
PEDroid: Automatically Extracting Patches from
Android App Updates
Hehao Li #

Shanghai Jiao Tong University, China

Yizhuo Wang #

Shanghai Jiao Tong University, China

Yiwei Zhang #

Shanghai Jiao Tong University, China

Juanru Li # Ñ

Shanghai Jiao Tong University, China

Dawu Gu #

Shanghai Jiao Tong University, China

Abstract
Identifying and analyzing code patches is a common practice to not only understand existing bugs
but also help find and fix similar bugs in new projects. Most patch analysis techniques aim at
open-source projects, in which the differentials of source code are easily identified, and some extra
information such as code commit logs could be leveraged to help find and locate patches. The task,
however, becomes challenging when source code as well as development logs are lacking. A typical
scenario is to discover patches in an updated Android app, which requires bytecode-level analysis.
In this paper, we propose an approach to automatically identify and extract patches from updated
Android apps by comparing the updated versions and their predecessors. Given two Android apps
(original and updated versions), our approach first identifies identical and modified methods by
similarity comparison through code features and app structures. Then, it compares these modified
methods with their original implementations in the original app, and detects whether a patch is
applied to the modified method by analyzing the difference in internal semantics. We implemented
PEDroid, a prototype patch extraction tool against Android apps, and evaluated it with a set of
popular open-source apps and a set of real-world apps from different Android vendors. PEDroid
identifies 28 of the 36 known patches in the former, and successfully analyzes 568 real-world app
updates in the latter, among which 94.37% of updates could be completed within 20 minutes.

2012 ACM Subject Classification Software and its engineering → Software evolution

Keywords and phrases Diffing, Patch Identification, Android App Analysis, App Evolution

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.21

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.24

Funding This work was supported by the National Key Research and Development Program of
China (No.2020AAA0107803).

Acknowledgements We are grateful to our reviewers for their valuable support and suggestions.

1 Introduction

Android apps nowadays are published at an unprecedented rate and many developers
frequently update their apps for a variety of reasons such as helping maintain the robustness
or introducing more competitive features. An update usually leads to multiple modifications
of the app, some of which are used to improve the functionality or performance, while a
significant type of modifications is to fix bugs in apps. This type of modifications, also known
as patches, reflect how the developers fix the bug. Researchers not only learn the causes

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

© Hehao Li, Yizhuo Wang, Yiwei Zhang, Juanru Li, and Dawu Gu;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 21; pp. 21:1–21:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lihehao@sjtu.edu.cn
mailto:mr.wang-yz@sjtu.edu.cn
mailto:yyyyyyw@sjtu.edu.cn
mailto:jarod@sjtu.edu.cn
https://sjtu.lijuanru.com/
mailto:dwgu@sjtu.edu.cn
https://doi.org/10.4230/LIPIcs.ECOOP.2022.21
https://doi.org/10.4230/DARTS.8.2.24
https://doi.org/10.4230/DARTS.8.2.24
https://doi.org/10.4230/DARTS.8.2.24
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 PEDroid: Automatically Extracting Patches from Android App Updates

of bugs but also discover and fix similar bugs [19, 23, 22] in other apps through analyzing
the information carried by patches. However, it is often unclear for analysts how Android
app developers repair existing defects for lack of detailed commit logs, especially for security
participants who do not have access to the source code. Thus, the gap between the updated
apps and patches hinders the analysis of patches.

To the best of our knowledge, few approaches effectively identify patches against Android
updates (i.e., the original and updated versions of an app). A common and simple way
to retrieve existing patches is crawling from bug-tracking systems of open-source projects,
such as GitHub Issue Tracker [16], where the detailed commit messages or bug reports are
available to determine whether the modified methods contain patches. This approach does
not work on closed-source apps that have less information to explain the reasons for updates.
The descriptions about the updates of closed-source apps often only claim what feature has
been added or some bugs have been repaired, but do not further explain the type, cause,
and repair information of the bugs. On the other hand, compared with the open-source
project, the closed-source app has a much larger amount and accounts for the majority of
Android apps. As for binary-level analysis, SPAIN [45] focuses on patches in C binaries,
but the huge difference between procedure-oriented and object-oriented program languages
makes it unable to apply on Android apps.

Another problem to identify patches at bytecode level is how to locate modified methods
in updates. Previous works [45, 38] of patch analysis on C binary utilize BinDiff [7] to
achieve the goal. However, there exist few accurate diffing tools on bytecode of Android apps,
due to the popularity of code obfuscation (e.g., using ProGuard [30] to protect bytecode).
Most works only implement coarse-grained similarity comparison [6, 49, 39, 47] cross apps,
which cannot locate the modified methods between two versions of an app, while other
works [20, 43, 33] link the original methods with their updated versions by method names
which cannot resist obfuscation techniques.

To address the above problems, in this paper, we propose a bytecode-level patch extraction
approach, named PEDroid, to automatically locate the patches in updates of Android apps.
The workflow of PEDroid consists of two phases: 1) locating the modified methods in two
versions of an app, and 2) identifying patches among the modified methods. In phase 1,
given the original and updated versions of an Android app, PEDroid first calculates the
method-level matching relations based on features extracted from bytecode and the structure
of the app. The method-level matching relation refers to the two versions of the same method,
including identical and modified methods. With the matching relations, it filters out the
identical methods whose features are identical and focuses on the modified methods. To
identify patches in phase 2, we propose an effective approach to determine the patches from
two aspects: 1) the call sites of the modified methods, and 2) the difference in internal
semantics. In particular, PEDroid analyzes the call sites of the modified methods using a
static taint analysis to check whether the methods use external values (i.e., external inputs
or results from other methods). Then, it compares the internal semantics of the two versions
of the modified methods through aligning the same operations of external values within the
two methods and analyzing the modification related to these operations. Finally, PEDroid
identifies the patches whose modification is used to fix the processing logic before these
operations or handle the errors generated by them.

We evaluated PEDroid on two datasets of Android apps: the first set contains 13
updates of popular open-source apps, and the second one contains 568 real-world updates.
We first tested PEDroid on the open-source dataset to evaluate its effectiveness. PEDroid
achieves a recall of 92% in differential analysis, and successfully identifies 28 of 36 patches
in patch identification. The results show that our approach effectively locates the modified
methods and identifies patches. Then, PEDroid ran on the second dataset and successfully

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:3

extracted 98,591 patches. Through a further manual analysis, we confirmed several types of
patches including security check addition, date usage correcting, error handling, etc. For the
time cost, 63.91% of the updates were analyzed within 5 minutes, 83.98% were completed
within 10 minutes, and 94.37% were completed within 20 minutes. It shows that PEDroid
is capable of discovering rich types of patches in real-world apps.

In summary, our work includes the following contributions:
We propose a novel approach to extract patches from the neighboring versions of Android
apps, and implement PEDroid based on the approach, which labels the identical and
modified methods in given APK files, and then identifies patches among all modified
methods. To the best of our knowledge, PEDroid is the first work that extracts patches
from updates of close-sourced Android apps.
Due to the lack of a standard benchmark to evaluate the accuracy of differential analysis
and patch identification, we collected a dataset with 13 updates of 6 popular open-source
apps, which contains 36 patches and 47 non-bugfix updates. The dataset can be used as
a benchmark for future works to evaluate the performance of patch extraction.
We also evaluate the applicability of PEDroid on 568 real-world app updates. 98,591
patches are discovered by PEDroid, including various types (e.g. adding security checks,
correcting data usage). All updates are successfully analyzed and 94.37% can be completed
within 20 minutes.

2 Related Works

2.1 Diffing in Android
Diffing is a common technique to compare the difference between two programs. There
are numerous works to diff two versions of a program at the source code level. Git-diff
tool [11] defaults input is sequential and cannot handle the changes in text order, for example,
the different order of methods in a class between compilation. Furthermore, it cannot
resist the broadly-used renaming obfuscation (e.g., ProGuard[30]) for sensitiveness to all
characters in the text. GumTree [9] diffs two versions of abstract syntax tree (AST) of a
single Java source code file and considers the different order. However, it provides only a
fine-grained diffing between two class files but no method-level matching relations on apps.
To retrieve matching relations, some works [32, 33, 43] link two versions of a method by
defined patterns, and involves method names in patterns or similarity comparison. But it
cannot either handle changes that do not follow these patterns or deal with bytecode with
little symbolic information. Schäfer et al. [31] propose an approach to extract matching
relations of methods in framework by their usage (e.g. calling and extension) in apps, which
builds on the framework or test cases provided by developers. But for all methods in apps,
a large proportion will be ignored by the approach. Therefore, these existing diffing tools
cannot meet our requirements to locate the modified methods on bytecode.

Apart from these diffing tools, there are many bytecode-level approaches to detect
similarity between two Android apps. Many previous works only extract coarse-grained
features from code to resist obfuscation. For example, only method signatures are extracted
as code features in several works [6, 49, 39, 47], which makes them unable to discover the
modification within a method. To achieve the goal of comparing the similarity at the method
level, SimiDroid [20] defaults the two methods with the same signatures (i.e., class name,
method name, parameter and return types) as matched methods. Hence, the approach cannot
resist renaming obfuscation. Another similarity comparison technique [8] only focusing on
single methods also obtains inaccurate results. For example, method a and b of class A in the
updated version are matched with method b of class B and method c of class C in the original
version. Therefore, a more precise approach to matching at the method level is necessary.

ECOOP 2022

21:4 PEDroid: Automatically Extracting Patches from Android App Updates

2.2 Patch Identification
Most existing works on patch analysis focus on open-source projects. The keyword-based
approach is the most common way to identify patches, and they collect patches directly from
open-source project repositories by parsing reports with predefined keywords (e.g., bug, error
and fault) in their issue tracking systems [26, 24, 37, 21, 17, 40]. Different from open source
projects that provide formatted and exact code update information, released apps usually
do not provide detailed descriptions about changed methods. Instead, they just give some
brief comments about update information1 or even nothing [29]. Hence, it is hard to locate
relevant code snippets just by these text descriptions. In addition, Xinda Wang et al. [38]
adopt a matching learning-based technique to identify security patches in open-source C
projects. They conclude basic, syntactic, and semantic features of changes and train models
by open-source patch datasets. However, due to the commercial competition between apps
and the prevention of attackers carrying out attacks, few developers open security issues to
promote research and analysis. Therefore, the lack of datasets makes it difficult to implement
effectively on closed-source Android apps.

As for previous efforts at binary level, Xu et al. [44] generate function signatures for known
patches to match, which is unlikely to discover unknown patches. SPAIN [45] identifies patches
based on the heuristic that patches are less likely to introduce new semantics than other
modifications, and they use the difference of registers, flags, and memory between before and
after code snippets to represent the semantics. However, since the object-oriented program
language (e.g., Java) is used, most registers in Android apps point to object references, and
operations are usually implemented by API or method invocation instead of calculation.
Therefore, the semantics of Android bytecode cannot be represented by numerical differences
and such an approach is inapplicable in Android apps. To our best knowledge, there is no
effective way to identify patches on Android apps.

