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Abstract
Logical relations built on top of an operational semantics are one of the most successful proof
methods in programming language semantics. In recent years, more and more expressive notions of
operationally-based logical relations have been designed and applied to specific families of languages.
However, a unifying abstract framework for operationally-based logical relations is still missing.
We show how fibrations can provide a uniform treatment of operational logical relations, using
as reference example a λ-calculus with generic effects endowed with a novel, abstract operational
semantics defined on a large class of categories. Moreover, this abstract perspective allows us to give
a solid mathematical ground also to differential logical relations – a recently introduced notion of
higher-order distance between programs – both pure and effectful, bringing them back to a common
picture with traditional ones.
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1 Introduction

Logical relations [83] are one of the most successful proof techniques in logic and programming
language semantics. Introduced in proof theory [93, 43] in their unary form, logical relations
have soon became a main tool in programming language semantics. In fact, starting with the
seminal work by Reynolds [83], Plotkin [79], and Statman [87], logical relations have been
extensively used to study both the denotational and operational behaviour of programs.1

Logical relations (and predicates) mostly come in two flavours, depending on whether
they are defined relying on the operational or denotational semantics of a language. We refer
to logical relations of the first kind as operational logical relations and to logical relations
of the second kind as denotational logical relations. Due to their link with denotational
semantics, denotational logical relations have been extensively studied in the last decades,
both for specific programming languages and in the abstract, this way leading to beautiful
general theories of (logical) predicates and relations on program denotations. In particular,
starting with the work by Reynolds and Ma [68], Mitchell and Scedrov [75], and Hermida [49],
researchers have started to investigate notions of (logical) predicates and relations in a

1 See the classic textbooks by Mitchell [74], Pierce [77], and Harper [48] (and references therein) for an
introduction to both denotationally- and operationally-based logical relations.
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3:2 A Fibrational Tale of Operational Logical Relations

general categorical setting, this way giving rise to an abstract understanding of relations
over (the denotational semantics of) programs centred around the notions of fibrations
[49, 39, 86, 62, 60, 61, 59] reflexive graphs [76, 84, 34, 51], and factorisation systems [57, 54, 46].
The byproduct of all of that is a general, highly modular theory of denotational logical
relations that has been successfully applied to a large array of language features, ranging from
parametricty and polymorphism [39, 86, 34] to computational effects [62, 60, 61, 59, 65, 57, 46].

On the operational side, researchers have focused more on the development and applica-
tions of expressive notions of logical relations for specific (families of) languages, rather than
on their underlying theory. In fact, operational logical relations being based on operational
semantics, they can be easily defined for languages for which finding the right denotational
model is difficult, this way making operational logical relations a handy and lightweight
technique, especially when compared to its denotational counterpart. As a paradigmatic
example, consider the case of stochastic λ-calculi and their operational techniques [16, 21, 97]
which can be (easily) defined relying on the category of measurable spaces and measurable
functions, but whose denotational semantics have required the introduction of highly non-
trivial mathematical structures [89, 88, 95, 35], since the category measurable spaces (and
measurable functions) is not closed [6].

The wide applicability of operational logical relations, however, has also prevented the
latter to organise as a uniform corpus of techniques with a common underlying theory.
Operational logical relations result in a mosaic of powerful techniques applied to a variety
of languages – including higher-order, functional, imperative, and concurrent languages
[32, 3, 94, 4, 17, 33]; both pure and (co)effectful [56, 25, 1, 12, 52, 10, 11, 13] – whose
relationship, however, is unclear. This situation creates a peculiar scenario where, on the
one hand, the effectiveness of operational logical relations has been proved by their many
applications but, on the other hand, a foundational understanding of operational logical
relations is still missing, the main consequence of that being the lack of modularity in their
development. All of that becomes even worst if one also takes into account more recent
forms of logical relations, such as metric [82, 78] and differential [30, 22, 23, 25] ones, that
go beyond traditional relational reasoning.

In this paper, we show that much in the same way denotational logical relations can
be uniformly understood in terms of fibrations, it is possible to give a uniform account
of operational logical relations relying on the language of fibrations. In this respect, our
contribution is twofold.

Operational Logical Relations, Fibrationally. Our first contribution is the development of
a general, abstract notion of an operational logical relation in terms of fibrations for a λ-
calculus with generic effects. Fibrations are a mainstream formalism for general, categorical
notions of predicates/relations. More precisely, a fibration is a suitable functor from a
category of (abstract) predicates – the domain of the fibration – to a category of arguments –
usually called the base category. In denotational logical relations, predicates usually apply
to program denotations rather than on program themselves, with the main consequence
that the base category is usually required to be cartesian closed. In this paper, we follow
a different path and work with base categories describing the operational (and interactive)
behaviour of programs, rather than their denotations. To do so, we introduce the novel notion
of an operational structure, the latter being a cartesian category with arrows describing
(monadic) evaluation semantics [80, 27] and satisfying suitable coherence conditions encoding
the base dynamics of program evaluation. This way, we give not only an abstract account to
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traditional set-based evaluation semantics, but also of evaluation semantics going beyond
the category of sets and functions, the prime example being the evaluation semantics of
stochastic λ-calculi, which is defined as a stochastic kernel [21, 97].

On top of our abstract operational semantics, we give a general notion of an operational
logical relation in terms of (logical) fibrations and prove a general result (which we call
the fundamental lemma of logical relations, following standard nomenclature of concrete,
operational logical relations) stating that programs behave as arrows in the domain of the
fibration. Remarkably, our general fundamental lemma subsumes several concrete instances
of the fundamental lemma of logical relations appearing in the literature. Additionally,
the operational nature of our framework immediately results in a wide applicability of our
results, especially if compared with fibrational accounts of denotational logical relations.
In particular, since our logical relations builds upon operational structures, they can be
instantiated to non-cartesian-closed categories, this way reflecting at a general level the wider
applicability of operational techniques with respect to denotational ones. As a prime example
of that, we obtain operational logical relations (and their fundamental lemma) for stochastic
λ-calculi for free, something that is simply not achievable denotationally, due to the failure
of cartesian closedness of the category of measurable spaces.

Fibrational Differential Reasoning. Our second, main contribution is to show that our
framework goes beyond traditional relational reasoning, as it gives a novel mathematical
account of the recently introduced differential logical relations [31, 22, 23, 25] (DLRs, for
short), both pure and effectful. DLRs are a new form logical relations introduced to define
higher-order distances between programs, such distances being abstract notions reflecting the
interactive complexity of the programs compared. DLRs have been studied operationally and
on specific calculi only, oftentimes introducing new notions – such as the one of a differential
extension of a monad [25] – whose mathematical status is still not well understood. The
main consequence of that is that a general, structural account of pure and effectful DLRs
is still missing. In this paper, we show how DLRs are a specific instance of our abstract
operational logical relations and how the fundamental lemma of DLRs is an instance of our
general fundamental lemma. We do so by introducing the novel construction of a fibration
of differential relations and showing how the latter precisely captures the essence of DLRs,
bringing them back to a common framework with traditional logical relations. Additionally,
we show how our fibrational account sheds a new light on the mathematical status of effectful
DLRs. In particular, we show that differential extensions of monads are precisely liftings
of monads to the fibration of differential relations, and that the so-called coupling-based
differential extension [25] – whose canonicity has been left as an open problem – is an instance
of a general monadic lifting to the fibration of differential relations: remarkably, such a lifting
is the extension of the well-known Barr lifting [8] to a differential setting.

