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Abstract
Programming embedded applications involves writing concurrent, event-driven and timing-aware
programs. Traditionally, such programs are written in machine-oriented programming languages like
C or Assembly. We present an alternative by introducing Synchron, an API that offers high-level
abstractions to the programmer while supporting the low-level infrastructure in an associated runtime
system and one-time-effort drivers.

Embedded systems applications exhibit the general characteristics of being (i) concurrent, (ii)
I/O–bound and (iii) timing-aware. To address each of these concerns, the Synchron API consists
of three components – (1) a Concurrent ML (CML) inspired message-passing concurrency model,
(2) a message-passing–based I/O interface that translates between low-level interrupt based and
memory-mapped peripherals, and (3) a timing operator, syncT, that marries CML’s sync operator
with timing windows inspired from the TinyTimber kernel.

We implement the Synchron API as the bytecode instructions of a virtual machine called
SynchronVM. SynchronVM hosts a Caml-inspired functional language as its frontend language, and
the backend of the VM supports the STM32F4 and NRF52 microcontrollers, with RAM in the order
of hundreds of kilobytes. We illustrate the expressiveness of the Synchron API by showing examples
of expressing state machines commonly found in embedded systems. The timing functionality
is demonstrated through a music programming exercise. Finally, we provide benchmarks on the
response time, jitter rates, memory, and power usage of the SynchronVM.
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1 Introduction

Embedded systems are ubiquitous. They are pervasively found in application areas such as
the internet of things, industrial machinery, automobiles, robotics, etc. Embedded systems
applications tend to embody three common characteristics:
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1. They are concurrent in nature.
2. They are predominantly I/O–bound applications.
3. A large subset of such applications are timing-aware.
Programming applications with the above characteristics involves low-level hardware inter-
actions via callback-based driver APIs. Such programs tend to be expressed in low-level
languages like C in the form of complex state machines, which often results in difficult-to-
maintain and elaborate state-transition tables. Moreover, C programmers use error-prone
shared-memory primitives like semaphores and locks to mediate interactions that occur
between the callback-based driver handlers.

In modern microcontroller runtimes, like MicroPython [12] and Espruino (Javascript) [37],
higher-order functions can be used to handle callback-based APIs. However, a common
pitfall in these languages is the chaining of nested callback handlers, which leads to a form of
accidental complexity known as callback-hell [20]. Such programs have a non-linear control
flow and are difficult to express, read and maintain.

We present Synchron, an API and accompanying runtime that aims to address the above
concerns about callback-hell and shared-memory concurrency while targeting the three earlier
mentioned characteristics of embedded programs by a combination of:
1. A message-passing–based concurrency model inspired from Concurrent ML.
2. A message-passing–based I/O interface that unifies concurrency and I/O.
3. A notion of time that fits the message-passing concurrency model.
Concurrent ML (CML) [25] builds upon the synchronous message-passing–based concurrency
model CSP [16] but adds the feature of composable first-class events. Events allow the
programmer to tailor new concurrency abstractions and express application-specific protocols.
Moreover, a synchronous concurrency model renders linear control-flow to a program, as
opposed to bottom-up, non-linear control flow exhibited by asynchronous callback APIs.

Synchron extends CML’s message-passing API for software processes to I/O and hardware
interactions by modelling the external world as a process through the spawnExternal operator.
As a result, the standard message-passing functions such as send, receive etc. become
usable for I/O interactions, such as asynchronous driver interrupts. The overall API design
allows efficient scheduling and limited power usage of programs via an associated runtime.

For timing, Synchron introduces the syncT operator that allows the specification of
baseline and deadline times for communication between message-passing processes. The
logical timing model endowed by this operator helps the prevention of jitter associated with
the execution of real-time, periodic applications.

The Synchron API is implemented in the form of a bytecode-interpreted virtual machine
(VM) called SynchronVM. Internally, the SynchronVM runtime manages the scheduling
and timing of the various processes, interrupt handling, memory management, and other
bookkeeping infrastructure. Notably, the runtime system features a low-level bridge interface
that translates low-level hardware interrupts or memory-mapped I/O into software messages,
enabling application-level processes to use the message-passing API for low-level I/O.

Contributions
We identify three characteristic behaviours of embedded applications, namely being
(i) concurrent, (ii) I/O–bound, and (iii) timing-aware, and propose a combination of
abstractions, the Synchron API (Section 3), that address these requirements.
Message-passing–based I/O. Synchron’s message-passing API combines concurrency
and callback–based I/O to a single interface. A software message or a hardware interrupt
is identical in the Synchron API, providing the programmer with a simpler message-
based framework to express concurrent hardware interactions. We show the I/O API in
Section 3.2 and describe the core runtime algorithms to support this API in Section 4.
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Declarative state machines for embedded systems. Combining CML primitives
with our I/O interface presents a declarative framework to express state machines. We
illustrate this through case studies using the Synchron API in Sections 6.1 and 6.2.
Evaluation. We implement the Synchron API and its associated runtime within a
virtual machine, SynchronVM, described in Section 5. We illustrate the practicality and
expressivity of our API by presenting three case studies in Section 6 that runs on the
STM32 and NRF52 microcontroller boards. Finally, we show response time, memory and
power usage, jitter rates, and load testing benchmarks on the SynchronVM in Section 7.

2 Motivation

Concurrency and I/O. Embedded system applications are primarily I/O-bound in nature.
The low-level I/O-interface provided by hardware drivers is typically callback-based. The
callback style of programming is complicated but offers benefits when it comes to energy
efficiency. Registering a callback with an Interrupt Service Routine (ISR) allows the processor
to go to sleep and conserve power until the interrupt arrives.

Callback-based programming renders a non-linear control flow to embedded system
programs, which is best handled via concurrent threads as provided by ZephyrOS, ChibiOS
or FreeRTOS. These programs tend to be error-prone and hard to maintain. The problems
are compounded by the fact that C is not an intrinsically concurrent language and handles
concurrency through ad-hoc language extensions.

Time. A close relative of concurrent programming for embedded systems is real-time
programming. Embedded systems applications such as digital sound cards routinely exhibit
behaviour where the time of completion of an operation determines the correctness of the
program. C handles real-time applications via the underlying OS APIs.

Typical real-time APIs support prioritised threads. For instance, the FreeRTOS Task
API allows a programmer to define a static priority number for each thread. As the number
of concurrent threads grows, a limited range of priority numbers (1 – 5) results in clashes in
thread priorities. Another common risk with priority-based systems is to run into the priority
inversion problem [31], which can have fatal consequences in hard real-time scenarios. On the
other hand, high-level language platforms for embedded systems (such as MicroPython [12])
typically lack native language support for timing-aware computations.

Problem Statement. We believe there exists a gap for a high-level language that can express
concurrent, I/O–bound, and timing-aware programs for programming resource-constrained
embedded systems. We outline our key idea to address this gap below.

2.1 Key Ideas
Our key idea is the Synchron API, which adopts a synchronous message-passing concurrency
model and extends the message-passing functionality to all I/O interactions. Synchron also
introduces baselines and deadlines for the message-passing, which consequently brings in a
notion of time into the API. The resultant API is a collection of nine operations that can
express (i) concurrency, (ii) I/O, and (iii) timing in a uniform and declarative manner.

The external world as processes. The Synchron API models all external drivers as pro-
cesses that can communicate with the software layer through message-passing. Synchron’s
spawnExternal operator treats an I/O peripheral as a process and a hardware interrupt as
a message from the corresponding process. Fig. 1 illustrates the broad idea.

ECOOP 2022
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Figure 1 Interaction between software and
hardware processes via the Synchron API.

Figure 2 Dynamic priority change when us-
ing the syncT operation.

