QxL QcL client sends “acquire cL” along cS

xL ← accept cS; PxL PcL provider receives “acquire cL” along cS

cm : Am cm : Am zn ← X ← dm ; Pzn Pzn spawn (“cut”) X along zn:Bn with dm:Dm

cm : Am - fwd cm dm - forward to channel dm:Am and terminate

2 Background

This section gives a brief tour of linear and shared session types. The presentation is based
on the intuitionistic session-typed process calculus SILLS [1], which Ferrite builds upon. We
consider the protocol governing the interaction between a queue and its client:

queue A = N{enq : A ⊸ queue A, deq : ⊕{none : 1, some : A⊗ queue A}}

Table 1 provides an overview of the types used in the example. Since SILLS is based on
a Curry-Howard correspondence between intuitionistic linear logic and the session-typed
π-calculus [4, 5] it uses linear logic connectives (⊕, N, ⊗, ⊸, 1) as session types. The
remaining connectives concern shared sessions, a feature we remark on shortly. A crucial –
and probably unusual – characteristic of session-typed processes is that a process changes its
typing along with the messages it exchanges. As a result, a process’ typing always reflects
the current protocol state. Table 1 lists state transitions inflicted by a message exchange in
the first and second column and corresponding process terms in the third and fourth column.
The fifth column provides the operational meaning of a type.

Consulting Table 1, we gather that the above polymorphic session type queue A imposes
the following recursive protocol: A client may either send the label enq or deq to the queue,
depending on whether the client wishes to enqueue or dequeue an element of type A, resp.
In the former case, the client sends the element to be enqueued, after which the queue recurs.
In the latter case, the queue indicates to the client whether it is empty (none) or not (some),
and proceeds by either terminating or sending the dequeued element and recurring, resp.

A linear typing discipline is beneficial because it immediately guarantees session fidelity
– even in the presence of perpetual protocol change – by ensuring that a channel connects
exactly two processes. Unfortunately, linearity also rules out various practical programming
scenarios that demand sharing and thus aliasing of channel references. For example, the
above linear session type queue A is limited to a single client. To support safe sharing of

ECOOP 2022

22:4 Ferrite: A Judgmental Embedding of Session Types in Rust

stateful channel references while upholding session fidelity, SILLS extends linear session types
with shared session types (↓S

LAS, ↑S
LAL). These two connectives mediate between shared and

linear sessions by requiring that clients of shared sessions interact in mutual exclusion from
each other. Concretely, a type ↑S

LAL mandates a client to acquire the process offering the
shared session. If the request is successful, the client receives a linear channel to the acquired
process along which it must proceed as detailed by the session type AL. A type ↓S

LAS, on the
other hand, mandates a client to release the linear process, relinquishing ownership of the
linear channel and only being left with a shared alias to the now shared process at type AS.

Using these connectives, we can turn the above linear queue into a shared one, bracketing
enqueue and dequeue operations within acquire-release:

squeue AS = ↑S
LN{enq : AS ⊸ ↓S

Lsqueue AS, deq : ⊕{none : ↓S
Lsqueue AS, some : AS ⊗ ↓S

Lsqueue AS}}

In contrast to the linear queue, the above version recurs in the none branch and thus keeps
the queue alive to serve the next client. For convenience, SILLS allows the connectives ⊗ and
⊸ to be used to transport both linear and shared channels along a linear carrier channel.

To provide a flavor of session-typed programming in SILLS, we briefly comment on the
below processes empty and elem, which implement the shared queue session type as a
sequence of elem processes, ended by an empty process. A process implementation consists of
its signature (first two lines) and body (after =). The first line indicates the typing of channel
variables used by the process (left of ⊢) and the type of the providing channel variable (right
of ⊢). The second line binds the channel variables. In SILLS, ← generally denotes variable
bindings. We leave it to the reader to convince themselves, consulting Table 1, that the code
in the body of the two processes executes the protocol defined by session type squeue AS.

· ⊢ empty :: q : squeue AS

q ← empty ← · =
q′ ← accept q ;
case q′ of
| enq→ x← recv q′ ;

q ← detach q′ ;
e← empty ; q ← elem ← x, e

| deq→ q′.none ;
q ← detach q′ ;
q ← empty

x : AS, t : squeue AS ⊢ elem :: q : squeue AS

q ← elem ← x, t =
q′ ← accept q ;
case q′ of
| enq→ y ← recv q′ ;

t′ ← acquire t ;
t′.enq ; send t′ y ;
t← release t′ ; q ← detach q′ ;
q ← elem ← x, t

| deq→ q′.some ; send q′ x ;
q ← detach q′ ; fwd q t

Imposing acquire-release not only as a programming methodology but also as a typing
discipline has the advantage of recovering session fidelity for shared sessions. To this
end, shared session types in SILLS must be strictly equi-synchronizing [1, 3], imposing the
invariant that an acquired session is released to the type at which previously acquired. For
example, the shared session type squeue AS is strictly equi-synchronizing whereas the type
invalid = ↑S

LN{left : ↓S
L↑

S
L ⊕ {yes : ↓S

Linvalid, no : 1}, right : ↓S
Linvalid} is not.

It is instructive to review the typing rules for acquire-release:

(T-↑S
LL)
Ψ, xS : ↑S

LAL; ∆, yL : AL ⊢ QyL :: (zL : CL)
Ψ, xS : ↑S

LAL; ∆ ⊢ yL ← acquire xS ; QyL :: (zL : CL)

(T-↑S
LR)

Ψ; · ⊢ PyL :: (yL : AL)
Ψ ⊢ yL ← accept xS ; PyL :: (xS : ↑S

LAL)

(T-↓S
LL)

Ψ, xS : AS; ∆ ⊢ QxS :: (zL : CL)
Ψ; ∆, yL : ↓S

LAS ⊢ xS ← release yL ; QxS :: (zL : CL)

(T-↓S
LR)

Ψ ⊢ PxS :: (xS : AS)
Ψ; · ⊢ xS ← detach yL ; PxS :: (yL : ↓S

LAS)

R. F. Chen, S. Balzer, and B. Toninho 22:5

Due to its foundation in intuitionistic linear logic, SILLS’ typing rules are phrased using a
sequent calculus, leading to left and right rules for each connective. Left rules describe the
interaction from the point of view of the client, right rules from the point of view of the
provider. The typing judgments Ψ; ∆ ⊢ P :: (xL : AL) and Ψ ⊢ P :: (xS : AS) read as “process
P offers a session of type A along channel x using sessions offered along channels in Ψ (and
∆).” The typing contexts Ψ and ∆ provide the typing of shared and linear channels, resp.
Whereas Ψ is a structural context, ∆ is a linear context, forbidding channels to be dropped
(weakened) or duplicated (contracted). In contrast to linear processes, shared processes must
not use any linear channels, a requirement crucial for type safety. The notions of acquire
and release are naturally formulated from the point of view of a client, so these terms appear
in the left rules. The right rules use the terms accept and detach with the meaning that an
accept accepts an acquire and a detach initiates a release. The rules are read bottom-up,
where the premise denotes the next action to be taken after the message exchange.

3 Key Ideas

This section introduces the key ideas underlying Ferrite. Subsequent sections provide further
details.

3.1 SILLR – A stepping stone from SILLS to Ferrite
In Section 2, we reviewed SILLS and its typing judgment. Our goal with Ferrite is to
faithfully and compositionally encode SILLS typing derivations in Rust. However, when
viewed under the lens of a general purpose programming language, most readers will find
SILLS a prohibitively austere formalism, lacking most facilities needed to write realistic
programs (e.g. basic data types, pattern matching, etc.) and provided by a convenient and
usable programming language like Rust. From an ergonomics standpoint alone it would
be unreasonably prohibitive for our embedding to forbid the use of Rust features such as
functions, traits and enumerations, only for the sake of precisely mirroring SILLS. Moreover,
to realize such an embedding we must be able to account for both SILLS’ linear session
discipline (i.e. the linear context ∆) and shared session discipline (i.e. the structural context
Ψ) within Rust’s usage discipline. Since Rust’s typing discipline is essentially affine, its
treatment of variable usage is neither linear nor purely structural, and so both shared and
linear channels must be treated explicitly in the encoding.

The two points above naturally lead us to the language SILLR as a formal stepping stone
between SILLS and our embedding, Ferrite. SILLR is, in its essence, a pragmatic extension
of SILLS with Rust (type and term) constructs, allowing us to intersperse Rust code with
the communication primitives of SILLS. In SILLR we use the judgment Γ; ∆ ⊢ expr :: A,
denoting that expression expr has session type A, using the sessions tracked by Γ and ∆.

This judgment differs from that of SILLS in its context region Γ and term expr , with the
latter permitting arbitrary Rust expressions in addition to SILLS primitives. Whereas SILLS’s
structural context Ψ exclusively tracks shared channels, SILLR’s Γ tracks both shared sessions
(subject to weakening and contraction) and plain Rust (affine) variables. A shared channel
type in both SILLR and SILLS is always of the form ↑S

LA, so there is no confusion among the
affine and shared contents of Γ. As we discuss in Section 5.2, the distinction between a plain
Rust variable, which is treated as affine, and a shared channel, which is treated structurally,
is modelled in Ferrite by making shared channels implement Rust’s Clone trait.

ECOOP 2022

22:6 Ferrite: A Judgmental Embedding of Session Types in Rust

Table 2 Overview of SILLR types and terms and their encoding in Ferrite. Note that SILLR uses
τ ◁ AL and τ ▷ AL for shared channel output and input, resp., and ϵ for termination.

Type Terms (SILLR)
Ferrite SILLR provider client

InternalChoice<Row> ⊕{li : ALi} offer li; K case a {li : Ki}
ExternalChoice<Row> N{li : ALi} offer_choice{li : Ki} choose a li; K

SendChannel<A,B> AL ⊗BL send_channel_from a; K a← receive_channel_from f a; K

ReceiveChannel<A,B> AL ⊸ BL a← receive_channel; K send_channel_to f a; K

SendValue<T,A> τ ◁ AL send_value x; K x← receive_value_from a x; K

ReceiveValue<T,A> τ ▷ AL x← receive_value; K send_value_to a x; K

End ϵ terminate wait a; K

SharedToLinear<A> ↓S
LAS detach_shared_session; Ks release_shared_session a; Kl

LinearToShared<A> ↑S
LAL accept_shared_session; Kl a← acquire_shared_session s; Kl

Table 2 provides an overview of SILLR types and terms and their Ferrite encoding. SILLR
types stand in direct correspondence with SILLS types (see Table 1), apart from shared
channel output and input. The SILLS types for sending and receiving shared channels (AS⊗AL

and AS ⊸ AL) correspond to SILLR types for sending and receiving values (T ◁ A and T ▷ A,
resp.), which support both Rust values and shared channels. Their typing rules are:

(T◁R)
Γ ; ∆ ⊢ K :: A

Γ, x : τ ; ∆ ⊢ send_value x; K :: τ ◁ A

(T◁L)
Γ, x : τ ; ∆, a : A ⊢ K :: B

Γ ; ∆, a : τ ▷ A ⊢ x ← receive_value_from a; K :: B

Rule T◁R indicates that the value bound to variable x of type τ will be sent, after which
the continuation K will execute, offering type A. Dually, rule T◁L states that using such a
provider bound to a will bind x of type τ in continuation K, which must now use the channel
bound to a according to A.

3.2 Judgmental Embedding
Having introduced the SILLR typing judgment and illustrated some of its typing rules, we
can now clarify the idea behind our notion of judgmental embedding, which enables the Rust
compiler to typecheck SILLR programs by encoding typing derivations as Rust programs.
The basic idea underlying this encoding can be schematically described as follows:

Γ ; ∆2 ⊢ cont :: A2

Γ ; ∆1 ⊢ expr ; cont :: A1

fn expr<...>
(cont: PartialSession<C2, A2>)
-> PartialSession<C1, A1>

On the left we show a SILLR typing rule and on the right its encoding in Ferrite. Ferrite
encodes a SILLR typing judgment Γ; ∆ ⊢ expr :: A as a value of Rust type PartialSession<
C, A>, where C encodes the linear context ∆ and A the session type A, standing for any of
the Ferrite types of Table 2. Ferrite then encodes a SILLR typing rule for an expression expr
as a Rust function expr that accepts a PartialSession<C2, A2> and returns a PartialSession
<C1, A1>, where expr stands for any of the SILLR terms of Table 2. The encoding makes
use of continuation passing style (arising from the sequent calculus-based formulation of
SILLR), with the return type being the conclusion of the rule and the argument type being
its premise. Table 3 summarizes the judgmental embedding; Section 4.1 provides further
details. Whereas Ferrite explicitly performs a type-level encoding of the linear context ∆, the
representation of the shared and affine context region Γ is achieved through Rust’s normal

R. F. Chen, S. Balzer, and B. Toninho 22:7

Table 3 Judgmental embedding of SILLR in Ferrite.

SILLR Ferrite Description

Γ ; · ⊢ A Session<A> Typing judgment for top-level session (i.e. closed program).
Γ ; ∆ ⊢ A PartialSession<C, A> Typing judgment for partial session.
∆ C: Context Linear context; explicitly encoded.
Γ - Shared / Affine context; delegated to Rust.
A A: Protocol Session type.

binding structure, with the obligation that shared channels implement Rust’s Clone trait to
permit contraction. To type a closed program, Ferrite defines the type Session<A>, which
stands for a SILLR judgment with an empty linear context.

Adopting a judgmental embedding technique for implementing a DSL delivers the benefits
of proof-carrying code: the PartialSession<C1, A1> returned from a well-typed Ferrite expr is
the typing derivation of the corresponding SILLR term. In case the SILLR term is a SILLS
term, its typing derivation certifies protocol adherence by virtue of the type safety proof of
SILLS [1]. In case the SILLR term includes Rust code, its typing derivation certifies protocol
adherence modulo the possibility of a panic raised by the Rust code. A fully general type
safety result for SILLR, possibly building upon existing formalizations of Rust [22], is an
avenue of future work.

3.3 Recursive and Shared Session Types in Ferrite
Rust’s support for recursive types is limited to recursive struct definitions of a known size. To
circumvent this restriction and support arbitrary recursive session types, Ferrite introduces
a type-level fixed-point combinator Rec<F> to obtain the fixed point of a type function F.
Since Rust lacks higher-kinded types such as Type → Type, we use defunctionalization [36, 46]
by accepting any Rust type F implementing the trait RecApp with a given associated type
F::Applied, as shown below. Section 5.1 provides further details.
trait RecApp<X> { type Applied; }
struct Rec<F: RecApp<Rec<F>>> { unfold: Box<F::Applied> }

Recursive types are also vital for encoding shared session types. In line with [3], we restrict
shared session types to be recursive, making sure that a shared component is continuously
available. To guarantee type preservation, recursive session types must be strictly equi-
synchronizing [1, 3], requiring an acquired session to be released to the same type at which
it was previously acquired. Ferrite enforces this invariant by defining a specialized trait
SharedRecApp which omits an implementation for End:
trait SharedRecApp<X> { type Applied; } trait SharedProtocol { ... }
struct SharedToLinear<F> { ... } struct SharedChannel<S: SharedProtocol> { ... }
struct LinearToShared<F: SharedRecApp<SharedToLinear<LinearToShared<F>>>> { ... }

Ferrite achieves safe communication for shared sessions by imposing an acquire-release
discipline [1] on shared sessions, establishing a critical section for the linear portion of the
process enclosed within acquire and release. SharedChannel denotes the shared process running
in the background, and clients with a reference to it can acquire an exclusive linear channel
to communicate with it. As long as the linear channel exists, the shared process is locked
and cannot be acquired by any other client. With the strictly equi-synchronizing constraint
in place, the now linear process must eventually be released (SharedToLinear) back to the
same shared session type at which it was previously acquired, giving turn to another client
waiting to acquire. Section 5.2 provides further details on the encoding.

ECOOP 2022

22:8 Ferrite: A Judgmental Embedding of Session Types in Rust

3.4 N-ary Choice and Linear Context
Ferrite implements n-ary choices and linear typing contexts as extensible sums and products
of session types, resp. Ferrite uses heterogeneous lists [23] to annotate a list of session types
of arbitrary length. The notation HList![A0, A1, ..., AN−1] denotes a heterogeneous list of
N session types, with Ai being the session type at the i-th position of the list. The HList!
macro acts as syntactic sugar for the heterogeneous list, which in its raw form is encoded as
(A0, (A1, (..., (AN−1, ())))). Ferrite uses the Rust tuple constructor (,) for HCons, and unit
() for HNil. The heterogeneous list itself can be directly used to represent an n-ary product.
Using an associated type, the list can moreover be transformed into an n-ary sum.

One disadvantage of using heterogeneous lists is that its elements have to be addressed by
position rather than a programmer-chosen label. To recover labels for accessing list elements,
we use optics [33]. More precisely, Ferrite uses lenses [11] to access a channel in a linear
context and prisms to select a branch of a choice. We further combine the optics abstraction
with de Bruijn levels and implement lenses and prisms using type level natural numbers.
Given an inductive trait definition of natural numbers as zero (Z) and successor (S<N>), a
natural number N implements the lens to access the N-th element in the linear context, and
the prism to access the N-th branch in a choice. Schematically, the lens encoding can be
captured as follows:

Γ ; ∆, ln : B2 ⊢ K :: A2

Γ ; ∆, ln : B1 ⊢ expr ln; K :: A1

fn expr<...>
(l: N, cont: PartialSession<C1, A2>)
-> PartialSession<C2, A1>

where N: ContextLens<C1, B1, B2, Target=C2>

The index N amounts to the type of the variable l that the programmer chooses as a name for
a channel in the linear context. Ferrite handles the mapping, supporting random access to
programmer-named channels. Section 4.2 provides further details, including the support of
higher-order channels. Similarly, prisms allow choice selection in constructs such as offer_case
to be encoded as follows:

Γ; ∆ ⊢ K :: An

Γ; ∆ ⊢ offer_case ln; K :: ⊕{..., ln : An, ...}

fn offer_case<N, Row, C, A>
(l: N, cont: PartialSession<C, A>)
-> PartialSession<C, InternalChoice<Row>>

where N: Prism<Row, Elem=A>, ...

Ferrite maps a choice label to a constant having the singleton value of a natural number
N, which implements the prism to access the N-th branch of a choice. In addition to prisms,
Ferrite implements a version of extensible variants [28] to support polymorphic operations
on arbitrary sums of session types representing choices. Finally, the define_choice! macro
is used as a helper to export type aliases as programmer-friendly identifiers. Details are
reported in Section 6 and in our companion technical report [7].

4 Ferrite – A Judgmental Embedding of SILLR

Having introduced some of the key concepts underlying the implementation of Ferrite, we
now cover in detail the implementation of Ferrite’s core constructs, building up the knowledge
required for Section 5 and Section 6. Ferrite, like any other DSL, has to tackle the various
technical challenges encountered when embedding a DSL in a host language. In doing so, we
take inspiration from the range of embedding techniques developed for Haskell and adjust
them to the Rust setting. The lack of higher-kinded types, limited support of recursive types,
and presence of weakening, in particular, make the development far from trivial. A more
conceptual contribution of this work is thus to demonstrate how existing Rust features can
be combined to emulate many of the missing features that are beneficial to DSL embeddings

R. F. Chen, S. Balzer, and B. Toninho 22:9

and how to encode custom typing rules in Rust or any similarly expressive language. The
techniques described in this and subsequent sections also serve as a reference for embedding
other DSLs in a host language like Rust.

4.1 Encoding Typing Rules via Judgmental Embedding
A distinguishing characteristic of Ferrite is its propositions as types approach, yielding a
direct correspondence between SILLR notions and their Ferrite encoding. This correspondence
was introduced in Section 3.2 (see Table 3) and we now discuss it in more detail. To this
end, let’s consider the typing of value input. We remind the reader of Table 2 in Section 3,
which provides a mapping between SILLR and Ferrite session types. Interested readers can
find a corresponding mapping on the term level in the companion technical report [7].

Γ, a : τ ; ∆ ⊢ K :: A

Γ ; ∆ ⊢ a ← receive_value; K :: τ ▷ A
(T ▷ R)

The SILLR right rule T ▷ R types expression a ← receive_value; K with session type τ ▷ A

and the continuation K with session type A, where a is now in scope with type τ . Following
the schema hinted in Section 3.2, Ferrite encodes this rule as the function receive_value,
parameterized by a value type T (τ), a linear context C (∆), and an offered session type A.
fn receive_value<T, C:Context, A:Protocol>(cont:impl FnOnce(T) -> PartialSession<C, A>)

-> PartialSession<C, ReceiveValue<T, A>>

The function yields a value of type PartialSession<C, ReceiveValue<T, A>>, i.e. the con-
clusion of the rule, given an (affine) closure of type T → PartialSession<C, A>, encoding the
premise of the rule. Notably, Ferrite uses plain Rust binding (through function types) to
encode the contents of Γ, as illustrated for the received value above. The use of a closure
reveals the continuation-passing-style of the encoding, where the received value of type T is
passed to the continuation closure. The affine closure implements the FnOnce trait, ensuring
that it can only be called once.

The type PartialSession is a core construct of Ferrite that enables the judgmental
embedding of SILLR. A Rust value of type PartialSession<C, A> represents a Ferrite program
that guarantees linear usage of session type channels in the linear context C and offers the
linear session type A, corresponding to the SILLR typing judgment Γ; ∆ ⊢ expr :: A. The type
parameters C and A are constrained to implement the traits Context and Protocol – two other
Ferrite constructs representing a linear context and linear session type, resp.:
trait Context { ... } trait Protocol { ... }
struct PartialSession<C: Context, A: Protocol> { ... }

For each SILLR session type, Ferrite defines a corresponding Rust struct that implements
the trait Protocol, yielding the listing shown in Table 2. Implementations for ϵ (End) and
τ ▷ A (ReceiveValue<T, A>) are shown below. When a session type is nested within another
session type, such as in the case of ReceiveValue<T, A>, the constraint to implement Protocol
is propagated to the inner session type, requiring A to also implement Protocol:
struct End { ... } struct ReceiveValue<T, A> { ... }
impl Protocol for End { ... } impl<A: Protocol> Protocol for ReceiveValue<T, A> { ... }

Thus, while Ferrite delegates the handling of the shared/structural context Γ to Rust,
the encoding of the linear context ∆ is explicit. Being affine, the Rust type system permits
weakening, a structural property rejected by linear logic. Ferrite encodes a linear context as a
heterogeneous (type-level) list [23] of the form HList![A0, A1, ..., AN−1], with all its type

ECOOP 2022

22:10 Ferrite: A Judgmental Embedding of Session Types in Rust

elements Ai implementing Protocol. Internally, the HList macro desugars the type-level list
into a nested tuple (A0, (A1, (..., (AN−1, ())))). The unit type () is used as the empty
list (HNil) and the tuple constructor (,) is used as the HCons constructor. The implementation
for Context is defined inductively as follows:
impl Context for () { ... } impl<A: Protocol, C: Context> Context for (A, C) { ... }

To represent a closed program, i.e. a program without free channel variables, we define a
type alias Session<A> for PartialSession<C, A>, with C restricted to the empty context:
type Session<A> = PartialSession<(), A>;

A complete session type program in Ferrite is thus of type Session<A> and amounts to
the SILLR typing derivation proving that the program adheres to the defined protocol. Below
we show a “hello world”-style program in Ferrite:
let hello_provider = receive_value(|name| { println!("Hello, {}", name); terminate() });

The Ferrite program hello_provider has an inferred Rust type Session<ReceiveValue<String
, End>>. It offers the type ReceiveValue<String, End> by first receiving a string value using
receive_value, binding it to name in the continuation closure. Upon receiving the name string,
It prints out the name with a "Hello" greeting, and terminates using terminate().

4.2 Manipulating the Linear Context
Context Lenses

The use of a type-level list to encode the linear context has the advantage of allowing contexts
of arbitrary length. However, the list imposes an order on the context’s elements, disallowing
exchange. To allow exchange, we make use of the concept of lenses [11] to define a ContextLens
trait, which is implemented using type-level natural numbers.
#[derive(Copy)] struct Z; #[derive(Copy)] struct S<N>(PhantomData<N>);
trait ContextLens<C: Context, A1: Protocol, A2: Protocol> { type Target: Context; ... }

The ContextLens trait defines the read and update operations on a linear context, such
that given a source context C = HList![..., AN , ...], the source element of interest, AN

at position N , can be updated to the target element B to form the target context Target =
HList![..., B, ...], with the remaining elements unchanged. We use natural numbers to
inductively implement ContextLens at each position in the linear context, such that it satisfies
all constraints of the form:

N: ContextLens<HList![..., AN , ...], AN , B, Target=HList![..., B, ...]>

The implementation of natural numbers as context lenses is done by first considering the
base case, with Z used to access the first element of any non-empty linear context:
impl<A1: Protocol, A2: Protocol, C: Context> ContextLens<(A1, C), A1, A2>

for Z { type Target = (A2, C); ... }
impl<A1: Protocol, A2: Protocol, B: Protocol, C: Context, N: ContextLens<C, A1, A2>>
ContextLens <(B, C), A1, A2> for S<N> { type Target = (B, N::Target); ... }

In the inductive case, for any natural number N implementing the context lens for a context
HList![A0, ..., AN , ...], it’s successor S<Z> implements the context lens for HList![A−1,
A0, ..., AN , ...], with a new element A−1 appended to the head of the linear context.
Using context lenses, we can encode the SILLR left rule T▷L shown below, which types sending
an ambient value x to a channel a in the linear context that expects to receive a value.

R. F. Chen, S. Balzer, and B. Toninho 22:11

Γ ; ∆, a : A ⊢ K :: B

Γ, x : τ ; ∆, a : τ ▷ A ⊢ send_value_to a x; K :: B
(T▷L)

In Ferrite, T▷L is implemented as the function send_value_to, which uses a context lens N to
send a value of type T to the N-th channel in the linear context C1. This requires the N-th
channel to have type ReceiveValue<T,A>. A continuation cont is then given with the linear
context C2, which has the N-th channel updated to type A.
fn send_value_to<N, T, C1: Context, C2: Context, A: Protocol, B: Protocol>

(n: N, x: T, cont: PartialSession<C2, B>) -> PartialSession <C1, B>
where N: ContextLens<C1, ReceiveValue<T, A>, A, Target=C2>

Channel Removal

The above definition of a context lens is suited for updating channel types in a context.
However, we have not addressed how channels can be removed or added to the linear context.
These operations are required to implement session termination and higher-order channel
constructs such as ⊗ and ⊸. To support channel removal, we introduce a special Empty
element to denote the absence of a channel at a given position in the linear context:
struct Empty; trait Slot { ... }
impl Slot for Empty { ... } impl<A: Protocol> Slot for A { ... }

To allow Empty to be present in a linear context, we introduce a new Slot trait and make
both Empty and Protocol implement Slot. The original definition of Context is then updated
to allow types that implement Slot instead of Protocol.

Γ ; ∆ ⊢ K :: A

Γ ; ∆, a : ϵ ⊢ wait a; K :: A
(T1L)

Γ ; · ⊢ terminate; :: ϵ
(T1R)

Using Empty, it is straightforward to implement SILLR’s session termination. Rule T1L is
encoded via a context lens that replaces a channel of session type End with the Empty slot. The
function wait shown below does not really remove a slot from a linear context, but merely
replaces the slot with Empty. The use of Empty is necessary, because we want to preserve the
position of channels in a linear context in order for the context lens for a channel to work
across continuations.
fn wait<C1: Context, C2: Context, A: Protocol, N>

(n: N, cont: PartialSession<C2, A>) -> PartialSession<C1, A>
where N: ContextLens<C1, End, Empty, Target=C2>

With Empty introduced, an empty linear context may now contain any number of Empty slots
(e.g., HList![Empty, Empty]). We introduce an EmptyContext trait to abstract over the different
forms of empty linear contexts and provide an inductive definition as its implementation:
trait EmptyContext: Context { ... } impl EmptyContext for () { ... }
impl<C: EmptyContext> EmptyContext for (Empty, C) { ... }

Given the empty list () as the base case, the inductive case (Empty, C) is an empty linear
context, if C is also an empty linear context. Using the definition of an empty context, the
SILLR right rule T1R can then be easily encoded as the function terminate, which works
generically for all contexts that implement EmptyContext as shown below:
fn terminate<C: EmptyContext>() -> PartialSession<C, End>

ECOOP 2022

22:12 Ferrite: A Judgmental Embedding of Session Types in Rust

Channel Addition
The Ferrite function wait removes a channel from the linear context by replacing it with
Empty. Dually, the function receive_channel, adds a new channel to the linear context. The
SILLR rule T⊸R for channel input is shown below. It binds the received channel of session
type A to the channel variable a and adds it to the linear context ∆ of the continuation.

Γ ; ∆, a : A ⊢ K :: B

Γ ; ∆ ⊢ a ← receive_channel; K :: A ⊸ B
(T⊸R)

To encode T⊸R, an append operation on contexts is defined via the AppendContext trait:
trait AppendContext<C: Context>: Context { type Appended: Context; ... }
impl<C: Context> AppendContext<C> for () { type Appended = C; ... }
impl<A: Slot, C1: Context, C2: Context, C3: Context> AppendContext<C2>

for (A, C1) where C1: AppendContext<C2, Appended=C3> { type Appended = (A, C3); ... }

The AppendContext trait is parameterized by a linear context C and an associated type
Appended. If a linear context C1 implements the trait AppendContext<C2>, it means that context
C2 can be appended to C1, with C3 = C1::Appended being the result of the append operation. The
implementation of AppendContext is defined inductively, with the empty list () implementing
the base case and the cons cell (A, C) implementing the inductive case.

Using AppendContext, a channel B can be appended to the end of a linear context C, if C
implements AppendContext<HList![B]>. The new linear context after the append operation
is given in the associated type C::Appended. We then observe that the position of channel
B in C::Appended is the same as the length of the original linear context C. In other words,
the context lens for channel B in C::Appended can be generated by obtaining the length of C.
In Ferrite, the length operation is implemented by adding an associated type Length to the
Context trait. The implementation of Context for () and (A, C) is updated correspondingly.
trait Context { type Length; ... } impl Context for () { type Length = Z; ... }
impl<A: Slot, C: Context> Context for (A, C) { type Length = S<C::Length>; ... }

The SILLR right rule T⊸R is then encoded as follows:
fn receive_channel<A: Protocol, B: Protocol, C1: Context, C2: Context>(

cont: impl FnOnce(C1::Length) -> PartialSession<C2, B>) ->
PartialSession<C1, ReceiveChannel<A, B>> where C1: AppendContext<(A, ()), Appended=C2>

The function receive_channel is parameterized by a linear context C1 implementing
AppendContext to append the session type A to C1. The continuation argument cont is a closure
that is given a context lens C::Length, and returns a PartialSession with C2=C1::Appended as
its linear context. The function returns a PartialSession with linear context C1, offering
session type ReceiveChannel<A, B>.

We note that in the type signature of receive_channel, the type C1::Length is not shown to
have any ContextLens implementation. However when C1::Length is instantiated to the concrete
types Z, S<Z>, etc in the continuation body, Rust will use the appropriate implementations of
ContextLens so that they can be used to access the appended channel in the linear context.

The use of receive_channel is illustrated with the hello_client example below:
let hello_client = receive_channel(|a| {

send_value_to(a, "Alice".to_string(), wait(a, terminate())) });

The hello_client program is inferred to have the Rust type Session<ReceiveChannel<
ReceiveValue<String, End>, End>>. It is written to communicate with the hello_provider pro-
gram defined earlier in Section 4.1. The interaction is achieved by having hello_client offering
the session type ReceiveChannel<ReceiveValue<String, End>, End>. In its body, hello_client
uses receive_channel to receive channel a of type ReceiveValue<String, End> from

R. F. Chen, S. Balzer, and B. Toninho 22:13

hello_provider. The continuation closure is given an argument a:Z, denoting the context lens
generated by receive_channel for accessing the received channel in the linear context. The
context lens a:Z is then used for sending a string value, after which we wait for hello_provider
to terminate. We note that the type Z of channel a (i.e. the channel position in the context)
is automatically inferred by Rust and not exposed to the user.

4.3 Communication
At this point we have defined the necessary constructs to build and typecheck both
hello_provider and hello_client, but the two are separate Ferrite programs that are yet
to be linked with each other and executed.

Γ ; ∆1 ⊢ K1 :: A Γ ; ∆2, a : A ⊢ K2 :: B

Γ ; ∆1, ∆2 ⊢ a ← cut K1 ; K2 :: B
(T-cut)

Γ ; a : A ⊢ forward a :: A
(T-fwd)

In SILLR , rule T-cut allows two session-typed programs to run in parallel, with the
channel offered by K1 added to the linear context of program K2. Together with the forward
rule T-fwd, we can use cut twice to run both hello_provider and hello_client in parallel,
and have a third program that sends the channel offered by hello_provider to hello_client.
The program hello_main would have the following pseudo code in SILLR :
hello_main : ϵ = f ← cut hello_client; a ← cut hello_provider ;

send_channel_to f a; forward f

To implement cut in Ferrite, we need a way to split a linear context C = ∆1, ∆2 into two
sub-contexts C1 = ∆1 and C2 = ∆2 so that they can be passed to the respective continuations.
Moreover, since Ferrite programs use context lenses to access channels, the ordering of
channels inside C1 and C2 must be preserved. We can preserve the ordering by replacing the
corresponding slots with Empty during the splitting. Ferrite defines the SplitContext trait to
implement the splitting as follows:
enum L {} enum R {}
trait SplitContext<C: Context> { type Left: Context; type Right: Context; ... }

We first define two (uninhabited) marker types L and R. We then use type-level lists
consisting of elements L and R to implement the SplitContext trait for a given linear context C.
The SplitContext implementation contains the associated types Left and Right, representing
the contexts C1 and C2 after splitting. As an example, the type HList![L, R, L] would
implement SplitContext<HList![A1, A2, A3]> for any slot A1, A2 and A3, with the associated
type Left being HList![A1, Empty, A3] and Right being HList![Empty, A2, Empty]. We omit
the implementation details of SplitContext for brevity. Using SplitContext, the function cut
can be implemented as follows:
fn cut<XS, C: Context, C1: Context, C2: Context, C3: Context, A: Protocol, B: Protocol>

(cont1: PartialSession<C1, A>,
cont2: impl FnOnce(C2::Length) -> PartialSession<C3, B>) -> PartialSession<C, B>

where XS: SplitContext<C, Left=C1, Right=C2>, C2: AppendContext<HList![A], Appended=C3>

The function cut works by using the heterogeneous list XS that implements SplitContext
to split a linear context C into C1 and C2. To pass on the channel A that is offered by cont1 to
cont2, cut uses a similar technique to receive_channel to append the channel A to the end of
C2, resulting in C3. Using cut, we can write hello_main in Ferrite as follows:
let hello_main: Session<End> = cut::<HList![]>(hello_client, |f| {

cut::<HList![R]>(hello_provider, |a| { send_channel_to(f, a, forward(f)) }) });

ECOOP 2022

22:14 Ferrite: A Judgmental Embedding of Session Types in Rust

Due to ambiguous instances for SplitContext, the type parameter XS has to be annotated
explicitly for Rust to know in which context a channel should be placed. In the first use of
cut, the context is empty, so we call cut with the empty list HList![]. We pass hello_client
as the first continuation to run in parallel, and name the channel offered by hello_client as
f. In the second use of cut, the linear context would be HList![ReceiveValue<String, End>],
with one channel f. We then have cut move f to the right side using HList![R]. On the left
continuation, we have hello_provider run in parallel, and name the offered channel as a. In
the right continuation, we use send_channel_to to send channel a to f. Finally, we forward
the continuation of f, which now has type End.

Although cut provides the primitive way for Ferrite programs to communicate, its use
can be cumbersome and requires a lot of boilerplate. For simplicity, we provide a specialized
apply_channel construct that abstracts over the common usage pattern of cut. apply_channel
takes a client program f offering session type ReceiveChannel<A, B> and a provider program a
offering session type A, and sends a to f using cut. The use of apply_channel is akin to regular
function application, making it more intuitive for programmers to use:
fn apply_channel<A: Protocol, B: Protocol>(

f: Session<ReceiveChannel<A, B>>, a: Session<A>) -> Session

4.4 Executing Ferrite Programs
To actually execute a Ferrite program, the program must offer some specific session types. In
the simplest case, Ferrite provides the function run_session for running a top-level Ferrite
program offering End, with an empty linear context:
async fn run_session(session: Session<End>) { ... }

Function run_session executes the session asynchronously using Rust’s async/await infra-
structure. Internally, PartialSession<C, A> implements the dynamic semantics of the Ferrite
program, which is only accessible by public functions such as run_session. Ferrite currently
uses the tokio [41] runtime for asynchronous execution, as well as the one shot channels from
tokio::sync::oneshot to implement the low-level communication of Ferrite channels.

Since run_session accepts an argument of type Session<End>, this means that programmers
must first use cut or apply_channel to fully link Ferrite programs with free channel variables,
or Ferrite programs that offer session types other than End before they can be executed. This
restriction ensures that all linear channels created in a Ferrite program are consumed. For
example, the programs hello_provider and hello_client cannot be executed individually, but
the program resulting from composing hello_provider with hello_client can be executed:
async fn main() { run_session(apply_channel(hello_client, hello_provider)).await; }

We omit the implementation details of the dynamics of Ferrite, which use low-level
primitives such as Rust channels while carefully ensuring that the requirements and invariants
of session types are satisfied. Interested readers can find more details in our companion
technical report [7].

5 Recursive and Shared Session Types

Many real world applications, such as web services and instant messaging, implement protocols
that are recursive in nature. As a result, it is essential for Ferrite to support recursive session
types. In this section, we report on Rust’s limited support for recursive types and how Ferrite
addresses this limitation. We then discuss our encoding of shared, recursive session types.

R. F. Chen, S. Balzer, and B. Toninho 22:15

5.1 Recursive Session Types
Consider a simple example of a counter session type, which sends an infinite stream of integer
values, incrementing each by one. To write a Ferrite program that offers such a session type,
we may attempt to define the counter session type as type Counter = SendValue<u64, Counter>.
If we try to use such a type definition, the compiler will emit the error “cycle detected when
processing Counter”. The issue with the definition is that it is a directly self-referential type
alias, which is not supported in Rust. Rust imposes various restrictions on the legal forms of
recursive types to ensure that the memory layout of data is known at compile-time.

Type-Level Fixed Points

To address this limitation, we implement type-level fixed points using defunctionalization [36,
46]. This is done by introducing a RecApp trait that is implemented by defunctionalized types
that can be “applied” with a type parameter:
trait RecApp<X> { type Applied; } type AppRec<F, X> = <F as RecApp<X>>::Applied;
struct Rec<F: RecApp<Rec<F>>> { unfold: Box<AppRec<F, Rec<F>>> }

The RecApp trait is parameterized by a type X, which serves as the type argument to
be applied to. This makes it possible for a Rust type F that implements RecApp to act
as if it has the higher-kinded type Type → Type, and be “applied” to type X. We define
a type alias AppRec<F, X> to refer to the associated type Applied resulting from “applying”
F to X via RecApp. Using RecApp, we can now define a type-level recursor Rec as a struct
parameterized by a type F that implements RecApp<Rec<F>>. The body of Rec contains a boxed
value Box<AppRec<F, RecApp<Rec<F>>>> to make it have a fixed size in Rust.

Ferrite implements RecApp for all Protocol types, with the type Z used to denote the
recursion point. With that, the example Counter type would be defined as type Counter =
Rec<SendValue<u64, Z>>. The type Rec<SendValue<T, Z>> is unfolded into SendValue<T, Rec<

SendValue<T, Z>>> through generic implementations of RecApp for SendValue and Z:
impl<X> RecApp<X> for Z { type Applied = X; }
impl<X, T, A: RecApp<X>> RecApp<X> for SendValue<T, A> {

type Applied = SendValue<T, AppRec<A, X>; }

Inside RecApp, Z simply replaces itself with the type argument X. SendValue<T, A> delegates
the type application of X to A, provided that the session type A also implements RecApp for X.

The session type Counter is iso-recursive, as the rolled type Rec<SendValue<u64, Z>> and
the folded type SendValue<u64, Rec<SendValue<u64, Z>> are considered distinct types in Rust.
As a result, Ferrite provides the constructs fix_session and unfix_session for converting
between the rolled and unfolded versions of a recursive session type.

Nested Recursive Session Types

The use of RecApp is akin to emulating the higher-kinded type (HKT) Type→ Type in Rust.
As of this writing, HKTs are only available in the nightly (unstable) version of Rust through
generic associated types. However, even with support for HKTs, our defunctionalization-based
approach via RecApp allows us to generalize to nested recursive types.

To account for a recursive type with multiple recursion points, we introduce a recursion
context R as a type-level list of elements (c.f. the linear context of Section 4.2). The type-level
natural numbers Z, S<Z>, etc. are now used as de Bruijn indices to unfold to the elements
in the recursion context. The type-level fixed point combinator Rec is redefined as RecX,
containing the recursion context:

ECOOP 2022

22:16 Ferrite: A Judgmental Embedding of Session Types in Rust

struct RecX<R, F: RecApp<(RecX<R, F>, R)>> { unfix: Box<AppRec<F, (RecX<R, F>, R)>> }
type Rec<F> = RecX<(), F>;
impl<R, F: RecApp<(RecX<R, F>, R)>> RecApp<R> for RecX<(), F> {

type Applied = RecX<R, F>; }

A recursive session type is defined starting with an empty recursion context. Since nested
recursive session types allow a RecX to be embedded inside another RecX, we have RecX also
implement RecApp, provided it has an empty recursion context. When unfolded from another
recursion context R, RecX simply saves R as its own recursion context and does not unfold
further in F. The inner type F is only unfolded once with the full recursion context after all
surrounding RecX types are unfolded.

The recursive marker Z is modified to unfold to the first element of the recursion context.
We then implement S<N> to unfold to the (N+1)-th position in the recursion context:
impl<A, R> RecApp<(A, R)> for Z { type Applied = A; }
impl<A, R, N: RecApp<R>> RecApp<(A, R)> for S<N> { type Applied = N::Applied; }

5.2 Shared Session Types
In the previous section we explored a recursive session type Counter, which is defined using
Rec and Z. Since Counter is defined as a linear session type, it cannot be shared among
multiple clients. Shared communication, however, is essential to implement many practical
applications. For instance, we may want to implement a simple counter web-service, to send
a unique count for each request. To support such shared communication, we introduce shared
session types in Ferrite, enabling safe shared communication in the presence multiple clients.

Shared Session Types in Ferrite

As introduced in Section 2, the SILLS (and SILLR) notion of shared session types is recursive
in nature, as a shared session type must offer the same linear critical section to all clients that
acquire a shared resource. For instance, a shared version of the Counter type in SILLR is:

SharedCounter = ↑S
LInt ◁ ↓S

LSharedCounter

The linear portion of SharedCounter in between ↑S
L (acquire) and ↓S

L (release) amounts
to a critical section. When a SharedCounter is acquired, it offers a linear session type
Int ◁ ↓S

LSharedCounter, willing to send an integer value, after which it must be released to
become available again as a SharedCounter to the next client.

The recursive aspect of shared session types in SILLR means that we can reuse the
implementation technique that we use for recursive session types. The type SharedCounter
can be defined in Ferrite as follows:
type SharedCounter = LinearToShared<SendValue<u64, Release>>;

Compared to linear recursive session types, the main difference is that instead of using
Rec, a shared session type is defined using the LinearToShared construct. This corresponds
to ↑S

L in SILLR , with the inner type SendValue<u64, Release> corresponding to the linear
portion of the shared session type. At the point of recursion, the type Release is used in
place of ↓S

LSharedCounter. As a result, the type LinearToShared<SendValue<u64, Release>> is
unfolded into SendValue<u64, SharedToLinear<LinearToShared<SendValue<u64, Release>>>> after
being acquired. Type unfolding is implemented as follows:
trait SharedRecApp<X> { type Applied; } trait SharedProtocol { ... }
struct SharedToLinear<F> { ... } struct LinearToShared<F> { ... }
impl<F> Protocol for SharedToLinear<LinearToShared<F>>

R. F. Chen, S. Balzer, and B. Toninho 22:17

where F: SharedRecApp<SharedToLinear<LinearToShared<F>>> { ... }
impl<F> SharedProtocol for LinearToShared<F>

where F: SharedRecApp<SharedToLinear<LinearToShared<F>>> { ... }

The struct LinearToShared is parameterized by a linear session type F that implements the
trait SharedRecApp<SharedToLinear<LinearToShared<F>>>. It uses the SharedRecApp trait instead
of the RecApp trait to ensure that the session type is strictly equi-synchronizing [3], requiring
an acquired session to be released to the same type at which it was previously acquired.
Ferrite enforces this requirement by omitting an implementation of SharedRecApp for End,
ruling out invalid shared session types such as LinearToShared<SendValue<u64, End>>. We
note that the type argument to F’s SharedRecApp is another struct SharedToLinear, which
corresponds to ↓S

L in SILLR . A SharedProtocol trait is also defined to identify shared session
types, i.e. LinearToShared.

Once a shared process is started, a shared channel is created to allow multiple clients to
access the shared process through the use of shared channel:
struct SharedChannel<S: SharedProtocol>{...} impl<S> Clone for SharedChannel<S>{...}

The code above shows the definition of the SharedChannel struct. Unlike linear channels,
shared channels follow structural typing, i.e. they can be weakened or contracted. This
means that we can delegate the handling of shared channels to Rust, given that SharedChannel
implements Rust’s Clone trait to allow contraction. Whereas SILLS provides explicit constructs
for sending and receiving shared channels, Ferrite’s shared channels can be sent as regular
Rust values using Send/ReceiveValue.

On the client side, a SharedChannel serves as an endpoint for interacting with a shared
process running in parallel. To start the execution of such a shared process, a corresponding
Ferrite program has to be defined and executed. Similar to PartialSession, we define
SharedSession as shown below to represent such a shared Ferrite program.
struct SharedSession<S: SharedProtocol> { ... }
fn run_shared_session<S: SharedProtocol>(session: SharedSession<S>) -> SharedChannel<S>

Just as PartialSession encodes linear Ferrite programs without executing them,
SharedSession encodes shared Ferrite programs without executing them. Since SharedSession
does not implement the Clone trait, the shared Ferrite program is itself affine and cannot
be shared. To enable sharing, the shared Ferrite program must first be executed with
run_shared_session. The function run_shared_session takes a shared Ferrite program of type
SharedSession<S> and starts it in the background as a shared process. Then, in parallel, the
shared channel of type SharedChannel<S> is returned to the caller, which can then be sent to
multiple clients for access to the shared process.

Below we demonstrate how a shared session can be defined and used by multiple clients:
type SharedCounter = LinearToShared<SendValue<u64, Release>>;
fn counter_producer(current_count: u64) -> SharedSession<SharedCounter> {

accept_shared_session(async move {
send_value(current_count, detach_shared_session(

counter_producer(current_count + 1))) }) }
fn counter_client(counter: SharedChannel<SharedCounter>) -> Session<End> {

acquire_shared_session(counter, move | chan | {
receive_value_from(chan, move | count | { println!("received count: {}", count);

release_shared_session(chan, terminate()) }) }) }

The recursive function counter_producer creates a SharedSession program that, when
executed, offers a shared channel of session type SharedCounter. On the provider side, a
shared session is defined using the accept_shared_session construct, with a continuation given
as an async thunk that is executed when a client acquires the shared session and enters

ECOOP 2022

22:18 Ferrite: A Judgmental Embedding of Session Types in Rust

the linear critical section (of type SendValue<u64, SharedToLinear<SharedCounter>>). Inside the
closure, the producer uses send_value to send the current count to the client and then uses
detach_shared_session to exit the linear critical section. The construct detach_shared_session
offers the linear session type SharedToLinear<SharedCounter> and expects a continuation that
offers the shared session type SharedCounter to serve the next client. We generate the
continuation by recursively calling the counter_producer function.

The counter_client function takes a shared channel of session type SharedCounter and
returns a session type program that acquires the shared channel and prints the received
count value to the terminal. A linear Ferrite program can acquire a shared session using
the acquire_shared_session construct, which accepts a SharedChannel object and adds the
acquired linear channel to the linear context. In this case, the continuation closure is given
the context lens Z, which provides access to the linear channel of session type SendValue
<u64, SharedToLinear<SharedCounter>> in the first slot of the linear context. It then uses
receive_value_from to receive the value sent by the shared provider and then prints the value.
On the client side, the linear session of type SharedToLinear<SharedCounter> must be released
using the release_shared_session construct. After releasing the shared session, other clients
will then be able to acquire the shared session.
async fn main () {

let counter1: SharedChannel<SharedCounter> = run_shared_session(counter_producer(0));
let counter2 = counter1.clone();
let child1 = task::spawn(async move { run_session(counter_client(counter1)).await; });
let child2 = task::spawn(async move { run_session(counter_client(counter2)).await; });
join!(child1, child2).await; }

To illustrate a use of SharedCounter, we have a main function that initializes a shared produ-
cer with an initial value of 0 and then runs the shared provider using the run_shared_session
construct. The returned SharedChannel is then cloned, making the shared counter accessible
via aliases counter1 and counter2. It then uses task::spawn to spawn two async tasks that run
counter_client twice. A key observation is that multiple Ferrite programs that are executed
independently can access the same shared producer through a reference to the shared channel.

A follow up example of SharedQueue, which demonstrates the Ferrite implementation of the
SILLS shared queue example in Section 2 is available in our companion technical report [7].

6 Choice

Session types support internal and external choice, leaving the choice among several options
to the provider or the client, resp. (see Table 2). When restricted to binary choice, the
implementation is relatively straightforward, as shown below by the two right rules for
internal choice in SILLR . The offer_left and offer_right constructs allow a provider to offer
an internal choice A⊕B by offering either A or B, resp.

Γ ; ∆ ⊢ K :: A

Γ ; ∆ ⊢ offer_left; K :: A⊕B
(T⊕2LR)

Γ ; ∆ ⊢ K :: B

Γ ; ∆ ⊢ offer_right; K :: A⊕B
(T⊕2RR)

It is straightforward to implement the two versions of the right rules by writing the two
respective functions offer_left and offer_right:
fn offer_left<C: Context, A: Protocol, B: Protocol>

(cont: PartialSession<C, A>) -> PartialSession<C, InternalChoice2<A, B>>
fn offer_right < C: Context, A: Protocol, B: Protocol >

(cont: PartialSession<C, B>) -> PartialSession<C, InternalChoice2<A, B>>

R. F. Chen, S. Balzer, and B. Toninho 22:19

However, this approach does not scale if we want to generalize choice beyond two options.
To support n-ary choice, the functions would have to be explicitly reimplemented N times.
Instead, we implement a single offer_case function which allows selection from n-ary branches.

In Section 4.2, we explored heterogeneous lists to encode the linear context, i.e. products
of session types of arbitrary lengths. We then implemented context lenses to access and
update individual channels in the linear context. Observing that n-ary choices can be encoded
as sums of session types, we now use prisms to implement the selection of an arbitrary-
length branch. Ferrite also supports an n-ary choice type InternalChoice<HList![...]>, with
InternalChoice<HList![A, B]> being the special case of a binary choice. To select a branch
out of the heterogeneous list, we define the Prism trait as follows:
trait Prism<Row> {type Elem; ...} impl<A, R> Prism<(A, R)> for Z {type Elem = A; ... };
impl<N, A, R> Prism<(A, R)> for S<N> where N: Prism<R> { type Elem = N::Elem; ... }

The Prism trait is parameterized over a row type Row=HList![...], with the associated
type Elem being the element type that has been selected from the list by the prism. We then
inductively implement Prism using type-level natural numbers, with the number N used for
selecting the N-th element of the heterogeneous list. The definition of Prism is similar to
ContextLens, with the main difference being that we only need Prism to support extraction
and injections operations on the sum types that are derived from the heterogeneous list.
Using Prism, a generalized offer_case function is implemented as follows:
fn offer_case<C: Context, A: Protocol, Row, N: Prism<Row, Elem=A>>

(n: N, cont: PartialSession<C, A>) -> PartialSession<C, InternalChoice<Row>>

The function accepts a natural number N as the first parameter, which acts as the prism
for selecting a session type AN out of the row type Row=HList![..., AN, ...]. Through the
associated type A=N::Elem, offer_case forces the programmer to provide a continuation that
offers the chosen session type A.

While offer_case is a step in the right direction, it only allows the selection of a specific
choice, but not the provision of all possible choices. The latter, however, is necessary to
encode the SILLR left rule of internal choice and right rule of external choice. To illustrate
the problem, let’s consider the right rule of a binary external choice, TN2R:

Γ ; ∆ ⊢ Kl :: A Γ ; ∆ ⊢ Kr :: B

Γ ; ∆ ⊢ offer_choice_2 Kl Kr :: ANB
(TN2R)

The offer_choice_2 construct has two possible continuations Kl and Kr, with only one of
them being executed, depending on the selection by the client. In a naive implementation,
we can define the construct to accept two continuations as follows:
fn offer_choice_2<C: Context, A: Protocol, B: Protocol>

(cont_left: PartialSession<C, A>, cont_right: PartialSession<C, B>)
-> PartialSession<C, ExternalChoice2<A, B>>

While the above implementation works in most languages, it is not adequate in Rust.
Since Rust’s type system is affine, variables can only be captured by one of the continuation
closures, but not both. As far as the compiler is aware, both closures can potentially be
called, and we cannot state that one of the branches is guaranteed to never run.

In order for offer_choice_2 to work in Rust’s affine typing, it has to accept only one
continuation closure and have it return either PartialSession<C, A> or PartialSession<C, B>,
depending on the client’s selection. It is not as straightforward to express such behavior as a
valid type in a language like Rust. If Rust supported dependent types, offer_choice_2 could
be implemented along the following lines:

ECOOP 2022

22:20 Ferrite: A Judgmental Embedding of Session Types in Rust

fn offer_choice_2<C: Context, A: Protocol, B: Protocol>
(cont: impl FnOnce(first: bool) -> if first { PartialSession<C, A> }

else { PartialSession<C, B> }) -> PartialSession<C, ExternalChoice2<A, B>>

That is, the return type of the cont closure depends on the whether the value of the first
argument is true or false. However, since Rust does not support dependent types, we emulate
a dependent sum in a non-dependent language, using a CPS transformation:
fn offer_choice_2<C: Context, A: Protocol, B: Protocol>

(cont: impl FnOnce(InjectSum2<C, A, B>) -> ContSum2<C, A, B>)
-> PartialSession<C, ExternalChoice2<A, B>>

The function offer_choice_2 accepts a continuation function cont that is given a value of
type InjectSum2<C, A, B> and returns a value of type ContSum2<C, A, B>. We will now look at
the definitions of ContSum2 and InjectSum2. First, we observe that the different return types
for the two branches can be unified with a type ContSum2:
struct ContSum2<C: Context, A: Protocol, B: Protocol> { ... }
async fn run_cont_sum<C: Context, A: Protocol, B: Protocol>(cont: ContSum2<C, A, B>)

The type ContSum2 contains the necessary data for executing either a PartialSession<C, A>
or a PartialSession<C, B>, together with the runtime data for the linear context C. For brevity,
the implementation details of ContSum2 are omitted, with the private function run_cont_sum
provided as an abstraction for Ferrite to execute the continuation.

We then define InjectSum2 as a sum of boxed closures that would construct a ContSum2
from either a PartialSession<C, A> or a PartialSession<C, B>:
enum InjectSum2<C, A, B> {

InjectLeft(Box<dyn FnOnce(PartialSession<C, A>) -> ContSum2<C, A, B>>),
InjectRight(Box<dyn FnOnce(PartialSession<C, B>) -> ContSum2<C, A, B>>) }

When the cont passed to offer_choice_2 is given a value of type InjectSum2<C, A, B>, it
has to branch on it and match on whether the InjectLeft or InjectRight constructors are
used. Since the return type of cont is ContSum2<C, A, B> and the constructor for ContSum2 is
private, there is no other way for cont to construct the return value other than to call either
InjectLeft or InjectRight with the appropriate continuation.

The use of InjectSum2 prevents the programmer from providing the wrong branch in the
continuation by keeping the constructor private. However, a private constructor alone cannot
prevent two uses of InjectSum2 to be deliberately interchanged, causing a protocol violation.
To fully ensure that there is no way for the user to provide a ContSum2 from elsewhere, we
instead use a technique from GhostCell [47] that uses higher-ranked trait bounds (HTRB) to
mark a phantom invariant lifetime on both InjectSum2 and ContSum2:
fn offer_choice_2<C: Context, A: Protocol, B: Protocol>

(cont: for <'r> impl FnOnce(InjectSum2<'r, C, A, B>) -> ContSum2<'r, C, A, B>)
-> PartialSession<C, ExternalChoice2<A, B>>

The use of HRTB ensures that each call of offer_choice_2 would generate a unique lifetime
'r for the continuation. Using that, Ferrite can ensure that a value of type InjectSum2<'r1,
C, A, B> cannot be used to construct the return value of type ContSum2<'r2, C, A, B>, if the
lifetimes <'r1> and <'r2> are different. An example use of offer_choice_2 is as follows:
let choice_provider: Session<ExternalChoice2<SendValue<u64, End>, End>>

= offer_choice_2(|b| { match b { InjectLeft(ret) => ret(send_value(42, terminate())),
InjectRight(ret) => ret(terminate()) } });

To free the programmer from writing such boilerplate, Ferrite also provides macros that
translates into the underlying pattern matching syntax. The macros allow the same example
to be written as follows:

R. F. Chen, S. Balzer, and B. Toninho 22:21

1 enum CanvasMsg { Canvas2d(Canvas2dMsg, CanvasId), Close(CanvasId), ... }
2 enum Canvas2dMsg { LineTo(Point2D), GetTransform(Sender<Transform2D>),
3 IsPointInPath(f64, f64, FillRule, IpcSender<bool>), ... }
4 enum ConstellationCanvasMsg { Create { id_sender: Sender<CanvasId>, size: Size2D } }
5 struct CanvasPaintThread { canvases: HashMap<CanvasId, CanvasData>, ... }
6 impl CanvasPaintThread { ...
7 fn start() -> (Sender<ConstellationCanvasMsg>, Sender<CanvasMsg>) {
8 let (msg_sender, msg_receiver) = channel(); let (create_sender, create_receiver) = channel();
9 thread::spawn(move || { loop { select! {

10 recv(canvas_msg_receiver) -> { ...
11 CanvasMsg::Canvas2d(message, canvas_id) => { ...
12 Canvas2dMsg::LineTo(point) => self.canvas(canvas_id).move_to(point),
13 Canvas2dMsg::GetTransform(sender) =>
14 sender.send(self.canvas(canvas_id).get_transform()).unwrap(), ... }
15 CanvasMsg::Close(canvas_id) => canvas_paint_thread.canvases.remove(&canvas_id) }
16 recv(create_receiver) -> { ... ConstellationCanvasMsg::Create { id_sender, size } => {
17 let canvas_id = ...; self.canvases.insert(canvas_id, CanvasData::new(size, ...));
18 id_sender.send(canvas_id); } } } } });
19 (create_sender, msg_sender) }
20 fn canvas(&mut self, canvas_id: CanvasId) -> &mut CanvasData {
21 self.canvases.get_mut(&canvas_id).expect("Bogus canvas id") } }

Figure 1 Message-passing concurrency in Servo’s canvas component (simplified for illustration
purposes).

define_choice!{ CustomChoice; Left: SendValue<u64, End>, Right: End }
let choice_provider: Session<ExternalChoice<CustomChoice>> = offer_choice! {

Left => send_value(42, terminate()), Right => terminate() };

The define_choice! macro allows defining named n-ary branches of choice. The offer_choice!
macro allows the choice provider to branch without the boilerplate used in the earlier example.
The generalization from binary to n-ary choice is omitted for conciseness. The details can be
found in our companion technical report [7].

7 Evaluation

The Ferrite library is more than just a research prototype. It is designed for practical
use in real world applications. To evaluate the design and implementation of Ferrite, we
re-implemented the communication layer of the canvas component of Servo [29] entirely in
Ferrite. Servo is an under development browser engine that uses message-passing for heavy
task parallelization. Canvas provides 2D graphic rendering, allowing clients to create new
canvases and perform operations on a canvas such as moving the cursor and drawing shapes.

The canvas component is a good target for evaluation as it is sufficiently complex and
also very demanding in terms of performance. Canvas is commonly used for animations in
web applications. For an animation to look smooth, a canvas must render at least 24 frames
per second, with potentially thousands of operations to be executed per frame.

The changes we made are fairly minimal, consisting of roughly 750 lines of additions and
620 lines of deletions, out of roughly 300,000 lines of Rust code in Servo. The sources of
our implementation are provided as an artifact. To differentiate the two versions of code
snippets, we use blue for the original code, and green for the code using Ferrite.

7.1 Servo Canvas Component
Figure 1 provides a sketch of the main communication paths in Servo’s canvas compon-

ent [30]. The canvas component is implemented by the CanvasPaintThread, whose function
start contains the main communication loop running in a separate thread (lines 9–18). This
loop processes client requests received along canvas_msg_receiver and create_receiver, which
are the receiving endpoints of the channels created prior to spawning the loop (lines 8–8).
The channels are typed with the enumerations ConstellationCanvasMsg and CanvasMsg, defining

ECOOP 2022

22:22 Ferrite: A Judgmental Embedding of Session Types in Rust

messages for creating and terminating the canvas component and for executing operations on
an individual canvas, resp. When a client sends a message that expects a response from the
recipient, such as GetTransform and IsPointInPath (lines 2–3), it sends a channel along with
the message to be used by the recipient to send back the result. Canvases are identified by
an id, which is generated upon canvas creation (line 17) and stored in the thread’s canvases
hash map (line 5). If a client requests an invalid id, for example after prior termination and
removal of the canvas (line 15), the failed assertion expect("Bogus canvas id") (line 21) will
result in a panic!, causing the canvas component to crash and subsequent calls to fail.

The code in Figure 1 uses a clever combination of enumerations to type channels and
ownership to rule out races on the data sent along channels. Nonetheless, Rust’s type system
is not expressive enough to enforce the intended protocol of message exchange and existence
of a communication partner. The latter is a consequence of Rust’s type system being affine,
which permits “dropping of a resource”. The dropping or premature closure of a channel,
however, can result in a proliferation of panic! and thus cause an entire application to crash.
In fact, while refactoring Servo to use Ferrite, we were able to uncover a protocol violation in
Servo, caused by one of the nested match arms of the provider doing an early return before
sending back any result to the client.

7.2 Canvas Protocol in Ferrite
In the original canvas component, the provider CanvasPaintThread accepts messages of type
CanvasMsg, made up of a combination of smaller sub-message types such as Canvas2dMsg. We
note that the majority of the sub-message types have the following trivial form:
enum CanvasMsg { Canvas2d(Canvas2dMsg, CanvasId), Close(CanvasId), ... }
enum Canvas2dMsg { BeginPath, ClosePath, Fill(FillOrStrokeStyle), ... }

The trivial sub-message types such as BeginPath, Fill, and LineTo do not require a response
from the provider, so the client can simply fire them and proceed. Although we can offer
all sub-message types as separate branches in an external choice, it is more efficient to keep
trivial sub-messages in a single enum. In our implementation, we define CanvasMessage to
have similar sub-messages as Canvas2dMsg, with non-trivial messages such as IsPointInPath
moved to separate branches.
enum CanvasMessage { BeginPath, ClosePath, Fill(FillOrStrokeStyle), ... }
define_choice! { CanvasOps; Message: ReceiveValue<CanvasMessage, Release>, ... }
type Canvas = LinearToShared<ExternalChoice<CanvasOps>>;

We use the define_choice! macro described in Section 6 to define an n-ary choice CanvasOps.
The first branch of CanvasOps is labelled Message, and the only action is for the provider to
receive a CanvasMessage. The choices are offered as an external choice, and the session type
CanvasProtocol is defined as a shared protocol that offers the choices in the critical section.

The original design of the CanvasPaintThread would be sufficient if the only messages being
sent were trivial messages. However, Canvas2dMsg also contains non-trivial sub-messages, such
as GetImageData and IsPointInPath, demanding a response from the provider:
enum Canvas2dMsg { ..., GetImageData(Rect<u64>, Size2D<u64>, IpcBytesSender),

IsPointInPath(f64, f64, FillRule, IpcSender<bool>), ... }

To obtain the result from the original canvas, clients must create a new inter-process
communication (IPC) channel and bundle the channel’s sender endpoint with the message.
In our implementation, we define separate branches in CanvasOps to handle non-trivial cases:
define_choice! { CanvasOps; Message: ReceiveValue<CanvasMessage, Release>,

GetImageData: ReceiveValue<(Rect<u64>, Size2D<u64>), SendValue<ByteBuf, Release>>,
IsPointInPath: ReceiveValue<(f64, f64, FillRule), SendValue<bool, Release>>, ... }

R. F. Chen, S. Balzer, and B. Toninho 22:23

Table 4 MotionMark Benchmark scores in fps (higher is better).

Benchmark Name Servo Servo/Ferrite Firefox Chrome
Arcs 12.21 ± 6.75% 11.83 ± 11.49% 52.61 ± 32.88% 46.00 ± 9.00%
Paths 43.76 ± 10.66% 40.98 ± 18.94% 55.59 ± 28.80% 59.50 ± 14.90%
Lines 7.48 ± 7.06% 11.47 ± 12.74% 14.35 ± 6.65% 32.43 ± 6.48%
Bouncing clipped rects 18.43 ± 7.06% 18.23 ± 11.00% 34.82 ± 7.76% 58.07 ± 19.85%
Bouncing gradient circles 8.02 ± 7.74% 7.72 ± 12.63% 58.79 ± 21.03% 59.77 ± 10.07%
Bouncing PNG images 7.97 ± 5.91% 6.31 ± 10.26% 24.61 ± 6.35% 59.94 ± 13.04%
Stroke shapes 10.60 ± 3.95% 10.35 ± 10.96% 51.21 ± 11.25% 59.38 ± 16.87%
Put/get image data 60.01 ± 3.81% 32.08 ± 10.83% 59.66 ± 20.16% 60.00 ± 5.00%

The original GetImageData accepts an IpcBytesSender, which sends raw bytes back to the
client. In Ferrite, we translate the use of IpcBytesSender to the type SendValue<ByteBuf, Z>,
which sends the raw bytes wrapped in a ByteBuf type.

Aside from the Canvas protocol, we also redesign the use of ConstellationCanvasMsg into
its own shared protocol, ConstellationCanvas:
type ConstellationCanvas = LinearToShared<ReceiveValue<Size2D,

SendValue<SharedChannel<Canvas>, Release>>>;

To create a new canvas, a client first acquires the shared channel of type SharedChannel<
ConstellationCanvas>. Afterwards, the client sends the Size2D parameter to specify the canvas
size. The constellation canvas provider then spawns a new canvas shared process through
run_shared_session and sends back the shared channel of type SharedChannel<Canvas> as a
value. Finally, the session is released, allowing other clients to acquire the shared provider.

7.3 Performance Evaluation
To evaluate the performance of the canvas component, we use the MotionMark benchmark
suite [45]. MotionMark is a web benchmark that focuses on graphics performance of web
browsers. It contains benchmarks for various web components, including canvas, CSS, and
SVG. As MotionMark does not yet support Servo, we modified the benchmark code to
make it work in the absence of features that are not implemented in Servo (details on the
benchmarks can be found in the companion artifact).

For the purpose of this evaluation, we focused on benchmarks that target the canvas
component and skipped benchmarks that fail in Servo due to missing features. We ran each
benchmark in a fixed 1600x800 resolution for 30 seconds, on a Core i7 Linux desktop machine.
We ran the benchmarks against the original Servo, modified Servo with Ferrite canvas
(Servo/Ferrite), Firefox (v98), and Chrome (v99). Our performance scores are measured in
the fixed mode version of MotionMark, which measures frames per second (fps) performance
of executing the same set of canvas operations per frame.

The benchmark results are shown in Table 4, with the performance scores in fps (higher
fps is better). It is worth noting that a benchmark can achieve at most 60 fps. Our goal in
this benchmark is to keep the scores of Servo/Ferrite close to those of Servo, not to achieve
better performance than the original. This is shown to be the case in most of the benchmarks.

The only benchmark with a large difference between Servo and Servo/Ferrite is Put/get
image data, with Ferrite performing 2x worse. This is because in Servo/Ferrite, we use ByteBuf
to transfer the images as raw bytes within the same shared channel. Servo uses a specialized
structure IpcBytesSender for transferring raw bytes in parallel to other messages. As a result,
communication in Servo/Ferrite is congested during the transfer of the image data, while the
original Servo can process new messages in parallel with the image transmission.

ECOOP 2022

22:24 Ferrite: A Judgmental Embedding of Session Types in Rust

We also observe that there are significant performance differences in the scores between
Servo and those in Firefox and Chrome, indicating that there exist performance bottlenecks
in Servo unrelated to communication protocols.

8 Related and Future Work

Session type embeddings exist for various languages, including Haskell [34, 20, 27, 31],
OCaml [32, 19], Java [18, 17], and Scala [39]. Functional languages like ML, OCaml, and
Haskell, in particular, are ideal host languages for creating EDSLs thanks to their advanced
features (e.g. type classes, type families, higher-rank and higher-kinded types and GADTs).
[34] first demonstrated the feasibility of embedding session types in Haskell, with refinements
done in later works [20, 27, 31]. Similar embeddings have also been contributed in the context
of OCaml by FuSe [32] and session-ocaml [19].

Aside from Ferrite, there are other implementations of session types in Rust, including
session_types [21], sesh [25], and rumpsteak [8, 9]. session_types were the first implementation
to make use of affinity to provide a session type library in Rust. sesh emphasizes this aspect
by embedding the affine session type system Exceptional GV [12] in Rust. Both session_types
and sesh adopt a classical perspective, requiring the endpoints of a channel to be typed with
dual types. rumpsteak develops an embedding of multiparty session types by generating Rust
types derived from multiparty session types defined in Scribble [48].

Due to their reliance on Rust’s affine type system, neither session_types nor sesh prevent
a channel endpoint from being dropped prematurely, relegating the handling of such errors
to the runtime. rumpsteak uses some type-level techniques similar to Ferrite to enforce a
channel’s linear usage in the continuation passed to the try_session function. This ensures
that a linear channel in rumpsteak is always fully consumed, if it is ever consumed. However,
prior to the call to try_session, the linear channel exists as an affine value, which may be
dropped by without being consumed at all, resulting in a deadlock. Ferrite enforces linearity
at all levels, including safe linking of multiple linear processes using cut.

In terms of concurrency, session_types, sesh, and rumpsteak all require the programmer to
manually manage concurrency, either by spawning threads or async tasks. This introduces
potential failure when the code fails follow the requirement to spawn all processes. On the
other hand, the simplicity of such a model allows relatively few threads or async tasks to be
spawned, thereby allowing the underlying runtime to execute the processes more efficiently.
In comparison, Ferrite offers fully managed concurrency, without the programmer having to
worry about how to spawn the processes and execute them in parallel.

In terms of performance, the downside of Ferrite’s concurrency approach is that it
aggressively spawns new async tasks in each use of cut. Although async tasks in Rust are
much more lightweight than OS threads, there is still a significant overhead in spawning and
managing many async tasks, especially in micro-benchmarks. As a result, Ferrite tends to
perform slower than alternative Rust implementations in settings where only a fixed small
number of processes need to be spawned. Nevertheless, it is worth noting that the async
ecosystem in Rust is still relatively immature, with many potential improvements to be made.
In practice, the overhead of the async runtime may also be negligible when compared to
the core application logic. In such cases, Ferrite would also allow applications to scale more
easily by allowing many more processes to be spawned and managed concurrently without
requiring additional effort from the programmer.

In terms of DSL design, Ferrite is closely related to the embeddings in OCaml and Haskell,
as it fully enforces a linear treatment of channels and thus statically rules out any panics
arising from dropping a channel prematurely. However, Ferrite leverages Rust’s affine type

R. F. Chen, S. Balzer, and B. Toninho 22:25

system, which naturally extends to support linear types as compared to the structural type
systems of OCaml or Haskell. As a result, Ferrite programs can reuse any existing Rust code
without sacrificing the benefit of affine types. This is generally not the case with substructural
EDSLs, which often require rewriting of libraries (e.g. LinearHaskell’s linear-base).

Ferrite also differs from other libraries in that it adopts intuitionistic typing [4], allowing
the typing of a channel rather than its two endpoints via type duality. While the use of
dual types is convenient for simple types like ReceiveValue<String, End>, the mental overhead
of computing the dual type becomes higher when higher-order channels are involved. For
example, when implementing a process with type ReceiveChannel<ReceiveValue<String, End>>,
the programmer would have to keep in mind that the received channel would have its session
type flipped and become SendValue<String, End>. From an ergonomics point of view, we
believe that intuitionistic session types provide a more familiar model of programming.

On the use of profunctor optics, our work is the first to connect n-ary choice to prisms,
while prior work by session-ocaml [20] has only established the connection between lenses,
the dual of prisms, and linear contexts. FuSe [32] and session-ocaml [19] have previously
explored the use of n-ary (generalized) choice through extensible variants available only in
OCaml. Our work demonstrates that it is possible to encode extensible variants, and thus
n-ary choice, as type-level constructs using features available in Rust.

A major difference in terms of implementation is that Ferrite uses a continuation-passing
style, whereas Haskell and OCaml embeddings commonly use (indexed) monads and do-
notation. This technical difference amounts to a key conceptual one: a direct correspondence
between the Rust programs generated from Ferrite constructs and the SILLR typing derivation.
As a result, the generated Rust code can be viewed as carrying the proof of protocol adherence.

The embeddings of ESJ [17] and lchannels [39] also adopt a continuation-passing style, but
do not faithfully embed typing derivations (i.e. they do not statically enforce linearity). They
follow an encoding of session types using linear types [10] first proposed by Kobayashi [24] in
the setting of π-calculus. While session types are generally less powerful than the approaches
of Kobayashi et al., they provide a useful compromise between expressiveness and simplicity,
being more amenable to embeddings in general-purpose language constructs and type systems.

In terms of expressiveness, Ferrite contributes over all prior session-based works in its
support for shared session types [1], allowing it to express real-world protocols, as demon-
strated by our implementation of Servo’s canvas component. Shared session types reclaim the
expressiveness of the untyped asynchronous π-calculus in session-typed languages [2], at the
cost of deadlock-freedom. Recent extensions of classical linear logic session types contribute
another approach to softening the rigidity of linear session types to support multiple client
sessions and nondeterminism [35] and memory cells and nondeterministic updates [37], resp.

Our technique of a judgmental embedding opens up new possibilities for embedding
type systems other than session types in Rust. Although we have demonstrated that the
judgmental embedding is sufficiently powerful to encode a type system like session types, the
embedding is currently shallow, with the implementation hardcoded to use the channels and
async run-time from tokio. Rust comes with unique features such as affine types and lifetimes
that makes it especially suited for implementing concurrency primitives, as evidenced by the
wealth of channel and async run-time implementations available. One of our future goals is
to explore the possibility of making Ferrite a deep embedding of session types in Rust, so
that users can choose from multiple low-level implementations. Although deep embeddings
have extensively been explored for languages like Haskell [40, 27], it remains a open question
to find suitable approaches that work well in Rust.

ECOOP 2022

22:26 Ferrite: A Judgmental Embedding of Session Types in Rust

References
1 Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. Proceedings of the

ACM on Programming Languages (PACMPL), 1(ICFP):37:1–37:29, 2017.
2 Stephanie Balzer, Frank Pfenning, and Bernardo Toninho. A universal session type for untyped

asynchronous communication. In 29th International Conference on Concurrency Theory
(CONCUR), LIPIcs, pages 30:1–30:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018.

3 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest deadlock-freedom
for shared session types. In 28th European Symposium on Programming (ESOP), volume
11423 of Lecture Notes in Computer Science, pages 611–639. Springer, 2019. doi:10.1007/
978-3-030-17184-1_22.

4 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In 21st
International Conference on Concurrency Theory (CONCUR), pages 222–236. Springer, 2010.

5 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types.
Mathematical Structures in Computer Science, 26(3):367–423, 2016.

6 Ruo Fei Chen, Stephanie Balzer, and Bernardo Toninho. Ferrite project website. https:
//github.com/ferrite-rs/ferrite.

7 Ruofei Chen, Stephanie Balzer, and Bernardo Toninho. Ferrite: A judgmental embedding of
session types in rust. CoRR, abs/2009.13619, 2022. arXiv:2009.13619.

8 Zak Cutner and Nobuko Yoshida. Safe session-based asynchronous coordination in rust. In
Ferruccio Damiani and Ornela Dardha, editors, Coordination Models and Languages - 23rd
IFIP WG 6.1 International Conference, COORDINATION 2021, Held as Part of the 16th
International Federated Conference on Distributed Computing Techniques, DisCoTec 2021,
Valletta, Malta, June 14-18, 2021, Proceedings, volume 12717 of Lecture Notes in Computer
Science, pages 80–89. Springer, 2021. doi:10.1007/978-3-030-78142-2_5.

9 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-free asynchronous message
reordering in rust with multiparty session types. CoRR, abs/2112.12693, 2021. arXiv:
2112.12693.

10 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In Principles
and Practice of Declarative Programming (PPDP), pages 139–150, 2012.

11 J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bidirectional tree transformations: A linguistic approach to the
view-update problem. ACM Trans. Program. Lang. Syst., 29(3):17, 2007. doi:10.1145/
1232420.1232424.

12 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous
session types: Session types without tiers. Proceedings of the ACM on Programming Languages,
3(POPL):28:1–28:29, 2019. doi:10.1145/3290341.

13 Andrew Gerrand. The go blog: Share memory by communicating, 2010. URL: https:
//blog.golang.org/share-memory-by-communicating.

14 Kohei Honda. Types for dyadic interaction. In 4th International Conference on Concurrency
Theory (CONCUR), pages 509–523. Springer, 1993.

15 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type
discipline for structured communication-based programming. In 7th European Symposium on
Programming (ESOP), pages 122–138. Springer, 1998.

16 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 273–284. ACM, 2008. doi:10.1145/1328438.1328472.

17 Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda. Type-
safe eventful sessions in Java. In 24th European Conference on Object-Oriented Programming
(ECOOP), volume 6183 of Lecture Notes in Computer Science, pages 329–353. Springer, 2010.
doi:10.1007/978-3-642-14107-2_16.

https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-030-17184-1_22
https://github.com/ferrite-rs/ferrite
https://github.com/ferrite-rs/ferrite
http://arxiv.org/abs/2009.13619
https://doi.org/10.1007/978-3-030-78142-2_5
http://arxiv.org/abs/2112.12693
http://arxiv.org/abs/2112.12693
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/3290341
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-642-14107-2_16

R. F. Chen, S. Balzer, and B. Toninho 22:27

18 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming
in Java. In 22nd European Conference on Object-Oriented Programming (ECOOP), volume
5142 of Lecture Notes in Computer Science, pages 516–541. Springer, 2008. doi:10.1007/
978-3-540-70592-5_22.

19 Keigo Imai, Nobuko Yoshida, and Shoji Yuen. Session-ocaml: a session-based library with
polarities and lenses. Science of Computer Programming, 172:135–159, 2019. doi:10.1016/j.
scico.2018.08.005.

20 Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session type inference in haskell. In 3rd Workshop
on Programming Language Approaches to Concurrency and Communication-cEntric Software
(PLACES) 2010, Paphos, Cyprus, 21st March 201, volume 69 of EPTCS, pages 74–91, 2010.
doi:10.4204/EPTCS.69.6.

21 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session
types for Rust. In 11th ACM SIGPLAN Workshop on Generic Programming (WGP), 2015.
doi:10.1145/2808098.2808100.

22 Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: Securing
the foundations of the Rust programming language. Proceedings of the ACM on Programming
Languages, 2(POPL):66:1–66:34, 2018. doi:10.1145/3158154.

23 Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous collections.
In Henrik Nilsson, editor, Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell
2004, Snowbird, UT, USA, September 22-22, 2004, pages 96–107. ACM, 2004. doi:10.1145/
1017472.1017488.

24 Naoki Kobayashi. Type systems for concurrent programs. In Bernhard K. Aichernig and
T. S. E. Maibaum, editors, Formal Methods at the Crossroads. From Panacea to Foundational
Support, 10th Anniversary Colloquium of UNU/IIST, the International Institute for Software
Technology of The United Nations University, Lisbon, Portugal, March 18-20, 2002, Revised
Papers, volume 2757 of Lecture Notes in Computer Science, pages 439–453. Springer, 2002.
doi:10.1007/978-3-540-40007-3_26.

25 Wen Kokke. Rusty variation: Deadlock-free sessions with failure in rust. In 12th Interaction
and Concurrency Experience, ICE 2019, pages 48–60, 2019.

26 Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In 24th European
Symposium on Programming (ESOP), volume 9032 of Lecture Notes in Computer Science,
pages 560–584, 2015. doi:10.1007/978-3-662-46669-8_23.

27 Sam Lindley and J. Garrett Morris. Embedding session types in Haskell. In 9th International
Symposium on Haskell, pages 133–145. ACM, 2016. doi:10.1145/2976002.2976018.

28 J. Garrett Morris. Variations on variants. In Ben Lippmeier, editor, Proceedings of the 8th
ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September
3-4, 2015, pages 71–81. ACM, 2015. doi:10.1145/2804302.2804320.

29 Mozilla. Servo, the Parallel Browser Engine Project. https://servo.org/, 2012.
30 Mozilla. Servo source code – canvas paint thread, 2021. URL: https://github.com/servo/

servo/blob/d13a9355b8e66323e666dde7e82ced7762827d93/components/canvas/canvas_
paint_thread.rs.

31 Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In 43rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
568–581. ACM, 2016. doi:10.1145/2837614.2837634.

32 Luca Padovani. A simple library implementation of binary sessions. J. Funct. Program., 27:e4,
2017. doi:10.1017/S0956796816000289.

33 Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor optics: Modular data
accessors. Programming Journal, 1(2):7, 2017. doi:10.22152/programming-journal.org/
2017/1/7.

34 Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In 1st ACM
SIGPLAN Symposium on Haskell, pages 25–36. ACM, 2008. doi:10.1145/1411286.1411290.

ECOOP 2022

https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.4204/EPTCS.69.6
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/3158154
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1007/978-3-540-40007-3_26
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1145/2804302.2804320
https://servo.org/
https://github.com/servo/servo/blob/d13a9355b8e66323e666dde7e82ced7762827d93/components/canvas/canvas_paint_thread.rs
https://github.com/servo/servo/blob/d13a9355b8e66323e666dde7e82ced7762827d93/components/canvas/canvas_paint_thread.rs
https://github.com/servo/servo/blob/d13a9355b8e66323e666dde7e82ced7762827d93/components/canvas/canvas_paint_thread.rs
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.1145/1411286.1411290

22:28 Ferrite: A Judgmental Embedding of Session Types in Rust

35 Zesen Qian, G. A. Kavvos, and Lars Birkedal. Client-server sessions in linear logic. CoRR,
abs/2010.13926, 2020. arXiv:2010.13926.

36 John C. Reynolds. Definitional interpreters for higher-order programming languages. In ACM
Annual Conference, volume 2, pages 717–740. ACM, 1972. doi:10.1145/800194.805852.

37 Pedro Rocha and Luís Caires. Propositions-as-types and shared state. Proc. ACM Program.
Lang., 5(ICFP):1–30, 2021.

38 Matthew Sackman and Susan Eisenbach. Session types in haskell: Updating message passing
for the 21st century. Technical report, Imperial College, 2008. URL: http://hdl.handle.net/
10044/1/5918.

39 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in Scala. In 30th
European Conference on Object-Oriented Programming (ECOOP), volume 56 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 21:1–21:28. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, 2016.

40 Josef Svenningsson and Emil Axelsson. Combining deep and shallow embedding for EDSL. In
Hans-Wolfgang Loidl and Ricardo Peña, editors, Trends in Functional Programming - 13th
International Symposium, TFP 2012, St. Andrews, UK, June 12-14, 2012, Revised Selected
Papers, volume 7829 of Lecture Notes in Computer Science, pages 21–36. Springer, 2012.
doi:10.1007/978-3-642-40447-4_2.

41 Tokio. Tokio Homepage. https://tokio.rs/, 2021.
42 Bernardo Toninho. A Logical Foundation for Session-based Concurrent Computation. PhD

thesis, Carnegie Mellon University and New University of Lisbon, 2015.
43 Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes, functions, and

sessions: a monadic integration. In 22nd European Symposium on Programming (ESOP),
pages 350–369. Springer, 2013. doi:10.1007/978-3-642-37036-6_20.

44 Philip Wadler. Propositions as sessions. In 17th ACM SIGPLAN International Conference on
Functional Programming (ICFP), pages 273–286. ACM, 2012.

45 WebKit. MotionMark Homepage. https://browserbench.org/MotionMark/, 2021.
46 Jeremy Yallop and Leo White. Lightweight higher-kinded polymorphism. In Functional and

Logic Programming - 12th International Symposium, FLOPS 2014, Kanazawa, Japan, June
4-6, 2014. Proceedings, pages 119–135, 2014. doi:10.1007/978-3-319-07151-0_8.

47 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. Ghostcell: separating
permissions from data in rust. Proc. ACM Program. Lang., 5(ICFP):1–30, 2021. doi:
10.1145/3473597.

48 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In Martín Abadi and Alberto Lluch-Lafuente, editors, Trustworthy Global Computing
- 8th International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,
Revised Selected Papers, volume 8358 of Lecture Notes in Computer Science, pages 22–41.
Springer, 2013. doi:10.1007/978-3-319-05119-2_3.

http://arxiv.org/abs/2010.13926
https://doi.org/10.1145/800194.805852
http://hdl.handle.net/10044/1/5918
http://hdl.handle.net/10044/1/5918
https://doi.org/10.1007/978-3-642-40447-4_2
https://tokio.rs/
https://doi.org/10.1007/978-3-642-37036-6_20
https://browserbench.org/MotionMark/
https://doi.org/10.1007/978-3-319-07151-0_8
https://doi.org/10.1145/3473597
https://doi.org/10.1145/3473597
https://doi.org/10.1007/978-3-319-05119-2_3

A Self-Dual Distillation of Session Types
Jules Jacobs #

Radboud University Nijmegen, The Netherlands

Abstract
We introduce λ̄ (“lambda-barrier”), a minimal extension of linear λ-calculus with concurrent
communication, which adds only a single new fork construct for spawning threads. It is inspired by
GV, a session-typed functional language also based on linear λ-calculus. Unlike GV, λ̄ strives to be
as simple as possible, and adds no new operations other than fork, no new type formers, and no
explicit definition of session type duality. Instead, we use linear function function type τ1 −◦ τ2 for
communication between threads, which is dual to τ2 −◦ τ1, i.e., the function type constructor is
dual to itself. Nevertheless, we can encode session types as λ̄ types, GV’s channel operations as λ̄

terms, and show that this encoding is type-preserving. The linear type system of λ̄ ensures that
all programs are deadlock-free and satisfy global progress, which we prove in Coq. Because of λ̄’s
minimality, these proofs are simpler than mechanized proofs of deadlock freedom for GV.

2012 ACM Subject Classification Software and its engineering → Concurrent programming languages

Keywords and phrases Linear types, concurrency, lambda calculus, session types

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.23

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.15
Software (Mechanized proofs): https://zenodo.org/record/6560443

Acknowledgements I thank Robbert Krebbers, Stephanie Balzer, Jorge Pérez, Dan Frumin, Bas
van den Heuvel, Anton Golov, Ike Mulder, and last but not least, the anonymous reviewers for the
helpful discussions and feedback.

1 Introduction

Session types [16, 15] are types for communication channels, that can be used to verify that
programs follow the communication protocol specified by a channel’s session type. Gay and
Vasconcelos [13] embed session types in a linear λ-calculus. Whereas Gay and Vasconcelos’
calculus [13] did not yet ensure deadlock freedom, Wadler’s subsequent GV [31] and its
derivatives [21, 23, 24, 11, 10] guarantee that all well-typed programs are deadlock free.

In order to add session types to linear λ-calculus, one adds (linear) session type formers
for typing channel protocols and their corresponding operations: !τ.s (send a message of type
τ , continue with protocol s), ?τ.s (receive a message of type τ , continue with protocol s),
s1 ⊕ s2 (send choice between protocols s1 and s2), s1 & s2 (receive choice between protocols
s1 and s2), and End (close channel). One also adds a fork operation for creating a thread
and a pair of dual channels. For this, we need a definition of duality, with ! dual to ?, ⊕
dual to &, and End dual to itself.

There have been efforts for simpler systems, such as an encoding of session types into
ordinary π-calculus types [19, 7, 8], and minimal session types [2], which decompose multi-
step session types into single-step session types in a π-calculus. Single-shot synchronization
primitives have also been used in the implementation of a session-typed channel libraries [30,
27, 20].

We show that linear λ-calculus is also an excellent substrate on which to build a minimal
concurrent calculus with communication, and introduce λ̄ (“lambda-barrier”), which adds
only a single new fork construct for spawning threads. It is inspired by GV, a session-typed

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Jules Jacobs;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 23; pp. 23:1–23:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mail@julesjacobs.com
https://doi.org/10.4230/LIPIcs.ECOOP.2022.23
https://doi.org/10.4230/DARTS.8.2.15
https://doi.org/10.4230/DARTS.8.2.15
https://zenodo.org/record/6560443
https://doi.org/10.4230/DARTS.8.2.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 A Self-Dual Distillation of Session Types

functional language that is also based on linear λ-calculus. Unlike GV, λ̄ strives to be
as simple as possible, and adds no new operations other than fork, no new type formers,
and no explicit definition of duality. Instead, we use the linear function type τ1 −◦ τ2 for
communication between threads, which is dual to τ2 −◦ τ1, i.e., the function type constructor
is dual to itself. Nevertheless, we can encode session types as λ̄ types, GV’s channel operations
as λ̄ terms, and show that this encoding is type-preserving. A key difference with CPS
encodings of GV [22, 23], which are whole-program, is that our encoding is local, and uses
λ̄’s built-in concurrency.

Like GV, all well-typed λ̄ programs are automatically deadlock free, and therefore satisfy
global progress. We prove this property in Coq. Because of λ̄’s minimality, these proofs are
simpler and shorter than mechanized proofs of deadlock freedom for GV.

The rest of this article is structured as follows:
An introduction to λ̄ by example (Section 2).
The λ̄ type system and operational semantics (Section 3).
Encoding session types in λ̄ (Section 4).
How to prove global progress and deadlock freedom for λ̄ (Section 5).
Extending λ̄ with unrestricted and recursive types (Section 6).
Mechanizing the meta-theory of λ̄ in Coq (Section 7).
Related work (Section 8).
Concluding remarks (Section 9).

2 The λ̄ language by example

The λ̄ language consists of linear λ-calculus with a single extension: fork.1 Let us look at
an example:

let x = fork(λx′. print(x′ 1)) in print(1 + x 0)

This program forks off a new thread, which also creates communication barriers x and x′

to communicate between the threads. The barrier x gets returned to the main thread, and
x′ gets passed to the child thread. These barriers are functions, and a call to a barrier will
block until the other side is also trying to synchronize, and will then atomically exchange
the values passed as an argument. The example runs as follows:

When x′ 1 is called, it will block until x 0 is also called, and vice versa.
The call x′ 1 will then return 0, and the call x 0 will return 1.

Thus, the program will print 0 2 or 2 0, depending on which thread prints first. In λ̄, these
barriers are linear, so they must be used exactly once:

fork(λx. print(1)) Error! Must use x.
fork(λx. print(x 0 + x 1)) Error! Can’t use x twice.

The type of fork is:

fork : ((τ1 −◦ τ2) −◦ 1) → (τ2 −◦ τ1)

where −◦ is the type of linear functions. Linearity allows us to encode session types in λ̄

(Section 4), and ensures that all well-typed λ̄ programs are deadlock-free (Section 5), which
would not be the case without linearity. Nevertheless, linearity may seem like a critical

1 For the examples we also use print, to be able to talk about the operational behavior of programs.

J. Jacobs 23:3

limitation: can a child thread communicate with its parent thread only once?! Luckily, two
features of λ-calculus, namely the ability for closures to capture values from their lexical
environment, and the ability to pass functions as arguments to other functions, means that
the restriction is not as severe as it may seem. Let’s look at an example that uses those two
features:2

let x = fork(λx′. print(x′ 1))
let y = fork(λy′. y′ x)
print(1 + y () 0)

We fork off a new thread (line 1) and store its barrier in x. We then fork off another thread
(line 2), and pass the barrier x into the λ-expression of the new thread. We call y (), which
returns x, because the thread of y calls y′ x. Finally, we pass 0 into the returned x, so this
example behaves the same as the first example: it prints 0 2 or 2 0.

We can use the ability to capture barriers in the λ-expression of a fork, and the ability to
send barriers over barriers, to set up long-running communication between two threads:

let x1 = fork(λx′
1. let (x′

2, n1) = x′
1 ()

let (x′
3, n2) = x′

2 () in x′
3 (n1 + n2))

let x2 = fork(λx′
2. x1 (x′

2, 1))
let x3 = fork(λx′

3. x2 (x′
3, 2))

print(x3 ())

Let us focus on the body of the first fork. The forked thread firstly synchronizes with its
barrier, via x′

1 (). This call will return a pair (x′
2, n1) of a new barrier x′

2, and a number n1.
It then synchronizes with the new barrier, via x′

2 (), which returns another pair (x′
3, n2),

giving yet another barrier x′
3 and another number n2. In the last step, it sends the number

n1 + n2 back to the main thread, via x′
3 (n1 + n2).

Let us now focus on how the main thread arranges this sequence of communications. The
main thread first forks off a messenger thread fork(λx′

2. x1 (x′
2, 1)). The purpose of this

thread is to send the message (x′
2, 1) over x1, where x′

2 is the barrier associated with the
messenger thread. The other side of that barrier, x2, is given to the main thread. The main
thread now forks off another messenger thread, this time using that new barrier, x2. This
gives the main thread yet another barrier, x3, from which it receives the final answer, 1 + 2,
via x3 ().

Note that, like in the asynchronous π-calculus, sending a message involves forking off a
tiny thread. Thus, like the asynchronous π-calculus, λ̄ should be viewed as a theoretical core
calculus, and not as a practical way to implement message passing.3 We can encapsulate
this messenger thread pattern in a small library of channel operations:

send(c, x) ≜ fork(λc′. c (c′, x))
receive(c) ≜ c ()

close(c) ≜ c ()

2 We omit the in keyword if a newline follows let, like some functional languages (e.g., F#).
3 Because the messenger threads are always of a specific form, it might be possible to implement a

compiler that recognizes such patterns and implements them more efficiently. After all, the messenger
threads do nothing but immediately synchronize with another barrier.

ECOOP 2022

23:4 A Self-Dual Distillation of Session Types

Using this channel library, we can implement the preceding example in the following way:

let x1 = fork(λx′
1. let (x′

2, n1) = receive(x′
1)

let (x′
3, n2) = receive(x′

2)
let x′

4 = send(x′
3, n1 + n2)

close(x′
4))

let x2 = send(x1, 1)
let x3 = send(x2, 2)
let (x4, n) = receive(x3)
print(n)
close(x4)

Session-typed channels usually also have choice, which allows choosing between two continu-
ation protocols. This can be encoded in λ̄ using sums inL(x) and inR(x):

tellL(c) ≜ fork(λc′. c inL(c′))
tellR(c) ≜ fork(λc′. c inR(c′))

ask(c) ≜ c ()

With these operations, we can implement the calculator example of Lindley and Morris [24].
This example allows the client to choose whether they want to add two numbers or negate a
number. If the client chooses to add two numbers, they then send two numbers as separate
messages, and retrieve the answer using receive. If the client chooses to negate a number,
they then send only a single number, and retrieve the answer using receive. This example
illustrates the choice between two different protocols for the remaining interaction:

let calc c =
match ask(c) with
| inL(c) ⇒ let (c, n) = receive(c)

let (c, m) = receive(c)
close(send(c, n + m))

| inR(c) ⇒ let (c, n) = receive(c)
close(send(c, −n))

end

Extending λ̄ with recursion (Section 6) allows us to implement unbounded protocols, as
illustrated by the following example:

let rec countdown c =
match ask(c) with
| inL(c) ⇒ close(c)
| inR(c) ⇒ let (c, n) = receive(c)

print(n)
if n = 0
then close(tellL(c))
else countdown (send(tellR(c), n − 1))

end

Given a channel c, the countdown c program first uses ask(c) to ask c if it wants to
terminate, and closes the channel if so. Otherwise it receives a number n from c and prints
it. Then it checks if the number n = 0, and if so tells the other side to close (using tellL),

J. Jacobs 23:5

and then closes our side. Otherwise it tells the other side that it wants to continue (using
tellR) and sends n − 1 to the other side. We can therefore let countdown interact with a
copy of itself, provided we start off one of the copies with an initial message:

countdown send(tellR(fork(countdown)), 10)

This program will print the numbers 10 9 8 · · · 1 0, in that order. The odd numbers are
printed by the main thread, and the even numbers are printed by the child thread.

As we shall see later, this is all type-safe. If we had not started off one of the countdowns
with an initial message, and had instead simply done countdown fork(countdown), then we
would have had a static type error.

This way, the λ̄ type system ensures that channel protocols are correctly followed, even
though the λ̄ type system has no session types and no notion of duality and instead simply
uses function types τ1 −◦ τ2 for barriers. We do not need an explicit notion of duality because
the function type constructor is self-dual, in the sense that if x : τ1 −◦ τ2 is a barrier, then
the dual barrier with which x will synchronize has type x′ : τ2 −◦ τ1. We will see more about
encoding session types in λ̄ in Section 4.

3 The λ̄ type system and operational semantics

Like GV [31] and its derivatives [21, 23, 24, 11, 10], the basis of λ̄ is a linear simply typed
λ-calculus. We have sums, products, and the linear function type τ1 −◦ τ2. Variables of
linear type must be used exactly once: they cannot be duplicated (contracted) or discarded
(weakened), so that one must use one of the elimination rules of the type.

τ ∈ Type ::= 0 | 1 | τ × τ | τ + τ | τ −◦ τ

Our basis linear λ-calculus has the following grammar of expressions, which consists of
introduction and elimination forms for each type:

e ∈ Expr ::= x | () | (e, e) | inL(e) | inR(e) | λx. e | e e | let (x1, x2) = e in e |
match e with end | match e with inL(x1) ⇒ e1; inR(x2) ⇒ e2 end

The typing rules are standard and can be found in Figure 1.
We now have a substrate to which we will add concurrency constructs. GV [31, 21, 23, 24,

11, 10] introduces concurrency by means of a construct to spawn a new thread, with which
we can communicate using a channel. Communication is governed by session types, such
that the two endpoints of a channel are typed with dual session types. Instead, λ̄ extends
the substrate with concurrency in a minimal way, adding one new construct to create new
threads:

e ∈ Expr ::= · · · | fork(e)

This is the typing rule for fork:

Γ ⊢ e : (τ2 −◦ τ1) −◦ 1
Γ ⊢ fork(e) : τ1 −◦ τ2

Or, as a type signature:

fork : ((τ1 −◦ τ2) −◦ 1) → (τ2 −◦ τ1)

ECOOP 2022

23:6 A Self-Dual Distillation of Session Types

.

x :τ ⊢ x : τ

Γ, x :τ1 ⊢ e : τ2

Γ ⊢ λx. e : τ1 −◦ τ2

Γ1 ⊢ e1 : τ1 −◦ τ2 Γ2 ⊢ e2 : τ1

Γ1, Γ2 ⊢ e1 e2 : τ2

Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2

Γ1, Γ2 ⊢ (e1, e2) : τ1 × τ2

Γ1 ⊢ e1 : τ1 × τ2 Γ2, x1 :τ1, x2 :τ2 ⊢ e2 : τ3

Γ1, Γ2 ⊢ let (x1, x2) = e1 in e2 : τ3

Γ ⊢ e : τ1

Γ ⊢ inL(e) : τ1 + τ2

Γ ⊢ e : τ2

Γ ⊢ inR(e) : τ1 + τ2

Γ1 ⊢ e : τ1 + τ2 Γ2, x1 :τ1 ⊢ e1 : τ ′ Γ2, x2 :τ2 ⊢ e2 : τ ′

Γ1, Γ2 ⊢ match e with inL(x1) ⇒ e1; inR(x2) ⇒ e2 end : τ ′

Figure 1 Linear λ-calculus with sums and products (rules for 0 and 1 omitted).

The type of fork uses the linear function type. We do not need an explicit notion of
duality, like session types do, because the function type constructor is self-dual, in the sense
that if x : τ1 −◦ τ2 is a barrier, then the dual barrier x′ with which x will synchronize has
type x′ : τ2 −◦ τ1.

3.1 Operational semantics
We use a small-step operational semantics with evaluation contexts. In order to represent
barriers, we add barrier literals ⟨k⟩ , k ∈ N to the expressions. A barrier literal cannot appear
in the source program, as the static type system has no typing rule for it. Barrier literals
only appear in expressions at runtime when the operational semantics executes a fork-step.
This gives us the following set of values for the language:

v ∈Val ::= () | (v, v) | inL(v) | inR(v) | λx. e | ⟨k⟩

We have four pure head-reduction rules e ⇝pure e′, one for λ, one for pairs, and two
for sums, as stated in Figure 2. We use evaluation contexts to avoid introducing many
congruence rules:4

K ::= □ | (K, e) | (v, K) | inL(K) | inR(K) | K e | v K | fork(K) | let (x1, x2) = K in e

| match K with end | match K with inL(x1) ⇒ e1; inR(x2) ⇒ e2 end

We represent a configuration with multiple threads and barriers as a finite map:

ρ ∈ Cfg ≜ N fin−⇀ Thread(Expr) + Barrier

We define a configuration step relation ρ
i
⇝ ρ′. The label i ∈ N is used to keep track

of which thread or barrier in the configuration takes the step. This has no effect on the
operational semantics, but we will later use it to formulate deadlock freedom. The rules for
the configuration step relation are given in Figure 2. We have the following five rules, in the
order of the figure:

4 This set of evaluation contexts results in left-to-right evaluation order, but the mechanization has been
set up so that the proof scripts work for right-to-left and nondeterministic order as well.

J. Jacobs 23:7

(λx. e) v ⇝pure e[v/x]
let (x1, x2) = (v1, v2) in e⇝pure e[v1/x1][v2/x2]

match inL(v) with inL(x1) ⇒ e1 | inR(x2) ⇒ e2 end⇝pure e1[v/x1]
match inR(v) with inL(x1) ⇒ e1 | inR(x2) ⇒ e2 end⇝pure e2[v/x2]

{
n 7→ Thread(K[e1])

} n
⇝

{
n 7→ Thread(K[e2])

}
if e1 ⇝pure e2 (pure)

{
n 7→ Thread(K[fork(v)])

} n
⇝

n 7→ Thread(K[⟨k⟩])
k 7→ Barrier
m 7→ Thread(v ⟨k⟩)

 (fork)

n 7→ Thread(K1[⟨k⟩ v1])
k 7→ Barrier
m 7→ Thread(K2[⟨k⟩ v2])

 k
⇝

{
n 7→ Thread(K1[v2])
m 7→ Thread(K2[v1])

}
(sync)

{
n 7→ Thread(())

} n
⇝

{}
(exit)

ρ1 ⊎ ρ′ i
⇝ ρ2 ⊎ ρ′ if ρ1

i
⇝ ρ2 (⊎ is disjoint union) (frame)

Figure 2 The operational semantics of λ̄.

(pure) A rule for pure reductions for a single thread.
(fork) A rule for forking a new thread, which adds the new thread and a barrier k to the

configuration. The two threads get access to the barrier via the barrier literal ⟨k⟩.
(sync) A rule to synchronize on a barrier. The two threads that are synchronizing exchange

the values v1 and v2. This step removes the barrier.
(exit) A rule for removing finished threads from the configuration.
(frame) A rule for extending the preceding rules to larger configurations, by allowing the

rest of the configuration to pass through unchanged.

This is a possible execution of the second example from Section 2:0 7→ Thread

let x = fork(λx′. print(x′ 1))
let y = fork(λy′. y′ x)
print(1 + y () 0)

 0
⇝

0 7→ Thread

(
let y = fork(λy′. y′ ⟨1⟩)
print(1 + y () 0)

)
1 7→ Barrier
2 7→ Thread (print(⟨1⟩ 1))

 0
⇝

0 7→ Thread
(
print(1 + ⟨3⟩ () 0)

)
1 7→ Barrier
2 7→ Thread (print(⟨1⟩ 1))
3 7→ Barrier
4 7→ Thread (⟨3⟩ ⟨1⟩)

3
⇝

0 7→ Thread

(
print(1 + ⟨1⟩ 0)

)
1 7→ Barrier
2 7→ Thread (print(⟨1⟩ 1))
4 7→ Thread (())

 4
⇝

0 7→ Thread

(
print(1 + ⟨1⟩ 0)

)
1 7→ Barrier
2 7→ Thread (print(⟨1⟩ 1))

 1
⇝

{
0 7→ Thread

(
print(1 + 1)

)
2 7→ Thread (print(0))

}
2∗
⇝

{
0 7→ Thread

(
print(1 + 1)

)} 1∗
⇝

{}

ECOOP 2022

23:8 A Self-Dual Distillation of Session Types

For simplicity, we treat print on natural numbers as a no-op that returns (), instead
of adding an output log to the semantics, because whether or not print logs its output
somewhere does not affect the further execution of the program.

While untyped λ̄ programs can easily get stuck, for instance if one side throws away its
barrier, or sets up cyclic waiting dependencies, well-typed λ̄ programs never get stuck. More
formally, we prove global progress (in Section 5), which means that if we start with an initial
program e : 1, then any non-empty configuration we can reach from e can step further. But
first, we will see how to encode session types in λ̄.

4 Encoding session types in λ̄

Despite being very simple, λ̄’s type system can encode session types. There are five basic
session type constructors:

s ∈ Session ≜ End | !τ.s | ?τ.s | s ⊕ s | s & s

The type !τ.s means to send a value of type τ and then continue with s. Dually, ?τ.s means
to receive a value of type τ and then continue with s. The type s1 ⊕ s2 indicates that we
have a choice of continuing either with protocol s1 or with s2. Dually, the type s1 & s2 means
that we receive a choice from the other side: either we have to continue with protocol s1 or
with protocol s2, depending on what the other side chose. Lastly, the protocol End means
that we are done with the channel and we must deallocate it. Session types make the notion
of duality explicit using the function dual : Session → Session:

dual(End) ≜ End
dual(!τ.s) ≜ ?τ.dual(s)
dual(?τ.s) ≜ !τ.dual(s)

dual(s1 ⊕ s2) ≜ dual(s1) & dual(s2)
dual(s1 & s2) ≜ dual(s1) ⊕ dual(s2)

The idea is that if our channel has type s, then the channel of the party we are communicating
with has type dual(s). This is the list of channel operations and their types:
forkGV : (s −◦ 1) → dual(s)

Fork off a new thread running the closure. Passes a channel of type s to the child thread,
and returns a channel of type dual(s) to the main thread.

close : End → 1
Close and deallocate the channel. Returns unit ().

send : !τ.s × τ → s

Send a message of type τ to the channel. Returns a new channel of type s for performing
the rest of the protocol.

receive : ?τ.s → s × τ

Receive a message from the channel. Returns a pair s × τ of the channel for performing
the rest of the protocol (type s) and the message received (type τ).

tellL : s1 ⊕ s2 → s1
In a branching protocol, choose the left branch. Returns a channel of the chosen type.

tellR : s1 ⊕ s2 → s2
In a branching protocol, choose the right branch. Returns a channel of the chosen type.

J. Jacobs 23:9

ask : s1 & s2 → s1 + s2
Receives the choice made by the other side. Returns a sum type, which is inL(c) with
c : s1 if the left branch was chosen by the other side, and inR(c) with c : s2 if the right
branch was chosen.5

We will encode channels as λ̄’s barriers, and we therefore encode a session type s as a
linear function type τ1 −◦ τ2 where τ1, τ2 are determined from s. Intuitively, the sending side
not only transfers the values specified by the protocol, but also a continuation channel for
the remainder of the protocol. The continuation channel is connected to a tiny messenger
thread, which is responsible for synchronizing with the old barrier, as we did in Section 2.
We define an encoding function [[·]] : Session → Type that converts a session type to a λ̄ type.
The encoding of session types into λ̄ types is as follows:

[[End]] ≜ 1 −◦ 1
[[!τ.s]] ≜ [[dual(s)]] × τ −◦ 1
[[?τ.s]] ≜ 1 −◦ [[s]] × τ

[[s1 ⊕ s2]] ≜ [[dual(s1)]] + [[dual(s2)]] −◦ 1
[[s1 & s2]] ≜ 1 −◦ [[s1]] + [[s2]]

Using this encoding, we can implement channel operations with type signatures matching
their native session-typed version, provided we use the encoding:

forkGV : ([[s]] −◦ 1) → [[dual(s)]] forkGV (x) ≜ fork(x)
close : [[End]] → 1 close(c) ≜ c ()
send : [[!τ.s]] × τ → [[s]] send(c, x) ≜ fork(λc′. c (c′, x))

receive : [[?τ.s]] → [[s]] × τ receive(c) ≜ c ()
tellL : [[s1 ⊕ s2]] → [[s1]] tellL(c) ≜ fork(λc′. c inL(c′))
tellR : [[s1 ⊕ s2]] → [[s2]] tellR(c) ≜ fork(λc′. c inR(c′))

ask : [[s1 & s2]] → [[s1]] + [[s2]] ask(c) ≜ c ()

The fork operation for channels simply delegates to the fork operation of λ̄, because a
channel is represented as a barrier.

Formal statement of well-typedness of the encodings

You may note that while there is an encoding function [[·]] of session types into λ̄ types, there
is no explicit encoding function of GV terms to λ̄ terms. This is intentional: because the
translation is local, the definitions above can be viewed as syntactic abbreviations or macros.
For instance, we can define the abbreviation

tellL ≜ λc. fork(λc′. c inL(c′))

5 In the original GV, branching was combined with receiving a choice. We decouple them, and let receiving
a choice return a sum type, which can subsequently be pattern matched on using match.

ECOOP 2022

23:10 A Self-Dual Distillation of Session Types

of the tellL channel operation as a closed syntactic λ̄ term. We can then prove that for all
session types s1 and s2, the typing judgement

∅ ⊢ tellL : [[s1 ⊕ s2]] → [[s1]]

for the tellL term given above is derivable from λ̄’s typing rules. The most interesting case
is fork; in order to prove

∅ ⊢ fork : ([[s]] −◦ 1) → [[dual(s)]]

for all session types s, we rely on the following lemma about dual and the encoding [[·]]:

([[s]] = τ1 −◦ τ2) ⇐⇒ ([[dual(s)]] = τ2 −◦ τ1)

That is, if the session types are dual in the session types sense, then their encodings are dual
in the λ̄ sense.

The advantage of this approach is its simplicity and that we can freely intermix channels
with direct usage of barriers in the same program. However, for our simulation result
(Section 4.1), we do need an explicit definition of GV syntax and a translation of GV terms
to λ̄ terms.

A note on the mechanization and n-ary choice

We can combine n-ary choice with sending/receiving a message in a single communication
step using n-ary sum types:

sendchoicei : !{i : τi.si}i∈I × τi → si

receivechoice : ?{i : τi.si}i∈I → Σi∈I si × τi

This can also be encoded in λ̄, and is what is provided by the mechanization (7):

sendchoicei(c, x) ≜ fork(λc′. c ini(c′, x))
receivechoice(c) ≜ c ()

Encoding λ̄ in GV

We can also do the encoding the other way around, and implement λ̄’s fork in terms of GV’s
channel constructs:

forkλ̄(f) ≜
let c1 = forkGV (λc′

1. f (λv′. let c′
2 = send(c′

1, v′)
let (c′

3, v) = receive(c′
2)

close(c′
3); v))

λv. let (c2, v′) = receive(c1)
let c3 = send(c2, v)
close(c3); v′

Given how short the encodings of GV’s channel operations in λ̄ are, it is perhaps surprising
that the other way around requires comparatively more code.

J. Jacobs 23:11

4.1 Simulation of GV’s semantics with λ̄’s semantics
To show that the encoding makes sense, we prove that we can simulate an asynchronous
version of GV using λ̄’s semantics. We use an asynchronous semantics (⇝GV) for GV, so the
GV configuration contains buffers. For details about the GV semantics used in the proof, we
refer the reader to the mechanization (Section 7). The key idea behind the simulation is that
each message in a buffer on the GV side corresponds to a messenger thread on the λ̄ side.
Whenever a message is put in a buffer on the GV side, a messenger thread is created on the
λ̄ side, and the messenger thread will be waiting to synchronize with a barrier. Whenever a
message is received from a channel’s buffer on the GV side, the receiver and the messenger
thread execute their sync operation on the λ̄ side, which sends the message to the receiver
and allows the messenger thread to terminate.

Formally, we start with an encoding [[e]] that translates GV terms to the corresponding
λ̄ terms by replacing all occurrences of GV channel operations with their λ̄ definitions
given above. We then extend this translation to configurations [[ρ]], The translation on
configurations replaces each buffer in the GV heap with a sequence of λ̄ messenger threads,
with one messenger thread per message in the buffer. With these notions at hand, we can
show that the λ̄ encodings simulate the GV semantics.

▶ Lemma 1 (Simulation). If ρ⇝GV ρ′ then [[ρ]]⇝∗ [[ρ′]]

This lemma has been mechanized in Coq (Section 7). We need the transitive closure
(⇝∗) on the λ̄ side, because a single step in the GV semantics can correspond to multiple
steps in the λ̄ semantics, since the λ̄ semantics does extra administrative β-reductions. For
instance, when the GV program does a send(c, v) operation, it places the message v in
the buffer in one step. The translated λ̄ program on the other hand spawns a messenger
thread with [[send(c, v)]] = fork(λc′. c (c′, v)), which initializes the new thread with the
term (λc′. c (c′, v)) ⟨k⟩ where ⟨k⟩ is the newly created barrier. The messenger thread then
performs the β-reduction, resulting in an extra step on the λ̄ side.

To get a full operational correspondence [14], we need a second “reflection” lemma stating
that if the image of the translation [[ρ]] takes a step, then this step can be matched with a
corresponding step in the GV semantics. Note that this only holds for well-typed terms: if
we have the ill-typed term receive(λx. x) in the GV source, this is translated to well-typed
(λx. x)() in λ̄. Thus, whereas receive(λx. x) gets stuck in the GV semantics, its translation
does not get stuck in the λ̄ semantics. We do expect a full operational correspondence
to hold for well-typed terms, but while we have mechanized the proof of the simulation
direction (Lemma 1), we have not mechanized a full operational correspondence. With a full
operational correspondence it would be possible to lift λ̄’s deadlock freedom result to GV,
and it would be interesting to see whether using λ̄ as a “proof IR” in this manner is a viable
strategy for proving deadlock freedom of GV.

4.2 Summary
To add GV’s session types to linear λ-calculus, we need to add the 5 new session type formers,
the notion of duality, and the 7 session type operations. In contrast, λ̄ only adds one new
operation, fork, and no new type formers and no notion of duality. Nevertheless, we have
seen that we can encode session types in λ̄.

The encoding creates a new thread to store each message. Thus, λ̄ should not be viewed
as a practical way to implement session types, but as a theoretical calculus, like other calculi
that create one thread per message, such as the asynchronous π-calculus.

ECOOP 2022

23:12 A Self-Dual Distillation of Session Types

5 Deadlock freedom, leak freedom, and global progress

Linear typing in λ̄ guarantees strong properties for well-typed programs:

Type safety: threads never get stuck, except by synchronizing with a barrier.
Global progress: a non-empty configuration can always take a step.
Strong deadlock freedom: no subset of the threads gets stuck by waiting for each other.
Memory leak freedom: all barriers in the configuration remain referenced by a thread.

These properties are all inequivalent in strength: none of the 4 properties is strictly
stronger than another. In Section 5.3 we consider a property that is strictly stronger than
these 4, but we will first focus on global progress (Section 5.1), as ideas behind the proof of
global progress (Section 5.2), are also sufficient to prove the stronger property (Section 5.3).

5.1 Global progress
Let us consider the formal statement of global progress:

▶ Theorem 2 (Global progress).
If ∅ ⊢ e : 1, and

{
0 7→ Thread(e)

}
⇝∗ ρ, then either ρ =

{}
or ∃ρ′. ρ⇝ ρ′.

Intuitively, global progress states that if we start with a well-typed program, then any
configuration we reach is either empty (i.e., all threads have terminated and all barriers
have been deallocated), or the configuration can perform a step. This property relies on
linear typing, as λ̄ programs that violate linearity can deadlock and create a non-empty
configuration that cannot step. A simple example is if one side does not use its barrier:

let x = fork(λx′. ()) in x 0 Deadlock!

This deadlock is prevented by the linear type system, which ensures that each barrier is used
exactly once. More complicated deadlocks are also possible in untyped programs, in which
there is a circle of threads T1 T2 T3 T4 connected by barriers that are trying to
synchronize () in a cycle:

T1 T2

T3T4

No thread can make progress because the threads are all synchronizing on different
barriers. This shows that a simplistic scheme to prove deadlock freedom cannot work: we
must somehow rule out such cycles. Fortunately, the linear type system ensures that the
graph of connections between threads has the shape of a forest (i.e., collection of trees, i.e.,
an acyclic graph), and thus such circular deadlocks cannot happen. To see why the graph
remains acyclic, consider what happens when we fork:

let x1 = fork(...)
let x2 = fork(...)
let x3 = fork(...)
let y = fork(λy′. · · · x2 · · · x3 · · ·)
· · · x1 · · ·

J. Jacobs 23:13

At the fourth fork, the barriers x2 and x3 are transferred to the new thread via lexical
scoping, while the main thread keeps x1 for itself. This is what happens to the graph:

T1

⇝

T1 T2

On the left hand side, we have the thread T1 that is about to perform the fourth fork.
It currently owns 3 barriers x1, x2, x3, which are connected to the rest of the graph. After
the fork, we have the new thread T2, which is connected to T1 by means of a new barrier.
Crucially, the barriers x2 and x3 of the barriers that T1 used to own were transferred to T2
by means of lexical scoping. Nevertheless, as one can see in the figure above, if the graph
of the configuration before the fork was acyclic, then the graph of the configuration after
the fork is also acyclic. The same applies to a synchronization step, when values containing
potentially multiple barriers are exchanged:

T1 T2 ⇝ T1 T2

On the left, T1 and T2 each own 3 barriers, and they are also connected by a barrier. On
the right, after the synchronization has taken place, the barrier between them has disappeared.
Two of the barriers of T1 were transferred to T2, and one of the barriers of T2 was transferred
to T1. Once again, if the graph on the left was acyclic, then the graph on the right will still
be acyclic.6

The other operations of λ̄ do not change the connections in the graph. Therefore, a
program starts with a single thread, and then grows and alters its graph in a dance of fork
and sync steps, but the graph remains acyclic at all times.

In the next section we will see in a bit more detail how the acyclicity of the graph is used
in the proof of global progress.

Related work. Graph theoretic deadlock-freedom arguments are common in the session
types literature and have previously been made by Carbone [5], Lindley and Morris [21], and
Fowler, Kokke, Dardha, Lindley, and Morris [10].

6 When one looks at the picture of the synchronizing threads, it seems that T1 becomes totally disconnected
from T2 after the synchronization. This means that the threads can only communicate once. Yet the
session-typed channel encoding seems to make it possible to communicate several times. Exercise for
the reader: what is the solution to this paradox?

ECOOP 2022

23:14 A Self-Dual Distillation of Session Types

.

k :τ ; ∅ ⊢ ⟨k⟩ : τ

.

∅; x :τ ⊢ x : τ

Σ; Γ, x :τ1 ⊢ e : τ2

Σ; Γ ⊢ λx. e : τ1 −◦ τ2

Σ1; Γ1 ⊢ e1 : τ1 −◦ τ2 Σ2; Γ2 ⊢ e2 : τ1

Σ1, Σ2; Γ1, Γ2 ⊢ e1 e2 : τ2

Figure 3 Run-time type system (selected rules).

5.2 Structure of the global progress proof
This section gives more detail about how the acyclicity of the connection graph is used to prove
global progress. For the full details, the interested reader is referred to the mechanization
(Section 7).

Global progress states that if the configuration is non-empty, then it can take a step.
Formally, there are several types of stuck configurations to rule out. Perhaps the configuration
has a single thread and no barriers, but the thread is stuck on a type error (violating type
safety). Or perhaps the configuration consists of just one barrier and no threads (violating
memory leak freedom). Or perhaps there is a single thread and a single barrier, and the
thread is trying to synchronize but is stuck due to the absence of a partner to synchronize
with (violating deadlock freedom).

The aforementioned stuck configurations and more complicated variations are ruled out
by keeping track of sufficient type information and local invariants for each object in the
configuration (e.g., that a barrier is always connected to exactly two threads, and that the
types of the references to the barrier are dual τ1 −◦ τ2 and τ2 −◦ τ1). The interesting case is
when the types are all locally correct, but the configuration is still deadlocked due to cyclic
waiting. This case is ruled out by proving that well-typed programs maintain the invariant
that the connection graph is acyclic, which implies that cyclic waiting cannot happen.

Formally, we define a well-formedness invariant of configurations, that maintains well-
typedness of the threads as well as the acyclicity of the connection graph. For the
well-typedness, we use the run-time type system in Figure 3.7 The rules of the run-time
type system correspond to the rules of the static type system, plus one additional rule for
typing barrier literals ⟨k⟩. The typing judgment uses an additional Σ-context for typing
those barrier literals.

