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Abstract
In this talk I present a methodology for designing proof search calculi for a wide range of non-classical
logics, such as modal and tense logics, bi-intuitionistic (linear) logics and grammar logics. Most of
these logics cannot be easily formalised in the traditional Gentzen-style sequent calculus; various
structural extensions to sequent calculus seem to be required. One of the more expressive extensions
of sequent calculus is Belnap’s display calculus, which allows one to formalise a very wide range
of logics and which provides a generic cut-elimination method for logics formalised in the calculus.
The generality of display calculus derives partly from the pervasive use of structural rules to capture
properties of the underlying semantics of the logic of interest, such as various frame conditions in
normal modal logics, that are not easily captured by introduction rules alone. Unlike traditional
sequent calculi, the subformula property in display calculi does not typically give an immediate
bound on the search space (assuming contraction is absent) in proof search, as new structures may
be created and their creation may not be driven by any introduction rules for logical connectives.
This line of work started out as an attempt to “tame” display calculus, to make it more proof
search friendly, by eliminating or restricting the use of structural rules. Two key ideas that make
this possible are the adoption of deep inference, allowing inference rules to be applied inside a
nested structure, and the use of propagation rules in place of structural rules. A brief survey of the
applications of this methodology to a wide range of logics is presented, along with some directions
for future work.
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1 Summary

Non-classical logics, such as modal logics and intermediate logics, have generally been challen-
ging to formalise in the traditional Gentzen’s sequent calculi. This has motivated the devel-
opment of a variety of structural extensions of sequent calculi as alternative proof-theoretic
formalisms for these logics. Notable formalisms include display calculi [14], hypersequent
calculi [1], tree-hypersequent calculi [19], nested sequent calculi [15, 2], the calculus of struc-
tures [12] and labelled sequent calculi [6, 17]. Among these formalisms, display calculi and
labelled sequent calculi are perhaps the more general ones, allowing one to design proof
systems for a wide range of non-classical logics that satisfy cut admissibility. In display
calculus, this is achieved by essentially defining a structural connective for each logical
connective, and internalising the underlying semantic conditions (e.g., frame conditions in
modal logics) into structural rules manipulating the relevant structural connectives. Similarly,
in labelled sequent calculi, the labels in a sequent and their relations can be seen as a
representation of Kripke frames in the underlying semantics of the logics, and the “structural
rules” manipulating these labels and relations are derived directly from the frame conditions
characterising the logics.
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However, the generality and the ease in which one represents logics in these calculi come
with a price of the loss of some of the more appealing features of Gentzen sequent calculi
from the perspective of proof search. The subformula property in the traditional sequent
calculi provides an immediate way to bound the search space in proof search (assuming
contraction is absent), but this is not the case for display calculi or labelled calculi in general.
This is a consequence of the use of extended structural rules, which can potentially create
structures of an arbitrary size (reading the inference rules bottom up), independently of the
(sub)formulas in the end sequent. Another property that arises naturally from a formulation
of a logic in the traditional sequent calculus is what I call the separation property – given a
sequent calculus for a logic, one can extract a sound and complete proof system for any of
its sublogics (defined by a selection of connectives) by simply selecting the introduction rules
for the connectives defining the sublogic. This property is generally difficult to prove directly
in display calculi, as proofs of a formula in a sublogic may require the use of structural
connectives that sit outside the sublogic.

In this talk, I present a methodology for designing proof calculi for non-classical logics, for
which both the subformula property and the separation property hold. This methodology is
based on a refinement process, starting with a “display-like” calculus for a logic, and ending
with a nested sequent calculus for the same logic. The syntactic framework for the refinement
is that of nested sequent calculus. We generalise the notion of a traditional (one-sided or
two-sided) sequent to a tree of sequents, and adopt display-like structural rules that act
on the tree of sequents. For example, the familiar display rules [14] in our setting becomes
essentially a rule that rotates the tree structure of a nested sequent [10].

Our methodology proceeds in three phases. In the first phase, given a logic of interest,
we first extend the logic by adding the adjoints of its connectives (if needed). For example,
if the logic of interest is an intuitionistic logic, then we will extend it by an exclusion (or
subtraction) connective; if it is a modal logic, we extend it to tense logic. We then design a
display calculus for the extended logic and produce a shallow nested sequent calculus (where
introduction rules can be applied only to the root sequent in a nested sequent). A shallow
nested calculus is for most part a notational variant of the display calculus. Provided that
the shallow nested calculus satisfies Belnap’s eight conditions [14], we get cut-elimination
for free. The structural rules in the shallow calculus consist of the internal structural rules
(that change the structures within a sequent, e.g., contraction/weakening) and the external
structural rules (that change the shape of the tree of a nested sequent, e.g., display postulates
and various rules that correspond to frame conditions in modal logic).

In the second phase, we transform the shallow nested sequent calculus into a deep nested
sequent calculus, where inference rules (including introduction rules) can be applied to any
sequent in the nested sequent. A key technical requirement for the deep calculus is that
the only rules that are allowed change the structure of a nested sequent (i.e., the tree-shape
of the nested sequent) are introduction rules. This means in particular that all external
structural rules are absent in the deep calculus. In place of external structural rules, we
introduce propagation rules [8, 10] into the deep calculus. These propagation rules determine
how formulas in a sequent in the tree of sequents can be propagated to other sequents in the
same tree. An important consequence of the absence of external structural rules is that in
the proof of a formula, every (logical or structural) connective occurring in the proof also
occurs in the formula. This gives us immediately the separation property.

In the last phase, we obtain the deep nested sequent calculus for the logic we started
with by simply omitting the introduction rules for the connectives that are not in the logic;
by the separation property, this gives us a sound and complete proof system for our logic.
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Over the past decade or so, my collaborators and I have applied this methodology to
design proof calculi that are amenable to proof search for various non-classical logics. Our
early work focused on classical propositional tense logics [8, 10], showing that we can obtain
sound and complete cut-free proof systems for all modal logics that can be characterised
using path axioms [10], which subsume all modal logics in the modal logic cube. This result
naturally extends to multi-modal logics, which we have demonstrated by giving cut-free
proof systems for a family of grammar logics [21] and their proof search procedures. We
applied the same methodology to solve the problem of finding a cut-free proof system for bi-
intuitionistic logic [7, 20], which had evaded previous attempts [18]. This was later extended
to a version of bi-intuitionistic tense logic [9], which contains an intuitionistic modal logic as
its subsystem. Lastly, we have also applied this methodology to design a proof system [4]
for full intuitionistic linear logic (FILL) [13] and prove its NP-completeness.

Although our methodology has been successfully applied to design proof calculi for a
wide range of logics, it is currently not clear what the limit of its applicability is. We know,
for example, modal logics admitting pseudo-transitive axioms of the form □mp → □np, for
m, n > 1, do not seem to be expressible in the deep nested sequent calculus without any
external structural rules.

There are indications that our deep nested calculi may allow for a more syntax directed
proof of the interpolation theorem for a wide range of modal/tense logics and bi-intuitionistic
logic [16]. However, proving interpolation for FILL in the deep nested sequent calculus
remains a challenge and is a subject of an on-going research.

Our methodology is mainly aimed at bridging display calculi and (deep) nested sequent
calculi. It will be interesting to see how this methodology can be generalised to design proof
search calculi in a different syntactic framework. For this, we can leverage on existing work
on relating different formalisms [5, 11, 3].
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