
Ferrite: A Judgmental Embedding of Session
Types in Rust
Ruo Fei Chen #

Independent Researcher, Leipzig, Germany

Stephanie Balzer #

Carnegie Mellon University, Pittsburgh, PA, USA

Bernardo Toninho #

NOVA LINCS, Nova University Lisbon, Portugal

Abstract
Session types have proved viable in expressing and verifying the protocols of message-passing systems.
While message passing is a dominant concurrency paradigm in practice, real world software is written
without session types. A limitation of existing session type libraries in mainstream languages is
their restriction to linear session types, precluding application scenarios that demand sharing and
thus aliasing of channel references. This paper introduces Ferrite, a shallow embedding of session
types in Rust that supports both linear and shared sessions. The formal foundation of Ferrite
constitutes the shared session type calculus SILLS, which Ferrite encodes via a novel judgmental
embedding technique. The fulcrum of the embedding is the notion of a typing judgment that allows
reasoning about shared and linear resources to type a session. Typing rules are then encoded as
functions over judgments, with a valid typing derivation manifesting as a well-typed Rust program.
This Rust program generated by Ferrite serves as a certificate, ensuring that the application will
proceed according to the protocol defined by the session type. The paper details the features and
implementation of Ferrite and includes a case study on implementing Servo’s canvas component in
Ferrite.

2012 ACM Subject Classification Theory of computation → Linear logic; Theory of computation →
Type theory; Software and its engineering→ Domain specific languages; Software and its engineering
→ Concurrent programming languages

Keywords and phrases Session Types, Rust, DSL

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.22

Related Version Technical Report: https://arxiv.org/abs/2009.13619 [7]

Supplementary Material Software (ECOOP 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.2.14

Funding Stephanie Balzer : National Science Foundation Award No. CCF-1718267.
Bernardo Toninho: FCT/MCTES grant NOVALINCS/BASE UIDB/04516/2020.

1 Introduction

Message-passing is a dominant concurrency paradigm, adopted by mainstream languages such
as Erlang, Scala, Go, and Rust, putting the slogan “Do not communicate by sharing memory;
instead, share memory by communicating” [13] into practice. In this setting, messages are
exchanged along channels, which can be shared by several senders and receivers. Type
systems in such languages typically allow channels to be typed, specifying and constraining
the types of messages they may carry (e.g. integers, strings, sums, references, etc.).

An aspect inherent to message-passing concurrency that is not captured in mainstream
type systems, however, is the idea of a protocol. Protocols dictate the sequencing and types
of messages to be exchanged. To express and enforce such protocols, session types [14, 15, 16]

V1.1

A
rt
ifa

cts Available

ECOOP

Functional V

1.
1

A
rt
ifa

cts Evaluated

ECOOP

Reusable V1

.1

A
rt
ifa

cts Evaluated

ECOOP

© Ruo Fei Chen, Stephanie Balzer, and Bernardo Toninho;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 22; pp. 22:1–22:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:soares.chen@maybevoid.com
https://orcid.org/0000-0001-5796-4386
mailto:balzers@cs.cmu.edu
mailto:btoninho@fct.unl.pt
https://orcid.org/0000-0002-0746-7514
https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://arxiv.org/abs/2009.13619
https://doi.org/10.4230/DARTS.8.2.14
https://doi.org/10.4230/DARTS.8.2.14
https://doi.org/10.4230/DARTS.8.2.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Ferrite: A Judgmental Embedding of Session Types in Rust

were introduced. Session typing disciplines assign types to channel endpoints according to
their intended usage protocols in terms of sequencing of input/output actions (e.g. “send
an integer and, afterwards, receive a string”) and branching/selection actions (e.g. “receive
either a buy message and process the payment; or a cancellation message and abort the
transaction”), ensuring the action sequence is followed correctly and thus, adherence to the
protocol. Thanks to their correspondence to linear logic [4, 44, 43, 42, 26, 5] session types
enjoy a strong logical foundation and ensure, in addition to protocol adherence (session
fidelity), the existence of a communication partner (progress). Session types have also been
extended with safe sharing [1, 2, 3] to accommodate multi-client scenarios that are rejected
by exclusively linear session types.

Despite these theoretical advances, session types have not (yet) been adopted at scale.
While various session type embeddings exist in mainstream languages such as Java [18, 17],
Scala [39], Haskell [38, 34, 20, 27], OCaml [32, 19], and Rust [21, 25, 8, 9], all of these
embeddings lack support for multi-client scenarios that mandate controlled aliasing in
addition to linearity.

This paper introduces Ferrite [6], a shallow embedding of session types in Rust. In
contrast to prior work, Ferrite supports both linear and shared session types, with protocol
adherence guaranteed statically by the Rust compiler. Ferrite’s underlying theory is based
on the calculus SILLS introduced in [1], which develops the logical foundation of shared
session types. As a matter of fact, Ferrite encodes SILLS typing derivations as Rust functions,
through a technique we dub judgmental embedding. Through our judgmental embedding,
a type-checked Ferrite program yields a Rust program that corresponds to a SILLS typing
derivation and thus the proof of protocol adherence.

In order to faithfully encode SILLS typing in Rust, this paper further makes several
technical contributions to emulate advanced typing features, such as higher-kinded types,
by a skillful combination of traits (type classes) and associated types (type families). For
example, Ferrite supports recursive (session) types in this way, which are limited to recursive
structs of a fixed size in plain Rust. A combination of type-level natural numbers with
ideas from profunctor optics [33] are also used to support named channels and labeled
choices. We adopt the idea of lenses [11] for selecting and updating individual channels in
an arbitrary-length linear context. Similarly, we use prisms for selecting a branch out of
arbitrary-length choices. Whereas session-ocaml [32] has previously explored the use of n-ary
choice through extensible variants in OCaml, we are the first to connect n-ary choice to
prisms and non-native implementation of extensible variants. Notably, the Ferrite codebase
remains entirely in the safe fragment of Rust, with no (direct) use of unsafe features.

Given its support of both linear and shared session types, Ferrite is capable of ex-
pressing any session-typed program in Rust. We substantiate this claim by providing an
implementation of Servo’s canvas component with the communication layer within Ferrite.

This work makes the following contributions: (i) the design and implementation of Ferrite,
an embedded domain-specific language (EDSL) for writing session-typed programs in Rust;
(ii) with support of both linear and shared sessions, guaranteed to be observed by type
checking; (iii) a novel judgmental embedding of custom typing rules in a host language with
the resulting program carrying the proof of successful type checking; (iv) an encoding of
arbitrary-length choice in terms of prisms and extensible variants in Rust; (v) an empirical
evaluation based on a full implementation of Servo’s canvas component in Ferrite.

All typing rules and their encoding as well as further materials of interest to an inquisitive
reader are provided in our companion technical report [7].

R. F. Chen, S. Balzer, and B. Toninho 22:3

Table 1 Overview of session types and terms in SILLS together with their operational meaning.
Subscripts L and S denote linear and shared sessions, resp., where m, n ∈ {L, S}.

Session type Process term
current cont current cont Description

cL:⊕ {l:AL} cL:ALh cL.lh ; P P provider sends label lh along cL

case cL of l⇒ Q Qh client receives label lh along cL

cL:N{l:AL} cL:ALh case cL of l⇒ P Ph provider receives label lh along c

cL.lh ; Q Q client sends label lh along cL

cL:Am ⊗BL cL:BL send cL dm; P P provider sends channel dm:Am along cL

ym ← recv cL; Qym Qdm client receives channel dm:Am along cL

cL:Am ⊸ BL cL:BL ym ← recv cL; Pym Pdm provider receives channel dm:Am along cL

send cL dm; Q Q client sends channel dm:Am along cL

cL:1 - close cL - provider sends “end” along cL

wait cL; Q Q provider receives “end” along cL

cL:↓S
LAS cS:AS cS ← detach cL; PxS PcS provider sends “detach cS” along cL

xS ← release cL; QxS QcS client receives “detach cS” along cL

cS:↑S
LAL cL:AL cL ← acquire cS; QxL QcL client sends “acquire cL” along cS

xL ← accept cS; PxL PcL provider receives “acquire cL” along cS

cm : Am cm : Am zn ← X ← dm ; Pzn Pzn spawn (“cut”) X along zn:Bn with dm:Dm

cm : Am - fwd cm dm - forward to channel dm:Am and terminate

2 Background

This section gives a brief tour of linear and shared session types. The presentation is based
on the intuitionistic session-typed process calculus SILLS [1], which Ferrite builds upon. We
consider the protocol governing the interaction between a queue and its client:

queue A = N{enq : A ⊸ queue A, deq : ⊕{none : 1, some : A⊗ queue A}}

Table 1 provides an overview of the types used in the example. Since SILLS is based on
a Curry-Howard correspondence between intuitionistic linear logic and the session-typed
π-calculus [4, 5] it uses linear logic connectives (⊕, N, ⊗, ⊸, 1) as session types. The
remaining connectives concern shared sessions, a feature we remark on shortly. A crucial –
and probably unusual – characteristic of session-typed processes is that a process changes its
typing along with the messages it exchanges. As a result, a process’ typing always reflects
the current protocol state. Table 1 lists state transitions inflicted by a message exchange in
the first and second column and corresponding process terms in the third and fourth column.
The fifth column provides the operational meaning of a type.

Consulting Table 1, we gather that the above polymorphic session type queue A imposes
the following recursive protocol: A client may either send the label enq or deq to the queue,
depending on whether the client wishes to enqueue or dequeue an element of type A, resp.
In the former case, the client sends the element to be enqueued, after which the queue recurs.
In the latter case, the queue indicates to the client whether it is empty (none) or not (some),
and proceeds by either terminating or sending the dequeued element and recurring, resp.

A linear typing discipline is beneficial because it immediately guarantees session fidelity
– even in the presence of perpetual protocol change – by ensuring that a channel connects
exactly two processes. Unfortunately, linearity also rules out various practical programming
scenarios that demand sharing and thus aliasing of channel references. For example, the
above linear session type queue A is limited to a single client. To support safe sharing of

ECOOP 2022

22:4 Ferrite: A Judgmental Embedding of Session Types in Rust

stateful channel references while upholding session fidelity, SILLS extends linear session types
with shared session types (↓S

LAS, ↑S
LAL). These two connectives mediate between shared and

linear sessions by requiring that clients of shared sessions interact in mutual exclusion from
each other. Concretely, a type ↑S

LAL mandates a client to acquire the process offering the
shared session. If the request is successful, the client receives a linear channel to the acquired
process along which it must proceed as detailed by the session type AL. A type ↓S

LAS, on the
other hand, mandates a client to release the linear process, relinquishing ownership of the
linear channel and only being left with a shared alias to the now shared process at type AS.

Using these connectives, we can turn the above linear queue into a shared one, bracketing
enqueue and dequeue operations within acquire-release:

squeue AS = ↑S
LN{enq : AS ⊸ ↓S

Lsqueue AS, deq : ⊕{none : ↓S
Lsqueue AS, some : AS ⊗ ↓S

Lsqueue AS}}

In contrast to the linear queue, the above version recurs in the none branch and thus keeps
the queue alive to serve the next client. For convenience, SILLS allows the connectives ⊗ and
⊸ to be used to transport both linear and shared channels along a linear carrier channel.

To provide a flavor of session-typed programming in SILLS, we briefly comment on the
below processes empty and elem, which implement the shared queue session type as a
sequence of elem processes, ended by an empty process. A process implementation consists of
its signature (first two lines) and body (after =). The first line indicates the typing of channel
variables used by the process (left of ⊢) and the type of the providing channel variable (right
of ⊢). The second line binds the channel variables. In SILLS, ← generally denotes variable
bindings. We leave it to the reader to convince themselves, consulting Table 1, that the code
in the body of the two processes executes the protocol defined by session type squeue AS.