We say that a configuration ρ is well-formed if we have an acyclic graph G (i.e., an
undirected forest) where the vertices correspond to the entries of the configuration, and the
edges (between threads and barriers) are labeled with types, such that for each vertex i in G:

If ρ(i) = Thread(e) then Σ; ∅ ⊢ e : 1, where Σ is given by the types on the edges of the
barriers connected to vertex i.
If ρ(i) = Barrier then vertex i has edges to two different threads, labeled with dual types
τ1 −◦ τ2 and τ2 −◦ τ1.

These conditions ensure that the graph structure matches the structure of the configur-
ation: if we have a barrier literal ⟨k⟩ somewhere in the expression e of thread n, then the
first condition ensures that we have an edge between n and k, labeled with a type τ1 −◦ τ2

7 Our run-time type system in Coq makes use of separation logic, following [18]. This is equivalent to the
type system in the figure, but easier to work with in a proof assistant.

J. Jacobs 23:15

to make expression e well-typed. The second condition then ensures that there is a second
thread with barrier literal ⟨k⟩ in its expression, with type τ2 −◦ τ1. Note that the two
occurrences of the very same barrier literal ⟨k⟩ have two different types in the two different
threads.

Now that the configuration invariant has been defined, proof of global progress (Theorem 2)
can be structured as follows. Using well-typedness, we are able to show that the only way a
configuration can get stuck is if all threads are trying to synchronize with a barrier. The
invariant maintains that the graph structure is always acyclic. By a mathematical argument
about graphs and the pigeonhole principle, we are then able to show that two of the threads
must be synchronizing on the same barrier. Hence, at least one synchronization step can
proceed, and we have global progress.

5.3 Strengthened deadlock and memory leak freedom
Global progress (Theorem 2) rules out whole-program deadlocks. It also ensures that all
barriers have been used when the program finishes. However, this theorem does not guarantee
anything as long as there is still a single thread that can step. Thus it does not guarantee
local deadlock freedom, nor memory leak freedom while the program is still running, and it
does not even guarantee type safety: a situation in which a thread is stuck on a type error is
formally not ruled out by this theorem as long as there is another thread that can still step.

Our goal is to find a formulation that is strictly stronger than these 4 properties, and
from which they can be easily proved as corollaries. We take inspiration from [18], and find
a strengthened formulation of deadlock freedom on the one hand, and strengthened memory
leak freedom on the other hand. These strengthened formulations of deadlock freedom and
memory leak freedom are equivalent to each other, and they imply type safety and global
progress. In order to state these, we need the relation i waitingρ j, which says that i ∈ dom(ρ)
is waiting for j ∈ dom(ρ).

Intuitively, the meaning of waitingρ is as follows. When a barrier k gets allocated,
the literal ⟨k⟩ appears in two threads n1, n2. In this case we say that k waitingρ n1 and
k waitingρ n2, because the barrier is waiting until the threads want to synchronize with it.
Note that this relationship is dynamic: if the barrier literal ⟨k⟩ is transferred to another
thread, then the barrier is waiting for that new thread to synchronize with it. Whenever
a thread n starts trying to synchronize with k by calling ⟨k⟩ v for some value v, then the
waiting relationship flips: we now say that the thread is waiting for the barrier, i.e., that
n waitingρ k. Formally:

▶ Definition 3. We have i waitingρ j if either:
1. ρ(i) = Barrier and ρ(j) = Thread(e) and ⟨i⟩ ∈ e, but e ̸= K[⟨i⟩ v], or
2. ρ(i) = Thread(e) and ρ(j) = Barrier, and e = K[⟨j⟩ v]

Using this notion, we can define what a partial deadlock/leak is. Intuitively, a partial
deadlock is a situation in which there is some subset of the threads that are all waiting for
each other. Because our notion of waiting also incorporates barriers, we generalize this to
say that a partial deadlock/leak is a situation in which there is some subset of the threads
and barriers that are all waiting for each other. Formally:

▶ Definition 4 (Partial deadlock/leak). Given a configuration ρ, a non-empty subset S ⊆
dom(ρ) is in a partial deadlock/leak if these two conditions hold:
1. No i ∈ S can step, i.e., for all i ∈ S, ¬∃ρ′. ρ

i
⇝ ρ′

2. If i ∈ S and i waitingρ j then j ∈ S

ECOOP 2022

23:16 A Self-Dual Distillation of Session Types

This notion also incorporates memory leaks: if there is some barrier that is not referenced
by a thread, then the singleton set of that barrier is a partial deadlock/leak. Similarly,
a single thread that is not synchronizing on a barrier, is considered to be in a singleton
deadlock if it cannot step. This way, the notion of partial deadlock incorporates type safety.

▶ Definition 5 (Partial deadlock/leak freedom). A configuration ρ is deadlock/leak free if no
S ⊆ dom(ρ) is in a partial deadlock/leak.

We also strengthen the standard notion of memory leak freedom, namely reachability, to
incorporate aspects of deadlock freedom.

▶ Definition 6 (Reachability). We inductively define the threads and barriers that are reachable
in ρ: j0 ∈ N is reachable in ρ if there is some sequence j1, j2, ..., jk (with k ≥ 0) such that
j0 waitingρ j1, and j1 waitingρ j2, ..., and jk−1 waitingρ jk, and finally jk can step in ρ, i.e.,
∃ρ′. ρ

jk⇝ ρ′.

Intuitively, an element j0 ∈ N is reachable if j0 can itself step or has a transitive waiting
dependency on some jk that can step. This notion is stronger than the usual notion of
reachability, which considers objects to be reachable even if they are only reachable from
threads that are blocked.

▶ Definition 7 (Full reachability). A configuration ρ is fully reachable if all i ∈ dom(ρ) are
reachable in ρ.

As in [18], our strengthened formulations of deadlock freedom and full reachability are
equivalent for λ̄:

▶ Theorem 8. A configuration ρ is deadlock/leak free if and only if it is fully reachable.

Furthermore, these notions imply global progress and type safety:

▶ Definition 9. A configuration ρ has the progress property if ρ = ∅ or ∃ρ′, i. ρ
i
⇝ ρ′.

▶ Definition 10. A configuration ρ is safe if for all i ∈ dom(ρ), either ∃ρ′, i. ρ
i
⇝ ρ′, or

∃j. i waitingρ j.

▶ Theorem 11. If a configuration ρ is deadlock/leak free (or equivalently, fully reachable),
then ρ has the progress and safety properties.

Our main theorem is thus that configurations that arise from well-typed programs are
fully reachable and deadlock free:

▶ Theorem 12. If ∅ ⊢ e : 1 and
{

0 7→ Thread(e)
}
⇝∗ ρ′, then ρ′ is fully reachable and

deadlock/leak free.

The proof of the reachability half of Theorem 12 proceeds similarly to the proof of global
progress (Theorem 2). The difference between the proofs is that the proof of reachability
needs to explicitly keep track of the reason why each object in the configuration is reachable,
whereas global progress only needs to find one of the “roots” of the reachability relation (i.e.,
threads that can step).

Theorem 8 can then be used to obtain the deadlock freedom side of Theorem 12. The
idea of the proof of Theorem 8 is that the set of all unreachable objects forms a deadlock, if
the set is non-empty.

J. Jacobs 23:17

6 Extending λ̄ with unrestricted and recursive types

We add unrestricted types and recursive types as extensions. These can be omitted for
a minimalistic language, but they enable us to do ordinary functional programming and
recursive sessions in λ̄, bringing it closer to a realistic language in terms of features and
expressiveness. The extended set of types is:

τ ∈ Type ::= 0 | 1 | τ × τ | τ + τ | τ −◦ τ | τ → τ | µa.τ | a

An equi-recursive interpretation of µx.τ avoids explicit (un)fold constructs [6]. Recursive
types make the language Turing complete, because they allow us to define recursive functions
with the Y-combinator8, and together with sums and products can be used to encode algebraic
data types. Because session types are encoded as ordinary types in λ̄, recursive sessions are
automatically supported. This includes recursion through the message, as in µs. ?s.End,
which is encoded as µa. 1 −◦ (1 −◦ 1) × a.

Formally and in the mechanization (Section 7), we use the coinductive method of Gay,
Thiemann, and Vasconcelos [12] to handle equi-recursive types. This means that we formally
do not have a syntactic µa.τ type constructor; instead we let the language of types be
coinductively generated. Intuitively, this means that infinite types are allowed, and a recursive
type µa.F (a) is represented as its infinite unfolding F (F (F (· · ·))). We use a meta-level
fixpoint (CoFixpoint in Coq) to construct infinite/circular types. By using this method we
do not need an additional typing rule for unfolding recursive types, since types are already
identified up to unfolding.

In order to make interesting use of recursive types, it is necessary to add unrestricted types,
which are types for which the linearity restriction is lifted, so that they can be duplicated
and discarded freely. A linear function can only be called once and hence cannot call itself, so
recursive functions must have unrestricted type. Using unrestricted and recursive types, we
do not need built-in recursion as we can encode recursive functions using the Y-combinator:

Y : ((τ1 → τ2) → (τ1 → τ2)) → (τ1 → τ2)
Y ≜ λf. (λx. f (x x)) (λx. f (x x))

Here too it is apparent that since x is used twice, unrestricted as well as recursive types are
required to type check the Y-combinator [18].

In particular, we add the unrestricted function type τ1 → τ2 as a new type former. We
can then define rules that determine which of the existing types are unrestricted, as follows:

0, 1 are unrestricted types
τ1 × τ2 and τ1 + τ2 are unrestricted if τ1 and τ2 are unrestricted
τ1 → τ2 is always unrestricted, even for linear τ1 and τ2
τ1 −◦ τ2 is always linear, even for unrestricted τ1 and τ2

Using unrestricted function types, we can encode the !A connective from linear logic as
1 → A, and ?A as A → 1.

Formally and in the mechanization, unrestricted types are handled by splitting the typing
context using a 3-part relation split Γ Γ1 Γ2, which intuitively says that Γ ≡ Γ1, Γ2, where
variables of unrestricted type in Γ may occur in both Γ1 and Γ2 (see [18] for details). We
also make use of the predicate Γ unr to indicate that all variables in Γ must have unrestricted
type. To extend the typing rules in Figure 1, we use split to split the context, and we use

8 One could also add an explicit letrec.

ECOOP 2022

23:18 A Self-Dual Distillation of Session Types

Γ unr wherever an empty context is required in Figure 1. For example, here are the typing
rules for variables and for pairs:

Γ unr
Γ, x :τ ⊢ x : τ

Γ1 ⊢ e1 : τ1 Γ2 ⊢ e2 : τ2 split Γ Γ1 Γ2

Γ ⊢ (e1, e2) : τ1 × τ2

The other rules and the rules of the run-time type system are amended analogously.
Unrestricted and recursive types are purely type-level features and require no extensions

to the expression language or to the operational semantics. Nevertheless, they upgrade λ̄

to a Turing complete functional and concurrent language. For more details, we refer the
interested reader to the mechanization (Section 7).

7 Mechanization

All our theorems have been mechanized in Coq. We use the connectivity graph library of
[18] in our mechanization. The mechanization is built-up as follows:

Language definition: expressions, static type system, and operational semantics. Our
mechanization includes the extensions with unrestricted and recursive types.
A run-time type system that extends the static type system to barrier literals ⟨k⟩. The
run-time type system is expressed in separation logic.
A configuration well-formedness invariant, stating that the configuration remains well-
typed, and the connectivity between threads and barriers remains acyclic.
Proof that well-formedness is maintained by the operational semantics.
Proof that well-formed configurations have the full-reachability property.
Proofs that full-reachability is equivalent to deadlock/leak freedom, and that they imply
type safety and global progress.
The definition of the encoding of session types in λ̄, and proofs that the usual session
typing rules are admissible.
A definition of GV and its operational semantics, and the translation into λ̄, with a proof
that the GV semantics can be simulated with the λ̄ semantics. A lock-step simulation
is obtained by inserting extra no-op steps in the GV semantics wherever λ̄ does an
administrative β-reduction.

Whereas the mechanized deadlock freedom proof for GV’s session types by [18] consists
of 2139 lines of Coq definitions and proofs (excluding [18]’s graph library), our mechanization
of λ̄ and its deadlock freedom is only 1229 lines. The encoding of GV’s session types into λ̄

together with the proofs of admissibility of the typing rules is 249 lines, and the operational
simulation result is 309 lines.

Although the λ̄ mechanization relies on connectivity graphs [18], the techniques presented
there were not immediately sufficient for proving deadlock freedom of λ̄. The difficulty lies in
λ̄’s sync step in the operational semantics, which exchanges resources between two vertices
that are not directly adjacent in the graph. This is not supported as an operation by [18], so
we instead want to separate it into multiple smaller graph transformations. Unfortunately,
the intermediate states do not satisfy the configuration invariant. The solution to this was to
add extra “ghost state” to the labels on the edges of the graph, which keeps track of which
sub-step of the decomposed graph transformation the connected vertices are in. As part
of future work, it would be interesting to investigate whether this technique can be used
more generally for composing graph transformations on the separation logic level, when the
intermediate states do not satisfy the invariant.

The current version of the mechanization can be found on GitHub [17].

J. Jacobs 23:19

8 Related work

Session types were originally described by Honda [15], and later by Honda, Vasconcelos, and
Kubo [16]. Gay and Vasconcelos [13] embedded session types in a linear λ-calculus. Whereas
Gay and Vasconcelos’ calculus [13] was not yet deadlock free, Wadler’s subsequent GV [31]
and its derivatives [21, 23, 24, 11, 10] were.

Wadler also described the relation of GV to classical processes (CP) [31], giving a
kind of Curry-Howard correspondence between session types and classical linear logic. For
intuitionistic linear logic, such a correspondence had earlier been described by Caires and
Pfenning [4].

Lindley and Morris [22, 23] give a CPS encoding of GV. The target of the CPS encoding
is linear λ-calculus without fork, which is even more minimal than λ̄. The key difference
between the CPS encoding and our encoding into λ̄ is that the CPS encoding is global (i.e.,
a whole-program transformation), whereas the encoding of sessions into λ̄ is local, which
is made possible by the built-in concurrency of λ̄. In other words, in contrast to the CPS
encoding, the encoding of channel operations in λ̄ can be viewed as syntactic abbreviations
or macros, satisfying Felleisen’s expressiveness criterion [9].

When session types are added to the syntax of standard π-calculus they give rise to
additional separate syntactic categories, which leads to a duplication of effort in the theory.
Kobayashi showed that session types are encodable into standard π-types [19]. Dardha,
Giachino, and Sangiorgi formalize and extend Kobayashi’s approach [7, 8]. The encoding
makes use of the fact that the π-calculus semantics has communication in the form of
π-channels, and can thus encode session communication into π-communication. The encoding
of multi-step sessions into single-shot π-channels sends a continuation along, so that the
communication can continue. λ̄’s encoding of session types takes inspiration from this work,
and also sends along continuations on which the communication can continue. On the other
hand, λ̄ starts with λ-calculus, which does not have any concurrency or communication.
We therefore add concurrency and communication to linear λ-calculus in the form of fork.
Unlike the π-calculus’ channel communication, which is one-way (like an individual step of a
session), λ̄’s barrier communication atomically exchanges two values, so that barriers may
be given linear function type A −◦ B. This lets λ̄ get away with not adding any new type
formers to linear λ-calculus, by reusing the quintessential λ-calculus type (the function type)
for its communication primitive.

Single-shot synchronization primitives have also been used in the implementation of a
session-typed channel libraries, for instance by Scalas and Yoshida [30], Padovani [27], and
Kokke and Dardha [20].

More distantly, Arslanagic, Pérez, and Voogd developed minimal session types [2], which
decompose multi-step session types into single-step “minimal” session types of the form
!τ.End and ?τ.End in a π-calculus. Whereas λ̄ and the preceding approaches [19, 7, 8] encode
sequencing by nesting payload types, minimal session types “slice” the n actions of a session
s into indexed names s1, . . . , sn, each having a minimal session type. Correct sequencing is
arranged on the process level with additional synchronizations, using Parrow’s decomposition
of processes into trios [28].

Niehren, Schwinghammer and Smolka developed a concurrent λ-calculus with futures
[26]. Futures are akin to mutable variables that can only be assigned once. If a future has
not been assigned a value yet, then attempting to read its value will block until a value
becomes available. In addition to a non-linear type system which allows run-time errors due
to multiple assignments to the same future, the authors also present a linear type system

ECOOP 2022

23:20 A Self-Dual Distillation of Session Types

that ensures that futures are not assigned twice. The authors are able to build channels on
top of futures by starting with the ordinary linked list data type, and making the tail of the
list a future, thus making the list open-ended. Unlike session-typed channels, which follow
a protocol and can send values of different types at different points in the protocol, their
channels always communicate values of the same type. Besides the difference between futures
(which are unidirectional) and λ̄’s barriers (which are bidirectional), another difference is
that deadlock freedom is not guaranteed for all well-typed programs.

Aschieri, Ciabattoni and Genco give a Curry-Howard correspondence for Gödel Logic [3],
which is intuitionistic logic extended with the axiom (A → B) ∨ (B → A)9. This is a classical
axiom that is implied by, but strictly weaker than the law of the excluded middle, and
Gödel Logic thus provides an intermediate between intuitionistic and classical logic. The
idea for the Curry-Howard interpretation of the axiom is that two copies of the continuation
can be run in parallel, and exchange their evidence for A and B if both sides try to apply
the implication obtained from the axiom. An important difference with λ̄ is that Gödel
Logic is based on intuitionistic logic (corresponding to the ordinary simply typed lambda
calculus), whereas λ̄ is based on the linear simply typed lambda calculus, and strongly relies
on linearity for type safety and deadlock freedom. It would be interesting to investigate
whether a connection between λ̄ and Gödel Logic can be established, but a naive attempt at
interpreting the axiom as (A → B) + (B → A) in λ̄ appears bound to fail, because in a linear
setting the continuation/context cannot be duplicated without breaking the meta-theoretical
properties.

We base our mechanization on the connectivity graph approach of Jacobs, Balzer, and
Krebbers [18], and we use their library to reason about graphs in Coq. This is related to the
graphical approach of Carbone [5], the proof method of Lindley and Morris [21], and to the
abstract process structures of Fowler, Kokke, Dardha, Lindley, and Morris [10].

More distantly, λ̄ is inspired by minimal languages such as MiniJava [29], MiniML [25],
the DOT calculus [1], and others.

9 Concluding remarks

We have investigated λ̄, a minimal linear lambda calculus extended with fork to make it
concurrent. We have seen that channel operations and linear session types can be encoded in
λ̄, and we have shown that the resulting semantics for the channel operations simulates the
GV semantics.

The metatheory of λ̄, including strong deadlock freedom, has been mechanized in Coq.
Because of λ̄’s minimality, the proofs are simpler and shorter than earlier mechanized proofs
for session types. I hope you enjoyed this approach to distilling session types into a simple
core, and hope that λ̄ may serve as a minimal basis upon which future work may build.

References
1 Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf, and Sandro Stucki. The Essence

of Dependent Object Types, pages 249–272. Springer, 2016. doi:10.1007/978-3-319-30936-1_
14.

2 Alen Arslanagic, Jorge A. Pérez, and Erik Voogd. Minimal Session Types (Pearl). In ECOOP
2019, 2019. doi:10.4230/LIPIcs.ECOOP.2019.23.

9 Thanks to Dan Frumin for pointing out this connection.

https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.1007/978-3-319-30936-1_14
https://doi.org/10.4230/LIPIcs.ECOOP.2019.23

J. Jacobs 23:21

3 Federico Aschieri, Agata Ciabattoni, and Francesco A. Genco. Gödel logic: From natural
deduction to parallel computation. In 2017 32nd Annual ACM/IEEE Symposium on Logic in
Computer Science (LICS), pages 1–12, 2017. doi:10.1109/LICS.2017.8005076.

4 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In CONCUR,
volume 6269 of LNCS, pages 222–236, 2010. doi:10.1007/978-3-642-15375-4_16.

5 Marco Carbone and Søren Debois. A graphical approach to progress for structured com-
munication in web services. In ICE, volume 38 of EPTCS, pages 13–27, 2010. doi:
10.4204/EPTCS.38.4.

6 Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module? In PLDI, pages
50–63. ACM, 1999. doi:10.1145/301618.301641.

7 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In PPDP’12,
2012. doi:10.1145/2370776.2370794.

8 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. Inf. Comput.,
256:253–286, 2017. doi:10.1016/j.ic.2017.06.002.

9 Matthias Felleisen. On the expressive power of programming languages. Science of Computer
Programming, 17(1):35–75, 1991. doi:10.1016/0167-6423(91)90036-W.

10 Simon Fowler, Wen Kokke, Ornela Dardha, Sam Lindley, and J. Garrett Morris. Separating
sessions smoothly. In CONCUR, volume 203 of LIPIcs, pages 36:1–36:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.CONCUR.2021.36.

11 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous
session types: Session types without tiers. PACMPL, 3(POPL):28:1–28:29, 2019. doi:
10.1145/3290341.

12 Simon J. Gay, Peter Thiemann, and Vasco T. Vasconcelos. Duality of session types: The final
cut. In PLACES, volume 314 of EPTCS, pages 23–33, 2020. doi:10.4204/EPTCS.314.3.

13 Simon J. Gay and Vasco Thudichum Vasconcelos. Linear type theory for asynchronous session
types. JFP, 20(1):19–50, 2010. doi:10.1017/S0956796809990268.

14 Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Information and Computation, 208(9):1031–1053, 2010. doi:10.1016/j.ic.2010.05.
002.

15 Kohei Honda. Types for dyadic interaction. In CONCUR, volume 715 of LNCS, pages 509–523,
1993. doi:10.1007/3-540-57208-2_35.

16 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In ESOP, volume 1381 of
LNCS, pages 122–138, 1998. doi:10.1007/BFb0053567.

17 Jules Jacobs. Coq mechanization of lambda-barrier, 2021. The most recent version is at
https://github.com/julesjacobs/cgraphs. doi:https://zenodo.org/record/6560443.

18 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. Connectivity graphs: a method for
proving deadlock freedom based on separation logic. Proc. ACM Program. Lang., 6(POPL):1–
33, 2022. doi:10.1145/3498662.

19 Naoki Kobayashi. Type systems for concurrent programs. In Formal Methods at the Crossroads.
From Panacea to Foundational Support, 10th Anniversary Colloquium of UNU/IIST, the
International Institute for Software Technology of The United Nations University, Lisbon,
Portugal, March 18-20, 2002, Revised Papers, volume 2757 of Lecture Notes in Computer
Science, pages 439–453, 2002. doi:10.1007/978-3-540-40007-3_26.

20 Wen Kokke and Ornela Dardha. Deadlock-free session types in linear haskell. In Haskell 2021:
Proceedings of the 14th ACM SIGPLAN International Symposium on Haskell, Virtual Event,
Korea, August 26-27, 2021, Haskell 2021, 2021. doi:10.1145/3471874.3472979.

21 Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In ESOP, volume
9032 of LNCS, pages 560–584, 2015. doi:10.1007/978-3-662-46669-8_23.

22 Sam Lindley and J. Garrett Morris. Embedding session types in Haskell. In Haskell Symposium,
pages 133–145, 2016. doi:10.1145/2976002.2976018.

ECOOP 2022

https://doi.org/10.1109/LICS.2017.8005076
https://doi.org/10.1007/978-3-642-15375-4_16
https://doi.org/10.4204/EPTCS.38.4
https://doi.org/10.4204/EPTCS.38.4
https://doi.org/10.1145/301618.301641
https://doi.org/10.1145/2370776.2370794
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.4230/LIPIcs.CONCUR.2021.36
https://doi.org/10.1145/3290341
https://doi.org/10.1145/3290341
https://doi.org/10.4204/EPTCS.314.3
https://doi.org/10.1017/S0956796809990268
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1016/j.ic.2010.05.002
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://github.com/julesjacobs/cgraphs
https://doi.org/https://zenodo.org/record/6560443
https://doi.org/10.1145/3498662
https://doi.org/10.1007/978-3-540-40007-3_26
https://doi.org/10.1145/3471874.3472979
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2976002.2976018

23:22 A Self-Dual Distillation of Session Types

23 Sam Lindley and J. Garrett Morris. Talking bananas: Structural recursion for session types.
In ICFP, pages 434–447, 2016. doi:10.1145/2951913.2951921.

24 Sam Lindley and J. Garrett Morris. Lightweight functional session types. In Behavioural
Types: from Theory to Tools. River Publishers, 2017.

25 Magnus O. Myreen and Scott Owens. Proof-producing synthesis of ml from higher-order logic.
SIGPLAN Not., pages 115–126, 2012. doi:10.1145/2398856.2364545.

26 Joachim Niehren, Jan Schwinghammer, and Gert Smolka. A concurrent lambda calculus
with futures. In Frontiers of Combining Systems, 5th International Workshop, FroCoS
2005, Vienna, Austria, September 19-21, 2005, Proceedings, volume 3717 of Lecture Notes in
Computer Science, pages 248–263, 2005. doi:10.1007/11559306_14.

27 Luca Padovani. A simple library implementation of binary sessions. J. Funct. Program., 27:e4,
2017. doi:10.1017/S0956796816000289.

28 Joachim Parrow. Trios in concert. In Proof, Language and Interaction: Essays in Honour of
Robin Milner, pages 621–637. MIT Press, 1998.

29 Eric Roberts. An overview of minijava. SIGCSE Bull., 2001. doi:10.1145/366413.364525.
30 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in scala. In 30th

European Conference on Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome,
Italy, volume 56 of LIPIcs, pages 21:1–21:28, 2016. doi:10.4230/LIPIcs.ECOOP.2016.21.

31 Philip Wadler. Propositions as sessions. In ICFP, pages 273–286, 2012. doi:10.1145/2364527.
2364568.

https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/2398856.2364545
https://doi.org/10.1007/11559306_14
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1145/366413.364525
https://doi.org/10.4230/LIPIcs.ECOOP.2016.21
https://doi.org/10.1145/2364527.2364568
https://doi.org/10.1145/2364527.2364568

JavaScript Sealed Classes
Manuel Serrano # Ñ

Inria/UCA, Inria Sophia Méditerranée, 2004 route des Lucioles, Sophia Antipolis, France

Abstract
In this work, we study the JavaScript Sealed Classes, which differ from regular classes in a few ways
that allow ahead-of-time (AoT) compilers to implement them more efficiently. Sealed classes are
compatible with the rest of the language so that they can be combined with all other structures,
including regular classes, and can be gradually integrated into existing code bases.

We present the design of the sealed classes and study their implementation in the hopc AoT
compiler. We present an in-depth analysis of the speed of sealed classes compared to regular classes.
To do so, we assembled a new suite of benchmarks that focuses on the efficiency of the class
implementations. On this suite, we found that sealed classes provide an average speedup of 19%.
The more classes and methods programs use, the greater the speedup. For the most favorable test
that uses them intensively, we measured a speedup of 56%.

2012 ACM Subject Classification Software and its engineering → Just-in-time compilers; Software
and its engineering → Source code generation; Software and its engineering → Object oriented
languages; Software and its engineering → Functional languages

Keywords and phrases JavaScript, Compiler, Dynamic Languages, Classes, Inline Caches

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.24

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.23
Software (Source Code): https://github.com/manuel-serrano/hop.git

Acknowledgements My gratitude to L. Tratt for his suggestions to improve this paper, and to
O. Melançon, E. Rohou, M. Feeley, and R. Findler for their comments, suggestions, and corrections.

1 Introduction

JavaScript’s dynamicity makes the language very flexible and malleable. Programs are easy
to adapt as their specification evolves. Data structures can be extended to meet new API
requirements and extensions are easy to connect to existing code bases, etc. However, there
is a flip side of this coin. First, many minor mistakes such as misspelled identifiers or omitted
function arguments are usually not reported, which leads to programs that are incorrect
without the programmer noticing. Second, the language is particularly difficult to implement
efficiently. All fast JavaScript compilers, be they static (AoT) or dynamic (JIT), rely on
heuristics and optimistic compilation to bridge the performance gap to more static languages.
Consequently JavaScript programs suffer from the performance cliff syndrome [2, 16]: a
mundane modification of the source code might dramatically affect its performance if the
change, possibly very simple, defeats the compiler’s heuristics.

To mitigate these problems, we explore the design and implementation of a dialect of
JavaScript that extends the language with a few constructs and annotations that together
allow compilers, specially AoT compilers, to generate better code. This project follows the
same philosophy as JavaScript strict mode and strong mode [23]: programmers who are
willing to sacrifice some dynamicity of their implementations will be rewarded with faster
and more predictable performance. Sealed classes are a central component of this dialect
and they are the subject of this paper.

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Manuel Serrano;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 24; pp. 24:1–24:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Manuel.Serrano@inria.fr
http://www-sop.inria.fr/members/Manuel.Serrano/
https://orcid.org/0000-0002-5240-1610
https://doi.org/10.4230/LIPIcs.ECOOP.2022.24
https://doi.org/10.4230/DARTS.8.2.23
https://doi.org/10.4230/DARTS.8.2.23
https://github.com/manuel-serrano/hop.git
https://doi.org/10.4230/DARTS.8.2.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 JavaScript Sealed Classes

Sealed class instances and sealed class objects are class instances and class objects that are
deprived of specific freedoms but that remain fully compatible with the rest of the language.
All existing JavaScript programs can continue to run without any modification. Sealed classes
trade some dynamicity for a more efficient implementation, in part because their design
allows compilers to reuse the efficient techniques developed for class-based programming
languages such as Smalltalk or Java.

In this paper we show that sealed classes are beneficial to the hopc [25, 26] AoT compiler.
We show that they help it deliver faster and more predictable code. Although not studied in
this paper, we believe that sealed classes could also benefit to JIT compilation because AoT
and JIT compilers share many similar techniques for manipulating objects and properties.
The main contributions of this work are:

The characterization of lightweight constraints that allow AoT compilers to optimize the
implementation of classes.
A proof based on a complete implementation that sealed classes improve JavaScript
performance of a full-fledged AoT compiler.
An improvement to a well known technique for implementing single-inheritance class type
checks.
A benchmark suite for evaluating the performance of JavaScript classes.

The paper is organized as follows. We start in Section 2 with a brief introduction to
JavaScript classes and we show why they are more difficult to implement that those of
languages such as Java or C++. These difficulties motivate the introduction of sealed classes
that are presented in Section 3. Their implementation is presented in Section 4. We measure
their efficiency in Section 5. We present the related work in Section 6 and we conclude in
Section 7.

2 Classes

Classes were added to JavaScript in version 6 [12]. They are syntactic extensions of func-
tions [18]. They have brought a class-based programming flavor to JavaScript, without
requiring any new runtime operations. Here are examples of class declarations collected from
the MDN web site [19]:

1 class BaseClass {
2 msg = ’hello␣world’
3 basePublicMethod() {
4 return this.msg
5 }
6 }
7 class SubClass extends BaseClass {
8 subPublicMethod() {
9 return super.basePublicMethod()

10 }
11 }
12 const instance = new SubClass()
13 console.log(instance.subPublicMethod()) // "hello world"

Recently classes have been extended to support private fields. These must be declared in
the class, unlike normal properties whose declarations are optional. Private properties are
prefixed with ‘#’.

M. Serrano 24:3

1 class ClassWithPrivateField {
2 #priv;
3 constructor() {
4 this.#priv = 42;
5 }
6 str() {
7 return ‘${this.#priv}‘;
8 }
9 }

10 class SubClass extends ClassWithPrivateField {
11 #subpriv;
12 constructor() {
13 super();
14 this.#subpriv = 23;
15 }
16 str() {
17 return ‘${this.#subpriv} ${super.str()}‘;
18 }
19 }
20 new SubClass();

Private properties are only accessible from within the methods of the class that defined
them. They are not accessible from within methods of subclasses or from outside the
class. In our example, the #priv private property is only accessible from the methods of
ClassWithPrivateField, but not from the methods of SubClass. Attempting to access one
raises the error “Private field must be declared in an enclosing class”.

2.1 Class Implementation

As classes are merely special functions [18], they are naturally implemented as a translation
into functions and prototype chains. For instance, here is how the TypeScript compiler
transforms the two declarations above into plain JavaScript. JavaScript compilers do an
equivalent transformation internally.

1 var BaseClass = (function () {
2 function BaseClass() {
3 this.msg = ’hello␣world’;
4 }
5 BaseClass.prototype.basePublicMethod = function () {
6 return this.msg;
7 };
8 return BaseClass;
9 }());

10 var SubClass = (function (_super) {
11 function SubClass() {
12 return _super !== null && _super.apply(this, arguments) || this;
13 }
14 SubClass.prototype.__proto__= _super.prototype;
15 SubClass.prototype.subPublicMethod = function () {
16 return _super.prototype.basePublicMethod.call(this);
17 };
18 return SubClass;
19 }(BaseClass));

Each class is transformed into a plain JavaScript function (lines 1 and 10 in the example).
The inheritance relation between a class and its superclass is implemented by chaining the
prototype object of the class with the prototype object of the superclass (see at line 14 in
the example). Class properties are stored in the instances themselves; methods are stored in
the prototype chains. Figure 1 shows the memory layout of BaseClass, SubClass, and one
instance of SubClass.

ECOOP 2022

24:4 JavaScript Sealed Classes

Function
__proto__:

name: "SubClass"

prototype:

return _super!==...

Function
__proto__:

name: "BaseClass"

prototype:

this.msg="hello...

Object
__proto__:

msg: "hello world"

Object
__proto__:

subPublicMethod: ...

Object
__proto__:

basePublicMethod: ...

Figure 1 Two JavaScript classes and one instance.

Since a class instance is indistinguishable from a plain JavaScript object, the imple-
mentation techniques used for accessing plain objects are also those used for accessing class
instances, namely inline caches [14]. We recall in the following paragraph the main principle
of inline caches and hidden classes and we show their limitations when used for implementing
JavaScript class accesses, re-using Serrano & Findler’s presentation [28].

According to the JavaScript specification [12], accessing an object property involves the
following steps:
1. convert the property name into a string S;
2. if the object owns a property S, return its value;
3. if the object has a prototype, restart at step (2) with the prototype object, return

undefined otherwise.
The central point of the property access process is step (2). Since new properties can be
added or removed at any time, checking whether an object owns a property involves looking
up a key (the property name) in a dictionary (the object). Implemented literally, this protocol
is several orders of magnitude slower than those of languages for which reading a structure
field is a single memory read whose address is computed by adding an offset known at compile
time to a base pointer.

The classic method for optimizing accesses to properties consists of associating to each
object a hidden class and to each access a lookup cache [9, 3, 4]. When the property name is
statically known, a very common case, a property access obj.prop can be implemented as
follows in C (we use C to demonstrate such implementations throughout the paper):

1 if (obj->hclass == cache.hclass) {
2 val = obj->elements[cache.index]; // cache hit
3 } else {
4 val = cacheReadMiss(obj, "prop", &cache); // cache miss
5 }

When the execution environment supports dynamic code modification, the hidden class
cache.hclass can be directly encoded as the operand of the assembly instruction implementing
the test at line 1 as well as the offset cache.index of the property at line 2. This is where
the name inline cache comes from.

Objects hidden classes evolve over time. One object’s hidden class changes every time a
property is added or removed. In the following example

1 const o = {};
2 o.x = 34;
3 o.y = 45;
4 delete o.x;

the object o will be successively associated with four different hidden classes: at line 1 with
h0 = {}, at line 2 with h1 = {x → 0}, at line 3 with h2 = {x → 0, y → 1}, and at line 4 with
h3 = {y → 1}.

M. Serrano 24:5

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d

s

Number of classes (N)

hop
v8
jsc

js78

polymorphic class properties

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d

s

Number of classes (N)

hop
v8
jsc

js78

polymorphic class methods

Figure 2 Impact of polymorphism on property accesses and method invocations for V8 (9.4.146),
Jsc (4.0), Js78 (C78.4.0), and hopc (3.6.0-pre1). Horizontal axis is the number of classes involved, aka
the degree of polymorphism. The vertical axis is the execution time. Lower is better. Logarithmic
scale used. Measures collected on Linux 5.14 x86_64, powered by an Intel Xeon W-2245. Each test
and configuration has been executed 30 times and the average is reported.

Method calls are handled by similar but subtly different techniques. Class methods are
stored in instance prototypes rather than in the instances themselves. Thus, for a method
call, it is more efficient to store the method found in the prototype directly in the cache and
to check the object proper only on method cache misses:

1 if (obj->hclass == cache.pclass) {
2 val = CALLN(cache.method, obj, a0, a1, ...); // prototype cache hit
3 } else if (obj->hclass == cache.hclass) {
4 val = CALLN(obj->elements[cache.index], obj, a0, a1, ...); // object cache hit
5 } else {
6 val = cacheMethodMiss(obj, "prop", &cache, a0, a1, ...); // cache miss
7 }

This allows for an efficient method call sequence but requires a complex invalidation
mechanism because when a prototype object is modified, all inline caches currently armed
with that prototype method must be invalidated. This increases the unpredictability of
method invocation performance.

Inline caches efficiently handle monomorphic accesses, i.e., when all the objects used
with one cache share the same hidden class, but they do not efficiently handle polymorphic
accesses that occur when the objects accessed from a specific location have different types.
For that, an enhanced technique named Polymorphic Inline Caches has been proposed [15].
It relies on more elaborate test sequences [20], so do properties that are not directly held by
the objects themselves but by objects in the prototype chain, and properties implemented by
getters and setters.

To measure the effectiveness of polymorphic caches on class implementations, we conducted
an experiment following Serrano & Feeley’s methodology [27]. We consider a 10-class hierarchy
consisting of one base class and 9 subclasses with a maximum inheritance depth of 5. The
first test repeatedly accesses a property of the base class. Each run accesses the property the
same number of times, but the number of classes, N , varies. When N is 1, only one instance
of a single class is used. When N is 2, two instances of two different classes are used. When
N is 3, three instances of three classes are used, etc. The second experiment uses a similar
principle, but adapted to method invocations. The results of these experiments are reported
in Figure 2. We observe that not all systems fall off the cliff at the same time but, sooner or
later, they all fall. Hopc is the first to fall for accessing properties when N equals 2, but it
falls less deeply than the other systems with a slowdown of only 5×. It is followed by V8
when N is 5, then by SpiderMonkey at 7, and eventually JavaScriptCore when N is 9.

ECOOP 2022

24:6 JavaScript Sealed Classes

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d

s

Number of classes (N)

hop
v8
jsc

js78

polymorphic positive type checking

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d

s

Number of classes (N)

hop
v8
jsc

js78

polymorphic negative type checking

Figure 3 Impact of polymorphism on type predicates (instanceof) for V8 (9.4.146), Jsc (4.0),
Js78 (C78.4.0), and hopc (3.6.0-pre1). The figure left-hand-side shows performance when type
tests succeed. The right-hand-side, shows performance when type tests fail. Logarithmic scale
used. Measures collected on Linux 5.14 x86_64, powered by an Intel Xeon W-2245. Each test and
configuration has been executed 30 times.

The tuning of polymorphic inline caches have for sure been settled after careful examination
of pre-class JavaScript programs, but this experiment shows that they are not well adapted
for realistic applications that use class hierarchies to represent complex data structures. For
instance, the hopc compiler represents its JavaScript abstract syntax tree with 52 different
classes, so all the traversals that read properties from the root class would raise cache misses.
Methods or properties accessed via the super keyword have the same limitations because
they use inline cache-based implementations too [14].

The polymorphism also harms type predicates performance. This can be seen in the result
of another experiment conducted with the same methodology, to evaluate the performance
of the instanceof operator (Figure 3). Although less pronounced, we observe a similar
phenomenon as with property accesses and method invocations: the performance degrades
when the level of polymorphism increases.

☛ Because instances of a class and instances of the super class are associated with different
hidden classes, inline caches are not as well suited for implementing property accesses and
type predicates of class-based programs as they are for regular objects.

Implementing property accesses and type predicates efficiently is not the only difficulty
of classes. Efficient instance creation is also a challenge, especially for AoT compilers, due
to the dynamic nature of JavaScript class inheritance hierarchies. When declaring a class,
its super class might not be known at compile time. The super-class position can be any
expression, e.g., a function call or a variable reference. It is not even necessary for the super
class to be another class. For instance, it may be an array or a function. This freedom has
two important consequences. First, the compiler does not necessarily know the function to
be invoked when compiling the super call (that JavaScript requires to appear before the
first use of the this value in a constructor). This makes function inlining difficult. Second,
the compiler does not know the memory size of the allocated instances. This difficulty is
reinforced by instance properties that are not required to be statically declared but that can
be added dynamically anywhere in the program. One proposed technique for dealing with
variable allocation sizes [6] helps but the design of classes makes it complex to implement.
For instance, class constructors are not even required to return the newly allocated objects,
which implies extra tests if the allocation size is to be profiled.

The other difficulties come from the implementation of constructors themselves. A class
is not required to declare a constructor. If it does not and if it inherits from another class,
the constructor of the super class is called silently. In addition to retrieving the constructor
function from the super class object and making the unknown call, a compiler faces a
greater challenge: it does not necessarily know the arity of the super class constructor but,

M. Serrano 24:7

nevertheless, all values that are passed to the constructor of the instance must be transmitted
all the way up the inheritance tree, to the first declared constructor. This requires wrapping
all arguments when invoking such a constructor. This has two negative impacts. First, there
is cost associated with creating and initializing this wrapper. Second, it prevents constructors
from receiving their arguments in registers as ordinary functions do. An alternative solution
could be to use a variable arity calling convention for all constructors but it has the downside
of slowing down all constructor calls.

If this meals were not already enough for the compiler, two other side dishes are also
served. Inside a constructor this can only be used after the super constructor has been
invoked, but a constructor is not required to use this. Resolving statically this so-called
dead zone detection is undecidable, it is therefore not always possible to avoid generating a
dynamic test that penalizes runtime efficiency. Secondly, JavaScript supports new.target
expressions, which, inside constructors, return the classes used to create the instances. If
the runtime system does not provide a way to traverse the stack for inspection purposes,
new.target is required to be passed as an extra argument to the constructor.

☛ The lack of static inheritance trees, the possibility of adding new properties inside or
outside constructors, and the freedom to declare (or not) the constructor, make the efficient
allocation and initialization of object instances challenging, especially for AoT compilers.

Facing all these difficulties, a first attempt to trade some of the flexibility of classes for
faster execution, called strong mode, has been proposed by the V8 development team. It is
described in the following section.

2.2 JavaScript Strong Mode

The now defunct strong mode project from Google [23] had the dual goals to enforce static
guarantees and to speed up execution. Strong mode defined a subset of JavaScript in order
to forbid patterns that typically defeat compilers or that yield unpredictable performance.
For instance, in strong mode, all variables had to be declared, functions have to be invoked
with a number of arguments compatible with the actual number of parameters declared, and
elements can not be removed from arrays.

Some restrictions were specifically designed to improve class implementation: properties
could not be deleted, literal objects could not have duplicate properties, class instances
were sealed after the constructor, class declarations were immutable bindings, and class
constructors had to return the created object. Eventually, Google abandoned strong mode
for various reasons [24]. Some of them were related to classes.

“Locking down classes: This was our biggest hope and the biggest failure”. For the sake
of interoperability, strong mode classes were allowed to inherit from regular classes and
vice versa. The team was unable to find a semantics that would work consistently and
harmoniously with class inheritance and they eventually decided to give up on locking
classes.
“ECMAScript6 classes lack property declarations”. Lacking property declarations made
locking classes semantics complex because the set of properties could not be determined
at creation time.
“ES6 performance s***!”. At that time, ECMAScript6 implementations were not yet
delivering good enough performance when compared to previous JavaScript versions.
Since strong mode required ECMAScript6, using strong mode resulted in a significant
slowdown that was not compensated by the advantages of strong mode.
“Implementation complexity”. Since strong mode changes encompassed almost the entire
language, its implementation was large and complex.

ECOOP 2022

24:8 JavaScript Sealed Classes

Since the strong mode proposal, JavaScript has evolved in several dimensions that allow
us to reconsider class locking. Firstly, the class declaration itself has evolved. Optional
instance properties in classes are now possible. They can even be made private, which implies
that only the methods of that class itself can access them. Secondly, the language now
supports modules so that it is possible to export immutable bindings, such as classes and
functions.

Inspired by the strong mode endeavor and taking advantage of the latest JavaScript
developments, we have designed sealed classes. Their design shares several constraints and
restrictions with strong but relaxes others to support a gradual adoption and a smoother
blending with regular classes. Thus, we believe that they can support the performance and
reliability of strong mode classes while retaining most of the flexibility of regular classes.
Sealed classes are presented in the next section.

3 Sealed Classes

Sealed classes are classes that are deprived of a minimal set of freedoms which, while retaining
most of their flexibility, allows AoT JavaScript compilers to implement them using faster
and more predictable techniques, much like class-based languages such as Smalltalk, Java, or
C++. Sealed classes are syntactically similar to ordinary classes, except that their declaration
is prefixed by the annotation “// @sealed”. They are even so syntactically similar to classes
that most class examples, including MDN examples, can be adapted by merely inserting
the annotation on the lines preceding their declarations. All the examples of Section 2, for
instance, are valid sealed classes.

Sealed classes are carefully designed so that they can be adopted gradually by programmers.
For that, they are compatible with the rest of the language. They can be mixed with other
data structures, including regular classes, they can be exported and imported from modules,
and regular classes can inherit from sealed classes.

☛ Sealed classes have an “erasure dynamic semantics”. Ignoring the annotations of
sealed classes does not change the semantics of correct programs. In consequence, any current
JavaScript engine can execute correct programs using sealed classes.

This is a central argument for adoption. This is also the reason why this paper does not
include a formal semantics. The dynamic semantics of sealed classes are those of normal
JavaScript classes.

Sealed classes are designed based on the observations and the results of experience
presented in Section 2.1. They aim to correct the main slowness of regular classes by allowing
AoT compilers to:

use faster and more predictable techniques for implementing instance property access
and method invocation in presence of polymorphism;
use faster and more predictable type predicates;
use faster class constructors.

Sealed classes are characterized by a set of constraints that, taken together, allow for
improvements in those three dimensions. We will refer to each constraint individually
when presenting their implementation, using the symbol ✩ to designate constraints that are
enforced statically by the compiler, and ✪ those that require compile-time and run-time
enforcements.

The key change is to allow the compiler to compute an accurate memory map of each
instance, including the memory size and the offsets at which properties are stored. This
is only possible if the compiler knows the whole class hierarchy. This requires that sealed

M. Serrano 24:9

classes inherit only from other sealed classes and that the superclass hierarchy is known
at compile-time. A static class hierarchy is sufficient to allow the compiler to set offsets
for all properties declared in the class but it is insufficient to handle dynamically added
properties on a per-instance basis, either in constructors or in the rest of the program. If this
were allowed, properties declared in the class and those added dynamically would perform
differently, resulting in unpredictable performance for non-expert programmers. Since sealed
classes are intended to improve performance and predictability, we decided not to allow
dynamic property (addition or removal) in sealed class instances. With this constraint, a
compiler knows where all properties are stored, it can optimize their accesses, and it can
raise an error if an undeclared property is accessed.

✩ C1 A sealed class inherits from another sealed class or from the value null.
✪ C2 Sealed class instances are not extensible; their properties have to be declared in the

class; their properties cannot be removed.

C1 is compatible with separate compilation because the new JavaScript modules allow
the compiler to know the list of imported bindings. C1 does not prevent sealed classes from
being declared and used in eval code because by the time a sealed class is to be evaluated,
its super class already exists. In contrast, C1 prevents an evaluated sealed class from being
used as the super class of a compiled sealed class.

C2 is enforced statically by the compiler when it can track the type of an object and
when it knows it is a sealed class instance. It is also enforced dynamically when either the
types are unknown or when dynamic property names are used. For instance, in an expression
such as “o[expr]”, since expr is unknown at compile-time, a dynamic check is needed to
verify that if o is a direct instance of a sealed class, the value of expr is a property of o.

Like sealed instances, prototypes of sealed classes are immutable and non-extensible.
This is for two reasons. First, if they were extensible, the compiler could not raise errors
when accessing properties that are not in the object, because the properties might be in the
prototype chain. Second, if they were mutable, method invocations could not be statically
resolved and would require techniques similar to inline caches, leading to unpredictability as
presented in Section 2.1.

✪ C3 Sealed class prototypes are not extensible and they are immutable.

C3 requires the same runtime support as C2.
In JavaScript, a class can be introduced in an expression or in a declaration. The

constraint C1 would prevent a sealed class expression from being the super class of another
sealed class, which we believe makes sealed class expressions of little use. Therefore, for
simplicity and consistency, sealed class expressions are not allowed.

✩ C4 Sealed classes can only be used in declarations and they are immutable.

C1 and C2 allow the compiler to efficiently compile property accesses when it knows that
the type of the object is a sealed class, but the flexibility of plain classes makes it difficult
for an AoT compiler to infer exact types. To improve the accuracy of static type analysis,
two constraints are added, without which the compiler would have very little opportunity to
optimize sealed class property accesses.

✩ C5 The constructors of sealed classes must return the freshly created instance or void.
✪ C6 The methods of sealed classes can only be used on instances of that class or its derived

classes.

ECOOP 2022

24:10 JavaScript Sealed Classes

C5 guarantees that the type of a “new SC ()” is an instance of SC , if SC is a sealed class. Note
that this property does not hold if SC is a regular class. C5 allows instances to be explicitly
returned by the constructor for compatibility with existing code that uses JavaScript classes.
C6 guarantees that inside a method of a sealed class, the type of this is the sealed class.
Note that this constraint does not apply to regular classes. In theory, C6 requires type
checks on the input of each method. In Section 4 we present an implementation technique
that, in practice, almost completely removes them.

In the next section we discuss the implementation of sealed classes and we show how
the 6 constraints that characterize them allow a compiler to exploit more efficient and more
predictable techniques inspired by those of class-based programming languages. The overall
performance benefit of these constraints is studied in Section 5.

4 Implementation

This section presents the main aspects of the implementation of sealed classes in the hopc AoT
compiler. It shows how property access and type checking are implemented without inline
caches by adapting techniques from class-based languages. It starts with the implementation
of methods, and it ends with the creation of instances.

4.1 Object Representation & Properties
The constraints ✩ C1 , ✪ C2 , and ✪ C3 allow the compiler to build complete maps of
sealed class instances. Thus, for a property access “obj.prop”, if the compiler knows that obj
is a sealed class instance, it knows where prop is stored in obj and it no longer needs inline
caches or guards, with a double benefit: dynamic checks are removed, and performance no
longer depends on the degree of polymorphism (see Figure 2). When obj is known to be a
sealed class instance, “obj.prop” is compiled as “*(obj+k)”, where k is a constant known at
compile time. ✪ C5 and ✪ C6 improve the precision of the type analysis. The first one
gives the compiler the opportunity to track newly created sealed instances. The second one
gives precise types to “this” in the methods of sealed classes.

Despite its apparent simplicity, this compilation scheme has subtle implications for the
representation of objects. Indeed, since sealed class instances must be compatible with
the rest of the runtime system, the representation of their properties must be compatible
with those of regular objects, and thus with inline caches. In the remainder of this section
we present the modifications applied to hopc for this purpose. First, we recall how hopc
represented objects and implemented property accesses before this work [26].

Hopc uses a dual representation for objects. They are created with pre-allocated inlined
properties. If, later, a new property is to be added, a new vector, large enough to contain
the previously inlined properties and the new one, is allocated and the object representation
switches from inlined to extended. The memory space previously used for the inlined
properties is left unused. Figure 4 shows these two states of an object.

For each object constructor, the compiler estimates the size of the objects it creates.
When an object is extended, this estimated value is incremented and the next time the
constructor creates an object, it will create it larger [6]. This technique minimizes the waste
of memory chunks because it reduces the number of times an object is represented as an
extended object. It also maximizes the number of inlined property accesses.

Inline access is implemented as “*(obj+cacheindex)”, which is similar to accessing a
sealed class instance property. As extended properties use one extra level of indirection
their implementation requires an extra memory read: “obj->elements[cacheindex]”. In both

M. Serrano 24:11

JsObject

__proto__:

cmap:

elements:

JsProperties

length: 2

0:

1:

obj

o
ff
s
e
t

(a) inlined object.

JsObject

__proto__:

cmap:

elements:

obj

JsProperties

length: 3

0:

1:

2:

(b) extended object.

Figure 4 The two states of an object, inlined (4a) or extended (4b).

cases, the index where the property resides has to be discovered first. This is the purpose
of hidden classes and inline caches presented in Section 2.1. In order to take advantage of
inlined properties, hopc distinguishes them when checking inline caches:

1 if (obj->hclass == cache.iclass) {
2 val = *(obj+cache.index); // inline property
3 } else if (obj->hclass == cache.hclass) {
4 val = obj->elements[cache.index]; // extended property
5 } else {
6 val = cacheReadMiss(obj, "prop", &cache); // cache miss
7 }

Hopc uses an encoding that makes inlined objects compatible with extended objects.
When an object is inlined, its internal pointer elements points to the inlined chunk. When an
object is extended, this pointer is updated to point to the newly allocated chunk of memory.
Using a compatible representation for inlined and extended properties minimizes polymorphic
inline caches, because when both encodings are used in the same location, the inline cache
can be set to the extended object’s hidden class, which also works for inline properties, and
no cache misses will occur.

The previous inline cache sequence efficiently handles monomorphic accesses, i.e., when
all objects used at that source location share the same hidden class or when hidden classes
distinguish between inline or extended properties, but it does not efficiently handle poly-
morphic accesses that occur when the objects accessed from a specific location have different
types. As described in a previous study [27], to cope with polymorphism, hopc uses a long
code sequence of successive tests inspired by earlier work [15]:

1 if (obj->hclass == cache.iclass) {
2 val = *(obj+cache.index); // inline property
3 } else if (obj->hclass == cache.hclass) {
4 val = obj->elements[cache.index]; // extended property
5 } else if (obj->hclass == cache.aclass) {
6 val = obj->elements[cache.index](obj); // accessor property
7 } else if (obj->hclass == cache.pclass) {
8 val = cache->owner->elements[cache.index]; // prototype property
9 } else if (cache.vindex < obj->hclass->vtableLen) {

10 val = obj->elements[obj->hclass->vtable(cache.vindex)]; // polymorphic access
11 } else {
12 val = cacheReadMiss(obj, "prop", &cache); // cache miss
13 }

Unfortunately this implementation of inline caches is inefficient for class-based object-
oriented programming, because instances of a class and instances of a super class are associated
with different hidden classes (see Section 2.1). Therefore, when accessing a property from a
method of the super class, the slow path on line 10 is used. This is a major problem suffered
by JavaScript classes, which is solved when the compiler knows that obj is a sealed class
instance, because in that case the access to the property is a mere memory access without

ECOOP 2022

24:12 JavaScript Sealed Classes

 0.1

 1

 10

 100

 1000

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d

s

Number of classes (N)

hop
v8
jsc

js78
hop.sealed

polymorphic class properties

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d

s

Number of classes (N)

hop
v8
jsc

js78
hop.sealed

polymorphic class methods

Figure 5 Impact of polymorphism on property accesses and method invocations for V8 (9.4.146),
Jsc (4.0), Js78 (C78.4.0), hopc (3.6.0-pre1), and hopc.sealed. Horizontal axis is the number of classes
involved, aka the degree of polymorphism. The vertical axis is the execution time. Lower is better.
Logarithmic scale used. Measures collected on Linux 5.14 x86_64, powered by an Intel Xeon W-2245.
Each test and configuration has been executed 30 times.

JsObject

__proto__:

cmap:

elements:

JsProperties

length: 2

0:

1:

obj

o
ff
s
e
t JsProperties

length: 0

(a) inlined object.

obj

JsProperties

length: 1

2:

JsObject

__proto__:

cmap:

elements:

JsProperties

length: 2

0:

1:

(b) extended object.

Figure 6 The revised two states of an object, inlined (6a) or external (6b). Direct instances of
sealed classes are always represented as inlined objects (6a). Other JavaScript objects, including
instances of regular classes, whether their class inherits from a sealed or regular class, are represented
as extended objects (6b).

any prior testing. This is the most substantial benefit of sealed classes; see the measurements
in Figure 5. Sealed classes allow hopc to outperform all the other systems and allows hopc
execution time to be independent of the degree of polymorphism. Note, however, that this
experiment considers the best possible situation where the compiler can infer all types of all
objects accessed and can then optimize all property accesses. In practice, the benefit for real
programs is smaller because only a fragment a property accesses are optimized and inline
caches must still be used in the majority of property accesses (see Section 5).

Despite the similarities with normal objects, sealed classes required an important change
for supporting subclassing by regular classes. Class instances whose super class is a sealed
class must have their properties that belong to the sealed class inlined because they need
to be compatible with a sealed class representation and they also need to be extendable in
order to behave as regular JavaScript objects. None of the representations of Figure 4 are
compatible with this constraint. This forced us to change the hopc object implementation.

With the new encoding, objects retain their inline properties throughout their lifetime,
and when they are extended, the newly allocated chunks of memory contain only additional
properties (see Figure 6). This change has pros and cons. On the positive side, it reduces
memory allocation and increases inlined accesses. On the negative side, it potentially increases
polymorphic accesses. With the representation of Figure 4, an inlined object can be treated
as an extended object because in both cases, elements correctly points to the property array.
Then, at an access point, if both inlined and extended objects are used, the inline cache ends
up being armed with the extended schema and all accesses are treated the same. With the

M. Serrano 24:13

 0

 20

 40

 60

 80

 100

bo
ye

r-s
cm

ea
rle

y-
sc

m
le
va

l

m
az

e

m
in

im
ist rh

o
ba

sic
uu

id
z8

0

m
in

im
at

ch
jp

eg

js-
of

-o
ca

m
l

m
ar

ke
d

%
 o

f
in

lin
e
d

 p
ro

p
e
rt

y
 a

cc
e
ss

e
s

hop.icfp21 hop.sealed

ICFP21 benchmark suite, Inline Accesses

Figure 7 Percentage of inlined accesses for unmodified and modified hopc versions. Higher is
better. Linear scale used.

root0

< 1, 23 >

point1

< 2, 4 >

point2d2

< 3, 3 >

point3d3

pointC4

. . .

< 5, 23 >

Figure 8 Cohen class numbering for single inheritance type checking.

new encoding, the inlined and extended representations are incompatible and if both are
used at the same access point, they are considered as two different hidden classes, meaning
it would be handled as a polymorphic access.

To measure the impact of this change, we compared the number of accesses using fast
inlined property accesses for the unmodified and modified hopc versions. This experiment
reuses the benchmark suite of our earlier artifact [26]. The results are presented in Figure 7.
We observe that the new implementation has a marginal impact on program behaviors. The
most significant impact is observed for the marked test since the new version seems to use
about 40% fewer inlined properties. On a closer examination, it appears that the better
behavior of the former hopc version is due to a different heuristic for allocating objects. The
old version allocated them with provisional empty slots. The new version allocates them
truly empty. Apart from this difference both versions behave similarly and do not show any
significant performance difference.

4.2 Type Checking
Two main techniques for implementing type checking of class-based single inheritance prevail:
Cohen numbering [7] and using an inheritance vector. Cohen’s numbering is based on the
observation that the entire class hierarchy forms a tree. The classes that are the nodes of
this tree are numbered in a depth-first traversal and each class stores the class numbers of its
left-most and right-most direct children (see Figure 8). To check that an instance i belongs
to class C is done by checking that the class number of i is in the Cohen range [Cmin..Cmax]:

ECOOP 2022

24:14 JavaScript Sealed Classes

int isa(obj_t obj, class_t class) {
int i = obj->class->number;
return (i >= class->subclass_min) && (i <= class->subclass_max);

}

This is fast (but not as fast as the simple pointers comparison of the hidden class test) but
this technique is not well suited to systems where classes are added dynamically because
each addition requires renumbering the entire class hierarchy. As hopc compiles modules
separately and supports dynamic loading of modules Cohen numbering is not well suited.

The second classical technique to implement type checking is to provide each class with
a vector of its ancestors. Verifying that an instance i belongs to the class C is done by
comparing the value of the ancestors vector at the index corresponding to the depth of C
and C itself. Here is a possible implementation:

int isa(obj_t obj, class_t class) {
class_t oclass = obj->class;
return (oclass->depth <= class->depth) && (class->ancestor[class->depth] == class);

}

This involves five memory accesses and two integer comparisons but the dynamic addition
of a class does not require any slow operation. Moreover, when the compiler statically knows
the class being checked, it can compute its depth, i.e., its number of ancestors, and use a
faster variant:

int isa_depth(obj_t obj, class_t class, int depth) {
class_t oclass = obj->class;
return (oclass->depth <= class->depth) && (class->ancestor[depth] == class);

}

We use a slighty improvement of this technique by removing the range check and by
removing one memory access. This required another change to the hopc object representation.
Instances no longer contain a pointer to their class but rather its index. A global vector
(CLASSES) contains all classes and their ancestors. In the vector CLASSES, the index of a class
C, which we notate as Ci contains its highest super class, i.e., the root of the class hierarchy.
The direct super class of C is stored at index Ci − 1. Considering the class hierarchy of
Figure 8 where the depth of point2d is 2 (it has two ancestors), if point2di = 3, then CLASSES
looks like:

root root point root point point2droot point point2d point3d

0 1 2 3 4 5 6 7 8 9

point2d inheritance

Checking if an instance o belongs to a class C is done with:
int isa(obj_t obj, class_t class) {

int index = obj->class_index;
return CLASSES[index + class->depth] == class;

}

This involves 4 memory accesses (as CLASSES is a global variable, accessing it requires a
memory access).

Let us suppose that we check an instance of class I against a class C. If depth(C) ≤
depth(I) then comparing the value of CLASSES[Ii + depth(C)] and C implements the type
check. If depth(C) > depth(I) accessing CLASSES will erroneously access the ancestor list of
another class stored after I. However, since depth(I) > 0 the class that will be erroneously
accessed is at an index smaller than depth(C). Hence, it cannot be C because C is always

M. Serrano 24:15

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d

s

Number of classes (N)

hop
v8
jsc

js78
hop.sealed

polymorphic positive type checking

 0.1

 1

 10

 100

 1 2 3 4 5 6 7 8 9 10

E
xe

cu
ti

o
n
 t

im
e
 i
n
 s

e
co

n
d

s

Number of classes (N)

hop
v8
jsc

js78
hop.sealed

polymorphic negative type checking

Figure 9 Impact of polymorphism on type predicates (instanceof) for V8 (9.4.146), Jsc (4.0),
Js78 (C78.4.0), and hopc (3.6.0-pre1). The figure left-hand-side shows values when type tests succeed,
the right-hand-side, when they fail. Logarithmic scale used. Measures collected on Linux 5.14
x86_64, powered by an Intel Xeon W-2245. Each test and configuration has been executed 30 times.

stored at Ji + depth(C) in CLASSES. Thus, boundary checks can be avoided if enough spare
space is reserved at the end of CLASSES (this space size is the biggest inheritance depth).
Finally, assuming that class->depth is statically known, the predicate is simplified as follows:

int isa_depth(obj_t obj, class_t class, int depth) {
int index = obj->class_index;
return CLASSES[index + depth] == class;

}

This routine replaces the default implementation of instanceof on a type check cache miss.
It greatly minimizes the negative impact of polymorphism on type checking as shown in
Figure 9.

4.3 Methods
Constraint ✪ C6 requires that sealed methods be passed only instances of this class. To do
this, hopc inserts dynamic checks at the beginning of each method that are compiled as:

class C {
M(a0, a1, ...) {

if (this instanceof C) {
if (!isProxy(this)) {

return Munsafe(a0, a1, ...);
} else {

...this:Proxy, body optimized for size ...
}

} else {
...raise an error...

}
}
Munsafe(a0, a1, ...) { ...this:C, body optimized for speed ... }

}

Inside Munsafe the compiler knows that this is an instance of C so it optimizes property
accesses, as we have already seen, but intuitively wrapping M also has the potential downside
of requiring additional dynamic checks and extra function calls. This seldom happens.

Consider the expression “obj.M(e0, e1, ...)”. If the static type of obj is a sealed
class, then the compiler rewrites the expression to “obj.Munsafe(e0, e1, ...)”. Otherwise, it
generates an inline cache sequence, for which the routine dealing with the cache miss will
check whether obj is a sealed class. If it is, it will fill the cache with Munsafe. If it is not, it
will fill it with M, which will eventually check if it is a proxy, for which it will use a slow but
compact implementation. Otherwise, it will raise an error and performance will not matter
anymore. Holze et al. [15] first proposed this technique.

ECOOP 2022

24:16 JavaScript Sealed Classes

Constraint ✪ C3 allows the compiler to compile expressions “obj.Munsafe(e0, e1, ...)”
without inline caches. Since prototype objects of sealed classes are immutable, the compiler
statically knows all the methods of the sealed classes and groups them in a static vector. The
vector of methods of a sealed class C1 that inherits from another class C0 is the concatenation
of the C0’s inherited methods patched with overloaded methods and C′

1s newly introduced
methods. The hidden classes of sealed instances point to this vector. In pseudo C code, a
sealed method invocation is then compiled as follows:

obj->hclass.methods[INDEX](obj, a0, a1, ...)

Finally a call “super.M(e0, e1, ...)” inside a class C is implemented even more
efficiently. Constraints ✪ C2 , ✪ C3 , and ✪ C6 allow the compiler to generate a direct call
to the method Munsafe of C’s super class which, thanks to constraint ✩ C1 , is statically
known. Thus a call to a super method is either inlined or compiled as a direct jump.

4.4 Instance Creation
Sealed classes constraints drastically simplify instance creation. ✩ C4 allows the compiler
to know which sealed class is involved in an allocation “new E(...)”. ✩ C1 and ✪ C2 allow
the compiler to know the memory size of the instances to allocate at compile time. ✩ C1

allows the compiler to know the whole chain of super constructors to call when allocating an
object. ✪ C2 allows the compiler to know the hidden class to associate with sealed instances,
which is required for inline cache compatibility. Let us consider the following class hierarchy:

1 // @sealed
2 class baseclass {
3 a0;
4 constructor(a0) {
5 this.a0 = 0;
6 }
7 }
8 // @sealed
9 class subclass1 extends baseclass {

10 a1;
11 }
12 // @sealed
13 class subclass2 extends subclass1 {
14 a2;
15 constructor(a0, a1, a2) {
16 super(a0);
17 this.a1 = a1;
18 this.a2 = a2;
19 }
20 }
21 new subclass2(0, 1, 2);

At line 21, the compiler knows that subclass2 instances have 3 properties and it knows the
hidden class to which instances are associated, as well as their prototype. Thus, the object
allocation is as follows (see Figure 6 for an explanation of the various fields):

1 JsObject *this = (subclass2)GC_malloc(sizeof(JsObject) + 3 * sizeof(JsObject *));
2

3 this->__proto__ = subclass2_PROTOTYPE; // initialize the instance prototype object
4 this->cmap = subclass2_HIDDENCLASS; // initialize the instance hidden class
5 this->elements = 0L; // no extended property
6 this->length = 3; // 3 inlined properties
7 subclass2_CTOR(this, 0, 1, 2); // invoke the constructor

The subclass2 constructor is compiled into:

M. Serrano 24:17

1 void subclass2_CTOR(subclass2 *this, JsObject *a0, JsObject *a1, JsObject *a2) {
2 {
3 subclass1 *super = (subclass1 *)this; // inlining of the baseclass constructor
4 *(&(super->inline0) + 0 * sizeof(JsObject *)) = a0; // set property this.a0
5 }
6 *(&(this->inline0) + 1 * sizeof(JsObject *)) = a1; // set property this.a1
7 *(&(this->inline0) + 2 * sizeof(JsObject *)) = a2; // set property this.a2
8 }

In this example, since there is no constructor declared in subclass1 and the constructor of
baseclass is short and simple, it is inlined in the constructor of the subclasses (line 2). The
compiler knows that it is not necessary to provide a data structure for new.target because
no constructor of this class hierarchy uses it. Except for the initialization of the fields specific
to JavaScript for the prototype object and the hidden class, this implementation of object
allocation is similar to those of static languages.

4.5 Final Consideration
In this section we have detailed the changes made to the hopc AoT compiler to support
sealed classes. These changes were necessary to enforce the constraints given in Section 3
and they all contribute to improve performance. While some changes are subtle and require
fine tuning, such as the new implementation of type checking (Section 4.2), the overall size
of the changes is minimal. It took less than 1,000 lines in the compiler implementation and a
few hundred lines in the runtime system.

5 Sealed Class Performance Evaluation

This section contains the performance evaluation and analysis. First, it presents the bench-
marks used. Next, it presents a comparison of the performance of sealed versus regular
classes. Finally, it analyzes the reason for the performance differences.

5.1 Benchmarks
JavaScript classes were introduced in ECMAScript 6. Although they are more than 5 years
old, they are hardly used in standard JavaScript benchmarks. Only three JetStream2 tests
use them: basices2015, flightplanner, and unipoker (that we modified to use only ascii strings).
We used them and other tests from different sources. First, we have created class-based
versions of Octane DeltaBlue and Richards. This task was straightforward because both
of these programs were originally class-based Smalltalk programs, which were translated
into JavaScript by introducing prototypes to simulate class declarations and inheritance.
We merely performed the reverse translation by restoring classes. When possible we used
private fields instead of public fields to implement class instance properties. Similarly, we
adapted the maze test used to evaluate hopc performance in a previous publication [26].
We used the two benchmarks from the StrongType study [22] that use classes (crypto-class
and raytrace-class). To complete the test suite, we have ported to JavaScript the Python
benchmarks of the PyPerformance test suite that use classes [29]. The similarities between
the two languages allowed us to use a straightforward line-by-line translation. Two programs
required extra attention. First, the bm_hexiom.py test uses the __getitem__ so-called magic
method to expose the values of internal instance properties. We have produced two versions
of this test. The first one, hexiom where the accesses via __getitem__ have been replaced
with accesses to an array of values and the second one, hexiom-proxy, where __getitem__
is implemented using JavaScript proxy objects. This is the only test that uses JavaScript

ECOOP 2022

24:18 JavaScript Sealed Classes

 0

 0.5

 1

 1.5

 2

ba
sic

ch
ao

s

cr
yp

to
-c

la
ss

de
lta

bl
ue

-c
la
ss

fli
gh

tp
la
nn

er go

he
xi
om

he
xi
om

-p
ro

xy

m
az

e-
cl
as

s

py
fla

te

ra
yt

ra
ce

-c
la
ss

ric
ha

rd
s-
cl
as

s

un
ip

ok
er

*

hop hop.sealed nodejs

0
.9

5

0
.6

7

0
.9

8

0
.5

5 0
.7

4 0
.8

9

0
.8

5 0
.9

6

0
.9

5

0
.9

7

0
.7

2

0
.4

4

0
.8

7

Record benchmark suite

Figure 10 Sealed classes performance and V8 (9.4.146) class performance relative to Hop (3.6.0-
pre1) classes performance. Lower is better. Linear scale used. Measures collected on Linux 5.14
x86_64, powered by an Intel Xeon W-2245. Each test and configuration has been executed 30 times.

proxies. The second test that required attention is bm_pyflate.py. This program uses 64bit
bitwise operations which are not supported by JavaScript. We have implemented these
operations using the recent JavaScript BigInt arithmetic.

5.2 Sealed Classes Performance
Figure 10 presents the overall performance evaluation. It reports the score of the unmodified
hopc compiler, the score of the version supporting sealed classes (hop.sealed), and, for a
neutral comparison, the performance of V8.1. We use this mainstream JIT compiler to
show that on this set of benchmarks, hopc delivers a competitive performance and that the
results we report in this experiment are realistic. To minimize the penalty imposed by JIT
compilation we have calibrated the executions so that they last between 5 and 10 seconds.

Figure 10 shows that sealed classes are beneficial to almost all tests. The speedup can even
go as high as 56% for the richards-class test. As presented in Section 4.3, the method bodies
of sealed class are compiled twice: a speed-optimized version when this is an instance of the
sealed class, and a code-size-optimized version when this is a proxy object. Despite this code
duplication, Figure 11 shows that the speedup is not counterbalanced by a significant increase
in code size. Indeed, the speed-optimized version is more compact than the implementation
based on inline caches, and the difference between the two sizes is approximately the size of
the compact version generated for proxy objects.

Simplifying the inline cache sequence reduces code size and accelerates execution because,
by removing tests, it reduces the number of executed instructions and it minimizes the
pressure on the processor’s branch predictor, as we will see when studying the go test below.
Figure 12 shows the percentage of simplified inline caches. Note that unipoker mostly uses
arrays with so few object accesses that the measure is not relevant for that test.

1 We observed that V8 executes faster if class properties are all replaced with instance properties added in
the constructors. However, as these are an essential component of sealed classes and an official addition
to JavaScript we have kept them for our evaluation.

M. Serrano 24:19

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

ba
sic

ch
ao

s

cr
yp

to
-c

la
ss

de
lta

bl
ue

-c
la
ss

fli
gh

tp
la
nn

er go

he
xi
om

he
xi
om

-p
ro

xy

m
az

e-
cl
as

s

py
fla

te

ra
yt

ra
ce

-c
la
ss

ric
ha

rd
s-
cl
as

s

un
ip

ok
er

*

hop.sealed/hop

1.13 1.11

1.24

1.00 1.03

1.13 1.15

0.98
0.89

1.12

0.93
0.87

Record benchmark suite, object file sizes

Figure 11 Sealed classes code sizes relative to Hop classes code sizes. Lower is better. Linear
scale used.

 0

 0.2

 0.4

 0.6

 0.8

 1

ba
sic

ch
ao

s

cr
yp

to
-c

la
ss

de
lta

bl
ue

-c
la
ss

fli
gh

tp
la
nn

er go

he
xi
om

he
xi
om

-p
ro

xy

m
az

e-
cl
as

s

py
fla

te

ra
yt

ra
ce

-c
la
ss

ric
ha

rd
s-
cl
as

s

un
ip

ok
er

*

hop.sealed/hop

0.72

0.16

0.31

0.20

0.09

0.43

0.31

0.58

0.88

0.48

0.33

0.24

0.00

Record benchmark suite, inline caches

Figure 12 Sealed classes number of inline caches relative to Hop classes inline caches. Lower is
better. Linear scale used.

 0

 0.2

 0.4

 0.6

 0.8

 1

ba
sic

ch
ao

s

cr
yp

to
-c

la
ss

de
lta

bl
ue

-c
la
ss

fli
gh

tp
la
nn

er go

he
xi
om

he
xi
om

-p
ro

xy

m
az

e-
cl
as

s

py
fla

te

ra
yt

ra
ce

-c
la
ss

ric
ha

rd
s-
cl
as

s

un
ip

ok
er

*

hop.sealed/hop

0.97

0.67

0.96

0.58

0.75

0.90
0.87

0.96
0.89

0.99

0.79

0.53

0.87

Record benchmark suite, executed instructions

Figure 13 Comparison the number of executed instructions for classes and sealed classes. Lower
is better. Linear scale used.

ECOOP 2022

24:20 JavaScript Sealed Classes

hop execution times (in ms)

564.5 (24%) GC_mark_from
230.1 (15%) GC_add_to_black_list_normal
93.5 (10%) hashtable-get
59.8 (08%) &@%kwhile1286
50.4 (07%) GC_header_cache_miss
6.0 (02%) GC_mark_local
2.5 (02%) GC_malloc_kind
2.2 (02%) &eqtest
2.0 (01%) js-map-get
1.6 (01%) hashtable-contains?

hop.sealed times (in ms)

447.3 (21%) GC_mark_from
175.6 (13%) GC_add_to_black_list_normal
120.8 (11%) hashtable-get
92.2 (10%) &@%kwhile1511
35.8 (06%) GC_header_cache_miss
4.2 (02%) GC_malloc_kind
4.2 (02%) GC_mark_local
3.7 (02%) js-map-get
3.6 (02%) &eqtest
2.3 (02%) hashtable-contains?

Figure 14 Profiling information for the basic-es2015 benchmark. Functions are reported along
with the cumulative time spent executing them and the percentage of the overall execution they are
responsible for. The left hand-side is the class-based hop version. The right hand-side is the modified
version supporting sealed classes. The profiling values are gathered with the Linux perf tool.

Unexpectedly, we observe that there is no direct correlation between the static number of
inline cache simplifications and the performance improvement. For instance, the pyflate test
does not benefit from any significant speedup when using sealed classes, even though half of
inline caches were replaced by direct property accesses without testing. Using the Linux perf
tool [13] we measured the impact of removing the type checks of inline caches type on the
number of executed instructions. This is reported in Figure 13. Again, we do not observe
a strong relationship between the simplification of the generated code and the number of
instructions actually executed by the processor. More generally, while all measurements
(Figures 10-13) confirm the speedup of sealed classes, we cannot establish a systematic
correspondence between the measured runtime reduction and the other experiments. Thus,
in the following sections we conduct an in-depth analysis of some tests.

5.3 Basic.js
Basic is part of the JetStream2 suite. It implements an interpreter for the Basic ECMAScript-
2015 programming language. Sealed classes do not improve basic speed. The performance
difference between the two versions is below the precision of the observation. The code size is
only reduced by 3% and although the number of inline caches needed to compile the program
is reduced by 28%, the sealed class version does not execute fewer machine instructions than
the class version.

Figure 14 shows an excerpt of the Linux perf profiling of the two basic versions. The
numbers are the milliseconds spent in each function and the percentage of the overall
execution time this corresponds to. Functions prefixed with ‘&’ are compiled JavaScript
functions. The other functions are part of the hopc runtime system. The two compilation
modes do not use the very same naming conventions for class and sealed class methods but
the correspondence is fairly straightforward.

The execution time is mostly dominated by the garbage collector and by the implementa-
tion of JavaScript maps. The only client function that plays a significant role in the execution
is the function named &@kwhile1560, as shown in the profiling report.

The test exercises JavaScript generators extensively because all the nodes of the abstract
syntax tree representing the Basic source programs are encoded as generators. On an x86_64
platform, the completion of the test allocates about 6.8GB. About half of the allocated
objects are arrays and the other half are generators. These allocations are unrelated to
classes or sealed classes or field accesses. For instance, the hopc memory profiler reports that
23% of the overall allocations of arrays are used to prepare a function using the apply form.

M. Serrano 24:21

hop execution times (in ms)

1029.8 (32%) GC_mark_from
442.3 (21%) GC_add_to_black_list_normal
90.4 (10%) GC_header_cache_miss
30.5 (06%) GC_malloc_kind
13.9 (04%) &Spline.__call__
8.8 (03%) GC_mark_local
2.7 (02%) &GVector.linear_combination
1.5 (01%) GC_find_header
1.3 (01%) GC_allochblk_nth
0.8 (01%) &@GVector%CTOR

hop.sealed times (in ms)

1103.6 (33%) GC_mark_from
492.4 (22%) GC_add_to_black_list_normal
101.6 (10%) GC_header_cache_miss
25.1 (05%) &__call__%%R@Spline
24.4 (05%) GC_malloc_kind
11.2 (03%) GC_mark_local
1.7 (01%) GC_find_header
1.5 (01%) GC_allochblk_nth
1.0 (01%) &#transform_point@Chaosgame
0.7 (01%) __pthread_mutex_trylock

Figure 15 Profiling information for the chaos benchmark.

The hopc compiler compiles generators and yield expressions using a CPS transformation.
The &@kwhile1560 function, which is by itself, responsible for 10% of the execution, is the
compilation of a generator while loop. This is a regular function, not a class method, so the
introduction of sealed classes does not impact its compilation. This explains why the main
impact of sealed classes on basic is the code size reduction more than the execution speed.

A similar situation occurs for the go benchmark. Although the original Python version
uses classes, there is no polymorphism involved and in the class JavaScript version, 99%
of the accesses are optimally handled by inline caches. The sealed class version removes a
significant number of these inline caches but if this reduces the size of the generated code, it
does not accelerate the execution that significantly because the processor branch predictor
compensates for these extra tests, as reported by the Linux perf report:

hop

57,510.34 msec task-clock
255,988 context-switches

9,790 cpu-migrations
4,636 page-faults

105,678,673,722 cycles
112,477,659,094 instructions
23,867,169,583 branches

396,229,049 branch-misses

hop.sealed

56,174.36 msec task-clock
257,539 context-switches
10,514 cpu-migrations
4,669 page-faults

101,498,166,407 cycles
101,682,162,341 instructions
20,985,760,131 branches

392,313,687 branch-misses

We observe that the class based version executes 10% more branches than the sealed class
version but the number of miss-predicted branches is almost identical for the two programs.

The same phenomenon is observed for the maze-class test. It uses classes for its data
structure but it rarely uses object polymorphism. In the class-based version most accesses are
efficiently handled with inline caches. As for go, the main benefit is the code size reduction.

5.4 Chaos.js

Chaos is the line-by-line transcription of the Python bm_chaos.py program. Its execution is
dominated by the allocation and reclaiming of objects and boxed real numbers. The GC
itself consumes about 60% of the overall execution so there is not much left for sealed classes
to optimize. However, one single client function, Spline.__call__, is responsible for more
than 10% of the overall execution, and this function allocates most of the benchmark class
instances (see Figure 15). The sealed class version benefits from the faster allocation schema
(see Section 4.4) to out-perform the class version.

ECOOP 2022

24:22 JavaScript Sealed Classes

5.5 Deltablue-class.js
Deltablue-class is a modified version of the Octane test where prototype chains are replaced
with classes. The sealed class based version is significantly faster than the class based version.
The acceleration comes to a large extent from the replacement of the inline caches with direct
field accesses as visible in Figure 12. The more efficient polymorphic implementation of
sealed classes is also an important factor of acceleration for this test. Deltablue-class defines
a hierarchy of classes for representing constraints whose base class is defined as:
150 class Constraint {
151 strength;
152

153 constructor(strength) {
154 this.strength = strength;
155 }

Several classes inherit from Constraint, e.g., UnaryConstraint, which is defined as:
230 class UnaryConstraint extends Constraint {
231 #myOutput;
232 #satisfied;
233

234 constructor(v, strength) {
235 super(strength);
236 this.#myOutput = v;
237 this.#satisfied = false;
238 this.addConstraint();
239 }

When an UnaryConstraint instance is created, the class constructor invokes the constructor
of the superclass line 235. This triggers the execution of the Constraint constructor and
the execution of line 154. Each Constraint’s subclass has a dedicated hidden class, so the
assignment of the strength property is polymorphic. hopc’s inline cache profiler reports that
the assignment is executed 3 × 106 times. For 1 × 106 of them, the inline cache has matched
a inlined property instance but for 2 × 106, a polymorphic assignment has been executed,
which involves using slower hopc vtables [27]. The replacement of classes with sealed classes
enables the compiler to generate a code that always uses an inlined property assignment.
Overall, the cache profiler reports that the number of polymorphic accesses and assignments
drops from 56 × 106 to 8 × 106 (a 7× reduction) when switching from classes to sealed classes.

At line 235 the constructor invokes the constructor of the superclass and at line 238, it
invokes the class method addConstraint. As this is the receiver of the two method invocations,
the more efficient compilation of Section 4.3 contributes to accelerate this benchmark.

5.6 Flightplanner.js
Flightplanner is a benchmark of the JetStream2 suite. Sealed classes accelerate it by about
26%. The Linux perf report Figure 16 shows that a significant part of the acceleration is
due to the simplification of the allocation of the Leg object that is inlined in the sealed
class execution. The class execution uses slow polymorphic accesses that we observe by the
significant part of the execution spent in the function js-object-vtable-push!. The sealed
class execution only uses direct instance accesses and then never calls this function.

5.7 Raytrace-class.js
Raytrace-class is the class-based TypeScript version of the Octane as described in Richards et
al. [22] from which type annotations have been erased. This is one of the few tests that uses
inheritance and object polymorphism extensively, and as such, it is one of the benchmarks

M. Serrano 24:23

hop execution times (in ms)

1398.8 (37%) GC_mark_from
41.5 (06%) &@Leg%CTOR
9.0 (03%) js-object-vtable-push!
7.6 (03%) GC_header_cache_miss
6.9 (03%) GC_malloc_kind
4.6 (02%) &FlightPlan.resolveWaypoint
4.4 (02%) GC_add_to_black_list_normal
3.5 (02%) open-string-hashtable-get

hop.sealed execution times (in ms)

2026.8 (45%) GC_mark_from
9.5 (03%) GC_header_cache_miss
8.4 (03%) GC_malloc_kind
6.2 (02%) GC_add_to_black_list_normal
3.6 (02%) GC_allochblk_nth
3.5 (02%) &<@resolveWaypoint%%R11757>
2.7 (02%) string-hashtable-get
2.1 (01%) open-string-hashtable-get

Figure 16 Profiling information for the Flightplanner benchmark.

hop execution times (in ms)

485.3 (22%) &Scheduler.schedule
310.5 (18%) &TaskControlBlock.run
127.7 (11%) &HandlerTask.run
92.2 (10%) &TaskControlBlock.isHeldOrSusp
52.7 (07%) &Scheduler.queue
21.5 (05%) &TaskControlBlock.checkPriAdd
16.1 (04%) &IdleTask.run
13.7 (04%) &WorkerTask.run
13.2 (04%) &DeviceTask.run
7.4 (03%) &Scheduler.suspendCurrent

hop.sealed execution times (in ms)

621.0 (25%) &schedule%%R@Scheduler
390.9 (20%) &run%%R@TaskControlBlock
141.8 (12%) &run%%R@HandlerTask
62.1 (08%) &queue%%R@Scheduler
19.1 (04%) &checkPriAdd%%R@TaskControlBlock
16.0 (04%) &release%%R@Scheduler
15.1 (04%) &run%%R@IdleTask
14.3 (04%) &suspendCurrent%%R@Scheduler
12.9 (04%) &run%%R@DeviceTask
12.5 (04%) &run%%R@WorkerTask

Figure 17 Profiling information for the richards-class benchmark.

that takes full benefit of sealed classes, with a speedup of 28%. Interestingly, we note that
StrongScript improves the same benchmark by 22%. For this test, the benefit of the sealed
class encoding seems to be similar to that of static type information. We observe a more
contrasted situation for crypo-class and richards-class. StrongScript accelerates crypto-class by
6.2% but slows down richards-class by 14% while sealed classes speed them up by 3% and
56%.

5.8 Richards-class.js
Richards-class is the class-based version of the Octane test. It is the benchmark that benefits
the most from sealed classes with a reduction of the execution time of about 56%. Figure 17
shows the excerpt of the Linux perf profiling of the two versions of the program.

The function Scheduler.schedule is where most of the benefit of sealed classes comes
from. Its implementation is as follows:

1 schedule() {
2 this.#currentTcb = this.#list;
3 while (this.#currentTcb != null) {
4 if (this.#currentTcb.isHeldOrSuspended()) {
5 this.#currentTcb = this.#currentTcb.link;
6 } else {
7 this.#currentId = this.#currentTcb.id;
8 this.#currentTcb = this.#currentTcb.run();
9 }

10 }
11 }

This function is favorable for sealed classes because all accesses of the form this.#private-
-name are compiled as direct property accesses (see Section 4.1). In spite of this significant
acceleration, the compiler’s type inference is not powerful enough to infer a precise type for the
expression this.#currentTcb.link, so hopc is not able to generate a fast sealed class method
invocation and it cannot perform an efficient inlining of the methods isHeldOrSuspended

ECOOP 2022

24:24 JavaScript Sealed Classes

and run. The overall performance is still lagging behind the JIT V8 compiler. A better
type inference, maybe one as good as those provided by TypeScript [1] or Flow [5], would
significantly improve the hopc’s score on this benchmark.

6 Related Work

The literature on efficient techniques for implementing classes, methods, and type checking in
object-oriented programming languages is abundant and as old as these languages themselves.
Implementing Smalltalk efficiently was a major concern [9]. Over the years, techniques have
been proposed to combine static and dynamic properties [8], and techniques for implementing
multiple inheritance efficiently have become necessary with languages such as Eiffel or
C++ [11]. In this work, we reuse these well-known techniques which we have adapted (see
Section 4.2) to the JavaScript context. Our contribution is twofold. First, we propose ways
to adapt classical implementation techniques designed for class-based languages so that they
can cooperate with those designed to implement the dynamic features of prototype-based
languages. Second, we identify some minimal restrictions that must be applied to JavaScript
to allow compilers to take substantial benefit from these techniques.

Several attempts have been made to enforce stronger static guarantees and to improve
the performance of JavaScript. TypeScript [17, 1], of course, has paved the way. It has
extended JavaScript with classes before they have been integrated into the language. It has
supported type annotations and static type inference in order to detect errors at compile
time. A gradual type system has also been proposed to enforce runtime type correctness [21].
However, runtime acceleration is not a goal of TypeScript, in part because it compiles to plain
JavaScript code and does not propose a native implementation that could take advantage of
type information. This is the motivation of the StrongType proposal [22] which, on some
benchmarks, manages to improve performance.

Retargeting the TypeScript compiler to map classes to sealed classes might be an
interesting direction because the programmer interested in static error detection might
also be interested in the dynamic error detection that sealed classes allow and the better
performance they deliver. In the same vein, other class-based languages that compile to
JavaScript, for instance Scala.js [10], might benefit from better performance.

Flow [5] is the Facebook JavaScript type checker. Its purpose is similar to that of
TypeScript. Since Flow does not need type annotations and claims to infer more types than
TypeScript, it might be interesting to try to use its type inference to statically detect classes
that would obey the rules of sealed classes in order to automatically seal them for better
efficiency. This is a project for future work.

Sealed classes share two motivations with Google’s V8 strong mode endeavor [23]:
enforcing static guarantees and speeding up class implementation. Strong mode defines
a subset of JavaScript in order to prohibit patterns that usually defeat compilers or give
unpredictable performance. Some restrictions imposed by strong mode are also imposed by
sealed classes: properties cannot be deleted, class instances are sealed after the constructor,
class declarations are immutable bindings, and class constructors must return the created
object, but there are also important differences.

Strong mode classes and regular classes were allowed to inherit from each other but for
interoperability reasons, strong mode class instances and regular classes instances could
not be mixed without restriction. This proved to be a show stopper for strong mode
locking classes. Sealed classes take a different approach. Regular classes can inherit
from sealed classes, but sealed classes cannot inherit from regular classes. This obviously
restricts the use of sealed classes, but this is mandatory to improve performance while
still preserving some degree of dynamicity.

M. Serrano 24:25

Strong mode was declared at the module level so that with a module all classes were
either strong or sloppy. This made it difficult to adopt strong mode for existing code bases
because module-level granularity proved to be too granular, making strong mode too much
of an all or nothing decision. Instead, classes can be sealed on a declaration-by-declaration
basis, one at a time, which simplifies the transition.
The sealing of strong mode instances turned out to be impractical and incompatible with
the rest of the language. Here again, sealed classes differ. A sealed class instance is sealed
but an instance of a class that inherits from a sealed class is only partially sealed. Only
its “sealed class instance self ” is sealed. Its regular class instance self may be extended or
reduced. Instances of these classes benefit from a faster implementation for their sealed
part and, for their regular class part, they work like any other ordinary object.
Sealed classes benefit from the recent JavaScript extensions that allow class field declara-
tions, a feature not available when strong mode was proposed.
Sealed classes are easy to implement and have minimal impact on the components of
an existing system. They are very well delimited. In the implementation of the hopc
compiler, apart from the modification of the object representation, they had no impact on
the rest of the implementation. In total, the implementation of sealed classes represents
less than 1,000 isolated lines of code in the compiler and a few hundred lines in the
runtime system. In contrast, strong mode came as a whole, and strong classes could
not be isolated from the rest of the proposal. The implementation was complex with
ramifications in many V8 components.

7 Conclusion

Sealed classes trade a little bit of the dynamicity of JavaScript classes for faster and more
predictable execution. All the benchmarks we tested benefit from sealed classes. Some benefit
from a code size reduction and others benefit from speedup. Some benefit from both.

Sealed classes are compatible with the rest of the JavaScript runtime system. They
can be passed to functions, returned by them, stored in data structures, and they can be
used as the super classes of sealed and ordinary classes. Thus, in existing programs, sealed
classes can gradually replace those classes that naturally respect the restrictions they impose.
Infringements to the rules of sealed classes are detected, so that sealing classes does not
present the risk of silently corrupting operational programs.

The dynamic semantics of sealed classes that do not raise errors is identical to that
of regular classes. They can therefore already be used by unmodified JavaScript engines,
although in this case there is no runtime acceleration. To benefit from this acceleration,
we have modified the AoT hopc compiler. We have shown that the average speedup due
to sealed classes is of 19% on a variety of programs using classes. This paper has detailed
this implementation. It is simple and required less than 1,000 lines of new lines of code for
the compiler and a few hundred lines of code for the runtime system. Sealed classes deliver
better performance than regular classes and they are easy to implement.

References
1 Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding TypeScript. In

Proceedings of the 28th European Conference on ECOOP 2014 — Object-Oriented Pro-
gramming - Volume 8586, pages 257–281, Berlin, Heidelberg, 2014. Springer-Verlag. doi:
10.1007/978-3-662-44202-9_11.

2 Carl Friedrich Bolz. Better JIT Support for Auto-Generated Python Code. https://www.
pypy.org/blog/, September 2021.

ECOOP 2022

https://doi.org/10.1007/978-3-662-44202-9_11
https://doi.org/10.1007/978-3-662-44202-9_11
https://www.pypy.org/blog/
https://www.pypy.org/blog/

24:26 JavaScript Sealed Classes

3 C. Chambers and D. Ungar. Customization: Optimizing Compiler Technology for SELF, a
Dynamically-Typed Object-Oriented Programming Language. In Conference Proceedings on
Programming Language Design and Implementation, PLDI ’89, New York, NY, USA, 1989.
ACM. doi:10.1145/73141.74831.

4 C. Chambers, D. Ungar, and E. Lee. An Efficient Implementation of SELF a Dynamically-typed
Object-oriented Language Based on Prototypes. In Conference Proceedings on Object-oriented
Programming Systems, Languages and Applications, OOPSLA ’89, pages 49–70, USA, 1989.
ACM. doi:10.1145/74878.74884.

5 Avik Chaudhuri, Basil Hosmer, and Gabriel Levi. Flow, a new static type checker
for JavaScript, November 2014. URL: https://engineering.fb.com/2014/11/18/web/
flow-a-new-static-type-checker-for-javascript.

6 D. Clifford, H. Payer, M. Stanton, and B. Titzer. Memento Mori: Dynamic Allocation-site-
based Optimizations. In Proceedings of the 2015 ACM SIGPLAN International Symposium
on Memory Management, New York, NY, USA, 2015. doi:10.1145/2887746.2754181.

7 N. Cohen. Type-extension type tests can be performed in constant time. ACM Transactions
on Programming Languages and Systems (TOPLAS), 13(4):626–629, 1991. doi:10.1145/
115372.115297.

8 Jeffrey Dean, David Grove, and Craig Chambers. Optimization of Object-Oriented Programs
Using Static Class Hierarchy Analysis. In Proceedings of the 9th European Conference on Object-
Oriented Programming, ECOOP ’95, pages 77–101, 1995. doi:10.1007/3-540-49538-X_5.

9 Peter L. Deutsch and Allan M. Schiffman. Efficient Implementation of the Smalltalk-80 System.
In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages, POPL ’84, pages 297–302, New York, NY, USA, 1984. Association for Computing
Machinery. doi:10.1145/800017.800542.

10 Sébastien Doeraene. Cross-Platform Language Design in Scala.Js (Keynote). In Proceedings
of the 9th ACM SIGPLAN International Symposium on Scala, Scala 2018, page 1, New York,
NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3241653.3266230.

11 Roland Ducournau. Implementing statically typed object-oriented programming languages.
ACM Comput. Surv., 43(3):18:1–18:48, 2011. doi:10.1145/1922649.1922655.

12 ECMA International. Standard ECMA-262 - ECMAScript Language Specification. ECMA,
6.0 edition, June 2015.

13 Brendan Gregg. Linux systems performance. https://www.usenix.org/conference/lisa19/
presentation/gregg-linux, October 2019.

14 M. Hölttä. Super fast super property access. https://v8.dev/blog/fast-super, February
2021.

15 U. Hölzle, C. Chambers, and D. Ungar. Optimizing dynamically-typed object-oriented
languages with polymorphic inline caches. In Proceedings of the European Conference on
Object-Oriented Programming, ECOOP ’91, pages 21–38, UK, 1991. doi:10.1.1.126.7745.

16 B. Meurer and M. Bynens. The story of a V8 performance cliff in React. https://v8.dev/
blog/react-cliff, August 2019.

17 Microsoft. TypeScript, Language Specification, version 0.9.5, November 2013.
18 Mozilla Developper Network. Classes. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Classes, November 2021.
19 Mozilla Developper Network. Public class fields. https://developer.mozilla.org/en-US/

docs/Web/JavaScript/Reference/Classes/Public_class_fields, July 2021.
20 F. Pizlo. Speculation in JavaScriptCore. https://webkit.org/blog/10308/speculation-in-

-javascriptcore, July 2020.
21 Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. Safe &

Efficient Gradual Typing for TypeScript. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’15, pages 167–180, New
York, NY, USA, 2015. Association for Computing Machinery. doi:10.1145/2676726.2676971.

https://doi.org/10.1145/73141.74831
https://doi.org/10.1145/74878.74884
https://engineering.fb.com/2014/11/18/web/flow-a-new-static-type-checker-for-javascript
https://engineering.fb.com/2014/11/18/web/flow-a-new-static-type-checker-for-javascript
https://doi.org/10.1145/2887746.2754181
https://doi.org/10.1145/115372.115297
https://doi.org/10.1145/115372.115297
https://doi.org/10.1007/3-540-49538-X_5
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/3241653.3266230
https://doi.org/10.1145/1922649.1922655
https://www.usenix.org/conference/lisa19/presentation/gregg-linux
https://www.usenix.org/conference/lisa19/presentation/gregg-linux
https://v8.dev/blog/fast-super
https://doi.org/10.1.1.126.7745
https://v8.dev/blog/react-cliff
https://v8.dev/blog/react-cliff
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/Public_class_fields
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/Public_class_fields
https://doi.org/10.1145/2676726.2676971

M. Serrano 24:27

22 Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. Concrete Types for TypeScript.
In John Tang Boyland, editor, 29th European Conference on Object-Oriented Programming
(ECOOP 2015), volume 37 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 76–100, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.ECOOP.2015.76.

23 Andreas Rossberg. A Strong Mode for JavaScript (Strawman proposal). URL: https:
//docs.google.com/document/d/1Qk0qC4s_XNCLemj42FqfsRLp49nDQMZ1y7fwf5YjaI4/view#
heading=h.w5az3vf8le5k.

24 Andreas Rossberg. An update on Strong Mode, February 2016. URL: https://groups.
google.com/g/strengthen-js/c/ojj3TDxbHpQ/m/5ENNAiUzEgAJ.

25 M. Serrano. Javascript aot compilation. In 14th Dynamic Language Symposium (DLS), Boston,
USA, November 2018. doi:10.1145/3276945.3276950.

26 M. Serrano. Of AOT Compilation Performance. Proceedings of the ACM on Programming
Languages, August 2021. doi:10.1145/3473575.

27 M. Serrano and M. Feeley. Property Caches Revisited. In Proceedings of the 28th Compiler
Construction Conference (CC’19), Washington, USA, February 2019. doi:10.1145/3302516.
3307344.

28 M. Serrano and R. Findler. Dynamic Property Caches, a Step towards Faster JavaScripts
Proxy Objects. In Proceedings of the 29th Compiler Construction Conference (CC’20), San
Dieo, USA, February 2020. doi:10.1145/3377555.3377888.

29 V. Stinner et al. The Python Benchmark Suite. https://github.com/python/pyperformance,
2021.

ECOOP 2022

https://doi.org/10.4230/LIPIcs.ECOOP.2015.76
https://docs.google.com/document/d/1Qk0qC4s_XNCLemj42FqfsRLp49nDQMZ1y7fwf5YjaI4/view#heading=h.w5az3vf8le5k
https://docs.google.com/document/d/1Qk0qC4s_XNCLemj42FqfsRLp49nDQMZ1y7fwf5YjaI4/view#heading=h.w5az3vf8le5k
https://docs.google.com/document/d/1Qk0qC4s_XNCLemj42FqfsRLp49nDQMZ1y7fwf5YjaI4/view#heading=h.w5az3vf8le5k
https://groups.google.com/g/strengthen-js/c/ojj3TDxbHpQ/m/5ENNAiUzEgAJ
https://groups.google.com/g/strengthen-js/c/ojj3TDxbHpQ/m/5ENNAiUzEgAJ
https://doi.org/10.1145/3276945.3276950
https://doi.org/10.1145/3473575
https://doi.org/10.1145/3302516.3307344
https://doi.org/10.1145/3302516.3307344
https://doi.org/10.1145/3377555.3377888
https://github.com/python/pyperformance

Union Types with Disjoint Switches
Baber Rehman #

The University of Hong Kong, China

Xuejing Huang #

The University of Hong Kong, China

Ningning Xie #

University of Cambridge, UK

Bruno C. d. S. Oliveira #

The University of Hong Kong, China

Abstract
Union types are nowadays a common feature in many modern programming languages. This paper
investigates a formulation of union types with an elimination construct that enables case analysis
(or switches) on types. The interesting aspect of this construct is that each clause must operate on
disjoint types. By using disjoint switches, it is possible to ensure exhaustiveness (i.e. all possible
cases are handled), and that none of the cases overlap. In turn, this means that the order of the cases
does not matter and that reordering the cases has no impact on the semantics, helping with program
understanding and refactoring. While implemented in the Ceylon language, disjoint switches have
not been formally studied in the research literature, although a related notion of disjointness has
been studied in the context of disjoint intersection types.

We study union types with disjoint switches formally and in a language independent way. We
first present a simplified calculus, called the union calculus (λu), which includes disjoint switches
and prove several results, including type soundness and determinism. The notion of disjointness
in λu is in essence the dual notion of disjointness for intersection types. We then present a more
feature-rich formulation of λu, which includes intersection types, distributive subtyping and a simple
form of nominal types. This extension reveals new challenges. Those challenges require us to depart
from the dual notion of disjointness for intersection types, and use a more general formulation of
disjointness instead. Among other applications, we show that disjoint switches provide an alternative
to certain forms of overloading, and that they enable a simple approach to nullable (or optional)
types. All the results about λu and its extensions have been formalized in the Coq theorem prover.

2012 ACM Subject Classification Theory of computation → Type theory

Keywords and phrases Union types, switch expression, disjointness, intersection types

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.25

Related Version Full Version: https://github.com/baberrehman/disjoint-switches/blob/
main/doc/ecoop2022-extended.pdf

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.17
Software (Source Code): https://github.com/baberrehman/disjoint-switches

Funding This research was funded by the University of Hong Kong and Hong Kong Research Grants
Council projects number 17209519, 17209520 and 17209821.

Acknowledgements We thank the anonymous reviewers for their helpful and constructive comments.

1 Introduction

Most programming languages support some mechanism to express terms with alternative
types. Algol 68 [54, 55] included a form of tagged unions for this purpose. With tagged unions
an explicit tag distinguishes between different cases in the union type. Such an approach

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Baber Rehman, Xuejing Huang, Ningning Xie, and
Bruno C. d. S. Oliveira;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 25; pp. 25:1–25:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:brehman@cs.hku.hk
https://orcid.org/0000-0002-9458-8428
mailto:xjhuang@cs.hku.hk
https://orcid.org/0000-0002-8496-491X
mailto:xnningxie@gmail.com
mailto:bruno@cs.hku.hk
https://doi.org/10.4230/LIPIcs.ECOOP.2022.25
https://github.com/baberrehman/disjoint-switches/blob/main/doc/ecoop2022-extended.pdf
https://github.com/baberrehman/disjoint-switches/blob/main/doc/ecoop2022-extended.pdf
https://doi.org/10.4230/DARTS.8.2.17
https://doi.org/10.4230/DARTS.8.2.17
https://github.com/baberrehman/disjoint-switches
https://doi.org/10.4230/DARTS.8.2.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Union Types with Disjoint Switches

has been adopted by functional languages, like Haskell, ML, or OCaml, which allow tagged
unions (or sum types [48]), typically via either algebraic datatypes [15] or variant types [32].
Languages like C or C++ support untagged union types where values of the alternative
types are simply stored at the same memory location. However, there is no checking of types
when accessing values of such untagged types. It is up to the programmer to ensure that
the proper values are accessed correctly in different contexts; otherwise the program may
produce errors by accessing the value at the incorrect type.

Modern OOP languages, such as Scala 3 [44], Flow [24], TypeScript [13], and Ceylon [39],
support a form of untagged union types. In such languages a union type A ∨ B denotes
expressions which can have type A or type B. Union types have grown to be quite popular
in some of these languages. A simple Google search on questions regarding union types on
StackOverflow returns around 6620 results (at the time of writing), many of which arising
from TypeScript programmers. Union types can be useful in many situations. For instance,
union types provide an alternative to some forms of overloading and they enable an approach
to nullable types (or explicit nulls) [34, 43].

To safely access values with union types, some form of elimination construct is needed.
Many programming languages often employ a language construct that checks the types of the
values at runtime for this purpose. Several elimination constructs for (untagged) union types
have also been studied in the research literature [10, 29, 22]. Typically, such constructs take
the form of a type-based case analysis expression.

A complication is that the presence of subtyping introduces the possibility of overlapping
types. For instance, we may have a Student and a Person, where every student is a person (but
not vice-versa). If we try to eliminate a union using such types we can run into situations
where the type in one branch can cover a type in a different branch (for instance Person

can cover Student). More generally, types can partially overlap and for some values two
branches with such types can apply, whereas for some other values only one branch applies.
Therefore, the design of such elimination constructs has to consider what to do in situations
where overlapping types arise. A first possibility is to have a non-deterministic semantics,
where any of the branches that matches can be taken. However, in practice determinism is a
desirable property, so this option is not practical. A second possibility, which is commonly
used for overloading, is to employ a best-match semantics, where we attempt to find the
case with the type that best matches the value. Yet another option is to use a first-match
semantics, which employs the order of the branches in the case. Various existing elimination
constructs for unions [10, 22] employ a first-match approach. All of these three options have
been explored and studied in the literature.

The Ceylon language [39] is a JVM-based language that aims to provide an alternative
to Java. The type system is interesting in that it departs from existing language designs, in
particular with respect to union types and method overloading. The Ceylon designers had
a few different reasons for this. They wanted to have a fairly rich type system supporting,
among others: subtyping; generics with bounded quantification; union and intersection types;
and type-inference. The aim was to support most features available in Java, as well as a few
new ones. However the Ceylon designers wanted to do this in a principled way, where all
the features interacted nicely. A stumbling block towards this goal was Java-style method
overloading [2]. The interaction of overloading with other features was found to be challenging.
Additionally, overloaded methods with overlapping types make reasoning about the code
hard for both tools and humans. Algorithms for finding the best match for an overloaded
method in the presence of rich type system features (such as those in Ceylon) are challenging,
and not necessarily well-studied in the existing literature. Moreover allowing overlapping

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:3

methods can make the code harder to reason for humans: without a clear knowledge of
how overloading resolution works, programmers may incorrectly assume that a different
overloaded method is invoked. Or worse, overloading can happen silently, by simply reusing
the same name for a new method. These problems can lead to subtle bugs. For these reasons,
the Ceylon designers decided not to support Java-style method overloading.

To counter the absence of overloading, the Ceylon designers turned to union types instead,
but in a way that differs from existing approaches. Ceylon includes a type-based switch
construct where all the cases must be disjoint. If two types are found to be overlapping, then
the program is statically rejected. Many common cases of method overloading, which are
clearly not ambiguous, can be modelled using union types and disjoint switches. By using
an approach based on disjointness, some use cases for overloading that involve Java-style
overloading with overlapping types are forbidden. However, programmers can still resort to
creating non-overloaded methods in such a case, which arguably results in code easier to
reason about. Disjointness ensures that it is always clear which implementation is selected
for an “overloaded” method, and only in such cases overloading is allowed1. In the switch
construct, the order of the cases does not matter and reordering the cases has no impact
on the semantics, which can also aid program understanding and refactoring. Finally, from
the language design point of view, it would be strange to support two mechanisms (method
overloading and union types), which greatly overlap in terms of functionality.

While implemented in the Ceylon language, disjoint switches have not been studied
formally. To our knowledge, the work by Muehlboeck and Tate [42] is the only work
where Ceylon’s switch construct and disjointness are mentioned. However, their focus is
on algorithmic formulations of distributive subtyping with unions and intersection types.
No semantics of the switch construct is given. Disjointness is informally defined in various
sentences in the Ceylon documentation. It involves a set of 14 rules described in English [1].
Some of the rules are relatively generic, while others are quite language specific. Interestingly,
a notion of disjointness has already been studied in the literature for intersection types [45].
That line of work studies calculi with intersection types and a merge operator [49]. Disjointness
is used to prevent ambiguity in merges, which can create values with types such as Int ∧ Bool.
Only values with disjoint types can be used in a merge.

In this paper, we study union types with disjoint switches formally and in a language
independent way. We present the union calculus (λu), which includes disjoint switches
and union types. The notion of disjointness in λu is interesting in the sense that it is the
dual notion of disjointness for intersection types. We prove several results, including type
soundness, determinism and the soundness and completeness of algorithmic formulations
of disjointness. We also study several extensions of λu. In particular, the first extension
(discussed in Section 4) adds intersection types, nominal types and distributive subtyping
to λu. It turns out such extension is non-trivial, as it reveals a challenge that arises for
disjointness when combining union and intersection types: the dual notion of disjointness
borrowed from disjoint intersection types no longer works, and we must employ a novel, more
general, notion instead. Such change also has an impact on the algorithmic formulation of
disjointness, which must change as well. We also study two other extensions for parametric
polymorphism and a subtyping rule for a class of empty types in the extended version of this
paper. We prove that all the extensions retain the original properties of λu. Furthermore,
for our subtyping relation in Section 4 we give a sound, complete and decidable algorithmic
formulation by extending the algorithmic formulation employing splittable types by Huang
and Oliveira [36].

1 Ceylon does allow dynamic type tests, which in combination with switches can simulate some overlapping.

ECOOP 2022

25:4 Union Types with Disjoint Switches

To illustrate the applications of disjoint switches, we show that they provide an alternative
to certain forms of overloading, and they enable a simple approach to nullable (or optional)
types. All the results about λu and its extensions have been formalized in the Coq theorem
prover. In summary, the contributions of this paper are:

The λu calculus: We present a simple calculus with union types, nullable types and
a disjoint switch construct. We then present a richer extension of λu with intersection
types, distributive subtyping and nominal types. In addition, in the extended version of
the paper, we study extensions with parametric polymorphism and a subtyping rule to
detect empty types. All calculi and extensions are type sound and deterministic.
Sound, complete and decidable formulations of disjointness and subtyping: We
present two formulations of disjointness, which are general and language independent. The
second formulation is novel and more general, and can be used in a calculus that includes
intersection types as well. We also extend a previous subtyping relation [36] to include
nominal types. For both disjointness and subtyping we show that the specifications are
sound, complete and decidable and present the corresponding algorithmic formulations.
Mechanical formalization: The results about λu and its extensions have been formal-
ized in the Coq theorem prover and can be found in the supplementary materials, together
with an extended version of the paper.

2 Overview

This section provides some background on union types and some common approaches to
eliminate union types. Then it describes the Ceylon approach to union types, and discusses a
few applications of union types. Finally, it presents the key ideas and challenges in our work.

2.1 Tagged Union Types

We start with a brief introduction to union types. An expression has a union type A ∨ B, if it
can be considered to have either type A or type B. Many systems model tagged union types
(also called sum types or variants types), where explicit tags are used to construct terms with
union types, as in languages with algebraic datatypes [15] or (polymorphic) variants [32]. In
their basic form, there are two introduction forms: inj1 : A → A ∨ B turns the type of an
expression from A into A ∨ B; and inj2 : B → A ∨ B turns the type of an expressions from B
into A ∨ B. Using tagged union types, we can implement a safe integer division function, as2:

String | Int safediv (x : Int) (y : Int) =
if (y == 0) then inj1 " Divided by zero" else inj2 (x / y) // uses tags

Here the intention is to have a safe (integer) division operation that detects division by
zero errors, and requires clients of this function to handle such errors. The return type
String | Int denotes that the function can either return an error message (a string), or an
integer, when division is performed without errors.

2 Throughout this paper, we write union types as A | B in code, since this is widely adopted in program-
ming languages (e.g., Ceylon, Scala, and TypeScript), and as A ∨ B in the formal calculi, which is more
frequently used in the literature.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:5

Elimination form for tagged union types. Tagged union types are eliminated by some form
of case analysis. For consistency with the rest of the paper, we use a syntactic form with
switch expressions for such case analysis. For example, the following program tostring has
different behaviors depending on the tag of x, where show takes an Int and returns back its
string representation.
String tostring (x: String | Int) = switch (x)

inj1 str -> str
inj2 num -> show num

2.2 Type-directed Elimination forms for Union Types
While tags are useful to make it explicit which type a value belongs to, they also add
clutter in the programs. On the other hand, in systems with subtyping for union types
[29, 47, 42], explicit tags are replaced by implicit coercions represented by the two subtyping
rules A <: A ∨ B and B <: A ∨ B. In this paper we refer to union types where the explicit
tags are replaced by implicit coercions as untagged union types, or simply union types. In
those systems, a term of type A or B can be directly used as if it had type A ∨ B, and thus
we can write safe division as:
String | Int safediv2 (x : Int) (y : Int) =

if (y == 0) then " Divided by zero" else (x / y) // no tags!

However, now the elimination form of union types cannot rely on explicit tags anymore, and
different systems implement elimination forms differently. The most common alternative is
to employ types in the elimination form. We review type-directed union elimination next.

Type-directed elimination. Some systems [22] support type-directed elimination of union
types. For instance, tostring2 has different behaviors depending on the type of x.
String tostring2 (x: String | Int) = switch (x)

(y : String) -> y
(y : Int) -> show y

However, compared to tag-directed elimination, extra care must be taken with type-
directed elimination. In particular, while we can easily distinguish tags, ambiguity may arise
when types in a union type overlap for type-directed elimination. For example, consider the
type Person | Student, where we assume Student is a subtype of Person. With type-directed
elimination, we can write:
Bool isstudent (x: Person | Student) = switch (x)

(y : Person) -> False
(y : Student) -> True

Now it is unclear what happens if we apply isstudent to a term of type Student, as its type
matches both branches. In some calculi [29], the choice is not determined in the semantics, in
the sense that either branch can be chosen. This leads to a non-deterministic semantics. In
some other languages or calculi [22], branches are inspected from top to bottom, and the first
one that matches the type gets chosen. However, in those systems, as Person is a supertype
of Student, the first branch subsumes the second one and will always get chosen, and so the
second branch will never get evaluated! This may be unintentional, and similar programs
being accepted can lead to subtle bugs. Even if a warning is given to alert programmers that
a case can never be executed, there are other situations where two cases overlap, but neither
case subsumes the other. For instance we could have Student and Worker as subtypes of Person.

ECOOP 2022

25:6 Union Types with Disjoint Switches

For a person that is both a student and a worker, a switch statement that discriminates
between workers and students could potentially choose either branch. However for persons
that are only students or only workers, only one branch can be chosen.

Best-match and overloading. Some languages support an alternative to typed-based union
elimination via method overloading. Such form is used in, for example, Java [33] and Julia [57].
In Java, we can encode isstudent2 as an overloaded method, which has different behaviors
when the type of the argument differs.
boolean isstudent2 (Person x) { return False; }
boolean isstudent2 (Student x) { return True; }

Java resolves overloading by finding and selecting, from all method implementations, the one
with the best type signature that describes the argument. If we apply isstudent2 to a term of
type Student, the second implementation is chosen, as Student is the best type describing the
argument. As we can see, such a best-match strategy eliminates the order-sensitive problem,
as it always tries to find the best-match despite the order. That is, in Java the method order
does not matter: in this case, we have the method for Person before the one for Student, but
Java still finds the one for Student.

However, the best-match strategy can also be confusing, especially when the system
features implicit upcasting (e.g., by subtyping). If programmers are not very familiar with
how overloading resolution works, they may assume that the wrong implementation is called
in their code. For instance, in Java we may write:
Person p = new Student ();
isstudent2 (p);

In this case Java will pick the isstudent2 method with the argument Person, since Java
overloading uses the static type (p has the static type Person) to resolve overloading. But
some programmers may assume that the implementation of the method for Student would be
chosen instead, since the person is indeed a student in this case. This can be confusing and
lead to subtle bugs.

Moreover, there are other tricky situations that arise when employing a best-match
strategy. For example, suppose that the type Pegasus is a subtype of both type Bird and type
Horse. If a method isbird is overloaded for Bird and Horse, then which method implementation
should we choose when we apply isbird to a term of type Pegasus, the one for Bird, or the
one for Horse? In such case, we have an ambiguity. Things get worse when the type system
includes more advanced type system features, such as generics, intersections and union types,
or type-inference.

2.3 Union Types and Disjoint Switches in Ceylon
The Ceylon language [39] supports type-directed union elimination by a switch expression
with branches. The following program is an example with union types using Ceylon’s syntax:
void print (String | Integer | Float x) {

switch (x)
case (is String) { print(" String : ‘‘x‘‘"); }
case (is Integer |Float) { print(" Number : ‘‘x‘‘"); }

}

For the switch expression, Ceylon enforces static type checking with two guarantees:
exhaustiveness, and disjointness. First, Ceylon ensures that all cases in a switch expression
are exhaustive. In the above example, x can either be a string, an integer or a floating point

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:7

number. The types used in the cases do not have to coincide with the types of x. Nevertheless,
the combination of all cases must be able to handle all possibilities. If the last case only
dealt with Integer (instead of Integer|Float), then the program would be statically rejected,
since no case deals with Float.

Second, Ceylon enforces that all cases in a switch expression are disjoint. That is, unlike
the approaches described in Section 2.2, in Ceylon, it is impossible to have two branches
that match with the input at the same time. For instance, if the first case used the type
String | Float instead of String, the program would be rejected statically with an error.
Indeed, if the program were to be accepted, then the call print(3.0) would be ambiguous,
since there are two branches that could deal with the floating point number. Note that, since
the cases in a switch cannot overlap, their order is irrelevant to the program’s behavior and
its evaluation result. All of the overlapping examples from the previous section will statically
be rejected in similar fashion.

Union types as an alternative to overloading. One motivation for such type-directed
union elimination in Ceylon is to model a form of function overloading. The following
example, which is adapted from TypeScript’s documentation [3], demonstrates how to define
an “overloaded” function padLeft, which adds some padding to a string. The idea is that
there can be two versions of padLeft: one where the second argument is a string; and the
other where the second argument is an integer:
String space(Integer n){

if (n==0) { return ""; }
else { return " "+space (n -1); }

}
String padLeft (String v, String | Integer x) {

switch (x)
case (is String) { return x+v; }
case (is Integer) { return space(x)+v; }

}
print (padLeft ("?", 5)); // " ?"
print (padLeft ("World ", " Hello ")); // "Hello World"

In padLeft, there are two cases of the switch construct depending on the type of x: the first
one appends a string to the left of v, and the other calls function space to generate a string
with x spaces, and then append that to v. Although statically x has type String|Integer, as
a concrete value it can only be a string or an integer. As such, when values with such types
are passed to the function, the corresponding branch is chosen and executed.

2.4 Nullable Types
Besides being used for overloading, union types can be used for other purposes too. Null
pointer exceptions (NPEs) are a well-known and tricky problem in many languages. The
problem arises when dereferencing a pointer with the null value. For instance, if we have a
variable str, which is assigned to null, the the code print(str.size), in a Java-like language,
will raise a null pointer exception. This is because of so-called implicit nulls in Java and
other popular languages. With implicit nulls, any variable of a reference type can be null.

An interesting application of union types in Ceylon is to encode nullable types (or optional
types) [34] in a type-safe way. A similar approach to nullable types has also been recently
proposed for Scala [43]. In those languages, there is a special type Null, which is inhabited
by the null value. Note that Null differs from Nothing (the bottom type in Ceylon), in the
sense that Null is inhabited while Nothing is not. To illustrate the subtle difference, Figure 1
presents a part of the subtyping lattice in Ceylon. Anything, the top type in Ceylon, is an

ECOOP 2022

25:8 Union Types with Disjoint Switches

Null Object

Anything

Char Integer

Nothing

Figure 1 Ceylon’s subtyping hierarchy. Note that Null only has Nothing as its subtype.

enumerated class. Anything is also a supertype of Object, which is the root of primitive types,
function types, all interfaces and any user-defined class. Notably, Null is disjoint to Object,
and therefore, to all user-defined classes.

In Ceylon the following code:
String str = null;

is rejected with a type error, since null cannot have type String. Instead, a type that can
have the null value must be defined explicitly in Ceylon using union types:
String | Null str = null;

Now we cannot call str.size, as str may be null, and size is not defined on null. To get the
size of str, we must first check whether str is null or not using disjoint switches:
String | Null str = null;
switch (str)

case (is String) { print (str.size); }
case (is Null) { print (); }

Other uses of Union Types. Union types are also useful in many other situations. In
Section 2.2 we illustrated a safediv operation, which can be easily encoded in Ceylon as:
String | Integer safediv3 (Integer x, Integer y){

if (y==0) { return " Divided by zero"; }
else { return (x/y); }

}

The return value can be a string or an integer, with no explicit tag needed, as union types
are implicitly introduced. As long as the declared return type of the function is a supertype
of all possible return values, it is valid in Ceylon.