This design relieves the programmer from writing complex callback handlers to deal
with asynchronous interrupts. The synchronous message-passing–based I/O renders a linear
control-flow to I/O-bound embedded-system programs, allowing the modelling of state
machines in a declarative manner. Additionally, the message-passing framework simplifies
the hazards of concurrent programming with shared-memory primitives (like FreeRTOS
semaphores) and the associated perils of maintaining intricate locking protocols.

Hardware-Software Bridge. The Synchron runtime enables the seamless translation between
software messages and hardware interrupts. The runtime does hardware interactions through
a low-level software bridge interface, which is implemented atop the drivers supplied by an
OS like Zephyr/ChibiOS. The bridge layer serialises all hardware interrupts into the format
of a software message, thereby providing a uniform message-passing interaction style for both
software and hardware messages.

Timing. The final key component of the Synchron API is the real-time function, syncT,
that instead of using a static priority for a thread (like Ada, RT-Java, FreeRTOS, etc.),
borrows the concept of a dynamic priority specification from TinyTimber [19].

The syncT function specifies a timing window by stating the baseline and deadline
of message communication between processes. Synchron’s timing model assumes that
computation takes zero time, so the time required for communication determines the timing
window of execution of the entire process. As the deadline of a process draws near, the
Synchron runtime can choose to dynamically change the priority of a process while it is
running. Fig. 2 illustrates the idea of dynamic priority-change where a scheduler can choose
to prioritise a second process over a running, timed process, although the running process
has a deadline in the future. The preemptive Synchron runtime enables this API.

The combination of syncT, spawnExternal and the CML-inspired synchronous message-
passing concurrency model constitutes the Synchron API that allows declarative specification
of embedded applications. We suggest that this API is an improvement, in terms of
expressivity, over the currently existing languages and libraries on embedded systems and
provide illustrative examples to support this in Section 6. We also provide benchmarks on
the Synchron runtime in Section 7. Next, we discuss the Synchron API in more detail.
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3 The Synchron API

3.1 Synchronous Message-Passing and Events
Synchron adopts the synchronous message-passing API of Concurrent ML (CML) [25] –

1 spawn : (() -> ()) -> ThreadId
2 channel : () -> Channel a
3 send : Channel a -> a -> Event ()
4 recv : Channel a -> Event a
5 sync : Event a -> a

In the above type signatures, the type parameter, a, indicates a polymorphic type. The
call to spawn allows the creation of a new process whose body is represented by the (() → ())
type. The channel () call creates a blocking channel along which a process can send or
receive messages. A channel blocks until a sender has a corresponding receiver and vice-versa.

Notable in the above API is the value of type Event returned by the send and recv calls.
The central idea of an event is to break the act of synchronous communication into two steps:

(i) Expressing the intent of communication as an event-value
(ii) Synchronously communicating between the sender and receiver via the event-value

The first step above, accomplished through send and recv, results in the creation of a
type of value called an Event. An event is a first-class value in the language that represents
deferred communication. Reppy describes events as “first-class synchronous operations” [25].
Given a value of type Event, the second step of synchronising between processes and the
consequent act of communication is accomplished via the sync : Event a -> a operation.

Furthermore, CML provides the choose operator to express multi-party communication
(type signature shown below). The semantics of choose involves racing between two or more
synchronous operations and choosing the one that succeeds first. Further compositional
combinators, like wrap, enable higher-order composition of events.

1 choose : Event a → Event a → Event a
2 wrap : Event a → (a → b) → Event b

The advantage of representing communication as a first-class value is that event-based
combinators can be used to build more elaborate communication protocols. For instance -

1 protocol : Event ()
2 protocol =
3 choose (send c1 msg1) (wrap (recv c2) (λ msg2 -> sync (send c3 msg2)))

Using events, the above protocol involving multiple sends and receives was expressible
as a procedural abstraction while still having the return type of Event (). A consumer
of the above protocol can further use the nondeterministic choice operator, choose, and
choose among multiple protocols. This combination of a composable programming style
and multiprocess program design allows this API to represent callback-based, state machine
oriented programs in a declarative manner.

Comparisons between Events and Futures. The fundamental difference between events and
futures is that of deferred communication and deferred computation respectively. A future
aids in asynchronous computations by encapsulating a computation whose value is made
available at a future time. On the other hand, an event represents deferred communication as
a first-class entity in a language. Using the wrap combinator, it is possible to chain lambda
functions capturing computations that should happen post-communication as well. However,
events are fundamentally building blocks for communication protocols.

ECOOP 2022
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3.2 Input and Output

In the Synchron API, I/O is expressed using the same events as are used for inter-process
communication. Each I/O device is connected to the running program using a primitive
we call spawnExternal as a hint that the programmer can think of, for example, an LED
as a process that can receive messages along a channel. Each external process denotes an
underlying I/O device that is limited to send and receive messages along one channel.

1 spawnExternal : Channel a -> Driver -> ExternalThreadId

The first parameter supplied to spawnExternal is a designated fixed channel along which
the external process shall communicate. The second argument requires some form of identifier
to uniquely identify the driver. This identifier for a driver tends to be architecture-dependent.
For instance, when using low-level memory-mapped I/O, reads or writes to a memory address
are used to communicate with a peripheral. So the unique memory address would be an
identifier in that case. On the other hand, certain real-time operating systems (such as
FreeRTOS or Zephyr) can provide more high-level abstractions over a memory address. In the
Synchron runtime, we number each peripheral in a monotonically increasing order, starting
from 0. So our spawnExternal API becomes:

1 type DriverNo = Int
2 spawnExternal : Channel a -> DriverNo -> ExternalThreadId

To demonstrate the I/O API in the context of asynchronous drivers, we present a standard
example of the button-blinky program. The program matches a button state to an LED so
that when the button is down, the LED is on, otherwise the LED is off:

Listing 1 Button-Blinky using the Synchron API.
1 butchan = channel ()
2 ledchan = channel ()
3

4 glowled i = sync (send ledchan i)
5

6 f : ()
7 f = let _ = sync (wrap (recv butchan ) glowled ) in f
8

9 main = let _ = spawnExternal butchan 0 in
10 let _ = spawnExternal ledchan 1 in f

Listing 1 above spawns two hardware processes – an LED process and a button process.
It then calls the function f which arrives at line 7 and waits for a button press. During
the waiting period, the scheduler can put the process to sleep to save power. When the
button interrupt arrives, the Synchron runtime converts the hardware interrupt to a software
message and wakes up process f. It then calls the glowled function on line 4 that sends a
switch-on message to the LED process and recursively calls f infinitely.

The above program represents an asynchronous, callback-based application in an entirely
synchronous framework. The same application written in C, on top of the Zephyr OS, is
more than 100 lines of callback-based code [11]. A notable aspect of the above program is
the lack of any non-linear callback-handling mechanism. Aside from abstracting away the
interrupt-handling mechanism, the program is highly extensible; adding a new interrupt
handler is as simple as defining a new function.
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3.3 Programming with Time
In a real-time scenario, a programmer wants to precisely control the response-time of certain
operations. So the natural intuition for real-time C-extensions like FreeRTOS Tasks or
languages like Ada is to delegate the scheduling control to the programmer by allowing them
to attach a priority level to each process.

The priority levels involved decide how a tie is broken by the scheduler. However, with
a small fixed number of priority levels, it is likely for several processes to end up with the
same priority, leading the scheduler to order them fairly again within each level.

Another complication that crops up in the context of priorities is the priority inversion
problem [31]. Priority inversion is a form of resource contention where a high-priority thread
gets blocked on a resource held by a low-priority thread, thus allowing a medium priority
thread to take advantage of the situation and get scheduled first. The outcome of this
scenario is that the high-priority thread gets to run after the medium-priority thread, leading
to possible program failures.

The Synchron API admits the dynamic prioritisation of processes, drawing inspiration
from the TinyTimber kernel [21]. TinyTimber specifies a timing window as a baseline and
deadline time, and a scheduler can use this timing window to determine the runtime priority
of a process. The timing window expresses the programmer’s wish that the operation is
started at the earliest on the baseline and no later than the deadline.

