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—— Abstract

This paper discusses a number of methods to prove termination of higher-order term rewriting

systems, with a particular focus on large systems. In first-order term rewriting, the dependency
pair framework can be used to split up a large termination problem into multiple (much) smaller
components that can be solved individually. This is important because a large problem may take
exponentially longer to solve in one go than solving each of its components.

Unfortunately, while there are higher-order versions of several of these methods, they often fail to
simplify a problem enough. Here, we will explore some of these techniques and their limitations, and
discuss what else can be done to incrementally build a termination proof for higher-order systems.
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1 Introduction

In the last few decades, the term rewriting community has developed a wide scala of techniques
to prove termination of term rewriting systems. A variety of automatic termination analysis
tools compete against each other in the annual termination competition [23], using hundreds
of different techniques. Many of these techniques can be adapted to other forms of rewriting
(e.g., context-sensitive, conditional), or real-world programming languages.

Higher-order term rewriting systems in particular are very close to functional programming
languages, and ideas developed in one are likely to extend to the other. However, realistic
(functional) programs often have thousands of lines. Many termination techniques are ill-
equipped for this. For example, naively finding a suitable polynomial interpretation or path
ordering is exponential in the size of the TRS.

Ideally, we would like to split up a large TRS into many small parts; prove termination of
each, and conclude termination of the whole. Unfortunately, this is in general impossible, as
termination is not modular [21]. Instead, we may look to different properties than termination.
The dependency pair framework [12] is a de facto standard for termination proofs in first-order
term rewriting, which combines various techniques to do exactly this: a termination problem
is translated into one or more DP problems, which are gradually simplified, split up, and
eventually closed, without ever having to apply an exponential technique on all rules at once.

The DP framework has been extended to higher-order rewriting [1, 11, 16, 18]. However,
some methods in the framework adapt poorly to higher-order rules; in particular usable rules
— an important technique to remove large numbers of rules from a DP problem — are likely to
fail. Hence, even with dependency pairs, we often need to find an ordering for thousands of
rules at once. Hence, it seems important to develop incremental ways to find an ordering.
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In this paper, I will highlight how higher-order dependency pairs can be used to cut
termination proofs into (potentially many) smaller proof obligations, and where this approach
is weak. In addition, I will sketch a way to incrementally build a term ordering using tuple
interpretations [17], a recently developed methodology based on algebra interpretations [10, 20]
which was designed for complexity analysis, but also proves very powerful for termination.

Contribution. This paper introduces usable rules with respect to an argument filtering for
higher-order term rewriting, and lifts the arity restrictions in weakly monotonic interpreta-
tions [10]. However, the purpose of this paper is not to introduce new theory, but rather
to explain how known techniques can be applied to build up a higher-order termination
proof in many small steps. Hence, we will focus on a simple format that allows for an easy
presentation.

Related work. Aside from various definitions of dependency pairs, the most relevant related
work is a recent approach by Hamana [13] which aims to split up a TRS into two parts: one
which should be proved terminating when combined with some simple additional rules, the
other ordered by a specific technique. This is discussed a bit further in Section 4.

2 Preliminaries

Unlike first-order term rewriting, there is no single, unified approach to higher-order term
rewriting, but rather a number of similar but not fully compatible systems aiming to combine
term rewriting and typed A-calculi. Since this paper aims to explain ideas rather than provide
technical detail, we will use a formalism that allows for a simple presentation: simply-typed
A-calculus with base-type rules and plain matching. The ideas extend to other forms of
higher-order rewriting, but most definitions (e.g., dependency pairs) need more cases there.

Given a set S of sorts, the set X of simple types is given by: (a) S C § and (b) if 0,7 € I
then o = 7 € . Types are denoted o, 7, p and sorts ¢, k. We let = be right-associative.
Hence, all types have a unique representation in the form oy = ... = o, = ¢.

We assume given disjoint sets F of typed function symbols, notation (f :: o) € F, and V
of typed variables, notation (x :: o) € V; there should be countably many variables of each
type. Terms are expressions s where s :: ¢ can be inductively derived for some o by: (a)
azoif(ao)e FUV;(b)sturtifsio=randt:o;(c) esuo=7if (x::0)€EV
and s :: 7. The X binds variables as in the A-calculus; unbound variables are called free and
FV(s) is the set of variables occurring unbound in s. A term s is called closed if FV(s) = 0.
Term equality is modulo a-conversion. Application is left-associative. A term s has type o if
s :: 03 it has base type if o € S. The head symbol of a term £ s1--- s, is £.

A term s has a mazimally applied subterm t, notation s> t, if either s = ¢, or s> t, where
s>tif(a) s=a s1- -8, with a € FUV and some s; > ¢; or (b) s = (Az.u) s1--- s, (with
n > 0) and some s; >t or u > t. Note that not s t > s. A pattern is a term s such that
whenever s >t s1--- s, with n > 0 then ¢ is not an abstraction or an element of FV(s).

A substitution is a type-preserving mapping from variables to terms. The domain of a
substitution «y is the set {z € V | y(x) # x}. Substitution does not capture bound variables;
we let: (a) zy = y(z); (b) £y = £; (¢) (s t)y = (s7) (tvy) and (d) (Ax.s)y = Az.(s7) if
v(z) = = and there is no y such that x € FV(y(y)); this is always defined by a-conversion.

A relation — on terms is monotonic if s — t implies Ax.s — Az.t and u s — u t and
s u — t u. The relation — g is the smallest monotonic relation such that (Az.s) t =5 sl :=t],
where [z := t] is the substitution mapping x to t. A rewrite rule is a pair £ — r of a pattern
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¢ of the form £ ¢y --- £, and a term r such that FV(r) C FV(¢), £ and r have the same base
type, and r has no subterms of the form (Ax.s) ¢ ---¢, with n > 0. Given a set of rules
R, the relation — % is the smallest monotonic relation on terms such that ¢y —% v for all
¢ — r € R and substitutions 7, and —x includes —g. A term s is in normal form if there is
no ¢ such that s — ¢, and it is B-normal if there is no ¢ such that s =g t. It is terminating
if there is no infinite reduction s - s1 =g S2 —x .... We say that —x is terminating if
all terms over F,V are terminating. The set D C F of defined symbols consists of those £
such that R contains a rule £ ¢ --- ¢ — 7r; all other symbols are called constructors.

» Remark 1. Note that the limitation that rules have base type is not standard in the
higher-order literature. We use it here to support a simpler presentation of definitions.