2.5 Key Ideas in Our Work
We first introduce a simplified formulation of λu, which formalizes the basic ideas of union
types with disjoint switches similar to those in the Ceylon Language. To our best knowledge,
there is yet no formalism of disjoint switches, and λu studies those features formally and
precisely. In particular, λu captures the key idea for type-directed elimination of union
types in its switch construct in a language independent way, and formally defines disjoint-
ness, disjointness and subtyping algorithms, and the operational semantics. The simplified
formulation of λu is useful to compare with existing calculi with union types in the liter-
ature [41, 9, 30, 29, 47, 18]. Moreover, we study a more fully featured formulation of λu

that includes practical extensions, such as intersection types, distributive subtyping, nullable

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:9

types and a simple form of nominal types. λu is proved to enjoy many desirable properties,
such as type soundness, determinism and the soundness/completeness of disjointness and
subtyping definitions. All the Ceylon examples in Sections 2.3 and 2.4 can be encoded in λu.

Disjointness. A central concept in the formulation of disjoint switches is disjointness. Our
first hurdle was to come up with a suitable formal definition of disjointness. Consider the
simple λu switch expression:

switch x {
(y : String | Int) -> 0
(y : Int | Bool) -> 1

}

Here we wish to determine whether String ∨ Int and Int ∨ Bool are disjoint or not. In other
words, we wish to determine whether, for any possible (dynamic) type that x can have, it is
unambiguous which branch to choose. In this case, it turns out that there is ambiguity. For
instance, if x is an integer, then either branch can be chosen. Thus λu rejects this program
with a disjointness error. In this example, the reason to reject the program is basically that
Int <: String ∨ Int and Int <: Int ∨ Bool. That is we can find a common subtype (Int) of the types
in both branches. Moreover, that subtype can be inhabited by values (integer values in this
case). If the only common subtypes of the types in the two branches would be types like ⊥
(which has no inhabitants), then the switch should be safe because we would not be able to
find a value for x that would trigger two branches. This observation leads to the notion of
disjointness employed in the first variant λu in Section 3. Formally, we have:

▶ Definition 1 (⊥-Disjointness). A ∗ B ::= ∀ C, if C <: A and C <: B then ⌋C⌊

Here we use ⌋C⌊ to denote that type C is equivalent to type ⊥, or, bottom-like (i.e.
C <: ⊥). In either definition, Int serves as a counter-example for String ∨ Int and Int ∨ Bool
to be disjoint. Thus λu rejects the program above with a disjointness error. It is worth
noting that this first notion of disjointness is essentially dual to a definition of disjointness
for intersection types in the literature in terms of top-like common supertypes [45].

Disjointness in the presence of intersection types. The variant of λu in Section 3 does
not include intersection types. Unfortunately, the disjointness definition above does not
work in the presence of intersection types. The reason is simple: with intersection types
we can always find common subtypes, such as Int ∧ Bool, which are not bottom-like, and yet
they have no inhabitants. That is, Int ∧ Bool is not a subtype of ⊥, but no value can have
both type Int and type Bool. We address this issue by reformulating disjointness in terms of
ordinary types [28], which are basically primitive types (such as integers or functions). If we
can find common ordinary subtypes between two types, we know that they are not disjoint.
Thus the disjointness definition used for formulations of λu with intersection types is:

▶ Definition 2 (∧-Disjointness). A ∗ B ::= ∄ C◦, C◦ <: A and C◦ <: B.

Note that here C◦ is a metavariable denoting ordinary types. Under this definition we can
check that Int and Bool are disjoint, since no ordinary type is a subtype of both of these two
types. This definition avoids the issue with Definition 1, which would not consider these two
types disjoint. Moreover, this definition is a generalization of the previous one, and in the
variant with union types only the two definitions coincide.

ECOOP 2022

25:10 Union Types with Disjoint Switches

This new definition requires a different approach to algorithmic disjointness. Our new
approach is to use the notion of lowest ordinary subtypes: For any given type, we calculate a
finite set to represent all the possible values that can match the type. Then we can easily
determine whether two types are disjoint by ensuring that the intersection of their lowest
ordinary subtypes is empty.

Distributive Subtyping. In Section 4, we study λu with an enriched distributive subtyping
relation inspired by Ceylon programming language. Distributive subtyping is more expressive
than standard subtyping and adds significant complexity in the system, in particular for
a formulation of algorithmic subtyping and the completeness proof of the disjointness
algorithm. Nevertheless, distributive subtyping does not affect the disjointness definition
and its algorithm remains the same with and without distributive subtyping. The following
code snippet elaborates on the expressiveness of distributive subtyping:
void do (< Integer & String > | Boolean val) { /* do something */ }

The function do in above code snippet takes input value of type (Int ∧ String) ∨ Bool. How-
ever, we cannot pass a value of type (Int ∨ Bool) ∧ (String ∨ Bool) to the function do: we get a
type error if we try to do that in a system with standard subtyping (without distributiv-
ity), as standard subtyping fails to identify that the value has a subtype of the expected
argument type. Distributive rules enable this subtyping relation. With distributivity of
unions over intersections (and vice-versa), the type (Int ∨ Bool) ∧ (String ∨ Bool) is a subtype of
(Int ∧ String) ∨ Bool (in particular, by rule ds-distor in Figure 6). As such with distributive
subtyping, the following Ceylon program type-checks:
variable <Integer | Boolean > & <String | Boolean > x = true; do(x);

Nominal Types and Other Extensions to λu. We also study several extensions to λu,
including nominal types. The extension with nominal types is interesting, since nominal
types are highly relevant in practice. We show a sound, complete and decidable algorithmic
formulation of subtyping with nominal types by extending an approach by Huang and
Oliveira [36]. We show that disjointness can also be employed in the presence of nominal
types. This extension rejects ambiguous programs with overlapping nominal types in different
branches of switch construct at compile time. It illustrates that disjointness is practically
applicable to structural types as well as the nominal types. For example, the following
program will statically be rejected in λu with nominal types:
Bool isstudent (x: Person | Student) = switch (x)

(y : Person) -> False
(y : Student) -> True

Whereas, the following program will be accepted if we know that Person and Vehicle are
disjoint:
Bool isvehicle (x: Person | Vehicle) = switch (x)

(y : Person) -> False
(y : Vehicle) -> True

3 The Union Calculus λu

This section introduces the simplified union calculus λu. The distinctive feature of the λu

calculus is a type-based switch expression with disjoint cases, which can be used to eliminate
values with union types. In this first formulation of λu we only include the essential features

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:11

Type A, B, C ::= ⊤ | ⊥ | Int | A → B | A ∨ B | Null
Expr e ::= x | i | λx.e | e1 e2 | switch e {(x : A) → e1, (y : B) → e2} | null
Value v ::= i | λx.e | null
Context Γ ::= · | Γ, x : A

A <: B (Subtyping)

A <: ⊤
s-top

Null <: Null
s-null

Int <: Int
s-int

B1 <: A1 A2 <: B2

A1 → A2 <: B1 → B2
s-arrow

⊥ <: A
s-bot

A <: C B <: C
A ∨ B <: C

s-ora

A <: B
A <: B ∨ C

s-orb
A <: C

A <: B ∨ C
s-orc

Figure 2 Syntax and subtyping for λu.

of a calculus with disjoint switches: union types and disjoint switches. Section 4 then presents
a richer formulation of λu with several extensions of practical relevance. We adapt the notion
of disjointness from previous work on disjoint intersection types [45] to λu, and show that λu

is type sound and deterministic.

3.1 Syntax

Figure 2 shows the syntax for λu. Metavariables A, B and C range over types. Types include
top (⊤), bottom (⊥), integer types (Int), function types (A → B), union types (A ∨ B) and
null types (Null). Metavariable e ranges over expressions. Expressions include variables
(x), integers (i), lambda abstractions (λx .e), applications (e1 e2), a novel switch expression
(switch e {(x : A) → e1, (y : B) → e2}) and the null expression. The switch expression
evaluates a specific branch by matching the types in the cases. Note that, although the
switch expression in λu only has two branches, a multi-branch switch can be easily encoded
by employing nested switch expressions. We model the two-branch switch for keeping the
formalization simple, but no expressive power is lost compared to a multi-branch switch.
Metavariable v ranges over values. Values include i, λx .e and null expressions. Finally, a
context (Γ) maps variables to their associated types.

3.2 Subtyping

The subtyping rules for λu are shown at the bottom of Figure 2. The rules are standard.
Rule s-top states that all types are subtypes of the ⊤ type. Rule s-bot states that ⊥ type is
subtype of all types. Rule s-null states that the Null type is a subtype of itself. Rules s-int
and s-arrow are standard rules for integers and functions respectively. Functions are
contravariant in input types and covariant in output types. Rules s-ora, s-orb, and s-orc
deal with the subtyping for union types. Rule s-ora says that the union type of A and B is
a subtype of another type C if both A and B are subtypes of C . Rules s-orb and s-orc
state if a type is subtype of one of the components of a union type, then it is subtype of the
union type. The subtyping relation for λu is reflexive and transitive.

ECOOP 2022

25:12 Union Types with Disjoint Switches

3.3 Disjointness
The motivation for a definition of disjointness based on bottom-like types is basically that
in disjoint switches, the selection of branches can be viewed as a type-safe downcast. For
instance, recall the example in Section 2.5:
switch x {

(y : String | Int) -> 0
(y : Int | Bool) -> 1

}

Here x may have type Int | String | Bool and the two branches in the disjoint switch cover
two subtypes String | Int and Int | Bool. When considered together those subtypes cover
all possibilities for the value x (i.e. x can be either an integer, a string or a boolean, and the
two cases cover all those possibilities). The exhaustiveness of the downcasts is what ensures
that the downcasts are type-safe (that is they cannot fail at runtime). However, we also need
to ensure that the two cases do not overlap to prevent ambiguity. In essence, in this simple
setting of λu, checking that two types do not overlap amounts to check that there are no
basic types (like Int or Bool) in common. In other words the only common subtypes should
be bottom-like types.

Bottom-Like Types. Bottom-like types are types that are equivalent (i.e. both supertypes
and subtypes) to ⊥. In λu, there are infinitely many such types, and they all are uninhabited
by values. According to the inductive definition shown at the top of Figure 3, they include
the bottom type itself (via rule bl-bot) and unions of two bottom-like types (via rule bl-or),
e.g. ⊥ ∨ ⊥. The correctness of our definition for bottom-like types is established by the
following property:

▶ Lemma 3 (Bottom-Like Soundness and Completeness). ⌋A⌊ if and only if ∀B, A <: B.

Declarative Disjointness. The declarative definition for disjointness is as follows:

▶ Definition 4 (⊥-Disjointness). A ∗ B ::= ∀ C, if C <: A and C <: B then ⌋C⌊

That is, two types are disjoint if all their common subtypes are bottom-like. We give a few
examples next, employing a bold font to highlight the types being compared for disjointness:

1. A = Int, B = Int → Bool : Int and Int → Bool are disjoint types. All common subtypes
of Int and Int → Bool are bottom-like types, including ⊥ and unions of ⊥ types.

2. A = Int ∨ Bool, B = ⊥ : Int ∨ Bool and ⊥ are disjoint types. All common subtypes are
bottom-like. In general, the type ⊥ (or any bottom-like type) is disjoint to another type.

3. A = Int, B = ⊤ : Int and ⊤ are not disjoint types because they share a common subtype
Int which is not bottom-like. In general no type is disjoint to ⊤, except for bottom-like
types. Also, one type is not disjoint with itself, unless it is bottom-like.

4. A = Int → Bool, B = String → Char : The types Int → Bool and String → Char are not
disjoint, since we can find non-bottom-like types that are subtypes of both types. For
instance ⊤ → ⊥ is a subtype of both types. More generally, any two function types can
never be disjoint: it is always possible to find a common subtype, which is not bottom-like.

Disjointness for Intersection Types. In essence, disjointness for λu is dual to the disjointness
notion in λi [45], a calculus with disjoint intersection types. In λu, two types are disjoint if
they do not share any common subtype which is not bottom-like. While in λi, two types are

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:13

⌋A⌊ (Bottom-Like Types)

⌋⊥⌊
bl-bot

⌋A⌊ ⌋B⌊
⌋A ∨ B⌊

bl-or

A ∗a B (Algorithmic Disjointness)

A ∗a ⊥
ad-btmr

⊥ ∗a A
ad-btml

Int ∗a A → B
ad-intl

A → B ∗a Int
ad-intr

Null ∗a Int
ad-null-intl

Int ∗a Null
ad-null-intr

Null ∗a A → B
ad-null-funl

A → B ∗a Null
ad-null-funr

A ∗a C B ∗a C
A ∨ B ∗a C

ad-orl
A ∗a B A ∗a C

A ∗a B ∨ C
ad-orr

Γ ⊢ e : A (Typing)

Γ ⊢ i : Int
typ-int

Γ ⊢ null : Null
typ-null

Γ ⊢ e : A A <: B
Γ ⊢ e : B

typ-sub

Γ ⊢ e1 : A → B Γ ⊢ e2 : A
Γ ⊢ e1 e2 : B

typ-app
Γ, x : A ⊢ e : B

Γ ⊢ λx.e : A → B
typ-abs

x : A ∈ Γ
Γ ⊢ x : A

typ-var

Γ ⊢ e : A ∨ B Γ, x : A ⊢ e1 : C Γ, y : B ⊢ e2 : C A ∗ B
Γ ⊢ switch e {(x : A) → e1, (y : B) → e2} : C

typ-switch

Figure 3 Bottom-like types, algorithmic disjointness and typing for λu.

disjoint if they do not share any common supertype which is not top-like (i.e. equivalent to
⊤). While a disjoint switch provides deterministic behavior for downcasting, disjointness
in intersection types prevents ambiguity in upcasting. In a type-safe setting, if two values
v1 and v2 (of type A1 and A2) can both be upcasted to type B, then B must be a common
supertype of A1 and A2. The disjointness restriction of A1 and A2 means they cannot have
any non-top-like common supertype, so when the two values together upcasted to a type like
Int, only one of them can contribute to the result. Prior work on disjoint intersection types is
also helpful to find an algorithmic formulation of disjointness. Declarative disjointness does
not directly lead to an algorithm. However, we can find an algorithmic formulation that
employs dual rules to those for disjoint intersection types.

Algorithmic Disjointness. We present an algorithmic version of disjointness in the middle
of Figure 3. Rules ad-btmr and ad-btml state that the ⊥ type is disjoint to all types.
Rules ad-intl and ad-intr state that Int and A → B are disjoint types. Algorithmic
disjointness can further be scaled to more primitive disjoint types such as Bool and String
by adding more rules similar to rules ad-intl and ad-intr for additional primitive types.
Rules ad-null-intl and ad-null-intr state that Null and Int are disjoint types. Similarly,

ECOOP 2022

25:14 Union Types with Disjoint Switches

rules ad-null-funl and ad-null-funr state that Null and A → B are disjoint types.
Rules ad-orl and ad-orr are two symmetric rules for union types. Any type C is disjoint to
an union type A ∨ B if C is disjoint to both A and B. We show that algorithmic disjointness
is sound and complete with respect to its declarative specification (Definition 4).

▶ Theorem 5 (Soundness and Completeness of Algorithmic Disjointness). A ∗a B if and only
if A ∗ B.

A natural property of λu is that if type A and type B are two disjoint types, then subtypes
of A are disjoint to subtypes of B. This property dualises the covariance of disjointness
property in calculi with disjoint intersection types [4].

▶ Lemma 6 (Disjointness contravariance). If A ∗ B and C <: A and D <: B then C ∗ D.

3.4 Typing
The typing rules are shown at the bottom of Figure 3. They are mostly standard. An integer
has type Int, null has type Null and variable x gets type from the context. Rule typ-app is
the standard rule for function application. Similarly, rule typ-sub and rule typ-abs are
standard subsumption and abstraction rules respectively. The most interesting and novel
rule is for switch expressions (rule typ-switch). It has four conditions. First, Γ ⊢ e : A ∨ B
ensures exhaustiveness of the cases in the switch: e must check against the types in the
branches of the switch. The next two conditions ensure that branches of case expressions
are well-typed and have type C , where the input variable is bound to type A and to type
B respectively in the two branches. Finally, A ∗ B guarantees the disjointness of A and B.
This forbids overlapping types for the branches of case expressions to avoid non-deterministic
results. Since all the branches have type C , the whole switch expression has type C . Note
that the two branches can have different return types. For example, if e1 and e2 have type
Int and String respectively, the whole expression can have type Int ∨ String.

3.5 Operational Semantics
Now we discuss the small-step operational semantics of λu. An important aspect of this
semantics is that union elimination is type-directed: types are used to pick the branch of the
switch expression.

Figure 4 shows the operational semantics of λu. Rules step-appl, step-appr, and
step-beta are the standard call-by-value reduction rules for applications. Of particular
interest are rules step-switch, step-switchl, and step-switchr, which reduce the switch
expressions. First, rule step-switch reduces the case expression e, until it becomes a value
v, at which point we must choose between the two branches of switch. We do so by inspecting
the type of v: if the approximate type of v is a subtype of type of the left branch, then
rule step-switchl evaluates the left branch of the switch expression, or otherwise if it is a
subtype of the type of the right branch, rule step-switchr evaluates the right branch.

Note that the approximate type definition gives only a subtype of the actual type for
a lambda value. This works, because the approximate type is only employed to allow the
selection of a case with a function type, and in λu two function types can never be disjoint.
Therefore, if there is a branch with a function type, then that must be the branch that
applies to a lambda value. Note also that the program has been type-checked before hand, so
we know that the static type of the value is compatible with the types on the branches. The
subtyping condition in rules step-switchl and step-switchr is important, as it provides
flexibility for the value to have various subtypes of A and B, instead of strictly having those

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:15

e −→ e′ (Operational Semantics)

e1 −→ e′
1

e1 e2 −→ e′
1 e2

step-appl
e −→ e′

v e −→ v e′ step-appr
(λx.e) v −→ e[x ; v]

step-beta

e −→ e′

switch e {(x : A) → e1, (y : B) → e2} −→ switch e′ {(x : A) → e1, (y : B) → e2}
step-switch

⌊v⌋ <: A
switch v {(x : A) → e1, (y : B) → e2} −→ e1[x ; v]

step-switchl

⌊v⌋ <: B
switch v {(x : A) → e1, (y : B) → e2} −→ e2[y ; v]

step-switchr

Approximate Type ⌊v⌋

⌊i⌋ = Int
⌊λx.e⌋ = ⊤ → ⊥

⌊null⌋ = Null

Figure 4 Operational semantics and approximate type definitions for λu.

types. Recall that the typing rule for switch (rule typ-switch) requires that types of left and
right branches of a switch expression to be disjoint. This ensures that rules step-switchl
and step-switchr cannot overlap, which, as we will see, is important for the operational
semantics to be deterministic.

3.6 Type Soundness and Determinism
In this section, we prove that λu is type sound and deterministic. Type soundness is
established by the type preservation and progress theorems. Type preservation (Theorem 7)
states that types are preserved during reduction. Progress (Theorem 8) states that well
typed programs never get stuck: a well typed expression e is either a value or it can reduce
to some other expression e′.

▶ Theorem 7 (Type Preservation). If Γ ⊢ e : A and e −→ e′ then Γ ⊢ e′ : A.

▶ Theorem 8 (Progress). If · ⊢ e : A then either e is a value; or e −→ e′ for some e′.

Determinism of λu (Theorem 10) ensures that a well-typed program reduces to a unique
result. In particular, it guarantees that switch expressions are not order-sensitive: at any
time, only one of the rules step-switchl and step-switchr can apply. The determinism
of the switch expression relies on an essential property that a value cannot check against two
disjoint types (Lemma 9).

▶ Lemma 9 (Exclusivity of Disjoint Types). If A ∗ B then ∄ v such that both Γ ⊢ v : A and
Γ ⊢ v : B holds.

▶ Theorem 10 (Determinism). If Γ ⊢ e : A and e −→ e1 and e −→ e2 then e1 = e2.

3.7 An Alternative Specification for Disjointness
The current definition of disjointness (Definition 4) works well for the calculus presented
in this section. But it is not the only possible formulation of disjointness. An equivalent
formulation of disjointness is:

▶ Definition 11 (∧-Disjointness). A ∗ B ::= ∄ C◦, C◦ <: A and C◦ <: B

ECOOP 2022

25:16 Union Types with Disjoint Switches

According to the new definition, two types are disjoint if they do not have common subtypes
that are ordinary. Ordinary types (denoted by C◦) are essentially those types that are
primitive, such as integers and functions (see Figure 5 for a formal definition).

For the calculus presented in this section, we prove that the new definition is equivalent
to the previous definition of disjointness.

▶ Lemma 12 (Disjointness Equivalence). Definition 11 (∧-Disjointness) is sound and complete
to Definition 4 (⊥-Disjointness) in λu defined in this section.

Why do we introduce the new definition of disjointness? It turns out that the previous
definition is not sufficient when the calculus is extended with intersection types. As we will
see, the new definition will play an important role in such variant of the calculus.

4 λu with Intersections, Distributive Subtyping and Nominal Types

In this section we extend λu with intersection types, nominal types and an enriched distributive
subtyping relation. The study of an extension of λu with intersection types is motivated by
the fact that most languages with union types also support intersection types (for example
Ceylon, Scala or TypeScript). Furthermore, languages like Ceylon or Scala also support
some form of distributive subtyping, as well as nominal types. Therefore it is important
to understand whether those extensions can be easily added or whether there are some
challenges. As it turns out, adding intersection types does pose a challenge, since the notion
of disjointness inspired from disjoint intersection types [45] no longer works. Moreover
subtyping relations with distributive subtyping add significant complexity, and we need an
extension that supports nominal types as well. We show that desirable properties, including
type soundness and determinism, are preserved in the extended version of λu. Moreover we
prove that both disjointness and subtyping have sound, complete and decidable algorithms.

4.1 Syntax, Well-formedness and Ordinary Types
The syntax for this section mostly follows from Section 3, with the additional syntax given
in Figure 5. The most significant difference and novelty in this section is the addition of
intersection types A ∧ B and an infinite set of nominal types. We use metavariable P to
stand for nominal types. Expressions are extended with a new expression (new P) to create
instances of nominal types. The expression new P is also a value. Context Γ stays the same
as in Section 3. We add a new context ∆, to track nominal types and their supertypes. For
example, adding P1 ≤ P2 to ∆ declares a new nominal type P1 that is a subtype of P2. For a
well-formed context, the supertype P2 has to be declared before P1. We also allow to declare
a new nominal type P1 with ⊤ as its supertype by adding P1 ≤ ⊤ to ∆. Metavariable A◦, B◦

and C◦ ranges over ordinary types [28]. There are four kinds of ordinary types: integers,
null, function types and nominal types. Well-formed types and well-formedness of ordinary
contexts ∆ are shown in Figure 5.

Remark on Nominal Types. Note that our formulation of nominal types is simplified in
two ways compared to languages like Java. Firstly, we do not consider arguments when
building new expressions (i.e. we do not allow expressions like new Person("John")). Secondly,
we also do not introduce class declarations, which would allow nominal types to be associated
with method implementations. We follow a design choice for nominal types similar to
Featherweight Java [38]. Featherweight Java uses a fixed size context for nominal types.
Diamond inheritance is also not supported in Featherweight Java, and we follow that design

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:17

A, B, C ::= ... | A ∧ B | P
A◦, B◦, C◦ ::= Int | Null | A → B | P
e ::= ... | new P
v ::= ... | new P
Γ ::= · | Γ, x : A
∆ ::= · | ∆, P1 ≤ P2 | ∆, P ≤ ⊤

∆ ⊢ A (Well-formed Types)

∆ ⊢ ⊤
wft-top

∆ ⊢ ⊥
wft-bot

∆ ⊢ Int
wft-int

∆ ⊢ Null
wft-null

∆ ⊢ A ∆ ⊢ B
∆ ⊢ A → B

wft-arrow
P ∈ dom ∆

∆ ⊢ P
wft-prim

∆ ⊢ A ∆ ⊢ B
∆ ⊢ A ∨ B

wft-or

∆ ⊢ A ∆ ⊢ B
∆ ⊢ A ∧ B

wft-and

ok ∆ (Well-formed Nominal Contexts)

ok ·
okp-empty

ok ∆ P /∈ dom ∆
ok ∆, P ≤ ⊤

okp-cons

ok ∆ ∆ ⊢ P2 P1 /∈ dom ∆
ok ∆, P1 ≤ P2

okp-sub

Figure 5 Additional syntax and well-formedness.

choice as well. However, we believe that supporting diamond inheritance in our calculus is
relatively easy. These simplifications keep the calculus simple, while capturing the essential
features that matter for disjointness and the formalization of disjoint switches. Allowing for
a more complete formulation of nominal types can be done in mostly standard ways.

4.2 Distributive Subtyping
Another interesting feature of this section is the addition of distributive subtyping to λu.
Ceylon employs an enriched distributive subtyping relation [42] that is based on the B+
logic [50, 53]. To obtain an equivalent algorithmic formulation of subtyping, we employ the
idea of splittable types [36], but extend that algorithm with the Null type and nominal types.

Distributive subtyping relation. Figure 6 shows a declarative version of distributive sub-
typing for λu with intersection and nominal types. Subtyping includes axioms for reflexivity
(rule ds-refl) and transitivity (rule ds-trans). Rules ds-top, ds-bot, ds-arrow, and
ds-ora have been discussed in Section 3. Rule ds-prim states that a nominal type is a
subtype of type A if it is declared as subtype of A in ∆. Note that A can either be a nominal
type or ⊤ under a well-formed context ∆. With the help of rule ds-trans, the subtyping of
primitive types can also be constructed indirectly, e.g. P1 ≤ ⊤, P2 ≤ P1, P3 ≤ P2 ⊢ P3 ≤ P1.
Compared with the algorithmic formulation, having an explicit transitivity rule considerably

ECOOP 2022

25:18 Union Types with Disjoint Switches

∆ ⊢ A ≤ B (Declarative Subtyping with Distributivity)

ok ∆ ∆ ⊢ A
∆ ⊢ A ≤ A

ds-refl
∆ ⊢ A ≤ B ∆ ⊢ B ≤ C

∆ ⊢ A ≤ C
ds-trans

∆ ⊢ B1 ≤ A1 ∆ ⊢ A2 ≤ B2

∆ ⊢ A1 → A2 ≤ B1 → B2
ds-arrow

ok ∆ P ≤ A ∈ ∆
∆ ⊢ P ≤ A

ds-prim

∆ ⊢ A1 ≤ B ∆ ⊢ A2 ≤ B
∆ ⊢ A1 ∨ A2 ≤ B

ds-ora
ok ∆ ∆ ⊢ A1 ∆ ⊢ A2

∆ ⊢ A1 ≤ A1 ∨ A2
ds-orb

ok ∆ ∆ ⊢ A1 ∆ ⊢ A2

∆ ⊢ A2 ≤ A1 ∨ A2
ds-orc

∆ ⊢ B ≤ A1 ∆ ⊢ B ≤ A2

∆ ⊢ B ≤ A1 ∧ A2
ds-anda

ok ∆ ∆ ⊢ A1 ∆ ⊢ A2

∆ ⊢ A1 ∧ A2 ≤ A1
ds-andb

ok ∆ ∆ ⊢ A1 ∆ ⊢ A2

∆ ⊢ A1 ∧ A2 ≤ A2
ds-andc

ok ∆ ∆ ⊢ A1 ∆ ⊢ A2 ∆ ⊢ B
∆ ⊢ (A1 → B) ∧ (A2 → B) ≤ (A1 ∨ A2) → B

ds-distarru
ok ∆ ∆ ⊢ A

∆ ⊢ A ≤ ⊤
ds-top

ok ∆ ∆ ⊢ A1 ∆ ⊢ A2 ∆ ⊢ B
∆ ⊢ (A1 ∨ B) ∧ (A2 ∨ B) ≤ (A1 ∧ A2) ∨ B

ds-distor
ok ∆ ∆ ⊢ A

∆ ⊢ ⊥ ≤ A
ds-bot

ok ∆ ∆ ⊢ A ∆ ⊢ B1 ∆ ⊢ B2

∆ ⊢ (A → B1) ∧ (A → B2) ≤ A → (B1 ∧ B2)
ds-distarr

Figure 6 Distributive subtyping for λu with intersection types and nominal types.

simplifies the rules for nominal types. Rules ds-orb and ds-orc state that a subpart of
a union type is a subtype of whole union type. Rule ds-anda states that a type A is a
subtype of the intersection of two types B and C only if A is a subtype of both B and C .
Rules ds-andb and ds-andc state that intersection type A1 ∧ A2 is a subtype of both A1
and A2 separately. Rule ds-distarr distributes function types over intersection types. It
states that (A → B1) ∧ (A → B2) is a subtype of A → (B1 ∧ B2). Rule ds-distarru states
that (A1 → B) ∧ (A2 → B) is a subtype of (A1 ∨ A2) → B type. Rule ds-distor distributes
intersections over unions.

Algorithmic Subtyping. Distributive rules make it hard to eliminate the transitivity rule.
Our algorithmic formulation of distributive subtyping is based on a formulation using
splittable types by Huang and Oliveira [36]. The basic idea is to view the distributive rules
as some expansion of intersection and union types. For example, rule ds-distarr makes
A → B1 ∧ B2 and (A → B1) ∧ (A → B2) mutual subtypes. Thus A → B1 ∧ B2 is treated
like (A → B1) ∧ (A → B2) in the three intersection-related rules as-anda, as-andb, and
as-andc. Here we use A ≊ B ∧ C to denote that type A can be split into B and C (and
therefore, A is equivalent to B ∧ C) according to the procedure designed by Huang and
Oliveira. Union and union-like types (e.g. (A1 ∨ A2) ∧ B ≊ A1 ∧ B ∨ A2 ∧ B) are handled
in similar way in rules as-ora, as-orb, and as-orc. For further details of algorithmic
subtyping we refer to their paper.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:19

∆ ⊢ A <: B (Algorithmic Subtyping with Distributivity)

∆ ⊢ B1 <: A1 ∆ ⊢ A2 <: B2

∆ ⊢ A1 → A2 <: B1 → B2
as-arrow

ok (∆, P1 <: P2) ∆ ⊢ P2 <: P3

∆, P1 <: P2 ⊢ P1 <: P3
as-primEq

ok ∆ ∆ ⊢ A
∆ ⊢ A <: A

as-refl
ok (∆, P2 <: A) P1 ̸= P2 ∆ ⊢ P1 <: P3

∆, P2 <: A ⊢ P1 <: P3
as-primNeq

A ≊ A1 ∨ A2 ∆ ⊢ A1 <: B ∆ ⊢ A2 <: B
∆ ⊢ A <: B

as-ora
ok ∆ ∆ ⊢ A

∆ ⊢ A <: ⊤
as-top

A ≊ A1 ∨ A2 ∆ ⊢ B <: A1

∆ ⊢ B <: A
as-orb

A ≊ A1 ∨ A2 ∆ ⊢ B <: A2

∆ ⊢ B <: A
as-orc

A ≊ A1 ∧ A2 ∆ ⊢ B <: A1 ∆ ⊢ B <: A2

∆ ⊢ B <: A
as-anda

ok ∆ ∆ ⊢ A
∆ ⊢ ⊥ <: A

as-bot

A ≊ A1 ∧ A2 ∆ ⊢ A1 <: B
∆ ⊢ A <: B

as-andb
A ≊ A1 ∧ A2 ∆ ⊢ A2 <: B

∆ ⊢ A <: B
as-andc

Figure 7 Algorithmic subtyping for λu with distributivity, intersection and nominal types.

Subtyping Nominal Types. However, Huang and Oliveira’s algorithm does not account
for Null and nominal types. We add the nominal context ∆ in the subtyping judgment
and extend the subtyping algorithm with Null and nominal types. Nominal types are not
splittable, and their subtyping relation is defined by the transitive closure of the context.
They are supertypes of ⊥ and subtypes of ⊤, but not related with other primitive types like
Int and Null. So for nominal types, we mainly focus on checking the subtyping relationship
among them in our algorithm. Given a well-formed context, any nominal type P appears
only once in a subtype position as an explicit declaration for P, and its direct supertype, if is
not ⊤, must be declared before P. Thus if ∆ ⊢ P1 <: P2 holds, either P2 is introduced before
P1 in ∆, or they are the same type, in which case the goal can be solved by rule as-refl.
For the other cases, we recursively search for P1 in all subtype positions of the context ∆
(rule as-primNeq). When we find P1, we check its direct supertype. If it is ⊤, no other
nominal types can be supertypes of P1. So in rule as-primEq, we only consider when the
direct supertype is another primitive P2. For P3 to be a supertype of P1, it must either equal
to P2, or it is related to P2 by the smaller context. In either case, we can prove that P3 is a
supertype of the direct supertype of P1.

Inversion Lemmas for Type Soundness. Having an algorithmic formulation of subtyping
is useful to prove several inversion lemmas that are used in the type soundness proof. For
instance, it allows us to prove the following lemma:

▶ Lemma 13 (Inversion on Function Types). If ∆ ⊢ A1 → A2 <: B1 → B2 then ∆ ⊢ B1 <: A1
and ∆ ⊢ A2 <: B2.

While the additional distributive rules make function types more flexible, they retain the
contravariance of argument types and covariance of return types. In addition, we show the
formulation is sound and complete to the declarative subtyping and it is decidable whether a
subtyping judgment holds under a given context.

ECOOP 2022

25:20 Union Types with Disjoint Switches

▶ Lemma 14 (Equivalence of subtyping). ∆ ⊢ A ≤ B if and only if ∆ ⊢ A <: B.

▶ Lemma 15 (Decidability of subtyping). ∆ ⊢ A ≤ B is decidable.

4.3 Disjointness Specification

Disjointness is another interesting aspect of the extension of λu. Unfortunately, Definition 4
does not work with intersection types. In what follows, we first explain why Definition 4 does
not work, and then we show how to define disjointness in the presence of intersection types.

Bottom-like types, intersection types and disjointness. Recall that disjointness in Section 3
(Definition 4) depends on bottom-like types, where two types are disjoint only if all their
common subtypes are bottom-like. However, this definition no longer works with the addition
of intersection types. According to the subtyping rule for intersection types, any two types
have their intersection as one common subtype. For non-bottom-like types, their intersection
is also not bottom-like. For example, type Int and type Bool now have a non-bottom like
subtype Int ∧ Bool. In other words, the disjointness definition fails, since we can always find a
common non-bottom-like subtype for any two (non-bottom-like) types.

A possible solution: the Ceylon approach. A possible solution for this issue is to add a
subtyping rule which makes intersections of disjoint types subtypes of ⊥.

A ∗ B
A ∧ B <: ⊥

s-disj

This rule is adopted by the Ceylon language [42]. With the rule s-disj now the type Int ∧ Bool
would be a bottom-like type, and the definition of disjointness used in Section 3 could still
work. The logic behind this rule is that if we interpret types as sets of values, and intersection
as set intersection, then intersecting disjoint sets is the empty set. In other words, we would
get a type that has no inhabitants. For instance the set of all integers is disjoint to the set
of all booleans, and the intersection of those sets is empty. However we do not adopt the
Ceylon solution here for two reasons:

1. Rule s-disj complicates the system because it adds a mutual dependency between
subtyping and disjointness: disjointness is defined in terms of subtyping, and subtyping
now uses disjointness as well in rule s-disj. This creates important challenges for
the metatheory. In particular, the completeness proof for disjointness becomes quite
challenging.

2. Additionally, the assumption that intersections of disjoint types are equivalent to ⊥ is
too strong for some calculi with intersection types. If a merge operator [49] is allowed in
the calculus, intersection types can be inhabited with values (for example, in λi [45], the
type Int ∧ Bool is inhabited by 1, , True). Considering those types bottom-like would lead
to a problematic definition of subtyping, since some bottom-like types (those based on
disjoint types) would be inhabited.

For those reasons we adopt a different approach in λu. Nevertheless, in the extended version
of the paper we show that it is possible to create an extension of λu that includes (and in
fact generalizes) the Ceylon-style rule s-disj.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:21

Lowest Ordinary Subtypes (LOS) |A|∆
|⊤|∆ = {Int, ⊤ → ⊥, Null} ∪ dom ∆

|⊥|∆ = {}

|Int|∆ = {Int}
|A → B|∆ = {⊤ → ⊥}

|A ∨ B|∆ = |A|∆ ∪ |B|∆
|A ∧ B|∆ = |A|∆ ∩ |B|∆
|Null|∆ = {Null}
|P|∆ = {P} ∪ ∆(P)

Nominal Subtypes ∆(A)

·(A) = {}

(∆′, P ≤ B)(A) =

 {P} ∪ ∆′(A) if P ≤ A ∈ ∆

∆′(A) otherwise

ok ∆ ∆ ⊢ P
∆; Γ ⊢ new P : P

ptyp-prim

Figure 8 Lowest ordinary subtypes function and additional typing rule for λu with intersection
types and nominal types.

Disjointness based on ordinary types to the rescue. To solve the problem with the
disjointness specification, we resort to the alternative definition of disjointness presented in
Section 3.7. Note that now the disjointness definition also contains ∆ as an argument to
account for nominal types.

▶ Definition 16 (∧-Disjointness). ∆ ⊢ A ∗ B ::= ∄ C◦, ∆ ⊢ C◦ <: A and ∆ ⊢ C◦ <: B.

Interestingly, while in Section 3 such definition was equivalent to the definition using
bottom-like types, this is no longer the case for λu with intersection types. To see why,
consider again the types Int and Bool. Int and Bool do not share any common ordinary subtype.
Therefore, Int and Bool are disjoint types according to Definition 16. We further illustrate
Definition 16 with a few concrete examples:

1. A = Int ∨ Bool, B = ⊥ : Since there is no ordinary type that is a subtype of both
Int ∨ Bool and ⊥, Int ∨ Bool and ⊥ are disjoint types. In general, the ⊥ type is disjoint to
all types because ⊥ does not have any ordinary subtype.

2. A = Int ∧ Bool, B = Int ∨ Bool : There is no ordinary type that is a subtype of both
Int ∧ Bool and Int ∨ Bool. Therefore, Int ∧ Bool and Int ∨ Bool are disjoint types. In general,
an intersection of two disjoint types (Int ∧ Bool in this case) is always disjoint to all types.

4.4 Algorithmic Disjointness
The change in the disjointness specification has a significant impact on an algorithmic
formulation. In particular, it is not obvious at all how to adapt the algorithmic formulation
in Figure 3. To obtain a sound, complete and decidable formulation of disjointness, we
employ the novel notion of lowest ordinary subtypes.

Lowest ordinary subtypes (|A|∆). Figure 8 shows the definition of lowest ordinary subtypes
(LOS) (|A|∆). LOS is defined as a function which returns a set of ordinary subtypes of the
given input type. No ordinary type is a subtype of ⊥. The only ordinary subtype of Int is
Int itself. The function case is interesting. Since no two functions are disjoint in the calculus
proposed in this paper, the case for function types A → B returns ⊤ → ⊥. This type is
the least ordinary function type, which is a subtype of all function types. Lowest ordinary
subtypes of ⊤ are Int, ⊤ → ⊥, Null and all the nominal types defined in ∆. In the case of
union types A ∨ B, the algorithm collects the LOS of A and B and returns the union of the
two sets. For intersection types A ∧ B the algorithm collects the LOS of A and B and returns
the intersection of the two sets. The lowest ordinary subtype of Null is Null itself. Finally,
the LOS of P is the union of P itself with all subtypes of P defined in ∆. Note that LOS is
defined as a structurally recursive function and therefore its decidability is immediate.

ECOOP 2022

25:22 Union Types with Disjoint Switches

Algorithmic disjointness. With LOS, an algorithmic formulation of disjointness is straight-
forward:

▶ Definition 17. ∆ ⊢ A ∗a B ::= |A|∆ ∩ |B|∆ = {}.

The algorithmic formulation of disjointness in Definition 17 states that two types A and B are
disjoint under the context ∆ if they do not have any common lowest ordinary subtypes. In
other words, the set intersection of |A|∆ and |B|∆ is the empty set. Note that this algorithm
is naturally very close to Definition 16.

Soundness and completeness of algorithmic disjointness. Next, we show that disjointness
algorithm is sound and complete with respect to disjointness specifications (Theorem 18).
Soundness and completeness of LOS are essential to prove Theorem 18. Both of these
properties are shown in Lemma 19 and Lemma 20 respectively.

▶ Theorem 18 (Disjointness Equivalence). ∆ ⊢ A ∗a B if and only if ∆ ⊢ A ∗ B.

▶ Lemma 19 (Soundness of |A|∆). ∀ well-formed ∆ and A and B that are well-formed under
∆, if B ∈ |A|∆, then ∆ ⊢ B <: A.

▶ Lemma 20 (Completeness of |A|∆). ∀ A B◦, if ∆ ⊢ B◦ <: A, then B◦ ∈ |A|∆, or B◦ is
an arrow type and ⊤ → ⊥ ∈ |A|∆.

4.5 Typing, Semantics and Metatheory
Both typing and the operational semantics are parameterized by the nominal context ∆.
The typing rules are extended with a rule for nominal types rule ptyp-prim as shown at the
right side in Figure 8. The typing rule ptyp-prim states that under a well-formed context ∆
and well-formed type P, new P has type P. No additional reduction rule is required because
new P is a value. However, the rules step-switchl and step-switchr require ∆ because
they do a subtyping check. We illustrate the updated rule step-switchl next:

∆ ⊢ ⌊v⌋ <: A
∆ ⊢ switch v {(x : A) → e1, (y : B) → e2} −→ e1[x ; v]

nstep-switchl

Rule step-switchr is updated similarly. All the other rules are essentially the same as in
Section 3, modulo the extra nominal context ∆.

Example. Assuming a context ∆ = Person ≤ ⊤, Student ≤ Person, Robot ≤ ⊤, y : Person |
Robot and x : Student, we could write the following two switches:
switch (y) // Accepted !

(z : Person) -> False
(z : Robot) -> True

switch (x) // Rejected !
(z : Person) -> False
(z : Student) -> True

In the above code, the first switch, using y is accepted, while the second one (using x) is
rejected because the types overlap in that case.

Key Properties. We proved that λu with intersection types, nominal types and subtyping
distributivity preserves type soundness and determinism.

▶ Theorem 21 (Type Preservation). If ∆; Γ ⊢ e : A and e −→ e′ then ∆; Γ ⊢ e′ : A.

▶ Theorem 22 (Progress). If ∆; · ⊢ e : A then either e is a value; or e can take a step to e′.

▶ Theorem 23 (Determinism). If ∆; Γ ⊢ e : A and e −→ e1 and e −→ e2 then e1 = e2.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:23

5 Related Work

Union types. Union types were first introduced by MacQueen et al. [41]. They proposed
a typing rule that eliminates unions implicitly. The rule breaks type preservation under
the conventional reduction strategy of the lambda calculus. Barbanera et al. [9] solved the
problem by reducing all copies of the same redex in parallel. Dunfield and Pfenning [30, 29]
took another approach to support mutable references. They restricted the elimination typing
rule to only allow a single occurrence of a subterm with a union type when typing an
expression. Pierce [47] proposed a novel single-branch case construct for unions. As pointed
by Dunfield and Pfenning, compared to the single occurrence approach, the only effect of
Pierce’s approach is to make elimination explicit.

Union types and elimination constructs based on types are widely used in the context of
XML processing languages [35, 10], and have inspired proposals for object oriented languages
[37]. Generally speaking, the elimination constructs in those languages offer a first-match
semantics, where cases can overlap and reordering the cases may change the semantics of
the program. This is in contrast to our approach. Union types have also been studied in
the context of XDuce programming language [35]. XDuce employs regular expression types.
Pattern matching can be on expressions and types in XDuce. Expressions are considered as
special cases of types. CDuce [10] is an extension of XDuce. Work on the more foundational
aspects of CDuce, and in particular on semantic subtyping [31] and set-theoretic types, also
employs a form of first-match semantics elimination construct, though in a different form.
In particular, work by Castagna et al. [18, 20] proposes a conditional construct that can
test whether a value matches a type. If it matches then the first branch is executed and the
type for the value is refined. Otherwise, the second branch is executed and the type of the
value is refined to be the negation of the type (expressing that the value does not have such
type). Union types are also studied in the context of semantic subtyping and object-oriented
calculi [6, 5, 27] which focus on designing subtyping algorithms to employ semantic subtyping
in OOP. In contrast, we study a deterministic and type-safe switch construct for union
elimination.

Muehlboeck and Tate [42] give a general framework for subtyping with intersection
and union types. They illustrate the significance of their framework using the Ceylon
programming language. The main objective of their work is to define a generic framework
for deriving subtyping algorithms for intersection and union types in the presence of various
distributive subtyping rules. For instance, their framework could be useful to derive an
algorithmic formulation for the subtyping relation presented in Figure 6. They also briefly
cover disjointness in their work. As part of their framework, they can also check disjointness
given some disjointness axioms. For instance, for λu, such axioms could be similar to
rule ad-btmr or rule ad-intl in Figure 3. However, they do not have a formal specification
of disjointness. Instead they assume that some sound specification exists and that the axioms
respect such specification. If some unsound axioms are given to their framework (say Int∗a Int)
this would lead to a problematic algorithm for checking disjointness. In our work we provide
specifications for disjointness together with sound and complete algorithmic formulations. In
addition, unlike us, they do not study the semantics of disjoint switch expressions.

Occurrence Typing. Occurrence typing or flow typing [51] specializes or refines the type of
variable in a type test. An example of occurrence typing is:
Integer occurrence (Integer | String val) {

if (val is Integer) { return val +1; }
else { return toInt(val)+2; }

}

ECOOP 2022

25:24 Union Types with Disjoint Switches

In such code, val initially has type Int ∨ String. The conditional checks if the val is of type
Int. If the condition succeeds, it is safe to assume that val is of type Int, and the type of
val is refined in the branch to be Int. Otherwise, it is safe to assume that val is of type
String, in the other branch (and the type is refined accordingly). The motivation to study
occurrence typing was to introduce typing in dynamically typed languages. Occurrence
typing was further studied by Tobin-Hochstadt and Felleisen [52], which resulted into the
development of Typed Racket. Variants of occurrence typing are nowadays employed in
mainstream languages such as TypeScript, Ceylon or Flow. Castagna et al. [21] extended
occurrence typing to refine the type of generic expressions, not just variables. They also
studied the combination with gradual typing. Occurrence typing in a conditional construct,
such as the above, provides an alternative means to eliminate union types using a first-match
semantics. That is the order of the type tests determines the priority.

Nullable Types. Nullable types are types which may have the null value. Recently, Nieto
et al. [43] proposed an approach with explicit nulls in Scala using union types. The Ceylon
language has implemented a similar approach for a few years now. However our’s and
Ceylon’s approaches are based on disjoint switches to test for nullability, while Nieto et
al.’s [43] approach is based on a simplified form of occurrence typing.

Various approaches have been proposed to deal with nullability such as T? in Kotlin [40],
Swift [7] and Flow [25]. The Checker Framework [46] is another line of related work to
detect null pointer deferences in Java programs. Banerjee et al. [8] proposes an approach to
explicitly associate nullable and non-nullable properties with expressions in Java. However,
differently from our work, in those approaches nullable types are not encoded with union
types. Blanvillain et al. [14] study a notion of match types for type level programming. They
also employ a notion of disjointness in match types and can encode nullable types. However,
they provide match types at the type level and do not use them for union elimination.
Furthermore, they do not study intersection and union types formally. In contrast, we
provide a term level switch construct for union elimination.

Disjoint Intersection Types. Disjoint intersection types were first studied by Oliveira et
al. [45] in the λi calculus to give a coherent calculus for intersection types with a merge
operator. The notion of disjointness used in λu, discussed in Section 3, is inspired by the
notion of disjointness of λi. In essence, disjointness in λu is the dual notion: while in λi two
types are disjoint if they only have top-like supertypes, in λu two types are disjoint if they
only have bottom-like subtypes. Disjoint polymorphism [4] has been studied for calculi with
disjoint intersection types.

None of calculi with disjoint intersection types [45, 11, 4, 12] in the literature includes
union types. One interesting discovery of our work is that the presence of both intersections
and unions in a calculus can affect disjointness. In particular, as we have seen in Section 4,
adding intersection types required us to change disjointness. The notion of disjointness that
was derived from λi stops working in the presence of intersection types. Interestingly, a
similar issue happens when union types are added to a calculus with disjoint intersection
types. If disjointness of two types A and B is defined to be that such types can only have
top-like types, then adding union types immediately breaks such definition. For example,
the types Int and Bool are disjoint but, with union types, Int ∨ Bool is a common supertype
that is not top-like. We conjecture that, to add union types to disjoint intersection types, we
can use the following definition of disjointness:

▶ Definition 24. A ∗ B ::= ∄ C◦, A <: C◦ and B <: C◦.

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:25

which is, in essence, the dual notion of the definition presented in Section 4. Under this
definition Int and Bool would be disjoint since we cannot find a common ordinary supertype
(and Int ∨ Bool is a supertype, but it is not ordinary). Furthermore, there should be a dual
notion to LOS, capturing the greatest ordinary supertypes. Moreover, if a calculus includes
both disjoint switches and a merge operator, then the two notions of disjointness must coexist
in the calculus. This will be an interesting path of exploration for future work.

Overloading. Union and intersection types also provide a form of function overloading or
ad-hoc polymorphism using the switch and type-based case analysis. A programmer may
define the argument type to be a union type. By using type-based case analysis, it is possible
to execute different code for each specific type of input. Intersection types have also been
studied for function overloading. For example, a function with type Int → Int ∧ Bool → Bool
can take input values either of type Int or Bool. In such case, it returns either Int or Bool
depending upon the input type. Function overloading [19, 17, 56] has been studied in detail
in the literature. Wadler and Blott [56] studied type classes as an alternative way to provide
overloading based on parametric polymorphism.

6 Conclusion and Future Work

This work develops the union calculus (λu) with union types and a type-based union
elimination construct based on disjointness. We presented the operational semantics of the
calculus, and showed type-soundness and determinism. Disjointness plays a crucial role for
the determinism result, as it ensures that only one branch in the switch elimination construct
can apply for any given value. A nice aspect of the work was that we were able to adapt the
notion of disjointness used in disjoint intersection types to our variant of λu with union types.
We believe that this reinforces fundamental connections between union and intersection types
via duality. The addition of intersection types to λu lead to some interesting discoveries. In
particular, it showed that the notion of disjointness that we were able to formulate, inspired
by the work on disjoint intersection types, breaks. This is not showing that the duality stops
working. Instead, it shows that the combination of intersections and unions in the same
system affects disjointness. As discussed in Section 5, adding union types to calculi with
disjoint intersection types leads to a similar problem, and the solution in λu can inspire
solutions for adding union types to disjoint intersection types.

We plan to extend λu for practical programming languages with more advanced features.
An interesting line of research for λu is to study the addition of the merge operator, which
calculi with disjoint intersection types include. The main challenge is that types such as
Int ∧ Bool become inhabited. It could also be interesting to study a variant of λu that uses a
best-match approach based on the dynamic type. This would relate to the extensive line of
research on multi-methods [23] and multiple dispatching [26]. Finally, a current limitation
of our approach is that it relies on a global context for nominal types. This enables some
simplifications, since we can search the global nominal environment for subtypes. However
this assumption breaks in a setting where new nominal types can be added. Ceylon solves
this issue in a modular way using of clauses that enumerate all the possible subtypes that a
class can have. It would be interesting to adopt this approach to enable the addition of new
nominal types.

ECOOP 2022

25:26 Union Types with Disjoint Switches

References
1 Disjointness in ceylon. URL: http://web.mit.edu/ceylon_v1.3.3/ceylon-1.3.3/doc/en/

spec/html_single.
2 Overloading in ceylon. URL: https://github.com/ceylon/ceylon-spec/issues/73.
3 Union types in typescript. URL: https://www.typescriptlang.org/docs/handbook/

unions-and-intersections.html.
4 João Alpuim, Bruno C. d. S. Oliveira, and Zhiyuan Shi. Disjoint polymorphism. In European

Symposium on Programming (ESOP), 2017.
5 Davide Ancona and Andrea Corradi. Sound and complete subtyping between coinductive

types for object-oriented languages. In European Conference on Object-Oriented Programming,
pages 282–307. Springer, 2014.

6 Davide Ancona and Andrea Corradi. Semantic subtyping for imperative object-oriented
languages. ACM SIGPLAN Notices, 51(10):568–587, 2016.

7 Inc Apple. Swift language guide, 2021. URL: https://docs.swift.org/swift-book/
LanguageGuide/TheBasics.html.

8 Subarno Banerjee, Lazaro Clapp, and Manu Sridharan. Nullaway: Practical type-based null
safety for java. In Proceedings of the 2019 27th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering, pages
740–750, 2019.

9 Franco Barbanera, Mariangiola Dezaniciancaglini, and Ugo Deliguoro. Intersection and union
types: syntax and semantics. Information and Computation, 119(2):202–230, 1995.

10 Véronique Benzaken, Giuseppe Castagna, and Alain Frisch. Cduce: an xml-centric general-
purpose language. ACM SIGPLAN Notices, 38(9):51–63, 2003.

11 Xuan Bi, Bruno C. d. S. Oliveira, and Tom Schrijvers. The Essence of Nested Composition.
In European Conference on Object-Oriented Programming (ECOOP), 2018.

12 Xuan Bi, Ningning Xie, Bruno C. d. S. Oliveira, and Tom Schrijvers. Distributive disjoint
polymorphism for compositional programming. In Luís Caires, editor, Programming Languages
and Systems, pages 381–409, Cham, 2019. Springer International Publishing.

13 Gavin Bierman, Martín Abadi, and Mads Torgersen. Understanding typescript. In European
Conference on Object-Oriented Programming, pages 257–281. Springer, 2014.

14 Olivier Blanvillain, Jonathan Immanuel Brachthäuser, Maxime Kjaer, and Martin Odersky.
Type-level programming with match types. Proc. ACM Program. Lang., 6(POPL), January
2022. doi:10.1145/3498698.

15 R. M. Burstall, D. B. MacQueen, and D. T. Sannella. Hope: An experimental applicative
language. Technical Report CSR-62-80, Computer Science Dept, Univ. of Edinburgh, 1981.

16 Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C Mitchell. F-bounded
polymorphism for object-oriented programming. In Proceedings of the fourth international
conference on functional programming languages and computer architecture, pages 273–280,
1989.

17 Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys (CSUR), 17(4):471–523, 1985.

18 Giuseppe Castagna and Alain Frisch. A gentle introduction to semantic subtyping. In
Proceedings of the 7th ACM SIGPLAN international conference on Principles and practice of
declarative programming, pages 198–199, 2005.

19 Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A calculus for overloaded functions
with subtyping. Information and Computation, 117(1):115–135, 1995.

20 Giuseppe Castagna and Victor Lanvin. Gradual typing with union and intersection types.
Proceedings of the ACM on Programming Languages, 1(ICFP):1–28, 2017.

21 Giuseppe Castagna, Victor Lanvin, Mickaël Laurent, and Kim Nguyen. Revisiting occurrence
typing. arXiv preprint arXiv:1907.05590, 2019.

http://web.mit.edu/ceylon_v1.3.3/ceylon-1.3.3/doc/en/spec/html_single
http://web.mit.edu/ceylon_v1.3.3/ceylon-1.3.3/doc/en/spec/html_single
https://github.com/ceylon/ceylon-spec/issues/73
https://www.typescriptlang.org/docs/handbook/unions-and-intersections.html
https://www.typescriptlang.org/docs/handbook/unions-and-intersections.html
https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html
https://docs.swift.org/swift-book/LanguageGuide/TheBasics.html
https://doi.org/10.1145/3498698

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:27

22 Giuseppe Castagna, Kim Nguyen, Zhiwu Xu, Hyeonseung Im, Sergueï Lenglet, and Luca
Padovani. Polymorphic functions with set-theoretic types: Part 1: Syntax, semantics, and
evaluation. In Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, pages 5–17, New York, NY, USA, 2014. Association for
Computing Machinery. doi:10.1145/2535838.2535840.

23 Craig Chambers. Object-oriented multi-methods in Cecil. In Ole Lehrmann Madsen, editor,
ECOOP ’92, European Conference on Object-Oriented Programming, Utrecht, The Netherlands,
volume 615, pages 33–56. Springer-Verlag, 1992.

24 Avik Chaudhuri. Flow: a static type checker for javascript. SPLASH-I In Systems, Program-
ming, Languages and Applications: Software for Humanity, 2015.

25 Avik Chaudhuri, Panagiotis Vekris, Sam Goldman, Marshall Roch, and Gabriel Levi. Fast
and precise type checking for javascript. Proceedings of the ACM on Programming Languages,
1(OOPSLA):1–30, 2017.

26 Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. Multijava: Modular open
classes and symmetric multiple dispatch for java. In Proceedings of the 15th ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
’00, pages 130–145, 2000.

27 Ornela Dardha, Daniele Gorla, and Daniele Varacca. Semantic subtyping for objects and
classes. In Formal Techniques for Distributed Systems, pages 66–82. Springer, 2013.

28 Rowan Davies and Frank Pfenning. Intersection types and computational effects. In Proceedings
of the fifth ACM SIGPLAN international conference on Functional programming, pages 198–208,
2000.

29 Joshua Dunfield. Elaborating intersection and union types. Journal of Functional Programming,
24(2-3):133–165, 2014.

30 Joshua Dunfield and Frank Pfenning. Type assignment for intersections and unions in call-
by-value languages. In International Conference on Foundations of Software Science and
Computation Structures, pages 250–266. Springer, 2003.

31 Alain Frisch, Giuseppe Castagna, and Véronique Benzaken. Semantic subtyping. In Proceedings
17th Annual IEEE Symposium on Logic in Computer Science, pages 137–146. IEEE, 2002.

32 Jacques Garrigue. Programming with polymorphic variants. In ML workshop, 1998.
33 James Gosling, Bill Joy, Guy Steele, Gilad Bracha, Alex Buckley, Daniel Smith, and Gavin

Bierman. The java language specification, 2021. URL: https://docs.oracle.com/javase/
specs/jls/se14/html/index.html.

34 Eric Gunnerson. Nullable types. In A Programmer’s Guide to C# 5.0, pages 247–250. Springer,
2012.

35 Haruo Hosoya and Benjamin C Pierce. Xduce: A statically typed xml processing language.
ACM Transactions on Internet Technology (TOIT), 3(2):117–148, 2003.

36 Xuejing Huang and Bruno C d S Oliveira. Distributing intersection and union types with
splits and duality (functional pearl). Proceedings of the ACM on Programming Languages,
5(ICFP):1–24, 2021.

37 Atsushi Igarashi and Hideshi Nagira. Union types for object-oriented programming. In
Proceedings of the 2006 ACM symposium on Applied computing, pages 1435–1441, 2006.

38 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight java: a minimal
core calculus for java and gj. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001. doi:
10.1145/503502.503505.

39 Gavin King. The ceylon language specification, version 1.0, 2013.
40 Foundation Kotlin. Kotlin programming language, 2021. URL: https://kotlinlang.org/.
41 David MacQueen, Gordon Plotkin, and Ravi Sethi. An ideal model for recursive polymorphic

types. In Proceedings of the 11th ACM SIGACT-SIGPLAN symposium on Principles of
programming languages, pages 165–174, 1984.

42 Fabian Muehlboeck and Ross Tate. Empowering union and intersection types with integrated
subtyping. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–29, 2018.

ECOOP 2022

https://doi.org/10.1145/2535838.2535840
https://docs.oracle.com/javase/specs/jls/se14/html/index.html
https://docs.oracle.com/javase/specs/jls/se14/html/index.html
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://kotlinlang.org/

25:28 Union Types with Disjoint Switches

43 Abel Nieto, Yaoyu Zhao, Ondřej Lhoták, Angela Chang, and Justin Pu. Scala with Explicit
Nulls. In 34th European Conference on Object-Oriented Programming (ECOOP 2020), Leibniz
International Proceedings in Informatics (LIPIcs), pages 25:1–25:26, 2020.

44 Martin Odersky. Scala 3: A next generation compiler for scala, 2021. URL: https://dotty.
epfl.ch.

45 Bruno C. d. S. Oliveira, Zhiyuan Shi, and Joao Alpuim. Disjoint intersection types. In
Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming,
pages 364–377, 2016.

46 Matthew M Papi, Mahmood Ali, Telmo Luis Correa Jr, Jeff H Perkins, and Michael D Ernst.
Practical pluggable types for java. In Proceedings of the 2008 international symposium on
Software testing and analysis, pages 201–212, 2008.

47 Benjamin C Pierce. Programming with intersection types, union types. Technical report, and
polymorphism. Technical Report CMU-CS-91-106, Carnegie Mellon University, 1991.

48 Benjamin C. Pierce. Types and Programming Languages. The MIT Press, 1st edition, 2002.
49 John C Reynolds. Preliminary design of the programming language forsythe, 1988.
50 Richard Routley and Robert K Meyer. The semantics of entailment—iii. Journal of philosoph-

ical logic, 1(2):192–208, 1972.
51 Sam Tobin-Hochstadt and Matthias Felleisen. The design and implementation of typed scheme.

ACM SIGPLAN Notices, 43(1):395–406, 2008.
52 Sam Tobin-Hochstadt and Matthias Felleisen. Logical types for untyped languages. In

Proceedings of the 15th ACM SIGPLAN international conference on Functional programming,
pages 117–128, 2010.

53 Steffen van Bakel, Mariangiola Dezani-Ciancaglini, Ugo de’Liguoro, and Yoko Motohoma. The
minimal relevant logic and the call-by-value lambda calculus. Technical report, Citeseer, 2000.

54 Adriaan Van Wijngaarden, Barry J Mailloux, John EL Peck, Cornelius HA Koster, M Sintzoff,
CH Lindsey, LGLT Meertens, and RG Fisker. Report on the algorithmic language algol 68.
Numerische Mathematik, 14(1):79–218, 1969.

55 Adriaan van Wijngaarden, Barry James Mailloux, John Edward Lancelot Peck, Cornelis HA
Koster, CH Lindsey, M Sintzoff, Lambert GLT Meertens, and RG Fisker. Revised report on
the algorithmic language Algol 68. Springer Science & Business Media, 2012.

56 Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad hoc. In
Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 60–76, 1989.

57 Francesco Zappa Nardelli, Julia Belyakova, Artem Pelenitsyn, Benjamin Chung, Jeff Bezanson,
and Jan Vitek. Julia subtyping: a rational reconstruction. Proceedings of the ACM on
Programming Languages, 2(OOPSLA):1–27, 2018.

A Further Extensions and Discussion

The calculus introduced in Section 3 is a simple foundational lambda calculus with union
types, similar to prior work on union types and their elimination forms [10, 29, 22]. In
Section 4 we extend λu with various interesting features including intersection types, nominal
types and subtyping distributivity, inspired by Ceylon, which has similar features. In this
section we discuss two more practical extensions:

Disjoint Polymorphism: The first extension is an extension with a form of disjoint poly-
morphism [4], which allows the specification of disjointness constraints for type variables.
Although Ceylon supports polymorphism, it does not support disjoint polymorphism.
The extension with disjoint polymorphism is inspired by the work on disjoint intersection
types, where disjoint polymorphism has been proposed to account for disjointness in a
polymorphic language.

https://dotty.epfl.ch
https://dotty.epfl.ch

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:29

A, B, C ::= ... | α | ∀(α ∗ G).B
e ::= ... | e A | Λ(α ∗ G).e
v ::= ... | Λ(α ∗ G).e
Γ ::= ... | Γ, α ∗ G

G ::= ⊤ | ⊥ | Int | Null | A → B
| G1 ∨ G2 | G1 ∧ G2 | ∀(α ∗ G).B

Lowest Ordinary Subtypes (LOS) |A|∆;Γ

... = ...
|∀(α ∗ G).B|∆;Γ = {∀(α ∗ ⊥).⊥}
|α|∆;Γ = (|⊤|∆;Γ) - (|G|∆;Γ)

where α ∗ G ∈ Γ

∆; Γ ⊢ A <: B (Additional subtyping rules)

ok ∆ ∆; Γ ⊢ α

∆; Γ ⊢ α <: α
polys-tvar

∆; Γ ⊢ G1 <: G2 ∆; Γ, α ∗ G2 ⊢ B1 <: B2

∆; Γ ⊢ ∀(α ∗ G1).B1 <: ∀(α ∗ G2).B2
polys-all

∆; Γ ⊢ e : A (Additional typing rules)

∆; Γ ⊢ e : ∀(α ∗ G).C ∆; Γ ⊢ G1 ∗ G

∆; Γ ⊢ e G1 : C [α ; G1]
ptyp-tap

∆; Γ, α ∗ G ⊢ e : B
∆; Γ ⊢ Λ(α ∗ G).e : ∀(α ∗ G).B

ptyp-tabs

∆; Γ ⊢ e −→ e′ (Additional reduction rules)

∆; Γ ⊢ e −→ e′

∆; Γ ⊢ e B −→ e′ B
polystep-tappl

∆; Γ ⊢ (Λ(α ∗ G).e) B −→ e[α ; B]
polystep-tapp

Figure 9 Syntax, additional typing, subtyping, and reduction rules for λu with polymorphism.

A Special Subtyping Rule for Empty Types: The second extension that we discuss
is an alternative subtyping formulation with a special subtyping rule for empty types,
which follows the Ceylon approach.

Note that both extensions above have also been formalized in Coq and proved type-
sound and deterministic. In addition, we also have a brief discussion about implementation
considerations.

A.1 Polymorphism
Polymorphism is an essential feature of almost all the modern programming languages. In this
section we discuss an extension of λu with parametric polymorphism along with intersection
and nominal types. The interesting aspect about this extension is the presence of disjointness
constraints. For example, in λu with polymorphism a polymorphic disjoint switch such as:
Γ, α ∗ Int ⊢ switch e {(x : Int) → true, (y : α) → false} is accepted. It is safe to use Int and α

in alternative branches in a switch in this example. The disjointness constraint in the context
(Γ, α ∗ Int) on type variable α ensures that α must only be instantiated with types disjoint
to Int. Thus an instantiation of α with Null or A → B is allowed. Whereas, an instantiation
of α with Int is rejected by the type system.

Syntax. Figure 9 shows the extension in the syntax of λu with polymorphism. Types
are extended with type variables α and disjoint quantifiers ∀(α ∗ G).B. ∀(α ∗ G).B is
also an ordinary type. The reader can think of this extension in the context of bounded
quantification [17, 16] where bounded quantifiers (∀(α <: A).B) are replaced by disjoint
quantifiers (∀(α ∗ G).B). Bounded quantification imposes a subtyping restriction on type
variables, whereas disjoint quantification imposes disjointness restriction on type variables.

ECOOP 2022

25:30 Union Types with Disjoint Switches

Disjoint quantification only allows the instantiation of disjoint types. For example, ∀(α <:
Int ∨ Bool).α allows α to be instantiated only with subtypes of Int ∨ Bool and restricts all
other types. Whereas, ∀(α ∗ Int ∨ Bool).α restricts all the instantiations of α which share an
ordinary subtype with Int ∨ Bool. In other words, the permitted instantiations of α are the
types disjoint to Int ∨ Bool. Null is a valid instantiation in this case, while Int is not a valid
instantiation.

Expressions are extended with type application e A and type abstraction Λ(α ∗ G).e. A
type abstraction is also a value. Additionally, context Γ now also contains type variables
with their respective disjointness constraints. The disjointness constraint of type variables is
restricted to ground types (G), which includes all the types except type variables. Ground
types are shown at the top left of Figure 9.

Subtyping, Typing and Operational Semantics. Figure 9 shows additional rules in the
formalization of λu with polymorphism. Note that subtyping, typing, and reduction relations
now have two contexts ∆ and Γ. Subtyping is extended for the two newly added types.
The subtyping rule for type variables is a special case of reflexivity (rule polys-tvar)).
Rule polys-all is interesting. It says that input and output types of two disjoint quantifiers
are covariant in the subtype relation. This contrasts with calculi with bounded quantification
and disjoint polymorphism [4], where the subtyping between the type bounds of the constraints
is contravariant, and the subtyping between the types in the universal quantification body
is covariant. Note that in the calculus that we formalized in Coq, we study parametric
polymorphism without distributive subtyping rules.

Similarly, typing is extended to assign the type to two newly added expressions. Rule ptyp-
tap is for type applications and rule ptyp-tabs is for type abstractions. Rule polystep-
tappl is standard reduction rule for type application. Rule polystep-tapp replaces α with
type B in expression e.

Disjointness. Disjointness has to be updated to accommodate type variables and disjoint
quantifiers. The definition of algorithmic disjointness is roughly the same as discussed in
Section 4, except that it takes an additional argument Γ. Context Γ is also an argument of
LOS. LOS is extended to handle the additional cases of α and ∀(α ∗ G).B and is shown at the
top right of Figure 9. LOS returns ∀(α ∗ ⊥).⊥ as the least ordinary subtype of ∀(α ∗ G).B.
The type variable case is interesting. It returns the set difference of all ordinary subtypes
and LOS of the disjointness constraint of type variable. Note that the disjointness constraint
of type variables is restricted to ground types.

▶ Definition 25 (Disjointness). ∆; Γ ⊢ A ∗ B ::= |A|∆;Γ ∩ |B|∆;Γ = {}.

Type-safety and Determinism. The extension with disjoint polymorphism retains the
properties of type-soundness and determinism. All the metatheory is formalized in Coq
theorem prover. Progress and determinism does not require significant changes for this
extension. Type preservation requires the preservation of disjointness after substitution and
disjointness narrowing along with disjointness weakening. Disjointness substitution states
that if two types are disjoint before type substitution, they must be disjoint after type
substitution as stated in Lemma 26. The disjointness narrowing relates disjointness and
subtyping. It states that it is safe to change the bounds of type variables from subtypes to
supertypes as stated in Lemma 27.

▶ Lemma 26 (Disjointness Substitution). If ∆; Γ, α ∗ G1 ⊢ B ∗ C and ∆; Γ ⊢ G2 ∗ G1 then
∆; Γ[α ; G2] ⊢ B[α ; G2] ∗ C [α ; G2]

B. Rehman, X. Huang, N. Xie, and B. C. d. S. Oliveira 25:31

▶ Lemma 27 (Disjointness Narrowing). If ∆; Γ, α ∗ G1 ⊢ B ∗ C and ∆; Γ ⊢ G1 <: G2 then
∆; Γ, α ∗ G2 ⊢ B ∗ C

A.2 A More General Subtyping Rule for Bottom Types
As discussed in Section 4.3, Ceylon includes the following subtyping rule:

A ∗ B
A ∧ B <: ⊥

s-disj

It is possible to support, and in fact generalize, such a rule in λu. The idea is to employ our
definition of lowest ordinary subtypes, and add the following rule to λu with intersection
types:

|A| = {}
A <: B

s-los

Rule s-los is an interesting addition in subtyping of λu. It says that if the LOS returns
the empty set for some type A, then A is a subtype of all types. In other words, such type
behaves like a bottom-like type. Such rule generalizes the rule s-disj employed in Ceylon,
since when A is an intersection type of two disjoint types, we get the empty set. Moreover,
adding rule s-los makes rule s-bot redundant as well, since the LOS for the bottom type is
also the empty set. It is trivial to prove a lemma which says that ⊥ is a subtype of all types.
We drop rule s-bot from the calculus discussed in Section 4 and prove Lemma 28 to show
this property instead:

▶ Lemma 28 (Bottom Type Least Subtype). ⊥ <: A.

A similar lemma can be proved to show that disjoint types are bottom-like (as in rule s-disj),
when rule s-los is added to subtyping:

▶ Lemma 29 (Disjont Intersections are Bottom-Like). If A ∗ B then A ∧ B <: ⊥.

The use of rule s-los instead of rule s-disj also has the advantage that it does not create
a mutual dependency between disjointness and subtyping. We can have the definition of
disjointness, which depends only on subtyping and ordinary types, and the definition of
subtyping, which depends on LOS but not on disjointness.

We have formalized and proved all the metatheory, including type soundness, transitivity
of subtyping, soundness and completeness of disjointness and determinism for a variant of
λu with intersection types, nominal types, standard subtyping and rule s-los in Coq.

A.3 Implementation of Disjoint Switches
Ceylon code runs on the Java Virtual Machine (JVM). A Ceylon program compiles to JVM
bytecode. The final bytecode to which a Ceylon program is compiled to erase annotations for
types not supported in the JVM. In particular, union types such as String ∨ Null are erased
into Object. Disjoint switches are implemented by type casts. For each branch there is an
instanceof to test the type of the branch and select a particular branch. An implementation
of the λu calculus could also use a similar approach for compilation. In essence the use
of union types and disjoint switches provides an elegant alternative to type-unsafe idioms,
based on instanceof tests, that are currently widely used by Java programmers, while keeping
comparable runtime performance.

ECOOP 2022

Fair Termination of Multiparty Sessions
Luca Ciccone #

University of Torino, Italy

Francesco Dagnino #

University of Genova, Italy

Luca Padovani #

University of Torino, Italy

Abstract
There exists a broad family of multiparty sessions in which the progress of one session participant
is not unconditional, but depends on the choices performed by other participants. These sessions
fall outside the scope of currently available session type systems that guarantee progress. In this
work we propose the first type system ensuring that well-typed multiparty sessions, including those
exhibiting the aforementioned dependencies, fairly terminate. Fair termination is termination under
a fairness assumption that disregards those interactions deemed unfair and therefore unrealistic.
Fair termination, combined with the usual safety properties ensured within sessions, not only is
desirable per se, but it entails progress and enables a compositional form of static analysis such that
the well-typed composition of fairly terminating sessions results in a fairly terminating program.

2012 ACM Subject Classification Theory of computation → Process calculi; Theory of computation
→ Type structures; Theory of computation → Program analysis

Keywords and phrases Multiparty sessions, fair termination, fair subtyping, deadlock freedom

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.26

Related Version Full Version: https://arxiv.org/abs/2205.08786 [10]

Funding The second author was partially supported by the MUR project T-LADIES (PRIN
2020TL3X8X).

Acknowledgements We are grateful to the anonymous ECOOP reviewers for their thoughtful and
useful comments that helped us improving form and content of the paper.

1 Introduction

Sessions [24, 25, 27] are private conversations among processes following a protocol specifica-
tion called session type. The decomposition of a distributed program into sessions enables
its modular static analysis and the enforcement of useful properties through a type system.
Examples of such properties are communication safety (no message of the wrong type is
ever exchanged), protocol fidelity (messages are exchanged in the order prescribed by session
types) and deadlock freedom (the program keeps running unless all sessions have terminated).
These are all instances of safety properties, implying that “nothing bad” happens. In general,
one is also interested in reasoning and possibly enforcing liveness properties, those implying
that “something good” happens [39]. Examples of liveness properties are junk freedom (every
message is eventually received), progress (every non-terminated participant of a session
eventually performs an action) and termination (every session eventually comes to an end).

An enduring limitation of current type systems for multiparty sessions is that they
ensure progress for any participant of a session only when such progress can be established
independently of the choices performed by the other participants. To illustrate the impact of
this limitation, consider a session made of three participants named buyer, seller and carrier

© Luca Ciccone, Francesco Dagnino, and Luca Padovani;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 26; pp. 26:1–26:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:luca.ciccone@unito.it
https://orcid.org/0000-0001-9515-5280
mailto:francesco.dagnino@dibris.unige.it
https://orcid.org/0000-0003-3599-3535
mailto:luca.padovani@unito.it
https://orcid.org/0000-0001-9097-1297
https://doi.org/10.4230/LIPIcs.ECOOP.2022.26
https://arxiv.org/abs/2205.08786
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 Fair Termination of Multiparty Sessions

in which the buyer aims at purchasing an unspecified number of items from the seller and the
seller relies on a carrier for delivering the purchased items to the buyer. The buyer behaves
according to the session type S that satisfies the equation

S = seller!add.S + seller!pay.!end (1)

indicating that it either pays the seller or it adds an item to the shopping cart and then
repeats the same behavior. In this session type, add and pay are messages targeted to the
participant with role seller. In turn, the seller accepts add messages from the buyer until a
pay message is received, at which point it instructs the carrier to ship the items. Thus, its
behavior is described by the session type T that satisfies the equation

T = buyer?add.T + buyer?pay.carrier!ship.!end (2)

Finally, the carrier just waits for the ship message from the seller. So, its behavior is
described by the session type

seller?ship.?end (3)

No available type system is able to guarantee progress for every participant of this
multiparty session. What makes this session somewhat difficult to reason about is that the
progress of the carrier is not unconditional but depends on the choices performed by the buyer :
the carrier can make progress only if the buyer eventually pays the seller.

In this work we propose a type system that guarantees the fair termination of sessions,
that is termination under a fairness assumption. The assumption we make is an instance of
relative fairness [45] and can be roughly spelled out as follows:

If termination is always possible, then it is inevitable. (4)

The multiparty session sketched above terminates under this fairness assumption: since
it is always possible for the buyer to pay the seller and terminate, in every fair execution of
the session the buyer eventually pays the seller, even though we do not know (nor do we
impose) an upper bound to the number of items that the buyer may add to the shopping
cart. Simply, the non-terminating execution of the session in which the buyer keeps adding
items to the shopping cart but never pays is assumed unrealistic and so it can be ignored
insofar as termination is concerned.

The reader might wonder why we focus on fair termination instead of considering some
fair version of progress. There are three reasons why we think that fair termination is overall
more appropriate than just progress. First of all, ensuring that sessions (fairly) terminate is
consistent with the usual interpretation of the word “session” as an activity that lasts for
a finite amount of time, even when the maximum duration of the activity is not known a
priori. Second, fair termination implies progress when it is guaranteed along with the usual
safety properties of sessions. Indeed, if the session eventually terminates, it must be the
case that any non-terminated participant (think of the carrier waiting for a ship message) is
guaranteed to eventually make progress, even when such progress depends on choices made by
other participants (like the buyer sending pay to the seller). Last but not least, fair session
termination enables compositional reasoning in the presence of multiple sessions. This is
not true for progress: if an action on a session s is blocked by actions on a different session
t, then knowing that the session t enjoys progress does not necessarily guarantee that the
action on s will eventually be performed (the interaction on t might continue forever). On
the contrary, knowing that t fairly terminates guarantees that the action on s will eventually
be scheduled and performed, so that s may in turn progress towards termination.

L. Ciccone, F. Dagnino, and L. Padovani 26:3

Remarkably, the fairness assumption alone does not suffice to turn any multiparty session
type system into one that ensures fair termination. In fact, there are several sources of
potentially non-terminating behaviors that must be ruled out in well-typed processes:
1. Fairly terminating (and even finite) sessions may be chained, nested, interleaved in such a

way that some pending activities are postponed forever. To avoid this problem, our type
system makes sure that the effort required by a well-typed process in order to terminate
remains finite. At the same time, it does not (always) prevent the modeling of processes
that create an unbounded number of sessions.

2. The type-level constraints usually imposed to well-typed sessions – duality [24, 25, 27],
liveness [46], coherence [9], just to mention a few – are in general too weak to entail fair
session termination. Our type system adopts a stronger notion of “correct multiparty
session” that entails fair termination. Variants of this notion have already appeared in
the literature [5, 42], but we use it here for the first time to relate types and processes.

3. A certain mismatch is usually allowed between the structure of session types and the
structure of the processes that adhere to those types. This mismatch is formalized
by a subtyping relation for session types which, in its standard formulation [23], may
introduce non-terminating behaviors. Our type system adopts fair subtyping [42], a
liveness-preserving refinement of the standard subtyping relation for session types [23].

Summary of contributions. We present the first type system ensuring the fair termination
of multiparty sessions and capable of addressing a number of natural communication patterns
that are out of scope of existing multiparty session type systems [46, 48]. We exploit the
compositional reasoning enabled by fair termination to prove a strong soundness result
whereby a well-typed composition of fairly terminating sessions is a fairly terminating
program (Theorem 5.4). This result scales smoothly also in presence of session chaining,
session nesting, session interleaving, session delegation and dynamic session creation. In
sharp contrast, the liveness properties ensured by previous multiparty session type systems
are either limited to single-session programs [46, 48] or require a richer type structure [43, 15].
Our contributions extend and generalize previous work on the fair termination of binary
sessions [14] and allow for the modeling of (intra-session) cyclic network topologies and of
multiparty sessions that cannot be decomposed into equivalent (well-typed) binary sessions.
Decidability of type checking is not substantially more difficult than the same problem in the
binary setting [14]. En passant, in this paper we also provide a new characterization of fair
subtyping for (multiparty) session types (Table 5) that is substantially simpler than those
appearing in previous works [40, 42, 13, 14].

Structure of the paper. We recall the key notions related to fair termination (Section 2)
before presenting our language of multiparty sessions (Section 3). Then, we define multiparty
session types and fair subtyping (Section 4) and present the typing rules and the soundness
properties of the type system (Section 5). In the latter part of the paper we illustrate a few
more advanced examples of well-typed processes (Section 6), we discuss related work in more
detail (Section 7) and we provide hints at further developments (Section 8).

2 Fair Termination

Since the notion of fair termination will apply to several different entities (session types,
multiparty sessions, processes) here we define it for a generic reduction system. Later on we
will show various instantiations of this definition. A reduction system is a pair (S, →) where

ECOOP 2022

26:4 Fair Termination of Multiparty Sessions

S is a set of states and → ⊆ S × S is a reduction relation. We adopt the following notation:
we let C and D range over states; we write C → if there exists D ∈ S such that C → D; we
write C X→ if not C →; we write ⇒ for the reflexive, transitive closure of →. We say that D

is reachable from C if C ⇒ D.
As an example, the reduction system ({A, B}, {(A, A), (A, B)}) models an entity that

can be in two states, A or B, and such that the entity may perform a reduction to remain in
state A or a reduction to move from state A to state B. To formalize the evolution of an
entity from a particular state we define runs.

▶ Definition 2.1 (runs and maximal runs). A run of C is a (finite or infinite) sequence
C0C1 . . . Ci . . . of states such that C0 = C and Ci → Ci+1 for every valid i. A run is
maximal if either it is infinite or if its last state Cn is such that Cn X→.

Hereafter we let ρ range over runs. Each run in the previously defined reduction system
is either of the form An – a finite sequence of A – or of the form AnB – a finite sequence of
A followed by one B – or Aω – an infinite sequence of A. Among these, the runs of the form
AnB and Aω are maximal, whereas no run of the form An is maximal.

We now use runs to define different termination properties of states: we say that C

is weakly terminating if there exists a maximal run of C that is finite; we say that C is
terminating if every maximal run of C is finite; we say that C is diverging if every maximal
run of C is infinite. Fair termination [21] is a termination property that only considers a
subset of all (maximal) runs of a state, those that are considered to be “realistic” or “fair”
according to some fairness assumption. The assumption that we make in this work, and that
we stated in words in (4), is formalized thus:

▶ Definition 2.2 (fair run). A run is fair if it contains finitely many weakly terminating
states. Conversely, a run is unfair if it contains infinitely many weakly terminating states.

Continuing with the previous example, the runs of the form An and AnB are fair, whereas
the run Aω is unfair. In general, an unfair run is an execution in which termination is always
within reach, but is never reached.

A key requirement of any fairness assumption is that it must be possible to extend
every finite run to a maximal fair one. This property is called feasibility [4, 47] or machine
closure [37]. It is easy to see that our fairness assumption is feasible:

▶ Lemma 2.3. If ρ is a finite run, then there exists ρ′ such that ρρ′ is a maximal fair run.

Fair termination is finiteness of all maximal fair runs:

▶ Definition 2.4 (fair termination). We say that C is fairly terminating if every maximal
fair run of C is finite.

In the reduction system given above, A is fairly terminating. Indeed, all the maximal
runs of the form AnB are finite whereas Aω, which is the only infinite fair run of A, is unfair.

For the particular fairness assumption that we make, it is possible to provide a sound
and complete characterization of fair termination that does not mention fair runs. This
characterization will be useful to relate fair termination with the notion of correct multiparty
session (Definition 4.2) and the soundness property of the type system (Theorem 5.4).

▶ Theorem 2.5. Let (S, →) be a reduction system and C ∈ S. Then C is fairly terminating
if and only if every state reachable from C is weakly terminating.

L. Ciccone, F. Dagnino, and L. Padovani 26:5

Table 1 Syntax of processes.

P, Q, R ::= Process
done termination

| wait u.P signal input
| u[p]?(x).P channel input
| u[p]π{mi.Pi}i∈I tag input/output
| (s)(P1 | · · · | Pn) session

| A⟨u⟩ invocation
| close u signal output
| u[p]!v.P channel output
| P ⊕ Q choice
| ⌈u⌉P cast

▶ Remark 2.6 (fair reachability of predicates [45]). Most fairness assumptions have the form
“if something is infinitely often possible then something happens infinitely often” and, in this
respect, our formulation of fair run (Definition 2.2) looks slightly unconventional. However,
it is not difficult to realize that Definition 2.2 is an instance of the notion of fair reachability
of predicates as defined by Queille and Sifakis [45, Definition 3]. According to Queille and
Sifakis, a run ρ is fair with respect to some predicate C ⊆ S if, whenever in ρ there are
infinitely many states from which a state in C is reachable, then in ρ there are infinitely many
occurrences of states in C. When we take C to be X→, that is the set of terminated states
that do not reduce, pretending that irreducible states should occur infinitely often in the run
is nonsensical. So, the fairness assumption boils down to assuming that such states should
not be reachable infinitely often, which is precisely the formulation of Definition 2.2. ⌟

3 A Calculus of Multiparty Sessions

In this section we define the calculus for multiparty sessions on which we apply our static
analysis technique. The calculus is an extension of the one presented by Ciccone and
Padovani [14] to multiparty sessions in the style of Scalas and Yoshida [46].

We use an infinite set of variables ranged over by x, y, z, an infinite set of session names
ranged over by s and t, a set of roles ranged over by p, q, r, a set of message tags ranged over
by m, and a set of process names ranged over by A, B, C. In the literature of sessions tags
are usually called labels. We adopt a different terminology to avoid confusion with another
notion of label that we introduce in Section 4. We use roles to distinguish the participants of
a session. In particular, an endpoint s[p] consists of a session name s and a role p and is
used by the participant with role p to interact with the other participants of the session s.
We use u and v to range over channels, which are either variables or session endpoints. We
write x and u to denote possibly empty sequences of variables and channels, extending this
notation to other entities. We use π to range over the elements of the set {?, !} of polarities,
distinguishing input actions (?) from output actions (!).

A program is a finite set of definitions of the form A(x) △= P , at most one for each process
name, where P is a term generated by the syntax shown in Table 1. The term done denotes
the terminated process that performs no action. The term A⟨u⟩ denotes the invocation of the
process with name A passing the channels u as arguments. When u is empty we just write
A instead of A⟨⟩. The term close u denotes the process that sends a termination signal on
the channel u, whereas wait u.P denotes the process that waits for a termination signal from
channel u and then continues as P . The term u[p]!v.P denotes the process that sends the
channel v on the channel u to the role p and then continues as P . Dually, u[p]?(x).P denotes
the process that receives a channel from the role p on the channel u and then continues as P

where x is replaced with the received channel. The term u[p]π{mi.Pi}i∈I denotes a process
that exchanges one of the tags mi on the channel u with the role p and then continues as Pi.

ECOOP 2022

26:6 Fair Termination of Multiparty Sessions

Table 2 Structural precongruence of processes.

[s-par-comm] (s)(P | P | Q | Q) ≼ (s)(P | Q | P | Q)
[s-par-assoc] (s)(P | (t)(R | Q)) ≼ (t)((s)(P | R) | Q) if s ∈ fn(R)
[s-cast-comm] ⌈u⌉⌈v⌉P ≼ ⌈v⌉⌈u⌉P

[s-cast-new] (s)(⌈s[p]⌉P | Q) ≼ (s)(P | Q)
[s-cast-swap] (s)(⌈t[p]⌉P | Q) ≼ ⌈t[p]⌉(s)(P | Q) if s ̸= t

[s-call] A⟨u⟩ ≼ P{u/x} if A(x) △= P

Whether the tag is sent or received depends on the polarity π and, as it will be clear from
the operational semantics, the polarity π also determines whether the process behaves as an
internal choice (when π is !) or an external choice (when π is ?). In the first case the process
chooses actively the tag being sent, whereas in the second case the process reacts passively to
the tag being received. We assume that I is finite and non-empty and also that the tags mi

are pairwise distinct. For brevity, we write u[p]πmk.Pk instead of u[p]π{mi.Pi}i∈I when I is
the singleton set {k}. The term P ⊕ Q denotes a process that non-deterministically behaves
either as P or as Q.

A term (s)(P1 | · · · | Pn) with n ≥ 1 denotes the parallel composition of n processes, each
of them being a participant of the session s. Each process is associated with a distinct a
role pi and communicates in s through the endpoint s[pi]. Combining session creation and
parallel composition in a single form is common in session type systems based on linear
logic [6, 49, 38] and helps guaranteeing deadlock freedom. Finally, a cast ⌈u⌉P denotes a
process that behaves exactly as P . This form is only relevant for the type system (Section 5)
and denotes the fact that the type of u is subject to an application of subtyping.

The free and bound names of a process are defined as usual, the latter ones being easily
recognizable as they occur within round parenteses. We write fn(P) for the set of free names
of P and we identify processes modulo renaming of bound names. Note that fn(P) may
contain variables and session names, but not endpoints. Occasionally we write A(x) △= P

as a predicate or side condition, meaning that P is the process associated with the process
name A. For each of such definitions we assume that fn(P) ⊆ {x}.

The operational semantics of processes is given by the structural precongruence relation
≼ defined in Table 2 and the reduction relation → defined in Table 3. As usual, structural
precongruence allows us to rearrange the structure of processes without altering their meaning,
whereas reduction expresses an actual computation or interaction step. The adoption of a
structural precongruence (as opposed to a more common congruence relation) is not strictly
necessary, but it simplifies the technical development by reducing the number of cases we
have to consider in proofs without affecting the properties of the calculus in any way.

Rules [s-par-comm] and [s-par-assoc] state commutativity and associativity of parallel
composition of processes (we write P to denote possibly empty parallel compositions of
processes). In [s-par-assoc], the side condition s ∈ fn(R) makes sure that R is indeed
a participant of the session s. Note that this rule only states right-to-left associativity.
Left-to-right associativity is derivable from this rule and repeated uses of [s-par-comm].
Rule [s-cast-comm] allows us to swap two consecutive casts. Rule [s-cast-new] removes
an unguarded cast on an endpoint of the restricted session (we refer to this operation as
“performing the cast”). Rule [s-cast-swap] swaps a cast and a restricted session as long as
the endpoint in the cast refers to a different session. Finally, rule [s-call] unfolds a process
invocation to its definition. Hereafter, we write {u/x} for the capture-avoiding substitution
of each free occurrence of x with u and {u/x} for its natural extension to equal-length tuples

L. Ciccone, F. Dagnino, and L. Padovani 26:7

Table 3 Reduction of processes.

[r-choice]

P1 ⊕ P2 → Pk

k ∈ {1, 2}
[r-signal]

(s)(wait s[p].P | close s[q1] | · · · | close s[qn]) → P

[r-channel]

(s)(s[p][q]!v.P | s[q][p]?(x).Q | R) → (s)(P | Q{v/x} | R)

[r-pick]

(s)(s[p][q]!{mi.Pi}i∈I | Q) → (s)(s[p][q]!mk.Pk | Q)
k ∈ I

[r-tag]

(s)(s[p][q]!mk.P | s[q][p]?{mi.Qi}i∈I | R) → (s)(P | Qk | R)
k ∈ I

[r-par]
P → Q

(s)(P | R) → (s)(Q | R)

[r-cast]
P → Q

⌈u⌉P → ⌈u⌉Q

[r-struct]
P ≼ P ′ P ′ → Q′ Q′ ≼ Q

P → Q

of variables and names. The rules [s-cast-new], [s-cast-swap] and [s-call] are not invertible:
by [s-cast-new] casts can only be removed but never added; by [s-cast-swap] casts can only
be moved closer to their restriction, so that they can be eventually performed by [s-cast-new];
by [s-call] process invocations can only be unfolded.

The reduction relation is quite standard. Rule [r-choice] reduces P1 ⊕ P2 to either P1
or P2, non deterministically. Rule [r-signal] terminates a session in which all participants
(q1, . . . , qn) but one (p) are sending a termination signal and p is waiting for it; the resulting
process is the continuation of the participant p. Rule [r-channel] models the exchange of a
channel among two participants of a session. Rule [r-pick] models an internal choice whereby
a process picks one particular tag mk to send on a session. Rule [r-tag] synchronizes two
participants p and q on the tag chosen by p. Finally, rules [r-par], [r-cast] and [r-struct]
close reductions under parallel compositions and casts and by structural precongruence.

In the rest of this section we illustrate the main features of the calculus with some examples.
For none of them the existing multiparty session type systems are able to guarantee progress.

▶ Example 3.1 (purchase). We model a particular instance of the buyer-seller-carrier
interaction that we have informally discussed in Section 1 with the following definitions:

Main △= (s)(Buyer⟨s[buyer]⟩ | Seller⟨s[seller]⟩ | Carrier⟨s[carrier]⟩)
Buyer(x) △= x[seller]!{add.x[seller]!add.Buyer⟨x⟩, pay.close x}
Seller(x) △= x[buyer]?{add.Seller⟨x⟩, pay.x[carrier]!ship.close x}

Carrier(x) △= x[seller]?ship.wait x.done

Note that the buyer either sends pay or it sends two add messages in a row before repeating
this behavior. That is, this particular buyer always adds an even number of items to the
shopping cart. Nonetheless, the buyer periodically has a chance to send a pay message and
terminate. Therefore, the execution of the program in which the buyer only sends add is
unfair according to Definition 2.2 hence this program is fairly terminating. ⌟

ECOOP 2022

26:8 Fair Termination of Multiparty Sessions

▶ Example 3.2 (purchase with negotiation). Consider a variation of Example 3.1 in which the
buyer, before making the payment, negotiates with a secondary buyer for an arbitrarily long
time. The interaction happens in two nested sessions, an outer one involving the primary
buyer, the seller and the carrier, and an inner one involving only the two buyers. We model
the interaction as the program below, in which we collapse role names to their initials.

Main △= (s)(Buyer⟨s[b]⟩ | Seller⟨s[s]⟩ | Carrier⟨s[c]⟩)
Buyer(x) △= x[s]!query.x[s]?price.(t)(Buyer1⟨x, t[b1]⟩ | Buyer2⟨t[b2]⟩)
Seller(x) △= x[b]?query.x[b]!price.x[b]?{pay.x[c]!ship.close x, cancel.x[c]!cancel.close x}

Carrier(x) △= x[s]?{ship.x[b]!box.close x, cancel.close x}
Buyer1(x, y) △= y[b2]!{split.y[b2]?{yes.⌈x⌉x[s]!ok.x[c]?box.wait x.wait y.done,

no.Buyer1⟨x, y⟩},

giveup.wait y.⌈x⌉x[s]!cancel.wait x.done}
Buyer2(y) △= y[b1]?{split.y[b1]!{yes.close y, no.Buyer2⟨y⟩}, giveup.close y}

The buyer queries the seller which replies with a price. At this point, Buyer creates a new
session t and forks as a primary buyer Buyer1 and a secondary buyer Buyer2. The interaction
between the two sub-buyers goes on until either Buyer1 gives up or Buyer2 accepts its share
of the price. In the former case, the primary buyer waits for the internal session to terminate
and cancels the order with the seller which, in turn, aborts the transaction with the carrier.
In the latter case, the buyer confirms the order to the seller, which then instructs the carrier
to ship a box to the buyer.

Note that the outermost session s, taken in isolation, terminates in a bounded number of
interactions, but its progress cannot be established without assuming that the innermost
session t terminates. In particular, if the two buyers keep negotiating forever, the seller and
the carrier starve. However, the innermost session can terminate if Buyer1 sends giveup to
Buyer2 or if Buyer2 sends yes to Buyer1. Thus, the run in which the two buyers negotiate
forever is unfair, the session t fairly terminates and the session s terminates as well.

On the technical side, note that the definition of Buyer1 contains two casts on the variable
x. As we will see in Example 6.1, these casts are necessary for the typeability of Buyer1 to
account for the fact that x is used differently in two distinct branches of the process. ⌟

▶ Example 3.3 (parallel merge sort). To illustrate an example of program that creates an
unbounded number of sessions we model a parallel version of the merge sort algorithm.

Main △= (s)(s[m][w]!req.s[m][w]?res.wait s.done | Sort⟨s[w]⟩)
Sort(x) △= x[m]?req.((t)(Merge⟨x, t[m]⟩ | Sort⟨t[w1]⟩ | Sort⟨t[w2]⟩) ⊕ x[m]!res.close x)

Merge(x, y) △= y[w1]!req.y[w2]!req.y[w1]?res.y[w2]?res.wait y.x[m]!res.close x

The program starts as a single session s in which a master m sends the initial collection
of data to the worker w as a req message and waits for the result. The worker is modeled as
a process Sort that decides whether to sort the data by itself (right branch of the choice in
Sort), in which case it sends the result directly to the master, or to partition the collection
(left branch of the choice in Sort). In the latter case, it creates a new session t in which it
sends requests to two sub-workers w1 and w2, it gathers the partial results from them and
gets back to the master with the complete result.

Since a worker may always choose to start two sub-workers in a new session, the number
of sessions that may be created by this program is unbounded. At the same time, each
worker may also choose to complete its task without creating new sessions. So, while in
principle there exists a run of this program that keeps creating new sessions forever, this run
is unfair according to Definition 2.2. ⌟

L. Ciccone, F. Dagnino, and L. Padovani 26:9

4 Multiparty Session Types and Fair Subtyping

In this section we define syntax and semantics of multiparty session types (Section 4.1) as
well as an inference system for fair subtyping (Section 4.2).

4.1 Syntax and Semantics
A session type is a regular tree [16] coinductively generated by the productions below:

Session type S, T, U, V ::= πend |
∑

i∈I pπmi.Si | pπS.T

The session type πend describes the behavior of a process that sends/receives a termination
signal. The session type

∑
i∈I pπmi.Si describes the behavior of a process that sends to or

receives from the participant p one of the tags mi and then behaves according to Si. Note
that the source or destination role p and the polarity π are the same in every branch. We
require that I is not empty and i, j ∈ I with i ̸= j implies mi ≠ mj . Occasionally we write
pπm1.S1 + · · · + pπmn.Sn instead of

∑n
i=1 pπmi.Si. Finally, a session type pπS.T describes

the behavior of a process that sends to or receives from the participant p an endpoint of type
S and then behaves according to T . We often specify infinite session types as solutions of
equations of the form S = · · · where the metavariable S may occur on the right hand side of
= guarded by at least one prefix. A regular tree satisfying such equation is guaranteed to
exist and to be unique [16].

In order to describe a whole multiparty session at the level of types we introduce the
notion of session map.

▶ Definition 4.1 (session map). A session map is a finite, partial map from roles to session
types written {pi ▷ Si}i∈I . We let M and N range over session maps, we write dom(M) for
the domain of M , we write M | N for the union of M and N when dom(M) ∩ dom(N) = ∅,
and we abbreviate the singleton map {p ▷ S} as p ▷ S.

We describe the evolution of a session at the level of types by means of a labeled transition
system for session maps. Labels are generated by the grammar below:

Label ℓ ::= τ | α Action α, β ::= π✓ | p ▷ qπm | p ▷ qπS

The label τ represents either an internal action performed by a participant independently
of the others or a synchronization between two participants. The labels of the form π✓
describe the input/output of termination signals, whereas the labels of the form p ▷ qπm and
p ▷ qπS represent the input/output of a tag m or of an endpoint of type S.

The labeled transition system is defined by the rules in Table 4, most of which are
straightforward. Rule [l-pick] models the fact that the participant p may internally choose
one particular tag mk before sending it to q. The chosen tag is not negotiable with the
receiver. Rule [l-terminate] models termination of a session. A session terminates when
there is exactly one participant waiting for the termination signal and all the others are
sending it. This property follows from a straightforward induction on the derivation of
M

?✓−→ N using [l-terminate] and [l-end]. The existence of a single participant waiting for
the termination signal ensures that there is a uniquely determined continuation process after
the session has been closed. Finally, rule [l-sync] models the synchronization between two
participants performing complementary actions. The complement of an action α, denoted by
α, is the partial operation defined by the equations

p ▷ qπm def= q ▷ pπm p ▷ qπS
def= q ▷ pπS

ECOOP 2022

26:10 Fair Termination of Multiparty Sessions

Table 4 Labeled transition system for session maps.

[l-end]

p ▷ πend π✓−−→ p ▷ πend

[l-channel]

p ▷ qπU.S
p▷qπU−−−−→ p ▷ S

[l-pick]

p ▷
∑

i∈I q!mi.Si
τ−→ p ▷ q!mk.Sk

k ∈ I

[l-tag]

p ▷
∑

i∈I qπmi.Si
p▷qπmk−−−−−→ p ▷ Sk

k ∈ I

[l-tau]
M

τ−→ M ′

M | N
τ−→ M ′ | N

[l-terminate]

M
?✓−→ M ′ N

!✓−→ N ′

M | N
?✓−→ M ′ | N ′

[l-sync]

M
α−→ M ′ N

α−→ N ′

M | N
τ−→ M ′ | N ′

where π denotes the complement of the polarity π. The complement of actions of the form
π✓ is undefined, so rule [l-sync] cannot be applied to terminated sessions. Hereafter we
write ⇒ for the reflexive, transitive closure of τ−→ and α=⇒ for the composition ⇒ α−→.

We call coherence the property of multiparty sessions that we wish to enforce with our
type system, namely the fact that a session can always terminate no matter how it evolves.
We formulate coherence directly on the transition system of session maps, in line with the
approach of Scalas and Yoshida [46] and without introducing global types.

▶ Definition 4.2. We say that M is coherent, notation #M , if M ⇒ N implies N
?✓=⇒.

The term “coherence” is borrowed from Carbone et al. [8, 9], although the property is
actually stronger than the one of Carbone et al. as it entails fair termination of multiparty
sessions through Theorem 2.5. In particular, if we consider the reduction system whose states
are session maps and whose reduction relation is τ−→, then #M implies M fairly terminating.

▶ Example 4.3 (buyer-seller-carrier session map). Consider the session types

Sb = seller!add.seller!add.Sb + seller!pay.!end
Ss = buyer?add.Ss + buyer?pay.carrier!ship.!end
Sc = seller?ship.?end

which describe the behavior of the processes Buyer, Seller and Carrier in Example 3.1.
The session map buyer ▷ Sb | seller ▷ Ss | carrier ▷ Sc is coherent. To see that, consider any
interaction between the buyer and the seller. One of two cases applies: either the buyer has
sent an even number of add messages to the seller, in which case it can send pay and the
session eventually terminates, or the buyer has sent an odd number of add messages to the
seller, in which case it can send one more add message followed by a pay message and once
again the session eventually terminates. ⌟

Coherence allows us to provide a semantic definition of fair subtyping, the relation that
defines the safe substitution principle for session endpoints in our type system.

▶ Definition 4.4 (fair subtyping). We say that S is a fair subtype of T , notation S ⊑ T , if
M | p ▷ S coherent implies M | p ▷ T coherent for every M and p.

Definition 4.4 does not say much about the properties of fair subtyping except for the
fact that it is a coherence-preserving preorder. For this reason, we devote Section 4.2 to
defining an alternative characterization of fair subtyping that highlights its relationship with
the standard subtyping relation for session types [23].

L. Ciccone, F. Dagnino, and L. Padovani 26:11

Table 5 Inference system for fair subtyping.

[f-end]

πend ⩽n πend

[f-channel]
S ⩽n T

pπU.S ⩽n pπU.T

[f-tag-in]
∀i ∈ I : Si ⩽ni Ti ∀i ∈ I : ni ≤ n∑

i∈I p?mi.Si ⩽n

∑
i∈I∪J p?mi.Ti

[f-tag-out-1]
∀i ∈ I : Si ⩽ni Ti ∀i ∈ I : ni ≤ n∑

i∈I p!mi.Si ⩽n

∑
i∈I p!mi.Ti

[f-tag-out-2]
∀i ∈ I : Si ⩽ni Ti ∃i ∈ I : ni < n∑

i∈I∪J p!mi.Si ⩽n

∑
i∈I p!mi.Ti

4.2 Inference System for Fair Subtyping
Consider the relation ⩽n coinductively defined by the inference system in Table 5, where
n ranges over natural numbers. The characterization of fair subtyping that we consider is
the relation ⩽ def=

⋃
n∈N⩽n. The rules for deriving S ⩽n T are quite similar to those of the

standard subtyping relation for session types [23]: [f-end] states reflexivity of subtyping
on terminated session types; [f-channel] relates higher-order session types with the same
polarity and payload type; [f-tag-in] is the usual covariant rule for the input of tags (the set
of tags in the larger session type includes those in the smaller one); [f-tag-out-2] is the usual
contravariant rule for the output of tags (the set of tags in the smaller session type includes
those in the larger one). Overall, these rules entail a “simulation” between the behaviors
described by S and T whereby all inputs offered by S are also offered by T and all outputs
performed by T are also performed by S. The main differences between ⩽ and the subtyping
relation of Gay and Hole [23] are the presence of an invariant rule for outputs [f-tag-out-1]
and the natural number n annotating each subtyping judgment S ⩽n T . Intuitively, this
number estimates how much S and T differ in terms of performed outputs. In all rules but
[f-tag-out-2], the annotation in the conclusion of the rule is just an upper bound of the
annotations found in the premises. In [f-tag-out-2], where the sets of output tags in related
session types may differ, the annotation n is required to be a strict upper bound for at least
one of the premises. That is, there must be at least one premise in which the annotation
strictly decreases, while no restriction is imposed on the others. Intuitively, this ensures the
existence of a tag shared by the two related session types whose corresponding continuations
are slightly less different. So, the annotation n provides an upper bound to the number of
applications of [f-tag-out-2] along any path (i.e. any sequence of actions) shared by S and
T that leads to termination. In the particular case when n = 0, the rule [f-tag-out-2] cannot
be applied, so that T may perform all the outputs also performed by S.

▶ Example 4.5. Consider the session type S = seller!add.S + seller!pay.!end, which describes
the behavior of the buyer in Equation (1) purchasing an arbitrary number of items, T =
seller!add.seller!add.T +seller!pay.!end, which describes the behavior of the buyer in Example 3.1
always purchasing an even number of items, and U = seller!add.U , which describes the
behavior of a buyer attempting to purchase an infinite number of items without ever paying
the seller. We have S ⩽ T and S ̸⩽ U . Indeed, we can derive

...
S ⩽1 T

[f-tag-out-2]
S ⩽2 seller!add.T

[f-end]
!end ⩽0 !end

[f-tag-out-2]
S ⩽1 T

ECOOP 2022

26:12 Fair Termination of Multiparty Sessions

but there is no derivation for S ⩽n U no matter how large n is chosen. Note that there are
infinitely many sequences of actions of S that cannot be performed by both T and U . In
particular, T cannot perform any sequence of actions consisting of an odd number of add
outputs followed by a pay output, whereas U cannot perform any sequence of add outputs
followed by a pay output. Nonetheless, there is a path shared by S and T that leads into
a region of S and T in which no more differences are detectable. The annotations in the
derivation tree measures the distance of each judgment from such region. In the case of S

and U , there is no shared path that leads to a region where no differences are detectable. ⌟

▶ Example 4.6. Consider the session types S = player?play.(player!win.S + player!lose.S) +
player?quit.!end and T = player?play.player!lose.T + player?quit.!end describing the behavior
of two slot machines, an unbiased one in which the player may win at every play and a biased
one in which the player never wins. If we try to build a derivation for S ⩽n T we obtain

...
S ⩽n−1 T

[f-tag-out-1]
player!win.S + player!lose.S ⩽n player!lose.T

[f-end]
!end ⩽n !end

[f-tag-in]
S ⩽n T

which would contain an infinite branch with strictly decreasing annotations. Therefore, we
have S ̸⩽ T . In this case there exists a shared path leading into a region of S and T in which
no more differences are detectable between the two protocols, but this path starts from an
input. The fact that S is not a fair subtype of T has a semantic justification. Think of a
player that deliberately insists on playing until it wins. This is possible when player interacts
with the unbiased slot machine S but not with the biased one T . ⌟

In the rest of this section we study the fundamental properties of ⩽, starting from the
non-obvious fact that it is a preorder.

▶ Theorem 4.7. ⩽ is a preorder.

While reflexivity of ⩽ is trivial to prove (since [f-tag-out-2] is never necessary, it suffices
to only consider judgments with a 0 annotation), transitivity is surprisingly complex. The
challenging part of proving that from S ⩽m U and U ⩽n T we can derive S ⩽k T is to
come up with a feasible annotation k. As it turns out, such k depends not only on m

and n, but also on annotations found in different regions of the derivation trees that prove
S ⩽m U and U ⩽n T . In particular, the “difference” of S and T is not simply the “maximum
difference” or “the sum of the differences” of S and U and of U and T . More in detail, we
first show that we can always find a derivation of S ⩽m U where the rank annotations of all
judgements occurring in it are below some h ≥ m; then, the judgement S ⩽k T is provable for
k = m+(1+h)n. For previous characterizations of fair subtyping [40, 42, 13, 14], transitivity
has been established indirectly by relating the inference system of fair subtyping (Table 5)
with its semantic definition (Definition 4.4). For Theorem 4.7 we are able to provide a direct
proof [10].

Now we establish the connection between ⩽ and ⊑ (Definition 4.4). First of all, we prove
that ⩽ is coherence-preserving just like ⊑ is.

▶ Theorem 4.8 (soundness). If S ⩽ T then S ⊑ T .

The proof of this result relies on a key property of ⩽ not enjoyed by the usual subtyping
relation on session types [23]: when S ⩽ T and M | p ▷ S is coherent, the session map
M | p ▷ T can successfully terminate. The rank annotation on subtyping judgements is used
to set up an appropriate inductive argument for proving this property.

L. Ciccone, F. Dagnino, and L. Padovani 26:13

Theorem 4.8 alone suffices to justify the adoption of ⩽ as fair subtyping relation, but we
are interested in understanding to which extent ⩽ covers ⊑. In this respect, it is quite easy to
see that there exist session types that are related by ⊑ but not by ⩽. For example, consider
S = p!a.S and T = p?b.T and observe that these two session types describe completely
different protocols (the output of infinitely many a’s in the case of S and the input of infinitely
many b’s in the case of T). In particular, we have S ̸⩽ T and T ̸⩽ S but also S ⊑ T and
T ⊑ S. That is, S and T are unrelated according to ⩽ but they are equivalent according
to ⊑. This equivalence is justified by the fact that there exists no coherent session map in
which S and T could play any role, because none of them can ever terminate.

This discussion hints at the possibility that, if we restrict the attention to those session
types that can terminate, which are the interesting ones as far as this work is concerned,
then we can establish a tighter correspondence between ⩽ and ⊑. We call such session types
bounded, because they describe protocols for which termination is always within reach.

▶ Definition 4.9 (bounded session type). We say that a session type is bounded if all of its
subtrees contain a πend leaf.

Note that a finite session type is always bounded but not every bounded session type
is finite. If we consider the reduction system in which states are session types and we
have S → T if T is an immediate subtree of S, then S is bounded if and only if S is
fairly terminating. Now, for the family of bounded session types we can prove a relative
completeness result for ⩽ with respect to ⊑.

▶ Theorem 4.10 (relative completeness). If S is bounded and S ⊑ T then S ⩽ T .

The proof of Theorem 4.10 is done by contradiction. We show that, for any bounded S,
if S ⩽ T does not hold then we can build a session map M called discriminator such that
M | p ▷ S is coherent and M | p ▷ T is not, which contraddicts the hypothesis S ⊑ T . The
boundedness of S is necessary to make sure that it is always possible to find a session map
N such that N | p ▷ S is coherent.

5 Type System

In this section we describe the type system for the calculus of multiparty sessions of Section 3.
The typing judgments have the form Γ ⊢n P , meaning that the process P is well typed in
the typing context Γ and has rank n. As usual, the typing context is a map associating
channels with session types and is meant to contain an association for each name in fn(P).
We write u1 : S1, . . . , un : Sn for the map with domain {u1, . . . , un} that associates ui with
Si. Occationally we write u : S for the same context, when the number and the specific
associations are unimportant. We also assume that endpoints occurring in a typing context
have different session names. That is, s[p], s[q] ∈ dom(Γ) implies p = q. This constraint
makes sure that each well-typed process plays exactly one role in each of the sessions in
which it participates. It is also a common assumption made in all multiparty session calculi.
We use Γ and ∆ to range over typing contexts, we write ∅ for the empty context and Γ, ∆
for the union of Γ and ∆ when they have disjoint domains and disjoint sets of session names.
The rank n in a typing judgment estimates the number of sessions that P has to create and
the number of casts that P has to perform in order to terminate. The fact that the rank is
finite suggests that so is the effort required by P to terminate.

The typing rules are shown in Table 6 as a generalized inference system [3, 17, 11, 18] in
which, roughly speaking, the singly-lined rules are interpreted coinductively and the doubly-
lined rules – called corules – are interpreted inductively. We will come back with a more

ECOOP 2022

26:14 Fair Termination of Multiparty Sessions

Table 6 Typing rules.

[t-done]

∅ ⊢n done

[t-call]
u : S ⊢n P{u/x}
u : S ⊢n+m A⟨u⟩

A : [S; n], A(x) △= P

[t-wait]
Γ ⊢n P

Γ, u : ?end ⊢n wait u.P

[t-close]

u : !end ⊢n close u

[t-channel-in]
Γ, u : T, x : S ⊢n P

Γ, u : p?S.T ⊢n u[p]?(x).P

[t-channel-out]
Γ, u : T ⊢n P

Γ, u : p!S.T, v : S ⊢n u[p]!v.P

[t-tag]
∀i ∈ I : Γ, u : Si ⊢n Pi

Γ, u :
∑

i∈I pπmi.Si ⊢n u[p]π{mi.Pi}i∈I

[t-choice]
Γ ⊢n1 P1 Γ ⊢n2 P2

Γ ⊢nk P1 ⊕ P2
k ∈ {1, 2}

[t-cast]
Γ, u : T ⊢n P

Γ, u : S ⊢m+n ⌈u⌉P
S ⩽m T

[t-par]
∀i ∈ {1, . . . , h} : Γi, s[pi] : Si ⊢ni Pi

Γ1, . . . , Γh ⊢1+n1+···+nh (s)(P1 | · · · | Ph)
#{pi ▷ Si}i=1..h

[co-tag]
Γ, u : Sk ⊢n Pk

Γ, u :
∑

i∈I pπmi.Si ⊢n u[p]π{mi.Pi}i∈I

====================================== k ∈ I

[co-choice]
Γ ⊢n Pk

Γ ⊢n P1 ⊕ P2
============ k ∈ {1, 2}

detailed intuition later on (Definition 5.1), although we will not provide a formal definition of
the interpretation of a generalized inference system in this paper. The interested reader may
refer to the cited literature for details. We type check a program {Ai(xi)

△= Pi}i∈I under a
global set of assignments {Ai : [Si; ni]}i∈I associating each process name Ai with a tuple
of session types Si, one for each of the variables in xi, and a rank ni. The program is well
typed if xi : Si ⊢ni Pi is derivable for every i ∈ I, establishing that the tuple Si corresponds
to the way the variables xi are used by Pi and that ni is a feasible rank annotation for Pi.
We now describe the typing rules in detail.

The rule [t-done] states that the terminated process is well typed in the empty context,
to make sure that no unused channels are left behind. Note that done can be given any rank,
since it performs no casts and it creates no new sessions. The rule [t-call] checks that a
process invocation A⟨u⟩ is well typed by unfolding A into the process associated with A. The
types associated with u must match those of the global assignment A : [S; n] and the rank of
the process must be no greater than that of the invocation. The potential mismatch between
the two ranks improves typeability in some corner cases. The rules [t-wait] and [t-close]
concern processes that exchange termination signals. The channel being closed is consumed
and, in the case of [t-wait], no longer available in the continuation P . Again, close u can
be typed with any rank whereas the rank of wait u.P coincides with that of P . The rules
[t-channel-in] and [t-channel-out] deal with the exchange of channels in a quite standard
way. Note that the actual type of the exchanged channel is required to coincide with the
expected one. In particular, no covariance or contravariance of input and output respectively
is allowed. Relaxing the typing rule in this way would introduce implicit applications of
subtyping that may compromise fair termination [14]. In our type system, each application
of subtyping must be explicitly accounted for as we will see when discussing [t-cast]. Rule

L. Ciccone, F. Dagnino, and L. Padovani 26:15

[t-tag] deals with the exchange of tags. Channels that are not used for such communication
must be used in the same way in all branches, whereas the type of the channel on which
the message is exchanged changes accordingly. All branches are required to have the same
rank, which also corresponds to the rank of the process. Unlike other presentations of this
typing rule [23], we require the branches in the process to be matched exactly by those in
the type. Again, this is to avoid implicit application of subtyping, which might jeopardize
fair termination. The rule [t-choice] deals with non-deterministic choices and requires both
continuations to be well typed in the same typing context. The judgment in the conclusion
inherits the rank of one of the processes, typically the one with minimum rank. As we will
see in Example 6.3, this makes it possible to model finite-rank processes that may create an
unbounded number of sessions or that perform an unbounded number of casts.

The rule [t-cast] models the substitution principle induced by fair subtyping: when
S ⩽m T , a channel of type S can be used where a channel of type T is expected or, in dual
fashion [22], a process using u according to T can be used in place of a process using u

according to S. To keep track of this cast, the rank in the conclusion is augmented by the
weight m of the subtyping relation between S and T . Note that the typing rule guesses the
target type of the cast.

Finally, the rule [t-par] deals with session creation and parallel composition. This rule
is inspired to the multiparty cut rule found in linear logic interpretations of multiparty
session types [8, 9] and provides a straightforward way for enforcing deadlock freedom. Each
process in the composition must be well typed in a slice of the typing context augmented
with the endpoint corresponding to its role. The session map of the new session must be
coherent, implying that it fairly terminates. The rank of the composition is one plus the
aggregated rank of the composed processes, to account for the fact that one more session
has been created. Recall that coherence is a property expressed on the LTS of session maps
(Definition 4.2) in line with the approach of Scalas and Yoshida [46].

The typing rules described so far are interpreted coinductively. That is, in order for a
rank n process P to be well typed in Γ there must be a possibly infinite derivation tree built
with these rules and whose conclusion is the judgment Γ ⊢n P . But in a generalized inference
system like the one we are defining, this is not enough to establish that P is well typed. In
addition, it must be possible to find finite derivation trees for all of the judgments occurring
in this possibly infinite derivation tree using the discussed rules and possibly the corules,
which we are about to describe. Since the additional derivation trees must be finite, all of
their branches must end up with an application of [t-done] or [t-close], which are the only
axioms in Table 6 corresponding to the only terminated processes in Table 1. So, the purpose
of these finite typing derivations is to make sure that in every well-typed (sub-)process there
exists a path that leads to termination. On the one hand, this is a sensible condition to
require as our type system is meant to enforce fair process termination. On the other hand,
insisting that these finite derivations can be built using only the typing rules discusses thus
far is overly restrictive, for a process might have one path that leads to termination, but also
alternative paths that lead to (recursive) process invocations. In fact, all of the processes we
have discussed in Examples 3.1–3.3 are structured like this. The two corules [co-choice] and
[co-tag] in Table 6 establish that, whenever a multi-branch process is dealt with, it suffices
for one of the branches to lead to termination. A key detail to note in the case of [co-choice]
is that the rank of the non-deterministic choice coincides with that of the branch that leads
to termination. This makes sense recalling that the rank associated with a process represents
the overall effort required for that process to terminate.

Let us recap the notion of well-typed process resulting from the typing rules of Table 6.

ECOOP 2022

26:16 Fair Termination of Multiparty Sessions

▶ Definition 5.1 (well-typed process). We say that P is well typed in the context Γ and has
rank n if (1) there exists an arbitrary (possibly infinite) derivation tree obtained using the
(singly-lined) rules in Table 6 and whose conclusion is Γ ⊢n P and (2) for each judgment in
such tree there is a finite derivation obtained using the rules and the (doubly-lined) corules.

▶ Remark 5.2. The term “corule” seems to suggest that the rule should be coinductively
interpreted. As we have seen above (Definition 5.1), corules are interpreted inductively. We
have chosen to stick with the terminology used in the works that introduced generalized
inference systems [3, 17]. ⌟

▶ Example 5.3. Let us show some typing derivations for fragments of Example 3.1 using the
types Sb, Ss and Sc from Example 4.3. Concerning Buyer, we obtain the infinite derivation

...
[t-call]

x : Sb ⊢0 Buyer⟨x⟩
[t-tag]

x : seller!add.Sb ⊢0 x[seller]!add.Buyer⟨x⟩
[t-close]

x : !end ⊢0 close x
[t-tag]

x : Sb ⊢0 x[seller]!{add.x[seller]!add.Buyer⟨x⟩, pay.close x}

and, for each judgment in it, it is easy to find a finite derivation possibly using [co-tag].
Concerning Main we obtain

...
[t-call]

s[buyer] : Sb ⊢0 Buyer⟨s[buyer]⟩

...
[t-call]

s[seller] : Ss ⊢0 Seller⟨s[seller]⟩
...

[t-par]
∅ ⊢1 (s)(Buyer⟨s[buyer]⟩ | Seller⟨s[seller]⟩ | Carrier⟨s[carrier]⟩)

where the application of [t-par] is justified by the fact that buyer ▷ Sb | seller ▷ Ss | carrier ▷ Sc

is coherent (Example 4.3). No participant creates new sessions or performs casts, so they all
have zero rank. The rank of Main is 1 since it creates the session s. ⌟

We can prove a strong soundness result for our type system, stating that well-typed,
closed processes can always successfully terminate no matter how they reduce.

▶ Theorem 5.4 (soundness). If ∅ ⊢n P and P ⇒ Q, then Q ⇒≼ done.

