
Fork Accountability in Tenderbake
Antonella Del Pozzo #

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Thibault Rieutord #

Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Abstract
This work investigates the Fork Accountability problem in the BFT-Consensus-based Blockchain
context. When there are more attackers than the tolerated ones, BFT-Consensus may fail in delivering
safety. When this occurs, Fork Accountability aims to account for the responsible processes for that
safety violation.

As a case study, we consider Tenderbake when the assumption on the maximum number of
Byzantine validators – participants involved in creating the next block – does not hold anymore.
When a fork occurs, there are more than one-third of Byzantine validators, and we aim to account
for the responsible validators to remove them from the system. In this work, we compare three
different approaches to implementing accountability in the case of a fork. In particular, we show
that in the case of a fork, if we do not modify Tenderbake or we enrich it with a reliable broadcast
communication abstraction, then we can account Byzantine processes only in particular scenarios.
Contrarily, if we change Tenderbake such that the exchanged messages also carry extra information
(which size is proportional to the duration of the current consensus computation), then we can
account for Byzantine processes in all kinds of scenarios; however, at the cost of unbounded message
size and unbounded local memory.

2012 ACM Subject Classification Theory of computation → Distributed algorithms

Keywords and phrases Blockchain, BFT-Consensus, Fork Accountability

Digital Object Identifier 10.4230/OASIcs.FAB.2022.5

Funding This work was founded by Nomadic Labs.

Acknowledgements The authors warmly thank Lăcrămioara Aştefănoaei, Eugen Zălinescu and Sara
Tucci-Pieriogvanni for all the insightful discussions that improved the quality of this work.

1 Introduction

A Blockchain, as the name suggests, is a chain of blocks. Current Blockchain solutions
are divided into blockchains with probabilistic finality and blockchains with immediate
finality. The most known blockchains, Bitcoin [18] and Ethereum v1.0 [20], are based on the
Proof-of-Work mechanism to decide on the next block to append, and in that case, they
provide probabilistic finality. Once a block appears in the i − th position of the blockchain,
it will stay there with a probability that exponentially grows proportionally to the length of
the chain extending it [14]. In the case of immediate finality, as in the case of Tendermint [6]
and Tenderbake [1], we have that a new BFT Consensus instance is run to decide on the
next block to append. Hence, once a block appears in the i − th position it stays there
forever. However, BFT Consensus works as long as, given a set of n committee members
(or validators) in charge to decide for the next block, at most f = n/3 − 1 are affected by
Byzantine failures (validators showing arbitrary behaviors). As long as this assumption holds,
we guarantee that precisely one block is decided for each consensus instance. Contrarily, if
the assumption is violated, the blockchain can experience forks (loss of safety) or interruption
of block production (loss of liveness).

© Antonella Del Pozzo and Thibault Rieutord;
licensed under Creative Commons License CC-BY 4.0

5th International Symposium on Foundations and Applications of Blockchain 2022 (FAB 2022).
Editors: Sara Tucci-Piergiovanni and Natacha Crooks; Article No. 5; pp. 5:1–5:22

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antonella.delpozzo@cea.fr
mailto:thibault.rieutord@cea.fr
https://doi.org/10.4230/OASIcs.FAB.2022.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

5:2 Fork Accountability in Tenderbake

Nevertheless, it is ambitious to assume that at most f validators are affected by Byzantine
failures in a long-running system. Especially if we think that in the current solutions, we
potentially select a new committee for each new block, and there could be mistakes in this
selection process from time to time. On the contrary, if we do not frequently change the
committee members, then bribery attempts might occur. To this end, since most of the
current selection mechanisms are based on the stake held and bonded by validators, the
bonded stake of misbehaving validators can be slashed in case of provable misbehavior. It
plays as a disincentive to misbehave. In such a context, producing proof of misbehavior is a
key aspect in putting in place actions to disincentivize validators from misbehaving. Once we
have them, such proofs can be used to perform slashing actions. The procedure of deriving
non-reputable proofs of misbehavior is known as accountability [16].

In this work, we consider accountability when more than f processes in a committee are
Byzantine faulty and produce a fork. In this case, we refer to it as the fork accountability
problem. Similarly, as in [12], in case of loss of safety, we aim to identify at least f + 1 of the
byzantine processes responsible for the fork that occurred. We consider as a case of study
Tenderbake [1], a BFT-Consensus protocol for the Tezos Blockchain [15, 3] designed for an
eventually synchronous system in which processes are equipped with bounded buffer and can
experience messages loss before the beginning of the period of synchrony.

Our contribution is the following. First, we organize the different scenarios that can
induce a fork in Tenderbake in a fork taxonomy. Secondly, we design and compare three
accountability approaches: the first considers Tenderbake as it is and investigates in which
scenarios we can achieve accountability; in the second approach, we show how to modify
Tenderbake to enrich messages with the necessary information to achieve accountability but
at the price of unbounded message size; in the third approach, consider an approach in the
middle of the previous two. We add reliable communications (contrarily to the previous two
approaches) and some extra information in the messages. Interestingly, we obtain the same
results as in the first approach. In the rest of the paper, we replace the f standard notation
with T to design the maximum number of tolerated Byzantine processes. We use fi to design
the actual number of Byzantine processes during the consensus instance i, such that fi < n,
where n is the number of processes in the committee.

Related Work. Distributed system research areas are more focused on failure detectors [10, 5]
than accountability. While the failure detector aims to provide each system process with the
identities of faulty processes to help them make progress in the computation, accountability
aims to provide non-repudiable proofs that can be shared with other processes. It plays a
crucial role in putting in place countermeasures against faulty processes in a distributed
system. As pointed out in [2], if processes are accountable for their behavior, then rational
processes have an incentive to behave correctly.

To the best of our knowledge, PeerReview [16] is one of the first works that proposed
a general solution to have accountability in distributed systems. They developed a system
called PeerReview that implements accountability as an add-on feature for any distributed
system. Each process in the system records messages in tamper-evident logs; an auditor
can challenge a process, retrieve its logs, and simulate the original protocol to ensure that
the process correctly behaved. They show that in doing so, it is always possible to identify
at least one Byzantine process (if some process acts in a detectable Byzantine way). The
main issue is that an auditor, to prove that a process is Byzantine, must receive a response
from it. If no response is received, then the auditor cannot determine whether the process is
Byzantine or whether the network has not yet stabilized. It follows that the Byzantine will

A. Del Pozzo and T. Rieutord 5:3

only be suspected forever but not proved guilty. This limitation is common to distributed
protocols that are not designed to provide accountability. That is also true in the blockchain
context, we observe that protocols as Tenderbake [1] and Tendermint [17] suffers from the
same problem. Indeed, even though it is possible to observe deviation from the protocols,
it might be necessary to prove the absence of messages to prove a party is guilty of bad
behavior. For example, in a protocol, a message m is triggered on the reception of message
m′ from a quorum of processes. If m is triggered without the reception of sufficiently many
occurrences of m′, then the only way to prove that m is an expression of bad behavior is to
prove that the causally dependent messages m′ do not exist.

Polygraph [12] is the first work that manages to have accountability in the case of
Byzantine behaviors, circumventing this issue by using message justifications. Contrarily to
PeerReview, they do not use an accountability module as an add-on feature for a distributed
protocol; they designed a distributed protocol that provides accountability features by design.
Intuitively, messages sent during the computation carry the necessary information to have
accountability in the case of forks. In case of failures, there is no need to query processes to
obtain proof of their innocence.

