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Abstract
In this paper we prove via a reduction from Hilbert’s 10th problem that the problem whether the
termination of a given rewrite system can be shown by a polynomial interpretation in the natural
numbers is undecidable, even for rewrite systems that are incrementally polynomially terminating.
We also prove that incremental polynomial termination is an undecidable property of terminating
rewrite systems.
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1 Introduction

Proving termination of a rewrite system by using a polynomial interpretation over the
natural numbers goes back to Lankford [10]. Two problems need to be addressed when using
polynomial interpretations for proving termination, whether by hand or by a tool:
1. finding suitable polynomials for the function symbols,
2. showing that the induced order constraints on polynomials are valid.
Heuristics for the former problem are presented in [3, 18]. The latter problem amounts
to (⋆) proving P (x1, . . . , xn) > 0 for all natural numbers x1, . . . , xn ∈ N, for polynomials
P ∈ Z[x1, . . . , xn]. This is known to be undecidable, as an easy consequence of Hilbert’s
10th Problem, see e.g., Zantema [18, Proposition 6.2.11]. However, from the undecidability
of problem 2 it does not immediately follow that (dis)proving polynomial termination is
undecidable, since a decision procedure for problem 1 may exist which only produces decidable
instances for problem 2.

In this paper we show that this is not the case, by proving the undecidability of the
existence of a direct termination proof by a polynomial interpretation in N by a reduction
from (⋆). This result is not surprising, but we are not aware of a proof of undecidability in
the literature, and the construction is not entirely obvious. We strengthen the undecidability
result to rewrite systems that can be shown terminating by an incremental polynomial
interpretation in N, where rules are not oriented all at once, but in stages (called lexicographic
combinations in [18, Section 6.2.4]). We further show that the existence of an incremental
polynomial termination proof is undecidable for terminating rewrite systems.

In the next section we recall the definitions of (incremental) polynomial termination over
N. In Section 3 we present the variations of Hilbert’s 10th problem that we use to obtain
our undecidability results. The latter are presented in detail in the subsequent three sections.
The undecidability result in Section 4 was first announced at the International Workshop on
Termination in 2021 [14]. We conclude in Section 7 with suggestions for future work.
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27:2 Polynomial Termination over N Is Undecidable

2 Preliminaries

We assume familiarity with term rewriting [2], but recall the definition of (incremental)
polynomial termination over N. Given a signature F , a well-founded monotone F-algebra
(A, >) consists of a non-empty F-algebra A = (A, {fA }f ∈F ) and a well-founded order
> on the carrier A of A such that every algebra operation is strictly monotone in all its
arguments, i.e., if f ∈ F has arity n ⩾ 1 then fA(a1, . . . , ai, . . . , an) > fA(a1, . . . , b, . . . , an)
for all a1, . . . , an, b ∈ A and i ∈ {1, . . . , n} with ai > b. The induced order >A on terms is a
reduction order that ensures the termination of any compatible (i.e., ℓ >A r for all rewrite
rules ℓ → r) term rewrite system (TRS for short) R. We call R polynomially terminating
over N if compatibility holds when the underlying algebra A is restricted to the set of natural
numbers N with standard order >N such that every n-ary function symbol f is interpreted
as a monotone polynomial fN in Z[x1, . . . , xn] with fN(0, . . . , 0) ⩾ 0. The latter condition is
needed for fN to be well-defined over N. We use N+ to denote N \ {0}.

Whereas well-founded monotone algebras are complete for termination, polynomial
termination gives rise to a much more restricted class of TRSs. For instance, Hofbauer and
Lautemann [8] proved that polynomially terminating TRSs induce a double-exponential
upper bound on the derivational complexity. Polynomial interpretations can be used in an
incremental fashion, extending their termination proving power. The idea is that in a first
step a polynomial interpretation is used that orients all rewrite rules of a given TRS R weakly
and at least one rule strictly. After removing the rules that are strictly oriented, the process
is repeated. (This is of course not specific to polynomial interpretations and more generally
known as proving termination via relative termination [6, Chapter 3.2].) When no rule
remains, the incremental termination proof succeeds. In this case, R is called incremental
polynomially terminating over N. The following example is from [18, Example 6.2.21].

▶ Example 1. Consider the TRS R consisting of the rewrite rules

0 + y → y s(x) + y → s(x + y) 0 × y → 0 s(x) × y → (x × y) + y

The polynomial interpretation

0N = 0 sN(x) = x + 2 +N(x, y) = x + y + 2 ×N(x, y) = xy + 2x + 2y + 2

gives rise to the following order constraints on N:

y + 2 > y x + y + 4 = x + y + 4 2y + 2 > 0 xy + 2x + 4y + 6 > xy + 2x + 3y + 4

So three of the four rules are oriented strictly. The exception is the rule s(x) + y → s(x + y),
which is turned into an equality. Changing the interpretation to

sN(x) = x + 1 +N(x, y) = 2x + y

orients this rule strictly. Hence R is incremental polynomially terminating over N. With
some effort, it can be shown that R is not polynomially terminating over N. So R resides in
the middle ring in Figure 1.

3 Hilbert’s 10th Problem

In 1901 David Hilbert published a list of 23 mathematical problems, all of which were
unsolved at the time [7]. The tenth problem on the list asked for a procedure to solve
Diophantine equations.



F. Mitterwallner and A. Middeldorp 27:3

terminating TRSs

polynomial interpretations over N

incremental polynomial interpretations over N

Figure 1 Polynomial termination hierarchy.

▶ Problem 2 (Hilbert 10). Given a polynomial P ∈ Z[x1, . . . , xn], determine if there exists
x1, . . . , xn ∈ Z such that P (x1, . . . , xn) = 0.

In 1970 Yuri Matiyasevich showed that recursively enumerable sets are diophantine [12].
From this it follows that Hilbert’s 10th problem is undecidable [4].

▶ Theorem 3. Hilbert’s 10th problem is undecidable.

In this paper we use the following three variations of Hilbert’s 10th problem, all of which
are undecidable. Like Hilbert’s 10th problem, (2) and (3) are semi-decidable, in other words
the “yes” instances can be answered in finite time. Due to the universal quantification this
is not the case for (1), which is co-semi-decidable, meaning that the “no” instances can be
answered in finite time.