3 Overview

The goal of our work is to understand patches and the corresponding bugs, and automatically
extract patches from Android app updates. While there are a variety of ways to do so, we seek
to design an applicable, automated and systematic approach. In this section, we first discuss
various challenges we need to solve (Section 3.1), then give corresponding solutions against
these challenges (Section 3.2), and finally describe the overview of our tool (Section 3.3).

3.1 Challenges
There will be a number of challenges in order to achieve our goal and these include:

Challenge 1. How to obtain code features. In order to retrieve matching relations, we first
calculate code feature similarity. One of the most used code features between two version
apps is the sequences of instructions, which describes the project updates by comparing
the text line by line [11]. Another common code feature is method signature [20, 43, 33].
However, both the two features could not be applied to represent Android bytecode due to
the compilers, obfuscators and even developer customization. Hence, only code order or the
method signatures is not feasible in our work. Therefore, we have to first determine how to
retrieve the code features.

1 App developers usually describe the app update briefly (e.g., “Fixed some bugs”) in the WHAT’S NEW
section of a mobile app homepage.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:5

Challenge 2. How to retrieve the matching relations. Having the method features,
the next step is to retrieve the matching relations to locate the methods that are of our
interest. Since the patches are usually used to update apps, we focus on the modified
methods. Unfortunately, existing studies could not retrieve matching relations at the method
level concretely. Some works only detect re-used components (e.g., third-party library) by
coarse-fine similarity comparison [6, 49, 39, 47] or retrieve specific matched methods by
patterns and method name [20, 43, 33]. Hence, a more precise approach to matching at the
method level is necessary.

Challenge 3. How to identify patches in modified methods. Having obtained the modified
methods, we still need to further identify the patches. Since the lack of commit logs and
open-source databases, the existing works [26, 24, 37, 21, 17, 40] cannot be applied to
Android updates. And other approaches are also inapplicable because of the huge difference
between procedure-oriented language and object-oriented program languages [45] or the aim
to discover specific patches against our purpose [44]. Hence, how to identify the patches
from modified methods is another challenge.

3.2 Solutions
As previously mentioned, if we intend to perform patch identification in Android apps, we
have to face lots of challenges. Fortunately, we have obtained the following insights to address
the above challenges.

Solution 1. Extracting features after removing noisy changes. Instead of calculating
similarity directly on bytecode through code instruction sequences and method signatures,
we combine multiple strategies to extract stable code features which eliminate the noisy
changes caused by obfuscation and compilation. Specifically, two steps are involved. First,
we replace volatile identifiers with specific labels to resist renaming obfuscation. Second, we
divide bytecode into different code units and sort order-independent units, including basic
blocks2, fields and methods, to normalize the order.

Solution 2. Matching guided by positional relationships. We observed that most of the
code is identical between app updates, especially for the updates with small version upgrades.
Thus, to pinpoint the matching relations and further locate the modified methods, our key
insight is to utilize the positional relationships in the program structure to assist in matching
the modified code. Specifically, we first locate packages containing identical code features in
different versions as matched packages. And then we utilize the package hierarchy 3 of the
matched packages and similarity comparison to determine the matching relations of other
packages. All matched packages are used to further determine the matching relations of
classes and methods. Finally, those matched methods with different features are considered
as modified methods.

Solution 3. Identifying patches by pinpointing buggy operation. Most unexpected beha-
viors of the methods are caused by the incorrect handle of the input, and the corresponding
patches in the updated version are used to fix incorrect usage or handle the errors. Especially,

2 a straight-line code sequence with no branches in except to the entry and no branches out except at the
exit

3 a tree of packages and their subpackages. It is like directory structures.

ECOOP 2022

21:6 PEDroid: Automatically Extracting Patches from Android App Updates

the input comes from not only external inputs (e.g., network I/O and user interaction) but
also unexpected results returned from other methods. We call them external values. Our
insight to identifying the patch is that a patch usually fixes the processing logic before the
buggy operation or handles the errors generated by the buggy operation, while the target of
operation tends to involve external values. Thus, we try to locate the buggy operation to
identify patches. To achieve it, we first analyze the usage of the modified methods to check
whether they use the external values, then align the original operations of external values
within the two methods, and finally determine the patch by specific semantic changes. Such
changes are indicated by the original operations which have different dependencies between
two versions or result in extra error handling (i.e., exit or exception capture) of the method,
and the operation is pinpointed as a buggy operation.

Example. To better illustrate the insight used in Solution 3, we give the motivating
examples in Figure 1. The example in Figure 1a fixes the processing logic for the input by
adding checks. In this case, the parameter path is the input of the method, and it usually
accepts an external value when invoked, so Line 4 which indirectly depends on path is an
operation of external values. Since the dependencies of Line 4 are modified, the operation is
pinpointed as a buggy operation as our insight. Similarly, another example in Figure 1b is
identified for its handling the exception generated by the deleting operation in the patch
code, which is different from the original version.

private void patch1(String path) {
File file = new File(path);
if(file.exists()) {

file.delete();
}else{

Log.e("Tag", "Cannot find target file.");
}

}

1

2

3 +

4

5 +

6 +

7 +

8

(a) Fix processing logic before a buggy operation.

private void patch2(String path) {
File file = new File(path);
try {

file.delete();
} catch (Exception e){

Log.e("Tag", "Cannot delete target file.");
}

}

1

2

3 +

4

5 +

6 +

7 +

8

(b) Handle errors generated by a buggy operation.

Figure 1 Examples of two types of patches. Statements with green background are added snippets
in updated version.

3.3 Framework Overview

Based on the solutions to the three challenges, we design PEDroid, the first patch extraction
tool on Android updates. Figure 2 depicts the workflow of PEDroid, which consists of two
phases:

1. Differential analysis. PEDroid first establishes the structure of apps and extracts
features of disassembly code (in Section 4.1). Then, it uses the package as the unit to
match between the two versions of the app (in Section 4.2), and finally extracts the
matching relations at the method level (in Section 4.3).

2. Patch identification. PEDroid extracts the modified methods in the results of
differential analysis, and checks whether it is affected by external values at each call site
(in Section 5.1). It then locates the operation of the external values within the method
and analyzes the modification related to the operations. PEDroid reports the patch if
the modification is used to fix the processing logic or handle the errors (in Section 5.2).

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:7

Structure Construction
& Feature Extraction

Package-level
Matching

Matching Relation
Extraction

Call Site AnalysisInternal Semantic Comparison

original version

updated version

patch reports

Data Flow Analysis

original version

updated version

Dependency Analysis

Call Site Matching

Class-level
Matching

Method-level
Matching

Basic Block Matching

caller

call site info Taint AnalysisPatch
Identifying

Phase 1: Differential Analysis

Phase 2: Patch Identification

tainted
states

Figure 2 The workflow of PEDroid.

4 Differential Analysis

In this section, we present the design principles of differential analysis, as well as the adopted
techniques. PEDroid retrieves method-level matching relations between APK updates
through three steps: structure construction and feature extraction, package-level matching,
and matching relation extraction.

4.1 Structure Construction & Feature Extraction
The first step of differential analysis is to disassemble the Android app and establish the app
structure, including package hierarchy, classes, and code elements in classes (e.g., methods).
First, PEDroid builds the relations among packages and classes by the directory structures
of the disassembled app, where directories correspond to packages and files correspond to
classes. Then, it parses the file content and extracts details of each class, such as fields and
methods. Especially, since many nested classes (e.g., inner classes, local classes, anonymous
classes, and lambda expressions) contain less information, matching them respectively will
lead to false positives. To eliminate it, PEDroid recovers the nested relations and treats them
as subunits of the classes they belong to. In detail, PEDroid retrieves it through system
annotations from the decompiled class files, i.e., Ldalvik/annotation/MemberClasses,
Ldalvik/annotation/EnclosingClass, Ldalvik/annotation/EnclosingMethod.

After app structure construction, PEDroid builds code features from the bottom up
according to the structure. Specifically, we adopt two strategies to make the feature stable.
1. Replacing volatile identifiers.

To remove the volatile parts in code, we use the specific labels to fuzz types and the
instructions. First, because types contain volatile identifiers, PEDroid only retains the
primitive types and framework types, and replaces others by label X to remove the noise

Listing 1 Example for fuzzy type. Landroid/content/Context is a framework-type and V (i.e.,
void) is a primitive type. Lcom/text/example is replaced by X.
Original : <init >(Landroid / content / Context ;Lcom/test/ example ;)V
Fuzzy : <init >(Landroid / content / Context ;X)V

ECOOP 2022

21:8 PEDroid: Automatically Extracting Patches from Android App Updates

Table 1 Rules for fuzzy instruction.

Type Label Original instruction Fuzzy instruction
Register R mov v0, v1 mov R, R
Label L if-eqz :const_0 if-eqz :L
Resouce ID N const v0, 0x7f112222 const R, N
Method/Class
(except Android API) X invoke-virtual p0, Lcom/test/example;->call()V invoke-virtual R, X

brought by the identifiers, when extracting types involving some code elements such as
fields. In this way, PEDroid converts them into the fuzzy type. For example, List 1 gives
an example of fuzz types in a method signature. For instructions, PEDroid replaces
the different types of the operand with the different labels, as shown in Table 1. Each
processed instruction is called fuzzy instruction.
In detail, PEDroid extracts the following feature elements for different code units:

Basic Block. The feature of a basic block consists of all the fuzzy instructions in the
basic block.
Method. The feature of a method includes method access flags, fuzzy types of all
parameters, and the features of all basic blocks in the method.
Field. The feature of a field is a string consisting of access flags, fuzzy type, and the
non-default initialization value. The default initialization values (i.e. null, ‘’, 0, etc.)
and names of fields are ignored.
Class. The feature of a class includes the fuzzy types of superclass and interfaces, the
features of fields, methods, and nested classes.

2. Normalizing orders.
The order-independent features such as the features of basic blocks and methods are
sorted to normalize the order. It is because the extracted features without normalizing will
be different because of the different orders between the two versions. Since these changes
are caused by compilation rather than developers, we eliminate them. To normalize the
order of fuzzy instructions with a basic block, PEDroid analyzes the dependencies of
registers and sorts the order of sequential instructions without dependencies on each other.
For independent units (including basic blocks, methods, fields, and classes), PEDroid
directly sorts the features of the same types of the included units. For example, the
features of basic blocks are sorted and then become a part of the method feature.

After extracting features and normalizing the order, PEDroid calculates the overall
feature of each unit by hashing all the orderly features to represent the unit. Hence, the
overall feature of a unit is calculated based on the overall hash of the included units, rather
than all the feature elements of each included unit. And PEDroid records the overall
features and feature elements of all units and the inclusion relations between the units.