Unlike adding extra accountability information in the protocol’s messages, as Polygraph
does, another accountability approach is to add extra information directly into the blockchain
itself. While not done for accountability purposes, Streamlet [9] creates blocks in each round
of computation while providing finality only when particular conditions are met. In other
words, in Streamlet processes add blocks to a blocktree, and the fact that a block is added
to the tree does not mean that such block is final. This allows the blocktree to be formed
of non-finalized concurrent branches keeping track of the evolution of the computation.
For finalization, Streamlet applies a rule to the tree to select the finalized branch. As a
side result, it has been showed that Streamlet provides accountability without the need to
add extra information, either on chain or in the exchanged messages [4]. Indeed, if two
concurrent branches manage to be finalized, then the faulty behavior can be traced back to
conflicting blocks up to the responsible processes. The work in [4] provides a specification
of Accountability for Streamlet. When we compare the information that processes keep
locally, we observe that by default, nodes keep intermediary unconfirmed blocks contrarily to
Tenderbake. This provides an interesting trade-off between the amount of information and
the Accountability capabilities.

In the Proof-of-Stake blockchain context, accountability represents an important goal.
The idea is that users that violate the protocol can be punished by confiscating their deposited
stake (e.g., Casper [7]). Tendermint as well is going in that direction 1. However, there is
not yet a solution specification that exhaustively performs fork accountability, encompassing
all scenarios. The work of Sheng et al. [19] aims at modifying existing blockchain BFT
consensus protocols to enforce them with fork accountability. In particular they consider
PBFT [8], HotStuff [21] and Algorand [11]. Interestingly, a very recent work, [13] presents
how to turn any consensus protocol into an accountable one with two additional all-to-all
communication steps. It is important to stress that in the case of Tenderbake, we have to
face an extra difficulty given by the lossy nature of channels, which poses an extra challenge
in collecting proofs in case of misbehavior compared to the existing works.

1 The fork accountability was described in the Cosmos blog https://v1.cosmos.network/resources/
whitepaper#fork-accountability as in Tendermint discussions https://github.com/tendermint/
tendermint/issues/4189. In the Tendermint documentation, we can find an analysis of the kind
of Byzantine misbehavior that we can observe with respect to the protocol execution https://docs.
tendermint.com/master/spec/light-client/accountability/#on-chain-attacks.

FAB 2022

https://v1.cosmos.network/resources/whitepaper#fork-accountability
https://v1.cosmos.network/resources/whitepaper#fork-accountability
https://github.com/tendermint/tendermint/issues/4189
https://github.com/tendermint/tendermint/issues/4189
https://docs.tendermint.com/master/spec/light-client/accountability/#on-chain-attacks
https://docs.tendermint.com/master/spec/light-client/accountability/#on-chain-attacks

5:4 Fork Accountability in Tenderbake

Our contribution. In this document, we adapt the misbehavior analysis in the Tendermint
context to Tenderbake [1], and we derive a fork taxonomy. Furthermore, we establish that
with the current version of Tenderbake, we can only account for Byzantine processes for a
subset of the possible fork typologies. Nevertheless, if we consider an extended version of
Tenderbake enriched with message justifications, we can derive accountability conclusions
with any kind of forks. The price to pay is the requirement of unbounded local memory due
to the unbounded size of messages. This result makes a step forward in understanding the
cost of Fork Accountability depending on the kind of protocol.

Paper organization. The work is organized as follows, in Section 2 we define the system
model as an extension of the system model for Tenderbake [1]. Section 3 recalls how
Tenderbake works, and Section 4 organizes the different kinds of forks in a fork taxonomy and
discusses the difficulty of having accountability in different cases. In Section 5.1 we define the
Fork Accountability problem and we discuss how to solve it in the following cases: if we can
collect all exchanged messages before a fork (Section 5.2); if we consider Tenderbake as it is
(Section 3); if we enrich Tenderbake with message justifications (Section 5.4) and finally; if,
contrarily to Tenderbake in [1], we have reliable communications (Section 5.5). In Section 5.6
we compare and discuss the trade-offs between the accountability and the message costs of
the presented approaches, and finally, in Section 6 we discuss future directions.

2 System model and definitions

In this work, we refer to Tenderbake as defined in [1]. Briefly, Tenderbake solves Dynamic
Repeated Consensus, i.e., it executes consensus instances in sequence to produce an infinite
output of decided values. Each consensus instance is executed by a (possibly) different
committee of n processes. We assume that in the committee of processes running a consensus
instance, T is the maximum number of Byzantine processes, and the number of committee
members is at least n = 3T + 1. For each committee ci, we refer to fi as the number of
Byzantine faulty processes present in such a committee. Additionally, for each committee
ci, if fi ≤ T then we say that ci is a correct committee, otherwise ci is a Byzantine-faulty
committee. Processes have access to digital signing and hashing algorithms. For simplicity,
we assume that cryptography is perfect: digital signatures cannot be forged, and there are
no hash collisions. Each process has an associated public/private key pair for signing, and
processes can be identified by their public keys.

We consider the same assumptions as defined in the system model of Tenderbake [1]. In
particular, we assume a partially synchronous system, in which after some unknown time τ

(the global stabilization time, GST) the system becomes synchronous and channels reliable.
That is, there is a finite unknown bound δ on the message transfer delay. Before τ , the
system is asynchronous, and channels are lossy. We assume the presence of a best-effort
broadcast primitive used by processes participating in a consensus instance. Broadcasting
messages is done by invoking the primitive broadcast. This primitive provides the following
guarantees: (i) integrity, meaning that each message is delivered at most once and only if
some process previously broadcasts it; (ii) validity, meaning that after τ if a correct process
broadcasts a message m at time t, then every correct process receives m by time t + δ.
This communication primitive is built on top of point-to-point channels, where exchanged
messages are authenticated. When specified, we consider a reliable broadcast abstraction
built on top of no lossy channels, which provides integrity, validity, and agreement. The

A. Del Pozzo and T. Rieutord 5:5

integrity property does not change, and contrarily to the best-effort broadcast, the validity
became, if a correct process broadcasts a message m at time t > τ , then it receives it. The
agreement property guarantees that if a correct process receives m at time t > τ , every
correct process eventually receives it by time t + δ.

In the following, we consider that processes are executing a protocol for solving Dynamic
Repeated Consensus (DRC) as defined in [1]. Informally, given that processes have an
infinite sequence of input values, DRC guarantees the following three properties: (i) progress:
each correct process has an infinite sequence of output values; (ii) validity: for each correct
process, the sequence of output values satisfies a predetermined predicate isValid(); and (iii)
agreement: at any time, for any two sequences of outputs at correct processes, one is the
prefix of the other. In the rest of the document, we use the terms agreement and safety
interchangeably, and the same with the terms progress and termination.

3 Tenderbake and Round-based BFT-Consensus protocols

In this section, we present the main structure of Tenderbake. We start with a general
overview of a round-based BFT-Consensus protocol, and we give more details on the specifics
of Tenderbake, which is at the base of DRC. For a complete description of Tenderbake we
refer to [1]. Round-based BFT-Consensus protocols are executed by a set of n processes,
such that one process per round is selected as proposer. The proposer is in charge to drive
all the other correct processes to agree on the same value at the end of that round. If this is
not the case, a new round begins with a new proposer. To avoid safety violation between one
round and another, processes carry certain information from one round to another. Given
communication delay, we could have that only some correct process decides for a value in a
round r, which implies that all the other correct processes have to agree on that value in the
subsequent rounds. In most cases such as Tenderbake and Tendermint, safety is preserved
thanks to the locking mechanism.