· ⊢ empty :: q : squeue AS

q ← empty ← · =
q′ ← accept q ;
case q′ of
| enq→ x← recv q′ ;

q ← detach q′ ;
e← empty ; q ← elem ← x, e

| deq→ q′.none ;
q ← detach q′ ;
q ← empty

x : AS, t : squeue AS ⊢ elem :: q : squeue AS

q ← elem ← x, t =
q′ ← accept q ;
case q′ of
| enq→ y ← recv q′ ;

t′ ← acquire t ;
t′.enq ; send t′ y ;
t← release t′ ; q ← detach q′ ;
q ← elem ← x, t

| deq→ q′.some ; send q′ x ;
q ← detach q′ ; fwd q t

Imposing acquire-release not only as a programming methodology but also as a typing
discipline has the advantage of recovering session fidelity for shared sessions. To this
end, shared session types in SILLS must be strictly equi-synchronizing [1, 3], imposing the
invariant that an acquired session is released to the type at which previously acquired. For
example, the shared session type squeue AS is strictly equi-synchronizing whereas the type
invalid = ↑S

LN{left : ↓S
L↑

S
L ⊕ {yes : ↓S

Linvalid, no : 1}, right : ↓S
Linvalid} is not.

It is instructive to review the typing rules for acquire-release:

(T-↑S
LL)
Ψ, xS : ↑S

LAL; ∆, yL : AL ⊢ QyL :: (zL : CL)
Ψ, xS : ↑S

LAL; ∆ ⊢ yL ← acquire xS ; QyL :: (zL : CL)

(T-↑S
LR)

Ψ; · ⊢ PyL :: (yL : AL)
Ψ ⊢ yL ← accept xS ; PyL :: (xS : ↑S

LAL)

(T-↓S
LL)

Ψ, xS : AS; ∆ ⊢ QxS :: (zL : CL)
Ψ; ∆, yL : ↓S

LAS ⊢ xS ← release yL ; QxS :: (zL : CL)

(T-↓S
LR)

Ψ ⊢ PxS :: (xS : AS)
Ψ; · ⊢ xS ← detach yL ; PxS :: (yL : ↓S

LAS)

R. F. Chen, S. Balzer, and B. Toninho 22:5

Due to its foundation in intuitionistic linear logic, SILLS’ typing rules are phrased using a
sequent calculus, leading to left and right rules for each connective. Left rules describe the
interaction from the point of view of the client, right rules from the point of view of the
provider. The typing judgments Ψ; ∆ ⊢ P :: (xL : AL) and Ψ ⊢ P :: (xS : AS) read as “process
P offers a session of type A along channel x using sessions offered along channels in Ψ (and
∆).” The typing contexts Ψ and ∆ provide the typing of shared and linear channels, resp.
Whereas Ψ is a structural context, ∆ is a linear context, forbidding channels to be dropped
(weakened) or duplicated (contracted). In contrast to linear processes, shared processes must
not use any linear channels, a requirement crucial for type safety. The notions of acquire
and release are naturally formulated from the point of view of a client, so these terms appear
in the left rules. The right rules use the terms accept and detach with the meaning that an
accept accepts an acquire and a detach initiates a release. The rules are read bottom-up,
where the premise denotes the next action to be taken after the message exchange.

3 Key Ideas

This section introduces the key ideas underlying Ferrite. Subsequent sections provide further
details.

3.1 SILLR – A stepping stone from SILLS to Ferrite
In Section 2, we reviewed SILLS and its typing judgment. Our goal with Ferrite is to
faithfully and compositionally encode SILLS typing derivations in Rust. However, when
viewed under the lens of a general purpose programming language, most readers will find
SILLS a prohibitively austere formalism, lacking most facilities needed to write realistic
programs (e.g. basic data types, pattern matching, etc.) and provided by a convenient and
usable programming language like Rust. From an ergonomics standpoint alone it would
be unreasonably prohibitive for our embedding to forbid the use of Rust features such as
functions, traits and enumerations, only for the sake of precisely mirroring SILLS. Moreover,
to realize such an embedding we must be able to account for both SILLS’ linear session
discipline (i.e. the linear context ∆) and shared session discipline (i.e. the structural context
Ψ) within Rust’s usage discipline. Since Rust’s typing discipline is essentially affine, its
treatment of variable usage is neither linear nor purely structural, and so both shared and
linear channels must be treated explicitly in the encoding.

The two points above naturally lead us to the language SILLR as a formal stepping stone
between SILLS and our embedding, Ferrite. SILLR is, in its essence, a pragmatic extension
of SILLS with Rust (type and term) constructs, allowing us to intersperse Rust code with
the communication primitives of SILLS. In SILLR we use the judgment Γ; ∆ ⊢ expr :: A,
denoting that expression expr has session type A, using the sessions tracked by Γ and ∆.

This judgment differs from that of SILLS in its context region Γ and term expr , with the
latter permitting arbitrary Rust expressions in addition to SILLS primitives. Whereas SILLS’s
structural context Ψ exclusively tracks shared channels, SILLR’s Γ tracks both shared sessions
(subject to weakening and contraction) and plain Rust (affine) variables. A shared channel
type in both SILLR and SILLS is always of the form ↑S

LA, so there is no confusion among the
affine and shared contents of Γ. As we discuss in Section 5.2, the distinction between a plain
Rust variable, which is treated as affine, and a shared channel, which is treated structurally,
is modelled in Ferrite by making shared channels implement Rust’s Clone trait.

ECOOP 2022

22:6 Ferrite: A Judgmental Embedding of Session Types in Rust

Table 2 Overview of SILLR types and terms and their encoding in Ferrite. Note that SILLR uses
τ ◁ AL and τ ▷ AL for shared channel output and input, resp., and ϵ for termination.

Type Terms (SILLR)
Ferrite SILLR provider client

InternalChoice<Row> ⊕{li : ALi} offer li; K case a {li : Ki}
ExternalChoice<Row> N{li : ALi} offer_choice{li : Ki} choose a li; K

SendChannel<A,B> AL ⊗BL send_channel_from a; K a← receive_channel_from f a; K

ReceiveChannel<A,B> AL ⊸ BL a← receive_channel; K send_channel_to f a; K

SendValue<T,A> τ ◁ AL send_value x; K x← receive_value_from a x; K

ReceiveValue<T,A> τ ▷ AL x← receive_value; K send_value_to a x; K

End ϵ terminate wait a; K

SharedToLinear<A> ↓S
LAS detach_shared_session; Ks release_shared_session a; Kl

LinearToShared<A> ↑S
LAL accept_shared_session; Kl a← acquire_shared_session s; Kl

Table 2 provides an overview of SILLR types and terms and their Ferrite encoding. SILLR
types stand in direct correspondence with SILLS types (see Table 1), apart from shared
channel output and input. The SILLS types for sending and receiving shared channels (AS⊗AL

and AS ⊸ AL) correspond to SILLR types for sending and receiving values (T ◁ A and T ▷ A,
resp.), which support both Rust values and shared channels. Their typing rules are:

(T◁R)
Γ ; ∆ ⊢ K :: A

Γ, x : τ ; ∆ ⊢ send_value x; K :: τ ◁ A

(T◁L)
Γ, x : τ ; ∆, a : A ⊢ K :: B

Γ ; ∆, a : τ ▷ A ⊢ x ← receive_value_from a; K :: B

Rule T◁R indicates that the value bound to variable x of type τ will be sent, after which
the continuation K will execute, offering type A. Dually, rule T◁L states that using such a
provider bound to a will bind x of type τ in continuation K, which must now use the channel
bound to a according to A.

3.2 Judgmental Embedding
Having introduced the SILLR typing judgment and illustrated some of its typing rules, we
can now clarify the idea behind our notion of judgmental embedding, which enables the Rust
compiler to typecheck SILLR programs by encoding typing derivations as Rust programs.
The basic idea underlying this encoding can be schematically described as follows:

Γ ; ∆2 ⊢ cont :: A2

Γ ; ∆1 ⊢ expr ; cont :: A1

fn expr<...>
(cont: PartialSession<C2, A2>)
-> PartialSession<C1, A1>

On the left we show a SILLR typing rule and on the right its encoding in Ferrite. Ferrite
encodes a SILLR typing judgment Γ; ∆ ⊢ expr :: A as a value of Rust type PartialSession<
C, A>, where C encodes the linear context ∆ and A the session type A, standing for any of
the Ferrite types of Table 2. Ferrite then encodes a SILLR typing rule for an expression expr
as a Rust function expr that accepts a PartialSession<C2, A2> and returns a PartialSession
<C1, A1>, where expr stands for any of the SILLR terms of Table 2. The encoding makes
use of continuation passing style (arising from the sequent calculus-based formulation of
SILLR), with the return type being the conclusion of the rule and the argument type being
its premise. Table 3 summarizes the judgmental embedding; Section 4.1 provides further
details. Whereas Ferrite explicitly performs a type-level encoding of the linear context ∆, the
representation of the shared and affine context region Γ is achieved through Rust’s normal

R. F. Chen, S. Balzer, and B. Toninho 22:7

Table 3 Judgmental embedding of SILLR in Ferrite.

SILLR Ferrite Description

Γ ; · ⊢ A Session<A> Typing judgment for top-level session (i.e. closed program).
Γ ; ∆ ⊢ A PartialSession<C, A> Typing judgment for partial session.
∆ C: Context Linear context; explicitly encoded.
Γ - Shared / Affine context; delegated to Rust.
A A: Protocol Session type.

binding structure, with the obligation that shared channels implement Rust’s Clone trait to
permit contraction. To type a closed program, Ferrite defines the type Session<A>, which
stands for a SILLR judgment with an empty linear context.

Adopting a judgmental embedding technique for implementing a DSL delivers the benefits
of proof-carrying code: the PartialSession<C1, A1> returned from a well-typed Ferrite expr is
the typing derivation of the corresponding SILLR term. In case the SILLR term is a SILLS
term, its typing derivation certifies protocol adherence by virtue of the type safety proof of
SILLS [1]. In case the SILLR term includes Rust code, its typing derivation certifies protocol
adherence modulo the possibility of a panic raised by the Rust code. A fully general type
safety result for SILLR, possibly building upon existing formalizations of Rust [22], is an
avenue of future work.

3.3 Recursive and Shared Session Types in Ferrite
Rust’s support for recursive types is limited to recursive struct definitions of a known size. To
circumvent this restriction and support arbitrary recursive session types, Ferrite introduces
a type-level fixed-point combinator Rec<F> to obtain the fixed point of a type function F.
Since Rust lacks higher-kinded types such as Type → Type, we use defunctionalization [36, 46]
by accepting any Rust type F implementing the trait RecApp with a given associated type
F::Applied, as shown below. Section 5.1 provides further details.
trait RecApp<X> { type Applied; }
struct Rec<F: RecApp<Rec<F>>> { unfold: Box<F::Applied> }

Recursive types are also vital for encoding shared session types. In line with [3], we restrict
shared session types to be recursive, making sure that a shared component is continuously
available. To guarantee type preservation, recursive session types must be strictly equi-
synchronizing [1, 3], requiring an acquired session to be released to the same type at which
it was previously acquired. Ferrite enforces this invariant by defining a specialized trait
SharedRecApp which omits an implementation for End:
trait SharedRecApp<X> { type Applied; } trait SharedProtocol { ... }
struct SharedToLinear<F> { ... } struct SharedChannel<S: SharedProtocol> { ... }
struct LinearToShared<F: SharedRecApp<SharedToLinear<LinearToShared<F>>>> { ... }

Ferrite achieves safe communication for shared sessions by imposing an acquire-release
discipline [1] on shared sessions, establishing a critical section for the linear portion of the
process enclosed within acquire and release. SharedChannel denotes the shared process running
in the background, and clients with a reference to it can acquire an exclusive linear channel
to communicate with it. As long as the linear channel exists, the shared process is locked
and cannot be acquired by any other client. With the strictly equi-synchronizing constraint
in place, the now linear process must eventually be released (SharedToLinear) back to the
same shared session type at which it was previously acquired, giving turn to another client
waiting to acquire. Section 5.2 provides further details on the encoding.