4.2 Package-level Matching
With the app structure and the features of code elements, PEDroid calculates the matching
relations between packages based on the package hierarchy, which is the sub-graph of the app
structure. Specifically, PEDroid extracts identical classes, which are the two classes with
identical features. And then it locates identical packages having at least one identical class.
Among the rest packages, PEDroid utilizes their positional relations with the identical
packages on the two package hierarchy to search for matching candidates, and treats the
packages with the greatest similarity as similar packages. In summary, it includes two steps:
identical package matching and similar package matching.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:9

Identical Package Matching

PEDroid builds an identical package collection PKGiden, which stores the identical package
pairs. To achieve it, PEDroid first finds out the identical classes. Especially, only when the
overall feature of the class in the updated version is unique and the same as the unique feature
in the original version, the two version classes are regarded as identical classes. Packages
with one or multiple identical classes are considered identical, and the two packages are
added to PKGiden as a pair. According to these rules, PEDroid obtains the matching
pair collection PKGiden of the identical packages, which maps an updated package to all
the original packages considered to be identical. That means a package may have multiple
identical classes to different packages of another version.

Similar Package Matching

Based on the identical package collection PKGiden and package hierarchy, PEDroid matches
similar packages by different positional relationships. Algorithm 1 represents our approach
to determine similar packages from candidates. In detail, PEDroid first discovers the
candidates by the positions of matched packages (which are initially identical packages) on
package hierarchy and then selects the packages with the greatest similarity among candidates
as similar packages.

Algorithm 1 Searching similar packages in all candidates.
Input: Candidates set Candidatesim

Output: Similar packages P KGsimi

P KGsimi ← ∅
map1 : mapping new version packages to all candidates packages in old version
map2 : mapping old version packages to all candidates packages in new version
for ⟨p1, p2⟩ in Candidatesim do

map1[p1].add(p2)
map2[p2].add(p1)

end
for ⟨p1, candidates1⟩ in map1 do

p2 ← get most similar package in candidates1 of p1
candidates2 ← map2[p2]
p

′

1 ← get most similar package in candidates2 of p2

if p1 == p
′

1 then
P KGsimi.add(⟨p1, p2⟩)

end
end
return P KGsimi

Similarity Calculation. PEDroid quantifies similarity based on the similarity between
features. Since the feature is extracted from the bottom up, the similarity between the upper
units involves their bottom units. That means, before calculating the similarity of the units,
the matching relations between their included units should be obtained. For example, the
similarity of classes is calculated based on the matching relations between the methods in
the target classes. The matched units are called peer units. Besides the included units, other
feature elements of the same type in a unit are also regarded as peer units, such as the access
flags of methods. Furthermore, to reflect the amount of information, we introduce the length
of feature in similarity calculation, which means the number of basic elements contained in
the feature. For example, the length of features of a basic block is the number of extracted
instructions. Specifically, we define three types of similarity at different levels as follows:

ECOOP 2022

21:10 PEDroid: Automatically Extracting Patches from Android App Updates

Method-level Similarity. The proportion of the sum of the lengths of identical features to
the total length of features of the method.

Class-level Similarity. The weighted average of the similarity between peer units where the
weight is the length of features. If the class has nested classes, the similarity is added
with the sum of the similarities of all nested classes.

Package-level Similarity. The sum of the similarity of peer units between two packages.

To support similarity calculation of packages, we propose the matching algorithm to
retrieve the matching relations between classes in two packages and methods in two classes
in Algorithm 2. PEDroid calculates the similarity between each two of the target units (i.e.,
classes or methods). It sorts the similarity scores from high to low and selects the matching
pairs in turn. If the similarity of a pair is greater than THRESHOLD, the two units in
the pair are considered similar. Considering the trade-off between false positives and false
negatives, we set THRESHOLD as 0.15.

Algorithm 2 Matching relation construction at the class/method level.
Input: Members set S1, S2 in matching targets T1, T2, similarity threshold THRESHOLD
Output: Matching relationship set R
L← ∅
for m1 in S1 do

for m2 in S2 do
s← similarity between m1 and m2
L.put(s, ⟨m1, m2⟩)

end
end
sort L by similarity from highest to lowest
R← ∅
for s, ⟨m1, m2⟩ in L do

if (s > THRESHOLD) and (R have no pair containing m1 or m2) then
R.add(⟨m1, m2⟩)

end
end
return R

Positional Relationships. A package acts as the namespace, and it usually includes a collec-
tion of classes or sub-packages with similar functions. Therefore, the positional relationships
between nodes in the package hierarchy indicate the relations on function. Moreover, if a
subtree, consisting of a package and all its sub-packages, represents a third-party library,
which is relatively independent, changes in structure generally happen within the library.
Hence, two nodes with identical child nodes (or descendants) may be similar or belong to
the same library.

PEDroid first retrieves candidates by three close positional relationships, i.e., the
packages that have identical parent, child, or sibling packages. The nodes, which have
closer relations to others, are first considered to be potentially similar. PEDroid builds
the candidate collection Candidatesim according to the three positional relationships to
identical packages in PKGiden, and then selects the most similar pairs to build the matching
collection PKGsimi.

For the nodes which cannot be matched through the close positional relationships,
PEDroid obtains the similar collection PKG

′

simi through the more general positional
relationships in the package hierarchy, i.e., the ancestors and descendants. Algorithm 3 gives
the approach to find the ancestors with matched descendants and then locate candidates
by the distance to the matched ancestors. In detail, the process of matching has a loop

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:11

to search for candidates and find the most similar ones. Before the loop starts, PEDroid
retrieves a set PKGancient by the matched packages. It collects the node pairs having at
least one matched pair in the descendant nodes. For the ith subround, PEDroid considers
the nodes, whose ancestor nodes with distance i are a pair in PKGancient, to be candidates
and adds them into Candidate

′

sim. And then it obtains similar packages from Candidate
′

sim

by Algorithm 1, and adds the pairs into PKG
′

simi. Until all similar packages are found or
the number of rounds exceeds the depth of the package hierarchy, the matching process is
stopped.

Algorithm 3 Matching by the ancestors and descendants.
Input: Unmatched packages in new and old version P1,P2, two versions of hierarchy H1, H2,

matched packages set P KGmatched

Output: Similar packages P KG
′

simi

P KGancient ← ∅
for ⟨p1, p2⟩ in P KGmatched do

for k = 0 .. min(level(H1, p1), level(H2, p2)) do
a1 ← kth ancestor of p1 in H1

a2 ← kth ancestor of p2 in H2
P KGancient.add(⟨a1, a2⟩)

end
end
R1, R2 ← P1, P2

P KG
′

simi ← ∅
for i = 0 .. min(height(H1), height(H2)) do

Candidate
′

sim ← ∅
for p1 in R1 do

for p2 in R2 do
if i > min(level(H1, p1), level(H2, p2)) then

continue
end
a1 ← ith ancestor of p1 in H1

a2 ← ith ancestor of p2 in H2
if ⟨a1, a2⟩ in P KGancient then

Candidate
′

sim.add(⟨p1, p2⟩)
end

end
end
matched← get matched packages from candidate collection Candidate

′

sim

P KG
′

simi.union(matched)
for ⟨p1, p2⟩ in matched do

R1.remove(p1)
R2.remove(p2)

end
end
return P KG

′

simi

4.3 Matching Relation Extraction

With the results of package matching, PEDroid obtains matching relations (i.e. Identical
and Similar) at class and method level in matched packages. The identical classes are
obtained by the identical overall features of classes, while the similar classes in identical
packages collected in PKGiden are matched by similarity as Algorithm 2. For the similar
packages in PKGsimi and PKG

′

simi, the matching relations between classes have been
calculated and cached during the matching process, and can be extracted directly.

ECOOP 2022

21:12 PEDroid: Automatically Extracting Patches from Android App Updates

Except for the matching relations, the unmatched classes/methods in the updated version
of the app are classified as New, and those in the original version are classified as Deleted.
Therefore, by calculating the similarity, the classes and their methods in the two packages
are finally divided into four categories: Identical, Similar, New and Deleted.

5 Patch Identification

In this section, we introduce how PEDroid distinguishes whether a modified method contains
a patch after locating the modified methods. Since the insight is that a patch usually fixes
the processing logic before the buggy operation or handles the errors generated by the buggy
operation, while the target of operation tends to involve external values, PEDroid analyzes
the two version methods from two aspects: 1) the call sites of the methods and 2) the
difference of internal semantics. Through the analysis of the call sites, PEDroid could check
whether the method uses external values. Through internal semantic analysis, it locates
the variables carrying external values and the original operations of these variables in the
modified methods to discover potential buggy operations, and then identifies the two types
of modification.

5.1 Call Site Analysis
In order to find the modified methods using external values, PEDroid employs static
intra-procedural taint analysis to analyze the call sites of all modified methods. Compared
with inter-procedural analysis which is more accurate but brings unacceptable overhead,
the intra-procedural analysis is more suitable for us to analyze the real-world apps. And to
alleviate the limitation that intra-procedural analysis cannot find external values explicitly
or implicitly passed between functions, PEDroid takes the parameters and member variable
as taint sources.

Since static taint analysis has been studied well, we omit its technical details for brevity
here. In the following, we only describe the strategies how PEDroid selects sources and
sinks and then propagates the taint.
Taint Sources. PEDroid marks the variables that may carry external values as taint

sources, including parameters, member variables, and return values of method invocation
statements. As a part of external values, return values of other methods are marked
as sources, and external input could also be obtained by return values of Android API.
Especially, the return value of the constructor method (i.e., <init>, <clinit>) without
other sources is excluded for its purpose is initialization. Both the parameters and member
variables could introduce external values from other methods, so PEDroid treats them
as sources to avoid missing reports.

Taint Sinks. The modified methods are sinks of our taint analysis to find out whether the
modified methods use external values at the call sites. PEDroid directly retrieves the
methods classified as Similar in Section 4.3 and marks them as sinks.

Taint propagation. PEDroid mainly focuses on two types of statements, i.e., assignment
and invocation, to propagate the taint.

Assignment. If the right-hand side expression is tainted, the left-hand side value is
also tainted.
Invocation. Due to the limitation of intra-procedural analysis, it is unknown how
the taint values propagate in the callee. PEDroid specifies that if a parameter is
tainted, the return value and instance (if any) are also tainted, but PEDroid does
not consider the possibility of taint propagation between method parameters to reduce
false positives.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:13

void CallerA(int arg){
int a = this.A;
int b = 0;
sink(arg, a, b);

}

void CallerB(){
int a = 10, b = 1;
int c = d();
sink(a, b, c);

}

Figure 3 Example for result extraction in call site analysis.