In particular, Tenderbake works as follows. Each round is divided into three sequential
phases: PROPOSE, PREENDORSE, and ENDORSE. During the PROPOSE phase, only
the unique designated proposer proposes to the committee members a single value b (a
block proposal), either a new value or one inherited from a previous round. During the
PREENDORSE phase, a process preendorses b if b comes from the designated proposer
and if the process is not already locked or if it is locked on an outdated value. During the
ENDORSE phase, if processes receive a preendorsement from a quorum for b, they lock on
it and endorse it. Finally, if processes receive an endorsement from a quorum for b, they
decide b. Let us stress the role of the lock variable. Such variable is set to a value b when
potentially there could be some processes about to decide on it, and it is set to another value
b′ ̸= b only when a process observes evidence that no correct process might have decided on
b. Each process signs the messages it sends, and each message carries a value b associated
with the round and the phase. In the same spirit, each proposed block b is labelled with the
round and the proposer that proposes it and became decided when there exists a Quorum
Certificate (QC) of messages labelled with the same round r and the phase ENDORSE from
2T + 1 different processes that refers to b. Each block b is composed of a block header and a
block payload. In this context, we are not interested in the content of a block payload. Each
block has the pointer to its (unique) predecessor block in the block header. If there are two
different decided blocks with the same predecessor, we have a fork (safety violation).

FAB 2022

5:6 Fork Accountability in Tenderbake

4 Fork Taxonomy

This section aims at analyzing how forks can occur when committees are byzantine. The result
is a fork taxonomy whose purpose is twofold. First, it helps in designing an accountability
module: to collect evidence of Byzantine activities and make them accountable for their
actions (if possible). Second, it helps in understanding the impact of Byzantine committees.
Nevertheless, it is also the first step to designing fork recovery strategies, which is out of the
scope of this document.

4.1 Fork Taxonomy

In the following, we define the kind of forks that can occur when Tenderbake runs under the
hypothesis of more than T Byzantine failures in some committee ci, in particular, T < fi.
Notice that the same can be applied to other repeated consensus protocols based on the
locking mechanism and rotating coordinator (proposer) paradigm. Let us briefly recall
that each consensus instance proceeds in rounds. Each round has a different proposer, and
specific information is carried by processes from one round to another, such as the locking
variable, to prevent the safety violation. In such context, we distinguish two kinds of forks,
Intra-round forks, when two or more valid blocks2 are produced during the same round, and
Cross-round forks, when two or more valid blocks are produced across different rounds due
to the violation of the locking mechanism. Finally, we present the Cross-committee fork,
which occurs when we allow multiple committee selections for the same height (for instance,
to deal with the absence of valid block production). Let us remark that this fork cannot
occur with the current version of Tenderbake, and we discuss it for completeness. Given a
Byzantine committee ci, we define the following kinds of forks that can occur. In particular,
if we have T < fi ≤ 2T then only safety can be violated (or liveness, but there are no forks),
while if 2T < fi ≤ n, then both safety and validity can be violated.

Intra-Round (IR) fork (T < fi ≤ 2T): the fork is produced during the same round,
i.e., there are at least two valid blocks under the same proposer. All the blocks in this
fork share the same committee, proposer, round, and the same height;
Full Byzantine Intra-Round (FBIR) fork (2T < fi ≤ n): the fork is produced
during the same round without any needed participation from correct committee members.
Notice that we could also have a non-compliant block with the application level in this
case even though it is valid in the sense that it carries a CQ, e.g., a block proposed by a
Byzantine that is not the current proposer for that round. (Validity property violation)
Cross-Round (CR) fork (T < fi ≤ 2T): the fork is produced during different rounds,
i.e., there are at least two valid blocks proposed during two distinct rounds and potentially
distinct proposers. All the blocks in this fork share the same committee and height.
Full Byzantine Cross-Round (FBCR) fork (2T < fi ≤ n): the fork is produced
during different rounds without any needed action from correct committee members.
Notice that in this case, as before, we can have the Validity property violation.

2 A block is said to be valid if it comes with a Quorum Certificate (CQ) of 2T + 1 different endorsement
(votes, or precommit – depending on the protocol vocabulary) messages from the same round and height.

A. Del Pozzo and T. Rieutord 5:7

4.1.1 Discussion on accountability
Let us recall that if there is a fork induced under the same committee, then we can have two
scenarios, IR and CR forks. Interestingly, let us consider the first version of Tenderbake [1], in
the case of (FB) IR forks. We can produce accountability proofs for any IR forks, considering
the blocks’ information. However, in the case of CR, the information in the blocks is not
enough. More details are below.

IR-Fork. In this case, the proposer for the round is Byzantine and proposes more than
one block such that correct processes endorse only the first one they are aware of, and
Byzantines endorse both. Any block in the fork comes with a QC of 2T + 1 endorsements.
It follows that any pair of blocks share at least T + 1 endorsements and up to 2T . Those
are the accountability proof for at least T + 1 Byzantine committee members. The
proposer is also trivially accountable, and any pair of blocks give the proof of the fork.

FBIR-Fork, in this case, we can apply the same reasoning as for the IR-Fork but
contrarily to it, two blocks can share the totality of endorsements, up to 2T + 1. In
this case, one of the proposers might be correct (the round proposer if it proposed only
one of the two blocks).

CR-Fork. The fork is composed of blocks produced during different rounds. In this case,
the fork is due to the locking mechanism violation, i.e., there is some correct process that
locks for different valid blocks (instead of at most one), not being aware that a previously
preendorsed and endorsed block was decided (collecting 2T + 1 endorsements). In this
case, accountability is not possible by solely using the block’s information. Indeed, we
have that pairs of valid blocks can share the validators that signed the endorsements in
their QC. For such a reason, Tenderbake has to be modified to gather enough information
to distinguish between correct committee members that endorsed multiple times from
Byzantine committee members. We discuss those modifications in the next sections.

FBCR-Fork, in this case, the lock does not have to be violated. Byzantine processes
can directly produce two valid blocks by endorsing a proposal (from a valid proposer
or not). This case inherits the same limitation as the previous one.

5 Fork Accountability

In this section, we define the Fork Accountability problem. Hereafter, we provide a ped-
agogical solution with all the available information (i.e., messages). Later we move to the
specific case of the restricted information available with Tenderbake to discuss the limitation
of the accountability accuracy and completeness that we can get. We further design modific-
ations to Tenderbake to satisfy Fork Accountability. Finally, we investigate how improved
communication primitives impact Fork Accountability.

5.1 Fork Accountability problem definition
An Algorithm A (Tenderbake in our case) is modeled as a collection of n deterministic
automata, where A(i) specifies the behavior of process i. Computation proceeds in steps of
this automata. In each step (i, m, A) a process i first receives a message m or accepts an
input (internal or external event) and after it changes its states according to A(i). Finally, i

sends a message specified by A(i) for the new state to processes or produces an event. Let
E(A)i be an execution of A at process i as the sequence of steps executed by i. Finally, let
M(E(A)i), for conciseness Mi, be the set of messages m received by process i during an
execution of A.

FAB 2022

5:8 Fork Accountability in Tenderbake

We define the accountability module for Tenderbake in terms of completeness and accuracy
properties. Such module takes as input the messages Mi received by a correct process i

during the execution of Tenderbake. If a fork occurs, it outputs the faulty participants and
proof of their responsibility in producing such a fork.

(Completeness) if a fork occurs then at least T + 1 committee members are accountable
as faulty;
(Accuracy) no correct process is ever accountable as faulty.

The Completeness property is similar to the Accountability property of the Accountable
Byzantine Agreement problem as defined in [12] which merges the Fork Accountability and
the BFT-Consensus problems.