Related Work. Starting with the seminal work by Hermida [49], fibrations have been used
to give categorical notions of (logical) predicates and relations, and to model denotational
logical relations [39, 86, 62, 60, 61, 59], as they provide a formal way to relate the denotational
semantics of a programming language and a logic for reasoning about it. Other categorical
approaches to denotational logical relations have been given in terms of reflexive graphs
[76, 84, 34, 51] and factorisation systems [57, 54, 46].

On the operational side, fibrations have been used to give abstract accounts to induction
and coinduction [50], both in the setting of initial algebra-final coalgebra semantics [42, 41, 40]
and in the setting of up-to techniques [15, 14]. To the best of the authors’ knowledge,
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3:4 A Fibrational Tale of Operational Logical Relations

however, none of these approaches has been applied to operational reasoning for higher-order
programming languages. Concerning the latter, general operational accounts of logical
relations both for effectful [56] and combined effectful and coeffectful languages [1, 26] have
been given in terms of relational reasoning. These approaches, however, are tailored on
specific operational semantics and notions of relations, and thus they cannot be considered
truly general. Finally, DLRs have been studied mostly operationally [31, 22, 23, 25], although
some general denotational accounts of DLRs have been proposed [31, 78]. Even if not dealing
with operational aspects of DLRs, the latter proposals can cope with pure DLRs only, and
are too restrictive to incorporate computational effects.

2 The Anatomy of an Operational Semantics

To define a general notion of an operational logical relation, we first need to define a general
notion of an operational semantics. This is precisely the purpose of this section. In particular,
we introduce the notion of an operational structure on a category with finite products endowed
with a strong monad as an axiomatisation of a general evaluation semantics. Operational
structures prescribe the existence of basic interaction arrows (the latter describing basic
program interactions as given by the usual reduction rules) and define program execution
as a Kleisli arrow (this way giving monadic evaluation) satisfying suitable coherence laws
reflecting evaluation dynamics. Remarkably, operational structures turn out to be more
liberal – hence widely applicable – than categories used in denotational semantics (the latter
being required to be cartesian closed).

2.1 A Calculus with Generic Effects
Our target calculus is a simply-typed fine grain call-by-value [66] Λ enriched with generic
effects [45, 81]. Recall that for a strong monad2 T = (T, η, >>=) on a cartesian category C , a
generic effect [81, 80] of arity A, with A an object of C , is an arrow γ : 1 → TA. Standard
examples of generic effects are obtained by taking C = Set and A equal to a finite set giving
the arity of the effect, so that, for instance, one can model nondeterministic (resp. fair) coins
as elements of P(2) (resp. D(2)), where P (resp. D) is the powerset (resp. distribution)
monad. Other examples of generic effects include primitives for input-output, memory
updates, exceptions, etc. Here, we assume to have a collection of generic effect symbols γ
with an associated type σγ , leaving the interpretation of γ as an actual generic effect γ to
the operational semantics. The syntax and static semantics of Λ are given in Figure 1, where
ζ ranges over base types and c over constants of type ζ (for ease of exposition, we do include
operations on base types, although those can be easily added).

Notice that Λ’s expressions are divided into two (disjoint) classes: values (notation
v, w, . . .) and computations (notation t, s, . . .), the former being the result of a computation,
and the latter being an expression that once evaluated may produce a value (the evaluation
process might not terminate) as well as side effects. When the distinction between values and
computations is not relevant, we generically refer to terms (and still denote them as t, s, . . .).
We adopt standard syntactic conventions [7] and identify terms up to renaming of bound
variables: we say that a term is closed if it has no free variables and write Vσ, Λσ for the sets
of closed values and computations of type σ, respectively. We write t[v1, . . . , vn/x1, . . . , xn]

2 We use the notions of a strong monad (T, η, µ, st) and of a strong Kleisli triple T = (T, η, >>=) interchange-
ably, where for an arrow f : X × Y → T Z in a cartesian category C , we denote by >>=f : X × T Y → T Z
the strong Kleisli extension of f . We write f† : T X → T Y for the Kleisli extension of f : X → T Y .
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v, w ::= x | c | ⟨⟩ | λx.t | ⟨v, w⟩
t, s ::= val v | vw | v.1 | v.2 | t to x.s | γ

x : σ ∈ Γ
Γ ⊢ x : σ Γ ⊢ c : ζ

Γ ⊢ v : σ
Γ ⊢ val v : σ Γ ⊢ γ : σγ

Γ, x : σ ⊢ t : τ
Γ ⊢ λx.t : σ → τ

Γ ⊢ v : σ → τ Γ ⊢ w : σ
Γ ⊢ vw : τ

Γ ⊢ t : σ Γ, x : σ ⊢ s : τ
Γ ⊢ t to x.s : τ

Γ ⊢ v : σ × τ
Γ ⊢ v.1 : σ

Γ ⊢ v : σ × τ
Γ ⊢ v.2 : τ

Γ ⊢ v : σ Γ ⊢ w : τ
Γ ⊢ ⟨v, w⟩ : σ × τ Γ ⊢ ⟨⟩ : 1

Figure 1 Syntax and Static semantics of Λ.

(and similarly for values) for the capture-avoiding (simultaneous) substitution of the values
v1, . . . , vn for all free occurrences of x1, . . . , xn in t. Oftentimes, we will use the notation

−→
ϕ

for a sequence ϕ1, . . . , ϕn of symbols ϕi.
When dealing with denotational logical relations, one often organises Λ as a syntactic

category having types as objects and (open) terms modulo the usual βη-equations as arrows.
Operationally, however, terms are purely syntactic objects and cannot be taken modulo
βη-equality. For that reason, we consider a syntactic graph rather than a syntactic category.3

▶ Definition 2.1. The objects of the syntactic graph Syn are environments Γ, types σ, and
expressions σ, for σ a type. Arrows are defined thus: hom(Γ, σ) consists of values Γ ⊢ v : σ,
whereas hom(Γ, σ) consists of terms Γ ⊢ t : σ; otherwise, the hom-set is empty.

The definition of Syn reflects the call-by-value nature of Λ: to each type σ we associate
two objects, representing the type σ on values and on computations. Moreover, there is no
arrow having environments as codomains nor having objects σ as domain: this reflects that
in call-by-value calculi variables are placeholders for values, not for computations.