ECOOP 2022

22:8 Ferrite: A Judgmental Embedding of Session Types in Rust

3.4 N-ary Choice and Linear Context
Ferrite implements n-ary choices and linear typing contexts as extensible sums and products
of session types, resp. Ferrite uses heterogeneous lists [23] to annotate a list of session types
of arbitrary length. The notation HList![A0, A1, ..., AN−1] denotes a heterogeneous list of
N session types, with Ai being the session type at the i-th position of the list. The HList!
macro acts as syntactic sugar for the heterogeneous list, which in its raw form is encoded as
(A0, (A1, (..., (AN−1, ())))). Ferrite uses the Rust tuple constructor (,) for HCons, and unit
() for HNil. The heterogeneous list itself can be directly used to represent an n-ary product.
Using an associated type, the list can moreover be transformed into an n-ary sum.

One disadvantage of using heterogeneous lists is that its elements have to be addressed by
position rather than a programmer-chosen label. To recover labels for accessing list elements,
we use optics [33]. More precisely, Ferrite uses lenses [11] to access a channel in a linear
context and prisms to select a branch of a choice. We further combine the optics abstraction
with de Bruijn levels and implement lenses and prisms using type level natural numbers.
Given an inductive trait definition of natural numbers as zero (Z) and successor (S<N>), a
natural number N implements the lens to access the N-th element in the linear context, and
the prism to access the N-th branch in a choice. Schematically, the lens encoding can be
captured as follows:

Γ ; ∆, ln : B2 ⊢ K :: A2

Γ ; ∆, ln : B1 ⊢ expr ln; K :: A1

fn expr<...>
(l: N, cont: PartialSession<C1, A2>)
-> PartialSession<C2, A1>

where N: ContextLens<C1, B1, B2, Target=C2>

The index N amounts to the type of the variable l that the programmer chooses as a name for
a channel in the linear context. Ferrite handles the mapping, supporting random access to
programmer-named channels. Section 4.2 provides further details, including the support of
higher-order channels. Similarly, prisms allow choice selection in constructs such as offer_case
to be encoded as follows:

Γ; ∆ ⊢ K :: An

Γ; ∆ ⊢ offer_case ln; K :: ⊕{..., ln : An, ...}

fn offer_case<N, Row, C, A>
(l: N, cont: PartialSession<C, A>)
-> PartialSession<C, InternalChoice<Row>>

where N: Prism<Row, Elem=A>, ...

Ferrite maps a choice label to a constant having the singleton value of a natural number
N, which implements the prism to access the N-th branch of a choice. In addition to prisms,
Ferrite implements a version of extensible variants [28] to support polymorphic operations
on arbitrary sums of session types representing choices. Finally, the define_choice! macro
is used as a helper to export type aliases as programmer-friendly identifiers. Details are
reported in Section 6 and in our companion technical report [7].

4 Ferrite – A Judgmental Embedding of SILLR

Having introduced some of the key concepts underlying the implementation of Ferrite, we
now cover in detail the implementation of Ferrite’s core constructs, building up the knowledge
required for Section 5 and Section 6. Ferrite, like any other DSL, has to tackle the various
technical challenges encountered when embedding a DSL in a host language. In doing so, we
take inspiration from the range of embedding techniques developed for Haskell and adjust
them to the Rust setting. The lack of higher-kinded types, limited support of recursive types,
and presence of weakening, in particular, make the development far from trivial. A more
conceptual contribution of this work is thus to demonstrate how existing Rust features can
be combined to emulate many of the missing features that are beneficial to DSL embeddings

R. F. Chen, S. Balzer, and B. Toninho 22:9

and how to encode custom typing rules in Rust or any similarly expressive language. The
techniques described in this and subsequent sections also serve as a reference for embedding
other DSLs in a host language like Rust.

4.1 Encoding Typing Rules via Judgmental Embedding
A distinguishing characteristic of Ferrite is its propositions as types approach, yielding a
direct correspondence between SILLR notions and their Ferrite encoding. This correspondence
was introduced in Section 3.2 (see Table 3) and we now discuss it in more detail. To this
end, let’s consider the typing of value input. We remind the reader of Table 2 in Section 3,
which provides a mapping between SILLR and Ferrite session types. Interested readers can
find a corresponding mapping on the term level in the companion technical report [7].

Γ, a : τ ; ∆ ⊢ K :: A

Γ ; ∆ ⊢ a ← receive_value; K :: τ ▷ A
(T ▷ R)

The SILLR right rule T ▷ R types expression a ← receive_value; K with session type τ ▷ A

and the continuation K with session type A, where a is now in scope with type τ . Following
the schema hinted in Section 3.2, Ferrite encodes this rule as the function receive_value,
parameterized by a value type T (τ), a linear context C (∆), and an offered session type A.
fn receive_value<T, C:Context, A:Protocol>(cont:impl FnOnce(T) -> PartialSession<C, A>)

-> PartialSession<C, ReceiveValue<T, A>>

The function yields a value of type PartialSession<C, ReceiveValue<T, A>>, i.e. the con-
clusion of the rule, given an (affine) closure of type T → PartialSession<C, A>, encoding the
premise of the rule. Notably, Ferrite uses plain Rust binding (through function types) to
encode the contents of Γ, as illustrated for the received value above. The use of a closure
reveals the continuation-passing-style of the encoding, where the received value of type T is
passed to the continuation closure. The affine closure implements the FnOnce trait, ensuring
that it can only be called once.

The type PartialSession is a core construct of Ferrite that enables the judgmental
embedding of SILLR. A Rust value of type PartialSession<C, A> represents a Ferrite program
that guarantees linear usage of session type channels in the linear context C and offers the
linear session type A, corresponding to the SILLR typing judgment Γ; ∆ ⊢ expr :: A. The type
parameters C and A are constrained to implement the traits Context and Protocol – two other
Ferrite constructs representing a linear context and linear session type, resp.:
trait Context { ... } trait Protocol { ... }
struct PartialSession<C: Context, A: Protocol> { ... }

For each SILLR session type, Ferrite defines a corresponding Rust struct that implements
the trait Protocol, yielding the listing shown in Table 2. Implementations for ϵ (End) and
τ ▷ A (ReceiveValue<T, A>) are shown below. When a session type is nested within another
session type, such as in the case of ReceiveValue<T, A>, the constraint to implement Protocol
is propagated to the inner session type, requiring A to also implement Protocol:
struct End { ... } struct ReceiveValue<T, A> { ... }
impl Protocol for End { ... } impl<A: Protocol> Protocol for ReceiveValue<T, A> { ... }

Thus, while Ferrite delegates the handling of the shared/structural context Γ to Rust,
the encoding of the linear context ∆ is explicit. Being affine, the Rust type system permits
weakening, a structural property rejected by linear logic. Ferrite encodes a linear context as a
heterogeneous (type-level) list [23] of the form HList![A0, A1, ..., AN−1], with all its type

ECOOP 2022

22:10 Ferrite: A Judgmental Embedding of Session Types in Rust

elements Ai implementing Protocol. Internally, the HList macro desugars the type-level list
into a nested tuple (A0, (A1, (..., (AN−1, ())))). The unit type () is used as the empty
list (HNil) and the tuple constructor (,) is used as the HCons constructor. The implementation
for Context is defined inductively as follows:
impl Context for () { ... } impl<A: Protocol, C: Context> Context for (A, C) { ... }

To represent a closed program, i.e. a program without free channel variables, we define a
type alias Session<A> for PartialSession<C, A>, with C restricted to the empty context:
type Session<A> = PartialSession<(), A>;

A complete session type program in Ferrite is thus of type Session<A> and amounts to
the SILLR typing derivation proving that the program adheres to the defined protocol. Below
we show a “hello world”-style program in Ferrite:
let hello_provider = receive_value(|name| { println!("Hello, {}", name); terminate() });

The Ferrite program hello_provider has an inferred Rust type Session<ReceiveValue<String
, End>>. It offers the type ReceiveValue<String, End> by first receiving a string value using
receive_value, binding it to name in the continuation closure. Upon receiving the name string,
It prints out the name with a "Hello" greeting, and terminates using terminate().

4.2 Manipulating the Linear Context
Context Lenses

The use of a type-level list to encode the linear context has the advantage of allowing contexts
of arbitrary length. However, the list imposes an order on the context’s elements, disallowing
exchange. To allow exchange, we make use of the concept of lenses [11] to define a ContextLens
trait, which is implemented using type-level natural numbers.
#[derive(Copy)] struct Z; #[derive(Copy)] struct S<N>(PhantomData<N>);
trait ContextLens<C: Context, A1: Protocol, A2: Protocol> { type Target: Context; ... }

The ContextLens trait defines the read and update operations on a linear context, such
that given a source context C = HList![..., AN , ...], the source element of interest, AN

at position N , can be updated to the target element B to form the target context Target =
HList![..., B, ...], with the remaining elements unchanged. We use natural numbers to
inductively implement ContextLens at each position in the linear context, such that it satisfies
all constraints of the form:

N: ContextLens<HList![..., AN , ...], AN , B, Target=HList![..., B, ...]>

The implementation of natural numbers as context lenses is done by first considering the
base case, with Z used to access the first element of any non-empty linear context:
impl<A1: Protocol, A2: Protocol, C: Context> ContextLens<(A1, C), A1, A2>

for Z { type Target = (A2, C); ... }
impl<A1: Protocol, A2: Protocol, B: Protocol, C: Context, N: ContextLens<C, A1, A2>>
ContextLens <(B, C), A1, A2> for S<N> { type Target = (B, N::Target); ... }

In the inductive case, for any natural number N implementing the context lens for a context
HList![A0, ..., AN , ...], it’s successor S<Z> implements the context lens for HList![A−1,
A0, ..., AN , ...], with a new element A−1 appended to the head of the linear context.
Using context lenses, we can encode the SILLR left rule T▷L shown below, which types sending
an ambient value x to a channel a in the linear context that expects to receive a value.

R. F. Chen, S. Balzer, and B. Toninho 22:11

Γ ; ∆, a : A ⊢ K :: B

Γ, x : τ ; ∆, a : τ ▷ A ⊢ send_value_to a x; K :: B
(T▷L)

In Ferrite, T▷L is implemented as the function send_value_to, which uses a context lens N to
send a value of type T to the N-th channel in the linear context C1. This requires the N-th
channel to have type ReceiveValue<T,A>. A continuation cont is then given with the linear
context C2, which has the N-th channel updated to type A.
fn send_value_to<N, T, C1: Context, C2: Context, A: Protocol, B: Protocol>

(n: N, x: T, cont: PartialSession<C2, B>) -> PartialSession <C1, B>
where N: ContextLens<C1, ReceiveValue<T, A>, A, Target=C2>

Channel Removal

The above definition of a context lens is suited for updating channel types in a context.
However, we have not addressed how channels can be removed or added to the linear context.
These operations are required to implement session termination and higher-order channel
constructs such as ⊗ and ⊸. To support channel removal, we introduce a special Empty
element to denote the absence of a channel at a given position in the linear context:
struct Empty; trait Slot { ... }
impl Slot for Empty { ... } impl<A: Protocol> Slot for A { ... }

To allow Empty to be present in a linear context, we introduce a new Slot trait and make
both Empty and Protocol implement Slot. The original definition of Context is then updated
to allow types that implement Slot instead of Protocol.

Γ ; ∆ ⊢ K :: A

Γ ; ∆, a : ϵ ⊢ wait a; K :: A
(T1L)

Γ ; · ⊢ terminate; :: ϵ
(T1R)

Using Empty, it is straightforward to implement SILLR’s session termination. Rule T1L is
encoded via a context lens that replaces a channel of session type End with the Empty slot. The
function wait shown below does not really remove a slot from a linear context, but merely
replaces the slot with Empty. The use of Empty is necessary, because we want to preserve the
position of channels in a linear context in order for the context lens for a channel to work
across continuations.
fn wait<C1: Context, C2: Context, A: Protocol, N>

(n: N, cont: PartialSession<C2, A>) -> PartialSession<C1, A>
where N: ContextLens<C1, End, Empty, Target=C2>

With Empty introduced, an empty linear context may now contain any number of Empty slots
(e.g., HList![Empty, Empty]). We introduce an EmptyContext trait to abstract over the different
forms of empty linear contexts and provide an inductive definition as its implementation:
trait EmptyContext: Context { ... } impl EmptyContext for () { ... }
impl<C: EmptyContext> EmptyContext for (Empty, C) { ... }

Given the empty list () as the base case, the inductive case (Empty, C) is an empty linear
context, if C is also an empty linear context. Using the definition of an empty context, the
SILLR right rule T1R can then be easily encoded as the function terminate, which works
generically for all contexts that implement EmptyContext as shown below:
fn terminate<C: EmptyContext>() -> PartialSession<C, End>

ECOOP 2022

22:12 Ferrite: A Judgmental Embedding of Session Types in Rust

Channel Addition
The Ferrite function wait removes a channel from the linear context by replacing it with
Empty. Dually, the function receive_channel, adds a new channel to the linear context. The
SILLR rule T⊸R for channel input is shown below. It binds the received channel of session
type A to the channel variable a and adds it to the linear context ∆ of the continuation.

