5th International Symposium on

Foundations and Applications of
Blockchain 2022

FAB 2022, June 3, 2022, Berkeley, CA, USA

Edited by
Sara Tucci-Piergiovanni
Natacha Crooks

\\v OASICS

OASlcs — Vol. 101 - FAB 2022 www.dagstuhl.de/oasics

Editors

Sara Tucci-Piergiovanni
CEA LIST, Université de Paris-Saclay, France
sara.tucci@cea.fr

Natacha Crooks
University of California, Berkeley, CA, USA
ncrooks@berkeley.edu

ACM Classification 2012

Theory of computation — Distributed algorithms; Computer systems organization — Dependable and
fault-tolerant systems and networks; Applied computing — Digital cash; Applied computing — Online
banking

ISBN 978-3-95977-248-8

Published online and open access by
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik GmbH, Dagstuhl Publishing, Saarbriicken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-248-8.

Publication date
June, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/0ASIcs.FAB.2022.0

ISBN 978-3-95977-248-8 ISSN 1868-8969 https: / /www.dagstuhl.de/oasics

https://orcid.org/0000-0001-9738-9021
mailto:sara.tucci@cea.fr
mailto:ncrooks@berkeley.edu
https://www.dagstuhl.de/dagpub/978-3-95977-248-8
https://www.dagstuhl.de/dagpub/978-3-95977-248-8
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/OASIcs.FAB.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-248-8
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

O:iii

OASlcs — OpenAccess Series in Informatics

OASlcs is a series of high-quality conference proceedings across all fields in informatics. OASlcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Daniel Cremers (TU Miinchen, Germany)
Barbara Hammer (Universitat Bielefeld, Germany)
Marc Langheinrich (Universita della Svizzera Italiana — Lugano, Switzerland)

Dorothea Wagner (Editor-in-Chief, Karlsruher Institut fiir Technologie, Germany)

ISSN 1868-8969

https://www.dagstuhl.de/oasics

FAB 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/oasics

Contents

Preface
Sara Tucci-Piergiovanni and Natacha Crookscccioiiiiiiiiiiiiin. 0:vii

Invited Talks

Reflections on the Past, Present and Future of Blockchain Foundations and

Applications

Tttai ADrahamo 1:1-1:1
Some Insights on Open Problems in Blockchains: Explorative Tracks for Tezos

Sylvain Conchom e 2:1-2:1
Hierarchical Consensus: A Horizontal Scaling Framework for Blockchains

Alfonso de la ROCRG ... e 3:1-3:1
Efficient DAG-Based Consensus

ADerto SONMITIO . oo 4:1-4:1

Regular Papers

Fork Accountability in Tenderbake

Antonella Del Pozzo and Thibault Rieutordcoiiiiiiiiniieainnn. 5:1-5:22
Dynamic Blockchain Sharding

Deepal Tennakoon and Vincent Gramoli 6:1-6:17
Posters

Analyzing Soft and Hard Partitions of Global-Scale Blockchain Systems
Kevin Bruhwiler, Fayzah Alshammari, Farzad Habibi, Juncheng Fang, and
Faisal Nawab 7:1-7:1

A Modular Approach for the Analysis of Blockchain Consensus Protocol
Under Churn
Floris Ciprian Dinu and Silvia Bonomic..iiiiiiiiiiiii .. 8:1-8:2

Improving Blockchain Resilience to Network Partitioning by Sharding
Juncheng Fang, Farzad Habibi, Kevin Bruhwiler, Fayzah Alshammari, and
Faisal Nawab o 9:1-9:1

Why General Collective Intelligence Must Be the Future of the Blockchain
Andy E. WillEamst e e 10:1-10:3

5th International Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).
Editors: Sara Tucci-Piergiovanni and Natacha Crooks

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Preface

The goal of 5th International Symposium on Foundations and Applications of Blockchain 2022
(FAB’22) is to bring researchers and practitioners of blockchain — the technology behind
Bitcoin — together to share and exchange results. The program of FAB’22 features four invited
talks, two regular scientific papers, followed by a poster session. The program committee
selected two regular papers for publication in the proceedings out of eight submissions.

Prof. Sylvain Conchon’s invited talk is about the emergent challenges in blockchains and
how they are tackled in the Tezos blockchain. Alberto Sonnino’s invited talk is about building
high-performance BFT consensus based on DAG protocols. The invited talk of Alfonso
de la Rocha is about improving blockchain performances through hierarchical consensus.
Finally, Ittai Abraham’s talk is about future of blockchains and some exciting opportunities
in RegDeFI.

The two regular scientific papers published in these proceedings cover two important
emerging topics: sharding and accountability. Deepal Tennakoon and Vincent Gramoli
present dynamic blockchain sharding, a new way to create and close shards on-demand, and
adjust their size at runtime. Antonella del Pozzo and Thibault Rieutord study approaches
to make BFT consensus protocols accountable, considering Tenderbake as a case study.

The proceedings include as well four posters presenting interesting research proposals.
Juncheng Fang et al. research proposal is about improving blockchain protocols when
recovering from network partitions. Floris Dinu and Silvia Bonomi present a proposal for
analyzing and comparing different consensus protocols used in blockchain under churn. Andy
Williams presents a proposal to frame blockchain in the scope of collective intelligence.
Finally Kevin Bruhwiler et al. propose an approach to study network partitions through
simulation.

The program also features a keynote from the Ethereum foundation.

Finally, we thank the authors for providing valuable content, and the program committee
who gave very valuable feedback to the authors. We also thank Algorand, Protocol Labs and
Ethereum for their financial support.

Sara Tucci-Piergiovanni and Natacha Crooks

5th International Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).
Editors: Sara Tucci-Piergiovanni and Natacha Crooks

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Reflections on the Past, Present and Future of
Blockchain Foundations and Applications
Ittai Abraham =

VMware, Herzelia, Israel

—— Abstract

We survey some of the amazing progress in Blockchain technology in the last 5 years: from foundations

like consensus protocols, execution models, and zero-knowledge proofs, to why these foundations are
critical for applications like decentralized finance and web3. The main part of the talk will try to
envision the future of Blockchains: how will the “Endgame” look like? What foundations are we
still missing? We argue that for Blockchains to thrive and reach Billions of users, we should expect
a much more regulated landscape to emerge and discuss some exciting opportunities in reg-crypto
and RegDeFi. An example of this direction is our new work on UTT which is a decentralized Ecash
system with accountable privacy.

2012 ACM Subject Classification Theory of computation — Distributed algorithms; Applied
computing — Digital cash; Computer systems organization — Dependable and fault-tolerant
systems and networks

Keywords and phrases Blockchain

Digital Object Identifier 10.4230/OASIcs.FAB.2022.1

Category Invited Talk

© Ittai Abraham;
37 licensed under Creative Commons License CC-BY 4.0

5th International Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).
Editors: Sara Tucci-Piergiovanni and Natacha Crooks; Article No. 1; pp. 1:1-1:1

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:iabraham@vmware.com
https://doi.org/10.4230/OASIcs.FAB.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Some Insights on Open Problems in Blockchains:
Explorative Tracks for Tezos

Sylvain Conchon &
Laboratoire Méthodes Formelles, Université Paris-Saclay, CNRS, ENS Paris-Saclay,
91190 Gif-sur-Yvette, France

—— Abstract

Blockchain is an emerging field that started with the advent of Bitcoin, the first cryptocurrency
launched in 2008. Since then, new distributed applications (DApps) based on blockchain have
emerged, such as non-fungible tokens (NFT) or decentralized finance (DeFi). All this contributes to
an ever-increasing use of blockchains and poses many technological and scientific challenges.

The first challenge is related to scalability, usually measured by the number of transactions
per second (TPS) that a blockchain can process. Recent solutions, such as Rollups, implement
the concept of Layer 2, a secondary framework built on top of an existing blockchain that allows
transactions to be managed off-chain for efficiency. The primary blockchain is used to secure the
exchanges of the second layer by regularly recording its exchanges and its current state. A first
experiment of Optimistic Rollups has been implemented in the Blockchain Tezos. The TORUs
(Transaction Optimistic Rollups) allow efficient financial assets exchanges in the form of Michelson
tickets. A generalization to Smart contracts Optimistic Rollups (SCORU) is currently under
development.

Another challenge is to improve the efficiency of the data structures used in blockchain implement-
ations. The main explorative tracks are to reduce and improve disk usage (compact representations,
serialization of big data, sharing, ...), increase the speed of access operations (efficient caching
strategies, asynchronous I/0, ...). For example, recent improvements to the storage layer of Octez,
Tezos’ most popular node implementation, have shown that it is possible to significantly speed up
transactions, stabilize average transaction latency, and significantly reduce memory usage.

The security issues associated with blockchains also raise many challenges. Indeed, the economic
protocols or consensus algorithms implemented in blockchains use incentive mechanisms to discourage
nodes from engaging in bad behavior or in launching attacks. A fine tuning of these incentives
is difficult in situations where decision makers interact. Game theory can be used to develop
incentives, in particular its integration into verification tools (model-checkers, proof assistants,
deductive program verification) or machine-learning tools could be very promising.

Finally, given the financial amounts managed by blockchains, it is essential to have a very precise
specification of the algorithms, protocols and data structures used in blockchain implementations in
order to guarantee the reliability of these very complex software. Whether it is for the programming
of smart contracts, consensus algorithms or the P2P layer, the introduction of formal methods in
the development cycle of blockchains is a major challenge in this domain. A lot of work in formal
methods has been done for the Tezos blockchain. Among others, the formalization in TLA+ of
Tenderbake, a PBFT-style consensus algorithm which offers deterministic finality to Tezos.

Author Bio. Sylvain Conchon is Professor in Computer Science at University Paris-Saclay since
2013. He is a member of LMF (Formal Methods Laboratory) and his research focuses on automatic
deduction and model-checking, using techniques based on SMT (Satisfiabilty Modulo Theories)
solvers. He is one of the designers of the SMT solver Alt-Ergo and the model-checker Cubicle. In
collaboration with Nomadic-Labs, he is currently working on the use of formal methods to design
and verify several aspects related to the blockchain Tezos, such as Michelson smart contracts or the
Tenderbake consensus algorithm.

2012 ACM Subject Classification Software and its engineering

Keywords and phrases Blockchain, Tezos, Scalability, Efficiency, Security, Reliability
Digital Object Identifier 10.4230/OASIcs.FAB.2022.2

Category Invited Talk

© Sylvain Conchon;
y
37 licensed under Creative Commons License CC-BY 4.0

5th International Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).
Editors: Sara Tucci-Piergiovanni and Natacha Crooks; Article No. 2; pp. 2:1-2:1

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:sylvain.conchon@universite-paris-saclay.fr
https://doi.org/10.4230/OASIcs.FAB.2022.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Hierarchical Consensus: A Horizontal Scaling
Framework for Blockchains

Alfonso de la Rocha =
Protocol Labs, Madrid, Spain

—— Abstract

In this talk we present the Filecoin Hierarchical Consensus framework, which aims to overcome the

throughput challenges of blockchain consensus by horizontally scaling the network. Unlike traditional
sharding designs, based on partitioning the state of the network, our solution centers on the concept
of subnets —which are organized hierarchically— and can be spawned on-demand to manage new state.
Child subnets are firewalled from parent subnets, have their own specific policies, and run a different
consensus algorithm, increasing the network capacity and enabling new applications. Moreover, they
benefit from the security of parent subnets by periodically checkpointing state. In this paper, we
introduce the overall system architecture, our detailed designs for cross-net transaction handling,
and the open questions that we are still exploring.

Author Bio. Before joining Protocol Labs, Alfonso worked as a blockchain expert at Telefénica
R&D, where he was responsible for the design and development of core technology based on
blockchains, distributed systems, and advanced cryptography. Alfonso’s involvement in research
and development began at Universidad Politécnica de Madrid, where he worked on topics related
to energy efficiency in data centers. His broad R&D experience also includes research into the
compression efficiency of video coding standards at Ericsson Research and projects related to securing
interdomain routing protocols at KTH Royal Institute of Technology in Stockholm. (Bio link)

2012 ACM Subject Classification Computer systems organization — Distributed architectures;
Software and its engineering — Distributed systems organizing principles

Keywords and phrases blockchain, consensus, distributed systems, P2P, scalability, sharding
Digital Object Identifier 10.4230/0OASIcs.FAB.2022.3
Category Invited Talk

Related Version Full Version: https://research.protocol.ai/publications/hierarchical-

consensus-a-horizontal-scaling-framework-for-blockchains/delarocha2022.pdf

© Alfonso de la Rocha;
37 licensed under Creative Commons License CC-BY 4.0

5th International Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).
Editors: Sara Tucci-Piergiovanni and Natacha Crooks; Article No. 3; pp. 3:1-3:1

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:alfonso@protocol.ai
https://research.protocol.ai/authors/alfonso-delarocha/
https://doi.org/10.4230/OASIcs.FAB.2022.3
https://research.protocol.ai/publications/hierarchical- consensus-a-horizontal-scaling-framework-for-blockchains/delarocha2022.pdf
https://research.protocol.ai/publications/hierarchical- consensus-a-horizontal-scaling-framework-for-blockchains/delarocha2022.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Efficient DAG-Based Consensus

Alberto Sonnino &4
Mysten Labs, London, UK

—— Abstract

This talk shows how to build high-performant Byzantine fault-tolerant (BFT) quorum-based con-
sensus cores. The talks starts by challenging the common misconception that the overall communic-
ation complexity of the protocol is the key factor determining performance. We instead argue that
the bottleneck of many state-of-the-art consensus protocols is their sequential use of the machine’s
resources (network, storage, CPU), and that data dissemination is the most resource-intensive task.

In light of the above considerations, the first insight to build performant BFT-based consensus
cores is to separate the task of reliable transaction dissemination from transaction ordering. We
show how to design a new DAG-based mempool protocol, called Narwhal, specialising in high-
throughput reliable dissemination and storage of causal histories of transactions. Narwhal tolerates
an asynchronous network and maintains high performance despite failures. It is designed to easily
scale-out using multiple workers at each validator to concurrently use the machine’s resources
(network, storage, CPU), and demonstrates that there is no foreseeable limit to the throughput we
can achieve. We then present two ways to leverage Narwhal to achieve consensus. We first (i) present
Tusk, a zero-message overhead asynchronous consensus protocol designed to work with Narwhal.
Tusk achieves an unprecedented 160,000 tx/s with about 3 seconds latency in a geo-replicated
environment. We then (ii) show how any partially-synchronous consensus, such as HotStuff (PODC
19), can be composed with Narwhal to drastically improve its performance. HotStuff running over
Narwhal sees its throughput increase from about 2,000 tx/s to over 130,000 tx/s without noticeable
latency increase.

The talk concludes by illustrating how to properly evaluate performance of BFT-based consensus
cores. It highlights the most common mistakes seen in the literature, such as benchmarks with
empty transactions (empty load), performance approximation based on LAN-only benchmarks, and
using a single burst of input transactions. We then show how to analyse benchmark results using
latency-throughput graphs (L-graphs) and SLA-based throughput graphs.

Author Bio. I am a system researcher at Mysten Labs, based in London (UK). I previously was a
research scientist at Facebook (now called Meta) in the blockchain and cryptography team. Before
joining Facebook, I co-founded chainspace.io which built a scalable smart contract platform; the
team was then acquired by Facebook. My research interests are in systems security and privacy
engineering. My main areas of research include distributed systems, blockchains, and privacy
enhancing technologies. I have a special interest in cryptography, and I spend most of my time
designing, implementing and evaluating high-performance distributed systems.

2012 ACM Subject Classification Security and privacy — Distributed systems security
Keywords and phrases Consensus protocol, Byzantine Fault Tolerant

Digital Object Identifier 10.4230/OASIcs.FAB.2022.4

Category Invited Talk

Funding The majority of this work has been done when the authors were part of the Novi team at
Facebook.

Acknowledgements This talk is based on the paper “Narwhal and Tusk: A DAG-based Mempool
and Efficient BFT Consensus” (EuroSys 22) authored by George Danezis, Lefteris Kokoris-Kogias,

Alberto Sonnino, and Alexander Spiegelman.

© Alberto Sonnino;
37 licensed under Creative Commons License CC-BY 4.0

5th International Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).
Editors: Sara Tucci-Piergiovanni and Natacha Crooks; Article No. 4; pp.4:1-4:1

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:alberto@mystenlabs.com
https://mystenlabs.com
https://doi.org/10.4230/OASIcs.FAB.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Fork Accountability in Tenderbake

Antonella Del Pozzo =
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Thibault Rieutord =
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

—— Abstract

This work investigates the Fork Accountability problem in the BFT-Consensus-based Blockchain
context. When there are more attackers than the tolerated ones, BFT-Consensus may fail in delivering
safety. When this occurs, Fork Accountability aims to account for the responsible processes for that
safety violation.

As a case study, we consider Tenderbake when the assumption on the maximum number of
Byzantine validators — participants involved in creating the next block — does not hold anymore.
When a fork occurs, there are more than one-third of Byzantine validators, and we aim to account
for the responsible validators to remove them from the system. In this work, we compare three
different approaches to implementing accountability in the case of a fork. In particular, we show
that in the case of a fork, if we do not modify Tenderbake or we enrich it with a reliable broadcast
communication abstraction, then we can account Byzantine processes only in particular scenarios.
Contrarily, if we change Tenderbake such that the exchanged messages also carry extra information
(which size is proportional to the duration of the current consensus computation), then we can
account for Byzantine processes in all kinds of scenarios; however, at the cost of unbounded message
size and unbounded local memory.

2012 ACM Subject Classification Theory of computation — Distributed algorithms
Keywords and phrases Blockchain, BFT-Consensus, Fork Accountability

Digital Object Identifier 10.4230/0OASIcs.FAB.2022.5

Funding This work was founded by Nomadic Labs.

Acknowledgements The authors warmly thank Licramioara Agtefanoaei, Eugen Zalinescu and Sara

Tucci-Pieriogvanni for all the insightful discussions that improved the quality of this work.

1 Introduction

A Blockchain, as the name suggests, is a chain of blocks. Current Blockchain solutions
are divided into blockchains with probabilistic finality and blockchains with immediate
finality. The most known blockchains, Bitcoin [18] and Ethereum v1.0 [20], are based on the
Proof-of-Work mechanism to decide on the next block to append, and in that case, they
provide probabilistic finality. Once a block appears in the i — th position of the blockchain,
it will stay there with a probability that exponentially grows proportionally to the length of
the chain extending it [14]. In the case of immediate finality, as in the case of Tendermint [6]
and Tenderbake [1], we have that a new BFT Consensus instance is run to decide on the
next block to append. Hence, once a block appears in the ¢ — th position it stays there
forever. However, BFT Consensus works as long as, given a set of n committee members
(or validators) in charge to decide for the next block, at most f =n/3 — 1 are affected by
Byzantine failures (validators showing arbitrary behaviors). As long as this assumption holds,
we guarantee that precisely one block is decided for each consensus instance. Contrarily, if
the assumption is violated, the blockchain can experience forks (loss of safety) or interruption
of block production (loss of liveness).

