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—— Abstract

The C++ Standard Library is a valuable collection of generic algorithms and data structures that
improves the usability and reliability of C++ software. Graph algorithms and data structures are
notably absent from the standard library, and previous attempts to fill this gap have not gained
widespread adoption. In this paper we show that the richness of graph algorithms and data structures
can in fact be captured by straightforward composition of existing C++ mechanisms. Generic
programming is algorithm-oriented. Accordingly, we apply a systematic approach to analyzing a
broad set of graph algorithms, “lift” unnecessary constraints from them, and organize the resulting
set of minimal common type requirements, i.e., concepts, for defining their interfaces. By using the
newly available ranges and concepts in C+4-20, the type requirements for generic graph algorithms
can be succinctly expressed. The generic algorithms and data structures resulting from our analysis
are realized in NWGraph, a modern, composable, and extensible C++ library.
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1 Introduction

Graphs are powerful mathematical tools for reasoning about the relationships between given
entities, focusing on the structure and characteristics of the relationships, independent of
what the entities and the relationships actually are. Consequently, results from graph theory
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can be applied to any actual sets of data for which relationships between elements can be
established. Internet packet routing, molecular biology, electronic design automation, social
network analysis, and search engines are just some of the problem areas where graph theory
is regularly applied. The general applicability we find in graph theory — the genericity, if you
will — is a goal for software libraries as well as mathematical theories; graph algorithms and
data structures (collectively, “graphs”) would seem to be ideally suited for software reuse.

Realizing a truly generic library for graphs has significant challenges in practice. Graphs
in theory are useful because they are abstract, but, in practice, they have to be made concrete
when used to solve an actual problem. That is, graphs in practice do not manifest themselves
in the abstract form to which theory and abstract algorithms are applied. Rather, they are
often encoded in some domain-specific form or are latent in problem-related data. And even
if a domain programmer constructs a graph from their data, the domain-specific graph data
structure might not be compatible with the API of a given graph library.

The celebrated Standard Template Library (STL), now part of the C++ standard
library, addressed this problem for fundamental algorithms and abstract containers of data
elements [30]. With the STL, generic programming emerged as a software-development
sub-discipline that focused on creating frameworks of reusable and composable libraries.
Fundamental to the philosophy of generic programming is that algorithms should be able to
be composed with arbitrary types, notably types that may have been developed completely
independently of the library. To achieve this goal, generic algorithms are specified and
written in terms of abstract properties of types; a generic algorithm can be composed with any
type meeting the properties that it depends on. Philosophically, generic programming goes
hand-in-glove with the abstraction process inherent in graph theory. Graphs are abstract
models of entities in relationship — a graph algorithm should be able to operate directly on
the entities and relationships in a programmer’s data.

It is not just the philosophy of generic programming from the STL that can be leveraged to
develop a generic graph library. In fact, an important principle upon which our work is based
is that the standard library already contains sufficient capability to support graph
algorithms and data structures. The type requirements for generic graph algorithms can
be expressed using existing type requirement machinery for standard library algorithms, and
useful and efficient graph algorithms can be implemented based on these requirements.

We apply this principle to develop NWGraph, a generic library of algorithms for graph
computation that are independent of any particular data structure (in particular, independent
of any particular graph data structure). Following current generic library practice, NWGraph
algorithms are organized around a minimal set of common requirements for their input types
(these requirements are formalized in the form of C++20 concepts).

The foundation of this paper is a requirements analysis from which we derive a uniform set
of type requirements for graph algorithms; those requirements subsequently reified as C++
concepts. Based on this foundation, we construct the primary components of NWGraph:
algorithms, defined and and implemented using our concepts; adaptors, for converting
one representation of a graph into another and for enabling structured traversals, and data
structures that model our foundational requirements.

NWGraph contains the following innovations:

A concept taxonomy (expressed using C++20 concepts) for specifying graph algorithm

requirements;

Characterization of graphs using standard library concepts (as a random access range of

forward ranges);

A rich set of range adaptors for accessing and traversing graphs;

An APIT designed to fully support modern idiomatic C++;
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An efficient and fully parallelized implementation, using C++ execution policies and
Intel® Threading Building Blocks; and

Application of the generic programming process to minimize requirements on algorithm
input types (thereby enlarging the scope of composability).

In the following sections we first provide some basic background and terminology that
we will be using to discuss graph algorithms (§2) as well as a bit more detail on generic
programming (§3). Next, we analyze the domain of graph algorithms with respect to common
requirements and present the fundamental concepts in NWGraph (§4). We then present an
overview of the primary components of NWGraph in addition to its concepts: its algorithms
(§5), adaptors (§6), and data structures (§7). We include abstraction penalty experiments,
evaluate the performance of our library in comparison with other well-known graph libraries,
and conduct a strong scaling study of the parallel performance of NWGraph (§8). Finally,
we provide a high-level feature comparison of NWGraph with other extant graph libraries
(§9) and conclude with some of our observations and experiences in developing NWGraph
(§10). NWGraph is hosted at https://github.com/pnnl/NWGraph.

2  Graph Background

We define a graph G as comprising two finite sets, G = {V,E}, where the set V =
{vo,v1,...v,_1} is a set of entities of interest, “vertices” or “nodes,” and E={eg, e1,...€m—1}
is a set of pairs of entities from V', “edges” or “links.” Edges may be ordered or unordered;
a graph defined with ordered edges is said to be directed; a graph defined with unordered
edges is said to be undirected.

» Remark. Understanding graphs is necessary to develop requirements for algorithms. How-
ever, it should be noted that we don’t derive those requirements from the graph model, but
instead from the algorithms. This is a key distinction between generic programming and, say,
Object-Oriented (OO) requirements analysis.

2.1 Representing Graphs

To define algorithms on graphs and to be able to reason about those algorithms, we need to
define some representations for graphs; not much can be done computationally with abstract
sets of vertices and edges. The specific characteristics of these representations are what we
use to express algorithms (still abstractly) but when those algorithms are implemented as
generic library functions, those characteristics will in turn become the basis for the library’s
interfaces (represented in our case as C++ concepts).

One of the fundamental operations in graph algorithms is a traversal. That is, given a
vertex u, we would like to find the neighbors of u, i.e., all vertices v such that the edge (u,v)
is in the graph. Then, for each of those edges, we would like to find their neighbors, and so
on. The representation that we can define to make this efficient is an adjacency list.

Given a graph G = (V, E), we can define an adjacency-list representation in the following
way. Assign to each element of V' a unique index from the range [0, |V'|) and denote the vertex
identified with index 7 as V[i]. We can now define a new graph with the same structure as
G, but in terms of the indices in [0, |V]), rather than with the elements in V. Let the index
graph of G be the graph G’ = (V' E’), where V' = [0,|V|) and E’ consists of |E| pairs of
indices from V, such that a pair (4, j) is in E’ if and only if (V[i], V[j]) is in E. Which is all
to say, the index graph of G is the graph we get by replacing all elements of G with their
corresponding indices.
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We make the following definition: An adjacency list of an index graph G = (V| E) is an
array Adj(QG) of size |V (the array is indexed from 0 to |V| —1) with the following properties:

Adj(G) is a container of [V| containers, one container for each vertex in V', and

The container Adj(G)[u] contains all vertices v for which there is an edge (u,v) € E.

This structure, an adjacency list of an index graph, or an index adjacency list, is the
fundamental structure used by almost all graph algorithms.

» Remark 1. Although the standard term for this kind of abstraction is “adjacency list”, and
although it is often drawn schematically with linked lists as elements, it is not necessary that
this abstraction be implemented as an actual linked list. In fact, other representations (such
as compressed sparse row storage) are significantly more efficient, as we show in Section 8.3.
What is important is that the items that are stored, vertex indices, can be used to index into
the adjacency list to obtain other lists of neighbors.