▶ Theorem 4. The following decision problems are undecidable.
(1) instance: a polynomial P ∈ Z[x1, . . . , xn]

question: P (x1, . . . , xn) > 0 for all x1, . . . , xn ∈ N?
(2) instance: a polynomial P ∈ Z[x1, . . . , xn]

question: P (x1, . . . , xn) = 0 for some x1, . . . , xn ∈ N+?
(3) instance: a polynomial P ∈ Z[x1, . . . , xn]

question: P (x1, . . . , xn) ⩾ 0 for some x1, . . . , xn ∈ N+?

Proof. This follows by a reduction from Problem 2. We show this for (3). The other
statements can be shown in a similar way (cf. [18, Proposition 6.2.11]). Assume there exists
a procedure to solve (3) and let P ∈ Z[x1, . . . , xn] be some polynomial. We can modify the
original question of Hilbert’s 10th problem as follows:

∃ x1, . . . , xn ∈ Z P (x1, . . . , xn) = 0
⇐⇒ ∃ x1, . . . , xn ∈ Z ¬(P (x1, . . . , xn)2 > 0)
⇐⇒ ∃ x1, . . . , xn ∈ Z ¬(−P (x1, . . . , xn)2 < 0)
⇐⇒ ∃ x1, . . . , xn ∈ Z − P (x1, . . . , xn)2 ⩾ 0
⇐⇒ ∃ a1, . . . , an ∈ {−1, 0, 1} ∃ y1, . . . , yn ∈ N+ − P (a1y1, . . . , anyn)2 ⩾ 0

For each tuple a⃗ = (a1, . . . , an) ∈ {−1, 0, 1}n, we construct the polynomial Qa⃗(y1, . . . , yn) =
−P (a1y1, . . . , anyn)2. From our assumption “∃ y1, . . . , yn ∈ N+ Qa⃗(y1, . . . , yn) ⩾ 0” is
decidable for all a⃗. Since there only exist finitely many such tuples, this proves decidability
of Problem 2. This obviously contradicts Theorem 3 and hence (3) is undecidable. ◀

FSCD 2022
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Table 1 The TRS R.

f(s(x)) → s(s(f(x))) (A)
q(f(x)) → f(f(q(x))) (B)

f(x) → a(x, x) (C)
s(x) → a(0, x) (D)
s(x) → a(x, 0) (E)

a(q(x), f(x)) → q(s(x)) (F)

s(s(0)) → q(s(0)) (G)
s(0) → q(0) (H)

s5(0) → q(s(s(0))) (I)
q(s(s(0))) → s3(0) (J)
s(a(x, x)) → d(x) (K)

s(d(x)) → a(x, x) (L)
s(a(q(a(x, y)), d(a(x, y)))) → a(a(q(x), q(y)), d(m(x, y))) (M)

s(a(a(q(x), q(y)), d(m(x, y)))) → a(q(a(x, y)), d(a(x, y))) (N)

4 Undecidability of Polynomial Termination

In this section we construct a family of TRSs RP parameterized by polynomials P ∈
Z[x1, . . . , xn] such that RP is polynomially terminating over N if and only if P (x1, . . . , xn) > 0
for all x1, . . . , xn ∈ N. The construction is based on techniques from [15], in which specific
rewrite rules enforce the interpretations of certain function symbols. Our TRSs RP consists
of three parts: A fixed component R, which is extended to Rk for some k ∈ N depending on
the exponents in P , and a single rewrite rule that encodes the positiveness of P .

▶ Definition 5. Given a polynomial P ∈ Z[x1, . . . , xn], the TRS RP is defined over the
signature consisting of a constant 0, unary function symbols s, d, f, q, p1, . . . , pk, and binary
function symbols a and m. Here k is the highest degree of an indeterminate in P .

To encode the positiveness of P we need to constrain the possible interpretations of
function symbols, in order to represent numbers, addition and multiplication. That is the
purpose of the TRS R, whose rules are presented in Table 1. It is a simplified and modified
version of the TRS R2 in [15]. As will be shown later, this setup allows us to represent natural
numbers as terms using the symbol 0 for the number 0 and s for the successor function. For
the operations we have the binary symbols a for addition and m for multiplication. However,
since multiplication is not strictly monotone on N we restrict the interpretation of m to
xy + x + y, which suffices for the reduction. The remaining function symbols in R are not
used to encode the positiveness of P , but are required for the construction to work. First we
show that the mentioned interpretations prove termination of R.

▶ Lemma 6. The TRS R is polynomially terminating over N.

Proof. The well-founded algebra (N, >N) with interpretations

0N = 0 sN(x) = x + 1 aN(x, y) = x + y qN(x) = x2

dN(x) = 2x fN(x) = 4x + 6 mN(x, y) = xy + x + y

is monotone and compatible with R. Hence R is polynomially terminating. ◀

Note that this polynomial interpretation is found by the termination tool TTT2 with the
strategy poly -direct -nl2 -ib 4 -ob 6.

More importantly, to ensure termination in (N, >N), the rewrite rules of R require that
the interpretation of some of the function symbols is unique. The proof of the following
lemma closely follows the reasoning in [15, Lemmata 4.4 and 5.2].
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▶ Lemma 7. Any monotone polynomial interpretation (N, >N) compatible with R must
interpret the function symbols 0, s, d, a, m and q as follows:

0N = 0 sN(x) = x + 1 aN(x, y) = x + y

dN(x) = 2x mN(x, y) = xy + x + y qN(x) = x2

Proof. Compatibility with (A) implies deg(fN) · deg(sN) ⩾ deg(sN)2 · deg(fN). This is only
possible if deg(sN) ⩽ 1. Together with the strict monotonicity of sN we obtain deg(sN) = 1.
Hence s must be interpreted by a linear polynomial: sN(x) = s1x + s0 with s1 ⩾ 1 and s0 ⩾ 0.
The same reasoning applied to (B) yields fN(x) = f1x + f0 for some f1 ⩾ 1 and f0 ⩾ 0. The
compatibility constraint imposed by rule (A) further gives rise to the inequality

f1s1x + f1s0 + f0 > f1s2
1x + f0s2

1 + s1s0 + s0 (1)

for all x ∈ N. Since s1 ⩾ 1 and f1 ⩾ 1, this only holds if s1 = 1. Simplifying (1) we obtain
f1s0 > 2s0, which implies s0 > 0 and f1 > 2. If qN were linear, the same reasoning could be
applied to (B) resulting in f1 = 1, contradicting f1 > 2. Hence qN is at least quadratic.

