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Abstract
The paper proposes a new static analysis designed to handle open programs, i.e., fragments of
programs, with dynamic pointer-linked data structures – in particular, various kinds of lists – that
employ advanced low-level pointer operations. The goal is to allow such programs be analysed
without a need of writing analysis harnesses that would first initialise the structures being handled.
The approach builds on a special flavour of separation logic and the approach of bi-abduction. The
code of interest is analyzed along the call tree, starting from its leaves, with each function analysed
just once without any call context, leading to a set of contracts summarizing the behaviour of the
analysed functions. In order to handle the considered programs, methods of abduction existing in
the literature are significantly modified and extended in the paper. The proposed approach has been
implemented in a tool prototype and successfully evaluated on not large but complex programs.
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1 Introduction

Programs with complex dynamic data structures and pointer operations are notoriously
difficult to write and understand. This holds twice when a need to achieve the best possible
performance drives programmers, especially those working in the C language on which we
concentrate, to start using advanced low-level pointer operations such as pointer arithmetic,
bit-masking information on pointers, address alignment, block operations with blocks that are
split to differently sized fields (of size not known in advance), which can then be merged again,
and reinterpreted differently, and so on. It may then easily happen that the resulting programs
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19:2 Low-Level Bi-Abduction

contain nasty errors, such as null-pointer dereferences, out-of-bound references, double free
operations, or memory leaks, which can manifest only under some rare circumstances, may
escape traditional testing, and be difficult to discover once the program is in production.

To help discover such problems (or show their absence), suitable static analyses with
formal roots may help. However, the problem of analysing programs with dynamic pointer-
linked data structures, sometimes referred to as shape analysis, belongs among the most
difficult analysis problems, which is related to a need of efficiently encoding and handling
potentially infinite sets of graph structures of in-advance unknown shape and unbounded
size, corresponding to the possible memory configurations.

Moreover, the problem becomes even harder when one needs to analyse not entire
programs, equipped with some analysis harness generating instances of the data structures
to be handled, but just fragments of code, which simply start handling some dynamic data
structures through pointers without the structures being initialised first. At the same time,
in practice, the possibility of analysing code fragments is highly preferred since programmers
do not like writing specialised analysis harnesses for initialising data structures of the code to
be analysed (not speaking about that writing such harnesses is error-prone too). Moreover,
the possibility of analysing code fragments can also help scalability of the analysis since it
can then be performed in a modular way.

In this paper, we propose a new analysis designed to analyse programs and even fragments
of programs with dynamic pointer-linked data structures that can use advanced low-level
pointer-manipulating operations of the form mentioned above. In particular, we concentrate
on sequential C programs without recursion and without function pointers manipulating
various forms of lists – singly-linked, doubly-linked, circular, nested, and/or intrusive, which
are perhaps the most common kind of dynamic linked data structures in practice.

Our approach uses a special flavor of separation logic (SL) [33, 24] with inductive list
predicates [2] to characterize sets of program configurations. To be able to handle code
fragments, we adopt the principle of bi-abductive analysis proposed over SL for analysing
programs without low-level pointer operations in [6, 7]. Our work can thus be viewed as an
extension of the approach of [6, 7] to programs with truly low-level operations (i.e., pointer
arithmetic, bit-masking on pointers, block operations with blocks of variable size, their
splitting to fields of in-advance-not-fixed size, merging such fields back, and reinterpreting
them differently, etc.). As will become clear, handling such programs requires rather non-
trivial changes to the abduction procedure used in [6, 7] – intuitively, one needs new analysis
rules for block splitting and merging, new support for operations such as pointer plus, pointer
minus, or block operations (like memcpy), and also modified support for operations like
memory allocation or deallocation (to avoid deallocation of parts of blocks). Moreover, to
support splitting of memory blocks to parts, gradually learning their bounds and fields, and
to allow for embedding data structures into other data structures not known in advance (as
commonly done, e.g., in the so-called intrusive lists), we even switch from using the traditional
per-object separating conjunction in our SL to a per-field separating conjunction (as used, e.g.,
in [14] in the context of analysing so-called overlaid data structures), requiring separation
not on the level of allocated memory blocks but their fields. As an additional benefit, our
usage of per-field separating conjunction then allows us to represent more compactly even
some operations on traditional data structures (without low-level pointer manipulation).

As common in bi-abductive analyses, we analyse programs, or their fragments, along their
call tree, starting from the leaves of the call tree (for the time being, we assume working with
non-recursive programs only). Each function is analysed just once, without any knowledge
about its possible call contexts. For each function, the analysis derives a set of so-called
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contracts, which can then be used when this function is called from some other function
higher up in the call hierarchy. A contract for a function f is a pair pP,Qq where P is a
precondition under which f can be safely executed (without a risk of running into some
memory error such as a null-dereference), and Q is a postcondition that is guaranteed to be
satisfied upon exit from f provided it was called under the given precondition. Both P and
Q are described using our flavor of SL. In fact, as also done in [6, 7], our analysis runs in
two phases: the first phase derives the preconditions, while the second phase computes the
postconditions. Like in [6, 7], the computed set of contracts may under-approximate the set
of all possible safe preconditions of f (e.g., some extreme but still safe preconditions need
not be discovered). However, for each computed contract pP,Qq, the post-condition Q is
guaranteed to over-approximate all configurations that result from calling the function under
the pre-condition P .

We have implemented our approach in a prototype tool called Broom. We have applied
the tool to a selection of code fragments dealing with various kinds of lists, including very
advanced implementations taken from the Linux kernel as well as the intrusive list library (for
a reference, see our experimental section). Although the code is not large in the number of
lines of code, it contains very advanced pointer operations, and, to the best of our knowledge,
Broom is currently the only analyser that is capable of analysing many of the involved
functions.

Related work

In the past (at least) 25 years there have appeared numerous approaches to automated shape
analysis or, more generally, analysis of programs with unbounded dynamically-linked data
structures. These approaches differ in the formalisms used for encoding sets of configurations
of programs with such data structures, in their level of automation, classes of supported
data structures, and/or properties of programs that are targeted by the analysis: see, e.g.,
[25, 34, 2, 37, 9, 39, 38, 20, 10, 3, 16, 21, 31].

Not many of the existing approaches offer a reasonably general support of low-level pointer
operations (such as pointer arithmetic, address alignment, masking information on pointers,
block operations, etc.). Some support of low-level pointer operations appears in multiple
of these approaches, but it is often not much documented. In fact, such a support often
appears in some ad hoc extension of the tool implementing the given approach only, without
any description whatsoever. According to the best of our knowledge, the approach of [16],
based on so-called symbolic memory graphs (SMGs), currently provides probably the most
systematic and generic solution for the case of programs with low-level pointer operations
and various kinds of linked lists (including advanced list implementations such as those used
in the Linux kernel). Specialised approaches to certain classes of low-level programs, namely,
memory allocators, then appear, e.g., in [5, 19].

In this work, we get inspired by some of the analysis capabilities of [16], but we aim
at removing one of its main limitations – namely, the fact that it cannot be applied to a
fragment of code. Indeed, [16] expects the analysed program to be closed, i.e., the analysed
functions must be complemented by a harness that initializes all the involved data structures,
which severely limits applicability of the approach in practice (since programmers are often
reluctant to write specialised analysis harnesses).

Approaches allowing one to analyse open code, i.e., code fragments, with dynamic linked
data structures are not frequent in the literature. Perhaps the best known of these works is
the approach of bi-abduction based on separation logic with (possibly nested) list predicates
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19:4 Low-Level Bi-Abduction

proposed in [6, 7] and currently available in the Infer analyser [4].1 This approach is another
of the approaches that inspired our work, and we will be referring to various technical details
of that paper later on. However, despite Infer contains some support of pointer arithmetic, it
is not very complete (as our experiments will show), and the approach presented in [6, 7]
does not at all study low-level pointer operations of the form that we aim at in this paper.
Moreover, it turns out that adding a support of such operations (e.g., dealing with blocks
of memory of possibly variable size, splitting them to fields of variable size, merging such
fields back and reinterpreting their contents differently, having pointers with variable offsets,
supporting rich pointer arithmetic, etc.) requires rather non-trivial changes and extensions
to the bi-abduction mechanisms used in [6, 7].

An approach of second-order bi-abduction based also on separation logic was proposed
in [28] and several follow-up papers such as [11]. The authors consider recursive programs
with pointers and propose a calculus for automatic derivation of sets of equations describing
the behaviour of particular functions. A solution of such a set of equations leads to a set
of contracts for the considered functions. The technique is in some sense quite general –
unlike [6, 7] and unlike our approach, it can even automatically learn recursive predicates
describing the involved data structures, including trees, skip lists, etc. Moreover, the
derivation of the equations is a cheap procedure, and no widening is needed, again unlike
in [6, 7] and unlike in our approach. On the other hand, finding a solution of the generated
equations is a hard problem, and the authors provide a simple heuristic designed for a specific
shape of the equations only, which fails in various other cases.

Finally, we mention the Gillian project, a language-independent framework based on
separation logic for the development of compositional symbolic analysis tools, including
tools for whole-program symbolic execution, verification of annotated code, as well as bi-
abduction [36, 35, 30, 29]. The works on Gillian concentrate on the generic framework it
develops, and the published description of the supported bi-abductive analysis, perhaps most
discussed in [35], is unfortunately not very detailed. In particular, it is not clear whether and
how much the approach supports the low-level features of pointer manipulation that we are
aiming at here (e.g., pointer arithmetic, bit-masking on addresses, etc.). According to the
source code that we were able to find in the Gillian repository, the examples mentioned in
the part of [35] devoted to bi-abduction do not use low-level pointer manipulation features
such as pointer arithmetic. It is also mentioned in [35] that Gillian supports bi-abduction up
to a predefined bound only, whereas we do not require such a bound. Further, in contrast to
the present work, [35] assumes that the size of memory chunks being dynamically allocated
is known, and the complex reasoning needed to resolve this issue is left for the future.

We also note that there is a vast body of work on automated decision procedures for
various fragments of separation logic and problems such as satisfiability and entailment –
see, e.g., [18, 23, 26, 27, 17]. However, it is not immediate how to apply these logics inside
a program analysis tool. This is because the best (i.e., logically weakest) solution to the
abduction problem φ˚r?s |ù ψ, which is a central problem for compositional program analyses,
with ˚ being the separating conjunction, is given by the formula φ´̊ψ, which makes use
of the magic wand operator ´̊ , and the cited logics do not provide support for the magic
wand. This is for principle reasons: it has been observed in the literature that magic wand
operators are “difficult to eliminate” [1]; further, it has been shown that adding only the

1 The approach [6, 7] mentions a generalisation to other classes of data structures, but – to the best of
our knowledge – this extension has not been implemented and evaluated, and so it is not clear how well
it would work in practice.
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singly-linked list-segment predicate to a propositional separation logic that includes the magic
wand already leads to undecidability of the satisfiability problem [13]. A notable exception is
the recent work [32] on a new semantics for separation logic, which enables decidability of a
propositional separation logic that includes the magic wand and the singly-linked list-segment
predicate (and also discusses applications to the abduction problem); however, the fragment
considered in [32] is not expressive enough to cover the low-level features considered in this
work such as, pointer arithmetic, memory blocks, etc., and, at present, it is unclear whether
the decidability result can be extended to a richer logic. For the above reasons, we will
in this paper not target a complete procedure for the (bi-)abduction problem, but rather,
following [6, 7], develop approximate procedures and evaluate their usefulness in our case
studies.

Main contributions of the paper

The paper proposes a new approach for automated bi-abductive analysis of programs and
fragments of programs with pointers, different kinds of linked lists, and low-level memory
operations. The approach is formalised, implemented in a prototype tool, and experimentally
evaluated. In summary, we make the following contributions:

A specialised dialect of separation logic suitable for automated abductive analysis of
programs with lists and low-level memory operations (we use a separating conjunction
between single fields and not whole memory blocks as in related approaches, and support
fields of unknown and even variable size as well as unknown block boundaries).
Contracts for basic programming statements that reflect our low-level memory model
(see, e.g., the contracts of the malloc and free statements), and support for specific
statements that permit low-level pointer manipulation (e.g., pointer addition).
A set of rules for automated abductive analysis, which not only includes variants of
rules from related approaches, but also new kinds of rules required for handling low-level
memory operations (e.g., block splitting).
A prototype implementation that supports bit-precise reasoning based on a reduction of
(un-)satisfiability of separation logic to (un-)satisfiability of SMT over the bit-vectors.
An experimental evaluation of the approach on a number of challenging programs.

