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Abstract
Two-counter machines, pioneered by Minsky in the 1960s, constitute a particularly simple, universal
model of computation. Universality of reversible two-counter machines (having a right-unique step
relation) has been shown by Morita in the 1990s. Therefore, the halting problem for reversible
two-counter machines is undecidable. Surprisingly, this statement is specific to certain instruction
sets of the underlying machine model.

In the present work we consider two-counter machines (CM2) with instructions incc (increment
counter c, go to next instruction), decc q (if counter c is zero, then go to next instruction, otherwise
decrement counter c and go to instruction q). While the halting problem for CM2 is undecidable, we
give a decision procedure for the halting problem for reversible CM2, contrasting Morita’s result.

We supplement our result with decision procedures for uniform boundedness (is there a uniform
bound on the number of reachable configurations?) and uniform mortality (is there a uniform bound
on the number of steps in any run?) for CM2.

Termination and correctness of each presented decision procedure is certified using the Coq proof
assistant. In fact, both the implementation and certification is carried out simultaneously using the
tactic language of the Coq proof assistant. Building upon existing infrastructure, the mechanized
decision procedures are contributed to the Coq library of undecidability proofs.
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1 Introduction

In the early 1960s, Minsky has shown the universality of two-tape, read-only Turing ma-
chines [18]. As a result, two-counter machines (originally called “program-machines” [19,
Table 11.1-1]) emerged as a particularly simple, universal model of computation. A two-
counter machine stores data in two registers, each containing a natural number. While the
particular instruction sets may vary (for an overview see [13, Section 2]), common machine
instructions are: counter increment, counter decrement (possibly including a conditional
jump), and counter zero test (including a conditional jump). Due to the arithmetically simple
nature of machine instructions, two-counter machines are easily simulated by other machine
models. This often leads to small, universal constructions [11]. Another prominent exam-
ple, which relies on two-counter machines, is the nested simulation technique, invented by
Hooper for Turing machine immortality [10, 12]. Besides the halting problem for two-counter
machines, mortality and boundedness problems [14] constitute useful tools in the area of
model checking.

In the research field of reversible computing, which considers “backward deterministic”
computation, universality of reversible two-counter machines was shown by Morita [20]. By
reversible simulation, this milestone result has immediate implications for other models of
computation (for an overview see [21, 22]), and group theory [24].
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Commonly, the instruction set of the underlying two-counter machine model is chosen
suitably for the individual results. Key results such as (reversible) universality are transferred
tacitly between instruction sets. Surprisingly, this is not always possible. The most prominent
example is the decidability of the halting problem for “program-machines” with two registers
(Remark 1), as originally given by Minsky.

▶ Remark 1. Consider the exact definition of “program-machines” given by Minsky [19,
Table 11.1-1]. That is, lists of instructions from the following instruction set:

set counter c to zero, go to next instruction
increment counter c, go to next instruction
if counter c is positive, then decrement counter c and go to next instruction, otherwise go
to instruction n

halt
The halting problem for the above machine model with two counters is decidable1. Conditional
control flow in the above machine model is based on failing counter decrement instructions.
That is, if the value of one of the counters is zero. For example, given a program of length n,
if both counters are larger than n, then (unable to go to any previously visited instruction)
the program halts after at most n steps. Therefore, for any run, values of at least one of the
counters are drawn from a finite set. Overall, the above machine model with two counters is
not universal.

In his argument, Minsky necessarily includes an additional, unconditional jump instruc-
tion [19, Chapter 14] in order to have a universal machine model with two counters.

In the present work we consider two-counter machines (CM2) as list of instructions from
the instruction set: incc (increment counter c, go to next instruction), decc q (if counter c is
zero, then go to next instruction, otherwise decrement counter c and go to instruction q). CM2,
relying on its arguably minimal instruction set, plays a key role in mechanized undecidability
results [8] (such as Hilbert’s tenth problem [15] and semi-unification [2]). The key difference
to Minsky’s “program-machines” is that the conditional jump is on successful (instead of
failed) counter decrement. In contrast to Remark 1, this instruction set suffices for an
undecidable halting problem (Theorem 6). However, this instruction set does not suffice for
an undecidable reversible halting problem (Theorem 21), which is our main result. Intuitively,
conditional control flow for the above instruction set is too restricted in the reversible setting,
and does not allow for nested loops. As a consequence, control flow for reversible CM2 can
be modeled by a finite state automaton, resulting in a decision procedure for termination.

In addition, we consider boundedness and mortality problems for CM2. First, we contrast
undecidability of total boundedness [14] (is for any configuration the number of reachable
configurations finite?) for CM2 with a decision procedure for uniform boundedness (is
there a uniform bound on the number of reachable configurations?). Second, we contrast
undecidability of total mortality [10] for CM2 (does every run eventually halt?) with a
decision procedure for uniform mortality (is there a uniform bound on the number of steps
in any run?). While decidability of uniform mortality is known [12, Theorem 2], the more
complex decidability of uniform boundedness is hitherto only hinted at [1, Remark 28].
Additionally, the decision algorithms provided in the present work use explicit upper bounds,
and are well-suited for complexity-theoretic analysis.

1 The certified decision procedure is mechanized as the computable Boolean function
decide : Mpm2 * Config -> bool in theories/MinskyMachines/MPM2_HALT_dec.v in the Coq library
of undecidability proofs [8].

https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.15/theories/MinskyMachines/Deciders/MPM2_HALT_dec.v
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Formal specification, termination certification, and verification of correctness of the
presented decision procedures is carried out using the Coq proof assistant. Following the
compelling argument by Forster [3], the Coq proof assistant is excellently positioned to argue
about computability-theoretic properties of decision problems. For a predicate P over a
domain X, a decision procedure is a Boolean function f : X → B such that for all x ∈ X we
have (f(x) = true) ⇔ P (x). Any axiom-free implementation of a decision procedure f in
Coq entails a termination argument for f on any input. As added benefit, the correctness
proof of f can be given and verified mechanically in Coq as part of the definition of f .
Effective implementations of the individual decision procedures can be obtained using the
Extraction framework [17]. Overall, the approach taken in the present work is well positioned
in the intersection of computability theory and constructive mathematics.