» Remark 2. An adjacency list does not store edges per se, rather it stores lists of reachable
neighbors. Therefore, though it can represent a directed or undirected graph, an adjacency
list is structurally neither inherently directed nor undirected. That is, given vertex u, the
container Adj(G)[u] contains the vertex v if the edge (u,v) is contained in E, i.e., for a
directed graph with edge (u,v) in E, Adj(G)[u] will contain v. For an undirected graph with
edge (u,v) contained in F, Adj(G)[u] will contain v and Adj(G)[v] will contain w. Thus,
directedness of the original graph is made manifest in the values stored in the adjacency list,
not in its structure.

3 Generic Programming

Generic programming is a software development paradigm inspired by the organizational
principles of mathematics [31]. That is, a generic library comprises a framework of algorithms
in a problem domain, based on a systematic organization of common type requirements for
those algorithms. The type requirements themselves, specified as concepts, are part of the
library as well, and provide the interface that enables composition of library components with
other, independently-developed, components. Concrete types that meet the requirements of
a concept are said to model that concept. As an example, the iterator concept taxonomy
was the foundation upon which the STL was organized [21,30].

Generic algorithms (that is, algorithms in a generic library) are designed so that the
requirements they impose on types are as minimal as possible without compromising efficiency,
thus enabling the widest scope of potential composition, and therefore, reuse. Generic
algorithms are derived from concrete ones, which are gradually made more generic by
removing (“lifting”) unnecessary requirements. This process continues as long as instantiation
of the generic algorithm with concrete types remains as efficient as the equivalent concrete
algorithm would have been.

3.1 Lifting

The first (and major) phase of the generic programming process is sometimes known as

“lifting” where we create generic algorithms through a process of successive generalization.

That is, the process is

1. Study the concrete implementation of an algorithm;

2. Lift away unnecessary requirements to produce a more abstract algorithm;

3. Repeat the lifting process until we have obtained a generic algorithm that is as general
as possible but that still instantiates to efficient concrete implementations; and

4. Catalog remaining requirements and organize them into concepts.
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Listing 1 Concrete implementation for summing elements of an array.

int sum(int *array, int n) {
int s = 0;
for (int i = 0; i < n; ++i) {
s = s + arrayl[il; }
return s; }

Listing 2 Lifted implementation of sum, where traversal through the container and element
access has been abstracted through the use of iterators and addition has been further lifted with the
introduction of the operator parameter op.

template <class Iter, class T, class Op>
T accumulate(Iter first, Iter last, T s, Op op) {
while (first != last) {
s = op(s, *first++); }
return s; }

Listings 1-2 show two concrete implementations of a sum algorithm. The first steps
through an array of integers, indexing into the array at each step and summing the resulting
value into s. Instead of an array, any eligible container (for example, linked list) can store
the values.

The authors of the STL realized the commonality of traversal and element access across
most basic computer science algorithms. The requirements for traversal and access were
generalized and unified into a hierarchy of type requirements for iterators [30].

An iterator-based algorithm for accumulating elements in a container is shown in Listing 2.

Note that this single parameterized algorithm replaces the sum algorithm shown in Listing 1
(and more). The process of summation has further been generalized by the introduction of a
function object op as a parameter to the function.

3.2 Specialization

In generic programming, the dual to lifting is specialization. That is, once an algorithm is
lifted and made generic, it is specialized through composition with a concrete data type to
realize a concrete implementation of the algorithm. Listing 3 shows two example usages of
the generic accumulate, composing it with an array as well as a linked list from the STL.
Now, there is a crucial requirement that is part of specialization. In generic programming,
we don’t just require that when we have a lifted algorithm that we can compose it with the
data types that we lifted from. In addition to that basic requirement, we also require that
there is zero abstraction penalty. That is, the specialized generic algorithm should provide

Listing 3 Specializations of the generic accumulate algorithms shown in Listing 2. The
accumulate algorithm is composed with an integer array (left) and accumulate is composed with a
linked list (right).

int* array = new int [10]; std: :forward_list<double> ptr;
int result = double result = accumulate(ptr,
accumulate(array, array + 10, nullptr, 0.0,
0, std::plus<int>()); std: :times<double>());
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Listing 4 Skeleton of the requirements for a C++ input_iterator.

1 template <class I>
2 concept input_iterator = requires(I i) {

3 typename std::iter_value_t<I>;

4 typename std::iter_reference_t<I>;

5 { *i } -> std::same_as<std::iter_reference_t<I>>;
6 { ++i } -> std::same_as<I &>;

7 i++;};

exactly the same performance as the concrete algorithm from which it was lifted, when
composed with the original types that were lifted. With modern compilers and libraries,
this requirement is actually met, and is one of the reasons that libraries such as the C++
standard library have been so successful in practice.

3.3 Concepts in C++420

In generic programming, concepts consist of valid expressions and associated types, which
define a family of allowable types admissable for composition with generic algorithms.
Introduced as a language feature for C+420, concepts constrain the set of types that can
be substituted for class and function template arguments. This development has been
instrumental in the notable development of the ranges algorithm library taxonomy, serving
as the link between generic algorithm interface and implementation [23].

A C++420 concept definition declares a set of requirements on types. There are four
types of requirements:

A simple requirement consists of an arbitrary expression statement. The requirement is

that the expression is valid.

A type requirement consists of the keyword typename followed by a type name, optionally

qualified. The requirement is that the named type exists.

A compound requirement specifies a conjunction of arbitrary constraints such as expression

constraint, exception constraint, and type constraint, etc.

A nested requirement consists of another requires-clause, terminated with a semicolon.

This is used to introduce predicate constraints expressed in terms of other named concepts

applied to the local parameters.

Listing 4 shows the skeleton of the C++ concept definition for input_iterator. As
hinted in our example, this concept specifies that an input_iterator can be de-referenced
with operator* (line 5) and incremented with operator++ (lines 6 and 7). Additionally, the
concept specifies two associated types: std: :iter_value_t<I> and std: :iter_reference
_t<I>. Line 5 also indicates that the expression *i returns the same type as std::iter_
reference_t<I>. Again, this example is abbreviated for purposes of illustration. A complete
description of the C+4-20 standard library concepts (including the iterator hierarchy) can be
found online at https://en.cppreference.com/w/cpp/concepts.

3.4 Ranges in C++420

The new C+-+20 Ranges library [23] generalizes iterators and containers in C++. Ranges
provide a way to make STL algorithms composable and improve the readability and writability
of C++ code. Ranges consist of a pair of begin and end iterators, which are not required to
be the same type. An example of using ranges is:


https://en.cppreference.com/w/cpp/concepts
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std::vector<int> v { /* ... */ }
std::min_element(v.begin(), v.end());//iterator API
std: :ranges: :min_element (v) ; //ranges APT

In the first case, the generic min_element function is called with an iterator pair (begin
and end of the container v). In the second case, min_element function is called directly with
v as the parameter, as a std: :vector is a range (specifically, it satisfies the requirements
for the random_access_range concept.

C++20 ranges are defined in terms of C++20 concepts. A std: :range itself is a very
straightforward concept:

template <class T>

concept range = requires(T& t) {
ranges: :begin(t);
ranges::end(t); };

It has two valid expressions: begin and end. The std: :input_range, which abstracts
containers that have forward iterators, is thus defined:

template<class T>
concept input_range = ranges::range<T>
&& std::input_iterator<ranges::iterator_t<T>>;

This definition states that an input_range is a range and that the iterator type associated
with that range meets the requirements of the std: : input_iterator concept.

Related to our development of graph concepts, two range concepts of particular relevance
include ranges: :forward_range, which allows iteration over a collection from beginning
to end multiple times (as opposed to an input iterator which is only guaranteed to be able
to iterate over a collection once) and ranges: :random_access_range, which further allows
indexing into a collection with operator[] in constant time.

4 Generic Graph Algorithms

In this section we analyze the requirements for graph algorithms in order to derive generic
graph algorithms. NWGraph realizes these generic algorithms as function templates, and
realizes the type requirements as C++20 concepts. Our process centers on defining type
requirements at the interfaces to algorithms based on what the algorithms actually require

of their types, rather than starting with graph types and building algorithms to those types.