In Synchron, a programmer specifies a timing window (of the wall-clock time) during
which they want message synchronisation, that is the rendezvous between message sender
and receiver, to happen. We do this with the help of the timed-synchronisation operator,
syncT, with the type signature syncT : Time -> Time -> Event a -> a.

Comparing the type signature of syncT with that of sync :

1 syncT : Time -> Time -> Event a -> a
2 sync : Event a -> a

The two extra arguments to syncT specify a lower and upper bound on the time of
synchronisation of an event. The two arguments to syncT, of type Time, express the relative
times calculated from the current wall-clock time. The first argument represents the relative
baseline – the earliest time instant from which the event synchronisation should begin. The
second argument specifies the relative deadline, i.e. the latest time instant (starting from the
baseline), by which the synchronisation should start. For instance,

1 syncT (msec 50) (msec 20) timed_ev

means that the event, timed_ev, should begin synchronisation at the earliest 50 milliseconds
and the latest 50 + 20 milliseconds from now. The now concept is based on a thread’s
local view of what time it is. This thread-local time (Tlocal) is always less than or equal to
wall-clock time (Tabsolute). When a thread is spawned, its thread-local time, Tlocal, is set to
the wall-clock time, Tabsolute.

While a thread is running, its local time is frozen and unchanged until the thread executes
a timed synchronisation, a syncT operation where time progresses to Tlocal + baseline.

1 process1 _ =
2 let _ = s1 in -- Tlocal = 0
3 let _ = s2 in -- Tlocal = 0
4 let _ = syncT (msec 50) (usec 10) ev1 in
5 process1 () -- Tlocal = 50 msec

ECOOP 2022
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The above illustrates that the untimed operations s1 and s2 have no impact on a thread’s
view of what time it is. In essence, these operations are considered to take no time, which is
a reference to logical time and not the physical time. Synchron shares this logical timing
model with other systems such as the synchronous languages [8] and ChucK [35].

In practice, this assumption helps control jitter in the timing as long as the timing
windows specified on the synchronisation are large enough to contain the execution time
of s1, s2, the synchronisation step and the recursive call. Local and absolute time must
meet up at key points for this approach to work. Without the two notions of time meeting,
local time would drift away from absolute time in an unbounded fashion. For a practical
implementation of syncT, a scheduler needs to meet the following requirements:

The scheduler should provide a mechanism for overriding fair scheduling.
The scheduler must have access to a wall-clock time source.
A scheduler should attempt to schedule synchronisation such that local time meets up
with absolute time at that instant.

We shall revisit these requirements in Section 5 when describing the scheduler within the
Synchron runtime. Next, we shall look at a simple example use of syncT.

Blinky
The well-known blinky example, shown in Listing 2, involves blinking an LED on and off at
a certain frequency. Here we blink once every second.

Listing 2 Blinky using the syncT operation.
1 ledchan = channel ()
2

3 sec n = n * 1000000
4 usec n = n -- the unit -time in the Synchron runtime
5

6 foo : Int -> ()
7 foo val =
8 let _ = syncT (sec 1) (usec 1) (send ledchan val) in
9 foo (not val) -- not flips 1 to 0 and 0 to 1

10

11 main = let _ = spawnExternal ledchan 1 in foo 1

In the above program, foo is the only software process; a single external hardware process
for the LED driver communicates via the ledChan channel. Line 8 is the critical part of the
logic that sets the period of the program at 1 second, and the recursion at Line 9 keeps the
program alive forever. We discuss a more involved example using syncT in Section 6.3.

4 Synchronisation Algorithms

The synchronous nature of message-passing is the foundation of the Synchron API. In this
section, we describe the runtime algorithms, in an abstract form, that enable processes to
synchronise. The Synchron runtime implements these algorithms, which drives the scheduling
of the various software processes.

In Synchron, we synchronise on events. Events, in our API, fall into the categories of
base events and composite events. The base events are send and recv and events created
using choose are composite.

1 composite_event = choose (send c1 m1) ( choose (send c2 m2) (send c3 m3))
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From the API’s point of view, composite events resemble a tree with base events in the
leaves. However, for the algorithm descriptions here, we consider an event to be a set of base
events. An implementation could impose an ordering on the base events that make up a
composite event. Different orderings correspond to different event-prioritisation algorithms.

In the algorithm descriptions below, a Channel consists of two FIFO queues, one for
send and one for recv. These queues store process identities. While blocked on a recv on a
channel, that process’ id is stored in the receive queue of that channel; likewise for send and
the send-queue. Synchronous exchange means that messages themselves do not need to be
maintained on a queue.

Additionally, the algorithms below rely on there being a queue of processes that are
ready to execute. This queue is called the readyQ. In the algorithm descriptions, handling
of wrap has been omitted. A function wrapped around an event specifies an operation that
should be performed after synchronisation has been completed. Also, we abstract over the
synchronisation of hardware events. As a convention, self refers to the process from which
the sync operation is executed.

4.1 Synchronising events
The synchronisation algorithm that performs the API operation sync accepts a set of base
events. It searches the set of events for a base event that has a sender or receiver blocked
(ready to synchronise) and passes the message between sender and receiver. Algorithm 1
provides a high-level view of the synchronisation algorithm.

The first step in synchronisation is to see if there exists a synchronisable event in the set
of base events. The findSynchronisableEvent algorithm is presented in Algorithm 2.

If the findSynchronisableEvent algorithm is unable to find an event that can be synchron-
ised, the process initiating the synchronisation is blocked. The process identifier then gets
added to all the channels involved in the base events of the set. This is shown in Algorithm 3.

After registering the process identifiers on the channels involved, the currently running
process should yield its hold on the CPU, allowing another process to run. The next process
to start running is found using the dispatchNewProcess algorithm in Algorithm 4.

When two processes are communicating, the first one to be scheduled will block as the
other participant in the communication is not yet waiting on the channel. However, when
dispatchNewProcess dispatches the second process, the findSynchronisableEvent function will
return a synchronisable event and the syncNow operation (see Algorithm 5) does the actual
message passing.

Algorithm 1 The synchronisation algorithm.
Data: event : Set
ev ← findSynchronisableEvent(event);
if ev ̸= ∅ then

syncNow(ev);
else

block(event);
dispatchNewP rocess();

end

4.2 Timed synchronisation of events
Timed synchronisation is handled by a two-part algorithm – the first part (Algorithm 6) runs
when a process is executing the syncT API operation, and the second part (Algorithm 7) is
executed later, after the baseline time specified in the syncT call is reached.

ECOOP 2022
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Algorithm 2 The findSynchronisableEvent function.
Data: event : Set
Result: A synchronisable event or ∅
foreach e ∈ event do

if e.baseEventT ype == SEND then
if ¬isEmpty(e.channelNo.recvq) then

return e
end

else if e.baseEventT ype == RECV then
if ¬isEmpty(e.channelNo.sendq) then

return e
end

else return ∅; /* Impossible case */
end
return ∅ ; /* No synchronisable event found */

Algorithm 3 The block function.
Data: event : Set
foreach e ∈ event do

if e.baseEventT ype == SEND then
e.channelNo.sendq.enqueue(self);

else if e.baseEventT ype == RECV then
e.channelNo.recvq.enqueue(self);

else Do nothing; /* Impossible case */
end

Algorithm 4 The dispatchNewProcess function.
if readyQ ̸= ∅ then

process← dequeue(readyQ);
currentP rocess = process;

else
relinquish control to the underlying OS

end

Algorithm 5 The syncNow function.
Data: A base-event value - event
if event.baseEventT ype == SEND then

receiver ← dequeue(event.channelNo.recvq);
deliverMSG(self, receiver, msg) ; /* pass msg from self to receiver */
readyQ.enqueue(self);

else if event.baseEventT ype == RECV then
sender ← dequeue(event.channelNo.sendq);
deliverMSG(sender, self, msg) ; /* pass msg from sender to self */
readyQ.enqueue(sender);

else Do nothing; /* Impossible case */
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These algorithms rely on there being an alarm facility based on absolute wall-clock time,
which invokes Algorithm 7 at a specific time. The alarm facility provides the operation
setAlarm used in the algorithms below. The algorithms also require a queue, waitQ, to hold
processes waiting for their baseline time-point.