2.2 Operational Semantics: The Theoretical Minimum
Having defined the syntax of Λ, we move to its operational semantics. Among the many
style of operational semantics (small-step, big-step, etc), evaluation semantics turns out to
be a convenient choice for our goals. Evaluation semantics are usually defined as monadic
functions e : Λσ → T (Vσ), with T a monad encoding the possible effects produced during
program evaluation (e.g. divergence or nondeterminism) [27, 80, 56]. To clarify the concept,
let us consider an example [27].

▶ Example 2.2. Let T be a monad on Set with a generic effects γ ∈ T (Vσγ ) for effect
symbols γ in Λ. The (monadic) evaluation (family of) map(s) J−K : Λσ → T (Vσ) is defined
as follows (notice that Λ being simply-typed, J−K is well-defined4).

Jval vK = η(v) J(λx.t)vK = Jt[v/x]K Jt to x.sK = Js[·/x]K†JtK J⟨v1, v2⟩.iK = η(vi) JγK = γ

3 Recall that a graph is defined by removing from the definition of a category the axioms prescribing the
existence of identity and composition. A diagram is a map from graphs to graphs ( a diagram being
defined by removing from the definition of a functor the clauses on identity and composition). Since
any category is a graph, we use the word diagram also to denote maps from graphs to categories.

4 It is worth remarking that termination is not an issue for our general notion of an evaluation semantics
(Definition 2.3 below). In fact, the results presented in this paper simply require to have an evaluation

FSCD 2022



3:6 A Fibrational Tale of Operational Logical Relations

SΓ × Sσ
St //

S(λx.t)×idSσ

��

Sτ

S(σ → τ) × Sσ

β

88 SΓ

S⟨v1,v2⟩
��

Svi // Sσi

S(σ1 × σ2)
i

88 SΓ
S⟨⟩ //

!
��

S1

1
ι

:: SΓ Sc //

!
��

Sζ

1
c

::

SΓ
S(val v) //

S(v)

��

Sσ

e

��
Sσ

η
// T (Sσ)

SΓ

!

��

S(γ) // S(σ)

e

��
1

γ
// T (Sσ)

SΓ
S(vw) //

⟨S(v),S(w)⟩

��

Sτ

e

��
S(σ → τ) × Sσ

β
// Sτ

e
// T (Sτ)

SΓ
S(t to x.s) //

⟨id,S(t)⟩

��

Sτ

e

��
SΓ × Sσ

id×e
// SΓ × T (Sσ)

>>=(e◦S(s))
// T (Sτ)

SΓ
S(v.i) //

S(vi)

��

Sσi

e

��
S(σ1 × σ2)

i
// Sσi η

// T (Sσi)

Figure 2 Coherence laws, where −.i ∈ {−.1, −.2} and i ∈ {p1, p2}.

Example 2.2 defines evaluation semantics as an arrow in the category Set of sets and
functions relying on two main ingredients: the monad T and its algebraic operations; and
primitive functions implementing the basic mechanism of β-reductions, viz. application/sub-
stitution and projections. The very same recipe has been used to define specific evaluation
semantics beyond Set , prime example being kernel-like evaluation semantics for stochastic
λ-calculi [21, 97, 95, 35], where evaluation semantics are defined as Kleisli arrows on suitable
categories of measurable spaces (see Example 2.5 below for details). Here, we propose a
general notion of an operational semantics for Λ in an arbitrary cartesian category B and
with respect to a monad T. We call the resulting notion a (Syn -)operational structure.

▶ Definition 2.3. Given a category B with finite products and a strong monad T on it, a
(Syn -)operational structure consists of a diagram S : Syn → B satisfying S(−−→x : σ) =

∏ −→
Sσ,

together with the following (interaction) arrows (notice that γ is a generic effect) and
satisfying the coherence laws in Figure 2.

e : Sσ → T (Sσ) ι : 1 → S1 β : S(σ → τ) × Sσ → Sτ c : 1 → Sζ

p1 : S(σ × τ) → Sσ p2 : S(σ × τ) → Sτ γ : 1 → T (Sσγ)

Notice how the first four coherence laws in Figure 2 ensure the intended behaviour of
the arrows β, ι,pi, c, whereas the remaining laws abstractly describe the main dynamics of
program execution. Notice also that Definition 2.3 prescribes the existence of an evaluation
arrow e: it would be interesting to find conditions on B (probably a domain-like enrichment
[64] or partial additivity [71]) ensuring the existence of e. We can now instantiate Defini-
tion 2.3 to recover standard Set -based evaluation semantics as well as operational semantics
on richer categories. In particular, since B need not be closed, we can give Λ an operational
semantics in the category Meas of measurable spaces and measurable functions.

map satisfying suitable coherence conditions. Consequently, we could rephrase this example ignoring
termination by requiring the monad to be enriched in an ω-complete partial order [2] and defining
evaluation semantics as a least fixed point of a suitable map, as it is customary in monadic evaluation
semantics [27].
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▶ Example 2.4. Let B = Set and define S : Syn → Set thus:

Sσ = Vσ Sσ = Λσ S(−−→x : σ) =
∏ −→

Sσ S(Γ ⊢ t : σ)(−→v ) = t[−→v /−→x ]

We obtain an operational structure by defining the maps β,p1,p2, and ι in the obvious way
(e.g. β(λx.t, v) = t[v/x] and pi⟨v1, v2⟩ = vi). Finally, given a monad T with generic effects
γ ∈ TVσγ

for each effect symbol γ, we define e as the evaluation map of Example 2.2.

▶ Example 2.5 (Stochastic λ-calculus). Let us consider the instance of Λ with a base type
R for real numbers, constants cr for each real number r, and the generic effect symbol U
standing for the uniform distribution over the unit interval. Recall that Meas has countable
products and coproducts (but not exponentials [6]). To define the diagram S : Syn → Meas ,
we rely on the well-known fact [36, 89, 16] that both Vσ and Λσ can be endowed with a
σ-algebra making them measurable (actually Polish) spaces in such a way that VR ∼= R and
that the substitution map is measurable. We write Σσ and Σσ for the σ-algebras associated
to Vσ and Λσ, respectively. We thus define S : Syn → Meas as follows:

Sσ = (Vσ,Σσ) Sσ = (Λσ,Σσ) S(−−→x : σ) =
∏ −→

Sσ S(Γ ⊢ t : σ)(−→v ) = t[−→v /−→x ]

We obtain an operational structure by observing that the maps β,p1,p2, and ι of previous
example extend to Meas , in the sense that they are all measurable functions. Next, we
consider the Giry monad [44] G : Meas → Meas which associates to each measurable space
the space of probability measures on it. By Fubini-Tonelli theorem, G is strong. Let U be
the Lebesgue measure on [0, 1], which we regard as an arrow U : 1 → G(SVReal), and thus
as a generic effect in Meas . We then define [21] e : Λσ → G(Vσ) as in Example 2.2.