Γ ; ∆, a : A ⊢ K :: B

Γ ; ∆ ⊢ a ← receive_channel; K :: A ⊸ B
(T⊸R)

To encode T⊸R, an append operation on contexts is defined via the AppendContext trait:
trait AppendContext<C: Context>: Context { type Appended: Context; ... }
impl<C: Context> AppendContext<C> for () { type Appended = C; ... }
impl<A: Slot, C1: Context, C2: Context, C3: Context> AppendContext<C2>

for (A, C1) where C1: AppendContext<C2, Appended=C3> { type Appended = (A, C3); ... }

The AppendContext trait is parameterized by a linear context C and an associated type
Appended. If a linear context C1 implements the trait AppendContext<C2>, it means that context
C2 can be appended to C1, with C3 = C1::Appended being the result of the append operation. The
implementation of AppendContext is defined inductively, with the empty list () implementing
the base case and the cons cell (A, C) implementing the inductive case.

Using AppendContext, a channel B can be appended to the end of a linear context C, if C
implements AppendContext<HList![B]>. The new linear context after the append operation
is given in the associated type C::Appended. We then observe that the position of channel
B in C::Appended is the same as the length of the original linear context C. In other words,
the context lens for channel B in C::Appended can be generated by obtaining the length of C.
In Ferrite, the length operation is implemented by adding an associated type Length to the
Context trait. The implementation of Context for () and (A, C) is updated correspondingly.
trait Context { type Length; ... } impl Context for () { type Length = Z; ... }
impl<A: Slot, C: Context> Context for (A, C) { type Length = S<C::Length>; ... }

The SILLR right rule T⊸R is then encoded as follows:
fn receive_channel<A: Protocol, B: Protocol, C1: Context, C2: Context>(

cont: impl FnOnce(C1::Length) -> PartialSession<C2, B>) ->
PartialSession<C1, ReceiveChannel<A, B>> where C1: AppendContext<(A, ()), Appended=C2>

The function receive_channel is parameterized by a linear context C1 implementing
AppendContext to append the session type A to C1. The continuation argument cont is a closure
that is given a context lens C::Length, and returns a PartialSession with C2=C1::Appended as
its linear context. The function returns a PartialSession with linear context C1, offering
session type ReceiveChannel<A, B>.

We note that in the type signature of receive_channel, the type C1::Length is not shown to
have any ContextLens implementation. However when C1::Length is instantiated to the concrete
types Z, S<Z>, etc in the continuation body, Rust will use the appropriate implementations of
ContextLens so that they can be used to access the appended channel in the linear context.

The use of receive_channel is illustrated with the hello_client example below:
let hello_client = receive_channel(|a| {

send_value_to(a, "Alice".to_string(), wait(a, terminate())) });

The hello_client program is inferred to have the Rust type Session<ReceiveChannel<
ReceiveValue<String, End>, End>>. It is written to communicate with the hello_provider pro-
gram defined earlier in Section 4.1. The interaction is achieved by having hello_client offering
the session type ReceiveChannel<ReceiveValue<String, End>, End>. In its body, hello_client
uses receive_channel to receive channel a of type ReceiveValue<String, End> from

R. F. Chen, S. Balzer, and B. Toninho 22:13

hello_provider. The continuation closure is given an argument a:Z, denoting the context lens
generated by receive_channel for accessing the received channel in the linear context. The
context lens a:Z is then used for sending a string value, after which we wait for hello_provider
to terminate. We note that the type Z of channel a (i.e. the channel position in the context)
is automatically inferred by Rust and not exposed to the user.

4.3 Communication
At this point we have defined the necessary constructs to build and typecheck both
hello_provider and hello_client, but the two are separate Ferrite programs that are yet
to be linked with each other and executed.

Γ ; ∆1 ⊢ K1 :: A Γ ; ∆2, a : A ⊢ K2 :: B

Γ ; ∆1, ∆2 ⊢ a ← cut K1 ; K2 :: B
(T-cut)

Γ ; a : A ⊢ forward a :: A
(T-fwd)

In SILLR , rule T-cut allows two session-typed programs to run in parallel, with the
channel offered by K1 added to the linear context of program K2. Together with the forward
rule T-fwd, we can use cut twice to run both hello_provider and hello_client in parallel,
and have a third program that sends the channel offered by hello_provider to hello_client.
The program hello_main would have the following pseudo code in SILLR :
hello_main : ϵ = f ← cut hello_client; a ← cut hello_provider ;

send_channel_to f a; forward f

To implement cut in Ferrite, we need a way to split a linear context C = ∆1, ∆2 into two
sub-contexts C1 = ∆1 and C2 = ∆2 so that they can be passed to the respective continuations.
Moreover, since Ferrite programs use context lenses to access channels, the ordering of
channels inside C1 and C2 must be preserved. We can preserve the ordering by replacing the
corresponding slots with Empty during the splitting. Ferrite defines the SplitContext trait to
implement the splitting as follows:
enum L {} enum R {}
trait SplitContext<C: Context> { type Left: Context; type Right: Context; ... }

We first define two (uninhabited) marker types L and R. We then use type-level lists
consisting of elements L and R to implement the SplitContext trait for a given linear context C.
The SplitContext implementation contains the associated types Left and Right, representing
the contexts C1 and C2 after splitting. As an example, the type HList![L, R, L] would
implement SplitContext<HList![A1, A2, A3]> for any slot A1, A2 and A3, with the associated
type Left being HList![A1, Empty, A3] and Right being HList![Empty, A2, Empty]. We omit
the implementation details of SplitContext for brevity. Using SplitContext, the function cut
can be implemented as follows:
fn cut<XS, C: Context, C1: Context, C2: Context, C3: Context, A: Protocol, B: Protocol>

(cont1: PartialSession<C1, A>,
cont2: impl FnOnce(C2::Length) -> PartialSession<C3, B>) -> PartialSession<C, B>

where XS: SplitContext<C, Left=C1, Right=C2>, C2: AppendContext<HList![A], Appended=C3>

The function cut works by using the heterogeneous list XS that implements SplitContext
to split a linear context C into C1 and C2. To pass on the channel A that is offered by cont1 to
cont2, cut uses a similar technique to receive_channel to append the channel A to the end of
C2, resulting in C3. Using cut, we can write hello_main in Ferrite as follows:
let hello_main: Session<End> = cut::<HList![]>(hello_client, |f| {

cut::<HList![R]>(hello_provider, |a| { send_channel_to(f, a, forward(f)) }) });

ECOOP 2022

22:14 Ferrite: A Judgmental Embedding of Session Types in Rust

Due to ambiguous instances for SplitContext, the type parameter XS has to be annotated
explicitly for Rust to know in which context a channel should be placed. In the first use of
cut, the context is empty, so we call cut with the empty list HList![]. We pass hello_client
as the first continuation to run in parallel, and name the channel offered by hello_client as
f. In the second use of cut, the linear context would be HList![ReceiveValue<String, End>],
with one channel f. We then have cut move f to the right side using HList![R]. On the left
continuation, we have hello_provider run in parallel, and name the offered channel as a. In
the right continuation, we use send_channel_to to send channel a to f. Finally, we forward
the continuation of f, which now has type End.

Although cut provides the primitive way for Ferrite programs to communicate, its use
can be cumbersome and requires a lot of boilerplate. For simplicity, we provide a specialized
apply_channel construct that abstracts over the common usage pattern of cut. apply_channel
takes a client program f offering session type ReceiveChannel<A, B> and a provider program a
offering session type A, and sends a to f using cut. The use of apply_channel is akin to regular
function application, making it more intuitive for programmers to use:
fn apply_channel<A: Protocol, B: Protocol>(

f: Session<ReceiveChannel<A, B>>, a: Session<A>) -> Session

4.4 Executing Ferrite Programs
To actually execute a Ferrite program, the program must offer some specific session types. In
the simplest case, Ferrite provides the function run_session for running a top-level Ferrite
program offering End, with an empty linear context:
async fn run_session(session: Session<End>) { ... }

Function run_session executes the session asynchronously using Rust’s async/await infra-
structure. Internally, PartialSession<C, A> implements the dynamic semantics of the Ferrite
program, which is only accessible by public functions such as run_session. Ferrite currently
uses the tokio [41] runtime for asynchronous execution, as well as the one shot channels from
tokio::sync::oneshot to implement the low-level communication of Ferrite channels.

Since run_session accepts an argument of type Session<End>, this means that programmers
must first use cut or apply_channel to fully link Ferrite programs with free channel variables,
or Ferrite programs that offer session types other than End before they can be executed. This
restriction ensures that all linear channels created in a Ferrite program are consumed. For
example, the programs hello_provider and hello_client cannot be executed individually, but
the program resulting from composing hello_provider with hello_client can be executed:
async fn main() { run_session(apply_channel(hello_client, hello_provider)).await; }

We omit the implementation details of the dynamics of Ferrite, which use low-level
primitives such as Rust channels while carefully ensuring that the requirements and invariants
of session types are satisfied. Interested readers can find more details in our companion
technical report [7].

5 Recursive and Shared Session Types

Many real world applications, such as web services and instant messaging, implement protocols
that are recursive in nature. As a result, it is essential for Ferrite to support recursive session
types. In this section, we report on Rust’s limited support for recursive types and how Ferrite
addresses this limitation. We then discuss our encoding of shared, recursive session types.

R. F. Chen, S. Balzer, and B. Toninho 22:15

5.1 Recursive Session Types
Consider a simple example of a counter session type, which sends an infinite stream of integer
values, incrementing each by one. To write a Ferrite program that offers such a session type,
we may attempt to define the counter session type as type Counter = SendValue<u64, Counter>.
If we try to use such a type definition, the compiler will emit the error “cycle detected when
processing Counter”. The issue with the definition is that it is a directly self-referential type
alias, which is not supported in Rust. Rust imposes various restrictions on the legal forms of
recursive types to ensure that the memory layout of data is known at compile-time.

Type-Level Fixed Points

To address this limitation, we implement type-level fixed points using defunctionalization [36,
46]. This is done by introducing a RecApp trait that is implemented by defunctionalized types
that can be “applied” with a type parameter:
trait RecApp<X> { type Applied; } type AppRec<F, X> = <F as RecApp<X>>::Applied;
struct Rec<F: RecApp<Rec<F>>> { unfold: Box<AppRec<F, Rec<F>>> }

The RecApp trait is parameterized by a type X, which serves as the type argument to
be applied to. This makes it possible for a Rust type F that implements RecApp to act
as if it has the higher-kinded type Type → Type, and be “applied” to type X. We define
a type alias AppRec<F, X> to refer to the associated type Applied resulting from “applying”
F to X via RecApp. Using RecApp, we can now define a type-level recursor Rec as a struct
parameterized by a type F that implements RecApp<Rec<F>>. The body of Rec contains a boxed
value Box<AppRec<F, RecApp<Rec<F>>>> to make it have a fixed size in Rust.

Ferrite implements RecApp for all Protocol types, with the type Z used to denote the
recursion point. With that, the example Counter type would be defined as type Counter =
Rec<SendValue<u64, Z>>. The type Rec<SendValue<T, Z>> is unfolded into SendValue<T, Rec<

SendValue<T, Z>>> through generic implementations of RecApp for SendValue and Z:
impl<X> RecApp<X> for Z { type Applied = X; }
impl<X, T, A: RecApp<X>> RecApp<X> for SendValue<T, A> {

type Applied = SendValue<T, AppRec<A, X>; }

Inside RecApp, Z simply replaces itself with the type argument X. SendValue<T, A> delegates
the type application of X to A, provided that the session type A also implements RecApp for X.