4.1 Algorithm Requirements

Algorithms in the STL operate over containers. The concepts defined for the STL have to
do with mechanisms for traversing a container and accessing the data therein. Since graphs
in some sense are also containers of data, we can reuse the mechanisms from the STL for
traversing graphs and accessing graph data, to the extent that makes sense. However, graphs
are structured data and graph algorithms traverse that structure in various ways. Accordingly,
our graph concepts must support structured traversal of graphs.

Most (but not all) graph algorithms traverse a graph vertex to vertex by following the
edges that connect vertices. For implementing such algorithms, it is assumed that a graph
G = {V, E} is represented with an adjacency-list structure! as defined in Section 2.1.

1 The reader is reminded that although the term of art is “adjacency list,” containers other than lists can
be used to store neighbor information.
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BFS(G, 5) void bfs(const Graph& G, int s) { ...
' for (int u = 0; u < size(G); ++u)

1 for each vertex u € V(G) tor[u] = WHITE
color[u] = ;

2 color[u] <~ WHITE

3 color[s] « GRAY color[s] = GREY;

4 Qe o std: :queue<int> Q;

5 ENQUEUE(Q, s) Q.push(s);

6 while Q # @ while (!Q.empty()) {

7 u <+ DEQUEUE(Q) auto u = Q.front(); Q.popQ);
8 for each v € Adj(G)]u] for (auto&& v : G[ul) {

9 if color[v] = WHITE if (color[v] == WHITE) {
10 color|[v] < GRAY color[v] == GREY;

11 ENQUEUE(Q, v) Q.push(v); 3}
12 color[u] < BLACK color[u] = BLACK; 3

Figure 1 Pseudocode and C++ implementation of breadth-first search. Existing C++ language
mechanisms and library components are expressive enough to essentially realize the algorithm line
for line.

4.2 Requirements for Concrete Algorithms

A prototypical algorithm in this class is the breadth-first search (BFS) algorithm. The
pseudocode for this algorithm, along with its C++4 implementation, is shown in Figure 1.
The algorithm is abbreviated from [8]. Modulo some type declarations that would be
necessary for real code to compile, but which can be omitted from pseudocode, the C++
code, using out-of-the-box language mechanisms and library components, has essentially a
one-one correspondence to the pseudocode.

From this implementation we can extract an initial set of requirements for the BFS
algorithm:

The graph G must meet the requirements of a random access range, meaning it can be

indexed into with an object (of its difference type) and it has a size.

The value type of G (the inner range of G) must meet the requirments of a forward range,

meaning it is something that can be iterated over and have values extracted.

The value type of the inner range must be something that can be used to index into G.

All elements stored in G must be able to correctly index into it, meaning their value are

between 0 and size(G) -1, inclusive.
Associated with the concepts of a random access range and forward range are complexity
guarantees (which are also implied by the theoretical algorithm). Indexing into G is a
constant-time operation and iterating over the elements in G[u] is linear in the number of
elements stored in G[u].

As an example, we could use any of the following compositions of standard library
components for the Graph datatype above:

using Graph = std::vector<std::list<int>>;
using Graph = std::vector<std::vector<unsigned>>;
using Graph = std::vector<std::forward_list<size_t>>;

(In fact, any Graph data structure meeting the above requirements could be used.)

We now have a set of requirements for a concrete implementation of BFS. Following the
generic programming process, there are various aspects of the implementation that we could
begin lifting. Ultimately, as with the STL, we want a set of concepts useful across families
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DUKSTRA(G, w, 5) void dijkstra(const Graph& G, int s) {...
1 for each vertex u € V(G) for (int u = 0; u < size(G); ++u) {
2 dlu] + o d[u] = INF;

3 m[u] < NIL pilul = NIL; }
4 d[s]+ 0 dls] =

5 Q<+« V(G) for (int u = 0; u < size(G); ++u)

6 Q.push({u, d[WlD);

7 while Q # & while (!Q.empty()) {

8 u < EXTRACT-MIN(Q) auto [u, x] = Q.top(O; Q.popQ);

9 foreachv e Ad(G)[u] for (autot [v, w] : GLul) {

10 if dfu] +w(u, v) < d[v] if (dlu] + w < dlv]) {

11 d[v] + du] + w(u,v) dlv] = dful + w;

12 wv] = u pilv] = u; 11

Figure 2 Pseudocode and C++ implementation of Dijkstra’s algorithm. As with BFS, existing
C++ language mechanisms and library components are expressive enough to essentially realize the
algorithm line for line.

of graph algorithms. So rather than lifting BFS in isolation, we now examine concrete
implementations of other algorithms in order to identify common functionality that can be
lifted in order to unify abstractions.

Figure 2 shows the pseudocode and corresponding C++ implementation for Dijksra’s
algorithm for solving the single-source shortest paths problem. From this implementation we
can extract an initial set of requirements for the concrete dijkstra algorithm:

The graph G is a random access range.

The value type of G (the inner range of G) is a forward range.

The value type of the inner range is a pair, consisting of a something we will call a vertex

type and something we will call a weight.

The vertex type is something that can be used to index into G.

All values stored as vertex types in G must be able to correctly index into G meaning their

value are between 0 and size(G)-1, inclusive.

Just as the code of dijkstra is similar to bfs, some of these requirements are also the
same. However, the key difference is in what is stored inside of the graph. This
implementation of dijkstra assumes that the graph stores a tuple consisting of a vertex
value and an edge weight. That is, rather than the Graph types shown above, we could use
the following for dijkstra:

using Graph = std::vector<std::list<std::tuple<size_t, int>>>;
using Graph = std::vector<std::vector<std::tuple<unsigned, double>>>;
using Graph = std::vector<std::forward_list<std::tuple<int, float>>>;

This is a different kind of graph than we had for bfs, which only stored a value. Yet, even
a graph that stores a weight on its edge should be suitable for BFS exploration. Similarly, a
graph without a weight on its edge should be suitable for Dijkstra’s algorithm, provided a
weight value can be provided in some way (or a default value, say, 1, used).

4.3 Lifting

From the foregoing discussion, we have two pieces of functionality we need to lift. First, we
need to lift how the neighbor vertex is stored so that whether it is stored as a direct value
or as part of a tuple (or any other way), it can be obtained. Second, we need to lift how

31:9
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weights (or, more generally, properties) are stored on edges. And, finally, implied when we
say we want to use different kinds of graphs with these algorithms, we need to parameterize
them on the graph type (make them function templates rather than functions).

4.3.1 Parameterizing the Graph Type

In this lifting process we will be building up to a concept, which we will illustrate by lifting
dijkstra. We begin by presenting its type parameterization. The prototype for a dijkstra
function template based on our previous definition would be

template <class Graph>
auto dijkstra(const Graph& G, vertex_id_t<G> s);

Note that we have parameterized two things: the Graph type itself, as well as the type
of the starting vertex s. In this case, the vertex type is not arbitrary, it is related to the
type of the graph, and so we have a type primitive vertex_id_t that returns the type of
the vertex associated with graph G.

We can update some of the previous requirements for the type-parameterized dijkstra:

Graph must meet the requirements of random_access_range.

The value type of Graph (the inner range of Graph) must meet the requirements of

forward_range.

The type vertex_id_t<Graph> is an associated type of Graph.

The type vertex_id_t<Graph> is convertible to the range_difference_t of Graph (that

is, it can be used to index into a Graph).

Both classes of graphs that we had previously seen for bfs and dijkstra satisfy these
requirements (which are more general than either of the previous requirements). For example,
both of the following compound structures

std: :vector<std::vector<int>>;
std::vector<std::vector<std::tuple<int, float, double>>>;

satisfy the lifted requirements, (provided a suitable overload of vertex_id_t is defined)
though each would have only satisfied one of the previous requirements. Note however, we
still need to do more lifting before we can compose bfs or dijkstra with these types.