3 Operational Logical Relations, Fibrationally

Having defined what an operational semantics for Λ is, we now focus on operational reasoning.
In this section, we propose a general notion of an operational logical relation in terms of
fibrations over (the underlying category of) an operational structure and prove that a
general version of the fundamental lemma of logical relations holds for our operational logical
relations. But before that, let us recall some preliminary notions on (bi)fibrations (we refer
to [49, 55, 92] for more details).

3.1 Preliminaries on Fibrations
Let p : E → B be a functor and f : X → Y an arrow in E with p(f) = u. We say that f is
cartesian over u if, for every arrow h : Z → Y in E such that p(h) = u ◦ v, there is a unique
arrow g : Z → X such that p(g) = v and h = f ◦ g. Dually, f is cocartesian over u if, for
every arrow h : X → Z in E such that p(h) = v ◦ u, there is a unique arrow g : Y → Z such
that p(g) = v and h = g ◦ f . We say that f is vertical if u is an identity.

A fibration is a functor p : E → B such that, for every object X in E and every arrow
u : I → p(X) in B , the exists a cartesian arrow over u with codomain X. Dually, an
opfibration is a functor p : E → B such that for every object X in E and every arrow
f : p(X) → I in B , the exists a cocartesian arrow over u with domain X. A bifibration is a
functor which is both a fibration and an opfibration. We refer to E and B as the domain
and the base of the (bi/op)fibration. A (op)fibration is cloven if it comes together with
a choice of (co)cartesian liftings: for an object X in E , we denote by uX : u∗X → X the
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3:8 A Fibrational Tale of Operational Logical Relations

chosen cartesian arrow over u : I → p(X) and by uX : X → u!X the chosen cocartesian arrow
over u : p(X) → I. A bifibration is cloven if it has choices both for cartesian and cocartesian
liftings. From now on, we assume all (bi/op)fibrations to be cloven.

Let p : E → B be a functor and I an object in B . The fibre over I is the category EI

where objects are objects X in E such that p(X) = I and arrows are arrows f : X → Y

in E such that p(f) = idI , namely, vertical arrows. Then, for every arrow u : I → J , if
p is a fibration, we have a functor u∗ : EJ → EI called reindexing along u and, if p is an
opfibration, we have a functor u! : EI → EJ called image along u. If p is a bifibration, we
have an adjunction u! ⊣ u∗.

▶ Example 3.1. n-ary predicates form a bifibration PredSet : p(Set ) → Set , with p(Set )
having pairs of sets (X,A) with A ⊆ Xn as objects and functions f : X → Y such that
A ⊆ (

∏
f)−1(B) as arrows f : (X,A) → (Y,B), and PredSet (X,A) = X. The cartesian and

cocartesian liftings of f are given by inverse and direct images along
∏
f , respectively. Special

bifibrations are obtained for n = 1 (unary predicates) and n = 2 (binary relations). In those
cases, we specialise the notation and write SubSet : s(Set ) → Set and RelSet : r(Set ) → Set .

▶ Example 3.2 (Weak subobjects). Let C be a category with weak pullbacks. We define
the bifibration ΨC : ws(C ) → C of weak subobjects in C [47, 70]. Objects of ws(C ) are
pairs (X,R) where X is an object of C and R is an object of the poset reflection of the
slice C/X, hence it is an equivalence class [α] for an arrow α : A → X in C . An arrow
f : (X, [α]) → (Y, [β]) is an arrow f : X → Y in C such that f ◦ α = β ◦ g for some arrow
g in C . Composition and identities in ws(C ) are those of C . The functor ΨC maps (X,R)
to X and is the identity on arrows. It is easy to check that, for every arrow f : X → Y

in C and every object (X, [α]), the image along f is f!(X, [α]) = (Y, [f ◦ α]); and for every
object (Y, [β]), the reindexing along f is f∗(Y, [β]) = (X, [β′]), where f ◦β′ = β ◦ f ′ is a weak
pullback square. Therefore, ΨC is a bifibration.

Note that, given objects (X, [α]) and (X, [β]) in ws(C ), there is at most one vertial
arrow between them (the identity on X), hence we will write [α] ≤X [β] when such arrow
exists. Moreover, we have that [α] ≤X [β] and [β] ≤X [α] implies [α] = [β], by definition
of poset reflection, hence the only vertical isomorphisms are identities. Finally, observe
that the bifibrations ΨSet and SubSet are equivalent in the sense that there is a functor
U : SubSet → ws(Set ) which is an equivalence satisfying ΨSet ◦ U = SubSet and preserving
(co)cocartesian arrows. The functor U maps (X,A) to (X, [ιA]) where ιA : A → X is the
inclusion function.

Fibrations nicely carry a logical content: logical operations, in fact, can be described
as categorical structures on the fibration. We now define the logical structure underlying
logical relations, namely conjunctions, implications, and universal quantifiers. Recall that
a fibration p : E → B has finite products if E and B have finite products and p strictly
preserves them. We denote by ×̇ and 1̇ finite products in E and recall [55] that in a fibration
with finite products every fibre has finite products ∧ and ⊤ preserved by reindexing functors;
additionally, we have the isomorphisms A×̇B ≃ π∗

1A ∧ π∗
2B and 1̇ ≃ ⊤1.

▶ Definition 3.3. A fibration p : E → Bwith finite products is a logical fibration if it is
fibred cartesian closed and has universal quantifiers, where:
1. p is fibred cartesian closed if every fibre EI has exponentials, denoted by X ⇒ Y , and

reindexings preserve them.
2. p has universal quantifiers if for every projection π : I × J → I in B the reindexing

functor π∗ : EI → EI×J has a right adjoint AI
J : EI×J → EI satisfying the Beck-Chevalley

condition [55].
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Note that in a fibration with universal quantifiers, we have right adjoints along any tuple of
distinct projections ⟨πi1 , . . . , πik ⟩ : I1 × . . .×In → Ii1 × . . .×Iik , where i1, . . . , ik ∈ {1, . . . , n}
are all distinct. We denote such a right adjoint by A

⟨πi1 ,...,πik
⟩. The following proposition

shows under which condition the fibration of weak subobjects is a logical fibration.

▶ Proposition 3.4 ([55, 69]). Let C be a category with finite products and weak pullbacks.
1. If C is cartesian closed, then ΨC has universal quantifiers;
2. If C is slicewise weakly cartesian closed, then ΨC is fibred cartesian closed.

▶ Example 3.5. Since Set is locally cartesian closed, Proposition 3.4 implies that both ΨSet
and SubSet are logical fibrations. Also RelSet is a logical fibration, as it can be obtained from
SubSet by pulling back along the product-preserving Set -functor X2 = X ×X.