2 An Illustration of the Approach on an Example

Before we start with a systematic description of our approach, we present its core ideas on an
example. We attempt to informally explain the involved notions, yet, due to the complexity
of the issues, some prior knowledge of separation logic with inductive list predicates, e.g., [2],
and ideally also bi-abduction analysis [6, 7] is helpful.

As our illustrative example, we consider the code manipulating cyclic doubly-linked lists
shown in Fig. 1.2 The example is inspired by the principle of intrusive lists (as used, e.g., in
Linux kernel lists) where all list operations are defined on some simple list-linking structure
that is then nested into user-defined structures. It is these user-defined structures that carry
the data actually stored in the lists. The list manipulating functions, however, know nothing
about these larger structures. However, the fact that contracts (summaries) derived for

2 The code is written in C. Our later presented low-level programming language for which we will formalise
our approach is not C but rather close to some of the intermediate languages used when compiling C.
We, however, feel that describing the example in such a language would not be very understandable.
Moreover, all constructions used in our example can be translated to the later considered language.

ECOOP 2022



19:6 Low-Level Bi-Abduction

functions dealing with the small linking structures are later to be applied on the larger,
user-defined structures is already problematic for some existing analyses.

In the code of our illustrative example, the function init_dll creates an initial cyclic
doubly-linked list consisting of a single node. The function insert_after can then insert a
new element into the list after its item pointed by l.

Let us note that while the code of the example in Fig. 1 may seem to not use pointer
arithmetic, the code in fact uses pointer arithmetic on the level of the intermediate code we
analyse. Indeed, each expression x–>field is translated to *(x+offsetof(field)). It is of
course true that once all the types and fields are known and fixed, one can avoid dealing with
pointer arithmetic in this case. On the other hand, the fact that we systematically handle it
through pointer arithmetic allows us to smoothly handle even the cases when the types and
offsets stop being known and/or constant (upon which approaches based on dealing with
field names fail).

As indicated already in the introduction, we analyse the given code fragment according
to its call tree, starting from the leaves (assuming there is no recursion). Each function
is analysed just once, without any call context. If successful, the analysis derives a set
of contracts for the given function where each contract is a pair pP,Qq consisting of a
(conjunctive) pre-condition and (a possibly disjunctive) post-condition. In our introductory
example, we will restrict ourselves to the simplest case, namely, having a single, purely
conjunctive contract. In the contracts, both the pre- and post-condition are expressed as SL
formulae. The analysis is compositional in that contracts derived for some functions are then
used when analysing functions higher up in the call hierarchy (moreover, we will view even
particular pointer manipulating statements as special atomic functions and describe them by
pre-defined contracts).

We begin the illustration of our analysis by analysing the init_dll function. We start
the analysis by annotating the first line by the pair px “ X,x “ Xq. In this pair, the first
component is the so-far derived pre-condition of the function, and the second component is
the current symbolic state of the function under analysis. Here, the variable X records the
value of the program variable x at the beginning of the function. While x will be changing
in the function, X will never change, and we will be able to gradually generate constraints
on its value to express what must hold for x at the entry of the function.

After symbolically executing the statement x->next = x, we derive that the address
X must correspond to some allocated memory, containing some unknown value L1. This
gives us the pre-condition X ÞÑ L1 that is an SL formula stating exactly the fact that X
is allocated and stores the value L1. The symbolic state is then advanced to say that X is
allocated and stores the value X, i.e., it points to itself, which is encoded as X ÞÑ X in SL.

After the subsequent statement x->prev = x, assuming that we work with 64 bit (i.e., 8
bytes) wide addresses, we add to the precondition the fact that the memory address X ` 8 is
allocated as well. Moreover, the formula bpXq “ bpX ` 8q says that X and X ` 8 belong
to the same memory block, i.e., they were, e.g., allocated using one malloc statement (in
fact, we use bpXq to denote the – so-far unknown – base address of the block). The symbolic
state is updated by the fact that the value at the address X ` 8 is also equal to X, i.e.,
X ` 8 ÞÑ X.

Since there are no further statements in the function, there is no branching, no loops,
and all the statements are deterministic, the final contract for the function is unique and
consists of the final pre-condition P ” X ÞÑ L1 ˚X ` 8 ÞÑ L2 ˚ bpXq “ bpX ` 8q ˚ x “ X

and the post-condition Q ” X ÞÑ X ˚X ` 8 ÞÑ X ˚ bpXq “ bpX ` 8q ˚ x “ X obtained from
the final symbolic state. Here, we use “˚” to denote a per-field separating conjunction, which,
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struct dll { struct dll *next, *prev; };
struct emb dll {int value; struct dll link; };

void init dll(struct dll *x) {
P ” x “ X, Q ” x “ X

x–¿next = x;
P ” X ÞÑ L1 ˚ x “ X, Q ” X ÞÑ X ˚ x “ X

x–¿prev = x;
P ” X ÞÑ L1 ˚ X ` 8 ÞÑ L2 ˚ bpXq “ bpX ` 8q ˚ x “ X,
Q ” X ÞÑ X ˚ X ` 8 ÞÑ X ˚ bpXq “ bpX ` 8q ˚ x “ X

} summary:
P ” X ÞÑ L1 ˚ X ` 8 ÞÑ L2 ˚ bpXq “ bpX ` 8q ˚ x “ X,
Q ” X ÞÑ X ˚ X ` 8 ÞÑ X ˚ bpXq “ bpX ` 8q ˚ x “ X

void insert after(struct dll *l, *j) {
P ” l “ L ˚ j “ J, Q ” l “ L ˚ j “ J

struct dll *n = l–¿next;
P ” L ÞÑ N ˚ l “ L ˚ j “ J, Q ” L ÞÑ N ˚ l “ L ˚ j “ J ˚ n “ N

j–¿next = n;
P ” L ÞÑ N ˚ J ÞÑ B1 ˚ l “ L ˚ j “ J, Q ” L ÞÑ N ˚ J ÞÑ N ˚ l “ L ˚ j “ J ˚ n “ N

j–¿prev = l;
P ” L ÞÑ N ˚ J ÞÑ B1 ˚ J ` 8 ÞÑ B2 ˚ bpJq “ bpJ ` 8q ˚ l “ L ˚ j “ J,
Q ” L ÞÑ N ˚ J ÞÑ N ˚ J ` 8 ÞÑ L ˚ bpJq “ bpJ ` 8q ˚ l “ L ˚ j “ J ˚ n “ N

l–¿next = j;
P ” L ÞÑ N ˚ J ÞÑ B1 ˚ J ` 8 ÞÑ B2 ˚ bpJq “ bpJ ` 8q ˚ l “ L ˚ j “ J,
Q ” L ÞÑ J ˚ J ÞÑ N ˚ J ` 8 ÞÑ L ˚ bpJq “ bpJ ` 8q ˚ l “ L ˚ j “ J ˚ n “ N

n–¿prev = j;
P ” L ÞÑ N˚J ÞÑ B1˚J`8 ÞÑ B2˚N`8 ÞÑ B3˚bpJq “ bpJ`8q˚bpNq “ bpN`8q˚l “ L˚j “ J,
Q ” L ÞÑ J ˚ J ÞÑ N ˚ J ` 8 ÞÑ L ˚ N ` 8 ÞÑ J ˚ bpJq “ bpJ ` 8q ˚ bpNq “ bpN ` 8q ˚ l “ L ˚

j “ J ˚ n “ N
} summary:

P ” L ÞÑ N ˚J ÞÑ B1 ˚J `8 ÞÑ B2 ˚N `8 ÞÑ B3 ˚bpJq “ bpJ `8q ˚bpNq “ bpN `8q ˚ l “ L˚ j “ J,
Q ” L ÞÑ J ˚ J ÞÑ N ˚ J ` 8 ÞÑ L ˚ N ` 8 ÞÑ J ˚ bpJq “ bpJ ` 8q ˚ bpNq “ bpN ` 8q ˚ l “ L ˚ j “ J

int main() {
P ” emp, Q ” emp

struct emb dll *x = malloc(sizeof(struct emb dll));
P ” emp, Q ” DX. X ÞÑ Jr24s ˚ X “ bpXq ˚ x “ X

init dll(&(x–¿link));
P ” emp, Q ” DX,L1. X ÞÑ Jr8s ˚L1 ÞÑ L1 ˚L1 `8 ÞÑ L1 ˚X “ bpXq “ bpL1q “ bpL1 `8q ˚

L1 “ X ` 8 ˚ x “ X

struct emb dll *i = malloc(sizeof(struct emb dll));
P ” emp, Q ” DI,X,L1. I ÞÑ Jr24s ˚X ÞÑ Jr8s ˚L1 ÞÑ L1 ˚L1 `8 ÞÑ L1 ˚L1 “ X `8˚X “

bpXq “ bpL1q “ bpL1 ` 8q ˚ I “ bpIq ˚ x “ X ˚ i “ I

init dll(&(i–¿link));
P ” emp, Q ” DI,X,L1, L2. i ÞÑ Jr8s ˚ L2 ÞÑ L2 ˚ L2 ` 8 ÞÑ L2 ˚ X Ñ Jr8s ˚ L1 ÞÑ

L1 ˚ L1 ` 8 ÞÑ L1 ˚ L2 “ I ` 8 ˚ L1 “ X ` 8 ˚ X “ bpXq “ bpL1q “ bpL1 ` 8q ˚ I “ bpIq “

bpL2q “ bpL2 ` 8q ˚ x “ X ˚ i “ I

insert after(&(x–¿link), &(i–¿link));
P ” emp, Q ” DI,X,L1, L2. I ÞÑ Jr8s ˚L2 ÞÑ L1 ˚L2 `8 ÞÑ L1 ˚X ÞÑ Jr8s ˚L1 ÞÑ L2 ˚L1 `

8 ÞÑ L2˚L2 “ I`8˚L1 “ X`8˚X “ bpXq “ bpL1q “ bpL1`8q˚I “ bpIq “ bpL2q “ bpL2`8q˚

x “ X ˚ i “ I

. . .
}

Figure 1 An illustrative example of a code working with cyclic doubly-linked lists and its analysis.
The C expressions like ptr->field can be seen as syntactic sugar for expressions using pointer
arithmetic of the form *(ptr + offsetof(field)). The epXq predicates representing the end of
the block pointed by X are dropped from the pP,Qq pairs for simplicity.
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19:8 Low-Level Bi-Abduction

intuitively, means that while the addresses X and X ` 8, which are allocated by the formulae
X ÞÑ L1 and X ` 8 ÞÑ L2, may – though need not – belong to a single memory block, the
values stored at these addresses within the block do not overlap.3

The same principles are then used for the computation of the contracts for the
insert_after and main functions. Here, let us just highlight a situation that happens,
e.g., upon the j->next = n statement of insert_after. Notice that, in its case, the so-far
computed precondition P must be extended by the new requirement J ÞÑ B1, stating that J
must be allocated, and Q is then extended by the fact J ÞÑ N , which is the effect of executing
the given statement. At the same time, however, the rest of the previously computed symbolic
state of the program Q stays untouched (in general, only some part may be preserved). Given
the current symbolic state Q and a statement, the problem of deriving which precondition is
missing and which part of the state will remain untouched is denoted as the bi-abduction
problem, and a procedure looking for its solution is a bi-abduction procedure. The computed
missing part of the pre-condition is called the anti-frame, and the computed part of the
current symbolic state not modified by the statement being executed is called the frame.

When analysing the main function, one does already need not re-analyse the init_dll
and insert_after functions – instead, one simply uses their contracts. For simplicity, we
assume here that malloc always succeeds, and hence even main is deterministic. After the
execution of malloc, we use the special predicate x ÞÑ Jr24s to express that a sequence of 24
bytes of undefined contents was allocated. We allow such blocks (as well as all other kinds of
blocks that arise during the analysis) be split to smaller parts whenever this is needed for
applying a contract of some function (or statement). That happens, e.g., on lines b and d

of the main function where the block X ÞÑ Jr24s created by malloc is split to 3 fields as
described by X ÞÑ Jr8s ˚X ` 8 ÞÑ Jr8s ˚X ` 16 ÞÑ Jr8s. The last two of the fields then
match the precondition of init_dll, and the first one becomes a frame (untouched by the
function).