© Antonella Del Pozzo and Thibault Rieutord;

licensed under Creative Commons License CC-BY 4.0
5th International Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).
Editors: Sara Tucci-Piergiovanni and Natacha Crooks; Article No. 5; pp. 5:1-5:22

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:antonella.delpozzo@cea.fr
mailto:thibault.rieutord@cea.fr
https://doi.org/10.4230/OASIcs.FAB.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2

Fork Accountability in Tenderbake

Nevertheless, it is ambitious to assume that at most f validators are affected by Byzantine
failures in a long-running system. Especially if we think that in the current solutions, we
potentially select a new committee for each new block, and there could be mistakes in this
selection process from time to time. On the contrary, if we do not frequently change the
committee members, then bribery attempts might occur. To this end, since most of the
current selection mechanisms are based on the stake held and bonded by validators, the
bonded stake of misbehaving validators can be slashed in case of provable misbehavior. It
plays as a disincentive to misbehave. In such a context, producing proof of misbehavior is a
key aspect in putting in place actions to disincentivize validators from misbehaving. Once we
have them, such proofs can be used to perform slashing actions. The procedure of deriving
non-reputable proofs of misbehavior is known as accountability [16].

In this work, we consider accountability when more than f processes in a committee are
Byzantine faulty and produce a fork. In this case, we refer to it as the fork accountability
problem. Similarly, as in [12], in case of loss of safety, we aim to identify at least f + 1 of the
byzantine processes responsible for the fork that occurred. We consider as a case of study
Tenderbake [1], a BFT-Consensus protocol for the Tezos Blockchain [15, 3] designed for an
eventually synchronous system in which processes are equipped with bounded buffer and can
experience messages loss before the beginning of the period of synchrony.

Our contribution is the following. First, we organize the different scenarios that can
induce a fork in Tenderbake in a fork taxonomy. Secondly, we design and compare three
accountability approaches: the first considers Tenderbake as it is and investigates in which
scenarios we can achieve accountability; in the second approach, we show how to modify
Tenderbake to enrich messages with the necessary information to achieve accountability but
at the price of unbounded message size; in the third approach, consider an approach in the
middle of the previous two. We add reliable communications (contrarily to the previous two
approaches) and some extra information in the messages. Interestingly, we obtain the same
results as in the first approach. In the rest of the paper, we replace the f standard notation
with T to design the maximum number of tolerated Byzantine processes. We use f; to design
the actual number of Byzantine processes during the consensus instance i, such that f; < n,
where n is the number of processes in the committee.

Related Work. Distributed system research areas are more focused on failure detectors [10, 5]
than accountability. While the failure detector aims to provide each system process with the
identities of faulty processes to help them make progress in the computation, accountability
aims to provide non-repudiable proofs that can be shared with other processes. It plays a
crucial role in putting in place countermeasures against faulty processes in a distributed
system. As pointed out in [2], if processes are accountable for their behavior, then rational
processes have an incentive to behave correctly.

To the best of our knowledge, PeerReview [16] is one of the first works that proposed
a general solution to have accountability in distributed systems. They developed a system
called PeerReview that implements accountability as an add-on feature for any distributed
system. Each process in the system records messages in tamper-evident logs; an auditor
can challenge a process, retrieve its logs, and simulate the original protocol to ensure that
the process correctly behaved. They show that in doing so, it is always possible to identify
at least one Byzantine process (if some process acts in a detectable Byzantine way). The
main issue is that an auditor, to prove that a process is Byzantine, must receive a response
from it. If no response is received, then the auditor cannot determine whether the process is
Byzantine or whether the network has not yet stabilized. It follows that the Byzantine will

A. Del Pozzo and T. Rieutord

only be suspected forever but not proved guilty. This limitation is common to distributed
protocols that are not designed to provide accountability. That is also true in the blockchain
context, we observe that protocols as Tenderbake [1] and Tendermint [17] suffers from the
same problem. Indeed, even though it is possible to observe deviation from the protocols,
it might be necessary to prove the absence of messages to prove a party is guilty of bad
behavior. For example, in a protocol, a message m is triggered on the reception of message
m’ from a quorum of processes. If m is triggered without the reception of sufficiently many
occurrences of m/, then the only way to prove that m is an expression of bad behavior is to
prove that the causally dependent messages m’ do not exist.

Polygraph [12] is the first work that manages to have accountability in the case of
Byzantine behaviors, circumventing this issue by using message justifications. Contrarily to
PeerReview, they do not use an accountability module as an add-on feature for a distributed
protocol; they designed a distributed protocol that provides accountability features by design.
Intuitively, messages sent during the computation carry the necessary information to have
accountability in the case of forks. In case of failures, there is no need to query processes to
obtain proof of their innocence.

Unlike adding extra accountability information in the protocol’s messages, as Polygraph
does, another accountability approach is to add extra information directly into the blockchain
itself. While not done for accountability purposes, Streamlet [9] creates blocks in each round
of computation while providing finality only when particular conditions are met. In other
words, in Streamlet processes add blocks to a blocktree, and the fact that a block is added
to the tree does not mean that such block is final. This allows the blocktree to be formed
of non-finalized concurrent branches keeping track of the evolution of the computation.
For finalization, Streamlet applies a rule to the tree to select the finalized branch. As a
side result, it has been showed that Streamlet provides accountability without the need to
add extra information, either on chain or in the exchanged messages [4]. Indeed, if two
concurrent branches manage to be finalized, then the faulty behavior can be traced back to
conflicting blocks up to the responsible processes. The work in [4] provides a specification
of Accountability for Streamlet. When we compare the information that processes keep
locally, we observe that by default, nodes keep intermediary unconfirmed blocks contrarily to
Tenderbake. This provides an interesting trade-off between the amount of information and
the Accountability capabilities.

In the Proof-of-Stake blockchain context, accountability represents an important goal.
The idea is that users that violate the protocol can be punished by confiscating their deposited
stake (e.g., Casper [7]). Tendermint as well is going in that direction !. However, there is
not yet a solution specification that exhaustively performs fork accountability, encompassing
all scenarios. The work of Sheng et al. [19] aims at modifying existing blockchain BFT
consensus protocols to enforce them with fork accountability. In particular they consider
PBFT [8], HotStuff [21] and Algorand [11]. Interestingly, a very recent work, [13] presents
how to turn any consensus protocol into an accountable one with two additional all-to-all
communication steps. It is important to stress that in the case of Tenderbake, we have to
face an extra difficulty given by the lossy nature of channels, which poses an extra challenge
in collecting proofs in case of misbehavior compared to the existing works.

! The fork accountability was described in the Cosmos blog https://v1.cosmos.network/resources/
whitepaper#fork-accountability as in Tendermint discussions https://github.com/tendermint/
tendermint/issues/4189. In the Tendermint documentation, we can find an analysis of the kind
of Byzantine misbehavior that we can observe with respect to the protocol execution https://docs.
tendermint.com/master/spec/light-client/accountability/#on-chain-attacks.

5:3

FAB 2022

https://v1.cosmos.network/resources/whitepaper#fork-accountability
https://v1.cosmos.network/resources/whitepaper#fork-accountability
https://github.com/tendermint/tendermint/issues/4189
https://github.com/tendermint/tendermint/issues/4189
https://docs.tendermint.com/master/spec/light-client/accountability/#on-chain-attacks
https://docs.tendermint.com/master/spec/light-client/accountability/#on-chain-attacks

5:4

Fork Accountability in Tenderbake

Our contribution. In this document, we adapt the misbehavior analysis in the Tendermint
context to Tenderbake [1], and we derive a fork taxonomy. Furthermore, we establish that
with the current version of Tenderbake, we can only account for Byzantine processes for a
subset of the possible fork typologies. Nevertheless, if we consider an extended version of
Tenderbake enriched with message justifications, we can derive accountability conclusions
with any kind of forks. The price to pay is the requirement of unbounded local memory due
to the unbounded size of messages. This result makes a step forward in understanding the
cost of Fork Accountability depending on the kind of protocol.

Paper organization. The work is organized as follows, in Section 2 we define the system
model as an extension of the system model for Tenderbake [1]. Section 3 recalls how
Tenderbake works, and Section 4 organizes the different kinds of forks in a fork taxonomy and
discusses the difficulty of having accountability in different cases. In Section 5.1 we define the
Fork Accountability problem and we discuss how to solve it in the following cases: if we can
collect all exchanged messages before a fork (Section 5.2); if we consider Tenderbake as it is
(Section 3); if we enrich Tenderbake with message justifications (Section 5.4) and finally; if,
contrarily to Tenderbake in [1], we have reliable communications (Section 5.5). In Section 5.6
we compare and discuss the trade-offs between the accountability and the message costs of
the presented approaches, and finally, in Section 6 we discuss future directions.

2 System model and definitions

In this work, we refer to Tenderbake as defined in [1]. Briefly, Tenderbake solves Dynamic
Repeated Consensus, i.e., it executes consensus instances in sequence to produce an infinite
output of decided values. Each consensus instance is executed by a (possibly) different
committee of n processes. We assume that in the committee of processes running a consensus
instance, T is the maximum number of Byzantine processes, and the number of committee
members is at least n = 3T + 1. For each committee ¢;, we refer to f; as the number of
Byzantine faulty processes present in such a committee. Additionally, for each committee
¢, if f; < T then we say that ¢; is a correct committee, otherwise ¢; is a Byzantine-faulty
committee. Processes have access to digital signing and hashing algorithms. For simplicity,
we assume that cryptography is perfect: digital signatures cannot be forged, and there are
no hash collisions. Each process has an associated public/private key pair for signing, and
processes can be identified by their public keys.

We consider the same assumptions as defined in the system model of Tenderbake [1]. In
particular, we assume a partially synchronous system, in which after some unknown time 7
(the global stabilization time, GST) the system becomes synchronous and channels reliable.
That is, there is a finite unknown bound § on the message transfer delay. Before 7, the
system is asynchronous, and channels are lossy. We assume the presence of a best-effort
broadcast primitive used by processes participating in a consensus instance. Broadcasting
messages is done by invoking the primitive broadcast. This primitive provides the following
guarantees: (i) integrity, meaning that each message is delivered at most once and only if
some process previously broadcasts it; (ii) validity, meaning that after 7 if a correct process
broadcasts a message m at time ¢, then every correct process receives m by time ¢ + 4.
This communication primitive is built on top of point-to-point channels, where exchanged
messages are authenticated. When specified, we consider a reliable broadcast abstraction
built on top of no lossy channels, which provides integrity, validity, and agreement. The

A. Del Pozzo and T. Rieutord

integrity property does not change, and contrarily to the best-effort broadcast, the validity
became, if a correct process broadcasts a message m at time ¢ > 7, then it receives it. The
agreement property guarantees that if a correct process receives m at time t > 7, every
correct process eventually receives it by time ¢ + 4.

In the following, we consider that processes are executing a protocol for solving Dynamic
Repeated Consensus (DRC) as defined in [1]. Informally, given that processes have an
infinite sequence of input values, DRC guarantees the following three properties: (i) progress:
each correct process has an infinite sequence of output values; (ii) validity: for each correct
process, the sequence of output values satisfies a predetermined predicate isValid(); and (iii)
agreement: at any time, for any two sequences of outputs at correct processes, one is the
prefix of the other. In the rest of the document, we use the terms agreement and safety
interchangeably, and the same with the terms progress and termination.

3 Tenderbake and Round-based BFT-Consensus protocols

In this section, we present the main structure of Tenderbake. We start with a general
overview of a round-based BFT-Consensus protocol, and we give more details on the specifics
of Tenderbake, which is at the base of DRC. For a complete description of Tenderbake we
refer to [1]. Round-based BFT-Consensus protocols are executed by a set of n processes,
such that one process per round is selected as proposer. The proposer is in charge to drive
all the other correct processes to agree on the same value at the end of that round. If this is
not the case, a new round begins with a new proposer. To avoid safety violation between one
round and another, processes carry certain information from one round to another. Given
communication delay, we could have that only some correct process decides for a value in a
round 7, which implies that all the other correct processes have to agree on that value in the
subsequent rounds. In most cases such as Tenderbake and Tendermint, safety is preserved
thanks to the locking mechanism.

In particular, Tenderbake works as follows. Each round is divided into three sequential
phases: PROPOSE, PREENDORSE, and ENDORSE. During the PROPOSE phase, only
the unique designated proposer proposes to the committee members a single value b (a
block proposal), either a new value or one inherited from a previous round. During the
PREENDORSE phase, a process preendorses b if b comes from the designated proposer
and if the process is not already locked or if it is locked on an outdated value. During the
ENDORSE phase, if processes receive a preendorsement from a quorum for b, they lock on
it and endorse it. Finally, if processes receive an endorsement from a quorum for b, they
decide b. Let us stress the role of the lock variable. Such variable is set to a value b when
potentially there could be some processes about to decide on it, and it is set to another value
b # b only when a process observes evidence that no correct process might have decided on
b. Each process signs the messages it sends, and each message carries a value b associated
with the round and the phase. In the same spirit, each proposed block b is labelled with the
round and the proposer that proposes it and became decided when there exists a Quorum
Certificate (QC) of messages labelled with the same round r and the phase ENDORSE from
2T + 1 different processes that refers to b. Each block b is composed of a block header and a
block payload. In this context, we are not interested in the content of a block payload. Each
block has the pointer to its (unique) predecessor block in the block header. If there are two
different decided blocks with the same predecessor, we have a fork (safety violation).

5:5

FAB 2022

5:6

Fork Accountability in Tenderbake

4 Fork Taxonomy

This section aims at analyzing how forks can occur when committees are byzantine. The result
is a fork taxonomy whose purpose is twofold. First, it helps in designing an accountability
module: to collect evidence of Byzantine activities and make them accountable for their
actions (if possible). Second, it helps in understanding the impact of Byzantine committees.
Nevertheless, it is also the first step to designing fork recovery strategies, which is out of the
scope of this document.

4.1 Fork Taxonomy

In the following, we define the kind of forks that can occur when Tenderbake runs under the
hypothesis of more than 7' Byzantine failures in some committee ¢;, in particular, T' < f;.
Notice that the same can be applied to other repeated consensus protocols based on the
locking mechanism and rotating coordinator (proposer) paradigm. Let us briefly recall
that each consensus instance proceeds in rounds. Each round has a different proposer, and
specific information is carried by processes from one round to another, such as the locking
variable, to prevent the safety violation. In such context, we distinguish two kinds of forks,
Intra-round forks, when two or more valid blocks? are produced during the same round, and
Cross-round forks, when two or more valid blocks are produced across different rounds due
to the violation of the locking mechanism. Finally, we present the Cross-committee fork,
which occurs when we allow multiple committee selections for the same height (for instance,
to deal with the absence of valid block production). Let us remark that this fork cannot
occur with the current version of Tenderbake, and we discuss it for completeness. Given a
Byzantine committee c;, we define the following kinds of forks that can occur. In particular,
if we have T' < f; < 2T then only safety can be violated (or liveness, but there are no forks),
while if 27 < f; < n, then both safety and validity can be violated.

Intra-Round (IR) fork (T < f; < 2T): the fork is produced during the same round,
i.e., there are at least two valid blocks under the same proposer. All the blocks in this
fork share the same committee, proposer, round, and the same height;

Full Byzantine Intra-Round (FBIR) fork (27T < f; < n): the fork is produced
during the same round without any needed participation from correct committee members.
Notice that we could also have a non-compliant block with the application level in this
case even though it is valid in the sense that it carries a CQ, e.g., a block proposed by a
Byzantine that is not the current proposer for that round. (Validity property violation)
Cross-Round (CR) fork (T < f; < 2T): the fork is produced during different rounds,
i.e., there are at least two valid blocks proposed during two distinct rounds and potentially
distinct proposers. All the blocks in this fork share the same committee and height.
Full Byzantine Cross-Round (FBCR) fork (2T < f; < n): the fork is produced
during different rounds without any needed action from correct committee members.
Notice that in this case, as before, we can have the Validity property violation.

2 A block is said to be valid if it comes with a Quorum Certificate (CQ) of 27 + 1 different endorsement
(votes, or precommit — depending on the protocol vocabulary) messages from the same round and height.

A. Del Pozzo and T. Rieutord

4.1.1 Discussion on accountability

Let us recall that if there is a fork induced under the same committee, then we can have two
scenarios, IR and CR forks. Interestingly, let us consider the first version of Tenderbake [1], in
the case of (FB) IR forks. We can produce accountability proofs for any IR forks, considering
the blocks’ information. However, in the case of CR, the information in the blocks is not
enough. More details are below.
IR-Fork. In this case, the proposer for the round is Byzantine and proposes more than
one block such that correct processes endorse only the first one they are aware of, and
Byzantines endorse both. Any block in the fork comes with a QC of 27"+ 1 endorsements.
It follows that any pair of blocks share at least T' 4 1 endorsements and up to 27". Those
are the accountability proof for at least 7'+ 1 Byzantine committee members. The
proposer is also trivially accountable, and any pair of blocks give the proof of the fork.
FBIR-Fork, in this case, we can apply the same reasoning as for the IR-Fork but
contrarily to it, two blocks can share the totality of endorsements, up to 27°+ 1. In
this case, one of the proposers might be correct (the round proposer if it proposed only
one of the two blocks).
CR-Fork. The fork is composed of blocks produced during different rounds. In this case,
the fork is due to the locking mechanism violation, i.e., there is some correct process that
locks for different valid blocks (instead of at most one), not being aware that a previously
preendorsed and endorsed block was decided (collecting 27" + 1 endorsements). In this
case, accountability is not possible by solely using the block’s information. Indeed, we
have that pairs of valid blocks can share the validators that signed the endorsements in
their QC. For such a reason, Tenderbake has to be modified to gather enough information
to distinguish between correct committee members that endorsed multiple times from
Byzantine committee members. We discuss those modifications in the next sections.
FBCR-Fork, in this case, the lock does not have to be violated. Byzantine processes
can directly produce two valid blocks by endorsing a proposal (from a valid proposer
or not). This case inherits the same limitation as the previous one.

5 Fork Accountability

In this section, we define the Fork Accountability problem. Hereafter, we provide a ped-
agogical solution with all the available information (i.e., messages). Later we move to the
specific case of the restricted information available with Tenderbake to discuss the limitation
of the accountability accuracy and completeness that we can get. We further design modific-
ations to Tenderbake to satisfy Fork Accountability. Finally, we investigate how improved
communication primitives impact Fork Accountability.