5.2 Fork Accountability with all messages
For pedagogical purposes, in the following, we describe how to perform accountability if a
correct process has access to the whole set of messages exchanged during an execution i of
Tenderbake, Mi. More in detail, given the occurrence of a fork, a process can collect all the
messages exchanged between correct processes before that fork occurs, as if they have been
transmitted after τ by reliable and timely communication abstractions. Let us remember
that the protocol proceeds in rounds and each round is composed of three steps. During
each step, each correct committee member sends at most one message.

In the case of an IR fork, the proposer is necessarily Byzantine. Indeed, for each round,
processes consider only the proposer’s proposed values, which is supposed to propose a
single value. Hence if there is an IR fork, there are not sufficiently many Byzantine processes
to issue a fork by themselves, then the proposer proposed at least two different values.
Moreover, the committee is Byzantine as well because there must have been sufficiently many
Byzantine committee members who endorsed twice on different block proposals. In that case,
given a fork at round r, the Byzantine members are detected by selecting from Mi all the
members that sent more than one message labeled with round r and phase PROPOSE (more
than one block was proposed), and that sent more than one message labeled with round r

and phase ENDORSE (Byzantine validators endorsed twice and for different blocks). In the
case of an FBIR fork, it can happen that the selected proposer did not propose a block in
the fork for that round. In such a case, it means that all processes in the QC are byzantine.

Before digging into the CR fork, let us first describe how it may occur, detailing the faulty
flip-flopping scenario 3 which provokes a violation of the locking mechanism and may result
in a fork. Interestingly, with such a fork, the information carried in the QC of the decided
blocks is not enough to perform fork accountability. Let us first make some observations
about Tenderbake:

A correct committee member decides for a block b associated to a round r if it receives a
QC, 2T + 1 endorsements, for it.
Each correct committee member endorses at most once during a round r, while byzantine-
faulty committee member can endorse for an unbounded number of different blocks.
When a correct committee member i endorses for block b at round r, it also locks for
block b at round r.

3 https://docs.tendermint.com/master/spec/light-client/accountability/#flip-flopping

https://docs.tendermint.com/master/spec/light-client/accountability/#flip-flopping

A. Del Pozzo and T. Rieutord 5:9

The same correct committee member i re-locks (and endorses) for another block b′ if i

receives a proposal for b′ at round r2 and i already received 2T + 1 preendorsements for
b′ produced at round r1, r < r1 < r2 (cf. Tenderbake [1]).

This means that, if i decided for b but the committee is Byzantine then it can exist some
round r1 > r where there are 2T + 1 − fi correct committee members that preendorse b′

along with fi Byzantine committee members, then, at round r2, i can re-lock on b′ and
decide for it. Hence, the locking mechanism is violated. In that scenario, blocks b and b′ can
share endorsements signed by the same committee members, either correct or Byzantine. In
that case, looking only at the QC of b and b′ it is not possible to distinguish correct from
Byzantine processes and to perform any fork accountability.

Let us now generalize the flip-flop scenario. Let us consider an execution E(A) of
Tenderbake and let B the sequence of all blocks that obtains a QC during E(A). Let SB be
the set of T + 1 Byzantine committee members and let SL be a set of T correct committee
members that lock and re-lock on all the blocks in B, and finally, let SU be the set of correct
committee members that never lock.

At round rk block b is proposed. SB and SL pre-endorse b. Processes in SL, contrarily to
processes in SU , receive the 2T + 1 pre-endorsements for b and then endorse and lock
on it. Processes in SB can assemble the QC for the decided block b with the 2T + 1
endorsements (T from processes in SL and T + 1 from processes in SB) and delay its
diffusion for as long as they wish.
At round rk+1 block b1 is proposed. SB and SU pre-endorse it and processes in SL do
not, because already locked. Processes in SL receive all the 2T + 1 endorsements for b1.
At round rk+2 block b1 is proposed again. This time, processes in SL can pre-endorse b1
along with SB (because they get the 2T + 1 pre-endorsements for b1 during the previous
round). Processes in SL receive the 2T + 1 pre-endorsements for b1 and then endorse and
lock it. Processes in SB can assemble a valid block b1 with the 2T + 1 votes (T from
processes in SL and T + 1 from processes in SB) and delay its diffusion for as long as
they wish.

In this case, in Mi there might not be any committee member that sent more than one
message during the same step. A correct committee member does flip-flopping from b to b1
when it receives enough pre-endorsements for b1 from a previous round (still greater than the
round in which it locked on b). On the contrary, a Byzantine committee member can flip-flop
without needing those messages that justify its action. Thus, in order to account Byzantine
committee members processes must look for unjustified flip-flopping, i.e., a committee member
that endorsed a block b at round rk and preendorsed b1 at round rk+2 without the existence
of 2T + 1 preendorsements for b1 at a round rk+1, with rk < rk+1 < rk+2. In the described
scenario, the withheld QC for b at round rk (that contains the endorsement messages labeled
with rk issued by processes in SB) plus the preendorsement for block b1 at round rk+1 issued
by processes in SU constitute a proof of processes in SU performing a faulty flip-flop (as
we discuss, a legal flip-flop needs at least three rounds). The origin of the faulty flip-flop
stands in the lock violation of Byzantine processes. However, it might not always be so
direct to detect it. In the next Sections, we will discuss how to generalize this approach such
that it is always possible to find a proof. This analysis would be possible combining the
QCs of the decided blocks and Mi if Mi contains all messages ever exchanged during the
protocol execution. Unfortunately, this is not possible with Tenderbake given the message
lossy nature of the communication channels before τ , the reason why after that, we discuss
how information can be added to the QC to perform CR Fork Accountability.

FAB 2022

5:10 Fork Accountability in Tenderbake

5.3 Partial Fork Accountability with Tenderbake
In the case of Byzantine committee, Tenderbake can incur (FB)IR and (FB)CR forks. In the
first case, as we already discussed, accountability is straightforward. The information that
we are interested in a block bi is the proposer and the quorum certificate (CQ) signatures
that come with the round in which they were issued. We use the following notation:
sign(block) = ⟨proposer, {member1, . . . , member2T +1}, round⟩. Concerning forks, we use the
following terminology: we say that two4 blocks bi, and bj is a fork if they are two blocks of
the blockchain with the same parent.

In case of an invalid block in an FBIR or FBCR fork, that is, with a round that does
not correspond with the block proposer, then the proposer and all committee members that
endorsed the block are byzantine processes, that is, sign(bj).members and sign(bj).proposer.

In the case of an IR fork, each correct committee member sends only one message per
phase in each round. It follows that, for each two pairs of blocks bi, bj in a fork, the faulty
processes results from the intersection of sign(bi).members and sign(bj).members. Thus the
proposer and at least f committee members are accountable for the fork.

In the case of a CR fork there are no blocks in the same fork sharing the same round
and the intersection of sign(bi).members and sign(bj).members is different than ∅. However,
this gives us no clue about the faulty processes. Let us consider the scenario described in
the previous section concerning the faulty flip-flopping. This scenario originates in blocks
having QC sharing the same 2T + 1 signatures. We cannot distinguish among them which
signatures belong to correct committee members (if any) and which to Byzantine ones.

To discern correct from Byzantine, we need to combine the information carried by blocks
with the exchanged messages. Indeed, a correct committee member does flip-flop from bi

to bj when it receives enough pre-endorsements for bj from a previous round (still greater
than the round in which it locked on bi). In contrast, a Byzantine committee member
flip-flops without having those messages that justify its action. Moreover, let us recall that
no pre-endorsement messages are recorded in the block. Thus those messages need to be kept
locally to perform accountability in case of a fork. Therefore, ideally, all messages exchanged
during the computation need to be saved. However, committee members do not rely on
reliable communication channels, and not all messages are diffused reliably before τ .