» Example 2. As a running example, we will use a system over sorts nat (natural numbers),
bool (booleans) and list (lists of numbers). Let 0 :: nat, s :: nat = nat, T :: bool, L :
bool, nil :: list, cons :: nat = list = list; the types of other symbols can be deduced.

map F nil — nil map F (cons z a) — cons (F z) (map F a)
fold F 2z nil — «x fold F z (consya) — fold F (Fzy)a
minz 0 — =z min (sz) (sy) — minay
quot 0 (sy) — O quot (s z) (sy) — s (quot (minz y) (sy))
ack 0y — sy ack (sx) 0 — ackz (s0)
inc 0 — s (inc (s 0)) ack (sz) (sy) — ackz (ack (s z)y)
expOy — vy exp(sx)y — doublexzyO
double 20z — expz 2 double z (s y) z — double z y (s (s 2))
mkbig a x — map (ack ) a mkdiv e x — map (Ay.quot y ) a
smabFO0 — 0 sma T F (sz) — sz
sma Ll F (sx) — sma (Fz)F (quot z (s (s 0)))

In examples in this paper, we let R denote the subset of these rules with only the rules
defining f. For example, Ryap refers to the top two rules, and Racx has three rules.

Accessibility. Given a quasi-ordering =5 on S whose strict part =5:= >5 \ <5 is well-
founded, we define, for sort ¢ and type ¢ = 01 = ... = o, = K, two relations: ¢ ti o
if L >S kand ¢ >S5 o for all 4, and ¢ >S5 o if v =5 k and ¢ ti o; for all i. (Here, ¢ ii o
corresponds to “¢ occurs only positively in ¢” in [3, 4, 6].) For f :: 09 = ... = oy, = ¢, let
Acc(f) = {i € {1,...,m} |« =° 0;} For terms s,t, denote s >, t if (a) s =t¢, (b) s = A\z.s’
and &' >acc b, or (¢) s =£ 518, and s; D>uec t for some i € Ace(f).

For a fixed quasi-ordering is on sorts, a term s :: ¢ is computable iff (1) s is terminating,
and (2) if s =% £ s1--- 5, then s; is computable for all ¢ € Acc(f). A term s :: 0 = 7 is
computable iff s ¢ is computable for all computable terms ¢ :: 0. Although this is not an
inductive definition, computability is a definable property (see, e.g., [11]).

» Example 3. For f :: (nat = nat) = nat, we have Acc(f) = ) for any >5. If ord = nat and
g :: (nat = ord) = ord, then we do have Acc(g) = {1}. Hence, £ F P F but g F >acc F.

Functions and orderings. A well-founded set is a tuple (4, >,>) such that > is a well-
founded ordering on A; > is a quasi-ordering on A; x > y implies © > y; and x > y > 2
implies x > 2. Hence, it is not required that > is the reflexive closure of >. If (A1, >1>1),

. (A, >n>y) are all well-founded sets, then so is (A X «-+ X A,, >>,>*), where @ >* b
if each a; >; b;, and @ >* b if in addition a; >; b; for some i (writing @ := (ay,...,ay)).
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Let (A, >,>) and (B, =, =) be well-founded sets. A => B is the set of functions from A
to B. Function equality is extensional: for f,g € A = B we say f = g iff f(x) = g(x) for
all z € A. Elements of A = B are compared pointwise: f 1 g if f(z) = g(z) for all x € A;
and f J g if f(z) = g(z) for all z € A. We say that f € A = B is weakly monotonic if
x >y implies f(z) = g(y). It is strongly monotonic if in addition z > y implies f(z) = g(y).

3 Dependency pairs

The traditional way to prove termination of a TRS is to embed the rewrite relation in a
well-founded ordering. This is typically done by defining a monotonic, stable ordering (stable:
if s > t then sy > t+y for all substitutions ), and then showing that £ > r for all rules £ — r.

» Example 4. One ordering method is to map each base-type term s to a natural number
[s], and let s = t if [s] > [t]. For example, for some of the symbols in Ex. 2, we may define:

[nil] = 0 [map ' L] = ([L]+ 1) ([FI(IL]) + 1)
[cons HT] = [H]+[T]+1

Here, a term F' :: nat = nat is mapped to a strongly monotonic function in N = N. We can
prove that [¢] > [r] holds for the two rules in Ryap. Since the interpretation functions are
strongly monotonic, and the method is stable by its nature, this shows termination of Rupap.

Unfortunately, to prove termination in this way we must find an interpretation that orders
all rules at the same time. In a system with thousands of rules, this may well be infeasible.
We can do a bit better with rule removal: if R = Rq U R4 and we have a (monotonic, stable)
well-founded ordering > and a compatible (monotonic, stable) quasi-ordering > on terms,
and if £ = r for { - r € Ry and £ = r for £ — r € Ry, then —x terminates if and only if
—R, does. Hence, having a termination proof for —, makes the termination proof for —x
easier. However, we still have to orient all rules in R at once, and ¢ = r is often not that
much easier to show than ¢ - r, partially due to the monotonicity requirement on >.

» Example 5. Commonly used orderings like the recursive path ordering and interpretations
to N cannot handle the quot rules from Example 2, as the monotonicity requirement on >
essentially causes the property that, for any choice of ordering/interpretation, min = y = y;
and therefore quot (s z) (s (s x)) > s (quot (s z) (s (s x))), contradicting well-foundedness.

The dependency pair framework addresses both these issues. There are multiple higher-
order definitions of dependency pairs, with distinct advantages and downsides; here, we
present a form of static dependency pairs, both for its ease in presentation and because the
static approach allows for more modular proofs than the alternative, dynamic style. To use
static dependency pairs, we limit interest to accessible function passing (AFP) rules.

» Definition 6. A set of rules R is accessible function passing if there exists a sort ordering
=S such that: for all £ £y -4, — r € R and all x € FV(r), there exists i with {; > e, .

This requirement means that higher-order variables are used in an essentially harmless way.
An example of a non-AFP rule is the encoding of the untyped A-calculus: app (lam F) X —
F X, with lam :: (0 = 0) = o and app :: 0 = 0 = o, where a higher-order variable is
lifted out of a base-type term. There are also terminating systems which are not AFP.
However, practical examples typically satisfy this requirement. For example, the rule
lapply z (fcons F' a) — F (lapply z a) with fcons :: (nat = nat) = flist = flist also lifts
a higher-order variable out of a base-type term, but is AFP if we choose flist = nat.
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In this paper, we will mostly consider rules £ ¢; - - - £, — r where all higher-order variables
occur as a direct argument of the left-hand side (i.e., as one of the ¢;); this is the case for all
rules in our running example. Such rules are AFP by letting >° equate all sorts.