A 2-category of (bi)fibrations. Fibrations can be organised in a 2-category. This is
important because many standard categorical concepts can be internalised in any 2-category,
hence we will be able to define them also for fibrations. In particular, we will be interested
in (strong) monads on a fibration, as they will allow us to define effectful logical relations.
We consider the 2-category Fib of fibrations defined as follows. Objects are fibrations
p : E → B . A 1-arrow (F,G) : p → q between fibrations p : E → Band q : D → C is
a pair of functors F : B → C and G : E → D such that F ◦ p = q ◦ G.5 A 2-arrow
(ϕ, ψ) : (F,G) ⇒ (H,K) between 1-arrows (F,G), (H,K) : p → q is a pair of natural
transformations ϕ : F .→ H and ψ : G .→ K such that ϕp = qψ.. Compositions and identities
are defined componentwise. The 2-category biFib of bifibrations is defined in the same
way. We can define [90] strong monads on fibrations as strong monads in the 2-category
Fib. That is, a monad T on a fibration p : E → B consists of the following data: a 1-arrow
(T, S) : p → p and two 2-arrows (µT , µS) : (T 2, S2) ⇒ (T, S), (ηT , ηS) : (IdE , IdB) ⇒ (T, S),
and (stT , stS) : (– × T–, –×̇S–) ⇒ (T (– × –), S(–×̇–)) such that (T, µT , ηT , stT ) is a strong
monad on B and (S, µS , ηS , stS) is a strong monad on E . In particular, given a strong
monad T = (T, µ, η, st) on B , a lifting of T to p : E → B is a tuple Ṫ = (Ṫ , µ̇, η̇, ṡt) such that
(T, Ṫ , µ, µ̇, η, η̇, st, ṡt) is a strong monad on p : E → B . We write ˙>>= for the lifting of >>=.

3.2 Operational Logical Relations and Their Fundamental Lemma
We are now ready to define a general notion of an operational logical relation. Let us consider
an operational structure over a cartesian category B with a strong monad T on B , as in
Definition 2.3. Let p : E → B be a logical fibration and Ṫ be a lifting of T to p.

▶ Definition 3.6. A logical relation is a mapping R from objects of Syn to objects of E such
that p(Rx) = Sx, for any object x of Syn ,6 and the following hold.

R1 = ⊤S1 R(σ × τ) = p∗
1(Rσ) ∧ p∗

2(Rτ) Rσ = e∗(Ṫ (Rσ))

R(−−→x : σ) =
∏̇−→
Rσ R(σ → τ) = A

π1
π∗

2(Rσ) ⇒ β∗(Rτ)

Notice that giving a logical relation essentially amounts to specify the action of R on
basic types, since the action of R on complex types is given by Definition 3.6. The defining
clauses of a logical relation exploit both the logic of a (logical) fibration and the operational

5 Note that we do not require G to preserve cartesian arrows.
6 Actually, it suffices to have p(Rζ) = Sζ for basic types only, as the second part of the definition assures

it for other types.
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semantics of Λ. The reader should have recognised in Definition 3.6 the usual definition of a
logical relation, properly generalised to rely on the logic of a fibration only. For instance, Rσ
intuitively relates computations whose evaluations are related by the lifting of the monad.
Notice also that the clause of arrow types has a higher logical complexity than other clauses,
as it involves two logical connectives, viz. implication and universal quantification.

Operational logical relations come with their so-called fundamental lemma, which states
that (open) terms maps (via substitution) related values to related terms. In our abstract
framework that to any term t we can associate a suitable arrow Rt in E lying above St.
To prove our general version of the fundamental theorem, we have to assume it for the
parameters of our calculus (constants of basic types and generic effects). Accordingly, we say
that a logical relation R is (Λ-)stable if: (i) for every constant c of a base type ζ, we have an
arrow ċ : 1̇ → Rζ above c; (ii) we have an arrow γ̇ : 1̇ → Ṫ (Rσ) above γ.

▶ Theorem 3.7 (Fundamental Lemma). Let R be a stable logical relation. The map R extends
to a diagram R : Syn → E such that p ◦R = S. In particular, for any term Γ ⊢ t : σ, there
is an arrow Rt : RΓ → Rσ in E above St (similarly, for values).

Proof sketch. Given Γ ⊢ t : σ, we construct the desired arrow Rt by induction on t. The
case for values lifts commutative triangles in Figure 2 using the universal property of
cartesian liftings of interaction arrows and then constructs the desired arrow using the
logical structure of p and Rσ. The case of terms, just lifts the commutative diagrams in
Figure 2 using the universal property of the cartesian lifting of the e. As a paradigmatic
example, we show the case of sequencing. First, let us notice that for any type σ, the
evaluation arrow e : Sσ → T (Sσ) gives a cartesian arrow ē : e∗(Ṫ (Rσ)) → Ṫ (Rσ), i.e.
ē : Rσ → Ṫ (Rσ) (since Rσ = e∗(Ṫ (Rσ))). Let us now consider the case of Γ ⊢ t to x.s : τ
as obtained from Γ ⊢ t : σ and Γ, x : σ ⊢ s : τ . By induction hypothesis, we have arrows
Rt : RΓ → Rσ and Rs : RΓ×̇Rσ → Rτ . By postcomposing the former with ē, we obtain
the arrow ē ◦ Rt : RΓ → Ṫ (Rσ), and thus ⟨idRΓ, ē ◦ Rt⟩ : RΓ → RΓ×̇Ṫ (Rσ). In a similar
fashion, we have ē ◦ Rs : RΓ×̇Rσ → Ṫ (Rτ) and thus, using the extension of the monad,
˙>>=(ē◦Rs) : RΓ×̇Ṫ (Rσ) → Ṫ (Rτ). Altogether, we obtain the arrow ˙>>=(ē◦Rs)◦⟨idRΓ, ē◦Rt⟩ :
RΓ → Ṫ (Rτ). Using the commutative diagram of sequencing in Figure 2 and the very
definition of a fibration, we obtain

SΓ
>>=(e◦Ss)◦⟨idΓ,e◦St⟩

##
S(t to x.s)

��
Sτ

e
// T (Sτ)

RΓ
˙>>=(ē◦Rs)◦⟨idRΓ,ē◦Rt⟩

##
∃!h
��

Rτ
ē
// Ṫ (Rτ)

We choose h as R(t to x.s). ◀

We can now instantiate Theorem 3.7 with the operational structures and fibrations seen
so far to recover traditional logical relations (and their fundamental lemmas). For instance,
the operational structure of Example 2.5 and the fibraration obtained by pulling back RelSet
along the forgetful from Meas to Set (together with a lifting of the Giry monad [62, 60]) give
operational logical relations for stochastic λ-calculi. Theorem 3.7 then gives compositionality
(i.e. congruence and substitutivity) of the logical relation. But that is not the end of the
story. In fact, our general results go beyond the realm of traditional logical relations.
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4 The fibration of differential relations

In this section, we describe the construction of the fibration of differential relations, which
can serve as a fibrational foundation of differential logical relations [31, 22, 23, 25] (DLRs),
a recently introduced form of logical relations defining higher-order distances between
programs. DLRs are ternary relations relating pairs of terms with elements representing
distances between them: such distances, however, need not be numbers. More precisely, with
each type σ one associates a set LσM of (higher-order) distances between terms of type σ, and
then defines DLRs as relating terms of type σ with distances in LσM between them. Elements
of LσM reflect the interactive complexity of programs, the latter being given by the type σ.
Thus, for instance, the main novelty of DLRs is that a distance between two values λx.t, λx.s
of type σ → τ is not just a number, but a function dt : Vσ × LσM → LτM mapping a value v
and an error/perturbation dv to an error/perturbation dt(v, dv). A DLR then relates λx.t
and λx.s to dt if for all values v, w related to dv (meaning that v and w are dv-apart), then
t[v/x] and s[w/x] are related to dt(v, dv).