In the following, we describe different approaches to provide the accountability module
with the necessary information.

5.4 Full Fork Accountability with piggyback Tenderbake
The idea of the solution is relatively simple. Processes produce justifications when locked on
a value b and pre-endorse or endorse a different value b′ ̸= b; for shortness in the following,
we say that processes do not follow their lock. Notice that being locked on a value b is a
local event. However, in the case of a fork involving b we might observe an endorsement
for b in a QC. Indeed, a faulty flip-flopping occurs after some processes ignored their lock
and preendorsed another value incorrectly. The issue is determining which processes ignored
their lock incorrectly from those who followed the protocol. To distinguish between the two,
we propose to provide justifications for these preendorsements votes.

When a process is locked but preendorses another value that was later proposed, if correct,
it furnishes a quorum of preendorsement messages for the given value. It forms a justification
when a process is not following a lock value. All these justification sets are kept in memory

4 We consider for simplicity the case in which two blocks compose forks, but it can be easily generalized.

A. Del Pozzo and T. Rieutord 5:11

and are added to preendorsement and endorsement messages. That is if a process p is locked
at round i and does not follow its lock at round i + k, then the justifications set of the
preendorsement (endorsement) message contains the first preendorsement quorum certificate
for a round between i+1 and i+k −1. Given a fork composed of two blocks, the justification
information and the two blocks’ endorsement messages should make it possible to account
for at least f + 1 byzantine processes. However, this information alone is not enough when
the processes that signed the second block were not directly involved in the flip-flopping.
Thus, the justifications must also contain transitive justifications. More into details, if p is
induced to flip-flop thanks to the messages from q, then p re-transmits also the justifications
for the message from q. Appendix A provides a detailed explanation of the intuition behind
our solution. In particular, Appendix A.1 describes a first approach of piggybacking, and
Appendix A.2 details which case the previous approach does not work and introduces the
transitive justifications.

5.4.1 Description of the modification to Tenderbake

Figures 1–2 detail the Tenderbake specification as described in [1] plus the modifications
for the piggybacking (in red in the pseudo-code). It is out of the scope of this work
to explain the Tenderbake functioning. In the following, we provide details useful for
the fork accountability. Nevertheless, an interested reader can find more details in [1].
Processes have an extra variable justificationp, a list of triples of the following type
{LR : int, LV : prop, peQC : set of messages}. The purpose is to keep for each Locked
Value LV and Locked Round LR at process p the justification peCQ that allows the flip-
flopping. peCQ is compounded of 2T + 1 pre-endorsement messages for the new locked
value received after round LR and before the new locked round. Moreover, pre-endorsement
and endorsement messages have an extra field justifyp that is composed of a list of peQC

extracted from the third element of the triples in the list justificationp. Figure 3 describes
the Fork Accountability module that given two decided blocks, returns the set of faulty
processes accountable for that. The proof of their accountability is given by the blocks
themselves. As auxiliary functions we define round(peQC) and value(peQC) that return
respectively round and the value associated to the peQC provided as input.

This solution pays the cost of coping with a lossy channel. This cost is in terms of space
complexity as message size becomes unbounded with the justifications. This set increases
each time a lock occurs during the execution, which can, unfortunately, happen an infinite
number of times (it depends on the Byzantine strategy, they can make processes flip-flop
infinitely many times).

For detection, we have that when two distinct blocks are produced, processes can compare
the endorsements quorums to detect at least f + 1 byzantine processes. It is done as follows:
Let b1 be the block with the smallest associated round, and let b2 be the one associated with
the greatest round. The endorsement of b1, i.e., sign(b1).members, are then compared with a
refinement of the endorsement of b2, i.e., sign(b2).members. The refinement consists of taking
endorsements and replacing them with the justification corresponding to the smallest round
greater than sign(b1).round, if any.

In the particular case of an FBCR fork, we can have the case in which no correct
committee members are involved in the fork and thus in any information carried by each
block. In this case, indeed, each endorsement comes with a justification produced by other
Byzantine committee members. The detection is then performed in the same way as for CR
fork, looking at the first justification in b2 inconsistent with the CQ information of b1.

FAB 2022

5:12 Fork Accountability in Tenderbake

1 var justificationp = empty list

2 proc handleConsensusMessage(msg)
3 let typeq(ℓ, r, h, payload) = msg
4 if ℓ = ℓp ∧ h = hp ∧ (r = rp ∨ r = rp + 1) then
5 if isValidMessage(msg)
6 messagesp := messagesp ∪ {msg}
7 updateEndorsable(msg)
8 else if ℓ > ℓp then
9 pullChain

10 proc updateEndorsable(msg)
11 if |preendorsements()| ≥ 2f + 1 then
12 endorsableValuep := proposedValue()
13 endorsableRoundp := rp

14 preendorsementQC p := preendorsements()
15 else if type(msg) ̸= Preendorse then
16 (eR, eV , pQC) := endorsableVars(msg)
17 if eR > endorsableRoundp then
18 endorsableValuep := eV
19 endorsableRoundp := eR
20 preendorsementQC p := pQC

21 proc endorsableVars(msg)
22 let pQC = match msg with
23 | Proposep(ℓp, rp, hp, (eQC , hu, eR, pQC)) → pQC
24 | Preendorsements(ℓp, rp, hp, pQC) → pQC
25 return (roundQC(pQC), valueQC(pQC), pQC)

26 proc filterMessages()
27 messagesp := messagesp \ {type(ℓ, r, h, payload) ∈ messagesp | r ̸= rp}

Figure 1 Message management for process p during single-shot Tenderbake. In red the new lines
added with respect to Tenderbake [1].

5.4.2 Correctness proofs

▶ Lemma 1. Let b1 and b2 two decided blocks, if b1 and b2 are in the same fork, then
detection(b1, b2) returns at least T + 1 processes accountable as faulty.

Proof. First, consider that b1 and b2 are two blocks in an Intra-round fork, i.e., those blocks
are decided at the same round. In this case Algorithm in Figure 3 returns the intersection of
the endorsement quorums (line 64). Since 2T + 1 distinct signatures compose each QC and
correct processes sing just once per round, then the intersection of two quorums contains at
least T + 1 distinct processes.

Now, let us consider that we have a Cross-round fork composed of two blocks decided
during different rounds. Let us assume, w.l.o.g., that b1 is the block associated with the
smallest round. In this case Algorithm in Figure 3 returns as accountable the intersection of
the quorum of endorsement messages from b1 and the refinement (line 65) of b2 relatively to
the round of b1 (line 60). All we need to show is that: the refinement also returns a quorum
of processes; hence, the intersection with the QC of b1 contains at least T + 1 processes.

A. Del Pozzo and T. Rieutord 5:13

28 PROPOSE phase:
29 if proposer(ℓp, rp) = p then
30 u := if endorsableValuep ̸= ⊥ then endorsableValuep

31 else newValue()
32 payload := (headCertificatesp, u,

33 endorsableRoundp, preendorsementQC p)
34 broadcast Proposep(ℓp, rp, hp, payload)
35 handleEvents()

36 PREENDORSE phase:
37 if ∃q, eQC , u, eR, pQC :
38 Proposeq(ℓp, rp, hp, (eQC , u, eR, pQC)) ∈ messagesp ∧
39 (lockedValuep = u ∨ lockedRoundp ≤ eR < rp) then
40 if ∃(LRp, LVp, ∅) in justificationp then

41 replace (LRp, LVp, ∅) in justificationp by (LRp, LVp, pQC)
42 broadcast Preendorsep(ℓp, rp, hp, hash(u), justificationp.peQC)
43 else if lockedValuep ̸= ⊥ then
44 broadcast Preendorsements(ℓp, rp, hp, preendorsementQC p)
45 handleEvents()

46 ENDORSE phase:
47 if |preendorsements()| ≥ 2f + 1 then
48 if ∃(LRp, LVp, ∅) in justificationp then

49 replace (LRp, LVp, ∅) in justificationp by (LRp, LVp, preendorsements())
50 u := proposedValue()
51 lockedValuep := u; lockedRoundp := rp

52 add (lockedRoundp, lockedValuep, ∅) to justificationp

53 broadcast Endorsep(ℓp, rp, hp, hash(u), justificationp.peQC)
54 broadcast preendorsementQC p

55 handleEvents()
56 advance(getDecision())

Figure 2 Piggyback version of Tenderbake for process p. In red, the new lines added with respect
to Tenderbake [1].