» Definition 7. For each defined symbol £ :: 01 = ... = o, = 1, we introduce a fresh
symbol £% :: 01 = ... = 0,, = dp. The set of static dependency pairs of R is given by:
SDP(R) = {t! by - b, =gt ri- 7 Tpar T [l Uy 2T ERAT>gPr - To AEE
DAGTL Ty Opgl = ooo = O = LA Tyl € Voyyoooy @ €V, are fresh variables}.

The set of static dependency pairs is obtained by taking, for each rule £ — r, all maximally
applied subterms p of r headed by a defined symbol, if necessary applying p to fresh variables
to obtain a base-type term, and marking the head symbols of both ¢ and p to indicate their
special role. In the first order setting, dependency pairs trace function calls. In the (static)
higher-order setting, they also trace potential calls: a call of function type might end up
being applied to almost anything, which is represented by the fresh variables.

» Example 8. Our running example has the following dependency pairs:

A. inc 0 = inc? (s 0) J. map’ F (cons z a) = map’ Fa
B. expf (sz)y = double’zy0 K. fold®* Fz (consya) = fold* F(Fzy)a
c. min' (sz)(sy) = minfzy L. quot (s z) (sy) = quot’ (minzy) (sy)
D. ack? (sz) 0 = ack?z (s0) M. quotf (sz) (sy) = minfzy
E. ack? (sxz)(sy) = ackf(sz)y N ack! (s z) (sy) = ack?x (ack (s ) y)
F. doublef 20z = exp'zz o] double’ z (s y) z = double’ z y (s (s 2))
G. mkbigf a z = ackfazy P. mkbigf a ¢ = map’ (ack z) a
H. mkdivf a z = quotjj Yy Q mkdivf a z = mapN (Ay.quot y ) a
I smaf L F(sz) = R. sma | F (sz) =

quot? z (s (s 0)) sma? (F z) F (quot z (s (s 0)))

Note that DP (@), which came from the rule mkbig a x — map (ack ) a, has a fresh variable
y in the right-hand side which does not occur on the left; this was used to flatten the subterm
ack x to base type. (H) also has a variable y which occurs on the right but not the left; this
is because the bound variable in map (Ay.quot y z) a is freed in the subterm.

Dependency pairs are used by translating non-termination to absence of infinite chains:

» Definition 9. For P a set of dependency pairs, and R a set of rules, a (P, R)-chain is an
infinite sequence [({; = 15,7;) | © € N| such that for alli: {; = r; € P, and 137y, =5 liv17Vit1-
A (P, R)-chain is computable if each r;7y; is computable with respect to —x.

Essentially, a (P, R)-chain represents an infinite reduction s; —=p t1 =% s2 —=p to =%
s3... —p, where each s; = {;7y; and t; = r;7y;, and the steps using —p are at the root of s;.
Although chains can have various properties (e.g., being minimal, computable, formative),
we here only consider computability, and only implicitly: this property — which implies that
each r;7; is terminating, and that the immediate arguments of each ¢;; are computable — is
used in the (omitted) correctness proofs of Section 4. We have the following result:

» Lemma 10. Let R be a set of accessible function passing rules (for a fized sort ordering with
dp mazimal in =5). If —x is non-terminating, then there is a computable (SDP(R), R)-chain.

Hence, if we can prove that there is no such chain, we know the system terminates. One
way of doing this is by using a well-founded ordering as before. Since the steps s; —p t;
occur at the root of a term, it is not needed for > to be monotonic. Rather, it suffices to
use a reduction pair: a pair (>, >) that that > is a well-founded ordering, > is a quasi-
ordering, - - =C>, both relations are stable, = is monotonic, and —3C>=. We can again
use interpretations to define a reduction pair. This is formally defined as follows:
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» Definition 11. We assume given, for all sorts v, a well-founded set (A,,3,,3,). This
definition is extended to all simple types as follows: Aoy = {f € A, = A, | [ is weakly
monotonic}; we let Jy—, and Jy—, denote the pointwise comparisons on these functions.
For every (f :: 0) € F, we assume given Je € A,. For a closed term s let [s] = [s]g,
where, for a a function mapping each (x :: o) € VN FV(s) to an element of A,, we define:

[fle = J [2]a = af2)
[t ula = [Hallu]a) [\et]le = dH[[ﬂ]a[z::d]

Here, alr := d] maps = to d and all other variables y to a(y), and d + [t]4[s:—q) is the
function that maps d € A,, to [t]a[s:=a)- If 5 :: 0, this definition yields an element [s], of
As. We will often omit the type denotations from J when they are clear from context or
irrelevant. We will also usually omit o and instead use for instance [f z] = [z] + 1 instead
of [£(z)]a = a(x) + 1. We typically choose [[-] to represent a kind of size measure on terms.

» Example 12. Let A = N, ordered as usual. To prove that there is no (SDP(Ryap), Ruap)-
chain, it suffices to find an interpretation function J with:

[map F nil] > [nil] [map F (cons H T)] > [cons (F H) (map F T)]
[map* F (cons H T)] > [map® F T]

This is easily accomplished by choosing Join = 0, Jeons(,¥) = v + 1, Jaap(F,y) =
Tnapt (F,y) = y; that is, we map a term of list type to the length of the list. Then the
above inequalities evaluate to: 0> 0, T+ 1>T+1land T+ 1>T.

Note that there is no obligation to choose A, = N for all sorts. For more complex systems
than map, it may also be useful to for instance map sorts to the rational numbers, or to sets
of terminating terms. In Section 5, we will map sorts to tuples of (natural) numbers.

As we have seen, dependency pairs and weakly monotonic interpretations together provide
a method to prove termination. However, in contrast to the DP approach in first-order
term rewriting, this is not a complete method: there are terminating systems which admit a
computable chain (for example, R = {f a — g £}, which has a dependency pair £ a = £ X).
Hence, the method in general cannot be used for non-termination, and also has important
limitations in its applicability for termination, even beyond the restriction to AFP rules.

The alternative, dynamic style of dependency pairs[16], does not come with applicability
restrictions and does offer an if-and-only-if result. There, collapsing dependency pairs, of a
form such as map? I (cons H T) = F H, are included, and the notion of a (P, R)-chain is
somewhat more complex to support this. Unfortunately, this style is much worse at enabling
modular proofs. That is why this paper focuses on the static approach.

4 Modular proofs with dependency pairs

The dependency pair framework allows “DP problems” to be progressively modified to prove
absence of chains with certain properties. We here present a very simple version of this
framework, which only modifies a set P. A more elaborate framework is discussed in [11].
We fix an AFP set R of rules. Let a set P of DPs be called chain-free if there is no
computable (P, R)-chain. Then Lemma 10 states that —% is terminating if SDP(R) is
chain-free. As suggested before, sets P can be simplified using a reduction pair. Formally:

» Lemma 13. A set P is chain-free if P = Py W& Py where Py is chain-free, and there is a
reduction pair (=, =) such that: (a) £ = r for all{ = r € Py, (b) L= r for all { = r € Py
and (¢) L =1 foralll -1 € R.
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Hence, chain-freeness of P is reduced to chain-freeness of a smaller set. Since > does not
need to be monotonic, it is often easier to remove a dependency pair in this way than it
would be to remove a rule in the original system using rule removal.