The growing Coq library of undecidability proofs [8] already contains a plethora of
negative and positive2 computability results. Since CM2 is a prominent decision problem in
the library, we build upon the existing infrastructure to contribute the decision procedures
in the present work to the library.

Organization. The remainder of the present work is organized as follows.
Section 2: Preliminary definitions and properties of two-counter machines (CM2).
Section 3: Decision procedure for the halting problem for reversible CM2 (Theorem 21).
Section 4: Decision procedure for the uniform boundedness problem for CM2 (Theorem 40).
Section 5: Decision procedure for the uniform mortality problem for CM2 (Theorem 49).
Section 6: Remarks on the mechanization in the Coq proof assistant of the above decision

procedures, and the contribution to the Coq library of undecidability proofs.
Section 7: Concluding remarks.

2 Two-Counter Machine Preliminaries

In this section we recollect the definition of two-counter machines (CM2, Definition 2) and
the undecidability of the corresponding halting problem (Theorem 6). The main benefit of
CM2 is its small, universal instruction set (cf. [13, Section 2]). As a result, CM2 allows for
compact proofs, and plays a key role in mechanized undecidability results [8].

▶ Definition 2 (Two-Counter Machine (CM2)). A two-counter machine M is a list of
instructions of shape either inc0, inc1, dec0 q, or dec1 q, where q ∈ N is a program index.

A configuration of M is of shape (p, (a, b)), where p ∈ N is the current program index
and a, b ∈ N are the current counter values.

The step relation of M on configurations, written (−→M), is given by
if inc0 is the p-th instruction of M, then (p, (a, b)) −→M (p + 1, (a + 1, b))
if inc1 is the p-th instruction of M, then (p, (a, b)) −→M (p + 1, (a, b + 1))
if dec0 q is the p-th instruction of M, then (p, (0, b)) −→M (p + 1, (0, b))
and (p, (a + 1, b)) −→M (q, (a, b))
if dec1 q is the p-th instruction of M, then (p, (a, 0)) −→M (p + 1, (a, 0))
and (p, (a, b + 1)) −→M (q, (a, b))
otherwise, we say that (p, (a, b)) halts

2 For example, Spies and Forster [26] contrast undecidability of higher-order unification with a decision
procedure for first-order unification in Coq.

FSCD 2022
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The reachability relation of M on configurations, written (−→∗
M), is the reflexive, transi-

tive closure of (−→M). The transitive closure of (−→M) is denoted by (−→+
M).

A configuration x is terminating in M, if we have x −→∗
M y for some halting configura-

tion y.
The length of M is denoted by |M|.

Comparing the above Definition 2 to Minsky’s original definition [19, Table 11.1-1],
the main difference is that the conditional jump is performed on a successful (instead of
failed) counter decrement. In the setting with only two counters this difference is crucial
for universality (Remark 1). Compared to Morita’s definition [20, Definition 2.1], the above
Definition 2 does not have separate (un)conditional jump instructions. As is shown in
Section 3, in the reversible setting this difference allows for a decision procedure (Theorem 21)
for the corresponding halting problem.

▶ Example 3. Consider M = [dec0 4, inc0, dec0 0]. The configuration (0, (a, b)) for a, b ∈ N
is terminating in M iff a > 0, as is shown below:

(0, (0, b)) dec0 4−→ M (1, (0, b)) inc0−→M (2, (1, b)) dec0 0−→ M (0, (0, b)) dec0 4−→ M · · ·

(0, (a + 1, b)) dec0 4−→ M (4, (a, b)) halts

By definition, the step relation (−→M) for M is functional, and we can define a computable
partial step function.

▶ Definition 4 (Partial Step Function, Run). For a machine M, the partial step function is
given by M(x) = y if x −→M y.

A run in M starting from a configuration x is the (potentially infinite) sequence
x, M(x), M2(x), M3(x), . . ..

Famously, the halting problem for two-counter machines (Problem 5) is undecidable.

▶ Problem 5 (Two-Counter Machine Halting). Given a two-counter machine M and a
configuration x, is x terminating in M?

Minsky’s universality proof for program-machines carries over to CM2, resulting in the
undecidability of the corresponding halting problem (Theorem 6). Most importantly, a
conditional jump at position p to program index q if counter c is zero can be simulated by
the instructions [decc (p + 3), incc, decc q].

▶ Theorem 6 ([19, Section 11.5] and [19, Theorem 14.1-1]). Two-counter machine halting
(Problem 5) is undecidable.

▶ Remark 7. Theorem 6 is mechanized by Forster et al. [7], as part of the Coq library of
undecidability proofs.

3 Reversible Machines

In this section we consider reversible two-counter machines (also called backward deterministic).
That is, machines with a right-unique step relation (or, injective step function). We show
that for CM2 reversibility (is a given machine reversible?) and reversible halting (is a given
configuration terminating in a given reversible machine?) are decidable problems. This
contrasts the negative result by Morita [20, Theorem 4.2] for a different two-counter machine
model with a richer instruction set. The positive result is unexpected because CM2 and
Morita’s machine model can simulate one another preserving determinism (as opposed to
backwards-determinism).
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▶ Definition 8 (Reversible Machine). A machine M is reversible if for any configurations
x, y, z such that x −→M z and y −→M z we have x = y.

▶ Example 9. Consider M = [dec0 4, inc0, dec0 0] from Example 3. The machine M is
reversible because (−→M), fully given below, is right-unique.