5.1 Fork Accountability problem definition

An Algorithm A (Tenderbake in our case) is modeled as a collection of n deterministic
automata, where A(4) specifies the behavior of process i. Computation proceeds in steps of
this automata. In each step (i,m, A) a process i first receives a message m or accepts an
input (internal or external event) and after it changes its states according to A(4). Finally, ¢
sends a message specified by A(4) for the new state to processes or produces an event. Let
E(A); be an execution of A at process ¢ as the sequence of steps executed by i. Finally, let
M(E(A);), for conciseness M;, be the set of messages m received by process ¢ during an
execution of A.

5:7

FAB 2022

5:8

Fork Accountability in Tenderbake

We define the accountability module for Tenderbake in terms of completeness and accuracy
properties. Such module takes as input the messages M; received by a correct process 4
during the execution of Tenderbake. If a fork occurs, it outputs the faulty participants and
proof of their responsibility in producing such a fork.

(Completeness) if a fork occurs then at least 7'+ 1 committee members are accountable

as faulty;

(Accuracy) no correct process is ever accountable as faulty.

The Completeness property is similar to the Accountability property of the Accountable
Byzantine Agreement problem as defined in [12] which merges the Fork Accountability and
the BFT-Consensus problems.

5.2 Fork Accountability with all messages

For pedagogical purposes, in the following, we describe how to perform accountability if a
correct process has access to the whole set of messages exchanged during an execution i of
Tenderbake, M;. More in detail, given the occurrence of a fork, a process can collect all the
messages exchanged between correct processes before that fork occurs, as if they have been
transmitted after 7 by reliable and timely communication abstractions. Let us remember
that the protocol proceeds in rounds and each round is composed of three steps. During
each step, each correct committee member sends at most one message.

In the case of an IR fork, the proposer is necessarily Byzantine. Indeed, for each round,
processes consider only the proposer’s proposed values, which is supposed to propose a
single value. Hence if there is an IR fork, there are not sufficiently many Byzantine processes
to issue a fork by themselves, then the proposer proposed at least two different values.
Moreover, the committee is Byzantine as well because there must have been sufficiently many
Byzantine committee members who endorsed twice on different block proposals. In that case,
given a fork at round r, the Byzantine members are detected by selecting from M; all the
members that sent more than one message labeled with round r and phase PROPOSE (more
than one block was proposed), and that sent more than one message labeled with round r
and phase ENDORSE (Byzantine validators endorsed twice and for different blocks). In the
case of an FBIR fork, it can happen that the selected proposer did not propose a block in
the fork for that round. In such a case, it means that all processes in the QC are byzantine.

Before digging into the CR fork, let us first describe how it may occur, detailing the faulty
flip-flopping scenario 3 which provokes a violation of the locking mechanism and may result
in a fork. Interestingly, with such a fork, the information carried in the QC of the decided
blocks is not enough to perform fork accountability. Let us first make some observations
about Tenderbake:

A correct committee member decides for a block b associated to a round r if it receives a

QC, 2T + 1 endorsements, for it.

Each correct committee member endorses at most once during a round r, while byzantine-

faulty committee member can endorse for an unbounded number of different blocks.

When a correct committee member ¢ endorses for block b at round r, it also locks for

block b at round 7.

3 https://docs.tendermint.com/master/spec/light-client/accountability/#f1lip-flopping

https://docs.tendermint.com/master/spec/light-client/accountability/#flip-flopping

A. Del Pozzo and T. Rieutord

The same correct committee member ¢ re-locks (and endorses) for another block o' if 4

receives a proposal for &’ at round 75 and i already received 2T + 1 preendorsements for

b’ produced at round 1, r < r; < ro (cf. Tenderbake [1]).

This means that, if ¢ decided for b but the committee is Byzantine then it can exist some
round r; > r where there are 27 + 1 — f; correct committee members that preendorse o’
along with f; Byzantine committee members, then, at round ry, i can re-lock on ¥ and
decide for it. Hence, the locking mechanism is violated. In that scenario, blocks b and b’ can
share endorsements signed by the same committee members, either correct or Byzantine. In
that case, looking only at the QC of b and b’ it is not possible to distinguish correct from
Byzantine processes and to perform any fork accountability.

Let us now generalize the flip-flop scenario. Let us consider an execution E(A) of
Tenderbake and let B the sequence of all blocks that obtains a QC during E(A). Let Sg be
the set of T' 4 1 Byzantine committee members and let Sy, be a set of T' correct committee
members that lock and re-lock on all the blocks in B, and finally, let Sy be the set of correct
committee members that never lock.

At round 7y, block b is proposed. Sp and Sy, pre-endorse b. Processes in Sy, contrarily to
processes in Sy, receive the 27 + 1 pre-endorsements for b and then endorse and lock
on it. Processes in Sp can assemble the QC for the decided block b with the 27 + 1
endorsements (7' from processes in Sy, and T + 1 from processes in Sg) and delay its
diffusion for as long as they wish.

At round 741 block by is proposed. Sp and Sy pre-endorse it and processes in Sy, do
not, because already locked. Processes in Sy, receive all the 27 + 1 endorsements for b .
At round 742 block by is proposed again. This time, processes in Sy, can pre-endorse by
along with Sp (because they get the 2T + 1 pre-endorsements for b; during the previous
round). Processes in Sy, receive the 2T + 1 pre-endorsements for b; and then endorse and
lock it. Processes in Sp can assemble a valid block b; with the 2T 4 1 votes (T from
processes in Sy, and T + 1 from processes in Sg) and delay its diffusion for as long as
they wish.

In this case, in M; there might not be any committee member that sent more than one
message during the same step. A correct committee member does flip-flopping from b to by
when it receives enough pre-endorsements for b; from a previous round (still greater than the
round in which it locked on b). On the contrary, a Byzantine committee member can flip-flop
without needing those messages that justify its action. Thus, in order to account Byzantine
committee members processes must look for unjustified flip-flopping, i.e., a committee member
that endorsed a block b at round r; and preendorsed b; at round 742 without the existence
of 2T + 1 preendorsements for b; at a round 71, with r, < rg41 < rg4o. In the described
scenario, the withheld QC for b at round 7, (that contains the endorsement messages labeled
with ry issued by processes in Sg) plus the preendorsement for block by at round ry41 issued
by processes in Sy constitute a proof of processes in Sy performing a faulty flip-flop (as
we discuss, a legal flip-flop needs at least three rounds). The origin of the faulty flip-flop
stands in the lock violation of Byzantine processes. However, it might not always be so
direct to detect it. In the next Sections, we will discuss how to generalize this approach such
that it is always possible to find a proof. This analysis would be possible combining the
QCs of the decided blocks and M; if M; contains all messages ever exchanged during the
protocol execution. Unfortunately, this is not possible with Tenderbake given the message
lossy nature of the communication channels before 7, the reason why after that, we discuss
how information can be added to the QC to perform CR Fork Accountability.

5:9

FAB 2022

5:10

Fork Accountability in Tenderbake

5.3 Partial Fork Accountability with Tenderbake

In the case of Byzantine committee, Tenderbake can incur (FB)IR and (FB)CR forks. In the
first case, as we already discussed, accountability is straightforward. The information that
we are interested in a block b; is the proposer and the quorum certificate (CQ) signatures
that come with the round in which they were issued. We use the following notation:
sign(block) = (proposer, {membery, ..., memberari1},round). Concerning forks, we use the
following terminology: we say that two? blocks b;, and b; is a fork if they are two blocks of
the blockchain with the same parent.

In case of an invalid block in an FBIR or FBCR fork, that is, with a round that does
not correspond with the block proposer, then the proposer and all committee members that
endorsed the block are byzantine processes, that is, sign(b;).members and sign(b;).proposer.

In the case of an IR fork, each correct committee member sends only one message per
phase in each round. It follows that, for each two pairs of blocks b;, b; in a fork, the faulty
processes results from the intersection of sign(b;).members and sign(b;).members. Thus the
proposer and at least f committee members are accountable for the fork.

In the case of a CR fork there are no blocks in the same fork sharing the same round
and the intersection of sign(b;).members and sign(b;).members is different than (). However,
this gives us no clue about the faulty processes. Let us consider the scenario described in
the previous section concerning the faulty flip-flopping. This scenario originates in blocks
having QC sharing the same 27" 4 1 signatures. We cannot distinguish among them which
signatures belong to correct committee members (if any) and which to Byzantine ones.

To discern correct from Byzantine, we need to combine the information carried by blocks
with the exchanged messages. Indeed, a correct committee member does flip-flop from b;
to b; when it receives enough pre-endorsements for b; from a previous round (still greater
than the round in which it locked on b;). In contrast, a Byzantine committee member
flip-flops without having those messages that justify its action. Moreover, let us recall that
no pre-endorsement messages are recorded in the block. Thus those messages need to be kept
locally to perform accountability in case of a fork. Therefore, ideally, all messages exchanged
during the computation need to be saved. However, committee members do not rely on
reliable communication channels, and not all messages are diffused reliably before 7.

In the following, we describe different approaches to provide the accountability module
with the necessary information.

5.4 Full Fork Accountability with piggyback Tenderbake

The idea of the solution is relatively simple. Processes produce justifications when locked on
a value b and pre-endorse or endorse a different value " # b; for shortness in the following,
we say that processes do not follow their lock. Notice that being locked on a value b is a
local event. However, in the case of a fork involving b we might observe an endorsement
for b in a QC. Indeed, a faulty flip-flopping occurs after some processes ignored their lock
and preendorsed another value incorrectly. The issue is determining which processes ignored
their lock incorrectly from those who followed the protocol. To distinguish between the two,
we propose to provide justifications for these preendorsements votes.

When a process is locked but preendorses another value that was later proposed, if correct,
it furnishes a quorum of preendorsement messages for the given value. It forms a justification
when a process is not following a lock value. All these justification sets are kept in memory

1 We consider for simplicity the case in which two blocks compose forks, but it can be easily generalized.

A. Del Pozzo and T. Rieutord

and are added to preendorsement and endorsement messages. That is if a process p is locked
at round ¢ and does not follow its lock at round 7 4+ k, then the justifications set of the
preendorsement (endorsement) message contains the first preendorsement quorum certificate
for a round between i+ 1 and i+ k — 1. Given a fork composed of two blocks, the justification
information and the two blocks’ endorsement messages should make it possible to account
for at least f + 1 byzantine processes. However, this information alone is not enough when
the processes that signed the second block were not directly involved in the flip-flopping.
Thus, the justifications must also contain transitive justifications. More into details, if p is
induced to flip-flop thanks to the messages from ¢, then p re-transmits also the justifications
for the message from g. Appendix A provides a detailed explanation of the intuition behind
our solution. In particular, Appendix A.1 describes a first approach of piggybacking, and
Appendix A.2 details which case the previous approach does not work and introduces the
transitive justifications.

5.4.1 Description of the modification to Tenderbake

Figures 1-2 detail the Tenderbake specification as described in [1] plus the modifications
for the piggybacking (in red in the pseudo-code). It is out of the scope of this work
to explain the Tenderbake functioning. In the following, we provide details useful for
the fork accountability. Nevertheless, an interested reader can find more details in [1].
Processes have an extra variable justification,, a list of triples of the following type
{LR : int, LV : prop,peQC : set of messages}. The purpose is to keep for each Locked
Value LV and Locked Round LR at process p the justification peCQ that allows the flip-
flopping. peCQ is compounded of 2T + 1 pre-endorsement messages for the new locked
value received after round LR and before the new locked round. Moreover, pre-endorsement
and endorsement messages have an extra field justify, that is composed of a list of peQC
extracted from the third element of the triples in the list justification,. Figure 3 describes
the Fork Accountability module that given two decided blocks, returns the set of faulty
processes accountable for that. The proof of their accountability is given by the blocks
themselves. As auxiliary functions we define round(pe@QC) and value(pe@QC') that return
respectively round and the value associated to the peQC provided as input.

This solution pays the cost of coping with a lossy channel. This cost is in terms of space
complexity as message size becomes unbounded with the justifications. This set increases
each time a lock occurs during the execution, which can, unfortunately, happen an infinite
number of times (it depends on the Byzantine strategy, they can make processes flip-flop
infinitely many times).

For detection, we have that when two distinct blocks are produced, processes can compare
the endorsements quorums to detect at least f 4 1 byzantine processes. It is done as follows:
Let b1 be the block with the smallest associated round, and let by be the one associated with
the greatest round. The endorsement of by, i.e., sign(by).members, are then compared with a
refinement of the endorsement of b, i.e., sign(bs).members. The refinement consists of taking
endorsements and replacing them with the justification corresponding to the smallest round
greater than sign(by).round, if any.

In the particular case of an FBCR fork, we can have the case in which no correct
committee members are involved in the fork and thus in any information carried by each
block. In this case, indeed, each endorsement comes with a justification produced by other
Byzantine committee members. The detection is then performed in the same way as for CR
fork, looking at the first justification in by inconsistent with the CQ information of b;.

5:11

FAB 2022

5:12 Fork Accountability in Tenderbake

1 war justification, = empty list

2 proc handleConsensusMessage(msg)

3 let type,(¢,, h, payload) = msg

4 ifl=4, ANh=hp AN(r=7pVr=rp+1) then
5 if isValidMessage(msg)

6 messages, := messages, U {msg}

7 updateEndorsable(msg)

8 else if ¢ > /, then

9 pullChain

10 proc updateEndorsable(msg)
11 if |preendorsements()| > 2f + 1 then

12 endorsableValue, := proposedValue()

13 endorsableRoundy, = rp

14 preendorsement@C, := preendorsements()
15 else if type(msg) # Preendorse then

16 (eR, eV,pQC) := endorsableVars(msg)

17 if eR > endorsableRound, then

18 endorsableValue, := eV

19 endorsableRound, := eR

20 preendorsementQC, := pQC

21 proc endorsableVars(msg)

22 let pQC = match msg with

23 | Propose,, (£p, 7p, hp, (eQC, hu, eR, pQC)) — pQC
24 | Preendorsements(4y, rp, hp, pQC) — pQC

25 return (roundQC(pQC),valueQC(pQC), pQC)

26 proc filterMessages|()
27 messages,, := messages, \ {type(, r, h, payload) € messages, | r # p}

Figure 1 Message management for process p during single-shot Tenderbake. In red the new lines
added with respect to Tenderbake [1].

5.4.2 Correctness proofs

» Lemma 1. Let by and by two decided blocks, if by and by are in the same fork, then
detection(by, ba) returns at least T + 1 processes accountable as faulty.

Proof. First, consider that b; and by are two blocks in an Intra-round fork, i.e., those blocks
are decided at the same round. In this case Algorithm in Figure 3 returns the intersection of
the endorsement quorums (line 64). Since 27 4 1 distinct signatures compose each QC and
correct processes sing just once per round, then the intersection of two quorums contains at
least T+ 1 distinct processes.

Now, let us consider that we have a Cross-round fork composed of two blocks decided
during different rounds. Let us assume, w.l.o.g., that b; is the block associated with the
smallest round. In this case Algorithm in Figure 3 returns as accountable the intersection of
the quorum of endorsement messages from b; and the refinement (line 65) of b relatively to
the round of by (line 60). All we need to show is that: the refinement also returns a quorum
of processes; hence, the intersection with the QC of b; contains at least T+ 1 processes.

A. Del Pozzo and T. Rieutord

28 PROPOSE phase:
29 if proposer(¢,,7,) = p then

30 u := if endorsableValue, # L then endorsableValuey
31 else newValue()

32 payload := (headCertificates,, u,

33 endorsable Round,,, preendorsementQC',)
34 broadcast Propose, (¢p, 1p, hp, payload)

35 handleEvents()

36 PREENDORSE phase:
37 if 3¢, eQC, u, eR, pQC :

38 Propose, (£y, 7p, hp, (eQC, u, eR, pQC)) € messages, N

39 (lockedValue, = u V lockedRound, < eR <) then

40 if (LR, LV,,0) in justification, then

41 replace (LR, LV, 0) in justification, by (LRy, LV,, pQC')
42 broadcast Preendorse, (¢p, 7p, hp, hash(u), justification,.peQC)
43 else if lockedValue, # L then

44 broadcast Preendorsements (¢, 7, hyp, preendorsementQC,,)

45 handleEvents()

46 ENDORSE phase:
47 if |preendorsements()| > 2f + 1 then
43 if 3(LRy, LV,,0) in justification, then

49 replace (LR, LV,,0) in justification, by (LR,, LV,, preendorsements())
50 u := proposedValue()

51 lockedValue, := u; lockedRound, := 7y

52 add (lockedRound,,, locked Value,, D) to justification,

53 broadcast Endorse, ¢y, 7p, by, hash(w), justification,.peQC')

54 broadcast preendorsementQC,,

55 handleEvents()
56 advance(getDecision())

Figure 2 Piggyback version of Tenderbake for process p. In red, the new lines added with respect
to Tenderbake [1].

Hence, let us show that the refinement procedure returns a quorum (line 65). The
procedure starts with a quorum of endorsements and replaces processes with their justification
(as long as the justification is associated with a greater round than b;). Hence, we replace
a process in a quorum with a quorum of processes forming the justification. This ensures
that we still possess a quorum after each modification and, therefore, that at the end,
the refinement procedure returns a quorum. Consequently, the intersection of the quorum
returned by the refinement procedure with the quorum of endorsement messages returns at
least T+ 1 distinct processes. |

In the next Lemma we show that the returned processes by Algorithm in Figure 3 are
never correct, hence those are Byzantine.

» Lemma 2. Given two blocks by and by being a fork, then detection(by, by) never returns a
correct process.

5:13

FAB 2022

5:14

Fork Accountability in Tenderbake

58 proc detection (b, b2)
59 if sign(b1).round < sign(b2).round

60 return sign(b;).members N refinement(sign(b2).members, sign(b1).round)
61 else if sign(bz).round < sign(by).round

62 return sign(bz).members N refinement(sign(b1).members, sign(bz).round)
63 else

64 return sign(b;).members N sign(b2).members

65 proc refinement(QC, round)

66 if Je € QC, Jq € justification(e), round(q) > round

67 return q such that de € QC, q € justification(e), round(q) > roundA

68 Ve € QC,Vq' € justification(e), round(g’) > round(q) V round(q’) < round
69 else return QC

Figure 3 Fork Accountability module at process p.

The intuition of the following proof in the case of CR forks is the following. Let us observe
that the refinement procedure takes as input the QC associated to by and r; the decision
round of by. It returns the smallest justification present in messages in by QC associated
with a round r > r; if any, and returns QC associated with by otherwise. Intuitively, a
process that endorsed a block cannot preendorse or endorse for later blocks without having a
valid justification attached to its message (which differentiates a flip-flopping from a faulty
flip-flopping). Therefore, such a process should never be returned by the refinement procedure.
Indeed, a correct process being always justified cannot be in the smallest justification as it
itself has a smaller justification attached to itself.