After taint propagation, PEDroid extracts the tainted states of the modified methods.
For the tainted call sites, PEDroid records the indexes of all the tainted parameters and the
caller. And the taint states of different call sites of a method will not be merged to reduce
false positives. Figure 3 gives an example where method sink has two call sites in method
CallerA and CallerB. In this case, PEDroid separately records that the first and second
parameters of sink are tainted in CallerA and the third parameter is tainted in CallerB,
rather than regards that all the parameters are tainted. This is because sink may only
trigger a bug at the call site of CallerA and the invocation by CallerB has nothing to do
with the bug. So, the operations of the third parameter in method sink can be ignored. On
the other hand, CallerB may be a new method or the call site in CallerB may be newly
introduced for feature enhancement. The operations of the third parameter within sink
method are modified so that it can adapt to new features. Therefore, merging them will
bring false positives.

In addition, Android callback techniques would bring false negatives to the approach,
because callback methods are invoked in Android frameworks. They are driven by Android
lifecycle events (e.g., onCreate), user interactions (e.g., onClick) and so on. To alleviate this
problem, we collect the names of all Android callback methods in advance, and PEDroid
treats the overriding callback methods as having identical call sites whose parameters are
used to pass external values.

5.2 Internal Semantic Comparison
Based on the analysis of the call sites of modified methods, PEDroid identifies the patches
through internal semantic comparison. Specifically, our aim is to find out whether the
modification is used for correcting the processing logic or handling the errors. The former
is indicated by the different dependencies of original operations, so PEDroid extracts the
control and data dependencies and then compares the dependencies between two versions.
As for the latter, PEDroid takes two cases into consideration. The first case is adding an
exception capture operation to catch the exception generated by original operations. The
second is adding checks of the return value of the original operation, while a branch of the
check is a aborting block which aborts execution of the method when an error occurs. To
identify the case, PEDroid searches for the aborting blocks by exits of methods:
1. a basic block ends with exception throwing;
2. a basic block contains only a return statement or logging and return where logging is

often used to record the errors.
We implement it on the top of Soot [34]. And for illustration purpose, we take the patch
in Figure 1a as example and give their Control flow graphs (CFG) in Figure 4. In detail,
PEDroid compares the internal semantics through the following steps:

Step 1. Call site matching. With the modified methods and their usage, PEDroid matches
the call sites between two versions to obtain all similar usage of the method in the app.
Specifically, it matches the call sites whose callers have been identified as Identical or
Similar in Section 4.3. According to the matching results, PEDroid analyzes each pair

ECOOP 2022

21:14 PEDroid: Automatically Extracting Patches from Android App Updates

virtualinvoke $r2.<java.io.File:
boolean delete()>();
return;

staticinvoke <android.util.Log: int
e(java.lang.String,java.lang.String)>(…);
return;

$r0 := @this: com.Example;

$r1 := @parameter0: java.lang.String;

$r2 = new java.io.File;
specialinvoke $r2.<java.io.File: void <init>(java.lang.String)>($r1); [$r1->$r2]
$z0 = virtualinvoke $r2.<java.io.File: boolean exists()>(); [$r2->$z0]
if $z0 == 0 goto

1

2

N1

N2 N3

(a) Fixed version of example code.

$r0 := @this: com.Example;

$r1 := @parameter0: java.lang.String;

$r2 = new java.io.File;

specialinvoke $r2.<java.io.File: void <init>(java.lang.String)>($r1); [$r1->$r2]

virtualinvoke $r2.<java.io.File: boolean delete()>();

return;

O1
1

2

(b) Buggy version of example code.

Figure 4 CFGs of the two versions of methods in Figure 1a. The example code is displayed in
Soot intermediate representation. Registers in pink font indicate they depend on affected parameters,
and the data flows are labeled after the statement as well. The bold statements are candidates of
buggy operations.

of the call sites respectively in the following steps. It is because the matched call sites
represent the identical usage of the methods and different usage should be separately
analyzed as discussed in Section 5.1.

Step 2. Data flow analysis. To find usage of the tainted parameters within the method,
PEDroid performs forward data flow analysis in the modified method to locate all
statements which use the variables directly or indirectly dependent on these parameters.
It retrieves data flows through assignment and invocation statements, where the rules are
similar to propagation discussed in Section 5.1. We call the located statements affected
statements. In Figure 4, the statements with pink registers are affected statements.

Step 3. Basic block matching. To improve the accuracy of dependency comparison,
PEDroid aligns the basic blocks between the two versions of methods, instead of
matching at the statement level. Alignment is based on the statements in basic blocks
and the structure of CFG whose nodes are basic blocks. Due to the complexity of
solving the graph matching problem, we adopt a simplified strategy that utilizes the
breadth-first traversal orders of CFG to flatten the graph and aligns the blocks by LCS
(longest common subsequence). The identical basic blocks are the blocks with identical
representative statements including return, if, exception, method invocation, and array
operations and constant values in statements.
After alignment, the blocks between two matched blocks (or entry/exit) are also regarded
as matched blocks that may have many-to-many matching relations. In the example,
there are three-to-one matching relationships between basic blocks which map from the
basic blocks N1, N2 and N3 to O1.
And with the matching relations between basic blocks, PEDroid collects the aborting
blocks which have no identical basic block. Therefore, the basic block N3 is located when
analyzing the example.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:15

Step 4. Dependency analysis. With the matching relations between basic blocks, PEDroid
obtains the matched statements and then filters the subset marked in Step 2. The subset
of matched statements are the original operations of the external values in the methods
and includes the buggy operations we focus on. We bold these statements in the examples
in Figure 4. To pinpoint which operations among the candidates (i.e., matched statements
in the subset) are modified satisfying our insight, PEDroid analyzes the dependency of
two types of statements.
1. To distinguish the changes to fix processing logic, PEDroid extracts control and

data dependencies of each candidate in original and updated versions, which will be
compared in the next step.

2. To distinguish the changes to handle errors, PEDroid analyzes the data dependency
of if statements. Specifically, if the predecessors of the aborting blocks located in Step
3 end with a if statement, PEDroid searches for sources of registers compared in the
statement, where the sources are the assignment statements defining these registers. If
a candidate is found, PEDroid will record it as having an error value check. In the
example, although N3 is an aborting block, the register compared is irrelevant to any
candidates, so it is filtered out in this step.

Step 5. Patch identifying. Finally, PEDroid determines patches by checking two types of
specific changes:
1. To check the changes for fixing the processing logic, PEDroid compares the depend-

encies between the original and updated methods. In particular, it compares the
control and data dependencies of each candidate. A patch is reported if a difference in
dependencies is found.
In Figure 4, the candidate ① has the identical control and data dependencies between
the original and updated versions, so it is not a buggy operation. But the dependencies
of the candidate ② are modified where the file existence check is added in the updated
version. Hence, PEDroid identifies it.

2. To check the changes for handling errors, PEDroid respectively identifies two cases.
First, if an exception capture is added and its predecessors contain a candidate, it is
identified as a patch. And the second case is identified by the candidate that has an
error value check in the updated version but no such check in the original version.

6 Evaluation

6.1 Dataset
In the experiment, we collected two datasets, the manually selected open-source Android
projects from GitHub [12] named dBench, and APK files of pre-installed apps extracted from
Android phones. The former is used to measure the accuracy and effectiveness of PEDroid,
and the latter is used to evaluate the applicability to real-world apps and check whether
PEDroid can discover patches on real-world apps.

dBench: we selected apps and their updates by manually reading the commit message of
the projects on GitHub, and then downloaded the release version APK files for testing,
to achieve the effect on the real-world apps as far as possible. The policy for selecting
updates is as follows:
1. For modification of each method in an update, detailed commits can be found so that

we can determine whether a commit is used to fix a bug by the title, description, or
related issue;

ECOOP 2022

21:16 PEDroid: Automatically Extracting Patches from Android App Updates

2. This version update has at least one patch and one non-bugfix update (e.g., code
refactoring and feature enhancement). Especially, PEDroid focuses on the patches
which lead to the method change and filters out other commits (e.g., configure files).

Finally, dBench includes 6 projects with a total of 13 updates, as shown in Table 7 and
Table 8. In the tables, we also list the filtered commit IDs and whether they are marked
as patches. It includes a total of 83 commits, of which 36 are marked as patches. Table 2
shows the size of APK files in each update, where the size is represented by the number
of classes and methods in updated versions.

Table 2 The number of classes and methods of applications in dBench. ProjectName_un is
corresponding to each update in Table 7 and 8 for short.

Update Classes Methods
markor_u1 4,339 31,561
markor_u2 4,443 32,202
gpstest_u1 2,103 15,510
gpstest_u2 3,165 22,527
gpstest_u3 3,165 22,527
MaterialFiles_u1 5,822 29,637
MaterialFiles_u2 5,824 29,632
MaterialFiles_u3 7,624 42,316
andotp_u1 3,011 22,424
andotp_u2 3,996 29,155
gnucash_u1 6,688 47,398
gnucash_u2 6,690 47,414
anki_u1 14,332 135,646

Pre-installed apps: we collected pre-installed apps as a real-world app dataset. Because
of the privilege permissions of pre-installed apps, the defect will lead to more serious
problems. Moreover, these apps cover various categories (except games), so comprehensive
types of apps can be analyzed. In detail, we collected mobile phones from six mainstream
Android mobile device manufacturers, including Huawei, Motorola, Oneplus, Samsung,
Vivo, and Xiaomi. In the first step, we regularly monitored app updates, and used the
tool ADB [1] to pull the APK files from phones to the computer. For the preliminarily
collected APK files, we removed duplicate files with the same hash value. Then, we used
the tool keytool [18] to analyze the certificates of APK files, and then filtered out apps
that are not signed by the vendor. Finally, the number of unique apps in our real-world
dataset is 187. We regard the different APK files of an app with the minimum version
gap as an update, and a total of 568 app updates are collected. The detailed amount and
distribution of updated versions are shown in Table 3.

Table 3 The collected updates of pre-installed applications.

Huawei Motorola Oneplus Samsung Vivo Xiaomi Total
App 42 5 25 8 28 79 187

Update 105 6 28 10 75 342 568
Major upgrade 30 1 9 0 3 34 77
Minor upgrade 16 3 6 0 19 127 171
Small update 59 2 13 10 53 181 320

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:17

6.2 Setup
Differential analysis is implemented in Python, and we disassemble the Dex bytecode of
APK files by the tool baksmali. For patch identification, our taint analysis is based on the
taint engine provided by Find Security Bugs [10], and the analysis of internal semantics is
implemented in Java on top of Soot [34], a framework for analyzing and transforming Java
and Android apps. In addition, PEDroid would not identify whether modified methods in
the standard libraries (e.g., Android Support Library) are patches because the changes in
these methods are to provide compatibility between different versions.

The experiments were performed on a server running Ubuntu 18.04 x64 with two Intel
Xeon Gold 5122 Processors (each has eight logical cores at 3.60 GHz) and 128GB RAM.

6.3 Effectiveness
To measure the effectiveness of differential analysis and patch identification, we conducted a
controlled experiment on dBench.