Next we turn our attention to the rewrite rules (C) – (F). Because fN is linear, compatibility
with (C) and strict monotonicity of aN ensures deg(aN) = 1. Hence, aN = a2x + a1y + a0
with a2 ⩾ 1, a1 ⩾ 1 and a0 ⩾ 0. From compatibility with rules (D) and (E) we obtain a1 = 1
and a2 = 1. Using the current shapes of aN, fN and sN, compatibility with rule (F) yields
the inequality fN(x) + a0 > qN(x + s0) − qN(x) for all x ∈ N. This can only be the case if
deg(fN(x) + a0) ⩾ deg(qN(x + s0) − qN(x)), which in turn simplifies to 1 ⩾ deg(qN(x)) − 1.
Hence qN(x) = q2x2 + q1x + q0 with q2 ⩾ 1. From monotonicity we also have qN(1) > qN(0),
which leads to q2 + q1 ⩾ 1.

To further constrain sN we consider the rewrite rule (G). The compatibility constraint
gives rise to

0N + 2s0 > q2(0N + s0)2 + q1(0N + s0) + q0

= q2 02
N + q2s2

0 + 0N(2q2s0 + q1) + q1s0 + q0

⩾ q2s2
0 + 0N + (1 − q2)s0 (q2 + q1 ⩾ 1 and q0, q2, s0 ⩾ 1)

= q2s0(s0 − 1) + 0N + s0 ⩾ s2
0 + 0N (s0 ⩾ 1)

Hence the inequality 2s0 > s2
0 holds, which is only true if s0 = 1. Therefore sN(x) = x + 1.

Compatibility with (D) now amounts to x + 1 > 0N + x + a0, which implies 0N = a0 = 0. At
this point we have uniquely constrained 0N, sN and aN. To fully constrain qN we turn to (H),
which implies q0 = 0, the rule (G), which together with monotonicity implies 2 > qN(1) > 0
and thus qN(1) = q2 + q1 = 1, and the rules (I) and (J), which imply 5 > qN(2) > 3
and thus qN(2) = 4q2 + 2q1 = 4. Consequently, q2 = 1 and q1 = 0. Hence qN(x) = x2.
Compatibility with the rules (K) and (L) yields x + x + 1 > dN(x) and dN(x) + 1 > x + x

which imply dN(x) = 2x. Finally, compatibility with the rules (M) and (N) amounts to
(x + y)2 + 2x + 2y + 1 > x2 + y2 + 2mN(x, y) ⩾ (x + y)2 + 2x + 2y, which uniquely determines
mN(x, y) = xy + x + y. ◀

Using the previously fixed interpretations we can easily restrict the interpretations of any
new symbols. By adding the two rules

s(t) → u s(u) → t

for some terms t and u, we enforce an equality constraint on the interpretations of t and u,
assuming the system remains polynomially terminating.

FSCD 2022
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To represent the exponents in the polynomial P we use the symbols pi for 1 ⩽ i ⩽ k,
where k is the maximal exponent in P . To fix piN(x) = xi, we add two rules per symbol,
according to the following definition.

▶ Definition 8. We define a family of TRSs (Rk)k⩾0 as follows:

R0 = R
R1 = R0 ∪ {s(p1(x)) → x, s(x) → p1(x)}

Rk+1 = Rk ∪

{
s(a(pk+1(x), a(x, pk(x)))) → m(x, pk(x))

s(m(x, pk(x))) → a(pk+1(x), a(x, pk(x)))

}

▶ Lemma 9. For any k ⩾ 0, the TRS Rk is polynomially terminating over N if and only if
piN(x) = xi for all 1 ⩽ i ⩽ k.

Proof. From Lemma 6 we know that R is polynomially terminating and the interpretations
are unique due to Lemma 7. Hence the lemma holds for R0. For k ⩾ 1, the if direction holds,
since the interpretations piN are monotone and the polynomial interpretation is compatible
with Rk:

x + 1 > x x + 1 > x

for R1 \ R0 and

xk + x + xk−1 + 1 > xxk−1 + x + xk−1 xxk−1 + x + xk−1 + 1 > xxk + x + xk−1

for Rk \ Rk−1. For the only if direction we show that compatibility with the additional rules
implies piN(x) = xi for all 1 ⩽ i ⩽ k. This is done by induction on k. For k = 1 the two
rules in R1 \ R enforce piN(x) + 1 > x and x + 1 > piN(x). Hence piN(x) = x. For k > 1 the
rules in Rk \ Rk−1 enforce pkN(x) = x · pk−1N(x) by the same reasoning. From the induction
hypothesis we obtain pk−1N(x) = xk−1 and hence pkN = xk as desired. ◀

The fixed interpretations can now be used to construct arbitrary polynomials. Since
non-monotone operations, such as subtraction (negative coefficients) and multiplication,
cannot serve as interpretations for function symbols, we model these using the difference of
two terms. In the following we write [t]N for the polynomial that is the interpretation of the
term t, according to the interpretations stated in Lemmata 7 and 9.

▶ Lemma 10. For any monomial M = c xi1
1 · · · xim

m with i1, . . . , im > 0 and c ̸= 0 there exist
terms ℓM and rM over the signature of Rmax(0,i1,...,im), such that M = [ℓM ]N − [rM ]N and
Var(ℓM ) = Var(rM ).

Proof. First we assume the coefficient c is positive. We construct ℓM and rM by induction
on m. If m = 0 then M = c and we take ℓM = sc(0) and rM = 0. We trivially have
Var(ℓM ) = ∅ = Var(rM ) and [ℓM ]N − [rM ]N = c − 0 = M . For m > 0 we have M = M ′xim

m

with M ′ = cxi1
1 · · · x

im−1
m−1 . The induction hypothesis yields terms ℓM ′ and rM ′ with M ′ =

[ℓM ′ ]N − [rM ′ ]N and Var(ℓM ′) = Var(rM ′). Hence

M = M ′xim
m = [ℓM ′ ]Nxim

m − [rM ′ ]Nxim
m

= (mN([ℓM ′ ]N, xim
m ) − [ℓM ′ ]N − xim

m ) − (mN([rM ′ ]N, xim
m ) − [rM ′ ]N − xim

m )
= (mN([ℓM ′ ]N, pimN(xm)) + [rM ′ ]N) − (mN([rM ′ ]N, pimN(xm)) + [ℓM ′ ]N)
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and thus we can take ℓM = a(m(ℓM ′ , pim(xm)), rM ′) and rM = a(m(rM ′ , pim(xm)), ℓM ′).
Note that Var(ℓM ) = Var(ℓM ′) ∪ {xm } ∪ Var(rM ′) = Var(rM ).