Proof. Let us also start with the more straightforward case of an Intra-round fork. In this
case, Algorithm in Figure 3 returns the intersection of two endorsement quorums for the
same round. It implies that we return processes that sent two distinct endorsement messages
for the same round, necessarily a byzantine failure. A single endorsement message can be
sent per round.

Now let us look at the case in which we have a Cross-round fork. Let us assume, w.l.o.g.,
that by is the block associated with the smallest round. Assume now by contradiction that a
correct process p is returned in the intersection. That is p endorsed for b; and was returned
in the refinement of by relatively to the round of b;.

Since p endorsed for by it must have added a justification item (that can be empty) for
the round and value of by in its justification set (line 52). From the protocol, we see that p
can only send preendorsement or endorsement messages that are justified (with a non-empty
set) by a quorum that does not include itself and is associated with a round greater 7.
Indeed, if p sends a prendorsements, then either it already has a justification or it adds the
preendorsement quorum from the proposer that is associated with a round greater than
r1 (line 41). Similarly, if p sends an endorsement message then it adds the set of received
preendorsements justifying its vote to its justification set if not already justified (line 49).
Therefore, p cannot be returned by the refinement procedure of by relatively to the round of
b1 as it always has a justification attached to it — A contradiction. |

Combining the two preceding Lemmas we obtain the following Theorem about the
completeness and accuracy of our accountability detector:

A. Del Pozzo and T. Rieutord

Table 1 Comparison of the different presented approaches.

Approach | TR Fork | FBIR Fork | CR Fork | FBCR Fork | LY@ message

space complexity
Tederbake Yes Yes No No No extra costs
Tendf.arbake Yes Yes Yes Yes Unbounded msg space
fully just. and local memory
Tenderbake Yes Yes No No Unbounded
over rb local memory

» Theorem 3. For each fork at least T 4+ 1 committee members are accountable as faulty
and no correct committee member is ever accountable as faulty.

As we discussed, the solution is quite communication-intensive. So far, it does not seem
that it can be much improved without revisiting Tenderbake more deeply. A possible idea
was to keep these justifications information locally at each process. The problem is that there
is a need for synchronous assumptions to provide accountability for forks. Indeed, when the
fork is observed, then processes must be able to provide their justification within a known
delay to be ensured not to be wrongly suspected. In that case, since 7 is unknown, it is
not possible to distinguish a slow correct process from a byzantine process withholding its
non-adequate justifications.

5.5 Accountability with Tenderbake over reliable broadcast

The previous approach suffers from unbounded size messages, which is necessary if we want
to perform accurate and complete accuracy despite the unreliability of the communication
mean. In this section, we investigate the advantages of leveraging reliable communications.
Indeed, in this context, there is no need for messages to carry unbounded justifications. We
consider light piggyback justification with parameterizable depth d. Committee members
justify the last d pre-endorsement issued after the d previous endorsement (if any). The
justification is a set of 27 + 1 pre-endorsement that allowed them to flip-flopping. Those
justifications are further carried by the peQC' associated with each endorsement message.

In this case, we can detect Byzantine processes in a few cases:

IR-Fork and FBIR-Fork: always.

CR-fork: only if a process endorses for a value at round r for a block b; and pre-endorses

for a value by # by at round r + d.

If d = oo then we boil down in the previous approach.

The main limitation of this approach is that even though we eventually receive all
messages observed by correct processes, in case of missing justification for a flip-flopping, we
do not know if those messages will arrive (exonerating the baker) or they do not exist at all
(incriminating the baker).

5.6 Discussion

Table 1 depicts the different Fork Accountability approaches. The first four columns refer to
the four kinds of forks that can occur with Tenderbake when more than 7" Byzantine are
present in the committee: Intra-Round Forks; Fully Byzantine Intra-Round Forks; Cross-
Round Forks; and Fully Byzantine Cross-Rond Forks. For each of those fork kinds, we

5:15

FAB 2022

5:16

Fork Accountability in Tenderbake

state if we are able to have Fork Accountability with the given approach. Finally, the
last column presents the accountability solution’s complexity to the Tenderbake complexity.
Before digging into that, let us recall that if we have less than T Byzantine committee
members, then we know that, after 7, the consensus instance terminates in f 4+ 2 rounds [1].
Contrarily, termination property can be violated, Byzantine committee members can let
the consensus run endlessly or end it with a fork at their will (violating the agreement
property). Thus, there is no upper bound on the consensus instance duration. Indeed, the
number of times a correct committee member can perform a flip-flopping is unbounded,
which explains why Tenderbake with full justifications incurs the cost of unbounded message
space and, consequently, unbounded local memory. However, if we consider that messages do
not carry the total amount of justifications (thus, message space complexity is bounded),
we still have that the total amount of messages is unbounded (due to the computation
duration unbounded). It follows that Tenderbake with weak justifications, even though it
gets rid of the unbounded message space, it still suffers the extra cost of the unbounded
local memory. Unsurprisingly, reducing the message space complexity comes at the price
of reducing the accountability capability. As a result, we obtain the same results as with
Tenderbake unmodified, which is, on the light side, free of any extra costs. To complete this
discussion, let us consider the Streamlet [9] case. As shown in [4], with few modifications
to the protocol (in the way blocks are decided, with no impact on the message and space
complexity), we obtain an Accountable protocol. In a nutshell, differently than Tenderbake,
processes when observing that a new proposed block b collects a quorum of pre-endorsement
messages, rather than locally locking on it, they add such block to their local structure (a
block-tree rather than a chain). In that case, we say that b is notarized, which is different
than decided. After, new blocks are proposed. When b is followed by other notarized blocks
such that it meets a particular condition, b is decided. Intuitively, in Streamlet the lock
mechanism is explicit on chain, so there is no need to add extra information to the blocks
as in Tenderbake, and that would also be true if with lossy channels before 7 (Indeed,
after 7 correct processes would successfully synchronize with other processes being able to
retreive the missed notarized and decided blocks, yet losing the messages exchanged to get
to the notarization of those blocks). For such a reason is, Streamelet we can perform Fork
Accountability with no extra costs because those costs are already paid by the protocol as it
is in terms of space occupied by the blockchain data structure.

6 Conclusion and Future Work

This work lays the groundwork for Fork Accountability solutions for BFT-like consensus
algorithms, as Tenderbake. Even though the proposed solutions are either not fully solving
the Fork Accountability problem or are impractical, we believe that is an essential step toward
better understanding the Accountability possibilities and impossibilities in the Blockchain
context. In future work, we aim to explore how to increase Accountability capabilities
practically. A possible direction to explore is the redefinition of the BET-Consensus algorithms
with bounded buffers in the accountability lens.

—— References

1 Lacramioara Asgtefanoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieutord, Sara
Tucci-Piergiovanni, and Eugen Zalinescu. Tenderbake - A Solution to Dynamic Repeated
Consensus for Blockchains. In 4th International Symposium on Foundations and Applications
of Blockchain 2021 (FAB 2021), pages 1:1-1:23, 2021.

A. Del Pozzo and T. Rieutord 5:17

2 Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe Martin, and
Carl Porth. Bar fault tolerance for cooperative services. In Proceedings of the twentieth ACM
symposium on Operating systems principles, pages 45-58, 2005.

3 Victor Allombert, Mathias Bourgoin, and Julien Tesson. Introduction to the Tezos Blockchain.
In Proc. High Performance Computing and Simulation, 2019.

4 Emmanuelle Anceaume, Antonella Del Pozzo, Thibault Rieutord, and Sara Tucci-Piergiovanni.
On Finality in Blockchains. In 25th International Conference on Principles of Distributed
Systems (OPODIS 2021), pages 6:1-6:19, 2022.

5 Roberto Baldoni, Jean-Michel Hélary, and Sara Tucci Piergiovanni. A methodology to design
arbitrary failure detectors for distributed protocols. J. Syst. Archit., 54(7):619-637, 2008.

6 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. CoRR,
2018.

7 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR, 2017.

8 Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive recovery.
ACM Trans. Comput. Syst., 2002.

9 Benjamin Y Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains, 2020.

10 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM (JACM), 43(2):225-267, 1996.

11 Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci., 2019.

12 Pierre Civit, Seth Gilbert, and Vincent Gramoli. Polygraph: Accountable byzantine agreement.
In IEEE j1st International Conference on Distributed Computing Systems (ICDCS), 2021.

13 Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic. As easy
as abc: Optimal (a) ccountable (b) yzantine (c) onsensus is easy! In 36th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2022), 2022.

14 J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Proc. EUROCRYPT International Conference, 2015.

15 L.M. Goodman. Tezos — a self-amending crypto-ledger, 2014.

16 Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview: practical accountability
for distributed systems. In Thomas C. Bressoud and M. Frans Kaashoek, editors, Proceedings
of the 21st ACM Symposium on Operating Systems Principles (SOSP 2007), 2007.

17 Jae Kwon and Ethan Buchman. Tendermint.

18 S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.

19 Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kannan, and Pramod Viswanath. Bft
protocol forensics. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1722-1743, 2021.

20 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1-32, 2014.

21 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. HotStuff:
BFT consensus with linearity and responsiveness. In Proc. ACM Symposium on Principles of
Distributed Computing, 2019.

A Appendix — CR fork Scenarios

We describe two detailed scenarios dealing with the (faulty) flip-flopping case to justify the
need to modify Tenderbake with justifications and their re-transmissions.

A.1 Scenario 1

In this first scenario, we consider a system composed of 7 processes, po, - - ., Dg, among which
P4, D5 and pg are byzantine. The execution comprises three rounds of communication and
leads to a fork with the accountability of faulty processes.

FAB 2022

5:18

Fork Accountability in Tenderbake

Figure 4 depicts the first scenario. In the first round, py proposes A (p A message at
Round 1, phase p in Figure 4) and all processes pre-endorse A (pe A message at Round 1,
phase pe in Figure 4) but only processes p; and ps endorse A among the correct processes
(e A message at Round 1 represented by the lock image, phase e in Figure 4). As byzantine
processes also endorse A, the block A is created with a Quorum Certificate composed by
the endorsement messages from pi, p2, psa, p5 and pg, but all such endorsements are received
only by Byzantine processes (down-going black arrows Round 1, phase e in Figure 4) that
withhold the block just created.

In the second round, p3, which did not see the block A created, proposes a new block B.
po and p3 pre-endorse it as they are not locked on A, along with byzantine processes that
do not follow their lock. This set of pre-endorsements (that fulfills a quorum) is received
by po and ps. The rounds end without receiving enough endorsements to form a quorum
certificate.

In the last round, p4 proposes B. This time B (being not new) has a valid round associated
greater than 1, the round in which processes locked for A. Hence, ps can pre-endorse it along
with po (which is not locked) and all byzantine processes. This leads to a pre-endorsement
quorum certificate that is received by p; and p;. The round terminates by the endorsements
of p; and py along with the three endorsements for B by the byzantine processes, p4, ps, s,
the same quorum certificate of block A. It leads to a fork once both blocks are diffused.

Scenario 1
-
Round 1 Round 2 Round 3
P pe e P pe | e P pe e
©
PA peA | pEBl a peB

L1

per) B lal |
o ‘

ST Y
o ‘ Quorum Certificate (QC) formed by 5 processes

pB | peB
ped 1 > ﬁ (re)Lock (if correct) and sending of
| the endorsement message

A 4 ﬂ

pe A l peB pB | peB ﬂ 1 Qc reception for that round and

I " phase

= ﬂ peB peB ﬂ

peh | 1 N Block decided
6 pen ﬂl peB res |

Figure 4 Scenario 1. We refer to the propose, pre-endorse and endorse phase with p, pe and e
respectively. We refer to the proposal (pre-endorse) message for a value X with p (pe) X notation.

In this scenario, we can see that the byzantine misbehavior that led to the fork is that
byzantine processes first endorsed for A at round 1 and pre-endorsed B just after, in round 2.
It is highlighted in Figure 5. Indeed, a correct process locked on block A during round 1
would refuse to pre-endorse B in a later round 1 + k, &k > 0, unless it observes a quorum
of pre-endorsement for B in a round 1 < r < 1 4+ k. In this particular case, any correct
process would never obtain a valid pre-endorsement quorum for B before round 2 to justify
the pre-endorsement for B while locked on A.

A. Del Pozzo and T. Rieutord

Scenario 1

-
Round 1 Round 2 Round 3 E

P pe e P pe e |p pe e
‘ |
©
PA pea | peslﬂ lpeB
| -
(1] |
|
| 4@ 1al |
L 24) |
nex\l‘ﬂ 14 pes] al
I "
9) ‘ Quorum Certificate (QC) formed by 5 processes
8 8
peh & | - > ﬂ (re)Lock (if correct) and sending of
| the endorsement message
A 4
pe’A | ﬂl peB pe | peB ﬂ N l Qc reception for that round and
I T phase
| |
©
| peA >ﬂl ped pet ﬂ . @ Block decided
[[
© ben ﬂl peB e |
T 1 —

Figure 5 Example of how to detect Byzantine processes given a complete knowledge on the
exchanged messages. In that case, p4, ps and pg performs a faulty flip-flopping.

We consider a slightly modified version of Tenderbake. Processes produce justifications
when locked on a value v and pre-endorse (endorse) a different value v’ # v. That is, justifying
their action by adding the pre-endorsement quorum certificate (pe@QC') for v' when sending
a pre-endorsement message in the flip-flopping context. Note that endorsements carry all
justifications issued during all rounds since the first lock round. Since those justifications
chain are carried by endorsement messages then we collect them in decided blocks, that is,

from processes which endorsed the block itself, p1, p2, ps, p5s and pg in this particular Scenario.

Hence in this case, given the blocks A and B we collect information from correct processes
p1 and po (Byzantine processes can omit justifications in their endorsement message).
block A decided at round 1: such block comes with eQC, a quorum certificate of
endorsements from p1, pa, ps, p5 and pg (first red rectangle in Figure 6), and none of them
has justifications .
block B decided at round 3: such block comes with a QC' of endorsements from p1, ps2, ps, ps
and pg (fourth red rectangle in Figure 6) and with the following justifications:
p2 justifies its endorsement with peQC' for value B at rounds 2 (second red rectangle
in Figure 6) and 3 (third red rectangle in Figure 6). Indeed, ps witnessed both the
endorsement QC' for block B in round 2 and round 3.
In this scenario, byzantine processes can be detected as their endorsement for A in round 1
(available from eQC for A round 1 in block A) implies that they should have set a lock for
A at round 1. This, along with the pre-endorsement by the byzantine processes in round 2

(available from pe@C from B from round 2 and 3), implies a violation of the lock mechanism.

Hence, we can detect T'+ 1 byzantine processes by simply gathering information available to
the processes in the normal execution of Tenderbake once the blocks originating a fork are
collected.

A.2 Scenario 2

In the following scenario, we first show that the previous scenario’s accountability approach
results in the violation of completeness and accuracy properties. We further show how to
modify the accountability approach such that we are still able to detect and account for
T + 1 Byzantine processes once a fork occurs.

5:19

FAB 2022

5:20 Fork Accountability in Tenderbake

Scenario 1
Round 1
P pe e
(0
pA peA |
venll B
venfl 1|a
(3 Quorum Certificate (QC) formed by 5 processes
A pe | peB
£ = — > a (re)Lock (if correct) and sending of
7 ™ the endorsement message
N
o 1 a
pelA 1 peB | \ |pB | PeB N 1 QC reception for that round and
© \ a peB peB
peA 1 | | N Block decided
N 4
]
© pen ﬂl ves | ves ||

Figure 6 Justification gathered in decided block depicted using red rectangles along with highlight
of detected byzantine process misbehaviour in light red.

The second scenario goes as follows and is depicted in Figure 7. During the first two
rounds, we have the same execution as in Scenario 1. At the end of round 1, a block A is
created with a Quorum Certificate composed of the endorsement messages from p1, p2, p4, D5,
and pg, but all such endorsements are received only by Byzantine processes that withhold the
block just created. In the second round, ps, which did not see the block A created, proposes
a new block B. py and p3 pre-endorse it as they are not locked on A, along with byzantine
processes that do not follow their lock. This set of pre-endorsements (that fulfills a quorum)
is received by pg and ps. The rounds end without receiving enough endorsements to form a
quorum certificate.

Here, in the third and last round, we build the difference with the first scenario. py
proposes B as in Scenario 1. B has a valid round associated that is greater than 1 the round
in which processes locked for A. Hence, ps can pre-endorse it along with py (which is not
locked at all) and all byzantine processes. This leads to a pre-endorsement quorum certificate
that is received by p; and ps this time (in the first scenario it was p2). The round terminates
by the endorsements of p; and p3 along with the three endorsements for B by the byzantine
processes, pq4, Ps, Pe, & different quorum certificate of block A. It leads to a fork once both
blocks are diffused.

If we use the same approach for the justifications as in Scenario 1, then we collect the
information highlighted in Figure 8 and we might accuse ps of being Byzantine. Indeed, we
get his endorsement at round 1 for A and his pre-endorsement for B at round 3, but not the
justification for such pre-endorsement, that might look like a faulty flip-flopping. The same
reasoning can be applied for the Byzantine processes p4, ps, ps-

To solve this issue, we further modify Tenderbake. Processes produce justifications when
locked on a value v and pre-endorse (endorse) a different value v’ # v. This is done by adding
the pre-endorsement quorum certificate (peQC) for v' when sending a pre-endorsement
message in the flip-flopping context. Moreover, a process re-transmits all peQQC' collected
as justifications carried by pre-endorsement messages to other processes. That is, when
sending a pre-endorsement message, it sends all justifications gathered so far. In this case,

A. Del Pozzo and T. Rieutord 5:21

Scenario 2

Round 1 Round 2 Round 3 .g

p‘peeppeleppee
0 PA peA veﬂl\ﬂ pet
i - ! »

o

enl B ‘ 1all |
(2]

P“l‘ﬂ l\ﬂ peB

Quorum Certificate (QC) formed by 5 processes

‘ B | peB
L P } l f l a8 (relLock (if correct) and sending of
’ the endorsement message
i & a
pe A l peB | pB |peB 1 QC reception for that round and
" » phase
pe A ﬂl ped il | @ Block decided
@ peA ‘ﬂl peB ‘peﬂ‘ﬁ
}

Figure 7 Scenario 2 representation. In particular we refer to the propose, pre-endorse and endorse
phase with p, pe and e respectively. Moreover, when we refer to the proposal (pre-endorse) message

for a value X with p (pe) X notation.

Scenario 2

-
Round 1 Round 2 Round3 g
P pe e P

©|©®

Quorum Certificate (QC) formed by 5 processes

(3]
B | ped ﬂ
peh il l l ﬁ (re)Lock (if correct) and sending of
the endorsement message
(4] a
| peA 1 peB. pB | peB l QC reception for that round and
phase
pe A = 1 e o L . @ Block decided
@ pen ﬂl peB pesd |ﬁ

Figure 8 p4, ps and pe performs a faulty flip-flopping, but their behaviour is indistinguishable

from the p2 given the subset of messages observed.