(0, (0, b)) dec0 4−→ M (1, (0, b)) (0, (a + 1, b)) dec0 4−→ M (4, (a, b))

(1, (a, b)) inc0−→M (2, (a + 1, b))

(2, (0, b)) dec0 0−→ M (3, (0, b)) (2, (a + 1, b)) dec0 0−→ M (0, (a, b))

▶ Remark 10. A reversible machine M cannot contain both instructions dec0 q (at posi-
tion p1) and dec1 q (at position p2). Otherwise, the transitions (p1, (1, 0)) dec0 q−→ M (q, (0, 0))
and (p2, (0, 1)) dec1 q−→ M (q, (0, 0)) contradict reversibility of M.

▶ Remark 11. Morita gives a different, syntactic definition of reversibility (no range over-
lap [20, Definition 2.3]), specific to the underlying machine model. In fact, Morita’s charac-
terization is stronger than right-uniqueness of the step relation (cf. Definition 8), because
it also takes into account the instruction used. Therefore, Morita’s negative result [20,
Theorem 4.2] holds a fortiori, when reversibility is defined by right-uniqueness of the step
relation (cf. Definition 3). Compared to the positive result (Theorem 21) in the present
work, the richer instruction set is the main contributing factor to undecidability, and not the
particular definition of reversibility.

Before we consider the corresponding halting problem, let us ensure that we can decide
membership (Corollary 14) in the class of reversible machines.

▶ Problem 12 (Two-Counter Machine Reversibility). Given a two-counter machine M, is M
reversible?

The following Lemma 13 bounds the set of configurations, which suffices to characterize
reversibility.

▶ Lemma 13. For a machine M let TM = {(i, (a, b)) | i < |M|, a ≤ 2, b ≤ 2}. If for all
x, y ∈ TM such that M(x) = M(y) we have x = y, then M is reversible.

Proof. Given a machine M, the step relation (−→M) only depends on the current program
index (bounded by |M|) and on whether the current counters are positive or zero. Additionally,
in one step the counters may only increase/decrease by one. Assume for some configurations
x, y, z such that x ≠ y we have x −→M z and y −→M z. By exhaustive case analysis on
the instruction taken, we can sufficiently decrease the counter values in x, y, z, constructing
distinct configurations x′, y′ ∈ TM such that M(x′) = M(y′). ◀

As an immediate consequence of the above Lemma 13, reversibility is decidable (in
polynomial time).

▶ Corollary 14. Two-counter machine reversibility (Problem 12) is decidable.

Reversible machine halting (Problem 15) is the restriction of the halting problem to
reversible machines.

▶ Problem 15 (Two-Counter Reversible Machine Halting). Given a reversible two-counter
machine M and a configuration x, is x terminating in M?

FSCD 2022
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Morita shows that for a two-counter machine model, which is different from CM2, reversible
machine halting is undecidable [20, Theorem 4.2]. Surprisingly, this result does not translate
to CM2. The main difference is that in Morita’s case the richer instruction set allows for
reversible nested loops, whereas CM2 does not. In the remainder of this section we give a
decision procedure for reversible machine halting for CM2.

The following Example 16 shows that for the reversible machine from Examples 3 and 9
it does not suffice to inspect positivity of the counters in a given configuration to decide
termination.

▶ Example 16. Consider the reversible machine M = [dec0 4, inc0, dec0 0] from Example 3.
The configurations (2, (0, 0)) and (2, (2, 0)) are terminating, but (2, (1, 0)) is not, because

(2, (0, 0)) dec0 0−→ M (3, (0, 0)) halts (terminating)

(2, (1, 0)) dec0 0−→ M (0, (0, 0)) dec0 4−→ M (1, (0, 0)) inc0−→M (2, (1, 0)) dec0 0−→ M . . . (non-terminating)

(2, (2, 0)) dec0 0−→ M (0, (1, 0)) dec0 4−→ M (4, (0, 0)) halts (terminating)

However, in the above Example 16, considering the program index 0, it does suffice to inspect
positivity of the counters to decide termination. In fact, this is systematic for reversible CM2,
which is the key insight (Lemma 18) to decide the reversible halting problem (Theorem 21).
Additionally, any run of a reversible CM2 will eventually halt or reach the program index 0
(Lemma 17).

▶ Lemma 17. Let M be a reversible machine. Given a configuration x we can compute a
configuration (p, (a, b)) such that x −→∗

M (p, (a, b)), and p = 0 or p ≥ |M|.

Proof. For x = (p, (a, b)) by induction on max{(|M| − p), 0}. The only interesting case is
when decc q is the p-th instruction of M and 0 < q < |M|. In this case, by exhaustive case
analysis on the (q − 1)-th instruction of |M|, we can contradict reversibility of M. ◀

Let us consider the partitioning T = {T(0,0), T(0,1), T(1,0), T(1,1)} of configurations at
program index zero with respect to positivity of counters, where

T(0,0) = {(0, (0, 0))}
T(0,1) = {(0, (0, b)) | 1 ≤ b}
T(1,0) = {(0, (a, 0)) | 1 ≤ a}
T(1,1) = {(0, (a, b)) | 1 ≤ a, 1 ≤ b}

The following Lemma 18 shows that for a reversible machine in each partition all configurations
exhibit uniform behavior.

▶ Lemma 18. Let M be a reversible machine and let T ∈ T . We can
1. show for all x ∈ T that x terminates,
2. show for all x ∈ T that x does not terminate, or
3. compute T ′ ∈ T such that for all x ∈ T there is a y ∈ T ′ such that x −→+

M y.