» Example 14. Let R := Rguot U Rpin U {inc 0 — inc (s 0)}. Then P := SDP(R) is the set
{(a),(c),(1),(M)}. We choose J to have [0] = 0, [s z] = [z] +1, [inc #] = [inc* 2] = 0 and
[min = y] = [min® 2 y] = [quot z y] = [quot? = y] = [x]. Then [¢] > [r] for all £ — r € R,
and moreover: each of (¢), (L) and (M) reduces to [¢{] = x +1 > x = [r], while for (A)
we have: [¢] =0 = [r]. By Lemma 13, we have chain-freeness of SDP(R) (and therefore
termination of —x) if we can prove chain-freeness of {incf 0 = inc? (s 0)}. We avoid the
problem noted in Example 5 because we only needed a weakly monotonic ordering.

While this is an improvement over using interpretations directly, it does nothing towards
our goal: like with rule removal, in the first step we have to orient all the rules and
dependency pairs in one go. Even though this is easier than before because > does not need
to be monotonic, it is still likely to be infeasible to handle thousands of rules at once.

So, let us consider an approach that does not need an ordering: the splitting lemma.

» Lemma 15. Assume given disjoint sets of terms Aq,...,A,, and suppose we can write
P=PiU---UP,UQ1U---UQ, such that for alli € {1,...,n} we have:

forall £ = r € P; U Q;, and all substitutions v: by € A;;

for all € = r € P;, all substitutions vy and all terms s with ry —5% s: s ¢ Ay U---UA;_1;

for all £ = r € Q;, all substitutions v and all terms s with ry =% s: s ¢ AyU---UA,.
Then P is chain-free if and only if Py, ..., Pn are all chain-free.

Note that the dependency pairs in Q; U --- U @, are thrown away, while the others are
split over potentially many smaller sets of dependency pairs that are truly interdependent.
Essentially, this lemma is a different presentation of the DP graph processor [2, 12, 19].

» Example 16. Let X* denote the set {f% sy---5,, | (f 101 = ... = 0 = 1) E FA sy
Oly-++y8m i Om}, 50 the set of all base-type terms s with £# as the head symbol.
For R the rules of Example 2, and P = SDP(R) following Example 8, we may choose:

Al = kabig Ag -— X™map A5 .— Xsma A7 = Xmin A9 = Xdouble U X exp
Ay i= XV A, = YTold Ag = XYWt Ag = X2k A := {incf 0}

Pr:=0 Ps:={0)} Ps={®R)} Pr:={(c)} Py :={(B), (F), (0)}
Q1:={(G),(P)} Q3:=0 Qs :={(1)} Qr:=10 Qo :=10

Py =10 Pyi={(K)} Ps:={(L)} Ps:={(D),(E),(N)} Pio:=0
Qy:={(H),(Q)} Qi:=10 Qs :={(M)} Qg:=10 Q10 :=1{(A)}

Here, we use the property that symbols ! do not occur in R, so if the right-hand of a
dependency pair has the form £* 7, then the same holds for each term that (£# 7*)y reduces
to. Hence, essentially, we have an ordering on the function symbols, and let P; be the set
of dependency pairs where both sides have a function symbol of the same weight, and Q;
those where the right-hand side has a smaller weight than the left. In A;g we also consider
the shape of the argument: since inc® (s 0) does not reduce and is not in A9, Lemma 15
allows us to discard (A). We can also discard (@), (P), (H), (Q), (1) and (M), and reduce
chain-freeness of (SDP(R),R) to chain-freeness of each of P, Py, Ps, Ps, Pr, Ps and Py.

Yet, this still does not really accomplish our goal: while Lemma 15 allows us to split
a large set into potentially many small ones, a small set of DPs is not necessarily easy to
handle. In particular, to use Lemma 13, we still need to orient all rules in R at once.
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Fortunately, in many cases we can avoid an ordering altogether using the subterm criterion:

» Lemma 17. Given a set of dependency pairs P, and a function w that maps each marked
symbol £% :: 0y = ... = 0,, = dp that occurs in P to an integer between 1 and m, let
T 51 8m) 1= Sp(ety. Suppose P =P U Py, where T(¢) =7(r) for all { = r € P= and
7(0) > 7(r) for all £ = r € Py. Then P is chain-free if and only if P= is chain-free.

The subterm criterion allows us to discard many dependency pairs without even consider-
ing R. This is possible because the “chain-free’ notion considers computable chains, so in a
(P, R)-chain, each 7(¢)y and 7(r)y can be assumed to be terminating.

» Example 18. Chain-freeness of {(7)} follows by 7(map?) = 2, since 7(map? F' (cons z a)) =
cons z a > a = w(map? F a); we have P— = () and P = {(7)}, and ) is obviously chain-free.
In the same way, {(kK)} and {(c)} are discarded (choosing 7(fold*) = 3 for the first, and
m(min?) = 1 for the second). For the set {(D), (E), (N)}, we let m(ack?) = 1, and obtain
chain-freeness if {(E)} is chain-free, which holds by a second application of the subterm
criterion, now with 7(ack?) = 2. For {(B), (F), (0)}, we let m(exp?) = m(double?) = 1, which
allows us to discard (B) because s = > x; chain-freeness of the remaining set {(¥), (0)} follows
from chain-freeness of {(0)} by the splitting lemma (choosing A; = X9 and A, = X%
as in Example 16), which follows by the subterm criterion with m(doublef) = 2.

Hence, following Example 16, Example 2 is terminating if {(L)} and {(R)} are chain-free.

The formulation and use of the subterm criterion is exactly as in the first-order case.
There is a also variation of this criterion with a higher-order focus[11, Theorem 63]:

» Lemma 19. Let s Ot if s>gect ort=F t1---t, and s >q4ec F with F €Y. P_ U Py is
chain-free if Py is chain-free, T({) =7(r) for £ = r € P— and w(¢) 2 7(r) for £ = r € Ps.

So, the > relation in Lemma 17 is replaced by a relation that considers the type ordering
and accessibility relation. This is designed particularly to handle rules like ordinal recursion:
rec (lim F) U X W — W F (An.rec (F n) U X W), which has a dependency pair
rect (1im F) U X W = rec! (F n) U X W with 1lim :: (nat = ord) = ord.