6.3.1 Results
In total, PEDroid found 429 modified methods which are classified as Similar after differen-
tial analysis and then reported 60 out of them are patches. Based on the related commits
and manual analysis, the accuracy of the results will be further evaluated in Section 6.3.3
and 6.3.4. In this section, we will discuss the intermediate results and effectiveness of each
phase of PEDroid.

Matching relations. 2,706 identical packages are found after identical package matching.
During similar package matching, 36 packages were matched using parent-child and sibling-
sibling relationships and one package was matched by ancestors and descendants. Although
only one package was matched by ancestors and descendants on dBench, its parent package
has no class to determine the similarity resulting in having no matched package, while it
has no child or sibling package, so the close relationships cannot indicate the candidates for
matching. Hence, matching based on ancestors and descendants is necessary for our design.
In these small updates, most packages can be matched by the identical classes, and both two
approaches based on positional relationships work in the process.

By class-level matching, 36,811 classes were classified as Identical, 251 classes were
classified as Similar, 69 classes were classified as New, and 23 classes are classified as Deleted.
Among Similar classes used to locate the modified methods, we found one pair of classes
had the wrong matching relation. Between the two classes in the pair, a class is derived from
another class in the updated version, which leads to a similar implementation and confuses
matching. Unfortunately, it finally caused wrong matching relations between methods.

Modified method usage. In the call site analysis, we found a total of 1,071 call sites of
Similar methods in updated versions, but only 893 call sites in original versions. It indicates
that new call sites are introduced in the updated version of the app. Our consideration of
filtering call sites in Section 5.2 is necessary.

PEDroid discovered 251 unique methods using external values by taint analysis, and
54 additional methods through the name of callback methods. We conducted a manual
analysis on the filtered methods to identify false negatives. We found that most of them were
filtered out because they used no external values or had no call sites (e.g., changes in the

ECOOP 2022

21:18 PEDroid: Automatically Extracting Patches from Android App Updates

updated third-party libraries). As for false negatives, call sites of 12 methods were missing
in the taint analysis. Among them, four were overriding methods because PEDroid failed
to find the correct callee at the call site, and the rest came from the lack of accuracy in
the implementation of taint analysis. On the other hand, due to the limitations of callback
method identification, 22 callback methods could not be found, of which three methods are
customized methods by developers, and 19 methods are unrecognized due to obfuscation. In
short, due to the limitations of implementation, the usage of some modified methods can not
be found in analysis, most of which are caused by callbacks.

6.3.2 Performance
The time cost of each update is shown in Figure 5. PEDroid completed every analysis
in 6 minutes, where taking up to 336 seconds to analyze the update anki_u1. According
to the data in Table 2 and Figure 5, it is obvious that the time cost is greatly affected
by the size of APK files. Most of the time was spent on analyzing the call sites, up to
80.7% (MaterialFiles_u1). It is because that PEDroid checks every method in the app
for searching the usage of the modified methods.

54.41

62.59

33.28

22.74

21.98

112.33

114.19

143.47

41.02

58.16

101.26

104.22

270.73

0.00 50.00 100.00 150.00 200.00 250.00 300.00 350.00 400.00

markor_u1

markor_u2

gpstest_u1

gpstest_u2

gpstest_u3

MaterialFiles_u1

MaterialFiles_u2

MaterialFiles_u3

andotp_u1

andotp_u2

gnucash_u1

gnucash_u2

anki_u1

Time Cost (s)

Disassembly Differential analysis Call site analysis Dependency comparison

72.08

80.96

45.80

38.29

37.85

137.72

140.28

176.40

55.65

77.69

126.02

129.85

336.39

Figure 5 Time cost of each step on dBench.

6.3.3 Differential analysis
To evaluate the accuracy of differential analysis, we use the commits as the ground truth
to check whether the modified methods are found by PEDroid. Especially, among the
commits, we focus on the modifications that cause semantic changes. It means that some
modifications such as renaming identifiers and merging two statements into one in commits
will be ignored. In total, 238 methods have been modified by developers in dBench.

6.3.3.1 Accuracy

Table 4 reports the detailed results of our accuracy evaluation on dBench, PEDroid classified
429 methods into Similar category, where 234 methods belong to the project and 195 methods
change with the upgrade of third-party libraries. Among the 238 modified methods, PEDroid
successfully identified 221 of them, where 17 modified methods were missing. On the other
hand, PEDroid mistakenly classified 13 pairs of methods as Similar.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:19

It is obvious that the wrong matching relations will lead to both false negatives and
false positives. For example, if two pairs (A, A

′) and (B, B
′) are modified methods, the

wrong relation (A, B
′) brings a false positive and two false negatives to the results. Before

illustrating the false negatives and the false positives, we conducted a manual analysis of the
incorrect results and summarized the causes for wrong matching relations between methods.
Method inlining or extraction. Method inlining would merge multiple methods into one

method, and extraction splits a method into multiple methods. In this case, PEDroid
matches one of the methods with the highest similarity, which may wrongly match the
new (or deleted) method and the long method of the other version.

Similar implementation. The implementation of some methods is very similar for their sim-
ilar functions. It leads to similar extracted features, which confuse similarity calculation.
When matching methods with similar implementation, the results may be crossed.

Large changes. The proportion of method body changes is large, especially for the methods
with few features (e.g., only one or two basic blocks in the method body), the little
change of code can lead to large changes in the extracted features. It leads to the correct
matching relation can not be calculated, and the modified method is matched with
irrelevant methods with partially the same features.

In the reported Similar methods, 13 pairs have wrong matching relations. Among them, five
pairs are caused by the first reason, six pairs are caused by the second reason, and two are
caused by the third reason.

The false negative refers to missing reports of modified methods. Among 17 false negatives,
13 of them are caused by wrong matching relations, which have been discussed before. Two
false negatives were classified as New and Deleted by mistake due to large changes. The rest
two were classified as Identical because the extracted features could not reflect the changes.

As for false positives, it indicates New/Deleted/Identical methods which are incorrectly
classified as Similar methods, and Similar pairs with wrong matching relations. Especially,
numbers in parentheses in Table 4 are the number of pairs with wrong matching relations. It
shows that all the false positives came from the wrong matching relations.

6.3.3.2 Obfuscation-resistant

To address renaming obfuscation techniques is very important for our design. For example,
the method example() in class Example was renamed with A.a() in the original version but
B.b() in the updated version, which are different. Even if some of APK files in dBench do
not enable the obfuscator, the third-party libraries it depends on are generally obfuscated.
To evaluate how renaming obfuscation techniques influence apps, we counted the different
method signatures (i.e., class name, method identifier, parameters, and return value of a
method) between the original and updated version methods. Only in the Similar results,
135 of 429 Similar methods (31.5%) have different signatures. Moreover, based on manual
analysis, only one signature is renamed by developers, and all the others are caused by
compilation and obfuscation. It shows that the renaming obfuscation is commonly applied in
apps, and PEDroid can resist it to a certain extent.

6.3.3.3 Comparison with previous works

We compared our approach with the previous works, including Androdiff [8], components
of Androguard [3], and SimiDroid [20]. They can also provide method-level diffing between
two versions of apps, and divide the results into four categories: Identical, Similar, New and
Deleted. We used the same dataset dBench for experiment. The results are shown in Table 4.

ECOOP 2022

21:20 PEDroid: Automatically Extracting Patches from Android App Updates

Table 4 Comparison with Androguard and SimiDroid. The Total in the table indicates the
number of reported methods, and the TPL and the Project indicate the reported similar methods
in project source code and third-party library, respectively. The T PP , F NP , F PP and RecallP

indicate the accuracy in project code.

Tool Total TPL Project T PP F NP F PP RecallP

Androdiff 816 525 291 105 133 186(16) 44.12%
SimiDroid 2111 1550 561 138 100 423(18) 57.98%
PEDroid 429 195 234 221 17 13(13) 92.86%

It is obvious that PEDroid identified much more modified methods as well retrieved less
wrong matching relations, with the highest recall of 92.86%. Especially, the other two tools
incorrectly regarded a large number of Identical methods as modified methods. Although it
does not mislead patch identification, the overhead would be greatly increased. So, PEDroid
is much better than the other tools.

Androdiff adopts the normalized compression distance algorithm to calculate the similarity
of the two methods and extracts the instruction sequence of the basic block as the feature of
the method. However, it can not resist the subtle changes caused by compilation, and most
of the false positives come from the changes in the resource ID influenced by compilations. In
addition, the tool does not consider the overall feature of a class and only performs similarity
matching from the instructions at the method level.

SimiDroid also provides code-level similarity comparison, but it assumes that methods
with identical signatures have matching relations between two versions. So, renaming
obfuscation techniques have a great impact on this approach. It is the reason why SimiDroid
reports much more modified methods than the other two tools, where it treats two unrelated
methods as matched and detects the changes between them.

6.3.4 Patch identification

PEDroid discovered 60 patches, where 50 of them belong to the projects and 10 methods are
in third-party libraries. Similar to the evaluation of differential analysis, we only evaluated
the accuracy of code changes in the projects without the ground truth of third-party libraries.

6.3.4.1 Accuracy

To evaluate the accuracy of PEDroid in identifying patches, we manually identified all
the patches and non-bugfix updates of all the 13 updates by analyzing their commits on
GitHub. As shown in Table 7 and Table 8, among all the 83 commits in dBench, a total of
36 commits are identified as patch, where 47 commits are non-bugfix updates, including 35
feature updates and 12 code refactorings.

Among 36 commits containing patches, PEDroid successfully identified 28 patches during
patch identification and missed eight, while it incorrectly identified seven of the 47 non-bug
updates as patches. In particular, a commit could be associated with multiple modified
methods. As for the amount at the method level, 41 methods were correctly identified as
patches, and nine were false positives.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:21

False negatives. The false negatives could be generally divided into three categories:
1. Deficiency in implementation. Four of eight false negatives come from the false negatives

of call site analysis described in Section 6.3.1. It is caused by the obfuscated name of
callbacks and overriding methods.

2. Code refactoring. We found that some patches are also accompanied by code refactoring,
where the modified dependencies are encapsulated in a new method. So, PEDroid could
not discover it by intra-procedural analysis, which brings two false negatives.

3. Limitation of insight. There are two false negatives that do not meet our insight. One is
to modify the constant value in a static constructor. Another one is to add text on UI
which only involves a method invocation addition without modifying any dependency.

False positives. Seven non-bugfix updates are incorrectly classified. Similarly, we also
divide them into three categories:
1. Deficiency in implementation. One false negative comes from incorrectly matching

between basic blocks. It results in different extracted dependencies at different usage of
an external value.

2. Code refactoring. The code refactoring also leads to dependency modification, which
brings two false positives to the results.

3. Irrelevant dependency modification. Four of the false positives are due to dependency
modification irrelevant to patches. Three of them are caused by the added control
dependencies, where two are to check and adapt different Android versions and one is
to add a branch to enhance the feature. And the other one is introduced by the added
number of parameters of the callee, which leads to the addition of data dependencies.