There are several valuable implications of Theorem 5.4 on a well-typed, closed process P :
Deadlock freedom. If Q cannot reduce any further, then it must be (structurally precon-

gruent to) done, namely there are no residual input/output actions.
Fair termination. Under the fairness assumption, Theorem 2.5 assures that P eventually

reduces to done. This also implies that every session created by P eventually terminates.
Progress. If Q contains a sub-process with pending input/output actions, the fact that Q

may reduce to done means that these actions are eventually performed.

The proof of Theorem 5.4 is essentially composed of a standard subject reduction result
showing that typing is preserved by reductions and a proof that every well-typed process other
than done may always reduce in such a way that a suitably defined well-founded measure
strictly decreases. The measure is a lexicographically ordered pair of natural numbers with
the following meaning: the first component measures the number of sessions that must be
created and the total weight of casts that must be performed in order for the process to
terminate (this information is essentially the rank we associate with typing judgments); the
second component measures the overall effort required to terminate every session that has
already been created (these sessions are identified by the fact that their restriction occurs

L. Ciccone, F. Dagnino, and L. Padovani 26:17

unguarded in the process). We account for this effort by measuring the shortest reduction
that terminates a coherent session map (Definition 4.2). The reason why we need two
quantities in the measure is that in general every application of fair subtyping may increase
the length of the shortest reduction that terminates a coherent session map. So, when casts
are performed the second component of the measure may increase, but the first component
reduces. As a final remark, it should be noted that the overall measure associated with a
well-typed process may also increase, for example if new sessions are created (Example 3.3).
However, one particular reduction that decreases the measure is always guaranteed to exist.

We conclude this section discussing a few more examples that motivate the features of
the type system that are key for ensuring fair program termination.

▶ Example 5.5. To see simple examples of processes whose ill/well typing crucially depends
on the fact that we use a generalized inference system consider the definitions

A
△= A B

△= B ⊕ B C
△= C ⊕ done

which define a stuck process A, a diverging process B and a fairly terminating process C

that admits an infinite reduction. For them we can find the infinite typing derivations below:

...
[t-call]

∅ ⊢0 A
[t-call]

∅ ⊢0 A

...

...
[t-call]

∅ ⊢0 B
[t-choice]

∅ ⊢0 B ⊕ B
[t-call]

∅ ⊢0 B

...
[t-call]

∅ ⊢0 C
[t-done]

∅ ⊢0 done
[t-choice]

∅ ⊢0 C ⊕ done
∅ ⊢0 C

However, only for C it is possible to find a finite typing derivation using the corule [co-
choice]. So, A and B are ill typed, whereas C is well typed. This is consistent with the fact
that only C can always reduce to the successfully terminated process done. ⌟

▶ Example 5.6 (infinitely ranked processes). The mere existence of a path that leads to
termination ensured by the generalized interpretation of the typing rules in Table 6 does not
always guarantee that the process is actually able to terminate. An example where this is
the case is shown by the process A defined as

A
△= (s)(s[p][q]!{a.close s[p], b.wait s[p].A} | s[q][p]?{a.wait s[q].A, b.close s[q]})

which creates a session s and splits as two parallel sub-processes connected by s. Each
sub-process has a path that leads to termination but, because of the way they synchronize,
when one sub-process terminates the other one restarts A. For A it would be possible to
build a finite typing derivation with the help of [co-tag], but A is ill typed because it cannot
be assigned a finite rank, since it creates a new session at each recursive invocation.

Further examples of infinitely ranked processes, including ones where the rank is affected
by the presence of casts, are discussed by Ciccone and Padovani [14] for binary sessions and
can be easily reframed in our multiparty setting. ⌟

6 Advanced Examples

▶ Example 6.1. In this example we show that the process Buyer1 playing the role b1 in the
inner session of Example 3.2 is well typed. For clarity, we recall its definition here:

Buyer1(x, y) △= y[b2]!{split.y[b2]?{yes.⌈x⌉x[s]!ok.x[c]?box.wait x.wait y.done,

no.Buyer1⟨x, y⟩},

giveup.wait y.⌈x⌉x[s]!cancel.wait x.done}

ECOOP 2022

26:18 Fair Termination of Multiparty Sessions

We wish to build a typing derivation showing that Buyer1 has rank 1 and uses x

and y respectively according to S and T , where S = s!ok.c?box.?end + s!cancel.?end and
T = b2!split.(b2?yes.?end + b2?no.T) + b2!giveup.?end. As it has been noted previously, what
makes this process interesting is that it uses the endpoint x differently depending on the
messages it exchanges with b2 on y. Since rule [t-tag] requires any endpoint other than the
one on which messages are exchanged to have the same type, the only way Buyer2 can be
declared well typed is by means of the casts that occur in its body. For the branch in which
Buyer1 proposes to split the payment we obtain the following derivation tree:

[t-done]
∅ ⊢0 done

[t-wait]
y : ?end ⊢0 wait y.done

[t-wait]
x : ?end, y : ?end ⊢0 wait x . . .

[t-tag]
x : c?box.?end, y : ?end ⊢0 x[c]?box . . .

[t-tag]
x : s!ok.c?box.?end, y : ?end ⊢0 x[s]!ok . . .

[t-cast]
x : S, y : ?end ⊢1 ⌈x⌉ · · ·

...
[t-call]

x : S, y : T ⊢1 Buyer1⟨x, y⟩
[t-tag]

x : S, y : b2?yes.?end + b2?no.T ⊢1 y[b2]?{yes . . . , no . . . }

Note how the application of [t-cast] is key to change the type of x in the branch where
the proposed split is accepted by b2. In that branch, x is deterministically used to send an
ok message and we leverage on the fair subtyping relation S ⩽1 s!ok.c?box.?end.

For the branch in which Buyer1 sends giveup we obtain the following derivation tree:

[t-done]
∅ ⊢0 done

[t-wait]
x : ?end ⊢0 wait x.done

x : s!cancel.?end ⊢0 x[s]!cancel.wait x.done
[t-cast]

x : S ⊢1 ⌈x⌉x[s]!cancel.wait x.done
[t-wait]

x : S, y : ?end ⊢1 wait y.⌈x⌉x[s]!cancel.wait x.done

Once again the cast is necessary to change the type of x, but this time leveraging on the
fair subtyping relation S ⩽1 s!cancel.?end. These two derivations can then be combined to
complete the proof that the body of Buyer1 is well typed:

...
...

[t-tag]
x : S, y : T ⊢1 y[b2]!{split . . . , giveup . . . }

Clearly, it is also necessary to find finite derivation trees for all of the judgments shown
above. This can be easily achieved using the corule [co-tag]. ⌟

▶ Example 6.2. Casts can be useful to reconcile the types of a channel that is used differently
in different branches of a non-deterministic choice. For example, below is an alternative
modeling of Buyer from Example 3.1 where we abbreviate seller to s for convenience:

B(x) △= ⌈x⌉x[s]!add.x[s]!add.B⟨x⟩ ⊕ ⌈x⌉x[s]!pay.close x

Note that x is used for sending two add messages in the left branch of the non-deterministic
choice and for sending a single pay message in the right branch. Given the session type
S = s!add.S + s!pay.!end and using the fair subtyping relations S ⩽2 s!add.s!add.S and
S ⩽1 s!pay.!end we can obtain the following typing derivation for the body of B:

L. Ciccone, F. Dagnino, and L. Padovani 26:19

...
[t-call]

x : S ⊢1 B⟨x⟩
[t-tag]

x : s!add.S ⊢1 x[s]!add.B⟨x⟩
[t-tag]

x : s!add.s!add.S ⊢1 x[s]!add.x[s]!add.B⟨x⟩
[t-cast]

x : S ⊢3 ⌈x⌉x[s]!add.x[s]!add.B⟨x⟩

[t-close]
x : !end ⊢0 close x

[t-tag]
x : s!pay.!end ⊢0 x[s]!pay.close x

[t-cast]
x : S ⊢1 ⌈x⌉x[s]!pay.close x

[t-choice]
x : S ⊢1 ⌈x⌉x[s]!add.x[s]!add.B⟨x⟩ ⊕ ⌈x⌉x[s]!pay.close x

In general, the transformation u[p]!{mi.Pi}i=1..n ⇝ ⌈u⌉u[p]!m1.P1 ⊕· · ·⊕⌈u⌉u[p]!mn.Pn does
not always preserve typing, so it is not always possible to encode the output of tags using
casts and non-deterministic choices. As an example, the definition

Slot(x) △= x[player]?{play.x[player]!{win.Slot⟨x⟩, lose.Slot⟨x⟩}, quit.close x}

implements the unbiased slot machine of Example 4.6. It is easy to see that Slot is well
typed under the global type assignment Slot : [T ; 0] where T = player?play.(player!win.T +
player!lose.T) + player?quit.!end. In particular, Slot has rank 0 since it performs no casts and
it creates no sessions. If we encode the tag output in Slot using casts and non-deterministic
choices we end up with the following process definition, which is ill typed because it cannot
be given a finite rank:

Slot(x) △= x[player]?{play.(⌈x⌉x[player]!win.Slot⟨x⟩ ⊕ ⌈x⌉x[player]!lose.Slot⟨x⟩), quit.close x}

The difference between this version of Slot and the above definition of B is that Slot
always recurs after a cast, so it is not obvious that finitely many casts suffice in order for
Slot to terminate. ⌟

▶ Example 6.3. Here we provide evidence that the process definitions in Example 3.3 are
well typed, even if they model processes that can open arbitrarily many sessions. In that
example, the most interesting process definition is that of the worker Sort, which is recursive
and may create a new session. In contrast, Merge is finite and Main only refers to Sort. We
claim that these process definitions are well typed under the global type assignments

Main : [(); 1] Sort : [U ; 0] Merge : [T, V ; 0]

where T = m!res.!end, U = m?req.T and V = w1!req.w2!req.w1?res.w2?res.?end.
For the branch of Sort that creates a new session we obtain the derivation tree...

[t-call]
x : T, t[m] : V ⊢0 Merge⟨x, t[m]⟩

...
[t-call], i = 1, 2

t[wi] : U ⊢0 Sort⟨t[wi]⟩
[t-par]

x : T ⊢1 (t)(Merge⟨x, t[m]⟩ | Sort⟨t[w1]⟩ | Sort⟨t[w2]⟩)
where the rank 1 derives from the fact that the created session involves three zero-ranked
participants. For the body of Sort we obtain the following derivation tree:

...
[t-par]

x : T ⊢1 (t)(Merge⟨x, t[m]⟩ | Sort⟨t[w1]⟩ | · · ·)

[t-close]
x : !end ⊢0 close x

[t-tag]
x : T ⊢0 x[m]!res.close x

[t-choice]
x : T ⊢0 (t)(Merge⟨x, t[m]⟩ | Sort⟨t[w1]⟩ | · · ·) ⊕ x[m]!res.close x

[t-tag]
x : U ⊢0 x[m]?req.((t)(Merge⟨x, t[m]⟩ | Sort⟨t[w1]⟩ | · · ·) ⊕ x[m]!res.close x)

In the application of the rule [t-choice], the rank of the whole choice coincides with that
of the branch in which no new sessions are created. This way we account for the fact that,
even though Sort may create a new session, it does not have to do so in order to terminate. ⌟

ECOOP 2022

26:20 Fair Termination of Multiparty Sessions

7 Related Work

Fair termination of binary sessions. Our type system is both a refinement and an extension
of the one presented by Ciccone and Padovani [14], which ensures the fair termination of
binary sessions. The main elements of the two type systems are closely related, but there are
some key differences. In that work, the fairness assumption being made is strong fairness
[21, 4, 36, 47] which guarantees fair termination of binary sessions at the level of types but
not necessarily at the level of processes. The key difference between types and processes
is that types generate finite-state reduction systems (because of their regularity) whereas
processes may generate infinite-state reduction systems. While strong fairness is known to
be the strongest possible fairness assumption for finite-state systems [48], it is not strong
enough to make the right-to-left direction of Theorem 2.5 hold for infinite-state systems. In
fact, it can be shown that strong fairness and the fairness assumption we make in this work
(Definition 2.2) are unrelated for infinite-state reduction systems, in the sense that there
exist fair runs that are not strongly fair and there exist strongly fair runs that are not fair
runs. The fairness assumption we make in this work is general enough so that it can be
related to both types (Definition 4.2) and processes (Theorem 5.4) through Theorem 2.5.
The main advantage of working with native multiparty sessions is that they enable the
natural modeling of interactions involving multiple participants in possibly cyclic network
topologies, like those in Examples 3.2 and 3.3. Another difference and contribution of our
work compared to the one of Ciccone and Padovani [14] is that the definition of the fair
subtyping relation is simpler. In particular, the inference system we provide (Table 5) does
not make use of corules [13, 14] nor does it require auxiliary predicates [40, 42].

Liveness properties of multiparty sessions. The enforcement of liveness properties has
always been a key aspect of session type systems, although previous works have almost
exclusively focused on progress rather than on (fair) termination. Scalas and Yoshida [46]
define a general framework for ensuring safety and liveness properties of multiparty sessions.
In particular, they define a hierarchy of three liveness predicates to characterize “live” sessions
that enjoy progress. They also point out that the coarsest liveness property in this hierarchy,
which is the one more closely related to fair termination, cannot be enforced by their type
system. In part, this is due to the fact that their type system relies on a standard subtyping
relation for session types [23] instead of fair subtyping [40, 42]. As we have seen in Section 5,
even for single-session programs the mere adoption of fair subtyping is not enough and it is
necessary to meet additional requirements (Examples 5.5 and 5.6). The work of van Glabbeek
et al. [48] presents a type system for multiparty sessions that ensures progress and is not
only sound but also complete. The fairness assumption they make – called justness – is
substantially weaker than our own (Definition 2.2) and such that the unfair runs are those
in which some interactions between participants are systematically discriminated in favor
of other interactions involving a disjoint set of independent participants. For this reason,
their progress property is in between the two more restrictive liveness predicates of Scalas
and Yoshida [46] and can only be guaranteed when it is independent of the behavior of
the other participants of the same session. In the end, simple sessions like those described
in Examples 3.1–3.3 fall outside the scope of these works as far as liveness properties are
concerned.

Another major difference between our work and the ones cited above [46, 48] is that
fair termination, unlike progress, enables compositional reasoning and so we are able to
enforce a global liveness property (Theorem 5.4) even in the presence of multiple sessions

L. Ciccone, F. Dagnino, and L. Padovani 26:21

(see Examples 3.2 and 3.3). Notable examples of multiparty session type systems ensuring
progress also in the presence of multiple (possibly interleaved) sessions are provided by
Padovani et al. [43] and by Coppo et al. [15]. This is achieved by a rich type structure that
prevents mutual dependencies between different sessions. In any case, these works do not
address sessions in which progress may depend on choices made by session participants.

Termination of binary sessions. Termination is a liveness property that can be guaranteed
when finite session types are considered [44]. As soon as infinite session types are considered,
many session type systems weaken the guaranteed property to deadlock freedom. Lindley
and Morris [38] define a type system for a functional language with session primitives and
recursive session types that is strongly normalizing. That is, a well-typed program along with
all the sessions it creates is guaranteed to terminate. This strong result is due to the fact that
the type language is equipped with least and greatest fixed point operators that are required
to match each other by duality. Termination is strictly stronger than fair termination. In
particular, there exist fairly terminating programs that are not terminating because they
allow reductions of unbounded length (see Examples 3.1–3.3).

Liveness properties in the π-calculus. Kobayashi [29] defines a behavioral type system
that guarantees lock freedom in the π-calculus. Lock freedom is a liveness property akin
to progress for sessions, except that it applies to any communication channel (shared or
private). Padovani [41] adapts and extends the type system of Kobayashi [29] to enforce lock
freedom in the linear π-calculus [32], into which binary sessions can be encoded [19]. All of
these works annotate types with numbers representing finite upper bounds to the number of
interactions needed to unblock a particular input/output action. For this reason, none of
our key examples (Examples 3.1–3.3) is in the scope of these analysis techniques. Kobayashi
and Sangiorgi [33] show how to enforce lock freedom by combining deadlock freedom and
termination. Our work can be seen as a generalization of this approach whereby we enforce
lock freedom by combining deadlock freedom (through a mostly conventional session type
system) and fair termination. Since fair termination is coarser than termination, the family
of programs for which lock freedom can be proved is larger as well.

Deadlock freedom. Our type system enforces deadlock freedom essentially thanks to the
shape of the rule [t-par] which is inspired to the cut rule of linear logic. This rule has been
applied to session type systems for binary sessions [49, 6, 38] and subsequently extended to
multiparty sessions [8, 9]. In the latter case, the rule – dubbed multiparty cut – requires a
coherence condition among cut types establishing that the session types followed by the single
participants adhere to a so-called global type describing the multiparty session as a whole.
The rule [t-par] adopts with schema, except that the coherence condition is stronger to entail
fair session termination. The key principle of these formulations of the cut rule as a typing
rule for parallel processes is to impose a tree-like network topology, whereby two parallel
processes can share at most one channel. In the multiparty case, cyclic network topologies
can be modeled within each session (Example 3.3) since coherence implies deadlock freedom.

Having a single construct that merges session restriction and parallel composition allows
for a simple formulation of the typing rules so that dealock freedom is easily guaranteed.
However, many session calculi separate these two forms in line with the original presentation
of the π-calculus. We think that our type system can be easily reformulated to support
distinct session restriction and parallel composition by means of hypersequents [34, 35].

ECOOP 2022

26:22 Fair Termination of Multiparty Sessions

A more liberal version of the cut rule, named multi-cut and inspired to Gentzen’s “mix”
rule, is considered by Abramsky et al. [1] enabling processes to share more than one channel.
In this setting, deadlock freedom is lost but can be recovered by means of a richer type
structure that keeps track of the dependencies between different channels. This approach has
been pioneered by Kobayashi [29, 30] for the π-calculus and later on refined by Padovani [41].
Other approaches to ensure deadlock freedom based on dependency/connectivity graphs that
capture the network topology implemented by processes have been studied by Carbone and
Debois [7], Kobayashi and Laneve [31], de’Liguoro and Padovani [20], and Jacobs et al. [28].

8 Concluding Remarks

Sessions ought to terminate. Until recently this property has been granted only for sessions
whose duration is bounded. In this work we have presented the first type system ensuring the
fair termination of multiparty sessions, that is a termination property under the assumption
that, if termination is always reachable, then it is eventually achieved. Fair termination
is stronger than weak termination but substantially weaker than strong normalization. In
particular, fair termination does not rule out infinite runs of well-typed processes as long as
they purposefully eschew termination. When fair termination is combined with the usual
safety properties of sessions, it entails a strong progress property whereby any pending action
is eventually performed. Our type system is the first ensuring such strong progress property
for multiparty (and possibly multiple) sessions.

A cornerstone element of the type system is fair subtyping, a coherence-preserving
refinement of the standard subtyping relation for session types [23]. In this work, we have
also contributed a new characterization of fair subtyping (Table 5 and Theorems 4.8 and 4.10)
that is substantially simpler than previous ones [40, 42, 13, 14] since it does not require
auxiliary predicates nor the use of a generalized inference system [3, 17, 13, 14]. Thanks
to this new characterization we have been able to prove the transitivity of fair subtyping
(Theorem 4.7) without relying on its (relative) completeness with respect to its semantic
counterpart (Definition 4.4).

The decidability of fair subtyping and of type checking follow from analogous results
for binary sessions [14]. The rank of processes can be inferred using the same algorithm
that works for the binary case [14, auxiliary material]. Considering that fair subtyping for
multiparty session types coincides with fair subtyping for binary session types except for
the presence of roles, it would be easy to adapt the type checking tool FairCheck [12] to
the process language we consider in this paper. The most relevant difference would be the
algorithm for deciding the coherence of a session map, which is somewhat more complex
than that for the compatibility between two session types. As for the binary setting, to
which extent the type system is amenable to full type reconstruction is yet to be established.
In particular, a hypothetical type inference algorithm would have to be able to solve fair
subtyping inequations and this problem has not been investigated yet. Another open question
that may have a relevant practical impact is whether the type system remains sound in a
setting where communications are asynchronous. We expect the answer to be positive, as is
the case for other synchronous multiparty session types systems [46], but we have not worked
out the details yet.

In this paper we have focused on the theoretical aspects of fairly terminating multiparty
sessions. A natural development of this work is its application to a real programming
environment. We envision two approaches that can be followed to this aim. A bottom-up
approach may apply our static analysis technique to a program (in our process calculus)
that is extracted from actual code and that captures the code’s communication semantics.
We expect that suitable annotations may be necessary to identify those branching parts

L. Ciccone, F. Dagnino, and L. Padovani 26:23

of the code that represent non-deterministic choices in the program. Most typically, these
branches will correspond to finite loops or to queries made to the human user of the program
that have several different continuations. A top-down approach may provide programmers
with a generative tool that, starting from a global specification in the form of a global
type [26], produces template code that is “well-typed by design” and that the programmer
subsequently instantiates to a specific application. Scribble [50, 2] is an example of such a
tool. Interestingly, the usual notion of global type projectability is not sufficient to entail
that the session map resulting from a projection is coherent. However, coherence would be
guaranteed by requiring that the projected global type is fairly terminating.

Finally, we plan to investigate the adaptation of the type system for ensuring the fair
termination in the popular actor-based model. This is a drastically different setting in which
the order of messages is not as controllable as in the case of sessions. As a consequence, type
based analyses require radically different formalisms such as mailbox types [20], for which
the study of fair subtyping and of type systems enforcing fair termination is unexplored.

References

1 Samson Abramsky, Simon J. Gay, and Rajagopal Nagarajan. Interaction categories and the
foundations of typed concurrent programming. In Manfred Broy, editor, Proceedings of the
NATO Advanced Study Institute on Deductive Program Design, Marktoberdorf, Germany,
pages 35–113, 1996.

2 Davide Ancona, Viviana Bono, Mario Bravetti, Joana Campos, Giuseppe Castagna, Pierre-
Malo Deniélou, Simon J. Gay, Nils Gesbert, Elena Giachino, Raymond Hu, Einar Broch
Johnsen, Francisco Martins, Viviana Mascardi, Fabrizio Montesi, Rumyana Neykova,
Nicholas Ng, Luca Padovani, Vasco T. Vasconcelos, and Nobuko Yoshida. Behavioral
types in programming languages. Found. Trends Program. Lang., 3(2-3):95–230, 2016.
doi:10.1561/2500000031.

3 Davide Ancona, Francesco Dagnino, and Elena Zucca. Generalizing inference systems by
coaxioms. In Hongseok Yang, editor, Programming Languages and Systems - 26th European
Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10201 of Lecture Notes in Computer Science, pages 29–55. Springer, 2017.
doi:10.1007/978-3-662-54434-1_2.

4 Krzysztof R. Apt, Nissim Francez, and Shmuel Katz. Appraising fairness in languages for
distributed programming. In Conference Record of the Fourteenth Annual ACM Symposium
on Principles of Programming Languages, Munich, Germany, January 21-23, 1987, pages
189–198. ACM Press, 1987. doi:10.1145/41625.41642.

5 Mario Bravetti and Gianluigi Zavattaro. A theory of contracts for strong service compliance.
Math. Struct. Comput. Sci., 19(3):601–638, 2009. doi:10.1017/S0960129509007658.

6 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types.
Math. Struct. Comput. Sci., 26(3):367–423, 2016. doi:10.1017/S0960129514000218.

7 Marco Carbone and Søren Debois. A graphical approach to progress for structured communica-
tion in web services. In Simon Bliudze, Roberto Bruni, Davide Grohmann, and Alexandra Silva,
editors, Proceedings Third Interaction and Concurrency Experience: Guaranteed Interaction,
ICE 2010, Amsterdam, The Netherlands, 10th of June 2010, volume 38 of EPTCS, pages
13–27, 2010. doi:10.4204/EPTCS.38.4.

8 Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler.
Coherence generalises duality: A logical explanation of multiparty session types. In Josée
Desharnais and Radha Jagadeesan, editors, 27th International Conference on Concurrency
Theory, CONCUR 2016, August 23-26, 2016, Québec City, Canada, volume 59 of LIPIcs,
pages 33:1–33:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. doi:10.4230/
LIPIcs.CONCUR.2016.33.

ECOOP 2022

https://doi.org/10.1561/2500000031
https://doi.org/10.1007/978-3-662-54434-1_2
https://doi.org/10.1145/41625.41642
https://doi.org/10.1017/S0960129509007658
https://doi.org/10.1017/S0960129514000218
https://doi.org/10.4204/EPTCS.38.4
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33
https://doi.org/10.4230/LIPIcs.CONCUR.2016.33

26:24 Fair Termination of Multiparty Sessions

9 Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. Multiparty
session types as coherence proofs. Acta Informatica, 54(3):243–269, 2017. doi:10.1007/
s00236-016-0285-y.

10 Luca Ciccone, Francesco Dagnino, and Luca Padovani. Fair Termination of Multiparty
Sessions. Technical report, Università di Torino and Università di Genova, 2022. URL:
https://arxiv.org/abs/2205.08786.

11 Luca Ciccone, Francesco Dagnino, and Elena Zucca. Flexible coinduction in agda. In Liron
Cohen and Cezary Kaliszyk, editors, 12th International Conference on Interactive Theorem
Proving, ITP 2021, June 29 to July 1, 2021, Rome, Italy (Virtual Conference), volume
193 of LIPIcs, pages 13:1–13:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ITP.2021.13.

12 Luca Ciccone and Luca Padovani. FairCheck. GitHub repository, 2021. URL: https:
//github.com/boystrange/FairCheck.

13 Luca Ciccone and Luca Padovani. Inference Systems with Corules for Fair Subtyping and
Liveness Properties of Binary Session Types. In Nikhil Bansal, Emanuela Merelli, and James
Worrell, editors, Proceedings of the 48th International Colloquium on Automata, Languages, and
Programming (ICALP’21), volume 198 of LIPIcs, pages 125:1–125:16, Dagstuhl, Germany, 2021.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2021.125.

14 Luca Ciccone and Luca Padovani. Fair termination of binary sessions. Proc. ACM Program.
Lang., 6(POPL):1–30, 2022. doi:10.1145/3498666.

15 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani. Global
progress for dynamically interleaved multiparty sessions. Math. Struct. Comput. Sci., 26(2):238–
302, 2016. doi:10.1017/S0960129514000188.

16 Bruno Courcelle. Fundamental properties of infinite trees. Theor. Comput. Sci., 25:95–169,
1983. doi:10.1016/0304-3975(83)90059-2.

17 Francesco Dagnino. Coaxioms: flexible coinductive definitions by inference systems. Log.
Methods Comput. Sci., 15(1), 2019. doi:10.23638/LMCS-15(1:26)2019.

18 Francesco Dagnino. Flexible Coinduction. PhD thesis, DIBRIS, University of Genoa, January
2021.

19 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. Inf. Comput.,
256:253–286, 2017. doi:10.1016/j.ic.2017.06.002.

20 Ugo de’Liguoro and Luca Padovani. Mailbox types for unordered interactions. In Todd D.
Millstein, editor, 32nd European Conference on Object-Oriented Programming, ECOOP 2018,
July 16-21, 2018, Amsterdam, The Netherlands, volume 109 of LIPIcs, pages 15:1–15:28. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ECOOP.2018.15.

21 Nissim Francez. Fairness. Texts and Monographs in Computer Science. Springer, 1986.
doi:10.1007/978-1-4612-4886-6.

22 Simon J. Gay. Subtyping supports safe session substitution. In Sam Lindley, Conor McBride,
Philip W. Trinder, and Donald Sannella, editors, A List of Successes That Can Change the
World - Essays Dedicated to Philip Wadler on the Occasion of His 60th Birthday, volume
9600 of Lecture Notes in Computer Science, pages 95–108. Springer, 2016. doi:10.1007/
978-3-319-30936-1_5.

23 Simon J. Gay and Malcolm Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2-3):191–225, 2005. doi:10.1007/s00236-005-0177-z.

24 Kohei Honda. Types for dyadic interaction. In Eike Best, editor, CONCUR ’93, 4th In-
ternational Conference on Concurrency Theory, Hildesheim, Germany, August 23-26, 1993,
Proceedings, volume 715 of Lecture Notes in Computer Science, pages 509–523. Springer, 1993.
doi:10.1007/3-540-57208-2_35.

25 Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto Kubo. Language primitives and
type discipline for structured communication-based programming. In Chris Hankin, editor,
Programming Languages and Systems - ESOP’98, 7th European Symposium on Programming,
Held as Part of the European Joint Conferences on the Theory and Practice of Software,
ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1381 of Lecture
Notes in Computer Science, pages 122–138. Springer, 1998. doi:10.1007/BFb0053567.

https://doi.org/10.1007/s00236-016-0285-y
https://doi.org/10.1007/s00236-016-0285-y
https://arxiv.org/abs/2205.08786
https://doi.org/10.4230/LIPIcs.ITP.2021.13
https://github.com/boystrange/FairCheck
https://github.com/boystrange/FairCheck
https://doi.org/10.4230/LIPIcs.ICALP.2021.125
https://doi.org/10.1145/3498666
https://doi.org/10.1017/S0960129514000188
https://doi.org/10.1016/0304-3975(83)90059-2
https://doi.org/10.23638/LMCS-15(1:26)2019
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.4230/LIPIcs.ECOOP.2018.15
https://doi.org/10.1007/978-1-4612-4886-6
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/978-3-319-30936-1_5
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567

L. Ciccone, F. Dagnino, and L. Padovani 26:25

26 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016. doi:10.1145/2827695.

27 Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo
Deniélou, Dimitris Mostrous, Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres
Vieira, and Gianluigi Zavattaro. Foundations of session types and behavioural contracts. ACM
Comput. Surv., 49(1):3:1–3:36, 2016. doi:10.1145/2873052.

28 Jules Jacobs, Stephanie Balzer, and Robbert Krebbers. Connectivity graphs: a method for
proving deadlock freedom based on separation logic. Proc. ACM Program. Lang., 6(POPL):1–
33, 2022. doi:10.1145/3498662.

29 Naoki Kobayashi. A type system for lock-free processes. Inf. Comput., 177(2):122–159, 2002.
doi:10.1006/inco.2002.3171.

30 Naoki Kobayashi. A new type system for deadlock-free processes. In Christel Baier and Holger
Hermanns, editors, CONCUR 2006 - Concurrency Theory, 17th International Conference,
CONCUR 2006, Bonn, Germany, August 27-30, 2006, Proceedings, volume 4137 of Lecture
Notes in Computer Science, pages 233–247. Springer, 2006. doi:10.1007/11817949_16.

31 Naoki Kobayashi and Cosimo Laneve. Deadlock analysis of unbounded process networks. Inf.
Comput., 252:48–70, 2017. doi:10.1016/j.ic.2016.03.004.

32 Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. Linearity and the pi-calculus.
ACM Trans. Program. Lang. Syst., 21(5):914–947, 1999. doi:10.1145/330249.330251.

33 Naoki Kobayashi and Davide Sangiorgi. A hybrid type system for lock-freedom of mobile
processes. ACM Trans. Program. Lang. Syst., 32(5):16:1–16:49, 2010. doi:10.1145/1745312.
1745313.

34 Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Taking linear logic apart. In Thomas
Ehrhard, Maribel Fernández, Valeria de Paiva, and Lorenzo Tortora de Falco, editors, Proceed-
ings Joint International Workshop on Linearity & Trends in Linear Logic and Applications,
Linearity-TLLA@FLoC 2018, Oxford, UK, 7-8 July 2018, volume 292 of EPTCS, pages 90–103,
2018. doi:10.4204/EPTCS.292.5.

35 Wen Kokke, Fabrizio Montesi, and Marco Peressotti. Better late than never: a fully-abstract
semantics for classical processes. Proc. ACM Program. Lang., 3(POPL):24:1–24:29, 2019.
doi:10.1145/3290337.

36 M.Z. Kwiatkowska. Survey of fairness notions. Information and Software Technology, 31(7):371–
386, 1989. doi:10.1016/0950-5849(89)90159-6.

37 Leslie Lamport. Fairness and hyperfairness. Distributed Comput., 13(4):239–245, 2000.
doi:10.1007/PL00008921.

38 Sam Lindley and J. Garrett Morris. Talking bananas: structural recursion for session types.
In Jacques Garrigue, Gabriele Keller, and Eijiro Sumii, editors, Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP 2016, Nara, Japan,
September 18-22, 2016, pages 434–447. ACM, 2016. doi:10.1145/2951913.2951921.

39 Susan S. Owicki and Leslie Lamport. Proving liveness properties of concurrent programs.
ACM Trans. Program. Lang. Syst., 4(3):455–495, 1982. doi:10.1145/357172.357178.

40 Luca Padovani. Fair subtyping for open session types. In Fedor V. Fomin, Rusins Freivalds,
Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Languages, and Programming
- 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings,
Part II, volume 7966 of Lecture Notes in Computer Science, pages 373–384. Springer, 2013.
doi:10.1007/978-3-642-39212-2_34.

41 Luca Padovani. Deadlock and lock freedom in the linear π-calculus. In Thomas A. Henzinger
and Dale Miller, editors, Joint Meeting of the Twenty-Third EACSL Annual Conference on
Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on
Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18, 2014, pages
72:1–72:10. ACM, 2014. doi:10.1145/2603088.2603116.

42 Luca Padovani. Fair subtyping for multi-party session types. Math. Struct. Comput. Sci.,
26(3):424–464, 2016. doi:10.1017/S096012951400022X.

ECOOP 2022

https://doi.org/10.1145/2827695
https://doi.org/10.1145/2873052
https://doi.org/10.1145/3498662
https://doi.org/10.1006/inco.2002.3171
https://doi.org/10.1007/11817949_16
https://doi.org/10.1016/j.ic.2016.03.004
https://doi.org/10.1145/330249.330251
https://doi.org/10.1145/1745312.1745313
https://doi.org/10.1145/1745312.1745313
https://doi.org/10.4204/EPTCS.292.5
https://doi.org/10.1145/3290337
https://doi.org/10.1016/0950-5849(89)90159-6
https://doi.org/10.1007/PL00008921
https://doi.org/10.1145/2951913.2951921
https://doi.org/10.1145/357172.357178
https://doi.org/10.1007/978-3-642-39212-2_34
https://doi.org/10.1145/2603088.2603116
https://doi.org/10.1017/S096012951400022X

26:26 Fair Termination of Multiparty Sessions

43 Luca Padovani, Vasco Thudichum Vasconcelos, and Hugo Torres Vieira. Typing liveness in mul-
tiparty communicating systems. In eva Kühn and Rosario Pugliese, editors, Coordination Mod-
els and Languages - 16th IFIP WG 6.1 International Conference, COORDINATION 2014, Held
as Part of the 9th International Federated Conferences on Distributed Computing Techniques,
DisCoTec 2014, Berlin, Germany, June 3-5, 2014, Proceedings, volume 8459 of Lecture Notes
in Computer Science, pages 147–162. Springer, 2014. doi:10.1007/978-3-662-43376-8_10.

44 Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations
for session-based concurrency. In Helmut Seidl, editor, Programming Languages and Systems -
21st European Symposium on Programming, ESOP 2012, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2012, Tallinn, Estonia, March 24 -
April 1, 2012. Proceedings, volume 7211 of Lecture Notes in Computer Science, pages 539–558.
Springer, 2012. doi:10.1007/978-3-642-28869-2_27.

45 Jean-Pierre Queille and Joseph Sifakis. Fairness and related properties in transition systems
- A temporal logic to deal with fairness. Acta Informatica, 19:195–220, 1983. doi:10.1007/
BF00265555.

46 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc.
ACM Program. Lang., 3(POPL):30:1–30:29, 2019. doi:10.1145/3290343.

47 Rob van Glabbeek and Peter Höfner. Progress, justness, and fairness. ACM Comput. Surv.,
52(4):69:1–69:38, 2019. doi:10.1145/3329125.

48 Rob van Glabbeek, Peter Höfner, and Ross Horne. Assuming just enough fairness to make
session types complete for lock-freedom. In 36th Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021.
doi:10.1109/LICS52264.2021.9470531.

49 Philip Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014. doi:
10.1017/S095679681400001X.

50 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In Martín Abadi and Alberto Lluch-Lafuente, editors, Trustworthy Global Computing
- 8th International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,
Revised Selected Papers, volume 8358 of Lecture Notes in Computer Science, pages 22–41.
Springer, 2013. doi:10.1007/978-3-319-05119-2_3.

https://doi.org/10.1007/978-3-662-43376-8_10
https://doi.org/10.1007/978-3-642-28869-2_27
https://doi.org/10.1007/BF00265555
https://doi.org/10.1007/BF00265555
https://doi.org/10.1145/3290343
https://doi.org/10.1145/3329125
https://doi.org/10.1109/LICS52264.2021.9470531
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1007/978-3-319-05119-2_3

API Generation for Multiparty Session Types,
Revisited and Revised Using Scala 3
Guillermina Cledou #

HASLab, INESC TEC, Porto, Portugal
University of Minho, Braga, Portugal

Luc Edixhoven #

Open University of the Netherlands, Heerlen, The Netherlands
NWO-I, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

Sung-Shik Jongmans1 #

Open University of the Netherlands, Heerlen, The Netherlands
NWO-I, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands

José Proença #

CISTER, ISEP, Polytechnic Institute of Porto, Portugal

Abstract
Construction and analysis of distributed systems is difficult. Multiparty session types (MPST)
constitute a method to make it easier. The idea is to use type checking to statically prove deadlock
freedom and protocol compliance of communicating processes. In practice, the premier approach to
apply the MPST method in combination with mainstream programming languages has been based
on API generation. In this paper (pearl), we revisit and revise this approach.

Regarding our “revisitation”, using Scala 3, we present the existing API generation approach,
which is based on deterministic finite automata (DFA), in terms of both the existing states-as-classes
encoding of DFAs as APIs, and a new states-as-type-parameters encoding; the latter leverages match
types in Scala 3. Regarding our “revision”, also using Scala 3, we present a new API generation
approach that is based on sets of pomsets instead of DFAs; it crucially leverages match types,
too. Our fresh perspective allows us to avoid two forms of combinatorial explosion resulting from
implementing concurrent subprotocols in the DFA-based approach. We implement our approach in
a new API generation tool.

2012 ACM Subject Classification Software and its engineering → Software notations and tools

Keywords and phrases Concurrency, pomsets (partially ordered multisets), match types, Scala 3

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.27

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.19

Funding G. Cledou and J. Proença: European Regional Development Fund (ERDF), Operational
Programme for Competitiveness and Internationalisation (COMPETE 2020): POCI-01-0145-FEDER-
029946 (DaVinci). S. Jongmans: Netherlands Organisation of Scientific Research: 016.Veni.192.103.
J. Proença: Fundação para a Ciência e a Tecnologia (FCT), within the CISTER Research Unit:
UIDP/UIDB/04234/2020. ERDF and FCT, Portugal 2020 Partnership Agreement, Norte Portugal
Regional Operational Programme (NORTE 2020): NORTE-01-0145-FEDER-028550 (REASSURE).
ECSEL Joint Undertaking (JU): grant agreement No 876852 (VALU3S).

1 Corresponding author

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Guillermina Cledou, Luc Edixhoven, Sung-Shik Jongmans, and
José Proença;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 27; pp. 27:1–27:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mgc@inesctec.pt
https://orcid.org/0000-0003-0006-6440
mailto:led@ou.nl
https://orcid.org/0000-0002-6011-9535
mailto:ssj@ou.nl
https://orcid.org/0000-0002-4394-8745
mailto:pro@isep.ipp.pt
https://orcid.org/0000-0003-0971-8919
https://doi.org/10.4230/LIPIcs.ECOOP.2022.27
https://doi.org/10.4230/DARTS.8.2.19
https://doi.org/10.4230/DARTS.8.2.19
https://doi.org/10.4230/DARTS.8.2.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 API Generation for MPST, Revisited and Revised Using Scala 3

G

L1 L2 · · · Ln

P1 P2 · · · Pn

global type
projection
local types
type check
processes

Figure 1 MPST method.

seller buyer
Descr

Price

Acc or Rej

Figure 2 Seller–buyer
protocol (Example 1).

master worker 1 worker 2
Work

Work

Done

Done

Figure 3 Master–workers
protocol (Example 2).

1 Introduction

Background. Construction and analysis of distributed systems is difficult. One of the key
challenges is to verify absence of communication errors, by proving deadlock freedom (i.e., the
processes can always terminate or reduce) and protocol compliance (i.e., if the processes can
terminate or reduce, then the protocol allows it). Multiparty session types (MPST) [18,19]
constitute a method to overcome these challenges. The idea is visualised in Figure 1:

1. First, a protocol among roles r1, . . . , rn is implemented as a session of processes P1, . . . , Pn

(concrete), while it is specified as a global type G (abstract). The global type models
the behaviour of all processes, collectively, from their shared perspective (e.g., “first, a
number from Alice to Bob; next, a boolean from Bob to Carol”).

2. Next, G is decomposed into local types L1, . . . , Ln, by projecting G onto every role. Every
local type models the behaviour of one process, individually, from its own perspective
(e.g., for Bob, “first, he receives a number from Alice; next, he sends a boolean to Carol”).

3. Last, absence of communication errors is verified, by type-checking every process Pi against
local type Li. MPST theory guarantees that well-typedness at compile-time (statically)
implies deadlock freedom and protocol compliance at execution-time (dynamically).

The following two examples [6, 34] further illustrate global/local types in the MPST method.

▶ Example 1 (seller–buyer [6]). In the seller–buyer protocol, visualised in Figure 2, first, the
seller (sss) tells the buyer (bbb) the description of an item (Descr) and a price (Price); next,
the buyer tells the seller whether it accepts the offer (Acc) or rejects it (Rej). The following
global type specifies the protocol from the seller’s and the buyer’s shared perspective:

G = sss_bbb:Descr . sss_bbb:Price . sss_bbb:{Acc, Rej} . end

In this notation, p_q :{ti .Gi}1≤i≤n specifies the communication of a value of type ti from
role p to role q, followed by Gi, for some 1 ≤ i ≤ n. We write p_q :{ti}1≤i≤n .G as a macro
for p_q :{ti .G}1≤i≤n, and we omit braces when n = 1. The following local types (projected
from the global type) specify the protocol from the seller’s and the buyer’s own perspectives:

Lsss = sssbbb !Descr . sssbbb !Price . sssbbb?{Acc, Rej} . end Lbbb = . . .

In this notation, pq !{ti .Li}1≤i≤n and pq?{ti .Li}1≤i≤n specify the send and receive of a value
of type ti from role p to role q, followed by Li, for some 1 ≤ i ≤ n. We write pq !{ti}1≤i≤n .L

and pq?{ti}1≤i≤n .L as macros for pq !{ti .L}1≤i≤n and pq?{ti .L}1≤i≤n, and we omit braces
when n = 1. Henceforth, also, we usually omit “.end”. ⌟

G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:3

global
type

local
types DFAs APIs processes

project
to (auto)

interpret
as (auto)

encode
as (auto)

use in
(manual)

Figure 4 Workflow of API generation (the first three arrows are performed automatically by the
tool; the last arrow is performed manually by the programmer).

▶ Example 2 (master–workers [34]). In the master–workers protocol, visualised in Figure 3,
first, the master (mmm) tells two workers (www1,www2) to perform work (Work); next, the workers tell
the master that they are done (Done). The following global/local types specify the protocol:

G = mmm_www1 :Work . mmm_www2 :Work .

www1_mmm:Done . www2_mmm:Done

Lmmm = mmmwww1 !Work . mmmwww2 !Work .

www1mmm?Done . www2mmm?Done

Lwww1 = mmmwww1?Work .

www1mmm !Done

Lwww2 = . . .

⌟

In practice, the premier approach to apply the MPST method in combination with
mainstream programming languages has been based on API generation. The main ideas,
originally conceived by Deniélou, Hu, and Yoshida, are based on the following insights: (a)
local types can be interpreted “operationally” as deterministic finite automata (DFA) [11,12];
(b) DFAs can be encoded as application programming interfaces (API), such that well-typed
usage of the APIs at compile-time implies deadlock freedom and protocol compliance at
execution-time (cf. step 3 of the MPST method) [20, 21]. The corresponding workflow
is visualised in Figure 4. API generation has been influential: it is used in the majority
of tools that support the MPST method, including Scribble [20], its many dialects/exten-
sions [7, 25,27,31,33,37,46], νScr [45], and mpstpp [23].

Unsolved: concurrent subprotocols in MPST practice. The global/local types in Example 1
and Example 2 specify sequential protocols: there is only a single static order in which the
roles are allowed to communicate. Intuitively, however, imposing such a single static order
is needlessly restrictive: in the seller–buyer protocol, there is no apparent reason why the
Descr-message and the Price-message should be sent by the seller in that order, while in
the master–workers protocol, there is no apparent reason why the Done-messages should be
received by the master in “worker-id-order”. Thus, the specified protocols in these examples
are not just sequential; they are oversequentialised.

In general, oversequentialisation in global/local types should be avoided for two reasons:

Some ordering decisions can be made only at implementation-time, based on implementa-
tion details that are unknown at specification-time. In Example 1, it may be known only
at implementation-time that the seller first computes the contents of the Price-message
and next of the Descr-message. Thus, to maximise throughput, the seller should be able
to send these messages in this alternative static order as well (forbidden in Example 1).

Some ordering decisions can be made only at execution-time, based on execution details
that are unknown both at specification-time and at implementation-time. In Example 2,
it is known only at execution-time in which order the workers send the Done-messages
(depending on how much actual time performing the work takes). Thus, to improve
throughput, the master should be allowed to receive those messages in any dynamic order
(forbidden in Example 2), which may be different in different executions.

To allow ordering decisions to be made at implementation-time and/or execution-time,
oversequentialisation at specification-time should be avoided. In recognition of this issue,
several papers on MPST theory feature a more relaxed version of global/local types in which

ECOOP 2022

27:4 API Generation for MPST, Revisited and Revised Using Scala 3

1. State explosion: Interpretations of local types as DFAs (i.e., second arrow in Figure 4)
may suffer from combinatorial explosion: in the presence of parallel composition, DFAs
may consist of an exponential number of states (e.g., with n workers, the DFA of local
type Lmmm in Example 4 has 2n + n states). As a result, both the time to generate APIs,
and the space to store them, are prohibitively long/large for many local types with ∥.

2. Branch explosion: Usages of APIs in processes (i.e., fourth arrow in Figure 4)
may suffer from combinatorial explosion, too: in the presence of parallel composition,
processes may consist of an exponential number of branches to achieve well-typedness.
As a result, APIs are prohibitively cumbersome to use for many local types with ∥.

Figure 5 Complications of supporting concurrent subprotocols in MPST practice.

concurrent subprotocols can be specified (e.g., [6,10,11,23,28]). The idea is to supplement the
basic prefix operators p_q :{ti .Gi}1≤i≤n, pq !{ti .Li}1≤i≤n, and pq?{ti .Li}1≤i≤n in global/
local type calculi with operators for parallel composition to express free interleaving (i.e.,
“fork” subprotocols) and sequential composition (i.e., “join” subprotocols).

▶ Example 3 (seller–buyer, relaxed). The following global/local types specify a relaxed version
of the seller–buyer protocol in Example 1:

G = (sss_bbb:Descr ∥ sss_bbb:Price) · sss_bbb:{Acc, Rej}
Lsss = (sssbbb !Descr ∥ sssbbb !Price) · sssbbb?{Acc, Rej} Lbbb = . . .

In this notation, G1 ∥ G2 (resp. L1 ∥ L2) specifies the parallel composition of G1 and G2 (resp.
L1 and L2) that freely interleaves their communications (resp. sends/receives), while G1 · G2
(resp. L1 · L2) specifies the sequential composition of G1 and G2 (resp. L1 and L2). ⌟

▶ Example 4 (master–workers, relaxed). The following global/local types specify a relaxed
version of the master–workers protocol in Example 2:

G = mmm_www1 :Work . mmm_www2 :Work .

(www1_mmm:Done ∥ www2_mmm:Done)
Lmmm = mmmwww1 !Work . mmmwww2 !Work .

(www1mmm?Done ∥ www2mmm?Done)
Lwww1 , Lwww2 = . . .

(as in Example 2)

We note that the local types of Lwww1 and Lwww2 are exactly the same as in Example 2. Thus,
the relaxation affects only the master. We also note that the protocol can be relaxed even
further by allowing the master to send to the workers in any order; we skip it for simplicity
of later examples in this paper (in which we revisit the relaxed master–workers protocol). ⌟

However, while the importance of supporting concurrent subprotocols to avoid over-
sequentialisation has been duly recognised in MPST theory [6, 10, 11, 23, 28], almost none
of the API generation tools offer it in MPST practice [7, 20, 25, 27, 31, 33, 37, 46]. Figure 5
explains two major complications; they pertain to the second arrow in Figure 4 (“interpret
as”) and the fourth arrow (“use in”). The only API generation tool that features parallel
composition does not at all address these complications [23] (i.e., it suffers from both forms
of combinatorial explosion in Figure 5). Thus, while concurrent subprotocols are supported
in MPST theory, they are effectively unsupported in API-generation-based MPST practice.

We note that concurrent subprotocols are effectively supported by some tools that are
based on runtime verification. For instance, the tool by Demangeon et al. [9] uses an
optimised DFA representation (in which “inner” DFAs for subprotocols can be nested inside
states of an “outer” DFA) to compactly represent parallel composition; process behaviour

G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:5

is dynamically monitored against optimised DFAs. Alternatively, the tool by Hamers and
Jongmans [16] computes traces of DFAs on-the-fly by dynamically interpreting global types,
guided by process behaviour at execution-time, so the full state space is never computed.

Contributions. In this paper (pearl), we present a fresh perspective on API generation: we
show how to effectively support concurrent subprotocols for the first time in MPST practice.
To achieve this, we leverage two recent advances:

On the theoretical side, we take advantage of Guanciale–Tuosto’s pomset framework [14]
to interpret local types as sets of pomsets (SOPs) instead of as DFAs. The key benefit
of SOPs over DFAs is that parallel composition can be represented in linear time and
space. In this way, both complications in Figure 5 can be avoided. Our usage of
Guanciale–Tuosto’s pomset framework in API generation is novel.

On the practical side, we take advantage of Scala 3’s match types (i.e., “lightweight form
of dependent typing”) [1] to encode SOPs into APIs. The key benefit of match types is
that they enable type-level programming; our encoding pivotally relies on these advanced
static capabilities (e.g., the encoding cannot be ported to Java). Our usage of Scala 3’s
match types in API generation is novel. (We note that Scalas et al. also use new features
in Scala 3 to support the MPST method [40,41], but not match types.)

In § 2, we summarise a version MPST theory that includes parallel composition and
sequential composition. In § 3, we revisit API generation by presenting the existing DFA-
based version in Scala 3. Besides the existing “states-as-classes” encoding of DFAs, we also
present a new “states-as-type-parameters” encoding that uses match types. In § 4, we revise
API generation to avoid the complications in Figure 5 by presenting a new SOP-based version
that also uses match types. In § 5, we give a brief overview of our tool.

2 MPST Theory in a Nutshell

In this section, we summarise a minimal, loop-free core of Deniélou–Yoshida’s version of
MPST theory, which includes parallel composition and sequential composition [10]. That is,
given the aim of this paper, we omit orthogonal and/or more advanced features from this
section (e.g., dynamic channel creation, dynamic process creation, delegation). Regarding
“loop-free”, we note that many practically relevant protocols do not require loops (e.g., the
auction protocol in [10], the ATM protocol in [14], and the OAuth protocol in [22]).

Global types. Let R = {alicealicealice,bobbobbob,carolcarolcarol, . . . ,sss,ccc,mmm,www, . . .} denote the set of all roles, ranged
over by p, q, r. Let T = {Unit, Bool, Nat, . . . , Descr, Price, Acc, Rej, . . .} denote the set of all
data types, ranged over by t. Let G denote the set of all global types, ranged over by G:

G ::= end
∣∣ p_q :{ti .Gi}1≤i≤n

∣∣ G1 ∥ G2
∣∣ G1 · G2

Informally, these forms of global types have the following meaning:

Global type end specifies the empty protocol.

Global type p_q :{ti .Gi}1≤i≤n specifies the asynchronous communication of a value
of type ti through the buffered channel from role p to role q (unbounded), followed by Gi,
for some 1 ≤ i ≤ n. As additional well-formedness requirements, we stipulate: (1) p ̸= q

(i.e., no self-communication); (2) ti ̸= tj , for every 1 ≤ i < j ≤ n (i.e., deterministic
continuations). Singleton types (e.g., Acc, Rej) can serve as labels to communicate choices.

ECOOP 2022

27:6 API Generation for MPST, Revisited and Revised Using Scala 3

end ↾ r = end

p_q :{ti .Gi}1≤i≤n ↾ r =

pq !{ti .(Gi ↾ r)}1≤i≤n if p = r ̸= q

pq?{ti .(Gi ↾ r)}1≤i≤n if p ̸= r = q

G1 ↾ r if p ̸= r ̸= q and G1 ↾ r = · · · = Gn ↾ r

(G1 ⊕ G2) ↾ r = (G1 ↾ r) ⊕ (G2 ↾ r)

Figure 6 Projection of global types.

Global type G1 ∥ G2 specifies the parallel composition of G1 and G2 that freely in-
terleaves their communications. As an additional well-formedness requirement [10], we
stipulate comm(G1) ∩ comm(G2) = ∅ (i.e., distinct communications in distinct subpro-
tocols), where comm : G → 2R×R×T is a function that maps every global type to the
communications that occur in it, represented as triples of the form (p, q, t).

Global type G1 · G2 specifies the sequential composition of G1 and G2.

Local types and projection. Let L denote the set of all local types, ranged over by L:

L ::= end
∣∣ pq !{ti .Li}1≤i≤n︸ ︷︷ ︸

send

∣∣ pq?{ti .Li}1≤i≤n︸ ︷︷ ︸
receive

∣∣ L1 ∥ L2
∣∣ L1 · L2

These forms of local types have a similar meaning as the corresponding forms of global types.
Henceforth, let † ∈ { ! , ?} and ⊕ ∈ {∥, ·}.

Let G ↾ r denote the projection of G onto r. Formally, ↾ is the smallest partial function
induced by the equations in Figure 6. The projections of end, G1 ∥ G2, and G1 · G2 are
easy. The projection of p_q :{ti .Gi}1≤i≤n onto r depends on the contribution of r to the
communication: if r is sender (resp. receiver), then the projection specifies a send (resp.
receive); if r does not contribute to the communication, and if r has a unique continuation,
then the projection is that continuation. The latter means that r is insensitive to which type
was communicated (which, as a non-contributor to the communication, r does not know).
We note that projection is partial: if the projection of a global type onto one of its roles is
undefined, then the global type is unsupported. We also note that, for simplicity and because
it does not affect this paper, we use the “plain merge” instead of the “full merge” [39].

Processes and typing rules. Let V denote the set of all values, ranged over by v. Let X
denote the set of all variables, ranged over by x. Let E denote the set of all expressions,
ranged over by e. Let P denote the set of all processes, ranged over by P :

P ::= 0
∣∣ pq !e.P

∣∣ pq?{xi :ti .Pi}1≤i≤n

∣∣ P1 ∥ P2
∣∣ P1 · P2

Informally, these forms of processes have the following meaning:

Process 0 implements the empty role.

Process pq !e.P implements the asynchronous send of the value of expression e through
the buffered channel from role p to role q, followed by P . Asynchronous sends can
be combined with conditional choices to implement internal choices by a process. For
instance, the following process implements the second part of the buyer in Example 1:

if goodOffer(descr,price) (bbbsss !Acc().0) (bbbsss !Rej().0)

G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:7

Γ ⊢ e : tk Γ ⊢ P : Lk

Γ ⊢ pq !e.P : pq !{ti .Li}1≤i≤n

[Send]
Γ, xi : ti ⊢ Pi : Li for every 1 ≤ i ≤ n

Γ ⊢ pq?{xi :ti .Pi}1≤i≤n : pq?{ti .Li}1≤i≤n

[Recv]

Γ ⊢ 0 : end
[Empty]

Γ ⊢ P1 : L1 Γ ⊢ P2 : L2

Γ ⊢ P1 ∥ P2 : L1 ∥ L2
[Par]

Γ ⊢ P1 : L1 Γ ⊢ P2 : L2

Γ ⊢ P1 · P2 : L1 · L2
[Seq]

Figure 7 Well-typedness of processes.

Process pq?{xi :ti .Pi}1≤i≤n implements the asynchronous receive of a value of type ti

into variable xi through the buffered channel from role p to role q, followed by Pi (i.e.,
type switch on the received value), for some 1 ≤ i ≤ n. Asynchronous receives can be used
to implement external choices by the environment of a process. For instance, the following
process implements the second part of the seller in Example 1: bbbsss?{x:Acc.0, x:Rej.0}.
Thus, through an internal choice and a reciprocal external choice, the sender can “select”
a value of a particular type to control whereto the receiver “branches off”.

Process P1 ∥ P2 implements the parallel composition of P1 and P2. We note that P1 ∥ P2
is intended to implement one role (i.e., there is no communication between P1 and P2);
the only purpose of parallel composition is to allow the sends and receives of P1 and P2
to be ordered dynamically at execution-time.

Process P1 · P2 implements the sequential composition of P1 and P2.

Let Γ ⊢ e : t denote well-typedness of expression e by data type t in environment Γ . Let
Γ ⊢ P : L denote well-typedness of process P by local type L in environment Γ . Formally,
⊢ is the smallest relation induced by the rules in Figure 7. Rule [Empty] states that the
empty role is well-typed by the empty protocol. Rule [Send] states that a send is well-typed
by pq !{ti .Li}1≤i≤n if, for some 1 ≤ k ≤ n, the value to send is well-typed by tk and the
continuation is well-typed by Lk. Dually, rule [Recv] states that a receive is well-typed
by pq?{ti .Li}1≤i≤n if, for every 1 ≤ i ≤ n, the continuation is well-typed by Li under the
additional assumption that the received value is well-typed by ti. Thus, a well-typed process
needs to be able to consume all specified inputs (i.e., input-enabledness), but produce only
one specified output. Rules [Par] and [Seq] state that a parallel and sequential composition
are well-typed if their operands are.

▶ Theorem 5 (Deniélou–Yoshida [10]). If G is a well-formed global type in which roles
r1, . . . , rn occur, and if ⊢ Pi : (G ↾ ri) for every 1 ≤ i ≤ n, then the session of P1, . . . , Pn is
deadlock-free and protocol-compliant with respect to G.

3 DFA-based API Generation

In this section, we revisit API generation by presenting the existing DFA-based version in
Scala 3, using concepts and notation of the previous section. First, we show how local types
can be interpreted operationally as DFAs (§ 3.1). Next, we show how DFAs can be encoded
as APIs using the existing “states-as-classes” encoding (§ 3.2). Last, we also show how DFAs
can be encoded as APIs using a new “states-as-type-parameters” encoding (§ 3.3). The value
of this second encoding is twofold: it yields APIs with a smaller memory footprint, and it
gently introduces match types to set the stage for the next section.

ECOOP 2022

27:8 API Generation for MPST, Revisited and Revised Using Scala 3

JendKDFA =

Jpq†{ti .Li}1≤i≤nKDFA =

A1

An

pq†t1

pq†tn

...

σ
11...

σ1k1...

σn1

σn
kn

such that, for every 1 ≤ i ≤ n, JLiKDFA = Ai

σi1...
σikiJL1 ∥ L2KDFA = (S1 × S2, (s1i, s2i), (s1f , s2f), δ)

such that δ((s1, s2), σ) =
{

(s′
1, s2) if δ1(s1, σ) = s′

1

(s1, s′
2) if δ2(s2, σ) = s′

2

JL1 · L2KDFA = (S1 ∪ S2, s1i, s2f , δ̂1 ∪ δ2)

such that δ̂1(s1, σ) =
{

s′
1 if δ1(s1, σ) = s′

1 ̸= s1f

s2i if δ1(s1, σ) = s′
1 = s1f

Figure 8 Interpretation of local types as DFAs.

3.1 From Local Types to DFAs
The first interpretation of local types as DFAs was discovered by Deniélou and Yoshida [11].
The key insight is that a local type for a role essentially defines a regular language, each of
whose words represents an admissible execution of the role’s implementation.

DFAs, formally. Let ΣΣΣ = {pq !t | p ≠ q} ∪ {pq?t | p ̸= q} denote the set of all type-level
actions (“the alphabet”), ranged over by σ. Let A denote the set of all deterministic finite
automata (DFA) over ΣΣΣ, ranged over by A. Formally, a DFA is a tuple (S, si, sf , δ), where S

denotes a set of states, si, sf ∈ S denote the initial state and the final state, and δ : S ×ΣΣΣ ⇀ S

denotes a transition function.

Interpretation. Let JLKDFA denote the interpretation of local type L as a DFA. Formally,
J-KDFA : L → A is the smallest function induced by the equations in Figure 8. The
interpretation of end is the DFA that accepts the empty language. The interpretation of
pq†{ti .Li}1≤i≤n is the DFA that accepts the language of words that begin with pq†ti and
continue with a word accepted by the interpretation of Li; the visualisation is intended to
convey that the final states of the interpretations of L1, . . . , Ln are “superimposed” to form
a single new final state. The interpretations of L1 ∥ L2 and L1 · L2 are the DFAs that accept
the shuffle and the concatenation of the languages accepted by the interpretations of L1
and L2. We note that the transition function of JL1 ∥ L2KDFA is well-defined due to the
well-formedness requirement (§ 2) that the sets of sends and receives that occur in L1 and L2
are disjoint (i.e., δ1(s1, σ) = s′

1 and δ2(s2, σ) = s′
2 cannot both be true).

▶ Example 6. The following DFA is the interpretation of Lsss in Example 3:

JLsssKDFA = 1

2

3

4 5
sssbbb !Descr

sssbbb !Price

sssbbb !Price

sssbbb !Descr

bbbsss?Acc

bbbsss?Rej
⌟

G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:9

▶ Example 7. The following DFA is the interpretation of Lmmm in Example 4:

JLmmmKDFA = 1 2 3

4

5

6
mmmwww1 !Work mmmwww2 !Work mmmwww1?Done

mmmwww2?Done

mmmwww2?Done

mmmwww1?Done ⌟

3.2 From DFAs to APIs – Using Classes
The first encoding of DFAs as APIs was developed by Hu and Yoshida [20]. The key insight
is that an input-enabled process P is well-typed by local type L (§ 2) if, and only if, every
possible sequence of sends and receives by P forms a word accepted by JLKDFA. The “trick”,
then, is to structure the API in such a way that when the compiler successfully type-checks
the API’s usage, it has effectively performed an accepting run of JLKDFA for every possible
sequence of sends and receives by P . In the rest of this subsection, we show how to achieve
this in Scala 3 using the existing states-as-classes encoding of DFAs as APIs; experts may skip
this subsection, or quickly browse through it only to familiarise themselves with notation.

Suppose that (S, si, sf , δ) is the interpretation of the local type for role r:

Every state s ∈ S is encoded as class ⟨r⟩$⟨s⟩ in the API, where ⟨r⟩ and ⟨s⟩ are identifiers
for r and s (and $ is a meaningless separator).

Every transition δ(s, σ) is encoded as a method of class ⟨r⟩$⟨s⟩ to perform action σ and
provide an instance of class ⟨r⟩$⟨δ(s, σ)⟩, as detailed shortly.

To use the API, the idea is to define a function f that consumes an “initial state object” s of
type ⟨r⟩$⟨si⟩ as input and produces a “final state object” of type ⟨r⟩$⟨sf⟩ as output. Inside of
f, initially, the only protocol-related actions that can be performed, are those for which s has
a method. When such a method is called on s, an action is performed and a fresh “successor
state object” sNext is provided. Subsequently, the only protocol-related actions that can be
performed, are those for which sNext has a method. When such a method is called on sNext,
another action is performed, and another fresh “successor successor state object” sNextNext
is provided. This goes on until the final state object is provided.2 To ensure that every state
object is used at most once (see also footnote 2), every state class extends the following trait:
trait UseOnce :

var used = false
def use = if used then throw new Exception () else used = true

When a method is called on a state object s, inside of it, method use is first called to ensure
that s has not been used before. Otherwise, an exception is thrown. This technique was first
used by Tov and Pucella [42] and has since been adopted in tools for both binary sessions
(e.g., [35, 38]) and multiparty sessions (e.g., [7, 20, 23, 31, 33, 37, 45]). We note that used in
UseOnce should actually be declared private to shield it from external modification; we omit
such access modifiers in our listings for simplicity.

2 When a method is called on an instance of class ⟨r⟩$⟨s⟩, but the method does not exist, it means
that: (1) state s in the DFA does not have a corresponding transition; (2) hence, the local type for r
does not specify the corresponding action; (3) hence, the action is not allowed in the protocol. The
compiler statically detects this while type-checking and reports an error. As successor state objects
become available only after predecessor state objects are used, and assuming that every state object is
used exactly once, well-typed usage of the API implies protocol compliance. Moreover, as a final state
object must have been provided upon termination, and assuming that there are no other sources of
non-terminating or exceptional behaviour, well-typed usage of the API also implies deadlock freedom.
We note that these two additional assumptions cannot be statically enforced using Scala 3’s type system
(just as with many existing tools [7, 20, 23, 31, 33, 37, 45]): checking the first assumption requires a form
of substructural typing, while checking the second assumption is generally undecidable. However, the
first assumption can be dynamically monitored using lightweight checks at execution-time.

ECOOP 2022

27:10 API Generation for MPST, Revisited and Revised Using Scala 3

Next, we explain in more detail how states and transitions can be encoded as classes
and methods. As usual in DFA-based API generation, we require that every state in the
DFA-interpretation of a local type is either an output state with only send transitions, or
an input state with only receive transitions. In the absence of parallel composition, this
requirement is satisfied by construction (§ 3.2), but in the presence of parallel composition, it
needs to be checked separately. The classes for output states and input states look as follows:

Suppose that (S, si, sf , δ) is the interpretation of the local type for role p. Every out-
put state s ∈ S, with transitions δ(s, pq1 !t1), . . . , δ(s, pqn !tn), is encoded as follows:
class ⟨p⟩$⟨s⟩(net: Network) extends UseOnce : // output state

def send(q: ⟨q1⟩, e: ⟨t1⟩): ⟨p⟩$⟨δ(s, pq1 !t1)⟩ = { use; ... /* real send */ }
...
def send(q: ⟨qn⟩, e: ⟨tn⟩): ⟨p⟩$⟨δ(s, pqn !tn)⟩ = { use; ... /* real send */ }

Parameter net of class ⟨p⟩$⟨s⟩ encapsulates the underlying communication infrastructure
(e.g., shared-memory channels); it is used inside of every send method to perform the
“real send”. Parameter q of every send method is the identifier of the receiver, parameter
e is the value to send, and the return value is a fresh successor state object. Roughly,
these methods in Scala 3 are typed versions of pq !e.P in the process calculus (§ 2).

Suppose that (S, si, sf , δ) is the interpretation of the local type for role q. Every input
state s ∈ S, with transitions δ(s, p1q?t1), . . . , δ(s, pnq?tn), is encoded as follows:
class ⟨q⟩$⟨s⟩(net: Network) extends UseOnce : // input state

def recv(f1: (⟨p1⟩, ⟨t1⟩, ⟨q⟩$⟨δ(s, p1q?t1)⟩) => ⟨q⟩$⟨sf⟩,
... ,
fn: (⟨pn⟩, ⟨tn⟩, ⟨q⟩$⟨δ(s, pnq?tn)⟩) => ⟨q⟩$⟨sf⟩) = { use; ... /* real recv */ }

Parameter fi of method recv is the i-th continuation; it is called with the identifier of
the sender, the value to receive, and a fresh successor state object after the “real receive”.
Roughly, this method in Scala 3 is pq?{xi :ti .Pi}1≤i≤n in the process calculus (§ 2).

▶ Example 8. The following API is the states-as-classes encoding of JLsssKDFA in Example 6:
class S$1(net: Network) extends UseOnce :

def send(q: B, e: Descr): S$2 = ...
def send(q: B, e: Price): S$3 = ...

class S$2(net: Network) extends UseOnce :
def send(q: B, e: Price): S$4 = ...

class S$3(net: Network) extends UseOnce :
def send(q: B, e: Descr): S$4 = ...

class S$4(net: Network) extends UseOnce :
def recv(

f1: (B, Acc , S$5) => S$5 ,
f2: (B, Rej , S$5) => S$5): S$5 = ...

class S$5(net: Network) extends UseOnce

type S$Initial = S$1
type S$Final = S$5

The following well-typed function implements the seller:
def seller (s: S$Initial): S$Final = s

.send(B, new Descr). send(B, new Price). recv(
(q: B, x: Acc , s) => { println (" offer accepted "); s },
(q: B, x: Rej , s) => { println (" offer rejected "); s }

We note that the two sends in the implementation of the seller can be swapped (i.e., first
the price, second the description): the resulting code would still be well-typed, indicating to
the programmer that the protocol is not violated. We also note that the type of parameter
s in the continuations on the last two lines is inferred by the compiler. This demonstrates
that the programmer does not need to know how states are represented. The types of
parameters q and x can be inferred as well, so the annotations are redundant; we added
them here for clarity of presentation (but will omit them from now on). For details, see:
https://scastie.scala-lang.org/779xP1Z8QwC1DLKDFYAsJg. ⌟

https://scastie.scala-lang.org/779xP1Z8QwC1DLKDFYAsJg

G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:11

▶ Example 9. The following API is the states-as-classes encoding of JLmmmKDFA in Example 7:
class M$1(net: Network) extends UseOnce :

def send(q: W1 , e: Work): M$2 = ...
class M$2(net: Network) extends UseOnce :

def send(q: W2 , e: Work): M$3 = ...
class M$3(net: Network) extends UseOnce :

def recv(
f1: (W1 , Done , M$4) => M$6 ,
f2: (W2 , Done , M$5) => M$6): M$6 = ...

class M$4(net: Network) extends UseOnce :
def recv(f2: ... => M$6): M$6 = ...

class M$5(net: Network) extends UseOnce :
def recv(f1: ... => M$6): M$6 = ...

class M$6(net: Network) extends UseOnce

type M$Initial = M$1
type M$Final = M$6

The following well-typed function implements the master:
def master (s: M$Initial): M$Final = s

.send(W1 , new Work). send(W2 , new Work). recv(
(_, _, s) => s.recv ((_, _, s) => { println (" first #1, second #2"); s }),
(_, _, s) => s.recv ((_, _, s) => { println (" first #2, second #1"); s }))

We note that the two sends in the implementation of the master cannot be swapped (i.e.,
first to worker 2, second to worker 1): the resulting code would not be well-typed, indicating
to the programmer that the protocol is violated. We also note that we omitted all type
annotations for parameters in continuations; they can be inferred by the compiler. For details,
see: https://scastie.scala-lang.org/Lg2ZNlw8T7eTfcef7k3yIw. ⌟

3.3 From DFAs to APIs – Using Type Parameters
In the previous subsection, we showed how the existing states-as-classes encoding of DFAs
can be used to “trick” the compiler into performing type-level accepting runs. Attractively,
states-as-classes requires only basic features of the underlying type system; as a result, it can
be applied in combination with a wide range of programming languages (e.g., F# [33], F⋆ [46],
Go [7], Java [20], OCaml [45], PureScript [25], Rust [27], Scala [37], TypeScript [31]). In this
subsection, we present a new states-as-type-parameters encoding of DFAs that leverages an
advanced feature of Scala 3’s type system: match types [1]. While the primary aim of this
subsection is to gently explain match types and set the stage for §4, states-as-type-parameters
has a technical advantage as well: it is more space-efficient (i.e., states-as-classes requires all
specific state classes to be loaded in memory, which can be many, while states-as-type-pa-
rameters requires only one generic state class to be loaded.)

Match types. As a brief digression, consider the following example to introduce match
types: suppose that we need to write a function that converts Ints to Booleans and vice
versa. Naively, we could write the signature of this function as follows:
type IntOrBoolean = Int | Boolean // type alias for a union type
def convert (x: IntOrBoolean): IntOrBoolean = x match

case i: Int => i == 1
case b: Boolean => if b then 1 else 0

The trouble with this first attempt is that the return type, IntOrBoolean, is insufficiently
precise. For instance, the compiler fails to prove that expression convert(5) && false is
safe, as it cannot infer that convert(5) is of type Boolean. Essentially, what the compiler
is missing, is a relation between the actual type of x (e.g., Int) and the return type (e.g.,
Boolean). Match types allow us to define such relations.

1. First, we redefine the signature of convert as follows:
def convert [T <: IntOrBoolean](x: T): Convert [T] = ... // same as before

That is, we introduce a type parameter T, which must be a subtype of IntOrBoolean
(generally, A and B are subtypes of A|B), and we declare x to be of type T. Furthermore,
we declare the return value of the function to be of match type Convert[T]. The idea is
to define Convert[T] in such a way that the intended relation between the actual type of
x and the return type can be inferred.

ECOOP 2022

https://scastie.scala-lang.org/Lg2ZNlw8T7eTfcef7k3yIw

27:12 API Generation for MPST, Revisited and Revised Using Scala 3

2. Next, we define Convert[T] as follows:
type Convert [T] = T match

case Int => Boolean
case Boolean => Int

The compiler reduces every occurrence of Convert[T] to Int or Boolean, depending on the
instantiation of T (e.g., Convert[Int] reduces to Boolean).

3. Last, for instance, the compiler succeeds/fails to type-check the following expressions:
convert (5) + 6 // fail
convert (5) && false // succeed

convert (true) + 6 // succeed
convert (true) && false // fail

Thus, match types constitute a “lightweight form of dependent typing” to perform “type-
level programming” [1]. In the rest of this subsection, we show how to leverage them in the
states-as-type-parameters encoding of DFAs as APIs.

Encoding of DFAs as APIs. The idea behind the states-as-type-parameters encoding is to
generate, for every role r, a generic state class ⟨r⟩$State; it has one type parameter, called N.
Every instantiation of N with a numeric literal type (e.g., in Scala, symbol “5” denotes both
value 5 and a type with value 5 as its only inhabitant) specialises the generic state class into
a specific one. For instance, ⟨r⟩$State[1], ⟨r⟩$State[2], and ⟨r⟩$State[3] represent three
different states, identified by types 1, 2, and 3. Thus, ⟨r⟩$State has the following header:
class ⟨r⟩$State [N](n: N, net: Network) extends UseOnce :

This class has two methods: send and recv. At execution-time, when send or recv is
called, an action is performed and a fresh successor state object is returned. At compile-time,
to check that this method call is actually allowed in the current state, the compiler tries to
reduce a match type: if it succeeds, the call is allowed; if it fails, it is not.

Regarding send, the idea is to use a match type ⟨r⟩$SendReturn for the return value; it has
three type parameters, called N, Q, and E, which identify the current state s, the receiver q,
and the type t of the value to send. If the DFA has a send transition δ(s, rq !t) = s′, then the
compiler succeeds to reduce ⟨r⟩$SendReturn[⟨s⟩,⟨q⟩,⟨t⟩] to ⟨r⟩$State[⟨s′⟩]; this is the type of
the fresh successor state object after sending. In contrast, if the DFA does not have such a
transition, then the compiler fails to reduce and yields an error. Thus, send looks as follows:

def send[Q, E](q: Q, e: E): ⟨r⟩$SendReturn [N, Q, E] = { use; ... }

Regarding recv, the idea is to use a match type ⟨r⟩$RecvArgument for the argument val-
ues; it has one type parameter, called N, which identifies the current state s. If the DFA
has receive transitions δ(s, p1r?t1) = s′

1, . . . , δ(s, pnr?tn) = s′
n, then the compiler succeeds

to reduce ⟨r⟩$RecvArgument[⟨s⟩] to a tuple of function types each of which is of the form
(⟨pi⟩,⟨ti⟩,⟨r⟩$State[⟨s′

i⟩]) => ⟨r⟩$Final; these are the types of the continuations after receiv-
ing. In contrast, if the DFA does not have such transitions, then the compiler fails to reduce
and yields an error. Thus, recv looks as follows:

def recv(fff: ⟨r⟩$RecvArgument [N]): ⟨r⟩$Final = { use; ... }

The following examples demonstrate these match types.

G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:13

▶ Example 10. The following API (excerpt) is the states-as-type-parameters encoding of
JLsssKDFA in Example 6 (cf. the states-as-classes encoding in Example 8):
type S$SendReturn [N, Q, E] =

(N, Q, E) match
case (1, B, Descr) => S$State [2]
case (1, B, Price) => S$State [3]
case (2, B, Price) => S$State [4]
case (3, B, Descr) => S$State [4]

type S$RecvArgument [N] = N match
case 4 => (

(B, Acc , S$State [5]) => S$State [5] ,
(B, Rej , S$State [5]) => S$State [5])

Every case in match type S$SendReturn encodes a send transition out of states 1–3 in the
DFA in Example 6. Similarly, the single case in match type S$RecvArgument encodes the set
of receive transitions out of state 4. We note that exactly the same function that implements
the seller in Example 8 is also well-typed using the API in this example. For details, see:
https://scastie.scala-lang.org/YB9G1KuVQxGkbwgqm7LKLw. ⌟

▶ Example 11. The following API (excerpt) is the states-as-type-parameters encoding of
JLmmmKDFA in Example 7 (cf. the states-as-classes encoding in Example 9):
type M$SendReturn [N, Q, E] = (N, Q, E) match

case (1, W1 , Work) => M$State [2]
case (2, W2 , Work) => M$State [3]

type M$RecvArgument [N] = N match
case 3 => ((W1 , Done , M$State [4]) => M$State [6] ,

(W2 , Done , M$State [5]) => M$State [6])
case 4 => ((W2 , Done , M$State [6]) => M$State [6])
case 5 => ((W1 , Done , M$State [6]) => M$State [6])

Every case in match type M$SendReturn encodes a send transition out of states 1–2 in the
DFA for the master in Example 7. Similarly, every case case in match type M$RecvArgument
encodes a set of receive transitions out of states 3–5. We note that exactly the same functions
that implement the master and worker 1 in Example 9 are also well-typed using the API in
this example. For details, see: https://scastie.scala-lang.org/HHy4TUYLREeQYc8yW6U
wHw. ⌟

We note that states-as-type-parameters fully supports recursive protocols, and it never
gives rise to non-terminating compile-time reductions of match types: every reduction only
checks if a call to send or recv on a state object is allowed by considering its finitely many
outgoing transitions; possibly infinitely long paths through the DFA are not considered.

4 SOP-based API Generation

To more clearly demonstrate the complications of supporting concurrent subprotocols with
DFA-based API generation (Figure 5), we consider another example.

▶ Example 12. The following local type specifies the master in the relaxed master–workers
protocol (Example 4), but with three workers instead of two:

Lmmm = mmmwww1 !Work . mmmwww2 !Work . mmmwww3 !Work . (www1mmm?Done ∥ www2mmm?Done ∥ www3mmm?Done)

The following DFA is the interpretation of the local type:

ECOOP 2022

https://scastie.scala-lang.org/YB9G1KuVQxGkbwgqm7LKLw
https://scastie.scala-lang.org/HHy4TUYLREeQYc8yW6UwHw
https://scastie.scala-lang.org/HHy4TUYLREeQYc8yW6UwHw

27:14 API Generation for MPST, Revisited and Revised Using Scala 3

1

2

3

4

5

6

7

8

9

10

11

mmmwww1 !Work
mmmwww2 !Work

mmmwww3 !Work

www1mmm
?Done

www2mmm?Done

www2mmm?Done

www1mmm
?Done

www1mmm
?Done

www2mmm?Done

www2mmm?Done

www1mmm
?Done

www3mmm?Done

www3mmm?Done
www3mmm?Done

www3mmm?Done

This DFA demonstrates complication 1 in Figure 5 (i.e., state explosion): it has
O(2n) states, where n = 3 is the number of unordered receives.

The following well-typed function implements the master, using an API that encodes the
DFA (whether states-as-classes or states-as-type-parameters is used, is irrelevant here):
def master (s: M$Initial): M$Final = s

.send(W1 , new Work). send(W2 , new Work). send(W3 , new Work). recv(
(_, _, s) => s.recv(

(_, _, s) => s.recv(
(_, _, s) => { println ("#1 , #2, #3"); s }),

(_, _, s) => s.recv(
(_, _, s) => { println ("#1 , #3, #2"); s })) ,

(_, _, s) => s.recv(
(_, _, s) => s.recv(

(_, _, s) => { println ("#2 , #1, #3"); s }),
(_, _, s) => s.recv(

(_, _, s) => { println ("#2 , #3, #1"); s })) ,
(_, _, s) => s.recv(

(_, _, s) => s.recv(
(_, _, s) => { println ("#3 , #1, #2"); s }),

(_, _, s) => s.recv(
(_, _, s) => { println ("#3 , #2, #1"); s })))

This implementation demonstrates complication 2 in Figure 5 (i.e., branch
explosion): it has O(n!) branches (each of which implements a distinct order in which the
receives might dynamically take place), where n = 3 is the number of unordered receives. ⌟

In this section, we revise API generation to avoid the complications in Figure 5 by
presenting a new version based on sets of pomsets (SOP). First, we show how local types
can be interpreted operationally as SOPs (§ 4.1). Next, we show how SOPs can be encoded
as APIs using match types (§ 4.2).

4.1 From Local Types to SOPs
Our interpretation of local types as SOPs is based on the recent pomset framework by
Guanciale and Tuosto [14]. The key insight is that every subset of words that differ only
in the order of concurrent actions (in the regular language defined by a local type) can be
represented as a pomset in exponentially less time and space.

Pomsets, formally (structure). The formalisation of pomsets (“partially ordered multisets”)
is relatively complicated; we first explain the intuition. Recall that a multiset is a set in
which every element can have multiple “instances” (e.g., {a, a, b} has two elements but three
instances). A pomset is just a multiset endowed with a partial order ≺ on the instances
(e.g., a ≺ b ≺ a, where the left a and the right a are different instances). Following Pratt
and Gischer [13, 36], the idea is to formalise pomsets using labelled digraphs: vertices
represent instances, arcs represent the ordering, and vertex labels represent elements (e.g.,

G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:15

v′ ̸≺ v for every v′

(V, ≺, λ) λ(v)−−−→ (V \{v} , ≺\({v} × V) , λ\(v 7→ λ(v)))
[Lpo]

X
σ−→ X ′

[X] σ−→ [X ′]
[Pom]

Xi
σ−→ X ′

i and 1 ≤ i ≤ n

{X1, . . . , Xn} σ−→ {X ′
i }

[SopA] or

Xi
σ−→ X ′

i for every 1 ≤ i ≤ k

Xi ̸ σ−→ for every k + 1 ≤ i ≤ n

{X1, . . . , Xn} σ−→ {X ′
1, . . . , X ′

k}
[SopB]

Figure 9 Transitions of lposets, pomsets, and sets of pomsets.

{a, a, b}, endowed with a ≺ b ≺ a, can be formalised using labelled vertices 1a, 2a, 3b and
arcs (1, 3), (3, 2)); such labelled digraphs are called lposets (“labelled partially ordered sets”).
To make the formalisation of pomsets insensitive to the choice of vertices (e.g., it should not
matter if we use 1a, 2a, 3b or 4a, 5a, 6b as labelled vertices), pomsets are ultimately defined as
isomorphism classes of lposets. Henceforth, we write “events” instead of “vertices”.

Let Lpo denote the set of all lposets, ranged over by X. Formally, an lposet is a tuple
(V, ≺, λ), where V is a set of events, ≺ ⊆ V × V is a precedence relation (strict partial order),
and λ : V → ΣΣΣ is a labelling function, where ΣΣΣ = {pq !t | p ̸= q} ∪ {pq?t | p ̸= q} (§ 3.1).
Let predX(v) and succX(v) denote the immediate predecessors and successors of v in X.
Formally, pred and succ are the smallest functions induced by the following equations:

pred(V,≺,λ)(v) = {v′ | v ≺ v′ and (v′, v) /∈ {(v1, v3) | v1 ≺ v2 ≺ v3}}

succ(V,≺,λ)(v) = {v′ | v′ ≺ v and (v, v′) /∈ {(v1, v3) | v1 ≺ v2 ≺ v3}}

Let X1 ∥ X2 and X1 · X2 denote the parallel composition and the sequential composition of
X1 and X2. Formally, ∥ and · are the smallest functions induced by the following equations:

(V1, ≺1, λ1) ∥ (V2, ≺2, λ2) = (V1 ∪ V2, ≺1 ∪ ≺2, λ1 ∪ λ2)
(V1, ≺1, λ1) · (V2, ≺2, λ2) = (V1 ∪ V2, ≺1 ∪ ≺2 ∪ (V1 × V2), λ1 ∪ λ2)

Let X1 ∼= X2 denote isomorphism equivalence of X1 and X2; informally, X1 and X2 are
isomorphic if, and only if, there exists a bijection between their sets of events that preserves
their precedence relations and labelling functions.

Let Pom = Lpo/∼= denote the set of all pomsets, ranged over by X ; it is the quotient set
of Lpo by ∼= (i.e., a pomset is an isomorphism class of lposets). We write [X] to denote the
isomorphism class of X (i.e., a pomset). A set of pomsets is similar to a formal language
(i.e., a set of words), except that words that differ only in the order of concurrent actions are
represented collectively as a single pomset instead of individually as multiple words.

Pomsets, formally (behaviour). A transition relation can be associated to lposets, pomsets,
and sets of pomsets. Figure 9 shows the rules. Rule [Lpo] states that an lposet can reduce
with symbol λ(v) when v is minimal; v is removed from the reduced lposet. Rule [Pom]
states that a pomset can reduce with symbol σ when one of its lposets can.

Rule [SopA] states that a set of pomsets can reduce when one of its pomsets can; the
reduced pomset is kept, while the others are removed. This formalises the idea of an early
choice: at the start of an execution, when the first action is performed, a commitment is
made to one behaviour. Alternatively, rule [SopB] states that a set of pomsets can reduce
with symbol σ when it can be split into two disjoint subsets, such that k pomsets can reduce
with σ, while the remaining n − k pomsets cannot; the k reduced pomsets are kept, while
the others are removed. This formalises the idea of a late choice: during an execution, as

ECOOP 2022

27:16 API Generation for MPST, Revisited and Revised Using Scala 3

JendKSOP = {[(∅, ∅, ∅)]}

Jpq†{ti .Li}1≤i≤nKSOP =
{[

pq†ti

X

]∣∣∣∣ [X] ∈ JLiKSOP and 1 ≤ i ≤ n

}
= {[({•}, ∅, {• 7→ pq†ti}) · X] | [X] ∈ JLiKSOP and 1 ≤ i ≤ n}

JL1 ∥ L2KSOP = {[X1 ∥ X2] | [X1] ∈ JL1KSOP and [X2] ∈ JL2KSOP}
JL1 · L2KSOP = {[X1 · X2] | [X1] ∈ JL1KSOP and [X2] ∈ JL2KSOP}

Figure 10 Interpretation of local types as SOPs.

actions are performed, a commitment is gradually made towards a subset of behaviours that
are still “eligible”. The transition system generated by rule [SopA] is trace equivalent to
the transition system generated by rule [SopB]. However, these two transition system are
not bisimulation equivalent: the former can be simulated by the latter, but not vice versa
(i.e., rule [SopB] subsumes rule [SopA]). Shortly, we will argue that late choices (i.e., rule
[SopB]) are appropriate in our setting, so we will use rule [SopB] instead of rule [SopA].

Interpretation. Let JLKSOP denote the interpretation of local type L as a SOP. Formally,
J-KSOP : L → 2Pom is the smallest function induced by the equations in Figure 10. The
interpretation of end is the SOP that contains only the empty pomset. The interpretation
of pq†{ti .Li}1≤i≤n is the SOP that contains for every 1 ≤ i ≤ n, and for every pomset X in
the interpretation of Li, the pomset in which a pq†ti-labelled event precedes all events in X;
in the visualisation, the arrow represents precedence (≺). The interpretations of L1 ∥ L2 and
L1 · L2 are the pairwise parallel composition and the pairwise sequential composition.

▶ Example 13. The following SOP is the interpretation of Lsss in Example 3:

JLsssKSOP = J(sssbbb !Descr ∥ sssbbb !Price) · sssbbb?{Acc, Rej}KSOP

=

sssbbb !Descr

sssbbb !Price

bbbsss?Acc

,

sssbbb !Descr

sssbbb !Price

bbbsss?Rej

 ⌟

▶ Example 14. The following SOP is the interpretation of Lmmm in Example 4:

JLmmmKSOP = Jmmmwww1 !Work . mmmwww2 !Work . (www1mmm?Done ∥ www2mmm?Done)KSOP

=

 mmmwww1 !Work mmmwww2 !Work

www1mmm?Done

www2mmm?Done

 ⌟

▶ Example 15. The following SOP is the interpretation of Lmmm in Example 12:

JLmmmKSOP = Jmmmwww1 !Work . mmmwww2 !Work . mmmwww3 !Work . (www1mmm?Done ∥ www2mmm?Done ∥ www3mmm?Done)KSOP

=

mmmwww1 !Work mmmwww2 !Work mmmwww3 !Work

www1mmm?Done

www2mmm?Done

www3mmm?Done

(We explain the
meaning of the

dashed lines later.)

This SOP avoids complication 1 in Figure 5 (i.e., state explosion): it has linearly
many events in the number of unordered receives (cf. the DFA in Example 12). ⌟

G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:17

4.2 From SOPs to APIs
To encode SOPs as APIs, the key insight is that an input-enabled process P is well-typed by
local type L (§ 2) if, and only if, every possible sequence of sends and receives by P precisely
covers the set of events of a pomset X in JLKSOP (i.e., every send or receive in the sequence
is an event of X , and vice versa) and respects the precedence relation (i.e., the sequence is
a linearisation of X). That is, the sequence of sends and receives by P must correspond
to a sequence of transitions of the SOP, derived using the rules in Figure 9. The “trick”,
then, is to structure the API in such a way that when the compiler successfully type-checks
the API’s usage, it has effectively validated coverage and respectfulness. In the rest of this
subsection, we show how to achieve this in Scala 3 using match types.

We proceed in three paragraphs: first, to set the stage, we present a basic encoding of
SOPs for choice-free protocols; next, we extend the basic encoding with advanced support for
concurrent subprotocols; last, we also extend the basic encoding with advanced support for
choice-based protocols. We note that “advanced” pertains to the encodings, but not to the
features (i.e., choices are a basic feature in theory, but when modelled as SOPs, they require
an advanced encoding in practice). Furthermore, we note that the two extensions cannot be
used together yet; we explain the challenges to combine them at the end of this section.

Our aim in this subsection is to convey the main ideas and insights of the encoding as
clearly as possible. To this end, we focus mostly on examples (instead of presenting the
general encoding schemes). We do emphasise upfront, though, that the encodings are general,
as also evidenced by our tool and the examples that we distribute with it (§ 5).

Basic encoding: choice-free protocols. The idea behind the basic encoding of singleton
SOPs is similar to the states-as-type-parameters encoding of DFAs. That is, as in § 3.3, a
single generic state class is generated, combined with the usage of match types ⟨r⟩$SendReturn
and ⟨r⟩$RecvArgument for the return and argument values of methods send and recv:
class ⟨r⟩$State [X](x: X, net: Network) extends UseOnce :

def send[Q, E](q: Q, e: E): ⟨r⟩$SendReturn [X, Q, E] = { use; ... }
def recv(fff: ⟨r⟩$RecvArgument [X]): ⟨r⟩$Final = { use; ... }

The main difference is the way in which the type parameter of ⟨r⟩$State is instantiated:
whereas N in § 3.3 was instantiated with numeric literal types to identify states in a DFA, X
in this section is instantiated with tuples of boolean literal types (e.g., in Scala, symbol “true”
denotes both value true and a type with value true as its only inhabitant) to represent events
in the current pomset. For instance, if {1, 2, 3} is the set of events, then its representation
as a tuple is (v1, v2, v3), where each of v1, v2, and v3 is either type true or type false.
Intuitively, if an event is represented as true, then it is still enabled (i.e., it has not happened
yet); if it is represented as false, then it is disabled (i.e., it has happened already). We note
that “state” in this section should be understood as “the current pomsets in the SOP”.

Match type ⟨r⟩$SendReturn has three type parameters, called X, Q, and E, which represent
the current pomset X , the receiver q, and the type t of the value to send. If the pomset has
a send transition X rq !t−−→ X ′ (derived using the rules in Figure 9 through a new auxiliary
match type ⟨r⟩PomSend), then the compiler succeeds to reduce ⟨r⟩$SendReturn[⟨X ⟩,⟨q⟩,⟨t⟩]
to ⟨r⟩$State[⟨X ′⟩]; this is the type of the fresh successor state object after sending. Match
type ⟨r⟩$RecvArgument has one type parameter, called X, which represents the current pomset
X . If the pomset has receive transitions X p1r?t1−−−−→ X ′

1, . . . , X pnr?tn−−−−→ X ′
n (derived using

the rules in Figure 9 through a new auxiliary match type ⟨r⟩PomRecv), then the compiler
succeeds to reduce ⟨r⟩$RecvArgument[⟨X ⟩] to a tuple of function types each of which is of the
form (⟨pi⟩,⟨ti⟩,⟨r⟩$State[⟨X ′⟩]) => ⟨r⟩$Final; these are the types of the continuations after
receiving. The following examples demonstrate these match types.

ECOOP 2022

27:18 API Generation for MPST, Revisited and Revised Using Scala 3

▶ Example 16. The following API (excerpt) is the encoding of JLmmmKSOP in Example 14. We
present it in two steps. First, we define auxiliary match types MPomSend and MPomRecv to
derive transitions of the single pomset in JLmmmKSOP using rules [Lpo] and [Pom] in Figure 9.
Second, we use these auxiliary match types to define M$SendReturn and M$RecvArgument.

1. The first listing shows the two auxiliary match types:
type MPomSend [X, Q, E] = (X, Q, E) match

case ((true , v2 , v3 , v4), W1 , Work) => (false , v2 , v3 , v4)
case ((false , true , v3 , v4), W2 , Work) => (false , false , v3 , v4)
case Any => Error

type MPomRecv [X, P, E] = (X, P, E) match
case ((v1 , false , true , v4), W1 , Done) => (v1 , false , false , v4)
case ((v1 , false , v3 , true), W2 , Done) => (v1 , false , v3 , false)
case Any => Error

Every case in match type MPomSend encodes a send transition of the pomset represented
by X, with Q as the receiver and E as the type of the value to send, derived using rules
[Lpo] and [Pom] in Figure 9. The first case states that if X matches (true, v2, v3, v4),
where v2, v3, and v4 are local type variables that are bound by matching (i.e., the first
event in the pomset has not yet happened and is still enabled, hence true; the other
events are irrelevant), and if Q and E match W1 and Work, then the pomset can make a
transition to (false, v2, v3, v4) when work is sent to worker 1 (i.e., the first event has
happened and is disabled, hence false; the other events are unaffected). We note that it
is more convenient to “set” events to false instead of removing them as in rule [Lpo].
The second case is similar, except that it imposes a precedence constraint: to match X, its
first element must be false. That is, for the second event to happen, the first event must
have already happened (i.e., the second event must have become minimal to satisfy the
premise of rule [Lpo]). The third case states that if the first two cases do not apply, then
a send of a value of type E to receiver Q cannot happen in X. Here, Error is a special type
that we use to explicitly represent “failed reduction”; it is dealt with in the next step.
Match type MPomRecv is similar, but for receives instead of sends.

2. The second listing shows ⟨r⟩$SendReturn and ⟨r⟩$RecvArgument:
type M$SendReturn [X, Q, E] = /* |-then -| */

IfThenElse [IsError [MPomSend [X, Q, E]], Unit , M$State [M$Pom$Send [X, Q, E]]]
/* |---if -----------------------| |---else --------------------| */

type M$RecvArgument [X] =
Simplify [(IfThenElse [IsError [MPomRecv [X, W1 , Done]], Unit ,

(W1 , Done , M$State [M$Pom$Recv [X, W1 , Done]]) => M$Final],
IfThenElse [IsError [MPomRecv [X, W2 , Done]], Unit ,

(W2 , Done , M$State [M$Pom$Recv [X, W2 , Done]]) => M$Final])]

To reduce match type M$SendReturn[X, Q, E], the compiler checks if MPomSend[X, Q, E]
reduces to Error, using “utility match types” IfThenElse and IsError. If it does (i.e., a
send of E to Q in X cannot happen), then the type of the fresh successor state object is
Unit (i.e., to indicate that something is wrong). In contrast, if it does not reduce to Error
(i.e., the send can happen), then the type of the fresh successor state is proper.
To reduce match type M$RecvArgument[X], the compiler uses a similar approach to de-
termine for every possible receive (characterised in terms of the sender and the type of
the value) if it can happen or not in X. The result is a tuple that consists of either a
proper continuation function or Unit for every possible receive; the Units are subsequently
removed using utility match type Simplify.

We note that exactly the same function that implements the master in Example 9 is also
well-typed using the API in this example. For details, see: https://scastie.scala-lang.
org/3PyXcwBKS2argRL9oPlspg. ⌟

https://scastie.scala-lang.org/3PyXcwBKS2argRL9oPlspg
https://scastie.scala-lang.org/3PyXcwBKS2argRL9oPlspg

G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:19

Advanced encoding: concurrent subprotocols. In this paragraph, we extend the basic
encoding with an advanced feature that significantly subsumes DFA-based API generation:
the ability to fork and join pomsets. Intuitively, when a fork is performed, the pomset is
“broken” into “shards”, each of which can evolve independently of the others; when a join is
performed, shards are “glued” back together. In terms of typing rules, intuitively, forking
corresponds to rule [Par] in Figure 7, while joining corresponds to rule [Seq]. In the DFA
encodings, rule [Par] has no corresponding representation, as the parallel structure is lost in
translation. In contrast, in the SOP encodings, the parallel structure is still there and thus
can be exploited. This extension is crucial to effectively support concurrent subprotocols
(i.e., avoid branch explosion; Figure 5), as will be demonstrated shortly in Example 18.

A first essential ingredient that we need, is an analysis procedure to statically identify
shards. To explain it, suppose that [X] = [(V, ≺, λ)] is a pomset. The idea is to partition V

into two kinds of subsets, each of which forms a shard:

Join shards: If v ∈ V , and if |predX(v)| > 1, then {v} forms a join shard.

Sequential shards: If v ⪯ v1 ≺ · · · ≺ vn ⪯ v′, and if |succX(vi) ∪ predX(vi)| ≤ 2, for every
1 ≤ i ≤ n − 1 (i.e., v1, . . . , vn is a chain), and if either |succX(v)| > 1 or |predX(v1)| ̸= 1
(i.e., either v1 is preceded by “fork event” v, or it is an “initial event” itself), and if either
|predX(v′) > 1| or |succX(vn)| ̸= 1 (i.e., vn is succeeded by “join event” v′, or it is a
“final event” of “fork event” itself), then {v1, . . . , vn} forms a sequential shard. That is, a
sequential shard is a longest chain of events, optionally preceded by a fork event (if v1 is
not initial), and optionally succeeded by a join event (if vn is not final or fork).

For instance, the dashed lines in Example 15 visualise four shards. We note that identification
of shards is computationally easy: it can be done in polynomial time (in the size of the
pomset), using standard graph traversal techniques.

Using this concept of shards, forking and joining generally works as follows:

If an event e has multiple immediate successors, and if every immediate predecessor has
already happened, and if every immediate successor has not yet happened, then the “old
pomset” can be forked into “new sub-pomsets” by breaking it into shards: for every
immediate successor of e, there is a new sub-pomset that consists of all sequential shards
that are reachable from e without passing through a join shard; the join shards and
all shards beyond are temporarily disabled. That is, each new sub-pomset can evolve
independently within the boundaries of its shards, but to go further, a join is needed first.
We also note that sub-pomsets can be recursively forked.

If an event e has multiple immediate predecessors, and if every immediate predecessor has
already happened, then the sub-pomsets can be joined by gluing their shards, re-enabling
the temporarily disabled join shards and all shards beyond.

To incorporate these concepts, we extend the basic encoding as follows:

Class ⟨r⟩$State is extended with a method fork. At execution time, when fork is called,
a fork is performed and fresh successor state objects are returned; they can be used
independently of each other (i.e., concurrent subprotocols). At compile-time, to check
that this method call is actually allowed in the current pomset, the compiler tries to
reduce a match type: if it succeeds, the call is allowed; if it fails, it is not. More precisely,
the idea is to use a match type ⟨r⟩$ForkReturn for the return value; it has one type
parameter, called X, which represents the current pomset X . If X can be forked into

ECOOP 2022

27:20 API Generation for MPST, Revisited and Revised Using Scala 3

sub-pomsets X1, . . . , Xn, then the compiler succeeds to reduce ⟨r⟩$ForkReturn[⟨X ⟩] to a
tuple (⟨r⟩$State[⟨X1⟩],...,⟨r⟩$State[⟨Xn⟩]); these are the types of the fresh successor
state objects after forking. In contrast, if X cannot be forked, then the compiler fails to
reduce and yields an error. Thus, fork looks as follows:

def fork (): M$ForkReturn [X] = { use; ... }

We note that forking a pomset also counts as “usage”: after calling fork, the state object
should not be used again to send or receive.

Class ⟨r⟩$State is also extended with a static method join for every “join event” in the
pomset, using overloading. At execution time, when join is called, multiple final state
objects for sub-pomsets are collected (passed as arguments) and a single fresh successor
state object is returned. At compile-time, to check that this method call is actually
allowed, the compiler checks if the types of the actual parameters match the types of the
formal parameters of one of the overloaded join methods.

To conveniently distinguish sub-pomsets, the representation X of the current pomset (i.e.,
tuple of boolean literal types) is extended with an extra element, namely a fork identifier
(i.e., numeric literal type): if the current pomset was previously forked off (i.e., X actually
represents a sub-pomset), then the fork identifier is a numeric literal type that identifies
the immediate successor of the “fork event”; else, the fork identifier is 0.

To enable method recv in class ⟨r⟩$State to return different final states for different
sub-pomsets, the type of its return value is refined to depend on fork identifiers. The
idea is to use an auxiliary match type ⟨r⟩PomFinal to derive final states: it has one type
parameter, called X, which represents the current sub-pomset. Based on the fork identifier
in X, the compiler reduces ⟨r⟩PomFinal[X] to a tuple in which all events of the enabled
shards are represented as false (i.e., they have happened). Thus, recv looks as follows:

def recv(fff: ⟨r⟩$RecvArgument [X]): ⟨r⟩$State [⟨r⟩PomFinal [X]] = { use; ... }

The following examples demonstrate these match types.

▶ Example 17. The following API (excerpt) is the encoding of JLmmmKSOP in Example 14. We
present it in three steps. First, we define auxiliary match types MPomSend and MPomRecv
(similar to Example 16) and auxiliary match type MPomFinal (new). Second, we use these
auxiliary match types to define M$SendReturn and M$RecvArgument (similar to Example 16)
and M$Fork$Return (new). Third, we define static method join.

1. The first listing shows the three auxiliary match types:
type MPomSend [X, Q, E] = (X, Q, E) match

case ((n, true , v2 , v3 , v4), W1 , Work) => (n, false , v2 , v3 , v4)
case ((n, false , true , v3 , v4), W2 , Work) => (n, false , false , v3 , v4)
case Any => Error

type MPomRecv [X, P, E] = ...

type MPomFinal [X] = X match
case (0, v1 , v2 , v3 , v4) => (0, false , false , false , false)
case (3, v1 , v2 , v3 , v4) => (3, v1 , v2 , false , v4)
case (4, v1 , v2 , v3 , v4) => (4, v1 , v2 , v3 , false)

Match types MPomSend and MPomRecv are the same as in Example 16, except that tuple
X has an extra element n, namely a numeric fork identifier. Match type MPomFinal is
new: it is used to infer when a sub-pomset has fully evolved (i.e., within the boundaries
of its shards, but not beyond). For instance, the second case states that the sub-pomset
identified by 3 is final when the event identified by 3 has happened.

G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:21

2. The second listing shows M$SendReturn, M$RecvArgument, and M$Fork$Return:
type M$SendReturn [X, Q, E] = ...

type M$RecvArgument [X] =
Simplify [(IfThenElse [IsError [MPomRecv [X, W1 , Done]], Unit ,

(W1 , Done , M$State [M$Pom$Recv [X, W1 , Done]]) =>
M$State [M$Pom$Final [X]]] ,

...)]

type M$ForkReturn [X] = X match
case (0, v1 , v2 , true , true) => (

M$State [(3 , v1 , v2 , true , false)], M$State [(4 , v1 , v2 , false , true)])

Match types M$SendReturn and M$RecvArgument are the same as in Example 16, except
that the return types of the continuations as computed by M$RecvArgument depend on the
fork identifier in X, using match type MPomFinal. Match type M$ForkReturn is new: it is
used to infer which old pomsets can be forked into which tuples of new sub-pomsets. In
this example, there is only one case. It states that if the old pomset is unforked, and if
the third and fourth events have not yet happened, then it can be forked into two new
sub-pomsets: one for the third event and one for the fourth event.
In general, match type ⟨r⟩$ForkReturn has as many cases as there are “fork events” in
the pomset. That is, we allow a pomset to be forked only right after a fork event, before
any event of the immediate successors has happened (if we would allow it also “later”,
then we would need to generate exponentially many cases).

3. The third listing shows join:
object M$State : // static methods of class M$State

def join(
s1: M$State [(3 , false , false , false , false)],
s2: M$State [(4 , false , false , false , false)]

): M$State [(0 , false , false , false , false)] = ...

Method join is needed in this example to provide a final state object with a unique type;
it is implicitly present in every pomset with more than one maximal element.
In general, ⟨r⟩$State has as many join methods as there are “join events” in the pomset.

We note that exactly the same function that implements the master in Example 9 is also
well-typed using the API in this example. Thus, the fork–join extension of the basic encoding
is backwards-compatible. To additionally demonstrate forking and joining, the following
well-typed function implements the master as well:

def master (s: M$Initial): M$Final =
val (s1 , s2) = s.send(W1 , new Work). send(W2 , new Work). fork ()
val f1 = Future { s1.recv ((_, _, s) => { println ("#1"); s }) }
val f2 = Future { s2.recv ((_, _, s) => { println ("#2"); s }) }
Await . result (for { t1 <- f1; t2 <- f2 } yield M$State .join(t1 , t2), ...)

In the first line of the body, the two sends are sequentially performed as before; after
that, the pomset is forked into two pomsets, divided over successor state objects s1 and
s2. On the second and third line, the two receives are performed concurrently using two
futures (built-in Scala mechanism for asynchronous programming, using a default thread
pool). On the fourth line, the results of the futures are awaited. Any change in the order
of the actions (sends, receives, fork, join) results in a compile-time error. For details, see:
https://scastie.scala-lang.org/RoIs43OcTsS3w9wh8GC74w. ⌟

▶ Example 18. The following well-typed function implements the master (with three workers),
using an API that encodes the SOP in Example 15, including the fork–join extension.

ECOOP 2022

https://scastie.scala-lang.org/RoIs43OcTsS3w9wh8GC74w

27:22 API Generation for MPST, Revisited and Revised Using Scala 3

def master (s: M$Initial): M$Final =
val (s1 , s2 , s3) = s.send(W1 , new Work). send(W2 , new Work). send(W3 , new Work). fork ()
val f1 = Future { s1.recv ((_, _, s) => { println ("#1"); s }) }
val f2 = Future { s2.recv ((_, _, s) => { println ("#2"); s }) }
val f3 = Future { s3.recv ((_, _, s) => { println ("#3"); s }) }
Await . result (

for { t1 <- f1; t2 <- f2; t3 <- f3 } yield M$State .join(t1 , t2 , t3), ...)

This implementation avoids complication 2 in Figure 5 (i.e., branch explosion):
it has linearly many branches in the number of unordered receives (cf. the implementation
in Example 12, which has exponentially many branches). For details, see: https://scasti
e.scala-lang.org/MUEFr4ZvSEyFepAJWAKh3g. ⌟

Advanced encoding: choice-based protocols. In the previous paragraphs, we presented
the basic encoding of singleton SOPs and the fork–join extension. In this last paragraph, we
present another extension of the basic encoding to support non-singleton SOPs.

Intuitively, a non-singleton SOP {X1, . . . , Xn} represents a choice among n possible local
behaviours. The trouble is that both at compile-time and initially at execution-time, it is still
unknown which of the n pomsets will actually be chosen (e.g., the seller in the seller-buyer
protocol initially does not know yet if the buyer will accept or reject the offer). In particular,
this observation entails that we cannot “compositionally” apply the basic encoding to each
of the n pomsets and require a process to choose one of them in the beginning; generally,
there is no way in which the process can make such an early choice upfront. That is, rule
[SopA] in Figure 9, which formalises the idea of early choices, is too inflexible.

Instead, a process needs to keep its options open for as long as possible. To achieve
this, in accordance with rule [SopB] in Figure 9, which formalises the idea of late choices,
the plan is to incrementally refine the set of “eligible pomsets” (to become the chosen one),
by accumulating knowledge during the execution of the process. That is (cf. rule [SopB]),
initially, all pomsets are eligible; subsequently, every time a send or receive happens, all
eligible pomsets that do not allow the action to happen, become ineligible. In this way, when
the process terminates, coverage and respectfulness are satisfied if, and only if, all events of
at least one remaining eligible pomset have happened. It is straightforward to perform such
an incremental eligibility analysis dynamically; the challenge is to “trick” the compiler into
doing it statically. To achieve this, we extend the basic encoding as follows:

Class ⟨r⟩$State is extended with additional type parameters: instead of just X, which
represents the one pomsets in a singleton SOP, it has X1,...,Xn, which represent the n

pomsets in a non-singleton SOP.

Similarly, match types ⟨r⟩$SendReturn and ⟨r⟩$RecvArgument are extended with additional
type parameters X1,...,Xn. Furthermore, the definitions of these match types are extended
to derive send and receive transitions of the non-singleton SOP represented by X1,...,Xn
using rule [SopB] in Figure 9. We note that, essentially, the basic encoding of singleton
SOPs is a special case of the advanced encoding of non-singleton SOPs.

The following example demonstrates these match types.

▶ Example 19. The following API (excerpt) is the encoding of JLsssKSOP in Example 13. We
present it in two steps. First, we define auxiliary match types S$Pom1$Send and S$Pom1$Recv
to derive transitions of the “left” pomset in JLsssKSOP, and auxiliary match types S$Pom2$Send
and S$Pom2$Recv to derive transitions of the “right” pomset in JLsssKSOP, using rules [Lpo]
and [Pom] in Figure 9 (similar to Example 16). Second, we use these auxiliary match types
to define S$SendReturn and S$RecvArgument.

https://scastie.scala-lang.org/MUEFr4ZvSEyFepAJWAKh3g
https://scastie.scala-lang.org/MUEFr4ZvSEyFepAJWAKh3g

G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:23

1. The first listing shows the four auxiliary match types:
type S$Pom1$Send [X, Q, E] = (X, Q, E) match

case ((true , v2 , v3), B, Descr) => (false , v2 , v3)
case ((v1 , true , v3), B, Price) => (v1 , false , v3)
case Any => Error

type S$Pom1$Recv [X, Q, E] = (X, P, E) match
case ((false , false , true), B, Acc) => (false , false , false)
case Any => Error

type S$Pom2$Send [X, Q, E] = (X, Q, E) match
case ((true , v2 , v3), B, Descr) => (false , v2 , v3)
case ((v1 , true , v3), B, Price) => (v1 , false , v3)
case Any => Error

type S$Pom2$Recv [X, P, E] = (X, P, E) match
case ((false , false , true), B, Rej) => (false , false , false)
case Any => Error

Conceptually, there is nothing new here relative to the basic encoding, except that we
should be more precise about the meaning of Error: it stands for “ineligible”.

2. The second listing shows S$SendReturn and S$RecvArgument:
type S$SendReturn [X1 , X2 , Q, E] =

IfThenElse [
And[IsError [S$Pom1$Send [X1 , Q, E]], IsError [S$Pom2$Send [X2 , Q, E]]] , Unit ,
S$State [S$Pom1$Send [X1 , Q, E], S$Pom2$Send [X2 , Q, E]]]

type S$RecvArgument [X1 , X2] =
Simplify [(

IfThenElse [
And[IsError [S$Pom1$Recv [X1 , B, Acc]], IsError [S$Pom2$Recv [X2 , B, Acc]]] , Unit ,
(B, Acc , S$State [S$Pom1$Recv [X1 , B, Acc], S$Pom2$Recv [X2 , B, Acc]]) =>

S$Final],
...)]

To reduce match type S$SendReturn[X1, X2, Q, E], where X1 and X2 represent the two pom-
sets in the SOP, the compiler checks if M$Pom1$Send[X1, Q, E] and M$Pom2$Send[X2, Q, E]
reduce to Error. If they do (i.e., a send of E to Q can happen neither in X1 nor in X2),
then the type of the fresh successor state object is Unit (i.e., all pomsets have become
ineligible). In contrast, if they do not both reduce to Error (i.e., the send can happen in
X1, or in X2, or in both), then the type of the fresh successor state is proper; it is formed
by evolving both X1 and X2. There are three cases:

If X1 and X2 are bound to a non-Error type, and they evolve to non-Error types, then
the corresponding type parameters of the successor remain bound to non-Error types.
That is, both pomsets remain eligible.

If X1 (resp. X2) is bound to a non-Error type, but it evolves to Error, then the
corresponding type parameter of the successor becomes bound to Error as well. That
is, the first pomset (resp. second pomset) becomes ineligible. We note that it is more
convenient to “set” pomsets to Error instead of removing them as in rule [SopB].

If X1 (resp. X2) is bound to Error, then it “evolves” again to Error (see previous listing),
so the corresponding type parameter of the successor remains bound to Error as well.
That is, the first pomset (resp. second pomset) remains ineligible.

To reduce match type M$RecvArgument[X1, X2], the compiler uses a similar approach to
determine for every possible receive if it can happen or not in X1 and X2.

We note that exactly the same function that implements the master in Example 8 is also
well-typed using the API in this example. For details, see: https://scastie.scala-lang.
org/WN5ZmEMcRh2ecUMaCgvjPA. ⌟

ECOOP 2022

https://scastie.scala-lang.org/WN5ZmEMcRh2ecUMaCgvjPA
https://scastie.scala-lang.org/WN5ZmEMcRh2ecUMaCgvjPA

27:24 API Generation for MPST, Revisited and Revised Using Scala 3

It remains a largely open question how to use both the fork–join extension of the previous
paragraph, and the choice extension of this paragraph, together. The only situation in which
we know how to do it, is when a non-singleton SOP has evolved in such a way that only one
of its pomsets has remained eligible; in that case, it has effectively become a singleton SOP,
to which the fork–join extension readily applies. The main challenge to also support forking
and joining of SOPs with multiple eligible pomsets is that we need to devise a mechanism to
control non-forked pomsets. For instance, suppose that we have a SOP {[X1], [X2]} (both
eligible), and suppose that [X1] can be forked into [X†

1] and [X‡
1]. By naively performing the

fork, we get two fresh successor state objects: one for {[X†
1], [X2]} and one for {[X‡

1], [X2]}.
However, without an additional control mechanism, the events in [X2] are now allowed to be
executed twice. Solving this non-trivial problem is part of future work.

5 Tool Support: Pompset

We developed a tool, called Pompset (portmanteau of pom_set and __mps_t), to automatically
generate SOP-based APIs, according to the workflow in Figure 4. More precisely, Pompset
consumes a global type as input and produces a set of APIs as output as follows:

1. From global type to local types: First, the global type is parsed to a “global AST”.
Next, for every role that occurs in the global AST, the global AST is projected to a “local
AST” in accordance with § 2.

2. From local types as SOPs: Every local AST is interpreted to a “SOP data structure”
in accordance with § 4.1.

3. From SOPs to APIs: Every SOP data structure is encoded as an API in accordance
with § 4.2, including the ability to fork–join SOPs. (For practical/engineering reasons,
though, the generated code is not completely identical, but it follows the same ideas and
insights and works morally the same as in the examples.)
Technically, the encoding is carried out by filling generic templates with specific data
from the SOP under consideration. We refer to our artefact (published in DARTS),
for details of the templates and the filling process; it includes source code and build
instructions. Furthermore, it includes additional examples to demonstrate the generality
of the implemented encoding scheme.
We note that generated APIs also consist of functions to spawn processes and transparently
set up the underlying communication infrastructure (i.e., transport abstraction). The
latter is based on shared-memory channels, but it could work equally well with TCP
channels; it just requires additional engineering effort.

The guarantees that APIs generated by Pompset provide at compile-time, are as usual
(§ 3.2): deadlock freedom and protocol compliance, modulo non-linear usage of state ob-
jects (checked at execution-time), and modulo uncontrollable sources of non-terminating/
exceptional behaviour. In addition to API generation as presented so far, Pompset also offers
enhanced error messages and additional pomset support to improve both the usability of the
generated APIs and the usefulness of Pompset; we describe these features in [8, § A].

Pompset is written in Scala, open source, and it has a browser-based graphical user
interface; we provide a screenshot in [8, § B].

G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:25

6 Conclusion

In this paper (pearl), we revisited and revised the API generation approach to support the
MPST method in practice. Regarding the “revisitation”, using Scala 3, we presented two
versions of the existing DFA-based API generation: states-as-classes (existing) and states-as-
type-parameters (new, by leveraging match types in Scala 3). Regarding the “revision”, we
presented a new SOP-based API generation (again, by leveraging match types in Scala 3).
Through this fresh perspective, we showed how to effectively support concurrent subprotocols
for the first time in MPST practice. The SOP-based version is incorporated in a new tool.

Regarding choices, DFA-based and SOP-based API generation are equally expressive.
However, the DFA approach supports loops, which the SOP approach currently does not.
In contrast, the SOP approach supports forking/joining of subprotocols, which the DFA
approach does not. Thus, for now, a trade-off needs to be made when choosing which
encoding to use, but our vision is that the SOP approach has the potential to subsume the
DFA approach (when the type system of the host language supports a kind of match types).

6.1 Related Work
Local types as DFAs. The idea to interpret local types as DFAs was conceived by Deniélou
and Yoshida [11,12], within the framework of communicating finite state machines (CFSM) [5].
A central notion in this work is multiparty compability: it is used to provide a sound and
complete characterisation between global types and systems (i.e., parallel compositions of
DFAs that communicate through asynchronous channels). Multiparty compatibility was
further studied and generalised in subsequent work, to cover timed behaviour [4], more
flexible choice [28], and non-synchronisability [29].

DFAs as APIs. The idea to encode DFAs as APIs was conceived by Hu and Yoshida [20,21],
for Java. The approach has subsequently been used in combination with numerous other
programming languages as well, including F# [33], F⋆ [46], Go [7], OCaml [45], PureScript [25],
Rust [27], Scala [37], and TypeScript [31]. In many of these works, distinguished capabilities
of the type system of “the host” are leveraged to offer additional compile-time guarantees
and/or support MPST extensions. For instance, Neykova et al. and Zhou et al. use type
providers in F# and refinement types in F⋆ to generate APIs that support MPST-based
refinement [33,46], while King et al. and Lagaillardie et al. use indexed monads in PureScript
and ownership types in Rust to support static linearity [25,27].

Alternative approaches (i.e., not based on API generation) to apply the MPST method
in combination with mainstream programming languages include the work of Imai et al. [22]
(for OCaml), the work of Harvey et al., Kouzapas et al., and Voinea et al. [17,26,44] (for Java,
using a typestate extension), and the work of Scalas et al. [40,41] (for Scala, using an external
model checker). Furthermore, there exist approaches to apply the MPST method that rely
on monitoring and/or assertion checking at execution-time [2,3,9,16,32,33]. The motivation
is that in practice, some distributed components of a system might not be amenable to static
type-checking (e.g., the source code is unavailable), but they can be dynamically monitored
for compliance.

Local types as pomsets. The idea to encode local types as pomsets was conceived by
Guanciale and Tuosto [14], in a continuation of earlier work on pomset-based semantics
of global types [43]. A key contribution of Guanciale and Tuosto is a sound and complete
procedure to determine if a SOP-interpretation of a global type is realisable as a collection

ECOOP 2022

27:26 API Generation for MPST, Revisited and Revised Using Scala 3

of SOP-interpretations of the global type’s projections; most procedures in the MPST
literature are only sound. The PomCho tool [15] supports analysis (including counterexample
generation), visualisation, and projection of pomsets. The crucial difference with our tool is
that PomCho cannot generate APIs.

6.2 Future Work
We intend to demonstrate the potential of SOP-based API generation with this paper, and
we believe that it can become the starting point for many improvements to the current design.
Concretely, we are pursuing two pieces of future work.

First, as explained at the end of § 4.2, fork–join support and choice support can be used
together only to a limited extent. We are currently approaching this open problem from two
angles: on the practical side, we try to devise a mechanism to control non-forked pomsets,
without changing the underlying foundations; meanwhile, on the theoretical side, we are
studying an alternative pomset-based version of MPST theory that should make choices
simpler to support (inspired by branching automata [30] and pomset automata [24]).

Second, our current version of SOP-based API generation does not support loops. This
open problem is foundational: in the same way that Kleene star gives rise to infinite regular
languages of finite words, a looping construct in the grammar of global/local types would
give rise to infinite sets of finite pomsets. In theory, this is fine; in practice, it is not (i.e.,
generated APIs would need to be infinite as well). Solving this problem is another reason
for us to study an alternative pomset-based version of MPST theory, in which loops can be
represented finitely. We expect the key ideas and insights of SOP-based API generation in
this paper to remain applicable, though.

References
1 Olivier Blanvillain, Jonathan Immanuel Brachthäuser, Maxime Kjaer, and Martin Odersky.

Type-level programming with match types. Proc. ACM Program. Lang., 6(POPL):1–24, 2022.
2 Laura Bocchi, Tzu-Chun Chen, Romain Demangeon, Kohei Honda, and Nobuko Yoshida.

