
34th Euromicro Conference on
Real-Time Systems

ECRTS 2022, July 5–8, 2022, Modena, Italy

Edited by

Martina Maggio

LIPIcs – Vo l . 231 – ECRTS 2022 www.dagstuh l .de/ l ip i c s

Editors

Martina Maggio
Universität des Saarlandes, Department of Computer Science, Saarbrücken, Germany
Lund University, Department of Automatic Control, Sweden
maggio@cs.uni-saarland.de

ACM Classification 2012
Computer systems organization → Embedded and cyber-physical systems; Computer systems organization
→ Real-time systems; Software and its engineering → Real-time systems software

ISBN 978-3-95977-239-6

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-239-6.

Publication date
July, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ECRTS.2022.0

ISBN 978-3-95977-239-6 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-1143-1127
mailto:maggio@cs.uni-saarland.de
https://www.dagstuhl.de/dagpub/978-3-95977-239-6
https://www.dagstuhl.de/dagpub/978-3-95977-239-6
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ECRTS.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-239-6
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ECRTS 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Marko Bertogna and Martina Maggio . 0:vii

Organizers
. 0:ix

Papers

Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm
Matteo Andreozzi, Giacomo Gabrielli, Balaji Venu, and Giacomo Travaglini 1:1–1:15

RTScale: Sensitivity-Aware Adaptive Image Scaling for Real-Time Object
Detection

Seonyeong Heo, Shinnung Jeong, and Hanjun Kim . 2:1–2:22

ACETONE: Predictable Programming Framework for ML Applications in
Safety-Critical Systems

Iryna De Albuquerque Silva, Thomas Carle, Adrien Gauffriau, and
Claire Pagetti . 3:1–3:19

Using Quantile Regression in Neural Networks for Contention Prediction in
Multicore Processors

Axel Brando, Isabel Serra, Enrico Mezzetti, Jaume Abella, and
Francisco J. Cazorla . 4:1–4:25

A Formal Link Between Response Time Analysis and Network Calculus
Pierre Roux, Sophie Quinton, and Marc Boyer . 5:1–5:22

Unikernel-Based Real-Time Virtualization Under Deferrable Servers: Analysis
and Realization

Kuan-Hsun Chen, Mario Günzel, Boguslaw Jablkowski, Markus Buschhoff, and
Jian-Jia Chen . 6:1–6:22

A Mathematical Comparison Between Response-Time Analysis and Real-Time
Calculus for Fixed-Priority Preemptive Scheduling

Victor Pollex and Frank Slomka . 7:1–7:25

General Framework for Routing, Scheduling and Formal Timing Analysis in
Deterministic Time-Aware Networks

Anaïs Finzi and Ramon Serna Oliver . 8:1–8:23

Correctness and Efficiency Criteria for the Multi-Phase Task Model
Rémi Meunier, Thomas Carle, and Thierry Monteil . 9:1–9:21

Overrun-Resilient Multiprocessor Real-Time Locking
Zelin Tong, Shareef Ahmed, and James H. Anderson . 10:1–10:25

Scheduling Offset-Free Systems Under FIFO Priority Protocol
Matheus Ladeira, Emmanuel Grolleau, Fabien Bonneval, Gautier Hattenberger,
Yassine Ouhammou, and Yuri Hérouard . 11:1–11:19

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks
Geoffrey Nelissen, Joan Marcè i Igual, and Mitra Nasri . 12:1–12:22

Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling
Federico Aromolo, Alessandro Biondi, and Geoffrey Nelissen . 13:1–13:18

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems
Alan Burns and Cliff B. Jones . 14:1–14:23

Achieving Isolation in Mixed-Criticality Industrial Edge Systems with Real-Time
Containers

Marco Barletta, Marcello Cinque, Luigi De Simone, and Raffaele Della Corte 15:1–15:23

Parallelism-Aware High-Performance Cache Coherence with Tight Latency
Bounds

Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni . 16:1–16:27

Predictably and Efficiently Integrating COTS Cache Coherence in Real-Time
Systems

Mohamed Hossam and Mohamed Hassan . 17:1–17:23

RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems
Nicolas Bellec, Guillaume Hiet, Simon Rokicki, Frederic Tronel, and
Isabelle Puaut . 18:1–18:24

Foundational Response-Time Analysis as Explainable Evidence of Timeliness
Marco Maida, Sergey Bozhko, and Björn B. Brandenburg . 19:1–19:25

Using Markov’s Inequality with Power-Of-k Function for Probabilistic WCET
Estimation

Sergi Vilardell, Isabel Serra, Enrico Mezzetti, Jaume Abella,
Francisco J. Cazorla, and Joan del Castillo . 20:1–20:24

Preface

Message from the Chairs

We welcome you to ECRTS 2022, in Modena, Italy. This is especially a pleasure given that
ECRTS 2022 follows two editions that were forced to be virtual by the global pandemic.

Alongside RTSS and RTAS, ECRTS ranks as one of the top three international conferences
on real-time systems, and is the premier European conference series on this topic. Given the
lessons learned during the pandemic, this year ECRTS includes the possibility to participate
online. We are delighted to have you join the first hybrid ECRTS, for an exciting program
consisting of both scientific talks and opportunities for socializing and collaborative work.

ECRTS has been at the forefront of recent innovations in the real-time systems community
such as artifact evaluation, open-access proceedings, and a flexible page limit. This year
we have consolidated the experience, and repeated a double-blind submission process with
flexible page limit, that does not constrain the authors, and allows them to put the effort
into optimizing the content of their submission, rather than space utilization.

ECRTS 2022 received a total of 52 submissions from Asia, Europe, and North America.
Each submission was reviewed by at least three expert members of the program committee
nd discussed at a virtual committee meeting that took place on April 5 and 6, 2022. The
program committee accepted 19 papers for publication and presentation, which translates
to an acceptance rate of 37%. In addition, on the scientific side, the ECRTS industrial
challenge will be presented and discussed at the conference, following a long-lasting tradition
of industrial challenges coming from the WATERS workshop.

A major conference such as ECRTS rests on many shoulders. First of all, we would like
to thank the program committee members, for their hard work despite all the burdens of
yet another challenging year. Similarly, thanks to all external and secondary reviewers, who
provided many valuable perspectives and important feedback. We are especially grateful
to those PC members and additional reviewers who went “above and beyond” serving as
shepherds. We would also like to extend our thanks to the Artifact Evaluation Chairs,
Matthias Becker and Angeliki Kritikakou, and their board of Artifact Evaluators for running
the AE process, and to the Real-Time Pitches Chair, Timothy Bourke, for bringing fresh
new ideas and discussions to the conference.

Finally, we would like to thank the ECRTS Executive Committee, Sebastian Altmeyer,
Sophie Quinton, and Marcus Völp, for the outstanding service to the community, and the
long-serving Euromicro Real-Time TC Chair Gerhard Fohler for developing ECRTS into
what it is today, and for agreeing to give a retrospective talk on the history of ECRTS. Last
but not least, we thank all authors for submitting to ECRTS 2022. Whether or not the
submission was ultimately accepted for publication, we deeply appreciate your fine work and
the tremendous effort and care that has gone into it; this conference would not be possible
without you.

We are looking forward to an inspiring scientific program in Modena and online. Please
join us in enjoying both the technical content and everything around it, especially with the
return to in-person events.

Marko Bertogna
General Chair ECRTS 2022

Martina Maggio
Program Chair ECRTS 2022

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Organizers

Euromicro Real-Time Technical Committee

Sebastian Altmeyer, University of Augsburg, Germany
Sophie Quinton, INRIA Grenoble Rhône-Alpes, France
Marcus Völp, SnT, University of Luxembourg, Luxembourg

General Chair

Marko Bertogna, Università degli Studi di Modena e Reggio Emilia, Italy

Program Chair

Martina Maggio, Universität des Saarlandes, Germany, and Lund University, Sweden

Artifact Evaluation Chairs

Angeliki Kritikakou, IRISA, Rennes, France
Matthias Becker KTH Royal Institute of Technology

Real-time pitches chair

Timothy Bourke, INRIA, France

Local Organization Team

Benjamin Rouxel, Università degli Studi di Modena e Reggio Emilia, Italy
Francesco Guaraldi, Università degli Studi di Modena e Reggio Emilia, Italy
Filippo Muzzini Università degli Studi di Modena e Reggio Emilia, Italy

Program Committee

Sebastian Altmeyer, University of Augsburg, Germany
Sanjoy Baruah, Washington University in St. Louis, United States of America
Andrea Bastoni, TU Munich, Germany
Matthias Becker, KTH Royal Institute of Technology, Sweden
Marko Bertogna, Università degli Studi di Modena e Reggio Emilia, Italy
Marc Boyer, ONERA, France
Björn Brandenburg, Max Planck Institute for Software Systems (MPI-SWS), Germany
Daniel Bristot de Oliveira, Red Hat, Italy
Daniel Casini, Scuola Superiore Sant’Anna, Pisa, Italy
Francisco Cazorla, Barcelona Supercomputing Center, Spain
Anton Cervin, Lund University, Sweden
Thidapat Chantem, Virginia Tech, United States of America
Rolf Ernst, TU Braunschweig, Germany
Nathan Fisher, Wayne State University, United States of America
Gerhard Fohler, TU Kaiserslautern, Germany
Steve Goddard, University of Iowa, United States of America
Giovani Gracioli, Federal University of Santa Catarina, Brasil
34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:x Organizers

Angeliki Kritikakou, University of Rennes 1, France
Risat Mahmud Pathan, Zenuity, Sweden
Renato Mancuso, Boston University, United States of America
Julio Medina, Universidad de Cantabria, Spain
Geoffrey Nelissen, Eindhoven University of Technology, The Netherlands
Alessandro Papadopoulos, Mälardalen University, Sweden
Rodolfo Pellizzoni, University of Waterloo, Canada
Linh Thi Xuan Phan, University of Pennsylvania, United States of America
Isabelle Puaut, INRIA, France
Sophie Quinton, INRIA, France
Jan Reineke, Universität des Saarlandes, Germany
Christine Rochange, University of Toulouse, France
Stefanos Skalistis, Collins Aerospace, Ireland
Leandro Soares Indrusiak, University of York, The United Kingdom
Marcus Völp, University of Luxembourg, Luxembourg
Georg von der Brüggen, TU Dortmund, Germany
Bryan Ward, Massachussets Institute of Technology, United States of America
Dirk Ziegenbein, Bosch GmBH, Germany

Industrial Challenge 2022: A High-Performance
Real-Time Case Study on Arm
Matteo Andreozzi #

Arm, Cambridge, United Kingdom

Giacomo Gabrielli #

Arm, Cambridge, United Kingdom

Balaji Venu #

Arm, Cambridge, United Kingdom

Giacomo Travaglini #

Arm, Cambridge, United Kingdom

Abstract
High-performance real-time systems are becoming increasingly common in several application
domains, including automotive, robotics, and embedded. To meet the growing performance require-
ments of the emerging applications, these systems often adopt a heterogeneous System-on-Chip
hardware architecture comprising multiple high-performance CPUs and one or more domain-specific
accelerators. At the same time, the applications running on these systems are subject to stringent
real-time and safety requirements. Due to the non-deterministic execution model of the compute
elements involved and the co-location of the workloads, which leads to contention of the shared
hardware resources, designing and orchestrating such applications is particularly challenging. In
fact, the demand for novel methodologies, tools, and best practices to assist application designers
working on high-performance real-time systems has never been stronger.

To stimulate innovation in this area, this document outlines an industrial case study from the
automotive domain targeting an Arm-based hardware platform. The selected application is an
augmented reality head-up display, which can be considered a representative example of a high-
performance real-time use case. This case study will serve as the basis for a (multi-year) challenge
involving real-time and embedded systems researchers across academia and industry that will be
kicked off at the 34th Euromicro Conference on Real-Time Systems (ECRTS) 2022.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Embedded and cyber-physical systems; Computing methodologies →
Modeling and simulation

Keywords and phrases real-time, worst-case execution time

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.1

Acknowledgements The authors would like to thank Jay Cha (Arm) for his contribution to the
definition of the case study, and Sophie Quinton (Inria), Martina Maggio (Saarland University) and
Marko Bertogna (University of Modena) for their insightful comments and suggestions.

1 Introduction

As computing becomes ubiquitous, we observe increased interactions between devices and
the physical world, which implies dealing more often with real-time and safety requirements.
At the same time, the growing complexity of the end applications and the amount of data
to be processed contribute to raising the performance requirements of the compute devices.
These two trends lead to the proliferation of high-performance real-time systems.

Such systems are usually characterized by the co-location of multiple workloads on a
single compute substrate, typically a heterogeneous System-on-Chip (SoC). This is done to
improve the overall utilization of system resources by enabling their reuse (e.g., IO devices,

© Matteo Andreozzi, Giacomo Gabrielli, Balaji Venu, and Giacomo Travaglini;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 1; pp. 1:1–1:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matteo.andreozzi@arm.com
mailto:giacomo.gabrielli@arm.com
https://orcid.org/0000-0003-3179-5873
mailto:balaji.venu@arm.com
mailto:giacomo.travaglini@arm.com
https://doi.org/10.4230/LIPIcs.ECRTS.2022.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

1:2 Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm

hardware accelerators, etc.), and to improve the efficiency of data sharing across workloads.
Workloads executing on such systems are defined as mixed-criticality [14]: each of them
requires a potentially different Level of Service from the system, e.g., requiring a deadline
to be met, a certain memory latency not to be exceeded, or bandwidth of requests being
satisfied by a compute unit such as a GPU, with varying consequences, from soft recoverable
errors to catastrophic failures, if those requirements are not met by the system at any point
in time.