Algorithm 6 The time function.
Data: Relative Baseline = baseline, Relative Deadline = deadline
Twakeup = self.Tlocal + baseline;
if deadline == 0 then

Tfinish = Integer.MAX; /* deadline = 0 implies no deadline */
else

Tfinish = Twakeup + deadline;
end
self.deadline = Tfinish;
baselineabsolute = Tabsolute + baseline;
deadlineabsolute = Tabsolute + baseline + deadline;
cond1 = Tabsolute > deadlineabsolute;
cond2 = (Tabsolute ≥ baselineabsolute)&&(Tabsolute ≤ deadlineabsolute);
cond3 = baseline < ϵ; /* platform dependent small time period */
if baseline == 0 ∨ cond1 ∨ cond2 ∨ cond3 then

readyQ.enqueue(currentT hread);
dispatchNewP rocess();
return;

end
setAlarm(Twakeup);
waitQ.enqueue(self).orderBy(Twakeup);
dispatchNewP rocess();

The handleAlarm function in Algorithm 7 runs when an alarm goes off and, at that point,
makes a process from the waitQ ready for execution. When the alarm goes off, the scheduler
either preempts the running process or lets it complete using the earliest deadline first policy.
In the absence of a running process, the process coming from the waitQ is scheduled.

Algorithm 7 The handleAlarm function.
Data: Wakeup Interrupt
timedP rocess← dequeue(waitQ);
Tnow = timedP rocess.baseline;
timedP rocess.Tlocal = Tnow;
if waitQ ̸= ∅ then

timedP rocess2 ← peek(waitQ); /* Does not dequeue */
setAlarm(timedP rocess2.baseline);

end
if currentP rocess == ∅; /* No process currently running */
then

currentP rocess = timedP rocess;
else

if timedP rocess.deadline < currentP rocess.deadline then
/* Preempt currently running process */
readyQ.enqueue(currentP rocess);
currentP rocess = timedP rocess;

else
/* Schedule timed process to run after currentProcess */
readyQ.enqueue(timedP rocess);
currentP rocess.Tlocal = Tnow; /* Avoids too much time drift */

end
end
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5 Implementation in SynchronVM

The algorithms of Section 4 are implemented within the Synchron runtime. The Synchron
API and runtime are part of a larger programming platform that is the bytecode-interpreted
virtual machine called SynchronVM [2], which builds on the work by Sarkar et al. [26].

The execution unit of SynchronVM is based on the Categorical Abstract Machine
(CAM) [7]. CAM supports the cheap creation of closures, as a result of which SynchronVM can
support a functional language quite naturally. CAM was chosen primarily for its simplicity
and availability of pedagogical resources [15].

5.1 System Overview
The software architecture of SynchronVM consists of three parts – (1) the frontend, (2) the
middleware and (3) the backend.

The frontend is a statically-typed, eager, Caml-like functional language with Hindley-
Milner type inference. Polymorphic types are monomorphised as part of the compilation and
there is a lambda-lifting pass to reducce heap-allocation of closures.

In the middleware the frontend language is compiled down to an untyped intermediate
representation (IR) based on lambda-calculus. The IR is then compiled into bytecode
operations for the virtual machine.

The backend of the system is the bytecode interpreting virtual machine, currently based
on the categorical abstract machine [15] . The VM uses a standard non-moving, mark-and-
sweep garbage collector for automated memory management and support for closures. In
addition, the VM implements a low-level bridge interface that exposes hardware units to
programs as processes that communicate using message passing.

5.1.1 Concurrency, I/O and Timing bytecode instructions
For accessing the operators of our programming interface as well as any general runtime-based
operations, SynchronVM has a dedicated bytecode instruction – CALLRTS n, where n is a
natural number to disambiguate between operations. Table 1 shows the bytecode operations
corresponding to our programming interface.

Table 1 Concurrency, I/O and Timing bytecodes.

spawn CALLRTS 0
channel CALLRTS 1
send CALLRTS 2

recv CALLRTS 3
sync CALLRTS 4
choose CALLRTS 5

spawnExternal CALLRTS 6
wrap CALLRTS 7

syncT CALLRTS 8;
CALLRTS 4

Notably, the syncT operation gets compiled into a sequence of two instructions. The
first instruction in the syncT sequence is CALLRTS 8 which corresponds to Algorithm 6 in
Section 4. When the process is woken up by Algorithm 7, the process program counter lands
at the next instruction which is CALLRTS 4 (sync).

5.2 Message-passing with events
All forms of communication and I/O in SynchronVM operate via synchronous message-passing.
However, a distinct aspect of SynchronVM’s message-passing is the separation between the
intent of communication and the actual communication. A value of type Event indicates the
intent to communicate.
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An event-value, like a closure, is a concrete runtime value allocated on the heap. The
fundamental event-creation primitives are send and recv, which Reppy calls base-event
constructors [25]. The event composition operators like choose and wrap operate on these
base-event values to construct larger events. When a program attempts to send or receive
a message, an event-value captures the channel number on which the communication was
desired. When this event-value is synchronised (Section 4), we use the channel number
as an identifier to match between prospective senders and receivers. Listing 3 shows the
heap representation of an event-value as the type event_t and the information that the
event-value captures on SynchronVM.

Listing 3 Representing an Event in SynchronVM.
1 typedef enum {
2 SEND , RECV
3 } event_type_t ;
4

5 typedef struct {
6 event_type_t e_type ; // 8 bits
7 UUID channel_id ; // 8 bits
8 } base_evt_simple_t ;
9

10 typedef struct {
11 base_evt_simple_t evt_details ; // stored with 16 bits free
12 cam_value_t wrap_func_ptr ; // 32 bits
13 } base_event_t ;
14

15 typedef struct {
16 base_event_t bev; // 32 bits
17 cam_value_t msg; // 32 bits; NULL for recv
18 } cam_event_t ;
19

20 typedef heap_index event_t ;

An event is implemented as a linked list of base-events constructed by applications of the
choose operation. Each element of the list captures (i) the message that is being sent or
received, (ii) any function that is wrapped around the base-event using wrap, (iii) the channel
being used for communication and (iv) an enum to distinguish whether the base-event is a
send or recv. Fig 3 visualises an event upon allocation to the Synchron runtime’s heap.

Figure 3 An event on the SynchronVM heap.

The linked-list, as shown above, is the canonical representation of an Event-type. It can
represent any complex composite event. For instance, if we take an example composite event
that is created using the base-events, e1, e2, e3 and a wrapping function wf1, it can always
be rewritten to its canonical form.

1 choose e1 (wrap ( choose e2 e3) wf1)
2 -- Rewrite to canonical form --
3 choose e1 ( choose (wrap e2 wf1) (wrap e3 wf1))

The choose operation can simply be represented as consing onto the event list.
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5.3 The scheduler

SynchronVM’s scheduler is a hyrbid of cooperative and preemptive scheduling. For applica-
tions that do not use syncT, the scheduler is cooperative in nature. Initially the threads are
scheduled in the order that the main method calls them.

1 main = let _ = spawn thread1 in
2 let _ = spawn thread2 in
3 let _ = spawn thread3 in ...

The scheduler orders the above in the order of thread1 first, thread2 next and thread3
last. As the program proceeds, the scheduler relies on the threads to yield their control
according to the algorithms of Section 4. When the scheduler is unable to find a matching
thread for the currently running thread that is ready to synchronise the communication, it
blocks the current thread and calls the dispatchNewProcess() function to run other threads
(see Algorithm 1). On the other hand, when synchronisation succeeds, the scheduler puts
the message-sending thread in the readyQ and the message-receiving thread starts running.