Semantically, DLRs give rise to generalised distance spaces and differential extensions of
monads, the former being relational structures (X, LXM, δX) with δX ⊆ X × LXM ×X acting
as the semantic counterpart of a DLR, and the latter being reminiscent7 of extensions of
monads to the category of generalised distance spaces. Here, we show how our general notion
of an operational logical relation subsumes the one of a DLR (and, consequently, that the
fundamental lemma of DLRs is an instance of Theorem 3.7). Additionally, we show how
differential extensions are precisely liftings of monads to the fibration of differential relations
and how the so-called coupling-based differential extension [25] is an instance of a general
monadic lifting to such a fibration, viz. the well-known Barr lifting properly fitted to a
differential setting.

4.1 Going Differential, Fibrationally
Let p : E → B be a fibration with finite products.8 We define the category dr(p) of differential
relations in p as follows:
Objects are triples X = (|X|, LXM, δX), where |X| and LXM are objects in B and δX is an object

in the fibre E|X|×LXM×|X|.
Arrows f : X → Y are triples f = (|f |, df, φf ), where |f | : |X| → |Y| and df : |X| × LXM → LYM

are arrows in B , and φf : δX → δY is an arrow in E over ⟨|f |π1, df⟨π1, π2⟩, |f |π3⟩.
Composition of arrows f : X → Y and g : Y → Z is defined thus:

|g ◦ f | = |g| ◦ |f | d(g ◦ f) = dg ◦ ⟨|f |π1, df⟩ φg◦f = φg ◦ φf .

Identity on X is given by idX = (id|X|, π2, idδX ).

▶ Proposition 4.1. dr(p) is a category with finite products.

▶ Remark 4.2. Note that an arrow f : X → Y in dr(p) can be equivalently described as a triple
(|f |,Df, φf ) where |f | is as before, Df : |X| × LXM → |Y| × LYM is such that |f | ◦ π1 = π1 ◦ Df
and φf : δX → δY is above Df × |f | : |X| × LXM × |X| → |Y| × LYM × |Y|. This presentation is
perhaps more in the spirit of fibrations, but we opted for the other one, which follows the
original presentation of generalised distance spaces [25].

7 Whether differential extensions indeed define a monadic lifting is left as an open problem in [25].
8 Actually, to carry out our construction, binary products in the base are enough, but we use a richer

structure as we need it in the following part of this paper.

FSCD 2022



3:12 A Fibrational Tale of Operational Logical Relations

In the following, we denote by ∇X the object |X| × LXM × |X| of B and by ∇f the arrow
⟨|f |π1, df⟨π1, π2⟩, |f |π3⟩. These data define a functor ∇ : dr(p) → B .

▶ Example 4.3. For the fibration SubSet : s(Set ) → Set of Example 3.1, the category
dr(SubSet ) is the category of generalised distance spaces [25]. An object in dr(SubSet ) is
essentially a triple (X,V,R) consisting of a set X of points, a set V of distance values, and a
ternary relation R ⊆ X × V ×X specifying at which distance two elements of X are related:
that is, (x, v, y) ∈ R means that x and y are related at distance v. For instance, a metric
d : X × X → [0,∞] on X can be seen as a ternary relation Rd ⊆ X × [0,∞] × X defined
by (x, v, y) ∈ Rd iff d(x, y) ≤ v. An arrow from (X,V,R) to (Y,U, S) in dr(SubSet ) consists
of a function |f | : X → Y transforming points together with a function df : X × V → U

transforming distance values such that, for all x, y ∈ X and v ∈ V , (x, v, y) ∈ R implies
(|f |(x), df(x, v), |f |(y)) ∈ S.

The assignments DRelp(X) = |X| and DRelp(f) = |f | determine a functor DRelp : dr(p) → B .

▶ Proposition 4.4. The functor DRelp : dr(p) → B is a fibration with finite products.

Proof. Define the cartesian lifting along an arrow u : I → J of an object Y with |Y| = J by
(u, π2, ⟨uπ1, π2, uπ3⟩δY

) : u∗Y → Y, where u∗Y = (I, LYM, ⟨uπ1, π2, uπ3⟩∗δY). ◀

▶ Remark 4.5. The fibration DRelp can be also obtained from the simple fibration [55]
s : s(B) → B , where objects of s(B) are pairs (I,X) of objects in B ; arrows (u, f) : (I,X) →
(J, Y ) are pairs of arrows u : I → J and f : I ×X → Y in B ; and s projects both objects and
arrows on the first component. Indeed, we have that DRelp = s ◦ p′ where p′ : dr(p) → s(B)

is obtained by the pullback

dr(p)

p′

��

//

p.b.

E
p

��
s(B) // B

, with the functor s(B) → B mapping (I,X)

to I ×X × I and (u, f) to ⟨uπ1, f⟨π1, π2⟩, uπ3⟩. Therefore, we have p′(X) = (|X|, LXM) and
p′(f) = (|f |, df). This is somewhat similar to the simple coproduct completion of a fibration
[53]. We leave a precise comparison between these constructions for future work.

We now show under which conditions the fibration DRelp is a logical fibration.

▶ Proposition 4.6. If p : E → B is a logical fibration and B is cartesian closed, then DRelp

is a logical fibration.

We report the definition of the logical structure on DRelp: let X,Y,Z objects in dr(p) with
|X| = |Y| = I and |Z| = I × J .