Co-locating multiple workloads with varying levels of criticality and priority comes at
the cost of potential performance degradation due to the risk of interference between these
workloads executing on shared resources, and thus increases the complexity of real-time anal-
ysis. The challenge in designing mixed-criticality systems is primarily to guarantee sufficient
partitioning/isolation while still achieving high performance. Hence, it becomes necessary to
be able to provision resources in a quantifiable and predictable way, regardless of whether
the execution time of a workload may have non-deterministic external dependencies, such
as non-deterministic data values or the arrival of non-deterministic events (e.g., interrupts).
This is crucial for computing the Worst-Case Execution Time (WCET) for the real-time
workloads being executed on the platform, and to ensure smooth and responsive operation
of the general-purpose operating system (GPOS) workloads.

Addressing the above issues in a comprehensive way is one of the biggest challenges
faced by system and application designers across various domains, in particular in the
automotive, robotics, and Internet of Things (IoT) sectors. For this reason, we believe
that it is very important to stimulate research across industry and academia around high-
performance real-time themes. In this context, we would like to introduce the real-time
research community to the Industrial Challenge associated with the Euromicro Conference
on Real-Time Systems (ECRTS). Based on the success of the past editions of the challenge,
which were part of the Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), a satellite workshop of ECRTS, we plan to follow a similar
format: the challenge participants will be asked to address a specific set of initial questions,
targeting approximately a 1-year timeline, and, based on the interest of the community
and the reception of the initial set of activities, we will propose additional, more advanced,
activities to be addressed in the following years. This document provides an outline of the
scope and activities that we envision for the challenge. We propose an augmented reality
head-up display application as a motivating case study, which we hope will provide an
interesting testbed for innovative approaches in the areas of tools, methodologies and best
practices to analyze high-performance real-time systems.

While the description of the case study provided in this document is a good start-
ing point for the groups willing to start working on the challenge, we anticipate that
further refinements to the definition of the case study and/or to the challenge activi-
ties will be released in the next months, together with deliverables including simulation
tools, profiling data and reference input sets for the various software tasks. The web page
https://www.ecrts.org/arm-industrial-challenge/ will be used to share such updates
and deliverables. If participants will have additional questions, we encourage them to submit
them to the #industrial-challenge Discord channel – we will monitor the channel and
address those questions in a timely fashion.

In the remainder of this document, Section 2 will describe the case study considered in
detail. Section 3 will cover the key activities of the challenge, including a description of
the related work; while some of the related work is mainly pertinent to the initial set of
questions addressed to the challenge participants, we cover other related work that could be

https://www.ecrts.org/arm-industrial-challenge/
https://discord.com/channels/860083705586122792/898554644551303188

M. Andreozzi, G. Gabrielli, B. Venu, and G. Travaglini 1:3

relevant to follow-up questions, in order to expand the scope of the challenge. Section 4 will
present the recommended platforms for the evaluation of the case study. The resources that
will be provided to the challenge participants, which include analysis tools, pointers to the
recommended software implementations for the main application tasks, and profiling data,
will be covered in Section 5. We will conclude with final remarks in Section 6.

2 Case Study

The case study selected for the Industrial Challenge 2022 is an augmented reality head-up
display application (AR HUD) for the automotive market, appropriately simplified to allow
the study of its real-time aspects within the anticipated timeline and scope of the challenge.

AR HUDs extend the exterior view of the traffic conditions in front of the vehicle with
virtual information (augmentations) for the driver. They are used to improve the situational
awareness of drivers by displaying graphics that interact with the driver’s field-of-view (FOV).
The information provided is generated from real-time sensor data and typically includes
advanced driver assistance system (ADAS) alerts and navigational cues overlaid on real-world
objects. AR HUDs have started to appear in high-end cars and are expected to become a
relatively common feature in the future due to the safety and comfort enhancements that
they bring to the driving experience. At the same time, given their demanding compute
and real-time requirements, AR HUDs are good examples of high-performance real-time
applications where the interactions between the software tasks and the utilization of the
shared hardware resources need to be carefully orchestrated to meet the desired functionality
and performance goals.

Figure 1 An example of AR HUD (from [13]).

A key requirement for AR HUDs is the ability to project the images with enough positional
accuracy to create the illusion that they appear as "fused" with the real world. This can be
particularly challenging in driving scenarios due to the rapidly changing environment and
the amount of sensor data to process and to present to the driver. In addition, to adjust the
image to the driver’s viewpoint, an eye tracking or head pose estimation function is normally
used, which determines the appropriate amount of rotation/distortion to apply to the image
frame. Another important requirement for AR HUDs is the ability to project images at a
sufficient distance in front of the driver (around 10m): projecting images at longer distances
reduces the accommodation time for the eyes between the real world and the HUD images; in
addition, the ability of the human vision system to distinguish depth from other real-world

ECRTS 2022

1:4 Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm

objects diminishes greatly beyond 7m – this factor can have implications on the complexity
of the required eye tracking/head pose estimation function. Finally, high frame rates are
necessary to avoid negatively impacting the user experience.

The implementation of an AR HUD system requires several functions, which can be
decomposed into different software tasks. Figure 2 shows those functions, their decomposi-
tion into software tasks and a hypothetical mapping of such tasks onto the SoC compute
resources (please refer to Section 2.5 for more details on the target hardware platform). The
decomposition shows that we have a mix of real-time critical tasks and high-priority tasks,
which can be mapped onto different concurrent CPU threads, thus making this case study
non-trivial for real-time analysis. The head pose estimation task, implemented through a
neural network, benefits from being mapped onto a high-throughput accelerator, either a
GPU or a dedicated Neural Processing Unit (NPU). The following subsections will provide a
detailed description of the tasks.

Ext. Camera L

Ext. Camera R

Int. Camera

Ext.
Frame L

Ext.
Frame R

Frame Head Pose
Estimation

Front-End

Image
Pre-Proc.

Keypoints
Tracking

Outliers
Filtering

Pose
Estimation

Keyframe
Creation

zState Optimization

Local Bundle
Adjustment

Keyframes
Filtering

Mapping

Stereo/Temporal
Triangulation

Local Map
Tracking

CPU thread 0

CPU thread 1 CPU thread 2

GPU / NPU

SLAM

3D Map &
Position /

Orientation

Head
Pose

In-memory buffer

Real-time critical task

High-priority task

Frame Preparation

CPU thread 3

CAN

Instrument Data

Render Frame

GPU

Rendered
Frame

DPU

NIC

Int. Frame

Figure 2 Software tasks comprising the AR HUD case study and their hypothetical mapping
onto the SoC compute resources. Purple blocks represent real-time critical tasks, while yellow blocks
represent non-critical, high-priority, tasks. Red contours highlight the mapping to the compute
blocks, i.e., CPU threads and GPU/NPU tasks. The arrows indicate the high-level data flow.

2.1 SLAM
A Visual Simultaneous Localization and Mapping (SLAM) function is required to determine
the orientation and trajectory of the vehicle and to generate a map of its surroundings. The
output of this function is then used to generate the HUD graphic images and to position
them within the driver’s FOV.

The SLAM implementation selected for this case study is based on OV2SLAM [5], a high-
performance feature-based SLAM supporting both monocular or stereo camera setups. While
other SLAM techniques can offer improved accuracy, OV2SLAM is one of the techniques

M. Andreozzi, G. Gabrielli, B. Venu, and G. Travaglini 1:5

with a publicly available implementation that aims at supporting real-time performance for a
variety of realistic scenarios, (e.g., including autonomous driving), and can trade-off accuracy
to maintain the required real-time performance.

For this case study, we assume a stereo camera setup: the SoC is connected to a pair of
external cameras through Automotive Ethernet. The cameras have High-Definition (HD)
resolution (1920x1080 pixels) and frame acquisition is expected to be performed at a relatively
high target rate, in the range 30-60 frames per second (FPS). A Network Interface Card
(NIC) receives new frames from the cameras and deposits them into a memory buffer, so
that they can be read by the consumer tasks.

The front-end task includes the following sub-tasks:
image pre-processing: a contrast enhancement technique is applied to all new frames to
increase the dynamic range. Dynamic range in photography describes the ratio between
the maximum and minimum measurable light intensities. Bright parts of the image can
get much brighter, so the image seems to have more "depth" aiding the following stages of
processing. The algorithm also limits the intensity changes due to exposure adaptation
as the car drives through bright and shaded regions;
keypoint tracking: an optical flow algorithm is applied to determine the keypoints and their
motion, based on a pyramidal implementation of the inverse compositional Lucas-Kanade
(LK) algorithm; keypoints are interesting portions of the images (eg: corners of objects in
the image) that are tracked in consecutive frames. The number of keypoints are generally
configurable in the algorithm.
outlier filtering: outlier keypoints are identified by applying RANSAC filtering based on
the epipolar constraint and removed in order to improve the accuracy of the camera pose
estimation;
pose estimation: this is performed by minimization of the 3D keypoints reprojection
errors using a robust Huber cost function;
keyframe creation: if the number of tracked 3D keypoints (i.e. the keypoints with prior
information on their real 3D position) w.r.t. the last keyframe gets under a threshold or
if a significant parallax is detected, a new keyframe is created. The scenario of number of
tracked 3D keypoints falling below a threshold when compared to 3D keypoints in the
last keyframe occurs when there is drastic changes in the scene while driving. This will
be detected and a new keyframe needs be created for the new scene.

More details for these sub-tasks are available in [5]. The front-end pipeline is fully monocular,
limiting all its operations to frames provided by the left camera, even if a stereo setup is
available.

The mapping thread is responsible for processing every new keyframe to create new 3D
map points by triangulation (both stereo & temporal triangulation with a stereo camera
setup) and to perform local map tracking in order to minimize drift. These two sub-tasks
have different real-time requirements: triangulation needs to operate at the full frame rate
as it is critical for keeping accurate pose estimation in the front-end; the local map tracking
operation, on the other hand, does not need to run at the full frame rate and it is executed
and aborted if a new keyframe is available. However, it is beneficial to keep the local map
tracking task as a higher priority task than, for instance, general-purpose or background
tasks, as its frequency of execution has an impact on the overall SLAM accuracy.

The state optimization thread is responsible for running a local bundle adjustment (BA)
pass, that is applied to refine the poses of the most recent keyframes and 3D map points’
positions, and a keyframes filtering pass, that is applied to filter redundant keyframes in
order to reduce the runtime of future instances of BA.

ECRTS 2022

1:6 Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm

As with most high-performance real-time SLAM implementations, OV2SLAM leverages
multi-threading to achieve real-time performance. As highlighted in Figure 2, the considered
implementation of OV2SLAM relies on three CPU threads.

While OV2SLAM supports loop closure, this feature is disabled for this case study: due
to the nature of the AR HUD application, the construction of a global map is, in fact,
largely unnecessary. Loop closure and global map construction are more useful in scenarios
where the user will revisit the same region of the map, e.g., for an AR wearable use case.
However, while driving, this is more of a rare scenario and hence global map construction is
not required.

The source code for the implementation of OV2SLAM that we plan to use as reference
for the challenge is listed in Section 5.3.

2.2 Head Pose Estimation
Before being rendered on the AR HUD, images usually require some forms of correction to
accommodate for the real-time position of the driver’s viewpoint. Such corrections are usually
applied by relying on the output of a eye tracking/gaze estimation or head pose estimation
function. For that, there are many factors affecting the choice of the specific algorithm used
and its complexity. As anticipated at the beginning of this section, the complexity of these
solutions depends on some high-level design parameters of the HUD, like the virtual image
distance – longer distances require more complex display hardware, but at the same time
can alleviate the complexity of the eye tracking function and allow for simpler methods to
be used. In this case study, to keep the problem tractable, we assume that a long virtual
image distance is indeed achievable by the HUD and that a head pose estimation method is
adequate to solve the issue of determining the driver’s viewpoint.

The implementation of the head pose estimation function selected for this case study is
Hopenet, which is based on a convolutional neural network (CNN) approach [16]. Hopenet
requires a simple RGB monocular camera as input – we assume that another HD camera is
installed inside the vehicle, directed towards the driving position, providing input frames via
Automotive Ethernet to the SoC at the same target rate of the external cameras (30-60 FPS
range).

As CNNs are amenable to hardware acceleration, either through a GPU or through a
more dedicated Neural Processing Unit (NPU) or machine learning accelerator, the task
should be mapped to one of those compute units, based on the specific platform selected by
the challenge participants in their evaluation (Section 4).

In terms of real-time requirements, the head pose estimation task is considered a non-
real-time critical, but high-priority, task, as highlighted in Figure 2. The accuracy of the
head pose estimation is important, but a small number of frames can be dropped without
affecting the general functionality of the application.

There are different versions of Hopenet publicly available, based on different input machine
learning frameworks and resolutions/datasets. A reference implementation for Hopenet that
we recommend is listed in Section 5.3.