The subterm criterion (whether in its basic form or the variation of Lemma 19) is a
powerful technique that — in combination with the splitting lemma (Lemma 15) — might
allow us to complete a termination proof in a very modular way. Yet, if any DP problems
remain which cannot be further split by either lemma, we will still have to orient all the rules.
To deal with this issue, we again follow the first-order DP framework and apply usable rules.

» Definition 20 (Usable Rules). For Q a set of rules or dependency pairs, let ths(Q) denote
the set of terms occurring as the right-hand side of some rule/DP in Q. For a set T of terms,
let Use(T,R) denote the set of those rules £ £y --- €, — 7 in R such that:

1. there is a term s € T which has a (fully applied) subterm of the form £ sy --- sy, or

2. there is a term s € T which has a subterm x t1 - -ty with x € FV(s) and m > 0.

For a set of DPs P, we let its set UR(P,R) of usable rules be defined as the smallest set
U C R such that Use(rhs(P),R) C U and Use(rhs(U),R) C U.

Intuitively, a rule is considered usable if we may need it to rewrite relevant instances of
some right-hand side of P. For example, when rewriting a term £ (quot s t), we will likely
need the quot rules, and their use introduces occurrences of min, which may also be relevant.
However, the fold rules will only be used if fold already occurs in s or ¢.
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» Example 21. For our running example, UR({(L) quot® (s z) (s y) = quot’ (minz y) (s y)},
R) = Ruin, since the only defined symbol occurring in the right-hand side is min, and the right-
hand side of the two min rules contain no other defined symbols. Note that quot? is marked,
and does not occur in R, so the quot rules are not included. UR({(R) sma? L F (s z) =
sma’ (F z) F (quot z (s (s 0)))},R) = R due to the subterm F x of the right-hand side.

Usable rules are best used in combination with a weakly monotonic ordering. In the
following, let Ce be a set {pair, x y — z, pair, z y — y | ¢ € S} for fresh symbols pair,.

» Lemma 22. Suppose R is finitely branching. Then a set P is chain-free if P = Py W Py
where Py is chain-free, and there is a reduction pair (>, =) such that: (a) £ > r for all
(=71 ePy, (b) =71 foralll =1 € Py and (c) L =1 for all £ — r € UR(P,R) UCe.

(“Finitely branching” means that for any s there are only finitely many ¢ with s —x t;
this holds for instance if R is finite.)

The difference between Lemma 22 and Lemma 13 is that instead of orienting all rules,
we only have to orient the usable rules, plus some rules of the form pair, z; 2 — z;. The
latter is trivial for most commonly used orderings. The need for these additional rules is also
present in the first-order case, and can be dropped when considering innermost termination.

» Example 23. To prove chain-freeness of {(L) quot? (s z) (s ) = quot? (min z y) (s %)},
whose DPs are Ry, following Example 21, we need quot? (s ) (s y) = quot® (min z y) (s y)
and min (s z) (s y) > min  y and min x 0 > z, as well as pair, > ¢ for all «. To achieve
this, we use the same interpretation as in Example 14, and let Jpair, = max(z,y) for all ¢.

We have now nearly completed our running example, with only one singular set remaining.
To address this last dependency pair, we observe that the use of the function symbol in the
sma rules is innocuous: the size of sma b F' x is bounded by the size of £ no matter what kinds
of calls the evaluation of F' may bring up. It would be nice to ignore the dependency pairs
imposed by this relatively harmless function application. To do this, we build on first-order
methods once more, and combine usable rules with an argument filtering.

» Definition 24 (Argument filtering). Let a function v be given which maps each (marked
or unmarked) function symbol £ :: 01 = ... = o, = t to a subset of {1,...,m}. If
v(f) = {i1,..., ik} with iy < --- < iy, then let Y, (f s1--Sm) denote £ s;, -+ s;,, where
oy = .. = 04, = L is a new function symbol. We define:

(bt ty) = Apg1.. T 0 (£ U(t1) - U(tn) Tpy1 - Tm) if £ takes m args
vty t,) = xv(t1) - -U(ts)
v(Azaw) ty--ty) = (Azo(u) U(t1) - 7(tn)

For a set of rules R, let U(R) = {v(¢) —» ¥(r) | £ — r € R}, and similar for a set of DPs.

Essentially, we make sure that all function symbols are maximally applied (by replacing
a partially applied function £ s1---s, by ATpt1...Tm.E $1- - Sn Tpt1- - Tm), and then
remove the arguments that we do not want to consider from their function symbols.

» Lemma 25. Suppose R is finitely branching. Then a set P is chain-free if P = P1WPy where
Py is chain-free, and there is a reduction pair (>, =) such that: (a) £ > r for alll = r € U(Py),
(b) L =1 for all £ = r € U(P2) and (¢) £ = r for all £ — r € UR(D(P),7(R)) UCe.

With this method, we can finally complete our running example.
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» Example 26. We let 7(smaf) = {2,3} and ¥(f) = {1,...,m} for all other symbols
fiop=...= 0y =t Then 7({(R)}) = {sma® F (s 2) = smaf F (quot z (s (s 0)))}.
Hence, UR#({(r)}),7(R)) = UR(T({(R)}); R) = Rquot U Rain-

We use the same interpretation for quot and min as in Example 14, and let [sma? F z] =
[z]. Then [¢] > [r] is satisfied for the usable rules as before, and [sma® F (s x)] = [«] +1 >
[z] = [sma® F (quot z (s (s 0)))] orients the DP. Hence, our last remaining set P is
chain-free, and the original system is terminating.

In the context of step-wise simplifying a termination problem, formative rules are also
worth mentioning. These are defined much like usable rules, but from the left side of rules
and DPs rather than the right: Form(T, R) contains those £ — r € R such that:

1. r=fry---r, and there is a term s € T with s> f s; --- s, for some sq,..., S,, Or

2. r=x 711 Ty and there is a term s € T with s > t for some ¢ whose type is the same as
the type of r, and ¢ is not a free variable in s, or

3. there is a term s € 7" which is not linear, or has a subterm Az.t with FV(t) N FV(s) # 0.

The set FR(P, R) of formative rules is the smallest set O C R such that Form(1hs(P),R) C O

and Form(1hs(O),R) C O. Hence, the parallels with usable rules are obvious.

In a more elaborate DP framework, which carries pairs (P, R) instead of just sets P and
considers more properties for chains than just computability, this definition can be used
to remove elements of R [11, Theorem 58]. In the current, limited DP framework, we can
still use formative rules with reduction pairs, for instance by changing requirement (c¢) in
Lemma 25 to: ¢ = r for all £ — r € UR(W(P),7(FR(P,R))) UCe. It seems likely that we
can also combine formative rules with an argument filtering, and hence limit interest to
¢ — r e UR(W(P),FR(T(P),7(R))) UCe. However, this proof currently only exists as a sketch.