4.3.2 Lifting Neighbor Access

How a neighbor is stored is dependent on the graph structure itself; the mechanism for
accessing it should therefore vary based on the graph type. In keeping with standard C++
practice — and since we want to be able to use C++ standard library containers, we adopt
a polymorphic free function interface to abstract the process of accessing a neighbor. In
particular, we define a target customization point object (CPO) to abstract how a neighbor
vertex is accessed, given an object obtained from traversing the neighbor list.

If variable G is of type Graph and variable e is of the value type of the inner range of Graph,

then target (G, e) is a valid expression that returns a type of vertex_id_t<Graph>.

All values returned by target (G, e) must be able to correctly index into a Graph G.

With this abstraction, the loop and neighbor access in bfs and dijkstra (respectively
at lines 8 and 9 of Fig 2) are replaced by
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for (auto&& e : G[ul) {
auto v = target(G, e);

.}

Now, provided that suitable overloads for target are defined, the two model graph types

std: :vector<std::vector<int>>;
std::vector<std::vector<std::tuple<int, float, double>>>;

will satisfy the above requirements, and we can compose them with the bfs and dijkstra
we have lifted to this point. We can, for example, define overloads for target thusly:

int target(const std::vector<std::vector<int>>& G, int e) { return e; }
using E = std::tuple<int, float, double>;
int target(const std::vector<std::vector<E>>& G, E& e) { return std::get<0>(e); }

Note that these overloads are each specific to a single graph type. In practice we can
define generalized overloads for entire classes of containers. In NWGraph we opted to realize
target as a CPO, implemented using the tag_invoke mechanism [3].

4.3.3 Encapsulating Lifted Requirements as Concepts

We can encapsulate (and formalize) the above requirements in the form of a concept (which
is almost a direct translation of the stated requirements to C++ code).

We first capture the very fundamental requirements of a graph, that it is a semiregular
type (meaning that it is copyable and default-constructible) and that it has an associated
vertex_id_t type:

template <typename G>
concept graph = std::semiregular<G>
&& requires(G g) { typename vertex_id_t<G>; I};

We define this as a separate concept since we may wish to define other concepts that reuse
these requirements.

Next, we define some convenience type aliases to capture the type of the inner range of a
graph as well as the type that is stored by the inner range:

template <typename G>

using inner_range = std::ranges::range_value_t<G>;

template <typename G>

using inner_value = std::ranges::range_value_t<inner_range<G>>;

Now we can define the concept that captures the requirements from the lifted bfs and
lifted dijkstra:

template <typename G>
concept adjacency_list = graph<G>
&& std::ranges::random_access_range<G>
&& std::ranges: :forward_range<inner_range_t<G>>
&& std::convertible_to<vertex_id_t<G>, std::ranges::range_difference_t<G>>
&& requires(G g, vertex_id_t<G> u, inner_value_t<G> e) {
{ glul } —> std::convertible_to<inner_range_t<G>>;
{ target(g, e) } -> std::convertible_to<vertex_id_t<G>>; };
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Although we restricted our illustration of lifting to bfs and dijkstra in this paper, this
concept captures the requirements for all algorithms in NWGraph based on adjacency lists
(see also the discussion in Section 4.4).

We can use this concept to constrain the interface to bfs in the following two ways:

template <class Graph>
requires adjacency_list<Graph>
void bfs(const Graph& G);

template <adjacency_list Graph>
void bfs(const Graph& G);

When using concepts via the requires keyword, there is usually a fully general declaration
and a number of abbreviated forms. In NWGraph, the second syntax above is preferred.

4.3.4 Lifting Edge Weight

In the concrete implementation of Dijkstra’s algorithm shown above, we assumed the container
associated with each vertex in the graph (i.e., the container obtained by G[ul) provided
tuples containing the vertex id and the edge weight. In fact, there are numerous ways to
associate a weight with each edge. We could, for example, store an edge index with each
neighbor and use that to index into an array that we also pass into dijkstra. In such a case
the (unconstrained) prototype for the algorithm might be

template <class Graph, class Range>
auto dijkstra(const Graph& G, vertex_id_t<Graph> s, Range wt);

The inner loop might then look like

for (auto&& e : G[ul) {
auto v = target(e);
auto w = wt[v];
if (dfu] + w < d[v]) {
dlv] = d[u] + w;
pilvl = u; 1

To lift this version and the version with the directly-stored property on edges, we introduce
weights as a parameter at the interface of di jkstra, of parameterized type WeightFunction.
The WeightFunction template parameter is constrained by the std::invocable concept,
which specifies that the function must be callable on an argument of the inner_value type
of the Graph.

template <adjacency_list Graph, std::invocable<inner_value<Graph> WeightFunction>
auto dijkstra(const Graph& G, vertex_id_t<Graph> s, WeightFunction wt);

In this case, the inner loop would look like

for (auto&& e : G[ul) {
auto v = target(e);
auto w = wt(e);
if (dfu]l + w < dlv]) {
dlv] = d[u] + w;
pilvl = u; 1}
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4.3.5 About Vertex IDs

There is one aspect of the NWGraph adjacency_list concept that may seem overly restrict-
ive, namely that the outer range of an adjacency_list be a random-access range and, hence,
indexable by values in the range [0, |V|). There are two reasons for this particular design
decision. First, indexing into the outer range (g[ul) must be a constant-time operation in
order for algorithms using gl[u] to have their expected computational complexity (which
is part of an algorithm’s specification). Second, vertex ids are used not just for indexing
into the graph itself, but for accessing vertex properties, which we also expect to be random-
access ranges. This does not, however, necessarily imply that graph inner ranges must store
vertex ids. Rather, the adjacency_list concept only requires that the target CPO return
something convertible to a vertex_id_t, something that can be computed or looked up
(though, again, in constant time). However, if one is going to compute a vertex_id_t on
the fly, or look it up elsewhere, one could as well store it. NWGraph containers take this
approach, and it can also be readily realized by nested standard library containers (e.g.,
std: :vector<std::vector<int>>).

That all being said, the NWGraph adjacency_list constraints (like all concepts) are
only syntactically enforced. Though unnecessary, as described above, one could provide a
graph that used an std: :map as the outer container. The operation g[u] would still work,
but at the cost of increased computational complexity.

4.3.6 Non-Type Constraints

We have already seen in lifting the edge weight that not all constraints for an algorithm are
encapsulated in the type requirements for the input graph. There are other requirements that
an algorithm may have that cannot be captured as a type requirement, or as any compile-time
checkable requirement. For example, some algorithms, such as triangle counting, may require
that the edges within each neighborhood be sorted. Such requirements become part of the
specification of the API, but cannot be made part of type checking. This is similar to,
say, binary_search in the C++ standard library, which requires that the elements of the
container to which it is applied be sorted. Yet, there is no such thing as a sorted container
type in the standard library.

4.4 Other Graph Concepts

Our presentation thus far has developed a single concept (adjacency_list) and the reader
may ask how broad that concept is, given the wide variety of potential graph algorithms.
In fact, the adjacency_list concept is surprisingly broad in its applicability; only a few
supplemental concepts are required to cover all of the algorithms implemented in NWGraph
and probably all of the algorithms that are likely to be implemented in NWGraph in the
future. This is perhaps not so surprising since the adjacency list Adj(G) is also the primary
theoretical construct upon which the majority of graph algorithms are built.