2.3 Aggressor Workloads
While the software tasks required to implement the functionality of the AR HUD (summarized
in Figure 2) constitute the main workload for the target system, as part of the challenge
we will consider introducing other aggressor workloads, competing for the shared hardware
resources, that will run alongside the main workload.

M. Andreozzi, G. Gabrielli, B. Venu, and G. Travaglini 1:7

Table 1 Parameters characterizing synthetic software tasks, for which reference implementations
might not be available (e.g., proprietary/closed-source code bases). Modifications or additions to
this list will be agreed with the challenge participants.

Parameter Units

Compute intensity FLOPS, IntOPS
Memory access bandwidth MBps
Input memory buffer capacity MB
Output memory buffer capacity MB

In the context of the AR HUD use case, workloads implementing some other functionalities
that are typically found in a digital cockpit may be co-located on the same SoC. Figure 3
shows some examples of such workloads. As part of the challenge, we will select one or more
of these workloads to be included in the selected use case as aggressor workloads w.r.t. the
main AR-HUD workload.

Instrument Data

Int Cam 0

Ext Cam 0

Ext Cam 1

5G Data

Wing Cam 0

Wing Cam 1

Instrument Cluster 16.6 ms

Augmented Reality HUD 16.6 ms

Navigation Applications 16.6 ms

Digital Wing Mirrors 16.6 ms

Passenger Gaming 16.6 ms

Figure 3 Example of co-located workloads and their deadlines (in red) for a modern digital
cockpit.

2.4 Characterization of Tasks
In order to perform the activities described in Section 3, a characterization of the tasks of the
considered case study will be required. For those tasks where a public software implementation
is available, the characterization can be done by running/simulating the tasks on the selected
evaluation platform and by either directly collecting the required statistics or by offline
analysis of profiling information gathered during execution (see Section 4 for a description of
the suggested evaluation platforms). This is the case, in particular, for the tasks belonging to
the SLAM and Head Pose Estimation functions. The characteristics of the remaining tasks,
including the aggressor ones, will be shared in the initial phase of the challenge. Different
options will then be available on how to model the execution of such synthetic tasks on the
evaluation platforms, that are partly discussed in Section 4.

Table 1 reports some key parameters that will be provided for each synthetic task.

ECRTS 2022

1:8 Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm

2.5 Hardware Target
The target system for the considered case study is a platform comprising a cluster of high-
performance Arm A-profile CPU cores, connected to a typical multi-level cache hierarchy
configuration. The system will also feature a GPU and optionally an NPU.

The specific details of the hardware target will be shared in the initial phase of the
challenge with the participants, and will take into account the specific evaluation platform
chosen (Section 4).

3 Challenge Activities

The main tasks of the challenge are:
1. Analysis of performance bounds: Perform the response time analysis and worst-case

execution time analysis following any methodology deemed suitable to the use case and
platform considered. For this step, the challenge participants can choose to assume
the absence of shared resources and other observable interference effects. The input for
this first step is a description of the software tasks and their dependencies, commonly
expressed as direct acyclic graphs (DAGs).

2. Optimizations: Perform one or more of the following optimization activities:
a. Data-flow analysis: Given the challenge use case decomposed into one or more software

task DAGs, analyze its data-flows, resource usage and compute requirements, and
work on one or more optimizations as follows.

b. Scheduling: Design one or more scheduling policies that can achieve better system
utilization and data sharing between tasks.

c. Resource mapping: Efficient mapping of tasks to the various hardware components
(processing nodes and resources) in the platform, in order to maximise efficiency and
minimize contention.

d. Shared resource interference monitoring and performance isolation: Propose and/or
implement shared resources monitoring strategies and design hardware and/or software
techniques for shared resource contention mitigation.

3.1 Related Work
This section provides a short survey of real-time analysis techniques proposed in literature, in
order to establish a common terminology and provide additional background to the challenge
activities described at the top of this section.

3.1.1 Analysis of Performance Bounds
If shared resources in a system are required to provide a deterministic level of service, as
defined in Section 1, then the performance of workloads executing on such a system can be
found using various known methods, including static analysis, by measurement under worst-
case conditions, or by means of formal tools. A static analysis attempts to estimate WCET
without actually running the full software on the system. This approach can quickly estimate
WCET, however requires the software to be profiled carefully and the traffic simulated on
the system in order to come up with an accurate estimate [3, 12]. Another way of estimating
performance bounds is by empirical means, i.e., by actually measuring it while running the
mixed-criticality tasks on the system [20, 4]. This analysis requires due diligence during
run-time for co-locating tasks that result in the highest amount of interference during their
execution. We encourage the participants to make use of any tools they see best fit for this

M. Andreozzi, G. Gabrielli, B. Venu, and G. Travaglini 1:9

challenge and/or they feel most comfortable with. We also encourage the participants to
explore more than one technique or even a hybrid approach and to make recommendations
based on the achieved results.

3.1.2 Data-flow Analysis

The data-flow model is simple and assumes that a workload can be broken into a series of
tasks performed by or with the support of identifiable resources, that co-operate to achieve
the higher-level objectives of such a workload in a non-trivial way. Workloads might be
dependent on external events or inputs. When this applies, the mapping of tasks to specific
resources might need to be determined dynamically at run-time. For tasks that can be
executed in parallel (no immediate dependency between the tasks), assigning priorities is
not a trivial task. Literature has demonstrated that a classic approach of assigning higher
priorities based on the criticality levels and using them during scheduling decisions may
result in poor system utilization [1, 19]. Novel run-time robustness mechanisms implemented
in the OS/hypervisor layers that support graceful degradation of non-critical tasks partly
addresses the system utilization problem [2, 1].

3.1.3 Analysis of Resource Sharing Policies

Shared resources contribute to the execution of a workload by providing one or more services
to it. Some form of arbitration, either implicit or explicit, will regulate how users of resources
are granted access to those, either in time or space (as in space of the resource) or both. If a
resource is shared in time, for it to provide performance isolation, it must hold true that
the service it provides to one of its users must be bounded without requiring knowledge of
previously serviced users in time. If a resource is shared concurrently (in space), for it to
provide performance isolation, it must hold true that the service it provides to one of its
users must be bounded without requiring knowledge of concurrently serviced users.

Several techniques have been proposed in literature, e.g., restricting cache line evictions,
cache coloring and partitioning, and also regulating memory traffic generated by a particular
task in order to reduce the risk of interference between multiple workloads [21, 11, 8]. More
recently, dedicated hardware support was added using FPGAs in order to strictly isolate the
cores and avoid contention on shared resources such as last-level caches [6]. The focus on
literature so far has been heavily around shared memory and bandwidth contention. We
envisage that in future systems the problem will start surfacing around domain specific
accelerators, that are usually shared across different tasks. This new class of accelerators
comes with a different set of constraints due to the limited support for virtualization and
preemption of tasks.

3.1.4 Monitoring of Shared Resource Interference

Monitoring shared resources provides insights into what causes contention on shared system
resources and enables to implement contention mitigation strategies in the system. Upon
determining the activities that make up a workload, we ask the participants how to implement
or leverage a monitoring infrastructure that can enable observation of the shared resources
involved in the computation of the system workloads. In detail, a monitor infrastructure
should allow to determine the utilization of shared resources by their users to enable the
setup and enforcement of service level agreements.

ECRTS 2022

1:10 Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm

4 Evaluation Platforms

While the challenge activities can be addressed with different approaches and tools, we
propose two evaluation platforms to be considered by the participants: either a virtual
platform or a physical hardware development kit. It will be up to the participants to assess
their preferred evaluation strategy for any of the activities. We will provide a comprehensive
degree of support for the virtual platform approach, including a software starter kit to serve
as baseline for the challenge, in order to streamline platform bring-up. Support for the
hardware development kit will instead be provided on a best-effort basis.

Section 5 describes in more details what will be supplied to the participants over the
course of the challenge.

Some details of the proposed platforms are reported below:

Virtual platform: gem5 system-level simulator and AMBA Adaptive Traffic Profiles
(ATP)

Link (gem5): https://www.gem5.org/
Link (ATP): https://github.com/ARM-software/ATP-Engine
Link (gem5 and AMBA ATP): https://community.arm.com/arm-community-blogs/
b/soc-design-and-simulation-blog/posts/amba-atp-engine-3-1-
programmable-traffic-generation/

Hardware development kit: Jetson Xavier NX
Link: https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/
jetson-xavier-nx/

As the selected use case will require compute intensive tasks, we propose the adoption
of domain-specific accelerators to accelerate parts of it, as suggested in Figure 2. Ideally,
we would like to enable modelling the full behaviour of the accelerators on both evaluation
platforms. However, depending on the complexity of that approach, we will consider
alternatives based on abstracting away the behaviour of the accelerator and other hardware
components using traffic generators or approximate/synthetic models.

4.1 Virtual Platform
4.1.1 gem5
gem5 [9] is a modular event-driven simulation platform for computer architecture research,
encompassing system-level architecture as well as processor micro-architecture modelling.
It is widely used in both academia and industry for rapid early prototyping and/or design
space exploration, and it has shown to be an effective tool for providing insights into the
impact of system-level interactions when running complex workloads.

Its comprehensive model library (memories, IO devices, etc.) and the architectural support
of Armv8-A features (up to Armv8.5-A) allows it to run unmodified complex workloads like
Android and boot OSes from UEFI firmware implementations like TFA + u-boot / edkII [7].

Different CPU models, providing different degrees of abstractions and modelling fidelity,
are provided in gem5, including two simple single-cycle-per-instruction models (AtomicCPU,
TimingCPU), an in-order pipelined model (MinorCPU), and an out-of-order model (O3CPU).
A memory system can be flexibly built out of caches and crossbars or through the Ruby
framework, which provides even more flexible memory system modelling.

gem5 is conceptually a Python library written in C++: the simulated platform is
configured in Python (configuration stage), but the instantiated Python models have a
matching C++ implementation that gets executed at a later stage (execution stage), once

https://www.gem5.org/
https://github.com/ARM-software/ATP-Engine
https://community.arm.com/arm-community-blogs/b/soc-design-and-simulation-blog/posts/amba-atp-engine-3-1-programmable-traffic-generation/
https://community.arm.com/arm-community-blogs/b/soc-design-and-simulation-blog/posts/amba-atp-engine-3-1-programmable-traffic-generation/
https://community.arm.com/arm-community-blogs/b/soc-design-and-simulation-blog/posts/amba-atp-engine-3-1-programmable-traffic-generation/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-xavier-nx/

M. Andreozzi, G. Gabrielli, B. Venu, and G. Travaglini 1:11

root
: Root

system
: SimpleSystem

realview
: ArmPlatform

gic
: Gic400

vgic
: VGic

gicv2m
: Gicv2m

realview_io
: RealViewCtrl

generic_timer_mem
: GenericTimerMem

frames0
: GenericTimerFrame

frames1
: GenericTimerFrame

uart0
: Pl011

uart1
: Pl011

uart2
: Pl011

uart3
: Pl011

kmi0
: Pl050

kmi1
: Pl050

watchdog
: Sp805

rtc
: PL031

pci_host
: GenericArmPciHost

energy_ctrl
: EnergyCtrl

vio0
: MmioVirtIO

vio1
: MmioVirtIO

iobus
: IOXBar

membus
: MemBus

badaddr_responder
: BadAddr

iobridge
: Bridge

iocache
: IOCache

mem_ctrls
: SimpleMemory

pci_vio_block
: PciVirtIO

bigCluster
: BigCluster

cpus
: O3_ARM_v7a_3

mmu
: ArmMMU
itb_walker

: ArmTableWalker

dtb_walker
: ArmTableWalker icache

: L1I

dcache
: L1D

toL2Bus
: L2XBar

l2
: L2

littleCluster
: LittleCluster

cpus
: MinorCPU

mmu
: ArmMMU
itb_walker

: ArmTableWalker

dtb_walker
: ArmTableWalker

icache
: L1I

dcache
: L1D

toL2Bus
: L2XBar

l2
: L2

system_port

cpu_side_ports

pio

mem_side_ports

pio

pio

pio

mem_side_ports

pio

pio

pio

pio

pio

pio

pio

pio

pio

pio

pio

pio

pio

pio

pio

cpu_side_ports

mem_side_port

mem_side

mem_side

mem_side

cpu_side_port

port

default pio

cpu_side

dma
pio

icache_port
cpu_sidedcache_port

cpu_sideport

port

mem_side

mem_side

cpu_side_ports
mem_side_ports

cpu_side

icache_port

cpu_side

dcache_port
cpu_side

port

port

mem_side

mem_side

cpu_side_ports
mem_side_ports

cpu_side

Figure 4 An auto-generated diagram of a system modelled with gem5, including various processing
elements, memories and devices.

the simulation is started. This allows to get the best of both worlds: the agility for
prototyping and configuring a virtual system in Python, and the execution speed of C++
compiled code, which is crucial to reduce the simulation time for complex systems. Some
example configuration platforms are provided within the repository itself (see scripts in
configs/example/arm/). Those are meant to be starting points for building more complex
configurations, and computer architects are expected to extend or adapt them to closely
match the system under study.