6.3.4.2 Comparison with other works

Since there is no previous work to distinguish patches from other code changes in Android
apps, we evaluated whether the tool using pre-defined patterns could detect the related bugs
to find out these patches. Spotbugs [35] is a state-of-the-art tool that can detect more than
400 types of bugs. Find security bugs [10] is a plugin of Spotbugs, which can detect 141
different vulnerabilities on Java and Android apps.

First, we applied dBench on the tool SpotBugs with its component Find Security Bugs,
and detected the original and updated versions of the app updates respectively. Then we
found out the difference of the bug reports between two versions with the method-level
matching relations generated by differential analysis. Finally, only two different bug reports
were found, and they belonged to one commit. It is because detecting bugs according to
manually defined patterns has limitations which cannot discover the unknown bugs.

6.4 Applicability
6.4.1 Performance
PEDroid extracted a total number of 98,591 patches from the dataset. In detail, 45,805
patches were identified in 320 small updates, 31,549 patches were identified in 171 minor
upgrades and 21,237 patches were identified in 77 major upgrades. The time cost is shown
in Figure 6a, where the updates are grouped by the size of APK files (e.g., the first group
consists of updates with the number of classes less than 3000, and so on). It shows that size
of apps has a great impact on the overhead of PEDroid, especially for patch identification.
Since the number of updates in each group is different, Figure 6a also gives the number.

ECOOP 2022

21:22 PEDroid: Automatically Extracting Patches from Android App Updates

3 6 9 12 15 20 25 30 40 50 60 70
APK Size (k classes)

0

250

500

750

1000

1250

1500

1750

2000
Ti

m
e

Co
st

 (s
)

34.7
120.2 166.5 222.9 297.2

449.6
565.6 579.0

926.2
1023.3

1484.1

1992.1

0

20

40

60

80

100

Th
e

nu
m

be
r o

f u
pd

at
es

105
111

76

65

49
58

37
26

16
6

14
5

Differential analyis
Patch identification
Number of uptates

(a) Time cost of analyzing updates with different sizes.

63.91%

20.07%

7.92%

2.46%

5.63%

0~5 min

5~10 min

10~15 min

15~20 min

>20 min

(b) Distribution of time cost of ana-
lyzing updates.

Figure 6 Performance on real world dataset.

Furthermore, the time cost distribution of updates is given in Figure 6b. It is concluded that
63.91% of updates could be analyzed within 5 minutes, 83.98% of apps could be analyzed
within 10 minutes, and 94.37% could be analyzed within 20 minutes.

6.4.2 Analysis of Extracted Patches
In order to illustrate that PEDroid can help the analysis based on patches, we made a
further analysis to understand the patches extracted from updates of the pre-installed apps.

6.4.2.1 Discovered Patches

To demonstrate that PEDroid can extract effective patches from the real-world apps, we first
randomly selected several reports on pre-installed apps for manual analysis. We discovered
many typical cases of patches, and the security check addition appears most among them,
which confirms the conclusion of the previous work [41]. Another common repair case is
adding an exception-capture operation to prevent the app from crashing. In this section, we
discuss the typical cases and how they improve the security and stability of apps.

Security check. Adding security checks is a common way to fix bugs. This type of patch
can be detected because a new control dependency is always added. Due to complex
scenarios such as network communication, local data access, and user interaction, the
added security check also has various purposes, where two of the most common cases
are checking whether the referenced object is null to avoid NullPointerException, and
calling TextUtils.isEmpty to prevent empty strings. In addition, we show two typical
cases of adding black and white list checks to discuss the security improvement by checking
addition.
Figure 7(a) gives a patch with a white list check. The method has @JavascriptInterface
annotation, which means that it can be invoked by web pages in WebView. In the fixed
version of the method, the domain name of the web page which invokes this method is
checked, and only the domain names in the white list are allowed to use this method,
which increases the security.

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:23

(a) white list (b) black list

(c) data processing

(d) field addition to record status

Figure 7 Case Study for common patches.

-
-

-
-
+
+

+
+

public class CaseClass {
static {

CaseClass.CRPYT_IV_BYTE = new byte[]{34, 0x20, 33, … , 35, 0x20, 0x20};
CaseClass.CRPYT_KEY_BYTE = new byte[]{33, 34, 35, … , 35, 34, 33};
...

}
public CaseClass(Context arg2) {

...
this.mCryptoUtil.init(this.mContext);
this.CRPYT_IV_BYTE = this.mCryptoUtil.initIV();
this.CRPYT_KEY_BYTE = this.mCryptoUtil.initKey();
this.loadData();

}
protected void loadData() {

...
String iv = Cryptor.xorKey(Case3Class.CRPYT_IV_BYTE);
String key = Cryptor.xorKey(Case3Class.CRPYT_KEY_BYTE);
String iv = Cryptor.xorKey(this.CRPYT_IV_BYTE);
String key = Cryptor.xorKey(this.CRPYT_KEY_BYTE);
String data = new String(Cryptor.decrypt(iv, key, Base64.decode(cipher, 0)), "utf-8");
...

}
}

Figure 8 Case Study for hard-coded key removal.

The function of the method in Figure 7(b) is to download files. The security check at line
3 is added to resolve a vulnerability. The method checkSpecialChars checks whether
there are special characters in the file name. The existence of these special characters
could lead to path traversal vulnerability. Once these special characters are detected, this
method returns directly and does not continue downloading the target file.

Data processing. Figure 7(c) gives an example of modification of data dependencies to
correct data processing. In the buggy version, the blank characters are not trimmed after
obtaining the path of the directory. As a result, the corresponding library cannot be
found and the function is unavailable. This patch will be reported through modification
of data dependencies extracted from the invocation of the constructor of File.

Field addition for status recording. This patch is applied to check before resource access
or release and sets the field to the corresponding value when resources are required and
released. The case is found through the inconsistency of control dependencies. The case
is shown in Figure 7(d).

ECOOP 2022

21:24 PEDroid: Automatically Extracting Patches from Android App Updates

Hard-coded key removal. A security patch of discarding the usage of hard-coded keys is
given in Figure 8. The decryption key and IV used in the original version are hard-coded
and defined in the static constructor (<clinit>). The updated version is generated in
the constructor (<init>). PEDroid identified the patch by comparing dependencies
between the two versions of the method loadData. In the buggy version, the hard-coded
key and IV are static member variables of the class, and its acquisition has nothing to
do with the affected parameter this. But in the fixed version, the decryption key and
IV are generated at runtime, which are bound to the object instance, and have a data
dependency on the parameter this which uses external values.

In addition to the examples of modifying the processing logic listed above, handling the
errors is also commonly encountered in our manual analysis, including the error value check
to end wrong execution and exception capture to prevent crashes. Since these cases are easy
to understand, we would not list them here. Especially, exception capture will be further
discussed later.

6.4.2.2 Application of Patches

Based on the typical patches, we further identified similar patches to find out what patches
are frequently applied to fix bugs and whether the developers make the mistakes commonly.
Specifically, we selected the five simple patch cases found in the manual analysis and used
the buggy and fixed versions of the method and the potential buggy operations in reports to
determine whether the patch is the same type as the cases. For security checks, we collected
two common types, i.e., the addition of null and TextUtils.isEmpty check before the
buggy operation. And we located the added invocation of trim which was used to correct
the data processing of a buggy operation. Similarly, when a check of a boolean field is added
and the state of the field is modified around the buggy operation, the check would be marked
as field addition for status recording. For exception capture, we focused not only on the
addition of exception capture but also on the types of exceptions.

Table 5 shows the usage of different types of common patches in all the extracted patches.
It is reported that the check of null reference is added most commonly, similar to the results
of our manual analysis. Even if we only searched a simple case of correcting data processing
(i.e., string trimming), we still found that several developers at different vendors, made the
same mistake and repaired it. It shows that it is a feasible means to summarize the problems
that have been repaired to find similar problems in other apps.

Table 5 Usage of common
patches in updates.

Type Total

Null Reference 7682
Empty String 1409
Status Record 269
String Trimming 23
Exception 6289

Table 6 Top 10 most common types of added exception
catching.

Type Total
Ljava/lang/Exception 3838
Ljava/lang/Throwable 1353
Ljava/io/IOException 1212
Ljava/lang/IllegalArgumentException 663
Lorg/json/JSONException 633
Ljava/lang/RuntimeException 457
Ljava/lang/NumberFormatException 284
Ljava/lang/IllegalStateException 234
Ljava/lang/IllegalAccessException 225
Ljava/lang/SecurityException 223

In addition, we analyzed exception-capture patches and found the types of exceptions
that are easily ignored during development. Table 6 gives the top 10 most common types
among our extracted patches and the number of exception-capture patches corresponding to

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:25

each type. Especially, a patch could add the capture of multiple types of exceptions at the
same time, so the exception-capture patches counted in Table 5 may be counted multiple
times in Table 6. It shows that developers often simply use the basic type Exception to
catch all types of exceptions, as well Throwable which can catch both exceptions and errors.
As for other types of exceptions, the capture of IOException is patched most frequently
in the extracted patches because it can be thrown by unexpected behaviors in a variety of
scenarios including network and file I/O. The exceptions are easy to be accidentally missed
by developers.

7 Discussion

7.1 Limitation and Future works
In the following, we discuss limitations and future works to improve the accuracy of the
analysis performed by PEDroid.

First, PEDroid is designed to resist the renaming obfuscation because it has been
broadly used by many Android applications. However, to be sensitive to code changes and
efficiently retrieve matching relations, PEDroid chooses to retain features of instructions in
the method body and utilizes package trees to assist the matching process. Given our current
design, some advanced obfuscations can impede PEDroid to a certain degree. For example,
some obfuscation tools can move a sub-package from one package to another, so as to modify
the package hierarchy. Considering commonly-used obfuscators such as ProGuard do not
totally break package structures, and our approach does not require the package structures
to be exactly identical, we believe the selected strategies are acceptable in practice.

Second, PEDroid is mainly designed based on static intra-procedural analysis considering
applicability to real-world apps. However, only analyzing the data dependencies and original
operations within a single method could bring both false positives and false negatives,
especially when meeting code refactoring. Meanwhile, the more precise usage of external
values is more likely obtained through the inter-procedural taint analysis. We believe the
inter-procedural feature could be implemented by considering method invocation, which is
an interesting future work.

Third, PEDroid tries to find out patches and the corresponding bugs without manually
defined patterns [19] or generated signatures of known patches or bugs [44]. Although the
approach could not cover patches of all types of bugs (e.g., the two false negatives beyond the
insight), it could make up for the gap in this research field to a certain degree. And we have
evaluated the effectiveness by running our approach on dBench, and identified most patches.
The results on the real-world dataset also show that rich types of bugs can be discovered
through this approach.