There are two additional concepts that we introduce briefly here which we found necessary
for algorithms in NWGraph: degree_enumerable and edge_list. The former extends ad
jacency_list with the requirement that there be a valid expression degree, necessary in
some algorithms. The latter is basically a container of objects for which source and target
are valid expressions. Algorithms such as Bellman-Ford and Kruskal’s MST use an edge list
rather than an adjacency list [8].
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Our confidence that these few concepts are sufficient is based on a comprehensive study
of the concepts in the Boost Graph Library (BGL) [29]. The BGL has five essential
graph concepts that cover all of its algorithms: VertexListGraph, EdgeListGraph, Ad
jacencyGraph, IncidenceGraph, and BiIncidenceGraph. Of these, the design decisions of
NWGraph to require vertex identifiers to be indices obviates VertexListGraph; we don’t
need to iterate through a list of vertices provided by the graph, we simply iterate through
vertex ids from 0 through |V| — 1. The NWgraph adjacency_list and degree_enumerable
concepts subsume the essential functionality of AdjacencyGraph and IncidenceGraph. The
adjacency_list does not have a source function requirement, but that is in fact only rarely
used in the BGL algorithms requiring IncidenceGraph (and when it is used, there are other
ways of obtaining the same information). The BiIncidenceGraph concept specifies that a
graph type must have two lists of neighbors: those reachable by “out edges” (which is what
adjacejcy_list requires) and those that can reach the vertex, i.e., the “in edges.” The in
edge neighborhoods are essentially the transpose of the out edge neighborhoods and can be
represented with the same kind of adjacency list structure as the out edge neighborhoods.
The need for a single data type holding lists of both out edges and in edges is unnecessary
in the NWGraph design. Algorithms requiring a graph and its transpose take two graph
arguments, one representing the out edges and one representing the in edges. Those two
graphs represent (and store) exactly the same information as would be contained in a single
BilIncidenceGraph, so there is no loss of efficiency in this design decision (and, in fact,
NWGraph provides utilities for creating the transpose of a given graph). Finally, NWGraph
includes an edge_list concept which is identical to the BGL EdgeListGraph concept.

5 Algorithms in NWGraph

Algorithms in NWGraph constitute the core of our library. NWGraph includes a broad classes
of algorithms (sequential and parallel) for different graph problems, including graph traversal
(BFS, SSSP), analytics (PageRank, Jaccard similarity, betweenness centrality, connected
components), motif counting (triangle counting), network flow (maximum flow), etc. Table 1
lists the graph algorithms implemented in NWGraph along with their problem definitions.

5.1 Parallelization

NWGraph leverages existing parallelization support in the C++4 standard library for im-
plementing different parallel graph algorithms. However, in cases where it was necessary
to circumvent some of the limitations of the C++ standard library for parallelization, we
instead used Intel® oneAPI Threading Building Blocks (TBB) [14] for better performance.

5.1.1 Parallelization with std Execution Policies

NWGraph implements parallel algorithms for some of the different graph kernels described
in Table 1 with std: :execution: :par (parallel policy) and std: :execution: :par_unseq
(parallel unsequenced policy) provided to the std: :for_each construct. Listing 5 demon-
strates a triangle counting algorithm capable of benefiting from parallel std: :execution
policies. Note that updating shared variables relies on the std: :atomic operations library.
Alternatively, Listing 6 shows an asynchronous task-based parallel triangle counting
algorithm, which uses std: :future and std: :async to explicitly manage concurrency.
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Table 1 Algorithm classes in NWGraph. Parallel implementation available: std::execution

and std: :for_each', std::async%, TBB’s parallel_forY.

Algorithm

Definition

Breadth-first searcht¥

Traverses a graph in breadth-fist search order from a given
source. Implementation includes: top-down, bottom-up and
direction-optimized [5] algorithms.

Depth-first search

Traverses a graph in depth-first search order from a given
source.

Single-source shortest pathst¥

Finds the shortest distance paths from a given source to all
other vertices in a graph. A-stepping algorithm [19] is imple-
mented.

Connected cornponentw

Finds connected components in a graph. Implementations
include Afforest [32], Shiloach-Vishkin [26], BFS-based [27]
and minimal label propagation [24,34] algorithms.

PageRank$Y

Compute the importance of each vertex in a graph. Implements
the Gauss-Seidel algorithm [1].

Triangle counting’$¥

Counts the number of triangles in a graph. Implements al-
gorithms discussed in [18].

Betweenness centrality$Y

Measures how many times each vertex lies on the shortest paths
to other vertices. Brandes Algorithm [7] has been implemented.

Maximum flow

Given a source and a sink, find paths with available capacity
and push flow through them until there are no more paths
available. Implements Edmonds-Karp algorithm.

K-core

Finds the subgraph induced by removing all vertices with
degree less than k.

Jaccard similarity

Computes the Jaccard similarity coefficient of each pair of
vertices in a graph.

Graph coloring

Assign a color to each vertex in the graph so that no two
neighboring vertices have the same color. Implements Jones-
Plassmann algorithm [15].

Maximal independent set

Graph coloring with two colors.

10

11

12

13

14

15

Listing 5 Parallel triangle counting algorithm with std: :execution policies.

template <adjacency_list_graph Graph, class OuterExecutionPolicy =

std::execution: :parallel_unsequenced_policy,

class InnerExecutionPolicy = std::execution::sequenced_policy>

std::size_t triangle_count(const Graph& A, OuterExecutionPolicy&& outer = {3},

InnerExecutionPolicy inmner = {}) {

std::atomic<std::size_t> total_triangles = O;
std::for_each(outer, A.begin(), A.end(), [&](auto&& x) {

std::size_t triangles

= 0;

for (auto &%i = x.begin(), e = x.end(); i != e; ++i) {

triangles += nw::graph::intersection_size(i,e,A[std::get<0>(*i)], inner);

}

total_triangles += triangles;

B;

return total_triangles;
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Listing 6 Parallel triangle counting algorithm with std: :async.

1 template <class Op>
2 std::size_t triangle_count_async(std::size_t threads, Op&& op) {

3 std: :vector<std::future<size_t>> futures(threads);

4 for (std::size_t tid = 0; tid < threads; ++tid) {

5 futures[tid] = std::async(std::launch::async, op, tid);
6 }

7 // Reduce the outcome ...

s}

o template <adjacency_list_graph Graph>
10 std::size_t triangle_count_v2(const Graph& G, std::size_t threads = 1) {

11 auto first = G.begin();

12 auto last = G.end();

13 return triangle_count_async(threads, [&](std::size_t tid) {

14 std::size_t triangles = 0;

15 for (auto i = first + tid; i < last; i += threads) {

16 for (auto j = (*i).begin(), end = (*¥i).end(); j != end; ++j) {
17 //

1} B}

19

5.1.2 Shortcomings of std Execution Policy-based Parallelization

The current std: :execution and std: :thread libraries lack adequate support for imple-

menting efficient parallel graph algorithms. Some of the most important limitations include:
Programmers do not have control over workload distribution or partitioning of data or
work among threads.
Thread-safe data structures are not part of the standard library. Having to manually use
coarse-grained locking lock and mutex to make standard library containers thread-safe
is labor-intensive and may severely limit the performance of parallel graph algorithms.
Granularity of concurrency cannot be directly managed.

5.1.3 Parallelization with Intel® Threading Building Blocks

To circumvent these shortcomings, NWGraph leverages Intel® Threading Building Blocks
(TBB) library. TBB provides a set of efficient concurrent containers (hashmap, vector, and
queue) implemented with fine-grained locking and lock-free techniques. NWGraph uses
TBB’s concurrent vector to maintain the frontier list of active vertices in each step of the
A-stepping algorithm [19] for computing SSSP (Listing 7).

One determinant of parallel graph algorithm performance is how well the parallel workload
is balanced among threads. Graph algorithms typically do not perform well with naive
partitioning approaches. Recall a graph structure is a random-access range of forward ranges.
A naive partitioning scheme will partition the outer range into equal-sized chunks — which is a
reasonable strategy for one-dimensional containers, where each partition will have essentially
the same amount of work. The story is completely different for graph data structures,
especially those with highly skewed degree distributions, such as power-law graphs. In such
cases, if the graph is partitioned based on the outer range, each partition will have the same
number of starting vertices (the same number of inner ranges), but the number of neighbors
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Listing 7 A-stepping algorithm for computing single-source shortest paths using TBB’s thread-safe
containers.

1 template <class distance_t, adjacency_list_graph Graph, class Id, class T>
2 auto delta_stepping(const Graph& graph, Id source, T delta) {

3 tbb: :queuing_mutex lock;

4 tbb: :concurrent_vector<tbb::concurrent_vector<Id>> bins(size);
5 tbb: :concurrent_vector<Id> frontier;

6 /).