The session type Counter is iso-recursive, as the rolled type Rec<SendValue<u64, Z>> and
the folded type SendValue<u64, Rec<SendValue<u64, Z>> are considered distinct types in Rust.
As a result, Ferrite provides the constructs fix_session and unfix_session for converting
between the rolled and unfolded versions of a recursive session type.

Nested Recursive Session Types

The use of RecApp is akin to emulating the higher-kinded type (HKT) Type→ Type in Rust.
As of this writing, HKTs are only available in the nightly (unstable) version of Rust through
generic associated types. However, even with support for HKTs, our defunctionalization-based
approach via RecApp allows us to generalize to nested recursive types.

To account for a recursive type with multiple recursion points, we introduce a recursion
context R as a type-level list of elements (c.f. the linear context of Section 4.2). The type-level
natural numbers Z, S<Z>, etc. are now used as de Bruijn indices to unfold to the elements
in the recursion context. The type-level fixed point combinator Rec is redefined as RecX,
containing the recursion context:

ECOOP 2022

22:16 Ferrite: A Judgmental Embedding of Session Types in Rust

struct RecX<R, F: RecApp<(RecX<R, F>, R)>> { unfix: Box<AppRec<F, (RecX<R, F>, R)>> }
type Rec<F> = RecX<(), F>;
impl<R, F: RecApp<(RecX<R, F>, R)>> RecApp<R> for RecX<(), F> {

type Applied = RecX<R, F>; }

A recursive session type is defined starting with an empty recursion context. Since nested
recursive session types allow a RecX to be embedded inside another RecX, we have RecX also
implement RecApp, provided it has an empty recursion context. When unfolded from another
recursion context R, RecX simply saves R as its own recursion context and does not unfold
further in F. The inner type F is only unfolded once with the full recursion context after all
surrounding RecX types are unfolded.

The recursive marker Z is modified to unfold to the first element of the recursion context.
We then implement S<N> to unfold to the (N+1)-th position in the recursion context:
impl<A, R> RecApp<(A, R)> for Z { type Applied = A; }
impl<A, R, N: RecApp<R>> RecApp<(A, R)> for S<N> { type Applied = N::Applied; }

5.2 Shared Session Types
In the previous section we explored a recursive session type Counter, which is defined using
Rec and Z. Since Counter is defined as a linear session type, it cannot be shared among
multiple clients. Shared communication, however, is essential to implement many practical
applications. For instance, we may want to implement a simple counter web-service, to send
a unique count for each request. To support such shared communication, we introduce shared
session types in Ferrite, enabling safe shared communication in the presence multiple clients.

Shared Session Types in Ferrite

As introduced in Section 2, the SILLS (and SILLR) notion of shared session types is recursive
in nature, as a shared session type must offer the same linear critical section to all clients that
acquire a shared resource. For instance, a shared version of the Counter type in SILLR is:

SharedCounter = ↑S
LInt ◁ ↓S

LSharedCounter

The linear portion of SharedCounter in between ↑S
L (acquire) and ↓S

L (release) amounts
to a critical section. When a SharedCounter is acquired, it offers a linear session type
Int ◁ ↓S

LSharedCounter, willing to send an integer value, after which it must be released to
become available again as a SharedCounter to the next client.

The recursive aspect of shared session types in SILLR means that we can reuse the
implementation technique that we use for recursive session types. The type SharedCounter
can be defined in Ferrite as follows:
type SharedCounter = LinearToShared<SendValue<u64, Release>>;

Compared to linear recursive session types, the main difference is that instead of using
Rec, a shared session type is defined using the LinearToShared construct. This corresponds
to ↑S

L in SILLR , with the inner type SendValue<u64, Release> corresponding to the linear
portion of the shared session type. At the point of recursion, the type Release is used in
place of ↓S

LSharedCounter. As a result, the type LinearToShared<SendValue<u64, Release>> is
unfolded into SendValue<u64, SharedToLinear<LinearToShared<SendValue<u64, Release>>>> after
being acquired. Type unfolding is implemented as follows:
trait SharedRecApp<X> { type Applied; } trait SharedProtocol { ... }
struct SharedToLinear<F> { ... } struct LinearToShared<F> { ... }
impl<F> Protocol for SharedToLinear<LinearToShared<F>>

R. F. Chen, S. Balzer, and B. Toninho 22:17

where F: SharedRecApp<SharedToLinear<LinearToShared<F>>> { ... }
impl<F> SharedProtocol for LinearToShared<F>

where F: SharedRecApp<SharedToLinear<LinearToShared<F>>> { ... }

The struct LinearToShared is parameterized by a linear session type F that implements the
trait SharedRecApp<SharedToLinear<LinearToShared<F>>>. It uses the SharedRecApp trait instead
of the RecApp trait to ensure that the session type is strictly equi-synchronizing [3], requiring
an acquired session to be released to the same type at which it was previously acquired.
Ferrite enforces this requirement by omitting an implementation of SharedRecApp for End,
ruling out invalid shared session types such as LinearToShared<SendValue<u64, End>>. We
note that the type argument to F’s SharedRecApp is another struct SharedToLinear, which
corresponds to ↓S

L in SILLR . A SharedProtocol trait is also defined to identify shared session
types, i.e. LinearToShared.

Once a shared process is started, a shared channel is created to allow multiple clients to
access the shared process through the use of shared channel:
struct SharedChannel<S: SharedProtocol>{...} impl<S> Clone for SharedChannel<S>{...}

The code above shows the definition of the SharedChannel struct. Unlike linear channels,
shared channels follow structural typing, i.e. they can be weakened or contracted. This
means that we can delegate the handling of shared channels to Rust, given that SharedChannel
implements Rust’s Clone trait to allow contraction. Whereas SILLS provides explicit constructs
for sending and receiving shared channels, Ferrite’s shared channels can be sent as regular
Rust values using Send/ReceiveValue.

On the client side, a SharedChannel serves as an endpoint for interacting with a shared
process running in parallel. To start the execution of such a shared process, a corresponding
Ferrite program has to be defined and executed. Similar to PartialSession, we define
SharedSession as shown below to represent such a shared Ferrite program.
struct SharedSession<S: SharedProtocol> { ... }
fn run_shared_session<S: SharedProtocol>(session: SharedSession<S>) -> SharedChannel<S>

Just as PartialSession encodes linear Ferrite programs without executing them,
SharedSession encodes shared Ferrite programs without executing them. Since SharedSession
does not implement the Clone trait, the shared Ferrite program is itself affine and cannot
be shared. To enable sharing, the shared Ferrite program must first be executed with
run_shared_session. The function run_shared_session takes a shared Ferrite program of type
SharedSession<S> and starts it in the background as a shared process. Then, in parallel, the
shared channel of type SharedChannel<S> is returned to the caller, which can then be sent to
multiple clients for access to the shared process.

Below we demonstrate how a shared session can be defined and used by multiple clients:
type SharedCounter = LinearToShared<SendValue<u64, Release>>;
fn counter_producer(current_count: u64) -> SharedSession<SharedCounter> {

accept_shared_session(async move {
send_value(current_count, detach_shared_session(

counter_producer(current_count + 1))) }) }
fn counter_client(counter: SharedChannel<SharedCounter>) -> Session<End> {

acquire_shared_session(counter, move | chan | {
receive_value_from(chan, move | count | { println!("received count: {}", count);

release_shared_session(chan, terminate()) }) }) }

The recursive function counter_producer creates a SharedSession program that, when
executed, offers a shared channel of session type SharedCounter. On the provider side, a
shared session is defined using the accept_shared_session construct, with a continuation given
as an async thunk that is executed when a client acquires the shared session and enters

ECOOP 2022

22:18 Ferrite: A Judgmental Embedding of Session Types in Rust

the linear critical section (of type SendValue<u64, SharedToLinear<SharedCounter>>). Inside the
closure, the producer uses send_value to send the current count to the client and then uses
detach_shared_session to exit the linear critical section. The construct detach_shared_session
offers the linear session type SharedToLinear<SharedCounter> and expects a continuation that
offers the shared session type SharedCounter to serve the next client. We generate the
continuation by recursively calling the counter_producer function.

The counter_client function takes a shared channel of session type SharedCounter and
returns a session type program that acquires the shared channel and prints the received
count value to the terminal. A linear Ferrite program can acquire a shared session using
the acquire_shared_session construct, which accepts a SharedChannel object and adds the
acquired linear channel to the linear context. In this case, the continuation closure is given
the context lens Z, which provides access to the linear channel of session type SendValue
<u64, SharedToLinear<SharedCounter>> in the first slot of the linear context. It then uses
receive_value_from to receive the value sent by the shared provider and then prints the value.
On the client side, the linear session of type SharedToLinear<SharedCounter> must be released
using the release_shared_session construct. After releasing the shared session, other clients
will then be able to acquire the shared session.
async fn main () {

let counter1: SharedChannel<SharedCounter> = run_shared_session(counter_producer(0));
let counter2 = counter1.clone();
let child1 = task::spawn(async move { run_session(counter_client(counter1)).await; });
let child2 = task::spawn(async move { run_session(counter_client(counter2)).await; });
join!(child1, child2).await; }

To illustrate a use of SharedCounter, we have a main function that initializes a shared produ-
cer with an initial value of 0 and then runs the shared provider using the run_shared_session
construct. The returned SharedChannel is then cloned, making the shared counter accessible
via aliases counter1 and counter2. It then uses task::spawn to spawn two async tasks that run
counter_client twice. A key observation is that multiple Ferrite programs that are executed
independently can access the same shared producer through a reference to the shared channel.

A follow up example of SharedQueue, which demonstrates the Ferrite implementation of the
SILLS shared queue example in Section 2 is available in our companion technical report [7].

6 Choice

Session types support internal and external choice, leaving the choice among several options
to the provider or the client, resp. (see Table 2). When restricted to binary choice, the
implementation is relatively straightforward, as shown below by the two right rules for
internal choice in SILLR . The offer_left and offer_right constructs allow a provider to offer
an internal choice A⊕B by offering either A or B, resp.

Γ ; ∆ ⊢ K :: A

Γ ; ∆ ⊢ offer_left; K :: A⊕B
(T⊕2LR)

Γ ; ∆ ⊢ K :: B

Γ ; ∆ ⊢ offer_right; K :: A⊕B
(T⊕2RR)

It is straightforward to implement the two versions of the right rules by writing the two
respective functions offer_left and offer_right:
fn offer_left<C: Context, A: Protocol, B: Protocol>

(cont: PartialSession<C, A>) -> PartialSession<C, InternalChoice2<A, B>>
fn offer_right < C: Context, A: Protocol, B: Protocol >

(cont: PartialSession<C, B>) -> PartialSession<C, InternalChoice2<A, B>>

R. F. Chen, S. Balzer, and B. Toninho 22:19

However, this approach does not scale if we want to generalize choice beyond two options.
To support n-ary choice, the functions would have to be explicitly reimplemented N times.
Instead, we implement a single offer_case function which allows selection from n-ary branches.

In Section 4.2, we explored heterogeneous lists to encode the linear context, i.e. products
of session types of arbitrary lengths. We then implemented context lenses to access and
update individual channels in the linear context. Observing that n-ary choices can be encoded
as sums of session types, we now use prisms to implement the selection of an arbitrary-
length branch. Ferrite also supports an n-ary choice type InternalChoice<HList![...]>, with
InternalChoice<HList![A, B]> being the special case of a binary choice. To select a branch
out of the heterogeneous list, we define the Prism trait as follows:
trait Prism<Row> {type Elem; ...} impl<A, R> Prism<(A, R)> for Z {type Elem = A; ... };
impl<N, A, R> Prism<(A, R)> for S<N> where N: Prism<R> { type Elem = N::Elem; ... }

The Prism trait is parameterized over a row type Row=HList![...], with the associated
type Elem being the element type that has been selected from the list by the prism. We then
inductively implement Prism using type-level natural numbers, with the number N used for
selecting the N-th element of the heterogeneous list. The definition of Prism is similar to
ContextLens, with the main difference being that we only need Prism to support extraction
and injections operations on the sum types that are derived from the heterogeneous list.
Using Prism, a generalized offer_case function is implemented as follows:
fn offer_case<C: Context, A: Protocol, Row, N: Prism<Row, Elem=A>>

(n: N, cont: PartialSession<C, A>) -> PartialSession<C, InternalChoice<Row>>

The function accepts a natural number N as the first parameter, which acts as the prism
for selecting a session type AN out of the row type Row=HList![..., AN, ...]. Through the
associated type A=N::Elem, offer_case forces the programmer to provide a continuation that
offers the chosen session type A.