If c < 0 then we take ℓM = r−M and rM = ℓ−M . We obviously have Var(ℓM ) =
Var(r−M ) = Var(ℓ−M ) = Var(rM ). Moreover,

M = −(−M) = −([ℓ−M ]N − [r−M ]N) = −([rM ]N − [ℓM ]N) = [ℓM ]N − [rM ]N ◀

▶ Definition 11. Let P = M1 + · · · + Ml−1 + Ml ∈ Z[x1, . . . , xn] be a sum of monomials.
We define ℓP = a(ℓM1 , · · · a(ℓMl−1 , ℓMl

) · · · ) and rP = a(rM1 , · · · a(rMl−1 , rMl
) · · · ). Moreover,

ℓ0 = r0 = 0. We define the TRS RP as the extension of Rk with the single rule ℓP → rP .
Here k is the maximal exponent occurring in P .

Note that the rewrite rule ℓP → rP in RP is well-defined; ℓP is not a variable and
Var(ℓP ) = Var(rP ) as a consequence of Lemma 10.

▶ Example 12. The polynomial P = 2x2y−xy+3 is first split into its monomials M1 = 2x2y,
M2 = −xy and M3 = 3. Hence we obtain the TRS RP1 = R2 ∪ {a(ℓM1 , a(ℓM2 , ℓM3)) →
a(rM1 , a(rM2 , rM3))}, where

ℓM1 = a(m( a(m(s2(0), p2(x)), 0)︸ ︷︷ ︸
ℓ2x2

, p1(y)), a(m(0, p2(x)), s2(0))︸ ︷︷ ︸
r2x2

)

rM1 = a(m( a(m(0, p2(x)), s2(0))︸ ︷︷ ︸
r2x2

, p1(y)), a(m(s2(0), p2(x)), 0)︸ ︷︷ ︸
ℓ2x2

)

ℓM2 = a(m( a(m(0, p1(x)), s(0))︸ ︷︷ ︸
rx

, p1(y)), a(m(s(0), p1(x)), 0)︸ ︷︷ ︸
ℓx

)

rM2 = a(m( a(m(s(0), p1(x)), 0)︸ ︷︷ ︸
ℓx

, p1(y)), a(m(0, p1(x)), s(0))︸ ︷︷ ︸
rx

)

ℓM3 = s3(0) rM3 = 0

Note that in the terms ℓM2 and rM2 the ℓ and r of the recursive call are switched since M2
has a negative coefficient.

▶ Theorem 13. For any polynomial P ∈ Z[x1, . . . , xn], the TRS RP is polynomially termin-
ating over N if and only if P (x1, . . . , xn) > 0 for all x1, . . . , xn ∈ N.

Proof. First suppose RP is polynomially terminating over N. So there exists a monotone
polynomial interpretation in (N, >) that orients the rules of RP from left to right. Let k be
the maximum exponent in P . From Lemma 7 and Lemma 9 we infer that the interpretations
of the function symbols 0, s, a, m, and pi for 1 ⩽ i ⩽ k are fixed such that, according to
Lemma 10, P = [ℓP ]N − [rP ]N. Since the rule ℓP → rP belongs to RP , P (x1, . . . , xn) > 0 for
all x1, . . . , xn ∈ N by compatibility.

For the if direction, we assume that P ∈ Z[x1, . . . , xn] satisfies P (x1, . . . , xn) > 0 for all
x1, . . . , xn ∈ N. By construction of ℓP → rP and Lemma 10, the interpretations in Lemma 7
and Lemma 9 orient the rule ℓP → rP from left to right. The same holds for rules Rn. Hence
RP is polynomially terminating over N. ◀

▶ Corollary 14. It is undecidable whether a TRS is polynomially terminating over N.

Since the proof reduces polynomial termination to (1) from Theorem 4, which is not
semi-decidable, the same holds for polynomial termination.

FSCD 2022
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The construction of RP may produce non-terminating systems. Take for example the
polynomial P1 = −1. The resulting TRS RP1 = R ∪ {0 → s(0)} is obviously not terminating.
Hence the question remains whether polynomial termination over N is undecidable for
terminating TRSs. In the next section we show that this is indeed the case.

Another question is whether incremental polynomial termination over N, where we take the
lexicographic extension of the order induced by the polynomial interpretations, is decidable.
The construction of RP cannot be used to answer this question. Consider for instance the
polynomial P2 = x. We obtain ℓP2 = a(m(s(0), p1(x)), 0) and rP2 = a(m(0, p1(x)), s(0)).
As a result, the TRS RP2 = R1 ∪ {ℓP2 → rP2 } is not polynomially terminating over
N since [ℓP2 ]N = 2x + 1 ≯ x + 1 = [rP2 ]N for x = 0. However, if we take a second
interpretation over N where the interpretation of m is changed to mN(x, y) = 2x + y, then
[ℓP2 ]N = x + 2 > x + 1 = [rP2 ]N for all x ∈ N. Hence RP2 is incremental polynomially
terminating over N. In Section 6 we provide a different construction which permits to answer
the question about incremental polynomial termination over N

5 Polynomial Termination of Terminating Rewrite Systems

In the reduction in the previous section indeterminates in the input polynomial P are modeled
as variables in the rewrite rule ℓP → rP . In this and the next section we model indeterminates
as unary function symbols. The following example illustrates how we intend to model the
indeterminates as coefficients of the interpretation of the associated function symbol.

▶ Example 15. Suppose the interpretations of the function symbols 0, s, and a are already
fixed to 0, the successor function, and addition. Moreover, let f be a unary function symbol
whose interpretation is linear without any upper bound on the coefficients. The rewrite rules

s(0) → X(0) s(0) → Y(0) f(x) → X(x) f(x) → Y(x)

constrain the interpretations of the unary function symbols X and Y to homogeneous linear
polynomials: XN(x) = cx and YN(x) = dx, where c, d > 0. The claim that the polynomial
P (x, y) = x2 + xy − x − 3 has a root in N+ is equivalent to the claim that the rules

s(a(X(s(0)), s3(0))) → a(X(X(s(0))), X(Y(s(0))))
s(a(X(X(s(0))), X(Y(s(0))))) → a(X(s(0)), s3(0))

can be oriented by a polynomial interpretation, assuming the interpretations are constrained
as above. To see this we look at the induced compatibility constraint of the two rules:

c + 3 = c2 + cd

After some rearranging c, d ∈ N+ take the place of x and y in the polynomial. Hence this
equation has a solution if and only if the polynomial has a root in the positive natural
numbers.