7 while (top_bin < bins.size()) {

8 frontier.resize(0);

9 std: :swap(frontier, bins[top_bin]);

10 tbb: :parallel_for_each(frontier, [&](auto&& u) {

11 if (tdist[u] >= delta * top_bin) {

12 nw: :graph: :parallel_for(graph[ul, [&](auto&& v, auto&& wt) {
13 relax(u, v, wt); });

14 D

15 /7 ...

16 ¥

17 }

Listing 8 A-stepping algorithm for computing single-source shortest paths using TBB’s blocked |
_range partitioning technique.

v /)

2> while (top_bin < bins.size()) {

3 /) ...

4 tbb: :parallel_for(tbb: :blocked_range(Oul,frontier.size()), [&] (auto&& range){
5 for (auto id = range.begin(), e = range.end(); id < e; ++id) {

6 auto i = frontier[id];

7 if (tdist[i] >= delta * top_bin) {

8 /) ...

9 D

0}

in each inner range will vary with the degree distribution. Without the ability to partition
based on the size of the inner ranges (which is an indication of the amount of work to be

done for each partition), some threads may end up with vastly more work than other threads.

To provide better control of workload distribution among threads, TBB’s parallel_for
function accepts ranges (a TBB construct in this case, not to be confused with C++20 ranges)
that can be customized to provide user-defined partitioning. An example is NWGraph’s use

of TBB’s blocked_range in the A-stepping algorithm (compare Listing 7 with Listing 8).
Custom ranges are not limited to contiguous partitions of the underlying data structure.

Instead, one can use strided (or cyclic) partitions — or, more generally, block-cyclic partitions
— which can provide natural load balancing in certain situations. We show the performance
benefit of cyclic distribution in Section 8.

TBB also implements C++ standard library parallelism (TBB’s parallel STL). Intel has
open-sourced TBB (now called oneTBB), allowing its parallel STL effecting parallelism in
other C++ library implementations. In fact, and somewhat ironically, the standard library
provided by g++ (the compiler we used for NWGraph development) is one such compiler that
uses TBB under the hood.
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Figure 3 Range adaptors in NWGraph.
6 Graph Range Adaptors in NWGraph

A key feature of the new C++ Ranges is the notion of views, which allow for different ways
to access data in a range without changing the underlying range. Between a range and a
range view sits a range adaptor, which takes the original range and presents it to the user as
a view while hiding the underlying data manipulation details. We leverage range adaptors
to simplify graph algorithms in NWGraph, by providing reusable data access patterns that
eliminate the need for visitor objects.

Consider again BFS traversal, a core graph algorithm kernel. Except perhaps for bench-
marking, a standalone BFS traversal is rarely useful. Rather, other algorithms use a BFS
traversal pattern to perform more useful computations, such as finding the distance to every
vertex from the source, finding the parent list, etc. One approach to applying BFS traversals
to other types of computations would be to further parameterize bfs with additional functions.
However, what to apply and where to apply it is not well defined — we don’t necessarily have
well-defined concrete algorithms to lift.

The Boost Graph Library provides extensibility to BFS through its Visitor mechanism,
which is essentially a large structure with callbacks used at multiple entry points in BFS
execution [29]. The BFS Visitor has nine different possible callbacks, making actual extension
of the BGL BFS a complicated proposition.

NWGraph does not attempt to further lift algorithms from arbitrary, concrete use cases
(which are not well-defined from a library designer’s perspective). Instead it provides range
adaptors that allow the graph to be iterated over in a specified order (either vertex by vertex
or edge by edge). For example, NWGraph provides bfs_range for traversing the vertices of
a graph in breadth-first order, and bfs_edge_range for traversing the edges.

for (auto&& u : bfs_range(G)) { /* visit vertex u */ }
for (auto&& [u, v] : bfs_edge_range(G)) { /* Visit edge uv,v */ }

As views are concise and efficient ways of representing the same data in multiple ways,
graph algorithms can be considered as operating on a range of elements of a graph with
different requirements on how data is being viewed by the algorithm. In NWGraph, we
provide three categories of view of the graph shown in Figure 3:

Original view of the graph: These include edge range, neighbor range, plain range, random

range and back-edge range.

Modified view of the graph based on traversal criteria: For example, BFS and DFS

traversal-based algorithms consider vertices in a certain order. These alternative views

include BFS edge range, filtered BFS range, DFS edge range, Directed Acyclic Graph
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(DAG) range and Reverse Path. More sophisticated range adaptors such as DAG range, for
example, iterate over the vertices in a particular order, based on the predecessor-successor
relationships, imposed by algorithm-specific heuristics.

Subview of the graph for workload distribution in parallel execution: These include
splittable edge range and cyclic range.

7 Model Data Structures in NWGraph

In Section 4.3 (lifting), we demonstrated that the built-in types in the standard library
are sufficient to construct a graph. We reiterate that any data structure meeting the
requirements specified by the NWGraph concepts can be composed with the NWGraph
algorithms based on those concepts. For instance, std::vector<std::vector<std::
tuple<size_t, double>>> meets the requirements of the adjacency_list concept, and
hence can be used with any of the appropriate algorithms. Graphs do not need to be

constructed from a range of ranges in order to meet the requirements of a range of ranges.

Data structures such as compressed sparse structures, which represent all of a graph’s
neighborhoods contiguously in memory, can offer better performance due to more favorable
memory accesses. We compare compressed sparse structures to compositions of standard

library components in Section 8.
The workhorse graph structure for NWGraph is the class template nwgraph: :adjacency,
a compressed structure with the following (abbreviated) interface:

template <int idx, class Attributes...>
class adjacency {
class outer_iterator {
using iterator_category =
std: :random_access_iterator_tag; ..};
class inner_iterator;
outer_iterator begin();
outer_iterator end();
operator[] (index_t i) comnst; };

nwgraph: :adjacency is parameterized on the types of the edge properties, using variadic
template parameter Attributes, to allow an arbitrary number of edge properties of arbitrary
type. The idx parameter is a hint indicating whether the adjacency structure is representing
the out edges or the in edges of the edge list from which it was built. To allow nwgraph: :ad
jacency to meet the requirements of adjacency_list (range of ranges), we define a private
iterator type that acts as a random access iterator.

NWGraph has a small set of utility functions for building graphs from a given dataset in
a generic fashion. The first step involves building an index edge list, given a vertex table and
an edge table. The second step uses this edge list to build an index graph (that is, filling
in a structure modeling adjacency). Some algorithms (such as triangle counting) require
sorted data in the neighborhood range. The graph construction algorithms take a runtime

flag that indicates whether neighborhood sorting should be done during graph construction.

NWGraph also provides functions to sort graphs that have already been constructed. The
pertinent APIs for graph construction are the following:

template <class IndexEdgelList, class VRange, class ERange>

IndexEdgelist make_index_edge_list(const VRange& vertices, const ERange& edges);
template <adjacency_list Graph, class IndexEdgeList>

Graph make_graph(const IndexEdgelist& edge_list);
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8 Performance Evaluation

8.1 Experimental Setup

Our experiments were carried out on compute nodes consisting of two Intel® Xeon® Gold
6230 processors, each with 20 physical cores running at 2.1 GHz (with turbo boost up to
3.9GHz), and hyperthreading disabled. Each processor has 28MB L3 cache and 188GB of
main memory. NWGraph is implemented in C++20, parallelized with oneTBB 2021.4, and
compiled with the g++ 11.2 compiler using -Ofast -march=native compilation flags.

8.2 Abstraction Penalty

Modern C++ practice includes a wide variety of mechanisms and related idioms for traversing
data structures. Since the inner range of a type meeting adjacency_list requirements is a
forward range, any of those modern techniques may be used for traversal. Moreover, the
compressed graph structure provided in NWGraph presents a facade of being a range of
ranges, using internally-provided iterators to effect the “range of ranges” interface. Given this
variety of traversal mechanisms, and the layers of abstraction associated with traversal and
with the compressed graph structure, there is potential for unintended abstraction penalty.