While offer_case is a step in the right direction, it only allows the selection of a specific
choice, but not the provision of all possible choices. The latter, however, is necessary to
encode the SILLR left rule of internal choice and right rule of external choice. To illustrate
the problem, let’s consider the right rule of a binary external choice, TN2R:

Γ ; ∆ ⊢ Kl :: A Γ ; ∆ ⊢ Kr :: B

Γ ; ∆ ⊢ offer_choice_2 Kl Kr :: ANB
(TN2R)

The offer_choice_2 construct has two possible continuations Kl and Kr, with only one of
them being executed, depending on the selection by the client. In a naive implementation,
we can define the construct to accept two continuations as follows:
fn offer_choice_2<C: Context, A: Protocol, B: Protocol>

(cont_left: PartialSession<C, A>, cont_right: PartialSession<C, B>)
-> PartialSession<C, ExternalChoice2<A, B>>

While the above implementation works in most languages, it is not adequate in Rust.
Since Rust’s type system is affine, variables can only be captured by one of the continuation
closures, but not both. As far as the compiler is aware, both closures can potentially be
called, and we cannot state that one of the branches is guaranteed to never run.

In order for offer_choice_2 to work in Rust’s affine typing, it has to accept only one
continuation closure and have it return either PartialSession<C, A> or PartialSession<C, B>,
depending on the client’s selection. It is not as straightforward to express such behavior as a
valid type in a language like Rust. If Rust supported dependent types, offer_choice_2 could
be implemented along the following lines:

ECOOP 2022

22:20 Ferrite: A Judgmental Embedding of Session Types in Rust

fn offer_choice_2<C: Context, A: Protocol, B: Protocol>
(cont: impl FnOnce(first: bool) -> if first { PartialSession<C, A> }

else { PartialSession<C, B> }) -> PartialSession<C, ExternalChoice2<A, B>>

That is, the return type of the cont closure depends on the whether the value of the first
argument is true or false. However, since Rust does not support dependent types, we emulate
a dependent sum in a non-dependent language, using a CPS transformation:
fn offer_choice_2<C: Context, A: Protocol, B: Protocol>

(cont: impl FnOnce(InjectSum2<C, A, B>) -> ContSum2<C, A, B>)
-> PartialSession<C, ExternalChoice2<A, B>>

The function offer_choice_2 accepts a continuation function cont that is given a value of
type InjectSum2<C, A, B> and returns a value of type ContSum2<C, A, B>. We will now look at
the definitions of ContSum2 and InjectSum2. First, we observe that the different return types
for the two branches can be unified with a type ContSum2:
struct ContSum2<C: Context, A: Protocol, B: Protocol> { ... }
async fn run_cont_sum<C: Context, A: Protocol, B: Protocol>(cont: ContSum2<C, A, B>)

The type ContSum2 contains the necessary data for executing either a PartialSession<C, A>
or a PartialSession<C, B>, together with the runtime data for the linear context C. For brevity,
the implementation details of ContSum2 are omitted, with the private function run_cont_sum
provided as an abstraction for Ferrite to execute the continuation.

We then define InjectSum2 as a sum of boxed closures that would construct a ContSum2
from either a PartialSession<C, A> or a PartialSession<C, B>:
enum InjectSum2<C, A, B> {

InjectLeft(Box<dyn FnOnce(PartialSession<C, A>) -> ContSum2<C, A, B>>),
InjectRight(Box<dyn FnOnce(PartialSession<C, B>) -> ContSum2<C, A, B>>) }

When the cont passed to offer_choice_2 is given a value of type InjectSum2<C, A, B>, it
has to branch on it and match on whether the InjectLeft or InjectRight constructors are
used. Since the return type of cont is ContSum2<C, A, B> and the constructor for ContSum2 is
private, there is no other way for cont to construct the return value other than to call either
InjectLeft or InjectRight with the appropriate continuation.

The use of InjectSum2 prevents the programmer from providing the wrong branch in the
continuation by keeping the constructor private. However, a private constructor alone cannot
prevent two uses of InjectSum2 to be deliberately interchanged, causing a protocol violation.
To fully ensure that there is no way for the user to provide a ContSum2 from elsewhere, we
instead use a technique from GhostCell [47] that uses higher-ranked trait bounds (HTRB) to
mark a phantom invariant lifetime on both InjectSum2 and ContSum2:
fn offer_choice_2<C: Context, A: Protocol, B: Protocol>

(cont: for <'r> impl FnOnce(InjectSum2<'r, C, A, B>) -> ContSum2<'r, C, A, B>)
-> PartialSession<C, ExternalChoice2<A, B>>

The use of HRTB ensures that each call of offer_choice_2 would generate a unique lifetime
'r for the continuation. Using that, Ferrite can ensure that a value of type InjectSum2<'r1,
C, A, B> cannot be used to construct the return value of type ContSum2<'r2, C, A, B>, if the
lifetimes <'r1> and <'r2> are different. An example use of offer_choice_2 is as follows:
let choice_provider: Session<ExternalChoice2<SendValue<u64, End>, End>>

= offer_choice_2(|b| { match b { InjectLeft(ret) => ret(send_value(42, terminate())),
InjectRight(ret) => ret(terminate()) } });

To free the programmer from writing such boilerplate, Ferrite also provides macros that
translates into the underlying pattern matching syntax. The macros allow the same example
to be written as follows:

R. F. Chen, S. Balzer, and B. Toninho 22:21

1 enum CanvasMsg { Canvas2d(Canvas2dMsg, CanvasId), Close(CanvasId), ... }
2 enum Canvas2dMsg { LineTo(Point2D), GetTransform(Sender<Transform2D>),
3 IsPointInPath(f64, f64, FillRule, IpcSender<bool>), ... }
4 enum ConstellationCanvasMsg { Create { id_sender: Sender<CanvasId>, size: Size2D } }
5 struct CanvasPaintThread { canvases: HashMap<CanvasId, CanvasData>, ... }
6 impl CanvasPaintThread { ...
7 fn start() -> (Sender<ConstellationCanvasMsg>, Sender<CanvasMsg>) {
8 let (msg_sender, msg_receiver) = channel(); let (create_sender, create_receiver) = channel();
9 thread::spawn(move || { loop { select! {

10 recv(canvas_msg_receiver) -> { ...
11 CanvasMsg::Canvas2d(message, canvas_id) => { ...
12 Canvas2dMsg::LineTo(point) => self.canvas(canvas_id).move_to(point),
13 Canvas2dMsg::GetTransform(sender) =>
14 sender.send(self.canvas(canvas_id).get_transform()).unwrap(), ... }
15 CanvasMsg::Close(canvas_id) => canvas_paint_thread.canvases.remove(&canvas_id) }
16 recv(create_receiver) -> { ... ConstellationCanvasMsg::Create { id_sender, size } => {
17 let canvas_id = ...; self.canvases.insert(canvas_id, CanvasData::new(size, ...));
18 id_sender.send(canvas_id); } } } } });
19 (create_sender, msg_sender) }
20 fn canvas(&mut self, canvas_id: CanvasId) -> &mut CanvasData {
21 self.canvases.get_mut(&canvas_id).expect("Bogus canvas id") } }

Figure 1 Message-passing concurrency in Servo’s canvas component (simplified for illustration
purposes).

define_choice!{ CustomChoice; Left: SendValue<u64, End>, Right: End }
let choice_provider: Session<ExternalChoice<CustomChoice>> = offer_choice! {

Left => send_value(42, terminate()), Right => terminate() };

The define_choice! macro allows defining named n-ary branches of choice. The offer_choice!
macro allows the choice provider to branch without the boilerplate used in the earlier example.
The generalization from binary to n-ary choice is omitted for conciseness. The details can be
found in our companion technical report [7].

7 Evaluation

The Ferrite library is more than just a research prototype. It is designed for practical
use in real world applications. To evaluate the design and implementation of Ferrite, we
re-implemented the communication layer of the canvas component of Servo [29] entirely in
Ferrite. Servo is an under development browser engine that uses message-passing for heavy
task parallelization. Canvas provides 2D graphic rendering, allowing clients to create new
canvases and perform operations on a canvas such as moving the cursor and drawing shapes.

The canvas component is a good target for evaluation as it is sufficiently complex and
also very demanding in terms of performance. Canvas is commonly used for animations in
web applications. For an animation to look smooth, a canvas must render at least 24 frames
per second, with potentially thousands of operations to be executed per frame.

The changes we made are fairly minimal, consisting of roughly 750 lines of additions and
620 lines of deletions, out of roughly 300,000 lines of Rust code in Servo. The sources of
our implementation are provided as an artifact. To differentiate the two versions of code
snippets, we use blue for the original code, and green for the code using Ferrite.

7.1 Servo Canvas Component
Figure 1 provides a sketch of the main communication paths in Servo’s canvas compon-

ent [30]. The canvas component is implemented by the CanvasPaintThread, whose function
start contains the main communication loop running in a separate thread (lines 9–18). This
loop processes client requests received along canvas_msg_receiver and create_receiver, which
are the receiving endpoints of the channels created prior to spawning the loop (lines 8–8).
The channels are typed with the enumerations ConstellationCanvasMsg and CanvasMsg, defining

ECOOP 2022

22:22 Ferrite: A Judgmental Embedding of Session Types in Rust

messages for creating and terminating the canvas component and for executing operations on
an individual canvas, resp. When a client sends a message that expects a response from the
recipient, such as GetTransform and IsPointInPath (lines 2–3), it sends a channel along with
the message to be used by the recipient to send back the result. Canvases are identified by
an id, which is generated upon canvas creation (line 17) and stored in the thread’s canvases
hash map (line 5). If a client requests an invalid id, for example after prior termination and
removal of the canvas (line 15), the failed assertion expect("Bogus canvas id") (line 21) will
result in a panic!, causing the canvas component to crash and subsequent calls to fail.

The code in Figure 1 uses a clever combination of enumerations to type channels and
ownership to rule out races on the data sent along channels. Nonetheless, Rust’s type system
is not expressive enough to enforce the intended protocol of message exchange and existence
of a communication partner. The latter is a consequence of Rust’s type system being affine,
which permits “dropping of a resource”. The dropping or premature closure of a channel,
however, can result in a proliferation of panic! and thus cause an entire application to crash.
In fact, while refactoring Servo to use Ferrite, we were able to uncover a protocol violation in
Servo, caused by one of the nested match arms of the provider doing an early return before
sending back any result to the client.

7.2 Canvas Protocol in Ferrite
In the original canvas component, the provider CanvasPaintThread accepts messages of type
CanvasMsg, made up of a combination of smaller sub-message types such as Canvas2dMsg. We
note that the majority of the sub-message types have the following trivial form:
enum CanvasMsg { Canvas2d(Canvas2dMsg, CanvasId), Close(CanvasId), ... }
enum Canvas2dMsg { BeginPath, ClosePath, Fill(FillOrStrokeStyle), ... }

The trivial sub-message types such as BeginPath, Fill, and LineTo do not require a response
from the provider, so the client can simply fire them and proceed. Although we can offer
all sub-message types as separate branches in an external choice, it is more efficient to keep
trivial sub-messages in a single enum. In our implementation, we define CanvasMessage to
have similar sub-messages as Canvas2dMsg, with non-trivial messages such as IsPointInPath
moved to separate branches.
enum CanvasMessage { BeginPath, ClosePath, Fill(FillOrStrokeStyle), ... }
define_choice! { CanvasOps; Message: ReceiveValue<CanvasMessage, Release>, ... }
type Canvas = LinearToShared<ExternalChoice<CanvasOps>>;

We use the define_choice! macro described in Section 6 to define an n-ary choice CanvasOps.
The first branch of CanvasOps is labelled Message, and the only action is for the provider to
receive a CanvasMessage. The choices are offered as an external choice, and the session type
CanvasProtocol is defined as a shared protocol that offers the choices in the critical section.