Without now going into further details, we note that analysing more complex functions
requires one to solve multiple more problems. For example, if there appears some non-
determinism, one needs to start working with contracts with disjunctive post-conditions
and even with sets of such contracts. If the code contains loops, one needs to prevent the
analysis from diverging while generating more and more points-to predicates. For that, one
can use widening in the form of a list abstraction. The resulting over-approximation may
then, however, render some generated pre-/post-condition pairs unsound, leading to a need
to run another phase of the analysis that will start from the computed pre-conditions and
check, without using abduction any more, what post-condition the code can really guarantee.
We discuss all these issues in the extended version of this paper [22].

However, before proceeding, let us stress how significantly the above-mentioned use of
the per-field separation distinguishes our approach from its predecessor bi-abduction analysis
[6, 7]. That analysis would use whole-block predicates of the form X ÞÑ dllpnext : A, prev : Bq
to describe instances of struct dll, while we use the formula X ÞÑ A ˚X` 8 ÞÑ B ˚bpXq “

bpX ` 8q. The per-field separating conjunction allows us to (1) express partial information
about a block and (2) infer a precondition where two (or more) fields can be in the same
block as well as in different blocks. Point 1 helps us to generate contracts of functions where
we do not know the exact sizes of the allocated block – e.g., init_dll does not require the

3 In a formula a ÞÑ b ˚ c ÞÑ d with a per-object separating conjunction, a and c are two distinct objects
allocated in memory (while b and d need not be allocated and may coincide). With a per-field separating
conjunction, a and c are allowed to be non-overlapping fields of the same allocated object.
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pointer x to point to an instance of struct dll, it can be, e.g., used on larger structures,
such as, e.g., struct emb_dll, that embed the original structure. Point 2 is used in the
contract of insert_after where the formula L ÞÑ N ˚ N ` 8 ÞÑ B3 describes a memory
where it may be that L “ N as well as L ‰ N . The contract for insert_after can then be
applied on a circular doubly-linked list consisting of a single item (L “ N) as well on lists
consisting of more items (L ‰ N) – see the figure below for an illustration.

L N L=N

Note that when one uses the whole-block predicate, the precondition of insert_after in
the form L ÞÑ dllpnext : N, prev : _q˚N ÞÑ dllpnext : _, prev : B3q˚J ÞÑ dllpnext : B1, prev :
B2q requires L ‰ N , and hence it is not covering the two above mentioned cases. One can of
course sacrifice performance of the analysis and generate multiple contracts by modifying the
abduction rules – e.g., one can non-deterministically introduce an alias L “ N before inferring
the anti-frame on line v of main to get the pre-condition L ÞÑ dllpnext : L, prev : _q ˚L “ N .
Introducing such non-determinism is, however, costly. That is why, as we will see in our
experiments, it is not done in tools such as Infer, which can then cause that such tools will
miss some function contracts (or generate incomplete contracts that will not be applicable in
some common cases: such as insertion into a list of length 1).

An additional example is provided in the technical report [22], where pointer arithmetic
and bit-masking are directly visible in the C-code.

3 Memory Model

In the following, we introduce the memory model that we use in this paper. Values are
sequences of bytes, i.e., Val “ Byte`, where bytes are 8-bit words. Sequences of bytes can be
interpreted as numbers – either signed or unsigned, which we leave as a part of the operations
to be applied on the sequences (including conversion operations). We designate a subset of
the values Loc “ ByteN

Ď Val as locations where N ě 1 is the byte-width of words of a given
architecture and where byte sequences to be interpreted as locations are always understood
as unsigned. The null pointer is represented by 0 P Loc in our memory model.

We will use so-called stack-block-memory triplets (SBM triplets for short) as configurations
of our memory model in order to define the operational semantics of programs (and also to
define the semantics of our separation logic later on):

Stack. We assume some set of variables Var where each variable x P Var has some fixed
positive size, denoted as sizepxq. Then, Stack is the set of total functions Var Ñ Val such
that each variable is mapped to a byte sequence whose length is according to the size of the
variable, i.e., for each stack S P Stack and variable x P Var , we have Spxq P Bytesizepxq.

Memory. Mem is the set of partial functions Loc á Byte that define the contents of
allocated memory locations.

Blocks. We use Interval “ t rl, uq | l ă u where l, u P Locu to denote intervals of
subsequent memory locations where we include the lower bound and exclude the upper
bound. Intuitively, an interval rl, uq P Interval will denote which locations were allocated at
the same time (and must thus also be deallocated together, can be subtracted using pointer
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19:10 Low-Level Bi-Abduction

subtraction, etc.). Block “ t rl, uq P Interval | l ‰ 0u are intervals whose lower bound is
not 0 (recall that null is represented by 0 P Loc in our memory model). Blocks Ď p2finq

Block

is the set of all finite sets of non-overlapping blocks, i.e., for all B P Blocks and for all
rl1, u1q, rl2, u2q P B such that either l1 ‰ l2 or u1 ‰ u2, we have that either u1 ď l2 or
u2 ď l1.

Configurations. Config consists of all triplets pS,B,Mq P Stack ˆ Blocks ˆMem such that
the set of allocated blocks and the locations whose contents is defined are linked as follows:

For every ℓ P Loc s.t. Mpℓq is defined, there is a block rl, uq P B s.t. ℓ P rl, uq.4

We introduce functions bB , eB : Loc Ñ Loc, parameterized by some set of blocks B P

Blocks, which return the base or end address, respectively, of the block to which a given
location belongs, i.e., given some ℓ P Loc, we set bBpℓq “ l in case there is some rl, uq P B
with ℓ P rl, uq, and bBpℓq “ 0, otherwise. Likewise for eBpℓq.

Axioms. For later use, we note that, building on the above notation, we can express
the requirements for locations to be within their associated block and for blocks to be
non-overlapping in the form of the following two axioms:

@ℓ. bBpℓq “ 0_ bBpℓq ď ℓ ă eBpℓq

@ℓ, ℓ1. p0 ă bBpℓq ă eBpℓ
1q ď eBpℓq _ 0 ă bBpℓ

1q ă eBpℓq ď eBpℓ
1qq Ñ

bBpℓq “ bBpℓ
1q ^ eBpℓq “ eBpℓ

1q

Notation. Given a (partial) function f , f ra ãÑ bs denotes the (partial) function identical to
f up to f ra ãÑ bspaq “ b. Moreover, f ra ãÑ Ks denotes the (partial) function identical to f
up to being undefined for a.

4 A Low-level Language and Its Operational Semantics

We now state a simple low-level language together with its operational semantics. The
language is close to common intermediate languages into which programs in C are compiled
by compilers such as gcc or clang. We assume that a type checker ensures that variables
of the right sizes are used, guaranteeing, in particular, that the left-hand side (LHS) and
right-hand side (RHS) of an assignment are of the same size or that the dereference operator
is only applied to locations. We do not include the operators of item access (. and ->) nor
indexing ([]) into our language as their usage can be compiled to using pointers, pointer
arithmetic, and the dereference operator (*) as indeed commonly done by compilers. Likewise,
we do not include the address-of operator (&) whose usage can be replaced by storing all
objects whose address should be derived via & into dynamically allocated memory, followed
by using pointers to such memory, as also done automatically by some compilers. Further,
we assume the sizeof and offsetof operators be resolved and transformed to constants.

We now present the statements of our low-level language together with their operational
semantics. The semantics is defined over configurations, which we introduced in the previous
section. The semantics maintains the following invariant:

4 Note that we do not require the reverse, i.e., that all locations of a block are allocated. This is because
our separation logic is set up to work with partially allocated blocks. In particular, the separating
conjunction needs to break up blocks into partial blocks. We note, however, that the semantics of our
programming language maintains the invariant that each block is always fully allocated.



L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:11

For every rl, uq P B and every ℓ P rl, uq, Mpℓq is defined.

We start with rules describing various assignment statements possibly combined with
pointer dereferences either on the LHS or RHS. In the rules (and further on), we use M rℓ, ℓ1q

to denote the byte sequence MpℓqMpℓ` 1q ¨ ¨ ¨Mpℓ1 ´ 1q:

pS,B,Mq
x:“k
ÝÝÝÑ pSrx ãÑ ks, B,Mq for some value k P Val

pS,B,Mq
x:“y
ÝÝÝÑ pSrx ãÑ Spyqs, B,Mq

pS,B,Mq
x:“˚y
ÝÝÝÝÑ if bBpSpyqq “ 0 or Spyq ` sizepxq ą eBpSpyqq,

then error else pSrx ãÑ M rSpyq, Spyq ` sizepxqqs, B,Mq

Note that, in the case of x :“ ˚y, one needs to read sizepxq bytes from the adress Spyq. This
is impossible if the condition Spyq ` sizepxq ą eBpSpyqq holds.

pS,B,Mq
˚x:“y
ÝÝÝÝÑ if bBpSpxqq “ 0 or Spxq ` sizepyq ą eBpSpxqq,

then error else pS,B,M rrSpxq, Spxq ` sizepyqq ãÑ Spyqsq

We continue by memory allocation. We treat 0-sized allocations as an error.5 For non-
zero-sized allocations, the allocation can always fail and return null, otherwise the successfully
allocated memory block is initialized with some arbitrary value6:

pS,B,Mq
x“mallocpzq
ÝÝÝÝÝÝÝÝÑ if Spzq “ 0 then error else either pSrx ãÑ nulls, B,Mq or

pSrx ãÑ ℓs, B Y trℓ, ℓ` Spzqqu,M rrℓ, ℓ` Spzqq ãÑ ksq for some k P ByteSpzq and ℓ ą 0
such that ℓ` Spzq ď 28N and rℓ, ℓ` Spzqq does not overlap with any rl, uq P B

The calloc function, which nullifies the allocated block, can be defined analogically to
malloc, by just changing M rrℓ, ℓ ` Spzqq ãÑ ks to M rrℓ, ℓ ` Spzqq ãÑ 0Spzqs. The realloc
function, which shrinks or enlarges a block, possibly moving it to a different memory location,
can be reduced to a sequence of other statements, and so we do not introduce it explicitly
for brevity.

The deallocation of memory is modelled by the following rule:7

pS,B,Mq
freepxq
ÝÝÝÝÝÑ if Spxq ‰ bBpSpxqq then error

else pS,BztrSpxq, eBpSpxqqqu,M rrSpxq, eBpSpxqqq ãÑ Ksq

The low-level language further contains a collection of binary and unary operations
denoted as bop and uop, respectively. The operations of adding an offset to a pointer (ptrplus)
and pointer subtraction (ptrsub) are special and handled separately. The operation ptrplus
for adding a (possibly negative) offset to a pointer requires its pointer argument to be defined,

5 The C standard says that the behaviour in this case is user-defined, the allocation can return null or a
non-null value, which, however, cannot be dereferenced. However, since such an allocation is usually
suspicious, many analysers flag it as an error/warning. We adopt the same approach, but if need be,
the rules could be changed to handle such allocations according to the standard.

6 Notice that 28N gives the largest address that can be expressed using words with the byte-width N .
7 Notice that we do not need a rule for deallocating zero-sized blocks since we do not allow such blocks to

be created.
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and, in accordance with the C standard, the result must be within the appropriate memory
block plus one byte (i.e., it may point just behind the end of the block).8 The operation ptrsub
for pointer subtraction is special in that it requires its pointer operands to be defined, to have
the same base, and to point inside an allocated block or just behind its end. We also support
the memcpy statement (and can simulate the memmove statement). To encode conditional
branching arising from conditional statements or loops, we introduce the assume statement
that models conditions x ’ y for ’ P t“,‰,ď,ă,ě,ąu. We allow functions without a return
value, not referring to global variables, having parameters passed by reference only, with
the names of the parameters unique to each function, and not having local variables. We
also introduce the assert statement that is similar to the assume statement, but it checks
at runtime whether the specified condition holds, and it fails if this is not the case. The
operational semantics of all these statements can be found in [22].

5 Separation Logic

We now introduce a separation logic that supports reasoning about low-level memory models
as introduced earlier. Our separation logic (SL) has the following syntax:

φ ::“ ε1 ÞÑ ε2 | ε1 ÞÑ krε2s | ε1 ÞÑ Jrε2s | φ1 ˚ φ2 | φ1 _ φ2 | lsΛpx,yqpε1, ε2q |

dlsΛpx,y,zqpε1, ε2, ε
1
1, ε

1
2q | emp | true | ε1 ’ ε2 | Dx.φ

’ ::“ “|‰|ď|ă|ě|ą ε ::“ k | x | bpεq | epεq | uop ε | ε1 bop ε2

Variables and Values. Our SL formulae are stated over the same set of variables Var and
values Val that we introduced in the definition of our memory model. In particular, the
variables x, y, z and the values k of our SL formulae are drawn from Var and Val, respectively.