The preemptive behaviour of the scheduler occurs when using syncT. For instance, when
a particular untimed thread is running and the baseline time of a timed thread has arrived,
the scheduler then preempts the execution of the untimed thread and starts running the
timed thread. A similar policy is also observed when the executing thread’s deadline is later
than a more urgent thread; the thread with the earliest deadline is chosen to be run at that
instance. Algorithm 7 shows the preemptive components of the scheduler.

The SynchronVM scheduler also handles hardware driver interactions via message-passing.
The structure that is used for messaging is shown below:

Listing 4 A SynchronVM hardware message
1 typedef struct {
2 uint32_t sender_id ;
3 uint32_t msg_type ;
4 uint32_t data;
5 Time timestamp ;
6 } svm_msg_t ;

The svm_msg_t type contains a unique sender id for each driver that is the same as the
number used in spawnExternal to identify that driver. The 32 bit msg_type field can be
used to specify different meanings for the next field, the data. The data is a 32 bit word.
The timestamp field of a message struct is a 64 bit entity, explained in detail in Section 5.5.
When the SynchronVM scheduler has all threads blocked, it uses a function pointer called
blockMsg, which is passed to it by the OS that starts the scheduler, to wait for any interrupts
from the underlying OS (more details in Section 5.4). Upon receiving an interrupt, the
scheduler uses the SynchronVM runtime’s handleMsg function to handle the corresponding
message. The function internally takes the message and unblocks the thread for which the
message was sent. The general structure of SynchronVM’s scheduler is shown in Algorithm 8.

Algorithm 8 The SynchronVM scheduler.
Data: blockMsg function pointer
∀threads set Tlocal = Tabsolute;
svm_msg_t msg;
while True do

if all threads blocked then
blockMsg(&msg);
handleMsg(msg);

else
interpret(currentT hread.P C);

end
end
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The Tlocal clock is initialised for each thread when starting up the scheduler. Also notable
is the blockMsg function that relinquishes control to the underlying OS, allowing it to save
power. When the interrupt arrives, the handleMsg function unblocks certain thread(s) so
that when the if..then clause ends, in the following iteration the else clause is executed
and bytecode interpretation continues. We next discuss the low-level bridge connecting the
Synchron runtime to the underlying OS.

5.4 The Low-Level Bridge
The low-level bridge specifies two interfaces that should be implemented when writing
peripheral drivers to use with SynchronVM. The first contains functions for reading and
writing data synchronously to and from a driver. The second is geared towards interrupt-based
drivers that asynchronously produce data.

The C-struct below contains the interface functions for reading and writing data to a
driver as well as functions for checking the availability of data.

1 typedef struct ll_driver_s {
2 void * driver_info ;
3 bool is_synchronous ;
4 uint32_t (* ll_read_fun )( struct ll_driver_s *this , uint8_t *, uint32_t );
5 uint32_t (* ll_write_fun )( struct ll_driver_s *this , uint8_t *, uint32_t );
6 uint32_t (* ll_data_readable_fun )( struct ll_driver_s * this);
7 uint32_t (* ll_data_writeable_fun )( struct ll_driver_s * this);
8 UUID channel_id ;
9 } ll_driver_t ;

The driver_info field in the ll_driver_t struct can be used by a driver that implements
the interface to keep a pointer to lower-level driver specific data. For interrupt-based
drivers, this data will contain, among other things, an OS interoperation struct. These OS
interoperation structs are shown further below. A boolean indicates whether the driver is
synchronous or not. Next, the struct contains function pointers to the low-level driver’s
implementation of the interface. Lastly, a channel_id identifies the channel along which the
driver is allowed to communicate with processes running on top of SynchronVM.

The ll_driver_t struct contains all the data associated with a driver’s configuration
in one place and defines a set of platform and driver independent functions for use in the
runtime system, shown below:

1 uint32_t ll_read ( ll_driver_t *drv , uint8_t *data , uint32_t data_size );
2 uint32_t ll_write ( ll_driver_t *drv , uint8_t *data , uint32_t data_size );
3 uint32_t ll_data_readable ( ll_driver_t *drv);
4 uint32_t ll_data_writeable ( ll_driver_t *drv);

The OS interoperation structs, mentioned above, are essential for drivers that asynchron-
ously produce data. We show their Zephyr and ChibiOS versions below:

1 typedef struct zephyr_interop_s {
2 struct k_msgq *msgq;
3 int (* send_message )( struct zephyr_interop_s * this , svm_msg_t msg);
4 } zephyr_interop_t ;
5

6 typedef struct chibios_interop_s {
7 memory_pool_t * msg_pool ;
8 mailbox_t *mb;
9 int (* send_message )( struct chibios_interop_s * this , svm_msg_t msg);

10 } chibios_interop_t ;

In both cases, the struct contains the data that functions need to set up low-level message-
passing between the driver and the OS thread running the SynchronVM runtime. Zephyr
provides a message-queue abstraction that can take fixed-size messages, while ChibiOS
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supports a mailbox abstraction that receives messages that are the size of a pointer. Since
ChibiOS mailboxes cannot receive data that is larger than a 32-bit word, a memory pool of
messages is employed in that case. The structure used to send messages from the drivers is
the already-introduced svm_msg_t struct, given in Listing 4.

5.5 The wall-clock time subsystem
Programs running on SynchronVM that make use of the timed operations rely on there
being a monotonically increasing timer. The wall-clock time subsystem emulates this by
implementing a 64bit timer that would take almost 7000 years to overflow at 84MHz frequency
or about 36000 years at 16MHz. The timer frequency of 16MHz is used on the NRF52 board,
while the timer runs at 84MHz on the STM32.

SynchronVM requires the implementation of the following functions for each of the
platforms (such as ChibiOS and Zephyr) that it runs on:

1 bool sys_time_init (void * os_interop );
2 Time sys_time_get_current_ticks (void);
3 uint32_t sys_time_get_alarm_channels (void);
4 uint32_t sys_time_get_clock_freq (void);
5 bool sys_time_set_wake_up (Time absolute );
6 Time sys_time_get_wake_up_time (void);
7 bool sys_time_is_alarm_set (void);

The timing subsystem uses the same OS interoperation structs as drivers do and thus
has access to a communication channel to the SynchronVM scheduler. The interoperation is
provided to the subsystem at initialisation using sys_time_init.

The key functionality of the timing subsystem is the ability to set an alarm at an absolute
64-bit point in time. Setting an alarm is done using sys_time_set_wake_up. The runtime
system queries the timing subsystem to check if an alarm is set and at what specific time.

The low-level implementation of the timing subsystem is highly platform dependent at
present. But on both Zephyr and ChibiOS, the implementation is currently based on a single
32-bit counter configured to issue interrupts at overflow, where an additional 32-bit value is
incremented. Alarms can only be set on the lower 32-bit counter at absolute 32-bit values.
Additional logic is needed to translate between the 64-bit alarms set by SynchronVM and
the 32-bit timers of the target platforms. Each time the overflow interrupt happens, the
interrupt service routine checks if there is an alarm in the next 32-bit window of time and
in that case, enables a compare interrupt to handle that alarm. When the alarm interrupt
happens, a message is sent to the SynchronVM scheduler in the same way as for interrupt
based drivers, using the message queue or mailbox from the OS interoperation structure.

Revisiting the requirements for implementing syncT (Section 3.3), we find that our
scheduler (1) provides a preemptive mechanism to override the fair scheduling, (2) has access
to a wall-clock time source, and (3) implements an earliest-deadline-first scheduling policy
that attempts to match the local time and the absolute time.