Note that natural numbers and addition are still modeled using the symbols 0, s and a,
however multiplication of indeterminates (and a single coefficient) are now modeled using
function composition. For example 2xy becomes Y(X(s(s(0)))). To make this possible we
constrain the possible interpretations of these symbols using the TRS CP .
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Table 2 The TRS C.

f(s(x)) → s(s(f(x))) (A)
q(f(x)) → f(f(q(x))) (B)

a(q(x), f(x)) → q(s(x)) (C)

f(x) → a(x, x) (D)
s(x) → a(0, x) (E)
s(x) → a(x, 0) (F)

s(s(0)) → q(s(0)) (G)
s(A(x)) → B(x) (L)
s(B(x)) → A(x) (M)

▶ Definition 16. Given a polynomial P ∈ Z[x1, . . . , xn], the TRS CP is defined over the
signature consisting of a constant 0, unary function symbols s, f, q, X1, . . . , Xn, A, B, and a
binary function symbol a. It contains the rewrite rules presented in Table 2, which we denote
by C, as well as the 2n rules

s(0) → Xi(0) (Hi) f(x) → Xi(x) (Ii)

for all 1 ⩽ i ⩽ n, which we denote by Xn.

The function symbols A and B in the rules (L) and (M), are not needed for modeling
P or for constraining the interpretations of the other symbol, but will be used to prove
incremental polynomial termination of the TRS later.

▶ Lemma 17. The TRS C ∪ Xn is polynomially terminating over N, for any n ⩾ 0.

Proof. The interpretations

0N = 0 sN(x) = x + 1 aN(x, y) = x + y qN(x) = x2

AN(x) = x BN(x) = x fN(x) = fx + f + 2 XiN(x) = cix for 1 ⩽ i ⩽ n

for any c1, . . . , cn > 0 and with f = max(3, c1, . . . , cn) are compatible with the rules in C ∪Xn.
For the rules in C this can be seen as follows:

[f(s(x))]N = fx + 2f + 2 > fx + f + 4 = [s(s(f(x)))]N (A)
[q(f(x))]N = f2x2 + 2fx(f + 2) + f2 + 4f + 4 > f2x2 + f2 + 3f + 2 = [f(f(q(x)))]N (B)

[a(q(x), f(x))]N = x2 + fx + f + 2 > x2 + 2x + 1 = [q(s(x))]N (C)
[f(x)]N = fx + f + 2 > 2x = [a(x, x)]N (D)

[s(x)]N = x + 1 > x = [a(0, x)]N (E)
[s(x)]N = x + 1 > x = [a(x, 0)]N (F)

[s(s(0))]N = 2 > 1 = [q(s(0))]N (G)
[s(A(x))]N = x + 1 > x = [B(x)]N (L)
[s(B(x))]N = x + 1 > x = [A(x)]N (M)

For the rules in Xn we have

[s(0)]N = 1 > 0 = [Xi(0)]N (Hi)
[f(x)]N = fx + f + 2 > cix = [Xi(x)]N (Ii)

◀

Before we can formally define the two ground rules that model “P (x1, . . . , xn) = 0
for some x1, . . . , xn ∈ N+,” we need a preliminary definition which associates terms with
polynomials.
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▶ Definition 18. Given a polynomial

P =
m∑

i=1
Mi +

k∑
j=1

Nj ∈ Z[x1, . . . , xn]

such that the monomials M1, . . . , Mm have positive and the monomials N1, . . . , Nk have
negative coefficients, we define P+ = M1 + · · · + Mm and P− = −(N1 + · · · + Nk). Given a
monomial M ∈ Z[x1, . . . , xn] with positive coefficient, we define the term tM inductively as
follows:

tM =
{

sc(0) if M = c ∈ N+

Xi(tM ′) if M = M ′xi

Given a polynomial P = M1 + · · · + Ml ∈ Z[x1, . . . , xn] with positive coefficients, we define
the term tP inductively as follows:

tP =


0 if l = 0
tM1 if l = 1
a(tM1 , tP −M1) otherwise

▶ Example 19. For the polynomial P (x, y) = x3 − 2xy2 + 3y − 2 we obtain

tP+ = a(X(X(X(s(0)))), Y(s(s(s(0))))) tP− = a(Y(Y(X(s(s(0))))), s(s(0)))

▶ Definition 20. The TRS CP is the extension of C ∪ Xn with the two ground rules

A(s(tP+)) → B(tP−) (J) A(s(tP−)) → B(tP+) (K)

▶ Theorem 21. For any polynomial P ∈ Z[x1, . . . , xn], the TRS CP is polynomially termin-
ating over N if and only if P (x1, . . . , xn) = 0 for some x1, . . . , xn ∈ N+. Moreover, CP is
incremental polynomially terminating over N.

Proof. First suppose that CP is polynomially terminating over N. By the same reasoning as
in the proof of Lemma 7, compatibility with the rules (A) – (G) in Table 2 ensures

0N = 0 sN(x) = x + 1 aN(x, y) = x + y

Moreover, the interpretation of f must be linear, i.e., fN(x) = f1x + f0, and f0 > f1 + 1.
The rules (L) and (M) mandate AN(x) = BN(x) for all x ∈ N. Importantly this also means
AN(x) = BN(y) implies x = y for all x, y ∈ N due to monotonicity. The rules in Rn

constrain the interpretations of the symbols X1, . . . , Xn to XiN(x) = cix with arbitrary values
c1, . . . , cn ∈ N+. Hence [tM ]N = c ci1

1 · · · cin
n for a monomial M = c xi1

1 · · · xin
n with c > 0, and

thus also [tQ]N = Q(c1, . . . , cn) for a polynomial with positive coefficients. Consequently, the
two rules in Definition 20 induce the constraint

P+(c1, . . . , cn) = P−(c1, . . . , cn)

This constraint is satisfiable if and only if the polynomial P+(x1, . . . , xn) − P−(x1, . . . , xn) =
P (x1, . . . , xn) has a root in N+. Conversely, suppose P (a1, . . . , an) = 0 for some a1, . . . , an ∈
N+. From Lemma 17 we obtain that C ∪ Xn is polynomially terminating over N. According
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to the proof of Lemma 17, we are free to choose the (positive) coefficients c1, . . . , cn of
X1N, . . . , XnN. By taking ci = ai for 1 ⩽ i ⩽ n, we ensure [tP+ ]N = [tP− ]N and hence CP is
polynomially terminating over N.