FAB 2022

5:22 Fork Accountability in Tenderbake

any endorsement message carries all justifications issued and collected following the same
logic applied for the pre-endorsement messages justifications. Since those justifications chain
are carried by endorsement messages then we collect them in decided blocks, that is, from
processes which endorsed the block itself, p1,ps, ps, ps and pg in this particular Scenario.
Hence in this case, given the blocks A and B we collect information from correct processes
p1 and p3 (Byzantine processes can omit justifications in their endorsement message).
= block A decided at round 1: such block comes with eQC' from p1, ps, ps, ps and pg (first
red rectangle in Figure 6), and none of them has justifications.
= block B decided at round 3: such block comes with a eQQC from pq,ps3, ps, p5 and pg
(fourth red rectangle in Figure 6) and with the following justifications:
- p1 and p3 justifies directly its endorsement with pe@QC' for value B at rounds 3 (third
red rectangle in Figure 9). Indeed, p; and p3 witnessed eQC' for block B in round 3.
- p1 and ps3 carries the justification from ps, that is the pre-endorsement quorum
certificate, pe@QC, for value B at round 2 (second red rectangle in Figure 9). Indeed, po
witnessed the endorsement QC for block B in round 2 and is part of the pre-endorsement
quorum certificate for tound 3.
In this way, we have enough information to distinguish and account for the fork T+ 1
Byzantine processes in the same way we did in the Scenario 1 context.

Scenario 2
Round 1
P pe e
pA | peA ‘
(1 NI
pen]l B
sen| B 1
9 ‘ Quorum Certificate (QC) formed by 5 processes
oe | pes
- et —H—t—= ﬂ (re)Lock (if correct) and sending of
. i the endorsement message
(4] a \
pelh 1 peB. N l Qc reception for that round and
] y phase
| | |a |
8
;;“E A l " | @ Block decided
— X y
4
16 7] pes || -

Figure 9 Justification gathered in decided block depicted using red rectangles along with highlight
of detected byzantine process misbehaviour in light red.

Dynamic Blockchain Sharding

Deepal Tennakoon &
University of Sydney, Australia

Vincent Gramoli &
University of Sydney, Australia

—— Abstract

By supporting decentralized applications (DApps), modern blockchains have become the technology
of choice for the Web3, a decentralized way for people to interact with each other. As the popularity
of DApps is growing, the challenge is now to allocate shard or subnetwork resources to face the
associated demand of individual DApps. Unfortunately, most sharding proposals are inherently
static as they cannot be adjusted at runtime. Given that blockchains are expected to run for years
without interruption, these proposals are insufficient to cope with the upcoming demand.

In this paper, we present dynamic blockchain sharding, a new way to create and close shards
on-demand, and adjust their size at runtime without requiring to hard fork (i.e., creating duplicated
instances of the same blockchain). The novel idea is to reconfigure sharding through dedicated smart
contract invocations: not only does it strengthen the security of the sharding reconfiguration, it
also makes it inherently transparent as any other blockchain data. Similarly to classic sharding,
our protocol relies on randomness to cope with shard-takeover attacks and on rotating nodes to
cope with the bribery of a slowly-adaptive adversary. By contrast, however, our protocol is ideally
suited for open networks as it does not require fully synchronous communications. To demonstrate
its efficiency, we deploy it in 10 countries over 5 continents and demonstrate that its performance
increases quasi-linearly with the number of shards as it reaches close to 14,000 TPS on only 8 shards.

2012 ACM Subject Classification Computing methodologies — Distributed algorithms
Keywords and phrases Reconfiguration, smart contract, transparency, shard

Digital Object Identifier 10.4230/0OASIcs.FAB.2022.6

Funding This research is supported under Australian Research Council Future Fellowship funding
scheme (project number 180100496) entitled “The Red Belly Blockchain: A Scalable Blockchain for
Internet of Things”.

Vincent Gramoli: Australian Research Council

1 Introduction

Blockchains, which originally aimed at enabling transparent asset transfers between
permissionless individuals [23], has become the de-facto technology for the new version
of the World Wide Web, called Web3. In January 2022 alone, the total volume of Web3
sales through decentralized applications (DApps) represented $16B [19]. These DApps
are an appealing alternative to centralized applications, because they offer a transparent
execution on secure data. Unfortunately, DApps create congestions on popular smart
contract blockchains, like Ethereum [32]. The key idea to reduce this congestion is called
sharding, which consists of splitting the workload across disjoint set of computers called
shards, subnetworks or zones. In the context of DApps, sharding typically means executing
distinct sets of DApps or smart contract functions on different sets of computers [14].

Unfortunately, the existing blockchain sharding protocols (Table 1, later detailed in
Section 5) suffer from limitations. In fact, they are typically static: once the blockchain
is spawned, there is no way to change the number of shards it uses. The problem is that
blockchains are intended to run for a long time (e.g., Bitcoin [23] has been running for
more than a decade without interruption) whereas new DApps are continuously uploaded to
? Deepal Tennakoon.and Vincent Gljamoli;

5v icensed under Creative Commons License CC-BY 4.0

5th International Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).
Editors: Sara Tucci-Piergiovanni and Natacha Crooks; Article No. 6; pp. 6:1-6:17

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:dten6395@uni.sydney.edu.au
https://orcid.org/0000-0002-7368-2140
mailto:vincent.gramoli@sydney.edu.au
https://orcid.org/0000-0001-5632-8572
https://doi.org/10.4230/OASIcs.FAB.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

6:2

Dynamic Blockchain Sharding

Table 1 Comparison of sharded blockchains: the dynamism ranges from low, as indicated by
O, to high, as indicated by ., a checkmark v indicates that the property holds while a cross <

indicates that that the property does not hold and a dash “~” indicates that it remains unknown.
Sharded Transparency Dynamism Shard number Shard size No synchrony
blockchains dynamism dynamism needed

» | Elastico [22] x @ O D x

£ | OmniLedger [20] X< D O [X<

% RapidChain [33] < D O o <

A~ | SSChain [6] X< D O [X
Avalanche [27] X< [[[X

. ChainSpace [1] v’ D O o v’

2 | Cosmos [21] X< 9 [D v’

g Eth2 [31] - & O D v’
Polkadot [5] X< O O O v’
Zilliga [29] x< O O O x<
This work v’ o o o v’

blockchains at runtime. The popularity of these DApps is heterogeneous and a new popular
DApp may severly increase the number of requests to a particular smart contract, just like
the CryptoKitties DApp that congested the Ethereum network [16]. Ideally, a sharding
protocol should allow the blockchain governance to resize the shards and adjust the shard
number on-demand without hard forking, i.e., creating a duplicated instance of the same
blockchain. This would allow to seemlessly migrate DApps from one shard to a newly created
one, hence provisioning more resources for popular DApps, grouping less demanded DApps
on fewer shards, or offering more resources (e.g., CPU, storage) to a particularly congested
shard.

Another problem is that most sharding protocols are opaque (cf. 2" column of Table 1):
there is no way to securely access their shard configuration. Even if a sharding protocol
was made dynamic by offering the users to change the number of shards at runtime, there
would be no secure way for these users to confirm the changes took effect. In some cases,
sharded blockchains offer a website where users can find information about the current shard
configuration. For example, Cosmos [21] offers a website to observe a map of its zones [25].
However, such a web service is typically centralized and prone to a single point of failure,
hence defeating the purpose of using a distributed ledger for security. First, this website could
simply be hacked, conveying a misleading sharding configuration. Second, the traffic towards
the website could be easily redirected with a network attack [12]. Finally, users could expose
themselves to phishing attacks by accessing a hacked copy of the website instead of the real
one. Such attacks are becoming frequent to fool blockchain users about the information they
access online [4].

In this paper, we propose a new dynamic blockchain sharding protocol. As it is intended
to operate in open networks, it does not assume synchrony but partial synchrony [11], in
that the bound on the message delays is unknown. This protocol is made transparent by
exploiting the blockchain itself: a minimum number of users can (i) create, (ii) close or
(iii) adjust the size of a shard by invoking functions of a smart contract residing on the
default shard (called mainchain) within a limited time window (if the network asynchrony
prevents them from succeeding, then they retry with a larger time window until success).

D. Tennakoon and V. Gramoli

As all smart contract invocations are logged to the secure storage of the distributed ledger,
the shard configuration is securely visible from the world state. Similar to Eth2 [14], a new
shard is created as a shard chain provisioned by the assets deposited on the mainchain by its
users. The most important challenge we had to solve was for the network topology to adapt
based on the output of the sharding smart contract: the reconfiguration function emits an
event that triggers the spawning, shutdown and restart of some of the blockchain machines.
Like other sharding approaches we provide randomness in shard creation to prevent shard
takeovers by malicious nodes. We also present a shard committee rotation approach to
mitigate bribery by a slowly-adaptive adversary and a mapping of transactions to shards.
Finally, we evaluate our solution on a scalable blockchain called CollaChain [30], which
combines DBFT [7], a formally verified [3] consensus protocol, that makes CollaChain fork
free; and a Scalable version of the Ethereum Virtual Machine, called SEVM, making it
compatible with the largest ecosystem of DApps. Our results confirm that our sharding
protocol leads to quasi-linear speedup, that the performance of shards can benefit from a
growing number of node resources, and that our mainchain does not act as a performance
bottleneck. To summarize, our contribution is threefold:
We introduce dynamic blockchain sharding, the ability for a blockchain to reconfigure the
number of its shards and the size of each of its shards without disrupting the blockchain
service. This ability is particularly appealing to cope with the growing of DApps over
recent blockchains.
We propose a dynamic sharding solution that creates a new shard, adjusts a shard, closes
a shard, and rotates the shard participants. We implement these algorithms as inherently
transparent smart contracts that emit events to replace the current sharding configuration
at the network level.
We demonstrate the feasibility of our approach by implementing our algorithms within a
recent scalable blockchain that we deploy in 10 countries across all 5 continents. The
experimental results confirm that the performance scales quasi-linearly with the number
of shards and demonstrate that the system can achieve close to 14,000 TPS with only 8
shards.

The rest of this paper is ordered as follows: In Section 2 we provide the model and
preliminary definitions. In Section 3, we present our dynamic sharding protocol. In Section 4,
we illustrate the performance of our solution when deployed at large scale. In Section 5, we
discuss the related work. In Section 6, we conclude.

2 Preliminaries

2.1 Blockchain

A blockchain is a decentralized, distributed system that processes user transactions and
logs the transactions to an auditable and cryptographically secure ledger. Each participant
keeps a replicated state of the system, and all validator/miner participants require to reach
consensus to agree on the set of transactions to be executed. The agreed upon transactions
reside in the body of a block data structure and each block has a pointer to the previous
block building a chain of blocks known as the blockchain. The header of a block structure
consists of a root of a merkel tree known as the state root. The state root represents the state
of the blockchain at a specific block. Each participant at block N will have the same state
root. By traversing through the Merkle tree from the state root in a block, the accounts,
balances, contract data and contract state can be retrieved. A blockchain committee is a set

6:3

FAB 2022

6:4

Dynamic Blockchain Sharding

of blockchain participants that execute consensus separately from the rest of the network. In
this work, each blockchain committee maintains its own state and process a separate set of
transactions.

2.2 Model

In our system model, we assume our system consists of n participants. Each participant
controls a SEVM and Consensus node in Collachain [30]. Participants join the network in a
permission-less manner as outlined in Section 2.3 to tolerate Sybil attacks. From the sample
of joined nodes, a group of nodes are selected through a random mechanism (Section 2.3)
to the main chain. The set of nodes that execute consensus on the mainchain are termed
the mainchain committee. Mainchain comittee is tasked with administrative tasks of the
network such as shard creation, shard committee rotation, and dynamic adjustment of the
number of shards and the nodes in a shard. A mainchain can create one or many shards
from participants, we term as validator candidates. Each shard keeps separate state, and
transactions and is tasked with executing a unique DApp. The shard committee (i.e. the set
of validators in the shard) rotates per epoch which signifies a time ¢ that is sufficiently small
to avoid shard takeover by a slowly-adaptive adversary (Section 2.2).

Our network model assumes honest nodes in the network are well-connected and the
communication channels between honest nodes are partially synchronous, i.e., if honest nodes
broadcast a message, all honest nodes receive it after an unknown time 7" and a bounded
maximum delay of §. While various sharded blockchains typically assume a stronger property,
called synchrony [11], where the upper bound on the delay of every message is known, note
that synchrony is typically difficult to guarantee and can easily be violated in an open
network like the Internet [12], which has led to numerous double spending attacks against
blockchains [24, 13].

In our threat model, out of n participants, we assume f are byzantine such that f < n/4.
This is to ensure that a committee has k nodes such that fj < k/3 with high probability,
similar to previous work [20, 22]. Note that n and k can vary at run-time due to the dynamism
to our approach. Only 1/3 of the mainchain nodes can be byzantine. The byzantine nodes can
behave arbitrarily or collude to attack the system. All correct nodes adhere to the presented
protocol (Section 3). In order to cope with a Sybil attack, whereby an adversary forges
fake identifies to outnumber significantly the participants identities, we use a proof-of-stake
(PoS) mechanism as described in the subsequent section. A bribery consists of an adversary
incentivizing a committee participant to join its coalition. A shard-takeover attack consists
of an adversary gaining control over sufficiently many nodes within a committee to prevent
consensus from being reached. As explained below we assume a slowly-adaptive adversary
that can bribe all nodes but only progressively (not instantaneouly) [20, 33] and we cope
with this attack by proposing a rotating committee.

2.3 Bootstrapping

We consider a permissionless model. Any participant can join or leave the network without
permission. Our membership protocol is similar to Algorand [18] where participants that
require to be a part of consensus needs to stake some coins. A weight is assigned to each
joining participant based on their stake. Consequently, a subset of participants are selected
to perform consensus on the mainchain based on a random beacon and the weights of the
nodes. This helps prevent Sybil attacks. To mitigate bribery take-overs, the main chain
committee rotates periodically and the size of the main chain is changeable in a similar

D. Tennakoon and V. Gramoli

mainchain/0 shard 9 nodes joining one shard with 9 nodes two shards with 9 nodes rotating the nodes of a shard

O] D—EI-E D-D—D«E D—D—D—%

blockchain

Join() CreateShard() CloseShard()
(X) Reol
g ° YY) :: eplace()
2 [(XXX X}
@ ° (X} °
° XY x
° X

Join() CreateShard()

Figure 1 An example of the consecutive steps (from left to right) of a dynamic sharding execution
where 2 shards are created, one of these shards is closed and shard nodes are rotated.

approach to how we change the shard size (Algorithm 1 line 15), which allows new nodes to
join the main chain committee if a threshold of mainchain participants agree. We do not
implement our membership protocol in this paper but leave it as a part of future work.

3 The Dynamic Sharding Protocol

In this section, we present how the dynamic sharding protocol adjusts the size and number
of shards, and how it rotates shard nodes.

3.1 Overview

Figure 1 depicts a high level example of a dynamic blockchain sharding execution where
smart contract invocations stored in blocks reconfigure the sharding. Initially, there are 25
participants in the mainchain with a single genesis block, as depicted on the 1%¢ column,
they decide the shard size. Then, external participants invoke the Join(+) function to join a
new shard (cf. 2" column). When enough of them have joined, the CreateShard(-) function

is invoked on the mainchain smart contract and creates a new (blue) shard (cf. 3" column).

The resulting function invocation is stored as a transaction of a new block of the mainchain.
A new (blue) shard chain, maintained by the shard is created: it is linked to the block of
the mainchain where its creation invocation is stored. New participants invokes the Join()
function as depicted in the middle column. After that, the CreateShard(-) function creates
a new (green) shard while the old (blue) shard invokes the CloseShard(-) function, which
reports the blue shard history to a new block of the mainchain (cf. 4** column). Finally, the
new shard rotates its participants by executing the Replace(-) function whose invocation gets
stored in a new block.

3.2 Shard creation

The shard creation is presented in Algorithm 1 and is deployed on the mainchain as a smart
contract during the bootstrap of the blockchain. The variable admins keeps track of a set
of mainchain participants and NumberOfAdmins refers to the number of participants in the
mainchain.

The shard creation smart contract is initialized with a set of data structures. The variable
event refers to a broadcast message sent to all blockchain nodes in a shard. The event has a
name (e.g., ShardNodes) and values that it broadcast (i.e. ShardNodes broadcasts an unsigned

6:5

FAB 2022

6:6 Dynamic Blockchain Sharding

Algorithm 1 The smart contract that triggers the creation of a new shard.

1: Initialization:

2: event ShardNodes(uint, string[], address|])
3 uint shardSize

4: uint NumAccounts

5: mapping (string — string[])shard

6: mapping (address — bool))called

7: mapping (string — bool))voted

8: mapping (uint — address[])accounts

9: mapping (uint — uint)SizeOfShard

10: mapping (uint — uint) NumberOfShards
11: mapping (uint — bool) Created

12: admins : the set of addresses of admins
13

NumberOfAdmins = | admins |

14:
15: SetSize(val, NShaTds): > threshold of admins set shard size, number & accounts/shard
16: if SenderAddr € admins then > if function invoker is an admin
17: SizeOfShard[val]++
18: NumberOfShards| NShards|++
19: if NumberOfShards[Shards] == (2 * NumberOfAdmins/3-1) &

SizeOfShard[val] == (2 x NumberOfAdmins/3-1) then > if shard size, number, accounts agreed
20: shardSize = val
21: NumShards = NShards
22:
23: JoinShard(z’pAddr): > when a node wants to join a shard as validator
24: if called[senderAddr] == false & voted[ipAddr] == false then > avoid assigning IP twice to shard
25: called[senderAddr] = true
26: voted[ipAddr] = true
27: random = RANDContmctaddr.GetRand() > Fetch random number from RANDAO
28: shard[random mod (NumShards)] U ipAddr
29: accounts[random mod NumShards) U senderAddr
30: if length(shard[random mod (NumShards)]) == shardSize & Created[tag] == false then
31: CreateShard(random mod (NumShards),shard[random mod (NumShards)],
32: accounts[random mod (NumsShards))
33: Iength(shard[random mod (NumS’hards)}) =0 > reset the shard tag value to 0
34: length(accounts[random mod (NumShards)]) = 0 > reset the shard tag value to 0
35:
36: CIosedShards(tag): > admin calls this if received n-t COMMITS for close from shard chain
37: Closed[tag] = true
38:

39: CreateShard(tayg, [|shard), [|accounts):
40: emit Shard Nodes(tag, shard, accounts) > emit ip addresses & accounts of shard nodes, triggers shard start
41: Created[tag] = true > Assign shard as created

integer, a string array and an address array). A mapping is a data structure mapping a key
to a value. The bool is a boolean data type and | admins | is the set containing the wallet
addresses of admin nodes.