5.6 Porting SynchronVM to another RTOS
For porting SynchronVM to a new RTOS, one needs to implement – (1) the wall-clock time
subsystem interface from Section 5.5, (2) the low-level bridge interface (Section 5.4) for each
peripheral, and (3) a mailbox or message queue for communication between asynchronous
drivers and the runtime system, required by the time subsystem.

Our initial platform of choice was ZephyrOS for its platform-independent abstractions.
The first port of SynchronVM was on ChibiOS, where the wall-clock time subsystem was
254 lines of C-code. The drivers for LED, PWM, and DAC were about 100 lines of C-code
each.
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6 Case Studies

Finite-State Machines with Synchron
We will begin with two examples of expressing state machines (involving callbacks) in the
Synchron API. Our examples are run on the NRF52840DK microcontroller board containing
four buttons and four LEDs. We particularly choose the button peripheral because its drivers
have a callback-based API that typically leads to non-linear control-flows in programs.

6.1 Four-Button-Blinky
We extend the button-blinky example (see Listing 1) to produce a one-to-one mapping between
four LEDs and four buttons such that button1 press lights up LED1, button2 lights up LED2,
button3 lights up LED3 and button4 lights up LED4 (while the button releases switch off
the corresponding LEDs).

The state machine of button-blinky is a standard two-state automaton that moves from the
ON-state to OFF on button-press and vice versa. Now, for the four button-LED combinations,
we have four state machines. We can combine them using the choose operator.

Listing 5 shows the important parts of the logic. The four state machines are declared in
Lines 1 to 4, and their composition happens in Line 6 using the choose operator.

Listing 5 The Four-Button-Blinky program expressed in the Synchron API.
1 press1 = wrap (recv butchan1 ) (λ x -> sync (send ledchan1 x))
2 press2 = wrap (recv butchan2 ) (λ x -> sync (send ledchan2 x))
3 press3 = wrap (recv butchan3 ) (λ x -> sync (send ledchan3 x))
4 press4 = wrap (recv butchan4 ) (λ x -> sync (send ledchan4 x))
5

6 anybutton = choose press1 ( choose press2 ( choose press3 press4 ))
7

8 program : ()
9 program = let _ = sync anybutton in program

6.2 A more intricate FSM
We now construct a more intricate finite-state machine involving intermediate states that can
move to an error state if the desired state-transition buttons are not pressed. For this example
a button driver needs to be configured to send only one message per button press-and-release.
So there is no separate button-on and button-off signal but one signal per button.

In this FSM, we glow the LED1 upon consecutive presses of button1 and button2. We
use the same path to turn LED1 off. However, if a press on button1 is followed by a press of
button 1 or 3 or 4, then we move to an error state indicated by LED3. We use the same
path to switch off LED3. In a similar vein, consecutive presses of button3 and button4 turns
on LED2 and button3 followed by button 1 or 2 or 3 turns on the error LED – LED3. Fig. 4
shows the FSM diagram of this application, omitting self-loops in the OFF state.

Figure 4 A complex state machine.
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Listing 6 shows the central logic expressing the FSM of Fig 4 in the Synchron API. This
FSM can be viewed as a composition of two separate finite state machines, one on the left
side of the OFF state involving LED2 and LED3 and one on the right side involving LED1
and LED3. Once again, we use the choose operator to compose these two state machines.

Listing 6 The complex state machine running on the SynchronVM.
1 errorLed x = ledchan3
2

3 fail1ev = choose (wrap (recv butchan1 ) errorLed )
4 ( choose (wrap (recv butchan3 ) errorLed )
5 (wrap (recv butchan4 ) errorLed ))
6

7 fail2ev = choose (wrap (recv butchan1 ) errorLed )
8 ( choose (wrap (recv butchan2 ) errorLed )
9 (wrap (recv butchan3 ) errorLed ))

10

11 led1Handler x =
12 sync ( choose (wrap (recv butchan2 ) (\x -> ledchan1 )) fail1ev )
13

14 led2Handler x =
15 sync ( choose (wrap (recv butchan4 ) (\x -> ledchan2 )) fail2ev )
16

17 led : Int -> ()
18 led state =
19 let fsm1 = wrap (recv butchan1 ) led1Handler in
20 let fsm2 = wrap (recv butchan3 ) led2Handler in
21 let ch = sync ( choose fsm1 fsm2) in
22 let _ = sync (send ch (not state)) in
23 led (not state)

In Listing 6, the led1Handler1 and ledHandler2 functions capture the intermediate
states after one button press, when the program awaits the next button press. The error
states are composed using the choose operator in the functions fail1ev and fail2ev.

The compositional nature of our framework is visible in line no. 21 where we compose
the two state machines, fsm1 and fsm2, using the choose operator. Synchronising on this
composite event returns the LED channel (demonstrating a higher-order approach) on which
the process should attempt to write. This program is notably a highly callback-based, reactive
program that we have managed to represent in an entirely synchronous framework.

6.3 A soft-realtime music playing example

We present a soft-realtime music playing exercise from a Real-Time Systems course, expressed
using the Synchron API. We choose the popular nursery rhyme – “Twinkle, Twinkle, Little
Star”. The program plays the tune repeatedly until it is stopped.

The core logic of the program involves periodically writing a sequence of 1’s and 0’s to
a DAC driver. However, to make the produced note sound musical to the human ear, the
periodic rate at which our process writes to the DAC driver is important, and this is where
the real-time aspect of the application comes in. The human ear recognises a note produced
at a certain frequency as a musical note. Our sound is generated at the 196Hz G3 music key.

Listing 7 shows the principal logic of the program expressed using the Synchron API.
Note that we use syncT to describe a new temporal combinator after that determines the
periodicity of this program. The list twinkle (line 10) holds the 28 notes in the twinkle song
and the list durations (line 11) provides the length of each note.
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Listing 7 The Twinkle, Twinkle tune expressed using the Synchron API.
1 msec t = t * 1000
2 usec t = t
3 after t ev = syncT t 0 ev
4 -- note frequencies
5 g = usec 2551 -- a = 2273 usecs , b = 2025 usecs and so on
6

7 hn = msec 1000 -- half note
8 qn = msec 500 -- quarter note
9

10 twinkle = [ g, g, d, d, e, e, d.... ] -- 28 notes
11 durations = [qn , qn , qn , qn , qn , qn , hn .... ]
12

13 dacC = channel ()
14 noteC = channel ()
15

16 playerP : List Int -> List Int -> Int -> () -> ()
17 playerP melody nt n void =
18 if (n == 29)
19 then let _ = after (head nt) (send noteC (head twinkle )) in
20 playerP (tail twinkle ) durations 2 void
21 else let _ = after (head nt) (send noteC (head melody )) in
22 playerP (tail melody ) (tail nt) (n + 1) void
23

24 tuneP : Int -> Int -> () -> ()
25 tuneP timePeriod vol void =
26 let newtp =
27 after timePeriod ( choose (recv noteC)
28 (wrap (send dacC (vol * 4095))
29 (λ _ -> timePeriod ))) in
30 tuneP newtp (not vol) void
31

32 main = let _ = spawnExternal dacC 0 in
33 let _ = spawn (tuneP (head twinkle ) 1) in
34 let _ = spawn ( playerP (tail twinkle ) durations 2) in ()

The application consists of two software processes and one external hardware process. We
use two channels – dacC to communicate with the DAC and noteC to communicate between
the two software processes. Looking at what each software process is doing –

playerP. This process runs at the rate of a note’s length. For a quarter note it wakes up
after 500 milliseconds (1000 msecs for a half note), traverses the next element of the twinkle
list and sends it along the noteC channel. It circles back after completing all 28 notes.

tuneP. This process creates the actual sound. Its running rate varies depending on the
note that is being played. For instance, when playing note C, it will write to the DAC at a
rate of 1911 microseconds-per-write. However, upon receiving a new value along noteC, it
changes its write frequency to the new value resulting in changing the note of the song.