Size. Variables, values, operators, and expressions in our logic are typed by their size. We
will only work with formulae where the variables and values respect the sizes expected by
the involved operations and predicates. For every expression ε, we denote by sizepεq the size
of the value to which this expression may evaluate. We remark on the choice of working
with fixed sizes: We intentionally do not permit variables of variable size because (1) such
variables are typically not supported by low-level languages and (2) variables of variable size
allow one to model strings, which would make our language vastly more powerful (allowing
one to model all kinds of string operations)9.

Points-To Predicates. The points-to predicate ε1 ÞÑ ε2 denotes that the byte sequence
ε2 is stored at the memory location ε1. Due to we are working with expressions of fixed
size, every model of ε1 ÞÑ ε2 must allocate exactly sizepε2q bytes. In addition, we introduce
two restricted cases of points-to predicates where the RHS is of parametric size: namely,
ε1 ÞÑ krε2s and ε1 ÞÑ Jrε2s that allow us to say that ε1 points to an array of ε2 bytes that
either all have the same constant value k or have any value, respectively. These predicates
allow us to, e.g., express that some block of memory is nullified, which is often crucial to

8 We are aware that this requirement is not respected in some real-life pograms, such as, e.g., the
implementation of lists in Linux. We will later mention that our approach can be relaxed to handle
such cases too.

9 We believe that extending our later presented analysis to such variables is possible (by recording the
length of the target object as another parameter of the points-to predicate), but we leave it for future
work in order not to complicate the basic approach we propose.
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Figure 2 An illustration of the meaning of the lsΛpx,yqpε1, ε2q and dlsΛpx,y,zqpε1, ε2, ε
1
1, ε

1
2q formulae.

know when analysing advanced implementations of dynamic data structures [16]. We lift the
notion of size to the RHS of these points-to predicates as follows: sizepkrysq “ sizepJrysq “ y.
In ε1 ÞÑ krε2s, we require k to be a single byte, i.e., sizepkq “ 1.

Notation. Given a formula φ, we write varpφq to denote the free variables of φ (as usual
a variable is free if it does appear within an existential quantification). Further, given an
expression ε, we write varpεq for all variables appearing in ε.

Terminology. We call formulae that do not contain the disjunction operator (_) symbolic
heaps. We will mostly work with symbolic heaps in this paper. Disjunctions of symbolic
heaps will be only used on the RHS of (some) contracts. We call formulae that do not
contain existential quantification (D) quantifier-free. Our SL contains the relational predicates
ε1 ’ ε2, which include equality and disequality; these predicates are traditionally called
pure in the separation logic literature. We follow this terminology and call any separating
conjunction of such predicates a pure formula.

List-Segment Predicates. List segments in our SL are parameterized by a segment predicate
Λpx, yq or Λpx, y, zq for singly-linked or doubly-linked lists, respectively; see Fig. 2 for an
illustration of the semantics of lsΛpx,yqpε1, ε2q and dlsΛpx,y,zqpε1, ε2, ε

1
1, ε

1
2q for Λpx, yq ” x ÞÑ y

and dlsΛpx,y,zq ” x ÞÑ z ˚ x` 8 ÞÑ y. We note that our list-segment predicates only have two
or three free variables, respectively, which prevents the logic from, e.g., describing non-global
heap objects shared by list elements. However, more parameters could be introduced in a
similar fashion to other works [2]. We have not done so here since it would complicate the
notation, and we take this issue as orthogonal to the techniques we propose.

Binary and Unary Operators. uop and bop denote some arbitrary set of binary and unary
operators, respectively. We assume this set to include at least the usual operators (`, ´, ˚,
&, |, . . . ) available in low-level languages as well as a special substring operator ¨r¨, ¨q on
byte sequences where kri, jq for some k “ b0 ¨ ¨ ¨ bl´1 P Bytel and 0 ď i ď j ď l denotes the
byte sequence bi ¨ ¨ ¨ bj´1. Since we work with variables of fixed size, we basically assume a
version of each uop and bop for every possible operand size. We further remark that unary
operators uop can be used for modelling the casting to different sizes.

Semantics. We now define the semantics of our SL over SBM triplets pS,B,Mq P Config:

pS,B,Mq |ù ε1 ÞÑ ε2 iff
dompMq “ rJε1KS,B , Jε1KS,B ` sizepε2qq and M rJε1KS,B , Jε1KS,B ` sizepε2qq “ Jε2KS,B

where

JkKS,B “ k, JxKS,B “ Spxq, JbpεqKS,B “ bBpJεKS,Bq, JepεqKS,B “ eBpJεKS,Bq,

Juop εKS,B “ uoppJεKS,Bq, and Jε1 bop ε2KS,B “ Jε1KS,B bop Jε2KS,B
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pS,B,Mq |ù ε1 ÞÑ krε2s iff
dompMq “ rJε1KS,B , Jε1KS,B ` Jε2KS,Bq and M rJε1KS,B ` is “ k for all 0 ď i ă Jε2KS,B

pS,B,Mq |ù ε1 ÞÑ Jrε2s iff dompMq “ rJε1KS,B , Jε1KS,B ` Jε2KS,Bq

We remark on the difference between the three points-to predicates: the predicate ε1 ÞÑ ε2
fixes the exact sequence of bytes ε2 that is stored from location ε1 onwards, and the number
of bytes is known (the size of ε2); the predicate ε1 ÞÑ krε2s states that there are ε2 number
of bytes stored from location ε1 onwards (note that the number of bytes ε2 is symbolic), and
each of these bytes equals k; and the predicate ε1 ÞÑ Jrε2s works in the same way except
that the bytes stored are not fixed.

pS,B,Mq |ù φ1 ˚ φ2 iff there are some M1,M2 with M “M1 ZM2, pS,B,Miq |ù φi

pS,B,Mq |ù φ1 _ φ2 iff pS,B,Mq |ù φ1 or pS,B,Mq |ù φ2

pS,B,Mq |ù emp iff dompMq “ H pS,B,Mq |ù true always holds

pS,B,Mq |ù ε1 ’ ε2 iff dompMq “ H and Jε1KS,B ’ Jε2KS,B

We point out that pure formulae constrain the heap to be empty. This is typically not
required by separation logics that support classical (non-separating) conjunction at least on
pure sub-formulae. However, we exclude the classical conjunction in order to simplify the
presentation and hence need to constrain the heap of pure formulae to be empty.

pS,B,Mq |ù Dx.φpxq iff there is some v P Val
and a fresh variable u P Var s.t. pSru ãÑ vs, B,Mq |ù φpuq

pS,B,Mq |ù lsΛpx,yqpε1, ε2q iff pS,B,Mq |ù ε1 “ ε2 or
pS,B,Mq |ù ε1 ‰ ε2 ˚ true and there is some ℓ P Loc

and a fresh variable u P Var s.t. pSru ãÑ ℓs, B,Mq |ù Λpε1, uq ˚ lsΛpx,yqpu, ε2q

pS,B,Mq |ù dlsΛpx,y,zqpε1, ε2, ε
1
1, ε

1
2q iff pS,B,Mq |ù ε1 “ ε1

2 ˚ ε2 “ ε1
1 or

pS,B,Mq |ù ε1 ‰ ε1
2 ˚ ε2 ‰ ε1

1 ˚ true and there is some ℓ P Loc and a fresh variable
u P Var such that pSru ãÑ ℓs, B,Mq |ù Λpε1, u, ε2q ˚ dlsΛpx,y,zqpu, ε1, ε

1
1, ε

1
2q

Satisfiability and Entailment. We say that an SL formula φ is satisfiable iff there is a model
pS,B,Mq such that pS,B,Mq |ù φ. We say that an SL formula φ1 entails an SL formula
φ2, denoted φ1 |ù φ2, iff we have that pS,B,Mq |ù φ2 for every model pS,B,Mq such that
pS,B,Mq |ù φ1.
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Restrictions on the Segment Predicates. From now on, we put further restrictions on the
segment predicates Λpx, yq and Λpx, y, zq: (1) Λ needs to be of the shape Dx1, . . . , xk.φ for
some quantifier-free symbolic heap φ. Intuitively, this condition is required since quantifier-
free symbolic heaps are the formulae on which the symbolic execution described in Section 6
is based on and the existential quantification allows to hide some nested data. (2) Λ needs
to be block-closed in the sense defined below.

Block-closedness. A formula φ is block-closed iff, for all pS,B,Mq |ù φ and ℓ P dompMq,
we have that rbpℓq, epℓqq Ď dompMq. Intuitively, block-closedness ensures that all points-to
assertions in a formula add up to whole blocks. We require block-closedness in order to
ensure that list-segments correspond to our intuition and connect different memory blocks
(i.e., we exclude models where multiple or all nodes of list-segments belong to the same
block). Technically, the requirement of block-closedness makes it easier to formulate rules for
materialisation of list-segment nodes in the abduction procedure and for entailment checking.
We leave lifting the restriction of block-closedness for future work. A sufficient condition for
block-closedness, which is easy to check, is that all points-to assertions in φ can be organized
in groups εi ÞÑ Υi, for 1 ď i ď n, where Υ represents either y, krys, or Jrys, such that
εi “ εi´1 ` sizepΥiq for all 1 ă i ď n, and φ implies that epε1q ´ bpε1q “

ř

i“1..n sizepΥiq.

6 Contracts of Functions and Their Generation

Our analysis is based on generating contracts of functions along the call tree, starting from
its leaves. The contracts summarize the semantics of the functions under analysis. We may
also compute multiple contracts for the same function where each contract provides a valid
summary of the function; the contracts might, however, differ in the preconditions under
which they apply.

6.1 Contracts of Functions
We assume a set of variables Var “ PVar ZLVar that is partitioned into two disjoint infinite
set of program variables PVar and logical variables LVar (also called ghost variables). For
functions fpx1, . . . , xnq with parameters xi, we always require x1, . . . , xn P PVar (we assume
that x1, . . . , xn are the only variables occurring in the body of f). To summarize the semantics
of a function fpx1, . . . , xnq, we use (sets of) contracts of the form tP ufpx1, . . . , xnqtQu where

the pre-condition P is a quantifier-free symbolic heap, and
the post-condition Q is a disjunction of formulas of the form DUQ.pQfree ˚ Qeqq such
that Qfree is a quantifier-free symbolic heap with varpQfreeq Ď LVar , Qeq is the formula
x1 “ ε1 ˚ ¨ ¨ ¨ ˚ xn “ εn for some expressions εi with varpεiq Ď LVar , and UQ “

pvarpQfree ˚ Qeqq X LVarqzvarpP q. Note that every disjunct of the post-condition Q

describes the heap by a formula over the logical variables (the formula Qfree) and fixes
the values of the program variables in terms of expressions over the logical variables (the
formula Qeq) where all logical variables that do not appear in the pre-condition P are
existentially quantified (on the other hand, those logical variables that appear in the
pre-condition may be implicitly considered as universally quantified).
We call a contract conjunctive if the post-condition Q ” Q1_ ¨ ¨ ¨ _Ql consists of a single
disjunct (i.e., l “ 1), and disjunctive otherwise.

Soundness of contracts. We will now state what it means for a contract to be sound. As
usual we stipulate that configurations satisfying the pre-condition lead to configurations
satisfying the post-condition. In addition, we also require that we can always add a frame
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to the pre-/post-condition, i.e., a formula describing a part of the heap untouched by
the function10. Here, a frame F is any symbolic heap with varpF q Ď LVar . A contract
tP ufpx1, . . . , xnqtQu is called sound iff, for all frames F , all triples pS,B,Mq such that
pS,B,Mq |ù F ˚ P , and all executions of fpx1, . . . , xnq that start from pS,B,Mq and end in
some configuration pS1, B1,M 1q11, it holds that pS1, B1,M 1q |ù F ˚Q.