Monitoring networks through multiparty session types. Theor. Comput. Sci., 669:33–58, 2017.
3 Laura Bocchi, Kohei Honda, Emilio Tuosto, and Nobuko Yoshida. A theory of design-by-

contract for distributed multiparty interactions. In CONCUR, volume 6269 of Lecture Notes
in Computer Science, pages 162–176. Springer, 2010.

4 Laura Bocchi, Julien Lange, and Nobuko Yoshida. Meeting deadlines together. In CONCUR,
volume 42 of LIPIcs, pages 283–296. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

5 Daniel Brand and Pitro Zafiropulo. On communicating finite-state machines. J. ACM,
30(2):323–342, 1983.

6 Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On global types and
multi-party session. Log. Methods Comput. Sci., 8(1), 2012.

7 David Castro-Perez, Raymond Hu, Sung-Shik Jongmans, Nicholas Ng, and Nobuko Yoshida.
Distributed programming using role-parametric session types in go: statically-typed endpoint
apis for dynamically-instantiated communication structures. Proc. ACM Program. Lang.,
3(POPL):29:1–29:30, 2019.

8 Guillermina Cledou, Luc Edixhoven, Sung-Shik Jongmans, and José Proença. Api generation
for multiparty session types, revisited and revised using scala 3 (full version). Technical Report
OUNL-CS-2022-03, Open University of the Netherlands, 2022.

9 Romain Demangeon, Kohei Honda, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Practical interruptible conversations: distributed dynamic verification with multiparty session
types and python. Formal Methods Syst. Des., 46(3):197–225, 2015.

G. Cledou, L. Edixhoven, S.-S. Jongmans, and J. Proença 27:27

10 Pierre-Malo Deniélou and Nobuko Yoshida. Dynamic multirole session types. In POPL, pages
435–446. ACM, 2011.

11 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty session types meet communicating
automata. In ESOP, volume 7211 of Lecture Notes in Computer Science, pages 194–213.
Springer, 2012.

12 Pierre-Malo Deniélou and Nobuko Yoshida. Multiparty compatibility in communicating
automata: Characterisation and synthesis of global session types. In ICALP (2), volume 7966
of Lecture Notes in Computer Science, pages 174–186. Springer, 2013.

13 Jay L. Gischer. The equational theory of pomsets. Theor. Comput. Sci., 61:199–224, 1988.
14 Roberto Guanciale and Emilio Tuosto. Realisability of pomsets. J. Log. Algebraic Methods

Program., 108:69–89, 2019.
15 Roberto Guanciale and Emilio Tuosto. Pomcho: A tool chain for choreographic design. Sci.

Comput. Program., 202:102535, 2021.
16 Ruben Hamers and Sung-Shik Jongmans. Discourje: Runtime verification of communication

protocols in clojure. In TACAS (1), volume 12078 of Lecture Notes in Computer Science,
pages 266–284. Springer, 2020.

17 Paul Harvey, Simon Fowler, Ornela Dardha, and Simon J. Gay. Multiparty session types
for safe runtime adaptation in an actor language. In ECOOP, volume 194 of LIPIcs, pages
10:1–10:30. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

18 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
In POPL, pages 273–284. ACM, 2008.

19 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.
J. ACM, 63(1):9:1–9:67, 2016.

20 Raymond Hu and Nobuko Yoshida. Hybrid session verification through endpoint API genera-
tion. In FASE, volume 9633 of Lecture Notes in Computer Science, pages 401–418. Springer,
2016.

21 Raymond Hu and Nobuko Yoshida. Explicit connection actions in multiparty session types.
In FASE, volume 10202 of Lecture Notes in Computer Science, pages 116–133. Springer, 2017.

22 Keigo Imai, Rumyana Neykova, Nobuko Yoshida, and Shoji Yuen. Multiparty session program-
ming with global protocol combinators. In ECOOP, volume 166 of LIPIcs, pages 9:1–9:30.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

23 Sung-Shik Jongmans and Nobuko Yoshida. Exploring type-level bisimilarity towards more
expressive multiparty session types. In ESOP, volume 12075 of Lecture Notes in Computer
Science, pages 251–279. Springer, 2020.

24 Tobias Kappé, Paul Brunet, Bas Luttik, Alexandra Silva, and Fabio Zanasi. On series-parallel
pomset languages: Rationality, context-freeness and automata. J. Log. Algebraic Methods
Program., 103:130–153, 2019.

25 Jonathan King, Nicholas Ng, and Nobuko Yoshida. Multiparty session type-safe web de-
velopment with static linearity. In PLACES@ETAPS, volume 291 of EPTCS, pages 35–46,
2019.

26 Dimitrios Kouzapas, Ornela Dardha, Roly Perera, and Simon J. Gay. Typechecking protocols
with mungo and stmungo: A session type toolchain for java. Sci. Comput. Program., 155:52–75,
2018.

27 Nicolas Lagaillardie, Rumyana Neykova, and Nobuko Yoshida. Implementing multiparty
session types in rust. In COORDINATION, volume 12134 of Lecture Notes in Computer
Science, pages 127–136. Springer, 2020.

28 Julien Lange, Emilio Tuosto, and Nobuko Yoshida. From communicating machines to graphical
choreographies. In POPL, pages 221–232. ACM, 2015.

29 Julien Lange and Nobuko Yoshida. Verifying asynchronous interactions via communicating
session automata. In CAV (1), volume 11561 of Lecture Notes in Computer Science, pages
97–117. Springer, 2019.

ECOOP 2022

27:28 API Generation for MPST, Revisited and Revised Using Scala 3

30 Kamal Lodaya and Pascal Weil. Series-parallel languages and the bounded-width property.
Theor. Comput. Sci., 237(1-2):347–380, 2000.

31 Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. Communication-safe web
programming in typescript with routed multiparty session types. In CC, pages 94–106. ACM,
2021.

32 Rumyana Neykova, Laura Bocchi, and Nobuko Yoshida. Timed runtime monitoring for
multiparty conversations. Formal Aspects Comput., 29(5):877–910, 2017.

33 Rumyana Neykova, Raymond Hu, Nobuko Yoshida, and Fahd Abdeljallal. A session type
provider: compile-time API generation of distributed protocols with refinements in f#. In CC,
pages 128–138. ACM, 2018.

34 Rumyana Neykova and Nobuko Yoshida. Let it recover: multiparty protocol-induced recovery.
In CC, pages 98–108. ACM, 2017.

35 Luca Padovani. A simple library implementation of binary sessions. J. Funct. Program., 27:e4,
2017.

36 Vaughan R. Pratt. Modeling concurrency with partial orders. Int. J. Parallel Program.,
15(1):33–71, 1986.

37 Alceste Scalas, Ornela Dardha, Raymond Hu, and Nobuko Yoshida. A linear decomposition of
multiparty sessions for safe distributed programming. In ECOOP, volume 74 of LIPIcs, pages
24:1–24:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

38 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in scala. In ECOOP,
volume 56 of LIPIcs, pages 21:1–21:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

39 Alceste Scalas and Nobuko Yoshida. Less is more: multiparty session types revisited. Proc.
ACM Program. Lang., 3(POPL):30:1–30:29, 2019.

40 Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Effpi: verified message-passing programs
in dotty. In SCALA@ECOOP, pages 27–31. ACM, 2019.

41 Alceste Scalas, Nobuko Yoshida, and Elias Benussi. Verifying message-passing programs with
dependent behavioural types. In PLDI, pages 502–516. ACM, 2019.

42 Jesse A. Tov and Riccardo Pucella. Stateful contracts for affine types. In ESOP, volume 6012
of Lecture Notes in Computer Science, pages 550–569. Springer, 2010.

43 Emilio Tuosto and Roberto Guanciale. Semantics of global view of choreographies. J. Log.
Algebraic Methods Program., 95:17–40, 2018.

44 A. Laura Voinea, Ornela Dardha, and Simon J. Gay. Typechecking java protocols with
[st]mungo. In FORTE, volume 12136 of Lecture Notes in Computer Science, pages 208–224.
Springer, 2020.

45 Nobuko Yoshida, Fangyi Zhou, and Francisco Ferreira. Communicating finite state machines
and an extensible toolchain for multiparty session types. In FCT, volume 12867 of Lecture
Notes in Computer Science, pages 18–35. Springer, 2021.

46 Fangyi Zhou, Francisco Ferreira, Raymond Hu, Rumyana Neykova, and Nobuko Yoshida.
Statically verified refinements for multiparty protocols. Proc. ACM Program. Lang.,
4(OOPSLA):148:1–148:30, 2020.

Global Type Inference for Featherweight Generic
Java
Andreas Stadelmeier #

Duale Hochschule Baden-Württemberg Stuttgart, Campus Horb, Germany

Martin Plümicke #

Duale Hochschule Baden-Württemberg Stuttgart, Campus Horb, Germany

Peter Thiemann #

Institut für Informatik, Universität Freiburg, Germany

Abstract
Java’s type system mostly relies on type checking augmented with local type inference to improve
programmer convenience.

We study global type inference for Featherweight Generic Java (FGJ), a functional Java core
language. Given generic class headers and field specifications, our inference algorithm infers all
method types if classes do not make use of polymorphic recursion. The algorithm is constraint-based
and improves on prior work in several respects. Despite the restricted setting, global type inference
for FGJ is NP-complete.

2012 ACM Subject Classification Software and its engineering → Language features

Keywords and phrases type inference, Java, subtyping, generics

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.28

Related Version Full Version: https://arxiv.org/abs/2205.08768 [28]

Supplementary Material Source code for the accompaning prototype implementation
Software (Source Code): https://github.com/JanUlrich/FeatherweightTypeInference

archived at swh:1:dir:dbbfa3ad5db1b423c098c392af1d4b720db93e0e
Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.18

1 Introduction

Java is one of the most important programming languages. In 2019, Java was the second
most popular language according to a study based on GitHub data.1 Estimates for the
number of Java programmers range between 7.6 and 9 million.2 Java has been around since
1995 and progressed through 16 versions.

Swarms of programmers have taken their first steps in Java. Many more have been
introduced to object-oriented programming through Java, as it is among the first main-
stream languages supporting object-orientation. Java is a class-based language with static
single inheritance among classes, hence it has nominal types with a specified subtyping
hierarchy. Besides classes there are interfaces to characterize common traits independent of
the inheritance hierarchy. Since version J2SE 5.0, the Java language supports F-bounded
polymorphism in the form of generics.

1 https://www.businessinsider.de/international/the-10-most-popular-programming-languages
-according-to-github-2018-10/

2 https://www.zdnet.com/article/programming-languages-python-developers-now-outnumber-j
ava-ones/, http://infomory.com/numbers/number-of-java-developers/

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Andreas Stadelmeier, Martin Plümicke, and Peter Thiemann;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 28; pp. 28:1–28:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.stadelmeier@hb.dhbw-stuttgart.de
mailto:pl@dhbw.de
mailto:thiemann@informatik.uni-freiburg.de
https://orcid.org/0000-0002-9000-1239
https://doi.org/10.4230/LIPIcs.ECOOP.2022.28
https://arxiv.org/abs/2205.08768
https://github.com/JanUlrich/FeatherweightTypeInference
https://archive.softwareheritage.org/swh:1:dir:dbbfa3ad5db1b423c098c392af1d4b720db93e0e;origin=https://github.com/JanUlrich/FeatherweightTypeInference;visit=swh:1:snp:7eecf34305a50b48316f05af310fa6229d34aab5;anchor=swh:1:rev:fdf3c03eb86b47d0df0445f9e6c224442d449a10
https://doi.org/10.4230/DARTS.8.2.18
https://doi.org/10.4230/DARTS.8.2.18
https://www.businessinsider.de/international/the-10-most-popular-programming-languages-according-to-github-2018-10/
https://www.businessinsider.de/international/the-10-most-popular-programming-languages-according-to-github-2018-10/
https://www.zdnet.com/article/programming-languages-python-developers-now-outnumber-java-ones/
https://www.zdnet.com/article/programming-languages-python-developers-now-outnumber-java-ones/
http://infomory.com/numbers/number-of-java-developers/
https://doi.org/10.4230/DARTS.8.2.18
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Global Type Inference for Featherweight Generic Java

class Pair <X,Y> {
X fst;
Y snd;
Pair <X,Y >(X fst , Y snd) {

this .fst=fst;
this .snd=snd;

}
<Z> Pair <Z,Y> setfst (Z fst) {

return new Pair(fst , this .snd);
}
Pair <Y,X> swap () {

return new Pair(this .snd ,
this .fst);

}
}

(a) Featherweight Generic Java (FGJ).

class Pair <X,Y> {
X fst;
Y snd;
Pair(fst , snd) {

this .fst=fst;
this .snd=snd;

}
setfst (fst) {

return new Pair(fst , this .snd);
}
swap () {

return new Pair(this .snd ,
this .fst);

}
}

(b) FGJ with global type inference (FGJ-GT).

Figure 1 Example code.

Java is generally explicitly typed with some amendments introduced in recent versions.
That is, variables, fields, method parameters, and method returns must be adorned with
their type. Figure 1a contains a simple example with generics.

While the overhead of explicit types look reasonable in the example, realistic programs
often contain variable initializations like the following:3

HashMap <String , HashMap <String , Object >> outerMap =
new HashMap <String , HashMap <String , Object > >();

Java’s local variable type inference (since version 104) deals satisfactorily with examples
like the initialization of outerMap. In many initialization scenarios for local variables, Java
infers their type if it is obvious from the context. In the example, we can write

var outerMap = new HashMap <String , HashMap <String , Object > >();

because the constructor of the map spells out the type in full. More specifically, “obvious”
means that the right side of the initialization is

a constant of known type (e.g., a string),
a constructor call, or
a method call (the return type is known from the method signature).

The var declaration can also be used for an iteration variable where the type can be obtained
from the elements of the container or from the initializer. Alternatively, if the variable is used
as the method’s return value, its type can be obtained from the current method’s signature.

However, there are still many places where the programmer must provide types. In
particular, an explicit type must be given for

a field of a class,
a local variable without initializer or initialized to NULL,
a method parameter, or
a method return type.

3 Taken from https://stackoverflow.com/questions/4120216/map-of-maps-how-to-keep-the-inn
er-maps-as-maps/4120268.

4 https://openjdk.java.net/jeps/286

https://stackoverflow.com/questions/4120216/map-of-maps-how-to-keep-the-inner-maps-as-maps/4120268
https://stackoverflow.com/questions/4120216/map-of-maps-how-to-keep-the-inner-maps-as-maps/4120268
https://openjdk.java.net/jeps/286

A. Stadelmeier, M. Plümicke, and P. Thiemann 28:3

<T> boolean eqPair (Pair <T,T> p){
return p.fst.equals <T >(p.snd);

}

eqPair (p) {
return p.fst. equals (p.snd);

}

Figure 2 eqPair in FGJ-GT and FGJ.

In this paper, we study global type inference for Java. Our aim is to write code that
omits most type annotations, except for class headers and field types. Returning to the
Pair example, it is sufficient to write the code in Figure 1b and global type inference fills in
the rest so that the result is equivalent to Figure 1a. Our motivation to study global type
inference is threefold.

Programmers are relieved from writing down obvious types.
Programmers may write types that leak implementation details. The outerMap example
provides a good example of this problem. From a software engineering perspective, it
would be better to use a more general abstract type like

Map <String , Map <String , Object >> outerMap = ...

Global type inference finds most general types.
Programmers may write types that are more specific than necessary instead of using
generic types. Here, type inference helps programmers to find the most general type.
Suppose we wanted to add a static method eqPair for pairs of integers to the Pair class.

boolean eqPair (Pair <Integer ,Integer > p) {
return p.fst. equals (p.snd);

}

With global type inference it is sufficient to write the code on the right of Figure 2 and
obtain the FGJ code with the most general type on the left.

To make our investigation palatable, we focus on global type inference for Featherweight
Generic Java [11] (FGJ), a functional Java core language with full support for generics. Our
type inference algorithm applies to FGJ programs that specify the full class header and all
field types, but omit all method signatures. Given this input, our algorithm infers a set
of most general method signatures (parameter types and return types). Inferred types are
generic as much as possible and may contain recursive upper bounds.

The inferred signatures have the following round-trip property (relative completeness).
If we start with an FGJ program that does not make use of polymorphic recursion (see
Section 2.5), strip all types from method signatures, and run the algorithm on the resulting
stripped program, then at least one of the inferred typings is equivalent or more general than
the types in the original FGJ program.

Contributions
We specify syntax and type system of the language FGJ-GT, which drops all method type
annotations from FGJ and the typing of which rules out polymorphic recursion. This language
is amenable to polymorphic type inference and each FGJ-GT program can be completed to
an FGJ program (see Section 3).

We characterize uses of polymorphic recursion in FGJ and their impact on signatures of
generic methods (Section 3.4).

ECOOP 2022

28:4 Global Type Inference for Featherweight Generic Java

We define a constraint-based algorithm that performs global type inference for FGJ-GT.
This algorithm is sound and relatively complete for FGJ programs without polymorphic
recursion (Sections 4 and 5).

In Section 7 we show that global type inference is NP-completene.
Our algorithm improves on previous attempts at type inference for Java in the literature

as detailed in Section 8.
A prototype of global type inference is available as an evaluated artifact.
A full version of the paper with all proofs is available [28].

2 Motivation

This section presents a sequence of more and more challenging examples for global type
inference (GTI). To spice up our examples somewhat, we assume some predefined utility
classes with the following interfaces.

class Bool {
Bool not ();

}
class Int {

Int negate ();
Int add (Int that);
Int mult (Int that);

}
class Double {

Double negate ();
Double add (Double that);
Double mult (Double that);

}

We generally use upper case single-letter identifiers like X, Y, . . . for type variables. Given
a FGJ-GT class Cl0, we call any FGJ class Cli that can be transformed to Cl0 by erasing
type annotations a completion of Cl0.

2.1 Multiplication
Here is the FGJ-GT code for multiplying the components of a pair.5

class MultPair {
mult (p) { return p.fst.mult(p.snd); }

}

Assuming the parameter typing p : P, result type R, and that mult in the body refers to
Int.mult, we obtain the following constraints.

From p.fst: P ⋖ Pair⟨X, Y⟩ and p.fst : X.
From p.snd: P ⋖ Pair⟨Z, W⟩ and p.snd : W.
The two constraints on P imply that X .= Z and Y .= W.
From .mult (p.snd): X ⋖ Int, Y ⋖ Int, and Int ⋖ R.

The return type R only occurs positively in the constraints, so we can set R = Int. The
argument type P only occurs negatively in the constraints, so P = Pair⟨X, Y⟩. This reasoning
gives rise to the following completion.

5 We indicate FGJ-GT code fragments by using a gray background.

A. Stadelmeier, M. Plümicke, and P. Thiemann 28:5

class A1 {
m(x) { return x.add(x); }

}
class B1 extends A1 {

m(x) { return x; }
}

class A2 {
m(x) { return x; }

}
class B2 extends A2 {

m(x) { return x.add(x); }
}

Figure 3 Method overriding.

class MultPair {
<X extends Int , Y extends Int >
Int mult (Pair <X,Y> p) { return p.fst.mult(p.snd); }

}

We obtain a second completion if we assume that mult refers to Double.mult.

class MultPair {
<X extends Double , Y extends Double >
Double mult (Pair <X,Y> p) { return p.fst.mult(p.snd); }

}

Finally, the definition of mult might be recursive, which generates different constraints
for the method invocation of mult.

From .mult (p.snd): X ⋖ MultPair, Y ⋖ P, and R ⋖ R.
Transitivity of subtyping applied to Y⋖P and P⋖Pair⟨X, Y⟩ yields the constraint Y⋖Pair⟨X, Y⟩,
which triggers the occurs-check in unification and is hence rejected.

The two solutions can be combined to

class MultPair {
<X extends T1 , Y extends T2 >
T0 mult (Pair <X,Y> p) { return p.fst.mult(p.snd); }

}

where (T0, T1, T2) ∈ {(Int, Int, Int), (Double, Double, Double)}.

2.2 Inheritance

Let’s start with the artificial example in the left listing of Figure 3 and ignore the Double
class. Type inference proceeds according to the inheritance hierarchy starting from the
superclasses. In class A1, the inferred method type is Int A1.m (Int). Class B1 is a subclass
of A1 which must override m as there is no overloading in FGJ. However, the inferred method
type is <T> T B1.m(T), which is not a correct method override for A1.m(). Hence, GTI
must instantiate the method type in the subclass B1 to Int B1.m(Int).

Conversely, for the right listing of Figure 3, GTI infers the types <T> T A2.m (T) and
Int B2.m (Int). Again, these types do not give rise to a correct method override and GTI
is now forced to instantiate the type in the superclass to Int A2.m (Int).

In full Java, type inference would have to offer two alternative results: either two
different overloaded methods (one inherited and one local) in B1/B2 or impose the typing
Int B1.m(Int) or Int A2.m(Int) to enforce correct overriding.

ECOOP 2022

28:6 Global Type Inference for Featherweight Generic Java

class Function <S,T> {
T apply (S arg) { return this . apply (arg); }

}

Listing 1 Function class.

2.3 Inheritance and Generics
Suppose we are given a generic class for modeling functions in FGJ (Listing 1). This code

is constructed to serve as an “abstract” super class to derive more interesting subclasses. The
class Function<S,T> must be presented in this explicit way. Its type annotations cannot be
inferred by GTI because the use of the generic class parameters in the method type cannot
be inferred from the implementation.

If we applied GTI to the type-erased version of Listing 1, the apply method would be
considered a generic method:

apply (arg) { ... } –GTI–> <A,B> B apply (A arg) { ... }

The typing of apply in Listing 1 is an instance of this result, so that completeness of GTI is
preserved!

Now that we have the abstract class Function<S,T> at our disposal, let us apply GTI to
a class of boxed values with a map function:
class Box <S> {

S val;
map(f) {

return new Box <>(f. apply (this .val));
} }

GTI finds the following constraints
the return value must be of type Box<T>, for some type T,
T is a supertype of the type returned by f.apply,
apply is defined in class Function<S1,T1> with type T1 apply(S1 arg),
hence T1 <: T and S <: S1 (because this.val : S),

and resolves them to the desired outcome where T1=T and S=S1 using the methods of
Simonet [26].
class Box <S> {

S val;
<T> Box <T> map(Function <S,T> f) {

return new Box <T >(f.apply <S,T >(this .val));
} }

But what happens if we add subclasses of Function? For example:
class Not extends Function <Bool ,Bool > {

apply (b) { return b.not (); }
}
class Negate extends Function <Int ,Int > {

apply (x) { return x. negate (); }
}

If we rerun GTI with these classes, we now have additional possibilities to invoke the
apply method. With Not, we need to use the generic type of Function.apply(), but
instantiate it according to Function<Bool,Bool>. Thus, we obtain the constraints Bool ⋖
T and S ⋖ Bool for T = Bool and S = Bool, which are both satisfiable. With Negate we
run into the same situation with the constraints Int ⋖ Int and Int ⋖ Int.

A. Stadelmeier, M. Plümicke, and P. Thiemann 28:7

class List <A> {
List <A> add(A item) {...}
A get () { ... }

}

class Global {
m(a){

return a.add(this).get ();
} }

Figure 4 Example for multiple inferred types.

Here is another subclass of Function<S,T> that we want to consider.

class Identity <S> extends Function <S,S> {
S apply (S arg) { return arg; }

}

Here, we obtain the following type constraints
apply is defined in class Identity<S1> with type S1 apply (S1 arg),
hence S1 ⋖ T and S ⋖ S1.

Resolving the constraints yields S = T thus the typing

Box <S> map(Identity <S> f);

which is an instance of the previous typing.

2.4 Multiple typings
Global type inference processes classes in order of dependency. To see why, consider the

classes List<A> and Global in Figure 4. Class Global may depend on class List because
Global uses methods add and get and List defines methods with the same names. The
dependency is only approximate because, in general, there may be additional classes providing
methods add and get.

In the example, it is safe to assume that the types for the methods of class List are
already available, either because they are given (as in the code fragment) or because they
were inferred before considering class Global.

The method m in class Global first invokes add on a, so the type of a as well as the return
type of a.add(this) must be List<T>, for some T. As this has type Global, it must be
that Global is a subtype of T, which gives rise to the constraint Global ⋖ T. By the typing
of get() we find that the return type of method m is also T.

But now we are in a dilemma because FGJ only supports upper bounds for type variables,6
so that Global ⋖ T is not a valid constraint in FGJ. To stay compatible with this restriction,
global type inference expands the constraint by instantiating T with the (two) superclasses
fulfilling the constraint, Global and Object. They give rise to two incomparable types for m,
List<Global> -> Global and List<Object> -> Object. So there are two different FGJ
programs that are completions of the Global class.

GTI models these instances by inferring an intersection type List<Global> -> Global &
List<Object> -> Object for method m and the different FGJ-completions of class Global
are instances of the intersection type:7

6 Java has the same restriction. Lower bounds are only allowed for wildcards.
7 The cognoscenti will be reminded of overloading. As FGJ does not support overloading, we rely on

resolution by subsequent uses of the method. Moreover, this intersection type cannot be realized by
overloading in a Java source program because it is resolved according to the raw classes of the arguments,
in this case List. It can be realized in bytecode which supports overloading on the return type, too.

ECOOP 2022

28:8 Global Type Inference for Featherweight Generic Java

class UsePair {
<X,Y> Object prc(Pair <X,Y> p) {

return this .prc <Y,X>
(p.swap <X,Y >());

} }

class UsePair {
prc(p) {

return this .prc (p.swap ());

} }

Figure 5 Example for polymorphic recursion.

class Global {
Global m(List <Global > a) {

return a.add(this).get ();
}

class Global {
Object m(List <Object > a) {

return a.add(this).get ();
}

In this sense, the inferred intersection type represents a principal typing for the class.
Additional classes in the program may further restrict the number of viable types. Suppose
we define a class UseGlobal as follows:

class UseGlobal {
main () {

return new Global ().m((List <Object >) new List ());
} }

Due to the dependency on Global.m(), type inference considers this class after class Global.
As it uses m at type List<Object> -> Object, global type inference narrows the type of m
to just this alternative.

2.5 Polymorphic recursion

A program uses polymorphic recursion if there is a generic method that is invoked
recursively at a more specific type than its definition. As a toy example for polymorphic
recursion consider the FGJ class UsePair with a generic method prc that invokes itself
recursively on a swapped version of its argument pair (Figure 5, left). This method makes use
of polymorphic recursion because the type of the recursive call is different from the declared
type of the method. More precisely, the declared argument type is Pair<X,Y> whereas the
argument of the recursive call has type Pair<Y,X> – an instance of the declared type.

For this particular example, global type inference succeeds on the corresponding stripped
program shown in Figure 5, right, but it yields a more restrictive typing of <X> Object prc
(Pair<X,X> p) for the method. A minor variation of the FGJ program with a non-variable
instantiation makes type inference fail entirely:

class UsePair2 {
<X,Y> Object prc(Pair <X,Y> p) {

return this .prc <Y,Pair <X,Y>> (new Pair (p.snd , p));
}

}

Polymorphic recursion is known to make type inference intractable [9, 12] because it can
be reduced to an undecidable semi-unification problem [13]. However, type checking with
polymorphic recursion is tractable and routinely used in languages like Haskell and Java.

GTI does not infer method types with polymorphic recursion. Inference either fails or
returns a more restrictive type. Classes making use of polymorphic recursion need to supply
explicit typings for methods in question.

A. Stadelmeier, M. Plümicke, and P. Thiemann 28:9

T ::= X | N

N ::= C<T>

L ::= class C<X ◁ N> ◁ N {T f; K M}
K ::= C(f) {super(f); this.f = f; }
M ::= m(x) {return e; }
e ::= x | e.f | e.m(e) | new C(e) | (N) e

Figure 6 Syntax of FGJ-GT.

3 Featherweight Generic Java with Global Type Inference

This section defines the syntax and type system of a modified version of the language
Featherweight Generic Java (FGJ) [11], which we call FGJ-GT (with Global Type Inference).
The main omissions with respect to FGJ are method types specifications and polymorphic
recursion. We finish the section by formally connecting FGJ and FGJ-GT and by establishing
some properties about polymorphic recursion in FGJ.

3.1 Syntax

Figure 6 defines the syntax of FGJ-GT. Compared to FGJ, type annotations for method
parameters and method return types are omitted. Object creation via new as well as method
calls come do not require instantiation of their generic parameters. We keep the class
constraints X ◁ N as well as the types for fields T f as we consider them as part of the
specification of a class.

We make the following assumptions for the input program:
All types N and T are well formed according to the rules of FGJ, which carry over to
FGJ-GT (see Fig. 8).
The methods of a class call each other mutually recursively.
The classes in the input are topologically sorted so that later classes only call methods in
classes that come earlier in the sorting order.

Our requirements on the method calls do not impose serious restrictions as any class, say C,
can be transformed to meet them as follows. A preliminary dependency analysis determines
an approximate call graph. We cluster the methods of C according to the n strongly connected
components of the call graph. Then we split the class into a class hierarchy C1 ◁ . . . ◁ Cn such
that each class Ci contains exactly the methods of one strongly connected component and
assign a method cluster to Ci if all calls to methods of C now target methods assigned to Cj ,
for some j ≥ i. The class C1 replaces C everywhere in the program: in subtype bounds, in
new expressions, and in casts. More precisely, if C is defined by class C<X ◁ N> ◁ N . . ., then
the class headers for the Ci are defined as follows:

class Ci<X ◁ N> ◁ Ci+1<X> . . ., for 1 ≤ i < n and
class Cn<X ◁ N> ◁ N

It follows from this discussion that the resulting classes have to be processed backwards
starting with Cn, Cn−1, . . . , C1. Figure 7 showcases this process with a short example.

ECOOP 2022

28:10 Global Type Inference for Featherweight Generic Java

class C extends Object {
m1(a){

return a;
}
m2(b){

return this .id(a);
}

}

(a) The methods m1 and m2 can be separated.

class C1 extends C2 {
m2(b){

return this .id(a);
}

}
class C2 extends Object {

m1(a){
return a;

}
}

(b) After the transformation.

Figure 7 Example for splitting a class into its strongly connected components.

3.2 Typing
We start with some notation. An environment Γ is a finite mapping from variables to types,
written x : T; a type environment ∆ is a finite mapping from type variables to nonvariable
types, written X <: N, which takes each type variable to its bound. As in FGJ, we do not
impose an ordering on environment entries to enable F-bounded polymorphism.

There is a new method environment Π which maps pairs of a class header C<X> and a
method name m to a set of method types of the form <Y ◁ P>T → T. It supports the mtype
function that relates a nonvariable type N and a method name m to a method type.

The judgments for subtyping ∆ ⊢ S <: T and well-formedness of types ∆ ⊢ T ok (Figure 8)
stay the same as in FGJ.

The overall approach to typing changes with respect to FGJ. In FGJ, classes can be
checked in any order as the method typings of all other classes are available in the syntax.
FGJ-GT processes classes in order such that early classes do not invoke methods in late
classes.

The new program typing rule (GT-PROGRAM) for the judgment ⊢ L : Π reflects this
approach. It starts with an empty method environment and applies class typing to each
class in the sequence provided. Each processed class adds its method typings to the method
environment which is threaded through to constitute the program type as the final method
environment Π.

Expression typing Π; ∆; Γ ⊢ e : T changes subtly (see Figure 9). As FGJ-GT omits some
type annotations, we are forced to adapt some of FGJ’s typing rules. The new rules infer
omitted types and disable polymorphic recursion.

The new method environment Π is only used in the revised rule for method invocation
(GT-INVK), where it is passed as an additional parameter to mtype. The revised definition
of mtype (Figure 10) locates the class that contains the method definition by traversing
the subtype hierarchy and looks up the method type in environment Π, which contains
the method types that were already inferred. Our definition of mtype does not support
overloading as Π relate at most one type to each method definition (cf. rule (GR-CLASS)).
The instantiation of the method’s type parameters is inferred in FGJ-GT.

The rule (GT-NEW) changes to infer the instantiation of the class’s type parameters:
the rule simply assumes a suitable instantiation by some U.

Finally, (GT-CAST) replaces the three rules (GT-UCAST’), (GT-DCAST’), and (GT-
SCAST’) of FGJ. This is a slight simplification with respect to FGJ. While the three original
rules cover disjoint use cases (upcast, downcast, and stupid cast that is sure to fail) of the
cast operation, they are not exhaustive! The rule (GT-DCAST’) only admits downcasts that

A. Stadelmeier, M. Plümicke, and P. Thiemann 28:11

Subtyping:

∆ ⊢ T <: T (S-REFL)

∆ ⊢ S <: T ∆ ⊢ T <: U
∆ ⊢ S <: U (S-TRANS)

∆ ⊢ X <: ∆(X) (S-VAR)

class C<X ◁ N> ◁ N{. . .}
∆ ⊢ C<T> <: [T/X]N (S-CLASS)

Well-formed types:

∆ ⊢ Object ok (WF-OBJECT)

X ∈ dom(∆)
∆ ⊢ X ok (WF-VAR)

class C<X ◁ N> ◁ N{. . .}
∆ ⊢ T ok ∆ ⊢ T <: [T/X]N

∆ ⊢ C<T> ok
(WF-CLASS)

Figure 8 Well-formedness and subtyping.

work the same in a type-passing semantics as in a type erasure semantics. We elide this
distinction for simplicity, though it could be handled by introducing constraints analogous to
the dcast function from FGJ.

The typing rule for a method m, (GT-METHOD), changes significantly. By our assumption
on the order, in which classes are processed, the typing of m is already provided by the
method environment Π. The type environment ∆ is also provided as an input. Moreover,
to rule out polymorphic recursion, the assumptions about the local methods of class C are
monomorphic at this stage. The rule type checks the body for the inferred type of method m.

All this information is provided and generated by the rule for class typing, (GT-CLASS).
A class typing for C receives an incoming method type environment Π and generates an
extended one Π′′ which additionally contains the method types inferred for C.

In Π′, we generate some monomorphic types for all methods of class C. We use these
types to check the methods. Afterwards, we return generalized versions of these same types
in Π′′. All method types use the same generic type variables Y with the same constraints P.
It is safe to make this assumption in the absence of polymorphic recursion as we will show in
Proposition 5.

3.3 Soundness of Typing
We show that every typing derived by the FGJ-GT rules gives rise to a completion, that is,
a well-typed FGJ program with the same structure.

▶ Definition 1 (Erasure). Let e′, M′, K′, L′ be expression, method definition, constructor
definition, class definition for FGJ. Define erasure functions |e′|, |M′|, |K′|, |L′| that map to
the corresponding syntactic categories of FGJ-GT as shown in Figure 11.

▶ Definition 2 (Completion). An FGJ expression e′ is a completion of a FGJ-GT expression
e if e = |e′|. Completions for method definitions, constructor definitions, and class definitions
are defined analogously.

ECOOP 2022

28:12 Global Type Inference for Featherweight Generic Java

Expression typing:
Π; ∆; Γ ⊢ x : Γ(x) (GT-VAR)

Π; ∆; Γ ⊢ e0 : T0 fields(bound∆(T0)) = T f
Π; ∆; Γ ⊢ e0.fi : Ti

(GT-FIELD)

Π; ∆; Γ ⊢ e0 : T0 mtype(m, bound∆(T0), Π) = <Y ◁ P>U → U
∆ ⊢ V ok ∆ ⊢ V <: [V/Y]P Π; ∆; Γ ⊢ e : S ∆ ⊢ S <: [V/Y]U

Π; ∆; Γ ⊢ e0.m(e) : [V/Y]U (GT-INVK)

∆ ⊢ N ok N = C<U> fields(N) = T f Π; ∆; Γ ⊢ e : S ∆ ⊢ S <: T
Π; ∆; Γ ⊢ new C(e) : N (GT-NEW)

Π; ∆; Γ ⊢ e0 : T0
Π; ∆; Γ ⊢ (N)e0 : N (GT-CAST)

Method typing:

∀T, T : <>T → T ∈ Π(C<X ◁ N>.m) ∆ ⊢ S <: T
Π; ∆; x : T, this : C<X> ⊢ e0 : S
override(m, N, <Y ◁ P>T → T, Π)

Π, ∆ ⊢ m(x){return e0; } OK in C<X ◁ N> ◁ N with <Y ◁ P>
(GT-METHOD)

Class typing:

Π′ = Π ∪ {C<X ◁ N>.m 7→ <>Tm → Tm | m ∈ M}
Π′′ = Π ∪ {C<X ◁ N>.m 7→ <Y ◁ P>Tm → Tm | m ∈ M}

∆ = X <: N, Y <: P ∆ ⊢ P ok ∀m : ∆ ⊢ Tm, Tm ok
X <: N ⊢ N, N, T ok fields(N) = U g

Π′, ∆ ⊢ M OK IN C<X ◁ N> ◁ N with <Y ◁ P>
K = C(U g, T f){super(g); this.f = f; }
Π ⊢ class C<X ◁ N> ◁ N {T f; K M} OK : Π′′ (GT-CLASS)

Program typing:

∅ ⊢ L1 : Π1 Π1 ⊢ L2 : Π2 . . . Πn−1 ⊢ Ln : Πn

⊢ L : Πn
(GT-PROGRAM)

Figure 9 Typing rules.

A. Stadelmeier, M. Plümicke, and P. Thiemann 28:13

Field lookup:

fields(Object) = • (F-OBJECT)

class C<X ◁ N> ◁ N {S f; K M} fields([T/X]N) = U g
fields(C<T>) = U g, [T/X]S f

(F-CLASS)

Method type lookup:

class C<X ◁ N> ◁ N {C f; K M} m ∈ M
<Y ◁ P>U → U ∈ Π(C<X ◁ N>.m)

mtype(m, C<T>, Π) = [T/X]<Y ◁ P>U → U
(MT-CLASS)

class C<X ◁ N> ◁ N {C f; K M} m /∈ M
mtype(m, C<T>, Π) = mtype(m, [T/X]N, Π) (MT-SUPER)

Valid method overriding:

mtype(m, N, Π) = <Z ◁ Q>U → U implies P, T = [Y/Z](Q, U) and Y <: P ⊢ T0 <: [Y/Z]U0

override(m, N, <Y ◁ P>T → T0, Π)

Figure 10 Auxiliary functions.

|x| = x

|e.f| = |e|.f
|e<T>.m(e)| = |e|.m(|e|)

|new C<T>(e)| = new C(|e|)
|(N) e| = (N) |e|

|<X ◁ N> T m(T x) {return e; }| = m(x) {return |e|; }
|C(U g, T f) {super(g); this.f = f; }| = C(g, f) {super(g); this.f = f; }

|class C<X ◁ N> ◁ N {T f; K M}| = class C<X ◁ N> ◁ N {T f; |K| |M|}

Figure 11 Erasure functions.

ECOOP 2022

28:14 Global Type Inference for Featherweight Generic Java

▶ Theorem 3. Suppose that ⊢ L : Π such that |Π(C<X ◁ N>.m)| = 1, for all C.m defined in L.
Then there is a completion L′ of L such that L′ OK is derivable in FGJ.

Proof. The proof is by induction on the length of L.
Consider the class typing Π ⊢ class C<X ◁ N> ◁ N {T f; K M} OK : Π′′ for an element of L.
We assume that all classes before L are completed according to the incoming Π: If

Π(D<X ◁ N>.n) = <Y ◁ P>T → T, then <Y ◁ P> T n(T x) . . . is in the completion of D.
Clearly, we can construct a completion for the class, if we can do so for each method. So

we have to construct M′ such that M′ OK IN C<X ◁ N>.
Inversion of (GT-CLASS) yields

Π′ = Π ∪ {C<X ◁ N>.m 7→ <>Tm → Tm | m ∈ M} (1)
Π′′ = Π ∪ {C<X ◁ N>.m 7→ <Y ◁ P>Tm → Tm | m ∈ M} (2)
Π′, ∆ ⊢ M OK IN C<X ◁ N> ◁ N with <Y ◁ P> (3)
∆ = X <: N, Y <: P (4)

Given some M = m(x){return e0; } ∈ M, we show that

<Y ◁ P> Tm m(Tm x){return e′
0; } OK IN C<X ◁ N> (5)

is derivable for such completion e′
0 of e0.

By inversion of (3) for M, we obtain

override(m, N, <Y ◁ P>Tm → Tm, Π) (6)
Π; ∆; x : Tm, this : C<X> ⊢ e0 : S (7)
∆ ⊢ S <: Tm (8)

As ∆ in (4) is defined as in (GT-METHOD’), the well-formedness judgments are all given,
the subtyping judgment (8) is given as well as the override (7), the rule (GT-METHOD’)
applies if we can establish

∆; x : Tm, this : C<X> ⊢ e′
0 : S (9)

for a completion of e0.
To see that, we need to consider the rules (GT-NEW), (GT-CAST), and (GT-INVK). The

(GT-NEW) rule poses the existence of some U such that N = C<U> for checking e = new C(e) : N.
In the completion, we define e′ = new N(e′) : N to apply rule (GT-NEW’) to the completions
of the arguments.

The rule (GT-CAST) splits into three rules (GT-UCAST’), (GT-DCAST’), and (GT-
SCAST’). These rules are disjoint, so that at most one of them applies to each occurrence of
a cast. Here we assume a more liberal version of (GT-DCAST’) that admits downcasts that
are not stable under type erasure semantics.

For the rule (GT-INVK), we first consider calls to methods not defined in the current
class. By our assumption on previously checked classes D and their methods n, mtype(n, D, Π)
= {mtype′(n, D′)} where the right side lookup happens in the completion following the
definitions for FGJ (i.e., D′ is the completion for D). The (GT-INVK) rule poses the existence
of some V that satisfies the same conditions as in (GT-INVK’). Hence, we define the completion
of e0.n(e) : [V/Y]U as e′

0.n<V>(e′) : [V/Y]U.

A. Stadelmeier, M. Plümicke, and P. Thiemann 28:15

Next we consider calls to methods n defined in the current class, say, C. For those
methods, mtype(n, C, Π) = <>U → U, a non-generic type. By the definition of Π′′, we know
that the type of this method will be published in the completion as <Y ◁ P>U → U. Hence,
mtype′(n, C′) = <Y ◁ P>U → U. As methods in C are mutually recursive, the rule must pose
that V = Y (cf. Proposition 5). This setting fulfills all assumptions:

∆ ⊢ Y ok (10)
∆ ⊢ Y <: [Y/Y]P (11)

We set the completion of e0.n(e) : [Y/Y]U to e′
0.n<Y>(e′) : [Y/Y]U, which is derivable in FGJ.

The remaining expression typing rules are shared between FGJ and FGJ-GT, so they do
not affect completions. ◀

3.4 Polymorphic Recursion, Formally
Consider an FGJ class C with n mutually recursive methods mi : ∀Xi.Ai → Ai, for 1 ≤ i ≤ n.
Define the instantiation multigraph IG(C) as a directed multigraph with vertices {1, . . . , n}.
Edges between i and j in this graph are labeled with a substitution from Xj to types in mi,
which may contain type variables from Xi. In particular, if mi invokes mj where the generic
type variables in the type of mj are instantiated with substitution U/Xj (see rule GT-INVK),

then i
U/Xj−→ j is an edge of IG(C).

Define the closure of the instantiation multigraph IG∗(C) as the multigraph obtained
from IG(C) by applying the following rule, which composes the instantiating substitutions,
exhaustively:

i
U/Xj−→ j ∧ j

V/Xk−→ k ⇒ i
[U/Xj]V/Xk−→ k (12)

▶ Definition 4. Method mi is involved in polymorphic recursion if there is an edge

i
W/Xi−→ i ∈ IG∗(C) such that W ̸= Xi (13)

For the toy example in Figure 5, we obtain the multigraph IG∗(UsePair) which indicates
that prc is involved in polymorphic recursion:

IG(UsePair) IG∗(UsePair)
prc

Y,X/X,Y−→ prc prc
Y,X/X,Y−→ prc prc

X,Y/X,Y−→ prc

The call to swap does not appear in the graph because swap is defined in a different class.
For UsePair2, we obtain a multigraph IG∗(UsePair2) with infinitely many edges which

is also clear indication for polymorphic recursion:

IG(UsePair2) IG∗(UsePair2)
prc

Y,Pair<X,Y>/XY−→ prc prc
Y,Pair<X,Y>/XY−→ prc

prc
Pair<X,Y>,Pair<Y,Pair<X,Y>>/XY−→ prc

. . .

Clearly, IG(C) is finite and can be constructed effectively by collecting the instantiating
substitutions from all method call sites. Repeated application of the propagation rule (12)
either results in saturation where no edge of the resulting multigraph satisfies (13) or it
detects an instantiating edge as in condition (13).

The following condition is necessary for the absence of polymorphic recursion.

ECOOP 2022

28:16 Global Type Inference for Featherweight Generic Java

▶ Proposition 5. Suppose an FGJ class C has n methods, which are mutually recursive. If C
does not exhibit polymorphic recursion, then

all methods quantify over the same number of generic variables;
if a method has generic variables X, then each call to a method of C instantiates with a
permutation of the X;
IG∗(C) is finite.

Proof. Suppose for a contradiction that there are two distinct methods mi and mj with
generic variables Xi and Xj , respectively, where |Xi| < |Xj |. By mutual recursion, mi invokes
mj directly or indirectly and vice versa. Hence, IG∗(C) contains edges from i to j and back:

i
U/Xj−→ j j

V/Xi−→ i

As IG∗(C) is closed under composition, it must also contain the edge

j
[V/Xi]U/Xj−→ j.

By assumption C does not use polymorphic recursion, so it must be that [V/Xi]U/Xj = Xj/Xj .
To fulfill this condition, all components of U must be variables ∈ Xi. As |Xi| < |Xj | = |U|,
there must be some variable X ∈ Xi that occurs more than once in U, say, at positions j1
and j2. But that means the variables at positions j1 and j2 in Xj are mapped to the same
component of V. This is a contradiction because this substitution cannot be the identity
substitution Xj/Xj .

Hence, all methods have the same number of generic variables and all instantiations must
use variables.

Suppose now that there is a direct call from mi to mj where the instantiation U/Xj is not
a permutation. Hence, there is a variable that appears more than once in U, which leads to a
contradiction using similar reasoning as before.

Hence, all instantiations must be permutations over a finite set of variables, so that
IG∗(C) is finite. ◀

Moreover, if a class has only mutually recursive methods without polymorphic recursion,
we can assume that each method uses the same generic variables, say X, and each instantiation
for class-internal method calls is the identity X/X.

Using the same generic variables is achieved by α conversion. By Proposition 5, we already
know that each instantiation is a permutation. Each self-recursive call must use an identity
instantiation already, otherwise it would constitute an instance of polymorphic recursion.
Suppose that method m calls method n instantiated with a non-identity permutation, say
π so that parameter Xi of n gets instantiated with Xπ(i) of m. In this case, we reorder
the generic parameters of n according to the inverse permutation π−1 and propagate this
permutation to all call sites of n. For the call in m, we obtain the identity permutation
π · π−1, for self-recursive calls inside n, the instantiation remains the identity (for the same
reason), for a call site in another method which instantiates n with permutation σ, we change
that permutation to σ · π−1, which is again a permutation. This way, we can eliminate all
non-identity instantiations from calls inside m.

We move our attention to n. Each self-recursive call and each call to m uses the identity
instantiation, the latter by construction. So we only need to consider calls to n′ /∈ {n, m}
with an instantiation which is not the identity permutation. We can also assume that n′ is
not called from m: otherwise, n’ would have the generic variables in the same order as m and
hence as n. But that means we can fix all calls to n′ by applying the inverse permutations as
for n without disturbing the already established identity instantiations.

A. Stadelmeier, M. Plümicke, and P. Thiemann 28:17

class C1 extends Object {
m1 (){ return new C2 ().m2 (); }

}
class C2 extends Object {

m2 (){ return new C1 ().m1 (); }
}

Figure 12 Invalid FGJ-GT program.

class D1 extends Object {
m(){ return ...; }

}
class D2 extends Object {

m1(x){ return new D2 ().m2 (); }
m2(){ return new D2 ().m1(

new D1 ().m()); }
}

Figure 13 Valid FGJ-GT program.

Each such step eliminates all non-identity instantiations for at least one method without
disturbing previous identity instantiations. Hence, the procedure terminates after finitely
many steps with a class with all instantiations being identity permutations.

4 Type inference algorithm

This section presents our type inference algorithm. The algorithm is given method assump-
tions Π and applied to a single class L at a time:

FJTypeInference(Π, class C<X ◁ N> ◁ N {. . .}) =
let (λ, C) = FJType(Π, class C<X ◁ N> ◁ N {. . .}) // constraint generation
(σ, Y ◁ P) = Unify(C, X <: N) // constraint solving

in Π ∪ {(C<X ◁ N>.m : <Y ◁ P> σ(a) → σ(a)) | (C<X ◁ N>.m : a → a) ∈ λ}

The overall algorithm is nondeterministic. The function Unify may return finitely many
times as there may be multiple solutions for a constraint set. A local solution for class C
may not be compatible with the constraints generated for a subsequent class. In this case,
we have to backtrack to C and proceed to the next local solution; if thats fail we have to
backtrack further to an earlier class.

4.1 Type inference for a program

Type inference processes a program one class at a time. To do so, it must be possible to
order the classes such that early classes never call methods in later classes. As an example,
Figure 12 shows a program that is acceptable in FGJ, but rejected by FGJ-GT because the
methods m1 and m2 are mutually recursive across class boundaries. There is no order in
which classes C1 and C2 can be processed.

Figure 13 contains a program acceptable to both FGJ-GT and FGJ because the mutual
recursion of methods m1 and m2 is taking place inside class D2. As D2 invokes method m of
D1, type inference must process D1 before D2, which corresponds to the constraints imposed
by the typing of FGJ-GT in Section 3.2.

We obtain a viable order for processing the class declarations by computing an approximate
call graph based solely on method names. That is, if method m is used in C3 and defined
both in C1 and C2, then C1 and C2 must both be processed before C3. In such a case, the use
of m might be ambiguous so that type inference for class C3 proposes more than one solution.
Global type inference attempts to extend each partial solution to a solution for the whole
program and backtracks if that fails.

ECOOP 2022

28:18 Global Type Inference for Featherweight Generic Java

T , U ::= a | X | N type variable, bounded type parameter, or type
N ::= C<T> class type (with type variables)
sc ::= T ⋖ U | T .= U simple constraint: subtype or equality
oc ::= {{sc1}, . . . , {scn}} or-constraint
c ::= sc | oc constraint

C ::= {c} constraint set
λ ::= C<X ◁ N>.m : <Y ◁ P> T → T method type assumption
η ::= x : T parameter assumption
Π ::= Π ∪ λ method type environment
Θ ::= (Π; η)

Figure 14 Syntax of constraints and type assumptions.

FJType(Π, class C<X ◁ N> extends N{T f; K M}) =
let am be fresh type variables for each m ∈ M

λo = {C<X ◁ N>.m : <Y ◁ P> T → am | m ∈ M, mtype(m, N, Π) = <Y ◁ P>T → T}
Co = {am ⋖ T | m ∈ M, mtype(m, N, Π) = <Y ◁ P>T → T}
λ

′ = {(C<X ◁ N>.m : a → am) | m ∈ M, mtype(m, N, Π) not defined, a fresh}
Cm = {{am ⋖ Object, a ⋖ Object} | (C<X ◁ N>.m : a → am) ∈ λ

′}
Π = Π ∪ λ

′ ∪ λo

in (Π, Co ∪ Cm ∪
⋃

m∈M TYPEMethod(Π, C<X>, m))

Figure 15 Constraint generation for classes.

4.2 Constraint generation

Figure 14 defines the syntax of constraints. We extend types with type variables ranged
over by a. A constraint is either a simple constraint sc or an or-constraint oc, which is a set
of sets of simple constraints. An or-constraint represents different alternatives, similar to
an intersection type, and cannot be nested. The output of constraint generation is a set of
constraints C, which can hold simple constraints as well as or-constraints.

Figure 15 contains the algorithm FJType to generate constraints for classes. Its input
consists of the method type environment Π of the previously checked classes. It distinguishes
between overriding and non-overriding method definitions. The former are recognized by
successful lookup of their type using mtype. We set up the method type assumptions
accordingly and generate a constraint between the inferred return type am and the one of the
overridden method to allow for covariant overriding. Constraints for the latter methods are
generated with all fresh type variables for the argument and result types.

Constraint generation alternates with constraint solving: After generating constraints
with FJType, we solve them to obtain one or more candidate extensions for the method type
environment Π. Next, we pick a candidate and continue with the next class until all classes
are checked and we have an overall method type environment. Otherwise, we backtrack to
check the next candidate.

A. Stadelmeier, M. Plümicke, and P. Thiemann 28:19

TYPEMethod(Π, C<X>, m(x){return e; }) =
let <Y ◁ P> T → T = Π(C<X ◁ N>.m)

(R, C) = TYPEExpr(Π; {this : C<X>} ∪ {x : T}), e)
in C ∪ {R ⋖ T}

The TYPEMethod function for methods calls the TYPEExpr function with the return
expression. It adds the assumptions for this and for the method parameters to the global
assumptions before passing them to TYPEExpr.

In the following we define the TYPEExpr function for every possible expression:
TYPEExpr : Θ × Expression → T × C

TYPEExpr((Π; η), x) = (η(x), ∅)

When we encounter a field e.f, we consider all classes C that define field f and impose an
or-constraint that covers all alternatives: the type R of the expression e must be a subtype
of a generic instance of C and the return type must be the corresponding field type.

TYPEExpr((Π; η), e.f) =
let (R, CR) = TYPEExpr((Π; η), e)

a fresh
c = oc{{R ⋖ C<a>, a .= [a/X]T, a ⋖ [a/X]N | a fresh}

| T f ∈ class C<X ◁ N>{T f; . . .}}
in (a, (CR ∪ {c}))

We treat method calls in a similar way. We impose an or-constraint that considers a generic
instance of a method type in a class providing that method (with the same number of
parameters). Each choice imposes a subtyping constraint on the receiver type R as well
as subtyping constraints on the argument types R. Moreover, we need to check that the
subtyping constraints of the method type are obeyed by instantiating them accordingly.

TYPEExpr((Π; η), e.m(e)) =
let (R, CR) = TYPEExpr((Π; η), e)

∀ei ∈ e : (Ri, Ci) = TYPEExpr((Π; η), ei)
a fresh
c = oc{{ R ⋖ C<a>, a .= [b/Y][a/X]T, R ⋖ [b/Y][a/X]T ,

b ⋖ [b/Y][a/X]P, a ⋖ [a/X]N | a, b fresh}
| (C<X ◁ N>.m : <Y ◁ P> T → T) ∈ Π}

in (a, (CR ∪
⋃

i Ci ∪ {c}))

The new-expression is comparatively simple. Starting from a generic instance of the class
type, we calculate the types T of the fields, impose subtyping constraints on the constructor
argument R, and check the subtyping constraints of the class.

TYPEExpr((Π; η), new C(e)) =
let ∀ei ∈ e : (Ri, Ci) = TYPEExpr((Π; η), ei)

a fresh
fields(C<a>) = T f
C = {R ⋖ T} ∪ {a ⋖ [a/X]N} where class C<X ◁ N>{. . .}

in (C<a>, C ∪
⋃

i Ci)

ECOOP 2022

28:20 Global Type Inference for Featherweight Generic Java

For cast expressions, we ignore the return type and pass on the constraints for the
subexpression. We return the target type of the cast.

TYPEExpr((Π; η), (N)e) =
let (R, C) = TYPEExpr((Π; η), e)
in (N, C)

▶ Example 6. To illustrate the constraint generation step we will apply it to the program
depicted in figure 1b. First the FJType function assigns the fresh type variable f to the
parameter fst. Afterwards the TYPEExpr function is called on the return expression of
the setfst method. The local variable fst does not emit any constraints. For the this.snd
part of the expression the TYPEExpr function returns an or-constraint:

c1 = TYPEExpr((Π; η), this.snd)
= (b, oc({(Pair<X, Y> ⋖ Pair<w, y>), (b .= y), (w ⋖ Object), (y ⋖ Object)}))

This constraint is merged with the constraints generated by the new Pair constructor call:

TYPEExpr((Π; η), new Pair(fst, this.snd))
= (Pair<d, e>, {(f ⋖ d), (b ⋖ e), (d ⋖ Object), (e ⋖ Object)} ∪ c1)

5 Constraint Solving

This section describes the Unify algorithm which is used to find solutions for the constraints
generated by FJType.

It first attempts to transform a constraint set into solved form and reads off a solution in
the form of a substitution.

▶ Definition 7 (Solved form). A set C of constraints is in solved form if it only contains
constraints of the following form:
1. a ⋖ b
2. a .= b,
3. a ⋖ C<T>,
4. a .= C<T>, with a /∈ T .
In case 3 and 4 the type variable a does not appear on the left of another constraint of the
form 3 or 4.

For brevity, we write a0 ⋖∗ an for a non-empty chain of subtyping constraints between
type variables a0 ⋖ a1, a1 ⋖ a2, . . . , an−1 ⋖ an where n > 0.

5.1 Algorithm Unify(C, ∆)
The input of the algorithm is a set of constraints C and a type environment ∆. The type
environment binds the generic type variables X to their upper bounds. It is used in invocations
of the subtyping judgment.

The treatment of the generic class variables X◁N deserves some explanation. The algorithm
must not substitute for these variables. Instead it treats them like parameterless abstract
classes Xi<> which are subtypes of their respective Ni (where the variable name Xi is now
treated like a class name). Example 8 illustrates this approach.

The first step of the algorithm eliminates or-constraints from constraint set C. To do
so, we consider all combinations of selecting simple constraints from or-constraints in C.
In general, we have that C = {sc, oc1, . . . , ocn} and we execute the remaining steps for all
C ′ = {sc} ∪ {sc1} ∪ · · · ∪ {scn} where sci ∈ oci.

A. Stadelmeier, M. Plümicke, and P. Thiemann 28:21

Step 1. We apply the rules in Figures 16 and 17 exhaustively to C ′.
Step 2. At this point, all constraints sc ∈ C ′ are either in solved form or one of the

following cases applies:
1. {C<T> ⋖ D<U>} ⊆ C ′ where ∀X, N : ∆ ̸⊢ C<X> <: D<N> (roughly, C cannot be a subtype of

D) – in this case C ′ has no solution;
2. {a ⋖ C<T>, a ⋖ D<V >} ⊆ C ′ where ∀X, N : ∆ ̸⊢ C<X> <: D<N> and ∀X, N : ∆ ̸⊢ D<X> <: C<N>

(roughly, C and D are not subtype-related) – in this case C ′ has no solution; or
3. {C<T> ⋖ b} ⊆ C ′.
The last case is a lower bound constraint which is embraced by Scala, but which is not legal
in FGJ (nor in Java). As we insist on inferring a type, we have to find a concrete instance
for C<T>. To do so, we generate an or-constraint from each lower bound constraint and
its corresponding upper bound constraint (using upper bound Object if no such constraint
exists) as follows:

expandLB(C<T> ⋖ b, b ⋖ D<U>) = {{b .= [T/X]N} | ∆ ⊢ C<X> <: N, ∆ ⊢ N <: D<P>}
where P is determined by ∆ ⊢ C<X> <: D<P> and [T/X]P = U

This constraint replaces the lower and upper bound constraint from which it was generated.
A lower bound may also be implied by a constraint set with constraints of the form Cab =

a⋖C<T>, a⋖∗b. In this case C<T> must either be a upper or lower bound for b. We implement
it by expandLB, which adds a lower bound constraint for b and also adding a upper bound to
b. While Cab remains in the constraint set: expandLB(C<T> ⋖ b, b ⋖ D<U>) ∪ {b ⋖ C<T>}

Now we are in a similar situation as before. Our current constraint set C ′ is a mix of
simple constraints and or-constraints and, again, we consider all (simple) constraint sets C ′′

that arise as combinations of selecting simple constraints from C ′.
Step 3. We apply the rule (subst) exhaustively to C ′′:

(subst) C ∪ {a .= T}
[T/a]C ∪ {a .= T} a occurs in C but not in T

We fail if we find any a .= T such that a occurs in T .
Step 4. If C ′′ has changed from applying (subst), we continue with C ′′ from step 1.
Step 5. Otherwise, C ′′ is in solved form and it remains to eliminate subtyping constraints

between variables by exhaustive application of rule (sub-elim) and (erase) (see Figure 17).
Applying this rule does not affect the solve form property.

(sub-elim) C ∪ {a ⋖ b}
[a/b]C ∪ {b .= a}

Step 6. We finish by generating a solving substitution from the remaining .=-constraints and
generic variable declarations from the remaining ⋖-constraints. Let C ′′ = C .= ∪ C⋖ such that
C .= contains only .=-constraints and C⋖ contains only ⋖-constraints. Now C⋖ = {a⋖N} and
choose some fresh generic variables Y of the same length as a. We can read off the substitution
σ from C .= where we need to substitute the generic variables for the type variables. We
obtain the generic variable declarations directly from C⋖ using the same generic variable
substitution. We need not apply σ here because we applied (subst) exhaustively in Step 3.

σ = {b 7→ [Y/a]T | (b .= T) ∈ C .=} ∪ {a 7→ Y} ∪ {b 7→ X | (b ⋖ X) ∈ C⋖},

γ = {Y ◁ [Y/a]N | (a ⋖ N) ∈ C⋖}

We return the pair (σ, γ).

ECOOP 2022

28:22 Global Type Inference for Featherweight Generic Java

(match) C ∪ {a ⋖ C<T>, a ⋖ D<V >}
C ∪ {a ⋖ C<T>, C<T> ⋖ D<V >}

∆ ⊢ C<X> <: D<N>

(adopt) C ∪ {a ⋖ C<T>, b ⋖∗ a, b ⋖ D<U>}
C ∪ {a ⋖ C<T>, b ⋖∗ a, b ⋖ D<U>, b ⋖ C<T>}

(adapt) C ∪ {C<T> ⋖ D<U>}
C ∪ {D<[T/X]N>

.= D<U>}
∆ ⊢ C<X> <: D<N>

(reduce) C ∪ {D<T>
.= D<U>}

C ∪ {T .= U}

(equals) C ∪ {a1 ⋖ a2, a2 ⋖ a3, . . . , an ⋖ a1}
C ∪ {a1

.= a2, a2
.= a3, . . .} n > 0

Figure 16 Reduce and adapt rules.

(erase) C ∪ {a .= a}
C

(swap) C ∪ {N .= a}
C ∪ {a .= N}

Figure 17 Erase and swap rules.

▶ Example 8. To illustrate our treatment of generic variables, we consider a typical case
involving the (adapt) rule from Figure 16.

Consider C = {X ⋖ D<U>} and let X<: C<T> ∈ ∆ be the bound for X.
The side condition of the rule (adapt) asks for some N such that ∆ ⊢ X<: D<N>, i.e., “is

there a way that X can be a subtype of D?”
By inversion of subtyping and transitivity, this judgment holds if ∆ ⊢ C<T><: D<N> holds.
Hence, applying (adapt) to C yields {D<N> .= D<U>}. The substitution in the rule is

empty because X is considered a parameterless type.
The remaining rules work similarly. In particular, different variables X ̸= Y give rise to

different (abstract) classes. For example, the (reduce) rule removes the constraint X .= X,
but it does not apply to X .= Y. Rather, an equation like this renders the constraint set
unsolvable.

▶ Example 9. To see that the algorithm is able to infer bounded generic types, we consider the
example from the introduction (Figure 1a). The setfst method obtains a new generic type
variable Z. We clarify this via a counterexample. Let’s assume in the example in Figure 1b
that there is an additional method call setfst(new Integer()) inside the class Pair. This
call would cause the method setfst to obtain type Pair<Integer, Y> setfst(Integer
fst), which corresponds to the typing rules (c.f. GT-CLASS in Figure 9): Inside the same
class methods cannot be used in a polymorphic way. We have to make this restriction to
avoid polymorphic recursion.

A. Stadelmeier, M. Plümicke, and P. Thiemann 28:23

6 Properties of Unify

▶ Theorem 10 (Soundness). If Unify(C, ∆) = (σ, Y ◁ P), then σ is unifier of (C, ∆ ∪ {Y <:
P}).

▶ Theorem 11 (Completeness). Unify(C, ∆) calculates the set of general unifiers for (C, ∆).

A set of general unifiers can provide any unifier as a substitution instance of one of its
members.

▶ Definition 12 (Set of general unifiers). Let C be a set of constraints and ∆ a type
environment.

A set of unifiers M for (C, ∆) is called set of general unifiers if for any unifier ω for
(C, ∆) there is some unifier σ ∈ M and a substitution λ such that ω = λ ◦ σ.

7 Soundness, completeness and complexity of type inference

After showing that type unification is sound and complete, we can now show that type
inference FJTypeInference also is sound and complete.

▶ Theorem 13 (Soundness). For all Π, L, Π′, FJTypeInference(Π, L) = Π′ implies Π ⊢ L : Π′.

▶ Theorem 14 (Completeness). For all Π, L, Π′, Π ⊢ L : Π′ implies there is a Π′′ with
FJTypeInference(Π, L) = Π′′, Π ⊢ L : Π′′, and the types of Π′ are instances of Π′′.

▶ Theorem 15 (NP-Hardness). The type inference algorithm for typeless Featherweight Java
is NP-hard.

▶ Theorem 16 (NP-Completeness). The type inference algorithm for typeless Featherweight
Java is NP-Complete.

8 Related Work

8.1 Formal models for Java

There is a range of formal models for Java. Flatt et al [7] define an elaborate model with
interfaces and classes and prove a type soundness result. They do not address generics.
Igarashi et al [11] define Featherweight Java and its generic sibling, Featherweight Generic
Java. Their language is a functional calculus reduced to the bare essentials, they develop
the full metatheory, they support generics, and study the type erasing transformation used
by the Java compiler. MJ [4] is a core calculus that embraces imperative programming as
it is targeted towards reasoning about effects. It does not consider generics. Welterweight
Java [17] and OOlong [5] are different sketches for a core language that includes concurrency,
which none of the other core languages considers.

We chose to base our development on FGJ because it embraces a relevant subset of
Java without including too much complexity (e.g., no imperative features, no interfaces, no
concurrency). It seems that results for FGJ are easily scalable to full Java. We leave the
addition of these feature to future work, as we see our results on FGJ as a first step towards
a formalized basis for global type inference for Java.

ECOOP 2022

28:24 Global Type Inference for Featherweight Generic Java

8.2 Type inference
Some object-oriented languages like Scala, C#, and Java perform local type inference [16,18].
Local type inference means that missing type annotations are recovered using only information
from adjacent nodes in the syntax tree without long distance constraints. For instance, the
type of a variable initialized with a non-functional expression or the return type of a method
can be inferred. However, method argument types, in particular for recursive methods,
cannot be inferred by local type inference.

Milner’s algorithm W [15] is the gold standard for global type inference for languages
with parametric polymorphism, which is used by ML-style languages. The fundamental idea
of the algorithm is to enforce type equality by many-sorted type unification [14,25]. This
approach is effective and results in so-called principal types because many-sorted unification
is unitary, which means that there is at most one most general result.

Plümicke [20] presents a first attempt to adopt Milner’s approach to Java. However, the
presence of subtyping means that type unification is no longer unitary, but still finitary.
Thus, there is no longer a single most general type, but any type is an instance of a finite set
of maximal types (for more details see Section 8.3). Further work by the same author [22,24],
refines this approach by moving to a constraint-based algorithm and by considering lambda
expressions and Scale-like function types. In Plümicke’s work there is no formal definition of
the type system as a basis of the type inference algorithm. One contribution of this paper is
a formal definition of the underlying type system.

We rule out polymorphic recursion because its presence makes type inference (but not
type checking: see FGJ) undecidable. Henglein [9] as well as Kfoury et al [12] investigate
type inference in the presence of polymorphic recursion. They show that type inference is
reducible to semi-unification, which is undecidable [13]. However, the undecidability of this
problem apparently does not matter much in practice [6].

Ancona, Damiani, Drossopoulou, and Zucca [1] consider polymorphic byte code. Their
approach is modular in the sense that it infers polymorphic structural types. As Java does
not support structural types, their approach would have to be simulated with generated
interfaces. Plümicke [23] follows this approach. Furthermore Ancona and coworkers do not
consider generic classes.

8.3 Unification
We reduce the type inference problem to constraint solving with equality and subtype
constraints. The procedure presented in Section 5 is inspired by polymorphic order-sorted
unification which is used in logic programming languages with polymorphic order-sorted
types [2, 8, 10,27].

Smolka’s thesis [27] mentions type unification as an open problem. He gives an incomplete
type inference algorithm for the logical language TEL. The reason for incompleteness is
the admission of subtype relationships between polymorphic types of different arities as in
List(a)<: myLi(a,b). In consequence, the subtyping relation does not fulfill the ascending
chain condition. For example, given List(a)<: myLi(a,b), we obtain:

List(a)<: myLi(a,List(a))<: myLi(a,myLi(a,List(a)))<: . . .

However, this subtyping chain exploits covariant subtyping, which does not apply to FGJ.
Smolka’s algorithm also fails sometimes in the absence of infinite chains, although there is

a unifier. For example, given nat<: int and the set of subtyping constraints {nat⋖a, int⋖a},
it returns the substitution {a 7→ nat} generated from the first constraint encountered. This

A. Stadelmeier, M. Plümicke, and P. Thiemann 28:25

substitution is not a solution because {int⋖nat} fails. However, {a 7→ int} is a unifier, which
can be obtained by processing the constraints in a different order: from {int ⋖ a, nat ⋖ a}
the algorithm calculates the unifier {a 7→ int}.

Hill and Topor [10] propose a polymorphically typed logic programming language with
subtyping. They restrict subtyping to type constructors of the same arity, which guarantees
that all subtyping chains are finite. In this approach a most general type unifier (mgtu) is
defined as an upper bound of different principal type unifiers. In general, two type terms need
not have an upper bound in the subtype ordering, which means that there is no mgtu in the
sense of Hill and Topor. For example, given nat<: int, neg<: int, and the set of inequations
{nat ⋖ a, neg ⋖ a}, the mgtu {a 7→ int} is determined. If the subtype ordering is extended
by int<: index and int<: expr, then there are three unifiers {a 7→ int}, {a 7→ index},
and {a 7→ expr}, but none of them is an mgtu [10].

The type system of PROTOS-L [2] was derived from TEL by disallowing any explicit
subtype relationships between polymorphic type constructors. Beierle [2] gives a complete
type unification algorithm, which can be extended to the type system of Hill and Topor.
They also prove that the type unification problem is finitary.

Given the declarations nat<: int, neg<: int, int<: index, and int<: expr, applying
the type unification algorithm of PROTOS-L to the set of inequations {nat ⋖ a, neg ⋖ a}
yield three general unifiers {a 7→ int}, {a 7→ index}, and {a 7→ expr}.

Plümicke [21] realized that the type system of TEL is related to subtyping in Java. In
contrast to TEL, where the ascending chain condition does not hold, Java with wildcards
violates the descending chain condition. For example, given myLi<b,a><: List<a> we find:

. . . <: myLi<? ◁ myLi<? ◁ List<a>,a>,a> <: myLi<? ◁ List<a>,a> <: List<a>

Plümicke [21] solved the open problem of infinite chains posed by Smolka [27]. He showed
that in any infinite chain there is a finite number of elements such that all other elements of
the chain are instances of them. The resulting type unification algorithm can be used for type
inference of Java 5 with wildcards [20]. As FGJ has no wildcards, we based our algorithm
on an earlier work [19]. In contrast to that work, which only infers generic methods with
unbounded types, our algorithm infers bounded generics. To this end, we do not expand
constraints of the form a ⋖ N , where a is type variable and N is is a non-variable type, but
convert them to bounded type parameters of the form X extends N. This change results in
a significant reduction of the number of solutions of the type unification algorithm without
restricting the generality of typings of FGJ-programs. Unfortunately, constraints of the form
N ⋖ a have to be expanded as FGJ (like Java) does not permit lower bounds for generic
parameters. If lower bounds were permitted (as in Scala), the number of solutions could be
reduced even further.

9 Conclusions

This paper presents a global type inference algorithm applicable to Featherweight Generic
Java (FGJ). To this end, we define a language FGJ-GT that characterizes FGJ programs
amenable to type inference: its methods carry no type annotations and it does not permit
polymorphic recursion. This language corresponds to a strict subset of FGJ.

The inference algorithm is constraint based and is able to infer generalized method types
with bounded generic types, as demonstrated with the example in Figure 1a.

In future work, we plan to extend FGJ-GT to a calculus with wildcards inspired by
Wild FJ [29]. We also plan to extend the formal calculus with lambda expressions (cf. [3]),
but using true function types in place of interface types.

ECOOP 2022

28:26 Global Type Inference for Featherweight Generic Java

References
1 Davide Ancona, Ferruccio Damiani, Sophia Drossopoulou, and Elena Zucca. Polymorphic

bytecode: compositional compilation for java-like languages. In Jens Palsberg and Martín
Abadi, editors, Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2005, Long Beach, California, USA, January 12-14, 2005,
pages 26–37. ACM, 2005. doi:10.1145/1040305.1040308.

2 Christoph Beierle. Type inferencing for polymorphic order-sorted logic programs. In Interna-
tional Conference on Logic Programming, pages 765–779, 1995.

3 Lorenzo Bettini, Viviana Bono, Mariangiola Dezani-Ciancaglini, Paola Giannini, and Venneri
Betti. Java & lambda: A featherweight story. Logical Methods in Computer Science, 14(3:17):1–
24, 2018.

4 G.M. Bierman, M.J. Parkinson, and A.M. Pitts. MJ: An imperative core calculus for Java and
Java with effects. Technical Report UCAM-CL-TR-563, University of Cambridge, Computer
Laboratory, April 2003. doi:10.48456/tr-563.

5 Elias Castegren and Tobias Wrigstad. OOlong: an extensible concurrent object calculus. In
Hisham M. Haddad, Roger L. Wainwright, and Richard Chbeir, editors, Proceedings of the
33rd Annual ACM Symposium on Applied Computing, SAC 2018, Pau, France, April 09-13,
2018, pages 1022–1029. ACM, 2018. doi:10.1145/3167132.3167243.

6 Martin Emms and Hans Leiß. Extending the type checker of standard ML by polymorphic
recursion. Theor. Comput. Sci., 212(1-2):157–181, 1999. doi:10.1016/S0304-3975(98)00139
-X.

7 Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. A programmer’s reduction
semantics for classes and mixins. In Jim Alves-Foss, editor, Formal Syntax and Semantics
of Java, volume 1523 of Lecture Notes in Computer Science, pages 241–269. Springer, 1999.
doi:10.1007/3-540-48737-9_7.

8 Michael Hanus. Parametric order-sorted types in logic programming. Proc. TAPSOFT 1991,
LNCS(394):181–200, 1991.

9 Fritz Henglein. Type inference with polymorphic recursion. ACM Trans. Program. Lang. Syst.,
15(2):253–289, 1993. doi:10.1145/169701.169692.

10 Patricia M. Hill and Rodney W. Topor. A Semantics for Typed Logic Programs. In Frank
Pfenning, editor, Types in Logic Programming, pages 1–62. MIT Press, 1992.

11 Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.
doi:10.1145/503502.503505.

12 A. J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. Type reconstruction in the presence
of polymorphic recursion. ACM Trans. Program. Lang. Syst., 15(2):290–311, 1993. doi:
10.1145/169701.169687.

13 A. J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. The undecidability of the semi-unification
problem. Inf. Comput., 102(1):83–101, 1993. doi:10.1006/inco.1993.1003.

14 A. Martelli and U. Montanari. An efficient unification algorithm. ACM Transactions on
Programming Languages and Systems, 4:258–282, 1982.

15 Robin Milner. A theory of type polymorphism in programming. J. Comput. Syst. Sci.,
17(3):348–375, 1978. doi:10.1016/0022-0000(78)90014-4.

16 Martin Odersky, Matthias Zenger, and Christoph Zenger. Colored local type inference. Proc.
28th ACM Symposium on Principles of Programming Languages, 36(3):41–53, 2001.

17 Johan Östlund and Tobias Wrigstad. Welterweight java. In Jan Vitek, editor, Objects, Models,
Components, Patterns, 48th International Conference, TOOLS 2010, Málaga, Spain, June 28
- July 2, 2010. Proceedings, volume 6141 of Lecture Notes in Computer Science, pages 97–116.
Springer, 2010. doi:10.1007/978-3-642-13953-6_6.

18 Benjamin C. Pierce and David N. Turner. Local type inference. In Proceedings of the 25th
ACM SIGPLAN-SIGACT symposium on Principles of programming languages, POPL ’98,
pages 252–265, 1998.

https://doi.org/10.1145/1040305.1040308
https://doi.org/10.48456/tr-563
https://doi.org/10.1145/3167132.3167243
https://doi.org/10.1016/S0304-3975(98)00139-X
https://doi.org/10.1016/S0304-3975(98)00139-X
https://doi.org/10.1007/3-540-48737-9_7
https://doi.org/10.1145/169701.169692
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/169701.169687
https://doi.org/10.1145/169701.169687
https://doi.org/10.1006/inco.1993.1003
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1007/978-3-642-13953-6_6

A. Stadelmeier, M. Plümicke, and P. Thiemann 28:27

19 Martin Plümicke. Type Unification in Generic–Java. In Michael Kohlhase, editor, Proceedings
of 18th International Workshop on Unification (UNIF’04), Cork, July 2004.

20 Martin Plümicke. Typeless Programming in Java 5.0 with Wildcards. In Vasco Amaral, Luís
Veiga, Luís Marcelino, and H. Conrad Cunningham, editors, 5th International Conference on
Principles and Practices of Programming in Java, volume 272 of ACM International Conference
Proceeding Series, pages 73–82, September 2007.

21 Martin Plümicke. Java type unification with wildcards. In Dietmar Seipel, Michael Hanus,
and Armin Wolf, editors, 17th International Conference, INAP 2007, and 21st Workshop on
Logic Programming, WLP 2007, Würzburg, Germany, October 4-6, 2007, Revised Selected
Papers, volume 5437 of Lecture Notes in Artificial Intelligence, pages 223–240. Springer-Verlag
Heidelberg, 2009.

22 Martin Plümicke. More type inference in Java 8. In Andrei Voronkov and Irina Virbitskaite,
editors, Perspectives of System Informatics - 9th International Ershov Informatics Conference,
PSI 2014, St. Petersburg, Russia, June 24-27, 2014. Revised Selected Papers, volume 8974 of
Lecture Notes in Computer Science, pages 248–256. Springer, 2015.

23 Martin Plümicke. Structural type inference in java-like languages. In Gemeinsamer Tagungs-
band der Workshops der Tagung Software Engineering 2016 (SE 2016), Wien, 23.-26. Februar
2016., pages 109–113, 2016. URL: http://ceur-ws.org/Vol-1559/paper09.pdf.

24 Martin Plümicke and Andreas Stadelmeier. Introducing Scala-like function types into Java-TX.
In Proceedings of the 14th International Conference on Managed Languages and Runtimes,
ManLang 2017, pages 23–34, New York, NY, USA, 2017. ACM. doi:10.1145/3132190.3132
203.

25 J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of ACM,
12(1):23–41, January 1965.

26 Vincent Simonet. Type inference with structural subtyping: A faithful formalization of an
efficient constraint solver. In Atsushi Ohori, editor, Programming Languages and Systems, First
Asian Symposium, APLAS 2003, volume 2895 of Lecture Notes in Computer Science, pages
283–302, Beijing, China, November 2003. Springer. doi:10.1007/978-3-540-40018-9_19.

27 Gert Smolka. Logic Programming over Polymorphically Order-Sorted Types. PhD thesis,
Department Informatik, University of Kaiserslautern, Kaiserslautern, Germany, May 1989.

28 Andreas Stadelmeier, Martin Plümicke, and Peter Thiemann. Global type inference for
Featherweight Generic Java, 2022. URL: https://arxiv.org/abs/2205.08768.

29 Mads Torgersen, Erik Ernst, and Christian Plesner Hansen. Wild FJ. In Philip Wadler,
editor, Proceedings of FOOL 12, Long Beach, California, USA, January 2005. ACM, School of
Informatics, University of Edinburgh. URL: http://homepages.inf.ed.ac.uk/wadler/fool/.

ECOOP 2022

http://ceur-ws.org/Vol-1559/paper09.pdf
https://doi.org/10.1145/3132190.3132203
https://doi.org/10.1145/3132190.3132203
https://doi.org/10.1007/978-3-540-40018-9_19
https://arxiv.org/abs/2205.08768
http://homepages.inf.ed.ac.uk/wadler/fool/

Experience: Model-Based, Feedback-Driven,
Greybox Web Fuzzing with BackREST
François Gauthier #

Oracle Labs, Brisbane, Australia

Behnaz Hassanshahi #

Oracle Labs, Brisbane, Australia

Benjamin Selwyn-Smith #

Oracle Labs, Brisbane, Australia

Trong Nhan Mai #

Oracle Labs, Brisbane, Australia

Max Schlüter #

Oracle Labs, Brisbane, Australia

Micah Williams #

Oracle, Durham, NC, USA

Abstract
Following the advent of the American Fuzzy Lop (AFL), fuzzing had a surge in popularity, and
modern day fuzzers range from simple blackbox random input generators to complex whitebox
concolic frameworks that are capable of deep program introspection. Web application fuzzers,
however, did not benefit from the tremendous advancements in fuzzing for binary programs and
remain largely blackbox in nature. In this experience paper, we show how techniques like state-aware
crawling, type inference, coverage and taint analysis can be integrated with a black-box fuzzer to find
more critical vulnerabilities, faster (speedups between 7.4× and 25.9×). Comparing BackREST
against three other web fuzzers on five large (>500 KLOC) Node.js applications shows how it
consistently achieves comparable coverage while reporting more vulnerabilities than state-of-the-art.
Finally, using BackREST, we uncovered eight 0-days, out of which six were not reported by any
other fuzzer. All the 0-days have been disclosed and most are now public, including two in the
highly popular Sequelize and Mongodb libraries.

2012 ACM Subject Classification Security and privacy → Web application security

Keywords and phrases Taint analysis, fuzzing, crawler, Node.js

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.29

Related Version Previous Version: https://arxiv.org/abs/2108.08455

Supplementary Material Software (Source Code): https://github.com/uqcyber/NodeJSFuzzing
archived at swh:1:dir:7282fcd2dbf1052a7926097161145573085c4487

1 Introduction

Fuzzing encompasses techniques and tools to automatically identify vulnerabilities in programs
by sending malformed or malicious inputs and monitoring abnormal behaviours. Nowadays,
fuzzers come in three major shades: blackbox, greybox, and whitebox, according to how much
visibility they have into the program internals [42]. Greybox fuzzing, which was made popular
by the AFL fuzzer, combines blackbox with lightweight whitebox techniques, and have proven
to be very effective at fuzzing programs that operate on binary input [107, 26, 25].

Most web application fuzzers that are used in practice are still blackbox [4, 7, 2, 79],
and, despite decades of development, still struggle to automatically detect well studied
vulnerabilities such as SQLi, and XSS [84]. As a result, security testing teams have to invest
significant manual efforts into building models of the application and driving the fuzzer to

© François Gauthier, Behnaz Hassanshahi, Benjamin Selwyn-Smith, Trong Nhan Mai, Max Schlüter,
and Micah Williams;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 29; pp. 29:1–29:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:francois.gauthier@oracle.com
mailto:behnaz.hassanshahi@oracle.com
mailto:benselwynsmith@googlemail.com
mailto:trong.nhan.mai@oracle.com
mailto:mschlueter@uni-potsdam.de
mailto:micah.williams@oracle.com
https://doi.org/10.4230/LIPIcs.ECOOP.2022.29
https://arxiv.org/abs/2108.08455
https://github.com/uqcyber/NodeJSFuzzing
https://archive.softwareheritage.org/swh:1:dir:7282fcd2dbf1052a7926097161145573085c4487;origin=https://github.com/uqcyber/NodeJSFuzzing;visit=swh:1:snp:8de1c8746c3ad456204ddfb373b462ef0b14af55;anchor=swh:1:rev:ce4038a0c1a491d36993fc8b53921a75305e6b0b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

trigger vulnerabilities. To overcome the limitations of current blackbox web application
fuzzers, and find more vulnerabilities automatically, new strategies must be investigated. To
pave the way for the next generation of practical web application fuzzers, this paper first shows
how REST-like API models are a suitable abstraction for web applications and how adding
lightweight coverage and taint feedback loops to a blackbox fuzzer can significantly improve
performance and detection capabilities. Then, it highlights how the resulting BackREST
greybox fuzzer consistently detects more vulnerabilities than state-of-the-art. Finally, our
evaluation reveals how BackREST found eight 0-days, out of which six were missed by all
the web application fuzzers we compared it against.

API model inference. Model-based fuzzers, which use a model to impose constraints on
input, dominate the web application fuzzing scene. Existing model-based web application
fuzzers typically use dynamically captured traffic to derive a base model, which can be
further enhanced manually [5, 2, 4]. As with any dynamic analysis, relying on captured
traffic makes the quality of the model dependent on the quality of the traffic generator, be it
a human being, a test suite, or a crawler. To navigate JavaScript-heavy applications and
trigger a maximum number of endpoints, BackREST directs a state-aware crawler towards
JavaScript functions that trigger server-side interactions. For completeness, a static type
inference analysis is then used to complement the dynamic model.

Feedback-driven. What makes greybox fuzzers so efficient is the feedback loop between the
lightweight whitebox analysis components, and the blackbox input generator. BackREST
is the first web application fuzzer that can focus the fuzzing session on those areas of the
application that have not been exercised yet (i.e. by using coverage feedback), and that have
a higher chance of containing security vulnerabilities (i.e. by using taint feedback). Taint
feedback in BackREST further reports the type (e.g. SQLi, XSS, or command injection) of
potential vulnerabilities, enabling BackREST to aggressively fuzz a given endpoint with
vulnerability-specific payloads, yielding tremendous performance improvements in practice.

Validated in practice. The two main metrics that drive practical adoption of a fuzzer
are the number of vulnerabilities it can detect and the time required to discover them.
Our experiments show how BackREST uncovered eight 0-days in five large (> 500KLOC)
Node.js applications, and how adding lightweight whitebox analyses significantly speeds up
(7.4-25.9× faster) the fuzzing session. All 0-days have been disclosed, and most have been
announced as NPM advisories, meaning that developers will be alerted about them when
they update their systems. Four of them have been tagged with high or critical severity by
independent third-parties, and two have been reported against the highly popular sequelize
(648 745 weekly downloads) and mongodb (1 671 653 weekly downloads) libraries.

Contributions. This paper makes the following contributions:
We show how REST-like APIs can effectively model the server-side of modern web
applications, and quantify how coverage and taint feedback enhance coverage, performance,
and vulnerability detection.
We empirically evaluate BackREST on five large (>500 KLOC) Node.js (JavaScript)
web applications; a platform and language that are notoriously difficult to analyse, and
under-represented in current security literature.

F. Gauthier et al. 29:3

We compare BackREST against three state-of-the-art fuzzers (Arachni, Zap, and w3af)
and open-source our test harness 1.
We show how greybox fuzzing for web applications allows to detect severe 0-days that
are missed by all the blackbox fuzzers we evaluated.

Takeaways. In our industrial setting, black-box web application fuzzing is used as a security
testing tool, where the goal is to automatically detect a maximum number of security bugs
and security regressions in a limited amount of time (e.g. a nightly test). With BackREST,
we show that extending a black-box web application fuzzer with simple grey-box analyses
that use coverage and taint feedback to skip and select rather than derive new inputs can
reduce runtime while increasing the number of reported bugs. In our case, the investment in
development time (i.e. to extend an existing black-box fuzzer) was quickly dwarfed by the
time saved during each fuzzing campaign.

The rest of this paper is structured as follows. Section 2 presents our novel API model
inference technique. Section 3 and Section 4 detail the BackREST feedback-driven fuzzing
algorithm and implementation, respectively. Section 5 evaluates BackREST in terms of
coverage, performance, and detected vulnerabilities and compares it against state-of-the-art
web application fuzzers. Section 6 presents and explains reported 0-days. Sections 7 and 8
present related work and conclude the paper.

2 API Model Inference

Web applications expose entry points in the form of URLs that clients can interact with
via the HTTP protocol. However, the HTTP protocol specifies only how a client and a
server can send and receive information over a network connection, not how to structure the
interactions. Nowadays, representational state transfer (REST) is the de facto protocol that
most modern client-side applications use to communicate with their backend server. While
the REST protocol was primarily aimed at governing interactions with web services, we make
the fundamental observation that client-server interactions in modern web applications can
also be modelled as REST-like APIs. Indeed, at its core, REST uses standard HTTP verbs,
URLs, and request parameters to define and encapsulate client-server interactions, which,
from our experience, is also what many modern web application frameworks do (e.g. Spring
(Java), Ruby on Rails (Ruby), Django (Python), and Express.js (JavaScript)).

Despite the plethora of REST-related tools available, the task of creating an initial REST
specification remains, however, largely manual. While tools exist to convert captured traffic
into a REST specification, the burden of thoroughly exercising the application or augmenting
the specification with missing information is still borne by developers. BackREST alleviates
this manual effort by extending a state-aware crawler designed for rich client-side JavaScript
applications [50] to dynamically infer REST APIs through crawling. Modern web applications,
and single-page ones in particular, implement complex and highly interactive functionalities
on the client side. A recent Stack Overflow developer survey [10] shows that web applications
are increasingly built using complex client-side frameworks, such as AngularJS [8] and
React [9]. In fact, three out of five applications we evaluate in Section 5 heavily use such
frameworks. Using a state-aware crawler that can automatically navigate complex client-side
frameworks allows BackREST to discover server-side endpoints that can only be triggered
through complex JavaScript interactions.

1 https://github.com/uqcyber/NodeJSFuzzing

ECOOP 2022

https://github.com/uqcyber/NodeJSFuzzing

29:4 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

2.1 Motivating Example
Listing 1 shows an endpoint definition from a Node.js Express application. At line 1, app
refers to the programmatic web application object, and the delete method is used to define
an HTTP DELETE entry point. The arguments to delete include the URL (i.e. "/users/")
and path parameter (i.e. ":userId") of the entry point, and the callback function that will be
executed on incoming requests. The callback function receives request (i.e. req) and response
(i.e. res) objects as arguments, reads the userId path parameter at line 2, and removes the
corresponding document from a collection in the database at line 3, and leaves the response
untouched. The API specification, in OpenAPI format [93], corresponding to the example
entry point of Listing 1 is shown in Listing 2. Lines 2-4 define the "paths" entry that lists
valid URL paths, where each path contains one entry per valid HTTP method. Lines 5-13
define the "parameters" object that lists the valid parameters for a given path and HTTP
method. Specifically, line 7 defines the name of the parameter, line 8 specifies that it is a
path parameter, line 9 specifies that the parameter is required, line 10 specifies that the
expected type of the "userId" parameter is "string" and line 11 captures a concrete example
value that was observed while crawling. Directing the crawler to exercise client-side code
that will trigger server-side endpoints is, however, non-trivial and covered in the next section.

Listing 1 Example endpoint and its callback in Express
1 app.delete("/users/:userId", (req, res) => {
2 const id = req.params.userId;
3 collection.remove({"id": id});
4 });

Listing 2 Automatically generated OpenAPI specification for the endpoint in Listing 1
1 {
2 "paths": {
3 "/users/{userId}": {
4 "delete": {
5 "parameters": [
6 {
7 "name": "userId",
8 "in": "path",
9 "required": true,

10 "type": "string",
11 "example": "abc123"
12 }
13]
14 }
15 }
16 }
17 }

2.2 Prioritised State-Aware Crawling for API Inference
To improve responsiveness, modern web applications often transfer a large portion of their
logic, including data pre-processing and validation to the client side. To prevent errors,
frameworks implement checks on the server-side that validate the structure and to some
extent the content of incoming requests. Fuzzing modern web applications thus requires us
to produce requests that get past those initial server-side checks. To this end, BackREST

F. Gauthier et al. 29:5

infers APIs from the requests generated by a state-aware crawler. Our crawler extends the
one presented in [50] to automatically discover endpoints, parameters and types, and to
produce concrete examples, as shown in Listing 2.

Figure 1 shows the architecture of the crawler in [50]. It combines prioritized link
extraction (or spidering) and state-aware crawling to support both multi-page and single-
page applications. It performs static link extraction and dynamic state processing using
tasks that are managed in parallel. Given the URL of a running instance, the crawler’s task
manager first creates a link extraction task for the top level URL, where static links are
extracted from HTML elements. Next, new link extraction tasks are created recursively
for newly discovered links. At the same time, it creates new states for each extracted link
and adds them to a priority queue in a state crawl task. The state queue is prioritized
either in a Depth First Search (DFS) or Breadth First Search (BFS) order, depending on
the structure of the application. For instance, if an application is a traditional multi-page
application and most of the endpoints would be triggered through static links, BFS can be
more suitable, whereas a single-page application with workflows involving long sequences
of client-side interactions, such as filling input elements and clicking buttons, would benefit
more from a DFS traversal.

A state in the crawler includes the URL of the loaded page, its DOM tree, static links
and valid events. To avoid revisiting same states, it compares the URLs and their DOM
trees using a given distance threshold. As described in [50], it marks a state as previously
visited if there exists a state in the cache that has the same URL and a DOM tree that is
similar enough to the existing state. To compare the DOM trees, it parses them using the
ElementTree XML [11] library and considers two trees to be in the same equivalence class if
the number of different nodes does not exceed a threshold.

The crawler transitions between states by automatically triggering events that it extracts
from HTML elements. It supports both statically and dynamically registered events, as well
as customized event registration in frameworks. Determining the priority of events is one of
the differentiating factors between state-aware crawlers. On the one hand, Crawljax [73], a
well-known crawler for AJAX-driven applications randomly selects events from a state. On
the other hand, Artemis [20], selects events that are more likely to increase code coverage.
Feedex [74] instead prioritizes events that trigger user-specified workflows, such as adding
an item. jÄk [79] uses dynamic analysis to create a navigation graph with dynamically
generated URLs and traces that contain runtime information for events. Its crawler then
navigates the graph in an attempt to maximise server-side coverage. Similar to jÄk, we also
perform dynamic analysis to detect dynamically registered events that are difficult to detect
statically and maximise coverage of server-side endpoints.

Contrary to jÄk, however, our crawler also uses the JavaScript call graph analysis by
Feldthaus et al. [35] to compute a distance metric from event handler functions to target
functions like XMLHttpRequest.send(), HTMLFormElement.submit(), or fetch and prioritize events
that have smaller distances. While the call graph is not sound nor precise, it is being
refined as the application is being crawled, allowing the crawler to reach increasingly deeply
embedded target functions in the application code and the frameworks and libraries it uses.
This prioritization strategy allows BackREST to maximize coverage of JavaScript functions
that trigger server-side endpoints. For more details about the refined JavaScript call graph
and the prioritization strategy in the crawler see [50]. Listing 3 shows a hande-made and very
simplified code-snippet that uses AngularJS for event handling. While the first button, B1 is a
normal button and uses standard click event registration, the second button, B2 uses a custom
event registration from the AngularJS framework. Our crawler can successfully correlate the
customized click event for button B2 and prioritize B2 over B1 to call fetch("users/abc123")
and trigger the server-side users/abc123 endpoint.

ECOOP 2022

29:6 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

creates

creates

manages

Task Manager

Link Extrac�on
Task

launches

Browsers

creates

instrumented
response

Instrumentor
(MITM proxy)

Applica�on
Under Test

URL

Runner 1

Runner 2

...
Runner n

is executed by

add state

manages
is executed byState Crawl

Task

Priori�ser

State
Manager

creates

HTTP request

modified HTTP
request

HTTP response

REST API
inference

Crawler

REST API

Figure 1 State-aware crawler architecture.

Listing 3 Client-side JavaScript code that uses a framework (Angular.js) with customized event
handling and registration.
1 <html>
2 <script src='angular.js'></script>
3 <script>
4 function foo(){
5 }
6 function bar() {
7 fetch("users/abc123");
8 }
9 </script>

10 <body>
11 <button id='b1' click='foo()'>B1</button>
12 <button id='b2' data-ng-click='bar()'>B2</button>
13 </body>
14 </html>
15

One of the challenges in dynamic analysis of web applications is performing authentication
and correctly maintaining the authenticated sessions. Our crawler provides support for a wide
variety of authentication mechanisms, including Single Sign On, using a record-and-replay
mechanism. We require the user to record the authentication once and use it to authenticate
the application as many times as required. To verify whether a session is valid, we ask the
user to provide an endpoint and pattern to look up in the response content once and before
the crawling starts. For instance, for Juice-shop (see Section 5), we verify the session by
sending a GET request to the rest/user/whoami endpoint and check if "admin@juice-sh.op" is
present in its response content periodically to make sure it is logged in.

We intercept the requests triggered by our crawler using a Man-In-The-Middle (MITM)
proxy. Next, we process the recorded HTTP requests to infer an API specification auto-
matically. Because we use a client-side crawler to trigger the endpoints, the recorded traffic
contains valid headers and parameter values that are persisted in the API and reused in the
fuzzing phase. These seed values can often prove invaluable to get past server-side value
checks. Our API inference also aggregates concrete values to infer their types. Going back to

F. Gauthier et al. 29:7

the example in Listing 1, by automatically triggering delete requests to /users/ endpoint with
an actual userId string value (e.g. abc123), our API inference adds userId path parameter
with string type to the specification based on the observed userId values.

2.2.1 Augmenting Crawled APIs with Static Type Inference
By definition, crawled APIs only capture those endpoints and parameters that were exercised
dynamically, meaning that they typically under-approximate the real API of an application.
We thus optionally complement crawled APIs with statically inferred endpoints and para-
meters. While static analysis can, in theory, over-approximate the real API of an application,
precise static analysis of an entire web application stack is practically infeasible without
the help of stubs, mocks, models, or over- and under-approximate clients [14, 61, 70, 101].
Our work is no exception, and we overcome the challenge of statically analysing Node.js
web applications through the use of mock request and response objects, combined with an
approximate use-based type inference analysis.

The inference analysis starts from application endpoints (see Listing 1), where it collects
the declared endpoint URL and path parameters. It then initiates a use-based analysis that
populates a mock request object with additional parameters that are read from the request,
without being explicitly declared as path parameters. Once the mock request is populated
with parameters, another analysis infers parameter types from their use.

We now illustrate the inner workings of the inference analysis by revisiting the example
in Listing 1. The use-based analysis builds on top of a static type inference analysis [45] that
approximates, in an unsound way, the runtime structural types of the elements in a program.
In Figure 2, items on the left-hand side of the dashed line show the initial type propagation
graph. Orange boxes represent types, grey circles represent abstract elements of the program,
purple boxes represent function calls or field accesses, and black arrows capture the flow of
types and data in the program. To help the reader map the elements of Figure 2 to the code
of Listing 1, whenever possible, we annotated function types and field accesses with their
code definition (e.g. app.delete, req.params). Starting from the top, the type propagation
graph shows that app.delete is of type function and takes two parameters: a path of type
string and a callback that is typed as a function that takes req and res objects as arguments.
Then, params field of the req object is accessed, followed by the userId field that yields the
id object. The rest of the graph is derived from the other statements in Listing 1. To collect
request parameters and their types, our analysis propagates a mock request object through
the type propagation graph at step 2., extends it with used parameters (i.e. parameters that
are read from the request object) at step 3. and finally infer the types of used parameters at
step 4. This final step uses and extends the type specifications of the Tern.js tool [51, 45].
The inferred parameters and types are then merged into crawled APIs.

3 Feedback-driven Fuzzing

BackREST builds on top of Sulley [16], a blackbox fuzzer with built-in networking support,
and extends it with support for API parsing and fuzzing, as well as coverage and taint feedback.
Figure 3 shows the high-level architecture of BackREST. First, the application under test
is crawled, an API is derived 1 , and augmented with statically inferred parameters 2 .
Then, BackREST is invoked on the generated API file 3 . The API is then parsed 4 and
broken down into low-level fuzzing code blocks 5 . The type information included in the
API file is used to select relevant mutation strategies (e.g. string, integer, JWT token, etc.).

ECOOP 2022

29:8 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

 .userId :

 app.delete (,) path callback

string

.params : reqobj .id

 call ().id

collection.remove()query

obj .params

obj .userId

1. Initial type
 propagation
 graph.

2. Inject mock
 request type.

3. Extend request object
 with used parameters.

string

4. Infer types of
 parameters based
 on usage.

fn (,) req res

string

.id

Figure 2 Use-based inference of request parameters and types.

Dynamic Taint Analysis

 Results Directory

REST API
REST API

Parser

Web Applica�on
Under Test

Sulley code

Session
Capture

Endpoint
Dic�onary &

Metadata

Authen�ca�on
Plugins Reports

Fuzzed Requests

Create/Refresh
Auth. Tokens

Resp.
event

Resp.
event

Resp.
event

Endpoint Fuzzing
Graphs

Test Event Data

Raw Requests & Responses

Sulley Spec.
Generator

Fuzzing
Engine

Test Case
Generator

Analysis
Pipeline 6

8

8

9

7
3

Taint and Coverage
Feedback

7

State-Aware
Crawler

HTTP(s) Requests

1

Endpoints and
parameters

Sta�c Type
Inference

2

5

4

Figure 3 BackREST architecture.

The fuzzing engine is then responsible for evaluating the individual fuzzing code blocks and
reassembling them into a graph that will yield well-formed HTTP requests 6 . The test case
generator repeatedly traverses the graph to generate concrete HTTP requests, sends them
to the application under test, and monitors taint and coverage feedback 7 . The HTTP
responses are dispatched to the analysis pipeline, which runs in a separate thread, to detect
exploits, and are also stored as-is for logging purposes 8 . Indicators of exploitation include
the response time, the error code and error messages, reflected payloads, and taint feedback.
Finally, the analysis results are aggregated and reported 9 . To simplify our evaluation
setup (section 5), we run BackREST in deterministic mode, meaning that it always yields
the same sequence of fuzzed HTTP requests for a given configuration.

F. Gauthier et al. 29:9

3.1 Coverage Feedback
Coverage feedback, where the fuzzer uses online coverage information to guide the fuzzing
session, was made popular by the AFL fuzzer [107]. Nowadays, most greybox fuzzers use
coverage to guide their input generation engine towards producing input that will exercise
newly covered code, or branches that will likely lead to new code [66, 65, 36, 80, 64, 26,
25]. Kelinci [57] ported AFL-style greybox fuzzing to Java programs by emulating AFL’s
coverage analysis and using the AFL fuzzing engine as-is. JQF [77] instead combines
QuickCheck-style testing [27] and feedback-directed fuzzing to support inputs with arbitrary
data structures. The underlying assumption in AFL and all its derivatives is that targeting
code that has not been thoroughly exercised increases the likelihood of triggering bugs
and vulnerabilities. Empirical evidence suggests that this assumption holds true for many
codebases. Furthermore, the simplicity and widespread availability of coverage analysis
makes it suitable for applications written in a wide range of languages.

Compared to mutation-based greybox fuzzers like AFL, BackREST uses coverage
information differently. Where AFL-like fuzzers use coverage information to derive the next
round of input, BackREST uses coverage information to skip inputs in the test plan that
would likely exercise well-covered code. From that perspective, BackREST uses coverage
information as a performance optimisation. Section 3.3 details how BackREST uses coverage
information.

3.2 Taint Feedback
Taint-directed fuzzing, where the fuzzer uses taint tracking to locate sections of input that
influence values at key program locations (e.g. buffer index, or magic byte checks), was
pioneered by Ganesh et al. with the BuzzFuzz fuzzer [37]. In recent years, many more
taint-directed greybox fuzzers that build on the ideas of BuzzFuzz have been developed
[23, 67, 103, 104, 47, 86].

BackREST uses taint analysis in a different way. With the help of a lightweight dynamic
taint inference analysis [41], it reports which input reaches security-sensitive program locations,
and the type of vulnerability that could be triggered at each location. Armed with this
information, BackREST can prioritise payloads that are more likely to trigger potential
vulnerabilities. Taint feedback thus enables BackREST to zoom in payloads that are more
likely to trigger vulnerabilities, which improves performance and detection capabilities. Taint
feedback also improves detection capabilities in cases where exploitation cannot be easily
detected in a blackbox manner. Finally, similar to coverage analysis, the relative simplicity
of taint inference analysis makes it easy to port to a wide range of languages. The next
section details how BackREST uses taint feedback during fuzzing.

3.3 BackREST Fuzzing Algorithm
Algorithm 1 shows the BackREST fuzzing algorithm. It first builds a test plan, based

on the API model received as input (line 2). The test plan breaks the API model into
a set of endpoints, lists “fuzzable” locations in each endpoint, and establishes a mutation
schedule that specifies the values that are going to be injected at each location. Values are
either cloned from the example fields, derived using mutations (omitted from Algorithm 1 for
readability), or drawn from a pre-defined dictionary of payloads where vulnerability types
map to a set of payloads. For example, the SQLi payload set contains strings like: ’ OR
’1’=’1’ –, while the buffer overflow set contains very large strings and numbers.

ECOOP 2022

29:10 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

Algorithm 1 API-based feedback-driven fuzzing.

Input: web app. W, API model A, threshold T , payload dictionary D
Output: vulnerability report V

1 P ← BuildTestPlan(A)
2 W ′ ← coverageInstrument(W)
3 W ′′ ← taintInstrument(W ′)
4 totalCov ← 0
5 foreach endpoint in P do
6 foreach location in P[endpoint] do
7 types← D.keys()
8 taint:
9 foreach type in types do

10 coverage:
11 count← 0
12 foreach payload in D[type] do
13 (resp, currCov, taintCat)← fuzz(endpoint, location, payload,W ′′)
14 count← count + 1
15 if currCov > totalCov then
16 count← 0
17 end
18 V ← V ∪DetectVulnerability(resp)
19 totalCov ← currCov

20 if taintCat ̸= ∅ then
21 types← taintCat

22 if type /∈ types then
23 continue taint
24 end
25 count← 0
26 end
27 if count > T then
28 continue coverage
29 end
30 end
31 end
32 end
33 end
34 return V

F. Gauthier et al. 29:11

Listing 4 Fuzzable locations for an example endpoint.
1 "/users/{userId}": {
2 "delete": {
3 "parameters": [
4 {
5 "name": "userId",
6 "in": "path",
7 "required": true,
8 "type": "string",
9 "example": "abc123"

10 }
11]
12 }
13 }

Listing 4 shows an example of an endpoint definition with fuzzable locations in bold.
From top to bottom, fuzzable locations include: the value of the userId parameter, where
the parameter will be injected (e.g. path or request body), whether the parameter is required
or optional, and the type of the parameter. Other locations are left untouched to preserve
the core structure of the model and increase the likelihood of the request getting past shallow
syntactic and semantic checks.

Once the test plan is built, BackREST instruments the application for coverage and
taint inference (lines 3-4 of Algorithm 1). Then, it starts iterating over the endpoints in
the test plan (line 6). The fuzzer further sends a request for each (endpoint, location,
payload) combination, collects the response, coverage and taint report, and increases its
request counter by one (lines 13-15). If the request covers new code, the request counter
is reset to zero, allowing the fuzzer to spend more time fuzzing that particular endpoint,
location, and vulnerability type (lines 16-18). The vulnerability detector then inspects the
response, searching for indicators of exploitation, and logs potential vulnerabilities (line 19).

Because blackbox vulnerability detectors inspect the response only, they might miss cases
where an input reached a security-sensitive sink, without producing an observable side-effect.
For example, a command injection vulnerability can be detected in a blackbox fashion only
when an input triggers an observable side-effect, such as printing a fuzzer-controlled string,
or making the application sleep for a certain amount of time. With taint feedback, however,
the fuzzer is informed about: 1. whether parts of the input reached a sink, and 2. the
vulnerability type associated with the sink. When the fuzzer is informed that an input
reached a sink, it immediately jumps to the vulnerability type that matches that of the sink
and starts sending payloads of that type only (lines 21-27). The idea behind this heuristic,
which we validated on our benchmarks (see Subsection 5.3), is that payloads that match
the sink type have a higher chance of triggering observable side-effects to help confirm a
potential vulnerability. Targeting specific vulnerability types further minimises the number
of inputs required to trigger a vulnerability. Finally, if a given endpoint and location pair
have been fuzzed for more than T requests without increasing coverage, the fuzzer jumps
to the next vulnerability type (lines 28-30). The idea behind this heuristic, which we also
validated on our benchmarks, is that the likelihood of covering new code by fuzzing a given
endpoint decreases with the number of requests, unless more complex techniques like symbolic
execution are used. In our setup, we set T to 10 after trying out values in {0, 5, 10, 15, 20}
and keeping the minimal threshold that detected the maximum number of vulnerabilities.
Promptly switching to payloads from a different vulnerability type reduces the total number
of requests, thereby improving the overall performance.

ECOOP 2022

29:12 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

Table 1 Benchmark applications.

Application Description Version SLOC Files

Nodegoat Educational 1.3.0 970 450 12 180
Keystone CMS 4.0.0 1 393 144 13 891
Apostrophe CMS 2.0.0 774 203 5 701
Juice-shop Educational 8.3.0 725 101 7 449
Mongo-express DB manager 0.51.0 646 403 7 378

4 Implementation

BackREST brings together and builds on top of several existing components. The API
inference component uses the state-aware crawler from [50] with an intercepting proxy [28]
to generate and capture traffic dynamically. The static API inference uses Tern.js [51, 45]
to perform type inference. The API parser is derived from PySwagger [6] and the fuzzing
infrastructure extends Sulley [16], with API processing support. For coverage instrumentation,
we use the Istanbul library [17] and have added a middleware in benchmark applications
to read the coverage object after each request, and inject a custom header to communicate
coverage results back to the fuzzer. For taint feedback, BackREST implements the Node.js
taint analysis from [41] and extends our custom middleware to also communicate taint results
back to the fuzzer. The taint analysis is itself built on top of the NodeProf.js instrumentation
framework [97] that runs on the GraalVM2 3 [106] runtime.

5 Evaluation

In this section, we first review our experimental protocol. Next, we assess the contribution
of static type inference to crawled APIs. then, we evaluate how coverage and taint feedback
increase the coverage, performance, or number of vulnerabilities detected. The benchmark
applications used for evaluation are listed in Table 1. All experiments were run on a machine
with 8 Intel Xeon E5-2690 2.60GHz processors and 32GB memory. Then, we compare
BackREST to three state-of-the-art web fuzzers. Finally, we present and explain the 0-days
that BackREST detected.

5.1 Experimental Design
We took great care to design an empirical evaluation protocol that is fair and adequate. In this
section, we review our protocol in the light of the SIGPLAN empirical evaluation guideline
[3] and justify divergences from best practices. First, our benchmark applications are all
implemented in Node.js and our results might not generalise to web applications implemented
in other languages. As a rule of thumb, applications written in languages that have mature
instrumentation frameworks will be more easily amenable to the kind of feedback-driven
fuzzing implemented in BackREST. Next, whenever we compare BackREST either against
itself or other fuzzers, unless otherwise stated (e.g. disabling of certain feedback loops), all
runs of BackREST were parameterised in the exact same way. Benchmark-wise, the very

2 https://www.graalvm.org/
3 GraalVM is a registered trademark of Oracle and/or its affiliates. Other names may be trademarks of

their respective owners.

https://www.graalvm.org/

F. Gauthier et al. 29:13

Table 2 Total number of inferred endpoints and parameters. Number of statically inferred values
in parenthesis.

Benchmark # Entry points # Request parameters

Nodegoat 19 (0) 28 (10)
Keystone 20 (0) 69 (46)
Apostrophe 184 (0) 633 (531)
Juice-shop 69 (0) 71 (64)
Mongo-express 29 (0) 96 (49)

Table 3 Impact of the coverage (C) and taint (T) feedback loops on runtime and total coverage,
compared to baseline (B).

Benchmark Coverage (%) Time (hh:mm:ss)

B C CT B C CT

Nodegoat 80.31 78.54 75.59 0:42:39 0:06:07 (7.0×) 00:05:44 (7.4×)
Keystone 48.31 48.05 45.43 5:46:29 0:49:25 (7.0×) 0:13:23 (25.9×)
Apostrophe — 48.40 45.52 — 11:11:42 – 6:17:34 –
Juice-Shop 74.73 76.34 75.85 12:48:15 1:10:31 (10.9×) 1:08:26 (11.2×)
Mongo-express 69.62 69.57 66.59 2:21:49 0:16:07 (8.8×) 0:11:07 (12.8×)

few existing Node.js benchmarks contain libraries only, and are unsuitable for evaluating web
application fuzzers. For this reason, we created our own benchmark and open-sourced our
evaluation framework to help with reproducibility. Trial-wise, contrary to most fuzzers, we
tuned BackREST to be deterministic, meaning that every run of the fuzzer produces the
same results and that a single trial per experiment is sufficient. Of course, for this to hold,
we also assume that applications behave deterministically. To this end, we reset the state of
applications after every run, and limit the number of concurrent requests to one. Finally, to
ensure a fair comparison of BackREST against other state-of-the-art fuzzers, a co-author
of this paper, who did not contribute nor had access to BackREST, was mandated to
experiment with and tune the fuzzers to detect a maximum number of vulnerabilities in our
benchmark applications.

5.2 API inference
Table 2 shows the number of endpoints and request parameters (excluding path parameters)
that were inferred for each benchmark application. The numbers in parenthesis represent
the number of additional endpoints and parameters that were identified using static type
inference. Results clearly show that our crawler is very efficient at identifying the endpoints
of an application while static type inference provides additional request parameters to fuzz.

5.3 Feedback-driven fuzzing
Table 3 compares the total coverage and runtime achieved by enabling the coverage feedback
loop only (column C) and combined with taint feedback (column CT) against the baseline
blackbox fuzzer (column B). Table 3 also lists speedups for coverage and taint feedback
loops compared to baseline. Coverage-wise, enabling the coverage feedback loop, which
skips payloads of a given type after T requests that did not increase coverage, achieves

ECOOP 2022

29:14 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

(a) Nodegoat coverage. (b) Keystone coverage.

(c) Juice-shop coverage. (d) Mongo-express coverage.

Figure 4 Cumulative statement, branch, and function coverage (y axis) in function of the number
of requests (x axis) for Nodegoat (a), Keystone (b), Juice-shop (c), and Mongo-express (d) with the
baseline blackbox fuzzer.

approximately the same coverage (i.e. ± 2%) in a much faster way (i.e. speedup between 7.0×
and 10.9×). The slight variations in coverage can be explained by many different factors, such
as the number of dropped requests, differences in scheduling and number of asynchronous
computations, and differences in the application internal state. Indeed, the process of fuzzing
puts the application under such a heavy load that exceptional behaviours become more
common. Adding taint feedback on top of coverage feedback further decreases runtime, with
speedups between 7.4× and 25.9×. The slightly lower coverage can be explained by the
fact that taint feedback forces the fuzzer to skip entire payload types, resulting in lower
input diversity and slightly lower total coverage. Finally, the size of the API model for
Apostrophe and the load that resulted from using the baseline fuzzer rendered the application
unresponsive, and we killed the fuzzing session after 72 hours. Enabling taint feedback for
Apostrophe almost halved the runtime compared to coverage feedback alone.

Figure 4 shows the cumulative coverage achieved by the baseline blackbox fuzzer on all
applications but Apostrophe. For all applications, cumulative coverage evolves in a step-wise
fashion (e.g. marked increases, followed by plateaus) where steps correspond to the fuzzer
switching to a new endpoint. The plateaus that follow correspond to the fuzzer looping
through its payload dictionary. These results support our coverage feedback heuristic, which
is based on the assumption that the likelihood of covering new code by fuzzing a given
endpoint decreases with the number of requests.

F. Gauthier et al. 29:15

Table 4 Impact of the coverage (C) and taint (T) feedback loops on bug reports, compared to
baseline (B).

Benchmark (No)SQLi Cmd injection XSS DoS

B C CT B C CT B C CT B C CT

Nodegoat 0 0 3 0 0 3 5 5 5 0 0 0
Keystone 0 0 0 0 0 0 1 1 0 0 0 0
Apostrophe 0 0 0 0 0 0 1 1 1 2 1 1
Juice-Shop 1 1 2 0 0 1 4 1 1 1 0 0
Mongo-express 0 0 5 0 0 2 0 0 0 3 3 3

Total 1 1 10 0 0 6 11 8 7 6 4 4

5.4 A note on server-side state modelling
Many studies have shown that state-aware crawling of the client-side yields better coverage [73,
20, 74, 79, 32], and our crawler is no exception. Very little is known, however, about the
impact of state-aware fuzzing of the server-side. To our knowledge, RESTler [21] is the first
study to investigate stateful fuzzing of web services. While the authors have found a positive
correlation between stateful fuzzing and increases in coverage, we have not observed a similar
effect on our benchmark applications. Similar to RESTler, we attempted to model the state
of our benchmark applications by inferring dependencies between endpoints. Specifically,
we used the approach from [24] to infer endpoint dependencies from crawling logs and then
constrained the fuzzing schedule of BackREST to honour them. This did not improve
coverage for all but the Mongo-express application (data not shown). In this particular case,
manual inspection revealed that the inferred dependencies were quite intuitive (e.g. insert a
document before deleting it) and easily configured.

5.5 Vulnerability detection
Table 4 shows the number of unique true positive bug reports with the baseline fuzzer
(column B), with coverage feedback (column C), and further adding taint feedback (column CT).
We manually reviewed all reported vulnerabilities and identified the root causes. Table 4 does
not list false positives for space and readability reasons. The only false positives were an XSS
in Nodegoat that was reported by all three variations, and an SQLi in Keystone that was
reported with taint feedback only. Also note that Table 4 lists three types of vulnerabilities
(SQLi, command injection, and XSS) and one type of attack (DoS). We opted to list DoS for
readability reasons. Indeed, the root causes of DoS are highly diverse (out-of-memory, infinite
loops, uncaught exception, etc.) making it difficult to list them all. From our experience, the
most prominent root cause for DoS in Node.js are uncaught exceptions. Indeed, contrary to
many web servers, the Node.js front-end that listens to incoming requests is single-threaded.
Crashing the front-end thread with an uncaught exception thus crashes the entire Node.js
process [76].

Interestingly, enabling coverage feedback has no impact on the detection of SQLi and
command injection vulnerabilities, suggesting that this optimisation could be enabled at no
cost. Enhancing the fuzzer with taint feedback, however, consistently detects as many or
more SQLi and command injection vulnerabilities. This is explained by the fact that taint
inference does not rely on client-observable side-effects of a payload to detect vulnerabilities.
This is especially obvious for command injection vulnerabilities, which are detected with

ECOOP 2022

29:16 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

taint feedback only, for which observable side-effects are often hard to correlate to the root
cause (e.g. slowdowns, internal server errors), compared to cross-site scripting, for example.
Because the most critical injection flaws sit on the server-side of web applications, and are,
by nature, harder to detect at the client side, the taint inference in BackREST gives it a
tremendous edge over blackbox fuzzers. Table 4 also shows, however, that some cross-site
scripting and denial-of-service vulnerabilities are missed when coverage and taint feedback
are enabled. First, all missed XSS are stored XSS. Indeed, through sheer brute force, the
baseline fuzzer manages to send very specific payloads that exploit stored XSS vulnerabilities
and trigger side-effects that can be observed at the client (e.g. reflecting the payload in
another page), while coverage and taint feedback loops caused these specific payloads to be
skipped. To reliably detect stored XSS, taint analysis would need to track taint flows through
storage, which implies shadowing every storage device (i.e. databases and file system) to
store and propagate taint. This feature is beyond greybox fuzzing and is known to be tricky
to implement, and costly from both time and memory perspectives [58]. Second, the missed
denial-of-service vulnerabilities are due to: 1. a slow memory leak that requires several
thousand requests to manifest in Apostrophe, and 2. a specific SQLite input that happened
to be skipped with coverage and taint feedback.

Evaluating false negatives. In the context of a fuzzing session, false negatives are those
vulnerabilities that are in the scope of a fuzzer, but that are missed. Accounting for false
negatives requires an application with known vulnerabilities. The OWASP Nodegoat and
Juice-Shop projects are deliberately vulnerable applications with seeded vulnerabilities. Both
projects were built for educational purposes, and both have official solutions available, making
it possible to evaluate false negatives. The solutions, however, list vulnerabilities from a
penetration tester perspective; they list attack payloads, together with the error messages or
screens they should lead to. For this reason, correlating the official solutions to BackREST
reports is not trivial. For example, the Juice-Shop solution reports several possible different
SQL and NoSQL injection attacks. From a fuzzing perspective, however, all these attacks
share the same two root causes: calling specific MongoDB and Sequelize query methods
with unsanitised inputs. In other words, while the official solutions report different exploits,
BackREST groups them all under the same two vulnerability reports. For this study, we
manually correlated all the SQLi, command injection, XSS, and DoS exploits in official
solutions to vulnerabilities in the applications and found that BackREST reports them all,
achieving a recall of 100% for Nodegoat and Juice-Shop.