⊤̂I = (I, 1,⊤I×1×I) X∧̂IY = (I, LXM × LYM, ⟨π1, π2, π4⟩∗δX ∧ ⟨π1, π3, π4⟩∗δY)

X⇒̂IY = (I, [LXM, LYM], A

⟨π1,π2,π4⟩(⟨π1, π3, π4⟩∗δX ⇒ ⟨π1, evLXM
LYM⟨π2, π3⟩, π4⟩∗δY))̂AI

JZ = (I, [J, LZM], A

⟨π1,π3,π5⟩(⟨π1, π2, evJLZM⟨π3, π2⟩, π4, π5⟩∗δZ))

▶ Example 4.7. Let us consider the fibration DRelSubSet : dr(SubSet ) → Set and instantiate
the above constructions to it. We have ⊤̂X = (X, 1, X × 1 ×X), that is, in ⊤̂X there is just
one distance value and all elements of X are related. Consider now objects X = (X,V,R)
and Y = (X,U, S) in dr(SubSet ). Then, we have X∧̂Y = (X,V × U,R ⊓ S) and X⇒̂Y =
(X, [V,U ], R → S), where
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(x, (v, u), y) ∈ R ⊓ S iff (x, v, y) ∈ R and (x, u, y) ∈ S,
(x, f, y) ∈ R → S iff, for all v ∈ V , (x, v, y) ∈ R implies (x, f(v), y) ∈ S.

That is, two elements x and y are related in R⊓S at a distance (v, u) such that x and y are at
distance v in R and u in S. Instead, x and y are related in R → S at a distance f transforming
distances in V into distances in U , respecting R and S. Finally, if Z = (X × Y, V,R) is an
object in dr(SubC Set ]), then we have ̂AX

Y Z = (X, [Y, V ], Y → R), where (x, f, x′) ∈ Y → R,
iff for all y, y′ ∈ Y , ((x, y), f(y), (x′, y′)) ∈ R. That is, elements x and x′ are related by
Y → R at a distance f returning for each y ∈ Y a distance in V such that R relates (x, y)
and (x′, y′) at distance f(y), for each y, y′ ∈ Y .

We now extend this construction to 1- and 2-arrows. To do so, we work with bifibrations
whose bases have finite products. Let p and q be such bifibrations and (F,G) : p → q be a
1-arrow in biFib. We define a functor Ĝ : dr(p) → dr(q) thus: for X an object in dr(p), we set

|ĜX| = F |X| LĜXM = F (|X| × LXM) δ
ĜX = prFX !GδX,

where prFX = ⟨Fπ1, F ⟨π1, π2⟩, Fπ3⟩ : F (|X| × LXM × |X|) → F |X| × F (|X| × LXM) × F |X| is an
arrow in B . For every arrow f : X → Y in dr(p), we set

|Ĝf | = F |f | d(Ĝf) = (F ⟨|f |π1, df⟩)π2 φ
Ĝf

= υ(Gφf ),

where υ(Gφf ) is the unique arrow over F |f |×F ⟨|f |π1, df⟩×F |f | making the diagram on the
left commute, which exists as the diagram on the right commutes and prFXGδX

is cocartesian.

GδX

Gφf

��

prF
X

GδX // δ
ĜX

υ(Gφf )
��

GδY
prF

Y GδY

// δ
ĜY

F (∇X)

F (∇f)
��

prF
X // F |X| × F (|X| × LXM) × F |X|

F |f |×F ⟨|f |π1,df⟩×F |f |
��

F (∇Y)
prF

Y

// F |Y| × F (|Y| × LYM) × F |Y|

Notice that cocartesian liftings are essential to appropriately define Ĝ on the relational part
of X and f , as we do not assume any compatibility with products for F .

▶ Proposition 4.8. (F, Ĝ) : DRelp → DRelq is a 1-arrow in Fib.

Similarly, given a 2-arrow (ϕ, ψ) : (F,G) ⇒ (H,K) in biFib between 1-arrows (F,G) :
p → q and (H,K) : p → q, we define a natural transformation ψ̂ : Ĝ .→ K̂ as follows: for
every object X in DRelp, we set:

|ψ̂X| = ϕ|X| d(ψ̂X) = ϕ|X|×LXMπ2 φ
ψ̂X

= υ(ψδX ),

where υ(ψδX ) is the unique arrow over ϕ|X| × ϕ|X|×LXM × ϕ|X| making the diagram on the left
commute, which exists as the diagram on the right commutes and prFXGδX

is cocartesian.

GδX

ψδX

��

prF
X

GδX // δ
ĜX

υ(ψδX )
��

KδX
prH

X KδX

// δ
K̂X

F (∇X)

ϕ∇X

��

prF
X // F |X| × F (|X| × LXM) × F |X|

ϕ|X|×ϕ|X|×LXM×ϕ|X|

��
H(∇X)

prH
X

// H|X| ×H(|X| × LXM) ×H|X|
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▶ Proposition 4.9. (ϕ, ψ̂) : (F, Ĝ) ⇒ (H, K̂) is a 2-arrow in Fib.

We are getting closer to the definition of a 2-functor DR from (certain) bifibrations to
fibrations given by the following assignments:

DR(p) = DRelp DR(F,G) = (F, Ĝ) DR(ϕ, ψ) = (ψ, ψ̂).

However, this is not the case as DR does not preserve identity 1-arrows. Indeed, given the
identity (IdB , IdE ) on a bifibration p : E → B , we have that for every object X in dr(p),
ÎdE (X) = (|X|, |X| × LXM,prIdB

X !δX), which is not isomorphic to X, in general.
We can recover a form of functoriality by restricting to a 2-subcategory of biFib, notably,

considering only 1-arrows which are cocartesian. We say that a 1-arrow (F,G) : p → q in
biFib is cocartesian if the functor G preserves cocartesian arrows. This implies that G
commutes with cocartesian liftings up to isomorphism. Denote by biFibc the 2-subcategory
of biFib where objects have finite products and 1-arrows are cocartesian.

▶ Theorem 4.10. DR : biFibc → Fib is a lax functor.

Note that we just have a lax functor, as identities and composition of 1-arrows are
preserved only up to a family of a mediating 2-arrow. Nonetheless, this is enough to get
important properties of the construction.

4.2 Lifting monads: the differential extension
An important problem when dealing with effectful languages is the lifting of monads from
the category where the semantics of the language is expressed to the category used to
reason about programs, e.g., the domain of a fibration or a category of relations. The most
famous one is perhaps the so-called Barr extension [8] of a Set -monad to the category of
(endo)relations, which is fibred over Set (other notions of lifting include ⊤⊤- and codensity
lifting [62, 60]). In the differential setting, the notion of a differential extension has been
recently proposed [25] as a way to lift monads to generalised distance spaces. To what extent
such a construction is canonical and whether it defines an actual monadic lifting, however,
have been left as open questions. Here, we answer both questions in the affirmative.

▶ Definition 4.11. Let p : E → B be a fibration with finite products and T = (T, µ, η, st) be
a strong monad on B . A differential extension of T along p is a lifting Ṫ = (Ṫ , µ̇, η̇, ṡt) of T
along the fibration DRelp : dr(p) → B .