Proof. Let a0, b0 ∈ {0, 1} and T(a0,b0) ∈ T . We compute the prefix (of length at most |M|)
of a run from (0, (a0, b0)) with increasing program indices. The run either halts or reaches
the instruction decc 0 such that the next configuration is y = (0, (a′, b′)) (similarly to the
proof of Lemma 17). The following case analysis provides an overview over the argument.
The individual cases are by case analysis on the possible instructions taken.
Case (a0, b0) = (0, 0): For T ′ = T(min{1,a′},min{1,b′}) we have (0, (0, 0)) −→+

M y ∈ T ′.
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Case (a0, b0) = (0, 1): There are four cases
1 ≤ a′ and 1 ≤ b′: for T ′ = T(1,1) we have (0, (0, b + 1)) −→+

M (0, (a′, b + b′)) ∈ T ′.
a′ = 0 and 1 ≤ b′: any configuration (0, (0, b + 1)) is non-terminating.
1 ≤ a′ and b′ = 0: we have (0, (0, b+1)) −→+

M (0, (a′, b)). By case analysis on b, taking
Remark 10 into account, and depending on the uniform behavior of configurations in
T(1,1), we have that any configuration (0, (0, b + 1)) is terminating, or for T ′ = T(1,0)
we have that (0, (0, b + 1)) −→+

M (0, (a′′ + 1, 0)) ∈ T ′ for some a′′ ∈ N.
a′ = 0 and b′ = 0: for T ′ = T(0,0) we have (0, (0, b + 1)) −→+

M (0, (0, 0)) ∈ T ′.
Case (a0, b0) = (1, 0): Analogous to case T = T(0,1).
Case (a0, b0) = (1, 1): There are three cases (the case a′ = 0 = b′ is not possible).

1 ≤ a′ and 1 ≤ b′: for T ′ = T(1,1) we have (0, (a+1, b+1)) −→+
M (0, (a+a′, b+b′)) ∈ T ′.

a′ = 0 and 1 ≤ b′: for T ′ = T(0,1) we have (0, (a + 1, b + 1)) −→+
M (0, (0, b′′ + 1)) ∈ T ′

for some b′′ ∈ N.
1 ≤ a′ and b′ = 0: for T ′ = T(1,0) we have (0, (a + 1, b + 1)) −→+

M (0, (a′′ + 1, 0)) ∈ T ′

for some a′′ ∈ N. ◀

The following Example 19 illustrates the uniform behavior of configurations in each
partition in T , as described in the above Lemma 18.

▶ Example 19. Consider the machine M = [inc1, dec0 5, inc0, dec0 0]. Similarly to Exam-
ple 9, M is reversible. The uniform behavior of configurations in each partition in T is as
follows.

For (0, (0, 0)) ∈ T(0,0) we have (0, (0, 0)) −→+
M (0, (0, 1)) ∈ T(0,1).

For all (0, (0, b + 1)) ∈ T(0,1) we have (0, (0, b + 1)) −→+
M (0, (0, b + 2)) ∈ T(0,1).

For all (0, (a + 1, 0)) ∈ T(1,0) we have that (0, (a + 1, 0)) terminates after 2 steps.
For all (0, (a + 1, b + 1)) ∈ T(1,1) we have that (0, (a + 1, b + 1)) terminates after 2 steps.

▶ Remark 20. Morita’s reversible universal machine construction [20, Proof of Theorem 4.1]
requires computational distinction between odd and even counter values. Therefore, for
Morita’s richer instruction set there is a reversible machine for which the configurations
(0, (2·a, 0)) are terminating and configurations (0, (2·a+1, 0)) are not terminating. In contrast,
by Lemma 18 there is no such reversible CM2. For instance, the configurations (0, (2, 0)) and
(0, (3, 0)) are both members of the partition T(1,0), and expose uniform termination behavior
for any reversible CM2.

As a result of Lemma 18, termination of configurations with program index 0 is charac-
terized by a finite state automaton with the four states T . Combined with Lemma 17, we
obtain a decision procedure for reversible machine halting (Theorem 21).

▶ Theorem 21. Two-counter reversible machine halting (Problem 15) is decidable.

Proof. Given a reversible machine M and a configuration x, by Lemma 17 compute the
configuration (p, (a, b)) such that x −→∗

M (p, (a, b)) and p = 0 or p ≥ |M|. In case p ≥ |M|
we have that (p, (a, b)) halts, and therefore x is terminating. If p = 0, then for a0 = min{1, a}
and b0 = min{1, b} we have (p, (a, b)) ∈ T(a0,b0). Using Lemma 18, compute the finite state
automaton with states T , where the initial state is T(a0,b0), the accepting states satisfy (18.1),
and the transition function corresponds to (18.3). Termination of x ∈ T(a0,b0) corresponds to
reachability of any accepting state in the constructed finite automaton, which is decidable. ◀

▶ Remark 22. The proof of Theorem 21 entails a polynomial time decision procedure for
reversible halting. Notably, in order to construct the finite state automaton with states T for
a given machine M, it suffices to inspect a constant number of runs of length at most |M|.

FSCD 2022
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4 Boundedness

In this section we consider boundedness properties of two-counter machines. First, we recall
that total boundedness (does every run eventually halt or enter a configuration cycle?) is
undecidable [14, Theorem 8], which also holds for the machine model at hand (Theorem 28).
Second, for uniform boundedness (is there a uniform bound on the number of reachable
configurations?) we contribute a decision procedure (Theorem 40). Techniques presented in
this section are not specific to CM2 and extend to other two-counter machine models.

If a run starting from a configuration x in a machine M halts or enters a configuration
cycle, then we can bound the number of reachable configurations from x in M (Definition 23).

▶ Definition 23 (Bound). An n ∈ N bounds a configuration x in a machine M if we have
|{y | x −→∗

M y}| ≤ n.

For a totally bounded machine every configuration is bounded. In other words, a totally
bounded machine has no aperiodic, non-terminating runs.

▶ Definition 24 (Totally Bounded Machine). A machine M is totally bounded if for all
configurations x there exists an n ∈ N such that n bounds x in M.

▶ Remark 25. Every (possibly infinite) run of a totally bounded machine can be fully
described by a finite prefix. This renders key properties such as reachability and termination
decidable, and is useful for model-checking.