For the second statement we start with the interpretations

0N = 0 sN(x) = x aN(x, y) = x + y qN(x) = 2x2 + x

fN(x) = 2x + 2 AN(x) = x BN(x) = x XiN(x) = x for 1 ⩽ i ⩽ n

that strictly orients (B), (C), (D) and (Ii):

[q(f(x))]N = 8x2 + 18x + 10 > 8x2 + 4x + 6 = [f(f(q(x)))]N (B)
[a(q(x), f(x))]N = 2x2 + 3x + 2 > 2x2 + x = [q(s(x))]N (C)

[f(x)]N = 2x + 2 > 2x = [a(x, x)]N (D)
[f(x)]N = 2x + 2 > x = [Xi(x)]N (Ii)

All other rules of CP are weakly oriented. Note that [tM ]N = 0 for all monomials M with
positive coefficient. Hence the rules (J) and (K) are turned into the identity constraint 0 = 0.
In the second step we use the interpretation

0N = 0 sN(x) = 2x aN(x, y) = x + y qN(x) = x

AN(x) = x + 1 BN(x) = x + 1 fN(x) = x2 XiN(x) = x for 1 ⩽ i ⩽ n

which orients (L) and (M) strictly:

[s(A(x))]N = 2x + 2 > x + 1 = [B(x)]N (L)
[s(B(x))]N = 2x + 2 > x + 1 = [A(x)]N (M)

In the third step we change the interpretation of B:

0N = 0 sN(x) = 2x aN(x, y) = x + y qN(x) = x

AN(x) = x + 1 BN(x) = x fN(x) = x2 XiN(x) = x for 1 ⩽ i ⩽ n

This allows to orient (L) and (M) strictly:

[A(s(tP+))]N = 1 > 0 = [B(tP−)]N (J)
[A(s(tP−))]N = 1 > 0 = [B(tP+)]N (K)

The remaining rules (A), (E), (F), (G) and (Hi) are strictly oriented using the final inter-
pretation:

0N = 0 aN(x, y) = x + y qN(x) = x2

sN(x) = x + 1 fN(x) = 3x XiN(x) = x for 1 ⩽ i ⩽ n ◀

▶ Corollary 22. Polynomial termination over N is undecidable for incremental polynomially
terminating TRSs.

6 Incremental Polynomial Termination is Undecidable

The final result is the undecidability of incremental polynomial termination over N. This
time we model the indeterminates in the given polynomial as the degree of the interpretation
of the associated function symbols. Due to monotonicity of the interpretations we cannot
use polynomials of degree zero. We therefore limit the arguments of the polynomial P to
N+ and use a reduction to (3) from Theorem 4. The idea behind modeling polynomials as
degrees of interpretations is illustrated in the following example.
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Table 3 The TRS D.

q(f(x)) → f(f(q(x))) (A)
a(q(x), f(f(x))) → q(a(x, f(0))) (B)

f(x) → a(x, x) (C)
f(x) → m(0, x) (D)
f(x) → m(x, 0) (E)

f(q(x)) → m(x, x) (F)
m(x, x) → q(x) (G)

▶ Example 23. Consider the symbols m and f where the interpretation of m is fixed as
mN(x, y) = xy + x + y (like in Section 4) and fN(x) = dx + c is some linear polynomial with
coefficients d, c > 0. To model that P (x, y) = 2xy − x ⩾ 0 for some x, y ∈ N+ we also add
function symbols for each indeterminate. In this example X and Y. To model the (positive)
coefficients of P we use the variable x for 1 together with the symbol m, which models
addition on the level of the degrees of polynomials. Multiplication is modeled as function
composition. The rule

f(Y(X(m(x, x)))) → X(x)

can be oriented only if

deg([f(Y(X(m(x, x))))]N) = 2 deg(XN) deg(YN) ⩾ deg(XN) = deg([X(x)]N)

for some polynomials XN and YN where deg(XN), deg(YN) > 0. Since otherwise, there will
always be some x ∈ N+ such that [f(Y(X(m(x, x))))]N < [X(x)]N. Moreover the outermost
f allows us to always chose a large enough d and c, such that the rule can be oriented if
2 deg(XN) deg(YN) ⩾ deg XN independent of the exact shape of XN and YN. Orienting this
rules is therefore possibly if and only if P (x, y) ⩾ 0 for some x, y ∈ N+.

To constrain the interpretations of the function symbols for this setup to work, we use
the following TRS.

▶ Definition 24. Given a polynomial P ∈ Z[x1, . . . , xn], the TRS DP is defined over the
signature consisting of a constant 0, unary function symbols f, q, X1, . . . , Xn, and binary
function symbols a and m. It contains the rewrite rules presented in Table 3, which we denote
by D, as well as the single ground rule

f(0) → m(q(0), a(0, a(X1(0), . . . , a(Xn−1(0), Xn(0)) . . . ))) (X)

Note that all function symbols with the exception of f appear in the right-hand side of
(X). The importance of this observation we will see later.

▶ Definition 25. Given a monomial M ∈ Z[x1, . . . , xn] with positive coefficient, we define
the term tM inductively as follows:

tM =


x if M = 1
m(x, tc−1) if M = c > 1
Xi(tM ′) if M = M ′xi

Given a polynomial P = M1 + · · · + Ml ∈ Z[x1, . . . , xn] with l ⩾ 1 and positive coefficients,
we define the term tP inductively as follows:

tP =
{

tM1 if l = 1
m(tM1 , tP −M1) otherwise
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Note that Var(tP ) = {x} for any P ∈ Z[x1, . . . , xn]. So [tP ]N is a univariate polynomial.