The original design of the CanvasPaintThread would be sufficient if the only messages being
sent were trivial messages. However, Canvas2dMsg also contains non-trivial sub-messages, such
as GetImageData and IsPointInPath, demanding a response from the provider:
enum Canvas2dMsg { ..., GetImageData(Rect<u64>, Size2D<u64>, IpcBytesSender),

IsPointInPath(f64, f64, FillRule, IpcSender<bool>), ... }

To obtain the result from the original canvas, clients must create a new inter-process
communication (IPC) channel and bundle the channel’s sender endpoint with the message.
In our implementation, we define separate branches in CanvasOps to handle non-trivial cases:
define_choice! { CanvasOps; Message: ReceiveValue<CanvasMessage, Release>,

GetImageData: ReceiveValue<(Rect<u64>, Size2D<u64>), SendValue<ByteBuf, Release>>,
IsPointInPath: ReceiveValue<(f64, f64, FillRule), SendValue<bool, Release>>, ... }

R. F. Chen, S. Balzer, and B. Toninho 22:23

Table 4 MotionMark Benchmark scores in fps (higher is better).

Benchmark Name Servo Servo/Ferrite Firefox Chrome
Arcs 12.21 ± 6.75% 11.83 ± 11.49% 52.61 ± 32.88% 46.00 ± 9.00%
Paths 43.76 ± 10.66% 40.98 ± 18.94% 55.59 ± 28.80% 59.50 ± 14.90%
Lines 7.48 ± 7.06% 11.47 ± 12.74% 14.35 ± 6.65% 32.43 ± 6.48%
Bouncing clipped rects 18.43 ± 7.06% 18.23 ± 11.00% 34.82 ± 7.76% 58.07 ± 19.85%
Bouncing gradient circles 8.02 ± 7.74% 7.72 ± 12.63% 58.79 ± 21.03% 59.77 ± 10.07%
Bouncing PNG images 7.97 ± 5.91% 6.31 ± 10.26% 24.61 ± 6.35% 59.94 ± 13.04%
Stroke shapes 10.60 ± 3.95% 10.35 ± 10.96% 51.21 ± 11.25% 59.38 ± 16.87%
Put/get image data 60.01 ± 3.81% 32.08 ± 10.83% 59.66 ± 20.16% 60.00 ± 5.00%

The original GetImageData accepts an IpcBytesSender, which sends raw bytes back to the
client. In Ferrite, we translate the use of IpcBytesSender to the type SendValue<ByteBuf, Z>,
which sends the raw bytes wrapped in a ByteBuf type.

Aside from the Canvas protocol, we also redesign the use of ConstellationCanvasMsg into
its own shared protocol, ConstellationCanvas:
type ConstellationCanvas = LinearToShared<ReceiveValue<Size2D,

SendValue<SharedChannel<Canvas>, Release>>>;

To create a new canvas, a client first acquires the shared channel of type SharedChannel<
ConstellationCanvas>. Afterwards, the client sends the Size2D parameter to specify the canvas
size. The constellation canvas provider then spawns a new canvas shared process through
run_shared_session and sends back the shared channel of type SharedChannel<Canvas> as a
value. Finally, the session is released, allowing other clients to acquire the shared provider.

7.3 Performance Evaluation
To evaluate the performance of the canvas component, we use the MotionMark benchmark
suite [45]. MotionMark is a web benchmark that focuses on graphics performance of web
browsers. It contains benchmarks for various web components, including canvas, CSS, and
SVG. As MotionMark does not yet support Servo, we modified the benchmark code to
make it work in the absence of features that are not implemented in Servo (details on the
benchmarks can be found in the companion artifact).

For the purpose of this evaluation, we focused on benchmarks that target the canvas
component and skipped benchmarks that fail in Servo due to missing features. We ran each
benchmark in a fixed 1600x800 resolution for 30 seconds, on a Core i7 Linux desktop machine.
We ran the benchmarks against the original Servo, modified Servo with Ferrite canvas
(Servo/Ferrite), Firefox (v98), and Chrome (v99). Our performance scores are measured in
the fixed mode version of MotionMark, which measures frames per second (fps) performance
of executing the same set of canvas operations per frame.

The benchmark results are shown in Table 4, with the performance scores in fps (higher
fps is better). It is worth noting that a benchmark can achieve at most 60 fps. Our goal in
this benchmark is to keep the scores of Servo/Ferrite close to those of Servo, not to achieve
better performance than the original. This is shown to be the case in most of the benchmarks.

The only benchmark with a large difference between Servo and Servo/Ferrite is Put/get
image data, with Ferrite performing 2x worse. This is because in Servo/Ferrite, we use ByteBuf
to transfer the images as raw bytes within the same shared channel. Servo uses a specialized
structure IpcBytesSender for transferring raw bytes in parallel to other messages. As a result,
communication in Servo/Ferrite is congested during the transfer of the image data, while the
original Servo can process new messages in parallel with the image transmission.

ECOOP 2022

22:24 Ferrite: A Judgmental Embedding of Session Types in Rust

We also observe that there are significant performance differences in the scores between
Servo and those in Firefox and Chrome, indicating that there exist performance bottlenecks
in Servo unrelated to communication protocols.

8 Related and Future Work

Session type embeddings exist for various languages, including Haskell [34, 20, 27, 31],
OCaml [32, 19], Java [18, 17], and Scala [39]. Functional languages like ML, OCaml, and
Haskell, in particular, are ideal host languages for creating EDSLs thanks to their advanced
features (e.g. type classes, type families, higher-rank and higher-kinded types and GADTs).
[34] first demonstrated the feasibility of embedding session types in Haskell, with refinements
done in later works [20, 27, 31]. Similar embeddings have also been contributed in the context
of OCaml by FuSe [32] and session-ocaml [19].

Aside from Ferrite, there are other implementations of session types in Rust, including
session_types [21], sesh [25], and rumpsteak [8, 9]. session_types were the first implementation
to make use of affinity to provide a session type library in Rust. sesh emphasizes this aspect
by embedding the affine session type system Exceptional GV [12] in Rust. Both session_types
and sesh adopt a classical perspective, requiring the endpoints of a channel to be typed with
dual types. rumpsteak develops an embedding of multiparty session types by generating Rust
types derived from multiparty session types defined in Scribble [48].

Due to their reliance on Rust’s affine type system, neither session_types nor sesh prevent
a channel endpoint from being dropped prematurely, relegating the handling of such errors
to the runtime. rumpsteak uses some type-level techniques similar to Ferrite to enforce a
channel’s linear usage in the continuation passed to the try_session function. This ensures
that a linear channel in rumpsteak is always fully consumed, if it is ever consumed. However,
prior to the call to try_session, the linear channel exists as an affine value, which may be
dropped by without being consumed at all, resulting in a deadlock. Ferrite enforces linearity
at all levels, including safe linking of multiple linear processes using cut.

In terms of concurrency, session_types, sesh, and rumpsteak all require the programmer to
manually manage concurrency, either by spawning threads or async tasks. This introduces
potential failure when the code fails follow the requirement to spawn all processes. On the
other hand, the simplicity of such a model allows relatively few threads or async tasks to be
spawned, thereby allowing the underlying runtime to execute the processes more efficiently.
In comparison, Ferrite offers fully managed concurrency, without the programmer having to
worry about how to spawn the processes and execute them in parallel.

In terms of performance, the downside of Ferrite’s concurrency approach is that it
aggressively spawns new async tasks in each use of cut. Although async tasks in Rust are
much more lightweight than OS threads, there is still a significant overhead in spawning and
managing many async tasks, especially in micro-benchmarks. As a result, Ferrite tends to
perform slower than alternative Rust implementations in settings where only a fixed small
number of processes need to be spawned. Nevertheless, it is worth noting that the async
ecosystem in Rust is still relatively immature, with many potential improvements to be made.
In practice, the overhead of the async runtime may also be negligible when compared to
the core application logic. In such cases, Ferrite would also allow applications to scale more
easily by allowing many more processes to be spawned and managed concurrently without
requiring additional effort from the programmer.

In terms of DSL design, Ferrite is closely related to the embeddings in OCaml and Haskell,
as it fully enforces a linear treatment of channels and thus statically rules out any panics
arising from dropping a channel prematurely. However, Ferrite leverages Rust’s affine type

R. F. Chen, S. Balzer, and B. Toninho 22:25

system, which naturally extends to support linear types as compared to the structural type
systems of OCaml or Haskell. As a result, Ferrite programs can reuse any existing Rust code
without sacrificing the benefit of affine types. This is generally not the case with substructural
EDSLs, which often require rewriting of libraries (e.g. LinearHaskell’s linear-base).

Ferrite also differs from other libraries in that it adopts intuitionistic typing [4], allowing
the typing of a channel rather than its two endpoints via type duality. While the use of
dual types is convenient for simple types like ReceiveValue<String, End>, the mental overhead
of computing the dual type becomes higher when higher-order channels are involved. For
example, when implementing a process with type ReceiveChannel<ReceiveValue<String, End>>,
the programmer would have to keep in mind that the received channel would have its session
type flipped and become SendValue<String, End>. From an ergonomics point of view, we
believe that intuitionistic session types provide a more familiar model of programming.

On the use of profunctor optics, our work is the first to connect n-ary choice to prisms,
while prior work by session-ocaml [20] has only established the connection between lenses,
the dual of prisms, and linear contexts. FuSe [32] and session-ocaml [19] have previously
explored the use of n-ary (generalized) choice through extensible variants available only in
OCaml. Our work demonstrates that it is possible to encode extensible variants, and thus
n-ary choice, as type-level constructs using features available in Rust.

A major difference in terms of implementation is that Ferrite uses a continuation-passing
style, whereas Haskell and OCaml embeddings commonly use (indexed) monads and do-
notation. This technical difference amounts to a key conceptual one: a direct correspondence
between the Rust programs generated from Ferrite constructs and the SILLR typing derivation.
As a result, the generated Rust code can be viewed as carrying the proof of protocol adherence.

The embeddings of ESJ [17] and lchannels [39] also adopt a continuation-passing style, but
do not faithfully embed typing derivations (i.e. they do not statically enforce linearity). They
follow an encoding of session types using linear types [10] first proposed by Kobayashi [24] in
the setting of π-calculus. While session types are generally less powerful than the approaches
of Kobayashi et al., they provide a useful compromise between expressiveness and simplicity,
being more amenable to embeddings in general-purpose language constructs and type systems.

In terms of expressiveness, Ferrite contributes over all prior session-based works in its
support for shared session types [1], allowing it to express real-world protocols, as demon-
strated by our implementation of Servo’s canvas component. Shared session types reclaim the
expressiveness of the untyped asynchronous π-calculus in session-typed languages [2], at the
cost of deadlock-freedom. Recent extensions of classical linear logic session types contribute
another approach to softening the rigidity of linear session types to support multiple client
sessions and nondeterminism [35] and memory cells and nondeterministic updates [37], resp.

Our technique of a judgmental embedding opens up new possibilities for embedding
type systems other than session types in Rust. Although we have demonstrated that the
judgmental embedding is sufficiently powerful to encode a type system like session types, the
embedding is currently shallow, with the implementation hardcoded to use the channels and
async run-time from tokio. Rust comes with unique features such as affine types and lifetimes
that makes it especially suited for implementing concurrency primitives, as evidenced by the
wealth of channel and async run-time implementations available. One of our future goals is
to explore the possibility of making Ferrite a deep embedding of session types in Rust, so
that users can choose from multiple low-level implementations. Although deep embeddings
have extensively been explored for languages like Haskell [40, 27], it remains a open question
to find suitable approaches that work well in Rust.