7 Benchmarks

7.1 Interpretive overhead measurements
We characterise the overhead of executing programs on top of SynchronVM, compared to
running them directly on either Zephyr or ChibiOS, by implementing button-blinky directly
on top of these operating systems and measuring the response-time differences.

We compare the interrupt-based button-blinky implementation of Zephyr and ChibiOS
with the corresponding SynchronVM program. The interrupt-based approach (as opposed to
polling) keeps the low-level implementation in Zephyr and ChibiOS similar to SynchronVM
and indicates the interpretive and other overheads in SynchronVM.
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The data in charts presented here is collected using an STM32F4 microcontroller based
testing system connected to either the NRF52 or the STM32F4 system under test (SUT).
The testing system provides the stimuli, sets the GPIO (button) to either active or inactive
and measures the time it takes for the SUT to respond on another GPIO pin (symbolising
the LED). The testing system connects to a computer displaying a GUI and generates the
plots used in this paper. Each plot places measured response times into buckets of similar
time, and shows the number of samples falling in each bucket as a vertical bar. Each bucket
is labelled with the average time of the samples it contains.
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(a) Response time comparison between a C-code
implementation using ChibiOS against the same
program on SynchronVM (running on ChibiOS).
Data obtained on the STM32F4 microcontroller.
Uses 1000 samples.
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(b) Response time comparison between a C-code
implementation using Zephyr OS against the same
program on SynchronVM (running on Zephyr).
Data obtained on the NRF52 microcontroller.
Uses 1000 samples.

Figure 5 Button-blinky response times comparison between C and SynchronVM.

Fig. 5a shows the SynchronVM response time in comparison to the implementation of
the program running on ChibiOS using its mailbox abstraction (MB). There the overhead is
about 3x. Fig. 5b compares response times for SynchronVM and the Zephyr message queue
based implementation (MQ), and shows an overhead of 2.6x.

7.2 Effects of Garbage Collection
This experiment measures the effects of garbage collection on response time by repeatedly
running 10000 samples for different heap-size configurations of SynchronVM. A smaller heap
should lead to more frequent interactions with the garbage collector, and the effects of the
garbage collector on the response time should magnify.

As a smaller heap is used, the number of outliers should increase if the outliers are
due to garbage collection. The following table shows the number of outliers at each size
configuration for the heap used, and there is an indication that GC is the cause of outliers.

Heap size (bytes) 256 512 1024 2048 4096 8192
Outliers NRF52

on Zephyr 3334 1429 811 491 0 81

Outliers STM32
on ChibiOs 3339 1430 810 491 0 80

Figures 6 and 7 show the response-time numbers across the heap sizes of 8192, 4096, 2048,
1024, 512 and 256 bytes. A general observable trend is that as the heap size decreases and
GC increases, the response time numbers hover towards the farther end of the X-axis. This
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trend is most visible for the heap size of 256 bytes, which is our smallest heap size. Note that
we cannot collect enough sample data for response-time if we switch off the garbage collector
(as a reference value), as the program would very quickly run out of memory and terminate.
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Figure 6 Response time measurements at different sizes of the heap to identify effects of garbage
collection. This data is collected on the STM32F4 microcontroller running SynchronVM on top of
ChibiOS. Each bucket size is approx 0.533us. Uses 10000 samples.
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Figure 7 Response time measurements at different sizes of the heap to identify effects of garbage
collection. This data is collected on the NRF52 microcontroller running SynchronVM on top of the
Zephyr OS. Each bucket size is approx 1.65us. Uses 10000 samples.

7.3 Memory Footprint
SynchronVM resides on the Flash memory of a microcontroller. On Zephyr, a tiny C
application occupies 17100 bytes, whereas the same SynchronVM application occupies 49356
bytes, which gives the VM’s footprint as 32256 bytes. For ChibiOS, the C application takes
18548 bytes, while the SynchronVM application takes 53868 bytes. Thus, SynchronVM takes
35320 bytes in this case. Hence, we can estimate SynchronVM’s rough memory footprint at
32 KB, which will grow with more drivers.

7.4 Power Usage
Fig. 8 shows the power usage of the NRF52 microcontroller running the button-blinky
program for three implementations. The first is a polling version of the program in C. The
second program uses a callback-based version of button-blinky [11]. The last program is
Listing 1 running on SynchronVM. The measurements are made using the Ruideng UM25C
ammeter. We collect momentary readings from the ammeter after the value has stabilised.

Notable in Fig. 8 is the polling-based C implementation’s use of 0.0175 Watts of power in
a button-off state, whereas SynchronVM consumes five times less power (0.0035 Watts).
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Polling in C Callback in C SynchronVM
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Figure 8 Power usage measured on the NRF52 microcontroller.

This is comparable to the callback-based C implementation’s use of 0.003 Watts. Integ-
rating the power usage over time will likely make the difference between SynchronVM and
the callback-based C version more noticeable. However, we believe that the simplicity and
declarative nature of the Synchron-based code provide a fair tradeoff.

7.5 Jitter and Precision
Jitter can be defined as the deviation from true periodicity of a presumably periodic signal,
often in relation to a reference clock signal. We want to evaluate how our claims of syncT
reducing jitter pans out in practice.

Listing 8 below is written in a naive way to illustrate how jitter manifests in programs.
Figure 9a shows what the oscilloscope draws, set to persistent mode drawing while sampling
the signal from the Raspberry Pi outputs.

The Raspberry Pi program reads the status of a GPIO pin and then inverts its state
back to that same pin. The program then goes to sleep using usleep for 400us. The goal
frequency was 1kHz and sleeping for 400us here gave a roughly 1.05kHz signal. The more
expected sleep time of 500us to generate a 1kHz signal led, instead, to a much lower frequency.
So, the 400us value was found experimentally.

1 while (1) {
2 uint32_t state = GPIO_READ (23);
3 if (state) {
4 GPIO_CLR (23);
5 } else {
6 GPIO_SET (23);
7 }
8 usleep (400);
9 }

10 // main method and other setup
elided

Listing 8 Raspberry Pi C code.

11 ledchan = channel ()
12

13 foo : Int -> ()
14 foo val =
15 let _ = syncT 500 0 (send

ledchan val)
16 in foo (not val)
17

18 main =
19 let _ = spawnExternal ledchan 1
20 in foo 1

Listing 9 SynchronVM 1KHz wave code.

Listing 9 shows the same 1kHz frequency generator for SynchronVM. Note that, in this
case, specifying a baseline of 500us led to a 1kHz wave (Fig. 9b). In comparison, a 400us
period in Listing 8 generated a roughly 1kHz wave, owing to additional delays of the system.

7.6 Load Test
The SynchronVM program in the previous section could produce a 1kHz-wave with no jitter.
However, the only operation that the program did was produce the square wave. In this
section, we want to test how much computational load can be performed by Synchron while
producing the square wave. We emulate the workload using the following program.
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(a) Illustrating the amount of jitter on the square
wave generated from the Raspberry Pi by setting
the oscilloscope display in persistent mode.

(b) A 1kHz square wave generated using Syn-
chronVM running on the STM32F4 with no jitter.

Figure 9 A 1 kHz frequency generator on the Raspberry PI (in C) and STM32 (Synchron).

21 load i n =
22 let _ = fib_tailrec n in
23 let _ = syncT 8000 0 (send

ledchan i)
24 in load (not i)

25 loop i a b n =
26 if i == n then a
27 else loop (i+1) (b) (a+b) n
28

29 fib_tailrec n = loop 0 0 1 n
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Figure 10 Load testing SynchronVM with the nth fibonacci number function.

At a given frequency, it is possible to calculate only up to a certain Fibonacci number
while generating the square wave at the desired frequency. For example, when generating a
62.5 Hz wave, it is only possible to calculate up to the 155th Fibonacci number. If the 156th
number is calculated, the wave frequency drops below 62.5 Hz.