5.6 Comparison with state-of-the-art
In this section, we compare BackREST against the arachni [1], w3af [7] and OWASP Zap [4]
blackbox web application fuzzers. While we initially planned to also evaluate jÄk [79], our
attempts at running it on our benchmark applications ultimately failed because of outdated
dependencies (the code is 6 years old), authentication issues, and internal errors. To minimise
bias and ensure a fair evaluation, all three remaining fuzzers were evaluated by a co-author of
this paper who did not contribute and did not have access to BackREST, and was mandated
to tune them to report a maximum number of vulnerabilities. All fuzzers were configured
to scan for (No)SQLi, command injection, XSS, and DoS vulnerabilities. Significant care
was also taken to configure all the fuzzers to authenticate into the applications and not
log themselves out during a scan. Finally, after we discovered that the crawlers in arachni
and w3af are fairly limited when it comes to navigating single-page web applications that

F. Gauthier et al. 29:17

Nod
ego

at

Keys
ton

e

Apo
str

op
he

Ju
ice

-Sh
op

Mon
go

-ex
pre

ss

40

60

80 75
.5

9

45
.4

3

45
.5

2

75
.8

5

66
.5

9

89
.1

1

48
.9

4

43
.1

1

63
.3

6

67
.5

675
.1

46
.8

3

40
.8

62
.1

7

66
.4

2

69
.9

6

46
.1

5

40
.4

1

63
.1

7

65
.3

7

C
ov

er
ag

e
(%

)

BackREST Zap Arachni w3af

Figure 5 Coverage achieved by different fuzzers.

heavily rely on client-side JavaScript, we evaluated these fuzzers with seed URLs from a
Zap crawling session. Zap internally uses the Crawljax [73] crawler that is better suited to
navigate modern JavaScript-heavy applications.

Figure 5 shows the coverage that was achieved by the different fuzzers on the benchmark
applications. BackREST consistently achieves comparable coverage to other fuzzers. Table
6 compares the number of bugs found by each fuzzer. For BackREST, we report the bugs
found with coverage and taint feedback only. Apart from denial-of-service, BackREST
consistently detects more vulnerabilities than other fuzzers, which we mostly attribute to
the taint feedback loop. Indeed, while blackbox fuzzers can only observe the side-effects of
their attacks through error codes and client-side inspection, BackREST can determine with
high precision if a payload reached a sensitive sink and report vulnerabilities that would
otherwise be difficult to detect in a purely blackbox fashion. Furthermore, we confirmed
through manual inspection that apart from DoS, BackREST always reports a strict superset
of the vulnerabilities reported by the other fuzzers. Deeper inspection revealed that the
additional DoS found by Zap in Mongo-Express was due to a missing URL-encoded null byte
payload (%00) in our payload dictionary.

It is very difficult to compare the performance of different web fuzzers, given the number
of tunable parameters that each of them offers. For this reason, we focused our efforts on
configuring them to maximise their detection power and did let them run until completion.
The runtime of BackREST, as reported in Table 3, is directly proportional to the size
of the API, which explains the longer runtime on Apostrophe. OWASP ZAP, our closest
contender in terms of detected vulnerabilities, took between three minutes and three hours
to complete a scan. Arachni took between ten minutes and one hour and a half, and w3af
took between one and thirty minutes. Note that the low runtime of w3af is due to the fact
that it stops its scan early if the application starts sending too many error responses.

ECOOP 2022

29:18 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

Table 5 0-day vulnerabilities found by BackREST (B), Zap (Z), Arachni (A) and w3af (w3).

Codebase Vulnerability Found by Taint only Severity Ref.

MarsDB Command injection B ✓ Critical [39]
Sequelize Denial-of-Service B Moderate [38]
Apostrophe Denial-of-Service B — [89]
Apostrophe Denial-of-Service B Low [40]
Mongo-express1) Command injection B ✓ Critical [62]
Mongo-express Denial-of-Service B, Z, A, w3 Medium [71]
Mongodb-query-parser Command injection B ✓ Critical [92]
MongoDB Denial-of-service B, Z High [49]

1) BackREST independently and concurrently found the same vulnerability

5.7 Reported 0-days

Table 5 lists the 0-days that were identified in benchmark applications and the fuzzers that
reported them. The taint only column shows whether a particular 0-day was reported with
taint feedback only. Out of all the vulnerabilities reported in Table 6, nine translated into 0-
days, out of which six were reported by BackREST only. Several reasons explain why not all
vulnerabilities translated to 0-day. First, recall that Nodegoat and Juice-Shop are deliberately
insecure applications with seeded vulnerabilities. While BackREST detected several of them,
they are not 0-days. Interestingly, however, BackREST did report non-seeded vulnerabilities
in MarsDB, and Sequelize, which happen to be dependencies of Juice-Shop. Through the
fuzzing of Juice-Shop, BackREST indeed triggered a command injection vulnerability
in MarsDB and a denial-of-service in Sequelize. Second, the XSS that were reported in
Apostrophe and Keystone are exploitable only in cases where the JSON response containing
the XSS payload is processed and rendered in HTML. While we argue that returning JSON
objects containing XSS payloads is a dangerous practice because it puts the consumers of the
returned JSON object at risk, developers decided otherwise and did not accept our reports
as vulnerabilities. Third, Mongo-express is a database management console; it deliberately
lets its users inject arbitrary content. Hence, NoSQLi in Mongo-express can be considered as
a feature. Otherwise, the command injection and denial-of-service vulnerabilities in Mongo-
express and its dependencies all translated into 0-days, and so did the denials-of-services in
Apostrophe.

For readers who might not be familiar with the Node.js ecosystem, it is important
to underline how the MongoDB and Sequelize libraries are core to millions of Node.js
applications. At the time of writing, MongoDB4 had 1 671 653 weekly downloads while
Sequelize5 had 648 745. By any standard, these libraries are extremely heavily used, and
well exercised.

4 https://www.npmjs.com/package/mongodb
5 https://www.npmjs.com/package/sequelize

https://www.npmjs.com/package/mongodb
https://www.npmjs.com/package/sequelize

F. Gauthier et al. 29:19

Table 6 Number of vulnerabilities found by BackREST (B), Zap (Z), Arachni (A) and w3af (w3).

Benchmark (No)SQLi Cmd inj. XSS DoS

B Z A w3 B Z A w3 B Z A w3 B Z A w3

Nodegoat 3 3 0 2 3 0 0 3 5 4 2 3 0 0 0 0
Keystone 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Apostrophe 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
Juice-Shop 2 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0
Mongo-express 5 0 0 0 2 0 0 0 0 0 0 0 3 4 3 3

Total 10 4 1 3 6 0 0 3 7 5 2 3 4 4 3 3

Listing 5 Command injection vulnerability in MarsDB.
1 //Juice-Shop code
2 //Implements the /rest/track-order/{id} route
3 db.orders.find({ $where: "this.orderId === '" + req.params.id + "'" }).then(
4 order => { ... },
5 err => { ... }
6);
7

8 //MarsDB code
9 $where: function(selectorValue, matcher) {

10 matcher._recordPathUsed('');
11 matcher._hasWhere = true;
12 if (!(selectorValue instanceof Function)) {
13 selectorValue = Function('obj', 'return ' + selectorValue);
14 }
15 return function(doc) {
16 return {result: selectorValue.call(doc, doc)};
17 }
18 };

6 Case studies

In this section, we detail some of the 0-days we reported in Table 5. We also explain
some JavaScript constructs that might be puzzling to readers who are not familiar with the
language. All the information presented in the following case studies is publicly available
and a fix has been released for all but one of the vulnerabilities we present (MarsDB). In
this particular case, the vulnerability report has been public since Nov 5th, 2019.

6.1 MarsDB command injection
MarsDB is an in-memory database that implements the MongoDB API. Listing 5 shows

the command injection vulnerability in the MarsDB library that BackREST uncovered.
Attacker-controlled input is injected in the client application at line 3, through a request
parameter (bolded). The client application then uses the unsanitised tainted input to build
a MarsDB find query. In Node.js, long-running operations, such as querying a database,
are executed asynchronously. In this example, calling the find method returns a JavaScript
promise that will be resolved asynchronously. Calling the then method of a promise allows
to register handler functions for cases where the promise is fulfilled (line 4) or rejected (line
6). The query eventually reaches the where function of the MarsDB library at line 9 as the
selectorValue argument. That argument is then used at line 13 to dynamically create a
new function from a string. From a security perspective, calling the Function constructor

ECOOP 2022

29:20 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

in JavaScript is roughly equivalent to calling the infamous eval; it dynamically creates a
function from code supplied as a string. The newly created function is then called at line 16,
which triggers the command injection vulnerability [39]. In this particular case, unless the
payload is specifically crafted to: 1. generate a string that is valid JavaScript code, and 2.
induce a side-effect that is observable from the client, it can be very difficult to detect this
vulnerability in a purely blackbox manner. Thanks to taint feedback, BackREST can detect
the command injection as soon as any unsanitised input reaches the Function constructor at
line 16.

6.2 Sequelize DoS
Sequelize is a Node.js Object-Relational Mapper (ORM) for Postgres, MySQL, MariaDB,
SQLite and Microsoft SQL Server. The code in Listing 6 is vulnerable to a DoS attack
that crashes the Node.js server with an uncaught exception. First, an attacker-controllable
SQL query is passed as the sql argument to the run function that executes SQL queries at
line 1. The tainted query is assigned to various variables, the query is executed, and after
its execution is eventually searched for the string “sqlite_master” at line 7, which is a
special table in SQLite. If the search is successful, the query is then searched for the string
“SELECT sql FROM sqlite_master WHERE tbl_name”. If this search is unsuccessful and the
query returned a results object that is not undefined (line 14), the map 6 method is called on
the results object at line 16. This is where the DoS vulnerability lies. If the results object
is not an array, it likely won’t have a map method in its prototype chain, which will throw
an uncaught TypeError and crash the Node.js process [38]. In summary, any request that
includes the string “sqlite_master”, but not “SELECT sql FROM sqlite_master WHERE
tbl_name”, and that returns a single value (i.e. not an array), will crash the underlying
Node.js process.

Listing 6 Denial-of-Service (DoS) vulnerability in Sequelize.
1 run(sql, parameters) {
2 this.sql = sql;
3 const query = this;
4 function afterExecute(err, results) {
5 ...
6 if (query.sql.indexOf('sqlite_master') !== -1) {
7 if (query.sql.indexOf('SELECT sql FROM sqlite_master WHERE tbl_name') !== -1) {
8 result = results;
9 if (result && result[0] && result[0].sql.indexOf('CONSTRAINT') !== -1) {

10 result = query.parseConstraintsFromSql(results[0].sql);
11 }
12 }
13 else if (results !== undefined) {
14 // Throws a TypeError if results is not an array.
15 result = results.map(resultSet => resultSet.name);
16 }
17 else {
18 result = {}
19 }
20 }
21 }
22 }

6 https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/
map

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/map

F. Gauthier et al. 29:21

Listing 7 Denial-of-Service (DoS) vulnerability in Apostrophe.
1 self.routes.list = function(req, res) {
2 if (req.body.format === 'managePage') {
3 ...
4 } else if (req.body.format === 'allIds') {
5 ...
6 }
7 return self.listResponse(req, res, err, results);
8 };

6.3 Apostrophe DoS
Apostrophe is an enterprise content management system (CMS). Listing 7 shows a snippet of
Apostrophe code that is vulnerable to a DoS attack. This code reads the format parameter
of the request body, and checks if it is equal to “managePage” or “allIds”, but misses a
fallback option for cases where it is equal to neither. If this situation occurs, an uncaught
exception is thrown, crashing the server [89].

6.4 Mongo-express command injections
Mongo-express is a MongoDB database management console. In versions prior to 0.54.0,
it was calling an eval-like method with attacker-controllable input, leading to a command
injection vulnerability. While BackREST independently detected this vulnerability, it
was concurrently reported days before our own disclosure [62]. Interestingly, BackREST
then revealed how the fix still enabled command injection. Indeed, the fix was to use the
mongo-db-query-parser library to parse attacker-controlled input. The issue is that the
library is using eval itself. Thanks to taint feedback, BackREST detected that tainted
input was still flowing to an eval call, which we disclosed [92].

6.5 MongoDB DoS

Listing 8 Denial-of-Service (DoS) vulnerability in MongoDB.
1 function createCollection(db, name, options, callback) {
2 ...
3 executeCommand(db, cmd, finalOptions,
4 err => {
5 if (err) return handleCallback(callback, err);
6 handleCallback(
7 callback,
8 null,
9 // Throws an uncaught MongoError if the name argument is invalid

10 new Collection(db, db.s.topology, db.s.databaseName, name,
11 db.s.pkFactory, options)
12);
13 }
14);
15 ...
16 }

MongoDB is a document-based NoSQL database with drivers in several languages.
Listing 8 shows a snippet from the MongoDB driver that has a DoS vulnerability. This
code gets executed when new collections are created in a MongoDB database. If the name

ECOOP 2022

29:22 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

of the collection to be created is attacker-controllable, and the attacker supplies an invalid
collection name, the call to the Collection constructor at line 10 fails and throws an uncaught
MongoError that crashes the Node.js process [49]. The taint feedback loop quickly reports
that a tainted collection name flows to the Collection constructor, enabling BackREST to
trigger the vulnerability faster.

7 Related Work

Web application modelling. Modelling for web applications has a long and rich history
in the software engineering and testing communities. Modelling methods broadly fall into
three main categories: graph-based, UML-based, and FSM-based. Graph-based approaches
focus on extracting navigational graphs from web applications and applying graph-based
algorithms (e.g. strongly connected components, dominators) to gain a better understanding
of the application [102, 31]. UML-based approaches further capture the interactions and flows
of data between the different components of a web application (e.g. web pages, databases,
and server) as a UML model [87, 102, 19]. To facilitate automated test case generation,
FSM-based approaches instead cluster an application into sub-systems, model each with a
finite-state machine and unify them into a hierarchy of FSMs [18]. All these approaches
were designed to model stateful web applications, which were the norm back in the early
2000s. Since then, web development practices evolved, developers realised that building
server-side applications that are as stateless as possible improves maintainability, and the
REST protocol, which encourages statelessness, gained significant popularity.

Grammar inference. Automated learning of grammars from inputs is a complementary and
very promising research area [44, 54, 22]. To efficiently learn a grammar from inputs, however,
current approaches either require: 1. very large datasets of input to learn from ([44]); 2.
highly-structured parser code that reflects the structure of the underlying grammar ([54]); or
3. a reliable oracle to determine whether a given input is well-formed ([22]). Unfortunately,
very few web applications meet any of these criteria, making model inference the only viable
alternative. Compared to synthesised grammars, REST models are also easier to interpret.

Model-based fuzzing. Model-based fuzzing derives input from a user-supplied [82, 21], or
inferred [90, 91, 48, 33, 32] model. Contrary to grammar-based fuzzing [52, 53, 43], input
generation in model-based fuzzing is not constrained by a context-free grammar. While
grammar-based fuzzers generally excel at fuzzing language parsers, model-based fuzzers are
often better suited for higher-level programs with more weakly-structured input.

REST-based fuzzing. Most closely related to our work are REST-based fuzzers. In recent
years, many HTTP fuzzers have been extended to support REST specifications [59, 85, 98, 83,
100], but received comparatively little attention from the academic community. RESTler [21]
is the exception. It uses a user-supplied REST specification as a model for fuzzing REST-
based services in a blackbox manner. To better handle stateful services, RESTler enriches its
model with inferred dependencies between endpoints. As we highlighted in Subsection 5.4,
we haven’t found endpoint dependency inference to have a significant impact on the coverage
of all but one of our benchmark applications. For Mongo-express, we found that the inferred
dependencies were trivial, easily configurable and did not justify the added complexity.

F. Gauthier et al. 29:23

Taint-based fuzzing. Taint-based fuzzing uses dynamic taint analysis to monitor the flow
of attacker-controlled values in the program under test and to guide the fuzzer [37, 23, 67].
Wang et al. [103, 104] use taint analysis to identify the parts of an input that are compared
against checksums. Similarly, Haller et al. use taint analysis to identify inputs that can
trigger buffer overflow vulnerabilities [47], while Vuzzer [86] uses it to identify parts of an
input that are compared against magic bytes or that trigger error code. Taint analysis
has also been used to map input to the parser code that processes it and to infer an input
grammar [53]. More closely related to our work, the KameleonFuzz tool [33] uses taint
inference on the client-side of web applications to detect reflected inputs and exploit cross-site
scripting vulnerabilities. BlackWidow [34] implements several stateful crawling strategies in
combination with client-side taint inference to detect stored and reflected cross-site scripting
vulnerabilities in multi-page PHP applications. To our knowledge, BackREST is the first
web application fuzzer to implement a server-side taint inference feedback loop.

Web application security scanning. The process of exercising an application with automat-
ically generated malformed, or malicious input, which is nowadays known as fuzzing, is also
known as security scanning, attack generation, or vulnerability testing in the web community.
Whitebox security scanning tools include the QED tool [72] that uses goal-directed model
checking to generate SQLi and XSS attacks for Java web applications. The seminal Ardilla
paper [58] presented a whitebox technique to generate SQLi and XSS attacks using taint
analysis, symbolic databases, and an attack pattern library. Ardilla was implemented using
a modified PHP interpreter, tying it to a specific version of the PHP runtime. Similarly,
Wassermann et al. also modified a PHP interpreter to implement a concolic security testing
approach [105]. BackREST instrumentation-based analyses decouples it from the runtime,
making it easier to maintain over time. More recent work on PHP application security
scanning includes Chainsaw [12] and NAVEX [13] that use static analysis to identify vul-
nerable paths to sinks and concolic testing to generate concrete exploits. Unfortunately,
the highly dynamic nature of the JavaScript language makes any kind of static or symbolic
analysis extremely difficult. State-of-the-art static analysis approaches can now handle some
libraries and small applications [95, 75, 60] but concolic testing engines still struggle to handle
more than a thousand lines of code [30, 69, 15]. For this reason, blackbox scanners like
OWASP Zap [4], Arachni [1] or w3af [7], which consist of a crawler coupled with a fuzzing
component, were the only viable option for security scanning of Node.js web applications.
With BackREST, we showed that lightweight coverage and taint inference analyses are
well-suited to dynamic languages for which static analysis is still extremely challenging.

Web vulnerability detection and prevention. In the past two decades, a very large body
of work has focused on detecting and preventing vulnerabilities in web applications. The
seminal paper by Huang et al. introduced the WebSSARI tool [55] that used static analysis to
detect vulnerabilities and runtime protection to secure potentially vulnerable areas of a PHP
application. In their 2005 paper, Livshits and Lam showed how static taint analysis could be
used to detect injection vulnerabilities, such as SQLi and XSS, in Java web applications [68].
The Pixy tool [56] then showed how static taint analysis could be ported, to the PHP language
to detect web vulnerabilities in PHP web applications. The AMNESIA tool [46] introduced
the idea of modelling SQL queries with static analysis and checking them against the model
at runtime. This idea was further formalised by Su et al. [96], applied to XSS detection [99]
and is still used nowadays to counter injection attacks in Node.js applications [94].

ECOOP 2022

29:24 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

JavaScript vulnerability detection. As Web 2.0 technologies gained in popularity, the client-
side of web applications became richer, and researchers started investigating the JavaScript
code that runs in our browsers. It became quickly obvious, however, that existing static
analysis techniques could not be easily ported to JavaScript, and that dynamic techniques
were better suited for highly dynamic JavaScript code [88]. Dynamic taint analysis thus
started to gain popularity, and was particularly successful at detecting client-side DOM-
based XSS vulnerabilities [63, 78]. In the meantime, in 2009, the first release of Node.js,
which brings JavaScript to the server-side, came out, and is now powering millions of web
applications worldwide. Despite its popularity, however, the Node.js platform comparatively
received little attention from the security community [76, 81, 29], with only two studies
addressing injection vulnerabilities [94, 75].

8 Conclusion

We presented BackREST, the first fully automated model-based, coverage- and taint-driven
greybox fuzzer for web applications. BackREST guides a state-aware crawler to automatic-
ally infer REST-like APIs, and uses coverage feedback to avoid fuzzing thoroughly covered
code. BackREST makes a novel use of taint feedback to focus the fuzzing session on likely
vulnerable areas, guide payload generation, and detect more vulnerabilities. Compared to a
baseline version without taint and coverage feedback, BackREST achieved speedups ranging
from 7.4× to 25.9×. BackREST also consistently detected more (No)SQLi, command
injection, and XSS vulnerabilities than three state-of-the-art web fuzzers and detected six
0-days that were missed by all other fuzzers.

Depending on the context in which fuzzing is used, aspects like runtime, or number,
depth, or severity of bugs reported will be prioritised. In our industrial setting, where fuzzing
is used as a nightly security testing tool, time is of essence. By extending a blackbox web
application fuzzer with coverage and taint feedback loops that helps it skip and select inputs,
we showed how it can detect more vulnerabilities faster. In our setting, the initial investment
in development time was quickly absorbed by the time saved during each fuzzing session,
without accounting for the additional bugs found. The analyses we described are simple
enough to be applied to a vast number of existing black-box web application fuzzers and we
hope that our study will trigger further research in this area.

References
1 Arachni. URL: https://www.arachni-scanner.com/.
2 Burp suite. URL: https://portswigger.net/burp.
3 Empirical Evaluation Guidelines. URL: https://www.sigplan.org/Resources/

EmpiricalEvaluation/.
4 OWASP Zed Attack Proxy. URL: https://www.zaproxy.org/.
5 Peach fuzzer community edition. URL: https://www.peach.tech/resources/

peachcommunity/.
6 A python client for swagger enabled rest api. URL: https://github.com/pyopenapi/

pyswagger.
7 w3af. URL: http://w3af.org/.
8 AngularJS. https://angularjs.org/, 2021. Accessed: 2021-02-1.
9 React.js. https://reactjs.org/, 2021. Accessed: 2021-02-1.

10 Stack Overflow Developer Survey. https://insights.stackoverflow.com/survey/2020#
technology-web-frameworks, 2021. Accessed: 2021-02-1.

https://www.arachni-scanner.com/
https://portswigger.net/burp
https://www.sigplan.org/Resources/EmpiricalEvaluation/
https://www.sigplan.org/Resources/EmpiricalEvaluation/
https://www.zaproxy.org/
https://www.peach.tech/resources/peachcommunity/
https://www.peach.tech/resources/peachcommunity/
https://github.com/pyopenapi/pyswagger
https://github.com/pyopenapi/pyswagger
http://w3af.org/
https://angularjs.org/
https://reactjs.org/
https://insights.stackoverflow.com/survey/2020#technology-web-frameworks
https://insights.stackoverflow.com/survey/2020#technology-web-frameworks

F. Gauthier et al. 29:25

11 The ElementTree XML library. https://docs.python.org/3/library/xml.etree.
elementtree.html, 2021. Accessed: 2021-03-24.

12 Abeer Alhuzali, Birhanu Eshete, Rigel Gjomemo, and VN Venkatakrishnan. Chainsaw:
Chained automated workflow-based exploit generation. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 641–652, 2016.

13 Abeer Alhuzali, Rigel Gjomemo, Birhanu Eshete, and VN Venkatakrishnan. {NAVEX}:
Precise and scalable exploit generation for dynamic web applications. In 27th {USENIX}
Security Symposium ({USENIX} Security 18), pages 377–392, 2018.

14 Nicholas Allen, Padmanabhan Krishnan, and Bernhard Scholz. Combining type-analysis with
points-to analysis for analyzing java library source-code. In Proceedings of the 4th ACM
SIGPLAN International Workshop on State Of the Art in Program Analysis, pages 13–18.
ACM, 2015.

15 Roberto Amadini, Mak Andrlon, Graeme Gange, Peter Schachte, Harald Søndergaard, and
Peter J Stuckey. Constraint programming for dynamic symbolic execution of javascript. In
International Conference on Integration of Constraint Programming, Artificial Intelligence,
and Operations Research, pages 1–19. Springer, 2019.

16 Pedram Amini, Aaron Portnoy, and Ryan Sears. Sulley. https://github.com/OpenRCE/
sulley.

17 Krishnan Anantheswaran, Corey Farrell, and contributors. Istanbul: Javascript test coverage
made simple. URL: https://istanbul.js.org/.

18 Anneliese A Andrews, Jeff Offutt, and Roger T Alexander. Testing web applications by
modeling with fsms. Software & Systems Modeling, 4(3):326–345, 2005.

19 Giuliano Antoniol, Massimiliano Di Penta, and Michele Zazzara. Understanding web ap-
plications through dynamic analysis. In Proceedings. 12th IEEE International Workshop on
Program Comprehension, 2004., pages 120–129. IEEE, 2004.

20 Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and Frank Tip. A Framework
for Automated Testing of JavaScript Web Applications. In ICSE, 2011.

21 Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk. Restler: Stateful rest api
fuzzing. In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE),
pages 748–758. IEEE, 2019.

22 Osbert Bastani, Rahul Sharma, Alex Aiken, and Percy Liang. Synthesizing program input
grammars. ACM SIGPLAN Notices, 52(6):95–110, 2017.

23 Sofia Bekrar, Chaouki Bekrar, Roland Groz, and Laurent Mounier. A taint based approach for
smart fuzzing. In 2012 IEEE Fifth International Conference on Software Testing, Verification
and Validation, pages 818–825. IEEE, 2012.

24 Ivan Beschastnikh, Yuriy Brun, Sigurd Schneider, Michael Sloan, and Michael D Ernst.
Leveraging existing instrumentation to automatically infer invariant-constrained models. In
Proceedings of the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering, pages 267–277, 2011.

25 Marcel Böhme, Van-Thuan Pham, Manh-Dung Nguyen, and Abhik Roychoudhury. Directed
greybox fuzzing. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, pages 2329–2344, 2017.

26 Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury. Coverage-based greybox fuzzing
as markov chain. IEEE Transactions on Software Engineering, 45(5):489–506, 2017.

27 Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of haskell
programs. In Proceedings of the fifth ACM SIGPLAN international conference on Functional
programming, pages 268–279, 2000.

28 Aldo Cortesi, Maximilian Hils, Thomas Kriechbaumer, and contributors. mitmproxy: A free
and open source interactive HTTPS proxy, 2010–. [Version 5.1]. URL: https://mitmproxy.
org/.

ECOOP 2022

https://docs.python.org/3/library/xml.etree.elementtree.html
https://docs.python.org/3/library/xml.etree.elementtree.html
https://github.com/OpenRCE/sulley
https://github.com/OpenRCE/sulley
https://istanbul.js.org/
https://mitmproxy.org/
https://mitmproxy.org/

29:26 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

29 James Davis, Arun Thekumparampil, and Dongyoon Lee. Node. fz: Fuzzing the server-side
event-driven architecture. In Proceedings of the Twelfth European Conference on Computer
Systems, pages 145–160, 2017.

30 Monika Dhok, Murali Krishna Ramanathan, and Nishant Sinha. Type-aware concolic testing
of javascript programs. In Proceedings of the 38th International Conference on Software
Engineering, pages 168–179, 2016.

31 Eugenio Di Sciascio, Francesco M Donini, Marina Mongiello, and Giacomo Piscitelli. Anweb:
a system for automatic support to web application verification. In Proceedings of the 14th
international conference on Software engineering and knowledge engineering, pages 609–616,
2002.

32 Adam Doupé, Ludovico Cavedon, Christopher Kruegel, and Giovanni Vigna. Enemy of the
state: A state-aware black-box web vulnerability scanner. In Presented as part of the 21st
{USENIX} Security Symposium ({USENIX} Security 12), pages 523–538, 2012.

33 Fabien Duchene, Sanjay Rawat, Jean-Luc Richier, and Roland Groz. Kameleonfuzz: evolution-
ary fuzzing for black-box xss detection. In Proceedings of the 4th ACM conference on Data
and application security and privacy, pages 37–48, 2014.

34 Benjamin Eriksson, Giancarlo Pellegrino, and Andrei Sabelfeld. Black widow: Blackbox
data-driven web scanning. In 2021 IEEE Symposium on Security and Privacy (SP), pages
1125–1142, 2021.

35 Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Efficient
construction of approximate call graphs for javascript ide services. In 2013 35th International
Conference on Software Engineering (ICSE), pages 752–761. IEEE, 2013.

36 Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li, Zhongyu Pei, and Zuoning
Chen. Collafl: Path sensitive fuzzing. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 679–696. IEEE, 2018.

37 Vijay Ganesh, Tim Leek, and Martin Rinard. Taint-based directed whitebox fuzzing. In 2009
IEEE 31st International Conference on Software Engineering, pages 474–484. IEEE, 2009.

38 Françcois Gauthier. Denial of Service – sequelize. https://www.npmjs.com/advisories/1142.
39 François Gauthier. Command Injection – marsdb. https://www.npmjs.com/advisories/1122.
40 François Gauthier. Denial of Service – apostrophe. https://www.npmjs.com/advisories/

1183.
41 François Gauthier, Behnaz Hassanshahi, and Alexander Jordan. Affogato: Runtime Detection

of Injection Attacks for Node.js. In Companion Proceedings for the ISSTA/ECOOP 2018
Workshops, pages 94–99. ACM, 2018.

42 Patrice Godefroid. Fuzzing: hack, art, and science. Communications of the ACM, 63(2):70–76,
2020.

43 Patrice Godefroid, Adam Kiezun, and Michael Y Levin. Grammar-based whitebox fuzzing. In
Proceedings of the 29th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 206–215, 2008.

44 Patrice Godefroid, Hila Peleg, and Rishabh Singh. Learn&fuzz: Machine learning for input
fuzzing. In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, pages 50–59. IEEE Press, 2017.

45 Brian Hackett and Shu-yu Guo. Fast and precise hybrid type inference for JavaScript. ACM
SIGPLAN Notices, 47(6):239–250, 2012.

46 William GJ Halfond and Alessandro Orso. Amnesia: analysis and monitoring for neutralizing
sql-injection attacks. In Proceedings of the 20th IEEE/ACM international Conference on
Automated software engineering, pages 174–183, 2005.

47 Istvan Haller, Asia Slowinska, Matthias Neugschwandtner, and Herbert Bos. Dowsing for
overflows: A guided fuzzer to find buffer boundary violations. In Presented as part of the 22nd
{USENIX} Security Symposium ({USENIX} Security 13), pages 49–64, 2013.

https://www.npmjs.com/advisories/1142
https://www.npmjs.com/advisories/1122
https://www.npmjs.com/advisories/1183
https://www.npmjs.com/advisories/1183

F. Gauthier et al. 29:27

48 HyungSeok Han and Sang Kil Cha. Imf: Inferred model-based fuzzer. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages 2345–2358,
2017.

49 Behnaz Hassanshahi. Denial of Service – mongodb. https://www.npmjs.com/advisories/
1203.

50 Behnaz Hassanshahi, Hyunjun Lee, and Paddy Krishnan. Gelato: Feedback-driven and guided
security analysis of client-side web applications. In 29th edition of the IEEE International
Conference on Software Analysis, Evolution and Reengineering (SANER), 2022.

51 Marijn Haverbeke. A JavaScript code analyzer for deep, cross-editor language support.
https://ternjs.net/. Accessed: 17-06-2019.

52 Christian Holler, Kim Herzig, and Andreas Zeller. Fuzzing with code fragments. In Presented
as part of the 21st {USENIX} Security Symposium ({USENIX} Security 12), pages 445–458,
2012.

53 Matthias Höschele and Andreas Zeller. Mining input grammars from dynamic taints. In 2016
31st IEEE/ACM International Conference on Automated Software Engineering (ASE), pages
720–725. IEEE, 2016.

54 Matthias Höschele and Andreas Zeller. Mining input grammars with autogram. In Proceedings
of the 39th International Conference on Software Engineering Companion, pages 31–34. IEEE
Press, 2017.

55 Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen Kuo.
Securing web application code by static analysis and runtime protection. In Proceedings of the
13th international conference on World Wide Web, pages 40–52, 2004.

56 Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A static analysis tool for
detecting web application vulnerabilities. In 2006 IEEE Symposium on Security and Privacy
(S&P’06), pages 6–pp. IEEE, 2006.

57 Rody Kersten, Kasper Søe Luckow, and Corina S. Pasareanu. POSTER: afl-based fuzzing
for java with kelinci. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November 03, 2017,
pages 2511–2513. ACM, 2017.

58 Adam Kieyzun, Philip J Guo, Karthick Jayaraman, and Michael D Ernst. Automatic creation
of sql injection and cross-site scripting attacks. In 2009 IEEE 31st international conference on
software engineering, pages 199–209. IEEE, 2009.

59 KissPeter. APIFuzzer. https://github.com/KissPeter/APIFuzzer. Accessed: 04-07-2019.
60 Yoonseok Ko, Xavier Rival, and Sukyoung Ryu. Weakly sensitive analysis for javascript

object-manipulating programs. Software: Practice and Experience, 49(5):840–884, 2019.
61 Erik Krogh Kristensen and Anders Møller. Reasonably-most-general clients for JavaScript

library analysis. In Proceedings of the 41st International Conference on Software Engineering,
pages 83–93. IEEE Press, 2019.

62 Jonathan Leitschuh. Remote Code Execution – mongo-express. https://cve.mitre.org/
cgi-bin/cvename.cgi?name=CVE-2019-10758.

63 Sebastian Lekies, Ben Stock, and Martin Johns. 25 million flows later: Large-scale detection
of dom-based xss. In Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, pages 1193–1204, 2013.

64 Caroline Lemieux, Rohan Padhye, Koushik Sen, and Dawn Song. Perffuzz: Automatically
generating pathological inputs. In Proceedings of the 27th ACM SIGSOFT International
Symposium on Software Testing and Analysis, pages 254–265, 2018.

65 Caroline Lemieux and Koushik Sen. Fairfuzz: A targeted mutation strategy for increasing
greybox fuzz testing coverage. In Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering, pages 475–485, 2018.

66 Yuekang Li, Bihuan Chen, Mahinthan Chandramohan, Shang-Wei Lin, Yang Liu, and Alwen
Tiu. Steelix: program-state based binary fuzzing. In Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, pages 627–637, 2017.

ECOOP 2022

https://www.npmjs.com/advisories/1203
https://www.npmjs.com/advisories/1203
https://ternjs.net/
https://github.com/KissPeter/APIFuzzer
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10758
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-10758

29:28 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

67 Guangcheng Liang, Lejian Liao, Xin Xu, Jianguang Du, Guoqiang Li, and Henglong Zhao.
Effective fuzzing based on dynamic taint analysis. In 2013 Ninth International Conference on
Computational Intelligence and Security, pages 615–619. IEEE, 2013.

68 V Benjamin Livshits and Monica S Lam. Finding security vulnerabilities in java applications
with static analysis. In USENIX Security Symposium, volume 14, pages 18–18, 2005.

69 Blake Loring, Duncan Mitchell, and Johannes Kinder. Expose: practical symbolic execution
of standalone javascript. In Proceedings of the 24th ACM SIGSOFT International SPIN
Symposium on Model Checking of Software, pages 196–199, 2017.

70 Magnus Madsen, Benjamin Livshits, and Michael Fanning. Practical static analysis of
JavaScript applications in the presence of frameworks and libraries. In Proceedings of the 2013
9th Joint Meeting on Foundations of Software Engineering, pages 499–509. ACM, 2013.

71 Trong Nhan Mai. Denial of Service (DoS) – mongo-express. https://snyk.io/vuln/
SNYK-JS-MONGOEXPRESS-1085403.

72 Michael C Martin and Monica S Lam. Automatic generation of xss and sql injection attacks
with goal-directed model checking. In USENIX Security symposium, pages 31–44, 2008.

73 Ali Mesbah, Engin Bozdag, and Arie Van Deursen. Crawling ajax by inferring user interface
state changes. In 2008 Eighth International Conference on Web Engineering, pages 122–134.
IEEE, 2008.

74 Amin Milani Fard and Ali Mesbah. Feedback-directed exploration of web applications to
derive test models. In ISSRE, 2013.

75 Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier. Nodest: feedback-
driven static analysis of node. js applications. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 455–465, 2019.

76 Andres Ojamaa and Karl Düüna. Assessing the security of node. js platform. In 2012
International Conference for Internet Technology and Secured Transactions, pages 348–355.
IEEE, 2012.

77 Rohan Padhye, Caroline Lemieux, and Koushik Sen. JQF: coverage-guided property-based
testing in java. In Dongmei Zhang and Anders Møller, editors, Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis, ISSTA 2019, Beijing,
China, July 15-19, 2019, pages 398–401. ACM, 2019.

78 Inian Parameshwaran, Enrico Budianto, Shweta Shinde, Hung Dang, Atul Sadhu, and Prateek
Saxena. Dexterjs: robust testing platform for dom-based xss vulnerabilities. In Proceedings of
the 2015 10th Joint Meeting on Foundations of Software Engineering, pages 946–949, 2015.

79 Giancarlo Pellegrino, Constantin Tschürtz, Eric Bodden, and Christian Rossow. jÄk: Using
Dynamic Analysis to Crawl and Test Modern Web Applications. In RAID, 2015.

80 Theofilos Petsios, Jason Zhao, Angelos D Keromytis, and Suman Jana. Slowfuzz: Automated
domain-independent detection of algorithmic complexity vulnerabilities. In Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security, pages 2155–2168,
2017.

81 Brian Pfretzschner and Lotfi ben Othmane. Identification of dependency-based attacks on
node. js. In Proceedings of the 12th International Conference on Availability, Reliability and
Security, pages 1–6, 2017.

82 Van-Thuan Pham, Marcel Böhme, and Abhik Roychoudhury. Model-based whitebox fuzzing
for program binaries. In Proceedings of the 31st IEEE/ACM International Conference on
Automated Software Engineering, pages 543–553, 2016.

83 Qualys. Web application scanning. https://www.qualys.com/apps/web-app-scanning/.
Accessed: 04-07-2019.

84 Sazzadur Rahaman, Gang Wang, and Danfeng Yao. Security certification in payment card
industry: Testbeds, measurements, and recommendations. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 481–498, 2019.

https://snyk.io/vuln/SNYK-JS-MONGOEXPRESS-1085403
https://snyk.io/vuln/SNYK-JS-MONGOEXPRESS-1085403
https://www.qualys.com/apps/web-app-scanning/

F. Gauthier et al. 29:29

85 Rapid7. Swagger Utility. https://appspider.help.rapid7.com/docs/swagger-utility. Ac-
cessed: 04-07-2019.

86 Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cristiano Giuffrida, and Herbert
Bos. Vuzzer: Application-aware evolutionary fuzzing. In NDSS, volume 17, pages 1–14, 2017.

87 Filippo Ricca and Paolo Tonella. Analysis and testing of web applications. In Proceedings of
the 23rd International Conference on Software Engineering. ICSE 2001, pages 25–34. IEEE,
2001.

88 Prateek Saxena, Steve Hanna, Pongsin Poosankam, and Dawn Song. Flax: Systematic
discovery of client-side validation vulnerabilities in rich web applications. In NDSS, 2010.

89 Max Schlüter. Server crash on POST request. https://github.com/apostrophecms/
apostrophe/issues/1683.

90 Martin Schneider, Jürgen Großmann, Ina Schieferdecker, and Andrej Pietschker. Online
model-based behavioral fuzzing. In 2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation Workshops, pages 469–475. IEEE, 2013.

91 Martin Schneider, Jürgen Großmann, Nikolay Tcholtchev, Ina Schieferdecker, and Andrej
Pietschker. Behavioral fuzzing operators for uml sequence diagrams. In International Workshop
on System Analysis and Modeling, pages 88–104. Springer, 2012.

92 Ben Selwyn-Smith. Remote Code Execution – mongodb-query-parser. https://www.npmjs.
com/advisories/1448.

93 SmartBear. Openapi specification (fka swagger restful api documentation specification).
https://swagger.io/specification/v2/. Accessed: 04-07-2019.

94 Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. Synode: Understanding
and automatically preventing injection attacks on node.js. In NDSS, 2018.

95 Benno Stein, Benjamin Barslev Nielsen, Bor-Yuh Evan Chang, and Anders Møller. Static
analysis with demand-driven value refinement. Proceedings of the ACM on Programming
Languages, 3(OOPSLA):1–29, 2019.

96 Zhendong Su and Gary Wassermann. The essence of command injection attacks in web
applications. Acm Sigplan Notices, 41(1):372–382, 2006.

97 Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. Efficient dynamic analysis
for node. js. In Proceedings of the 27th International Conference on Compiler Construction,
pages 196–206, 2018.

98 TeeBytes. TnT-Fuzzer. https://github.com/Teebytes/TnT-Fuzzer. Accessed: 04-07-2019.
99 Mike Ter Louw and VN Venkatakrishnan. Blueprint: Robust prevention of cross-site scripting

attacks for existing browsers. In 2009 30th IEEE symposium on security and privacy, pages
331–346. IEEE, 2009.

100 Alexandre Teyar. Swurg. https://github.com/portswigger/openapi-parser. Accessed04-
07-2019.

101 John Toman and Dan Grossman. Concerto: a framework for combined concrete and abstract
interpretation. Proceedings of the ACM on Programming Languages, 3(POPL):43, 2019.

102 Paolo Tonella and Filippo Ricca. Dynamic model extraction and statistical analysis of web
applications. In Proceedings. Fourth International Workshop on Web Site Evolution, pages
43–52. IEEE, 2002.

103 Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Taintscope: A checksum-aware directed
fuzzing tool for automatic software vulnerability detection. In 2010 IEEE Symposium on
Security and Privacy, pages 497–512. IEEE, 2010.

104 Tielei Wang, Tao Wei, Guofei Gu, and Wei Zou. Checksum-aware fuzzing combined with
dynamic taint analysis and symbolic execution. ACM Transactions on Information and System
Security (TISSEC), 14(2):1–28, 2011.

105 Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi Inamura, and
Zhendong Su. Dynamic test input generation for web applications. In Proceedings of the 2008
international symposium on Software testing and analysis, pages 249–260, 2008.

ECOOP 2022

https://appspider.help.rapid7.com/docs/swagger-utility
https://github.com/apostrophecms/apostrophe/issues/1683
https://github.com/apostrophecms/apostrophe/issues/1683
https://www.npmjs.com/advisories/1448
https://www.npmjs.com/advisories/1448
https://swagger.io/specification/v2/
https://github.com/Teebytes/TnT-Fuzzer
https://github.com/portswigger/openapi-parser

29:30 Experience: Model-Based, Feedback-Driven, Greybox Web Fuzzing with BackREST

106 Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq,
Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One vm to rule them
all. In Proceedings of the 2013 ACM international symposium on New ideas, new paradigms,
and reflections on programming & software, pages 187–204, 2013.

107 Michal Zalewski. American fuzzy lop. http://lcamtuf.coredump.cx/afl/, 2015.

http://lcamtuf.coredump.cx/afl/

Qilin: A New Framework For
Supporting Fine-Grained Context-Sensitivity
in Java Pointer Analysis
Dongjie He #

The University of New South Wales, Sydney, Australia

Jingbo Lu #

The University of New South Wales, Sydney, Australia

Jingling Xue #

The University of New South Wales, Sydney, Australia

Abstract
Existing whole-program context-sensitive pointer analysis frameworks for Java, which were open-
sourced over one decade ago, were designed and implemented to support only method-level context-
sensitivity (where all the variables/objects in a method are qualified by a common context abstraction
representing a context under which the method is analyzed). We introduce Qilin as a generalized
(modern) alternative, which has been open-sourced on GitHub, to support the current research
trend on exploring fine-grained context-sensitivity (including variable-level context-sensitivity
where different variables/objects in a method can be analyzed under different context abstractions
at the variable level), precisely, efficiently, and modularly. To meet these four design goals,
Qilin is developed as an imperative framework (implemented in Java) consisting of a fine-grained
pointer analysis kernel with parameterized context-sensitivity that supports on-the-fly call graph
construction and exception analysis, solved iteratively based on a new carefully-crafted incremental
worklist-based constraint solver, on top of its handlers for complex Java features.

We have evaluated Qilin extensively using a set of 12 representative Java programs (popularly
used in the literature). For method-level context-sensitive analyses, we compare Qilin with Doop (a
declarative framework that defines the state-of-the-art), Qilin yields logically the same precision but
more efficiently (e.g., 2.4x faster for four typical baselines considered, on average). For fine-grained
context-sensitive analyses (which are not currently supported by open-source Java pointer analysis
frameworks such as Doop), we show that Qilin allows seven recent approaches to be instantiated
effectively in our parameterized framework, requiring additionally only an average of 50 LOC each.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases Pointer Analysis, Fine-Grained Context Sensitivity

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.30

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.6

Funding Supported by ARC Grants DP180104069 and DP210102409.

Acknowledgements We thank all the reviewers for their constructive comments.

1 Introduction

Pointer analysis, which approximates statically the possible run-time objects that may be
pointed to by a variable in a program, is the basis of nearly all the other static program
analyses. There are many significant applications, including call graph construction [23, 1, 38],
program understanding [46, 36], bug detection [34, 55, 27, 10], security analysis [4, 11, 13],
compiler optimization [9, 47], and symbolic execution [52, 21, 51].

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Dongjie He, Jingbo Lu, and Jingling Xue;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 30; pp. 30:1–30:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dongjieh@cse.unsw.edu.au
mailto:jlu@cse.unsw.edu.au
mailto:jingling@cse.unsw.edu.au
https://doi.org/10.4230/LIPIcs.ECOOP.2022.30
https://doi.org/10.4230/DARTS.8.2.6
https://doi.org/10.4230/DARTS.8.2.6
https://doi.org/10.4230/DARTS.8.2.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

For object-oriented languages, context-sensitive pointer analyses are the most common
class of precise pointer analyses [48, 32, 23, 42, 44]. Existing (whole-program) pointer analysis
frameworks for Java, such as Doop [8], Wala [16], Jchord [34], and Paddle [24], were all
designed and implemented over a decade ago by supporting method-level context-sensitivity
only. For these traditional frameworks, when a method is analyzed under a given context
abstraction (e.g., a k-limited context string [41] with k being fixed for the program), all the
variables/objects in the method are analyzed uniformly under that given context abstraction.

For the past decade, Doop has been the most widely used context-sensitive pointer
analysis framework for Java [42, 22, 43, 48, 49, 26, 17, 18, 19]. Doop encodes a pointer
analysis declaratively by using Datalog (a logic-based language) to define pointer-related
relations (in terms of Datalog rules) and a Datalog engine to infer the points-to facts. Thus,
its performance is largely determined by the Datalog engine used and can be also sensitive
to both automatic and manual optimizations applied to the Datalog rules. For example,
a recent Datalog engine porting effort for replacing LogicBlox with Soufflé [20, 39] has
boosted its performance by up to 4x [3]. When it was released in 2009 [8], Doop was
shown to outperform Paddle [24] (the then state-of-the-art framework with the core of its
pointer analysis algorithm performed in Datalog declaratively but the rest coded in Java
imperatively) significantly. In addition, Doop was then argued to cost less human effort in
implementing different pointer analyses with different flavors of context-sensitivity as they
can all be specified modularly as variations on a common code base.

Currently, one emerging research trend is shaping the future of research on context-
sensitive pointer analyses. To analyze large programs more scalably with more flexible
efficiency/precision trade-offs, context-sensitivity is becoming increasingly more fine-grained.
Method-level context-sensitivity can now be selective [43, 19, 25] (with only a subset of
methods in the program being analyzed context-sensitively) or partial [30, 14] (with only
a subset of variables/objects in a method being analyzed context-sensitively). In the
future, pointer analysis frameworks are expected to support variable-level context-sensitivity,
which allows different variables/objects in a method to be analyzed under different context
abstractions, in order to enlarge the space of efficiency/precision trade-offs made. As for
the option of extending Doop to support such fine-grained context-sensitivity, we have
made significant efforts, but its resulting performance can often be disappointing due to
possibly poor join orders selected by its underlying Soufflé Datalog engine [39, 20] used.
Understandably, while the authors of [43, 19, 25] implemented trivially their selective method-
level context-sensitivity in Doop and observed the desired efficiency/precision trade-offs,
the authors of [30, 14] had to settle with some in-house implementations of their partial
method-level context-sensitivity in Soot [23] imperatively in order to achieve the expected
efficiency/precision trade-offs.

We introduce Qilin, a modern framework (implemented imperatively in Java) for sup-
porting Java pointer analyses with (1) fine-grained context-sensitivity, (2) precisely, (3)
efficiently, and (4) modularly. How to support (1) subject to (2) – (4) is nontrivial both
scientifically and engineering-wise and was not done before. For example, achieving (3) and
(4) requires Qilin to adopt new scientific approaches to specify and conduct pointer analysis
when different variables/objects in a method are analyzed under different context abstractions
imperatively. Achieving (2) requires Qilin to handle the full semantic complexity of Java,
involving huge engineering efforts. Given that Doop has been tuned for supporting method-
level context-sensitivity for over a decade, can Qilin outperform Doop while achieving the
same precision? In addition, can Qilin support a variety of fine-grained context-sensitivity
well? Qilin addresses these challenges, making the following contributions:

D. He, J. Lu, and J. Xue 30:3

Qilin represents the first imperative Java pointer analysis framework for supporting
fine-grained context-sensitivity, precisely, efficiently and modularly.
Qilin achieves its efficiency and modularity by decoupling the analysis logic for a given
analysis algorithm from its implementation in the following novel way:

Qilin includes a pointer analysis kernel (supporting both on-the-fly call graph con-
struction and on-the-fly exception analysis) with parameterized fine-grained context-
sensitivity, allowing different flavors (i.e., granularities) of fine-grained context-sensitivity
to be specified (i.e., instantiated) modularly as variations on a common code base
(even in the fully imperative setting).
Qilin includes a new incremental worklist-based constraint solver that has been
generalized in a non-trivial manner from a traditional incremental worklist-based
constraint solver for supporting context-insensitive pointer analyses [23]. As existing
solvers are limited to method-level context-sensitivity, we have crafted our solver
carefully in order to support fine-grained context-sensitive pointer analyses efficiently.

Qilin covers the same complex Java features and semantic complexities (e.g., reflection,
native code, threads, etc.) as Doop, delivering the same analysis precision.
Qilin anchors around it a tool suite consisting of not only all method-level context-
sensitive analyses supported by Doop but also a wide range of fine-grained analyses.
Qilin is evaluated with a set of 12 representative Java benchmarks and applications
(popularly used in the literature). For method-level context-sensitive analyses, Qilin
(which is currently single-threaded) is 2.4x faster than Doop (running with 8 threads
under its best thread configuration) for four typical baselines considered on average while
achieving exactly the same precision. Unlike Doop, Qilin supports effectively fine-grained
context-sensitive analyses, by enabling seven recent approaches to be instantiated in its
parameterized framework with an average of 50 LOC being added only.

Qilin is designed to be an open-source project (released at https://github.com/QiLinPTA/
QiLin/), consisting of currently about 20.3 KLOC in Java (including 4.7 KLOC only at its
core for performing parameterized pointer analysis). As a highly-configurable pointer analysis
framework, Qilin provides benefits for both researchers and end users. For researchers, Qilin
can help them both experiment with new ideas more quickly than if they have to conduct
their own in-house implementations of their pointer analysis algorithms as in [14, 28, 15] and
evaluate their ideas by making an apples-to-apples comparison against the state of the art in
the same framework. For end users, Qilin can help them build their client application tools,
such as bug detectors and program verifiers, by choosing some existing configured pointer
analyses that are best suited to their needs. We plan to grow and maintain this open-source
pointer analysis framework on GitHub to provide a common framework for researchers and
practitioners to design, implement and evaluate different analyses for Java programs.

The rest of this paper is organized as follows. Section 2 provides some background
knowledge and motivates this work. Section 3 introduces our Qilin framework. In Section 4,
we demonstrate how to create, i.e., instantiate a number of fine-grained context-sensitive
pointer analyses modularly in Qilin. Section 5 provides an extensive evaluation of Qilin.
Section 6 discusses the related work. Finally, Section 7 concludes the paper.

2 Background and Motivation

We discuss context-sensitive pointer analyses by first reviewing method-level context-
sensitivity and then motivating its generalization to variable-level context-sensitivity.

ECOOP 2022

https://github.com/QiLinPTA/QiLin/
https://github.com/QiLinPTA/QiLin/

30:4 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

2.1 Method-Level Context-Sensitivity

Traditionally, context-sensitive approaches analyze a method separately under different
calling contexts that abstract its different run-time invocations. Under such method-level
context-sensitivity, whenever a method is analyzed for a given context, all its (local) variables
and (allocated) objects are qualified by, i.e., analyzed under that context. For object-
oriented languages, two common context abstractions are callsites (callsite-sensitivity [40])
and receiver objects, or precisely, their allocation sites (object-sensitivity [32, 33]). The two
other variations are type-sensitivity [42] and hybrid sensitivity [22].

To tame the combinatorial explosion of contexts encountered in practice, a context is often
represented by a k-limited context string, i.e., a sequence of k context elements [41]. Under
k-limiting, two representative forms of context-sensitivity for object-oriented languages are:
(1) k-callsite-sensitivity [40], which distinguishes the contexts of a method by its k-most-recent
callsites, and (2) k-object-sensitivity [32, 33]), which distinguishes the contexts of a method
by its receiver’s k-most-recent allocation sites.

Despite k-limiting, the context explosion problem still occurs frequently in analyzing
large programs [42, 48, 19], causing context-sensitive pointer analyses to be inefficient even
when they are scalable (for usually only small values of k). Instead of applying k-limiting
uniformly (with a fixed value of k) to all the methods (i.e., all the variables/objects) in
the program, researchers have recently demonstrated that making context-sensitivity more
fine-grained can lead to more flexible efficiency/precision trade-offs and better scalability.
As a result, method-level context-sensitivity can now be selective [43, 19, 25] (with a subset
of methods in the program being analyzed context-sensitively) and partial [30, 14] (with a
subset of variables/objects in a method being analyzed context-sensitively).

2.2 Variable-Level Context-Sensitivity

In the future, variable-level context-sensitivity (that includes naturally method-level context-
sensitivity as a special case) can be investigated by using Qilin. Under such fine-grained
context-sensitivity in its full generality, different variables/objects in a method can be analyzed
under different contexts (e.g., different k-limited context strings with different values of k).
This will significantly enlarge the space of context-sensitive pointer analyses that researchers
and practitioners can experiment with in order to achieve the most flexible efficiency/precision
trade-offs and best scalability possible for their pointer analysis problems considered.

1 class A { Object f; }
2 class B {
3 Object foo(Object x, A a) {
4 a.f = x;
5 Object t = a.f;
6 System.out.print(t);
7 return x; }
8 }

9 void main() {
10 Object o1 = new Object(); // O1
11 B b1 = new B(); // B1
12 A a1 = new A(); // A1
13 Object v1 = b1.foo(o1, a1);
14 Object o2 = new Object(); // O2
15 B b2 = new B(); // B2
16 Object v2 = b2.foo(o2, a1);}

Figure 1 A motivating example program.

D. He, J. Lu, and J. Xue 30:5

2.3 Example
Consider a simple program given in Figure 1, where foo() is called twice, once on receiver B1
in line 13 and once on receiver B2 in line 16. If the program is analyzed context-insensitively,
these two calls will be conflated, and consequently, the parameter x will also be conflated,
preventing the analysis from proving that the two calls actually return two distinct objects (i.e.,
O1 and O2). As a result, v1 and v2 are concluded to point to both O1 and O2 conservatively.

However, a context-sensitive analysis that distinguishes the two calls will be able to infer
that v1 points to O1 only and v2 points to O2 only. Without loss of generality, let us consider
1-object-sensitivity [32, 33], under which these two calls will be distinguished by its two
different receiver objects, B1 and B2, used. Thus, under method-level context-sensitivity,
foo() is analyzed twice, with its four variables this, x, a and t being analyzed once under
context [B1] and once under context [B2]. As the contexts of its parameter x are distinguished
under the two calls, v1 is found to point to O1, i.e., the object pointed to by x under [B1],
and similarly, v2 is found to point to O2, i.e., the object pointed to by x under [B2].

However, applying method-level context-sensitivity to foo() in this program is overkill.
Under fine-grained context-sensitivity, we can conduct 1-object-sensitive analysis to foo()
exactly as before except that we only need to distinguish its parameter x context-sensitively.
Note that all the variables/objects in main() are naturally context-insensitive. By analyzing
only x in this program context-sensitively, the resulting fine-grained analysis will be faster
while losing no precision at all for all its variables/objects.

3 Designing the Qilin Framework

Figure 2 gives the architecture of Qilin, built on top of Soot [53], for supporting fine-
grained context-sensitive pointer analysis for Java programs. Currently, Qilin’s toolbox (1)
includes not only all the method-level context-sensitive pointer analyses that are supported
by Doop [8] but also a range of recently proposed representative fine-grained analyses, as
will be elaborated in Section 4. In this section, we describe how Qilin is designed to support
fine-grained context-sensitivity, precisely, efficiently and modularly in terms of its four major
components depicted at 2 – 5 . In Section 3.1, we explain how we parameterize variable-level
context-sensitivity to allow different flavors of context-sensitive analyses to be specified
modularly (2). We then formalize our parameterized pointer analysis in Section 3.2 (3)
and introduce our new incremental worklist-based constraint solver for solving it efficiently
in Section 3.3 (4). In Section 3.4, we describe how Qilin covers complex Java features in
order to support pointer analyses precisely for real-world Java programs (5).

It should be pointed out that in Qilin, all the pointer analyses (including what is provided
in its toolbox (1)) are instantiated (concretized) in terms of 2 as variations on a common
code base consisting of 3 – 5 , even though Qilin is implemented imperatively in Java.

3.1 Parameterized Context-Sensitivity
In Qilin, as depicted at 2 in Figure 2, context-sensitivity for a given analysis is defined by
a set of three parameters, a context constructor, a context selector, and a heap abstractor,
each of which can be instantiated to support different flavors (i.e., granularities) of context-
sensitivity from the method level to the variable level.

The context constructor, denoted Cons, is used to create the contexts required for analyzing
a method in the traditional manner. Therefore, this parameter alone will be sufficient to
specify different flavors of method-level context sensitivity considered traditionally, including

ECOOP 2022

30:6 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

Context SelectorContext Constructor

Soot: A Java Optimization and Analysis Framework

Parameterized
Fine-Grained

Context-Sensitivity

On-the-Fly
Exception Analysis

On-the-Fly Call
Graph Construction

Parameterized Pointer Analysis Kernel

Insens Callsite Object

TypeHybrid Selective Partial

Concretized Pointer Analyses (toolbox)

kCFA kOBJ Mahjong

TurnerEagle Data-Driven ...

insens

Zipper

kTYPE Hybrid

... ...

Heap Abstractor

Allocation-Site

Type-Consistent ...

Context-Tunneling

Bean

Incremental Worklist-based Solver for Fine-Grained Context-Sensitivity

Handlers for Complex Java Features

Uniform Heuristic Heuristic

1

2

3

4

5

Conch

Figure 2 The architecture of Qilin.

“Insens”, “CallSite”, “Object”, “Type”, and “Hybrid”, which will be instantiated in Section 4.1.
The context selector, denoted Sel, is used to define the contexts required for analyzing
variables/objects (based on the contexts of their containing methods specified by Cons) to
support fine-grained context-sensitivity, including “Uniform”, “Heuristic”, “Selective”, and
“Partial”, which will be instantiated in Section 4.2. The heap abstractor, denoted HeapAbs,
is used to define an abstraction of the objects in the heap, including “Allocation Site”,
“Heuristic”, and “Type-Consistent”, which will be instantiated in Section 4.3.

As context-sensitivity is parameterized (2), an understanding about its actual instanti-
ations is not needed now in order to understand its other three components (3 – 5), which
will be described in turn below.

3.2 Parameterized Pointer Analysis
We describe our parameterized pointer analysis (3 in Figure 2) that supports on-the-fly
call graph construction [23] and exception analysis [7] by considering a simplified subset
of Java, with only eight kinds of labeled statements given in Table 1. Note that “x =
new T (...)” in standard Java is modeled as “x = new T ; x.<init>(...)”, where <init>(...)

D. He, J. Lu, and J. Xue 30:7

is the corresponding constructor invoked. The control flow statements are not considered
because Qilin supports only context-sensitive analyses just as Doop [8]. In our formalism
(for simplicity and without loss of generality), every method is assumed to have one return
statement “return ret”, where ret is its return variable, and one special catch statement
“catch eret” for catching all throwable objects thrown out of the method.

Table 1 Eight kinds of statements analyzed by Qilin.

Kind Statement Kind Statement
new l ∶ x = new T assign l ∶ x = y

store l ∶ x.f = y load l ∶ x = y.f

throw l ∶ throw x catch l ∶ catch y

call l ∶ x = a0.f(a1, ..., ar) return l ∶ return ret

Let V, H, T, M, F, and L be the domains for representing sets of variables, heap abstrac-
tions, types, methods, field names, and statements (identified by their labels), respectively.
Let C be the universe of contexts. The following auxiliary functions are used:

PTS ∶ (V ∪H × F) × C → ℘(H × C)
MethodOf ∶ L → M
Stmt ∶ M → ℘(L)
MethodCtx ∶ M → ℘(C)
VirtualCallDispatch ∶ M ×H → M
ExceptionDispatch ∶ L ×H → L
Cons ∶ H × C × L × C → C
Sel ∶ (V ∪H) × C ↦ C
HeapAbs ∶ L × T ↦ H

where PTS records the points-to information found context-sensitively for a variable or an
object’s field, MethodOf gives the method containing a statement, Stmt returns the statements
in a method, and MethodCtx maintains the contexts used for analyzing a method. As the
pointer analysis is conducted together with both the call graph construction and exception
analysis performed on the fly, we use VirtualCallDispatch to resolve a virtual call to a
target method based on the dynamic type of the receiver object, and ExceptionDispatch to
resolve a throwable statement to a catch statement by tracing the exception-catch links [7].
Cons, Sel and HeapAbs are three significant parameters described in Section 3.1. Cons
describes how to construct a new context for a method, Sel selects some context elements
from the context of a method to form a new context for a variable declared (or object
allocated) in the method, and HeapAbs defines the heap abstraction for an object. We will
discuss their instantiations for supporting different analysis algorithms in Section 4.

Figure 3 gives six rules used for formalizing our parameterized pointer analysis that
supports both call graph construction and exception analysis on the fly. In [New], o ∈ H is an
abstract heap object created by HeapAbs. Rules [Assign], [Load] and [Store] for handling
assignments, loads and stores, respectively, are standard. In [Throw], a throwable object o

pointed by variable x is dispatched to its corresponding catch trap along the exception-catch
links [7]. In [Call], a call to an instance method x = a0.f(a1, ..., ar) is analyzed. Here, this

m
′

,
p

m
′

i , and ret
m

′

are the “this” variable, i-th parameter, and return variable of m
′, respectively,

where m
′ is a target method resolved. In the conclusion of this rule, ctx

′
∈ MethodCtx(m′)

reveals how the contexts of a method are maintained. Initially, the contexts of all the entry
methods are set to be empty, e.g., MethodCtx(“main”) = {[]}. To simulate Java’s run-time

ECOOP 2022

30:8 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

l ∶ x = new T o = HeapAbs(l, T) m = MethodOf(l) ctx ∈ MethodCtx(m)
(o, Sel(o, ctx)) ∈ PTS(x, Sel(x, ctx))

[New]

l ∶ x = y m = MethodOf(l) ctx ∈ MethodCtx(m)
PTS(y, Sel(y, ctx)) ⊆ PTS(x, Sel(x, ctx))

[Assign]

l ∶ x = y.f m = MethodOf(l) ctx ∈ MethodCtx(m) (o, htx) ∈ PTS(y, Sel(y, ctx))
PTS(o.f, htx) ⊆ PTS(x, Sel(x, ctx))

[Load]

l ∶ x.f = y m = MethodOf(l) ctx ∈ MethodCtx(m) (o, htx) ∈ PTS(x, Sel(x, ctx))
PTS(y, Sel(y, ctx)) ⊆ PTS(o.f, htx)

[Store]

l ∶ throw x m = MethodOf(l) ctx ∈ MethodCtx(m)
(o, htx) ∈ PTS(x, Sel(x, ctx)) l

′ ∶ catch y = ExceptionDispatch(l, o)
(o, htx) ∈ PTS(y, Sel(y, ctx))

[Throw]

l ∶ x = a0.f(a1, ..., ar) m = MethodOf(l) ctx ∈ MethodCtx(m) l
′ ∶ throw tl ∈ Stmt(m)

(o, htx) ∈ PTS(a0, Sel(a0, ctx)) m
′
= VirtualCallDispatch(f, o) ctx

′
= Cons(o, htx, l, ctx)

ctx
′
∈ MethodCtx(m′) (o, htx) ∈ PTS(this

m
′

, Sel(this
m

′

, ctx
′))

∀i ∈ [1, r] ∶ PTS(ai, Sel(ai, ctx)) ⊆ PTS(pm
′

i , Sel(pm
′

i , ctx
′))

PTS(eret
m

′

, Sel(eret
m

′

, ctx
′)) ⊆ PTS(tl, Sel(tl, ctx)) PTS(ret

m
′

, Sel(ret
m

′

, ctx
′)) ⊆ PTS(x, Sel(x, ctx))

[Call]

Figure 3 Rules for defining Qilin’s parameterized pointer analysis.

semantic for re-throwing the exception objects (not handled in m
′) caused by its special

catch statement “catch eret
′”, we associate a unique throw statement, l

′ ∶ throw tl, with
the callsite l, where tl is a special local variable in m for receiving these exception objects.

3.3 A High-Performance Incremental Worklist-based Solver
Doop [8] is declarative and uses a Datalog engine, e.g., Soufflé [20, 39] to compute the
points-to facts for a pointer analysis. As Qilin is imperative, we have developed a new high-
performance worklist-based constraint solver (depicted at 4 in Figure 2), which is currently
single-threaded, for performing fine-grained context-sensitive pointer analyses (including
variable-level context-sensitive pointer analyses in its full generality). When designing
and implementing this constraint solver, we leverage an incremental worklist algorithm
[23] suggested originally for resolving Andersen’s context-insensitive pointer analysis [2].
However, we would like to stress that the basic algorithm used in our incremental worklist-
based constraint solver is new, since variable-level context-sensitive pointer analyses require
some points-to facts to be propagated in a way that does not exist traditionally before, as
highlighted in Theorem 1. We will prove its correctness in Theorem 2 and illustrate its key
part in supporting fine-grained context-sensitivity by using two examples (Tables 2 and 3).

Given a program P , we write EntryOf(P) to represent the set of its entry methods
(including main()). To compute the points-to set PTS(p, c) iteratively, where p ∈ V ∪H × F
and c ∈ C, according to the rules given in Figure 3, we use four additional sets to represent four
other kinds of context-sensitive facts that are also computed iteratively: (1) PAG (containing
the currently discovered constraints expressed in terms of the assign, load and store edges in
a PAG (Pointer Assignment Graph [23]), (2) CALL (containing the currently discovered call
statements), (3) THROW (containing the currently discovered throw statements), and (4) RM
(containing the (transitively) reachable methods found from EntryOf(P) so far).

D. He, J. Lu, and J. Xue 30:9

For each of these five sets, denoted IS, we represent it as an incremental set [23] by
dividing it into an “old” part (ISold) and a “new” part (ISnew), so that IS = ISold ∪ ISnew,
denoted also ⟨ISold, ISnew⟩. At some point during the current iteration of an incremental
worklist algorithm, FlushNew(IS) is called to flush ISnew into ISold, meaning that ISold ←

ISold ∪ ISnew and ISnew ← ∅ are performed sequentially in that order. For notational
convenience, we will write S

∪
←− T as a shorthand for S ← S ∪ T , where S and T are sets.

When computing the points-to facts iteratively for a pointer analysis, generalizing from
method-level to variable-level context-sensitivity introduces one additional subtlety as sum-
marized below, affecting the design of an incremental worklist-based constraint solver.

▶ Theorem 1. Let method m (containing variable v) be analyzed under a new context
c. Then PTS(v, Sel(v, c))old = ∅ always holds under method-level context-sensitivity but
PTS(v, Sel(v, c))old ≠ ∅ may hold under variable-level context-sensitivity.

Proof. Let c
′ be a context under which m was analyzed earlier. Under method-level

context-sensitivity, Sel(v, c) = c and Sel(v, c
′) = c

′. As c ≠ c
′, Sel(v, c) ≠ Sel(v, c

′).
Hence, PTS(v, Sel(v, c))old = ∅ (as ⟨v, Sel(v, c)⟩ is new and has never been analyzed
before). Under variable-level context-sensitivity, Sel(v, c) = Sel(v, c

′) may hold. Thus,
PTS(v, Sel(v, c))old ≠ ∅ can hold if ⟨v, Sel(v, c)⟩ has been already analyzed earlier. ◀

Our incremental worklist-based constraint solver, given in Algorithm 1, takes a program
P as input and applies the rules in Figure 3 to compute PTS as output, by performing both
call graph construction and exception analysis on the fly. During the initialization (lines 1-5),
RM is initialized with the entry methods in EntryOf(P). ProcessStmts (lines 46-62) is called
to initialize PTS, PAG, THROW and CALL with the points-to facts, three kinds of PAG edges,
throw statements, and call statements found in these entry methods, respectively. Note that
in line 61, l

′ ∶ throw tl is used for handling the exception objects thrown at callsite l, as
discussed in Section 3.2. At this stage, the worklist W contains all the variables initialized to
point to all the newly created objects (lines 48-50 ([New]) and lines 22-25).

The main loop (lines 6-20) discovers the points-to facts in the program iteratively. During
each iteration, W contains a set of context-sensitive pointers p (variables or object fields)
whose newly found points-to facts in PTS(p)new need to be propagated to their successors in
PAG (i.e., PAGold ∪ PAGnew). Due to Theorem 1, however, for some context-sensitive pointer
q that no longer appears in W, such that o ∈ PTS(q)old and f is a field of o, we may also
need to propagate the points-to facts in PTS(q)old and/or PTS(o.f)old to their newly found
successors in PAGnew or from some newly found predecessors of o.f in PAGnew to PTS(o.f)new.

During each iteration of the main loop (lines 6-20), we remove one such pointer curr from
W and perform a four-step points-to fact propagation in the current iteration as follows:

Step 1: Resolving Direct Constraints (lines 8-11). We resolve direct constraints
by applying two rules in Figure 3: [Assign] (lines 8-9) and [Throw] (lines 10-11).
In handling an outgoing assign edge at curr , we propagate the new points-to facts in
PTS(curr)new to the successor of curr along this outgoing assign edge (lines 22-25). In
handling a throw for curr , a thrown object is passed to the variable in its exception
handler (lines 26-29).
Step 2: Resolving Indirect Constraints (lines 12-15). We resolve indirect con-
straints by applying also two rules in Figure 3: [Load] (lines 12-13) and [Store] (lines 14-
15). In handling load and store edges (lines 30-37), new assign edges are introduced in
PAG (lines 33 and 37) to make their underlying assignment semantics explicit.
Step 3: Collecting New Constraints (lines 16-19). We discover new reachable
methods by first calling HandleCall to analyze the calls with curr as their receiver
variable ([Call]) and then adding the new constraints for these new methods by calling

ECOOP 2022

30:10 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

Algorithm 1 Qilin’s incremental worklist-based constraint solver (implemented using
incremental sets [23]) for supporting pointer analyses with fine-grained context-sensitivity.

1

Input: P // Input program

Output: PTS // Points-to Sets

2 ∀(v, c) ∈ V × C ∶ PTS(v, Sel(v, c)) ← ⟨∅,∅⟩

3 THROW ← CALL ← PAG ← ⟨∅,∅⟩

4 W ← ∅

5 RM ← ⟨∅, {⟨me, []⟩ ∣ me ∈ EntryOf(P)}⟩

6 ProcessStmts ()

7 while W ≠ ∅ do

8 curr ← Poll(W) // curr ∈ (V ∪H × F) × C

/* Step 1: Resolving Direct Constraints */

9 for curr
assign
−−−−→ ⟨x, c⟩ ∈ PAG do

10 PropPTS(⟨x, c⟩, PTS(curr)new)

11 for ⟨l ∶ throw y, c⟩ ∈ THROW, s.t., curr = ⟨y, Sel(y, c)⟩ do

12 HandleThrow(l, curr, “new”)

/* Step 2: Resolving Indirect Constraints */

13 for curr
load[f]
−−−−→ ⟨x, c⟩ ∈ PAG do

14 HandleLoad(curr
load[f]
−−−−→ ⟨x, c⟩, “new”)

15 for ⟨x, c⟩ store[f]
−−−−→ curr ∈ PAG do

16 HandleStore(⟨x, c⟩ store[f]
−−−−→ curr, “new”)

/* Step 3: Collecting New Constraints */

17 for ⟨l ∶ x = a0.f(⋯), c⟩ ∈ CALL, s.t., curr = ⟨a0, Sel(a0, c)⟩ do

18 HandleCall(l ∶ x = a0.f(⋯), c, “new”)

19 ProcessStmts()

20 FlushNew(PTS(curr))

/* Step 4: Activating New Constraints */

21 ActivateConstraints()

22 return PTS

23 Function PropPTS(⟨x, c⟩, s):

24 if ∃ ⟨o, htx⟩ ∈ s \ PTS(x, c) then

25 PTS(x, c)new
∪
←− s \ PTS(x, c)

26 W
∪
←− {⟨x, c⟩}

27 Function HandleThrow(l, ⟨y, c⟩, i):

28 for ⟨o, htx⟩ ∈ PTS(y, c)i do

29 l
′ ∶ catch x ← ExceptionDispatch(l, o)

30 PropPTS(⟨x, Sel(x, c)⟩, {⟨o, htx⟩})

31 Function HandleLoad(⟨y, c⟩ load[f]
−−−−→ ⟨x, c

′⟩, i):

32 for ⟨o, htx⟩ ∈ PTS(y, c)i do

33 if ⟨o.f, htx⟩ assign
−−−−→ ⟨x, c

′⟩ ∉ PAG then

34 PAGnew
∪
←− {⟨o.f, htx⟩ assign

−−−−→ ⟨x, c
′⟩}

35 Function HandleStore(⟨y, c⟩ store[f]
−−−−→ ⟨x, c

′⟩, i):

36 for ⟨o, htx⟩ ∈ PTS(x, c
′)i do

37 if ⟨y, c⟩ assign
−−−−→ ⟨o.f, htx⟩ ∉ PAG then

38 PAGnew
∪
←− {⟨y, c⟩ assign

−−−−→ ⟨o.f, htx⟩}

39 Function HandleCall(l ∶ x = a0.f(a1,⋯, ar), c, i):

40 for ⟨o, htx⟩ ∈ PTS(a0, Sel(a0, c))i do

41 m
′
← VirtualCallDispatch(f, o), c

′
← Cons(o, htx, l, c)

42 PropPTS(⟨this
m

′

, Sel(this
m

′

, c
′)⟩, {⟨o, htx⟩})

43 PAGnew
∪
←− {⟨ret

m
′

, Sel(ret
m

′

, c
′)⟩ assign

−−−−→ ⟨x, Sel(x, c)⟩}

44 ∪ {⟨eret
m

′

, Sel(eret
m

′

, c
′)⟩ assign

−−−−→ ⟨tl, Sel(tl, c) ⟩}

45 ∪ {⟨ai, Sel(ai, c)⟩ assign
−−−−→ ⟨pi, Sel(pi, c

′)⟩ ∣ i ∈ [1, r]}

46 RMnew
∪
←− {⟨m′

, c
′⟩} \ RM

47 Function ProcessStmts():

48 for ⟨m, c⟩ ∈ RMnew do

49 for l ∶ x = new T ∈ Stmt(m) do

50 o = HeapAbs(l, T)

51 PropPTS(⟨x, Sel(x, c)⟩, {⟨o, Sel(o, c)⟩})

52 for l ∶ x = y ∈ Stmt(m) do

53 PAGnew
∪
←− {⟨y, Sel(y, c)⟩ assign

−−−−→ ⟨x, Sel(x, c)⟩} \ PAG

54 for l ∶ x = y.f ∈ Stmt(m) do

55 PAGnew
∪
←− {⟨y, Sel(y, c)⟩ load[f]

−−−−→ ⟨x, Sel(x, c)⟩} \ PAG

56 for l ∶ x.f = y ∈ Stmt(m) do

57 PAGnew
∪
←− {⟨y, Sel(y, c)⟩ store[f]

−−−−→ ⟨x, Sel(x, c)⟩} \ PAG

58 for l ∶ throw x ∈ Stmt(m) do

59 THROWnew
∪
←− {⟨l ∶ throw x, c⟩}

60 for l ∶ x = a0.f(a1,⋯, ar) ∈ Stmt(m) do

61 CALLnew
∪
←− {⟨l ∶ x = a0.f(a1,⋯, ar), c⟩}

62 THROWnew
∪
←− {⟨l′ ∶ throw tl, c⟩}

63 FlushNew(RM)

64 Function ActivateConstraints():

65 while CALLnew ≠ ∅ do

66 for ⟨l ∶ x = a0.f(a1,⋯, ar), c⟩ ∈ CALLnew do

67 HandleCall(l ∶ x = a0.f(a1,⋯, ar), c, “old”)

68 FlushNew(CALL)

69 ProcessStmts()

70 for ⟨l ∶ throw y, c⟩ ∈ THROWnew do

71 HandleThrow(l, ⟨y, Sel(y, c)⟩, “old”)

72 FlushNew(THROW)

73 for ⟨y, c⟩ load[f]
−−−−→ ⟨x, c

′⟩ ∈ PAGnew do

74 HandleLoad(⟨y, c⟩ load[f]
−−−−→ ⟨x, c

′⟩, “old”)

75 for ⟨y, c⟩ store[f]
−−−−→ ⟨x, c

′⟩ ∈ PAGnew do

76 HandleStore(⟨y, c⟩ store[f]
−−−−→ ⟨x, c

′⟩, “old”)

77 for ⟨y, c⟩ assign
−−−−→ ⟨x, c

′⟩ ∈ PAGnew do

78 PropPTS(⟨x, c
′⟩, PTS(y, c)old)

79 FlushNew(PAG)

80 Function FlushNew(IS):

81 ⟨ISold, ISnew⟩ ← ⟨ISold ∪ ISnew,∅⟩

D. He, J. Lu, and J. Xue 30:11

ProcessStmts. In lines 16-17, we process every call ⟨l ∶ x = a0.f(a1,⋯, ar), c⟩ in CALL
(i.e., both CALLold and CALLnew), where curr = ⟨a0, Sel(a0, c)⟩. In handling such a call
(lines 38-45), new assign edges are introduced (lines 42-44) for modeling parameter passing,
and in addition, new reachable methods are recorded in RMnew (line 45). Note that thism

′

is
handled (line 41) differently from the other parameters p1, ..., pr (lines 42-44). A receiver
object in a0 flows only to the method dispatched on itself while the objects pointed
to by the other arguments a1, ..., ar flow to p1, ..., pr, respectively, for all the methods
dispatched with a0 as its receiver variable. For the new reachable methods just found,
new constraints are added with PTS, PAG, THROW and CALL being updated (lines 46-62).
Finally, in line 19, PTS(curr)new is flushed into PTS(curr)old as curr has been processed.
Step 4: Activating New Constraints (line 20). ActivateConstraints (lines 63-78)
is called to initiate the points-to fact propagation across the new constraints in CALLnew,
THROWnew and PAGnew found in Steps 2 – 3 by using the points-to facts in the “old”
parts of the relevant pointers involved in these constraints. In lines 64-68, we process
the calls in CALLnew in turn by discovering more new reachable methods at every call
⟨l ∶ x = a0.f(a1,⋯, ar), c⟩ in CALLnew (by using PTS(a0, Sel(a0, c))old (line 66)) and
adding the new constraints for the new reachable methods found (line 68) just after
CALLnew is flushed into CALLold (line 67). According to Theorem 1, lines 64-75 (shaded in
blue) are needed to support variable-level context-sensitivity, as demonstrated by two
examples below. Note that lines 76-77 are needed even in a context-insensitive analysis in
order to support the on-the-fly call graph construction (among others) by activating the
points-to propagation from the “old” part of an argument to its corresponding parameter
in a newly found callee across its argument-to-parameter assign edge (line 44).

▶ Theorem 2. Algorithm 1 computes the context-sensitive points-to information in a program
exactly according to the rules given in Figure 3.

Proof. We prove that Algorithm 1 computes the points-to facts according to the pointer
analysis algorithm given in Figure 3 in the same manner. Thus, once a fixed point is reached,
Algorithm 1 produces exactly the same points-to facts as the rules given in Figure 3.

We first argue that during each iteration of Algorithm 1, one context-sensitive pointer
n ∈ (V ∪ H × F) × C is removed from W and the objects in PTS(n)new are handled in
exactly the same manner as in Figure 3: Step 1 handles [Assign] (lines 8-9), and [Throw]
(lines 10-11). Step 2 handles [Load] (lines 12-13), and [Store] (lines 14-15). Step 3
handles [Call] (lines 16-17) and extends PAG with the newly reachable methods (line
18). Whenever an object allocation statement is visited, [New] is handled immediately
(lines 48-50). Steps 2 and 3 serve only to add the newly discovered assign edges (constraints)
to PAG without performing the actual points-to fact propagation. Step 4 activates these
new constraints (lines 76-77). To support variable-level context-sensitivity according to
Theorem 1, lines 64-75 (in blue) are added to activate also the newly reachable calls in
CALLnew, throw statements in THROWnew, and loads/stores in PAGnew.
We then argue that at the start of each iteration of Algorithm 1, ∀n ∈ (V∪H× F)×C ∶
n ∈ W ⟺ PTS(n)new ≠ ∅. “⟹” is trivial by noting that n can only be added into W in
line 25 and PTS(n)new ≠ ∅ due to line 23. We prove “⟸” by induction. Initially, only
the LHS of each allocation statement in the entry methods is added into W (line 5 and
lines 48-50). Thus, “⟸” holds. Given the induction hypothesis that “⟸” holds at the
start of the i-th iteration, we prove that “⟸” still holds at the start of the (i + 1)-th
iteration. During the i-th iteration, only curr is removed from W at the start of the
iteration and its points-to facts in PTS(curr)new have been flushed in line 19 after they
have been handled. All the pointers that are added into W during this iteration must be
added by PropPTS, ensuring that their new points-to facts are not empty.

ECOOP 2022

30:12 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

By combining the two proof steps above, we conclude that for every n in (V ∪H × F) × C,
Algorithm 1 handles n in exactly the same manner as in Figure 3 for all the objects in PTS(n).
As a result, Algorithm 1 produces exactly the same points-to facts as Figure 3. ◀

Below we use two small example programs to illustrate how our worklist-based con-
straint solver (Algorithm 1) works in supporting pointer analyses with variable-level context-
sensitivity. In addition, we will also highlight the two subtleties involved (one in each example)
in designing this new constraint solver for computing the points-to facts iteratively.

In the first example, we explain how our constraint solver works in computing the points-to
facts for the program in Figure 1, by applying the 1-object-sensitive pointer analysis with
variable-level context-sensitivity discussed in Section 2.3 under which only the parameter x of
foo() is analyzed context-sensitively. We would like to stress the significance of Theorem 1
by highlighting the necessity of lines 64-75 (shaded in blue) in supporting variable-level
context-sensitivity. As foo() is called under two different receiver objects in lines 13 and 16,
x will be qualified by either [B1] or [B2]. Every other variable/object p, which is analyzed
context-insensitively, is identified by ⟨p, []⟩, which will be abbreviated to p for brevity.
Therefore, whenever we write PTS(p) without providing a context, we mean PTS(p, []).

Table 2 traces one particular execution of Algorithm 1, showing how PTS, RM, CALL, PAG,
and W are updated incrementally in a total of 17 iterations (with its initialization assumed
to start at 0). For this simple program. THROW is not relevant. To save space, we have
segmented these 17 iterations into six groups. For each group, we start with W being given in
the preceding group at the beginning of its first iteration and produce the results obtained
for PTS, RM, CALL, PAG, and W at the end of its last iteration. For PTS, we list explicitly both
the “old” and “new” parts for all its variables and fields. For RM, CALL, and PAG, we list only
their “new” parts as their “old” parts can be read-off easily from the earlier iterations given.

Iteration 0. Initially, we perform the initialization (lines 1-5) by taking main() as the
only entry of the program. Then we compute the points-to information iteratively during
all the iterations of the while loop in line 6 (i.e., Iterations 1–16).
Iterations 1-3. We start with the worklist W given at Iteration 0 and then obtain
the updated results as shown after o1, o2 and a1 have been processed during these
three iterations. At this point, CALLnew has already been flushed into CALLold so that
CALL = ⟨CALLold, CALLnew⟩ = ⟨{⟨line 13, []⟩, ⟨line 16, []⟩},∅⟩.
Iteration 4. We start with curr = “b1”, where PTS(b1)new = {B1}, indicating that we
are just about to analyze foo() under context [B1] (invoked in line 13 in the program).
In Step 3, a total of five edges are added to PAGnew. The three new assign edges are
introduced for modeling parameter passing for this particular call (two for the two
parameters x and a, and one for the return variable x). In addition, the store edge and
the load edge are introduced for representing the two statements in foo(). At the end of
Step 3, PTS(b1)new is flushed into PTS(b1)old. In Step 4, the propagation into the two
parameters, ⟨x, [B1]⟩ and a, from their corresponding actual arguments is made (lines
76-77).
Iterations 5-10. We propagate the newly found points-to information by processing a,
⟨x, [B1]⟩, and thisfoo in W and the others added later to W iteratively.
Iteration 11. We start with curr = “b2”, where PTS(b2)new = {B2}, so that we can
analyze foo() under context [B2] (invoked in line 16 in the program). We proceed exactly
as when foo() is analyzed under context [B1] at iteration 4 except that we no longer
need to introduce a1

assign
−−−−→ a and a

load[f]
−−−−→ t in Step 3, since both edges already exist in

PAG. Before Step 4 starts, PTS(b2)new has already been flushed into PTS(b2)old. In Step 4,

D. He, J. Lu, and J. Xue 30:13

Table 2 Tracing a particular execution of Algorithm 1 in applying the fine-grained 1-object-
sensitive pointer analysis discussed in Section 2.3 to the program given in Figure 1.

Iters V PTSold PTSnew RMnew CALLnew PAGnew W Points-to Fact Propagation

o1 ∅ {O1} {o1,
o2 ∅ {O2} {⟨line 13, []⟩, o2,
b1 ∅ {B1} b1,
b2 ∅ {B2} ⟨line 16, []⟩} b2,

0

a1 ∅ {A1}

{⟨main, []⟩} ∅

a1}

A1

a1

O1

o1

O2

o2

B1

b1

B2

b2

o1 {O1} ∅

o2 {O2} ∅

b1 ∅ {B1}
b2 ∅ {B2}

1-3

a1 {A1} ∅

∅ ∅ ∅
{b1,

b2}
SAME AS ABOVE

o1 {O1} ∅

o2 {O2} ∅

b1 {B1} ∅

b2 ∅ {B2}
a1 {A1} ∅

thisfoo ∅ {B1}
⟨x, B1⟩ ∅ {O1}

4

a ∅ {A1}

{⟨foo, [B1]⟩} {⟨line 7, [B1]⟩}

{o1
assign
−−−−→ ⟨x, [B1]⟩,

a1
assign
−−−−→ a,

⟨x, [B1]⟩ assign
−−−−→ v1,

⟨x, [B1]⟩ store[f]
−−−−→ a,

a
load[f]
−−−−→ t}

{b2,

a,

⟨x, [B1]⟩,
thisfoo}

A1

a1

a

O1

o1

⟨x, [B1]⟩

v1

O2

o2

B1

b1

thisfoo

B2

b2

o1 {O1} ∅

o2 {O2} ∅

b1 {B1} ∅

b2 ∅ {B2}
a1 {A1} ∅

v1 {O1} ∅

thisfoo {B1} ∅

⟨x, [B1]⟩ {O1} ∅

a {A1} ∅

A1.f {O1} ∅

5-10

t {O1} ∅

∅ ∅
{⟨x, [B1]⟩ assign

−−−−→ A1.f,

A1.f
assign
−−−−→ t}

{b2}

A1

a1

a

A1.f

t

O1

o1

⟨x, [B1]⟩

v1

O2

o2

B1

b1

thisfoo

B2

b2

o1 {O1} ∅

o2 {O2} ∅

b1 {B1} ∅

b2 {B2} ∅

a1 {A1} ∅

v1 {O1} ∅

thisfoo {B1} {B2} ,
⟨x, [B1]⟩ {O1} ∅

⟨x, [B2]⟩ ∅ {O2}
a {A1} ∅

A1.f {O1} {}

11

t {O1} ∅

{⟨foo, [B2]⟩} {⟨line 7, [B2]⟩}

{o2
assign
−−−−→ ⟨x, [B2]⟩,

⟨x, [B2]⟩ assign
−−−−→ v2,

⟨x, [B2]⟩ store[f]
−−−−→ a

⟨x, [B2]⟩ assign
−−−−→ A1.f}

{thisfoo
,

⟨x, [B2]⟩}

A1

a1

a

A1.f

t

O1

o1

⟨x, [B1]⟩

v1

O2

o2

⟨x, [B2]⟩

v2

B1

b1

thisfoo

B2

b2

o1 {O1} ∅

o2 {O2} ∅

b1 {B1} ∅

b2 {B2} ∅

a1 {A1} ∅

v1 {O1} ∅

v2 {O2} ∅

thisfoo {B1, B2} ∅

⟨x, [B1]⟩ {O1} ∅

⟨x, [B2]⟩ {O2} ∅

a {A1} ∅

A1.f {O1, O2} ∅

12-16

t {O1, O2} ∅

∅ ∅ ∅ ∅ SAME AS ABOVE

ECOOP 2022

30:14 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

the points-to information of ⟨x, [B2]⟩ is updated (lines 76-77). In addition, we discover
⟨x, [B2]⟩ assign

−−−−→ ⟨A1.f, []⟩ from ⟨x, [B2]⟩ store[f]
−−−−→ ⟨a, []⟩ in lines 74-75 (Theorem 1), since

PTS(a, [])old = ⟨A1, []⟩. Otherwise, O2 in PTS(t) will be missed unsoundly.
Iterations 12-16. After these iterations have been done, a fixpoint will be reached.

In Algorithm 1, its while loop in line 64 is needed for supporting a number of different
flavors of context-sensitivity. Next, we use a second example to explain its necessity for
supporting k-callsite-based context-sensitive pointer analysis (i.e., kcfa [41]) with variable-
level context-sensitivity. This loop is needed to avoid a rare case under which W = ∅ but
CALLnew ≠ ∅, implying that the new reachable methods in CALLnew must still need to be
analyzed to look for the new points-to facts despite the fact that the worklist W is empty.

In this second example given in Figure 4, three classes, A, B, and C, are defined, where
create() and wcreate() in B and wcreate2() in C are used to establish a chain of method
calls in the program, where wcreate2() is a wrapper method for wcreate1(), which is a
wrapper method for create(). In main(), O1 is first allocated, then stored into a1.f, and
finally, retrieved from a1.f and assigned to v1. Similarly, O2 is first allocated, then stored
into a2.f, and finally, retrieved from a2.f and assigned to v2.

1 void main() {
2 C c1 = new C(); // C1
3 C c2 = c1;
4 A a1 = c1.wcreate2(); // c1
5 A a2 = c2.wcreate2(); // c2
6 Object o1 = new Object(); // O1
7 Object o2 = new Object(); // O2
8 a1.f = o1;
9 a2.f = o2;

10 Object v1 = a1.f;
11 Object v2 = a2.f;
12 }
13
14 class A { Object f; }

15 class B {
16 A create() {
17 A r1 = new A(); // A1
18 return r1; }
19 A wcreate() {
20 A r2 = this.create(); // c4
21 return r2;
22 }}
23 class C {
24 A wcreate2() {
25 B b1 = new B(); // B1
26 A r3 = b1.wcreate(); // c3
27 return r3;
28 }}

Figure 4 An example for illustrating the necessity of the while loop in line 64 of Algorithm 1 for
supporting callsite-based context-sensitive pointer analyses with variable-level context-sensitivity.

Let us analyze this program by using 4cfa with variable-level context-sensitivity, under
which r1, r2, r3 and A1 are context-sensitive but all the remaining variables and objects are
context-insensitive. In particular, as is usually done in practice [22, 14, 25], the length of a
context for r1, r2 and r3 is limited by 4 and the length of a context for A1 is limited by 3.

If we apply our constraint solver (Algorithm 1) to solve this particular 4cfa-style pointer
analysis for this program, its points-to facts will be computed soundly as desired. In particular,
v1 will be found to point to O1 and v2 will be found to point to O2. However, if we apply
our constraint solver with its line 64 being deleted, then the resulting modified constraint
solver will be unsound. For this particular program, a2 will be found point to no object at
all, and consequently, that v2 will also be regarded as pointing to no object at all.

Table 3 traces a particular execution of this modified constraint solver (in 15 iterations):
Iterations 0-2. During the initialization, i.e., at Iteration 0 (lines 1-5), main() is the
only entry method for the program. By processing its statements, we end up adding two
new calls (for its lines 4-5) to CALLnew, five new edges (for its lines 3 and 8-11) to PAGnew
and {c1, o1, o2} (for its lines 2 and 6-7) to W. At iterations 1-2, o1 and o2 are handled
by just flushing PTS(o1)new and PTS(o2)new into PTS(o1)old and PTS(o2)old, respectively.

D. He, J. Lu, and J. Xue 30:15

Table 3 Tracing a particular execution of Algorithm 1 with its while loop in line 64 being deleted
in applying 4cfa with variable-level context-sensitivity to the program given in Figure 4, under
which all the variables and objects except r1, r2, r3, and A1 are context-insensitive.

Iters V PTSold PTSnew RMnew CALLnew PAGnew W

c1 ∅ {C1}
o1 {O1} ∅ {⟨line 4, []⟩,
o2 {O2} ∅

⟨line 5, []⟩}
0-2 {⟨main, []⟩}

{c1
assign
−−−−→ c2

o1
store[f]
−−−−→ a1

o2
store[f]
−−−−→ a2

a1
load[f]
−−−−→ v1

a2
load[f]
−−−−→ v2}

{c1}

c1 {C1} ∅

o1 {O1} ∅

o2 {O2} ∅

c2 ∅ {C1}
thiswcreate2 {C1} ∅

b1 {B1} ∅

thiswcreate {B1} ∅

thiscreate {B1} ∅

⟨r1, [c4, c3, c1]⟩ {⟨A1, [c4, c3, c1]⟩} ∅

⟨r2, [c3, c1]⟩ {⟨A1, [c4, c3, c1]⟩} ∅

⟨r3, [c1]⟩ {⟨A1, [c4, c3, c1]⟩} ∅

a1 {⟨A1, [c4, c3, c1]⟩} ∅

⟨A1.f, [c4, c3, c1]⟩} {O1} ∅

3-13

v1 {O1} ∅

{⟨wcreate2, [c1]⟩
⟨wcreate, [c3, c1]⟩

⟨create, [c4, c3, c1]⟩}

{⟨line 26, [c1]⟩
⟨line 20, [c3, c1]⟩}

{⟨r3, [c1]⟩ assign
−−−−→ a1

⟨r2, [c3, c1]⟩ assign
−−−−→ ⟨r3, [c1]⟩

⟨r1, [c4, c3, c1]⟩ assign
−−−−→ ⟨r2, [c3, c1]⟩

o1
assign
−−−−→ ⟨A1.f, [c4, c3, c1]⟩

⟨A1.f, [c4, c3, c1]⟩ assign
−−−−→ v1}

{c2}

c1 {C1} ∅

o1 {O1} ∅

o2 {O2} ∅

c2 {C1} ∅

thiswcreate2 {C1} ∅

b1 {B1} ∅

thiswcreate {B1} ∅

thiscreate {B1} ∅

⟨r1, [c4, c3, c1]⟩ {⟨A1, [c4, c3, c1]⟩} ∅

⟨r2, [c3, c1]⟩ {⟨A1, [c4, c3, c1]⟩} ∅

⟨r3, [c1]⟩ {⟨A1, [c4, c3, c1]⟩} ∅

a1 {⟨A1, [c4, c3, c1]⟩} ∅

⟨A1.f, [c4, c3, c1]⟩} {O1} ∅

14

v1 {O1} ∅

{⟨wcreate2, [c2]⟩
⟨wcreate, [c3, c2]⟩}

{⟨line 26, [c2]⟩
⟨line 20, [c3, c2]⟩}

{⟨r3, [c2]⟩ assign
−−−−→ a2

⟨r2, [c3, c2]⟩ assign
−−−−→ ⟨r3, [c2]⟩}

Iterations 3-13. We propagate the newly found points-to information by processing
c1 and others added later to W during these few iterations iteratively while keeping c2
always in W. This particular execution order is possible, since the items (i.e., unprocessed
pointers) in W are processed non-deterministically. At the end of Iteration 13, the points-to
information for all the variables except a2 and v2 has been obtained.
Iteration 14. We start with curr = “c2”, where PTS(c2)new = {C1}, indicating that
we are just about to analyze wcreate2() under context [c2] (invoked in line 5 in the
program). In Step 3, ⟨r3, [c2]⟩ assign

−−−−→ a2 is added to PAGnew and a new call in line 26
in the program invoked under context [c2] is discovered and added into CALLnew. We
no longer add thiswcreate2 and b1 to W as they do not point to any new points-to fact
discovered. In Step 4, we handle the new call (line 26 in the program under [c2]) in
CALLnew with PTS(b1)old = {B1} (lines 65-66) and find a new reachable method wcreate()
under context [c3, c2]. Finally, we call ProcessStmts (line 68) to process the statements
in this newly reachable method, establish ⟨r2, [c3, c2]⟩ assign

−−−−→ ⟨r3, [c2]⟩, and discover
one more call (line 20 in the program) under context [c3, c2] (highlighted in red). In
the modified constraint solver, the while loop in line 64 (Algorithm 1) has been deleted.
As W = ∅, this new call will not be processed during the next iteration. As a result, a2
and v2 will be concluded not to point to any object unsoundly. However, our constraint
solver, with this while loop being used in line 64, works soundly.

ECOOP 2022

30:16 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

3.4 Handling Complex Language Features

We have closely modeled the handling of complex Java features and semantic complexities
after the logic in Doop [8] (as depicted at 5 in Figure 2), so that Qilin achieves exactly the
same precision for a program as Doop except for a few tool-specific variables introduced.

We have modeled the system/main thread groups and main thread to identify a variety
of the entry methods of a Java program (line 4 of Algorithm 1), Java’s reference objects (e.g.,
WeakReference and SoftReference) and reference queues, and class initialization. For example,
JVM will register reference objects to reference queues by calling Finalizer.register() so
that finalize() methods can be invoked. In addition, JVM will initialize classes/interfaces
by calling their static initializers, <clinit>(). To handle such implicit calls by JVM, we
dynamically inject static calls into the body of a FakeMain() method (regarded as an entry
of the program) to simulate their behavior during the pointer analysis for a given Java
program.

To model a native method, we have designed a handler to simulate its semantics by generat-
ing a method body in Jimple [54], the IR (Intermediate Representation) for Soot. Currently,
Qilin handles the same set of native methods (e.g., thread:start(), DoPrivileged() and
clone()) supported by Doop in exactly the same way.

As for Java reflection, Doop can handle it either statically or dynamically (by relying on
the reflective targets found by Tamiflex [6]). We have taken the latter approach since it has
been used exclusively in the pointer analysis community in the past few years [48, 25, 30, 14].
Qilin’s reflection handler supports exactly the same set of the most commonly used Java
reflection APIs (e.g., ClassForName() and ClassNewInstance()) as in Doop.

Qilin, as in Doop, handles cast and assignment compatibility by using the declared type
of a variable to filter out type-incompatible pointed-to objects during the pointer analysis.
As is standard, arrays are considered monolithic (without distinguishing their elements). In
particular, we filter out type-incompatible objects stored in an array by using the declared
type of its elements instead of java.lang.Object.

In Qilin, we handle static fields and static methods in the standard manner. As global
variables, static fields are analyzed context-insensitively. A static method m() is modeled
as a special instance method by just interpreting a call to m() as this.m() and proceeding
as if it were an instance method defined in java.lang.Object. As a result, static methods
can be analyzed uniformly under all flavors of context-sensitivity except for hybrid context-
sensitivity [22], under which static and virtual calls are distinguished.

4 Using the Qilin Framework

We first describe a few significant instantiations of Cons (Section 4.1), Sel (Section 4.2),
and HeapAbs (Section 4.3), respectively. We then combine these instantiations to obtain the
pointer analyses provided in Qilin’s toolbox depicted at 1 in Figure 2 (Section 4.4).

Given a context c = [e1,⋯, en] and a context element e0, we write e0 ++ c to denote
[e0, e1,⋯, en], and ⌈c⌉k for [e1,⋯, ek] (i.e., c restricted to its prefix of length k).

4.1 Context Constructors

We instantiate Cons(o, htx, l, ctx) used in [Call] (Figure 3) to define five common types of
contexts for a method (“Insens”, “Callsite”, “Object”, “Type”, and “Hybrid” listed at 2 in
Figure 2). Note that in our framework, k-limiting will be applied by Sel.

D. He, J. Lu, and J. Xue 30:17

Insens. For a context-insensitive pointer analysis [2, 23], all methods are analyzed under
the same fixed empty context (without distinguishing their calling contexts):

Consinsens(o, htx, l, ctx) = [] (1)

Callsite. A callsite-sensitive pointer analysis [40], known also as control-flow analysis
(CFA) [41], uses a callsite l as a context element. Therefore, the context constructor is:

Conscfa(o, htx, l, ctx) = l ++ ctx (2)

Object. An object-sensitive pointer analysis [32, 33] uses a receiver object o as a context
element. Thus, the context constructor simply becomes:

Consobj(o, htx, l, ctx) = o ++ htx (3)

Type. A type-sensitive pointer analysis [42], which is a more scalable but less precise
alternative of an object-sensitive pointer analysis, resorts to the class type containing the
method where a receiver object o is allocated, denoted as TypeContg(o). Thus, we have:

Constype(o, htx, l, ctx) = TypeContg(o) ++ htx (4)

Hybrid. A hybrid pointer analysis [22] distinguishes static and dynamic call sites:

Conshyb(o, htx, l, ctx) = {o ++ htx l ∉ SC

car(ctx) ++ l ++ cdr(ctx) l ∈ SC
(5)

where SC is the set of all static call sites in the program. Here, car and cdr are standard,
with car pulling the first element of a list and cdr returning the list without the car.
For a non-static callsite, the new context is constructed identically as in Equation (3).
For a static callsite, the new context also includes the invocation site, which has been
shown to be effective in improving the precision of pointer analysis [22].

4.2 Context Selectors
It is simple to instantiate a context selector Sel to support both method-level and variable-
level context-sensitivity, including “Uniform”, “Heuristic”, “Selective”, and “Partial” listed at
2 in Figure 2. Given a calling context for a method, a context selector Sel picks some of its
context elements to define the contexts for the variables/objects in the method by applying
k-limiting [41], where k can vary across the variables/objects in the same method.

Uniform. To support traditional method-level context-sensitive pointer analyses that rely
on k-limited context abstractions [40, 32, 42, 22], a “uniform” context selector is used:

SelU(ctx, e) = {⌈ctx⌉k e ∈ V
⌈ctx⌉hk e ∈ H

(6)

where the local variables (objects allocated) in a method adopt its calling context ctx

uniformly under k-limiting (hk-limiting). In practice, hk = k − 1 is often used.
Heuristic. For efficiency reasons at little loss of precision, the objects of certain types from
an empirically determined set, T, are usually analyzed context-insensitively as in Doop
[8] and Wala [16], where the following definition of T is the most popularly used:

T = {StringBuffer, StringBuilder, Throwable} (7)

ECOOP 2022

30:18 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

Let SubTypeOf(T) be the set including the types in T and their subtypes. Let TypeOf(o)
be the dynamic type of an object o. A “heuristic” context selector is given by:

SelH(ctx, e) = {[] e ∈ H ∧ TypeOf(e) ∈ SubTypeOf(T)
SelU(ctx, e) otherwise

(8)

Selective. Under “selective” method-level context-sensitivity [43, 25], only a subset of
(precision-critical) methods, Csml, in the program is selected to be analyzed context-
sensitively:

SelS(ctx, e) = {[] MethodOf(e) ∉ Csml
SelU(ctx, e) MethodOf(e) ∈ Csml

(9)

Partial. Under “partial” method-level context-sensitivity [30, 14], only a subset of
(precision-critical) variables/objects in the program, Cpml, is selected to be analyzed
context-sensitively:

SelP(ctx, e) = {[] e ∉ Cpml
SelU(ctx, e) e ∈ Cpml

(10)

The power of Qilin goes beyond existing fine-grained context-sensitive pointer analyses
[43, 25, 30, 14]. In our pointer analysis framework, different variables/objects can be analyzed
completely independently under different context abstractions, thus providing support for
fine-grained context selectivity in its full generality.

4.3 Heap Abstractors
We can instantiate HeapAbs(l, T) in [New] (Figure 3) to define a range of heap abstractions
used, including “Allocation-Site”, “Heuristic”, and “Type-Consistency” listed at 2 in Figure 2.

Allocation-Site. This represents the most widely used heap abstraction:

HeapAbsA(l, T) = Ol (11)

where Ol is an abstract object created at the allocation site identified by its label l.
Heuristic. In practice, for efficiency reasons at little loss of precision, the objects of a
particular type may be distinguished per dynamic type (instead of per object). As a
result, we obtain the following “heuristic” heap abstractor (with T given in Eq. (7)):

HeapAbsH(l, T) = {OT T ∈ SubTypeOf(T)
Ol otherwise

(12)

Type-Consistency. For the “type-consistent” heap abstraction proposed in [48], we have:

HeapAbsT (l, T) = rep(S(Ol)) (13)

where S(Ol) is the equivalence class containing the objects that are type-consistent as Ol

and rep(S(Ol)) is its representative. In other words, all the allocation sites are divided
into equivalence classes so that those in the same equivalence class are not distinguished.

D. He, J. Lu, and J. Xue 30:19

4.4 Qilin’s Toolbox
Qilin, as shown at 1 in Figure 2, includes already a rich set of pointer analyses for supporting
(1) insens (Andersen’s context-insensitive analysis) [23], (2) all common flavors of method-
level context-sensitivity: kcfa (k-callsite-sensitivity) [40], kobj (k-object-sensitivity) [32, 33],
ktype (k-type-sensitivity) [42], S-kobj (hybrid k-object-sensitive analysis) [22], and (3) many
flavors of fine-grained context-sensitivity, enabled by different pre-analyses (for defining Sel
and HeapAbs): Bean [49], Mahjong [48], Zipper [25], Eagle [30], Turner [14], Conch
[15], Data-Driven [19], and Context-Tunneling [17].

Table 4 lists a subset of these analyses (evaluated below) and their instantiations.
Given two context selectors s1 and s2, we define Min(s1, s2) = λ (ctx, e). if ∣s1(ctx, e)∣ ⩽

∣s2(ctx, e)∣ then s1(ctx, e) else s2(ctx, e). Each analysis is specified by a triple [Cons, Sel,

HeapAbs]. Z-kobj, E-kobj, and T-kobj are the versions of kobj performed with fine-grained
context-sensitivity prescribed by Zipper [25], Eagle [30], and Turner [14], respectively.

Table 4 A subset of pointer analyses instantiated in Qilin.

Pointer Analysis Instantiation (Parameterization)
insens [23] [Eq. (1), Eq. (8), Eq. (12)]
kcfa [40] [Eq. (2), Eq. (8), Eq. (12)]

kobj [32, 33] [Eq. (3), Eq. (8), Eq. (12)]
S-kOBJ [22] [Eq. (5), Eq. (8), Eq. (12)]
Z-kOBJ [25] [Eq. (3), Min(Eq. (9), Eq. (8)), Eq. (12)]
E-kOBJ [30] [Eq. (3), Min(Eq. (10), Eq. (8)), Eq. (12)]
T-kOBJ [14] [Eq. (3), Min(Eq. (10), Eq. (8)), Eq. (12)]

5 Evaluation

We have implemented Qilin as a standalone tool in Java in 20.3 KLOC (including 4.7
KLOC at its core) that operates on the Jimple IR [54] of Soot (version 4.2.1) [53]. Qilin
(including a micro-benchmark suite consisting of ≈100 unit test cases) has been open-sourced
and maintained at https://github.com/QiLinPTA/QiLin.

Our evaluation aims to show that Qilin has met all its four design goals by answering
the following four questions positively:

RQ1. Is Qilin precise in terms of the precision achieved against the state-of-the-art?
RQ2. Is Qilin efficient in terms of the analysis time taken against the state-of-the-art?
RQ3. Is Qilin modular in allowing its common codebase to be shared?
RQ4. Is Qilin effective in supporting fine-grained context-sensitive pointer analyses?

We report and analyze our results by focusing on the seven representative analyses listed in
Table 4, insens, 1cfa, 2obj and S-2obj (with method-level context-sensitivity) and E-2obj,
T-2obj and Z-2obj (with fine-grained context-sensitivity). We address RQ1 and RQ2 by
comparing Qilin with Doop [8] (using a recent stable version 4.24.0 with Soufflé Datalog
engine 1.5.1 [20]) in supporting insens, 1cfa, 2obj and S-2obj. Note that Doop has been
tested with Soufflé 1.5.1 and Soufflé 2.0.2, but Doop is slower under Soufflé 2.0.2 than under
Soufflé 1.5.1 in our evaluation. During this process, we have fixed a number of bugs in Doop
that may have caused its unsoundness as also reported earlier [37]. We address RQ3 and
RQ4 by considering how Qilin supports E-2obj, T-2obj and Z-2obj (among others).

We have used a large Java library (JDK1.6.0_45) and 12 popular Java programs (including
9 benchmarks from DaCapo 2006 [5] and 3 Java applications, checkstyle, JPC and findbugs),
which are frequently used for evaluating pointer analysis algorithms in the literature [43,

ECOOP 2022

https://github.com/QiLinPTA/QiLin

30:20 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

22, 48, 25, 14, 28, 15]. We have excluded jython and hsqldb since their context sensitive
analyses do not scale due to overly conservative handling of Java reflection [50]. By using
DaCapo 2006 as in these earlier papers, we are able to evaluate these earlier algorithms in
Qilin with reference to the results reported earlier. We have carried out all the experiments
on an eight-core Intel(R) Xeon(R) CPU E5-2637 3.5GHz machine with 512GB of RAM.

5.1 RQ1: Precision
As shown in Table 5, Qilin delivers exactly the same precision as Doop for insens, 1cfa,
2obj and S-2obj, since both tools (1) use the same logic points-to definitions (Section 3.3),
and (2) cover the same complex Java features identically (Section 3.4). The precision of a
pointer analysis is measured in terms of four common metrics [42, 48, 30, 25]: (1) #call-edges:
the number of call graph edges discovered, (2) #fail-cast: the number of type casts that
may fail, (3) #poly-calls: the number of polymorphic calls discovered, and (4) #avg-pts:
the average number of objects pointed by a variable, i.e., the average points-to set size by
considering only the variables in the Java methods (i.e., excluding all tool-specific temporary
variables introduced, and consequently, the native methods summarized).

For a total of 12 programs × 4 analyses = 48 configurations evaluated, Qilin yields the
same results as Doop for all the four metrics. In addition, we have also validated that both
produce exactly the same points-to sets for all the variables considered. Thus, Qilin represents
a modern framework for supporting precise pointer analyses for large Java programs.

Note that Qilin and Doop may introduce a few different temporary variables in modeling
native methods and certain language constructs. The differences in their points-to facts will
not affect the points-to information computed for the variables in a Java method.

5.2 RQ2: Efficiency
Table 5 also compares Qilin with Doop in terms of the efficiency of insens, 1cfa, 2obj, and
S-2obj achieved. The time budget for running an analysis on a program is 12 hours. The
analysis time of a program is an average of 3 runs. Qilin currently uses a single-threaded
constraint solver while Doop uses a multi-threaded Datalog engine, Soufflé. According to [3],
Soufflé delivers its maximum performance at 4 or 8 threads. While Doop defaults to 4
threads, we have used 8 threads to enable it to achieve slightly better performance. Note
that the analysis time of a program under Doop is given as the analysis time spent by its
Datalog engine only (without including the time spent by its fact generator, which is claimed
to be amortizable across a number of analyses applied to the same program).

For the same 12 programs × 4 analyses = 48 configurations evaluated, Qilin outperforms
Doop substantially, with the speedups ranging from 0.9x (for checkstyle under 2obj) to
6.3x (for xalan also under 2obj). Note that Qilin is slightly slower than Doop only under
2obj in analyzing checkstyle. The overall average speedup achieved by Qilin over Doop
for all the four analyses across the 12 programs is 2.4x. This increases to 2.9x when Doop
switches from 8 to 4 threads and 5.1x when Doop switches to a single thread.

As Qilin achieves exactly the same precision as Doop (Section 5.1), its high performance
is attributed to our new incremental worklist-based constraint solver, which runs significantly
faster than Soufflé [39, 20]. Thus, this work confirms (for the first time) that an imperative
framework (implemented in Java) that relies on a well-crafted constraint solver can outperform
a declarative counterpart that relies on a (multi-threaded) Datalog engine, despite that
Qilin is currently single-threaded and Doop has been carefully optimized in over one
decade. Qilin’s high efficiency is expected to provide significant performance benefits for
its client applications, such as call graph construction tools [23, 1, 38], bug detection tools
[34, 55, 27, 10] and compiler optimization techniques[9, 47].

D. He, J. Lu, and J. Xue 30:21

Table 5 The efficiency and precision of Qilin and Doop in supporting insens, 1cfa, 2obj, and
S-2obj. For all metrics (except speedups of Qilin over Doop in blue), smaller is better.

insens 1cfa 2obj S-2objProgram Metrics Doop Qilin Doop Qilin Doop Qilin Doop Qilin

Time (s) 27 11 (2.5x) 61 24 (2.6x) 116 55 (2.1x) 90 46 (2.0x)
#call-edges 57472 57472 56226 56226 51319 51319 51318 51318
#fail-casts 1127 1127 930 930 511 511 439 439
#poly-calls 1987 1987 1933 1933 1643 1643 1642 1642

antlr

#avg-pts 36.498 36.498 32.106 32.106 9.055 9.055 8.945 8.945

Time (s) 20 11 (1.8x) 85 30 (2.9x) 1503 788 (1.9x) 1450 800 (1.8x)
#call-edges 67856 67856 65689 65689 56837 56837 56836 56836
#fail-casts 2088 2088 1891 1891 1316 1316 1244 1244
#poly-calls 2344 2344 2171 2171 1714 1714 1713 1713

bloat

#avg-pts 52.992 52.992 47.391 47.391 15.387 15.387 15.287 15.287

Time (s) 51 19 (2.7x) 174 41 (4.3x) 411 222 (1.9x) 435 370 (1.2x)
#call-edges 86806 86806 84116 84116 72805 72805 72801 72801
#fail-casts 2563 2563 2207 2207 1348 1348 1183 1183
#poly-calls 2732 2732 2614 2614 2068 2068 2067 2067

chart

#avg-pts 64.751 64.751 52.949 52.949 5.796 5.796 5.541 5.541

Time (s) 115 37 (3.1x) 482 132 (3.7x) 8556 4701 (1.8x) 8493 4266 (2.0x)
#call-edges 183288 183288 178585 178585 162934 162934 162876 162876
#fail-casts 5114 5114 4732 4732 3648 3648 3542 3542
#poly-calls 10738 10738 10455 10455 9773 9773 9718 9718

eclipse

#avg-pts 137.322 137.322 62.446 62.446 16.115 16.115 14.944 14.944

Time (s) 29 9 (3.3x) 51 17 (3.1x) 52 25 (2.1x) 48 22 (2.2x)
#call-edges 40558 40558 39285 39285 34424 34424 34424 34424
#fail-casts 914 914 710 710 396 396 315 315
#poly-calls 1223 1223 1156 1156 842 842 842 842

fop

#avg-pts 25.526 25.526 20.469 20.469 4.399 4.399 4.262 4.262

Time (s) 12 9 (1.3x) 28 15 (1.9x) 38 25 (1.6x) 34 23 (1.5x)
#call-edges 39809 39809 38529 38529 33643 33643 33642 33642
#fail-casts 923 923 727 727 396 396 324 324
#poly-calls 1294 1294 1228 1228 935 935 934 934

luindex

#avg-pts 20.807 20.807 16.290 16.290 4.480 4.480 4.325 4.325

Time (s) 13 9 (1.4x) 31 17 (1.9x) 73 37 (2.0x) 67 36 (1.9x)
#call-edges 43153 43153 41841 41841 36525 36525 36524 36524
#fail-casts 1035 1035 831 831 411 411 332 332
#poly-calls 1505 1505 1432 1432 1133 1133 1132 1132

lusearch

#avg-pts 22.418 22.418 17.625 17.625 4.461 4.461 4.299 4.299

Time (s) 35 14 (2.6x) 103 30 (3.5x) 104 53 (2.0x) 94 56 (1.7x)
#call-edges 69713 69713 67899 67899 60030 60030 60029 60029
#fail-casts 2273 2273 2026 2026 1416 1416 1333 1333
#poly-calls 2989 2989 2871 2871 2390 2390 2389 2389

pmd

#avg-pts 37.331 37.331 31.764 31.764 6.036 6.036 5.947 5.947

Time (s) 39 11 (3.6x) 68 22 (3.1x) 4046 638 (6.3x) 823 405 (2.0x)
#call-edges 54147 54147 52657 52657 46856 46856 46855 46855
#fail-casts 1305 1305 1058 1058 601 601 516 516
#poly-calls 2101 2101 2010 2010 1657 1657 1656 1656

xalan

#avg-pts 29.968 29.968 24.529 24.529 6.037 6.037 5.924 5.924

Time (s) 64 16 (4.0x) 146 36 (4.1x) 6308 7148 (0.9x) 5338 5535 (1.0x)
#call-edges 80291 80291 77881 77881 67285 67285 67276 67276
#fail-casts 1941 1941 1680 1680 1117 1117 1023 1023
#poly-calls 2778 2778 2655 2655 2241 2241 2234 2234

checkstyle

#avg-pts 47.925 47.925 39.536 39.536 8.048 8.048 7.706 7.706

Time (s) 32 21 (1.5x) 127 40 (3.2x) 211 132 (1.6x) 264 192 (1.4x)
#call-edges 95055 95055 91661 91661 81465 81465 81429 81429
#fail-casts 2254 2254 1894 1894 1357 1357 1208 1208
#poly-calls 4960 4960 4840 4840 4282 4282 4275 4275

JPC

#avg-pts 45.533 45.533 32.175 32.175 6.045 6.045 5.841 5.841

Time (s) 54 20 (2.8x) 198 48 (4.1x) 3887 1644 (2.4x) 3856 1593 (2.4x)
#call-edges 106065 106065 102352 102352 88107 88107 88107 88107
#fail-casts 3457 3457 3000 3000 2058 2058 1968 1968
#poly-calls 4534 4534 4308 4308 3679 3679 3679 3679

findbugs

#avg-pts 64.510 64.510 53.842 53.842 9.102 9.102 9.052 9.052

ECOOP 2022

30:22 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

Table 6 Human effort required in integrating fine-grained context-sensitive analysis into Qilin.

Pointer Analysis Source Code (#LOC) Supporting Code (#LOC)
Bean [49] 355 41

Mahjong [48] 666 51
Data-Driven [19] 1062 39

Zipper [25] 1474 35
Context-Tunneling [17] 1151 29

Eagle [30] 357 75
Turner [14] 769 75
Conch [15] 1230 55

5.3 RQ3: Modularity

Table 7 The efficiency and precision of E-2obj, T-2obj, and Z-2obj for performing kobj under
fine-grained context-sensitivity enabled by Eagle [30], Turner [14], and Zipper [25], respectively.
The speedups of each analysis (in blue) is computed with 2obj (shown in Table 5) as the baseline.

Metrics Program E-2obj T-2obj Z-2obj Program E-2obj T-2obj Z-2obj
Time (s) 38 (1.4x) 18 (3.1x) 31 (1.8x) 27 (1.4x) 19 (1.9x) 19 (1.9x)

#call-edges 51319 51319 51505 36525 36525 36720
#fail-casts 511 511 532 411 411 441
#poly-calls 1643 1643 1666 1133 1133 1162
#avg-pts

antlr

9.055 9.067 9.492

lusearch

4.461 4.473 5.071
Time (s) 577 (1.4x) 302 (2.6x) 663 (1.2x) 38 (1.4x) 25 (2.1x) 31 (1.7x)

#call-edges 56837 56837 57059 60030 60030 60180
#fail-casts 1316 1316 1339 1416 1416 1447
#poly-calls 1714 1714 1746 2390 2390 2412
#avg-pts

bloat

15.387 15.403 16.381

pmd

6.036 6.045 6.441
Time (s) 165 (1.3x) 119 (1.9x) 45 (4.9x) 366 (1.7x) 297 (2.1x) 285 (2.2x)

#call-edges 72805 72805 73243 46856 46856 47005
#fail-casts 1348 1348 1395 601 601 618
#poly-calls 2068 2068 2094 1657 1657 1680
#avg-pts

chart

5.796 5.809 6.474

xalan

6.037 6.055 6.550
Time (s) 2929 (1.6x) 1904 (2.5x) 2000 (2.4x) 3776 (1.9x) 2813 (2.5x) 1882 (3.8x)

#call-edges 162934 162934 163176 67285 67285 67511
#fail-casts 3648 3648 3707 1117 1117 1144
#poly-calls 9773 9773 9834 2241 2241 2278
#avg-pts

eclipse

16.115 16.305 16.413

checkstyle

8.048 8.152 9.257
Time (s) 17 (1.5x) 12 (2.1x) 13 (1.9x) 100 (1.3x) 75 (1.8x) 54 (2.4x)

#call-edges 34424 34424 34615 81465 81465 81741
#fail-casts 396 396 421 1357 1357 1393
#poly-calls 842 842 868 4282 4282 4337
#avg-pts

fop

4.399 4.416 4.977

JPC

6.045 6.062 6.514
Time (s) 18 (1.4x) 11 (2.3x) 14 (1.8x) 925 (1.8x) 179 (9.2x) 160 (10.3x)

#call-edges 33643 33643 33833 88107 88107 88172
#fail-casts 396 396 422 2058 2058 2091
#poly-calls 935 935 960 3679 3679 3687
#avg-pts

luindex

4.480 4.494 5.065

findbugs

9.102 9.139 9.300

Qilin supports a variety of context-sensitive pointer analyses that can all be specified
modularly as variations on a common code base with their context-sensitivity parameterized
by Cons, Sel, and HeapAbs. We use #LOC, the number of LOC required in integrating
a pointer analysis algorithm into Qilin, to measure the modularity of our framework in
supporting the design and implementation of new algorithms. While #LOC is not equivalent

D. He, J. Lu, and J. Xue 30:23

to the amount of engineering efforts involved, a small #LOC needed indicates that our
framework is highly modular. For the four traditional method-level analyses, insens, kcfa,
kobj and S-kobj, listed in Table 4 and evaluated above, their parameterization requires 15,
43, 40 and 61 LOC, respectively, totaling only 98 LOC with the commonalities factored out.