4.1.2 AMBA Adaptive Traffic Profiles
The AMBA Adaptive Traffic Profiles (ATP) is a definition of the transaction characteristics
of an hardware interface. It includes information on the types of transactions and the timing
characteristics of those transactions. Traffic profiles can be used during system simulation to
represent the behavior of a component. The simulation uses a traffic profile definition to

ECRTS 2022

1:12 Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm

Figure 5 An example of a simple .atp file

determine when a particular transaction should be issued, injecting synthetic traffic into the
system under study. The AMBA ATP Engine is the open source implementation of the ATP
specification. Its backbone is a lightweight FIFO model which injects transactions according
to the provided traffic profile (specified through an .atp file).

The APT Engine is plugged to gem5 (hosted solution) through an in-tree adaptor (see
Figure 6) and this requires to build the ATP Engine as a gem5 loadable module (please
follow the ATP Engine README.md guide). It is otherwise possible to build gem5 and ATP
together with the meta-atp layer (link: https://git.yoctoproject.org/meta-arm/tree/
meta-atp/README.md) from the meta-arm repository for Yocto.

Figure 6 How to model heterogeneous systems by connecting the ATP engine to gem5

https://git.yoctoproject.org/meta-arm/tree/meta-atp/README.md
https://git.yoctoproject.org/meta-arm/tree/meta-atp/README.md

M. Andreozzi, G. Gabrielli, B. Venu, and G. Travaglini 1:13

These items should be enough to build an evaluation platform using traffic profiles for
the computing elements of the system. We won’t provide functional NPU/GPU models; if
challenge participants will be willing to add functional models of such accelerators to the
starter kit simulation platform, prior work on integrating gem5 with approximated models
[17, 15] can be used to facilitate the platform bring-up.

4.2 Hardware Development Kit
The hardware platform suggested as alternative to the virtual platform is the Jetson Xavier
NX, whose SoC incorporates a 6-core NVIDIA Carmel Armv8.2 64-bit CPU, 384-core NVIDIA
Volta GPU with 48 Tensor Cores, and two NVIDIA Deep Learning Accelerator (NVDLA)
engines. The latter processing elements could be used to accelerate selected software tasks
as specified in Figure 2.

5 Resources

This section provides a list of the resources, including tools, input data sets and profiling
data, that will be provided for the challenge, and also the recommended open source
implementations of the main software modules of the application in the considered case
study.

5.1 Virtual Platform Starter Kit
For the virtual platform solution, we will supply:

gem5 starter kit, including a specific system configuration (detailing platform composition).
AMBA ATP profiles: traffic profiles for all tasks.

5.2 Hardware Development Starter Kit
For the hardware development kit, we will supply:

Software tasks source code: source code for most of the CPU tasks; synthetic “busy-cycle”
kernels for the remaining ones (e.g., aggressor tasks).

5.3 Recommended Open Source Software Implementations
OV2SLAM:
Implementation of OV2SLAM available on GitHub at the following URL: https://
github.com/ov2slam/ov2slam. This particular implementation targets CPUs, it lever-
ages multi-threading, and it is written in portable modern C++; it has a few dependencies
on widely available libraries and middle-ware (e.g., ROS [18]), which are described at the
same URL.
Hopenet:
Hopenet is available on GitHub at the following URL: https://github.com/natanielruiz/
deep-head-pose. For this case study, we would recommend starting from Hopenet-lite,
which is a lightweight version of Hopenet based on the simpler ShuffleNet V2 [10]
network. The source code for Hopenet-lite is available on GitHub at the following URL:
https://github.com/OverEuro/deep-head-pose-lite.

ECRTS 2022

https://github.com/ov2slam/ov2slam
https://github.com/ov2slam/ov2slam
https://github.com/natanielruiz/deep-head-pose
https://github.com/natanielruiz/deep-head-pose
https://github.com/OverEuro/deep-head-pose-lite

1:14 Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm

6 Conclusions

This document has described a high-performance real-time case study based on an augmented
reality head-up display application from the automotive market. This application is a
motivating example for the industrial challenge that will be kicked off at the ECRTS 2022
conference. An initial set of questions to prospective challenge participants has been presented,
together with initial directions on how to carry out the activities on an Arm-based evaluation
platform. Based on the experience from the past editions of the industrial challenge, we
expect the definition of the challenge itself to evolve, based on further refinements of the
use case and on feedback from the participants. The landing web page for the challenge
(https://www.ecrts.org/arm-industrial-challenge/) will provide the latest information
and it will be used to share deliverables with the real-time research community, including
tools, input sets, profiling data, and pointers to reference software implementations. The
#industrial-challenge Discord channel will be used to address questions from the challenge
participants and the research community. We encourage everyone to reach out through
the Discord channel or via email directly to the authors for clarifications, feedback and
comments.

References
1 Sanjoy Baruah, Vincenzo Bonifaci, Gianlorenzo D’Angelo, Haohan Li, Alberto Marchetti-

Spaccamela, Nicole Megow, and Leen Stougie. Scheduling real-time mixed-criticality jobs.
IEEE Transactions on Computers, 61(8):1140–1152, 2012. doi:10.1109/TC.2011.142.

2 S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed criticality
systems. In 2011 IEEE 32nd Real-Time Systems Symposium, pages 34–43, 2011. doi:
10.1109/RTSS.2011.12.

3 Sudipta Chattopadhyay, Chong Lee Kee, Abhik Roychoudhury, Timon Kelter, Peter Marwedel,
and Heiko Falk. A unified wcet analysis framework for multi-core platforms. In 2012 IEEE
18th Real Time and Embedded Technology and Applications Symposium, pages 99–108, 2012.
doi:10.1109/RTAS.2012.26.

4 Liliana Cucu-Grosjean, Luca Santinelli, Michael Houston, Code Lo, Tullio Vardanega, Leonidas
Kosmidis, Jaume Abella, Enrico Mezzetti, Eduardo Quiñones, and Francisco J. Cazorla.
Measurement-based probabilistic timing analysis for multi-path programs. In 2012 24th
Euromicro Conference on Real-Time Systems, pages 91–101, 2012. doi:10.1109/ECRTS.2012.31.

5 Maxime Ferrera, Alexandre Eudes, Julien Moras, Martial Sanfourche, and Guy Le Besnerais.
Ov2slam : A fully online and versatile visual SLAM for real-time applications. CoRR,
abs/2102.04060, 2021. arXiv:2102.04060.

6 Giovani Gracioli, Rohan Tabish, Renato Mancuso, reza mirosanlou, Rodolfo Pellizzoni, and
Marco Caccamo. Designing mixed criticality applications on modern heterogeneous mpsoc
platforms. In 2019 ECRTS, May 2019.

7 Adrian Herrera. Running trusted firmware-a on gem5. https://community.arm.com/arm-
research/b/articles/posts/running-trusted-firmware-a-on-gem5, June 2020.

8 Hyoseung Kim, Arvind Kandhalu, and Ragunathan Rajkumar. A coordinated approach for
practical os-level cache management in multi-core real-time systems. In 2013 25th Euromicro
Conference on Real-Time Systems, pages 80–89, 2013. doi:10.1109/ECRTS.2013.19.

9 Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Amslinger,
Matteo Andreozzi, Adrià Armejach, Nils Asmussen, Srikant Bharadwaj, Gabe Black, Gedare
Bloom, Bobby R. Bruce, Daniel Rodrigues Carvalho, Jerónimo Castrillón, Lizhong Chen,
Nicolas Derumigny, Stephan Diestelhorst, Wendy Elsasser, Marjan Fariborz, Amin Farmahini
Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas Grass,
Bagus Hanindhito, Andreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian
Herrera, Matthew Horsnell, Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang, Reiley

https://www.ecrts.org/arm-industrial-challenge/
https://discord.com/channels/860083705586122792/898554644551303188
https://doi.org/10.1109/TC.2011.142
https://doi.org/10.1109/RTSS.2011.12
https://doi.org/10.1109/RTSS.2011.12
https://doi.org/10.1109/RTAS.2012.26
https://doi.org/10.1109/ECRTS.2012.31
http://arxiv.org/abs/2102.04060
https://community.arm.com/arm-research/b/articles/posts/running-trusted-firmware-a-on-gem5
https://community.arm.com/arm-research/b/articles/posts/running-trusted-firmware-a-on-gem5
https://doi.org/10.1109/ECRTS.2013.19

M. Andreozzi, G. Gabrielli, B. Venu, and G. Travaglini 1:15

Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kannoth, Hamidreza Khaleghzadeh,
Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian Menard, Andrea Mondelli,
Tiago Mück, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E. Olson,
Marc S. Orr, Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke, Mahyar Samani,
Andreas Sandberg, Javier Setoain, Boris Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul
Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish, Ilias Vougioukas, Zhengrong Wang,
Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon, and Éder F. Zulian. The gem5
simulator: Version 20.0+. CoRR, abs/2007.03152, 2020. arXiv:2007.03152.

10 Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shufflenet v2: Practical guidelines
for efficient cnn architecture design, 2018. doi:10.48550/ARXIV.1807.11164.

11 Renato Mancuso, Roman Dudko, Emiliano Betti, Marco Cesati, Marco Caccamo, and Rodolfo
Pellizzoni. Real-time cache management framework for multi-core architectures. In 2013 IEEE
19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 45–54,
2013. doi:10.1109/RTAS.2013.6531078.

12 Jan Nowotsch, Michael Paulitsch, Daniel Bühler, Henrik Theiling, Simon Wegener, and Michael
Schmidt. Multi-core interference-sensitive wcet analysis leveraging runtime resource capacity
enforcement. In 2014 26th Euromicro Conference on Real-Time Systems, pages 109–118, 2014.
doi:10.1109/ECRTS.2014.20.

13 Panasonic automotive brings expansive, artificial intelligence-enhanced situa-
tional awareness to the driver experience with augmented reality head-up dis-
play. https://na.panasonic.com/us/news/panasonic-automotive-brings-expansive-
artificial-intelligence-enhanced-situational-awareness-driver, January 2021.

14 Michael Paulitsch, Oscar Medina Duarte, Hassen Karray, Kevin Mueller, Daniel Muench, and
Jan Nowotsch. Mixed-criticality embedded systems – a balance ensuring partitioning and
performance. In 2015 Euromicro Conference on Digital System Design, pages 453–461, 2015.
doi:10.1109/DSD.2015.100.

15 Samuel Rogers, Joshua Slycord, Mohammadreza Baharani, and Hamed Tabkhi. gem5-salam:
A system architecture for llvm-based accelerator modeling. In 2020 53rd Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages 471–482, 2020. doi:10.1109/
MICRO50266.2020.00047.

16 Nataniel Ruiz, Eunji Chong, and James M. Rehg. Fine-grained head pose estimation without
keypoints. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, June 2018.

17 Yakun Sophia Shao, Sam Likun Xi, Vijayalakshmi Srinivasan, Gu-Yeon Wei, and David
Brooks. Co-designing accelerators and soc interfaces using gem5-aladdin. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1–12,
2016. doi:10.1109/MICRO.2016.7783751.

18 Stanford Artificial Intelligence Laboratory et al. Robotic operating system. URL: https:
//www.ros.org.

19 Sebastian Tobuschat, Moritz Neukirchner, Leonardo Ecco, and Rolf Ernst. Workload-aware
shaping of shared resource accesses in mixed-criticality systems. In 2014 International
Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS), pages
1–10, 2014. doi:10.1145/2656075.2656105.

20 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David
Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The worst-case
execution-time problem—overview of methods and survey of tools. ACM Trans. Embed.
Comput. Syst., 7(3), May 2008. doi:10.1145/1347375.1347389.

21 Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. Memguard: Memory
bandwidth reservation system for efficient performance isolation in multi-core platforms. In
2013 IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS),
pages 55–64, 2013. doi:10.1109/RTAS.2013.6531079.

ECRTS 2022

http://arxiv.org/abs/2007.03152
https://doi.org/10.48550/ARXIV.1807.11164
https://doi.org/10.1109/RTAS.2013.6531078
https://doi.org/10.1109/ECRTS.2014.20
https://na.panasonic.com/us/news/panasonic-automotive-brings-expansive-artificial-intelligence-enhanced-situational-awareness-driver
https://na.panasonic.com/us/news/panasonic-automotive-brings-expansive-artificial-intelligence-enhanced-situational-awareness-driver
https://doi.org/10.1109/DSD.2015.100
https://doi.org/10.1109/MICRO50266.2020.00047
https://doi.org/10.1109/MICRO50266.2020.00047
https://doi.org/10.1109/MICRO.2016.7783751
https://www.ros.org
https://www.ros.org
https://doi.org/10.1145/2656075.2656105
https://doi.org/10.1145/1347375.1347389
https://doi.org/10.1109/RTAS.2013.6531079

RTScale: Sensitivity-Aware Adaptive Image
Scaling for Real-Time Object Detection
Seonyeong Heo !

Department of Information Technology and Electrical Engineering, ETH Zürich, Switzerland

Shinnung Jeong !

Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea

Hanjun Kim !

Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea

Abstract
Real-time object detection is crucial in autonomous driving. To avoid catastrophic accidents, an
autonomous car should detect objects with multiple cameras and make decisions within a certain time
limit. Object detection systems can meet the real-time constraint by dynamically downsampling input
images to proper scales according to their time budget. However, simply applying the same scale to
all the images from multiple cameras can cause unnecessary accuracy loss because downsampling
can incur a significant accuracy loss for some images.