Unfortunately, although we can use this method to eliminate some rules, these rules are
usually simple; for example, we may throw out the base case of a rule times 0 y — 0 but
not the more complex induction case times (s z) y — add (s z) (times z y). The primary
use case is when the set of sorts can be split, say S = A U B, so that the rules of type A do
not use any symbols over type B; in this case, we may be able to remove all rules of type B.
However, this does not happen often in practice. Hence, this is not really a core technique.

Discussion. The techniques in this section are all direct adaptations of methods for first-
order term rewriting, and they are used in a similar way as their first-order counterpart. Yet,
there is a clear place for higher-order reasoning, too. Type analysis play a role in both the
AFP restriction and the alternative subterm criterion. In the splitting lemma, higher-order
reachability analysis can be used to assess whether any reducts of ry are in some A;. The
choice of a reduction pair needs to take functional variables and S-reduction into account.
A critical difference between first-order and higher-order analysis lies in usable rules: case
2 in Definition 20 is not present in the first-order definition, since there variables cannot be
applied. But in higher-order rewriting, if any element of P, or any of its usable rules, has
a subterm x sq - - - Sy, then all rules are usable. Since a variable of higher type is typically
applied eventually (otherwise, why carry it around?), this essentially means that if any rule
with a higher-order variable is usable, then all rules are, and Lemma 22 is no improvement
over Lemma 13. Effectively: we can only use usable rules in an essentially first-order problem!
Hence, instead of usable rules, Example 23 could have been done using [9], which shows
that if the “first-order” part of a higher-order system combined with Ce is terminating,
then the corresponding DPs may be dropped from SDP(R). We recover this result with
Lemmas 15 and 22: define FO as the largest subset of R such that (a) the rules in FO do
not use abstractions, variables of higher type or partially applied function symbols, and (b)
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Use(rhs(FO),R) C FO. Let Ay = {£¥ 51 -5, | f is the head symbol of the left-hand side of
a rule in FO}, and let A; = {f% 51 ---s,, | f is a different defined symbol}; by Lemma 15,
termination follows if SDP(R \ FO) and SDP(FO) are both chain-free. As the usable rules of
SDP(FO) are in FO, we can apply Lemma 22 with > the (terminating!) relation (—pouc U>)™
on terms with § marks removed. Hence, it suffices to prove chain-freeness of SDP(R \ FO).

A similar result appears in [13], but instead of just first-order rules, this paper considers
a set A C R where both the left- and right-hand sides of rules are patterns. This obviously
captures first-order rules, but — due to the more permissive formalism of rewriting used in [13]
— also some forms of higher-order rules with particular applications (algebraic effect handlers).
To handle R \ A, the author of [13] does not use dependency pairs but rather a version of
the general schema [4]. There are many similarities between this technique and dependency
pairs with the splitting lemma and extended subterm criterion, but the restrictions to apply
the general schema do not need to apply to A. A parallel result in our setting would be that
the rules of A would not need to be accessible function passing, yet termination still holds if
SDP(R \ A) is chain-free. It might be worth investigating if this is the case.

These positive results aside, without an argument filtering, usable rules does not give
us much else due to the requirement that any variable application makes all rules usable.
Unfortunately, this requirement is hard to avoid. Consider for instance the rules Rcompo:

comp2 0 (sy) — L comp2xz0 — T
comp2 (s 0) (sy) — L comp2 (s (sz)) (sy) — comp2zy
fFxl — endx fFa2T — £ F (sz) (comp2 (F ) x)

Now, =R pmuUce 18 terminating, since comp2 n m determines whether n > 2+ m, and the only
closed functions from nat to nat are built using A, 0, s and pair,,.
F is linear in its argument, so for large enough z, comp2 (F' z) x will return L. However,
combining these rules with double 0 — 0, double (s ) — s (s (double z)) clearly yields a
non-terminating system. Here it is essential that the double rules are considered usable.

Hence, in the worst case

All this means that, if we succeed in applying usable rules — with or without an argument
filtering — the corresponding ordering requirements will be essentially first-order (perhaps
with some abstractions or unused higher-order variables). When these methods do not apply,
there is no obvious way to circumvent the need to orient all rules at once. The same happens
when we use dynamic instead of static DPs, where collapsing pairs often cause the subterm
criterion, splitting lemma and usable rules to fail; the static approach is incomplete, so we
may need the dynamic approach even on some AFP systems. In the next section we will see
how we can also use a modular kind of reasoning to build a suitable reduction pair.

5 Incrementally building weakly monotonic interpretations

Although higher-order variations of the recursive path ordering [14, 5] have been very succesful
in orienting higher-order rules, the current paper instead focuses on interpretations. The
reason for this is twofold. First, the static dependency pair approach already captures many
of the same advantages as higher-order RPO, since both methods are based on the same
proof technique (computability). The second, and main, reason is that, unlike RPO, an
interpretation-based ordering for a large set of rules can usually be built step by step.
Weakly monotonic interpretations do not provide a complete proof method: there are
terminating systems that cannot be ordered with interpretations. Nevertheless, it has the
potential to be very powerful — if we choose the sets A, right. In the examples so far, we
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have let A, = N for all sorts, but this is fundamentally limiting. For example, if other rules
impose that [s ] > [z], we cannot orient inc 0 — s (inc (s 0)). Instead, following an
approach for complexity in [17], we will map terms to tuples of numbers.

Intuitively, we assign to all sorts a variety of numbers to indicate different measures of
size. For example, a string of as and bs might be mapped to the number of as, the number
of bs, and the total length. Then we express for each rule how it affects the size measures.
This is a semantic technique: rather than only looking at the shape of rules, the best results
are typically obtained by modelling our interpretation to the intended meaning of the rules.

We left Section 4 with some techniques that often, but not always allow us to cut a
termination proof into bite-sized chunks. In the remaning cases, we must orient a large
number of rules and — typically — a small number of DPs using a reduction pair. To find an
interpretation (following Definition 11) that lets us do so, we will use the following procedure:
1. We choose an initial set A, for each sort, along with an intuitive meaning, and define J;

for all constructor symbols £ according to this meaning.

2. We divide the defined symbols into sets D1, ..., D, such that for each £ € D;, all the
function symbols occurring in the rules defining £ are either constructors or in D1 U- - -UD;.

3. For all ¢ (starting with 1 going up to n), we find interpretations for the symbols in D; so
that [¢] 3 [r]; we strive to make them as tight as possible, to make later rules easier.

4. If we find that some rule of sort ¢ cannot be oriented, we extend A, with an additional
measure that does make this possible (if we can). We return to the previous step, updating
the interpretations we already had to take the new measure into account.