7.2 Usage of Extracted Patches
In the paper, we discovered some typical cases of bugs and patches in Android apps and
summarized the rules by manually analyzing the patches to distinguish them. Similarly, several
APR (Automated Program Repair) techniques adopt manually defined code transformation
schema to automatically repair bugs in Android apps [48, 25, 42, 5, 36]. Therefore, it is
feasible to summarize new schemas through the analysis of the extracted patches and then
apply them to APR. In addition, lots of efforts focus on learning from the existing patches
which require no manually defined templates and empirical knowledge [17, 40, 26, 24, 37, 21].
However, these works are all designed for repairing source code rather than bytecode. We
believe that our work can make up for the lack of learning data sets to promote the proposal
of the technique on bytecode.

ECOOP 2022

21:26 PEDroid: Automatically Extracting Patches from Android App Updates

The extracted patches can also be used to detect similar bugs. Some binary-level similarity
detection and code reuse detection techniques [15, 46] can take the buggy version of patched
methods as the comparison target and detect whether there are similar problems in other
apps.

8 Conclusion

We propose an approach to extract bytecode-level patches from Android apps, which includes
two phases: obtaining the modified methods from the neighboring versions of Android
apps and identifying patches among them. To achieve the first step and resist name-based
obfuscation, we employ similarity comparison at the method level based on code features
and the structure of the app. We design an approach to detect patches by analyzing the
usage and internal semantics of the original and updated versions of methods. We applied
the approach to extract patches from 13 updates of open-source projects and identified
28/36 patches. To evaluate the applicability to real-world apps, we further performed an
experiment on the real-world dataset, which is proved that this approach can find various
types of patches within a reasonable amount of time.

References
1 Android debug bridge (adb), accessed: November 2021. URL: https://developer.android.

com/studio/command-line/adb.
2 Open source two-factor authentication for android, accessed: November 2021. URL: https:

//github.com/andOTP/andOTP.
3 androguard, accessed: November 2021. URL: https://code.google.com/archive/p/

androguard/.
4 Ankidroid: Anki flashcards on android. your secret trick to achieve superhuman information

retention, accessed: November 2021. URL: https://github.com/ankidroid/Anki-Android.
5 Tanzirul Azim, Iulian Neamtiu, and Lisa M. Marvel. Towards self-healing smartphone software

via automated patching. In ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, pages 623–628. ACM,
2014.

6 Michael Backes, Sven Bugiel, and Erik Derr. Reliable third-party library detection in android
and its security applications. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016, pages 356–367. ACM,
2016.

7 Bindiff, accessed: November 2021. URL: https://www.zynamics.com/bindiff.html.
8 Anthony Desnos. Android: Static analysis using similarity distance. In 45th Hawaii Inter-

national International Conference on Systems Science (HICSS-45 2012), Proceedings, 4-7
January 2012, Grand Wailea, Maui, HI, USA, pages 5394–5403. IEEE Computer Society,
2012.

9 Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Montperrus.
Fine-grained and accurate source code differencing. In Proceedings of the 29th ACM/IEEE
International Conference on Automated Software Engineering, ASE ’14, pages 313–324, New
York, NY, USA, 2014. ACM.

10 Find security bugs, accessed: November 2021. URL: https://find-sec-bugs.github.io/.
11 git-difftool documentation, accessed: November 2021. URL: https://git-scm.com/docs/

git-difftool.
12 Github: Where the world builds software, accessed: November 2021. URL: https://github.

com/.

https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://github.com/andOTP/andOTP
https://github.com/andOTP/andOTP
https://code.google.com/archive/p/androguard/
https://code.google.com/archive/p/androguard/
https://github.com/ankidroid/Anki-Android
https://www.zynamics.com/bindiff.html
https://find-sec-bugs.github.io/
https://git-scm.com/docs/git-difftool
https://git-scm.com/docs/git-difftool
https://github.com/
https://github.com/

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:27

13 Gnucash for android mobile companion application, accessed: November 2021. URL: https:
//github.com/codinguser/gnucash-android.

14 open-source android gnss/gps test program, accessed: November 2021. URL: https://github.
com/barbeau/gpstest.

15 Steve Hanna, Ling Huang, Edward XueJun Wu, Saung Li, Charles Chen, and Dawn Song.
Juxtapp: A scalable system for detecting code reuse among android applications. In Detection
of Intrusions and Malware, and Vulnerability Assessment - 9th International Conference,
DIMVA 2012, Heraklion, Crete, Greece, July 26-27, 2012, Revised Selected Papers, volume
7591 of Lecture Notes in Computer Science, pages 62–81. Springer, 2012.

16 Project planning for developers, accessed: November 2021. URL: https://github.com/
features/issues.

17 Jiajun Jiang, Yingfei Xiong, Hongyu Zhang, Qing Gao, and Xiangqun Chen. Shaping program
repair space with existing patches and similar code. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam, The
Netherlands, July 16-21, 2018, pages 298–309. ACM, 2018.

18 keytool, accessed: November 2021. URL: https://docs.oracle.com/javase/8/docs/
technotes/tools/unix/keytool.html.

19 Dongsun Kim, Jaechang Nam, Jaewoo Song, and Sunghun Kim. Automatic patch generation
learned from human-written patches. In 35th International Conference on Software Engineering,
ICSE ’13, San Francisco, CA, USA, May 18-26, 2013, pages 802–811. IEEE Computer Society,
2013.

20 Li Li, Tegawendé F. Bissyandé, and Jacques Klein. Simidroid: Identifying and explaining
similarities in android apps. In 2017 IEEE Trustcom/BigDataSE/ICESS, Sydney, Australia,
August 1-4, 2017, pages 136–143. IEEE Computer Society, 2017.

21 Yi Li, Shaohua Wang, and Tien N. Nguyen. Dlfix: context-based code transformation learning
for automated program repair. In ICSE ’20: 42nd International Conference on Software
Engineering, Seoul, South Korea, 27 June - 19 July, 2020, pages 602–614. ACM, 2020.

22 Yi Li, Shaohua Wang, Tien N. Nguyen, and Son Van Nguyen. Improving bug detection via
context-based code representation learning and attention-based neural networks. Proc. ACM
Program. Lang., 3(OOPSLA):162:1–162:30, 2019.

23 Xuliang Liu and Hao Zhong. Mining stackoverflow for program repair. In 25th International
Conference on Software Analysis, Evolution and Reengineering, SANER 2018, Campobasso,
Italy, March 20-23, 2018, pages 118–129. IEEE Computer Society, 2018.

24 Fan Long, Peter Amidon, and Martin Rinard. Automatic inference of code transforms for
patch generation. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2017, Paderborn, Germany, September 4-8, 2017, pages 727–739.
ACM, 2017.

25 Siqi Ma, David Lo, Teng Li, and Robert H. Deng. Cdrep: Automatic repair of cryptographic
misuses in android applications. In Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, AsiaCCS 2016, Xi’an, China, May 30 - June 3,
2016, pages 711–722. ACM, 2016.

26 Siqi Ma, Ferdian Thung, David Lo, Cong Sun, and Robert H. Deng. Vurle: Automatic
vulnerability detection and repair by learning from examples. In Computer Security - ESORICS
2017 - 22nd European Symposium on Research in Computer Security, Oslo, Norway, September
11-15, 2017, Proceedings, Part II, volume 10493 of Lecture Notes in Computer Science, pages
229–246. Springer, 2017.

27 Text editor - notes & todo (for android), accessed: November 2021. URL: https://github.
com/gsantner/markor.

28 Material design file manager for android, accessed: November 2021. URL: https://github.
com/zhanghai/MaterialFiles.

29 Stuart McIlroy, Nasir Ali, and Ahmed E. Hassan. Fresh apps: an empirical study of frequently-
updated mobile apps in the google play store. Empir. Softw. Eng., 21(3):1346–1370, 2016.

ECOOP 2022

https://github.com/codinguser/gnucash-android
https://github.com/codinguser/gnucash-android
https://github.com/barbeau/gpstest
https://github.com/barbeau/gpstest
https://github.com/features/issues
https://github.com/features/issues
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
https://github.com/gsantner/markor
https://github.com/gsantner/markor
https://github.com/zhanghai/MaterialFiles
https://github.com/zhanghai/MaterialFiles

21:28 PEDroid: Automatically Extracting Patches from Android App Updates

30 Shrink your java and android code, accessed: November 2021. URL: https://www.
guardsquare.com/proguard.

31 Thorsten Schäfer, Jan Jonas, and Mira Mezini. Mining framework usage changes from
instantiation code. In International Conference on Software Engineering (ICSE), pages
471–480, New York, NY, USA, 2008. ACM.

32 Danilo Silva, João Paulo da Silva, Gustavo Jansen de Souza Santos, Ricardo Terra, and
Marco Tulio Valente. Refdiff 2.0: A multi-language refactoring detection tool. IEEE Trans.
Software Eng., 47(12):2786–2802, 2021.

33 Danilo Silva and Marco Tulio Valente. Refdiff: Detecting refactorings in version histories. In
Proceedings of the 14th International Conference on Mining Software Repositories, MSR ’17,
pages 269–279. IEEE Press, 2017.

34 Soot – A java optimization framework, accessed: November 2021. URL: https://github.
com/soot-oss/soot.

35 Spotbugs, accessed: November 2021. URL: https://spotbugs.github.io/.
36 Shin Hwei Tan, Zhen Dong, Xiang Gao, and Abhik Roychoudhury. Repairing crashes in

android apps. In Proceedings of the 40th International Conference on Software Engineering,
ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 187–198. ACM, 2018.

37 Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin White, and
Denys Poshyvanyk. An empirical study on learning bug-fixing patches in the wild via neural
machine translation. ACM Trans. Softw. Eng. Methodol., 28(4):19:1–19:29, 2019.

38 Xinda Wang, Kun Sun, Archer L. Batcheller, and Sushil Jajodia. Detecting “0-day” vul-
nerability: An empirical study of secret security patch in OSS. In 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2019, Portland, OR,
USA, June 24-27, 2019, pages 485–492. IEEE, 2019.

39 Yan Wang, Haowei Wu, Hailong Zhang, and Atanas Rountev. ORLIS: obfuscation-resilient
library detection for android. In Proceedings of the 5th International Conference on Mobile
Software Engineering and Systems, MOBILESoft@ICSE 2018, Gothenburg, Sweden, May 27 -
28, 2018, pages 13–23. ACM, 2018.

40 Martin White, Michele Tufano, Matias Martinez, Martin Monperrus, and Denys Poshyvanyk.
Sorting and transforming program repair ingredients via deep learning code similarities. In 26th
IEEE International Conference on Software Analysis, Evolution and Reengineering, SANER
2019, Hangzhou, China, February 24-27, 2019, pages 479–490. IEEE, 2019.