▶ Example 26. Consider M = [dec0 0, inc0, dec0 0]. Configurations (0, (a, b)) are bounded
by a + 3 in M because

(0, (a, b)) −→a
M (0, (0, b)) dec0 0−→ M (1, (0, b)) inc0−→M (2, (1, b)) dec0 0−→ M (0, (0, b)) −→M . . .

Overall, the machine M is totally bounded with the following bounds

(0, (a, b)) bounded by a + 3

(1, (a, b)) inc0−→M (2, (a + 1, b)) dec0 0−→ M (0, (a, b)) bounded by a + 5

(2, (0, b)) dec0 0−→ M (3, (0, b)) halts bounded by 2

(2, (a + 1, b)) dec0 0−→ M (0, (a, b)) bounded by a + 4
(p + 3, (a, b)) halts bounded by 1

The negative result by Kuzmin and Chalyy [14, Theorem 8] for two-counter machine
total boundedness (Problem 27) translates to the machine model at hand (Theorem 28).

▶ Problem 27 (Two-Counter Machine Total Boundedness). Given a two-counter machine M,
is M totally bounded?

▶ Theorem 28 ([14, Theorem 8]). Two-counter machine total boundedness (Problem 27) is
undecidable.

In contrast to a totally bounded machine, for a uniformly bounded machine the bound on
the number of reachable configurations does not depend on the starting configuration.

▶ Definition 29 (Uniform Bound). An n ∈ N uniformly bounds a machine M if n bounds all
configurations x in M.
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▶ Definition 30 (Uniformly Bounded Machine). A machine M is uniformly bounded if there
exists a uniform bound n of M.

Intuitively, a uniformly bounded machine operates in bounded space, given by the
particular uniform bound. The following Example 31 shows that uniform boundedness is
strictly stronger than total boundedness.

▶ Example 31. Consider the totally bounded machine M = [dec0 0, inc0, dec0 0] from
Example 26. There is no uniform bound for M because for any n ∈ N from the configuration
(0, (n, 0)) more than n distinct configurations are reachable.

▶ Remark 32. It is surprising that any model of computation can have computationally
interesting, uniformly bounded machines. For example, such machines are not capable of
processing an arbitrarily large input. However, for Turing machines, relying on the ingenious
technique developed by Hooper [10] one can reduce Turing machine halting to a uniform
boundedness problem for stack machines [2].

▶ Problem 33 (Two-Counter Machine Uniform Boundedness). Given a two-counter machine M,
is M uniformly bounded?

In the remainder of this section we give a decision procedure for two-counter machine
uniform boundedness.

First, we characterize whether n bounds a configuration x by inspection of at most the
first n steps in a run from x.

▶ Fact 34. An n ∈ N bounds a configuration x in a machine M iff either Mn(x) is undefined
or Mn(x) = Mm(x) for some m < n.

The above Fact 34 entails a decision procedure to determine whether n bounds x in M.

▶ Corollary 35. Given a machine M, a configuration x, and an n ∈ N, it is decidable
whether n bounds x in M.

Second, we characterize whether n bounds a machine M by inspection of the finitely
many configurations with counters at most n.

▶ Lemma 36. Let M be a machine and let n ∈ N. If for all p ≤ |M|, a ≤ n, and b ≤ n we
have that n bounds (p, (a, b)) in M, then n uniformly bounds M.

Proof. By Fact 34, for any configuration x it suffices to inspect the first n steps of any run
from x to decide whether n bounds x. Since at each step the counter values change by at
most one, configurations with counter values of at least n behave uniformly after at most n

steps with respect to halting or entering a configuration cycle. ◀

As a result of the above Lemma 36 and Corollary 35, it is decidable whether n bounds M.

▶ Corollary 37. Given a machine M and an n ∈ N, it is decidable whether n uniformly
bounds M.

Third, we give a sufficient condition for aperiodic, arbitrary long runs (Lemma 38). A
machine satisfying this condition cannot be uniformly bounded. Intuitively, the condition
captures repeatable program index cycles for which at least one counter value changes.
Considering counter values which are at least the cycle length, larger counter values exhibit
identical control flow.
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▶ Lemma 38. Let M be a machine, let k ∈ N, and let (p, (a1, b1)), (p, (a2, b2)) be configura-
tions such that (p, (a1, b1)) −→k

M (p, (a2, b2)). If all of the following conditions hold, then M
is not uniformly bounded.

(1) k ≤ a1 or a1 = a2 (2) k ≤ b1 or b1 = b2 (3) a1 ̸= a2 or b1 ̸= b2

Proof. Assume that some n uniformly bounds M. Consider the case k ≤ a1 ̸= a2 and
b1 = b2 = b (the other cases are analogous). In the first k − 1 steps from (p, (a1, b1)) the
first counter is positive. Therefore, from the configuration (p, (a1 + n · a1, b)) there are more
than n distinct reachable configurations:

(p, (a1 + n · a1, b)) −→k
M (p, (a1 + (n − 1) · a1 + 1 · a2, b))

−→k
M (p, (a1 + (n − 2) · a1 + 2 · a2, b))

−→k
M . . . −→k

M (p, (a1 + n · a2, b))

This contradicts the uniform bound n of M. ◀

Fourth, we characterize whether M is uniformly bounded by inspection of the particular
bound (|M| + 1)5. By the pigeonhole principle this upper bound covers sufficiently many
configurations to exploit the negative condition (Lemma 38) for uniform boundedness.

▶ Lemma 39. If a machine M is uniformly bounded, then (|M| + 1)5 uniformly bounds M.

Proof. For an arbitrary configuration x, consider the first at most (|M| + 1)5 steps of a run
in M from x. If the run halts or enters a configuration cycle, then (|M| + 1)5 bounds x

in M. Otherwise, we contradict that M is uniformly bounded as follows. In this case, the
considered (|M| + 1)5 configurations are distinct (and defined).