5. When all rules are oriented, we find interpretations for the DPs in the same way.

This approach has not been formalised or implemented; rather, the goal is to present
ideas; to hopefully lay the foundation for an automated approach in the future.
Let us explore how the procedure works by applying it to a large example.

Preparation. Let R consist of the rules in Example 2 combined with the following:

hd (consz a) — =z lennil — O
ide — = len (cons z a) — s (lena)
twice Foz — F (F x) H(sxz) — H(twice id x)

For P = {H* (s x) = H* (twice id z)} C SDP(R), all rules are usable, the subterm criterion
cannot be applied, and there is no argument filtering that stops all rules from being usable
and yet allows us to strictly orient the single dependency pair. Hence, as we noted before,
we need to find an interpretation to show [¢] = [r] for a large number of rules (all rules in
the system), and [¢] > [r] for a small number of DPs (the single element of P).

So let us begin! Following step 1, we assign an intuitive measure to each type: terms
of type nat are mapped to the corresponding number, lists to their largest element, and
booleans to 0 or 1: Apat = Ajist = (N, >,>), Apool = ({0, 1}, >, >). This corresponds with:

Jo = 0 iz = 0 JL =
._75(,7)) = z+1 jcons (337 (l) = maX(a?, a) jT =1

We will handle the defined symbols in the following order: {id}, {twice}, {min}, {quot},
{sma}, {hd}, {ack}, {map}, {mkbig}, {mkdiv}, {len}, {fold}, {inc}, {double,exp}. This
satisfies the requirement on the order of symbols, and is otherwise arbitrary.
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The straightforward part. Following step 3, we will repeatedly interpret one or more
defined symbols whose rules only depend on each other and symbols that already have an
interpretation. To start, if Jiq(x) = x clearly [id «] = [«]. The rule defining id is oriented,
and since we have an equality, this interpretation is as tight as possible. We can achieve the
same for twice: with Jiyice(F,x) = F(F(x)) we have [¢] = [r] for the corresponding rule.
Unfortunately, we cannot achieve equality for min. Due to the monotonicity requirement,
we cannot have Juin(z,y) = = — y, which would give a tight interpretation. For the
current choice of (Anat, Jnat, Jnat), the best we can do is Jpin(z,y) = . With this choice,
[min z 0] = [z], and [min (s z) (s y)] = [=] + 1 > [z] = [min x y], so the rules are oriented.
Next is quot. Since we already know J; for all other symbols in the two quot rules, the
requirements are: [quot 0 (s y)] = Jquot(0,y +1) > 0= Jo = [0], and [quot (s z) (s y)] =
Jquot (@ + 1,y +1) > Tquot(z,y + 1) + 1 = [s (quot (min z y) (s y))]. This is easily satisfied
with Jquot (¢, y) = & (which is tight, as the left- and right-hand side are equal in both rules).
Similarly, the requirements for sma are: Jgpa(b, F,0) > 0 and Jgna(1, Fz +1) >+ 1
and Jopa (0, Fyx + 1) > Jspa(F(2), F, x). The simplest solution is Jepa (b, F, ) = x. To orient
hd (cons z a) — z, we let Jna(x) = z; this suffices because max(z,a) > z, and is optimal.

Beyond polynomials. When adressing ack, we run into some trouble: thus far, all our
interpretation functions J; have been bounded by polynomials, but these rules implement
the Ackermann function which grows much faster than any polynomial. However, there is no
need to limit interest to polynomials. Indeed, the three rules provide a recursive specification:

ackOy = sy ack (sz) 0 = ackz (s0)
ack (sz) (sy) = ackuz (ack (s z)y)

We can see by the recursive path ordering that this is terminating, and since it is a non-
overlapping constructor system, it is confluent. Hence, we can define Ack as a function from
N to N, and choose Jack(,y) = Ack(z,y). Then obviously all three ack rules are oriented.

We orient map by Jnap(F,a) = F(a): by weak monotonicity of F' we have F'(max(z,a)) >
F(z). Intuitively, applying F' to some element of the list cannot be greater than F(largest
element). To orient the mkbig rules, we must have Jnwig(a, ) > Jnap(Jack (), a) = Ack(z, a),
so we choose mkbig(a,z) = Ack(x,a). For mkdiv, we let Juxaiv(Z,a) = Jquot(a, ) = a.

Backtracking. We are in trouble again when trying to orient the len rule: the interpretation
of the constructors imposes J1en(0) = 0 and Jren(max(z,a)) > 1+ Fren(a). The latter is not
satisfiable since (for « = a) it implies Jien(@) > 14 J1en(a). The problem lies in the choice for
Jeons, which does not give enough information. Similarly, if we had chosen Jeops(z,a) = a+1
(so mapping a list to its length), we could have oriented the len rules but not hd.

Hence, we are at Step 4: extending the sort interpretations. We can keep A,,x unchanged,
but let us take Ajs; := N2, mapping a list of numbers to the pair of its greatest argument
and its length (ordered with >* as described in Section 2). The constructors are mapped to:

Joiz = (0,0) Teons(x, (M, 1)) = (max(z,m),l+1)

This follows the intended meaning of the sort. In line with Step 4 we now need to go back
and update all interpretations for the new target set A, and the new interpretations for nil
and cons. However, this turns out to be quite easy. Note that in the interpretations of the
constructors, the original choices 0 and max(z,a)) are still present, in the first component.
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Similarly, the interpretations for the defined symbols are adapted by (a) replacing any list
variable by its first component, and (b) adding a length component to the interpretation for
the defined symbols of a type & = list, so that [¢]o > [r]2 for the relevant rules. This yields:

Original: Update:

Jna(a) = a Jea({m, 1)) =m

TJnap(Fya) = F(a) Tnap(F', (m, 1)) = (F(m), 1)
Tuvig(a, x) = Ack(z,a)  Juwig((m, 1), x) = (Ack(z, m),1)
Jaxaiv(a, ) = a Taxaiv({m, 1), ) = (m, 1)

The interpretations for id, twice, min, quot, sma and ack are unchanged as list does not
occur in their type. We can orient the len rules using Jien({(m, 1)) = (.