In addition, Qilin also accommodates well a range of recently proposed fine-grained
context-sensitive pointer analyses [49, 48, 19, 17, 25, 30, 14], as demonstrated in Table 6.
For each analysis, the second column lists the number of LOC required for defining the
context-sensitivity proposed (in the form of a pre-analysis), and the third column gives the
number of LOC required for parameterizing it in Qilin (requiring only an average of 50 LOC
each). We have integrated all these seven analyses into Qilin except the machine learning
phases used in Data-Driven [19] and Context-Tunneling [17].

5.4 RQ4: Fine-Grained Context-Sensitivity

Qilin is expected to represent a common framework in which different pointer analysis
algorithms can be designed and evaluated effectively. Table 7 compares the efficiency and
precision of E-2obj, T-2obj, and Z-2obj (the three fine-grained variations of 2obj listed in
Table 4) enabled by Eagle [30], Turner [14], and Zipper [25], respectively, with all the
parameterization efforts given in Table 6 (in terms of #LOC added). The speedups of each
of the three analyses is computed with 2obj (shown in Table 5) as the baseline.

Precision-wise, our results are consistent with those reported earlier in [30, 25, 14].
Specifically, E-2obj always preserves the precision of 2obj in theory, T-2obj preserves
the precision of #call-edges, #fail-cast, and #poly-calls but not #avg-pts in practice, and
finally, Z-2obj loses precision by design in general as it has caused #call-edges, #fail-cast,
#poly-calls and #avg-pts to increase by 3.6%, 1.6%, 0.4% and 8.7%, respectively.

Efficiency-wise, our results are also consistent with those reported earlier in [30, 25, 14]
in the sense that E-2obj, T-2obj, and Z-2obj are faster than 2obj. Specifically, Zipper
(the least precise) achieves the highest speedups, ranging from 1.2x (for bloat) to 10.3x
(for findbugs) with an average of 3.0x, Turner achieves slightly lower speedups, ranging
from 1.8x (for JPC) to 9.2x (for findbugs) with an average of 2.8x, and finally, Eagle
(the most precise) achieves the lowest speedups, ranging from 1.3x (for JPC) to 1.9x (for
checkstyle) with an average of 1.5x. However, the relative speedups of E-2obj, T-2obj,
and Z-2obj over 2obj reported here are not expected to be exactly the same as those
reported in [30, 14] due to different experimental settings used (for the purposes of validating
different design hypotheses). One difference is particularly noteworthy: E-2obj and Z-2obj
are compared by parameterizing E-kobj and Z-kobj as in Table 4 in [14], but E-kobj as
[Eq. (3), Eq. (10), Eq. (11)] and Z-kobj as [Eq. (3), Eq. (9), Eq. (11)] instead in [14, 30].
Specifically, the objects that are instantiated from StringBuilder and StringBuffer as
well as Throwable (including its subtypes) are merged per dynamic type and then analyzed
context-insensitively in [14, 25] but not in [30]. This again highlights the significance for
the research community to share Qilin as a common open-source framework to design and
evaluate different fine-grained analyses in future work.

6 Related Work

We review the past work on context-sensitive pointer analyses for Java by focusing on
representative open-source frameworks developed and the recent research trend on exploring
fine-grained context-sensitivity, by placing Qilin again in its research context.

ECOOP 2022

30:24 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

Pointer Analysis Frameworks. Existing frameworks, which were originally designed and
implemented to support method-level context-sensitivity, fall into three categories: (1)
imperative, e.g., Spark [23] and Wala [16] (implemented in Java), (2) declarative, e.g.,
Doop [8] (coded in Datalog on top of a Datalog engine, e.g., Soufflé [20, 39]), and (3) hybrid,
e.g., Jchord [34] and Paddle [24] (with the core of a pointer analysis algorithm performed
in Datalog declaratively but the rest coded in Java imperatively). In contrast, Qilin is a
new framework designed to support variable-level context-sensitivity (by subsuming existing
traditional frameworks as a special case since all the variables/objects in a method can only
be analyzed traditionally by using exactly the same context abstraction).

In the past decade or so, Doop has been the state of the art for supporting traditional
pointer analyses with method-level context-sensitivity. As a fully-declarative framework,
Doop is highly scalable, enabling complex and precise context-sensitive pointer analyses to
be developed efficiently in the past [8, 42]. Whether an imperative alternative can outperform
Doop in terms of efficiency while achieving the same precision remains to be unknown
for years in the pointer analysis community. In this paper, we show that Qilin, as an
imperative framework, can outperform Doop substantially while also allowing all traditional
pointer analyses to be specified precisely and modularly as in Doop.

Fine-Grained Context-Selectivity. To scale context-sensitive analyses further for large
codebases, how to explore a significantly larger space of efficiency/precision tradeoffs by
moving from method-level to fine-grained context-sensitivity has received increasing interest.
In the past few years, method-level context-sensitivity has been made (1) selective (by
analyzing only a subset of methods context-sensitively via exploiting user-supplied hints
[43], machine learning [19], and pattern-matching [25], and (2) selective (by analyzing only a
subset of variable/objects context-sensitively via exploiting CFL (Context-Free Language)
reachability [28, 30, 14, 29]. In the near future, we envisage to see more pointer analyses
with variable-level context-sensitivity to be developed.

However, existing pointer analysis frameworks [23, 16, 8, 34, 24] were all designed for
supporting method-level context-sensitivity. As described in Section 1, we have made
significant efforts in extending Doop to support fine-grained context-sensitivity, but to no
avail. We see two limitations from our preliminary investigation: First, the number of rules
for supporting fine-grained analyses increases drastically relative to the Doop baseline since
a fine-grained analysis relies on more configurable parameters (in addition to the context
length k). Second, the performance of the extended Doop version is rather disappointing
due to possibly poor join orders selected by its underlying Datalog engine [39, 20] used.

In this paper, we have designed and implemented Qilin on top of Spark [23] for
supporting fine-grained context-sensitivity. In our previous work [28, 30, 14, 29], we have also
introduced a few in-house implementations (which can be seen as some precursors of Qilin)
for supporting only partial context-sensitivity (under which variables/objects and methods
can be analyzed either context-sensitively or context-insensitively). These implementations
are designed to support specific pointer analysis techniques with different design choices
and settings for handling different language features, which limit them from being used
as a general-purpose framework. To the best of our knowledge, Qilin represents the first
framework that supports all such fine-grained analyses precisely, efficiently and modularly.

Iterative Constraint Solving via Difference Propagation. Many program analyses, such as
pointer analysis, exploit the idea of difference propagation [12, 35, 23] when resolving their
constraints towards a fixed-point solution efficiently. For example, Sridharan et al. [45] present

D. He, J. Lu, and J. Xue 30:25

a difference-propagation-based pointer analysis algorithm for object-oriented programs. In
their algorithm, every time when an edge x

assign
−−−−→ y needs to be handled, their algorithm

needs to compute δ = PTS(x) − PTS(y) and then propagates δ to PTS(y), which can be
highly expensive. In contrast, Qilin’s incremental worklist-based algorithm (Algorithm 1),
which is is extended from Spark [23], computes only δnew = PTS(x)new − PTS(y)new and
then propagates δnew to PTS(y)new. As a result, our constraint solver is more efficient. In
addition, the semi-naïve evaluation, an efficient evaluation strategy used by many existing
Datalog engines [20, 31], refines the naïve (chaotic iteration) strategy to avoid redundant
work by exploiting also the idea of difference propagation. The speedups achieved by Qilin
over Doop are attributed to our incremental worklist algorithm, which may exhibit better
join orders than the ones automatically selected by Doop’s underlying Datalog engine [20].

7 Conclusion and Future work

We have introduced Qilin as the first open-source framework (to be released soon) for
supporting fine-grained context-sensitive pointer analyses (including the traditional ones as
special cases) for Java, precisely, efficiently and modularly. Developing such a production-
quality framework involves a lot of technical and engineering efforts. We will maintain and
grow this open-source project actively on GitHub to support further research on pointer
analysis and a variety of other static analyses for Java (and possibly other object-oriented
programming languages). Several immediate future research/engineering activities that can
be carried out in Qilin include (1) parallelizing its constraint solver to lift its performance
further, (2) covering more native methods and Java reflection APIs, (3) supporting more Java
features in JDK8 and above, and (4) experimenting with the design and implementation of
novel variable-level context-sensitive pointer analysis algorithms. Finally, as an open-source
project, Qilin is also expected to be driven by community contribution.

References
1 Karim Ali and Ondřej Lhoták. Application-only call graph construction. In ECOOP 2012

– Object-Oriented Programming, pages 688–712, Berlin, Heidelberg, 2012. Springer Berlin
Heidelberg.

2 Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD
thesis, University of Cophenhagen, 1994.

3 Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smaragdakis. Porting Doop to Soufflé:
A tale of inter-engine portability for datalog-based analyses. In Proceedings of the 6th ACM
SIGPLAN International Workshop on State Of the Art in Program Analysis, pages 25–30, New
York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3088515.3088522.

4 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques
Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for Android apps. In Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 259–269, New York, NY, USA, 2014. Association for Computing Machinery.

5 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley,
Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The DaCapo
benchmarks: Java benchmarking development and analysis. In Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and
applications, pages 169–190, New York, NY, USA, 2006. Association for Computing Machinery.

ECOOP 2022

https://doi.org/10.1145/3088515.3088522

30:26 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

6 Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In Proceedings
of the 33rd International Conference on Software Engineering, pages 241–250, Honolulu, HI,
USA, 2011. IEEE.

7 Martin Bravenboer and Yannis Smaragdakis. Exception analysis and points-to analysis: Better
together. In Proceedings of the 18th International Symposium on Software Testing and Analysis,
pages 1–12, New York, NY, USA, 2009. Association for Computing Machinery.

8 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, pages 243–262, New York, NY, USA, 2009.
Association for Computing Machinery.

9 Jeff Da Silva and J. Gregory Steffan. A probabilistic pointer analysis for speculative optim-
izations. In Proceedings of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 416–425, New York, NY, USA, 2006.
Association for Computing Machinery. doi:10.1145/1168857.1168908.

10 Gang Fan, Rongxin Wu, Qingkai Shi, Xiao Xiao, Jinguo Zhou, and Charles Zhang. SMOKE:
Scalable path-sensitive memory leak detection for millions of lines of code. In 2019 IEEE/ACM
41st International Conference on Software Engineering (ICSE), pages 72–82, New York, NY,
USA, 2019. IEEE. doi:10.1109/ICSE.2019.00025.

11 Xiaokang Fan, Yulei Sui, Xiangke Liao, and Jingling Xue. Boosting the precision of virtual call
integrity protection with partial pointer analysis for C++. In Proceedings of the 26th ACM
SIGSOFT International Symposium on Software Testing and Analysis, pages 329–340, New
York, NY, USA, 2017. Association for Computing Machinery. doi:10.1145/3092703.3092729.

12 Christian Fecht and Helmut Seidl. Propagating differences: An efficient new fixpoint algorithm
for distributive constraint systems. In European Symposium on Programming, pages 90–104.
Springer, 1998.

13 Neville Grech and Yannis Smaragdakis. P/Taint: Unified points-to and taint analysis.
Proceedings of the ACM on Programming Languages, 1(OOPSLA), October 2017. doi:
10.1145/3133926.

14 Dongjie He, Jingbo Lu, Yaoqing Gao, and Jingling Xue. Accelerating object-sensitive pointer
analysis by exploiting object containment and reachability. In Proceedings of the 35th European
Conference on Object-Oriented Programming (ECOOP 2021), pages 18:1–18:31, Dagstuhl,
Germany, 2021. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

15 Dongjie He, Jingbo Lu, and Jingling Xue. Context debloating for object-sensitive pointer ana-
lysis. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pages 79–91. IEEE, 2021.

16 IBM. WALA: T.J. Watson Libraries for Analysis, 2020. URL: http://wala.sourceforge.
net/.

17 Minseok Jeon, Sehun Jeong, and Hakjoo Oh. Precise and scalable points-to analysis via data-
driven context tunneling. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–
29, 2018.

18 Minseok Jeon, Myungho Lee, and Hakjoo Oh. Learning graph-based heuristics for pointer
analysis without handcrafting application-specific features. Proceedings of the ACM on
Programming Languages, 4(OOPSLA):1–30, 2020.

19 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. Data-driven context-sensitivity
for points-to analysis. Proceedings of the ACM on Programming Languages, 1(OOPSLA):100,
2017.

20 Herbert Jordan, Bernhard Scholz, and Pavle Subotić. Soufflé: On synthesis of program
analyzers. In Computer Aided Verification, pages 422–430, Cham, 2016. Springer International
Publishing.

https://doi.org/10.1145/1168857.1168908
https://doi.org/10.1109/ICSE.2019.00025
https://doi.org/10.1145/3092703.3092729
https://doi.org/10.1145/3133926
https://doi.org/10.1145/3133926
http://wala.sourceforge.net/
http://wala.sourceforge.net/

D. He, J. Lu, and J. Xue 30:27

21 Timotej Kapus and Cristian Cadar. A segmented memory model for symbolic execution. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering, pages 774–784, New York, NY,
USA, 2019. Association for Computing Machinery. doi:10.1145/3338906.3338936.

22 George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to analysis.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 423–434, New York, NY, USA, 2013. Association for Computing
Machinery.

23 Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using Spark. In Interna-
tional Conference on Compiler Construction, pages 153–169, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg.

24 Ondřej Lhoták and Laurie Hendren. Evaluating the benefits of context-sensitive points-to
analysis using a bdd-based implementation. ACM Trans. Softw. Eng. Methodol., 18(1), October
2008. doi:10.1145/1391984.1391987.

25 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Precision-guided context sensitivity
for pointer analysis. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–29,
2018.

26 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Scalability-first pointer analysis
with self-tuning context-sensitivity. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software
Engineering, pages 129–140, New York, NY, USA, 2018. Association for Computing Machinery.

27 Bozhen Liu and Jeff Huang. D4: Fast concurrency debugging with parallel differential analysis.
In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 359–373, New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3192366.3192390.

28 Jingbo Lu, Dongjie He, and Jingling Xue. Eagle: CFL-reachability-based precision-preserving
acceleration of object-sensitive pointer analysis with partial context sensitivity. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 30(4):1–46, 2021.

29 Jingbo Lu, Dongjie He, and Jingling Xue. Selective context-sensitivity for k-CFA with
CFL-reachability. In International Static Analysis Symposium, pages 261–285. Springer, 2021.

30 Jingbo Lu and Jingling Xue. Precision-preserving yet fast object-sensitive pointer analysis with
partial context sensitivity. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–
29, 2019.

31 Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. From Datalog to flix: A declarative
language for fixed points on lattices. ACM SIGPLAN Notices, 51(6):194–208, 2016.

32 Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity
for points-to and side-effect analyses for Java. In Proceedings of the 2002 ACM SIGSOFT
international symposium on Software testing and analysis, pages 1–11, New York, NY, USA,
2002. Association for Computing Machinery.

33 Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM Transactions on Software Engineering and Methodology,
14(1):1–41, 2005.

34 Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 308–319, New York, NY, USA, 2006. Association for Computing
Machinery.

35 David J Pearce, Paul HJ Kelly, and Chris Hankin. Online cycle detection and difference
propagation for pointer analysis. In Proceedings Third IEEE International Workshop on Source
Code Analysis and Manipulation, pages 3–12. IEEE, 2003.

36 Zoltán Porkoláb, Tibor Brunner, Dániel Krupp, and Márton Csordás. Codecompass: An open
software comprehension framework for industrial usage. In Proceedings of the 26th Conference
on Program Comprehension, pages 361–369, New York, NY, USA, 2018. Association for
Computing Machinery. doi:10.1145/3196321.3197546.

ECOOP 2022

https://doi.org/10.1145/3338906.3338936
https://doi.org/10.1145/1391984.1391987
https://doi.org/10.1145/3192366.3192390
https://doi.org/10.1145/3196321.3197546

30:28 Qilin: A New Framework for Supporting Fine-Grained Context-Sensitivity

37 Jyoti Prakash, Abhishek Tiwari, and Christian Hammer. Effects of program representation
on pointer analyses – an empirical study. Fundamental Approaches to Software Engineering,
12649:240, 2021.

38 Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch, and Mira Mezini. Call graph
construction for Java libraries. In Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, pages 474–486, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2950290.2950312.

39 Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till Westmann. On fast large-scale
program analysis in Datalog. In Proceedings of the 25th International Conference on Compiler
Construction, CC 2016, pages 196–206, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2892208.2892226.

40 Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis. In
S. S. Muchnick and N. D. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 7, pages 189–234. Prentice-Hall, 1981.

41 Olin Shivers. Control-flow analysis of higher-order languages. PhD thesis, Citeseer, 1991.
42 Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well:

understanding object-sensitivity. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 17–30, New York, NY, USA, 2011.
Association for Computing Machinery.

43 Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective analysis:
context-sensitivity, across the board. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 485–495, New York, NY, USA,
2014. Association for Computing Machinery.

44 Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang: Demand-
driven flow-and context-sensitive pointer analysis for Java. In 30th European Conference on
Object-Oriented Programming, pages 22:1–22:26, Dagstuhl, Germany, 2016. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

45 Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J Fink, and Eran Yahav. Alias
analysis for object-oriented programs. In Aliasing in Object-Oriented Programming. Types,
Analysis and Verification, pages 196–232. Springer, Berlin, Heidelberg, 2013.

46 Manu Sridharan, Stephen J Fink, and Rastislav Bodik. Thin slicing. In Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
112–122, New York, NY, USA, 2007. Association for Computing Machinery.

47 Yulei Sui, Yue Li, and Jingling Xue. Query-directed adaptive heap cloning for optimizing
compilers. In Proceedings of the 2013 IEEE/ACM International Symposium on Code Generation
and Optimization (CGO), pages 1–11, New York, NY, USA, 2013. IEEE. doi:10.1109/CGO.
2013.6494978.

48 T. Tan, Y. Li and J. Xue. Efficient and precise points-to analysis: modeling the heap by
merging equivalent automata. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 278–291, New York, NY, USA,
2017. Association for Computing Machinery.

49 Tian Tan, Yue Li, and Jingling Xue. Making k-object-sensitive pointer analysis more precise
with still k-limiting. In International Static Analysis Symposium, pages 489–510, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg.

50 Rei Thiessen and Ondřej Lhoták. Context transformations for pointer analysis. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 263–277, New York, NY, USA, 2017. Association for Computing Machinery.

51 David Trabish, Timotej Kapus, Noam Rinetzky, and Cristian Cadar. Past-sensitive pointer
analysis for symbolic execution. In Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
pages 197–208, New York, NY, USA, 2020. Association for Computing Machinery. doi:
10.1145/3368089.3409698.

https://doi.org/10.1145/2950290.2950312
https://doi.org/10.1145/2892208.2892226
https://doi.org/10.1109/CGO.2013.6494978
https://doi.org/10.1109/CGO.2013.6494978
https://doi.org/10.1145/3368089.3409698
https://doi.org/10.1145/3368089.3409698

D. He, J. Lu, and J. Xue 30:29

52 David Trabish, Andrea Mattavelli, Noam Rinetzky, and Cristian Cadar. Chopped symbolic
execution. In Proceedings of the 40th International Conference on Software Engineering,
pages 350–360, New York, NY, USA, 2018. Association for Computing Machinery. doi:
10.1145/3180155.3180251.

53 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A Java bytecode optimization framework. In CASCON First Decade High
Impact Papers, pages 214–224. IBM Corp., USA, 2010.

54 Raja Vallee-Rai and Laurie J. Hendren. Jimple: Simplifying java bytecode for analyses and
transformations, 1998.

55 Hua Yan, Yulei Sui, Shiping Chen, and Jingling Xue. Spatio-temporal context reduction:
A pointer-analysis-based static approach for detecting use-after-free vulnerabilities. In 2018
IEEE/ACM 40th International Conference on Software Engineering (ICSE), pages 327–337,
New York, NY, USA, 2018. IEEE. doi:10.1145/3180155.3180178.

ECOOP 2022

https://doi.org/10.1145/3180155.3180251
https://doi.org/10.1145/3180155.3180251
https://doi.org/10.1145/3180155.3180178

NWGraph: A Library of Generic Graph Algorithms
and Data Structures in C++20
Andrew Lumsdaine #

University of Washington, Seattle, WA, USA
Pacific Northwest National Laboratory,
Richland, WA, USA
TileDB, Inc., Cambridge, MA, USA

Luke D’Alessandro #

Indiana University, Bloomington, IN, USA

Kevin Deweese #

Cadence Design Systems, San Jose, CA, USA
Jesun Firoz #

Pacific Northwest National Laboratory,
Richland, WA, USA

Xu Tony Liu #

University of Washington, Seattle, WA, USA
Scott McMillan #

Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, USA

John Phillip Ratzloff #

SAS Institute, Cary, NC, USA
Marcin Zalewski #

NVIDIA, Seattle, WA, USA

Abstract
The C++ Standard Library is a valuable collection of generic algorithms and data structures that
improves the usability and reliability of C++ software. Graph algorithms and data structures are
notably absent from the standard library, and previous attempts to fill this gap have not gained
widespread adoption. In this paper we show that the richness of graph algorithms and data structures
can in fact be captured by straightforward composition of existing C++ mechanisms. Generic
programming is algorithm-oriented. Accordingly, we apply a systematic approach to analyzing a
broad set of graph algorithms, “lift” unnecessary constraints from them, and organize the resulting
set of minimal common type requirements, i.e., concepts, for defining their interfaces. By using the
newly available ranges and concepts in C++20, the type requirements for generic graph algorithms
can be succinctly expressed. The generic algorithms and data structures resulting from our analysis
are realized in NWGraph, a modern, composable, and extensible C++ library.

2012 ACM Subject Classification Software and its engineering → Software libraries and repositories;
Mathematics of computing → Graph algorithms

Keywords and phrases Graph library, generic programming, graph algorithms

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.31

Supplementary Material Software (Source Code): https://github.com/pnnl/NWGraph
archived at swh:1:dir:50db7d4a73652c1073d8141a1e3d83896b0ca3b0

Funding This work was partially supported by the High Performance Data Analytics (HPDA)
program and the Segmented Global Address Space (SGAS) LDRD under the Data Model Convergence
(DMC) initiative at the U.S. Department of Energy’s Pacific Northwest National Laboratory (PNNL).
PNNL is operated by Battelle Memorial Institute under Contract DE-AC06-76RL01830. This
research was partially supported by NSF Awards OAC-1716828 and OAC-2126266. This material
is also based upon work funded and supported by the Department of Defense under Contract No.
FA8702-15-D-0002 with Carnegie Mellon University for the operation of the Software Engineering
Institute, a federally funded research and development center [DM22-0432].

1 Introduction

Graphs are powerful mathematical tools for reasoning about the relationships between given
entities, focusing on the structure and characteristics of the relationships, independent of
what the entities and the relationships actually are. Consequently, results from graph theory

© Andrew Lumsdaine, Luke D’Alessandro, Kevin Deweese, Jesun Firoz, Xu Tony Liu, Scott McMillan,
John Phillip Ratzloff, Marcin Zalewski, and Carnegie Mellon University;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 31; pp. 31:1–31:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lumsdaine@gmail.com
https://orcid.org/0000-0002-9153-6622
mailto:ldalessa@iu.edu
mailto:kgd.baf@gmail.com
mailto:jesun.firoz@pnnl.gov
https://orcid.org/0000-0002-8174-2545
mailto:x0@uw.edu
https://orcid.org/0000-0003-3980-9803
mailto:smcmillan@sei.cmu.edu
https://orcid.org/0000-0003-1868-5178
mailto:phil.ratzloff@sas.com
mailto:mzalewski@nvidia.com
https://doi.org/10.4230/LIPIcs.ECOOP.2022.31
https://github.com/pnnl/NWGraph
https://archive.softwareheritage.org/swh:1:dir:50db7d4a73652c1073d8141a1e3d83896b0ca3b0;origin=https://github.com/pnnl/NWGraph;visit=swh:1:snp:ad0393b9e11cdd24a88f587e69c7c445e161d755;anchor=swh:1:rev:bd9e091d2eed4e655c109347c3ec734bf399ff70
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 NWGraph

can be applied to any actual sets of data for which relationships between elements can be
established. Internet packet routing, molecular biology, electronic design automation, social
network analysis, and search engines are just some of the problem areas where graph theory
is regularly applied. The general applicability we find in graph theory – the genericity, if you
will – is a goal for software libraries as well as mathematical theories; graph algorithms and
data structures (collectively, “graphs”) would seem to be ideally suited for software reuse.

Realizing a truly generic library for graphs has significant challenges in practice. Graphs
in theory are useful because they are abstract, but, in practice, they have to be made concrete
when used to solve an actual problem. That is, graphs in practice do not manifest themselves
in the abstract form to which theory and abstract algorithms are applied. Rather, they are
often encoded in some domain-specific form or are latent in problem-related data. And even
if a domain programmer constructs a graph from their data, the domain-specific graph data
structure might not be compatible with the API of a given graph library.

The celebrated Standard Template Library (STL), now part of the C++ standard
library, addressed this problem for fundamental algorithms and abstract containers of data
elements [30]. With the STL, generic programming emerged as a software-development
sub-discipline that focused on creating frameworks of reusable and composable libraries.
Fundamental to the philosophy of generic programming is that algorithms should be able to
be composed with arbitrary types, notably types that may have been developed completely
independently of the library. To achieve this goal, generic algorithms are specified and
written in terms of abstract properties of types; a generic algorithm can be composed with any
type meeting the properties that it depends on. Philosophically, generic programming goes
hand-in-glove with the abstraction process inherent in graph theory. Graphs are abstract
models of entities in relationship – a graph algorithm should be able to operate directly on
the entities and relationships in a programmer’s data.

It is not just the philosophy of generic programming from the STL that can be leveraged to
develop a generic graph library. In fact, an important principle upon which our work is based
is that the standard library already contains sufficient capability to support graph
algorithms and data structures. The type requirements for generic graph algorithms can
be expressed using existing type requirement machinery for standard library algorithms, and
useful and efficient graph algorithms can be implemented based on these requirements.

We apply this principle to develop NWGraph, a generic library of algorithms for graph
computation that are independent of any particular data structure (in particular, independent
of any particular graph data structure). Following current generic library practice, NWGraph
algorithms are organized around a minimal set of common requirements for their input types
(these requirements are formalized in the form of C++20 concepts).

The foundation of this paper is a requirements analysis from which we derive a uniform set
of type requirements for graph algorithms; those requirements subsequently reified as C++
concepts. Based on this foundation, we construct the primary components of NWGraph:
algorithms, defined and and implemented using our concepts; adaptors, for converting
one representation of a graph into another and for enabling structured traversals, and data
structures that model our foundational requirements.

NWGraph contains the following innovations:
A concept taxonomy (expressed using C++20 concepts) for specifying graph algorithm
requirements;
Characterization of graphs using standard library concepts (as a random access range of
forward ranges);
A rich set of range adaptors for accessing and traversing graphs;
An API designed to fully support modern idiomatic C++;

A. Lumsdaine et al. 31:3

An efficient and fully parallelized implementation, using C++ execution policies and
Intel® Threading Building Blocks; and
Application of the generic programming process to minimize requirements on algorithm
input types (thereby enlarging the scope of composability).

In the following sections we first provide some basic background and terminology that
we will be using to discuss graph algorithms (§2) as well as a bit more detail on generic
programming (§3). Next, we analyze the domain of graph algorithms with respect to common
requirements and present the fundamental concepts in NWGraph (§4). We then present an
overview of the primary components of NWGraph in addition to its concepts: its algorithms
(§5), adaptors (§6), and data structures (§7). We include abstraction penalty experiments,
evaluate the performance of our library in comparison with other well-known graph libraries,
and conduct a strong scaling study of the parallel performance of NWGraph (§8). Finally,
we provide a high-level feature comparison of NWGraph with other extant graph libraries
(§9) and conclude with some of our observations and experiences in developing NWGraph
(§10). NWGraph is hosted at https://github.com/pnnl/NWGraph.

2 Graph Background

We define a graph G as comprising two finite sets, G = {V, E}, where the set V =
{v0, v1, . . . vn−1} is a set of entities of interest, “vertices” or “nodes,” and E ={e0, e1, . . . em−1}
is a set of pairs of entities from V , “edges” or “links.” Edges may be ordered or unordered;
a graph defined with ordered edges is said to be directed; a graph defined with unordered
edges is said to be undirected.

▶ Remark. Understanding graphs is necessary to develop requirements for algorithms. How-
ever, it should be noted that we don’t derive those requirements from the graph model, but
instead from the algorithms. This is a key distinction between generic programming and, say,
Object-Oriented (OO) requirements analysis.

2.1 Representing Graphs
To define algorithms on graphs and to be able to reason about those algorithms, we need to
define some representations for graphs; not much can be done computationally with abstract
sets of vertices and edges. The specific characteristics of these representations are what we
use to express algorithms (still abstractly) but when those algorithms are implemented as
generic library functions, those characteristics will in turn become the basis for the library’s
interfaces (represented in our case as C++ concepts).

One of the fundamental operations in graph algorithms is a traversal. That is, given a
vertex u, we would like to find the neighbors of u, i.e., all vertices v such that the edge (u, v)
is in the graph. Then, for each of those edges, we would like to find their neighbors, and so
on. The representation that we can define to make this efficient is an adjacency list.

Given a graph G = (V, E), we can define an adjacency-list representation in the following
way. Assign to each element of V a unique index from the range [0, |V |) and denote the vertex
identified with index i as V [i]. We can now define a new graph with the same structure as
G, but in terms of the indices in [0, |V |), rather than with the elements in V . Let the index
graph of G be the graph G′ = (V ′, E′), where V ′ = [0, |V |) and E′ consists of |E| pairs of
indices from V , such that a pair (i, j) is in E’ if and only if (V [i], V [j]) is in E. Which is all
to say, the index graph of G is the graph we get by replacing all elements of G with their
corresponding indices.

ECOOP 2022

https://github.com/pnnl/NWGraph

31:4 NWGraph

We make the following definition: An adjacency list of an index graph G = (V, E) is an
array Adj(G) of size |V | (the array is indexed from 0 to |V |− 1) with the following properties:

Adj(G) is a container of |V | containers, one container for each vertex in V , and
The container Adj(G)[u] contains all vertices v for which there is an edge (u, v) ∈ E.

This structure, an adjacency list of an index graph, or an index adjacency list, is the
fundamental structure used by almost all graph algorithms.

▶ Remark 1. Although the standard term for this kind of abstraction is “adjacency list”, and
although it is often drawn schematically with linked lists as elements, it is not necessary that
this abstraction be implemented as an actual linked list. In fact, other representations (such
as compressed sparse row storage) are significantly more efficient, as we show in Section 8.3.
What is important is that the items that are stored, vertex indices, can be used to index into
the adjacency list to obtain other lists of neighbors.

▶ Remark 2. An adjacency list does not store edges per se, rather it stores lists of reachable
neighbors. Therefore, though it can represent a directed or undirected graph, an adjacency
list is structurally neither inherently directed nor undirected. That is, given vertex u, the
container Adj(G)[u] contains the vertex v if the edge (u, v) is contained in E, i.e., for a
directed graph with edge (u, v) in E, Adj(G)[u] will contain v. For an undirected graph with
edge (u, v) contained in E, Adj(G)[u] will contain v and Adj(G)[v] will contain u. Thus,
directedness of the original graph is made manifest in the values stored in the adjacency list,
not in its structure.

3 Generic Programming

Generic programming is a software development paradigm inspired by the organizational
principles of mathematics [31]. That is, a generic library comprises a framework of algorithms
in a problem domain, based on a systematic organization of common type requirements for
those algorithms. The type requirements themselves, specified as concepts, are part of the
library as well, and provide the interface that enables composition of library components with
other, independently-developed, components. Concrete types that meet the requirements of
a concept are said to model that concept. As an example, the iterator concept taxonomy
was the foundation upon which the STL was organized [21,30].

Generic algorithms (that is, algorithms in a generic library) are designed so that the
requirements they impose on types are as minimal as possible without compromising efficiency,
thus enabling the widest scope of potential composition, and therefore, reuse. Generic
algorithms are derived from concrete ones, which are gradually made more generic by
removing (“lifting”) unnecessary requirements. This process continues as long as instantiation
of the generic algorithm with concrete types remains as efficient as the equivalent concrete
algorithm would have been.

3.1 Lifting
The first (and major) phase of the generic programming process is sometimes known as
“lifting” where we create generic algorithms through a process of successive generalization.
That is, the process is
1. Study the concrete implementation of an algorithm;
2. Lift away unnecessary requirements to produce a more abstract algorithm;
3. Repeat the lifting process until we have obtained a generic algorithm that is as general

as possible but that still instantiates to efficient concrete implementations; and
4. Catalog remaining requirements and organize them into concepts.

A. Lumsdaine et al. 31:5

Listing 1 Concrete implementation for summing elements of an array.

int sum(int *array, int n) {
int s = 0;
for (int i = 0; i < n; ++i) {

s = s + array[i]; }
return s; }

Listing 2 Lifted implementation of sum, where traversal through the container and element
access has been abstracted through the use of iterators and addition has been further lifted with the
introduction of the operator parameter op.

template <class Iter, class T, class Op>
T accumulate(Iter first, Iter last, T s, Op op) {

while (first != last) {
s = op(s, *first++); }

return s; }

Listings 1–2 show two concrete implementations of a sum algorithm. The first steps
through an array of integers, indexing into the array at each step and summing the resulting
value into s. Instead of an array, any eligible container (for example, linked list) can store
the values.

The authors of the STL realized the commonality of traversal and element access across
most basic computer science algorithms. The requirements for traversal and access were
generalized and unified into a hierarchy of type requirements for iterators [30].

An iterator-based algorithm for accumulating elements in a container is shown in Listing 2.
Note that this single parameterized algorithm replaces the sum algorithm shown in Listing 1
(and more). The process of summation has further been generalized by the introduction of a
function object op as a parameter to the function.

3.2 Specialization
In generic programming, the dual to lifting is specialization. That is, once an algorithm is
lifted and made generic, it is specialized through composition with a concrete data type to
realize a concrete implementation of the algorithm. Listing 3 shows two example usages of
the generic accumulate, composing it with an array as well as a linked list from the STL.

Now, there is a crucial requirement that is part of specialization. In generic programming,
we don’t just require that when we have a lifted algorithm that we can compose it with the
data types that we lifted from. In addition to that basic requirement, we also require that
there is zero abstraction penalty. That is, the specialized generic algorithm should provide

Listing 3 Specializations of the generic accumulate algorithms shown in Listing 2. The
accumulate algorithm is composed with an integer array (left) and accumulate is composed with a
linked list (right).

int* array = new int [10];
int result =

accumulate(array, array + 10,
0, std::plus<int>());

std::forward_list<double> ptr;
double result = accumulate(ptr,

nullptr, 0.0,
std::times<double>());

ECOOP 2022

31:6 NWGraph

Listing 4 Skeleton of the requirements for a C++ input_iterator.

1 template <class I>
2 concept input_iterator = requires(I i) {
3 typename std::iter_value_t<I>;
4 typename std::iter_reference_t<I>;
5 { *i } -> std::same_as<std::iter_reference_t<I>>;
6 { ++i } -> std::same_as<I &>;
7 i++;};

exactly the same performance as the concrete algorithm from which it was lifted, when
composed with the original types that were lifted. With modern compilers and libraries,
this requirement is actually met, and is one of the reasons that libraries such as the C++
standard library have been so successful in practice.

3.3 Concepts in C++20
In generic programming, concepts consist of valid expressions and associated types, which
define a family of allowable types admissable for composition with generic algorithms.
Introduced as a language feature for C++20, concepts constrain the set of types that can
be substituted for class and function template arguments. This development has been
instrumental in the notable development of the ranges algorithm library taxonomy, serving
as the link between generic algorithm interface and implementation [23].

A C++20 concept definition declares a set of requirements on types. There are four
types of requirements:

A simple requirement consists of an arbitrary expression statement. The requirement is
that the expression is valid.
A type requirement consists of the keyword typename followed by a type name, optionally
qualified. The requirement is that the named type exists.
A compound requirement specifies a conjunction of arbitrary constraints such as expression
constraint, exception constraint, and type constraint, etc.
A nested requirement consists of another requires-clause, terminated with a semicolon.
This is used to introduce predicate constraints expressed in terms of other named concepts
applied to the local parameters.

Listing 4 shows the skeleton of the C++ concept definition for input_iterator. As
hinted in our example, this concept specifies that an input_iterator can be de-referenced
with operator* (line 5) and incremented with operator++ (lines 6 and 7). Additionally, the
concept specifies two associated types: std::iter_value_t<I> and std::iter_reference ⌋

t<I>. Line 5 also indicates that the expression *i returns the same type as std::iter ⌋

reference_t<I>. Again, this example is abbreviated for purposes of illustration. A complete
description of the C++20 standard library concepts (including the iterator hierarchy) can be
found online at https://en.cppreference.com/w/cpp/concepts.

3.4 Ranges in C++20
The new C++20 Ranges library [23] generalizes iterators and containers in C++. Ranges
provide a way to make STL algorithms composable and improve the readability and writability
of C++ code. Ranges consist of a pair of begin and end iterators, which are not required to
be the same type. An example of using ranges is:

https://en.cppreference.com/w/cpp/concepts

A. Lumsdaine et al. 31:7

std::vector<int> v { /* ... */ }
std::min_element(v.begin(), v.end());//iterator API
std::ranges::min_element(v); //ranges API

In the first case, the generic min_element function is called with an iterator pair (begin
and end of the container v). In the second case, min_element function is called directly with
v as the parameter, as a std::vector is a range (specifically, it satisfies the requirements
for the random_access_range concept.

C++20 ranges are defined in terms of C++20 concepts. A std::range itself is a very
straightforward concept:

template <class T>
concept range = requires(T& t) {

ranges::begin(t);
ranges::end(t); };

It has two valid expressions: begin and end. The std::input_range, which abstracts
containers that have forward iterators, is thus defined:

template<class T>
concept input_range = ranges::range<T>

&& std::input_iterator<ranges::iterator_t<T>>;

This definition states that an input_range is a range and that the iterator type associated
with that range meets the requirements of the std::input_iterator concept.

Related to our development of graph concepts, two range concepts of particular relevance
include ranges::forward_range, which allows iteration over a collection from beginning
to end multiple times (as opposed to an input iterator which is only guaranteed to be able
to iterate over a collection once) and ranges::random_access_range, which further allows
indexing into a collection with operator[] in constant time.

4 Generic Graph Algorithms

In this section we analyze the requirements for graph algorithms in order to derive generic
graph algorithms. NWGraph realizes these generic algorithms as function templates, and
realizes the type requirements as C++20 concepts. Our process centers on defining type
requirements at the interfaces to algorithms based on what the algorithms actually require
of their types, rather than starting with graph types and building algorithms to those types.

4.1 Algorithm Requirements
Algorithms in the STL operate over containers. The concepts defined for the STL have to
do with mechanisms for traversing a container and accessing the data therein. Since graphs
in some sense are also containers of data, we can reuse the mechanisms from the STL for
traversing graphs and accessing graph data, to the extent that makes sense. However, graphs
are structured data and graph algorithms traverse that structure in various ways. Accordingly,
our graph concepts must support structured traversal of graphs.

Most (but not all) graph algorithms traverse a graph vertex to vertex by following the
edges that connect vertices. For implementing such algorithms, it is assumed that a graph
G = {V, E} is represented with an adjacency-list structure1 as defined in Section 2.1.

1 The reader is reminded that although the term of art is “adjacency list,” containers other than lists can
be used to store neighbor information.

ECOOP 2022

31:8 NWGraph

BFS(G, s)
1 for each vertex u ∈ V (G)
2 color[u]← white
3 color[s]← gray
4 Q← ∅
5 Enqueue(Q, s)
6 while Q ̸= ∅
7 u← Dequeue(Q)
8 for each v ∈ Adj(G)[u]
9 if color[v] = white

10 color[v]← gray
11 Enqueue(Q, v)
12 color[u]← black

void bfs(const Graph& G, int s) { ...
for (int u = 0; u < size(G); ++u)

color[u] = WHITE;
color[s] = GREY;
std::queue<int> Q;
Q.push(s);
while (!Q.empty()) {

auto u = Q.front(); Q.pop();
for (auto&& v : G[u]) {

if (color[v] == WHITE) {
color[v] == GREY;
Q.push(v); }}

color[u] = BLACK; }}

Figure 1 Pseudocode and C++ implementation of breadth-first search. Existing C++ language
mechanisms and library components are expressive enough to essentially realize the algorithm line
for line.

4.2 Requirements for Concrete Algorithms
A prototypical algorithm in this class is the breadth-first search (BFS) algorithm. The
pseudocode for this algorithm, along with its C++ implementation, is shown in Figure 1.
The algorithm is abbreviated from [8]. Modulo some type declarations that would be
necessary for real code to compile, but which can be omitted from pseudocode, the C++
code, using out-of-the-box language mechanisms and library components, has essentially a
one-one correspondence to the pseudocode.

From this implementation we can extract an initial set of requirements for the BFS
algorithm:

The graph G must meet the requirements of a random access range, meaning it can be
indexed into with an object (of its difference type) and it has a size.
The value type of G (the inner range of G) must meet the requirments of a forward range,
meaning it is something that can be iterated over and have values extracted.
The value type of the inner range must be something that can be used to index into G.
All elements stored in G must be able to correctly index into it, meaning their value are
between 0 and size(G)-1, inclusive.

Associated with the concepts of a random access range and forward range are complexity
guarantees (which are also implied by the theoretical algorithm). Indexing into G is a
constant-time operation and iterating over the elements in G[u] is linear in the number of
elements stored in G[u].

As an example, we could use any of the following compositions of standard library
components for the Graph datatype above:

using Graph = std::vector<std::list<int>>;
using Graph = std::vector<std::vector<unsigned>>;
using Graph = std::vector<std::forward_list<size_t>>;

(In fact, any Graph data structure meeting the above requirements could be used.)
We now have a set of requirements for a concrete implementation of BFS. Following the

generic programming process, there are various aspects of the implementation that we could
begin lifting. Ultimately, as with the STL, we want a set of concepts useful across families

A. Lumsdaine et al. 31:9

Dijkstra(G, w, s)
1 for each vertex u ∈ V (G)
2 d[u]←∞
3 π[u]← NIL
4 d[s]← 0
5 Q← V (G)
6
7 while Q ̸= ∅
8 u← Extract-Min(Q)
9 for each v ∈ Adj(G)[u]

10 if d[u] + w(u, v) < d[v]
11 d[v]← d[u] + w(u, v)
12 π[v] = u

void dijkstra(const Graph& G, int s) {...
for (int u = 0; u < size(G); ++u) {

d[u] = INF;
pi[u] = NIL; }

d[s] = 0
for (int u = 0; u < size(G); ++u)

Q.push({u, d[u]});
while (!Q.empty()) {

auto [u, x] = Q.top(); Q.pop();
for (auto&& [v, w] : G[u]) {

if (d[u] + w < d[v]) {
d[v] = d[u] + w;
pi[v] = u; }}}}

Figure 2 Pseudocode and C++ implementation of Dijkstra’s algorithm. As with BFS, existing
C++ language mechanisms and library components are expressive enough to essentially realize the
algorithm line for line.

of graph algorithms. So rather than lifting BFS in isolation, we now examine concrete
implementations of other algorithms in order to identify common functionality that can be
lifted in order to unify abstractions.

Figure 2 shows the pseudocode and corresponding C++ implementation for Dijksra’s
algorithm for solving the single-source shortest paths problem. From this implementation we
can extract an initial set of requirements for the concrete dijkstra algorithm:

The graph G is a random access range.
The value type of G (the inner range of G) is a forward range.
The value type of the inner range is a pair, consisting of a something we will call a vertex
type and something we will call a weight.
The vertex type is something that can be used to index into G.
All values stored as vertex types in G must be able to correctly index into G meaning their
value are between 0 and size(G)-1, inclusive.

Just as the code of dijkstra is similar to bfs, some of these requirements are also the
same. However, the key difference is in what is stored inside of the graph. This
implementation of dijkstra assumes that the graph stores a tuple consisting of a vertex
value and an edge weight. That is, rather than the Graph types shown above, we could use
the following for dijkstra:

using Graph = std::vector<std::list<std::tuple<size_t, int>>>;
using Graph = std::vector<std::vector<std::tuple<unsigned, double>>>;
using Graph = std::vector<std::forward_list<std::tuple<int, float>>>;

This is a different kind of graph than we had for bfs, which only stored a value. Yet, even
a graph that stores a weight on its edge should be suitable for BFS exploration. Similarly, a
graph without a weight on its edge should be suitable for Dijkstra’s algorithm, provided a
weight value can be provided in some way (or a default value, say, 1, used).

4.3 Lifting
From the foregoing discussion, we have two pieces of functionality we need to lift. First, we
need to lift how the neighbor vertex is stored so that whether it is stored as a direct value
or as part of a tuple (or any other way), it can be obtained. Second, we need to lift how

ECOOP 2022

31:10 NWGraph

weights (or, more generally, properties) are stored on edges. And, finally, implied when we
say we want to use different kinds of graphs with these algorithms, we need to parameterize
them on the graph type (make them function templates rather than functions).

4.3.1 Parameterizing the Graph Type
In this lifting process we will be building up to a concept, which we will illustrate by lifting
dijkstra. We begin by presenting its type parameterization. The prototype for a dijkstra
function template based on our previous definition would be

template <class Graph>
auto dijkstra(const Graph& G, vertex_id_t<G> s);

Note that we have parameterized two things: the Graph type itself, as well as the type
of the starting vertex s. In this case, the vertex type is not arbitrary, it is related to the
type of the graph, and so we have a type primitive vertex_id_t that returns the type of
the vertex associated with graph G.

We can update some of the previous requirements for the type-parameterized dijkstra:
Graph must meet the requirements of random_access_range.
The value type of Graph (the inner range of Graph) must meet the requirements of
forward_range.
The type vertex_id_t<Graph> is an associated type of Graph.
The type vertex_id_t<Graph> is convertible to the range_difference_t of Graph (that
is, it can be used to index into a Graph).

Both classes of graphs that we had previously seen for bfs and dijkstra satisfy these
requirements (which are more general than either of the previous requirements). For example,
both of the following compound structures

std::vector<std::vector<int>>;
std::vector<std::vector<std::tuple<int, float, double>>>;

satisfy the lifted requirements, (provided a suitable overload of vertex_id_t is defined)
though each would have only satisfied one of the previous requirements. Note however, we
still need to do more lifting before we can compose bfs or dijkstra with these types.

4.3.2 Lifting Neighbor Access
How a neighbor is stored is dependent on the graph structure itself; the mechanism for
accessing it should therefore vary based on the graph type. In keeping with standard C++
practice – and since we want to be able to use C++ standard library containers, we adopt
a polymorphic free function interface to abstract the process of accessing a neighbor. In
particular, we define a target customization point object (CPO) to abstract how a neighbor
vertex is accessed, given an object obtained from traversing the neighbor list.

If variable G is of type Graph and variable e is of the value type of the inner range of Graph,
then target(G, e) is a valid expression that returns a type of vertex_id_t<Graph>.
All values returned by target(G, e) must be able to correctly index into a Graph G.

With this abstraction, the loop and neighbor access in bfs and dijkstra (respectively
at lines 8 and 9 of Fig 2) are replaced by

A. Lumsdaine et al. 31:11

for (auto&& e : G[u]) {
auto v = target(G, e);
... }

Now, provided that suitable overloads for target are defined, the two model graph types
std::vector<std::vector<int>>;
std::vector<std::vector<std::tuple<int, float, double>>>;

will satisfy the above requirements, and we can compose them with the bfs and dijkstra
we have lifted to this point. We can, for example, define overloads for target thusly:
int target(const std::vector<std::vector<int>>& G, int e) { return e; }
using E = std::tuple<int, float, double>;
int target(const std::vector<std::vector<E>>& G, E& e) { return std::get<0>(e); }

Note that these overloads are each specific to a single graph type. In practice we can
define generalized overloads for entire classes of containers. In NWGraph we opted to realize
target as a CPO, implemented using the tag_invoke mechanism [3].

4.3.3 Encapsulating Lifted Requirements as Concepts
We can encapsulate (and formalize) the above requirements in the form of a concept (which
is almost a direct translation of the stated requirements to C++ code).

We first capture the very fundamental requirements of a graph, that it is a semiregular
type (meaning that it is copyable and default-constructible) and that it has an associated
vertex_id_t type:
template <typename G>
concept graph = std::semiregular<G>

&& requires(G g) { typename vertex_id_t<G>; };

We define this as a separate concept since we may wish to define other concepts that reuse
these requirements.

Next, we define some convenience type aliases to capture the type of the inner range of a
graph as well as the type that is stored by the inner range:
template <typename G>
using inner_range = std::ranges::range_value_t<G>;
template <typename G>
using inner_value = std::ranges::range_value_t<inner_range<G>>;

Now we can define the concept that captures the requirements from the lifted bfs and
lifted dijkstra:
template <typename G>
concept adjacency_list = graph<G>

&& std::ranges::random_access_range<G>
&& std::ranges::forward_range<inner_range_t<G>>
&& std::convertible_to<vertex_id_t<G>, std::ranges::range_difference_t<G>>
&& requires(G g, vertex_id_t<G> u, inner_value_t<G> e) {

{ g[u] } -> std::convertible_to<inner_range_t<G>>;
{ target(g, e) } -> std::convertible_to<vertex_id_t<G>>; };

ECOOP 2022

31:12 NWGraph

Although we restricted our illustration of lifting to bfs and dijkstra in this paper, this
concept captures the requirements for all algorithms in NWGraph based on adjacency lists
(see also the discussion in Section 4.4).

We can use this concept to constrain the interface to bfs in the following two ways:

template <class Graph>
requires adjacency_list<Graph>
void bfs(const Graph& G);

template <adjacency_list Graph>
void bfs(const Graph& G);

When using concepts via the requires keyword, there is usually a fully general declaration
and a number of abbreviated forms. In NWGraph, the second syntax above is preferred.

4.3.4 Lifting Edge Weight
In the concrete implementation of Dijkstra’s algorithm shown above, we assumed the container
associated with each vertex in the graph (i.e., the container obtained by G[u]) provided
tuples containing the vertex id and the edge weight. In fact, there are numerous ways to
associate a weight with each edge. We could, for example, store an edge index with each
neighbor and use that to index into an array that we also pass into dijkstra. In such a case
the (unconstrained) prototype for the algorithm might be

template <class Graph, class Range>
auto dijkstra(const Graph& G, vertex_id_t<Graph> s, Range wt);

The inner loop might then look like

for (auto&& e : G[u]) {
auto v = target(e);
auto w = wt[v];
if (d[u] + w < d[v]) {

d[v] = d[u] + w;
pi[v] = u; }}

To lift this version and the version with the directly-stored property on edges, we introduce
weights as a parameter at the interface of dijkstra, of parameterized type WeightFunction.
The WeightFunction template parameter is constrained by the std::invocable concept,
which specifies that the function must be callable on an argument of the inner_value type
of the Graph.

template <adjacency_list Graph, std::invocable<inner_value<Graph> WeightFunction>
auto dijkstra(const Graph& G, vertex_id_t<Graph> s, WeightFunction wt);

In this case, the inner loop would look like

for (auto&& e : G[u]) {
auto v = target(e);
auto w = wt(e);
if (d[u] + w < d[v]) {

d[v] = d[u] + w;
pi[v] = u; }}

A. Lumsdaine et al. 31:13

4.3.5 About Vertex IDs
There is one aspect of the NWGraph adjacency_list concept that may seem overly restrict-
ive, namely that the outer range of an adjacency_list be a random-access range and, hence,
indexable by values in the range [0, |V |). There are two reasons for this particular design
decision. First, indexing into the outer range (g[u]) must be a constant-time operation in
order for algorithms using g[u] to have their expected computational complexity (which
is part of an algorithm’s specification). Second, vertex ids are used not just for indexing
into the graph itself, but for accessing vertex properties, which we also expect to be random-
access ranges. This does not, however, necessarily imply that graph inner ranges must store
vertex ids. Rather, the adjacency_list concept only requires that the target CPO return
something convertible to a vertex_id_t, something that can be computed or looked up
(though, again, in constant time). However, if one is going to compute a vertex_id_t on
the fly, or look it up elsewhere, one could as well store it. NWGraph containers take this
approach, and it can also be readily realized by nested standard library containers (e.g.,
std::vector<std::vector<int>>).

That all being said, the NWGraph adjacency_list constraints (like all concepts) are
only syntactically enforced. Though unnecessary, as described above, one could provide a
graph that used an std::map as the outer container. The operation g[u] would still work,
but at the cost of increased computational complexity.

4.3.6 Non-Type Constraints
We have already seen in lifting the edge weight that not all constraints for an algorithm are
encapsulated in the type requirements for the input graph. There are other requirements that
an algorithm may have that cannot be captured as a type requirement, or as any compile-time
checkable requirement. For example, some algorithms, such as triangle counting, may require
that the edges within each neighborhood be sorted. Such requirements become part of the
specification of the API, but cannot be made part of type checking. This is similar to,
say, binary_search in the C++ standard library, which requires that the elements of the
container to which it is applied be sorted. Yet, there is no such thing as a sorted container
type in the standard library.

4.4 Other Graph Concepts
Our presentation thus far has developed a single concept (adjacency_list) and the reader
may ask how broad that concept is, given the wide variety of potential graph algorithms.
In fact, the adjacency_list concept is surprisingly broad in its applicability; only a few
supplemental concepts are required to cover all of the algorithms implemented in NWGraph
and probably all of the algorithms that are likely to be implemented in NWGraph in the
future. This is perhaps not so surprising since the adjacency list Adj(G) is also the primary
theoretical construct upon which the majority of graph algorithms are built.

There are two additional concepts that we introduce briefly here which we found necessary
for algorithms in NWGraph: degree_enumerable and edge_list. The former extends ad ⌋

jacency_list with the requirement that there be a valid expression degree, necessary in
some algorithms. The latter is basically a container of objects for which source and target
are valid expressions. Algorithms such as Bellman-Ford and Kruskal’s MST use an edge list
rather than an adjacency list [8].

ECOOP 2022

31:14 NWGraph

Our confidence that these few concepts are sufficient is based on a comprehensive study
of the concepts in the Boost Graph Library (BGL) [29]. The BGL has five essential
graph concepts that cover all of its algorithms: VertexListGraph, EdgeListGraph, Ad ⌋

jacencyGraph, IncidenceGraph, and BiIncidenceGraph. Of these, the design decisions of
NWGraph to require vertex identifiers to be indices obviates VertexListGraph; we don’t
need to iterate through a list of vertices provided by the graph, we simply iterate through
vertex ids from 0 through |V | − 1. The NWgraph adjacency_list and degree_enumerable
concepts subsume the essential functionality of AdjacencyGraph and IncidenceGraph. The
adjacency_list does not have a source function requirement, but that is in fact only rarely
used in the BGL algorithms requiring IncidenceGraph (and when it is used, there are other
ways of obtaining the same information). The BiIncidenceGraph concept specifies that a
graph type must have two lists of neighbors: those reachable by “out edges” (which is what
adjacejcy_list requires) and those that can reach the vertex, i.e., the “in edges.” The in
edge neighborhoods are essentially the transpose of the out edge neighborhoods and can be
represented with the same kind of adjacency list structure as the out edge neighborhoods.
The need for a single data type holding lists of both out edges and in edges is unnecessary
in the NWGraph design. Algorithms requiring a graph and its transpose take two graph
arguments, one representing the out edges and one representing the in edges. Those two
graphs represent (and store) exactly the same information as would be contained in a single
BiIncidenceGraph, so there is no loss of efficiency in this design decision (and, in fact,
NWGraph provides utilities for creating the transpose of a given graph). Finally, NWGraph
includes an edge_list concept which is identical to the BGL EdgeListGraph concept.

5 Algorithms in NWGraph

Algorithms in NWGraph constitute the core of our library. NWGraph includes a broad classes
of algorithms (sequential and parallel) for different graph problems, including graph traversal
(BFS, SSSP), analytics (PageRank, Jaccard similarity, betweenness centrality, connected
components), motif counting (triangle counting), network flow (maximum flow), etc. Table 1
lists the graph algorithms implemented in NWGraph along with their problem definitions.

5.1 Parallelization

NWGraph leverages existing parallelization support in the C++ standard library for im-
plementing different parallel graph algorithms. However, in cases where it was necessary
to circumvent some of the limitations of the C++ standard library for parallelization, we
instead used Intel® oneAPI Threading Building Blocks (TBB) [14] for better performance.

5.1.1 Parallelization with std Execution Policies

NWGraph implements parallel algorithms for some of the different graph kernels described
in Table 1 with std::execution::par (parallel policy) and std::execution::par_unseq
(parallel unsequenced policy) provided to the std::for_each construct. Listing 5 demon-
strates a triangle counting algorithm capable of benefiting from parallel std::execution
policies. Note that updating shared variables relies on the std::atomic operations library.

Alternatively, Listing 6 shows an asynchronous task-based parallel triangle counting
algorithm, which uses std::future and std::async to explicitly manage concurrency.

A. Lumsdaine et al. 31:15

Table 1 Algorithm classes in NWGraph. Parallel implementation available: std::execution
and std::for_each†, std::async§, TBB’s parallel_for¶.

Algorithm Definition

Breadth-first search†¶ Traverses a graph in breadth-fist search order from a given
source. Implementation includes: top-down, bottom-up and
direction-optimized [5] algorithms.

Depth-first search Traverses a graph in depth-first search order from a given
source.

Single-source shortest paths†¶ Finds the shortest distance paths from a given source to all
other vertices in a graph. ∆-stepping algorithm [19] is imple-
mented.

Connected component†¶ Finds connected components in a graph. Implementations
include Afforest [32], Shiloach-Vishkin [26], BFS-based [27]
and minimal label propagation [24,34] algorithms.

PageRank†§¶ Compute the importance of each vertex in a graph. Implements
the Gauss-Seidel algorithm [1].

Triangle counting†§¶ Counts the number of triangles in a graph. Implements al-
gorithms discussed in [18].

Betweenness centrality†§¶ Measures how many times each vertex lies on the shortest paths
to other vertices. Brandes Algorithm [7] has been implemented.

Maximum flow Given a source and a sink, find paths with available capacity
and push flow through them until there are no more paths
available. Implements Edmonds-Karp algorithm.

K-core Finds the subgraph induced by removing all vertices with
degree less than k.

Jaccard similarity Computes the Jaccard similarity coefficient of each pair of
vertices in a graph.

Graph coloring Assign a color to each vertex in the graph so that no two
neighboring vertices have the same color. Implements Jones-
Plassmann algorithm [15].

Maximal independent set Graph coloring with two colors.

Listing 5 Parallel triangle counting algorithm with std::execution policies.

1 template <adjacency_list_graph Graph, class OuterExecutionPolicy =
2 std::execution::parallel_unsequenced_policy,
3 class InnerExecutionPolicy = std::execution::sequenced_policy>
4 std::size_t triangle_count(const Graph& A, OuterExecutionPolicy&& outer = {},
5 InnerExecutionPolicy inner = {}) {
6 std::atomic<std::size_t> total_triangles = 0;
7 std::for_each(outer, A.begin(), A.end(), [&](auto&& x) {
8 std::size_t triangles = 0;
9 for (auto &&i = x.begin(), e = x.end(); i != e; ++i) {

10 triangles += nw::graph::intersection_size(i,e,A[std::get<0>(*i)], inner);
11 }
12 total_triangles += triangles;
13 });
14 return total_triangles;
15 }

ECOOP 2022

31:16 NWGraph

Listing 6 Parallel triangle counting algorithm with std::async.

1 template <class Op>
2 std::size_t triangle_count_async(std::size_t threads, Op&& op) {
3 std::vector<std::future<size_t>> futures(threads);
4 for (std::size_t tid = 0; tid < threads; ++tid) {
5 futures[tid] = std::async(std::launch::async, op, tid);
6 }
7 // Reduce the outcome ...
8 }
9 template <adjacency_list_graph Graph>

10 std::size_t triangle_count_v2(const Graph& G, std::size_t threads = 1) {
11 auto first = G.begin();
12 auto last = G.end();
13 return triangle_count_async(threads, [&](std::size_t tid) {
14 std::size_t triangles = 0;
15 for (auto i = first + tid; i < last; i += threads) {
16 for (auto j = (*i).begin(), end = (*i).end(); j != end; ++j) {
17 // ...
18 }} });}
19

5.1.2 Shortcomings of std Execution Policy-based Parallelization
The current std::execution and std::thread libraries lack adequate support for imple-
menting efficient parallel graph algorithms. Some of the most important limitations include:

Programmers do not have control over workload distribution or partitioning of data or
work among threads.
Thread-safe data structures are not part of the standard library. Having to manually use
coarse-grained locking lock and mutex to make standard library containers thread-safe
is labor-intensive and may severely limit the performance of parallel graph algorithms.
Granularity of concurrency cannot be directly managed.

5.1.3 Parallelization with Intel® Threading Building Blocks
To circumvent these shortcomings, NWGraph leverages Intel® Threading Building Blocks
(TBB) library. TBB provides a set of efficient concurrent containers (hashmap, vector, and
queue) implemented with fine-grained locking and lock-free techniques. NWGraph uses
TBB’s concurrent vector to maintain the frontier list of active vertices in each step of the
∆-stepping algorithm [19] for computing SSSP (Listing 7).

One determinant of parallel graph algorithm performance is how well the parallel workload
is balanced among threads. Graph algorithms typically do not perform well with naive
partitioning approaches. Recall a graph structure is a random-access range of forward ranges.
A naive partitioning scheme will partition the outer range into equal-sized chunks – which is a
reasonable strategy for one-dimensional containers, where each partition will have essentially
the same amount of work. The story is completely different for graph data structures,
especially those with highly skewed degree distributions, such as power-law graphs. In such
cases, if the graph is partitioned based on the outer range, each partition will have the same
number of starting vertices (the same number of inner ranges), but the number of neighbors

A. Lumsdaine et al. 31:17

Listing 7 ∆-stepping algorithm for computing single-source shortest paths using TBB’s thread-safe
containers.

1 template <class distance_t, adjacency_list_graph Graph, class Id, class T>
2 auto delta_stepping(const Graph& graph, Id source, T delta) {
3 tbb::queuing_mutex lock;
4 tbb::concurrent_vector<tbb::concurrent_vector<Id>> bins(size);
5 tbb::concurrent_vector<Id> frontier;
6 // ...
7 while (top_bin < bins.size()) {
8 frontier.resize(0);
9 std::swap(frontier, bins[top_bin]);

10 tbb::parallel_for_each(frontier, [&](auto&& u) {
11 if (tdist[u] >= delta * top_bin) {
12 nw::graph::parallel_for(graph[u], [&](auto&& v, auto&& wt) {
13 relax(u, v, wt); });
14 } });
15 // ...
16 }
17 }

Listing 8 ∆-stepping algorithm for computing single-source shortest paths using TBB’s blocked ⌋
_range partitioning technique.

1 // ...
2 while (top_bin < bins.size()) {
3 // ...
4 tbb::parallel_for(tbb::blocked_range(0ul,frontier.size()),[&](auto&& range){
5 for (auto id = range.begin(), e = range.end(); id < e; ++id) {
6 auto i = frontier[id];
7 if (tdist[i] >= delta * top_bin) {
8 // ...
9 }}});

10 }

in each inner range will vary with the degree distribution. Without the ability to partition
based on the size of the inner ranges (which is an indication of the amount of work to be
done for each partition), some threads may end up with vastly more work than other threads.

To provide better control of workload distribution among threads, TBB’s parallel_for
function accepts ranges (a TBB construct in this case, not to be confused with C++20 ranges)
that can be customized to provide user-defined partitioning. An example is NWGraph’s use
of TBB’s blocked_range in the ∆-stepping algorithm (compare Listing 7 with Listing 8).
Custom ranges are not limited to contiguous partitions of the underlying data structure.
Instead, one can use strided (or cyclic) partitions – or, more generally, block-cyclic partitions
– which can provide natural load balancing in certain situations. We show the performance
benefit of cyclic distribution in Section 8.

TBB also implements C++ standard library parallelism (TBB’s parallel STL). Intel has
open-sourced TBB (now called oneTBB), allowing its parallel STL effecting parallelism in
other C++ library implementations. In fact, and somewhat ironically, the standard library
provided by g++ (the compiler we used for NWGraph development) is one such compiler that
uses TBB under the hood.

ECOOP 2022

31:18 NWGraph

Subview of the graph for work
distribution

Modified View of the graph based
on traversal criteria

Original View of the graph

Edge Range

Neighbor Range

Plain Range

Random Range

Back Edge Range

BFS Edge Range

DFS Edge Range

Filtered BFS Range

DAG Range

Reverse Path

Splittable Edge Range

Cyclic Range

Figure 3 Range adaptors in NWGraph.

6 Graph Range Adaptors in NWGraph

A key feature of the new C++ Ranges is the notion of views, which allow for different ways
to access data in a range without changing the underlying range. Between a range and a
range view sits a range adaptor, which takes the original range and presents it to the user as
a view while hiding the underlying data manipulation details. We leverage range adaptors
to simplify graph algorithms in NWGraph, by providing reusable data access patterns that
eliminate the need for visitor objects.

Consider again BFS traversal, a core graph algorithm kernel. Except perhaps for bench-
marking, a standalone BFS traversal is rarely useful. Rather, other algorithms use a BFS
traversal pattern to perform more useful computations, such as finding the distance to every
vertex from the source, finding the parent list, etc. One approach to applying BFS traversals
to other types of computations would be to further parameterize bfs with additional functions.
However, what to apply and where to apply it is not well defined – we don’t necessarily have
well-defined concrete algorithms to lift.

The Boost Graph Library provides extensibility to BFS through its Visitor mechanism,
which is essentially a large structure with callbacks used at multiple entry points in BFS
execution [29]. The BFS Visitor has nine different possible callbacks, making actual extension
of the BGL BFS a complicated proposition.

NWGraph does not attempt to further lift algorithms from arbitrary, concrete use cases
(which are not well-defined from a library designer’s perspective). Instead it provides range
adaptors that allow the graph to be iterated over in a specified order (either vertex by vertex
or edge by edge). For example, NWGraph provides bfs_range for traversing the vertices of
a graph in breadth-first order, and bfs_edge_range for traversing the edges.

for (auto&& u : bfs_range(G)) { /* visit vertex u */ }
for (auto&& [u, v] : bfs_edge_range(G)) { /* Visit edge u,v */ }

As views are concise and efficient ways of representing the same data in multiple ways,
graph algorithms can be considered as operating on a range of elements of a graph with
different requirements on how data is being viewed by the algorithm. In NWGraph, we
provide three categories of view of the graph shown in Figure 3:

Original view of the graph: These include edge range, neighbor range, plain range, random
range and back-edge range.
Modified view of the graph based on traversal criteria: For example, BFS and DFS
traversal-based algorithms consider vertices in a certain order. These alternative views
include BFS edge range, filtered BFS range, DFS edge range, Directed Acyclic Graph

A. Lumsdaine et al. 31:19

(DAG) range and Reverse Path. More sophisticated range adaptors such as DAG range, for
example, iterate over the vertices in a particular order, based on the predecessor-successor
relationships, imposed by algorithm-specific heuristics.
Subview of the graph for workload distribution in parallel execution: These include
splittable edge range and cyclic range.

7 Model Data Structures in NWGraph

In Section 4.3 (lifting), we demonstrated that the built-in types in the standard library
are sufficient to construct a graph. We reiterate that any data structure meeting the
requirements specified by the NWGraph concepts can be composed with the NWGraph
algorithms based on those concepts. For instance, std::vector<std::vector<std:: ⌋

tuple<size_t, double>>> meets the requirements of the adjacency_list concept, and
hence can be used with any of the appropriate algorithms. Graphs do not need to be
constructed from a range of ranges in order to meet the requirements of a range of ranges.
Data structures such as compressed sparse structures, which represent all of a graph’s
neighborhoods contiguously in memory, can offer better performance due to more favorable
memory accesses. We compare compressed sparse structures to compositions of standard
library components in Section 8.

The workhorse graph structure for NWGraph is the class template nwgraph::adjacency,
a compressed structure with the following (abbreviated) interface:

template <int idx, class Attributes...>
class adjacency {

class outer_iterator {
using iterator_category =
std::random_access_iterator_tag; ..};

class inner_iterator;
outer_iterator begin();
outer_iterator end();
operator[](index_t i) const; };

nwgraph::adjacency is parameterized on the types of the edge properties, using variadic
template parameter Attributes, to allow an arbitrary number of edge properties of arbitrary
type. The idx parameter is a hint indicating whether the adjacency structure is representing
the out edges or the in edges of the edge list from which it was built. To allow nwgraph::ad ⌋

jacency to meet the requirements of adjacency_list (range of ranges), we define a private
iterator type that acts as a random access iterator.

NWGraph has a small set of utility functions for building graphs from a given dataset in
a generic fashion. The first step involves building an index edge list, given a vertex table and
an edge table. The second step uses this edge list to build an index graph (that is, filling
in a structure modeling adjacency). Some algorithms (such as triangle counting) require
sorted data in the neighborhood range. The graph construction algorithms take a runtime
flag that indicates whether neighborhood sorting should be done during graph construction.
NWGraph also provides functions to sort graphs that have already been constructed. The
pertinent APIs for graph construction are the following:

template <class IndexEdgeList, class VRange, class ERange>
IndexEdgeList make_index_edge_list(const VRange& vertices, const ERange& edges);
template <adjacency_list Graph, class IndexEdgeList>
Graph make_graph(const IndexEdgeList& edge_list);

ECOOP 2022

31:20 NWGraph

8 Performance Evaluation

8.1 Experimental Setup
Our experiments were carried out on compute nodes consisting of two Intel® Xeon® Gold
6230 processors, each with 20 physical cores running at 2.1 GHz (with turbo boost up to
3.9GHz), and hyperthreading disabled. Each processor has 28MB L3 cache and 188GB of
main memory. NWGraph is implemented in C++20, parallelized with oneTBB 2021.4, and
compiled with the g++ 11.2 compiler using -Ofast -march=native compilation flags.

8.2 Abstraction Penalty
Modern C++ practice includes a wide variety of mechanisms and related idioms for traversing
data structures. Since the inner range of a type meeting adjacency_list requirements is a
forward range, any of those modern techniques may be used for traversal. Moreover, the
compressed graph structure provided in NWGraph presents a facade of being a range of
ranges, using internally-provided iterators to effect the “range of ranges” interface. Given this
variety of traversal mechanisms, and the layers of abstraction associated with traversal and
with the compressed graph structure, there is potential for unintended abstraction penalty.

To verify the performance expectation of specialization in generic libraries, i.e., that
there is minimal abstraction penalty, NWGraph includes an abstraction penalty benchmark
suite, from which we present a small subset. Here, we focus on inner range traversal as it is
ubiquitous to all graph algorithms; any penalties uncovered there would also be apparent in
other graph algorithms. We use the sparse matrix-vector product (SpMV) algorithm as the
vehicle for our study, as it is well-suited for characterizing inner range traversal; it makes
one pass through the entire graph, traversing each of the inner ranges.

Let us consider a “raw for loop” implementation of SpMV, using a compressed sparse
row (CSR) data structure to store the adjacency list. The CSR structure stores its neighbor
indices and edge weights in contiguous arrays and traverses the data structure by looping
through each vertex id and then traversing the associated inner range delimited by the indices
in the ptr array.

auto ptr = G.indices_.data();
auto idx = std::get<0>(G.to_be_indexed_).data();
auto dat = std::get<1>(G.to_be_indexed_).data();
for (vertex_id_t i = 0; i < N; ++i) {

for (auto j = ptr[i]; j < ptr[i + 1]; ++j) {
y[i] += x[idx[j]] * dat[j]; }}

This concrete algorithm establishes the baseline performance against which the generic
algorithms are compared.

In a generic SpMV implementation, we cannot assume this underlying CSR structure.
Rather we can only assume the interface specified by the adjacency_list concept, i.e., a
range of ranges, and our implementations of a generic SpMV must be written accordingly.
However, to meet our specialization performance requirements, a generic SpMV written
to the adjacency_list concept must still provide the same performance as the concrete
baseline when composed with a CSR-like structure, i.e., the NWGraph compressed graph
adjacency structure.

Consider two common iteration patterns used in modern C++, an iterator-based for loop
and a range-based for loop (which is essentially syntactic sugar for the iterator-based loop):

A. Lumsdaine et al. 31:21

vertex_id_t k = 0;
for (auto i = G.begin(); i != G.end(); ++i) {

for (auto j = (*i).begin(); j != (*i).end(); ++j) {
y[k] += x[get<0>(*j)] * get<1>(*j); }

++k; }

vertex_id_t k = 0;
for (auto&& i : G) {

for (auto&& [j, v] : i) {
y[k] += x[j] * v; }

++k; }

As generic loops, these can be applied to any graph that models the adjacency_list concept.
There are several important departures from the concrete CSR-based loops. It is easy to see
how these operate on something that is a range of ranges. On the other hand, there is no
obvious correspondence between the iterator-based algorithms and the concrete algorithm.
Of particular note is that the neighbor vertex index j and the edge weight v are accessed as
tuples, directly in the former case and via structured binding in the second case.

Iterators can also be used to traverse the inner range using the standard library std:: ⌋
for_each algorithm rather than for loops. The std::for_each algorithm iterates through
the indicated iterator range and applies a given function to each element in the range. Here,
we specify those functions using C++ lambdas.

vertex_id_type k = 0;
std::for_each(graph.begin(), graph.end(), [&](auto&& nbhd) {

std::for_each(nbhd.begin(), nbhd.end(), [&] (auto&& elt) {
auto&& [j, v] = elt;
y[k] += x[j] * v; });

++k; });

In the previous examples, we iterate through the graph using two nested loops, variously
expressed. We can alternatively use the edge_range range adaptor, which “flattens” the
graph, allowing traversal of all of the inner ranges with a single loop.

for (auto [i, j, v] : make_edge_range<0>(graph))
y[i] += x[j] * v;

The edge_range adaptor essentially turns the adjacency_list into an edge_list. It
provides a tuple with three elements: The source vertex, the target vertex, and the edge
weight. The result is an extremely concise implementation of SpMV, which, again, will work
with any type meeting the requirements of adjacency_list. The question that we wish to
address is whether this genericity and this conciseness comes at the cost of performance.

Our experimental evaluation of SpMV uses three graphs with different underlying topology
taken from the SuiteSparse matrix collection: circuit5M, GAP-road, and hugebubbles [9].
These graphs have similar numbers of edges (30M to 60M) and the benchmarks run in
comparable time. Figure 4a shows the results of the different data access abstractions relative
to the raw loop timing, for each benchmark. Timing results were averaged over 5 runs of each
benchmark. Bars significantly higher than the raw for loop bar would indicate a significant
performance penalty. None of the abstraction methods incurs a significant performance

ECOOP 2022

31:22 NWGraph

circuit5M GAP-road hugebubbles
0.0

0.5

1.0

1.5

A
bs
tr
ac
ti
on

P
en
al
ty

(t
im
e
re
la
ti
ve

to
ra
w
)

raw iterator range for each edge range

(a) Different data access abstractions (iterators,
ranges, std::for_each and edge_range adaptor)
with their abstraction penalties measured relative
to a raw for loop implementation. There is no
significant performance penalty relative to the raw
loop implementation.

circuit5M GAP-road hugebubbles-00020
0

5

10

15

A
bs
tr
ac
ti
on

P
en
al
ty

(t
im
e
re
la
ti
ve

to
st
ru
ct

of
ar
ra
y)

struct of array

vector of vector

vector of list

vector of forward list

(b) Measured abstraction penalty for the SpMV
benchmark with graphs represented by different
containers using iterator based for loop. The
execution time has been normalized w.r.t to the
execution time of SpMV with graphs represented
as struct_of_array (lower is better).

Figure 4 Abstraction Penalty Benchmarks with SpMV.

Table 2 Characteristics of input graphs used for performance evaluation.

Name Description #Vertices
(M)

#Edges
(M)

Degree Dis-
tribution

References

road USA road network 23.9 57.7 bounded [11]
twitter Twitter follower Links 61.6 1,468.4 power [17]
web Web Crawl of .sk Domain 50.6 1,930.3 power [6]
kron Synthetic Graph 134.2 2,111.6 power [20]
urand Uniform Random Graph 134.2 2,147.5 normal [12]

penalty relative to the raw loop implementation. edge_range is perhaps consistenly a little
higher than the baseline, due to moving access of the row index from the outer loop to the
inner loop. Continued refinement of edge_range is a topic of ongoing work.

8.3 Graph Representations

We also evaluated the performance implications of different choices for the inner range: ad ⌋

jacency, vector_of_vector, vector_of_list, and vector_of_forward_list. The latter
three graph structures are lightweight wrappers around the corresponding composed standard
library containers, and provide a variadic interface to match adjacency. Note that all of
these containers meet the requirement of our graph concept. However, they have different
features outside of the context of graph algorithms that might make them suitable for different
situations. Notably they can represent more dynamic graphs, i.e., they can be modified
(vertices or edges added or deleted) much more efficiently than the compressed form.

This flexibility comes at a cost. Figure 4b shows the performance of the iterator-based
SpMV on the different containers. Execution time is normalized relative to SpMV with
the adjacency container. Unlike the results in Figure 4a, there are significant differences
in performance between the different cases. Note, however, that these experiments are not
measuring the difference between an abstract and a concrete expression of an algorithm.
Rather, the generic algorithm is the same in each of the cases, but it is composed with different
data structures. The benchmark compares the time it takes to traverse the different inner
range structures (vector, doubly-linked list, singly linked list). The adjacency representation
is cache-friendly, supporting efficient access of the outer and inner range, while the performance
of the other graph types reflect the expected overheads of their underlying inner ranges.

A. Lumsdaine et al. 31:23

Table 3 GAP Benchmark Suite execution times for NWGraph.

Algorithm kron urand twitter web road

BFS 0.51s 1.12s 0.26s 0.72s 0.84s
SSSP 7.23s 13.20s 2.88s 2.02s 2.99s
CC 0.64s 1.50s 0.29s 0.32s 0.09s
PR 12.09s 12.45s 8.69s 2.81s 0.26s
BC 8.43s 12.70s 2.42s 1.31s 1.95s
TC 305.19s 20.42s 58.81s 7.40s 0.07s

Table 4 Performance comparisons with NWGraph for the GAP Benchmark Suite. Percentages
represent the relative speedup of each particular experiment relative to the NWGraph. The color code
indicates performance that is lower than (red), equal to (white), or higher than (green) NWGraph.

Galois GraphIt GAPBS
kron urand twitter web road kron urand twitter web road kron urand twitter web road

BFS 118% 168% 40% 242% 886% 9.2% 9.5% 1.8% 8.2% 57% 174% 203% 168% 240% 218%
SSSP 136% 131% 108% 147% 1162% 100% 202% 114% DNR 2.3% 189% 228% 250% 261% 1339%
CC 104% 90% 101% 174% 154% 0.34% 135% 0.53% 75% 0.02% 151% 112% 164% 174% 10%
PR 86% 65% 78% 99% 73% 4.5% 4.0% 4.6% 5.8% 4.8% 137% 116% 828% 101% 9.1%
BC OOM 28% 0.08% 1.4% 44% OOM OOM OOM OOM OOM 37% 38% 45% 40% 110%
TC 80% 71% 84% 56% 240% 107% OOM 86% OOM 120% 90% 98% 130% 54% 42%

8.4 Performance on Large-Scale Graphs
To demonstrate NWGraph’s performance characteristics on large-scale graphs, we evaluate
and compare NWGraph with three well-established high-performance graph frameworks:
GAP [4], Galois [22] and GraphIt [36], on the algorithms and graphs that comprise the
GAP benchmark suite [4]. The algorithms in the benchmark are betweenness centrality
(BC), breadth-first search (BFS), connected components (CC), PageRank (PR), single source
shortest path (SSSP), and triangle counting (TC). The graphs used in the benchmark (shown
in Table 2) are large, with diverse structural properties. All experiments were conducted
with 32 threads running on 32 physical cores. The frameworks have been previously tuned
for the GAP benchmark suite and were run under carefully controlled conditions, according
to the rules and procedures established in [2].

Speedups of the different graph frameworks over NWGraph for the five datasets is shown
in Table 4. We summarize our observations as follows:

NWGraph outperforms the other frameworks in the majority of cases for BC and TC.
The TC implementation has been highly tuned, using a cyclic range adaptor for effective
load balancing, as well as having efficient implementations of its pre-processing techniques
(which time is included in the benchmarking), such as relabeling the vertices by degree [18].
NWGraph is better than Galois and GraphIt for PR, and somewhat worse than GAPBS.
NWGraph and GAPBS both implement PR using a more efficient Gauss-Seidel inner
step in the algorithm.
For BFS and SSSP, NWGraph does not perform as well as Galois or GAPBS, particularly
for road, for which Galois’s highly-asynchronous approach is particularly effective. We
do not currently have an explanation for NWGraph’s poor performance on road.
All frameworks except GraphIt implement the Afforest algorithm [32] for CC. Hence,
GraphIt’s CC performs poorly for graph inputs having large dominant components.

ECOOP 2022

31:24 NWGraph

road twitter kron web urand

1 2 4 8 16 32
Number of Threads

2
0

2
4

S
p
ee
du
p

BFS

1 2 4 8 16 32
Number of Threads

2
0

2
4

S
p
ee
du
p

CC

1 2 4 8 16 32
Number of Threads

2
1

2
3

S
p
ee
du
p

SSSP

1 2 4 8 16 32
Number of Threads

2
0

2
4

S
p
ee
du
p

TC

1 2 4 8 16 32
Number of Threads

2
0

2
4

S
p
ee
du
p

PR

1 2 4 8 16 32
Number of Threads

2
0

2
4

S
p
ee
du
p

BC

Figure 5 Strong scaling performance of six different graph algorithms (BFS, CC, TC, PR, PR,
and BC) with five GAP graph inputs. The reported speedup is calculated as the ratio of the
sequential (single-threaded) execution time and the parallel execution time.

One takeaway from these results is that the choice of algorithm and how well it is matched
to a particular graph have the largest effect on performance. The performance differences
between NWGraph and other frameworks (better or worse) are not due to inherent properties
of the C++ language, nor its standard library, upon which NWGraph is built.

8.5 Strong Scaling Performance
Figure 5 presents the strong scaling performance for the graph kernels and inputs from
the GAP benchmark [4]. For strong scaling, we keep the (size of the) dataset fixed while
increasing the number of threads. The reported speedup is calculated by taking the ratio of
the sequential execution time and the parallel execution time. In most cases, the algorithms
scale well. Two exceptions can be observed with the road network input for the BFS and
the SSSP algorithms. Since the road network has a low average degree and large diameter,
increasing the number of threads does not improve the performance of these two algorithms
significantly. BFS with web graph also does not demonstrate expected scalability.

8.6 Comparison with Boost Graph Library
We have compared NWGraph to BGL several times in this paper with respect to certain
design decisions. Of interest also is how NWGraph performance would compare to BGL.
We compare the sequential performance of the two libraries for four of the GAP graph
kernels using the GAP graph inputs in Table 2. We report the results in Table 5. As can be
observed from the Table, NWGraph performs better than BGL in all cases. (BGL has no
directly comparable implementations of BC mor PR, and hence we are unable to compare
the performance for these two kernels.)

9 Related Libraries and Toolkits

This section explores the landscape of related graph libraries and frameworks. Each of the
libraries or tools discussed in this section make different design tradeoffs regarding usability,
extensibility, and performance. Though few of the tools in this section (with the exception
of BGL) aimed to fill the role of an STL graph library, they all contribute to a greater
understanding of graph library design.

A. Lumsdaine et al. 31:25

Table 5 Sequential runtime and speedup of NWGraph and BGL for four graph algorithms: TC,
CC, BFS, and SSSP. >24H indicates jobs that did not finish within 24 hours; OOM indicates out of
memory.

Algorithm Library road twitter kron web urand

TC
BGL 1.34s >24H >24H >24H 4425.54s
NWGraph 0.41s 1327.63s 6840.38s 131.47s 387.53s
Speedup 3.27 - - - 11.42

CC
BGL 1.36s 21.96s 81.18s 6.64 134.23
NWGraph 1.02s 3.65s 13.37s 3.02s 43.74s
Speedup 1.34 6.02 6.07 2.20 3.07

BFS
BGL 1.09s 12.11s 54.80s 5.52s 73.26s
NWGraph 0.91s 11.25s 38.86s 2.37s 64.63s
Speedup 1.20 1.08 1.41 2.33 1.13

SSSP
BGL 4.03s 47.89s 167.20s 28.29s OOM
NWGraph 3.35s 40.94s 95.06s 23.51s 177.13s
Speedup 1.21 1.17 1.76 1.20 -

Generic C++ Graph Libraries. BGL [29] and the LEMON graph library [10] both con-
tributed to the development of generic graph algorithms in C++. BGL proposed algorithm
templates that could be used on a variety of graph types (which could be generated using
BGL’s graph type generator), e.g., vector of lists, list of vectors, etc. Vertices and edges were
allowed to be arbitrary types accessed via property maps which could be stored internally
or externally to the graph. The default graph algorithms could be customized using visitor
objects, which allowed users to use existing data access patterns to do additional work.
LEMON shared many of these features. Both libraries advertise algorithms that work with
user-defined graphs, so long as they conform to a certain interface.

Some of these features had shortcomings that limited their use. The visitor objects are
difficult to use, both from a programming and algorithmic design perspective. Property maps
are a powerful programming abstraction, but in addition to being difficult to use, could lead
to performance issues. The type of LEMON’s graph adaptors are different from the original
graph type being adapted, and their use as graphs is only supported in limited ways. A
major shortcoming of these designs is the difficulty of using custom data structures. In order
to adapt an existing user-defined data structure, the BGL interface requires overloading
several global free functions. These mostly include accessors, mutators, and iterators for
edges and vertices. An assumption is placed on the graph container type being adapted that
it will have much of the same behavior as the built in BGL container types. Furthermore
both libraries lack newer features in C++ such as constexpr, variadic templates, automatic
type deduction, execution policies, etc.

HPC Graph Frameworks. There are several graph frameworks designed to maximize
performance in distributed memory or shared memory, such graph frameworks include
Parallel Boost Graph Library (PBGL) [13], Galois [16], Ligra [28], Giraph [25], Gunrock [33],
GraphIt [35], etc. The contributions of these frameworks are typically a computational model
for parallel processing of graphs, including on clusters and GPUs, with less emphasis on the
usability or extensibility of graph algorithms or containers. A thorough evaluation of several
well-known parallel graph frameworks can be found in [2].

ECOOP 2022

31:26 NWGraph

10 Conclusion

In this paper we presented the design and rationale for a modern generic C++ library
of graph algorithms and data structures, NWGraph. Based on a careful analysis of the
graph problem domain, the fundamental interface abstraction underlying NWGraph is that
of a random access range of forward ranges. Intentionally minimal, this interface admits
composition with any types that meet its requirements. The library implementation includes
selected concreted containers and a rich selection of common graph algorithms. Though the
library is implemented with standard library components using idiomatic C++, experimental
results showed that the interfaces present no abstraction penalty and that the NWGraph
implementation has performance on par with the highest performing competition. We intend
to continue to refine NWGraph and use it as a testbed in support of an emerging proposal
to the C++ standards committee for a standard C++ graph library.

References
1 Arvind Arasu, Jasmine Novak, Andrew Tomkins, and John Tomlin. PageRank computation

and the structure of the web: Experiments and algorithms. In WWW, pages 107–117, 2002.
2 Ariful Azad, Mohsen Mahmoudi Aznaveh, Scott Beamer, Mark Blanco, Jinhao Chen, Luke

D’Alessandro, Roshan Dathathri, Tim Davis, Kevin Deweese, Jesun Firoz, et al. Evaluation
of graph analytics frameworks using the gap benchmark suite. In 2020 IEEE International
Symposium on Workload Characterization (IISWC), pages 216–227. IEEE, 2020. doi:10.
1109/IISWC50251.2020.00029.

3 Lewis Baker, Eric Niebler, and Kirk Shoop. tag_invoke: A general pattern for supporting
customisable functions. Technical Report P1895R0, JTC1, 2019. URL: http://open-std.
org/JTC1/SC22/WG21/docs/papers/2019/p1895r0.pdf.

4 Scott Beamer, Krste Asanović, and David Patterson. The GAP Benchmark Suite. arXiv, 2015.
doi:10.48550/ARXIV.1508.03619.

5 Scott Beamer, Krste Asanović, and David A. Patterson. Direction-optimizing breadth-
first search. Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis (SC), pages 1–10, 2012. doi:10.1109/SC.2012.50.

6 Paolo Boldi and Sebastiano Vigna. The WebGraph framework I: Compression techniques.
WWW, pages 595–601, 2004. doi:10.1145/988672.988752.

7 Ulrik Brandes. A faster algorithm for betweenness centrality. The Journal of Mathematical
Sociology, 25(2):163–177, 2001. doi:10.1080/0022250X.2001.9990249.

8 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction
to algorithms. MIT Press, 3rd ed edition, 2009.

9 Timothy A. Davis and Yifan Hu. The university of florida sparse matrix collection. ACM
Trans. Math. Softw., 38(1), December 2011. doi:10.1145/2049662.2049663.

10 Balázs Dezső, Alpár Jüttner, and Péter Kovács. Lemon–an open source c++ graph template
library. Electronic Notes in Theoretical Computer Science, 264(5):23–45, 2011. URL: https:
//lemon.cs.elte.hu/trac/lemon.

11 9th DIMACS implementation challenge - Shortest paths, 2006. URL: http://www.dis.
uniroma1.it/challenge9/.

12 Paul Erdős and Alfréd Rényi. On random graphs. I. Publicationes Mathematicae, 6:290–297,
1959.

13 Douglas Gregor and Andrew Lumsdaine. Lifting sequential graph algorithms for distributed-
memory parallel computation. In Proceedings of the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA ’05, pages
423–437, New York, NY, USA, 2005. ACM. doi:10.1145/1094811.1094844.

14 Intel. Intel Threading Building Blocks (TBB), 2020. URL: https://github.com/oneapi-src/
oneTBB.

https://doi.org/10.1109/IISWC50251.2020.00029
https://doi.org/10.1109/IISWC50251.2020.00029
http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1895r0.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2019/p1895r0.pdf
https://doi.org/10.48550/ARXIV.1508.03619
https://doi.org/10.1109/SC.2012.50
https://doi.org/10.1145/988672.988752
https://doi.org/10.1080/0022250X.2001.9990249
https://doi.org/10.1145/2049662.2049663
https://lemon.cs.elte.hu/trac/lemon
https://lemon.cs.elte.hu/trac/lemon
http://www.dis.uniroma1.it/challenge9/
http://www.dis.uniroma1.it/challenge9/
https://doi.org/10.1145/1094811.1094844
https://github.com/oneapi-src/oneTBB
https://github.com/oneapi-src/oneTBB

A. Lumsdaine et al. 31:27

15 Mark T Jones and Paul E Plassmann. A parallel graph coloring heuristic. SIAM Journal on
Scientific Computing, 14(3):654–669, 1993. doi:10.1137/0914041.

16 Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita Bala, and
L. Paul Chew. Optimistic parallelism requires abstractions. In PLDI, pages 211–222. ACM,
2007. doi:10.1145/1250734.1250759.

17 Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a social network
or a news media? In Proceedings of the 19th International Conference on World Wide Web,
WWW ’10, pages 591–600, New York, NY, USA, 2010. ACM. doi:10.1145/1772690.1772751.

18 Andrew Lumsdaine, Luke Dalessandro, Kevin Deweese, Jesun Firoz, and Scott McMillan. Tri-
angle counting with cyclic distributions. In 2020 IEEE High Performance Extreme Computing
Conference (HPEC), pages 1–8, 2020. doi:10.1109/HPEC43674.2020.9286220.

19 Ulrich Meyer and Peter Sanders. ∆-stepping: a parallelizable shortest path algorithm.
Journal of Algorithms, 49(1):114–152, 2003. 1998 European Symposium on Algorithms.
doi:10.1016/S0196-6774(03)00076-2.

20 Richard C. Murphy, Kyle B. Wheeler, Brian W Barrett, and James A. Ang. Introducing the
Graph 500. In Cray User’s Group. CUG, 2010.

21 David R. Musser and Alexander A. Stepanov. Generic programming. In P Gianni, editor,
International Symposium ISSAC 1988, volume 38 of Lecture Notes in Computer Science, pages
13–25. Springer-Verlag, 1989.

22 Donald Nguyen, Andrew Lenharth, and Keshav Pingali. A lightweight infrastructure for
graph analytics. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems
Principles, SOSP ’13, pages 456–471, New York, NY, USA, 2013. ACM. doi:10.1145/2517349.
2522739.

23 Eric Niebler, Casey Carter, and Christopher Di Bella. The one ranges proposal. Technical
report, Tech. rep. P0896r4. Nov. 2018., 2018. URL: http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2018/p0896r4.pdf.

24 S. M. Orzan. On Distributed Verification and Verified Distribution. Ph.d. thesis, VRIJE
UNIVERSITEIT, November 2004. URL: http://dare.ubvu.vu.nl/handle/1871/10338.

25 Roman Shaposhnik, Claudio Martella, and Dionysios Logothetis. Practical Graph Analytics
with Apache Giraph. Apress, New York, 1st ed. edition edition, October 2015.

26 Yossi Shiloach and Uzi Vishkin. An O(logn) parallel connectivity algorithm. Journal of
Algorithms, 3(1):57–67, 1982. doi:10.1016/0196-6774(82)90008-6.

27 J. Shun, L. Dhulipala, and G. Blelloch. A simple and practical linear-work parallel algorithm
for connectivity. In Proceedings of the 26th ACM Symposium on Parallelism in Algorithms
and Architectures, SPAA ’14, pages 143–153. ACM, 2014. doi:10.1145/2612669.2612692.

28 Julian Shun and Guy E. Blelloch. Ligra: A lightweight graph processing framework for shared
memory. In Proceedings of the 18th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’13, pages 135–146, New York, NY, USA, 2013. Association
for Computing Machinery. doi:10.1145/2442516.2442530.

29 Jeremy G. Siek, Lie-Quan Lee, and Andrew Lumsdaine. The Boost Graph Library: User Guide
and Reference Manual. Addison-Wesley, 2002.

30 Alexander Stepanov and Meng Lee. The standard template library. Technical Report HPL-95-
11, HP Laboratories, November 1995. URL: http://stepanovpapers.com/STL/DOC.PDF.

31 Alexander Stepanov and Paul McJones. Elements of Programming. Addison-Wesley Profes-
sional, 1st edition, 2009.

32 Michael Sutton, Tal Ben-Nun, and Amnon Barak. Optimizing parallel graph connectivity
computation via subgraph sampling. In 2018 IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 12–21. IEEE, 2018. doi:10.1109/IPDPS.2018.00012.

33 Yangzihao Wang, Andrew Davidson, Yuechao Pan, Yuduo Wu, Andy Riffel, and John D.
Owens. Gunrock: A high-performance graph processing library on the gpu. In Proceedings
of the 21st ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
PPoPP ’16, New York, NY, USA, 2016. ACM. doi:10.1145/2851141.2851145.

ECOOP 2022

https://doi.org/10.1137/0914041
https://doi.org/10.1145/1250734.1250759
https://doi.org/10.1145/1772690.1772751
https://doi.org/10.1109/HPEC43674.2020.9286220
https://doi.org/10.1016/S0196-6774(03)00076-2
https://doi.org/10.1145/2517349.2522739
https://doi.org/10.1145/2517349.2522739
http://www. open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0896r4. pdf
http://www. open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0896r4. pdf
http://dare.ubvu.vu.nl/handle/1871/10338
https://doi.org/10.1016/0196-6774(82)90008-6
https://doi.org/10.1145/2612669.2612692
https://doi.org/10.1145/2442516.2442530
http://stepanovpapers.com/STL/DOC.PDF
https://doi.org/10.1109/IPDPS.2018.00012
https://doi.org/10.1145/2851141.2851145

31:28 NWGraph

34 Da Yan, James Cheng, Kai Xing, Yi Lu, Wilfred Ng, and Yingyi Bu. Pregel algorithms for graph
connectivity problems with performance guarantees. Proc. VLDB Endow., 7(14):1821–1832,
2014. doi:10.14778/2733085.2733089.

35 Yunming Zhang, Ajay Brahmakshatriya, Xinyi Chen, Laxman Dhulipala, Shoaib Kamil, Saman
Amarasinghe, and Julian Shun. Optimizing ordered graph algorithms with GraphIt. In CGO,
pages 158–170. ACM, 2020. doi:10.1145/3368826.3377909.

36 Yunming Zhang, Mengjiao Yang, Riyadh Baghdadi, Shoaib Kamil, Julian Shun, and Saman Am-
arasinghe. Graphit: A high-performance graph dsl. Proc. ACM Program. Lang., 2(OOPSLA),
October 2018. doi:10.1145/3276491.

https://doi.org/10.14778/2733085.2733089
https://doi.org/10.1145/3368826.3377909
https://doi.org/10.1145/3276491

Vincent: Green Hot Methods in the JVM
Kenan Liu 1 !

SUNY Binghamton, NY, USA

Khaled Mahmoud 1 !

SUNY Binghamton, NY, USA

Joonhwan Yoo !

SUNY Binghamton, NY, USA

Yu David Liu !

SUNY Binghamton, NY, USA

Abstract
In this paper, we show the energy efficiency of Java applications can be improved by applying
Dynamic Voltage and Frequency Scaling (DVFS) inside the Java Virtual Machine (JVM). We
augment the JVM to record the energy consumption of hot methods as the underlying CPU is run
at different clock frequencies; after all the frequency possibilities for a method have been explored,
the execution of the method in an optimized run is set to the CPU frequency that leads to the most
energy-efficient execution for that method. We introduce a new sampling methodology to overcome
the dual challenges in our design: both the underlying measurement mechanism for energy profiling
and the DVFS for energy optimization are overhead-prone. We extend JikesRVM with our approach
and benchmark it over the DaCapo suite on a server-class Linux machine. Experiments show we
are able to use 14.9% less energy than built-in power management in Linux, and improve energy
efficiency by 21.1% w.r.t. the metric of Energy-Delay Product (EDP).

2012 ACM Subject Classification Software and its engineering → Software performance

Keywords and phrases energy efficiency, JVM, just-in-time compilation

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.32

Category Extended Abstract

Related Version Full Version: http://www.cs.binghamton.edu/~davidl/papers/ECOOP22Long.pdf

Supplementary Material Software (Source Code and Data): https://bitbucket.org/vincent-
paper/vinccent/

archived at swh:1:dir:1cb44124eadec1ce51dca40c323bd388da57ea0c

Funding This project is supported by the US NSF award CNS-1910532.

1 Introduction

The carbon footprint of data centers has recently received significant scrutiny [42]. After
mobile workloads, server-class workloads once again place energy-efficient computing in the
spotlight. This design goal is addressed at many layers of the computing stack. Among them,
a less explored approach is to study the energy impact of managed runtimes, a middle layer
between high-level applications and low-level systems. Relative to lower-layer techniques on
hardware design (e.g., [17]) and OS design (e.g., [60]), a runtime approach has the benefit
of guiding energy optimization with runtime-specific information. Relative to higher-layer
techniques e.g., energy-aware programming languages [55, 10, 49, 26, 19, 11, 34, 25, 41, 61, 15],

1 These authors are currently affiliated with Intel Corporation.

© Kenan Liu, Khaled Mahmoud, Joonhwan Yoo, and Yu David Liu;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 32; pp. 32:1–32:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kliu20@binghamton.edu
mailto:kmahmou1@binghamton.edu
mailto:jyoo45@binghamton.edu
mailto:davidl@binghamton.edu
https://doi.org/10.4230/LIPIcs.ECOOP.2022.32
http://www.cs.binghamton.edu/~davidl/papers/ECOOP22Long.pdf
https://bitbucket.org/vincent-paper/vinccent/
https://bitbucket.org/vincent-paper/vinccent/
https://archive.softwareheritage.org/swh:1:dir:1cb44124eadec1ce51dca40c323bd388da57ea0c;origin=https://bitbucket.org/vincent-paper/vinccent/;visit=swh:1:snp:f3f37590dc94c20821f314de52d6aac2b07a17ec;anchor=swh:1:rev:7eedfa3410c8cabdb491d05e0892dead6c95fa0d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Vincent: Green Hot Methods in the JVM

a runtime approach can work with programs written in existing languages, arguably easier
for adoption. In a nutshell, the runtime – strategically positioned between the lower layers
and the higher layers – can often combine the benefits of both sides of its neighbors on the
computing stack.

At their essence, all runtime-based approaches are motivated by the same question: what
information uniquely available in the runtime can be harvested to guide energy optimization?
As examples, existing efforts have relied on thread and synchronization states (e.g., [2]),
just-in-time (JIT) compilation strategies (e.g., [56]), and garbage collector (GC) designs
(e.g., [29]) to inform energy optimization.

1.1 Our Approach: JVM-Level Method-Grained DVFS
We introduce a novel energy optimization at the level of the JVM. It relies on two basic
facts of the JVM: (i) the JVM is aware of the boundary of programming abstractions such
as methods; (ii) the JVM is aware of how often a method is used. Both pieces of information
are readily available among existing JVMs, good news for the adoption of our approach.

Our key idea is method-grained energy optimization: it demarcates the boundary of
DVFS [27, 13] adjustment with the boundary of methods. Our premise is that each method
as a logical unit of the program behavior can serve as an ideal granularity for energy
optimization. For example, the method Matrix4.transformP in a ray-tracing benchmark
sunflow [12] may carve out the boundary of a CPU-intensive computation, and the method
PSStream.write in a file processing benchmark fop [12] may demarcate an I/O-intensive
computation. It is well known that energy optimization based on DVFS can be effectively
performed based on program phased behaviors [52, 53, 32], i.e., an application may go through
phases of different levels of CPU intensity. For example, running an I/O-intensive program
fragment at a lower CPU frequency can often save energy without hampering performance
(see § 2.2 for details).

Operationally, our approach relies on profiling to assign desirable CPU frequencies to hot
methods, the methods identified by the JIT for their frequent execution. This design decision
is rooted in the fact that hot methods are frequently executed, and any improvement to
their energy behavior may have an amplified effect. A fundamental challenge in design is
that the gain resulted from DVFS is often eclipsed by the time/energy overhead introduced
by DVFS itself. We address this challenge with two solutions. First, we come up with an
automated energy profiling process to identify the most energy-consuming hot methods, so
that the optimizer can focus more on how “energy hotspot” code regions respond to DVFS.
Second, we introduce a form of counter-based sampling to DVFS instrumentation, so that
the overhead introduced by DVFS is negligible given a reasonable range of sampling rates.

In contrast, the state-of-the-art approach for DVFS-based energy management relies
on dynamically monitoring system states, e.g., the rate of cache or TLB misses. A classic
example of this approach is the ONDEMAND governor, the default power governor in many
Linux versions. This governor continuously predicts the level of CPU activities, and adjusts
the CPU frequency to meet the demand. This approach is oblivious to the logical structure
of the running application, and is fundamentally reactive: it uses the level of CPU intensity
at the current time interval to set the CPU frequency for the next time interval. Whereas
the reactive approach is effective when the application is stable within a phase, it loses its
effectiveness when there is a phase change. In philosophy, our approach is more aligned with
a small body of work that relies on compilers or runtimes to guide DVFS [50, 28, 59, 24, 58].
The relationship between these approaches and ours will be discussed in § 6.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:3

1.2 Contributions
We introduce Vincent 2, the incarnation of JVM-level method-grained DVFS as an extension
to JikesRVM [4, 3]. This paper makes the following contributions:

the design of a profile-directed energy optimizer, an end-to-end solution that can
automatically identify the most energy-consuming hot methods, determine the judicious
frequency settings for executing hot methods, and apply DVFS for optimization;
the specification of method-grained energy optimization at the level of JVM, including
the low-overhead sampling algorithm for energy profiling and optimization;
the implementation and evaluation of method-grained DVFS, which demonstrates its
effectiveness relative to existing power governors.

Vincent is an open-source project. Its source code and all raw experimental data can
be found online 3.

2 Background

Vincent lies at the intersection of two active yet largely independent research directions,
energy-efficient computing and managed language runtimes, which we briefly review now.

2.1 Energy Optimization and Metrics
In physics, energy (in the unit of joules) is the multiplication of power (in the unit of watts)
and time (in the unit of seconds). Not to lose generality, energy optimization techniques fall
into 3 categories: (1) reducing power only; (2) reducing time only; (3) balancing the trade-off
between power and time. The first route is an established area of research in hardware design,
such as low-power VLSI design [17]. The second route is also mundane: any compiler or
runtime optimization that can reduce the execution time of a program can be broadly viewed
as an energy optimization. As these first two routes should be more properly named power
optimization and performance optimization respectively, most existing energy optimization
techniques de facto refer to the third route above, which Vincent also belongs to.

The obvious metric for evaluating energy efficiency is the energy consumption itself. In
practice however, as most energy optimization techniques are a balancing act between power
and time, the effect of these techniques on power and time should not be ignored. This is
particularly true for time, as maintaining performance is an implicit and universal goal. As a
result, a prevalent metric for evaluating energy efficiency is the Energy-Delay Product (EDP),
the multiplication of energy and time. A lower EDP is aligned with our intuition that the
energy consumption is reduced while the application remains performant.

2.2 DVFS
DVFS [27, 13] is a classic CPU hardware feature that enables the trade-off exploration
between power and time. Except for specialized embedded CPUs, DVFS is supported in
nearly all commodity CPUs available today. With DVFS, the operational frequency of a
CPU can be dynamically adjusted, such as from 2Ghz to 1Ghz. Strictly speaking, DVFS is a

2 “I have tried to express the terrible passions of humanity by means of red and green.” – Letter from
Vincent van Gogh to Theo van Gogh, Arles, 8 September 1888

3 https://bitbucket.org/vincent-paper/vinccent

ECOOP 2022

https://bitbucket.org/vincent-paper/vinccent

32:4 Vincent: Green Hot Methods in the JVM

power optimization design: the power consumption of a CPU has a near cubic relationship
with its operational frequency; as a result, when the operational frequency is reduced (or
scaled down), the power reduction can be dramatic. What makes DVFS a challenging energy
optimization solution is that, when the CPU frequency is lowered, the execution time of a
program typically becomes longer. Recall our earlier discussion that energy consumption is
the multiplication of power and time, so the energy consumption effect of DVFS is complex.
With EDP as a metric placing more emphasis on time (i.e., not energy consumption alone),
the EDP effect of DVFS is even less obvious.

Empirically, downscaling is most effective when the program execution is less dependent
on the CPU clock speed. The well known example is the I/O-intensive workload: the program
may be waiting for an I/O to complete, and a wait will cause CPU pipeline stalls no matter
what frequency is used.

Informally, DVFS is also known as throttling. This widely used informal term has an
undertone to emphasize the effect of downscaling. Note that DVFS as an approach subsumes
both downscaling and upscaling. The latter refers to the scenario when the operational
frequency of the CPU is increased. Upscaling increases power, but may serve as a performance
optimization (i.e., reducing execution time).

DVFS, when implemented, takes the form of a system call, where a special system file
is written. Each DVFS call generally takes tens of microseconds to complete in modern
CPUs [31].

2.3 OS Governors
DVFS provides the hardware capability on adjusting CPU frequencies, but in itself, no
algorithm is defined on when scaling should happen, and what frequency the CPU should
be scaled to. The latter is provided through OS-level algorithms called governors. The
implementation of governors is platform-dependent: the algorithm used by the OS depends
on what hardware features are available for power management (beyond DVFS itself).

For generality reasons, Linux provides a set of generic governors that do not require
additional hardware support [6]. The ONDEMAND governor adjusts the underlying CPU
frequency based on monitoring the status reported by the performance counters, and a
higher CPU frequency is applied when a higher workload is encountered, and vice versa.
Relative to the middle-of-the-road ONDEMAND governor, the PERFORMANCE governor on one side
of the spectrum is a time-biased DVFS regulation algorithm; it lays emphasis on preserving
execution time by setting the CPU frequency to be as high as possible. On the other side
of the spectrum, the POWERSAVE governor is a power-biased DVFS regulator, laying more
emphasis on reducing power consumption by setting the CPU frequency to be as low as
possible. To facilitate customized energy optimization, Linux also comes with a USERSPACE
governor, deferring all decisions of when and what decisions of DVFS to the layers of the
software stack above the OS.

With additional hardware support for power management, the OS governor can delegate
some regulation tasks to the hardware. One example is the Intel P-State [31, 30] support,
where the CPU can be set to different power state levels. Instead of operating at a per-core
level, the P-State power management operates at the level of a CPU package shared by all
cores. When a particular P-State is set, the hardware is able to balance off the individual
CPU frequencies of different cores to achieve a particular power budget. More recently,
the question of when power state transitioning should happen can also be managed by the
hardware itself, a feature called hardware-managed P-states (HWP).

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:5

On Intel architectures with P-State support, Linux power management can operate in
either the passive mode or the active mode for power management [5]. For architectures
without HWP, Linux defaults its behavior to the passive mode, where the Linux generic
governors – ONDEMAND, PERFORMANCE, POWERSAVE, and USERSPACE – remain in use, except
that setting the highest/lowest CPU frequencies in the generic governors are now supported
as setting the highest/lowest power states. On Intel architectures with HWP support, Linux
defaults its behavior to an active mode of P-state use, essentially deferring all its “govenoring”
ability to the HWP hardware itself. In the active mode, there is no longer a USERSPACE
governor; in other words, application-specific or user-specific DVFS is not allowed.

2.4 Energy Measurement and RAPL
A relatively independent design and evaluation question is how the energy consumption can
be measured. For example, a traditional approach is to rely on the external power/current
meters. With the progress of energy-aware computing, newer architectures come with
hardware interfaces that can directly query the energy consumption of a computer system
“live.”, i.e., during the execution of its hosted application.

The most widely known hardware feature is Intel’s Running Average Power Limit
(RAPL) [20], available on all Sandybridge or newer Intel CPUs since 2011 and AMD’s
RAPL-compatible CPUs. RAPL can dynamically report the hardware energy consumption
and incrementally store it in Machine-Specific Registers (MSRs). The reported energy
consumption includes (i) CPU core energy consumption; (ii) CPU uncore energy consumption,
i.e., those of on-chip caches, bus controllers, etc; (iii) DRAM energy consumption. RAPL
has other features, such as capping the power consumption of a CPU, beyond the scope of
this paper.

When implemented, each RAPL reading can be obtained through a number of reads
to MSR registers, taking tens of microseconds in modern CPUs. To determine the energy
consumption of an execution, a user may take one RAPL reading at the beginning of the
execution and the other at the end, and compute the difference of the two.

2.5 JVM Design and JIT
We briefly summarize key aspects of JVM design relevant to this paper. Vincent is built on
top of JikesRVM, a representative research-oriented JVM. Research on JikesRVM contributed
significantly in JVM design such as on JIT compilation and garbage collection.

JIT compilation allows selected bytecode to be dynamically compiled. One key component
of JIT design is to determine which code fragments are most worthy for dynamic compilation.
From JikesRVM to HotSpot, a common approach to this task is hot method selection: the
JVM runtime observes the most frequently encountered methods and select them as the
candidate for JIT. Conceptually, the JVM can achieve this task by keeping record of how
frequent the beginning (commonly called the prologue) and the end (the epilogue) of each
method are encountered. Realistic JVMs are more sophisticated implementations of this
view, for reasons of both improving precision and reducing overhead.

2.6 Counter-Based Sampling
Precisely accounting for the number of times each method is called is expensive. Practical
implementations are mostly sampling-based: the JVM only counts the prologue/epilogue
encounters at time intervals.

ECOOP 2022

32:6 Vincent: Green Hot Methods in the JVM

Figure 1 Counter-based Sampling.

Figure 2 Vincent Design and Workflow (The top 4 boxes refer to the 4 passes of Vincent
workflow, subsequently from left to right. Each circle represents the application under optimization,
in different forms of instrumentation. Each arrow refers to a data dependency/flow).

In JikesRVM for example, a timer thread runs so that a sample is taken at fixed time
intervals. JikesRVM further enhances this model by introducing counter-based sampling [7],
allowing multiple samples to be collected within a time interval. The benefit of counter-based
sampling in improving the accuracy of sampling is well documented, especially for complex
call graphs where methods are of variant lengths. As shown in Fig. 1, the counter-based
approach alternates between taking samples and skipping samples within each time interval.
This is achieved through maintaining two counters: the number of samples to take and
the number of samples to skip between two samples. Vincent will adopt JikesRVM’s
counter-based sampling for energy profiling and optimization.

3 Vincent Design

In this section, we describe the design of Vincent, with a high-level description in § 3.1,
followed by an algorithm specification in § 3.2.

3.1 System Overview
A Conceptual Overview

The system components and the workflow of Vincent are shown in Fig. 2. On the high
level, Vincent is a profile-directed optimizer that conceptually consists of 4 passes:

Hot Method Selection: Vincent first obtains a list of hot methods.
Energy Profiling: Vincent profiles the energy consumption of hot methods under the
default ONDEMAND governor. It ranks their energy consumption, and reports a list of top
energy-consuming methods as the output of this pass.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:7

Frequency Selection: For each top energy-consuming method, Vincent observes the
energy consumption and execution time of the application when the execution of this
method is scaled to each CPU frequency, which we call a configuration. For each top
energy-consuming method, Vincent ranks the efficiency of its different configurations
according to energy metrics, and selects the most efficient one.
Energy Optimization: Vincent runs the application when the execution of each top
energy-consuming method is scaled to the CPU frequency determined in the Frequency
Selection phase.

The core design elements are the algorithms for energy profiling (the second pass) and
method-based scaling (the third/fourth passes), which we will detail in § 3.2. Conceptually,
one may view each pass as a separate run of the application, in the same spirit as a profile-
guided optimizer. Therefore, the “energy profiling” pass and the “frequency selection” pass are
two separate runs, which we informally call the profiling run and the scaling run, respectively.

The key observation over this workflow is that Vincent places the spotlight on methods:
in each of the workflow tasks, the unit of processing – be it selection, profiling, or optimization
– is at the granularity of methods.

A High-Level Implementation Overview

From the implementation perspective, Vincent builds on top of JikesRVM, and we resort to
existing support in JikesRVM for the first pass, Hot Method Selection. JikesRVM’s built-in
process–from how to sample methods to what heuristics are introduced to determine hotness–
is not altered. Conceptually, hot method selection can be a separate run of the application
itself, outputing a list of methods that JikesRVM deems “hot.” In our implementation, the hot
method selection and profiling is combined in one run: i.e., whenever a hot method is identified
during the execution of an application, the energy profiling component of Vincent will
start profiling its energy consumption. In this regard, the Vincent development interfaces
with existing JikesRVM logic through a common data structure where hot methods are kept:
whenever such a data structure is updated by JikesRVM, Vincent under the profiling run
will start profiling for the newly added entry. We also follow a similar implementation for
the scaling run.

In addition, Vincent does not alter the dynamic compilation process of JikesRVM,
except that the additional logic for profiling (or scaling) is inserted through instrumentation
at the beginning of the dynamic compilation process. Take the profiling run for instance.
Whenever a hot method is identified, we dynamically instrument that method with the
Vincent profiling logic in the profiling run, which will be subsequently compiled by JIT
dynamic compilation.

3.2 Vincent Specification
We now specify the algorithm implemented by Vincent. We first describe the top-level
thread bookkeeping (§ 3.2.1), and then the profiling algorithm (§ 3.2.2) and the scaling
algorithm (§ 3.2.3).

3.2.1 Thread Bookkeeping
Algorithm 1 overviews the bookkeeping in a multi-threading environment. Here, all threads
visible to the JVM (other than the timer thread itself) are maintained in a global structure ts,
a collection of threads of type T. Each thread contains thread-local bookkeeping information;

ECOOP 2022

32:8 Vincent: Green Hot Methods in the JVM

Algorithm 1 Thread Bookkeeping and Timer Thread Loop.

1: typedef T {
2: vtimer : int // timer
3: skipCount: int // # calls to skip
4: sampleCount: int // # samples to collect
5: edata: EDATA // energy profiling data

6: gov: Governor // saved governor

7: freq: Freq // saved CPU frequency
8: }
9: const EPOCH // time unit

10: const SKIPNUM // skipped samples between
11: const SAMPLENUM // samples per interval

1: ts: T[THREADNUM] // running threads
2: procedure Timer
3: while TRUE do
4: Sleep(EPOCH)
5: for each t ∈ ts do
6: t.vtimer++
7: end for
8: end while
9: end procedure

in particular, note that vtimer manages the elapse of time, incremented by the unit EPOCH.
As profiling and scaling belong to different passes of Vincent and do not share the same
runtime, vtimer is used for both runs. The thread-local fields used only for profiling and
those only for scaling are illustrated with GREEN box and LIME box respectively. The
specific meanings of the constants and the fields in T other than vtimer will be detailed in
the rest of this section.

The timer thread is defined as an infinite loop. When the JVM timer interrupt happens
at the rate of EPOCH, the vtimer associated with each thread is incremented.

In the rest of this section, we specify our algorithm design for energy profiling and
DVFS-based energy optimization. Both passes are unified by one fundamental hurdle: if
naive instrumentation is used, the overhead for obtaining raw energy samples (in energy
profiling) and the overhead for performing DVFS (in energy optimization) are too high. We
now detail our solution in § 3.2.2, i.e., how we overcome the overhead challenge of obtaining
raw energy samples in energy profiling through a sampling-based approach. Note that in
§ 3.2.3, the same sampling-based solution is also used for DVFS-based energy optimization
to overcome the challenge posed by the overhead for performing DVFS.

3.2.2 Profiling Instrumentation
Recall that the goal of profiling is to identify the top energy-consuming methods. The raw
energy consumption maintained by the underlying hardware (see § 4) is accumulative, i.e.,
reported as monotonically increasing values. To determine the energy consumption of a
method, we conceptually need to “diff” the raw energy reading obtained at the beginning of
the method execution, and one obtained at the end of the method execution.

3.2.2.1 Challenges and Strawman Solutions

Obtaining a raw energy reading from the underlying hardware incurs a non-trivial overhead,
often taking tens of microseconds to complete. As a result, standard solutions known to be
effective for execution time profiling may not be ideal for energy profiling, which we now
briefly review.

A strawman solution naively adapted from execution time profiling is to instrument
the begin (i.e., prologue) and the end (i.e., epilogue) of every hot method, where a raw
energy reading is taken each time the prologue and epilogue is encountered. The energy
consumption of a method can thus be the difference between the two readings. Unfortunately,

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:9

Algorithm 2 Profiling Algorithm.

1: typedef LOG {
2: mn: MNAME // method name
3: edata: EDATA // data
4: }
5: typedef CVAL enum { TAKE, SKIP, LAST }
6: typedef EDATA float
7: const PN // profiling timer factor
8: l: LOG[LOGNUM]

9: procedure prologueProfile()
10: t← currentThread()
11: if Counter(t, PN) == TAKE then
12: t.edata ← readEnergy()
13: end if
14: if Counter(t, PN) == LAST then
15: t.edata ← ⊥
16: end if
17: end procedure

18: procedure epilogueProfile()
19: t← currentThread()
20: if Counter(t, PN) == TAKE or LAST then
21: e ← readEnergy()
22: if t.edata ̸= ⊥ then
23: l +← LOG(THISM, diff(e, t.edata))

24: else
25: t.edata← e
26: end if
27: end if
28: if Counter(t, PN) == LAST then
29: t.edata← ⊥
30: end if
31: end procedure

32: function Counter(t: T, factor : int): CVAL
33: if t.vtimer >= factor then
34: t.skipCount← t.skipCount− 1
35: if t.skipCount == 0 then
36: t.skipCount ← SKIPNUM
37: t.sampleCount← t.sampleCount− 1
38: if t.sampleCount == 0 then
39: t.vtimer ← 0
40: t.sampleCount ← SAMPLENUM
41: return LAST
42: end if
43: return TAKE
44: end if
45: end if
46: return SKIP
47: end function

thanks to the non-trivial overhead with RAPL energy readings, this approach may incur
prohibitively high overhead (10x-200x in our preliminary experiments), severely altering the
program behavior. In other words, the instrumented run may produce the result no longer
representative of the original benchmark’s energy behavior. Observe that even instrumenting
each hot method “one at a time” does not solve the problem. The hot methods are “hot” for
a reason: they are frequently called, and the per-call overhead may rapidly accumulate.

A second strawman solution is to perform sampling at fixed time intervals. For example,
assume the JVM has just taken an energy sample of 90J at the beginning of its 100th time
interval. After one time interval elapses, it takes another energy sample of 90.25J , and the
epilogue of a method is encountered. The approach can thus attribute 0.25J to that method.
This approach however may lead to over-attribution: 0.25J is attributed to one method
encountered at the end of the time interval, but many other methods may have contributed
to the energy consumption during the interval. This sampling approach is widely used for
execution time sampling, because precision can be improved by shortening the time interval.
For energy profiling however, the room for shortening the time interval is limited due to the
overhead of raw energy readings.