To verify the performance expectation of specialization in generic libraries, i.e., that
there is minimal abstraction penalty, NWGraph includes an abstraction penalty benchmark
suite, from which we present a small subset. Here, we focus on inner range traversal as it is
ubiquitous to all graph algorithms; any penalties uncovered there would also be apparent in
other graph algorithms. We use the sparse matrix-vector product (SpMV) algorithm as the
vehicle for our study, as it is well-suited for characterizing inner range traversal; it makes
one pass through the entire graph, traversing each of the inner ranges.

Let us consider a “raw for loop” implementation of SpMV, using a compressed sparse
row (CSR) data structure to store the adjacency list. The CSR structure stores its neighbor
indices and edge weights in contiguous arrays and traverses the data structure by looping
through each vertex id and then traversing the associated inner range delimited by the indices
in the ptr array.

auto ptr = G.indices_.data();
auto idx = std::get<0>(G.to_be_indexed_).data();
auto dat = std::get<1>(G.to_be_indexed_).data();
for (vertex_id_t i = 0; i < N; ++i) {
for (auto j = ptrl[il; j < ptr[i + 1]; ++j) {
y[il += x[idx[j1] * dat[jl; }}

This concrete algorithm establishes the baseline performance against which the generic
algorithms are compared.

In a generic SpMV implementation, we cannot assume this underlying CSR structure.
Rather we can only assume the interface specified by the adjacency_list concept, i.e., a
range of ranges, and our implementations of a generic SpMV must be written accordingly.
However, to meet our specialization performance requirements, a generic SpMV written
to the adjacency_list concept must still provide the same performance as the concrete
baseline when composed with a CSR-like structure, i.e., the NWGraph compressed graph
adjacency structure.

Consider two common iteration patterns used in modern C++4, an iterator-based for loop
and a range-based for loop (which is essentially syntactic sugar for the iterator-based loop):
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vertex_id_t k
for (auto i .begin(); i != G.end(); ++i) {
for (auto j = (*i).begin(); j != (xi).end(); ++j) {
yIk] += x[get<0>(*j)] * get<i>(*j); }
++k; ¥

0;

1]
[ > T

vertex_id_t k = 0;
for (auto&& i : G) {
for (auto&& [j, vl : i) {
yk] += x[j] * v; }
++k; }

As generic loops, these can be applied to any graph that models the adjacency_list concept.

There are several important departures from the concrete CSR-based loops. It is easy to see
how these operate on something that is a range of ranges. On the other hand, there is no

obvious correspondence between the iterator-based algorithms and the concrete algorithm.

Of particular note is that the neighbor vertex index j and the edge weight v are accessed as
tuples, directly in the former case and via structured binding in the second case.

Iterators can also be used to traverse the inner range using the standard library std: : |
for_each algorithm rather than for loops. The std: :for_each algorithm iterates through
the indicated iterator range and applies a given function to each element in the range. Here,
we specify those functions using C++ lambdas.

vertex_id_type k = 0;
std: :for_each(graph.begin(), graph.end(), [&](auto&& nbhd) {
std: :for_each(nbhd.begin(), nbhd.end(), [&] (auto&& elt) {
auto&& [j, v] = elt;
yk] += x[j] * v; });
++k; });

In the previous examples, we iterate through the graph using two nested loops, variously
expressed. We can alternatively use the edge_range range adaptor, which “flattens” the
graph, allowing traversal of all of the inner ranges with a single loop.

for (auto [i, j, v] : make_edge_range<0>(graph))
y[i]l += x[j]1 * v;

The edge_range adaptor essentially turns the adjacency_list into an edge_list. It
provides a tuple with three elements: The source vertex, the target vertex, and the edge
weight. The result is an extremely concise implementation of SpMV, which, again, will work
with any type meeting the requirements of adjacency_list. The question that we wish to
address is whether this genericity and this conciseness comes at the cost of performance.
Our experimental evaluation of SpMV uses three graphs with different underlying topology
taken from the SuiteSparse matrix collection: circuit5M, GAP-road, and hugebubbles [9)].
These graphs have similar numbers of edges (30M to 60M) and the benchmarks run in
comparable time. Figure 4a shows the results of the different data access abstractions relative
to the raw loop timing, for each benchmark. Timing results were averaged over 5 runs of each
benchmark. Bars significantly higher than the raw for loop bar would indicate a significant
performance penalty. None of the abstraction methods incurs a significant performance

31:21

ECOOP 2022



31:22

NWGraph

raw [ iterator ¥ range

1.0 —‘

P29 forcach B edge range

Abstraction Penalty
(time relative to raw)

circuitsM GAP-road hugebubbles

(a) Different data access abstractions (iterators,
ranges, std: :for_each and edge_range adaptor)
with their abstraction penalties measured relative
to a raw for loop implementation. There is no
significant performance penalty relative to the raw

loop implementation.

vector of list
EXA vector of forward list

struct of array
[ vector of vector

-
5

wt

Abstraction Penalty
(time relative to struct_of_array)

Y771
GAP-road

circuitsM

(b) Measured abstraction penalty for the SpMV
benchmark with graphs represented by different
containers using iterator based for loop. The
execution time has been normalized w.r.t to the
execution time of SpMV with graphs represented
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Figure 4 Abstraction Penalty Benchmarks with SpMV.

Table 2 Characteristics of input graphs used for performance evaluation.

Name Description #Vertices #Edges Degree Dis- References
(M) (M) tribution

road USA road network 23.9 57.7 bounded [11]

twitter  Twitter follower Links 61.6 1,468.4  power [17]

web Web Crawl of .sk Domain 50.6 1,930.3  power [6]

kron Synthetic Graph 134.2 2,111.6  power [20]

urand Uniform Random Graph 134.2 2,147.5  normal [12]

penalty relative to the raw loop implementation. edge_range is perhaps consistenly a little
higher than the baseline, due to moving access of the row index from the outer loop to the
inner loop. Continued refinement of edge_range is a topic of ongoing work.

8.3 Graph Representations

We also evaluated the performance implications of different choices for the inner range: ad
jacency, vector_of_vector, vector_of_list, and vector_of_forward_list. The latter
three graph structures are lightweight wrappers around the corresponding composed standard
library containers, and provide a variadic interface to match adjacency. Note that all of
these containers meet the requirement of our graph concept. However, they have different
features outside of the context of graph algorithms that might make them suitable for different
situations. Notably they can represent more dynamic graphs, i.e., they can be modified
(vertices or edges added or deleted) much more efficiently than the compressed form.

This flexibility comes at a cost. Figure 4b shows the performance of the iterator-based
SpMV on the different containers. Execution time is normalized relative to SpMV with
the adjacency container. Unlike the results in Figure 4a, there are significant differences
in performance between the different cases. Note, however, that these experiments are not
measuring the difference between an abstract and a concrete expression of an algorithm.
Rather, the generic algorithm is the same in each of the cases, but it is composed with different
data structures. The benchmark compares the time it takes to traverse the different inner
range structures (vector, doubly-linked list, singly linked list). The adjacency representation
is cache-friendly, supporting efficient access of the outer and inner range, while the performance
of the other graph types reflect the expected overheads of their underlying inner ranges.
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Table 3 GAP Benchmark Suite execution times for NWGraph.

Algorithm kron urand twitter web  road
BFS 0.51s 1.12s 0.26s 0.72s 0.84s
SSSP 7.23s  13.20s 2.88s 2.02s 2.99s
cC 0.64s 1.50s 0.29s  0.32s  0.09s
PR 12.09s  12.45s 8.69s 2.81s 0.26s
BC 8.43s  12.70s 2.42s  1.31s 1.95s
TC 305.19s 20.42s  58.81s 7.40s 0.07s

Table 4 Performance comparisons with NWGraph for the GAP Benchmark Suite. Percentages
represent the relative speedup of each particular experiment relative to the NWGraph. The color code
indicates performance that is lower than (red), equal to (white), or higher than (green) NWGraph.