Continuing our example, we orient Rso1a With Jre1a(F, , (m, 1)) = (d = F(d,m))!(x), so
using repeated function application. To see that this works, denote [a] = (m,l). Then:

d = F(d, max(y,m)))"* ()
d = F(d, max(y,m)))"((d — F(d, max(y,m)))(x))
( (y,m)
(F

[fold F z (cons y a)] = (
(
(d +— F(d,max(y,m)))"(F(x, max(y,m)))
(
[

3 3

d+ F(d,m))"(F(z,y)) by weak monotonicity of F
fold F (F z y) a]

[IAVARI

Non-numeric interpretations. As observed before, we cannot orient the inc rule if [s z] >
[x], which is currently the case. To handle this problem, we must backtrack again, and
update At Let X = {a,b,c} with a > b and a > c. We let Ap, = N x X, and set:

Jo = (0,b) Ts((ne)) = (n+1,c)
Jnin = <070> jcons(<nae>7<m7l>) = <max(nvm)vl+1>

(Note that we had to adapt Jeons because it takes a nat as argument, but the interpretation
is essentially unchanged: the new component is simply discarded.)

With this interpretation, [[s 0] = (1,¢) Znat (0,b) = [0]. Now we can orient the inc
rule using: Jinc(z,e) = “if e = c then 0 else 17 Then [inc 0] = 1 = s (inc (s 0)). We
update the existing interpretations by replacing references to a natural number x by its first
component, and letting the second component of every defined symbol be a:
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Mutually recursive symbols. To handle the mutually recursive symbols double and exp,
we can either find assignments for Jexp and Jacun1e at the same time, or use a trick: the
system is essentially unchanged if we replace these rules by the following;:

expOy — vy exp (sx)y — double x y 0 exp
doublez 0z F — Fxzz doublexz (sy)zF — doublexy (s(sz)) F

Now double and exp are no longer mutually recursive, and can be handled separately.
For double, we can choose Jaounre(Z, (¥, u), (z,€),F) 1= F(z,(z + 2 * y,a)). Using this,
the requirements for exp evaluate to Jexp((0,b),y) Jnat ¥ and Jexp((x + 1,¢), (¥, €)) Dnat
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Texp({x,u), (2% y,a)). This is satisfied with Jexp ({2, u), (y,€)) = (2% *y,a). Now we can find
an interpretation for the original definition of double by replacing F' by Jexp; this gives
jdouble(<x7 i>7 <y7u>7 <Z7 e)) = <2w * (Z +2x y)’ a>'

In this case, we only had two mutually recursive symbols, so the separation was perhaps
unnecessary. However, to handle a large group of mutually recursive rules, this idea may be
indispensible to split it into manageable chunks. Note also that we used the higher-order
capabilities of interpretations, even though the exp and double rules are first-order.

Finishing up. The last rule, H (s ) — H (twice id z), can be handled by choosing Jx(z) = 0.

Now, having [¢] 3 [r] for all rules, we move on to step 5 of the procedure. We let Aq, =N
and orient the DP by choosing Ju: ({x,e) = x. Then, using p; to denote the first element of

a pair p, we have [H (s 2)] = [z]1 +1 > [z]1 = Jia(J1a(z))1 = [H (twice id z)] as required.

Hence, the termination proof of the extended system is complete.

It is worth noting that there are many similarities between dependency pairs and this
incremental procedure for interpretations. Dividing the function symbols in groups based on
mutual dependencies also happens in the splitting lemma, and handling them in order so that

the dependencies for a rule £ 7 — r have been computed before J; is reminiscent of usable rules.

Non-numeric interpretations like {a, b, c} can take the same role as reachability analysis in
the splitting lemma. Also, strongly monotonic tuple interpretations (used without dependency

pairs) avoid the problem that £ & > z; of Example 5, and can handle Rguor U Ruin-[17].

Hence, tuple interpretations transpose DP-like reasoning to the level of rules rather than
dependency pairs. In future work it might be possible to define a similar reasoning approach
as the DP framework, but based on interpretations rather than dependency pairs. This may
offer a powerful tool for complexity analysis similar to the DP framework for termination.

Formalisation and implementation

The procedure above illustrates how a human can find tuple interpretations in a systematic
way. However, to be practically usable for systems with thousands of rules, the approach
needs to be automated — and to achieve that, there is a lot of work still to be done.

The methods to find individual interpretations should be automated. This could be done
using an encoding to SAT or SMT [7, 8, 10, 24], but the existing techniques will have to
be extended to for instance support repeated function application F™(x).

The use of interpretations to sets like {a, b, c}, which we used as a kind of reachability
check, should be formalised and explored more deeply. The same holds for defining
functions like Ack based on a given terminating and confluent subset of R.

The process to adapt existing interpretations when A4, is expanded should be formalised.

To be precise, we would like to find a systematic way to modify an interpretation function
J so that previously proven inequalities [£] 3 [r] are preserved either directly if £ :: k # ¢,
or in the first component (i.e., [¢]1 3, [r]1) if £ :: ¢. This was straightforward in all
examples that we have seen, but it is not easy to define an algorithm. We conjecture that
this can be done in general, but it may require also changing A, for some other sorts.

If the conjecture is false, we could alternatively do a true backtracking step, and recompute
all interpretations. Doing this means repeatedly discarding prior work, but it has the

advantage that, with the new information, we may be able to find tighter interpretations.

(For example, with [nat] = N x {a, b, c}, there is a smaller choice for Jpin.)
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Cutting a Proof into Bite-Sized Chunks

When splitting a group of mutually recursive symbols, the choice of which function
symbol to give an extra argument to matters. In the example, replacing the exp rules by
expOy F > yandexp (s 2) y F— F z y 0 would not have given the same good result,
since there is no perfectly tight interpretation for these rules. Hence, we should either
find a good heuristic to choose the symbol, or use a procedure based on trial and error.

6 Conclusions

In this paper, we explored a group of methods that can be combined to build termination
proofs for many large higher-order TRSs, in an incremental way. The foundation is the static
DP approach, with techniques lifted from the first-order setting but adapted to higher-order
rewriting: the splitting lemma, two subterm criteria and two usable rules lemmas. As a
reduction pair, we considered weakly monotonic interpretations to tuples, an idea originating
in complexity analysis which avoids many limitations of interpretations to N. Most of the
theory is not new (though it is adapted to a different formalism), but is used in a new way,
to hopefully provide insights on the challenge of large higher-order termination problems.

A part of the techniques discussed in this paper have been implemented in WANDA
[15], but not yet usable rules with respect to an argument filtering, or any form of tuple
interpretations. An obvious goal for future work is to complete this implementation, and
to formalise and implement the ideas of Section 5. In addition, an important goal is to
transpose the methodology (and implementation) to functional programming languages. This
would also allow us to investigate the power of the framework on real systems. While the
termination problem database [22] does contain large systems, these are invariably first-order
systems with only a few, mostly very simple, higher-order rules.

Finally, there are many ways to improve the DP framework. This could take the form of
lifting more ideas from the first-order setting, recognising more situations where not all rules
need to be usable (such as the DP for the H rule), or finding a way to weaken or drop the
AFP restriction, for instance by combining static and dynamic dependency pairs.
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