▶ Example 26. For the monomial M = 3xy2 and polynomial P = 3x2 + y + 2 we have

tM = Y(Y(X(m(x, m(x, x)))))
tP = m(X(X(m(x, m(x, x)))), m(Y(x), m(x, x)))

▶ Lemma 27. If mN(x, y) = m3xy + m2x + m1y + m0 with m3 > 0 then

deg([tM ]N) = c · deg(X1N)i1 · · · deg(XnN)in = M(deg(X1N), . . . , deg(XnN))

for monomials M = c x i1
1 · · · x in

n with c > 0, and

deg([tP ]N) = deg([tM1 ]N) + · · · + deg([tMk
]N) = P (deg(X1N), . . . , deg(XnN))

for polynomials P = M1 + · · · + Ml with l ⩾ 1 and positive coefficients.

Proof. We prove the statement for monomials M . If M = 1 then tM = x and [tM ]N = x

and thus deg([tM ]N) = 1. If M = c > 1 then tM = m(x, tc−1) and, due to the assumption
concerning the interpretation of m, [tM ]N = m3x[tc−1]N +m2x+m1[tc−1]N +m0 with m3 > 0.
We obtain deg([tc−1]N) = c − 1 from the induction hypothesis. Hence

deg([tM ]N) = 1 + (c − 1) = c = M(deg(X1N), . . . , deg(XnN))

If M = M ′xi then tM = Xi(tM ′). Without loss of generality we assume that x = xn and
M ′ ∈ Z[x1, . . . , xn−1]. We have [tM ]N = (XnN)i[tM ′ ]N. The induction hypothesis yields

deg([tM ′ ]N) = c · deg(X1N) i1 · · · deg(Xn−1N) in−1 = M ′(deg(X1N), . . . , deg(Xn−1N))

and thus deg([tM ]N) = c ·deg(X1N) i1 · · · deg(XnN) in = M(deg(X1N), . . . , deg(XnN)) by setting
in = i. The statement for polynomials is an easy consequence of the one for monomials. ◀

▶ Example 28. Consider the polynomial P = 2x2 + y + 1 and suppose mN(x, y) = xy + x + y,
XN(x) = x2 and YN(x) = x3. We have

tP = m(X(X(m(x, x))), m(Y(x), x))
[tP ]N = ((x2 + 2x)2)2(x3x + x3 + x) + ((x2 + 2x)2)2) + (x3x + x3 + x)

Note that deg([tP ]N) = 12 = P (2, 3). If we change the interpretations of X and Y to
XN(x) = x5 and YN(x) = x4 then

[tP ]N = ((x2 + 2x)5)5(x4x + x4 + x) + ((x2 + 2x)5)5) + (x4x + x4 + x)

and deg([tP ]N) = 55 = P (5, 4).

▶ Definition 29. The TRS DP is the extension of D ∪ {(X)} with the single rule

f(tP+) → tP− (H)

Since t0 is undefined in Definition 25, the TRS DP is defined only when P contains both
monomials with positive and with negative coefficients. Since Hilbert’s 10th problem is
trivially decidable for polynomials with only positive (negative) coefficients, this entails no
loss of generality.
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▶ Example 30. The TRS Dx2−2xy+3 consists of the rules in Table 3 extended with

f(0) → m(q(0), a(0, a(X(0), Y(0)))) f(m(X(X(x)), m(x, m(x, x)))) → Y(X(m(x, x)))

The following lemma is used in the proof of the main result of this section.

▶ Lemma 31. If deg(P ) ⩾ deg(Q) for univariate polynomials P, Q ∈ Z[x] with positive
coefficients then

c · P (x) + c > Q(x)

for some c ∈ N and all x ∈ N.

Proof. Let k be the degree of Q. So Q(x) = akxk + · · · + a1x1 + a0 for some coefficients
a0, . . . , ak ∈ N with ak ̸= 0. Define c = ak + · · · + a1 + a0 + 1. We have

c · P (x) + c ⩾ cxk + c ⩾ Q(x) + 1 > Q(x)

for all x ∈ N. ◀

▶ Theorem 32. For any polynomial P ∈ Z[x1, . . . , xn] with both positive and negative
coefficients, the TRS DP is incremental polynomially terminating over N if and only if
P (a1, . . . , an) ⩾ 0 for some a1, . . . , an ∈ N+.

Proof. For the only-if direction, suppose DP is incremental polynomially terminating over
N. From (A) we infer deg(fN) = 1. So fN(x) = f1x + f0 with f1 > 0. From rule (C) we
obtain deg(aN) = 1 and thus aN(x, y) = a2x + a1y + a0 with a2, a1 > 0 and subsequently
f1 > (a2 + a1) ⩾ 2. Because DP is incremental polynomially terminating, at least one
of its rewrite rules is oriented strictly. This is possible only if the constant part of some
interpretation function is positive. Now consider rule (X). Since it contains all function
symbols, either f0 > 0 or

[m(q(0), a(0, a(X1(0), . . . , a(Xn−1(0), Xn(0)) . . . )))]N > 0

In both cases we obtain [f(0)]N > 0. Consider rule (A) again. If qN(x) is linear then f1 = 1,
contradicting f1 ⩾ 2. So deg(qN) ⩾ 2. From (B) we infer

a1fN(fN(x)) + a0 ⩾ qN(a2x + a1[f(0)]N + a0) − a2qN(x)

Abbreviating a1[f(0)]N + a0 to d and letting qN(x) = qkxk + · · · + q1x1 + q0 with k ⩾ 2, the
expression qN(a2x + d) − a2qN(x) evaluates to

k∑
i=0

qi(a2x + d)i − a2

k∑
i=0

qix
i =

k∑
i=0

qi

i∑
j=0

(
i

j

)
aj

2xjdi−j − a2

k∑
i=0

qix
i

=
k∑

i=0
qi

ai
2xi +

i−1∑
j=0

(
i

j

)
aj

2xjdi−j

 − a2

k∑
i=0

qix
i

=
k∑

i=0
qi

i−1∑
j=0

(
i

j

)
aj

2xjdi−j −
k∑

i=0
qi(ai

2 − a2)xi

Note that d > 0 because [f(0)]N > 0 and a2 > 0. The degree of the left sum is k − 1 whereas
the right sum has degree 0 if a2 = 1 and k if a2 ̸= 1. Since the degree is bounded by
deg(fN)2 = 1, we must have a2 = 1. Hence