To reduce the accuracy loss while meeting the real-time constraint, this work proposes RTScale, a
new adaptive real-time image scaling scheme that applies different scales to different images reflecting
their sensitivities to the scaling and time budget. RTScale infers the sensitivities of multiple images
from multiple cameras and determines an appropriate image scale for each image considering the
real-time constraint. This work evaluates object detection accuracy and latency with RTScale for
two driving datasets. The evaluation results show that RTScale can meet real-time constraints with
minimal accuracy loss.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Parallel architectures; Software and its engineering → Real-time systems
software; Computing methodologies → Neural networks; Computing methodologies → Object
detection; Theory of computation → Scheduling algorithms

Keywords and phrases Real-time object detection, Dynamic neural network execution, Adaptive
image scaling, Autonomous driving, Self-driving cars

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.2

Supplementary Material Software (Source Code): https://github.com/seonyheo/darknet

Funding This work is supported by IITP-2020-0-01847, IITP-2020-0-01361, and IITP-2021-0-00853
through the Institute of Information and Communication Technology Planning and Evaluation (IITP)
funded by the Ministry of Science and ICT. This work is also supported by Samsung Electronics.

Acknowledgements We thank the anonymous reviewers for their valuable feedback. We also thank
the CoreLab members for their support and feedback during this work. (Corresponding author:
Hanjun Kim)

1 Introduction

Real-time object detection in autonomous driving is crucial to avoid severe accidents. Au-
tonomous cars have multiple cameras around their bodies [39] and use the cameras to detect
objects on the road. Based on the object detection results, autonomous cars make decisions
on how to control their braking system and steer their wheel. Since object detection provides
essential visual information for autonomous cars, object detection must finish on time to
make timely decisions. If autonomous cars fail to make decisions on time, they may hit
pedestrians or other cars. Therefore, autonomous cars should detect objects on the road
timely and accurately.

© Seonyeong Heo, Shinnung Jeong, and Hanjun Kim;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 2; pp. 2:1–2:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:seoheo@ethz.ch
https://orcid.org/0000-0003-0359-1953
mailto:shin0403@yonsei.ac.kr
mailto:hanjun@yonsei.ac.kr
https://doi.org/10.4230/LIPIcs.ECRTS.2022.2
https://github.com/seonyheo/darknet
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

2:2 RTScale: Sensitivity-Aware Adaptive Image Scaling for Real-Time Object Detection

Recent advances in deep neural networks (DNNs) have brought real-time object detection
into reality. With tens or hundreds of neural network layers, object detection networks
predict regions on the input image (i.e., bounding boxes) that are likely to contain an object,
and classify their object categories. In general, we call a whole end-to-end object detection
network, including bounding box prediction and classification as an object detector.

Prior work [14, 13, 34, 17, 32, 36, 35, 6, 44] has proposed DNN architectures for object
detection. Especially, one-stage object detectors such as SSD [32] and YOLO [34] enable
fast and accurate object detection by integrating bounding box prediction and classification.
For example, YOLO (You Only Look Once) achieves up to 45 frames per second with high
accuracy [34]. Therefore, open-source autonomous driving platforms such as Autoware [24, 25]
and Apollo [1] use YOLO-based networks for object detection.

Aside from designing a novel DNN architecture, various optimization techniques are
available to enhance the detection speed of existing object detectors. One of the most popular
approaches is model compression [16, 15, 28, 10], which reduces the computational cost by
pruning parameters or using lower-precision numerics. However, the model compression
techniques require fine-tuning the target network to minimize accuracy loss, so they could
hardly reflect time-varying real-time constraints. Another approach is dynamic image
scaling [8, 7], which can reduce the computational cost by dynamically downsampling input
images. By adjusting the image size according to the time budget, dynamic image scaling
can help satisfy dynamically changing real-time constraints.

However, simply applying dynamic image scaling to object detection systems can cause
unnecessary accuracy loss. With the state-of-the-art object detectors [6], we observe that
each image has a different sensitivity to image scaling. Whereas image downsampling causes
significant accuracy loss for some images, it barely causes accuracy loss for the other images.
If an image only contains objects that are easy to detect even at a low scale, the image
tends to be less sensitive to downsampling. Therefore, to reduce accuracy loss in image
downsampling, it is necessary to consider the sensitivity in determining an appropriate scale
for each image.

This work proposes RTScale, a new sensitivity-aware adaptive image scaling scheme for
real-time object detection, which applies different scales to different images reflecting their
sensitivities to image scaling and time budget. RTScale extends an existing object detector
with a new scale sensitivity inference module and minimizes its overhead by reusing image
features from the object detector. While offline, RTScale trains the sensitivity inference
module to dynamically infer the impact of image scaling on the accuracy. While online,
RTScale infers the scale sensitivities for multiple images from multiple cameras with the
trained module, and determines appropriate image scales for the images considering the
real-time constraint.

This work evaluates object detection accuracy and latency with two driving datasets:
KITTI MOT [12] and BDD100K MOT [43]. This work implements RTScale on top of the
state-of-the-art object detection framework [11]. The evaluation results show that RTScale
can infer the sensitivity of images with low overhead and meet real-time constraints with
minimal accuracy loss compared with another adaptive scaling scheme.

The contributions of this work are:
Sensitivity-aware adaptive image scaling scheme for real-time object detection
Sensitivity inference module which infers the scale sensitivity of an image based on its
features
Evaluation of the proposed approach with two real-world driving datasets

S. Heo, S. Jeong, and H. Kim 2:3

Perception Localization

Vehicle Control

Way Planning

Vehicle Command

Sensors Cameras Map Sensors

(a) Full pipeline.

vision
detector/camera0/image

/camera1/image vision
detector

/point_cloud euclidean
clustering

range
vision
fusion object

tracker
range
vision
fusion

motion
predictor

costmap
generator

(b) Perception pipeline.

Figure 1 Autonomous driving and perception pipeline.

2 Background and Motivation

2.1 Autonomous Driving and Object Detection

In general, autonomous driving consists of four primary jobs: perception, localization, way
planning, and vehicle control. Autonomous driving systems first perceive their surrounding
environment with cameras and sensors. At the same time, autonomous driving systems
localize their locations using high-definition maps and sensors. Based on the perception and
localization results, autonomous driving systems plan how to reach the destination avoiding
obstacles on the road. Finally, autonomous driving systems determine how to control the
vehicle according to the plan. Figure 1a briefly illustrates the autonomous driving pipeline.

Among the four primary jobs, perception plays an essential role in providing safe au-
tonomous driving. Perception offers visual information on the road, such as whether pedestri-
ans are near and how many cars are on the road. In practice, since high-definition maps only
provide static information of the road, such as the locations of traffic lights, autonomous
cars cannot solely rely on high-definition maps for safe autonomous driving. Through the
perception process, autonomous cars can detect dynamic obstacles on the road and make the
right decisions on their next movements. If autonomous cars cannot perceive the surrounding
environment in real time, autonomous cars would fail to avoid obstacles on the road.

For perception, autonomous driving systems should process multiple camera images in
practice. According to Tesla Model S owner’s manual [39], Tesla Model S cars use eight
cameras for autonomous driving: one camera above the rear license plate, two cameras on
each door pillar, two cameras on each front fender, and three cameras on the wind shield.
According to prior work [29, 9], autonomous driving systems should finish the end-to-end
processing within 100 ms. Therefore, autonomous driving systems should process all the
images from multiple cameras within less than 100 ms.

Typically, autonomous driving systems implement perception with various computer
vision algorithms such as object detection and object tracking. Figure 1b summarizes
the perception pipeline process of Autoware [24, 25], one of the most popular open-source
autonomous driving systems. When the system receives the images and point clouds from
cameras and LIDAR, the system detects objects with the images and the point clouds. Then,
the system fuses the objects from the images with the objects from the point clouds. Next,
the system applies object tracking and motion prediction algorithms to the fused objects.
Finally, the system obtains a cost map for way planning, which indicates the drivable area
around the autonomous car.

In the perception process, object detection becomes the performance bottleneck incurring
the most computational overhead. Figure 2 shows the profiling result of each task in the
perception pipeline. For profiling, this work instruments time measuring code into the

ECRTS 2022

2:4 RTScale: Sensitivity-Aware Adaptive Image Scaling for Real-Time Object Detection

1

10

100

1000

10000

100000

vision
detect
(left)

vision
detect
(front)

vision
detect
(right)

euclidean
cluster

range
vision
fusion
(left)

range
vision
fusion
(front)

range
vision
fusion
(right)

object
track

motion
predict

A
ve

ra
ge

 L
at

en
cy

 (μ
s)

Figure 2 Latency profile of tasks in the perception pipeline in Figure 1b. (416, 416) image scale
is used in object detection. Note that the y-axis is logarithmic.

Autoware perception module [2]. Note that this work only measures the latency of inference,
excluding queuing delay and communication time. In the graph, each error bar indicates
the maximum and minimum latency of each task. The graph shows that (vision) object
detection takes 4 ms while the other tasks take less than 1 ms on average. Therefore, the
profiling result demonstrates that object detection takes the longest time among the different
tasks in the perception pipeline.

2.2 Existing Object Detection Networks

In recent years, deep neural networks (DNNs) have remarkably enhanced both speed and
accuracy of object detection. Figure 3a briefly describes the general structure of object
detectors. An ordinary object detector comprises four parts: input, backbone, neck, and
head [6]. The input part takes an image as an input and preprocesses the image. The
backbone part contains a deep convolutional network such as ResNet [18] to extract the
features of the input image. The neck part typically contains a small network that collects
the features from different backbone stages such as FPN [30]. Finally, the head part predicts
the location and category of objects.

There are two primary types of object detection networks: two-stage networks (e.g.,
R-CNN series networks [14, 13, 36, 17]) and one-stage networks (e.g., YOLO and SSD series
networks [34, 35, 6, 32]). The major difference between two-stage and one-stage networks
is on whether bounding box prediction and classification are separate or not. In the head
part, two-stage networks find bounding boxes first and then classify objects in the bounding
boxes. On the other hand, one stage networks predict bounding boxes and class probabilities
together.

In general, one-stage networks are more compact than two-stage networks. For example,
YOLO [34] with GoogLeNet [37] consists of 26 layers while Faster R-CNN with FPN [30] and
ResNet-50 [18] consists of 213 layers in total. Since one-stage networks are more compact and
faster than two-stage networks, most autonomous driving systems adopt one-stage networks
like YOLO and SSD. For example, Autoware [24], a popular open-source autonomous driving
system, allows to use either YOLO or SSD for object detection. Another open-source system,
Apollo [1] also uses Apollo-OD for object detection which originates from YOLO networks.

S. Heo, S. Jeong, and H. Kim 2:5

Image

Detections

Input

Backbone

Head

: Feature Extraction

: Feature Aggregation

: Prediction

Neck

: Preprocessing

(a) General architecture.

0
20
40
60
80

100
120

1024 896 768 640 512

B
FL

O
PS

Image Width

(b) Computational cost.

40
50
60
70
80
90

100

1024 896 768 640 512

A
cc

ur
ac

y
(%

)

Image Width

(c) Accuracy.

Figure 3 General architecture of existing object detectors and computational cost and accuracy
of an existing object detector [6] with different image scales.

2.3 Dynamic Image Scaling
Dynamic image scaling is one of the optimization techniques that can accelerate object
detection. It can enhance object detection speed by reducing the scale of the input image
dynamically. Figure 3 shows how the computational cost changes as the image size changes
on top of the existing deep learning framework [11]. Note that we downsample the input
image to have the widths on the x-axis. In the graph, BFLOPS indicates the number of
floating-point operations in billions. The graph shows that the computational cost decreases
almost linearly as the image size decreases.

However, downsampling an image often incurs accuracy loss. Figure 3 also shows how
the accuracy changes as the image size changes for the KITTI MOT dataset [12]. Here, we
use mean average precision with IoU threshold = 0.5 (mAP50) as the accuracy metric, which
is commonly used to evaluate object detectors. The graph shows that the accuracy of the
object detector tends to decrease as the image size decreases.

The interesting observation is that each image has a different sensitivity to image scaling
in terms of accuracy. In other words, some images barely lose accuracy in downsampling while
other images do not. In this work, sensitivity indicates how much image downsampling affects
object detection accuracy for an image. If an image is highly sensitive to downsampling, it
implies that the image would lose accuracy a lot in downsampling. This work will formally
define the sensitivity in Section 4.

Figure 4a shows how the accuracy for each image sequence changes as the image size
changes for the KITTI MOT dataset. The graph shows that some image sequence (S18) loses
almost no point, but another image sequence (S17) loses 9.95 points at the minimum scale.
Therefore, this work considers the images in S17 are more sensitive to image scaling than the
images in S18. Thus, it is necessary to consider the sensitivity to image downsampling to
reduce accuracy loss.

This work also observes that the sensitivity of an image differs according to the features
of the image. Figure 4b is the collection of the sample images from the KITTI MOT dataset.
The first image from S16 seems more complicated than the second image from S20. Whereas
the first image contains objects that are difficult to detect (e.g., pedestrians on the road),
the second image only contains simple objects (e.g., cars on the road). The difference may
result in different sensitivities of S16 and S20. Since S16 has more complicated images than
S20, S16 shows higher sensitivity than S20 as Figure 4a shows. Therefore, as the features of
an image affect its sensitivity, we can infer the sensitivity based on the image.