Hence, let us show that the refinement procedure returns a quorum (line 65). The
procedure starts with a quorum of endorsements and replaces processes with their justification
(as long as the justification is associated with a greater round than b1). Hence, we replace
a process in a quorum with a quorum of processes forming the justification. This ensures
that we still possess a quorum after each modification and, therefore, that at the end,
the refinement procedure returns a quorum. Consequently, the intersection of the quorum
returned by the refinement procedure with the quorum of endorsement messages returns at
least T + 1 distinct processes. ◀

In the next Lemma we show that the returned processes by Algorithm in Figure 3 are
never correct, hence those are Byzantine.

▶ Lemma 2. Given two blocks b1 and b2 being a fork, then detection(b1, b2) never returns a
correct process.

FAB 2022

5:14 Fork Accountability in Tenderbake

58 proc detection(b1, b2)
59 if sign(b1).round < sign(b2).round
60 return sign(b1).members ∩ refinement(sign(b2).members, sign(b1).round)
61 else if sign(b2).round < sign(b1).round
62 return sign(b2).members ∩ refinement(sign(b1).members, sign(b2).round)
63 else
64 return sign(b1).members ∩ sign(b2).members

65 proc refinement(QC, round)
66 if ∃e ∈ QC, ∃q ∈ justification(e), round(q) > round

67 return q such that ∃e ∈ QC, q ∈ justification(e), round(q) > round∧
68 ∀e ∈ QC, ∀q′ ∈ justification(e), round(q′) ≥ round(q) ∨ round(q′) ≤ round

69 else return QC

Figure 3 Fork Accountability module at process p.

The intuition of the following proof in the case of CR forks is the following. Let us observe
that the refinement procedure takes as input the QC associated to b2 and r1 the decision
round of b1. It returns the smallest justification present in messages in b2 QC associated
with a round r > r1 if any, and returns QC associated with b2 otherwise. Intuitively, a
process that endorsed a block cannot preendorse or endorse for later blocks without having a
valid justification attached to its message (which differentiates a flip-flopping from a faulty
flip-flopping). Therefore, such a process should never be returned by the refinement procedure.
Indeed, a correct process being always justified cannot be in the smallest justification as it
itself has a smaller justification attached to itself.

Proof. Let us also start with the more straightforward case of an Intra-round fork. In this
case, Algorithm in Figure 3 returns the intersection of two endorsement quorums for the
same round. It implies that we return processes that sent two distinct endorsement messages
for the same round, necessarily a byzantine failure. A single endorsement message can be
sent per round.

Now let us look at the case in which we have a Cross-round fork. Let us assume, w.l.o.g.,
that b1 is the block associated with the smallest round. Assume now by contradiction that a
correct process p is returned in the intersection. That is p endorsed for b1 and was returned
in the refinement of b2 relatively to the round of b1.

Since p endorsed for b1 it must have added a justification item (that can be empty) for
the round and value of b1 in its justification set (line 52). From the protocol, we see that p

can only send preendorsement or endorsement messages that are justified (with a non-empty
set) by a quorum that does not include itself and is associated with a round greater r1.
Indeed, if p sends a prendorsements, then either it already has a justification or it adds the
preendorsement quorum from the proposer that is associated with a round greater than
r1 (line 41). Similarly, if p sends an endorsement message then it adds the set of received
preendorsements justifying its vote to its justification set if not already justified (line 49).
Therefore, p cannot be returned by the refinement procedure of b2 relatively to the round of
b1 as it always has a justification attached to it – A contradiction. ◀

Combining the two preceding Lemmas we obtain the following Theorem about the
completeness and accuracy of our accountability detector:

A. Del Pozzo and T. Rieutord 5:15

Table 1 Comparison of the different presented approaches.

Approach IR Fork FBIR Fork CR Fork FBCR Fork Extra message
space complexity

Tederbake Yes Yes No No No extra costs
Tenderbake
fully just. Yes Yes Yes Yes Unbounded msg space

and local memory
Tenderbake
over rb Yes Yes No No Unbounded

local memory

▶ Theorem 3. For each fork at least T + 1 committee members are accountable as faulty
and no correct committee member is ever accountable as faulty.

As we discussed, the solution is quite communication-intensive. So far, it does not seem
that it can be much improved without revisiting Tenderbake more deeply. A possible idea
was to keep these justifications information locally at each process. The problem is that there
is a need for synchronous assumptions to provide accountability for forks. Indeed, when the
fork is observed, then processes must be able to provide their justification within a known
delay to be ensured not to be wrongly suspected. In that case, since τ is unknown, it is
not possible to distinguish a slow correct process from a byzantine process withholding its
non-adequate justifications.

5.5 Accountability with Tenderbake over reliable broadcast
The previous approach suffers from unbounded size messages, which is necessary if we want
to perform accurate and complete accuracy despite the unreliability of the communication
mean. In this section, we investigate the advantages of leveraging reliable communications.
Indeed, in this context, there is no need for messages to carry unbounded justifications. We
consider light piggyback justification with parameterizable depth d. Committee members
justify the last d pre-endorsement issued after the d previous endorsement (if any). The
justification is a set of 2T + 1 pre-endorsement that allowed them to flip-flopping. Those
justifications are further carried by the peQC associated with each endorsement message.

In this case, we can detect Byzantine processes in a few cases:
IR-Fork and FBIR-Fork: always.
CR-fork: only if a process endorses for a value at round r for a block b1 and pre-endorses
for a value b2 ̸= b1 at round r + d.

If d = ∞ then we boil down in the previous approach.

The main limitation of this approach is that even though we eventually receive all
messages observed by correct processes, in case of missing justification for a flip-flopping, we
do not know if those messages will arrive (exonerating the baker) or they do not exist at all
(incriminating the baker).