Fig. 10 plots the nth Fibonacci numbers that can be calculated against the square wave
frequencies that get generated without jitters. Our implementation of fib_tailrec involves
2 addition operations, 1 equality comparison and 1 recursive call. So, calculating the 155th
Fibonacci number involves 155 ∗ 4 = 620 major operations. The trend shows that the load
capacity of SynchronVM grows linearly as the desired frequency of the square wave is halved.

7.7 Music Program Benchmarks
We now provide some benchmarks on the music program from Section 6.3. Figure 11 shows
CPU usage, average time it takes to allocate data and total time spent doing allocations in a
1 minute window. The values used in the chart come from the second minute of running
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Figure 11 CPU usage and allocation trends over a 1 minute window for Listing 7.

the music application. The values from the first minute of execution are discarded as those
would include the startup phase of the system. The amount of heap made available to the
runtime system is varied from a roomy 16384 bytes down to 3072 bytes.

The sweep phase of our garbage collector is intertwined with the allocations phase. Hence,
instead of showing the GC time, the chart shows statistics related to all allocations that take
a measurable amount of time using the ChibiOS 10KHz system timer. All allocations taking
less than 100us are left out of the statistics (and not counted towards averaging).

The data in Fig. 11 shows that CPU usage of the music application is pretty stable at
around 8 percent over the one minute window. It increases slightly for the very small heap
sizes and ends up at nearly 10 percent at the smallest heap size that can house the program.

In terms of allocation, the average time of an allocation (in usecs) increases when the
probability of a more expensive allocation increases, which in turn increases with small heap
sizes. In the last data series, the total amount of time spent in allocations (in msecs) grows
considerably as the heap size drops below 7168 bytes – an indicator of increased GC activity.

Programming Complexity. This music application ports a Real-Time Systems course
exercise written in C using the TinyTimber kernel [19]. The TinyTimber-based C program
(excluding the kernel) is around 600 lines of code. In comparison, our entire program,
along with the library functions, stands at 74 lines. The most time-consuming part of the
port was modifying the core logic in terms of message-passing. A major gain is that the
interrupt-handling and other I/O management routines are invisible to the programmer. The
user-defined timing operator, after, further enables the concision of the program.

7.8 Discussion
Our benchmarks, so far, show promising results for power, memory, and CPU usage. How-
ever, SynchronVM’s response time is 2-3x times slower than native C code, which needs
improvement. We attribute the slowness to the CAM-based execution engine, which we hope
to mitigate by moving to a ZAM-based machine [18].

Our synthetic load test (Fig. 10) indicates that the VM can support around 150 operations
for applications that operate around 250Hz (such as humanoid balance bots [9], autonomous
vehicle platforms [34]). Our music program falls in the range of 200-500 Hz, and SynchronVM
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could sustain that frequency without introducing any jitter. There exist other untimed,
aperiodic applications with much lower frequencies where SynchronVM could be applicable.
Examples include smart home applications [32], monitoring systems [13], etc.

The Synchron API chooses a synchronous message-passing model, unlike actor-based
systems, like Erlang, that support an asynchronous message-passing model with each process
containing a mailbox. We believe that a synchronous message-passing policy is better suited
for embedded systems for the following reasons:

1. Embedded systems are highly memory-constrained, and asynchronous send semantics
assume the unboundedness of an actor’s mailbox, which is a poor assumption in the
presence of memory constraints. Once the mailbox becomes full, message-sending becomes
blocking, which is already the default semantics of synchronous message-passing.

2. Acknowledgement is implicit in synchronous message-passing systems, in contrast to
explicit message acknowledgement in asynchronous systems that leads to code bloat.
Additionally, forgetting to remove acknowledgement messages from an actor’s mailbox
can lead to memory leaks.

8 Limitations and Future Work

In this section, we propose future work to improve the Synchron API and runtime.

8.1 Synchron API limitation
Deadline miss API. Currently, the Synchron API cannot represent actions that should
happen if a task were to miss its deadline. We envision adapting the negative acknowledgement
API of CML to represent missed-deadline handlers for Synchron.

8.2 SynchronVM limitations
Memory management. A primary area of improvement is upgrading our stop-the-world mark
and sweep garbage collector and investigating real-time garbage collectors like Schism [23].
Another relevant future work would be investigating static memory-management schemes
like regions [30] and techniques combining regions with GC [14].

Interpretation overhead. A possible approach to reducing our interpretation overhead
could be pre-compiling our bytecode to machine code (AOT compilation). Similarly, dynamic
optimization approaches like JITing could be an area of investigation.

Priority inversions. Although TinyTimber-style dynamic priorities might reduce priority
inversion occurrences, they can still occur on the SynchronVM. Advanced approaches like
priority inheritance protocols [27] need to be experimented with on our scheduler.

9 Related Work

Among functional languages running on microcontrollers, there exists OCaml running on
OMicroB [33], Scheme running on Picobit [29] and Erlang running on AtomVM [5]. Synchron
differs from these projects in the aspect that we identify certain fundamental characteristics
of embedded systems and accordingly design an API and runtime to address those demands.
As a result, our programming interface aligns more naturally to the requirements of an
embedded systems application, in contrast with general-purpose languages like Scheme.
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The Medusa [3] language and runtime is the inspiration behind our uniform framework
of concurrency and I/O. Medusa, however, does not provide any timing based APIs, and
their message-passing framework is based on the actor model (See Section 7.8).

In the real-time space, a safety-critical VM that can provide hard real-time guarantees
on Real-Time Java programs is the FijiVM [24] implementation. A critical innovation of
the project was the Schism real-time garbage collector [23], from which we hope to draw
inspiration for future work on memory management.

RTMLton [28] is another example of a real-time project supporting a general-purpose
language like SML. RTMLton adapts the MLton runtime [36] with ideas from FijiVM to enable
handling real-time constraints in SML. CML is available as an SML library, so RTMLton
provides access to the event framework of CML but lacks the uniform concurrency-I/O model
and the syncT operator of Synchron.

The Timber language [6] is an object-oriented language that inspired the syncT API of
Synchron. Timber was designed for hard real-time scenarios; related work on estimating
heap space bounds [17] could perhaps benefit our future research.

The WebAssembly project (WASM) has spawned sub-projects like WebAssembly Micro
Runtime (WAMR) [1] so that languages that compile to WASM can run on microcontrollers.
Notable here is that while several general-purpose languages, like JavaScript, can execute
on ARM architectures by compiling to WebAssembly, they lack the native support for the
concurrent, I/O-bound, and timing-aware programs that is naturally provided by our API
and its implementation. Reactive extensions of Javascript, like HipHop.js [4], are being
envisioned to be used for embedded systems.

Another related line of work is embedding domain-specific languages like Ivory [10] and
Copilot [22] in Haskell to generate C programs that can run on embedded devices. This
approach differs from ours in the aspect that two separate languages dictate the programming
model of an EDSL – the first being the DSL itself and the second being the host language
(Haskell). We assess that having a single language (like in Synchron) provides a more uniform
programming model to the programmer. However, code-generating EDSLs have very little
runtime overheads and, when fully optimised, can produce high performance C.

10 Conclusion

In this paper, we have presented Synchron – an API and runtime for embedded systems, which
we implement within the larger SynchronVM. We identified three essential characteristics
of embedded applications, namely being concurrent, I/O–bound, and timing-aware, and
correspondingly designed our API to address all three concerns. Our evaluations, conducted
on the STM32 and NRF52 microcontrollers, show encouraging results for power, memory
and CPU usage of the SynchronVM. Our response time numbers are within the range of
2-3x times that of native C programs, which we envision being improved by moving to a
register-based execution engine and by using smarter memory-management strategies. We
have additionally demonstrated the expressivity of our API through state machine-based
examples, commonly found in embedded systems. Finally, we illustrated our timing API by
expressing a soft real-time application, and we expect further theoretical investigations on
the worst-case execution time and schedulability analysis on SynchronVM.
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