Prior work [7] designs a dynamic image scaling scheme to enhance the accuracy of object
detection, but the approach is not aware of real-time constraints nor sensitivity. It only
predicts an optimal scale for a given image from a single image stream regardless of real-time

ECRTS 2022

2:6 RTScale: Sensitivity-Aware Adaptive Image Scaling for Real-Time Object Detection

75

80

85

90

95

100

1024 896 768 640 512

A
cc

ur
ac

y
(%

)

Image Width

S16 S17
S18 S19
S20

(a) Accuracy.
(i) The 88th image of Sequence 16

W : 768, P : 1.0

W : 640, P : 0.93

W : 512, P : 0.80
(ii) The 617th image of Sequence 20

W : 768, P : 1.0

W : 640, P : 1.0

W : 512, P : 1.0

(b) Sample images.

Figure 4 Object detection accuracy with different image scales for each image sequence in the
KITTI MOT validation dataset.

constraints. The approach cannot find the optimal scales for multiple image streams that
respect the time constraint. Therefore, the existing approach is not suitable for real-time
object detection with multiple image streams.

This work proposes RTScale, which enables real-time object detection with a new adaptive
image scaling scheme considering the scale sensitivity of multiple input images. RTScale
predicts the sensitivity of each image and determines the appropriate scales of images based
on real-time constraints and sensitivities. In this way, RTScale can reduce accuracy loss in
image downsampling while satisfying real-time constraints.

3 Problem Statement

When an autonomous car drives, the car receives N images from its N cameras in a fixed
interval. When the images arrive, the object detector processes the images with M processing
units and makes decisions based on the results. Let Ii,j denote the image frame of the j-th
camera at the i-th interval. Then, at the i-th interval, the object detector conducts object
detection tasks τi,1, ..., τi,N for Ii,1, ..., Ii,N . To make a timely decision, the object detector
must finish processing the N images within deadline Di at each interval. Note that the
relative deadline can differ across intervals depending on dynamic execution environment.

Before processing the images, the scheduler determines the scales of the images and
schedules the object detection tasks for the images. In this paper, we define an image
scale as (w, h) where w and h are the width and height of the image. The object detector
maintains the set of scales S and chooses an appropriate scale from the set for each image.
In other words, at the i-th interval, the scheduler determines si,j as one of the scales in
S for j = 1, ..., N where si,j denotes the image scale of Ii,j . The reason for assuming the
predefined set of scales is that handling arbitrary image scales would incur considerable
resizing overhead in practice because the system needs to configure the network layers every
time if the input shape is arbitrary.

This work formulates the problem as follows.
Problem Statement. The problem is to find the optimal scales of input images, {si,j}j∈[1,N],

and schedule the object detection tasks for the images, {τi,j}j∈[1,N], at each interval i

while satisfying the following constraint.
Deadline Constraint. The object detection tasks for the images finish before the deadline,

i.e., for each j = 1, ..., N ,

fi,j ≤ ri,j + Di

where ri,j and fi,j are the release time and completion time of τi,j , respectively.

S. Heo, S. Jeong, and H. Kim 2:7

Table 1 Notation for the problem.

No. Description No. Description

N Number of cameras si,j Scale of Ii,j for processing (si,j ∈ S)
M Number of processing units τi,j Object detection task for Ii,j

S Set of scales to choose from ri,j Release time of τi,j

Di Relative deadline at the i-th interval fi,j Completion time of τi,j

Ii,j The j-th image at the i-th interval ρi,j Scale sensitivity of Ii,j

T [k] Latency of processing an image at S[k]

The ultimate goal of this work is to maximize object detection accuracy while satisfying
the deadline constraint. If we only consider the deadline constraint, forcing a very low scale
to the images could be a solution. However, it is not desirable because aggressive image
downsampling can cause a huge accuracy loss. Since each image has a different sensitivity to
image scaling as shown in Section 2, it is essential to minimize accuracy loss by considering
the sensitivity.

This work uses four assumptions for the problem: (i) The frame interval is longer than
or equal to the relative deadline. (ii) The worst-case execution time of processing an image
at a scale is given. Based on prior work [5, 20, 21, 19], it is possible to estimate the worst-
case execution time of an object detector. Especially, [19] presents a layer-level worst-case
execution time model for general neural networks. Therefore, we can obtain the worst-case
execution time of the target object detector by combining the estimation models of its
network layers. (iii) Every image is equally important in terms of autonomous driving
as in Autoware [24]. In other words, each image provides equally meaningful information
for autonomous driving. (iv) The time to schedule the object detection tasks is negligible
compared with the time to detect objects in images. To justify the fourth assumption, we
measure the scheduling overhead in the experiment and observe that scheduling takes less
than 10−5% of the total execution time as shown in Section 5.2.4.

4 Design

While most existing object detectors process images at a fixed scale, RTScale provides
sensitivity-aware adaptive image scaling for real-time object detection. Figure 5 briefly illus-
trates the overall object detection process with RTScale. RTScale extends an existing object
detector with a new lightweight sensitivity inference module that infers the scale sensitivity
of an input image. Since the sensitivity inference module reuses the features extracted by
the object detector, the module can predict scale sensitivity with a few convolution layers
only. While offline, RTScale trains the sensitivity inference module with the ground-truth
scale sensitivities of training datasets. While online, RTScale determines the scales of the
next images based on the real-time constraints and the sensitivity prediction results of the
current images.

In this paper, we assume a YOLO-series object detector [6] as a baseline object detector
because it is one of the most popular object detectors in open-source autonomous driving
platforms [24, 25, 1]. However, note that the proposed method can apply to any object
detector as well because it is based on the common characteristics of ordinary existing object
detectors.

ECRTS 2022

2:8 RTScale: Sensitivity-Aware Adaptive Image Scaling for Real-Time Object Detection

Stream 1
Stream 2
Stream 3

𝑠𝑖,1

𝑠𝑖,2

𝑠𝑖,3

provide
images

𝐼𝑖,1

𝐼𝑖,2

𝐼𝑖,3

Bounding Box
Predictions

Scale Sensitivity
Predictions

object
detection
network

RTScale
Scheduler

𝑠𝑖+1,1

𝑠𝑖+1,2

𝑠𝑖+1,3

determine
scales

Interval 𝑖 Interval 𝑖 + 1

Figure 5 Overall object detection process with RTScale.

4.1 Scale Sensitivity Inference
This work defines scale sensitivity of an image ρ as the ratio of the accuracy obtained at the
maximum scale to the accuracy obtained at the minimum scale, i.e.,

ρ = A[smax]
A[smin] (1)

where A[s] indicates the object detection accuracy of the image when detecting objects at a
scale s, and smax and smin are the maximum and minimum scales in S, respectively.

The meaning of scale sensitivity is the accuracy loss ratio at a minimum scale. If an
image loses accuracy a lot at a minimum scale, the image will have a high scale sensitivity.
On the other hand, if an image loses little accuracy at a minimum scale, the image will have
a low scale sensitivity. It is possible for a scale sensitivity to be smaller than one because
object detectors sometimes can detect objects better at a lower scale. For example, if an
image contains a very large object like a train, it may be better to process the image at a
lower scale [7].

The scale sensitivity definition presupposes a monotonic relationship between image scale
and object detection accuracy. This work has tried different metrics for the sensitivity to
reflect the non-monotonic relationship between image scale and object detection accuracy as
shown in Figure 4a. However, the sensitivity inference problem becomes too complex for
the inference module to be trained. To simplify the sensitivity inference module, this work
assumes that image scale and object detection are in a monotonic relationship.

Network Extension. This work extends an existing object detector to infer the scale
sensitivity of an image along with bounding box prediction and classification. This work
designs the scale sensitivity inference module to exploit the rich features from the existing
object detector for scale sensitivity inference. As explained in Section 2, ordinary object
detectors have a backbone network to extract the features from an input image and use the
features to infer bounding box locations and categories. Since the sensitivity inference module
also needs distinct features from the same input image, this work reduces the complexity of
the sensitivity inference module by sharing the feature maps from the backbone network.

Table 2 describes the detailed architecture of the sensitivity inference module. The module
applies two pairs of 3 × 3 and 1 × 1 convolution layers with the Leaky ReLU activation
function [33] to the feature maps from the backbone network. Next, the module applies
(global) average pooling to the output feature maps and obtains 512 features per image. Here,
the global average pooling enables the module to get the same size of features for different
image scales. Then, the module obtains the final sensitivity prediction by applying a dense
layer with the linear activation function.

S. Heo, S. Jeong, and H. Kim 2:9

Table 2 The architecture of sensitivity inference module (Input: Feature maps from the backbone
network of which shape is (N, 1024, H, W), Output: Normalized scale sensitivity).

Type Kernel Padding Activation Output Dim.

Convolution 3× 3 1 Leaky (N, 512, H, W)
Convolution 1× 1 0 Leaky (N, 512, H, W)
Convolution 3× 3 1 Leaky (N, 512, H, W)
Convolution 1× 1 0 Leaky (N, 512, H, W)
Average pooling Global - - (N, 512, 1, 1)
Dense - - Linear (N)

Ground-truth Label Generation. To train the scale sensitivity module, this work calculates
the ground-truth sensitivities of the images from train datasets. For the minimum and
maximum scales in S, this work records the object detection accuracy of the baseline object
detector for each image in the train datasets. Then, this work calculates the ground-truth
sensitivity of each image using (1).

This work uses the F1 score as the accuracy metric for scale sensitivity calculation to
consider both precision and recall. Precision is insufficient to evaluate the accuracy for a
single image because precision may favor low-resolution images with a smaller number of valid
predictions (i.e., the total number of true positives and false positives of which confidence
scores are larger than a threshold). In general, the total number of valid predictions tends to
decrease as the image scale decreases. Thus, if there are few valid predictions of an image,
its precision becomes undesirably high. Therefore, it is necessary to consider recall also
to mitigate the problem. Note that mean average precision (mAP) is not applicable here
because it is an accuracy metric for an entire dataset, not for a single image.

A[s] = 2
1

pr[s] + 1
rc[s]

(2)

Equation 2 is the definition of the F1 score where pr[s] and rc[s] denote the precision
and recall of an image obtained at a scale s, respectively. In object detection, we regard a
bounding box prediction is true positive if the predicted bounding box overlaps with a true
bounding box with IoU > 0.5 and the predicted category is same as the category of the true
bounding box. Here, IoU is the abbreviation of “Intersection over Union”, which indicates
the ratio of the overlap area of two bounding boxes to the total area of two bounding boxes.

To facilitate deep learning, this work normalizes the ground-truth sensitivity values with
(3). In the equation, ρ̂min and ρ̂max indicate the minimum and maximum scale sensitivities,
respectively. Note that ρ̂min and ρ̂max depend on the train datasets. Figure 6 shows the

0
1000
2000
3000
4000
5000
6000

0.2 0.8 1.4 2 2.6 Max

N
um

be
r o

f I
m

ag
es

Scale Sensitivity
(a) KITTI MOT.

0

5000

10000

15000

20000

0.2 0.8 1.4 2 2.6 Max

N
um

be
r o

f I
m

ag
es

Scale Sensitivity

(b) BDD100K MOT.

Figure 6 Scale sensitivity distribution of each driving dataset.

ECRTS 2022

2:10 RTScale: Sensitivity-Aware Adaptive Image Scaling for Real-Time Object Detection

scale sensitivity distributions of two driving datasets, KITTI MOT [12] and BDD100K
MOT [43]. The graphs show that BDD100K MOT has a broader distribution of scale
sensitivity than KITTI MOT. Thus, this work uses a smaller ρ̂min and a larger ρ̂max for
BDD100K MOT compared with KITTI MOT. In inference, this work denormalizes the
predicted scale sensitivity for use in scheduling.

ρnorm = (ρ − ρ̂min)/(ρ̂max − ρ̂min) (3)

Training: This work regards scale sensitivity inference as a linear regression problem and
trains the sensitivity inference module using a smooth L1 loss function with the ground-truth
labels. Equation 4 is the definition of the loss function where y is the predicted sensitivity
and ρnorm is the normalized ground-truth sensitivity. This work accumulates the loss for
each image when the mini-batch size is larger than one.

L(y, ρnorm) =
{

0.5 × (y − ρnorm)2 if |y − ρnorm| < 1
|y − ρnorm| − 0.5 otherwise

(4)

4.2 Scheduling
The RTScale scheduler determines the scales of the next images considering both the real-
time constraint and the sensitivity prediction of the current images. It is based on the
assumption that two consecutive frames from the same image stream have similar image
features. That is, two consecutive images in the same image stream would have similar scale
sensitivities. We consider the assumption is reasonable because prior work on video object
detection [48, 49, 47, 46] is also based on the assumption.