5.6 Discussion
Table 1 depicts the different Fork Accountability approaches. The first four columns refer to
the four kinds of forks that can occur with Tenderbake when more than T Byzantine are
present in the committee: Intra-Round Forks; Fully Byzantine Intra-Round Forks; Cross-
Round Forks; and Fully Byzantine Cross-Rond Forks. For each of those fork kinds, we

FAB 2022

5:16 Fork Accountability in Tenderbake

state if we are able to have Fork Accountability with the given approach. Finally, the
last column presents the accountability solution’s complexity to the Tenderbake complexity.
Before digging into that, let us recall that if we have less than T Byzantine committee
members, then we know that, after τ , the consensus instance terminates in f + 2 rounds [1].
Contrarily, termination property can be violated, Byzantine committee members can let
the consensus run endlessly or end it with a fork at their will (violating the agreement
property). Thus, there is no upper bound on the consensus instance duration. Indeed, the
number of times a correct committee member can perform a flip-flopping is unbounded,
which explains why Tenderbake with full justifications incurs the cost of unbounded message
space and, consequently, unbounded local memory. However, if we consider that messages do
not carry the total amount of justifications (thus, message space complexity is bounded),
we still have that the total amount of messages is unbounded (due to the computation
duration unbounded). It follows that Tenderbake with weak justifications, even though it
gets rid of the unbounded message space, it still suffers the extra cost of the unbounded
local memory. Unsurprisingly, reducing the message space complexity comes at the price
of reducing the accountability capability. As a result, we obtain the same results as with
Tenderbake unmodified, which is, on the light side, free of any extra costs. To complete this
discussion, let us consider the Streamlet [9] case. As shown in [4], with few modifications
to the protocol (in the way blocks are decided, with no impact on the message and space
complexity), we obtain an Accountable protocol. In a nutshell, differently than Tenderbake,
processes when observing that a new proposed block b collects a quorum of pre-endorsement
messages, rather than locally locking on it, they add such block to their local structure (a
block-tree rather than a chain). In that case, we say that b is notarized, which is different
than decided. After, new blocks are proposed. When b is followed by other notarized blocks
such that it meets a particular condition, b is decided. Intuitively, in Streamlet the lock
mechanism is explicit on chain, so there is no need to add extra information to the blocks
as in Tenderbake, and that would also be true if with lossy channels before τ (Indeed,
after τ correct processes would successfully synchronize with other processes being able to
retreive the missed notarized and decided blocks, yet losing the messages exchanged to get
to the notarization of those blocks). For such a reason is, Streamelet we can perform Fork
Accountability with no extra costs because those costs are already paid by the protocol as it
is in terms of space occupied by the blockchain data structure.

6 Conclusion and Future Work

This work lays the groundwork for Fork Accountability solutions for BFT-like consensus
algorithms, as Tenderbake. Even though the proposed solutions are either not fully solving
the Fork Accountability problem or are impractical, we believe that is an essential step toward
better understanding the Accountability possibilities and impossibilities in the Blockchain
context. In future work, we aim to explore how to increase Accountability capabilities
practically. A possible direction to explore is the redefinition of the BFT-Consensus algorithms
with bounded buffers in the accountability lens.

References
1 Lăcrămioara Aştefănoaei, Pierre Chambart, Antonella Del Pozzo, Thibault Rieutord, Sara

Tucci-Piergiovanni, and Eugen Zălinescu. Tenderbake - A Solution to Dynamic Repeated
Consensus for Blockchains. In 4th International Symposium on Foundations and Applications
of Blockchain 2021 (FAB 2021), pages 1:1–1:23, 2021.

A. Del Pozzo and T. Rieutord 5:17

2 Amitanand S Aiyer, Lorenzo Alvisi, Allen Clement, Mike Dahlin, Jean-Philippe Martin, and
Carl Porth. Bar fault tolerance for cooperative services. In Proceedings of the twentieth ACM
symposium on Operating systems principles, pages 45–58, 2005.

3 Victor Allombert, Mathias Bourgoin, and Julien Tesson. Introduction to the Tezos Blockchain.
In Proc. High Performance Computing and Simulation, 2019.

4 Emmanuelle Anceaume, Antonella Del Pozzo, Thibault Rieutord, and Sara Tucci-Piergiovanni.
On Finality in Blockchains. In 25th International Conference on Principles of Distributed
Systems (OPODIS 2021), pages 6:1–6:19, 2022.

5 Roberto Baldoni, Jean-Michel Hélary, and Sara Tucci Piergiovanni. A methodology to design
arbitrary failure detectors for distributed protocols. J. Syst. Archit., 54(7):619–637, 2008.

6 Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on BFT consensus. CoRR,
2018.

7 Vitalik Buterin and Virgil Griffith. Casper the friendly finality gadget. CoRR, 2017.
8 Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance and proactive recovery.

ACM Trans. Comput. Syst., 2002.
9 Benjamin Y Chan and Elaine Shi. Streamlet: Textbook streamlined blockchains, 2020.

10 Tushar Deepak Chandra and Sam Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM (JACM), 43(2):225–267, 1996.

11 Jing Chen and Silvio Micali. Algorand: A secure and efficient distributed ledger. Theor.
Comput. Sci., 2019.

12 Pierre Civit, Seth Gilbert, and Vincent Gramoli. Polygraph: Accountable byzantine agreement.
In IEEE 41st International Conference on Distributed Computing Systems (ICDCS), 2021.

13 Pierre Civit, Seth Gilbert, Vincent Gramoli, Rachid Guerraoui, and Jovan Komatovic. As easy
as abc: Optimal (a) ccountable (b) yzantine (c) onsensus is easy! In 36th IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2022), 2022.

14 J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and
applications. In Proc. EUROCRYPT International Conference, 2015.

15 L.M. Goodman. Tezos – a self-amending crypto-ledger, 2014.
16 Andreas Haeberlen, Petr Kouznetsov, and Peter Druschel. Peerreview: practical accountability

for distributed systems. In Thomas C. Bressoud and M. Frans Kaashoek, editors, Proceedings
of the 21st ACM Symposium on Operating Systems Principles (SOSP 2007), 2007.

17 Jae Kwon and Ethan Buchman. Tendermint.
18 S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
19 Peiyao Sheng, Gerui Wang, Kartik Nayak, Sreeram Kannan, and Pramod Viswanath. Bft

protocol forensics. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, pages 1722–1743, 2021.

20 Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger. Ethereum
project yellow paper, 151(2014):1–32, 2014.

21 Maofan Yin, Dahlia Malkhi, Michael K Reiter, Guy Golan Gueta, and Ittai Abraham. HotStuff:
BFT consensus with linearity and responsiveness. In Proc. ACM Symposium on Principles of
Distributed Computing, 2019.

A Appendix – CR fork Scenarios

We describe two detailed scenarios dealing with the (faulty) flip-flopping case to justify the
need to modify Tenderbake with justifications and their re-transmissions.

A.1 Scenario 1
In this first scenario, we consider a system composed of 7 processes, p0, . . . , p6, among which
p4, p5 and p6 are byzantine. The execution comprises three rounds of communication and
leads to a fork with the accountability of faulty processes.

FAB 2022

5:18 Fork Accountability in Tenderbake

Figure 4 depicts the first scenario. In the first round, p0 proposes A (p A message at
Round 1, phase p in Figure 4) and all processes pre-endorse A (pe A message at Round 1,
phase pe in Figure 4) but only processes p1 and p2 endorse A among the correct processes
(e A message at Round 1 represented by the lock image, phase e in Figure 4). As byzantine
processes also endorse A, the block A is created with a Quorum Certificate composed by
the endorsement messages from p1, p2, p4, p5 and p6, but all such endorsements are received
only by Byzantine processes (down-going black arrows Round 1, phase e in Figure 4) that
withhold the block just created.

In the second round, p3, which did not see the block A created, proposes a new block B.
p0 and p3 pre-endorse it as they are not locked on A, along with byzantine processes that
do not follow their lock. This set of pre-endorsements (that fulfills a quorum) is received
by p0 and p2. The rounds end without receiving enough endorsements to form a quorum
certificate.

In the last round, p4 proposes B. This time B (being not new) has a valid round associated
greater than 1, the round in which processes locked for A. Hence, p2 can pre-endorse it along
with p0 (which is not locked) and all byzantine processes. This leads to a pre-endorsement
quorum certificate that is received by p1 and p2. The round terminates by the endorsements
of p1 and p2 along with the three endorsements for B by the byzantine processes, p4, p5, p6,
the same quorum certificate of block A. It leads to a fork once both blocks are diffused.

Figure 4 Scenario 1. We refer to the propose, pre-endorse and endorse phase with p, pe and e
respectively. We refer to the proposal (pre-endorse) message for a value X with p (pe) X notation.