3.2.2.2 Delimited and Counter-Based Sampling with Vincent

To address these challenges, the solution adopted by Vincent consists of two ideas:
delimited sampling and counter-based sampling. Overall, the former is an overhead-reducing
approximation that combines the strawman solutions above, and the latter is a precision-
increasing optimization over the general sampling-based approach.

ECOOP 2022

32:10 Vincent: Green Hot Methods in the JVM

Delimited Sampling. The energy profiler of Vincent is a hybrid of the two strawman
solutions above, which we call delimited sampling. Similar to the first strawman approach,
Vincent takes energy readings when the method prologue and the method epilogue are
encountered, and computes the difference of the two. Vincent however does not take energy
readings at every encounter of the prologue or the epilogue. Instead, the number of energy
readings at the method prologue/epilogue are bounded for each interval, similar to the second
strawman approach.

As seen in Algorithm 2, each hot method is instrumented with a pair of methods, with
prologueProfile inserted before the entry point of the method body, and
epilogueProfile inserted after each exit point of the method body. Auxiliary function
ReadEnergy obtains a raw energy sample from the underlying hardware (a value of EDATA
type). Binary function Diff computes the difference of two raw energy samples, and function
CurrentThread returns the current thread of the execution, of type T. Constant THISM is
the name of the instrumented method, an implementation detail we clarify in § 4. Sampling
happens within the function of Counter, which we will describe shortly.

The key observation here is that we are not attempting to replicate the first strawman
approach, but to avoid the overattribution problem in the second strawman approach. The
philosophy here is refutation: if a prologue or epilogue (of any method) is encountered before
the epilogue of the method m of our interest, we know the energy consumption incurred
before the prologue encounter must not be due to m, thanks to how call stacks are structured.
This can be concretely observed in the specification of EpilogueProfile in Algorithm 2.
At Line 23, the energy difference between a prior energy sample and the current energy
sample is computed. Now that the method has reached its epilogue, the “current energy
sample” intuitively keeps the accumulated energy value until the method reaches its end.
The intriguing question however is when the “prior energy sample” is collected. Delimited
sampling introduces an approximation: it is collected during the last time in the sampling
trace when a method is called (i.e., a prologue is executed) or a method is returned (i.e., an
epilogue is executed). They can be seen at Line 12 and Line 21 respectively in Algorithm 2.
In other words, the refutation-based algorithm says that any prior encountered prologue or
epilogue “delimits” where the method could start: any energy consumption before the last
method is called or returned must not belong to the current method we encounter in the
epilogue.

On a more technical level, treating the prior encounter of an epilogue as a “limit” of the
method start (as well as the prior encounter of a prologue) is also friendly for accounting
for the energy consumption of a recursive/nested method. For some applications, the hot
method happens to be a recursive call. When a sample is ready to be taken, it is possible
that the activation record of the recursive call is popping. Without Line 21, the sampling
algorithm would only take the next energy sample when a prologue is executed (i.e., a push),
and hence would miss a round of sampling in this pop-only phase of recursive execution.
With Line 21, the energy consumption between 2 pops can be recorded and attributed to
the recursive method.

Finally, note that the energy accounting specified here is conceptually “flat”: in the
presence of a call chain where both the caller method and the callee method are hot, the
callee’s energy consumption is not accounted as a part of the caller’s energy consumption.
This is implied in the delimited approach itself: when the epilogue of the caller method is
encountered, the epilogue of the callee method is already encountered. As a result, only the
energy consumption after the callee method is completed is attributed to the caller method.
Indeed, due to sampling, our implementation is an approximation of this conceptually flat
view.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:11

Algorithm 3 Scaling Algorithm.

1: enum Governor {USERSPACE, ONDEMAND, ...}
2: const SN // scaling timer factor

3: procedure prologueScale(f : Freq)
4: t← currentThread()
5: if Counter(t, SN) == TAKE then
6: t.gov ← GetGovernor()
7: if t.gov == USERSPACE then
8: t.freq ← GetFreq()
9: else

10: setGovernor(USERSPACE)
11: end if
12: SetFreq(f)
13: end if
14: if Counter(t, SN) == LAST then
15: SetGovernor(ONDEMAND)
16: end if

17: end procedure

18: procedure epilogueScale()
19: t← currentThread()
20: if Counter(t, SN) == TAKE then
21: if t.gov ̸= ⊥ then
22: SetGovernor(t.gov)
23: if t.gov == USERSPACE then
24: SetFreq(t.freq)
25: end if
26: end if
27: end if
28: if Counter(t, SN) == LAST then
29: SetGovernor(ONDEMAND)
30: end if
31: end procedure

Counter-based Sampling. Our description so far can be conceptually viewed as taking
two energy readings – one at the prologue and the other at the epilogue – for each time
interval. Vincent extends from this conceptual view by adopting counter-based sampling
(see § 2), allowing multiple (but still bounded) pairs of energy readings to be collected within
a time interval. In general, counter-based sampling is a precision-improving strategy known
to strike a balance for accounting both long methods and short methods. Specific to energy
optimization, this means that Vincent cares about both longer but slightly less frequently
invoked (but still hot) methods and shorter but more frequently invoked methods, as long as
they incur high energy consumption.

In Algorithm 2, counter-based sampling is captured by function Counter, at Lines 32-47.
Here, the profiling time interval is set as PN × EPOCH; recall that vtimer is incremented at
each VM EPOCH, so PN is the “slowdown” factor of profiling relative to the top-level timer
loop. Constants SAMPLENUM and SKIPNUM represent the number of samples to take and skip,
respectively, within each profiling time interval.

The Counter function may return one of the 3 values: TAKE (indicating a sample should
be taken), SKIP (indicating a sample should not be taken), and LAST (indicating one last
sample should be taken for each time interval). The LAST value plays a role of re-initializing
the environment for the next time interval. For profiling, this means to reset the edata field.

Finally, observe that the Counter function only accesses data that records the state of
the current thread. This can be observed that every access in this function is prefixed with
variable t. In other words, it is not possible for two application threads to access the same
fields in a race condition.

3.2.3 Scaling Instrumentation
Algorithm 3 defines the instrumentation-based algorithm for CPU scaling. Convenience
function GetGovernor retrieves the current governor (power manager) from the underlying
system, which can either be USERSPACE (i.e., with frequencies manually set by the user)
or ONDEMAND. Function SetGovernor sets the governor to its argument value. Function
GetFreq retrieves the current CPU frequency, whereas SetFreq sets the CPU frequency
to its argument value.

ECOOP 2022

32:12 Vincent: Green Hot Methods in the JVM

sunflow pmd avrora jython fop antlr bloat luindex
Baseline Execution Time

0

1000

2000

3000

4000

5000

6000

7000

8000
m

illi
se

co
nd

s
ONDEMAND
POWERSAVE
PERFORMANCE

sunflow pmd avrora jython fop antlr bloat luindex
Baseline Energy Consumption

0

20

40

60

80

100

jo
ul

es

ONDEMAND
POWERSAVE
PERFORMANCE

Figure 3 Benchmark Statistics under Different Governors as Evaluation Baselines.

Recall that the scaling instrumentation is used for Vincent’s passes of frequency selection
or energy optimization. The instrumentation is only applied to the hot top-energy consuming
methods. When the application is bootstrapped, Vincent sets the governor to ONDEMAND.
When a top energy-consuming method is encountered at its prologueScale, the governor
and the CPU frequency are set according to the need of frequency selection or energy
optimization. At this point, the governor to be used is USERSPACE, a la the convention of
Linux. Vincent in addition preserves the governor/frequency context, i.e., the settings
of governor/frequency before the prologueScale is encountered. The epilogueScale
recovers the preserved context.

Just as profiling, counter-based sampling is also at work during scaling. Note that profiling
and scaling do not have to follow the same rate. Constant SN adjusts the rate for scaling. In
addition, note that when we reach the LAST sample in each time interval, the governor is
reset to ONDEMAND.

4 Implementation and Experimental Settings

4.1 Hardware/OS/VM Setup

We evaluated Vincent on a dual socket Intel E5-2630 v4 2.20 GHz CPU server, with
10 cores in each socket and 64 DDR4 RAM. Hyperthreading is enabled. In total, we
have 20 physical cores and 40 virtual cores. The machine runs Debian 9.11 (stretch),
Linux kernel 4.9. For profiling based on individual CPU frequencies and the DVFS-based
optimization, we explored all CPU frequencies that can be stably supported by our hardware,
ranging from 2.2GHz to 1.2GHz, with the decrement of 0.1Ghz. For the rest of the paper,
we use F1 to refer to 2.2Ghz, F2 for 2.1Ghz, F3 for 2.0Ghz, . . . , F11 for 1.2Ghz. The
CPU frequencies are switched through the scaling_setspeed file, under the directory of
/sys/devices/system/cpu/cpu*/cpufreq for CPU cores.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:13

Intel E5-2630 v4 is an instance of the Intel Broadwell architecture. It supports P-states
but does not have HWP support. The P-states operate in the passive mode (see § 2), and
the Linux governors of ONDEMAND, PERFORMANCE, POWERSAVE, USERSPACE remain available.
The governors are switched through setting the scaling_governor file under the same
directory as above. Recall that the active mode does not support USERSPACE govenor, so it
cannot be used for Vincent. To avoid feature intervention, Turbo boost is turned off. None
of the experiments described in this paper (including both for Vincent and for baselines)
alters other system settings related to power management.

We rely a Java-based tool jRAPL [38] to obtain raw RAPL energy readings. The energy
consumption reported by RAPL is accumulative. Each energy sample – as shown of the
EDATA type in the algorithm specification – is the sum of energy readings from all sockets;
and each socket-wise reading consists of energy consumption for the CPU cores, the uncore
(cache, TLB, etc), and the DRAM. Specific to our environment, this means we collect and
sum up 2 × 3 = 6 raw readings for each energy sample.

We implemented Vincent on JikesRVM version 3.1.4. The hot method selection is built
on top of the Adaptive Optimization System (AOS) [8] of JikesRVM.

4.2 Hot Method Selection
We rely on the JIT component of JikesRVM for hot method selection. We do not alter
JikesRVM’s hot method selection logic. The interaction between the JikesRVM logic and
Vincent is primarily through the data structure where hot methods are placed: whereas
JikesRVM places hot methods into the structure, the profiling/scaling logic of Vincent
reads from it. The hot method selection process in JikesRVM is adaptive, so is the process
of profiling based on them. Whenever a new method is identified as hot, Vincent’s profiler
will instrument it dynamically and perform its profiling upon identification.

One design consideration was whether we should exclude very short methods such as
getters and setters from the hot methods. Intuitively, if such methods were subjected to
scaling, the scaling overhead might well offset the benefit of setting the method to the desired
frequency. Fortunately, the top energy-consuming methods identified by Vincent’s energy
profiler (as seen in § 5) appear to rarely include them. In other words, these very short
methods, even though hot from the perspective of invocation counts, rarely accumulate
enough energy consumption to become top energy-consuming methods. As a result, we choose
to keep our design simple, and do not alter the hot method selection logic in JikesRVM.

4.3 Algorithm Implementation
The prologue and epilogue program fragments for profiling and optimization we specified in
the previous section are inserted as IR instrumentation through hir2lir. Recall that we
need to obtain the “this method” information (THISM in Algorithm 2). This is implemented
through instrumentation: as the method signature is carried with the IR, Vincent stores
the method information when instrumentation is added. Other than this instrumentation,
we preserve the original JikesRVM logic for dynamic compilation.

In the top-level timer loop, the interval EPOCH is identical to the default time interval of
AOS, 4ms. Unless otherwise noted, we set the time interval for both profiling and scaling at
8ms, i.e., PN = 2 and SN = 2. Within each time interval, counter-based sampling is at work
for both profiling and scaling. Unless otherwise noted, parameter SAMPLENUM is set at 16.
In both scenarios, SKIPNUM = 7. The fact the skipped number of samples should be an odd
number is well known in counter-based sampling [7].

ECOOP 2022

32:14 Vincent: Green Hot Methods in the JVM

All energy readings are stored as a C array and printed after the experiments end for
posterior analysis.

4.4 Benchmarking and Experimental Setup
We evaluate Vincent with benchmarks in the Dacapo suite [12], arguably the most widely
used benchmark suite for multithreaded Java applications. Our benchmarks by default come
from the last version of Dacapo known to work with JikesRVM, Dacapo MR2. Dacapo has a
more recent release, Dacapo 9.12-bach, and we successfully ported some benchmarks in this
version – sunflow, luindex, and avrora specifically – to work with JikesRVM. The rest of
porting was unsuccessful because JikesRVM cannot support some advanced Java features
that appeared in the later versions of benchmarks.

4.5 Baselines
To evaluate the effectiveness of Vincent, we choose 3 baselines. They are the three
application execution scenarios where DVFS is guided by the ONDEMAND, POWERSAVE, and
PERFORMANCE OS governors respectively (see § 2). They are representative scenarios of
running Java applications on commodity software/hardware stack today. As variants of
DVFS approaches guided by dynamic monitoring, they set a contrast with the core idea of
Vincent’s approach, method-based DVFS.

The baseline execution time and energy consumption of each benchmark while running
with the 3 Linux governors can be found in Fig. 3. In addition to serving as experimental
baselines, this figure may also help gain intuition on the characteristics of DVFS guided by
the 3 governors. For example, the PERFORMANCE governor often leads to the shortest execution
time, as shown in the left sub-figure; it however generally increases the energy consumption,
as shown in As shown in the right sub-figure. Overall, the ONDEMAND governor strikes a good
balance between maximizing energy savings while delivering competitive performance. As
a result, we will conduct a more detailed comparative analysis between Vincent and the
ONDEMAND baseline in the following section.

Unless otherwise noted, all experiment results throughout the paper (including both
baseline runs and Vincent runs) are collected by running each benchmark 20 times in a hot
run, and reporting the average of the last 15 runs.

5 Vincent Evaluation

In this section, we evaluate the effectiveness of Vincent. We aim at answering the following
questions: (Q1) Do method-frequency configurations exist that can lead to energy savings
and favorable EDPs, compared with existing Linux power governors? (Q2) How does the
choice of sampling settings impact the effectiveness of Vincent? (Q3) How is Vincent
compared against different existing power management strategies? We answer each of these
questions in each subsection below.

5.1 Method-Grained Energy Optimization
5.1.1 Energy Profiling
The Vincent lifecycle starts with energy profiling. Fig. 4 shows the top-5 energy-consuming
methods for selected benchmarks. Thanks to sampling, the reported percentage of energy
consumption for each listed method is likely to be lower than its actual normalized energy

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:15

sunflow

Rank Method Name Percentage(%)

1 org.sunflow.core.light.TriangleMeshLight.getRadiance 9.36
2 org.sunflow.core.primitive.TriangleMesh.init 4.60
3 org.sunflow.math.Matrix4.transformP 2.19
4 org.sunflow.core.shader.MirrorShader.getRadiance 0.45
5 org.sunflow.core.accel.KDTree.BuildTask.<init> 0.005

pmd

Rank Method Name Percentage(%)

1 org.jaxen.expr.DefaultAllNodeStep.matches 15.52
2 org.jaxen.expr.iter.IterableChildAxis.supportsNamedAccess 8.21
3 org.jaxen.QualifiedName.hashCode 7.01
4 net.sourceforge.pmd.jaxen.DocumentNavigator.getAttributeName 4.78
5 org.jaxen.util.SingleObjectIterator.hasNext 4.18

antlr

Rank Method Name Percentage(%)

1 antlr.CodeGenerator._println 5.56
2 antlr.SimpleTokenManager.getTokenSymbol 5.23
3 antlr.LLkAnalyzer.look 3.92
4 antlr.CSharpCharFormatter.escapeChar 2.61
5 antlr.Grammar.getSymbol 2.61

Figure 4 Top Energy-Consuming Methods According to Vincent Energy Profiling (The first
column is the rank; the second column is the name of the method; the third column is its
normalized energy consumption relative to the overall energy consumption of the benchmark).

consumption, but what matters here is the relative standing of the methods: we are able
to identify the most-energy consuming methods so that the methods that DVFS should be
applied upon are identified.

Very short methods rarely appear in the top energy-consuming methods. One example is
pmd’s top-consuming method, DefaultAllNodeStep.matches, which only contains a simple
boolean return as its method body. As we shall see soon, these methods are indeed unfriendly
for DVFS (see § 4). That being said, the vast majority of methods identified by Vincent’s
profiling phase are methods of reasonable length (in terms of execution time) where the
DVFS time overhead is relatively small to the execution time of the method itself.

For Vincent, the energy profiling results are intermediate. The effectiveness of identifying
top energy-consuming methods will impact the effectiveness of energy optimization, which
we describe next.

5.1.2 The Impact on Energy Consumption
We now describe the effectiveness of Vincent energy optimization against the ONDEMAND
baseline, i.e., when the application is running with the ONDEMAND governor in place throughout
its execution. We show the energy consumption results of Vincent in Fig. 5 when a single hot
method is scaled to a particular CPU frequency. In each figure, a heat map is used for each

ECOOP 2022

32:16 Vincent: Green Hot Methods in the JVM

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

M

1.10 1.10 1.09 1.10 1.10 1.04 1.08 1.03 1.09 1.02 1.02

1.09 1.00 1.00 1.02 1.04 1.18 1.05 1.09 1.01 1.19 1.01

1.10 1.06 1.10 1.11 1.08 1.02 1.09 1.00 1.10 1.05 1.09

1.01 1.02 1.01 1.08 1.10 1.01 1.03 1.04 1.02 1.02 1.09

sunflow

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

9.73 0.87 7.05 3.98 1.04 6.84 1.08 7.22 6.84 7.99 8.60

1.07 2.07 0.88 1.65 1.52 1.64 0.90 1.42 1.37 1.80 1.04

5.38 1.02 0.88 0.85 0.89 0.98 1.03 1.00 3.97 0.87 1.06

1.06 1.11 0.84 2.75 0.86 1.08 2.78 1.06 2.50 0.85 1.02

0.85 0.86 1.00 0.89 1.05 1.09 0.98 0.91 1.05 0.83 0.85

pmd

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

1.30 1.57 1.42 1.63 0.97 1.21 1.74 1.97 0.73 1.32 1.07

1.09 0.92 1.09 0.92 1.01 1.17 1.07 0.90 1.03 1.26 1.35

1.54 2.02 0.86 0.87 1.89 1.12 2.62 1.16 0.96 1.88 0.99

1.55 0.80 1.13 1.14 1.56 0.97 3.23 1.80 1.13 1.68 1.05

4.08 3.03 2.65 2.00 2.35 2.62 1.99 1.82 2.52 1.90 1.88

avrora

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

1.78 1.53 1.08 1.44 1.36 1.34 1.29 1.34 1.06 1.84 1.30

1.09 1.33 1.32 1.17 1.20 1.27 1.07 1.48 0.99 1.45 1.17

1.77 1.40 1.36 1.43 1.38 1.31 1.17 1.18 1.34 1.43 1.50

1.29 1.04 1.38 1.00 1.20 1.18 1.14 1.17 1.40 1.46 1.23

1.42 1.31 1.18 1.31 1.09 1.11 1.17 1.20 1.20 1.25 1.40

jython

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

1.66 1.13 0.88 1.19 0.93 0.90 1.28 1.44 1.15 0.90 1.43

0.95 1.28 1.08 0.77 1.15 0.99 0.98 1.14 0.91 1.22 1.03

1.64 0.94 1.30 0.72 1.29 1.61 0.83 1.15 2.03 0.99 1.27

1.14 0.87 0.86 0.91 0.93 0.87 0.95 1.04 0.96 0.85 0.91

2.83 0.87 2.18 0.96 0.81 0.93 1.06 1.82 2.37 0.98 0.92

fop

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

1.29 1.04 1.10 1.11 0.99 1.13 1.12 2.02 2.05 1.06 0.89

0.99 0.98 0.87 1.13 1.12 1.09 0.91 1.21 1.90 1.05 1.21

1.19 1.05 1.10 1.01 1.06 0.98 1.16 1.36 1.00 1.03 1.11

1.21 1.13 1.62 1.15 1.01 1.15 1.09 1.13 1.07 1.11 1.17

3.89 2.93 2.72 2.66 3.18 3.43 3.56 3.31 2.74 3.06 2.62

antlr

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

2.38 1.81 1.75 0.99 2.35 1.69 1.09 1.29 1.72 1.04 1.28

2.31 1.00 1.56 1.15 0.98 1.00 0.98 0.96 1.28 1.18 1.18

1.38 2.02 1.12 1.09 1.55 2.08 2.18 2.27 1.21 1.65 1.52

1.25 1.90 2.36 1.18 2.19 2.45 2.64 1.18 1.18 2.00 2.24

0.95 0.96 0.93 1.48 0.97 0.96 1.14 1.02 1.12 1.59 1.20

bloat

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

1.43 0.99 1.74 1.94 1.28 2.13 1.63 1.44 1.02 1.06 1.61

1.17 1.04 1.03 0.93 1.39 1.57 1.18 1.00 1.88 1.15 1.17

1.17 1.48 1.19 1.57 1.13 1.36 1.31 0.93 1.04 1.02 2.17

1.66 1.31 1.72 1.90 0.96 1.94 0.96 1.93 1.09 0.99 1.98

1.09 0.97 0.89 1.02 1.09 1.06 1.00 1.00 1.04 1.03 1.02

luindex

1.00

1.03

1.06

1.09

1.13

1.16

1.19

0.83

2.31
3.80
5.28
6.76
8.25
9.73

0.73

1.29
1.85
2.41
2.96
3.52
4.08

0.99

1.13
1.27
1.42
1.56
1.70
1.84

0.72

1.07
1.42
1.78
2.13
2.48
2.83

0.87

1.37
1.88
2.38
2.88
3.39
3.89

0.93

1.22
1.50
1.79
2.07
2.35
2.64

0.89

1.10
1.32
1.53
1.74
1.96
2.17

Figure 5 Vincent Energy Consumption Normalized Against the ONDEMAND Baseline (For a cell of
method m and frequency f with a value of v, it says that the Vincent run with method m running
at frequency f has energy consumption v, normalized against that of the ONDEMAND run. If v < 1,
the Vincent incurs less energy than the ONDEMAND run).

benchmark to show the result of running it with Vincent where one of the top-consuming
methods (Y axis) is subjected to DVFS at a particular frequency level (X axis). The value
carried in each cell in the heatmap is normalized against the ONDEMAND run. Each green
cell indicates an energy-friendly configuration, i.e., the energy consumption for Vincent is
smaller than that of the ONDEMAND run. All benchmarks are shown with 5 top-consuming
methods except sunflow, which we only show 4 because the 5th energy-consuming method
consumes little energy, as shown in Fig. 4.

Method-grained energy optimization is effective in reducing energy consumption for
all benchmarks (but one): there exists at least one configuration within the benchmark
whose normalized energy consumption is less than 1. For example, when Vincent runs
antlr at the third highest CPU frequency (2.0Ghz) for its second most energy-consuming
method, SimpleTokenManager.getTokenSymbol, the normalized EDP is 0.87, indicating

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:17

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

M

1.13 1.13 1.12 1.11 1.18 1.06 1.09 1.05 1.10 1.03 1.01

0.90 0.91 0.95 0.99 1.08 1.13 1.19 1.13 1.26 1.20 1.02

1.12 1.10 1.24 1.14 1.21 1.03 1.11 0.99 1.10 1.23 1.10

1.02 1.01 1.02 1.08 1.12 1.01 1.05 1.03 1.02 1.00 1.11

sunflow

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

107.74 0.93 90.23 29.93 1.00 103.57 1.25 118.45 110.20 146.07 168.58

1.06 7.14 0.86 4.79 3.33 4.52 1.30 3.65 2.62 6.10 1.26

31.66 1.03 0.86 0.81 0.87 0.96 1.03 0.99 36.51 0.84 1.06

1.09 1.15 0.79 14.45 0.82 1.55 14.77 1.05 13.75 0.81 0.98

0.82 0.86 1.15 1.03 1.07 1.17 1.51 1.28 1.05 0.80 0.83

pmd

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

1.59 3.28 2.43 3.24 0.96 1.47 3.52 4.45 0.72 2.01 1.06

0.76 0.74 1.22 1.08 0.96 1.16 1.10 1.00 1.19 1.31 1.87

1.54 4.11 0.72 0.78 3.64 1.12 4.58 1.50 1.11 4.21 1.28

1.52 0.68 1.07 1.03 2.77 0.97 11.65 3.91 1.31 3.69 1.39

11.13 12.17 7.70 5.16 6.69 7.13 4.79 3.83 7.53 3.99 4.56

avrora

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

2.71 2.67 1.50 2.15 2.24 1.96 1.91 1.59 1.33 4.34 2.44

1.20 1.77 1.85 1.49 1.75 1.70 1.14 2.21 0.95 2.59 1.68

2.62 2.45 2.17 2.36 2.34 1.94 1.71 1.94 2.51 2.44 3.06

1.33 1.02 2.04 1.05 1.27 1.26 1.14 1.15 2.21 2.63 1.31

1.83 2.03 1.52 1.47 1.67 1.59 1.76 1.28 1.94 1.93 2.22

jython

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

3.64 1.54 0.85 2.05 1.12 1.18 2.43 3.50 1.95 1.00 3.08

1.05 2.37 1.26 0.82 1.78 1.22 1.48 1.38 1.15 1.90 2.32

4.30 0.91 2.63 0.71 3.48 4.63 0.79 1.83 9.61 0.99 2.49

1.41 0.87 1.02 0.86 0.94 1.01 0.90 1.41 1.33 0.77 1.06

13.26 0.88 10.00 0.97 0.78 0.92 1.11 7.35 10.56 1.36 0.90

fop

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

1.71 1.04 1.12 1.49 0.96 1.14 1.11 7.14 7.35 1.09 0.92

1.03 0.96 0.81 1.18 1.12 1.12 0.92 1.92 5.72 1.06 1.24

1.28 1.13 1.31 1.17 1.09 1.16 1.56 1.95 1.29 1.32 1.38

1.26 1.19 3.67 1.29 1.22 1.25 1.25 1.54 1.35 1.12 1.44

14.56 14.54 13.14 13.49 17.02 23.18 23.32 21.86 14.48 16.31 12.27

antlr

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

5.24 4.50 4.25 1.05 7.27 3.20 1.26 1.54 4.75 1.14 2.24

5.05 0.95 3.02 1.14 0.94 0.96 0.93 0.89 1.33 4.41 1.14

1.63 5.89 1.13 1.23 2.75 5.36 7.27 8.83 2.12 4.69 3.55

1.30 4.63 8.33 1.16 7.03 9.60 10.29 1.39 1.69 8.05 9.00

0.93 0.89 0.90 2.68 0.92 1.14 1.60 0.98 1.07 3.93 1.22

bloat

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

2.58 1.00 4.31 6.55 2.53 8.54 5.57 3.81 1.24 1.11 4.72

1.37 1.10 1.06 1.07 3.14 3.56 1.72 1.28 6.40 1.97 1.88

1.31 3.30 1.98 4.31 1.71 2.78 2.78 0.91 1.26 1.04 8.16

3.76 2.07 5.38 5.81 0.95 7.09 0.93 7.01 1.13 1.62 7.11

1.21 0.99 0.96 1.01 1.13 1.44 1.04 1.05 1.05 1.04 1.03

luindex

0.90

0.96

1.02

1.08

1.14

1.20

1.26

0.79

28.76
56.72
84.69
112.65
140.62
168.58

0.68

2.60
4.51
6.42
8.34
10.25
12.17

0.95

1.51
2.08
2.64
3.21
3.77
4.34

0.71

2.80
4.89
6.99
9.08
11.17
13.26

0.81

4.56
8.31
12.07
15.82
19.57
23.32

0.89

2.46
4.02
5.59
7.16
8.72
10.29

0.91

2.18
3.45
4.72
6.00
7.27
8.54

Figure 6 Vincent EDP Normalized Against the ONDEMAND Baseline (For a cell of method m

and frequency f with a value of v, it says that the Vincent run with method m running at
frequency f has EDP v, normalized against that of the ONDEMAND run. If v < 1, the Vincent is
more energy-efficient than the ONDEMAND run w.r.t. EDP).

that Vincent can save energy by 13% than running antlr with the ONDEMAND governor.
As each green cell in the heatmap indicates a configuration with energy savings relative to
ONDEMAND, energy optimization opportunities widely exist across benchmarks.

Indeed, not every benchmark can benefit from method-grained energy optimization.
Benchmark sunflow has all normalized energy consumption values greater than 1 for all
Vincent configurations, indicating the ONDEMAND execution indeed consumes less energy
than Vincent. The same applies to nearly all jython configurations. Both benchmarks
are consistently CPU-intensive, meaning that the ONDEMAND governor is likely to operate the
CPUs at the highest frequencies at most times. In this case, DVFS has limited choices: if it
scales the CPU down, the CPU-intensive application may run significantly slower, negatively
impacting energy consumption because the latter is the accumulated power consumption over
time; if it scales the CPU up, the power consumption may increase, ultimately impacting the
energy consumption as well.

ECOOP 2022

32:18 Vincent: Green Hot Methods in the JVM

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

M

1.02 1.02 1.03 1.01 1.07 1.02 1.01 1.02 1.00 1.01 0.99

0.82 0.90 0.95 0.97 1.04 0.96 1.13 1.03 1.25 1.01 1.00

1.03 1.04 1.12 1.02 1.13 1.01 1.02 0.99 1.01 1.17 1.01

1.01 1.00 1.00 1.00 1.02 1.00 1.02 1.00 1.00 0.98 1.01

sunflow

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

11.08 1.07 12.79 7.52 0.97 15.14 1.16 16.40 16.11 18.29 19.61

0.99 3.45 0.97 2.90 2.19 2.76 1.44 2.57 1.91 3.39 1.21

5.89 1.01 0.97 0.95 0.98 0.97 1.01 0.99 9.19 0.96 1.00

1.03 1.03 0.94 5.25 0.95 1.44 5.32 1.00 5.49 0.96 0.96

0.97 1.00 1.15 1.16 1.02 1.07 1.54 1.42 1.00 0.96 0.97

pmd

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

1.22 2.09 1.71 1.99 0.99 1.22 2.02 2.25 0.99 1.52 0.99

0.70 0.81 1.12 1.17 0.95 0.99 1.03 1.11 1.16 1.04 1.39

1.00 2.03 0.84 0.90 1.93 1.00 1.75 1.30 1.15 2.24 1.30

0.98 0.85 0.95 0.90 1.78 1.00 3.61 2.17 1.16 2.20 1.32

2.73 4.02 2.91 2.58 2.85 2.72 2.40 2.10 2.99 2.10 2.43

avrora

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

1.53 1.74 1.39 1.50 1.65 1.47 1.48 1.19 1.25 2.36 1.87

1.10 1.33 1.40 1.28 1.46 1.34 1.07 1.50 0.95 1.79 1.44

1.49 1.75 1.59 1.65 1.69 1.48 1.46 1.65 1.88 1.71 2.04

1.04 0.98 1.48 1.05 1.06 1.06 1.00 0.99 1.59 1.80 1.07

1.28 1.55 1.29 1.12 1.54 1.43 1.50 1.07 1.62 1.55 1.58

jython

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

2.20 1.36 0.96 1.73 1.21 1.31 1.90 2.43 1.70 1.11 2.16

1.10 1.86 1.16 1.07 1.55 1.24 1.50 1.22 1.27 1.56 2.25

2.62 0.96 2.02 0.98 2.69 2.88 0.95 1.59 4.74 1.00 1.96

1.23 1.00 1.18 0.95 1.01 1.16 0.95 1.35 1.38 0.91 1.16

4.69 1.00 4.60 1.02 0.96 0.99 1.05 4.04 4.46 1.39 0.97

fop

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

1.32 1.00 1.02 1.34 0.97 1.01 1.00 3.54 3.59 1.03 1.03

1.04 0.99 0.93 1.04 1.00 1.03 1.01 1.59 3.01 1.02 1.03

1.08 1.07 1.19 1.15 1.03 1.18 1.35 1.44 1.29 1.29 1.24

1.04 1.05 2.27 1.12 1.20 1.09 1.15 1.36 1.26 1.01 1.23

3.74 4.96 4.83 5.08 5.36 6.75 6.55 6.60 5.29 5.33 4.68

antlr

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

2.21 2.49 2.42 1.06 3.09 1.89 1.15 1.20 2.77 1.10 1.75

2.19 0.95 1.94 0.99 0.96 0.96 0.95 0.93 1.04 3.75 0.97

1.18 2.92 1.01 1.12 1.78 2.58 3.34 3.89 1.75 2.84 2.34

1.04 2.43 3.52 0.98 3.22 3.92 3.89 1.18 1.42 4.02 4.02

0.98 0.93 0.96 1.81 0.95 1.18 1.41 0.97 0.96 2.48 1.02

bloat

1 2 3 4 5 6 7 8 9 10 11
F

1
2

3
4

5
M

1.81 1.01 2.48 3.38 1.97 4.01 3.42 2.65 1.21 1.04 2.93

1.17 1.07 1.03 1.15 2.26 2.26 1.46 1.29 3.41 1.71 1.61

1.12 2.24 1.67 2.74 1.51 2.04 2.11 0.98 1.21 1.02 3.75

2.26 1.58 3.12 3.06 0.99 3.65 0.97 3.64 1.03 1.63 3.59

1.11 1.02 1.08 0.99 1.04 1.36 1.03 1.05 1.01 1.01 1.01

luindex

0.82

0.89

0.96

1.03

1.11

1.18

1.25

0.94

4.05
7.16
10.27
13.39
16.50
19.61

0.70

1.25
1.81
2.36
2.91
3.47
4.02

0.95

1.19
1.42
1.65
1.89
2.12
2.36

0.91

1.55
2.19
2.83
3.46
4.10
4.74

0.93

1.90
2.87
3.84
4.81
5.78
6.75

0.93

1.44
1.96
2.47
2.99
3.50
4.02

0.97

1.48
1.98
2.49
3.00
3.50
4.01

Figure 7 Vincent Execution Time Normalized Against the ONDEMAND Baseline (For a cell of
method m and frequency f with a value of v, it says that the Vincent run with method m running
at frequency f has execution time v, normalized against that of the ONDEMAND run. If v < 1, the
Vincent runs faster than the ONDEMAND run).

In contrast, memory-intensive or I/O-intensive benchmarks respond well with Vincent.
This is consistent with our general understanding of DVFS: these benchmarks often have
latency due to memory round-trips or I/O requests, and scaling down the CPU frequency may
have limited impact on execution time while reducing the power consumption significantly.
For example, there are benefits for reducing energy consumption for many configurations
of pmd (AST-based program analysis), avrora (simulation), fop (file transformation), and
luindex (data indexing). All are centric to data processing, and most benchmarks have
I/Os.

Finally, relatively short methods (such as the top-consuming method of pmd and bloat)
indeed respond to DVFS poorly: the overhead of DVFS significantly outweighs its benefit.
As we can see, energy consumption may deteriorate significantly for them, sometimes near
10x.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:19

5.1.3 The Impact on EDP
Fig. 6 shows Vincent’s impact on energy consumption. One interesting observation is that
DVFS may play different roles for different benchmarks in balancing the trade-off between
energy consumption and execution time: sometimes the reduction of EDP is due to reduced
energy consumption, whereas at other times, EDP may reduce due to reduced execution
time.

Take sunflow for instance. Recall earlier that its energy heatmap revealed that reducing
the energy consumption of sunflow is challenging (all cells in the energy consumption
heatmap are red), but observe that Vincent may in fact improve the energy efficiency of
sunflow in terms of EDP: by scaling the CPU frequency to the highest while executing its
method TriangleMesh.init, the normalized EDP may reach 0.90, i.e., a 10% reduction than
that of ONDEMAND. Here, Vincent primarily plays the role of improving the performance: as
sunflow is a CPU-intensive benchmark, DVFS plays the role of speeding up its execution;
the shortened execution time contributes to the reduced EDP.

Overall, we find Vincent an effective solution to reducing EDP as well as energy
consumption. Occasionally, it is even more effective for the former than the latter: when we
correlate Fig. 5 and Fig. 6, the best configuration for a benchmark often exhibits a lower
normalized value in Fig. 6 than in Fig. 5. As energy optimization is a known trade-off between
maximizing energy savings and minimizing performance loss, an EDP-friendly solution is of
practical importance.

5.1.4 The Impact on Execution Time
In Fig. 7, we show the impact of Vincent on execution time. Observe that every benchmark
consists of at least one configuration that may speed up the benchmark relative to its
ONDEMAND run. At the first glance, the fact that Vincent may serve as a performance
optimizer may come as a surprise, but this is indeed natural for two reasons.

First, even though DVFS is better known for its effect on energy savings with downscaling,
the opposite is also true: it can speed up the program execution with upscaling. What this
figure shows is that Vincent may select a performance-sensitive method and execute it on a
higher CPU frequency than an ONDEMAND governor baseline would, potentially speeding up
the program.

Second, note that ONDEMAND governor is a “middle-of-the-road” governor (see § 2) in terms
of how aggressive/conservative it scales up CPU frequencies in the presence of workload
increase. As we shall see in § 5.2, the PERFORMANCE governor is a more challenging baseline
to overcome in terms of viewing Vincent as a performance optimization.

5.2 Alternative Baselines
We have so far compared our results with the ONDEMAND governor, arguably the most widely
used DVFS-enabled energy optimization based on dynamic monitoring. In this section, we
now look at other important governors as baselines.

In Fig. 8, we show the relative effectiveness of Vincent against alternative governors.
For example, the height of sunflow EDP bar against the ONDEMAND governor is 0.86, meaning
that among all CPU frequencies, all selected methods, and all sampling rate settings, the
Vincent configuration with the least EDP is 14% less than that of the ONDEMAND run for
sunflow. For the same benchmark, its EDP bar against the POWERSAVE governor is 0.52,
meaning that the Vincent configuration with the least EDP is 48% less than that of the
POWERSAVE run. In other words, POWERSAVE is a relatively less effective power governor for
sunflow than ONDEMAND in terms of EDP, and neither is as effective as Vincent.

ECOOP 2022

32:20 Vincent: Green Hot Methods in the JVM

Figure 8 Vincent Best Results against Different Governor Baselines (The first row shows results
normalized against the ONDEMAND governor. The second row shows results normalized against the
POWERSAVE governor. The third row shows results normalized against the PERFORMANCE governor.
For all bars, shorter is better).

Across the benchmarks, a trend is that the POWERSAVE baseline fares poorly relative to
ONDEMAND, and much worse than Vincent. Relatively, POWERSAVE is slightly worse than the
ONDEMAND governor in terms of energy consumption, but it may significantly increase the
execution time of benchmarks, ultimately leading to poor EDPs.

Vincent is also more energy-efficient than the PERFORMANCE governor. Note that in
the last row of Fig. 8, all normalized energy results are significantly less than 1. All but
one (sunflow) benchmarks also have EDP results less than 1. The most revealing fact
about the PERFORMANCE governor is that it may reduce the execution time of CPU-intensive
benchmarks. Recall that when Vincent is compared against the ONDEMAND governor in
terms of the execution time (the last figure in the first row), the Vincent runs of sunflow
and jython can lead to shorter execution time than the runs with the ONDEMAND governor.
This however is not true when Vincent is compared against the PERFORMANCE governor: the
Vincent runs of sunflow and jython are slightly slower than the runs with the PERFORMANCE
governor (the last figure in the last row). The PERFORMANCE governor however is not as
effective for memory-intensive or I/O-intensive benchmarks.

The surprising fact is that the Vincent runs for some benchmarks can in fact lead to a
small but noticeable reduction in the execution time than their counterpart PERFORMANCE
runs. When the PERFORMANCE governor is used to regulate DVFS on Intel architectures where

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:21

Figure 9 Vincent Best Results against Different Governor Baselines for the First 5-Runs (All
legends are otherwise identical to Fig. 8).

P-States are available, the highest power state is used. Note however the highest power
state is not tantamount to the highest CPU frequency [31, 1]. Recall that (§ 2) P-States
are managed at the level of the CPU package, not at the level of individual cores. How the
supply voltage and the CPU frequencies of individual cores are assigned given a power state
subjects to a variety of design constraints, such as area power and thermal considerations.
The DVFS of Vincent however is targeted at the core level: when a method is determined to
run with the highest CPU frequency, the CPU core hosting the thread in which the method
runs is set at the highest CPU frequency. This interesting phenomenon may indicate a
potential for performance optimization, but there are caveats. First, the average performance
improvement is small: only a subset of benchmarks can benefit, while there is degradation in
others (Fig. 8). Second, as P-State maintenance is a platform-dependent black-box hardware
feature, the phenomenon may be restricted to specific architectures (Broadwell in our case),
and may no longer presents itself in other architectures.

5.3 The Impact during the Warm-Up Phase

The data we have shown so far result from the last 15 runs in a 20-run execution for
each benchmark (see § 4), i.e., the post-warmup runs. This evaluation choice is in sync
with the general focus of energy optimization on long-running applications, where energy
consumption matters the most. In those server-class settings, a sunflow application will

ECOOP 2022

32:22 Vincent: Green Hot Methods in the JVM

continuously process images (instead of a fixed number necessitated by the benchmark), and
an xalan application will continuously process XML documents (instead of a fixed number
of documents).

For completeness, we now describe the result of the first 5 runs in a 20-run execution, with
the per-benchmark results shown in Fig. 9. Overall, Vincent remains an effective optimizer
relative to the 3 baselines. Nearly all benchmarks retain the similar trend as post-warmup
runs in Fig. 8. Relative to the latter however, the results exhibit a larger deviation. As
the majority of hot methods are identified in the earlier runs, the combined 5-run results
shown here demonstrate that Vincent has already started to play an effective role in the
optimization. Note however, the hot method selection process in JVMs is incremental: some
hot methods may be identified during the first run, whereas others may be deferred to the
later runs. As a result, the effectiveness of Vincent relative to the 3 baselines is only
incrementally more pronounced, leading to larger deviation across the 5 runs.

5.4 Multi-Method Optimization
As a part of the design space optimization, we further constructed experiments where multiple
methods are subject to DVFS at the same time. Concretely, for benchmarks that have at
least two methods that show favorable EDP configurations (normalized EDP < 1), we pick
two methods whose least EDPs among all configurations are the smallest. We perform DVFS
of both methods at the same time, adjusting the frequencies according to their respective
“least EDP” configurations.

Unfortunately, the results do not show improvement. In fact, the 3 most promising
benchmarks (i.e., with multiple EDP<1 configurations spanning different methods as shown
in Fig. 6), pmd, avrora, and fop produced normalized EDP as 2.01, 1.77, and 1.60, respectively.
The root cause is that when multiple methods are subjected to DVFS at the same time, the
chance of concurrent DVFS requests increases significantly. As CPU hardware must serialize
DVFS requests – DVFS is implemented as blocking I/O writes – an extensive increase in
execution time ensues, bad news for energy efficiency. The multi-method result is a reminder
that an overdesign may hamper effectiveness. Vincent, as it turns out, is most effective
when we keep it simple: method-grained energy optimization with a focus on the most
impactful method in an application.

5.5 An Experimental Summary
Fig. 10 summarizes the average of Vincent normalized energy/EDP/time against different
baselines, across all benchmarks. On average, Vincent can reduce energy consumption
by 14.9%, EDP by 21.1%, and execution time by 12.5% against the ONDEMAND baseline. Its
relative effectiveness against the POWERSAVE baseline is even more dramatic, with an EDP
reduction of 63.0%. The drastic frequency downscaling in POWERSAVE may save power, but it
is ineffective in energy optimization. On average, Vincent’s performance is on par with the
PERFORMANCE baseline, with a negligible execution time reduction of 2.5%. Its effectiveness
in energy and EDP reduction is similar to the result against the ONDEMAND baseline.

5.6 The Technical Report
As we described earlier, all experimental results are based on the setting where each
optimization sampling interval is set at 8ms, and within each interval, 16 samples are
taken. In the technical report [37], we present results with alternative sampling settings.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:23

Figure 10 A Summary of Results with Different Governor Baselines (In each group, the
energy/EDP/time data are normalized with their corresponding data under a built-in governor
based on dynamic monitoring. For all bars, being shorter means Vincent is more effective than the
built-in governor).

The results are generally stable when the same benchmark is optimized under different
sampling settings. The report also contains a discussion on the lessons we learned through
the development process.

6 Related Work

Compiler-Directed or Runtime-Directed DVFS

The underlying philosophy of our work – programs matter for DVFS-based energy optimization
– is shared among a number of compiler-directed energy optimization approaches. Saputra
et al. [50] describes a DVFS-based approach at the level of compiler optimization. Their
algorithm first observes the potential speed-up of loop transformation (e.g., tiling and loop
fusion) over the unoptimized program, and then scales the CPU voltage and frequency down
over the optimized program to a desirable level that matches the original execution time
of the unoptimized program, through integer linear programming. Hsu and Kremer [28]
defines a compiler-directed DVFS algorithm where a desirable CPU frequency is selected
for running a code region; the selection is based on solving a minimization problem where
the need for limited performance loss is encoded as constraints. Xie et al. [59] defines an
analytical model – built in the compilation process – where energy minimization is reduced to
a mixed-integer linear programming problem. Overall, the previous work focused on building
analytical models in the presence of DVFS. This general direction, building analytical models
to identify slacks in programs, can be traced back to a classic analysis for energy-efficient OS
scheduling [57].

A small body of work further extends analytical models to virtual machines and dynamic
compilation. In Haldar et al. [24], methods are instrumented with DVFS calls, and the
frequency of choice when a method executes is based on the comparison among the projected
energy consumption of the method at different frequencies. To make this decision, it was
necessary for their analytical algorithm to introduce heuristics (that may no longer hold
for state-of-the-art application workloads), such as the projected future execution time
is the same as the execution time so far, and the execution time increases linearly with
the CPU frequency slowdown. Wu et al. [58] proposed a dynamic compilation framework
for C programs, where important code regions such as loops are manually identified and
instrumented, and the CPU frequency for DVFS is selected based on an analytical model.
Relative to Haldar et al., their model addressed the non-linear effect of DVFS on execution

ECOOP 2022

32:24 Vincent: Green Hot Methods in the JVM

time: through analyzing the memory-related instructions in the code region, their algorithm
projects smaller performance loss for memory-intensive code regions when the CPU frequency
is scaled down.

As both Haldar et al. and Wu et al. are runtime-level efforts, a more in-depth comparison
is warranted. First, Vincent does not rely on an analytical model to estimate or extrapolate
the execution time or energy effect of DVFS, and does not need to instantiate the often
unknown parameters in the analytical model through heuristics. Second, Vincent identifies
the most energy-consuming methods in an automated process. In contrast, the code region
for DVFS in Wu et al. is manually identified, Third, both existing efforts centrally relied on
instrumenting method boundaries for DVFS calls. Acceptable performance may be achievable
at the era of these developments – e.g., Haldar et al. was evaluated against the Java Grande
benchmark suite [54] and Wu et al. against SPEC 95 and SPEC2K – but modern Java
applications are significantly more complex than e.g., heapsort in Java Grande. In § 3.2.2,
we described the high overhead of that approach for Dacapo benchmarks.

In the context of related work, Vincent can be understood as a revisit to a historically
significant research direction – compiler/runtime-based DVFS – which has unfortunately
been overtaken by black-box approaches e.g., DVFS based on dynamic performance counters.
Vincent defines an end-to-end approach that is simple (no analytical model), automated (no
manual efforts in code region identification), and scalable in overhead (no instrumentation for
DVFS). It is our hope that Vincent is a new beginning to re-study this largely overlooked
direction in the presence of modern applications in managed runtimes.

Energy-Aware Languages

Another direction of energy optimization at the boundary of programming abstractions is
energy-aware programming languages [55, 10, 49, 26, 40, 19, 11, 34, 25, 41, 61, 15]. For
example, Energy Types [19] introduces DVFS at the boundary of methods based on phase
information declared by programmers or inferred by the compiler. Green [10] and LAB [34]
select alternative algorithm-specific parameters based on energy and QoS need. Ent [14]
relies on hybrid type checking to select alternative programming abstractions (methods and
objects) for message dispatch. Vincent works with the existing programming model of Java;
it is an effort on runtime design instead of programming model design.

Runtime-Level Energy Efficiency

Chen et al. [18] relies on garbage collection tuning to save memory system energy consumption
in JVMs. Cao et al. [16] improves the energy efficiency of JVM by assigning JVM services to
small cores on asymmetric hardware. DEP+BURST [2] is a performance predictor and energy
management system where JVM features such as synchronization, inter-thread dependencies,
and store bursts, are taken into account for performance/energy prediction. Hussein et
al. [29] investigates the energy impact of garbage collector design in the Android runtime.
They proposed some extensions to improve the energy efficiency of asynchronous GC in
Android. Overall, a common theme in existing work is to focus on JVM services (such as
GC and thread management), but none considers energy optimization at the granularity of
programming abstractions. Our work complements existing work with a fine-grained method-
based approach for energy optimization. For unmanaged language runtimes, Hermes [47, 39]
and Aequitus [48] are energy-efficient solutions built on top of Cilk. They perform DVFS
based on the dependencies between thief threads and victim threads in work stealing runtimes.

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:25

Empirical studies often illuminate the energy consumption (and performance) of managed
language runtimes. An early study by Vijaykrishnan et al. [56] focuses on the energy
consumption impact on the memory hierarchy (cache and main memory) by JIT-enabled
Java applications. Esmaeilzadeh et al. [21] studies energy efficiency with a focus on
diverse configurations of workload and hardware. Sartor and Eeckhout [51] illuminates
the performance of Java applications, with a focus on mapping Java application threads and
JVM threads to multi-core hardware. Despite that their focus is on performance, DVFS is
extensively used in their design space exploration, such as running GC threads at different
CPU frequencies. Pinto et al. [45] studies the impact of energy consumption when alternative
thread management designs in Java are used, such as different settings of the thread pool.
Specific to ForkJoin [35], previous studies [44] also explored the impact of work stealing
on the performance and energy trade-off in Java runtimes. The energy impact of different
choices of Java collection classes were also a subject of studies [23, 46]. Kambadur et al. [33]
takes a cross-layer approach to surveying the energy management solutions, studying the
interface and interaction of different hardware/OS/compiler configurations.

Energy Profiling

Energy profiling is more commonly conducted at the system level (e.g., [43, 22]), rather
than at the boundary of programming abstractions such as methods. Chappie [9] supports
method-grained energy profiling. It adopts an approach with fixed time intervals, a necessary
design choice when there is no JVM modification. Vincent is fundamentally a JVM-centric
approach. It takes advantage of the JVM support such as instrumentation to enable delimited
sampling. To Vincent, energy profiling is an intermediate step for energy optimization,
which Chappie does not support.

7 Threats to Validity

While we believe leveraging hot methods in the JVM for DVFS-guided energy optimization
is a generalizable idea, Vincent as an experimental system is implemented and evaluated
within specific software/hardware environments. The validity of our experimental data is
restricted to these environments.

First, Vincent is an extension to the JikesRVM, so the validity of our results can only be
safely confirmed in that JVM. We are hopeful that the ideas behind Vincent can translate
to alternative JVMs, for several reasons. (1) Vincent does not rely on unique JikesRVM
features; hot method selection, dynamic instrumentation and compilation, and counter-based
sampling are available in many JVMs; (2) To the best of our knowledge, alternative JVMs
widely in use today do not perform DVFS-specific optimizations, so the likelihood of feature
intervention is small if the idea behind Vincent is adopted on them. (3) JikesRVM has
incubated other influential JVM ideas (e.g., JIT, garbage collection), whose effectiveness has
been confirmed in alternative JVMs.

Second, Vincent relies on CPU architectures where DVFS is enabled. Fortunately,
DVFS is a standard feature whose support is the rule not the exception in commodity CPUs,
including the vast majority of chips from Intel, AMD, ARM, and others. RAPL is used for
Vincent energy measurement, a hardware feature also widely available in Intel after 2011,
and more recently, AMD CPUs.

Third, the experimental results are limited to the benchmark suite we used, Dacapo.
Dacapo is commonly used for Java evaluating the performance of JVMs and Java applications.
The benchmarks we used are multi-threaded, and they have diverse workload characteristics
(CPU-bound vs. I/O-bound) that matter to energy optimization.

ECOOP 2022

32:26 Vincent: Green Hot Methods in the JVM

As for the OS governor support, note that the ONDEMAND, PERFORMANCE and POWERSAVE
governors are used for the purpose of evaluation. The only OS requirement for Vincent
is that the OS can expose the capability of DVFS regulation to the application. This
is the USERSPACE governor in Linux. Such support is also available in other OS such as
Windows [36].

8 Conclusion

Vincent is a method-grained energy optimizer residing inside the JVM. It identifies the top
energy-consuming methods in the Java runtime, and performs profile-directed optimization
guided by DVFS. Our experiments show Vincent can reduce the energy consumption and
improve the energy efficiency of Java applications. Vincent is a novel instance among a
small number of energy optimization approaches that take advantage of the information
available to the managed runtime. It requires no modification to the underlying OS/hardware,
and requires no programmer effort.

References
1 Kristen Accardi. Balancing power and performance in the linux kernel, https://events.

static.linuxfound.org/sites/events/files/slides/LinuxConEurope_2015.pdf. In The
2015 Linux Conference, 2015.

2 S. Akram, J. B. Sartor, and L. Eeckhout. Dep+burst: Online dvfs performance prediction for
energy-efficient managed language execution. IEEE Transactions on Computers, 66(4):601–615,
2017. doi:10.1109/TC.2016.2609903.

3 Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber, Stephen Smith, Ton Ngo,
John J. Barton, Susan Flynn Hummel, Janice C. Sheperd, and Mark Mergen. Implementing
jalapeño in java. SIGPLAN Not., 34(10):314–324, October 1999. doi:10.1145/320385.320418.

4 Bowen Alpern, C. Richard Attanasio, John J. Barton, Michael G. Burke, Perry Cheng, Jong-
Deok Choi, Anthony Cocchi, Stephen J. Fink, David Grove, Michael Hind, Susan Flynn
Hummel, Derek Lieber, Vassily Litvinov, Mark F. Mergen, Ton Ngo, James R. Russell,
Vivek Sarkar, Mauricio J. Serrano, Janice C. Shepherd, Stephen E. Smith, Vugranam C.
Sreedhar, Harini Srinivasan, and John Whaley. The jalapeño virtual machine. IBM Syst. J.,
39(1):211–238, 2000. doi:10.1147/sj.391.0211.

5 The Linux Kernel Archives. Intel p-state driver, https://www.kernel.org/doc/
Documentation/cpu-freq/intel-pstate.txt.

6 The Linux Kernel Archives. Linux cpufreq governors, https://www.kernel.org/doc/
Documentation/cpu-freq/governors.txt.

7 M. Arnold and D. Grove. Collecting and exploiting high-accuracy call graph profiles in virtual
machines. In International Symposium on Code Generation and Optimization, pages 51–62,
2005.

8 Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney. Adaptive
optimization in the jalapeño jvm. In Proceedings of the 15th ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA ’00, pages
47–65, New York, NY, USA, 2000. Association for Computing Machinery. doi:10.1145/
353171.353175.

9 Timur Babakol, Anthony Canino, Khaled Mahmoud, Rachit Saxena, and Yu David Liu. Calm
energy accounting for multithreaded java applications. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ESEC/FSE 2020, pages 976–988, 2020.

10 Woongki Baek and Trishul M. Chilimbi. Green: a framework for supporting energy-conscious
programming using controlled approximation. In PLDI’10, pages 198–209, 2010.

https://events.static.linuxfound.org/sites/events/files/slides/LinuxConEurope_2015.pdf
https://events.static.linuxfound.org/sites/events/files/slides/LinuxConEurope_2015.pdf
https://doi.org/10.1109/TC.2016.2609903
https://doi.org/10.1145/320385.320418
https://doi.org/10.1147/sj.391.0211
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/intel-pstate.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://www.kernel.org/doc/Documentation/cpu-freq/governors.txt
https://doi.org/10.1145/353171.353175
https://doi.org/10.1145/353171.353175

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:27

11 Thomas Bartenstein and Yu David Liu. Green streams for data-intensive software. In
Proceedings of the 35th International Conference on Software Engineering (ICSE 2013), May
2013.

12 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley,
Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko
Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The dacapo
benchmarks: Java benchmarking development and analysis. In Proceedings of the 21st
Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications, OOPSLA ’06, pages 169–190, New York, NY, USA, 2006. Association for
Computing Machinery. doi:10.1145/1167473.1167488.

13 T.D. Burd and R.W. Brodersen. Energy efficient cmos microprocessor design. In HICSS’95,
pages 288–297 vol.1, 1995.

14 Anthony Canino and Yu David Liu. Proactive and adaptive energy-aware programming with
mixed typechecking. In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, pages
217–232, 2017.

15 Anthony Canino, Yu David Liu, and Hidehiko Masuhara. Stochastic energy optimization
for mobile GPS applications. In Proceedings of the 2018 ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018, pages
703–713, 2018.

16 Ting Cao, Stephen M Blackburn, Tiejun Gao, and Kathryn S McKinley. The yin and yang of
power and performance for asymmetric hardware and managed software. In Proceedings of the
39th Annual International Symposium on Computer Architecture, ISCA ’12, pages 225–236,
USA, 2012. IEEE Computer Society.

17 Anantha P. Chandrakasan, Samuel Sheng, and Robert W. Brodersen. Low power cmos digital
design. IEEE JOURNAL OF SOLID STATE CIRCUITS, 27:473–484, 1995.

18 G. Chen, R. Shetty, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, and M. Wolczko. Tuning
garbage collection for reducing memory system energy in an embedded java environment.
ACM Trans. Embed. Comput. Syst., pages 27–55, November 2002.

19 Michael Cohen, Haitao Steve Zhu, Senem Ezgi Emgin, and Yu David Liu. Energy types. In
OOPSLA ’12, 2012.

20 Howard David, Eugene Gorbatov, Ulf R. Hanebutte, Rahul Khanna, and Christian Le. Rapl:
Memory power estimation and capping. In Proceedings of the 16th ACM/IEEE International
Symposium on Low Power Electronics and Design, ISLPED ’10, pages 189–194, New York,
NY, USA, 2010. ACM. doi:10.1145/1840845.1840883.

21 Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen M. Blackburn, and Kathryn S. McKinley.
Looking back on the language and hardware revolutions: Measured power, performance, and
scaling. In Proceedings of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, pages 319–332, New York,
NY, USA, 2011. Association for Computing Machinery. doi:10.1145/1950365.1950402.

22 X. Gao, D. Liu, D. Liu, H. Wang, and A. Stavrou. E-android: A new energy profiling tool for
smartphones. In 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pages 492–502, June 2017.

23 Irene Lizeth Manotas Gutiérrez, Lori L. Pollock, and James Clause. SEEDS: a software
engineer’s energy-optimization decision support framework. In 36th International Conference
on Software Engineering, ICSE ’14, Hyderabad, India - May 31 - June 07, 2014, pages 503–514,
2014.

24 Vivek Haldar, Christian W. Probst, Vasanth Venkatachalam, and Michael Franz. Virtual-
machine driven dynamic voltage scaling. Technical report, In Technical Report No.03-21,
SICS, 2003.

ECOOP 2022

https://doi.org/10.1145/1167473.1167488
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/1950365.1950402

32:28 Vincent: Green Hot Methods in the JVM

25 Henry Hoffmann. Jouleguard: Energy guarantees for approximate applications. In Proceedings
of the 25th Symposium on Operating Systems Principles, SOSP ’15, pages 198–214, 2015.

26 Henry Hoffmann, Stelios Sidiroglou, Michael Carbin, Sasa Misailovic, Anant Agarwal, and
Martin Rinard. Dynamic knobs for responsive power-aware computing. In ASPLOS ’11, 2011.

27 M. Horowitz, T. Indermaur, and R. Gonzalez. Low-power digital design. In Low Power
Electronics, 1994. Digest of Technical Papers., IEEE Symposium, pages 8–11, 1994.

28 Chung-Hsing Hsu and Ulrich Kremer. The design, implementation, and evaluation of a
compiler algorithm for cpu energy reduction. In PLDI’03, pages 38–48, 2003.

29 Ahmed Hussein, Mathias Payer, Antony L. Hosking, and Christopher A. Vick. Impact of GC
design on power and performance for android. In Dalit Naor, Gernot Heiser, and Idit Keidar,
editors, Proceedings of the 8th ACM International Systems and Storage Conference, SYSTOR
2015, Haifa, Israel, May 26-28, 2015, pages 13:1–13:12. ACM, 2015.

30 Intel. Energy analysis user guide, available at https://www.intel.com/content/www/us/en/
develop/documentation/energy-analysis-user-guide/.

31 Intel. Intel 64 and ia-32 architectures software developer’s manual: Volume 3,
available at https://www.intel.com/content/www/us/en/architecture-and-technology/
64-ia-32-architectures-software-developer-system-programming-manual-325384.
html.

32 Canturk Isci and Margaret Martonosi. Identifying program power phase behavior using power
vectors. In In Workshop on Workload Characterization, 2003.

33 Melanie Kambadur and Martha A. Kim. An experimental survey of energy management
across the stack. In Proceedings of the 2014 ACM International Conference on Object Oriented
Programming Systems Languages and Applications, OOPSLA ’14, pages 329–344, New York,
NY, USA, 2014. Association for Computing Machinery. doi:10.1145/2660193.2660196.

34 Aman Kansal, Scott Saponas, A.J. Bernheim Brush, Kathryn S. McKinley, Todd Mytkowicz,
and Ryder Ziola. The latency, accuracy, and battery (lab) abstraction: Programmer
productivity and energy efficiency for continuous mobile context sensing. In OOPSLA ’13,
pages 661–676, 2013.

35 Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000 Conference on
Java Grande, JAVA ’00, pages 36–43, New York, NY, USA, 2000. Association for Computing
Machinery. doi:10.1145/337449.337465.

36 Bin Lin, Arindam Mallik, Peter Dinda, Gokhan Memik, and Robert Dick. User- and process-
driven dynamic voltage and frequency scaling. In 2009 IEEE International Symposium on
Performance Analysis of Systems and Software, pages 11–22, 2009. doi:10.1109/ISPASS.
2009.4919634.

37 Kenan Liu, Khaled Mahmoud, Joonhwan Yoo, and Yu David Liu. Vincent: Green hot methods
in the JVM (technical report), available at http://www.cs.binghamton.edu/~davidl/papers/
ECOOP22Long.pdf.

38 Kenan Liu, Gustavo Pinto, and Yu David Liu. Data-oriented characterization of application-
level energy optimization. In FASE 2015, April 2015.

39 Yu David Liu. Green thieves in work stealing. In Proceedings of ASPLOS’12 (Provactive Ideas
session), 2012.

40 Yu David Liu. Variant-frequency semantics for green futures. In Proceedings of the Workshop
on Programming Language Approaches to Concurrency and Communication-cEntric Software
(PLACES’12), 2012.

41 Brandon Lucia and Benjamin Ransford. A simpler, safer programming and execution model for
intermittent systems. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’15, pages 575–585, 2015.

42 Eric Masanet, Arman Shehabi, Nuoa Lei, Sarah Smith, and Jonathan Koomey. Recalibrating
global data center energy-use estimates. Science, 367(6481):984–986, 2020. doi:10.1126/
science.aba3758.

https://www.intel.com/content/www/us/en/develop/documentation/energy-analysis-user-guide/
https://www.intel.com/content/www/us/en/develop/documentation/energy-analysis-user-guide/
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-system-programming-manual-325384.html
https://doi.org/10.1145/2660193.2660196
https://doi.org/10.1145/337449.337465
https://doi.org/10.1109/ISPASS.2009.4919634
https://doi.org/10.1109/ISPASS.2009.4919634
http://www.cs.binghamton.edu/~davidl/papers/ECOOP22Long.pdf
http://www.cs.binghamton.edu/~davidl/papers/ECOOP22Long.pdf
https://doi.org/10.1126/science.aba3758
https://doi.org/10.1126/science.aba3758

K. Liu, K. Mahmoud, J. Yoo, and Y. D. Liu 32:29

43 Abhinav Pathak, Y. Charlie Hu, and Ming Zhang. Where is the energy spent inside my app?:
Fine grained energy accounting on smartphones with eprof. In Proceedings of the 7th ACM
European Conference on Computer Systems, EuroSys ’12, pages 29–42, 2012.

44 Gustavo Pinto, Anthony Canino, Fernando Castor, Guoqing (Harry) Xu, and Yu David Liu.
Understanding and overcoming parallelism bottlenecks in forkjoin applications. In Proceedings
of the 32nd IEEE/ACM International Conference on Automated Software Engineering, ASE
2017, Urbana, IL, USA, October 30 - November 03, 2017, pages 765–775, 2017.

45 Gustavo Pinto, Fernando Castor, and Yu David Liu. Understanding energy behaviors of thread
management constructs. In OOPSLA ’14, 2014.

46 Gustavo Pinto, Kenan Liu, Fernando Castor, and Yu David Liu. A comprehensive study on
the energy efficiency of java thread-safe collections. In International Conference on Software
Maintenance and Evolution (ICSME 2016), 2016.

47 Haris Ribic and Yu David Liu. Energy-efficient work-stealing language runtimes. In
Architectural Support for Programming Languages and Operating Systems, ASPLOS ’14,
Salt Lake City, UT, USA, March 1-5, 2014, pages 513–528, 2014.

48 Haris Ribic and Yu David Liu. AEQUITAS: coordinated energy management across parallel
applications. In Proceedings of the 2016 International Conference on Supercomputing, ICS
2016, Istanbul, Turkey, June 1-3, 2016, pages 4:1–4:12, 2016.

49 A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam, L. Ceze, and D. Grossman. EnerJ:
Approximate data types for safe and general low-power computation. In PLDI’11, 2011.

50 H. Saputra, M. Kandemir, N. vijaykrishan, M Irwin, J. Hu, and U. Kremer. Energy-conscious
compilation based on voltage scaling. In In Proc. ACM SIGPLAN Joint Conference on
Languages, Compilers, and Tools for Embedded Systems and Software and Compilers for
Embedded Systems, pages 2–11. ACM Press, 2002.

51 Jennfer B. Sartor and Lieven Eeckhout. Exploring multi-threaded java application performance
on multicore hardware. In OOPSLA’12, OOPSLA ’12, pages 281–296, 2012.

52 Timothy Sherwood, Erez Perelman, and Brad Calder. Basic block distribution analysis to
find periodic behavior and simulation points in applications. In PACT ’01: Proceedings of the
2001 International Conference on Parallel Architectures and Compilation Techniques, pages
3–14, Washington, DC, USA, 2001. IEEE Computer Society.

53 Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically
characterizing large scale program behavior. In ASPLOS-X: Proceedings of the 10th
international conference on Architectural support for programming languages and operating
systems, pages 45–57, 2002.

54 L.A. Smith, J.M. Bull, and J. Obdrizalek. A parallel java grande benchmark suite. In SC
’01: Proceedings of the 2001 ACM/IEEE Conference on Supercomputing, pages 6–6, 2001.
doi:10.1145/582034.582042.

55 Jacob Sorber, Alexander Kostadinov, Matthew Garber, Matthew Brennan, Mark D. Corner,
and Emery D. Berger. Eon: a language and runtime system for perpetual systems. In SenSys
’07, pages 161–174, 2007.

56 N. Vijaykrishnan, M. Kandemir, S. Kim, S. Tomar, A. Sivasubramaniam, and M. J. Irwin.
Energy behavior of java applications from the memory perspective. In Proceedings of the
1st Java Virtual Machine Research and Technology Symposium, JVM 2001, Proceedings of
the 1st Java Virtual Machine Research and Technology Symposium, JVM 2001. USENIX
Association, 2001. Funding Information: This research is supported in part by grants from
NSF CCR-0073419, Pittsburgh Digital Greenhouse and Sun Microsystems.; 1st Java Virtual
Machine Research and Technology Symposium, JVM 2001 ; Conference date: 23-04-2001
Through 24-04-2001.

57 Mark Weiser, Brent Welch, Alan Demers, and Scott Shenker. Scheduling for reduced cpu
energy. In OSDI ’94: Proceedings of the 1st USENIX conference on Operating Systems Design
and Implementation, page 2, Berkeley, CA, USA, 1994. USENIX Association.

ECOOP 2022

https://doi.org/10.1145/582034.582042

32:30 Vincent: Green Hot Methods in the JVM

58 Qiang Wu, V.J. Reddi, Youfeng Wu, Jin Lee, D. Connors, D. Brooks, M. Martonosi, and
D.W. Clark. A dynamic compilation framework for controlling microprocessor energy and
performance. In 38th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO’05), pages 12 pp.–282, 2005. doi:10.1109/MICRO.2005.7.

59 Fen Xie, Margaret Martonosi, and Sharad Malik. Compile-time dynamic voltage scaling
settings: opportunities and limits. In PLDI’03, pages 49–62, 2003.

60 Heng Zeng, Carla S. Ellis, Alvin R. Lebeck, and Amin Vahdat. Currentcy: A unifying
abstraction for expressing energy management policies. In In Proceedings of the USENIX
Annual Technical Conference, pages 43–56, 2003.

61 Haitao Steve Zhu, Chaoren Lin, and Yu David Liu. A programming model for sustainable
software. In ICSE’15, pages 767–777, 2015.

https://doi.org/10.1109/MICRO.2005.7

Hinted Dictionaries: Efficient Functional Ordered
Sets and Maps
Amir Shaikhha !

University of Edinburgh, UK

Mahdi Ghorbani !

University of Edinburgh, UK

Hesam Shahrokhi !

University of Edinburgh, UK

Abstract
Sets and maps are two essential collection types for programming used widely in data analytics [4].
The underlying implementation for both are normally based on 1) hash tables or 2) ordered
data structures. The former provides (average-case) constant-time lookup, insertion, and deletion
operations, while the latter performs these operations in a logarithmic time. The trade-off between
these two approaches has been heavily investigated in systems communities [3].

An important class of operations are those dealing with two collection types, such as set-set-
union or the merge of two maps. One of the main advantages of hash-based implementations
is a straightforward implementation for such operations with a linear computational complexity.
However, naïvely using ordered dictionaries results in an implementation with a computational
complexity of O(n log(n)).

Motivating Example. The following C++ code computes the intersection of two sets, implemented
by std::unordered_set, a hash-table-based set:

std::unordered_set<K> result;
for(auto& e : set1) {

if(set2.count(e))
result.emplace(e);

}

However, the same fact is not true for ordered data structures; changing the dictionary type
to std::set, an ordered implementation, results in a program with O(n log(n)) computational
complexity. This is because both the count (lookup) and emplace (insertion) methods have
logarithmic computational complexity. As a partial remedy, the standard library of C++ provides
an alternative insertion method that can take linear time, if used appropriately. The emplace_hint
method takes a hint for the position that the element will be inserted. If the hint correctly specifies
the insertion point, the computational complexity will be amortized to constant time.1

std::set<K> result;
auto hint = result.begin();
for(auto& e : set1) {

if(set2.count(e))
hint = result.emplace_hint(hint, e);

}

However, the above implementation still suffers from an O(n log(n)) computational complexity,
due to the logarithmic computational complexity of the lookup operation (count) of the second set.
Thanks to the orderedness of the second set, one can observe that once an element is looked up,
there is no longer any need to search its preceding elements at the next iterations. By leveraging
this feature, we can provide a hinted lookup method with an amortized constant run-time.

1 https://www.cplusplus.com/reference/set/set/emplace_hint/

© Amir Shaikhha, Mahdi Ghorbani, and Hesam Shahrokhi;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 33; pp. 33:1–33:3

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amir.shaikhha@ed.ac.uk
mailto:mahdi.ghorbani@ed.ac.uk
mailto:hesam.shahrokhi@ed.ac.uk
https://www.cplusplus.com/reference/set/set/emplace_hint/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

Hinted Data Structures. The following code, shows an alternative implementation for set
intersection that uses such hinted lookup operations:

hinted_set<K> result;
hinted_set<K>::hint_t hint = result.begin();
for(auto& e : set1) {

hinted_set<K>::hint_t hint2 = set2.seek(e);
if(hint2.found)

hint = result.insert_hint(hint, e);
set2.after(hint2);

}

The above hinted set data-structure enables faster insertion and lookup by providing a cursor
through a hint object (of type hint_t). The seek method returns the hint object hint2 pointing to
element e. Thanks to the invocation of set2.after(hint2), the irrelevant elements of set2 (which
are smaller than e) are no longer considered in the next iterations. The expression hint2.found
specifies if the element exists in set2 or not. Finally, if an element exists in the second set (specified
by hint2.found), it is inserted into its correct position using insert_hint.

The existing work on efficient ordered dictionaries can be divided into two categories. First,
in the imperative world, there are C++ ordered dictionaries (e.g., std::map) with limited hinting
capabilities only for insertion through emplace_hint, but not for deletion and lookup, as observed
previously. Second, from the functional world, Adams’ sets [1] provide efficient implementations for
set-set operators. Functional languages such as Haskell have implemented ordered sets and maps
based on them for more than twenty years [5]. Furthermore, it has been shown [2] that Adams’
maps can be used to provide a parallel implementation for balanced trees such as AVL, Red-Black,
Weight-Balanced, and Treaps. However, Adams’ maps do not expose any hint-based operations to
the programmer. At first glance, these two approaches seem completely irrelevant to each other.

The key contribution of this paper is hinted dictionaries, an ordered data structure that unifies
the techniques from both imperative and functional worlds. The essential building block of hinted
dictionaries are hint objects, that enable faster operations (than the traditional O(log n) complexity)
by maintaining a pointer into the data structure. The underlying representation for hinted dictionaries
can be sorted arrays, unbalanced trees, and balanced trees by sharing the same interface. In our
running example, alternative data structures can be provided by simply changing the type signature
of the hinted set from hinted_set to another implementation, without modifying anything else.

2012 ACM Subject Classification Software and its engineering → Functional languages; Theory of
computation → Data structures design and analysis

Keywords and phrases Functional Collections, Ordered Dictionaries, Sparse Linear Algebra

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.33

Category Extended Abstract

Related Version Full Version: https://arxiv.org/abs/2206.04380

Acknowledgements The authors would like to thank Huawei for their support of the distributed
data management and processing laboratory at the University of Edinburgh.

References

1 Stephen Adams. Efficient sets – a balancing act. JFP, 3(4):553–561, 1993.
2 Guy E Blelloch, Daniel Ferizovic, and Yihan Sun. Just join for parallel ordered sets. In

SPAA’16, pages 253–264, 2016.

https://doi.org/10.4230/LIPIcs.ECOOP.2022.33
https://arxiv.org/abs/2206.04380

A. Shaikhha, M. Ghorbani, and H. Shahrokhi 33:3

3 Changkyu Kim, Tim Kaldewey, Victor W Lee, Eric Sedlar, Anthony D Nguyen, Nadathur
Satish, Jatin Chhugani, Andrea Di Blas, and Pradeep Dubey. Sort vs. hash revisited: Fast
join implementation on modern multi-core CPUs. PVLDB, 2(2):1378–1389, 2009.

4 Amir Shaikhha, Mathieu Huot, Jaclyn Smith, and Dan Olteanu. Functional collection
programming with semi-ring dictionaries. PACMPL, 6(OOPSLA1):1–33, 2022.

5 Milan Straka. The performance of the haskell containers package. ACM Sigplan Notices,
45(11):13–24, 2010.

ECOOP 2022

Slicing of Probabilistic Programs Based on
Specifications
Marcelo Navarro !

Computer Science Department (DCC), University of Chile, Santiago, Chile

Federico Olmedo !

Computer Science Department (DCC), University of Chile, Santiago, Chile

Abstract
We present the first slicing approach for probabilistic programs based on specifications. Concretely,
we show that when probabilistic programs are accompanied by their functional specifications in the
form of pre- and post-condition, one can exploit this semantic information to produce specification-
preserving slices strictly more precise than slices yielded by conventional techniques based on
data/control dependency.

To illustrate this, assume that Alice and Bob repeatedly flip a fair coin until observing a matching
outcome, either both heads or both tails. However, Alice decides to “trick” Bob and switches the
outcome of her coin, before comparing it to Bob’s. The game can be encoded by the program below,
which is instrumented with a variable n that tracks the required number of rounds until observing
the first match. The program terminates after K loop iterations with probability 1/2K provided
K > 0, and with probability 0 otherwise, satisfying the annotated specification.

\\ pre: 1
2K [K > 0]

n := 0;
a, b := 0, 1;
while (a ̸= b) do

n := n + 1;
{a := 0} [1/2] {a := 1};
a := 1 − a;
{b := 0} [1/2] {b := 1}

\\ post: [n = K]

Traditional slicing techniques based on data/control dependencies conclude that the only valid
slice of the program (w.r.t. output variable n) is the very same program. However, our slicing
approach allows removing the assignment a := 1 − a from the loop body, while preserving the
program specification.

At the technical level, our slicing technique works by propagating post-conditions backward
using the greatest pre-expectation transformer – the probabilistic counterpart of Dijkstra’s weakest
pre-condition transformer. This endows programs with an axiomatic semantics, expressed in terms
of a verification condition generator (VCGen) that yields quantitative proof obligations.

In particular, we design (and prove sound) VCGens for both the partial (allowing divergence)
and the total (requiring termination) correctness of probabilistic programs, making our slicing
technique termination-sensitive. To handle iteration, we assume that program loops are annotated
with invariants. To reason about (probabilistic) termination, we assume that loop annotations also
include (probabilistic) variants.

Another appealing property of our slicing technique is its modularity: It yields valid slices of a
program from valid slices of its subprograms. Most importantly, this involves only local reasoning.

Besides developing the theoretical foundations of our slicing approach, we also exhibit an
algorithm for computing program slices. Interestingly, the algorithm computes the least slice that
can be derived from the slicing approach, according to a proper notion of slice size, using, as main
ingredient, a shortest-path algorithm.

Finally, we demonstrate the applicability of our approach by means of a few illustrative examples
and a case study from the probabilistic modeling field.

© Marcelo Navarro and Federico Olmedo;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 34; pp. 34:1–34:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mnavarro@dcc.uchile.cl
mailto:folmedo@dcc.uchile.cl
https://orcid.org/0000-0003-0217-6483
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Slicing of Probabilistic Programs Based on Specifications

2012 ACM Subject Classification Theory of computation → Probabilistic computation; Theory of
computation → Program specifications; Software and its engineering → Designing software

Keywords and phrases probabilistic programming, program slicing, expectation transformer seman-
tics, verification condition generator

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.34

Category Extended Abstract

Related Version Full Version: https://doi.org/10.1016/j.scico.2022.102822

Funding This research has been supported by the FONDECYT Grant No. 11181208.

https://doi.org/10.4230/LIPIcs.ECOOP.2022.34
https://doi.org/10.1016/j.scico.2022.102822

Prisma: A Tierless Language for Enforcing
Contract-Client Protocols in Decentralized
Applications
David Richter #

Technische Universität Darmstadt, Germany

David Kretzler #

Technische Universität Darmstadt, Germany

Pascal Weisenburger #

Universität St. Gallen, Switzerland

Guido Salvaneschi #

Universität St. Gallen, Switzerland

Sebastian Faust #

Technische Universität Darmstadt, Germany

Mira Mezini #

Technische Universität Darmstadt, Germany

Abstract
Decentralized applications (dApps) consist of smart contracts that run on blockchains and clients
that model collaborating parties. dApps are used to model financial and legal business functionality.
Today, contracts and clients are written as separate programs – in different programming languages
– communicating via send and receive operations. This makes distributed program flow awkward to
express and reason about, increasing the potential for mismatches in the client-contract interface,
which can be exploited by malicious clients, potentially leading to huge financial losses. In this
paper, we present Prisma, a language for tierless decentralized applications, where the contract
and its clients are defined in one unit. Pairs of send and receive actions that “belong together”
are encapsulated into a single direct-style operation, which is executed differently by sending and
receiving parties. This enables expressing distributed program flow via standard control flow and
renders mismatching communication impossible. We prove formally that our compiler preserves
program behavior in presence of an attacker controlling the client code. We systematically compare
Prisma with mainstream and advanced programming models for dApps and provide empirical
evidence for its expressiveness and performance.

The design space of dApp programming and other multi-party languages depends on one major
choice: a local model versus a global model. In a local model, parties are defined in separate
programs and their interactions are encoded via send and receive effects. In a global language,
parties are defined within one shared program and interactions are encoded via combined send-
and-receive operations with no effects visible to the outside world. The global model is followed
by tierless [18, 8, 4, 10, 24, 25, 19, 26] and choreographic [12, 15, 11] languages. However, known
approaches to dApp programming follow the local model, thus rely on explicitly specifying the
client–contract interaction protocol. Moreover, the contract and clients are implemented in different
languages, hence, developers have to master two technology stacks. The dominating approach in
industry is Solidity [14] for the contract and JavaScript for clients. Solidity relies on expressing
the protocol using assertions in the contract code, which are checked at run time [1]. Failing to
insert the correct assertions may give parties illegal access to monetary values to the detriment of
others [16, 13]. In research, contract languages [9, 5, 22, 23, 7, 6, 17, 3] have been proposed that rely
on advanced type systems such as session types, type states, and linear types. The global model has
not been explored for dApp programming. This is unfortunate given the potential to get by with a
standard typing discipline and to avoid intricacies and potential mismatches of a two-language stack.
Our work fills this gap by proposing Prisma – the first language that features a global programming
model for Ethereum dApps. While we focus on the Ethereum blockchain, we believe our techniques

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© David Richter, David Kretzler, Pascal Weisenburger,
Guido Salvaneschi, Sebastian Faust, and Mira Mezini;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 35; pp. 35:1–35:4

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:david.richter@tu-darmstadt.de
https://orcid.org/0000-0002-8672-0265
mailto:david.kretzler@tu-darmstadt.de
https://orcid.org/0000-0002-6556-6457
mailto:pascal.weisenburger@unisg.ch
https://orcid.org/0000-0003-1288-1485
mailto:guido.salvaneschi@unisg.ch
https://orcid.org/0000-0002-9324-8894
mailto:sebastian.faust@tu-darmstadt.de
https://orcid.org/0000-0002-8625-4639
mailto:mezini@informatik.tu-darmstadt.de
https://orcid.org/0000-0001-6563-7537
https://doi.org/10.4230/DARTS.8.2.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Prisma: A Tierless Language for Enforcing Protocols

to be applicable to other smart contract platforms. Prisma enables interleaving contract and client
logic within the same program and adopts a direct style (DS) notation for encoding send-and-receive
operations (with our awaitCl language construct) akin to languages with async/await [2, 21]. DS
addresses shortcomings with the currently dominant encoding of the protocol’s finite state machines
(FSM) [14, 5, 22, 23, 7, 6]. We argue writing FSM style corresponds to a control-flow graph of
basic blocks, which is low-level and more suited to be written by a compiler than by a human.
With FSM style, the contract is a passive entity whose execution is driven by clients. whereas the
DS encoding allows the contract to actively ask clients for input, fitting dApp execution where a
dominant contract controls execution and diverts control to other parties when their input is needed.

In the following Prisma snippet, the payout function is a function invoked by the contract when
it is time to pay money to a client. In Prisma, variables, methods and classes are separated into
two namespaces, one for the contract and one for the clients. The payout method is located on the
contract via the annotation @co. The body of the method diverts the control to the client using
awaitCl(...) { ... }, hence the contained readLine call is executed on the client. Note that no
explicit send/receive operations are needed but the communication protocol is expressed through
the program control flow. Only after the check client == toBePayed that the correct client replied,
the current contact balance balance() is transferred to the client via transfer.

1 @co def payout(toBePayed: Arr[Address]): Unit = {
2 awaitCl(client => client == toBePayed) {
3 readLine("Press enter for payout") }
4 toBePayed.transfer(balance())
5 }

Overall, Prisma relieves the developer from the responsibility of correctly managing distributed,
asynchronous program flows and the heterogeneous technology stack. Instead, the burden is put on
the compiler, which distributes the program flow by means of selective continuation-passing-style
(CPS) translation and defunctionalisation and inserts guards against malicious client interactions.

We needed to develop a CPS translation for the code that runs on the Ethereum Virtual Machine
(EVM) since the EVM has no built-in support for concurrency primitives which could be used
for asynchronous communication. While CPS translations are well-known, we cannot use them
out-of-the-box because the control flow is interwoven with distribution in our case. A CPS translation
that does not take distribution into account would allow malicious clients to force the contract to
deviate from the intended control flow by sending a spoofed continuation. Thus, it was imperative to
prove correctness of our distributed CPS translation to ensure control-flow integrity of the contract.

2012 ACM Subject Classification Software and its engineering → Distributed programming lan-
guages; Software and its engineering → Domain specific languages; Software and its engineering →
Compilers

Keywords and phrases Domain Specific Languages, Smart Contracts, Scala

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.35

Category Extended Abstract

Related Version Technical Report: https://arxiv.org/abs/2205.07780 [20]

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.16
Software (Source Code): https://github.com/stg-tud/prisma

Funding This work has been funded by the German Federal Ministry of Education and Research
iBlockchain project (BMBF No. 16KIS0902), by the German Research Foundation (DFG, SFB
1119 CROSSING Project), by the BMBF and the Hessian Ministry of Higher Education, Research,
Science and the Arts within their joint support of the National Research Center for Applied
Cybersecurity ATHENE, by the Hessian LOEWE initiative (emergenCITY), by the Swiss National
Science Foundation (SNSF, No. 200429), and by the University of St. Gallen (IPF, No. 1031569).

https://doi.org/10.4230/LIPIcs.ECOOP.2022.35
https://arxiv.org/abs/2205.07780
https://doi.org/10.4230/DARTS.8.2.16
https://doi.org/10.4230/DARTS.8.2.16
https://github.com/stg-tud/prisma

D. Richter, D. Kretzler, P. Weisenburger, G. Salvaneschi, S. Faust, and M. Mezini 35:3

References
1 Solidity documentation - common patterns. https://docs.soliditylang.org/en/v0.7.4/

common-patterns.html, 2020. Accessed 14-11-2020.
2 Gavin M. Bierman, Claudio V. Russo, Geoffrey Mainland, Erik Meijer, and Mads Torgersen.

Pause ’n’ play: Formalizing asynchronous c#. In James Noble, editor, ECOOP 2012 -
Object-Oriented Programming - 26th European Conference, Beijing, China, June 11-16, 2012.
Proceedings, volume 7313 of Lecture Notes in Computer Science, pages 233–257. Springer,
2012. doi:10.1007/978-3-642-31057-7_12.

3 Sam Blackshear, Evan Cheng, D. Dill, Victor Gao, B. Maurer, T. Nowacki, Alistair Pott,
S. Qadeer, Dario Russi, Stephane Sezer, Tim Zakian, and Run tian Zhou. Move: A language
with programmable resources, 2019.

4 Kwanghoon Choi and Byeong-Mo Chang. A theory of RPC calculi for client–server model.
Journal of Functional Programming, 29, 2019.

5 Michael J. Coblenz. Obsidian: a safer blockchain programming language. In Sebastián Uchitel,
Alessandro Orso, and Martin P. Robillard, editors, Proceedings of the 39th International
Conference on Software Engineering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017 -
Companion Volume, pages 97–99. IEEE Computer Society, 2017. doi:10.1109/ICSE-C.2017.
150.

6 Michael J. Coblenz, Gauri Kambhatla, Paulette Koronkevich, Jenna L. Wise, Celeste Barnaby,
Jonathan Aldrich, Joshua Sunshine, and Brad A. Myers. User-centered programming language
design in the obsidian smart contract language. CoRR, abs/1912.04719, 2019. arXiv:1912.
04719.

7 Michael J. Coblenz, Reed Oei, Tyler Etzel, Paulette Koronkevich, Miles Baker, Yannick Bloem,
Brad A. Myers, Joshua Sunshine, and Jonathan Aldrich. Obsidian: Typestate and assets for
safer blockchain programming. CoRR, abs/1909.03523, 2019. arXiv:1909.03523.

8 Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links: Web programming
without tiers. In Proceedings of the 5th International Conference on Formal Methods for
Components and Objects, FMCO’06, pages 266–296, Berlin, Heidelberg, 2007. Springer-Verlag.
URL: http://dl.acm.org/citation.cfm?id=1777707.1777724.

9 Ankush Das, S. Balzer, J. Hoffmann, and F. Pfenning. Resource-aware session types for digital
contracts. ArXiv, abs/1902.06056, 2019.

10 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous
session types: Session types without tiers. Proceedings of the ACM on Programming Languages,
3(POPL):28:1–28:29, January 2019. doi:10.1145/3290341.

11 Saverio Giallorenzo, Fabrizio Montesi, and Marco Peressotti. Choreographies as objects, 2020.
arXiv:2005.09520.

12 Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen, and Nobuko Yoshida.
Scribbling interactions with a formal foundation. In Raja Natarajan and Adegboyega K.
Ojo, editors, Distributed Computing and Internet Technology - 7th International Conference,
ICDCIT 2011, Bhubaneshwar, India, February 9-12, 2011. Proceedings, volume 6536 of Lecture
Notes in Computer Science, pages 55–75. Springer, 2011. doi:10.1007/978-3-642-19056-8_4.

13 Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor. Making smart
contracts smarter. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’16, pages 254–269, New York, NY, USA, 2016. Association
for Computing Machinery. doi:10.1145/2976749.2978309.

14 Mix. These are the top 10 programming languages in blockchain. https://thenextweb.com/
hardfork/2019/05/24/javascript-programming-java-cryptocurrency/, 2019. Accessed
14-11-2020.

15 Fabrizio Montesi, Claudio Guidi, and Gianluigi Zavattaro. Service-oriented programming with
jolie. In Athman Bouguettaya, Quan Z. Sheng, and Florian Daniel, editors, Web Services
Foundations, pages 81–107. Springer, 2014. doi:10.1007/978-1-4614-7518-7_4.

ECOOP 2022

https://docs.soliditylang.org/en/v0.7.4/common-patterns.html
https://docs.soliditylang.org/en/v0.7.4/common-patterns.html
https://doi.org/10.1007/978-3-642-31057-7_12
https://doi.org/10.1109/ICSE-C.2017.150
https://doi.org/10.1109/ICSE-C.2017.150
http://arxiv.org/abs/1912.04719
http://arxiv.org/abs/1912.04719
http://arxiv.org/abs/1909.03523
http://dl.acm.org/citation.cfm?id=1777707.1777724
https://doi.org/10.1145/3290341
http://arxiv.org/abs/2005.09520
https://doi.org/10.1007/978-3-642-19056-8_4
https://doi.org/10.1145/2976749.2978309
https://thenextweb.com/hardfork/2019/05/24/javascript-programming-java-cryptocurrency/
https://thenextweb.com/hardfork/2019/05/24/javascript-programming-java-cryptocurrency/
https://doi.org/10.1007/978-1-4614-7518-7_4

35:4 Prisma: A Tierless Language for Enforcing Protocols

16 Ivica Nikolić, Aashish Kolluri, Ilya Sergey, Prateek Saxena, and Aquinas Hobor. Finding the
greedy, prodigal, and suicidal contracts at scale. In Proceedings of the 34th Annual Computer
Security Applications Conference, ACSAC ’18, pages 653–663, New York, NY, USA, 2018.
Association for Computing Machinery. doi:10.1145/3274694.3274743.

17 Reed Oei, Michael J. Coblenz, and Jonathan Aldrich. Psamathe: A DSL with flows for safe
blockchain assets. CoRR, abs/2010.04800, 2020. arXiv:2010.04800.

18 Christian Queinnec. The influence of browsers on evaluators or, continuations to program web
servers. In Martin Odersky and Philip Wadler, editors, Proceedings of the Fifth ACM SIG-
PLAN International Conference on Functional Programming (ICFP ’00), Montreal, Canada,
September 18-21, 2000, pages 23–33. ACM, 2000. doi:10.1145/351240.351243.

19 Gabriel Radanne, Jérôme Vouillon, and Vincent Balat. Eliom: A core ML language for tierless
web programming. In Atsushi Igarashi, editor, Proceedings of the 14th Asian Symposium
on Programming Languages and Systems, APLAS ’16, pages 377–397, Berlin, Heidelberg,
November 2016. Springer-Verlag. doi:10.1007/978-3-319-47958-3_20.

20 David Richter, David Kretzler, Pascal Weisenburger, Guido Salvaneschi, Sebastian Faust, and
Mira Mezini. Prisma: A tierless language for enforcing contract-client protocols in decentralized
applications (extended version), 2022. doi:10.48550/ARXIV.2205.07780.

21 Scala. Scala async rfc. http://docs.scala-lang.org/sips/pending/async.html.
22 Franklin Schrans, Susan Eisenbach, and Sophia Drossopoulou. Writing safe smart contracts

in flint. In Stefan Marr and Jennifer B. Sartor, editors, Conference Companion of the 2nd
International Conference on Art, Science, and Engineering of Programming, Nice, France,
April 09-12, 2018, pages 218–219. ACM, 2018. doi:10.1145/3191697.3213790.

23 Franklin Schrans, Daniel Hails, Alexander Harkness, Sophia Drossopoulou, and Susan Eisen-
bach. Flint for safer smart contracts. CoRR, abs/1904.06534, 2019. arXiv:1904.06534.

24 Manuel Serrano, Erick Gallesio, and Florian Loitsch. Hop, a language for programming the web
2.0. In Companion to the 21th ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA Companion ’06, New York, NY, USA, 2006.
ACM.

25 Manuel Serrano and Vincent Prunet. A glimpse of Hopjs. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, ICFP ’16, pages 180–192,
New York, NY, USA, 2016. ACM. doi:10.1145/2951913.2951916.

26 Pascal Weisenburger, Mirko Köhler, and Guido Salvaneschi. Distributed system development
with ScalaLoci. Proceedings of the ACM on Programming Languages, 2(OOPSLA):129:1–129:30,
October 2018. doi:10.1145/3276499.

https://doi.org/10.1145/3274694.3274743
http://arxiv.org/abs/2010.04800
https://doi.org/10.1145/351240.351243
https://doi.org/10.1007/978-3-319-47958-3_20
https://doi.org/10.48550/ARXIV.2205.07780
https://doi.org/10.1145/3191697.3213790
http://arxiv.org/abs/1904.06534
https://doi.org/10.1145/2951913.2951916
https://doi.org/10.1145/3276499

	p000-Frontmatter
	Message from the Program Chairs
	Message from the Artifact Evaluation Chairs
	Foreword by the President of AITO

	p001-Becker
	1 Introduction
	2 Overview
	2.1 Example
	2.2 Overview of CakeML
	2.3 Overview of RealCake
	2.4 Error Refinement

	3 Background
	3.1 IEEE-754 Floating-Point Arithmetic
	3.2 Analysis of Rounding Errors
	3.3 Icing Floating-Point Semantics

	4 RealCake's Semantics
	4.1 Extending CakeML with IEEE-754 Floating-Point Arithmetic
	4.2 RealCake's Relaxed Floating-Point Semantics
	4.3 Integrating Relaxed Floating-Point Semantics into the Compiler Toolchain
	4.4 Extending CakeML with Real-Number Arithmetic

	5 RealCake's Floating-Point Optimizer
	5.1 Correctness of the Fast-Math Optimizer

	6 Proving Error Refinement with RealCake
	6.1 Translating RealCake Kernels into FloVer Input
	6.2 Proving Roundoff Error Bounds for RealCake Kernels

	7 Evaluation: Performance and Accuracy Proofs
	7.1 Automated End-To-End Proofs
	7.2 Performance Improvements

	8 Related Work
	9 Conclusion

	p002-Zhao
	1 Introduction
	2 Overview
	2.1 Background: Higher-Ranked Type Inference and Type Applications
	2.2 Background: The Dunfield and Krishnaswami Type System
	2.3 The Challenges of Explicit Type Applications
	2.4 The Problems with Subtyping with Top and Bottom Types
	2.5 Our Solution
	2.6 Key Technical Ideas

	3 Syntax-Directed System
	3.1 Syntax and Well-Formedness
	3.2 Subtyping and Typing Rules
	3.3 Metatheory

	4 Algorithmic System
	4.1 Syntax and Well-Formedness
	4.2 Garbage Collection and Algorithmic Subtyping Rules
	4.3 Algorithmic Typing Rules

	5 Algorithmic Metatheory
	5.1 Declarative Worklist and Transfer
	5.2 Soundness
	5.3 Completeness
	5.4 Decidability

	6 Discussion
	7 Related Work
	8 Conclusion

	p003-Chakraborty
	1 Introduction
	2 Background
	2.1 JavaScript analysis challenges
	2.2 Call graph construction

	3 Dynamic Analyses
	4 Missing Flow Detection
	4.1 Finding Relevant Dynamic Copies for a Call
	4.2 Flow Graph Matching

	5 Implementation
	6 Study Setup
	6.1 The ACG algorithm
	6.2 Root Cause Labeling
	6.3 Benchmarks and Harness

	7 Results
	7.1 Recall Measurements
	7.2 Root Cause Quantification
	7.3 Name Flow for Dynamic Property Accesses
	7.4 Threats to Validity

	8 Related Work
	9 Conclusions

	p004-Lagaillardie
	1 Introduction
	2 Overview: affine multiparty session types (AMPST) in Rust
	2.1 Example: Video streaming service

	3 Affine multiparty session processes for Rust programming
	3.1 Affine multiparty session processes
	3.2 Affine multiparty session typing system
	3.3 Properties of affine multiparty session types

	4 Design and implementation of MultiCrusty
	4.1 Challenges for the implementation of MultiCrusty
	4.2 Meshed Channels in MultiCrusty
	4.3 Types for affine meshed channels
	4.4 Exception and cancellation

	5 Evaluations: benchmarks, expressiveness and case studies
	5.1 Performance
	5.2 Expressiveness

	6 Related work and future work
	6.1 Session types implementations in Rust
	6.2 Multiparty session types implementations in other languages

	p005-Marshall
	1 Prologue: Consuming with Inverses
	2 Programming with Inverses
	3 Calculating with Inverses
	4 Exponentiation with Inverses
	5 Differentiating with Inverses
	6 Communicating with Inverses
	7 Additive Inverses
	8 Discussion: Thinking with Inverses
	9 Epilogue
	A Regular Linear Types
	A.1 Equations

	B Involution is an Isomorphism

	p006-Liu
	1 Introduction
	1.1 Outline
	1.2 Supplementary Material

	2 The Problem of Compiling Volatile and How to Fix it
	3 Formal Model
	3.1 Basic Syntax
	3.2 The JAM_{21} Model
	3.2.1 Visibility
	3.2.2 Coherence
	3.2.3 Execution Consistency
	3.2.4 Validation with Litmus Tests

	4 Compilation Correctness to Power
	4.1 The Power Memory Model
	4.2 Compilation Scheme
	4.3 Proof of Compilation Correctness

	5 Compiler Transformations
	5.1 Strengthening
	5.2 Sequentialisation
	5.3 Reordering
	5.4 Merging
	5.4.1 Read-Read Merging
	5.4.2 Write-Write Merging
	5.4.3 Write/RMW-read Merging
	5.4.4 Write-RMW Merging
	5.4.5 RMW-RMW Merging
	5.4.6 Fence-fence Merging

	5.5 Register Promotion for Non-shared Variable
	5.6 Why are many transformations invalid for Volatile?

	6 Performance Implications
	7 Related Work
	7.1 Sequential Consistency Issue in C/C++11
	7.2 Using Volatile to Restore Sequential Consistency in Java
	7.3 Memory Fairness and Compiler Transformations

	8 Conclusion

	p007-Pacak
	1 Introduction
	2 Datalog Frontends: State of the Art
	3 Compiling First-Order Functions to Datalog
	3.1 Compilation by example
	3.2 Translating functional programs to Datalog, technically
	3.3 Demand-driven bottom-up evaluation

	4 Compiling Algebraic Data Types to Datalog
	4.1 Compiling user-defined data types by example
	4.2 Extending functional IncA with algebraic data types

	5 Case study: Type Checking, Type Erasure, and Interpretation
	6 Mixing Functions and Relations
	6.1 Computing a control-flow graph functionally
	6.2 Translating tuples and first-order sets to Datalog
	6.3 First-class functions and first-class sets

	7 Case Studies: Data-Flow Analyses and Clone Detection
	7.1 Data-Flow Analyses
	7.2 Clone Detection

	8 Implementation and Performance Evaluation
	8.1 Implementation
	8.2 Performance Evaluation

	9 Related Work
	10 Conclusion

	p008-Gheri
	1 Introduction
	2 Choreography Automata and Communicating Systems
	3 Flexible Choreography Automata
	4 Design-by-Contract
	4.1 Asserted choreography automata
	4.2 Consistent choreography automata
	4.3 Asserted communicating systems

	5 TypeScript Programming via Flexible C-Automata
	5.1 From Multyparty Session Protocols to C-Automata
	5.2 Validating Global Protocols with Choreography Automata
	5.3 API Generation for Distributed Web Development

	6 Related Work
	7 Conclusion and Future Work

	p009-Schemmel
	1 Introduction
	2 Background
	3 Design Principles
	3.1 Support for External Calls
	3.2 Cross-run Determinism
	3.3 Cross-path Determinism
	3.4 Spatially Distanced Allocations
	3.5 Stability
	3.6 Temporally Distanced Allocations

	4 Design
	4.1 State Virtual Address Spaces
	4.2 Memory Regions
	4.3 Object Bins
	4.4 Slot Allocator
	4.5 Large Object Allocator
	4.6 Quarantine

	5 Implementation
	5.1 Allocator Instances
	5.2 Virtual Memory Regions
	5.3 External Function Calls
	5.4 The Slot Allocator
	5.5 The Large Object Allocator
	5.6 Quarantine

	6 Evaluation
	6.1 Experimental Setup
	6.2 Memory Consumption and Performance
	6.3 Solver Time Improvements
	6.4 Detection of Use-after-free Errors
	6.5 MoKlee
	6.6 SymLive

	7 Related Work
	8 Conclusion

	p010-Kellogg
	1 Introduction
	2 Background: What Is Typestate?
	3 Definitions and Proofs
	3.1 Accumulation Analysis
	3.2 Relationship Between Typestate and Accumulation
	3.3 Soundness Without Aliasing
	3.3.1 Preliminaries
	3.3.2 Proof of Theorem 9

	3.4 Discussion: Accumulating Sets vs. Accumulating Subsequences

	4 Literature Survey
	4.1 Methodology
	4.2 Results
	4.2.1 Papers Containing Examples
	4.2.2 Papers With Many Typestates

	4.3 Discussion

	5 Practicality of Accumulation Analysis
	5.1 Aliasing in Practical Accumulation Analyses
	5.2 Handling Other Features of Real Programming Languages

	6 Related Work
	6.1 Previous Work on Accumulation
	6.2 Heap Monotonic Typestates
	6.3 Other Categories of Typestate Systems
	6.4 Typestate Surveys
	6.5 Practical Typestate Analyses
	6.6 Typestate With Aliasing Restrictions
	6.7 Other Work on Typestate

	7 Conclusion
	A Proof of Lemma 15

	p011-Marques
	1 Introduction
	2 Background
	2.1 WebAssembly
	2.2 Symbolic Execution

	3 WASP
	3.1 Overview
	3.2 Concolic Execution Semantics
	3.2.1 Concolic Loop
	3.2.2 Concolic Execution Example

	3.3 Symbolic Memory
	3.4 Shortcut Restarts
	3.5 WASP-C

	4 Evaluation
	4.1 EQ1: Comparison with Manticore
	4.2 EQ2: Detecting Bugs in C Data Structures
	4.3 EQ3: Different Types of Symbolic Reasoning
	4.4 EQ4: WASP Optimisations
	4.5 EQ5: Scalability to Industry-Grade Code

	5 Related Work
	6 Conclusion

	p012-Rusu
	1 Introduction
	2 A formal notion of productiveness
	3 First method
	3.1 CPOs as coinductive types
	3.2 Approximating sequences using functionals

	4 Second method
	4.1 CPOs built by completion
	4.2 Approximating sequences without functionals

	5 Implementation
	5.1 Sequences
	5.2 First method
	5.2.1 Stream CPO
	5.2.2 The filter function on streams

	5.3 Second method
	5.3.1 Generic CPO
	5.3.2 The CPO of finite and Rose trees
	5.3.3 The mirror function

	6 Conclusion, related work, and future work

	p013-Grannan
	1 Introduction
	2 Five Challenges for Automating Term Rewriting
	3 The REST Approach
	3.1 Representation of Term Orderings in REST
	3.2 The REST Algorithm
	3.3 Integrating an External Oracle

	4 Well-Quasi-Orderings and the Ordering Constraint Algebra
	4.1 Well-Quasi-Orderings
	4.1.1 Knuth-Bendix Quasi-Orderings (KBQO)
	4.1.2 Recursive Path Quasi-Orderings (RPQO)

	4.2 Ordering Constraint Algebras

	5 REST Metaproperties: Soundness, Completeness, and Termination
	6 Implementation of REST
	6.1 The REST Library
	6.2 Integration of REST in Liquid Haskell
	6.2.1 Liquid Haskell and Program Lemmas
	6.2.2 REST for Automatic Lemma Application in Liquid Haskell
	6.2.3 Mutual PLE and REST Interaction

	7 Evaluation
	7.1 Comparison with Other Theorem Provers
	7.2 Comparison with E-matching
	7.2.1 List Involution
	7.2.2 Set Properties

	7.3 Simplification of Equational Proofs

	8 Related Work
	9 Conclusion

	p014-Mukherjee
	1 Introduction
	1.1 Importance of AWS Best Practices
	1.2 Scope
	1.3 Main Contributions
	1.4 Paper Structure

	2 Related Work
	2.1 Classical Program Analysis
	2.2 Machine Learning

	3 Background on Boto3: the AWS SDK for Python
	3.1 Clients and Resources: Low- and High-Level APIs
	3.2 Boto3 Type Stubs
	3.3 API Specifications From Boto3

	4 Motivating Examples
	5 Program Representation
	5.1 MU-Graph Nodes
	5.2 MU-Graph Edges
	5.3 Overall Properties
	5.4 Using Pyright for Best-Effort Graph Construction
	5.5 From Functions to Programs

	6 Query Language
	6.1 Rule Evaluation
	6.2 Rule Structure
	6.3 Language- and Domain-specific Rule Constructs
	6.4 GQL Operations
	6.4.1 Core Operations
	6.4.2 Filter Operations
	6.4.3 Transform Operations
	6.4.4 Second-order Operations

	6.5 Interprocedural Analysis
	6.6 Dataflow Analysis

	7 Type Inference for Boto3 Clients
	7.1 Pyright's Type Inference With Boto3-Stubs
	7.2 Type Inference Using Custom Dataflow Rules
	7.2.1 Representative Examples of Interprocedural Rules
	7.2.2 Example of Type Inference Using Custom Dataflow Rules

	7.3 Layered Type Inference

	8 AWS Best Practices Rules
	8.1 Detecting Misuse of Paginated APIs
	8.2 Error Handling for Batch Operations
	8.3 Other Representative Rules

	9 Experimental Results
	9.1 Performance of Resolution Strategies in Isolation
	9.1.1 Type-Resolution Strategies
	9.1.2 Results
	9.1.3 Discussion

	9.2 Performance of Combined Resolution Strategies
	9.2.1 Type Resolution Configurations
	9.2.2 Results

	9.3 Real-world Feedback on the Rules

	10 Conclusion and Future Work

	p015-Xhebraj
	1 Introduction
	2 The Return of Stack-Allocated Values
	2.1 A Partial Solution: 2nd-class Values and Selective CPS Conversion
	2.2 Our Solution: Delay Popping in Direct Style, Using Type Qualifiers

	3 The lambda^{1/2}{<-} Storage-Mode Qualifier Calculus
	3.1 Syntax and Typing Rules
	3.2 Type Soundness of Standard Small-Step Evaluation

	4 Memory Properties
	4.1 1st-Class Values Never Capture 2nd-Class Values
	4.2 Stack-based Evaluation with Deferred Popping is Safe

	5 Implementation
	5.1 Scala Native
	5.2 MiniScala

	6 Discussion and Extensions
	6.1 Tail calls
	6.2 Storage-Mode Polymorphism
	6.3 Levels Beyond Stack and Heap: Tracking Effect Capabilities
	6.4 Stack References in Mutable Data Structures
	6.5 Use-Site Driven Inference of Storage Modes
	6.6 Function vs. Block Scope as Retention Boundary
	6.7 Stack Allocation for Closures and Other Anonymous Structures

	7 Evaluation
	7.1 Case Study: Differentiable Programming
	7.2 Case Study: Parser Combinators
	7.3 Performance Evaluation

	8 Related Work
	9 Conclusions

	p016-Hempel
	1 Introduction
	2 Overview Example
	2.1 List Length, Without Synthesis
	2.2 Undo and Delete
	2.3 Value-Centric Shortcuts, and Synthesis

	3 Implementation
	3.1 Architecture Overview
	3.2 Interpreter
	3.3 Fluid Binding Order
	3.4 Synthesizer

	4 Evaluation
	4.1 Study Setups
	4.2 Results

	5 Related Work
	6 Future Work and Conclusion

	p017-Sarkar
	1 Introduction
	2 Motivation
	2.1 Key Ideas

	3 The Synchron API
	3.1 Synchronous Message-Passing and Events
	3.2 Input and Output
	3.3 Programming with Time

	4 Synchronisation Algorithms
	4.1 Synchronising events
	4.2 Timed synchronisation of events

	5 Implementation in SynchronVM
	5.1 System Overview
	5.1.1 Concurrency, I/O and Timing bytecode instructions

	5.2 Message-passing with events
	5.3 The scheduler
	5.4 The Low-Level Bridge
	5.5 The wall-clock time subsystem
	5.6 Porting SynchronVM to another RTOS

	6 Case Studies
	6.1 Four-Button-Blinky
	6.2 A more intricate FSM
	6.3 A soft-realtime music playing example

	7 Benchmarks
	7.1 Interpretive overhead measurements
	7.2 Effects of Garbage Collection
	7.3 Memory Footprint
	7.4 Power Usage
	7.5 Jitter and Precision
	7.6 Load Test
	7.7 Music Program Benchmarks
	7.8 Discussion

	8 Limitations and Future Work
	8.1 Synchron API limitation
	8.2 SynchronVM limitations

	9 Related Work
	10 Conclusion

	p018-Fan
	1 Introduction
	2 Motivations and Technical Innovations
	2.1 Compositional Programming by Example
	2.2 Elaborating CP to F-i-plus
	2.3 The Gap Between Theory and Practice
	2.4 Technical Challenges and Innovations

	3 The F-i-plus Calculus and Its Operational Semantics
	3.1 Syntax
	3.2 Subtyping
	3.3 Bidirectional Typing
	3.4 Small-Step Operational Semantics

	4 Type Soundness and Determinism
	4.1 Determinism
	4.2 Preservation

	5 Related Work
	6 Conclusion

	p019-Holik
	1 Introduction
	2 An Illustration of the Approach on an Example
	3 Memory Model
	4 A Low-level Language and Its Operational Semantics
	5 Separation Logic
	6 Contracts of Functions and Their Generation
	6.1 Contracts of Functions
	6.2 Contracts for Basic Statements
	6.3 Contract Generation

	7 Bi-Abduction Procedure
	8 Implementation and Experimental Evaluation
	8.1 Experiments

	9 Conclusion and Future Works

	p020-Audrito
	1 Introduction
	2 XC Language Design
	2.1 System model
	2.2 XC's key data type: Neighbouring Values
	2.3 Communication in XC: Exchange
	2.4 Compositionality through alignment
	2.5 Conditionals
	2.6 Fault tolerance in XC

	3 XC at Work
	4 Formalisation of XC
	4.1 Syntax
	4.2 Operational semantics

	5 Implementation
	5.1 Scala DSL
	5.2 C++ DSL

	6 Evaluation
	7 Related work
	8 Conclusion and Outlook

	p021-Li
	1 Introduction
	2 Related Works
	2.1 Diffing in Android
	2.2 Patch Identification

	3 Overview
	3.1 Challenges
	3.2 Solutions
	3.3 Framework Overview

	4 Differential Analysis
	4.1 Structure Construction & Feature Extraction
	4.2 Package-level Matching
	4.3 Matching Relation Extraction

	5 Patch Identification
	5.1 Call Site Analysis
	5.2 Internal Semantic Comparison

	6 Evaluation
	6.1 Dataset
	6.2 Setup
	6.3 Effectiveness
	6.3.1 Results
	6.3.2 Performance
	6.3.3 Differential analysis
	6.3.4 Patch identification

	6.4 Applicability
	6.4.1 Performance
	6.4.2 Analysis of Extracted Patches

	7 Discussion
	7.1 Limitation and Future works
	7.2 Usage of Extracted Patches

	8 Conclusion
	A Dataset
	A.1 dBench

	p022-Chen
	1 Introduction
	2 Background
	3 Key Ideas
	3.1 SILL_{R} – A stepping stone from SILL_{S} to Ferrite
	3.2 Judgmental Embedding
	3.3 Recursive and Shared Session Types in Ferrite
	3.4 N-ary Choice and Linear Context

	4 Ferrite – A Judgmental Embedding of SILL_{R}
	4.1 Encoding Typing Rules via Judgmental Embedding
	4.2 Manipulating the Linear Context
	4.3 Communication
	4.4 Executing Ferrite Programs

	5 Recursive and Shared Session Types
	5.1 Recursive Session Types
	5.2 Shared Session Types

	6 Choice
	7 Evaluation
	7.1 Servo Canvas Component
	7.2 Canvas Protocol in Ferrite
	7.3 Performance Evaluation

	8 Related and Future Work

	p023-Jacobs
	1 Introduction
	2 The lambda-barrier language by example
	3 The lambda-barrier type system and operational semantics
	3.1 Operational semantics

	4 Encoding session types in lambda-barrier
	4.1 Simulation of GV's semantics with lambda-barrier's semantics
	4.2 Summary

	5 Deadlock freedom, leak freedom, and global progress
	5.1 Global progress
	5.2 Structure of the global progress proof
	5.3 Strengthened deadlock and memory leak freedom

	6 Extending lambda-barrier with unrestricted and recursive types
	7 Mechanization
	8 Related work
	9 Concluding remarks

	p024-Serrano
	1 Introduction
	2 Classes
	2.1 Class Implementation
	2.2 JavaScript Strong Mode

	3 Sealed Classes
	4 Implementation
	4.1 Object Representation & Properties
	4.2 Type Checking
	4.3 Methods
	4.4 Instance Creation
	4.5 Final Consideration

	5 Sealed Class Performance Evaluation
	5.1 Benchmarks
	5.2 Sealed Classes Performance
	5.3 Basic.js
	5.4 Chaos.js
	5.5 Deltablue-class.js
	5.6 Flightplanner.js
	5.7 Raytrace-class.js
	5.8 Richards-class.js

	6 Related Work
	7 Conclusion

	p025-Rehman
	1 Introduction
	2 Overview
	2.1 Tagged Union Types
	2.2 Type-directed Elimination forms for Union Types
	2.3 Union Types and Disjoint Switches in Ceylon
	2.4 Nullable Types
	2.5 Key Ideas in Our Work

	3 The Union Calculus lambda_u
	3.1 Syntax
	3.2 Subtyping
	3.3 Disjointness
	3.4 Typing
	3.5 Operational Semantics
	3.6 Type Soundness and Determinism
	3.7 An Alternative Specification for Disjointness

	4 lambda_u with Intersections, Distributive Subtyping and Nominal Types
	4.1 Syntax, Well-formedness and Ordinary Types
	4.2 Distributive Subtyping
	4.3 Disjointness Specification
	4.4 Algorithmic Disjointness
	4.5 Typing, Semantics and Metatheory

	5 Related Work
	6 Conclusion and Future Work
	A Further Extensions and Discussion
	A.1 Polymorphism
	A.2 A More General Subtyping Rule for Bottom Types
	A.3 Implementation of Disjoint Switches

	p026-Ciccone
	1 Introduction
	2 Fair Termination
	3 A Calculus of Multiparty Sessions
	4 Multiparty Session Types and Fair Subtyping
	4.1 Syntax and Semantics
	4.2 Inference System for Fair Subtyping

	5 Type System
	6 Advanced Examples
	7 Related Work
	8 Concluding Remarks

	p027-Cledou
	1 Introduction
	2 MPST Theory in a Nutshell
	3 DFA-based API Generation
	3.1 From Local Types to DFAs
	3.2 From DFAs to APIs – Using Classes
	3.3 From DFAs to APIs – Using Type Parameters

	4 SOP-based API Generation
	4.1 From Local Types to SOPs
	4.2 From SOPs to APIs

	5 Tool Support: Pompset
	6 Conclusion
	6.1 Related Work
	6.2 Future Work

	p028-Stadelmeier
	1 Introduction
	2 Motivation
	2.1 Multiplication
	2.2 Inheritance
	2.3 Inheritance and Generics
	2.4 Multiple typings
	2.5 Polymorphic recursion

	3 Featherweight Generic Java with Global Type Inference
	3.1 Syntax
	3.2 Typing
	3.3 Soundness of Typing
	3.4 Polymorphic Recursion, Formally

	4 Type inference algorithm
	4.1 Type inference for a program
	4.2 Constraint generation

	5 Constraint Solving
	5.1 Algorithm Unify {} (C, Delta)

	6 Properties of Unify
	7 Soundness, completeness and complexity of type inference
	8 Related Work
	8.1 Formal models for Java
	8.2 Type inference
	8.3 Unification

	9 Conclusions

	p029-Gauthier
	1 Introduction
	2 API Model Inference
	2.1 Motivating Example
	2.2 Prioritised State-Aware Crawling for API Inference
	2.2.1 Augmenting Crawled APIs with Static Type Inference

	3 Feedback-driven Fuzzing
	3.1 Coverage Feedback
	3.2 Taint Feedback
	3.3 BackREST Fuzzing Algorithm

	4 Implementation
	5 Evaluation
	5.1 Experimental Design
	5.2 API inference
	5.3 Feedback-driven fuzzing
	5.4 A note on server-side state modelling
	5.5 Vulnerability detection
	5.6 Comparison with state-of-the-art
	5.7 Reported 0-days

	6 Case studies
	6.1 MarsDB command injection
	6.2 Sequelize DoS
	6.3 Apostrophe DoS
	6.4 Mongo-express command injections
	6.5 MongoDB DoS

	7 Related Work
	8 Conclusion

	p030-He
	1 Introduction
	2 Background and Motivation
	2.1 Method-Level Context-Sensitivity
	2.2 Variable-Level Context-Sensitivity
	2.3 Example

	3 Designing the Qilin Framework
	3.1 Parameterized Context-Sensitivity
	3.2 Parameterized Pointer Analysis
	3.3 A High-Performance Incremental Worklist-based Solver
	3.4 Handling Complex Language Features

	4 Using the Qilin Framework
	4.1 Context Constructors
	4.2 Context Selectors
	4.3 Heap Abstractors
	4.4 Qilin's Toolbox

	5 Evaluation
	5.1 RQ1: Precision
	5.2 RQ2: Efficiency
	5.3 RQ3: Modularity
	5.4 RQ4: Fine-Grained Context-Sensitivity

	6 Related Work
	7 Conclusion and Future work

	p031-Lumsdaine
	1 Introduction
	2 Graph Background
	2.1 Representing Graphs

	3 Generic Programming
	3.1 Lifting
	3.2 Specialization
	3.3 Concepts in C++20
	3.4 Ranges in C++20

	4 Generic Graph Algorithms
	4.1 Algorithm Requirements
	4.2 Requirements for Concrete Algorithms
	4.3 Lifting
	4.3.1 Parameterizing the Graph Type
	4.3.2 Lifting Neighbor Access
	4.3.3 Encapsulating Lifted Requirements as Concepts
	4.3.4 Lifting Edge Weight
	4.3.5 About Vertex IDs
	4.3.6 Non-Type Constraints

	4.4 Other Graph Concepts

	5 Algorithms in NWGraph
	5.1 Parallelization
	5.1.1 Parallelization with std Execution Policies
	5.1.2 Shortcomings of std Execution Policy-based Parallelization
	5.1.3 Parallelization with Intel Threading Building Blocks

	6 Graph Range Adaptors in NWGraph
	7 Model Data Structures in NWGraph
	8 Performance Evaluation
	8.1 Experimental Setup
	8.2 Abstraction Penalty
	8.3 Graph Representations
	8.4 Performance on Large-Scale Graphs
	8.5 Strong Scaling Performance
	8.6 Comparison with Boost Graph Library

	9 Related Libraries and Toolkits
	10 Conclusion

	p032-Liu
	1 Introduction
	1.1 Our Approach: JVM-Level Method-Grained DVFS
	1.2 Contributions

	2 Background
	2.1 Energy Optimization and Metrics
	2.2 DVFS
	2.3 OS Governors
	2.4 Energy Measurement and RAPL
	2.5 JVM Design and JIT
	2.6 Counter-Based Sampling

	3 Vincent Design
	3.1 System Overview
	3.2 Vincent Specification
	3.2.1 Thread Bookkeeping
	3.2.2 Profiling Instrumentation
	3.2.3 Scaling Instrumentation

	4 Implementation and Experimental Settings
	4.1 Hardware/OS/VM Setup
	4.2 Hot Method Selection
	4.3 Algorithm Implementation
	4.4 Benchmarking and Experimental Setup
	4.5 Baselines

	5 Vincent Evaluation
	5.1 Method-Grained Energy Optimization
	5.1.1 Energy Profiling
	5.1.2 The Impact on Energy Consumption
	5.1.3 The Impact on EDP
	5.1.4 The Impact on Execution Time

	5.2 Alternative Baselines
	5.3 The Impact during the Warm-Up Phase
	5.4 Multi-Method Optimization
	5.5 An Experimental Summary
	5.6 The Technical Report

	6 Related Work
	7 Threats to Validity
	8 Conclusion

	p033-Shaikhha
	p034-Navarro
	p035-Richter