The basic idea for determining the scales is to minimize the expected accuracy loss relative
to the accuracy obtained at the maximum scale. This work calculates the relative accuracy
loss of a scale with scale sensitivity. Let Q(k1, k2) be the ratio of the k2-th smallest scale
over the k1-th smallest scale in S. For example, Q(1, |S|) is the ratio of the maximum scale
over the minimum scale in S. According to the definition,

Q(1, |S|) = Πk∈[1,|S|−1]Q(k, k + 1)

Then, this work defines the expected accuracy gain of the k-th smallest scale relative to the
minimum scale as follows:

gain(k, ρ) = ρlogQ(1,|S|) Q(1,k) (5)

Here, if Q(1, 2) ≃ ... ≃ Q(|S| − 1, |S|), we can simplify (5) as follows:

gain(k, ρ) = ρ
k−1

|S|−1 (6)

Finally, we define the expected loss of the k-th smallest scale relative to the maximum
scale as follows:

loss(k, ρ) =
{

gain(|S|,ρ)
gain(k,ρ) = ρ

|S|−k
|S|−1 , if k ≥ 1

∞, otherwise
(7)

This work designs a scheduling algorithm that gradually finds the scale and schedule
of each image that meet the time constraint for M (identical) processing units. After
processing Ii,1, Ii,2, ..., Ii,N at the i-th interval, the object detector invokes the scheduler
with the sensitivity predictions of the images. The algorithm takes the set of sensitivities

S. Heo, S. Jeong, and H. Kim 2:11

Algorithm 1 RTScale scheduling algorithm.
Input : Sensitivities of the previous frames ρ1, ..., ρN

Relative deadline D

Output : Schedule of the next frames SC

1 if ⌈N/M⌉ · T [1] > D then
2 Return with an error
3 end
4 SC ← initialize({ρj}j∈[1,N])
5 while SC.makespan > D do
6 j∗ ← arg minj loss(SC[j].scale− 1, SC[j].sensitivity)
7 SC[j∗].scale← SC[j∗].scale− 1
8 SC.update(j∗)
9 end

10 SC.optimize()

Algorithm 2 initialize(ρ1, ρ2, ..., ρN).
Input : Scale sensitivities ρ1, ..., ρN

Output : Initial schedule SC

1 for j ∈ [1, N] do
2 SC[j].id← j

3 SC[j].sensitivity ← ρj

4 SC[j].scale← |S| // Maximum scale
5 end
6 SC ← Sort SC in descending order of sensitivity
7 W ← {0, 0, ..., 0} // Workload of each unit
8 for j ∈ [1, N] do
9 p∗ ← j mod M

10 SC[j].proc← p∗

11 SC[j].track ←W

12 W [p∗]←W [p∗] + T [|S|]
13 end
14 SC.makespan← maxp∈[1,M] W [p]

ρi,1, ρi,2, ..., ρi,N and the relative deadline for the next interval Di+1 as its inputs. Considering
both the sensitivities and the relative deadline, the algorithm determines the scales of the
next images si+1,1, si+1,2, ..., si+1,N and the assignment of processing units.

Algorithm 1 is the pseudo code of the RTScale scheduling algorithm. First, the algorithm
checks whether the given images are schedulable or not by comparing the minimum possible
makespan and the relative deadline (Line 1 to Line 3). After the test, the algorithm generates
an initial schedule setting all the image scales as the maximum scale (Line 4). Then, the
algorithm gradually lowers the scales until the makespan does not exceed the given relative
deadline (Line 5 to Line 9). At every iteration, the algorithm finds the scale with the
minimum expected loss, lowers the scale, and updates the schedule to reflect the change.
Note that the algorithm assumes that S is sorted in advance.

Algorithm 2 and Algorithm 3 show how to find the minimum makespan schedule in
detail. Since the minimum makespan scheduling problem is known as strongly NP-hard [40],
the algorithms are based on a 4⁄3 approximation algorithm which sorts the set of tasks in
descending order of latency and greedily assigns each task to the processing unit with the
minimum workload. Rather than calculating the entire minimum makespan schedule at
every iteration, this work optimizes the algorithms to incrementally update the minimum

ECRTS 2022

2:12 RTScale: Sensitivity-Aware Adaptive Image Scaling for Real-Time Object Detection

Algorithm 3 SC.update(j∗).

Input : Index of the target image j∗

1 W ← SC[j∗].track

2 for j ∈ [j∗, N] do
3 p∗ ← arg minp W [p]
4 SC[j].proc← p∗

5 SC[j].track ←W

6 W [p∗]←W [p∗] + T [SC[j].scale]
7 end
8 SC.makespan← maxp∈[1,M] W [p]

makespan schedule. After sorted once in initialization, the order of the tasks remains the
same as the main loop iterates. Therefore, the algorithms can simply update the necessary
part of the schedule only (Line 2 and Line 7 in Algorithm 3).

After determining the schedule, Algorithm 1 optimizes the schedule as finalization. Since
the algorithm reduces the scale of each image based on its expected accuracy loss, each
processing unit may have spare time until the deadline. Therefore, the algorithm checks the
amount of slack for each processing unit and increases the scale of each image if possible in
the descending order of scale sensitivity.

The underlying principle of the algorithm is to lower image scales to satisfy the deadline
constraint while minimizing its total accuracy loss. By reducing the scale of an image that
has the minimal accuracy loss until satisfying the time constraint, the algorithm will obtain
the maximal accuracy product of the scaled images that respects the time constraint.

The computation complexity of the scheduling algorithm is O(N2KM) where K = |S|.
In the algorithm, the main loop for determining the next scales dominates the computation
complexity of the algorithm. In the worst case that all images require the minimum scale, the
outer loop iterates N(K − 1) times, and the computation complexity of the update function
is O(NM). Therefore, the computation complexity of the algorithm is O(N2KM).

5 Evaluation

5.1 Experimental Setup
This work implements RTScale on top of the Darknet deep learning framework from prior
work [11]. This work extends the state-of-the-art object detector [6] with the scale inference
module in Section 4.1. Since the original object detector is supposed to use a single image
scale, this work modifies the deep learning framework to dynamically change the scales of
input images as the scheduler directs. Furthermore, this work enables the deep learning
framework to support multiple image streams and multiple processing units for inference.

To show the effectiveness of RTScale, this work compares different image scaling schemes
on top of the framework:

AvgScale: chooses the maximum scale for each processing unit that does not violate the
deadline constraint, i.e., choose the maximum scale such that Np · T [k] ≤ Di where Np

indicates the number of images assigned to the p-th processing unit.
RTScale-pred: chooses the scales using the proposed scheduling algorithm based on
scale sensitivity predictions.
RTScale-gt: chooses the scales using the proposed scheduling algorithm with ground-
truth scale sensitivities.

S. Heo, S. Jeong, and H. Kim 2:13

This work evaluates the image scaling schemes with two driving datasets, KITTI MOT [12]
and BDD100K MOT [43]. The reason for using the multiple object tracking datasets is
that existing object detection datasets do not provide multiple streams of consecutive image
frames. Existing object detection datasets only provide key frames for training and testing.
Therefore, this work uses the multiple object tracking datasets for evaluation. Note that the
multiple object tracking datasets only consider movable objects such as cars and pedestrians,
unlike ordinary object detection datasets.

Since the KITTI MOT dataset does not contain a validation set, this work divides the
train set of the KITTI MOT dataset for training and validation. Among 21 image sequences
of the train set, this work uses 16 sequences for training and the other five sequences for
validation. In addition, this work supplements the small volume of the KITTI MOT train set
with the KITTI object detection dataset. In the case of BDD100K MOT, this work samples
one image frame every other five frames from the train set to avoid overfitting from having
too many similar images.

This work first trains the baseline object detector for each dataset with multiple image
scales. The framework dynamically scales the input images by randomly choosing a scaling
factor between [1/1.4, 1.4] every 10 iterations. This work uses pretrained network parameters
for the first 137 layers of the baseline object detector. This work uses 0.001 as the learning
rate for the datasets and divides the rate by 10 after 80% and 90% of the total iterations as
prior work [6].

After training the baseline object detector, this work trains the sensitivity inference
module for each dataset. This work generates ground-truth sensitivity labels for each dataset
and filters several outliers to facilitate deep learning. This work uses (0.6, 2.8) and (0.3, 4.0)
as (ρmin, ρmax) in (3) to normalize the ground-truth sensitivity values for KITTI MOT
and BDD100K MOT, respectively. For KITTI MOT, this work uses a larger learning rate
considering the small volume of the KITTI MOT train set. Similar to the baseline detector,
this work divides the learning rate by 10 after 80% and 90% of the total iterations.

For evaluation, this work generates three artificial image streams with the validation
images of each dataset. This work divides a set of image sequences into three image streams.
Each stream in KITTI MOT and BDD100K MOT has 693 and 11,329 images, respectively.
For evaluating with multiple processing units, this work further divides three image streams
from KITTI MOT into six image streams. Although each image stream includes real-world
road images, the image streams are not from the cameras on the same vehicle. It might not

Table 3 Datasets and training parameters.

Information KITTI MOT BDD100K MOT
Number of train images 12,900 55,616
Number of validation images 2,079 33,987
Original image size 1242× 375 1280× 720
Parameter KITTI MOT BDD100K MOT

Baseline
Number of iterations 16000 16000
Batch size 64 64
Learning rate 0.001 0.001

Module
Number of iterations 70000 70000
Batch size 2 2
Learning rate 0.001 0.0001

Image scales
1024× 288, 896× 256,
768× 224, 640× 192,

512× 160

768× 416, 704× 384,
640× 352, 576× 320,

512× 288

ECRTS 2022

2:14 RTScale: Sensitivity-Aware Adaptive Image Scaling for Real-Time Object Detection

72%
76%
80%
84%
88%
92%
96%

100%

50 55 60 65 70

m
A

P 5
0

(%
)

Relative Deadline (ms)

AvgScale RTScale-pred RTScale-gt

0
10
20
30
40
50
60
70 Total Latency (m

s)

(a) KITTI MOT (N = 3, M = 1).

30%

35%

40%

45%

50%

55%

60%

74 78 82 86 90

m
AP

50
(%

)

Relative Deadline (ms)

AvgScale RTScale-pred RTScale-gt

0

15

30

45

60

75

90 Total Latency (m
s)

(b) BDD100K MOT (N = 3, M = 1).

Figure 7 Object detection accuracy and total latency with a single processing unit (N : Number
of image streams, M : Number of GPUs).

be ideal, but it is the best possible option because there is no available multi-camera driving
dataset. This work conducts experiments with two Intel(R) Xeon(R) Silver 4210 CPUs and
up to three NVIDIA GeForce RTX 2080 Ti GPUs using CUDA 10.0 and cuDNN 7.6.4.

5.2 Results

5.2.1 Accuracy and Latency
This work measures the accuracy and latency of the object detector for a given relative
deadline with different image scaling schemes. This work evaluates object detection accuracy
with the mean average precision metric with IoU threshold = 0.5 using the evaluation code of
the Darknet framework. In addition, this work measures the total latency for processing all
the images from image streams within an interval. This work determines relative deadlines
considering the worst-case object detection latency of processing an image at each scale.

Figure 7 shows the accuracy and latency of the object detector for KITTI MOT and
BDD100K MOT with one processing unit. In the figures, the rectangular bars indicate the
accuracy of the object detector and the error bars indicate the range of object detection
latency during all the intervals. For different relative deadlines, all the image scaling schemes
meet the deadline constraints because they always choose the appropriate set of scales that
would not violate the deadline constraint.

Overall, with the same relative deadline, RTScale-pred and RTScale-gt obtain better
accuracy than AvgScale. As shown in the graphs, RTScale-pred and RTScale-gt enhance
the object detection accuracy by 10.4 and 10.8 points at most. Since RTScale-pred and
RTScale-gt determine the scales of the images considering scale sensitivity, RTScale-pred and
RTScale-gt can reduce accuracy loss from image downsampling compared with AvgScale.

The amount of accuracy gain with RTScale tends to decrease as the relative deadline
increases. It is because the accuracy gap between two similar scales tends to be smaller for
the higher scales. In Figure 4a, the object detector obtains 5.48 more points for S17 with
the image width of 768 than the image width of 640. On the other hand, the accuracy gap
between the image widths of 1024 and 896 is only 0.83 points. The result implies that there
are less opportunities to enhance accuracy through adaptive image scaling when the higher
scales are available (i.e., when the relative deadline is large).

In general, RTScale-gt obtains better accuracy than RTScale-pred because RTScale-gt
uses ground-truth scale sensitivities in scheduling. Therefore, RTScale-gt can better predict
expected accuracy loss than RTScale-pred. In the experiment, RTScale-gt gains at most 1.8
more points in accuracy compared with RTScale-pred. Nevertheless, RTScale-pred performs
almost as good as RTScale-gt in the experiments.

S. Heo, S. Jeong, and H. Kim 2:15

72%
76%
80%
84%
88%
92%
96%

100%

50 55 60 65 70

m
A

P 5
0

(%
)

Relative Deadline (ms)

AvgScale RTScale-pred RTScale-gt

0
10
20
30
40
50
60
70 Total Latency (m

s)

(a) KITTI MOT (N = 6, M = 2).

70%

75%

80%

85%

90%

95%

100%

32 36 40 44 48

m
AP

50
(%

)

Relative Deadline (ms)

AvgScale RTScale-pred RTScale-gt

0

8

16

24

32

40

48 Total Latency (m
s)

(b) KITTI MOT (N = 6, M = 3).

30%

35%

40%

45%

50%

55%

60%

74 78 82 86 90

m
AP

50
(%

)

Relative Deadline (ms)

AvgScale RTScale-pred RTScale-gt

0

15

30

45

60

75

90 Total Latency (m
s)

(c) BDD100K MOT (N = 6, M = 2).