Galois Graphlt GAPBS
urand | twitter

road
57%

kron |urand
BFS 118%| 168%

urand | twitter
203 168%

SSSP | 136%| 131%| 108%| 147% 2%| 114%| DNR|

cc 104%| 90%| 101%| 174%| 154% 151%]| 112%| 164%)

PR 86%| 65%| 78%| 99%| 73% 137% 828%

BC oom| 28% 44%|| oom| oom| oom| oom| oom|| 37%| 38%| 45%| 40%| 110%
TC 80%| 71%| 84%| 56% 107%| oom| 86%| oom| 120%|| 90%| 98%| 130%| 54%| 42%

8.4 Performance on Large-Scale Graphs

To demonstrate NWGraph’s performance characteristics on large-scale graphs, we evaluate
and compare NWGraph with three well-established high-performance graph frameworks:
GAP [4], Galois [22] and Graphlt [36], on the algorithms and graphs that comprise the
GAP benchmark suite [4]. The algorithms in the benchmark are betweenness centrality
(BC), breadth-first search (BFS), connected components (CC), PageRank (PR), single source
shortest path (SSSP), and triangle counting (T'C). The graphs used in the benchmark (shown
in Table 2) are large, with diverse structural properties. All experiments were conducted
with 32 threads running on 32 physical cores. The frameworks have been previously tuned
for the GAP benchmark suite and were run under carefully controlled conditions, according
to the rules and procedures established in [2].

Speedups of the different graph frameworks over NWGraph for the five datasets is shown
in Table 4. We summarize our observations as follows:

= NWGraph outperforms the other frameworks in the majority of cases for BC and TC.

The TC implementation has been highly tuned, using a cyclic range adaptor for effective
load balancing, as well as having efficient implementations of its pre-processing techniques

(which time is included in the benchmarking), such as relabeling the vertices by degree [18].
= NWGraph is better than Galois and Graphlt for PR, and somewhat worse than GAPBS.

NWGraph and GAPBS both implement PR using a more efficient Gauss-Seidel inner
step in the algorithm.

= For BFS and SSSP, NWGraph does not perform as well as Galois or GAPBS, particularly
for road, for which Galois’s highly-asynchronous approach is particularly effective. We
do not currently have an explanation for NWGraph’s poor performance on road.

= All frameworks except Graphlt implement the Afforest algorithm [32] for CC. Hence,
Graphlt’s CC performs poorly for graph inputs having large dominant components.
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Figure 5 Strong scaling performance of six different graph algorithms (BFS, CC, TC, PR, PR,
and BC) with five GAP graph inputs. The reported speedup is calculated as the ratio of the
sequential (single-threaded) execution time and the parallel execution time.

One takeaway from these results is that the choice of algorithm and how well it is matched
to a particular graph have the largest effect on performance. The performance differences
between NWGraph and other frameworks (better or worse) are not due to inherent properties
of the C++ language, nor its standard library, upon which NWGraph is built.

8.5 Strong Scaling Performance

Figure 5 presents the strong scaling performance for the graph kernels and inputs from
the GAP benchmark [4]. For strong scaling, we keep the (size of the) dataset fixed while
increasing the number of threads. The reported speedup is calculated by taking the ratio of
the sequential execution time and the parallel execution time. In most cases, the algorithms
scale well. Two exceptions can be observed with the road network input for the BFS and
the SSSP algorithms. Since the road network has a low average degree and large diameter,
increasing the number of threads does not improve the performance of these two algorithms
significantly. BF'S with web graph also does not demonstrate expected scalability.

8.6 Comparison with Boost Graph Library

We have compared NWGraph to BGL several times in this paper with respect to certain
design decisions. Of interest also is how NWGraph performance would compare to BGL.
We compare the sequential performance of the two libraries for four of the GAP graph
kernels using the GAP graph inputs in Table 2. We report the results in Table 5. As can be
observed from the Table, NWGraph performs better than BGL in all cases. (BGL has no
directly comparable implementations of BC mor PR, and hence we are unable to compare
the performance for these two kernels.)

9 Related Libraries and Toolkits

This section explores the landscape of related graph libraries and frameworks. Each of the
libraries or tools discussed in this section make different design tradeoffs regarding usability,
extensibility, and performance. Though few of the tools in this section (with the exception
of BGL) aimed to fill the role of an STL graph library, they all contribute to a greater
understanding of graph library design.



A. Lumsdaine et al.

Table 5 Sequential runtime and speedup of NWGraph and BGL for four graph algorithms: TC,
CC, BFS, and SSSP. >24H indicates jobs that did not finish within 24 hours; OOM indicates out of
memory.

Algorithm  Library road twitter kron web urand
BGL 1.34s >24H >24H >24H  4425.54s
TC NWGraph 0.41s 1327.63s 6840.38s 131.47s 387.53s
Speedup 3.27 - - - 11.42
BGL 1.36s 21.96s 81.18s 6.64 134.23
CC NWGraph  1.02s 3.65s 13.37s 3.02s 43.74s
Speedup 1.34 6.02 6.07 2.20 3.07
BGL 1.09s 12.11s 54.80s 5.52s 73.26s
BFS NWGraph 0.91s 11.25s 38.86s 2.37s 64.63s
Speedup 1.20 1.08 1.41 2.33 1.13
BGL 4.03s 47.89s 167.20s 28.29s OOM
SSSP NWGraph  3.35s 40.94s 95.06s 23.51s 177.13s
Speedup 1.21 1.17 1.76 1.20 -

Generic C++ Graph Libraries. BGL [29] and the LEMON graph library [10] both con-
tributed to the development of generic graph algorithms in C++. BGL proposed algorithm
templates that could be used on a variety of graph types (which could be generated using
BGL’s graph type generator), e.g., vector of lists, list of vectors, etc. Vertices and edges were
allowed to be arbitrary types accessed via property maps which could be stored internally
or externally to the graph. The default graph algorithms could be customized using visitor
objects, which allowed users to use existing data access patterns to do additional work.
LEMON shared many of these features. Both libraries advertise algorithms that work with
user-defined graphs, so long as they conform to a certain interface.

Some of these features had shortcomings that limited their use. The visitor objects are
difficult to use, both from a programming and algorithmic design perspective. Property maps
are a powerful programming abstraction, but in addition to being difficult to use, could lead
to performance issues. The type of LEMON’s graph adaptors are different from the original
graph type being adapted, and their use as graphs is only supported in limited ways. A
major shortcoming of these designs is the difficulty of using custom data structures. In order
to adapt an existing user-defined data structure, the BGL interface requires overloading
several global free functions. These mostly include accessors, mutators, and iterators for
edges and vertices. An assumption is placed on the graph container type being adapted that
it will have much of the same behavior as the built in BGL container types. Furthermore
both libraries lack newer features in C++ such as constexpr, variadic templates, automatic
type deduction, execution policies, etc.

HPC Graph Frameworks. There are several graph frameworks designed to maximize
performance in distributed memory or shared memory, such graph frameworks include
Parallel Boost Graph Library (PBGL) [13], Galois [16], Ligra [28], Giraph [25], Gunrock [33],
Graphlt [35], etc. The contributions of these frameworks are typically a computational model
for parallel processing of graphs, including on clusters and GPUs, with less emphasis on the
usability or extensibility of graph algorithms or containers. A thorough evaluation of several
well-known parallel graph frameworks can be found in [2].
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10 Conclusion

In this paper we presented the design and rationale for a modern generic C++ library
of graph algorithms and data structures, NWGraph. Based on a careful analysis of the
graph problem domain, the fundamental interface abstraction underlying NWGraph is that
of a random access range of forward ranges. Intentionally minimal, this interface admits
composition with any types that meet its requirements. The library implementation includes
selected concreted containers and a rich selection of common graph algorithms. Though the
library is implemented with standard library components using idiomatic C++4, experimental
results showed that the interfaces present no abstraction penalty and that the NWGraph
implementation has performance on par with the highest performing competition. We intend
to continue to refine NWGraph and use it as a testbed in support of an emerging proposal
to the C4++ standards committee for a standard C++ graph library.
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