A differential extension of T along the fibration p is thus a monad on the category of differential
relations in p which is above T with respect to the fibration DRelp. We describe two techniques
to build differential extensions of monads. The first one is an immediate consequence of
Theorem 4.10. Indeed, DR: biFibc → Fib being a lax functor, every cocartesian monad on
a bifibration p induces a monad on the fibration DRelp, hence a differential extension. This
follows from general properties of lax functors [9, 91].

▶ Corollary 4.12. Let T = (T, S, ηT , ηS , µT , µS) be a monad on p in biFibc. Then, T̂ =
(T, Ŝ, ηT , η̂S , µT , µ̂S) is a monad on DRelp in Fib.

To get a lifting of strong monads, we need an additional hypothesis: we have to require
that the product functor ×̇ on the total category E preserves cocartesian arrows, as often
happens when dealing with monoidal bifibrations [85, 73].9 This is sensible as the action of
DR on 1-arrows is defined using cocartesian liftings.

9 Here the monoidal structure is given just by cartesian product.
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▶ Theorem 4.13. Let p : E → B be a bifibration with finite products where ×̇ preserves
cocartesian arrows and T = (T, S, µT , µS , ηT , ηS , stT , stS) be a strong monad on p. Then,
(Ŝ, µ̂S , η̂S , ŝtS) is a differential extension of (T, µT , ηT , stT ).

In other words, this result provides us with a differential extension of a monad (T, µT , ηT )
starting from a usual extension (S, µS , ηS) along the fibrations p. Therefore, to build a
differential extension of (T, µT , ηT ) we can use existing techniques to lift it, obtaining a
monad on the fibration p and then apply our construction.

We conclude this section by instantiating this technique to a special class of bifibrations,
notably, bifibrations of weak subobjects as defined in Example 3.2. The resulting construction
applies to (strong) monads on categories with weak pullbacks and finite products, and provides
a differential version of the Barr extension, which we dub a differential Barr extension.

First of all, we show that the construction of the bifibration of weak subobjects extends
to a 2-functor. Let us denote by Catcwp the 2-category of categories with weak pullbacks
and finite products, functors, and natural transformations. Given a functor F : C → D in
Catcwp, define F : ws(C ) → ws(D) as F (X, [α]) = (FX, [Fα]) and Ff = Ff . It is easy to
check that this is indeed a functor. Moreover, note that if f : (X, [α]) → (Y, [β]) is cocartesian
in ΨC , that is, [β] = [fα], then Ff : (FX, [Fα]) → (FY, [Fβ]) is cocartesian in ΨD , as
[Fβ] = [Ff ◦ Fα]. Consider now a natural transformation ϕ : F .→ G in Catcwp and define
ϕ(X,[α]) : F .→ G as ϕ(X,[α]) = ϕX . This is well-defined because, if α : A → X, then we have
ϕX ◦ Fα = Gα ◦ ϕA, by naturality of ϕ. We define ΨF = (F, F ) and Ψϕ = (ϕ, ϕ).

▶ Proposition 4.14. Ψ: Catcwp → biFibc is a strict 2-functor.

Therefore, composing Ψ and DR we get a lax functor from Catcwp to Fib, this way
extending Theorem 4.13.

▶ Theorem 4.15. Let T = (T, µ, η, st) be a strong monad on a category C with weak pullbacks
and finite products. Then, (T̂ , µ̂, η̂, ŝt) is a differential extension of T along ΨC .

▶ Example 4.16. Let (T, µ, η) a monad on Set . The coupling-based lifting of (T, µ, η) to
dr(SubSet ) [25] maps an object (X,V,R) to (TX, T (X × V ), τ(R)) where (x, v, y) ∈ τ(R) iff
there exists φ ∈ TR such that Tπ1(TιR(φ)) = x, T ⟨π1, π2⟩(TιR(φ)) = v, and Tπ3(TιR(φ)) =
y. Here, ιR : R → X × V ×X denotes the inclusion function and the element φ is called a
(ternary) coupling, borrowing the terminology from optimal transport [96]. Basically, this
lifting states that monadic elements x and y are related with monadic distance v iff we
can find a coupling φ that projected along the first and third component gives x and y,
respectively, and projected along the first two components gives the monadic distance v.
Relying on the equivalence between SubSet and ΨSet , we get that the above lifting of (T, µ, η)
is an instance of the differential Barr extension T̂ : dr(ws(Set )) → dr(ws(Set )). Indeed, for an
object (X,V, [α]) in dr(ΨSet ) we can choose a canonical representative ιR : R → X × V ×X

such that [α] = [ιR], where R is the image of α and ιR is the inclusion function.

5 Conclusion and Future Work

We have shown how fibrations can be used to give a uniform account to operational logical
relations for higher-order languages with generic effects and a rather liberal operational
semantics. Our framework encompasses both traditional, set-based logical relations and
logical relations on non-cartesian-closed categories – such as the one of measurable spaces – as
well as the recently introduced differential logical relations. In particular, our analysis sheds
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a new light on the mathematical foundation of both pure and effectful differential logical
relations. Further examples of logical relations that can be described in our framework include
classic Kripke logical relations [74] (take fibrations of poset-indexed relations) as well as
logical relations for information flow (the latter could be approached both as suitable Kripke
logical relations or by considering a shallow semantics on the category of classified sets [63]).
Additionally, since differential logical relations can be used to reason about nontrivial notions
such as program sensitivity and cost analysis [25], our framework can be used for reasoning
about the same notions too.

Even if general, the vehicle calculus of this work lacks some important programming lan-
guage features, such as recursive types and polymorphism. Our framework being operational,
the authors suspect that the addition of polymorphism should not be problematic, whereas
the addition of full recursion may require to come up with abstract notions of step-indexed
logical relations [5, 32]. In general, the proposed framework looks easily extensible and
adaptable. To reason about a given calculus, one should pick a fibration with a logical
structure supporting the kind of analysis one is interested in and whose base category has
enough structure to model its interactive behaviour. For instance, in this work we just need
products and a monad on the base category but, e.g., to model sum types, we would need also
coproducts to describe case analysis. On the logical side, we have just considered standard
intuitionistic connectives but, e.g., to support more quantitative analysis, one may need to
use fibrations supporting linear connectives and modalities [85, 72, 67, 19, 18].

Besides the extension of our framework to richer languages and features, an interesting
direction for future work is to formally relate our results with general theories of denotational
logical relations. Particularly relevant for that seems the work by Katsumata [58] who
observes that the closed structure of base categories is not necessarily essential. Another
interesting direction for future work is the development of fibrational theories of coinductive
reasoning for higher-order languages. Fibrational accounts of coinductive techniques have
been given in the general setting of coalgebras [15, 14], whereas general accounts of coinductive
techniques for higher-order languages have been obtained in terms of relational reasoning
[28, 27, 37, 21, 20, 29, 24, 38, 26]. It would be interesting to see whether these two lines of
research could be joined in our fibrational framework. That may also be a promising path to
the development of conductive differential reasoning.
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