Let l = |M| · (|M| + 1). By the pigeonhole principle, in the first |M| · l2 steps, we
encounter a configuration x1 = (p1, (a1, b1)) such that l ≤ a1 or l ≤ b1. Consider l ≤ a1 (the
other case is analogous). For the the next |M|2 steps the first counter is at least |M|, and
there are two cases.
Case 1: We encounter a configuration x2 = (p2, (a2, b2)) such that |M| ≤ a2 and |M| ≤ b2.

By the pigeonhole principle, in the next |M| steps, we necessarily encounter configurations
x3 = (p, (a3, b3)) and x4 = (p, (a4, b4)) such that x3 −→k

M x4, k ≤ a3, k ≤ b3, and x3 ̸= x4.
This contradicts uniform boundedness of M by Lemma 38.

Case 2: All configurations are such that the second counter is less than |M|. By the
pigeonhole principle, we encounter configurations x′

3 = (p′, (a′
3, b′)) and x′

4 = (p′, (a′
4, b′))

such that x′
3 −→k

M x′
4 and k ≤ a′

3 ̸= a′
4. This contradicts uniform boundedness of M by

Lemma 38. ◀

Finally, relying on the above Lemma 39 and Corollary 37, we give a decision procedure
for uniform boundedness.

▶ Theorem 40. Two-counter machine uniform boundedness (Problem 27) is decidable.

Proof. Given a machine M, by Lemma 39 it suffices to decide whether (|M| + 1)5 uniformly
bounds M, which is decidable by Corollary 37. ◀

▶ Remark 41. The proof of Theorem 40 entails a polynomial time decision procedure for
uniform boundedness. In particular, given a machine M we inspect the potential uniform
bound n = (|M| + 1)5 (cf. Lemma 39). That is, we inspect whether n bounds configurations
(p, (a, b)) such that p ≤ |M|, a ≤ n, and b ≤ n (cf. Lemma 36). Each of these |M| · n2

configurations halts or enters a configuration cycle in the first n steps in M (cf. Fact 34)
iff M is uniformly bounded.
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5 Mortality

In this section we consider mortality properties of two-counter machines. First, we recall
that total mortality (does every run eventually halt?) is undecidable [10, Part VI.7], which
also holds for the machine model at hand (Theorem 45). Second, for uniform mortality (is
there a uniform bound on the number of steps from any configuration?) we give a decision
procedure (Theorem 49).

▶ Definition 42 (Totally Mortal Machine). A machine M is totally mortal if all configurations x

are terminating in M.

Total mortality is strictly stronger than total boundedness (Example 43).

▶ Example 43. Consider the totally bounded machine M = [dec0 0, inc0, dec0 0] from
Example 26. The machine M is not totally mortal because of the non-terminating run

(0, (0, 0)) dec0 0−→ M (1, (0, 0)) inc0−→M (2, (1, 0)) dec0 0−→ M (0, (0, 0)) −→M . . .

The original negative result by Hooper [10, Part VI.7] for two-counter machine total
mortality (Problem 44) translates to the machine model at hand (Theorem 45).

▶ Problem 44 (Two-Counter Machine Total Mortality). Given a two-counter machine M,
is M totally mortal?

▶ Theorem 45 ([10, Part VI.7]). Two-counter machine total mortality (Problem 44) is
undecidable.

▶ Remark 46. The negative result for reversible two-counter machine total mortality [12,
Theorem 1] does not hold for CM2. By Lemma 18, it suffices to inspect reachability of
accepting states in a computable finite state automaton, which is decidable.

In a uniformly mortal machine there is a uniform bound on the number of steps after
which every run halts.

▶ Definition 47 (Uniformly Mortal Machine). A machine M is uniformly mortal if there
exists an n ∈ N such that for any configuration x we have that Mn(x) is undefined.

Kari and Ollinger sketch a decision procedure [12, Theorem 2] for uniform mortality
(Problem 48). In the remainder of this section we give an alternative decision procedure
(Theorem 49), based on the decision procedure for uniform boundedness.

▶ Problem 48 (Two-Counter Machine Uniform Mortality). Given a two-counter machine M,
is M uniformly mortal?

▶ Theorem 49. Two-counter machine uniform mortality (Problem 48) is decidable.

Proof. Given a machine M, decide whether M is uniformly bounded. If not, then M is
not uniformly mortal. Otherwise, n = (|M| + 1)5 uniformly bounds M by Lemma 39. It
suffices to decide whether n bounds the maximal number of steps from any configuration.
Configurations with counter values at least n behave uniformly for the first n steps. Therefore,
it suffices to inspect the finitely many configurations (p, (a, b)) such that p ≤ |M|, a ≤ n,
b ≤ n. All such configurations halt after at most n steps iff M is uniformly mortal. ◀

▶ Remark 50. The proof of Theorem 49 entails a polynomial time decision procedure for
uniform mortality. In particular, given a machine M we inspect whether n = (|M| + 1)5

bounds the number of steps from configurations (p, (a, b)) such that p ≤ |M|, a ≤ n, and
b ≤ n. Each of these |M| · n2 configurations halts in at most n steps iff M is uniformly
mortal.
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6 Mechanization

At the level of human intuition, the decidability results for reversible halting (Theorem 21),
uniform boundedness (Theorem 40), and uniform mortality (Theorem 49) are uncomplicated.
However, the necessary verification of the individual results in full-detail, often by nested
case analysis, is laborious and (without computer assistance) error-prone.