Admins of the main chain start by setting the size of shards and the number of shards
(Algorithm 1 line 15). Note that a threshold of admins should agree to the same settings
for these values to be set (Algorithm 1 line 19), and a threshold of admins can again agree
to change these values during run time making the sharding dynamic. Note that unlike
any other sharding scheme, we provide the capability to change shard size and number of
shards even when the number of nodes in the network remains constant (no nodes joining or
leaving).

The validator candidates invoke the JoinShard function and parse their IP address
(Algorithm 1, line 23) in an attempt to join a shard. Note that, at line 24 of Algorithm 1,
prevents validator candidates from joining multiple shards as well as two validator
candidates from joining shards with the same IP address. Consequently, the shard creation

D. Tennakoon and V. Gramoli

contract fetches a random number random from a verifiable random number generation
contract (Algorithm 1, line 27) taken out of our system. (We rely here on the RANDAO
implementation [26] of a random number generator that is expected to be used in Ethereum 2.0
as an example only. Randao is synchronous but a partially-synchronous random number
generation solution can easily be used instead [9]).

Based on random, the IP address of a validator candidate is assigned to a random
key of a shard mapping (Algorithm 1, line 28). Deriving the key values as: random
mod NumShards ensures that the IP address of a candidate is assigned a shard tag x such
that z € {0, 1, ..., NumShards}.

Similarly, wallet address of the validator candidate is also added to a random key
corresponding to a shard tag of an account mapping.

We underscore that NumShards can be adjusted by admins to accommodate more, or less
shards in the system. If for a particular shard key/tag the maximum number of nodes (i.e.,
ShardSize) that could be assigned is complete, a CreateShard function is invoked, parsing an
array of validator candidates and validator accounts for a shard tag (Algorithm 1, line 32).

The CreateShard function, emits a smart contract event ShardNodes (i.e., a broadcast to
all participants) with the validator IP addresses and accounts that should be in a particular
shard tag (Algorithm 1, line 32).

Validator candidates upon receiving ShardNodes event verifies its IP address is included
in the event. If included, the validator candidates reconfigure and form a validator committee
for a shard with a specific tag. Details of this process is outlined in Algorithm 2.

Algorithm 2 The algorithm executed by a participant to create a new shard upon reception of
the smart contract creation event.

1: Upon receiving a smart contract event:

2: event < subscribe(CreateContractAddr) > all nodes subscribe to events from shard create smart contract
3: if locallP € event then > If local IP is in event
4: tag, shard, accounts < extract(event) > extract values from event
5: stop(node)

6: editGenesis(accounts) > Edit genesis with accounts
7 con nectPeers(shard) > connect with other members of the shard
8: start(node)

3.3 Shard closing

Shard closing is a procedure that helps prevent resource wastage. If a shard is not processing
many transactions or is idle for a while a shard nodes can decide to close the shard. This is
a part of the extended dynamism our protocol provides.

Algorithm 3 presents the smart contract algorithm for closing a blockchain shard in
a partially synchronous manner. The variable N, is the number of nodes that the shard
contains.

Firstly, once a shard node decides to close the shard it is a part of, it invokes the CloseShard
(Algorithm 3 line 10) parsing the state root the node prefers to close at. Algorithm 3 line 11-
line 12, ignores if a state root is parsed to the function by participants more than once.
Otherwise, the threshold is increased (Algorithm 3, line 14), which indicates the number
of participants that have parsed a specific state root to the CloseShard function. At line 15
of Algorithm 3, if 2- N/3 + 1 nodes s.t. N is the total number of participants in the shard
have parsed the same state root to CloseShard, then a COMMIT event is emmitted with the
ShardTag. Otherwise, the parsed state root to the CloseShard function is emitted in a Bs
event.

6:7

FAB 2022

6:8

Dynamic Blockchain Sharding

Algorithm 3 The smart contract that triggers the closing of a new shard.

1: Initialization::

2: event Bs(string y)

3 event COMMIT (string z, string m)

4: mapping(string — uint) threshold

5: uint Nv

6: bool reached

7: mapping(bytes32 — string) called;

8 Nv = val > The number of nodes in a shard from Algorithm 1

9: ShardTag = tag > tag of shard generated— based on RANDAO in Algorithm 1
> nodes call CloseShard parsing the state root

10: CloseShard(stateroot):

11: if called[hash(SenderAddr, stateroot)] == true then > SenderAddr parsed stateroot before
12: return > avoids double voting
13: called[hash(SenderAddr, statemot)] = true > ’SenderAddr’ parsed stateroot

14: threshold|[stateroot] = threshold[stateroot] + 1 > number of nodes parsed specific ’stateroot’
15: if thT‘eshOld[StatETOOt] == 2*NV/3+1 & lreached then D> state root first reaching threshold
16: reached = true

17: emit COMMIT (stateroot,” COMMIT”, ShardTag) > emits a commit event with the stateroot
18: emit Bs(stateroot) > emits event with the parsed stateroot

Algorithm 4 The algorithm executed by a participant to close a shard upon reception of the
smart contract closure event.

1: Upon receiving a smart contract event:
2: event < subscribe(CloseContractAddr) > all nodes subscribe to closing smart contract
3: if contains(event, COMMIT) then D> smart contract event contain the “COMMIT” string
4: number = getCurrentBlockNumber()
5: for i = 0;7 < number;i++ do
6: block < getBlock(i)
7 if block.stateroot = event.stateroot then
8: Close(block.number) > parse closing block number to sync balances algo
9: exit() > exit code
10: else
11: if nodeHas(event.stateroot) then > If node has same state root
12: closeContractAddr.CloseShard(event.stateroot) D> pass stateroot to SC
13: else
14: pending.push(event.stateroot) > push the stateroot to a pending array
15: Check()
16: Check(): > Do in parallel
17: for i=0; i < length(pending); i++ do
18: if nodehas(pending[i]) then
19: CloseContractAddr.CloseShard(pending[i]) D> parse stateroot to smart contract

Algorithm 4 presents the execution at a shard participant when either a COMMIT or a Bs
smart contract event is received from the shard close smart contract algorithm (Algorithm 3).

A shard participant subscribes to the close shard smart contract in its state. Upon
receiving a smart contract event from this smart contract (CloseContractAddr) at the shard
node, the event is filtered. Consequently, the shard participant checks if the event is a
COMMIT event (i.e., whether it contains the keyword cOMMIT) at Algorithm 4 line 3. If this
condition is met, the current block number (Algorithm 4 line 4) of the participant is retrieved
and the state of the shard participant is traversed from the 0" block to the current block to
find the block number that contains the state root. If a block exists with the received state
root in the shard node, it decides to parse the block number to a Close function (Algorithm 4
line 8) shown in Algorithm 5 and exits.

If the event is not of type COMMIT but the shard participant has the state root contained
in the event (Algorithm 4 line 11), the participant invokes the CloseShard function in the
Close shard smart contract parsing the state root. If the event is not of types COMMIT and

D. Tennakoon and V. Gramoli

the shard node does not have the state root received, it is pushed to a pending array and
kept (Algorithm 4 line 14), in case the shard participant sees the state root sometime in the
future. In Algorithm 4 line 16, a Check function concurrently and repeatedly checks, if the
shard node has the pending state root. The CloseShard function is invoked parsing the state
root if the state root is found (Algorithm 4 line 19).

Algorithm 5 Shard chain participant Send Closing Account Balances to main chain.

: Initialization:

A is the set of account addresses in the shard

Account(address, balance) > A tuple of address and balance
SA is the set of Account(address, balance) tuples

L e

5: Close(BNumber): > parse block number at which the shard should close
6: foraec Ado

7 b+ getBaIance(a, BNumber) > Balance of account a at closing block
8 SA U Account(a, b)

9 Broadcast(SA4, Shard Tag) > Broadcast to main chain nodes
0: stop(shardNode)

Algorithm 5 executes at each shard participant and retrieves balances of all accounts at
the block number that the shard closes (Algorithm 4 line 8) and broadcasts it and the shard
tag to the main chain participants (Algorithm 5 line 9). Note that this broadcast is a reliable
broadcast and waits for an ACK before the shard participants stop in the subsequent line.

Algorithm 6 Syncing of balance at the main chain from shard chains .

1: Initialization:

2: threshold = 2N/3 4+ 1 s.t. N is the total number of shard chain nodes

3: mapping (bytes32 — uint) count

4: Receive(SA), ShardTag: > Receive Account tuple set
5 count[hash(SA)] < count[hash(SA4)] + 1 > times specific account tuple set received
6 if count[hash(SA)] == threshold then > If threshold of same SA received
7 CreateContractAddr.ClosedShard(Shard Tag)

8: stop(node)

9: editGenesis(SA) > Edit the genesis, adding accounts and balances tuple set
10: start(node)

A main chain participant upon receiving the tuple set of accounts and balances SA
from shard participants, and the shard tag, executes Algorithm 6. Upon receiving S A, the
algorithm keeps count of the number of unique SA sets received (Algorithm 6 line 5). If
2- N/3 + 1 number of the same SA set is received s.t. N is the number of participants in the
closing shard, the mainchain node invokes the ClosedShard function in Algorithm 1 to set
the shard with the specific tag as closed. Consequently, the main chain participants stop
(Algorithm 6 line 8), edits the genesis adding the new accounts and balances (Algorithm 6
line 9) and restarts (Algorithm 6 line 10). This way, the mainchain participants are synced
with the accounts and balances of the shard chain. Note that, syncing accounts and balances
from multiple shard chains upon shard closing does not affect the consistency of the state in
the main chain since accounts in each shard are disjoint.

3.4 Shard committee rotation

A shard with a particular tag remains active once it is created until it is closed. There is a
risk of participants being bribed by a slowly-adaptive adversary while a shard is active. If
sufficiently many participants in a shard committee are bribed this way (at least 1/3), there is

6:9

FAB 2022

6:10

Dynamic Blockchain Sharding

a risk of shard takeover. To mitigate this risk, we propose a shard committee rotation protocol
that is part of the shard creation smart contract (Algorithm 1) but presented separately
below for clarity. We consider an epoch as a specific time ¢ where a shard committee processes
transactions. At every t interval, all correct shard participants performs committee rotation
correctly. Note that the number of correct nodes in a shard is greater than 2N, /3.

Algorithm 1 Extension Shard committee rotation algorithm, a part of shard creation smart
contract.

42: Initialization::
43: mapping (string — uint) ReplacelpInvoked
44: mapping (address — uint) ReplaceAddressInvoked

45: Replace(ipAddr, tag): > Shard node parses its Ip address
46: ReplacelpInvoked[ipAddr]++

47: ReplaceAddressInvoked|sender Addr]++

48: if ReplacelpInvoked[ipAddr] > 2 - Ny/8 & ReplaceAddressInvoked[senderAddr] > 2 - N,/3 then
49: called[senderAddr] = false

50: voted|ipAddr] = false
51: Created[tag] = false
52: JoinShard(ipAddr) > Invoke JoinShard in Algorithm 1

The committee rotation starts with shard participants invoking Replace in the Algorithm 1
Extension at line 45. Each correct shard participant parses the IP address of each of its
committee members and their shard tag simultaneously to the Replace function. If a particular
IP address and sender address has been used for the invocation 2 - N, /3 times, the called
and voted mappings are set to false for the corresponding IP address and sender address.
Consequently, the Create[tag] is set to false and the JoinShard function is invoked parsing
the IP address. The JoinShard function ensures shard participants are assigned to new
shard committees following the same process of shard creation, that is, rotating the shards
committees every epoch. Note at the end of an epoch before the committee is rotated, the
mainchain participants can adjust the number of shards and the number of members per
shard parameters according to the workload, which will change the number of shards and
the nodes per shard, making our sharding approach dynamic.

3.5 Transaction assignment

In a web-scale blockchain that we foresee, each DApp executes on at most one shard. This
concept is known as application or service-oriented sharding [17]. For example, we would
have a Twitter DApp on one shard, a Youtube DApp on another shard. Each client sends
requests to the shard that executes their required DApp. Each shard tag and the services
they execute will be made available publicly so the clients can connect to the shard they
prefer to send their transactions. Due to the service-oriented nature of sharding the state
of each shard is disjoint, hence state consistency is not affected due to data migrations
happening from shard closing and shard rotation of multiple shards. Also, due to the shard
independence there is no need for cross-shard transactions. We do not present our own
cross-sharding protocol and it is out of the scope of this paper.

3.6 Availability

Committee rotation in every epoch is essential to tolerate a slowly-adaptive adversary.
However, frequent changes of committees is a challenge when the state is sharded. A new
shard committee, needs to sync the state from a previous shard committee, to service the

D. Tennakoon and V. Gramoli

DApps for a particular shard tag. This syncing process involves downloading the entire
blockchain from previous nodes and is an expensive task, which is known to bottleneck
performance and affect the availability of shard nodes for transaction processing [6]. Since
our sharding approach is byzantine fault tolerant downloading the latest state would suffice
by querying f 4 1 previous shard committee members. There is no need to download the
entire state history (i.e. snapshots) nor the entire block history. As such, we provide better
availability than some sharding approaches that shard the state as well [20].

3.7 Proof sketches

The first lemma shows that each shard contains less than NN, /3 byzantine participants with
high probability. This is key to guarantee agreement among each shard to guarantee that
the view of the blockchain is consistent across all replicas. For simplicity in the analysis,
we assume that the shard participants correspond to a sample of N, participants taken
uniformly at random among the whole set of n participants and we reuse the same reasoning
as in [22].

» Lemma 1. In each shard of N, participants, there are less than N, /3 byzantine participants
with high probability.

Proof. By assumption we return a participant taken uniformly at random among all n
participants. Consider each of this event as a Bernoulli trial such that a random variable X;
is 1 if the returned participant is correct and 0 if it is byzantine. Let p be the portion of
byzantine participants. Because there are at most f < n/4 byzantine participants among
the initial n participants, we have p < 1/4.

Pr[X; =1 = p=2
T 1

PriX; = 0] =

—p=2.

The random variable X = vazvl X; thus follows a binomial distribution and Pr[X = k] =
(]Z")pN“’k(l — p)¥, hence we can derive the probability Pr[X < 2N, /3] of creating a shard
with less than 2/3 of correct participants:

2N/3
Pr[X <2N,/3] = Z (kv)pva(l —p).
k=0

As this probability decreases exponentially fast with N, there exists a parameter A and
a constant ng for which Pr[X < 2N,/3] < 27> for all N, > ng. As a result, each shard
contains at most [N, /3] — 1 byzantine participants with high probability, which concludes
the proof. |

Given Lemma 1 and that our protocol relies on the DBFT [7] consensus protocol, which

is resilient optimal, we know that participants agree when less than N, /3 are byzantine.

Hence each time a new block is added to a shard that did not fail, then the shard remains
consistent with high probability. As a result, the transparent access to sharding information
remains guaranteed. An important remark is that the proof of Lemma 1 relies on having
N, > ng, however, for the sake of the empirical analysis we choose N, relatively small (up
to 60 machines) in Section 4 to limit the cost of our AWS experiments.

» Lemma 2. If2- N,/3+ 1 of the participants of shard s invoke its CloseShard() function
with the same argument, then the shard s eventually closes.

6:11

FAB 2022

6:12

Dynamic Blockchain Sharding

71500 _
~ wn
% £ 10000
2 1000 5
) o
E Z 5000
5 500 E
0751 52 S3 sS4 S5 S6 S7 S8 “ 2 5 4 5 6 7
Number of Shards
Shard number
Figure 2 Throughput per shard. Figure 3 Linear increase in throughput

with increasing number of shards.

Proof. The state root at which a shard participant wishes to close the shard is received by
all correct participants in the shard by the Bs event (Algorithm 3, line 18) since the network
is partially synchronous. Also, if a participant agrees to close the shard at a particular state
root after seeing the state root event, they will either have that state root in their history
or will eventually have it since consensus ensures the nodes have the same state history
eventually. Therefore, if at some point in time, 2- N, /3 + 1 participants (Algorithm 3 line 15)
— where the number of byzantine participants is f < N, /3, agree on the state root, a commit
event will be emitted (line 17) triggering the close of the shard. <

4 Evaluation

In this section, we evaluate the performance and the dynamism of our sharding solution. Our
sharding approach was implemented on Collachain [30], a DApp supported blockchain. Note
that while we evaluated on Collachain to benefit from the fork-free guarantees, our solution is
adaptable for any Ethereum-based blockchain should the fork-free guarantees not be needed.
We implemented our smart contract algorithms using Solidity and algorithms running at
participant nodes using Web3js. All the experiments were performed on AWS, with c5.4xlarge
(16 vCPUs, 32GB RAM) blockchain instances (i.e., which have similar performance to a
modern PC) and c5.xlarge (4 vCPUs, 8GB RAM) client instances sending asset transfer
transactions. A balanced workload was sent to each shard.

4.1 Dynamic shard adjustment

Figure 3 presents the scalability of our solution. Each shard consists of 60 machines evenly
distributed across 10 AWS regions spanning 5 continents: Ohio, Mumbai, Seoul, Singapore,
Sydney, Tokyo, Canada, Frankfurt, London, Paris, Stockholm, Sao Paulo. The dotted
line is a straight line indicating the ideal speedup one could expect from multiplying the
performance of the first shard by the number of shards. The continuous line represents the
throughput with the number of shards. As we can see, the throughput increases almost linearly
with the number of shards. At 8 shards, the throughput is 13,808 TPS. The quasi-linear
growth in throughput is expected since, each shard processes a unique set of transactions,
without performing cross-shard transactions because, as mentioned previously, our shards
are dedicated to independent DApps. Therefore, the throughput of the entire network at 8
shards almost equals the sum of the throughputs of all shards.

Due to the dynamism of our sharding approach, the number of shards can be varied by
creating or closing shards at runtime. Figure 4 depicts the throughput over time when new
shards are created. Each shard consists of 8 machines and was evaluated in the Sydney AWS

D. Tennakoon and V. Gramoli

2000

6000
1500 ﬁ 5000

Shard joins

Throughput (TPS)
_
o
S
S
Throughput (TPS)
5 B 8 B
g 8 8 8

o
(=)
(=)

.d
[=)
=]

2.5 5.0 7.5 10.0 12.5 15.0 20 40 60 80 100
Time (seconds) Number of nodes per Shard

Figure 4 Throughput over time when new shards Figure 5 Throughput of 3 shards as
join. their size increases.

region. At 0 second, there is only 1 shard. At around 10 seconds, another shard is created
and starts processing transactions. Before the curve flattens and because a new shard starts
processing transactions, the throughput keeps growing. Finally, the throughput stabilizes
as expected when both shards keep processing transactions at full capacity. Note that the
throughput of the mainchain is not considered as it only performs administrative tasks such
as shard creation and shard rotation and does not process client transactions.