6.2 Contracts for Basic Statements

We give below contracts for the basic statements of our programming language stated as
functions (basic statements may be viewed as special built-in functions). For simplicity (and
w.l.o.g.), we assume that it never happens that the same variable appears both at the LHS
and RHS of an assignment12. Recall that emp is implicit in all otherwise pure constraints
(and so we do not need to repeat it):

Function assignpx, yq with the body x :“ y:

ty “ Y u assignpx, yq tx “ Y ˚ y “ Y u.

Function constkpxq with the body x :“ k:

tempu constkpxq tx “ ku.

Function loadpx, yq with the body x :“ ˚y:

ty “ Y ˚ Y ÞÑ zu loadpx, yq tx “ z ˚ y “ Y ˚ Y ÞÑ zu

with Qfree ” Y ÞÑ z and Qeq ” x “ z ˚ y “ Y .
Function storepx, yq with the body ˚x :“ y:

tx “ X ˚ y “ Y ˚ X ÞÑ zu storepx, yq tx “ X ˚ y “ Y ˚ X ÞÑ Y u

with Qfree ” X ÞÑ Y and Qeq ” x “ X ˚ y “ Y .
Function mallocpx, yq that either succeeds or fails to allocate memory through x :“
mallocpyq:

ty “ Y u mallocpx, yq tx “ null ˚ y “ Y _ Du. x “ u ˚ νpu, Y q ˚ y “ Y u

where νpu, Y q “ u ÞÑ JrY s ˚ bpuq “ u ˚ epuq “ u` Y . Note that either Qfree ” νpu, Y q

and Qeq ” x “ u ˚ y “ Y or Qfree ” emp and Qeq ” x “ null ˚ y “ Y . A very similar
contract can be used for calloc, just with u ÞÑ JrY s changed to u ÞÑ 0rY s. We remark
that the contracts for malloc and calloc are the only disjunctive contracts among the
contracts for the basic statements of our programming language.
Function freepxq called with the null argument:

tx “ X ˚ X “ nullu freepxq tx “ X ˚ X “ nullu

Function freepxq called over a non-null argument:

tx “ X ˚ X ÞÑ Jrys ˚ bpXq “ X ˚ epXq “ X ` yu freepxq tx “ Xu

10 That is, we directly incorporate the well-known frame rule from the separation-logic literature into
our notion of soundness. We choose to do so for economy of exposition and for making the paper
self-contained. As an alternative one could derive the validity of the frame rule from the fact that all
contracts of the basic statements, as stated in Section 6.2, are local actions in the sense of [8] (which is
equivalent to Lemma 1 stated in this paper).

11 Note that dompS1
q “ dompSq and that we have S1

pxq “ Spxq for all x P LVar because logical variables
do not occur in the program and hence are never updated.

12We may assume this because assignments such as x :“ ˚x can always be rewritten to the sequence
y :“ ˚x;x :“ y (at the cost of introducing a fresh variable y).
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Note that a block to be freed may be split into multiple fields at the time of freeing. We,
however, do not need to deal with this issue here since the later presented bi-abduction
rules will split the LHS of the contract of free such that it can match the fragmented
block.
Functions assignboppx, y, zq with the body x :“ y bop z for binary operators bop (and
likewise for unary operators uop):

ty “ Y ˚ z “ Zu x :“ y bop z tx “ Y bopZ ˚ y “ Y ˚ z “ Zu

Function ptrpluspx, y, zq with the body x :“ y ptrplus z for the case when the result is
within the block of the pointer to which an offset is added:

ty “ Y ˚ z “ Z ˚ φY,Zu x :“ y ptrplus z tx “ Y ` Z ˚ y “ Y ˚ z “ Z ˚ φY,Zu

for φY,Z ” bpY q ‰ 0 ˚ bpY q “ bpY ` Zq ˚ epY q “ epY ` Zq.
Function ptrpluspx, y, zq with the body x :“ y ptrplus z for the case when the result points
one byte past the block of the pointer to which an offset is added:

ty “ Y ˚ z “ Z ˚ φY,Zu x :“ y ptrplus z tx “ Y ` Z ˚ y “ Y ˚ z “ Z ˚ φY,Zu

for φY,Z ” bpY q ‰ 0 ˚ Y ` Z “ epY q.
Function ptrsubpx, y, zq with the body x :“ y ptrsub z:

ty “ Y ˚ z “ Z ˚ φY,Zu x :“ y ptrsub z tx “ Y ´ Z ˚ y “ Y ˚ z “ Zu

for φY,Z ” bpY q ‰ 0 ˚ bpY q ď Z ď epY q.
Function assume’py, zq with the body assumepy ’ zq:

ty “ Y ˚ z “ Zu assumepy ’ zq ty “ Y ˚ z “ Z ˚ y ’ zu

Function assert’py, zq with the body assertpy ’ zq:

ty “ Y ˚ z “ Z ˚ y ’ zu assertpy ’ zq ty “ Y ˚ z “ Z ˚ y ’ zu

Finally, the contract for memcpy is more complex, and we defer it to [22] for space reasons.
We now state the soundness of the contracts for the basic statements of our programming
language:

▶ Lemma 1. Let stmt be a basic statement and let tP u fpx1, . . . , xnq tQu be a contract for
stmt as stated above. Then, the contract is sound, i.e., for all frames F , all configurations
pS,B,Mq such that pS,B,Mq |ù F ˚ P , and all executions of fpx1, . . . , xnq that start from
pS,B,Mq and end in some configuration pS1, B1,M 1q, it holds that pS1, B1,M 1q |ù F ˚Q.

Proof. Direct from the semantics of our programming language as stated in Section 4. ◀

6.3 Contract Generation
We now sketch the generation of contracts for an arbitrary user-defined function fpx1, . . . , xnq.
Our analysis proceeds along the call tree, starting from its leaves. Hence, we can assume to
already have computed contracts for nested function calls. (Recall that, in this paper, we limit
ourselves to non-recursive functions.) We derive contracts by (forward) symbolic execution.
The symbolic execution starts at the beginning of f and maintains a pair of formulae P
and Q, representing the so-far computed part of the pre-condition of the function f and
the current symbolic state. The symbolic execution will guarantee that configurations that
satisfy P lead to configurations satisfying Q after executing the so-far analysed statements.
P and Q will change throughout the symbolic execution because we keep restricting the
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precondition P and advancing the symbolic state Q. The symbolic execution is set up such
that the program variables x1, . . . , xn may be updated, while all other variables will never
be modified (but, of course, fresh variables may be introduced and assigned at any time).
The symbolic execution is initialised by introducing fresh logical variables X1, . . . , Xn and
setting P ” Q ” x1 “ X1 ˚ ¨ ¨ ¨ ˚ xn “ Xn. In each step, the symbolic execution needs to
solve a bi-abduction problem in order to advance the symbolic state Q with regard to the
contract of a function call or a basic statement. The bi-abduction procedure might discover
that the current symbolic state Q does not suffice to safely call the function, in which case
either a strengthening of the precondition P is returned or the procedure fails. We describe
our procedure for solving the abduction problem (the procedure for discovering missing
pre-conditions) in the next section, and refer the reader to our technical report [22] for the full
bi-abduction procedure. In order to derive sound contracts, we follow the two-round analysis
approach of [7]: The first round (called PreGen in [7]) infers a set of pre-/post-condition
pairs pP,Qq, but there is no guarantee about the soundness of the inferred pP,Qq. For
each pre-/post-condition pair pP,Qq computed in the first round, the second round (called
PostGen in [7]) discards the post-condition Q and re-starts the symbolic execution from the
pre-condition P not allowing the strengthening of the pre-condition throughout the symbolic
execution, which either fails or results in a set of pre-/post-condition pairs pP,Q1q, . . . , pP,Qlq.
In the latter case, we return pP,Q1 _ ¨ ¨ ¨ _Qlq, which is guaranteed to be a sound contract.

We refer an interested reader to our technical report [22] for the details on how we
implement the two-round analysis of [7] and for accompanying examples.

7 Bi-Abduction Procedure

We now state our rules for computing a solution to the abduction problem. In the below
rules, we will use the notation φ ˚ rM s Ź ψ to denote that we are deriving the solution M to
the abduction problem φ ˚ r?s |ù ψ. The rules are to be applied in the stated order.13

We start with a rule allowing us to learn missing pure constraints.

learn-pure
φ ˚ π ˚ rM s Ź ψ

φ ˚ rπ ˚M s Ź ψ ˚ π
π pure

The match rule presented below allows one to match points-to predicates from the LHS
and RHS that have the same source location (ε “ ε1) and points-to fields ζ, ζ 1 of the same
size. Then we learn that the target fields are the same too. We note here that this rule is
as a special case of the split-pt-pt-right rule presented further on, but we show it here
as an easy case to start from. We discharge entailment checks of the form φ1 |ù φ2 ˚ true

where φ2 is a pure formula (e.g. ε “ ε1) by checking unsatisfiability of the formula ψ1 ^␣ψ2
where ψi is a translation of the SL formula φi to bitvector logic. The translation procedure
is sketched in our technical report [22].

match
φ ˚ ζ “ ζ 1 ˚ rM s Ź ψ

φ ˚ ε ÞÑ ζ ˚ rζ “ ζ 1 ˚M s Ź ψ ˚ ε1 ÞÑ ζ 1
sizepζq “ sizepζ1

q and φ |ù ε “ ε1
˚ true

13 As for non-determinism within single rules, which can sometimes be applied in multiple ways, our
implementation currently uses the first applicable option (with backtracking to the other options only in
case that the first option turns out to result in an unsatisfiable abduction strategy). A better strategy
is an open question for future research.
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offsets
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ζ 1r0, kq
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ζ 1
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k

Figure 3 An illustration of the split-pt-pt-right rule where z “ l1 ´ k ´ l.

offsets
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ε

ε` l
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bpε1q

ε1

ζ

mrε´ ε1s

mrls

mrzs

mrκs

Figure 4 An illustration of the split-pt-bl-right rule where z “ κ´ pε´ ε1
q ´ l.

As illustrated in Fig. 3, the next presented split-pt-pt-right rule allows one to deal
with pointers ε, ε1 to fields ζ, ζ 1 that lie at possibly different addresses but within blocks of
the same base address. Moreover, the RHS target field ζ 1 can be larger. In this case, the
field ζ 1 is split to three byte sequences ζ 1r0, kq, ζ 1rk, k ` lq, and ζ 1rk ` l, l1q, some of which
can be empty, and the middle byte sequence is matched with the LHS target field ζ. (We
recall that kri, jq denotes the substring of k that starts at index i and ends at index j.)

split-pt-pt-right
φ ˚ ζ “ ζ 1rk, k ` lq ˚ rM s Ź ψ ˚ ε1 ÞÑ ζ 1r0, kq ˚ pε` lq ÞÑ ζ 1rk ` l, l1q

φ ˚ ε ÞÑ ζ ˚ rζ “ ζ 1rk, k ` lq ˚M s Ź ψ ˚ ε1 ÞÑ ζ 1
C

In the above rule, the condition C requires that there are some k, l, l1 P N with φ |ù bpεq “

bpε1q ˚ ε “ ε1 ` k ˚ true, sizepζq “ l, sizepζ 1q “ l1, and l ` k ď l1. We note that, in the
above formulation of the rule split-pt-pt-left, we assume 0 ă k and k ` l ă l1 in order
to avoid cluttering the rule by additional case distinctions; in the case of 0 “ k or k ` l “ l1,
however, we need to remove ε1 ÞÑ ζ 1r0, kq or pε` lq ÞÑ ζ 1rk` l, l1q, respectively, from the RHS
of the premise of the rule. There is a symmetric rule split-pt-pt-left for the LHS.

The split-pt-bl-right rule presented below and illustrated in Fig. 4 is an analogy of
the rule split-pt-pt-right presented above, but, this time, with the RHS field, which is
being split, of non-constant size. The rule covers both types of such fields that we allow:
sequences of bytes of undefined values (then m “ J in the rule) or sequences of the same
byte (then m P Byte).

split-pt-bl-right
φ ˚ χ ˚ rM s Ź ψ ˚ ε1 ÞÑ mrε´ ε1s ˚ pε` lq ÞÑ mrzs ˚K

φ ˚ ε ÞÑ ζ ˚ rχ ˚M s Ź ψ ˚ ε1 ÞÑ mrκs
C
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Above, we require that m “ J and χ ” emp, or m P Byte and χ ” ζ “ ml. Further,
sizepζq “ l, C requires that φ |ù bpεq “ bpε1q ˚ ε1 ď ε ˚ ε` l ď ε1 ` κ ˚ true, z is some
fresh variable with sizepzq “ N , and K ” z “ κ ´ pε ´ ε1q ´ l. There is a symmetric rule
split-pt-bl-left for the LHS.