In this scenario, we can see that the byzantine misbehavior that led to the fork is that
byzantine processes first endorsed for A at round 1 and pre-endorsed B just after, in round 2.
It is highlighted in Figure 5. Indeed, a correct process locked on block A during round 1
would refuse to pre-endorse B in a later round 1 + k, k > 0, unless it observes a quorum
of pre-endorsement for B in a round 1 < r < 1 + k. In this particular case, any correct
process would never obtain a valid pre-endorsement quorum for B before round 2 to justify
the pre-endorsement for B while locked on A.

A. Del Pozzo and T. Rieutord 5:19

Figure 5 Example of how to detect Byzantine processes given a complete knowledge on the
exchanged messages. In that case, p4, p5 and p6 performs a faulty flip-flopping.

We consider a slightly modified version of Tenderbake. Processes produce justifications
when locked on a value v and pre-endorse (endorse) a different value v′ ≠ v. That is, justifying
their action by adding the pre-endorsement quorum certificate (peQC) for v′ when sending
a pre-endorsement message in the flip-flopping context. Note that endorsements carry all
justifications issued during all rounds since the first lock round. Since those justifications
chain are carried by endorsement messages then we collect them in decided blocks, that is,
from processes which endorsed the block itself, p1, p2, p4, p5 and p6 in this particular Scenario.
Hence in this case, given the blocks A and B we collect information from correct processes
p1 and p2 (Byzantine processes can omit justifications in their endorsement message).

block A decided at round 1: such block comes with eQC, a quorum certificate of
endorsements from p1, p2, p4, p5 and p6 (first red rectangle in Figure 6), and none of them
has justifications .
block B decided at round 3: such block comes with a QC of endorsements from p1, p2, p4, p5
and p6 (fourth red rectangle in Figure 6) and with the following justifications:

p2 justifies its endorsement with peQC for value B at rounds 2 (second red rectangle
in Figure 6) and 3 (third red rectangle in Figure 6). Indeed, p2 witnessed both the
endorsement QC for block B in round 2 and round 3.

In this scenario, byzantine processes can be detected as their endorsement for A in round 1
(available from eQC for A round 1 in block A) implies that they should have set a lock for
A at round 1. This, along with the pre-endorsement by the byzantine processes in round 2
(available from peQC from B from round 2 and 3), implies a violation of the lock mechanism.
Hence, we can detect T + 1 byzantine processes by simply gathering information available to
the processes in the normal execution of Tenderbake once the blocks originating a fork are
collected.

A.2 Scenario 2
In the following scenario, we first show that the previous scenario’s accountability approach
results in the violation of completeness and accuracy properties. We further show how to
modify the accountability approach such that we are still able to detect and account for
T + 1 Byzantine processes once a fork occurs.

FAB 2022

5:20 Fork Accountability in Tenderbake

Figure 6 Justification gathered in decided block depicted using red rectangles along with highlight
of detected byzantine process misbehaviour in light red.

The second scenario goes as follows and is depicted in Figure 7. During the first two
rounds, we have the same execution as in Scenario 1. At the end of round 1, a block A is
created with a Quorum Certificate composed of the endorsement messages from p1, p2, p4, p5,
and p6, but all such endorsements are received only by Byzantine processes that withhold the
block just created. In the second round, p3, which did not see the block A created, proposes
a new block B. p0 and p3 pre-endorse it as they are not locked on A, along with byzantine
processes that do not follow their lock. This set of pre-endorsements (that fulfills a quorum)
is received by p0 and p2. The rounds end without receiving enough endorsements to form a
quorum certificate.

Here, in the third and last round, we build the difference with the first scenario. p4
proposes B as in Scenario 1. B has a valid round associated that is greater than 1 the round
in which processes locked for A. Hence, p2 can pre-endorse it along with p0 (which is not
locked at all) and all byzantine processes. This leads to a pre-endorsement quorum certificate
that is received by p1 and p3 this time (in the first scenario it was p2). The round terminates
by the endorsements of p1 and p3 along with the three endorsements for B by the byzantine
processes, p4, p5, p6, a different quorum certificate of block A. It leads to a fork once both
blocks are diffused.

If we use the same approach for the justifications as in Scenario 1, then we collect the
information highlighted in Figure 8 and we might accuse p2 of being Byzantine. Indeed, we
get his endorsement at round 1 for A and his pre-endorsement for B at round 3, but not the
justification for such pre-endorsement, that might look like a faulty flip-flopping. The same
reasoning can be applied for the Byzantine processes p4, p5, p6.

To solve this issue, we further modify Tenderbake. Processes produce justifications when
locked on a value v and pre-endorse (endorse) a different value v′ ̸= v. This is done by adding
the pre-endorsement quorum certificate (peQC) for v′ when sending a pre-endorsement
message in the flip-flopping context. Moreover, a process re-transmits all peQC collected
as justifications carried by pre-endorsement messages to other processes. That is, when
sending a pre-endorsement message, it sends all justifications gathered so far. In this case,

A. Del Pozzo and T. Rieutord 5:21

Figure 7 Scenario 2 representation. In particular we refer to the propose, pre-endorse and endorse
phase with p, pe and e respectively. Moreover, when we refer to the proposal (pre-endorse) message
for a value X with p (pe) X notation.

Figure 8 p4, p5 and p6 performs a faulty flip-flopping, but their behaviour is indistinguishable
from the p2 given the subset of messages observed.

FAB 2022

5:22 Fork Accountability in Tenderbake

any endorsement message carries all justifications issued and collected following the same
logic applied for the pre-endorsement messages justifications. Since those justifications chain
are carried by endorsement messages then we collect them in decided blocks, that is, from
processes which endorsed the block itself, p1, p3, p4, p5 and p6 in this particular Scenario.
Hence in this case, given the blocks A and B we collect information from correct processes
p1 and p3 (Byzantine processes can omit justifications in their endorsement message).

block A decided at round 1: such block comes with eQC from p1, p2, p4, p5 and p6 (first
red rectangle in Figure 6), and none of them has justifications.
block B decided at round 3: such block comes with a eQC from p1, p3, p4, p5 and p6
(fourth red rectangle in Figure 6) and with the following justifications:

p1 and p3 justifies directly its endorsement with peQC for value B at rounds 3 (third
red rectangle in Figure 9). Indeed, p1 and p3 witnessed eQC for block B in round 3.
p1 and p3 carries the justification from p2, that is the pre-endorsement quorum
certificate, peQC, for value B at round 2 (second red rectangle in Figure 9). Indeed, p2
witnessed the endorsement QC for block B in round 2 and is part of the pre-endorsement
quorum certificate for tound 3.

In this way, we have enough information to distinguish and account for the fork T + 1
Byzantine processes in the same way we did in the Scenario 1 context.

Figure 9 Justification gathered in decided block depicted using red rectangles along with highlight
of detected byzantine process misbehaviour in light red.

	1 Introduction
	2 System model and definitions
	3 Tenderbake and Round-based BFT-Consensus protocols
	4 Fork Taxonomy
	4.1 Fork Taxonomy
	4.1.1 Discussion on accountability

	5 Fork Accountability
	5.1 Fork Accountability problem definition
	5.2 Fork Accountability with all messages
	5.3 Partial Fork Accountability with Tenderbake
	5.4 Full Fork Accountability with piggyback Tenderbake
	5.4.1 Description of the modification to Tenderbake
	5.4.2 Correctness proofs

	5.5 Accountability with Tenderbake over reliable broadcast
	5.6 Discussion

	6 Conclusion and Future Work
	A Appendix – CR fork Scenarios
	A.1 Scenario 1
	A.2 Scenario 2