A mechanization of the presented results using a proof assistant constitutes a rigorous,
mechanically verifiable correctness proof. Using the Coq proof assistant [27] in particular has
several benefits. First, as argued by Forster [3, Chapter 2], Coq is well-suited for positive and
negative computability results because of its separate impredicative universe of propositions,
besides a computational type hierarchy. This separation allows for a distinction between
computational and non-computational aspects of computability results. In addition, any
function implemented in axiom-free Coq is, by design, total and computable. Second, the
Coq library of undecidability proofs [8] is a readily available uniform framework to mechanize
computability results. The present work heavily relies on the existing infrastructure for
two-counter machines provided by the library. Third, using the Extraction framework [17]
one can extract effective implementations of the individual decision procedures.

The library defines3 decidability of decision problems as follows.
Definition reflects (b : bool) (p : Prop) := p <-> b = true.

Definition decider {X} (f : X -> bool) (P : X -> Prop) : Prop :=
forall x, reflects (f x) (P x).

Definition decidable {X} (P : X -> Prop) : Prop :=
exists f : X -> bool , decider f P.

In particular, a problem P : X -> Prop on the domain X is decidable, if there exists a Boolean
function f : X -> bool such that for all x in X we have that P x holds iff f x = true (cf. small
scale reflection [9]).

In general, a propositional existence proof of a computable decision procedure can rely
on non-constructive principles, such as the principle of excluded middle. In the present work
we mechanize the individual decision procedures in axiom-free Coq, which constitutes the
strongest result with respect to constructive mathematics.

The library contains4 the following definition of two-counter machines (cf. Definition 2).
Definition Config : Set := nat * (nat * nat ).

Definition state (x: Config ) : nat := fst x.
Definition value1 (x: Config ) : nat := fst (snd x).
Definition value2 (x: Config ) : nat := snd (snd x).

Inductive Instruction : Set :=
| inc : bool -> Instruction
| dec : bool -> nat -> Instruction .

Definition Cm2 : Set := list Instruction .

Definition step (M: Cm2) (x: Config ) : option Config :=
[...]

Definition steps (M: Cm2) (k: nat) (x: Config ) : option Config :=
Nat.iter k (obind (step M)) (Some x).

3 theories/Synthetic/Definitions.v
4 theories/CounterMachines/CM2.v

https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.15/theories/Synthetic/Definitions.v
https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.15/theories/CounterMachines/CM2.v
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In the above, a two-counter machine of type Cm2 with the configuration space nat * (nat * nat)

is a list of instructions of shape either (inc false) for inc0, (inc true) for inc1, (dec false q)

for dec0 q, or (dec true q) for dec1 q. The function step : Cm2 -> Config -> option Config,
mechanizes the two-counter machine partial step function (Definition 4). For exactly the
halting configurations x : Config we have step M x = None. The iterated step function is
steps : Cm2 -> nat -> Config -> option Config. A prominent result5 in the library is the
undecidability of the halting problem for two-counter machines.

The remainder of this section outlines the mechanization of the decision procedures
contributed by the present work to the Coq library of undecidability proofs.

Reversible Halting

The following predicate CM2_REV_HALT mechanizes the reversible halting problem for two-
counter machines (Problem 15).

Definition terminating (M: Cm2) (x: Config ) :=
exists k, steps M k x = None.

Definition reversible (M : Cm2) : Prop :=
forall x y z, step M x = Some z -> step M y = Some z -> x = y.

Definition CM2_REV_HALT : { M: Cm2 | reversible M } * Config -> Prop :=
fun ’(( exist _ M _), x) => terminating M x.

In particular, given6 a two-counter machine M : Cm2, a proof that M is reversible (step is
injective), and a configuration x : Config, is there a k : nat such that M halts after at most k

steps starting from configuration x?

The decision procedure decide : { M: Cm2 | reversible M } * Config -> bool for the pred-
icate CM2_REV_HALT is mechanized in theories/CounterMachines/Deciders/CM2_REV_HALT_dec.v

with the corresponding correctness proof decide_spec : decider decide CM2_REV_HALT. No-
tably, the key Lemma 18 for the construction of a finite state automaton to decide reversible
halting is mechanized as follows (RZ mechanizes membership in the same partition in T ).

Lemma uniform_transition ab :
In ab representatives ->
( forall a’b’, RZ ab a’b’ -> terminating (0, a’b ’)) +
( forall a’b’, RZ ab a’b’ -> non_terminating (0, a’b ’)) +
(* uniform transition *)
{v | In v representatives /\

( forall a’b’, RZ ab a’b’ -> exists w, RZ v w /\
reaches_plus (0, a’b’) (0, w)) }.

In order to implement a computable decision procedure, it is important to use compu-
tational disjunction (+) and the dependent pair { v | In v representatives /\ ... }. The
corresponding propositional counterparts (\/) and (exists v, In v representatives /\ ...)
do not suffice.

The overall mechanization spans approximately 1000 LOC. It relies heavily on the proof
automation tactic lia for linear integer arithmetic.

5 theories/CounterMachines/CM2_undec.v
6 The syntax ’((exist _ M _), x) matches a member of { M: Cm2 | reversible M } * Config, and

binds the given machine M : Cm2 and the given configuration x : Config.
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Uniform Boundedness
The following predicate CM2_UBOUNDED mechanizes uniform boundedness for two-counter ma-
chines (Problem 33).
Definition reaches (M: Cm2) (x y: Config ) :=

exists k, steps M k x = Some y.

Definition bounded (M: Cm2) (k: nat) (x: Config ) : Prop :=
exists (L: list Config ), ( length L <= k) /\

( forall (y: Config ), reaches M x y -> In y L).

Definition uniformly_bounded (M: Cm2) : Prop :=
exists k, forall x, bounded M k x.

Definition CM2_UBOUNDED : Cm2 -> Prop :=
fun M => uniformly_bounded M.

In particular, given a two-counter machine M : Cm2, is there a bound k : nat such that
for all configurations x : Config the reachable configurations from x are bounded by a list
L : list Config of length at most k?