41 Qiushi Wu, Yang He, Stephen McCamant, and Kangjie Lu. Precisely characterizing security
impact in a flood of patches via symbolic rule comparison. In 27th Annual Network and
Distributed System Security Symposium, NDSS 2020, San Diego, California, USA, February
23-26, 2020. The Internet Society, 2020.

42 Jiayun Xie, Xiao Fu, Xiaojiang Du, Bin Luo, and Mohsen Guizani. Autopatchdroid: A
framework for patching inter-app vulnerabilities in android application. In IEEE International
Conference on Communications, ICC 2017, Paris, France, May 21-25, 2017, pages 1–6. IEEE,
2017.

43 Zhenchang Xing and Eleni Stroulia. Umldiff: an algorithm for object-oriented design differen-
cing. In 20th IEEE/ACM International Conference on Automated Software Engineering (ASE
2005), November 7-11, 2005, Long Beach, CA, USA, pages 54–65. ACM, 2005.

44 Yifei Xu, Zhengzi Xu, Bihuan Chen, Fu Song, Yang Liu, and Ting Liu. Patch based vulnerability
matching for binary programs. In Proc. 29th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), Virtual Event, USA, 2020. ACM.

45 Zhengzi Xu, Bihuan Chen, Mahinthan Chandramohan, Yang Liu, and Fu Song. SPAIN:
security patch analysis for binaries towards understanding the pain and pills. In Proceedings
of the 39th International Conference on Software Engineering, ICSE 2017, Buenos Aires,
Argentina, May 20-28, 2017, pages 462–472. IEEE / ACM, 2017.

46 Dongjin Yu, Jie Wang, Qing Wu, Jiazha Yang, Jiaojiao Wang, Wei Yang, and Wei Yan.
Detecting java code clones with multi-granularities based on bytecode. In 41st IEEE Annual
Computer Software and Applications Conference, COMPSAC 2017, Turin, Italy, July 4-8,
2017. Volume 1, pages 317–326. IEEE Computer Society, 2017.

https://www.guardsquare.com/proguard
https://www.guardsquare.com/proguard
https://github.com/soot-oss/soot
https://github.com/soot-oss/soot
https://spotbugs.github.io/

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:29

47 Jiexin Zhang, Alastair R. Beresford, and Stephan A. Kollmann. Libid: reliable identification
of obfuscated third-party android libraries. In Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019, Beijing, China, July
15-19, 2019, pages 55–65. ACM, 2019.

48 Mu Zhang and Heng Yin. Appsealer: Automatic generation of vulnerability-specific patches for
preventing component hijacking attacks in android applications. In 21st Annual Network and
Distributed System Security Symposium, NDSS 2014, San Diego, California, USA, February
23-26, 2014. The Internet Society, 2014.

49 Yuan Zhang, Jiarun Dai, Xiaohan Zhang, Sirong Huang, Zhemin Yang, Min Yang, and Hao
Chen. Detecting third-party libraries in android applications with high precision and recall.
In 25th International Conference on Software Analysis, Evolution and Reengineering, SANER
2018, Campobasso, Italy, March 20-23, 2018, pages 141–152. IEEE Computer Society, 2018.

A Dataset

A.1 dBench
dBench includes six popular open source Android apps on GitHub shown as Table 7 and 8.
Except for markor with 900+ stars, other projects have 1k-4.4k stars.

ECOOP 2022

21:30 PEDroid: Automatically Extracting Patches from Android App Updates

Table 7 Updates in dBench and all commits – part.1.

Project Old Version New Version Commit id Bug fix

markor[27]

2.2.3 2.2.5

5b53574c88888ecbcc4b5c712d26a4c0e4f89650 %

464579b59047bbacb2f9fb7edb9fb9563a9dfe2c %

35e25bff0de3521a41c4574561b958a8068fafa1 %

d0a5103223430e7af925a48f49affa0ae64ef83b %

37a9c135e7a2502f8ce1b6b463614a7c10168816 "

9dd83708e49f45d85e2c4f3ef9cc21a3019d327d %

cbd37234b587222c974b29a196f54c8f20f08b77 %

14cd95d37d0c12bacb2bd290bdee07d4a949ea24 "

47cff19dd5030d2c3ce470ce525fb2ab20f19727 %

22b7681cb52eb4f820c1bd036683b102be144b82 %

57745bb82ef225223e6780f65bc0d5dabf81cead "

2.3.1 2.3.3

11895e5554c59033927a7fb5e8139797165a703d "

e182dcc64057cd5f1bd8ac63492de4fa6f2f6658 "

51e8febed782e824ae4953bc266777828afc076e "

2f5352c59e8e1edc15ad7825d3b50d0980ec70b1 %

46d9165b0a6f3a6a6e243fb2e8c4417c9bab0666 "

c9a9cc7736084355cc422b3822a8da61d58b9569 "

d24f2cb29d76422d5e01f69d9b01b1ff78c8c8db %

63808c166aef82aaee2ed5ca67dd8a10eb2fa054 %

df02630b66914176f28d07a32ccde9478d20742c %

6e2b07c7c1b61718904096245f9106fd14b1447e %

f725a85011fc9342d37f55c58ba35926a94b6d0a %

76184b2aa73a215d7e5c66a3dfee6db8f8cfad1d %

27a0e8506abcdcaf2d7801493712eafb4e6ffbd7 %

gpstest[14]

3.7.4 3.8.0 0b47fca1a9f06017b6d319269764ac6cec9b1f7b "

8ed5b31c8e356b79cfe8b8bba49a10156101f758 %

3.9.5 3.9.6
c14a1025d6026aebef5747fb53eb28e891b02501 "

944733d36f44451096823200242f0ebdd5ef02c6 "

396c52a796e924cc5507bb087b4eadd684806fda %

3.9.6 3.9.7 70d8ec5197117660e6251945e804829e5221dbbe "

5625b632c4a60767950f61651629d09c8cb9fbe2 %

MaterialFiles[28]

1.0.0-beta.11 1.0.0-rc.1

b864874d87450591f20562f1e240ff228393c554 %

cfcfce564e42db79a7668dbedab978a35dd01e1e "

e0f488a7950402ac6464dae451b7a462898af316 %

8480642ddf39521eff7f30a79c5d1feec5a7d4cb "

2c379913b0cf6272e1b60da265a3f7ab32cfdaaf %

0d98dc34fc1cee5908514aa8eb8679f82c3d36dc "

1.0.0 1.0.1

fdd9940d98974b8291496922ddb98714162b0ccc %

041d384eed4cdc85d16ef063dd966a300b3b4769 %

428fab2cb24512e90d6d94e781134e85de29c104 "

fbc862d8a80bca16365dd8cfc42f0f846b0b2935 "

c81f380f4ec11071f139f3993987b15d3cb4a77c "

4b14cefb59d746822e1f31a92ecf46e15c2d88ff %

1.2.0 1.2.1

a5c07bc764c0678d423594ff454349ab63def5aa %

fc22c3ada63c8392b1dcced1c96d818404ba140b "

b78c799aa0f356d551c12904f07e2c9dfd3aba8e %

0f0d306e5db2e2afea257449c050936c5a60a5c0 "

d4918e0c5a3e11d0f7e49033aa3625c5b5138da9 %

618806bafcf6cc424b84471d485744f96dba4b4b "

ac8ca9988f761b5e8cdf7d0ecbd47d215540d145 "

H. Li, Y. Wang, Y. Zhang, J. Li, and D. Gu 21:31

Table 8 Updates in dBench and all commits – part.2.

Project Old Version New Version Commit id Bug fix

andOTP[2]

0.2.6 0.2.7

77655b610897eb59e6ff7fcc4f13454f34b4a86d %

f0518a265c858414b74ef84e2e8bd945a96ad59a %

dd97ac87f059f8c1498d17d7c99ac6dc70068ea5 %

f41eb620aadb3dd203f923d934ce1f6da713c901 %

cbdced2df1d5ab5fd35d17c7230b60a89d3d4012 %

247f4e938ed6def7668e3259c81a6fc9e1dd5db0 %

842d49b68f86412d246c9ab9a8d59dcbc11c4f8c %

ce696861c7497a67c72be0a315fc9d1e5cbd0489 "

0.7.1 0.7.1.1

73f8c14ec389a2ad8c2a61edef2bcfd4b4894b70 "

cdc54028b3395401fa65665bc5e01e6a279071d3 %

c1d6c6b2b8c01fbfb3a0ab7ba5b3c247bf80cd3f %

5215308a1afcf774499850967450725201dbb1c9 %

gnucash-android[13]

2.1.1 2.1.2

57241e8c064302a215aa74501e0dc1ba31e6a096 "

1794882757a37c108c4b4cf40f6876aa7a51c87d "

dae1caf7078bdd3e425e25cbfd5a37eb2309e0e6 "

f81ad6067a4136b34ccfc277cd21913682a3ce31 "

a363eebaff01f7fdadbda5edc661aa35133a450a %

404759620a5a33cecf0bf836fe5802401eacf4d6 "

2.1.2 2.1.3

ff894a5ce5901bafc8626279d09278efc229ef23 %

6048bd8d0604370a38189dad9ba451aa121fc7bb "

a6aa211734accf94664da91316cf6e26bed0de92 "

b2e9bf7f38a287985656e48ec6b13979a070dcd0 %

d790b805ec17fd22ab4566ae1d24cefe72486e36 "

724a686177798685112a02fcc3873873fb7a9595 "

952cb2b697b9bd946437e19db4597d23b3446f55 "

Anki-Android[4] 2.16alpha24 2.16alpha25

a38503e08c0a8f0445adb527a015aa3a82cd4404 %

672c44eb664284339b697bff27ec8b37925c3c31 "

5135b06f4ca61cb15f75973362e2d25340925524 %

09430ad55c4186f5d9e52848005965270360308d %

81d1d134863b8ab2c0560f9f11148b6a91996c0d "

99ea713f780a428332990d3e5b7033d714a3ffad %

b7d283f96fd3922806beb5eeb499e475f034d5a8 %

0f7b0bebed9539c6ee46608539be23c2e5db4780 %

ECOOP 2022

	1 Introduction
	2 Related Works
	2.1 Diffing in Android
	2.2 Patch Identification

	3 Overview
	3.1 Challenges
	3.2 Solutions
	3.3 Framework Overview

	4 Differential Analysis
	4.1 Structure Construction & Feature Extraction
	4.2 Package-level Matching
	4.3 Matching Relation Extraction

	5 Patch Identification
	5.1 Call Site Analysis
	5.2 Internal Semantic Comparison

	6 Evaluation
	6.1 Dataset
	6.2 Setup
	6.3 Effectiveness
	6.3.1 Results
	6.3.2 Performance
	6.3.3 Differential analysis
	6.3.4 Patch identification

	6.4 Applicability
	6.4.1 Performance
	6.4.2 Analysis of Extracted Patches

	7 Discussion
	7.1 Limitation and Future works
	7.2 Usage of Extracted Patches

	8 Conclusion
	A Dataset
	A.1 dBench