4.2 Dynamic node adjustment

With the dynamism we provide, the number of nodes in a shard can also be adjusted at
runtime after an epoch time period, even when the total number of nodes in the network
remains constant. Figure 5 illustrates this capability: We keep the number of shards fixed to
3 and vary the amount of nodes per shard. As can be seen, when the number of nodes per
shard increases from 20 to 100, the total throughput also increases. At 50 participants per
shard, a throughput of ~6000 TPS is achieved. As CollaChain is known to be scalable [30]
in that its performance grows with the provided resources, so does the throughput with the
increasing number of nodes here. This makes our sharding approach particularly suited to
run on top of CollaChain, so as to achieve dynamism while maintaining performance. Note
that, the number of nodes per shard could have been increased further while maintaining
performance due to CollaChain scalability.

5 Related Work

In this section, we present works related to blockchain sharding and previously summarized
in Table 1. Section 5.1 lists the sharding protocols of blockchains offering native transfers of
assets while Section 5.2 lists the sharding protocols of blockchains supporting smart contract,
and thus DApp, execution. Interestingly, even the protocols for blockchains that support
smart contracts do not invoke smart contract functions to reconfigure their shards. Some
interesting works already create shards based on attributes (like locations [2]) while others
rotate shards with randomization [8] like we do, however, we focus below on dynamism.

5.1 Payment Blockchains

Elastico [22] is the first sharded permissionless blockchain that tolerates byzantine failures.
Elastico assumes synchrony and that at most 1/4 of the computational power is owned
by byzantine participants. It mitigates Sybil attacks and shard take-overs with proof-of-
work (PoW) and randomness, respectively, and rotates committees to tolerate static and

6:13

FAB 2022

6:14

Dynamic Blockchain Sharding

round-adaptive adversaries launching bribery attacks. Elastico upper bounds the number of
validators per committee to 100, indicating a partial shard size dynamism, but it requires
the number k of committees to be adjusted offline, which limits shard number dynamism.
We are not aware of any mechanism to audit Elastico’s current sharding configuration, like
the number of validators.

OmniLedger [20] improves upon Elastico’s decentralization and high failure probability
and offers higher performance. Like for Elastico, Omniledger assumes synchrony, offers Sybil
resistance via randomness and does not allow to audit the sharding configuration or to
change the shard number at runtime. Omniledger rotates validators in each epoch using
cryptographic sortition and a verifiable random function to mitigate bribery attacks. In
addition of shards running their own instance of consensus, Omniledger also shards the
blockchain state. Unlike Elastico, OmniLedger does not limit the number of validators, hence
offering a higher degree of dynamism, yet it does not communicate transparently the number
of validators to its users.

RapidChain [33] is the first sharded blockchain to support up to f < n/3 byzantine
failures where n is the number of participants. Like Omniledger, RapidChain assumes
synchrony and lets each shard maintain a portion of the blockchain state and run its own
consensus instance. Candidate nodes solve a proof-of-work puzzle and create identities that
they send to a reference committee, which randomly defines the next epoch committees.
RapidChain allows nodes to join and leave the network and assigns them to existing shards,
hence it offers a static shard number but a dynamic shard size.

SSChain [6] avoids the rotation of shard committees to shard the state without having to
download the blocks and state. These data migrations, needed to verify transactions, can
severly impact availability of the sharded blockchain. SSChain changes shards by allowing
nodes to freely join, however, the risk is for a byzantine coalition to take over a shard.
SSChain mitigates this attack by introducing a two-chained approach: a root chain verifies
the blocks coming from each shard before committing them, which provides safety despite
shard take-over at the condition of maintaining the entire state. SSChain offers neither
transparency nor shard number dynamism but offers shard size dynamism.

5.2 DApp supported blockchains

Ethereum 2.0 (Eth2) is expected to introduce sharding to improve Ethereum’s performance.
Eth2 contains a fixed set of 64 shard chain and a single beacon chain [15]. Our approach is
similar to Eth2 since we also request validators to escrow a deposit on the mainchain before
assigning them to shard chains. However, Eth2 requires a minimum of 111 validators [31] to
lower the probability of 2/3 adversarial nodes in a shard to 274°. At the end of each epoch,
validators are rotated to maintain availability despite a slowly-adaptive adversary. Each
shard runs a series of 64 Casper FFG consensus instances per epoch, after which a new block
containing the shard states is appended to the beacon chain. Our approach differs from Eth2
by not forking, thanks to DBFT [7], not assuming synchrony, executing smart contracts even
in the mainchain, and offering transparency and dynamism.

ChainSpace [1] is a transparent sharded blockchain that does not assume synchrony.
An admin contract maps other smart contracts or “objects” to nodes that function as a
shard, hence allowing users to consult the sharding configuration without inconsistencies.
ChainSpace requires the admin contract creator to be trustworthy because if a shard contains
a too large byzantine coalition, then the state of the blockchain could be compromised.
ChainSpace offers transparency of the sharding configuration to its users and allows to
dynamically adjust the number of nodes per shard, but cannot change the number of shards
at runtime.

D. Tennakoon and V. Gramoli

Zilliqa [29] exploits PoW and a random beacon to maintain two committees: one
committee, called the “DS committee”, is elected with PoW to create shards. Two pseudo-
random numbers are generated: r1 comes from the last block in the previous DS committee
while r2 comes from the last transaction block in a shard. The nodes solve an Ethash PoW
cryptopuzzle based on their private key Py, IP, r1 and r2. The first to solve this puzzle
proposes a block that the DS committee agrees upon. Consequently, the successful miner
is added to the DS committee and the oldest miner is churned out. At all times the DS
committee has the most recent n miners. Zilliga does not shard the state, assumes network
synchrony and does not provide sharding dynamism or transparency.

Avalanche [27] offers “subnets” that can be viewed as shards. Three default subnets
run three separate blockchains, the P-Chain handles metadata, the C-Chain handles native
payments and the X-Chain handles smart contract executions. Avalanche offers dynamism
because new subnet can be created and new validators can be added to an existing
subnet. Unfortunately, Avalanche cannot work in a partially synchronous setting because
its participants have to wait for the response of a small sample of nodes to progress, which
could all be faulty [28]. Avalanche offers a JSON API to retrieve information about subnets,
however, we are not aware of any verifiable way to collect tamper-proof information.

Cosmos [21] is a network of “zones” that can be viewed as shards as well. Each zone is a
separate blockchain and the main one, called Hub, manages the governance of this network.
Each zone builds upon the Tendermint consensus protocol that assumes partial synchrony
and requires f < n/3 to solve consensus. Zones are not fully dynamic in that there cannot
be more than a maximum of validators per zone, seemingly because performance decreases
with the Tendermint participants. Even though the maximum number of validators per zone
is announced to grow from 100 to 300 over a period of 10 years, one cannot add validators
beyond this point. Although Cosmos offers information about validators [10] and zones [25]
we are not aware of any way to guarantee this information is correct, as this information is
not stored in the cryptographically secure ledger.

6 Conclusion

In this paper, we introduced dynamic blockchain sharding, the ability for a blockchain to
change its sharding configuration at runtime without hard forks. Our implementation relies
on smart contracts, hence anyone can double check the effectiveness of the reconfiguration
by auditing the current state of the blockchain. The performance of our world-wide geo-
distributed setting demonstrates that dynamic sharding scales quasi-linearly and can offer
close to 14,000 TPS with only 8 shards.

—— References

1 Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George Danezis.
Chainspace: A sharded smart contracts platform. arXiv preprint, 2017. arXiv:1708.03778.

2 Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding
Permissioned Blockchains Over Network Clusters, pages 76—88. Association for Computing
Machinery, New York, NY, USA, 2021. doi:10.1145/3448016.3452807.

3 Nathalie Bertrand, Vincent Gramoli, Igor Konnov, Marijana Lazié, Pierre Tholoniat, and Josef
Widder. Brief announcement: Holistic verification of blockchain consensus. In Proceedings of
the ACM Symposium on Principles of Distributed Computing (PODC), July 2022.

4 Russell Brandom. $1.7 million in nfts stolen in apparent phishing attack on opensea
users. Accessed: 2022-03-11. URL: https://www.theverge.com/2022/2/20/22943228/
opensea-phishing-hack-smart-contract-bug-stolen-nft.

6:15

FAB 2022

http://arxiv.org/abs/1708.03778
https://doi.org/10.1145/3448016.3452807
https://www.theverge.com/2022/2/20/22943228/opensea-phishing-hack-smart-contract-bug-stolen-nft
https://www.theverge.com/2022/2/20/22943228/opensea-phishing-hack-smart-contract-bug-stolen-nft

6:16

Dynamic Blockchain Sharding

10

11

12

13

14

15

16

17

18

19

20

21

22

23
24

Jeff Burdges, Alfonso Cevallos, Peter Czaban, Rob Habermeier, Syed Hosseini, Fabio Lama,
Handan Kilinc Alper, Ximin Luo, Fatemeh Shirazi, Alistair Stewart, and Gavin Wood.
Overview of polkadot and its design considerations, 2020. arXiv:2005.13456.

Huan Chen and Yijie Wang. Sschain: A full sharding protocol for public blockchain without
data migration overhead. Pervasive and Mobile Computing, 59:101055, 2019. doi:10.1016/j.
pmcj.2019.101055.

Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. DBFT: efficient leaderless
Byzantine consensus and its application to blockchains. In Proc. 17th IEEE Int. Symp. Netw.
Comp. and Appl (NCA), pages 1-8, 2018.

Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin, and Beng Chin
Ooi. Towards scaling blockchain systems via sharding. In Proceedings of the 2019 International
Conference on Management of Data, SIGMOD ’19, pages 123-140, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3299869.3319889.

Luciano Freitas de Souza, Sara Tucci-Piergiovanni, Renaud Sirdey, Oana Stan, Nicolas Quero,
and Petr Kuznetsov. Randsolomon: optimally resilient multi-party random number generation
protocol. arXiv preprint, 2021. arXiv:2109.04911.

Big Dipper. Active validators. Accessed: 2022-03-15. URL: https://cosmos.bigdipper.
live/validators.

C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. J.
ACM, 35(2):pp.288-323, 1988.

P. Ekparinya, V. Gramoli, and G. Jourjon. Impact of man-in-the-middle attacks on ethereum.
In Proc. 37th IEEE Int. Symp. Reliable Distrib. Syst. (SRDS), pages 11-20, October 2018.
Parinya Ekparinya, Vincent Gramoli, and Guillaume Jourjon. The Attack of the Clones
against Proof-of-Authority. In Proceedings of the Network and Distributed Systems Security
Symposium (NDSS’20), February 2020.

The eth2 upgrades. Accessed: 2022-03-26. URL: https://ethereum.org/en/eth2/.
Ethereum. Shard chains. Accessed: 2022-03-15. URL: https://ethereum.org/en/upgrades/
shard-chains/.

E. Fynn, A. Bessani, and F. Pedone. Smart contracts on the move. In 2020 50th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pages
233-244, 2020. doi:10.1109/DSN48063.2020.00040.

Adem Efe Gencer, Robbert van Renesse, and Emin Giin Sirer. Short paper: Service-oriented
sharding for blockchains. In Aggelos Kiayias, editor, Financial Cryptography and Data Security,
pages 393-401, 2017.

Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich. Algorand:
Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, pages 51-68, New York, NY, USA, 2017. Association
for Computing Machinery. doi:10.1145/3132747.3132757.

Pedro Herrera. Dapp industry report — january 2022. Accessed: 2022-03-10. URL: https:
//dappradar.com/blog/dapp-industry-report- january-2022.

Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and
Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via sharding. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 583-598, 2018. doi:10.1109/SP.2018.000-5.
Jae Kwon and Ethan Buchman. Cosmos white paper. Accessed: 2021-25-03. URL: https:
//v1l.cosmos.network/resources/whitepaper.

Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek
Saxena. A secure sharding protocol for open blockchains. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’16, pages 17-30, New
York, NY, USA, 2016. Association for Computing Machinery. doi:10.1145/2976749.2978389.
Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2008.

C. Natoli and V. Gramoli. The balance attack or why forkable blockchains are ill-suited for
consortium. In 47th IEEE/IFIP Int. Conf. Dependable Syst. and Netw. (DSN), June 2017.

http://arxiv.org/abs/2005.13456
https://doi.org/10.1016/j.pmcj.2019.101055
https://doi.org/10.1016/j.pmcj.2019.101055
https://doi.org/10.1145/3299869.3319889
http://arxiv.org/abs/2109.04911
https://cosmos.bigdipper.live/validators
https://cosmos.bigdipper.live/validators
https://ethereum.org/en/eth2/
https://ethereum.org/en/upgrades/shard-chains/
https://ethereum.org/en/upgrades/shard-chains/
https://doi.org/10.1109/DSN48063.2020.00040
https://doi.org/10.1145/3132747.3132757
https://dappradar.com/blog/dapp-industry-report-january-2022
https://dappradar.com/blog/dapp-industry-report-january-2022
https://doi.org/10.1109/SP.2018.000-5
https://v1.cosmos.network/resources/whitepaper
https://v1.cosmos.network/resources/whitepaper
https://doi.org/10.1145/2976749.2978389

D. Tennakoon and V. Gramoli

25

26

27

28

29

30

31

32

33

Cosmos Networks. Map of zones. Accessed: 2022-03-10. URL: https://mapofzones.com/
7testnet=false&period=24&tablelrderBy=ibcVolume&tableOrderSort=desc.
randao.org. Randao: Verifiable random number generation. Technical report, randao.org, 2017.

Accessed February 2022. URL: https://www.randao.org/whitepaper/Randao_v0.85_en.pdf.

Team Rocket. Snowflake to avalanche: A novel metastable consensus protocol family for
cryptocurrencies. Technical report, Avalanche Foundation, 2018. Accessed: 2021-12-01. URL:
https://ipfs.io/ipfs/QmUy4jhbmGNZvLkjies1RWM4YuvJIh502FYopNPVYwrRVGV.

Team Rocket, Maofan Yin, Kevin Sekniqi, Robbert van Renesse, and Emin Giin Sirer. Scalable
and probabilistic leaderless bft consensus through metastability. Technical Report 1906.08936v2,
arXiv, 2019. arXiv:1906.08936v2.

The ZILLIQA Team. The zilliga technical whitepaper. Technical report, Zilliga, 2017. Accessed
February 2022. URL: https://docs.zilliqa.com/whitepaper.pdf.

Deepal Tennakoon, Yiding Hua, and Vincent Gramoli. Collachain: A bft collaborative
middleware for decentralized applications, 2022. arXiv:2203.12323.

SJ Wels. Guaranteed-tx: The exploration of a guaranteed cross-shard transaction execution
protocol for ethereum 2.0. Master’s thesis, University of Twente, 2019.

Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2015. Yellow
paper.

Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. Rapidchain: Scaling blockchain
via full sharding. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, CCS 18, pages 931-948, New York, NY, USA, 2018. Association
for Computing Machinery. doi:10.1145/3243734.3243853.

6:17

FAB 2022

https://mapofzones.com/?testnet=false&period=24&tableOrderBy=ibcVolume&tableOrderSort=desc
https://mapofzones.com/?testnet=false&period=24&tableOrderBy=ibcVolume&tableOrderSort=desc
https://www.randao.org/whitepaper/Randao_v0.85_en.pdf
https://ipfs.io/ipfs/QmUy4jh5mGNZvLkjies1RWM4YuvJh5o2FYopNPVYwrRVGV
http://arxiv.org/abs/1906.08936v2
https://docs.zilliqa.com/whitepaper.pdf
http://arxiv.org/abs/2203.12323
https://doi.org/10.1145/3243734.3243853

Analyzing Soft and Hard Partitions of Global-Scale
Blockchain Systems

Kevin Bruhwiler &

University of California, Irvine, CA, USA

Fayzah Alshammari &
University of California, Irvine, CA, USA

Farzad Habibi &
University of California, Irvine, CA, USA

Juncheng Fang &
University of California, Irvine, CA, USA

Faisal Nawab &
University of California, Irvine, CA, USA

—— Abstract

Partitioning attacks have been a known threat since the invention of cryptocurrencies. Attackers
could deliberately fork the chain by re-routing network traffic into two or more separate chains and
spend money on each piece, effectively spending multiples of their money. Apostolaki et. al. [1] were
among the first to quantify the threats of such attacks on Bitcoin. They suggest a number of ways
to mitigate this risk which were combined into a tool named SABRE.

Jyothi explored the possibility that a solar superstorm could damage the undersea fiber-optic
cables that connect the Internets of different continents, and considered the mostly likely ramifications
of the damage. She concluded that such an event would likely cause major connectivity issues across
the northern hemisphere and may disconnect much of North America’s internet from the eastern
hemisphere for weeks. There is also concern that undersea cables could be deliberately destroyed as
acts of terrorism or war or by natural disasters such as earthquakes.

In this work, we construct a simulation to properly quantify the effects of a global-scale network
partition on the blockchain. We hope to provide the groundwork for preventative measures to be
taken to minimize the harm that such partitions might cause in the future. We do this by modifying
SimBlock [2], a blockchain simulator created to study the effect of different network topologies, to
allow initiating and recovering from partitions and also add metrics to capture their effects.

To quantify the severity of partitions we use a number of metrics, including the rate of agreement
improvement after a new block has been minted and the average rate of block propagation across
regions. We also examine the number of forks in the blockchain that result from partitions and
identify the break-points at which forks begin to appear. Finally, we quantify the duration that
partitions of various sizes can persist before they begin to generate forks and measure the how long
it takes for the system to recover once the partition has been resolved.

2012 ACM Subject Classification Computer systems organization — Reliability; Computer systems
organization — Peer-to-peer architectures

Keywords and phrases Blockchain, Partitioning, Resilience, Simulation

Digital Object Identifier 10.4230/0OASIcs.FAB.2022.7

Category Poster

—— References

1 Apostolaki, Maria Aviv, Zohar and Laurent Vanbever. Hijacking bitcoin: Routing attacks on
cryptocurrencies. IEEE Symposium on Security and Privacy (SP). IEEE, 2017.

2 Yusuke, Aoki et al. Simblock: A blockchain network simulator. IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS). IEEE, 2019.

© Kevin Bruhwiler, Fayzah Alshammari, Farzad Habibi, Juncheng Fang, and Faisal Nawab;
37 licensed under Creative Commons License CC-BY 4.0

5th International Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).

Editors: Sara Tucci-Piergiovanni and Natacha Crooks; Article No. 7; pp. 7:1-7:1

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:kbruhwil@uci.edu
mailto:fayzaha@uci.edu
mailto:habibif@uci.edu
mailto:junchf1@uci.edu
mailto:nawabf@uci.edu
https://doi.org/10.4230/OASIcs.FAB.2022.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

A Modular Approach for the Analysis of Blockchain
Consensus Protocol Under Churn

Floris Ciprian Dinu &
Department of Computer, Control, and Management Engineering Antonio Ruberti,
University of Rome La Sapienza, Italy

Silvia Bonomi &
Department of Computer, Control, and Management Engineering Antonio Ruberti,
University of Rome La Sapienza, Italy

—— Abstract

Blockchain is an emerging technology that gained a lot of attention in the last years. Many different
consensus protocols have been proposed to improve both the scalability and the resilience of existing
blockchain. However, all these solutions have been defined for rather static settings. We propose
a modular approach for analysing and comparing different consensus protocols used in blockchain
under churn.