ECOOP 2022

22:26 Ferrite: A Judgmental Embedding of Session Types in Rust

References
1 Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. Proceedings of the

ACM on Programming Languages (PACMPL), 1(ICFP):37:1–37:29, 2017.
2 Stephanie Balzer, Frank Pfenning, and Bernardo Toninho. A universal session type for untyped

asynchronous communication. In 29th International Conference on Concurrency Theory
(CONCUR), LIPIcs, pages 30:1–30:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018.

3 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest deadlock-freedom
for shared session types. In 28th European Symposium on Programming (ESOP), volume
11423 of Lecture Notes in Computer Science, pages 611–639. Springer, 2019. doi:10.1007/
978-3-030-17184-1_22.

4 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In 21st
International Conference on Concurrency Theory (CONCUR), pages 222–236. Springer, 2010.

5 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types.
Mathematical Structures in Computer Science, 26(3):367–423, 2016.

6 Ruo Fei Chen, Stephanie Balzer, and Bernardo Toninho. Ferrite project website. https:
//github.com/ferrite-rs/ferrite.

7 Ruofei Chen, Stephanie Balzer, and Bernardo Toninho. Ferrite: A judgmental embedding of
session types in rust. CoRR, abs/2009.13619, 2022. arXiv:2009.13619.

8 Zak Cutner and Nobuko Yoshida. Safe session-based asynchronous coordination in rust. In
Ferruccio Damiani and Ornela Dardha, editors, Coordination Models and Languages - 23rd
IFIP WG 6.1 International Conference, COORDINATION 2021, Held as Part of the 16th
International Federated Conference on Distributed Computing Techniques, DisCoTec 2021,
Valletta, Malta, June 14-18, 2021, Proceedings, volume 12717 of Lecture Notes in Computer
Science, pages 80–89. Springer, 2021. doi:10.1007/978-3-030-78142-2_5.

9 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-free asynchronous message
reordering in rust with multiparty session types. CoRR, abs/2112.12693, 2021. arXiv:
2112.12693.

10 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In Principles
and Practice of Declarative Programming (PPDP), pages 139–150, 2012.

11 J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bidirectional tree transformations: A linguistic approach to the
view-update problem. ACM Trans. Program. Lang. Syst., 29(3):17, 2007. doi:10.1145/
1232420.1232424.

12 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous
session types: Session types without tiers. Proceedings of the ACM on Programming Languages,
3(POPL):28:1–28:29, 2019. doi:10.1145/3290341.

13 Andrew Gerrand. The go blog: Share memory by communicating, 2010. URL: https:
//blog.golang.org/share-memory-by-communicating.

14 Kohei Honda. Types for dyadic interaction. In 4th International Conference on Concurrency
Theory (CONCUR), pages 509–523. Springer, 1993.

15 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type
discipline for structured communication-based programming. In 7th European Symposium on
Programming (ESOP), pages 122–138. Springer, 1998.

16 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 273–284. ACM, 2008. doi:10.1145/1328438.1328472.

17 Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda. Type-
safe eventful sessions in Java. In 24th European Conference on Object-Oriented Programming
(ECOOP), volume 6183 of Lecture Notes in Computer Science, pages 329–353. Springer, 2010.
doi:10.1007/978-3-642-14107-2_16.

https://doi.org/10.1007/978-3-030-17184-1_22
https://doi.org/10.1007/978-3-030-17184-1_22
https://github.com/ferrite-rs/ferrite
https://github.com/ferrite-rs/ferrite
http://arxiv.org/abs/2009.13619
https://doi.org/10.1007/978-3-030-78142-2_5
http://arxiv.org/abs/2112.12693
http://arxiv.org/abs/2112.12693
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/3290341
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating
https://doi.org/10.1145/1328438.1328472
https://doi.org/10.1007/978-3-642-14107-2_16

R. F. Chen, S. Balzer, and B. Toninho 22:27

18 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming
in Java. In 22nd European Conference on Object-Oriented Programming (ECOOP), volume
5142 of Lecture Notes in Computer Science, pages 516–541. Springer, 2008. doi:10.1007/
978-3-540-70592-5_22.

19 Keigo Imai, Nobuko Yoshida, and Shoji Yuen. Session-ocaml: a session-based library with
polarities and lenses. Science of Computer Programming, 172:135–159, 2019. doi:10.1016/j.
scico.2018.08.005.

20 Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session type inference in haskell. In 3rd Workshop
on Programming Language Approaches to Concurrency and Communication-cEntric Software
(PLACES) 2010, Paphos, Cyprus, 21st March 201, volume 69 of EPTCS, pages 74–91, 2010.
doi:10.4204/EPTCS.69.6.

21 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session
types for Rust. In 11th ACM SIGPLAN Workshop on Generic Programming (WGP), 2015.
doi:10.1145/2808098.2808100.

22 Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. RustBelt: Securing
the foundations of the Rust programming language. Proceedings of the ACM on Programming
Languages, 2(POPL):66:1–66:34, 2018. doi:10.1145/3158154.

23 Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous collections.
In Henrik Nilsson, editor, Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell
2004, Snowbird, UT, USA, September 22-22, 2004, pages 96–107. ACM, 2004. doi:10.1145/
1017472.1017488.

24 Naoki Kobayashi. Type systems for concurrent programs. In Bernhard K. Aichernig and
T. S. E. Maibaum, editors, Formal Methods at the Crossroads. From Panacea to Foundational
Support, 10th Anniversary Colloquium of UNU/IIST, the International Institute for Software
Technology of The United Nations University, Lisbon, Portugal, March 18-20, 2002, Revised
Papers, volume 2757 of Lecture Notes in Computer Science, pages 439–453. Springer, 2002.
doi:10.1007/978-3-540-40007-3_26.

25 Wen Kokke. Rusty variation: Deadlock-free sessions with failure in rust. In 12th Interaction
and Concurrency Experience, ICE 2019, pages 48–60, 2019.

26 Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In 24th European
Symposium on Programming (ESOP), volume 9032 of Lecture Notes in Computer Science,
pages 560–584, 2015. doi:10.1007/978-3-662-46669-8_23.

27 Sam Lindley and J. Garrett Morris. Embedding session types in Haskell. In 9th International
Symposium on Haskell, pages 133–145. ACM, 2016. doi:10.1145/2976002.2976018.

28 J. Garrett Morris. Variations on variants. In Ben Lippmeier, editor, Proceedings of the 8th
ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September
3-4, 2015, pages 71–81. ACM, 2015. doi:10.1145/2804302.2804320.

29 Mozilla. Servo, the Parallel Browser Engine Project. https://servo.org/, 2012.
30 Mozilla. Servo source code – canvas paint thread, 2021. URL: https://github.com/servo/

servo/blob/d13a9355b8e66323e666dde7e82ced7762827d93/components/canvas/canvas_
paint_thread.rs.

31 Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In 43rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
568–581. ACM, 2016. doi:10.1145/2837614.2837634.

32 Luca Padovani. A simple library implementation of binary sessions. J. Funct. Program., 27:e4,
2017. doi:10.1017/S0956796816000289.

33 Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor optics: Modular data
accessors. Programming Journal, 1(2):7, 2017. doi:10.22152/programming-journal.org/
2017/1/7.

34 Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In 1st ACM
SIGPLAN Symposium on Haskell, pages 25–36. ACM, 2008. doi:10.1145/1411286.1411290.

ECOOP 2022

https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.4204/EPTCS.69.6
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/3158154
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1007/978-3-540-40007-3_26
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1145/2804302.2804320
https://servo.org/
https://github.com/servo/servo/blob/d13a9355b8e66323e666dde7e82ced7762827d93/components/canvas/canvas_paint_thread.rs
https://github.com/servo/servo/blob/d13a9355b8e66323e666dde7e82ced7762827d93/components/canvas/canvas_paint_thread.rs
https://github.com/servo/servo/blob/d13a9355b8e66323e666dde7e82ced7762827d93/components/canvas/canvas_paint_thread.rs
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.1145/1411286.1411290

22:28 Ferrite: A Judgmental Embedding of Session Types in Rust

35 Zesen Qian, G. A. Kavvos, and Lars Birkedal. Client-server sessions in linear logic. CoRR,
abs/2010.13926, 2020. arXiv:2010.13926.

36 John C. Reynolds. Definitional interpreters for higher-order programming languages. In ACM
Annual Conference, volume 2, pages 717–740. ACM, 1972. doi:10.1145/800194.805852.

37 Pedro Rocha and Luís Caires. Propositions-as-types and shared state. Proc. ACM Program.
Lang., 5(ICFP):1–30, 2021.

38 Matthew Sackman and Susan Eisenbach. Session types in haskell: Updating message passing
for the 21st century. Technical report, Imperial College, 2008. URL: http://hdl.handle.net/
10044/1/5918.

39 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in Scala. In 30th
European Conference on Object-Oriented Programming (ECOOP), volume 56 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 21:1–21:28. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, 2016.

40 Josef Svenningsson and Emil Axelsson. Combining deep and shallow embedding for EDSL. In
Hans-Wolfgang Loidl and Ricardo Peña, editors, Trends in Functional Programming - 13th
International Symposium, TFP 2012, St. Andrews, UK, June 12-14, 2012, Revised Selected
Papers, volume 7829 of Lecture Notes in Computer Science, pages 21–36. Springer, 2012.
doi:10.1007/978-3-642-40447-4_2.

41 Tokio. Tokio Homepage. https://tokio.rs/, 2021.
42 Bernardo Toninho. A Logical Foundation for Session-based Concurrent Computation. PhD

thesis, Carnegie Mellon University and New University of Lisbon, 2015.
43 Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes, functions, and

sessions: a monadic integration. In 22nd European Symposium on Programming (ESOP),
pages 350–369. Springer, 2013. doi:10.1007/978-3-642-37036-6_20.

44 Philip Wadler. Propositions as sessions. In 17th ACM SIGPLAN International Conference on
Functional Programming (ICFP), pages 273–286. ACM, 2012.

45 WebKit. MotionMark Homepage. https://browserbench.org/MotionMark/, 2021.
46 Jeremy Yallop and Leo White. Lightweight higher-kinded polymorphism. In Functional and

Logic Programming - 12th International Symposium, FLOPS 2014, Kanazawa, Japan, June
4-6, 2014. Proceedings, pages 119–135, 2014. doi:10.1007/978-3-319-07151-0_8.

47 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. Ghostcell: separating
permissions from data in rust. Proc. ACM Program. Lang., 5(ICFP):1–30, 2021. doi:
10.1145/3473597.

48 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In Martín Abadi and Alberto Lluch-Lafuente, editors, Trustworthy Global Computing
- 8th International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,
Revised Selected Papers, volume 8358 of Lecture Notes in Computer Science, pages 22–41.
Springer, 2013. doi:10.1007/978-3-319-05119-2_3.

http://arxiv.org/abs/2010.13926
https://doi.org/10.1145/800194.805852
http://hdl.handle.net/10044/1/5918
http://hdl.handle.net/10044/1/5918
https://doi.org/10.1007/978-3-642-40447-4_2
https://tokio.rs/
https://doi.org/10.1007/978-3-642-37036-6_20
https://browserbench.org/MotionMark/
https://doi.org/10.1007/978-3-319-07151-0_8
https://doi.org/10.1145/3473597
https://doi.org/10.1145/3473597
https://doi.org/10.1007/978-3-319-05119-2_3

	1 Introduction
	2 Background
	3 Key Ideas
	3.1 SILL_{R} – A stepping stone from SILL_{S} to Ferrite
	3.2 Judgmental Embedding
	3.3 Recursive and Shared Session Types in Ferrite
	3.4 N-ary Choice and Linear Context

	4 Ferrite – A Judgmental Embedding of SILL_{R}
	4.1 Encoding Typing Rules via Judgmental Embedding
	4.2 Manipulating the Linear Context
	4.3 Communication
	4.4 Executing Ferrite Programs

	5 Recursive and Shared Session Types
	5.1 Recursive Session Types
	5.2 Shared Session Types

	6 Choice
	7 Evaluation
	7.1 Servo Canvas Component
	7.2 Canvas Protocol in Ferrite
	7.3 Performance Evaluation

	8 Related and Future Work