The decision procedure decide : Cm2 -> bool for the predicate CM2_UBOUNDED is mechanized
in theories/CounterMachines/Deciders/CM2_UBOUNDED_dec.v with the corresponding correctness
proof decide_spec : decider decide CM2_UBOUNDED. Notably, the key Lemma 39 which provides
an uniform upper bound is mechanized as follows (where l is length M).
Lemma bound_on_uniform_bound : uniformly_bounded M ->

forall x, bounded M ((l+1)*(l+1)*(l+1)*(l+1)*(l+1)) x.

The overall mechanization spans approximately 400 LOC. It relies on the following
negative pigeonhole principle.
Lemma pigeonhole {X : Type} (L L’ : list X) :

incl L L’ -> length L’ < length L -> not (NoDup L).

In particular, given two lists L and L’, if each element of L is in the strictly shorter list L’,
then L is not duplicate-free.

Uniform Mortality
The following predicate CM2_UMORTAL mechanizes uniform mortality for two-counter machines
(Problem 48).

Definition mortal (M: Cm2) (k: nat) (x: Config ) : Prop :=
steps M k x = None.

Definition uniformly_mortal (M: Cm2) : Prop :=
exists k, forall x, mortal M k x.

Definition CM2_UMORTAL : Cm2 -> Prop :=
fun M => uniformly_mortal M.

In particular, given a two-counter machine M : Cm2, is there a bound k : nat such that for all
configurations x : Config the machine M starting from x halts after at most k steps?

The decision procedure decide : Cm2 -> bool for the predicate CM2_UMORTAL is mechanized
in theories/CounterMachines/Deciders/CM2_UMORTAL_dec.v together with the corresponding cor-
rectness proof decide_spec : decider decide CM2_UMORTAL. The mechanization spans approxi-
mately 100 LOC and relies on the previously described mechanized decision procedure for
uniform boundedness.

https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.15/theories/CounterMachines/Deciders/CM2_UBOUNDED_dec.v
https://github.com/uds-psl/coq-library-undecidability/blob/coq-8.15/theories/CounterMachines/Deciders/CM2_UMORTAL_dec.v
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Extraction
Using the Extraction framework [17], effective implementations of the individual decision
procedures (in the OCaml programming language) can be obtained from the provided
mechanization. For example, the following code mechanizes Example 9 and Example 16.
From Undecidability Require Import CM2_REV_HALT_dec .
From Coq Require Import List Extraction .
Import CM2 ListNotations .

Definition M := [dec false 4; inc false; dec false 0].

Lemma HM : reversible M.
Proof.

intros [[|[|[|[| xp ]]]] [[| xa] xb]] [[|[|[|[| yp ]]]] [[| ya] yb]] z.
all: now cbn; congruence .

Qed.

Definition configs := [(2, (0, 0)); (2, (1, 0)); (2, (2, 0))].

Definition results := map (fun x => decide (exist _ M HM , x)) configs .

In the above, M mechanizes the machine [dec0 4, inc0, dec0 0] from Example 9 and HM certifies
reversibility of M by automated case analysis. Notably, the proof automation tactic congruence

(implementing a congruence closure algorithm [23]) is well-suited for automated injectivity
proofs. The list configs contains the three starting configurations (2, (0, 0)), (2, (1, 0)), and
(2, (2, 0)) from Example 16, and the list results contains the corresponding halting decisions.
Finally, using the command “Recursive Extraction results.” an OCaml implementation
can be extracted. Upon execution, results returns the answers true for termination of
the configurations (2, (0, 0)) and (2, (2, 0)), and false for termination of the configuration
(2, (1, 0)), in agreement with Example 16. While still a toy example, this highlights both the
suitability of the Coq proof assistant for (practical) computability theory, and the maturity
of the underlying tool chain. Additionally, extraction to a widely-used programming language
comes with toolchain, performance, and integration benefits for users outside of the proof
assistant community.

7 Conclusion

The present work gives certified decision procedures for reversible halting (Theorem 21),
uniform boundedness (Theorem 40), and uniform mortality (Theorem 49) for CM2, which is
an established, computationally universal notion of two-counter machines.

The positive result for reversible halting contrasts universality of reversible two-counter
machines [20] with a different, richer instruction set. The presented argument is by modeling
relevant control flow of reversible CM2 by a finite state automaton. This renders the
established instruction set of CM2 not computationally universal in a reversible setting.

The presented positive results for uniform boundedness (cf. [1, Remark 28]) and uniform
mortality (cf. [12, Theorem 2]) provide insight into algorithmic complexity of the respective
decision problems. In particular, the underlying arguments are based on a polynomial upper
bound on the size of the relevant configuration space.

The described decision procedures are implemented and verified using the Coq proof
assistant. Coq is well-suited for positive and negative computability results [3], which in
practice culminates in a growing Coq library containing such results. By design, any function
implemented in axiom-free Coq is computable and is equipped with a termination certificate.
Therefore, both negative results (via computable reduction functions) and positive results
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(via computable decision functions) can be presented and verified in a uniform framework.
As added benefit, the complementary positive and negative results for individual problem
classes (such as problems for two-counter machines) can rely on common infrastructure,
avoiding code duplication. The library is well-maintained, which increases longevity of the
contributed mechanization.

While the present work focuses on the positive results for CM2, it is desirable for the
library to include mechanizations of the known negative results for total boundedness and
total mortality.

Unfortunately, in contrast to computability, it is challenging to reason about time or
space complexity of Coq code (cf. the active line of work by Kunze and Forster [4, 5, 6]).
Therefore, certification of the polynomial time complexity (Remarks 22, 41, and 50) of the
decision procedures given in the present work remains open.

The OCaml implementation of the individual decision procedures given by the Extraction

framework is effective for the toy examples in the present work. However, it is neither efficient
nor humanly readable due to the use of ssreflect proof tactic language [9]. This can be
addressed by a more strict separation between decision procedures, termination proofs, and
correctness proofs (cf. the Braga method [16] and the Equations framework [25]).
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