2012 ACM Subject Classification Computer systems organization — Reliability; Information systems
— Distributed storage

Keywords and phrases Blockchain Dependability, Dynamic Distributed Systems, Simulation

Digital Object Identifier 10.4230/0OASIcs.FAB.2022.8

Category Poster

Introduction. In the last 10 years, Blockchain became one of the most widespread technology
used to store transactions in a distributed system characterized by full decentralization,
transparency, immutability and non-repudiation of data. Blockchain represents an example
of emerging technology that first consolidated its development and only recently started
to investigate the theoretical foundations behind them. As a consequence, many different
algorithmic solutions have been defined trying to improve as much as possible the scalability
and the resilience to Byzantine processes. However, most of the existing solutions lack a
solid theoretical analysis proving their formal correctness and the evaluation is carried out
by considering rather static environments where the system does not change or changes
very slowly mainly due to failures. However, real networks (especially those underlining
public permissionless blockchain) are not static and are subject to a progressive refreshment
of the peers participating in the system. Such phenomenon is also known as churn and
if not properly analysed and managed may have a strong impact on both correctness and
performance of the blockchain. To the best of our knowledge, currently there do not exist
results showing the impact of churn over the blockchain. We took a first step in this direction
by defining a framework that can be used to evaluate how existing consensus protocols for
blockchains respond to churn.

Reviewing and analysing the state of the art on consensus protocols for blockchain [6],
we observed that every blockchain protocol can be seen as the composition and orchestration
of the following main distributed building blocks:

an Overlay Management Protocol (OMP) responsible for connecting replicas into a logical

overlay network and preserve the connectivity of the overlay network graph;

a Communication Layer implementing one-to-one, one-to-many and many-to-many com-

munication primitives that allow the dissemination of transactions and blocks to all

interested replicas and
? Floris Ciprian Din1:1 and Silvia Bor'lomi;
5v icensed under Creative Commons License CC-BY 4.0
5th International Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).
Editors: Sara Tucci-Piergiovanni and Natacha Crooks; Article No. 8; pp. 8:1-8:2

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:dinu.1593921@studenti.uniroma1.it
mailto:bonomi@diag.uniroma1.it
https://doi.org/10.4230/OASIcs.FAB.2022.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

8:2

Blockchain Consensus Protocol Analysis Under Churn

an Agreement primitive (e.g., a consensus, a leader election, a committee-based voting)
that is used to select, validate and attach blocks to the blockchain consistently with other
replicas in the system.

Let us note that such primitives are not independent of each other but they rather work
in synergy. As a consequence, when the system becomes dynamic the effect of the churn
does not impact only the overlay network and the OMP but it also impacts all the other
layers built on top of it.

Research Direction and Contribution. Our research is aimed to define a framework that
can be used to analyse different blockchain solutions in dynamic settings and to compare
their characteristics. Our proposed framework is composed of four main elements:
a distributed building blocks composition model that allows to define a blockchain protocol
as composition of existing distributed building blocks.
a churn model that allows to characterize the dynamic of the system and to describe the
arrival and departure distribution of processes from the system (and in particular at the
OMP level).
a load model that allows to characterize the how transactions are generated by clients
a set of metrics that allows to analyse every blockchain protocol and to perform a
comparison between different protocols.

To create our composition model, we selected consensus protocols from the state of the
art (e.g., SCP [4], Tendermint [1], XRP [3], PBFT [2]) and we analysed them to identify the
set of assumptions concerning (i) the overlay network (ii) the communication primitives used
and (iii) the type of agreement implemented on top of them. Almost every algorithm either
assumes a fully connected overlay network (e.g., PBFT, Tendermint) or an overlay network
having the characteristics of a random graph (e.g., SCP). Concerning the communication
primitives, almost all the papers consider a reliable communication system without specifying
any further detail about its implementation. Then we analysed the state of the art concerning
OMPs and protocols implementing a reliable communication primitive. While from the
correctness point of view the many available solutions can be considered equivalent each
other, from the performance, dependability and robustness point of view they are not. Thus,
we implemented in OMNeT++ [5] a composition model that allows to define a blockchain
as a composition of (i) one OMP, (ii) one (or more) communication primitive(s) and (iii)
an agreement primitive and we are currently implementing several algorithms, exposing the
same interface, for any required building block.

—— References

1 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. CoRR,
abs/1807.04938, 2018. arXiv:1807.04938.

2 Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In Proceedings of the
Third Symposium on Operating Systems Design and Implementation, OSDI '99, pages 173186,
USA, 1999. USENIX Association.

3 Brad Chase and Ethan MacBrough. Analysis of the XRP ledger consensus protocol. CoRR,
abs/1802.07242, 2018. arXiv:1802.07242.

4 David Mazieres. The stellar consensus protocol: A federated model for internet-level consensus.
Stellar Development Foundation, 2015.

5 OMNeT++. Home page, 2022. URL: https://omnetpp.org.

6 Yang Xiao, Ning Zhang, Wenjing Lou, and Y Thomas Hou. A survey of distributed consensus
protocols for blockchain networks. IEEE Communications Surveys & Tutorials, 22(2):1432—
1465, 2020.

http://arxiv.org/abs/1807.04938
http://arxiv.org/abs/1802.07242
https://omnetpp.org

Improving Blockchain Resilience to Network
Partitioning by Sharding
Juncheng Fang &

University of California, Irvine, CA, United States

Farzad Habibi &
University of California, Irvine, CA, United States

Kevin Bruhwiler &
University of California, Irvine, CA, United States

Fayzah Alshammari &
University of California, Irvine, CA, United States

Faisal Nawab &
University of California, Irvine, CA, United States

—— Abstract

Blockchain plays a significant role in cryptocurrencies and growing applications like smart contracts.

However, prior blockchain algorithms did not consider large-scale network partitioning a considerable
concern while relying heavily on a reliable global network. Previous works have shown a possibility
of a massive disruption on the Internet. The author in [2] discusses the case of Internet disorder
due to solar superstorms, which can disconnect different geographical regions from each other for
months. Partitioning attacks are also notable concerns that should be considered, in which their
goal is to cut connections between a set of nodes and the rest of the network.

In the case of network partitioning, the main chain will fork into branches, and miners in
different disconnected regions will create multiple blocks in parallel. The longest chain rule in current
blockchain systems accepts only one of the branches after the network is recovered, and because of
that, all blocks in other branches will be pruned. Losing a considerable number of mined blocks is
not tolerable and significantly impacts the reliability of the ledger and miners’ benefit.

In this work, we aim to improve blockchain resilience by designing a partition-tolerance blockchain
system that: (1) split into branches when network partition happens. (2) merge existing branches
into one when the network goes back to normal. (3) ensure the safety and integrity of the blockchain.

Newly mined blocks will be collectively signed by a group of miners with a BFT protocol similar
to ByzCoin[1], where the consensus group is formed by the miners of the previous w blocks. When
a network partition happens, only part of the consensus group can be reached; thus the number
of signers w;, of the new block will be less than w. If a block with w, signers is published, every
node in the partition learns that they are now in a branch with around w,/w of the total hashing
power, and it can be identified by the signature of the block. After the network recovers, miners will
receive multiple branches, and they mine on a merging block which points to the last block of each
branch as the parent blocks. The consensus group will be selected from each branch according to
the branch size. Transactions in each partition are preserved after merging.

2012 ACM Subject Classification Computer systems organization — Reliability
Keywords and phrases resilience, partitioning, blockchain, collective signing

Digital Object Identifier 10.4230/0OASIcs.FAB.2022.9

Category Poster

—— References

1 Kogias et al. Enhancing bitcoin security and performance with strong consistency via collective
signing. In 25th useniz security symposium (useniz security 16), pages 279-296, 2016.

2 Sangeetha Abdu Jyothi. Solar superstorms: planning for an internet apocalypse. In Proceedings
of the 2021 ACM SIGCOMM 2021 Conference, pages 692-704, 2021.

© Juncheng Fang, Farzad Habibi, Kevin Bruhwiler, Fayzah Alshammari, and Faisal Nawab;
37 licensed under Creative Commons License CC-BY 4.0

5th International Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).

Editors: Sara Tucci-Piergiovanni and Natacha Crooks; Article No. 9; pp. 9:1-9:1

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:junchf1@uci.edu
mailto:habibif@uci.edu
mailto:kbruhwil@uci.edu
mailto:fayzaha@uci.edu
mailto:nawabf@uci.edu
https://doi.org/10.4230/OASIcs.FAB.2022.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

Why General Collective Intelligence Must Be the
Future of the Blockchain

Andy E. Williams @94
Nobeah Foundation, Nairobi, Kenya

—— Abstract

General Collective Intelligence or GCI is predicted to radically increase the speed and scale at
which blockchain technology can be designed, developed, and deployed as well as being predicted to
radically increase demand for those new blockchain based products and services where they don’t
involve consumption of limited physical resources. Therefore, if a GCI can be implemented, it is
predicted that GCI based platforms will quickly come to dominate the blockchain marketplace and
that GCI is the future of the blockchain. But it also must be the case that GCI is the future of
the blockchain because without it, through an effect called the “technology gravity well” blockchain
and other technologies have the possibility of introducing an unprecedented degree of centralization,
control, and abuse.

2012 ACM Subject Classification Human-centered computing — Human computer interaction
(HCT)

Keywords and phrases General Collective Intelligence, Human-Centric Functional Modeling, func-
tional state space, conceptual space, blockchain state space, cooperation state space

Digital Object Identifier 10.4230/OASIcs.FAB.2022.10
Category Poster

Related Version SoK: Is General Collective Intelligence the Future of the Blockchain?
Full Version: https://osf.io/preprints/africarxiv/u7jaz/

1 Functional State Space

Unlike ontologies, state spaces have the potential to represent any possible states of a system
and any possible process (behavior) that might be used to transition between those states,
in the same way that three dimensional Euclidean space has the potential to represent any
possible positions of a system and the motions that might be used to transition between
those positions. Functional state space differ from other state spaces in that a functional
state space is spanned by some minimal set of functions so that all functional states can be
expressed as some composition of that minimal set [3]. Any ontology describing the behavior
of a system can potentially be viewed as a subset of some functional state space, where that
subset is chosen by some centralized actor. Ontologies unlike functional state spaces are then
inherent sources of centralization.

2 Functional State Space and Exponentially Increasing General
Problem-Solving Ability

All systems can have their behaviors (functions and processes) described in terms of functional
state spaces. For any system described in terms of a functional state space, problems in
understanding the system are represented as the lack of a process capable of transitioning
the system from one state to another state. General problem-solving ability is represented
as the volume of functional state space that can be navigated per unit time, multiplied by
the density of functional states that must be navigated. Any system, including blockchain

© Andy E. Williams;
37 licensed under Creative Commons License CC-BY 4.0

5th International Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).
Editors: Sara Tucci-Piergiovanni and Natacha Crooks; Article No. 10; pp. 10:1-10:3

\\v OpenAccess Series in Informatics
OASICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:awilliams@nobeahfoundation.org
http://www.nobeahfoundation.org
https://orcid.org/0000-0002-9127-1003
https://doi.org/10.4230/OASIcs.FAB.2022.10
https://osf.io/preprints/africarxiv/u7jaz/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

10:2

Why GCI Must Be the Future of Blockchain

platforms, whose behaviors are expressed in terms of functional state spaces, can achieve
an exponential increase in ability to solve problems through the same pattern of solution in
functional state space [4]. This pattern of solution is General Collective Intelligence [2].

3 General Collective Intelligence (GCl)

A General Collective Intelligence or GCI is a hypothetical platform able to orchestrate groups
of individuals or intelligent agents in collectively executing any possible reasoning, and able
to organize any possible cooperation that might increase the complexity of the collective
reasoning groups are able to execute, where that cooperation might also increase the speed
and scale at which that reasoning might be executed. GCI defines a universal representation
of concepts and reasoning that can be shared between all participants in collective reasoning.
This “functional state space” of the collective cognition (called the “collective conceptual
space”) is hypothesized to have the ability to represent all possible reasoning processes, and
therefore all possible behaviors of this collective cognition. GCI also defines a cooperation
state space capable of representing all possible cooperation processes through which the
outcomes of that reasoning might be scaled. A GCI then has the potential to orchestrate the
execution of any possible collective reasoning and to do so through any possible process of
cooperation.

4 Applying Functional State Space and GCI to the Blockchain

All software can potentially be represented in terms of a hierarchy of functional state spaces,
including identity management, data management, the blockchain functional state space,
and other functional state spaces. If so then blockchain platforms can be represented by
a set of paths through blockchain state space. By decoupling blockchain platforms into
a library of functional components that are each represented by a path segment through
blockchain functional state space, then a GCI might exponentially increase ability to solve
any problem in that domain through assembling those path segments in order to navigate
from any initial functional state to any target functional state. Since a GCI can potentially
orchestrate cooperation between what might be billions of individuals, or even billions of
intelligent agents working on behalf of each individual, this self-assembly and adaptation
of software might take place dynamically and at orders of magnitude greater speed and
scale than humans could possibly achieve, radically increasing the speed and scale at which
blockchain technology can be developed, along with radically increasing the capacity of
developers to solve any blockchain problem, including increasing blockchain interoperability,
or cryptocurrency deployment while simultaneously increasing speed, scale, and security [1].

5 The Technology Gravity Well

GCI is a general system of decentralized decision-making that can be applied to any pro-
cess along the entire life-cycle of blockchain platforms from research and development to
administration. Without it, some blockchain platform related processes (usually design and
administration) tend to be centralized. Any technology that mediates interactions within
a group is centralized where it constrains decision-making to be aligned with the interests
of some subset of that group. Due to an effect called “the technology gravity well” [5] in
the absence of a general system for decentralization like GCI there is predicted to be an
irreversible free fall towards centralization with the advance of technology. In the case of

A. E. Williams

blockchain and other technologies for which decentralization is the main selling point, this
centralization might be invisible because it’s natural to assume centralization isn’t there,
because that centralization is too complex for most to see, and because this centralization
happens faster than it can reliably be detected and removed. This technology gravity well has
dire societal implications, namely centralization to the point that there can be no possibility
of social protection against even the worst transgressions. GCI is the only known mechanism
through which it is predicted to be possible to escape this technology gravity well.

6 Larger Societal Importance

In this paper it has been hypothesized that all systems and all properties of systems can be
understood in terms of functional state spaces. If so then defining a blockchain functional
state space to represent all possible functions of platforms within the blockchain domain might
make it possible to define expressions for properties like complexity that apply to whatever
objects represent the functional states of that blockchain domain. In the same way, defining
a functional state space (the conceptual space) to represent all possible functions of the
cognitive system might make it possible to define expressions for properties like “importance”
that apply to concepts as the functional states of that domain. Speaking about the property
of importance specifically, it is hypothesized that the importance of a tool can potentially be
understood in terms of the volume of conceptual space it allows to be navigated. If so, then in
exponentially increasing the navigable volume of conceptual space, where simple geometrical
arguments in conceptual space suggest this exponential increase has never been possible
before, GCI might be the most important innovation in the history of human civilization
and one that might radically increase our capacity to solve every collective challenge from
poverty to climate change [1]. However, due to a great many factors coming together, no one
yet knows about GCI and fewer still understand it. It is hoped this short introduction might
encourage more researchers to take up the challenge of validating that GCI can be applied
to the blockchain, and to generalize their example so it can be used to validate whether GCI
can be applied to solve other problems in other functional state spaces like the conceptual
space, such as accelerating progress towards the sustainable development goals.

—— References

1 Andy E Williams. Cognitive computing and its relationship to computing methods and ad-
vanced computing from a human-centric functional modeling perspective. In SCRS Conference
Proceedings on Intelligent Systems, SCRS, New Delhi, India, pages 16-33, 2021.

2 Andy E Williams. Defining a continuum from individual, to swarm, to collective intelligence,
and to general collective intelligence. International Journal of Collaborative Intelligence,
2(3):205-209, 2021.

3 Andy E Williams. Human-centric functional modeling and the unification of systems thinking
approaches: A short communication. Journal of Systems Thinking, 2021.

4 Andy E Williams. Automating the process of generalization, March 2022. doi:10.31730/0sf.

io/fbdus.

5 Andy E Williams. Breaking through the barriers between centralized collective intelligence
and decentralized general collective intelligence to achieve transformative social impact. Inter-
national Journal of Society Systems Science, 2022.

10:3

FAB 2022

https://doi.org/10.31730/osf.io/fb4us
https://doi.org/10.31730/osf.io/fb4us

	p000-Frontmatter
	Preface

	p001-Abraham
	p002-Conchon
	p003-DelaRocha
	p004-Sonnino
	p005-DelPozzo
	1 Introduction
	2 System model and definitions
	3 Tenderbake and Round-based BFT-Consensus protocols
	4 Fork Taxonomy
	4.1 Fork Taxonomy
	4.1.1 Discussion on accountability

	5 Fork Accountability
	5.1 Fork Accountability problem definition
	5.2 Fork Accountability with all messages
	5.3 Partial Fork Accountability with Tenderbake
	5.4 Full Fork Accountability with piggyback Tenderbake
	5.4.1 Description of the modification to Tenderbake
	5.4.2 Correctness proofs

	5.5 Accountability with Tenderbake over reliable broadcast
	5.6 Discussion

	6 Conclusion and Future Work
	A Appendix – CR fork Scenarios
	A.1 Scenario 1
	A.2 Scenario 2

	p006-Tennakoon
	1 Introduction
	2 Preliminaries
	2.1 Blockchain
	2.2 Model
	2.3 Bootstrapping

	3 The Dynamic Sharding Protocol
	3.1 Overview
	3.2 Shard creation
	3.3 Shard closing
	3.4 Shard committee rotation
	3.5 Transaction assignment
	3.6 Availability
	3.7 Proof sketches

	4 Evaluation
	4.1 Dynamic shard adjustment
	4.2 Dynamic node adjustment

	5 Related Work
	5.1 Payment Blockchains
	5.2 DApp supported blockchains

	6 Conclusion

	p007-Bruhwiler
	p008-Dinu
	p009-Fang
	p010-Williams
	1 Functional State Space
	2 Functional State Space and Exponentially Increasing General Problem-Solving Ability
	3 General Collective Intelligence (GCI)
	4 Applying Functional State Space and GCI to the Blockchain
	5 The Technology Gravity Well
	6 Larger Societal Importance