We now present an analogy of the above rule for the case when we need to split a field of
constant size that appears on the RHS. In order to be able to split the RHS field we will also
require the LHS field to be of constant size.

split-bl-pt-right
φ ˚ χ ˚ rM s Ź ψ ˚ ε1 ÞÑ ζ 1r0, kq ˚ pε` lq ÞÑ ζ 1rk ` l, l1q

φ ˚ ε ÞÑ mrκs ˚ rχ ˚M s Ź ψ ˚ ε1 ÞÑ ζ 1
C

In the above rule, the condition C requires that there are some k, l, l1 P N with φ |ù κ “

l ˚ true, φ |ù bpεq “ bpε1q ˚ ε “ ε1 ` k ˚ true, sizepζ 1q “ l1, and k ` l ď l1. In the rule,
either m “ J and χ ” emp, or m P Byte and χ ” ζ 1rk, k ` lq “ ml. There is a symmetric
rule split-bl-pt-left for the LHS.

We are finally getting to the split-bl-bl-right rule that matches two fields that are
both of non-constant sizes while splitting the RHS field if need be.

split-bl-bl-right
φ ˚ rM s Ź ψ ˚ ε1 ÞÑ m1rε´ ε1s ˚ ε` κ ÞÑ m1rzs ˚K

φ ˚ ε ÞÑ mrκs ˚ rM s Ź ψ ˚ ε1 ÞÑ m1rκ1s
C

In the rule, either m1 “ J or m “ m1. Further, C is the condition that requires φ |ù bpεq “

bpε1q ˚ ε1 ď ε ˚ ε` κ ď ε1 ` κ1 ˚ true and K ” z “ κ1 ´ pε´ ε1q ´ κ. As before, there is
also a symmetric rule split-bl-bl-left for splitting on the LHS.

Next, we present a rule that allows one to match a points-to predicate on the LHS against
a singly-linked list segment on the RHS. In fact, the rule does not directly perform the
matching, but it facilitates it by materialising the first cell out of the list segment. The
matching itself (possibly combined with splitting) is then performed by the above rules.
We expect that the cells of the list segment are described using a formula of the form
Λpx, yq ” Du1, . . . , uk.λpx, y, u1, . . . , ukq.

slseg-pt-ls-right
φ ˚ ε ÞÑ ζ ˚ rM s Ź ψ ˚ λrε1{x, z{y, z1{u1, . . . , zk{uks ˚ lsΛpx,yqpz, ζ

1q

φ ˚ ε ÞÑ ζ ˚ rM s Ź ψ ˚ lsΛpx,yqpε
1, ζ 1q

C

Above, C is the condition that φ |ù bpεq “ bpε1q ˚ true and z, u1, . . . , uk are some fresh
variables.

We next present a version of the above rule for the case of a list segment on the LHS.
Note that, in this case, we must require the list segment be non-empty. In the rule, C is the
condition that φ |ù bpεq “ bpε1q ˚ ε ‰ ζ ˚ true and z, u1, . . . , uk are some fresh variables.

slseg-pt-ls-left
φ ˚ λrε{x, z{y, z1{u1, . . . , zk{uks ˚ lsΛpx,yqpz, ζq ˚ rM s Ź ψ ˚ ε1 ÞÑ ζ 1

φ ˚ lsΛpx,yqpε, ζq ˚ rM s Ź ψ ˚ ε1 ÞÑ ζ 1
C

The following rule allows one to remove from the LHS a list segment that forms an
initial part of a list segment that appears on the RHS. The condition C requires that
φ |ù ε “ ε1 ˚ true and that Λpx, yq |ù Λ1px, yq14.

14 We note that this kind of entailment query cannot be discharged in the way we sketched above for the
case when the RHS of the entailment is a pure formula (intuitively, one would need some negation over
SL). However, such queries can be discharged by a slight modification of the bi-abduction procedure
presented in this section – for details see our technical report [22].
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slseg-ls-ls
φ ˚ rM s Ź ψ ˚ lsΛ1px,yqpζ, ζ

1q

φ ˚ lsΛpx,yqpε, ζq ˚ rM s Ź ψ ˚ lsΛ1px,yqpε
1, ζ 1q

C

The further rule allows one to remove a possibly empty list segment from the RHS. A
corresponding rule for list segments of the LHS is only needed for entailment checking
(cf. [22]).

slseg-remove-right
φ ˚ rM s Ź ψ

φ ˚ rM s Ź ψ ˚ lsΛpx,yqpε, ζq
φ |ù ε “ ζ ˚ true

We have similar rules for doubly-linked lists as the ones stated above, which we omit here
for ease of exposition (we point out that dllseg-pt-ls-left and dllseg-pt-ls-right
come in two versions because a doubly-linked list can be unrolled from the left as well as
from the right).

Next, we state a rule that allows one to finish the abduction process.

learn-finish
φ ˚ rψs Ź ψ ˚ true

φ ˚ ψ is satisfiable

The side condition “φ ˚ ψ is satisfiable” is intended to ensure that the abduction solution
ψ does not lead to useless contracts: a contract tφ ˚ ψu fp¨ ¨ ¨ q t¨ ¨ ¨ u with φ ˚ ψ unsatisfiable
does not have a configuration that satisfies its pre-condition! Unfortunately, we only have an
approximate procedure for checking the satisfiability of symbolic heaps (see our technical
report [22]). However, contracts with an unsatisfiable pre-condition are still sound. Hence,
we employ the best-effort strategy of using our approximate procedure to prevent as many
useless abduction solutions as possible in order to minimize the number of inferred contracts.

Finally, we state two rules of “last resort” that involve quite some guessing and hence can
mislead the abduction process and make it fail (or lead to its exponential explosion when all
possible variants of applying the rules are attempted). Intuitively, they allow one to claim
equal fields whose equality is not known, but whose disequality is not known either (moreover,
in the weaker case, one also checks that it can be shown that the fields lie within the same
memory block).

alias-weak
φ ˚ χpεq ˚ ε “ ε1 ˚ rM s Ź ψ ˚ χ1pε1q

φ ˚ χpεq ˚ rε “ ε1 ˚M s Ź ψ ˚ χ1pε1q
C1

alias-strong
φ ˚ χpεq ˚ ε “ ε1 ˚ rM s Ź ψ ˚ χ1pε1q

φ ˚ χpεq ˚ rε “ ε1 ˚M s Ź ψ ˚ χ1pε1q
C2

In the rules, χpxq and χ1pxq are any predicates of the form x ÞÑ _, ls_px,_q, dls_px,_,_,_q,
or dls_p_,_, x,_q. Further, C1 is the condition that φ |ù bpεq “ bpε1q ˚ true and that not
φ |ù ε ‰ ε1 ˚ true. On the other hand, C2 requires that not φ |ù ε ‰ ε1 ˚ true only.

The alias-weak/strong rules are used in the following situations:
There is no other applicable rule. Instead of failing due to the impossibility of applying
other rules, we try to introduce an alias (if possible, by the alias-weak rule) and continue
with the abduction using the match, split, or slseg/dllseg rules.
We wish to infer multiple abduction solutions. In such a case, whenever learn-finish is
applicable, we use it to derive one abduction solution, record it, revert learn-finish, and
then try to derive other solutions by applying an alias rule, followed by applying the
other rules again.
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We now state the correctness of the abduction procedure:

▶ Theorem 2. Let M be any solution computed by the abduction rules, i.e., we have
φ ˚ rM s Ź ψ. Then, φ ˚M |ù ψ.

Proof. We prove the property by induction on the number of rule applications. We observe
that the claim holds for the axiom, i.e., the rule learn-finish). We further note that, for
all non-axiomatic rules of the shape

rule-name
φ1 ˚ rM 1s Ź ψ1

φ ˚ rM s Ź ψ
C,

we have that φ1 ˚M 1 |ù ψ1 implies φ ˚M |ù ψ (under the condition C). Hence, the claim
holds. ◀

Moreover, we observe that the antiframe M is guaranteed to be a quantifier-free symbolic
heap in case the input φ to the abduction procedure is a quantifier-free symbolic heap (the
abduction rules maintain this shape of φ).

▶ Example 3. We consider the abduction problem

X ÞÑ a ˚X ` 8 ÞÑ z ˚ r?s |ù Y ÞÑ u ˚ Y ` 8 ÞÑ w ˚ u ÞÑ v ˚X “ Y ˚ true.

Its solution by our abduction rules looks as follows:

learn-pure
match

match
learn-finish

X “ Y ˚ a “ u ˚ z “ w ˚ ru ÞÑ vs Ź u ÞÑ v ˚ true

X ` 8 ÞÑ z ˚ X “ Y ˚ a “ u ˚ rz “ w ˚ u ÞÑ vs Ź Y ` 8 ÞÑ w ˚ u ÞÑ v ˚ true

X ÞÑ a ˚ X ` 8 ÞÑ z ˚ X “ Y ˚ ra “ u ˚ z “ w ˚ u ÞÑ vs Ź Y ÞÑ u ˚ Y ` 8 ÞÑ w ˚ u ÞÑ v ˚ true

X ÞÑ a ˚ X ` 8 ÞÑ z ˚ rX “ Y ˚ a “ u ˚ z “ w ˚ u ÞÑ vs Ź Y ÞÑ u ˚ Y ` 8 ÞÑ w ˚ u ÞÑ v ˚ X “ Y ˚ true

8 Implementation and Experimental Evaluation

We have implemented the proposed techniques in a prototype tool called Broom. Its source
code is publicly available15 under GNU GPLv3. The tool itself is implemented in OCaml.
The SMT queries produced by the tool are answered using the Z3 solver [12]. The front-end
of Broom is based on Code Listener [15], a framework providing access to the intermediate
code of a compiler (as, e.g., gcc).

Our approach requires one to answer entailment queries φ1 |ù φ2 at several points. If φ2
is pure, we translate φ1 ^ ␣φ2 from SL into the bitvector theory and ask the underlying
SMT solver. However, this cannot be easily done when φ2 contains a spatial predicate
(our fragment of SL is not closed under negation). While it might be possible to develop a
general (sound and complete) entailment procedure, e.g., extending [26], we decided to use
an approximation based on similar principles as our bi-abduction procedure. We give details
of the translation of SL to the bitvector theory as well as of our more general approximated
entailment procedure in our technical report [22].

We note that, in the implementation of Broom, we relaxed the requirement put on the
ptrplus operation of our minilanguage (Sec. 4), which requires that the pointer resulting
from the expression y ` z stays within the allocated block – i.e., bpSBpyqq ď SBpyq `

SBpzq ď epSBpyqq. According to the C standard, the relaxation of this condition leads to

15 https://pajda.fit.vutbr.cz/rogalew/broom

https://pajda.fit.vutbr.cz/rogalew/broom
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undefined behaviour, but it is often used in low-level system code as, e.g., in the Linux list
implementation. In our implementation, we allow pointers to have values outside of the
allocated blocks, but we explicitly track their provenance (i.e., the basis wrt which they are
defined) using the b predicate.

Broom comes with a number of parameters that can be set for the analysis, with the
most important being the following ones:

Solver timeouts: Timeouts of the underlying solver can be set separately for symbolic
execution, widening, and formula simplification. Using a timeout, one can balance between
speed and precision. With a lower timeout, the analysis is faster, but some functions
need not be fully analysed due to an abduction or widening failure. The default timeouts
used in our later presented experiments are 2000ms for the symbolic execution, 200ms for
widening, and 100ms for formula simplification.
Number of loop unfoldings: A limit on the number of loop unfoldings is used to stop the
loop analysis when a fixpoint is not computed within a given number of loop iterations.
Then, either no contract or partial contracts are returned. The default value used in our
experiments is 5.
Abduction strategy: The abduction strategy can be set as follows: In the standard
configuration, it follows the order of rules presented in Sec. 7. The tool also supports
an alternative strategy where the alias-weak/strong rules are used to derive multiple
abduction solutions as discussed in Sect. 7. This may lead to an exponential blow-up in
the number of contracts for particular functions (a lot of them useless) together with a
blowup of the running time. On the other hand, this strategy allows us to fully verify some
of our most complicated code fragments (namely, the intrusive lists discussed below). As
a part of our future research, we would like to study some heuristically-driven application
of this strategy that would not explore so many useless contracts.