1 ⩾ deg(qN(a2x + a1[f(0)]N + a0) − a2qN(x)) = deg(qN) − 1
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and thus deg(qN) = 2. Rules (F) and (G) ensure deg(mN(x, x)) = 2 and thus we may write
mN(x, y) = m5x2 + m4y2 + m3xy + m2x + m1y + m0. Considering rule (D) yields

1 ⩾ deg(mN(0N, x)) = deg(m502
N + m4x2 + (m30N + m1)x + m20N + m0)

and thus m4 = 0. Similarly, rule (E) yields m5 = 0. Hence m3 > 0 for otherwise
deg(mN(x, x)) = 2 does not hold. From rule (H) with deg(fN) = 1 we obtain deg([tP+ ]N) ⩾
deg([tP− ]N). Subsequently applying Lemma 27 to the terms tP+ and tP− results in

P+(deg(X1N), . . . , deg(XnN)) ⩾ P−(deg(X1N), . . . , deg(XnN))

Hence P (deg(X1N), . . . , deg(XnN)) ⩾ 0 as desired.
For the if direction, suppose P (a1, . . . , an) ⩾ 0 for some a1, . . . , an ∈ N+. The interpreta-

tion

0N = 0 aN(x, y) = x + y qN(x) = x2 + x

fN(x) = fx + f mN(x, y) = xy + x + y XiN(x) = xai for 1 ⩽ i ⩽ n

with f ⩾ 2 orients the rules of D ∪ {(X)} as follows:

q(f(x)) → f(f(q(x))) (fx + f)2 + fx + f ⩾ f2(x2 + x) + f2 + f (A)
a(q(x), f(f(x))) → q(a(x, f(0))) x2 + x + f2x + f2 + f ⩾ (x + f)2 + x + f (B)

f(x) → a(x, x) fx + f > 2x (C)
f(x) → m(0, x) fx + f > x (D)
f(x) → m(x, 0) fx + f > x (E)

f(q(x)) → m(x, x) f(x2 + x) + f > x2 + 2x (F)
m(x, x) → q(x) x2 + 2x ⩾ x2 + x (G)

f(0) → m(q(0), a(0, a(X1(0), . . . , a(Xn−1(0), Xn(0)) . . . ))) f > 0 (X)

The assumption P (a1, . . . , an) ⩾ 0 in connection with Lemma 27 yields

0 ⩽ P+(a1, . . . , an) − P−(a1, . . . , an) = deg([tP+ ]N) − deg([tP− ]N)

Since [tP+ ]N and [tP− ]N are univariate polynomials, we can apply Lemma 31. This yields
a c ∈ N such that c[tP+ ]N + c > [tP− ]N. Hence, by choosing f = max(c, 2), the rule (H) is
strictly oriented. This concludes the first step in the incremental polynomial termination
proof of DP . The interpretation

0N = 0 aN(x, y) = 2x + y qN(x) = 3x + 2
fN(x) = x + 1 mN(x, y) = 2x + y + 3

orients the remaining rules (A), (B) and (G):

q(f(x)) → f(f(q(x))) 3x + 5 > 3x + 4 (A)
a(q(x), f(f(x))) → q(a(x, f(0))) 7x + 6 > 6x + 5 (B)

m(x, x) → q(x) 3x + 3 > 3x + 2 (G)

Hence DP is incremental polynomially terminating over N. ◀

▶ Corollary 33. Incremental polynomial termination over N is an undecidable property of
finite TRSs.
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We do not know whether the TRS DP is terminating (independent of P ). Hence DP

cannot be used to strengthen the result of Corollary 33 to terminating TRSs. However, a
small modification is sufficient to obtain this result.

▶ Definition 34. The TRS D′
P is defined as {Dℓ

r(ℓ) → Dℓ
r(r) | ℓ → r ∈ DP }.

So each rule ℓ → r of DP is placed under a designated unary function symbol Dℓ
r. The

indices ℓ and r ensure that different rules are rooted by different symbols. The proof of
Theorem 32 is not affected by this modification, since monotonicity implies that Dℓ

r(x) > Dℓ
r(y)

if and only if x > y.

▶ Lemma 35. The TRS D′
P is terminating.

Proof. Let the signature of D′
P be denoted by F . We prove termination using a well-founded

monotone F-algebra A = (N × F , >A), where (n, f) >A (m, g) if f = g and n >N m. The
interpretation functions for the symbols in DP are (with 1 ⩽ i ⩽ n)

0A = (1, 0) aA((x, f), (y, g)) = (x + y + 1, a) qA((x, f)) = (x + 1, q)
fA((x, f)) = (x + 1, f) mA((x, f), (y, g)) = (x + y + 1, m) XiA((x, f)) = (x + 1, Xi)

Intuitively these interpretations keep track of the size and the root symbol of the term. The
interpretations of the symbols Dℓ

r ensure that they weigh more when appearing on the left
and are defined as

Dℓ
rA((x, f)) =

{
(|r| · x + 1, Dℓ

r) if f = root(ℓ)
(x + 1, Dℓ

r) otherwise

where |r| denotes the size of the term r. One easily verifies that all rewrite rules in D′
P are

oriented strictly with respect to >A; note that for right-hand sides Dℓ
r(r) the second case in

the interpretation of Dℓ
r applies, except when r = t1 = x in which case the rule is oriented

based on the size of the terms alone. ◀

The second component in the interpretations in the above proof simulates root-labeling [16]
and the lemma can also be shown using semantic root-labeling in connection with LPO [17, 13].

▶ Corollary 36. Incremental polynomial termination over N is an undecidable property of
terminating TRSs.

7 Conclusion

In this paper we proved the undecidability of polynomial termination over N for TRSs
that are incremental polynomially terminating over N. We also proved that incremental
polynomial termination over N is an undecidable property of terminating TRSs. The proofs
remain valid if we restrict to polynomial interpretations with natural numbers as coefficients.
A simple tool that generates the TRSs RP , CP and DP given a polynomial P ∈ Z[x1, . . . , xn]
is available1 and useful for tool builders and competition organizers.

As possible future work regarding decidability we mention weakly monotone interpretations
over N as used in a dependency pairs setting [1]. Polynomial interpretations over Q and
R ([11, 15]) are also of interest. Moreover, matrix [5] and arctic [9] interpretations are
under-explored as far as decidability issues are concerned.

1 https://github.com/fabeulous/pt-hilbert-encodings

https://github.com/fabeulous/pt-hilbert-encodings
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