Finally, we would like to stress that Broom is now in a stage of a very early prototype,
intended mainly to illustrate the theoretical potential of our technique, with huge space
for performance optimizations. As a primary source of possible optimisations, we see the
way how Broom interacts with the SMT solver (the cost of SMT queries represents a very
significant part of the cost of the entire analysis). One way that we see as highly promising
for optimisations in this direction is to use static pre-evaluation of some SMT queries – if one
can statically evaluate a query, an expensive solver call can be avoided. This can significantly
limit the number of SMT queries and improve the running time. We have already partially
implemented some static pre-evaluation for the φ |ù ε “ ε1 ˚ true queries within match/split
abduction rules, which alone reduced the running time by 25 % at some examples. Further
optimization possibilities then lie, e.g., in incremental solving, caching solver results, and/or
introducing heuristics to decrease the amount of nondeterminism in the abduction rules. As
for the last mentioned possibility, especially in the case of the match/split rules there can
be several candidate predicates ε ÞÑ ζ on the LHS and several candidate predicates ε1 ÞÑ ζ 1

on the RHS, which one needs to consider, and it would be very helpful to have some guidance
in this process.

8.1 Experiments
We evaluate our tool Broom on a set of experiments in which we analyse various fragments of
list manipulating code. Since Broom is in a highly prototypical stage, we do not venture into
analysing large code bases. Instead, we concentrate on shorter but complex code highlighting
what our approach implemented in the tool can handle (and what other tools do typically
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not manage).
The considered code was pre-processed in the following ways: (1) All appearances of the so-

far unsupported constructions &var and var.next were replaced by p_var and p_var->next,
respectively, where p_var = alloca(sizeof(*p_var)). (2) We replaced for loops with
integer bounds by non-deterministic while loops because our abstraction and entailment
are currently very limited when working with integers. Both of the above is planned to
be resolved within our future work. Further, we analysed all the code assuming that heap
allocation always succeeds.

The experiments were run on a machine with an Intel i7-4770 processor with 32 GiB of
memory. The current implementation of Broom uses a single core only. We compare our
results with those of Infer v1.1.016 and Gililan (PLDI’20 version)17, which are the only tools
we are aware of that can analyse at least some of the code we are interested in. We note
that Infer was running with debug information enabled (using the command infer run -
-debug) as we wanted to manually check the obtained contracts. The debug option may
increase the running time of Infer, but, as one can see in Table 1, the running times are not
an issue for Infer.

Table 1 presents a comparison of the results obtained using Broom, Infer, and Gillian on
our collection of list-manipulating code fragments.18 To get the results, Broom was used with
its standard abduction strategy where the alias-weak/alias-strong rules are used only if
no other rule is applicable. For each of the cases, the table gives first the total number of
functions that the benchmark consists of. Next to it, separately for Broom, Infer, and Gillian,
we give the time the tools took for the analysis. Further, we list the number of functions for
which the respective tool produced a non-trivial contract. There are up to three numbers in
the form a{b{c (b or c can be omitted), representing the number of functions for which the
respective tool computes (a) complete contracts, (b) sound but only partial contracts, and
(c) error contracts – i.e., preconditions under which a given function is bound to fail, which
are provided by Gillian only. Finally, we also provide a remark whether the tool reported
some error (or whether it itself hit some internal error). The expected and really obtained
analysis results are encoded as follows (including internal errors of an analyser): OK= no
error found19, DF= double free, ML= memory leak, IE= internal error, PE= internal parsing
error.

We now discuss the individual cases in more detail – when doing so, we concentrate on
comparing the results of Broom with those of Infer that can get somewhat closer to the
results of Broom:

circ-DLL: This example deals with a simple implementation of circular doubly-linked
lists (whose part is, in fact, used as the running example in Fig. 1). The code includes
functions for inserting the first element, inserting another element after an existing one,
and for removing elements. Apart from that there is a higher-level function that inserts
the first element, the second element, and them removes one of them.20 The code contains

16 https://github.com/facebook/infer/releases/tag/v1.1.0
17 https://github.com/GillianPlatform/Gillian/releases/tag/PLDI20
18 All the code is available together with our tool.
19 We note that, as far as our experience reaches, Gillian produces its error contracts whenever there is a

risk of a null-pointer dereference. In many cases, e.g., in the Linux list library, the error summaries
provide a correct result, which, however, does not take into account the fact that the library is designed
such that the appropriate functions are never called with a null argument. At the same time, Gillian
may miss real, higher-level errors present in the code, which were those we expected to be reported. In
such cases, we say in the table in the column for obtained results that the (expected) error was not
found.

20 This function can be viewed as an analysis harness while we were stressing that our analysis does not

https://github.com/facebook/infer/releases/tag/v1.1.0
https://github.com/GillianPlatform/Gillian/releases/tag/PLDI20
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Table 1 Experiments with the standard abduction strategy of Broom and a comparison with
results obtained from Infer and Gillian.

Name Exp. Fncs Broom Infer Gillian
result total T Fncs Res T Fncs Res T Fncs Res

[s] contr [s] contr [s] contr
circ-DLL ML 4 6 4 ML 0.5 1/1 IE 1.2 1/0/2 OK
circ-DLL-err DF 4 6 4 DF 0.5 1/1 IE 1.2 1/0/2 OK
circ-DLL-embedded OK 4 9 4 OK 0.5 1/2 IE 0.6 0 PE
Linux-list-1 ML 11 56 10 ML 1.5 2/3 OK 0.6 0 PE
Linux-list-2 OK 11 42 11 OK 0.7 1/6 IE 0.6 0 PE
Linux-list-2-err ML 11 28 11 ML 0.6 1/6 IE 0.6 0 PE
Linux-list-all OK 23 267 21/2 OK 1.0 7/15 IE 44 8/0/9 OK
intrusive-list OK 15 99 10/5 OK 0.7 4/3 OK 0.6 0 PE
intrusive-list-min OK 9 45 6/2 OK 0.7 1/3 IE 0.6 0 PE
intrusive-list-smoke OK 20 133 10/5 OK 0.9 4/3 OK 0.6 0 PE

no pointer arithmetic nor any other advanced features. It is intended to show that even
in such a case our abduction rules restated wrt [6, 7] can bring some advantage. Namely,
this is a consequence of that our use of the per-field separation allows us to cover more
shapes of the data structures within a single contract. Indeed, as discussed already in
Sect. 2, it produces a single contract for insertion into a cyclic list with one element and
with more elements. Infer cannot use the same reasoning and since it primarily favours
scalability, it will come with a contract for inserting into lists with at least two elements.
Consequently, it then fails to analyse the top level function. As for the memory leak
reported by Broom, it is a real error caused by that one of the introduced elements is not
deleted.
circ-DLL-err is a variation on circ-DLL into which we introduced a double-free error.
circ-DLL-embedded is another variation on circ-DLL in which the list implementation
from circ-DLL is used as a basis of a simple intrusive list in which the list structure with
the linking fields from circ-DLL is nested into a larger data structure.
Linux-list-1 is our first experiment with intrusive lists in the form they are used in the
Linux kernel (for some more impression about Linux lists, see Fig. 5). This particular
code comes in particular from the benchmark suite of the Predator analyser [16].21 The
code contains multiple different functions for initialisation of the lists, for inserting into
it, and for traversing the lists. The top-level code that is present then creates a circular
Linux list nested into another circular Linux list. As can be from Fig. 5, the code involves
pointer arithmetic (even in a form not supported by the C standard), and the use of
nested structures leads to an application of our block splitting rules. The only function
that Broom fails to handle is the function for traversing the entire list – the reason is
that our so-far quite simple implementation of list abstraction fails in this case, and the
otherwise correct computation diverges (which we, however, believe to be solvable in the

need such a harness. Here, we would like to stress that this indeed holds – none of the considered tools
needs (nor in any way uses) the top-level function to be able to analyze the other functions. We use
the harness as a model of any higher-level code using the list. Moreover, it allows us to show that the
contracts that got generated for the particular functions are not complete enough, which shows up in
the inability of the appropriate tool to analyse the higher-level functions.

21We note here that Predator can analyse the code, but – unlike Broom, Infer, or Gillian – it entirely
relies on that the code is closed, i.e., it comes with a main function and has no further inputs.
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list_head

next

list_head list_head

prev

next next

prev prev

my_item my_item

offset

y

head x
// moving to the next item
y = (struct my_item *)(

(char *)x->next -
offsetof(struct my_item,

link)
);

// testing, if it is head
if (head != &y->link) ...

Figure 5 An illustration of the Linux list data structure. The gray boxes represent the linking
structure list_head that is nested into a user-defined structure my_item, whose instances the user
needs to be linked into a list. List-manipulating functions know nothing about the user-defined
structures: they work with the linking structures only. The user data are accessible through pointer
arithmetic only. Note that the head node of the list does not have the user-defined envelope. The
code shown on the right illustrates how the list is traversed. Note also that when one passes from the
last element pointed by x to its successor (hence back to the head), the involved pointer arithmetic
causes that the pointer y will be pointing out of the allocated space, which is, however, correct since
it will never be dereferenced (just used for further pointer arithmetic).

close future – indeed, we can get fully inspired by the abstraction used in Predator; the
concrete list abstraction used is not specific for our approach). The memory leak reported
is a real one – it comes from the top-level function that does not destroy the list.
Linux-list-2 is a variation on the above case. It contains functions for an initialisation
of a Linux list, inserting elements at its tail, and for deleting the elements. The top-level
function initializes the list, inserts several elements, traverses the elements one by one,
and deletes them.
Linux-list-2-err is a variation on Linux-list-2 where one of the inserted elements is
not deleted and hence a memory leak is caused.
Linux-list-all contains the entire collection of functions defined for working with Linux
lists without any top-level function. The collection includes functions for different kinds
of insertion of elements, removal of elements, swapping of elements (both within a list and
between lists), moving to the end or to another list, rotation, splicing, etc. We can see
that Broom produced complete contracts for many more of the functions. The contracts
from Infer often do not cover cases of lists of length 0 or 1. In one of the remaining cases,
Infer produced no result; and for the last one, it produced a partial result (that appears
not to cover one of the branches of the function).
intrusive-list is the intrusive list library22. See Fig. 6 for an illustration how the
data structure and the code looks like. Apart from features seen already above (pointer
arithmetic and a need to deal with linking fields embedded into larger structures with
a need to apply block splitting), the code contains also bit-masking. In particular, one
bit of the next pointers is used to mark pointers back to the head node, thus effectively
marking the “end” of the circular list. A further intricacy of the code is that the insertion
into the list touches three nodes that may be different but that may also collapse into
a single node. In the case of the Linux list, we have mentioned a similar situation but
with two nodes only. Having three nodes that possibly collapse is not only beyond the

22 Described in the Patrick Wyatt’s blog post “Avoiding game crashes related to linked lists”, http://
www.codeofhonor.com/blog/avoiding-game-crashes-related-to-linked-lists, on September 9th,
2012, and implemented in https://github.com/robbiev/coh-linkedlist.

http://www.codeofhonor.com/blog/avoiding-game-crashes-related-to-linked-lists
http://www.codeofhonor.com/blog/avoiding-game-crashes-related-to-linked-lists
https://github.com/robbiev/coh-linkedlist
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// offset from
// a node pointer
// to a link structure
size_t off = (size_t) x -

((size_t)x->prev->next
& ~1);

// link of the next node
y = (link *)(

(size_t)lnk->next
& ~1 + off

);

Figure 6 An illustration of the intrusive list data structure. The code fragment shown to the
right of the figure gives the code used in the function link_get_next to obtain the linking structure
of the next node. Note the use of the pointer arithmetic including bit-masking (to clear the bit
whose bit-masking on the next pointers is used to denote the sentinel node of the list).

capabilities of Infer but also Broom if it is used with its basic abduction strategy. This
is the reason why some of the contracts produced by Broom are also not complete in
this case (e.g., effectively allowing insertion into a list with more than one node only).
We will, however, show below that Broom can resolve the problem when using more
power of the alias-weak/alias-strong rules, though for the price of quite increased
runtime requirements. As for Infer, it is clearly visible that its coverage of the functions is
much weaker (interestingly, we noticed that it completely ignored the bit-masking when
deriving some of the contracts).
intrusive-list-min contains a subset of the functions considered above (for initializing
a list, inserting an element, removing an element) together with a top-level function
utilising these functions. Essentially, the intention here was to create an as small as
possible example of the given kind already problematic for Infer. Again, even Broom
cannot handle it fully under its standard abduction strategy.
intrusive-list-smoke contains the entire intrusive list library from above together
with several top-level functions provided by the author to test the library. The tests use
structures modelling some personal records to be linked into a list via the embedded
linking structures. They create a few such records, link them into a list, traverse them
(forward/backward), and destroy the list.

We now proceed to our experiments with the alias-weak/alias-strong rules. As we
have said above, these rules involve a lot of guessing. Hence, if they are used to explore various
possible abduction solutions based on different aliasing scenarios, the running time may
grow considerably, but it may resolve situations that are otherwise not resolved. To confirm
this, we have applied Broom with the strategy of using the alias-weak/alias-strong rules
to explore different possible abduction solutions with different possible aliasing scenarios
on the intrusive list case study. The results are shown in Table 2. The first row concerns
the experiment intrusive-list-min discussed already above. At that time, we noted that
Broom could not fully handle some of the intrusive list functions since they required it
to merge three possibly independent nodes into a single one. As can be seen in Table 2,
with the help of the alias-weak/alias-strong rules, Broom does fully manage even this
problem (though the runtime grew a lot). The next two rows – intrusive-list-min-2
and intrusive-list-min-3 – are variations on the previous case where we intentionally
introduced some bugs, which were correctly discovered. Finally, the last row shows a
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Table 2 Experiments with alias-weak/alias-strong in Broom.

Name Expected result Fncs total T [m] Funcs contr Res
intrusive-list-min no error 9 46 9 no error found
intrusive-list-min-2 memory leak 9 47 9 memory leak
intrusive-list-min-3 double free 9 49 9 double free
intrusive-list-smoke no error 20 505 16 no error found

significant improvement even for the entire library of intrusive lists together with its “smoke”
tests.

To sum up, we believe that, despite the highly prototypical nature of Broom, the presented
experiments show that the proposed approach is indeed capable of handling code that is
beyond the capabilities of other currently existing approaches.

9 Conclusion and Future Works

We have presented a new SL-based bi-abduction analysis capable of analysing fragments of
code that manipulates with various forms of dynamic linked lists implemented using advanced
low-level pointer operations. This includes operations such as pointer arithmetic, bit-masking
on pointers, block operations, dealing with blocks of in-advance-unknown size, splitting them
into fields of not-fixed size, which can then be merged again, etc. Although our approach
builds on a body of previous research, especially, [2, 6, 7, 16], it extends it significantly to
handle the mentioned features. In particular, to be able to handle the considered kind of
code, we build on a flavor of SL that uses a per-field separating conjunction instead of a
per-object separating conjunction, and we also introduce a number of new abduction rules
that allow us to deal with pointer arithmetic, block splitting and merging, and so on. We
have implemented the proposed approach in a prototype tool Broom. Despite Broom is a
very early prototype, our experiments with it allowed us to handle code fragments that are –
to the best of our knowledge – out of the capabilities of currently existing analysers.

We believe that there is a lot of space for further improvements of our results in the future.
First, we would like to significantly optimize Broom to make it applicable to larger code bases.
Here, we are thinking of applying many of the low-level optimisations applied in other tools of
a similar kind (replacing as many as possible of SMT queries by answering them using simple
static rules, using incremental SMT solving, caching as much information as possible, etc.).
Next, we would like to explore possibilities how to reduce the amount of non-determinism
present in the abduction when the alias-weak/strong rules are applied. The goal is to
preserve as much as possible of the power of these rules but reduce the cost of applying
them. Perhaps, we could rely here partially on some pre-defined heuristics and partially
even on some techniques from machine learning, which are now being applied even in SMT
solvers and elsewhere. Next, we would like to significantly improve our implementation of
list abstractions (inspired, e.g., by [16]) as well as numerical abstractions. Last but not least,
we would also like to think of adding support for other classes of dynamic data structures
than lists.

References

1 Andrew W. Appel. Program Logics - for Certified Compilers. Cambridge University Press,
2014.



L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger 19:29

2 J. Berdine, C. Calcagno, B. Cook, D. Distefano, P.W. O’Hearn, T. Wies, and H. Yang. Shape
Analysis for Composite Data Structures. In Proc. of CAV’07, volume 4590 of LNCS. Springer,
2007.

3 A. Bouajjani, C. Drăgoi, C. Enea, and M. Sighireanu. Accurate Invariant Checking for
Programs Manipulating Lists and Arrays with Infinite Data. In Proc. of ATVA’12, volume
7561 of LNCS. Springer, 2012.

4 C. Calcagno and D. Distefano. Infer: An Automatic Program Verifier for Memory Safety of C
Programs. In Proc. of NFM’11, volume 6617 of LNCS. Springer, 2011.

5 C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Beyond Reachability: Shape Abstraction
in the Presence of Pointer Arithmetic. In Proc. of SAS’06, volume 4134 of LNCS. Springer,
2006.

6 C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional Shape Analysis by Means
of Bi-Abduction. In Proc. of POPL’09. ACM, 2009.

7 C. Calcagno, D. Distefano, P. O’Hearn, and H. Yang. Compositional Shape Analysis by Means
of Bi-Abduction. Journal of the ACM, 58(6), 2011.

8 Cristiano Calcagno, Peter W. O’Hearn, and Hongseok Yang. Local action and abstract
separation logic. In LICS, pages 366–378. IEEE Computer Society, 2007.

9 B.-Y.E. Chang, X. Rival, and G.C. Necula. Shape Analysis with Structural Invariant Checkers.
In Proc. of SAS’07, volume 4634 of LNCS. Springer, 2007.

10 W.-N. Chin, C. David, H.H. Nguyen, and S. Qin. Automated Verification of Shape, Size
and Bag Properties via User-defined Predicates in Separation Logic. Science of Computer
Programming, 77(9), 2012.

11 C. Curry, Q. Loc Le, and S. Qin. Bi-Abductive Inference for Shape and Ordering Properties.
In Proc. of ICECCS’19. IEEE, 2019.

12 L.M. de Moura and N. Bjørner. Z3: An Efficient SMT Solver. In Proc. of TACAS’08, volume
4963 of LNCS. Springer, 2008.

13 Stéphane Demri, Étienne Lozes, and Alessio Mansutti. The effects of adding reachability
predicates in propositional separation logic. In FoSSaCS, volume 10803 of Lecture Notes in
Computer Science, pages 476–493. Springer, 2018.

14 C. Drăgoi, C. Enea, and M. Sighireanu. Local Shape Analysis for Overlaid Data Structures.
In Proc. of SAS’13, volume 7935 of LNCS. Springer, 2013.

15 K. Dudka, P. Peringer, and T. Vojnar. An Easy to Use Infrastructure for Building Static
Analysis Tools. In Proc. of EUROCAST’11, volume 6927 of LNCS. Springer, 2011.

16 K. Dudka, P. Peringer, and T. Vojnar. Byte-Precise Verification of Low-Level List Manipulation.
In Proc. of SAS’13, volume 7935 of LNCS. Springer, 2013.

17 M. Echenim, R. Iosif, and N. Peltier. Unifying Decidable Entailments in Separation Logic
with Inductive Definitions. In Proc. of CADE’21, volume 12699 of LNCS. Springer, 2021.

18 C. Enea, O. Lengál, M. Sighireanu, and T. Vojnar. Compositional Entailment Checking for a
Fragment of Separation Logic. In Proc. of APLAS’14, volume 8858 of LNCS. Springer, 2014.

19 B. Fang and M. Sighireanu. Hierarchical Shape Abstraction for Analysis of Free List Memory
Allocators. In Proc. of LOPSTR’16, volume 10184 of LNCS. Springer, 2016.

20 J. Heinen, T. Noll, and S. Rieger. Juggrnaut: Graph Grammar Abstraction for Unbounded
Heap Structures. In Proc. of TSS’09, volume 266 of ENTCS. Elsevier, 2010.

21 L. Holík, O. Lengál, J. Šimáček, A. Rogalewicz, and T. Vojnar. Fully Automated Shape
Analysis Based on Forest Automata. In Proc. of CAV’13, volume 8044 of LNCS. Springer,
2013.

22 L. Holík, P. Peringer, A. Rogalewicz, V. Šoková, T. Vojnar, and F. Zuleger. Low-Level
Bi-Abduction, 2022. arXiv:2205.02590.

23 R. Iosif, A. Rogalewicz, and T. Vojnar. Deciding Entailments in Inductive Separation Logic
with Tree Automata. In Proc. of ATVA’14, volume 8837 of LNCS. Springer, 2014.

24 S. Ishtiaq and P.W. O’Hearn. Separation and Information Hiding. In Proc. of POPL’01. ACM,
2001.

ECOOP 2022

http://arxiv.org/abs/2205.02590


19:30 Low-Level Bi-Abduction

25 J.L. Jensen, M.E. Jørgensen, M.I. Schwartzbach, and N. Klarlund. Automatic Verification of
Pointer Programs Using Monadic Second-order Logic. In Proc. of PLDI’97. ACM, 1997.

26 J. Katelaan and F. Zuleger. Beyond Symbolic Heaps: Deciding Separation Logic With Inductive
Definitions. In Proc. of LPAR’11, volume 73 of EPiC Series in Computing. EasyChair, 2020.

27 Q. Loc Le. Compositional Satisfiability Solving in Separation Logic. In Proc. of VMCAI’21,
volume 12597 of LNCS. Springer, 2021.

28 Q. Loc Le, C. Gherghina, S. Qin, and W.-N. Chin. Shape Analysis via Second-Order Bi-
Abduction. In Proc. of CAV’14, volume 8559 of LNCS. Springer, 2014.

29 P. Maksimovic, S.-É. Ayoun, J.F. Santos, and P. Gardner. Gillian, Part II: Real-World
Verification for JavaScript and C. In Proc. of CAV’21, volume 12760 of LNCS. Springer, 2021.

30 P. Maksimovic, J.F. Santos, S.-É. Ayoun, and P. Gardner. Gillian: A Multi-Language Platform
for Unified Symbolic Analysis, 2021. arXiv:2105.14769.

31 V. Malik, M. Hruška, P. Schrammel, and T. Vojnar. Template-Based Verification of Heap-
Manipulating Programs. In Proc. of FMCAD’18. IEEE, 2018.

32 Jens Pagel and Florian Zuleger. Strong-separation logic. In ESOP, volume 12648 of Lecture
Notes in Computer Science, pages 664–692. Springer, 2021.

33 J.C. Reynolds. Separation Logic: A Logic for Shared Mutable Data Structures. In Proc. of
LICS’02. IEEE, 2002.

34 M. Sagiv, T. Reps, and R. Wilhelm. Parametric Shape Analysis via 3-Valued Logic. ACM
Transactions on Programming Languages and Systems, 24(3), 2002.

35 J.F. Santos, P. Maksimovic, S.-É. Ayoun, and P. Gardner. Gillian: Compositional Symbolic
Execution for All, 2020. arXiv:2001.05059.

36 J.F. Santos, P. Maksimovic, S.-É. Ayoun, and P. Gardner. Gillian, Part I: A Multi-Language
Platform for Symbolic Execution. In Proc. of PLDI’20. ACM, 2020.

37 T. Wies, V. Kuncak, K. Zee, A. Podelski, and M. Rinard. On Verifying Complex Properties
using Symbolic Shape Analysis. In Proc. of HAV’07, 2007.

38 H. Yang, O. Lee, J. Berdine, C. Calcagno, B. Cook, D. Distefano, and P.W. O’Hearn. Scalable
Shape Analysis for Systems Code. In Proc. of CAV’08, volume 5123 of LNCS. Springer, 2008.

39 K. Zee, V. Kuncak, and M.C. Rinard. Full Functional Verification of Linked Data Structures.
In Proc. of PLDI’08. ACM, 2008.

http://arxiv.org/abs/2105.14769
http://arxiv.org/abs/2001.05059

	1 Introduction
	2 An Illustration of the Approach on an Example
	3 Memory Model
	4 A Low-level Language and Its Operational Semantics
	5 Separation Logic
	6 Contracts of Functions and Their Generation
	6.1 Contracts of Functions
	6.2 Contracts for Basic Statements
	6.3 Contract Generation

	7 Bi-Abduction Procedure
	8 Implementation and Experimental Evaluation
	8.1 Experiments

	9 Conclusion and Future Works