30%
34%
38%
42%
46%
50%
54%
58%

49 52 55 58 61

m
A

P 5
0

(%
)

Relative Deadline (ms)

AvgScale RTScale-pred RTScale-gt

0
9
18
27
36
45
54
63 Total Latency (m

s)

(d) BDD100K MOT (N = 6, M = 3).

Figure 8 Object detection accuracy and total latency with multiple processing units (N : Number
of image streams, M : Number of GPUs).

Figure 8 shows the accuracy and latency of the object detector for KITTI MOT and
BDD100K MOT with two and three processing units. RTScale assigns each task to a certain
processing unit regarding the scale sensitivity. For example, RTScale can have a processing
unit dedicated to a highly sensitive image. Thus, RTScale can better utilize the multiple
processing units to reduce accuracy loss than AvgScale. As shown in the graphs, RTScale-pred
and RTScale-gt enhance the object detection accuracy by 10.9 and 10.7 points at most with
the two processing units.

Interestingly, RTScale-pred outperforms RTScale-gt in some cases. It is because choosing
the maximum scale is not always the best, even for the images with scale sensitivity larger
than one. This work observes that detecting objects at a medium scale sometimes results in
the best accuracy. Since RTScale calculates the scale sensitivity regarding the maximum and
minimum scales only, RTScale sometimes fails to predict the expected accuracy loss correctly.
However, predicting the non-monotonic tendency of accuracy change is too complicated for
deep neural networks to learn. Therefore, RTScale only considers the monotonic tendency of
accuracy change.

Furthermore, RTScale may not perform to the best because the datasets only provide a
few frames per second. Although the object detector can process three images within 100
ms, the actual time interval between two consecutive images in the datasets is much longer.
It means that two images may not be similar to each other. It can hinder RTScale from
performing to the best because the scale sensitivities of the two images may not be similar
to each other, which is different from our assumption.

5.2.2 Dynamic Deadline Adaptation
This work evaluates how the object detector can well adapt to dynamically changing relative
deadline with the KITTI MOT dataset. This work randomly generates the sequence of
relative deadlines and provides a different relative deadline to the object detector at every

ECRTS 2022

2:16 RTScale: Sensitivity-Aware Adaptive Image Scaling for Real-Time Object Detection

30

40

50

60

70

0 50 100 150 200 250 300 350 400 450 500 550 600 650

La
te

nc
y

(m
s)

Index of Interval

Relative Deadline
AvgScale
RTScale-pred

mAP50
AvgScale 85.05%
RTScale 88.69%

Figure 9 Object detection accuracy and latency when changing the relative deadline at every
interval.

0

200

400

600

800

1000

10% 30% 50% 70% 90% Max

N
um

be
r o

f I
m

ag
es

Relative Error (%)

(a) KITTI MOT.

0
2500
5000
7500

10000
12500
15000

10% 30% 50% 70% 90% Max
N

um
be

r o
f I

m
ag

es

Relative Error (%)

(b) BDD100K MOT.

Figure 10 Relative error distribution of scale sensitivity predictions.

interval. This work randomly chooses an integer within [50, 70] for a relative deadline. Here,
since each image stream of the KITTI MOT dataset contains 693 images, the total number
of intervals is 693, accordingly.

Figure 9 shows how the latency of the object detector changes according to the relative
deadline. In the figure, the red line indicates the relative deadline at each iteration, the grey
line indicates the latency of the object detector with AvgScale, and the blue line indicates
the latency of the object detector with RTScale-pred. Figure 9 also provides the accuracy of
the object detector with AvgScale and RTScale-pred.

The evaluation result shows that RTScale better adapts to the deadline compared with
AvgScale because RTScale applies different scales for the images. Although the two image
scaling schemes enable the object detector to meet the deadline constraint at every interval, the
latency with RTScale changes more smoothly according to the given deadline. Furthermore,
RTScale obtains 3.64 points higher object detection accuracy compared with AvgScale. The
result shows that RTScale can well adapt to the dynamic deadline while enhancing object
detection accuracy.

5.2.3 Scale Sensitivity Inference

This work also evaluates how accurately the scale sensitivity inference module can predict
scale sensitivity. This work calculates the relative errors of the predicted scale sensitivity
with the ground-truth scale sensitivity for the validation set. Figure 10a and Figure 10b are
the histograms that show the distributions of relative errors for KITTI MOT and BDD100K
MOT. On average, the scale sensitivity module obtains 17% and 21% relative errors for
KITTI MOT and BDD100K MOT, respectively.

S. Heo, S. Jeong, and H. Kim 2:17

(ii) Relative Deadline: 60 ms(i) Relative Deadline: 50 ms

TP: 12
FP: 0

TP: 13
FP: 0

TP: 10
FP: 0

TP: 11
FP: 0

TP: 8
FP: 0

TP: 8
FP: 0

Figure 11 Sample object detection results with the image scales used in detection (TP: True
Positive, FP: False Positive).

Figure 7 clearly shows the consequence of inaccurate scale sensitivity inference. Since
the sensitivity module relatively performs worse for BDD100K MOT than KITTI MOT, the
gap between RTScale-pred and RTScale-gt is larger for BDD100K MOT. While the largest
gap between RTScale-pred and RTScale-gt is 0.5 points for KITTI MOT, the largest gap
between RTScale-pred and RTScale-gt is 1.8 points for BDD100K MOT. It implies that the
errors in scale sensitivity predictions can degrade accuracy.

However, the relative errors of scale sensitivity predictions do not directly cause accuracy
degradation because the scheduler determines the scales of images by comparing the expected
accuracy losses of the images. That is, the scheduler considers the relative differences in
their sensitivities. Therefore, if the predicted sensitivities of the images show a similar
difference to the ground-truth sensitivities, RTScale-pred still can find an effective solution as
RTScale-gt. As a result, RTScale-pred could obtain a comparable accuracy with RTScale-gt
in the experiments.

This work also visualizes the object detection results of sample images from the KITTI
MOT to show how the quality of object detection results differs with image scales. Figure 11
shows the object detection results of the same images with different relative deadlines. In
the figure, each image includes the image scale used in object detection. For readability,
this work resizes the images to have the same size. In addition, the color of a bounding box
indicates the category of the object. Overall, the object detection results with a high scale
have more true positives than the results with a lower scale. For example, in the case of the
middle image in the figure, the object detector fails to detect a hidden car on the right side
at the lowest scale.

5.2.4 Memory and Scheduling Overhead

This work measures the system-level memory and scheduling overhead compared with the
original object detection system. RTScale requires extra memory because the system needs
to store the parameters for the scale sensitivity inference module and maintain the multiple
descriptors for each convolution layer to avoid the resizing overhead. However, the total
memory overhead is at most 2.10 % only compared with the amount of memory that the
original system uses. Furthermore, RTScale incurs little scheduling overhead with the small
N and M compared with the total latency of processing images.

ECRTS 2022

2:18 RTScale: Sensitivity-Aware Adaptive Image Scaling for Real-Time Object Detection

Table 4 Memory and scheduling overhead of RTScale.

Configuration N = 3, M = 1 N = 6, M = 2 N = 6, M = 3
Memory Overhead 0.32 % 1.54 % 2.10 %

Scheduling Overhead < 10−5 % < 10−5 % < 10−5 %

6 Related Work

6.1 Real-time Object Detection
Previous work [22, 19, 38] has studied real-time object detection to finish object detection
within a given deadline.

Jang et al. [22] design a real-time object detector for autonomous driving considering
the end-to-end delay of object detection. Jang et al. observe that existing object detectors
suffer from severe time lags, even excluding inference time. Jang et al. address that the time
lags come from queuing delay, pipeline imbalance, and resource contention (especially on
integrated CPU-GPU platforms). To reduce the end-to-end delay of an object detector, Jang
et al. propose three optimization techniques: on-demand capture, zero-slack pipeline, and
contention-free pipeline. Since the prior work targets to optimize end-to-end delay rather
than inference time, this work can apply RTScale to R-TOD to further optimize end-to-end
object detection latency, including inference time.

S3DNN [45] is a system solution for executing multiple DNN workloads in real time.
S3DNN guarantees real-time performance with two main techniques: (i) system-level data
fusion and (ii) supervised streaming and scheduling. First, S3DNN fuses multiple DNN
workloads into one DNN instance to enhance resource utilization within the memory limit.
Second, S3DNN enables streaming processing of multiple GPU kernels from different DNN
instances and schedules the kernels considering concurrency benefits. The main objective
of S3DNN is to enhance the throughput of DNN workloads, which might degrade pipeline
efficiency in autonomous driving. Nevertheless, this work can employ its techniques to
optimize throughput because the techniques are orthogonal to the approach of this work.

Heo et al. [19] propose multi-path neural networks that can adapt to time-varying time
constraints by dynamically changing their execution paths. According to the time constraints,
the multi-path neural network can skip layers, generate a different number of region proposals,
and switch to another branch. Heo et al. also provide the worst-case execution time model
for deep neural networks considering the worst-case memory contention. Although the prior
work shows that the multi-path neural network can well adapt to the time constraints, it
requires designing an elaborate multi-path neural network to minimize accuracy loss.

IntPred [38] is an object detection scheme that reduces computational cost with an
interpolation prediction. Since objects move slowly across consecutive frames, IntPred
only runs an object detector for a partial set of image frames. Based on the interpolation
prediction, IntPred adjusts the location of the objects for subsequent image frames. By
avoiding processing every image frame, IntPred can reduce object detection time and power
consumption. However, it can be risky to skip image frames because objects can suddenly
appear in the skipped frames, especially in the street images that change dynamically.

6.2 Real-time DNN Inference
Rather than focusing on object detection, other work [42, 26, 31, 27, 23, 41, 3, 4] proposes
general real-time DNN frameworks.

S. Heo, S. Jeong, and H. Kim 2:19

Recent work [42, 26, 31] has proposed to use the concept of early exiting for real-time
DNN inference, which allows a neural network to generate the output early. Yao et al. [42]
suggest controlling the number of network stages with early exiting to provide intelligent
real-time edge services. Liu et al. [31] extend the previous work [42] to consider the criticality
of data within a scene. Kim et al. [26] propose a hierarchical neural network that can provide
abstract classifications before final concrete classification. Similar to RTScale, the recent
work exploits the architecture of existing networks to provide real-time inference. However,
the work requires designing a network with multiple exits in advance for dynamic latency
adjustment. Therefore, the network cannot easily adapt to different run-time environments.

Lee et al. [27] introduce SubFlow, which enables real-time inference and training by
dynamically pruning neurons. SubFlow dynamically generates subgraphs according to
dynamic time constraints. By ranking neurons of each layer considering their importance,
SubFlow can find the best subgraph that satisfies a given time constraint. Lee et al. propose
time-bound inference and training of convolutional and fully-connected layers. Since its
dynamic model compression approach is orthogonal to adaptive image scaling, RTScale is
applicable in combination with SubFlow. However, SubFlow only supports convolution and
fully-connected layers for now, while most object detectors include other types of layers.

DART [41] is a pipeline-based DNN scheduling framework, which provides a deterministic
response time for processing multiple DNN models. DART minimizes the response time
using data-level parallelism, allocating tasks into multiple CPUs and GPUs. DART utilizes
two types of data-level parallelism, inter-node pipelining and intra-node data parallelism, to
overcome the resource limitation of local accelerators and exploit multiple processing units
efficiently. DART provides a time-predictable DNN execution for multiple processing units.

DeepRT [23] and PredJoule [4] utilize DVFS (Dynamic Voltage-Frequency Scaling) to
satisfy time constraints and optimize energy consumption in neural network execution.
They dynamically change the DVFS configuration according to time constraints and energy
consumption. DeepRT also employs dynamic model compression to reduce the computational
cost of executing deep neural networks on mobile devices. PredJoule finds the optimal DVFS
configuration considering the performance and energy characteristics of different layers.

ApNet [3] is a timing-predictable runtime system for DNN workloads, which applies
approximation to neural networks to satisfy real-time requirements. ApNet chooses an
appropriate approximation strategy for each layer based on how the resource utilization of
the target device changes with different approximation strategies. In addition, ApNet designs
a runtime system that can enhance resource sharing and concurrency via approximation.

Although the existing approaches [23, 4, 3] for real-time DNN inference allow each
inference task to finish within a deadline, the approaches either require the system support
or incur a relatively large accuracy loss.

7 Conclusion

This work proposes RTScale, which enables real-time object detection through adaptive
image scaling while minimizing accuracy loss. Based on the observation that each image has
a different sensitivity to image scaling with regard to object detection accuracy, RTScale
finds appropriate scales for images from multiple streams considering both scale sensitivity
and real-time constraint. RTScale enables existing object detectors to infer the sensitivity
by adding a few layers for sensitivity inference. This work evaluates RTScale with other
image scaling schemes with two popular driving datasets. The evaluation results show that
RTScale can meet real-time constraints with minimal accuracy loss.

ECRTS 2022

2:20 RTScale: Sensitivity-Aware Adaptive Image Scaling for Real-Time Object Detection

References
1 Apollo. https://apollo.auto/index.html.
2 Autoware.ai Core Perception Github Repository. https://github.com/Autoware-AI/core_

perception, May 2021.
3 Soroush Bateni and Cong Liu. ApNet: Approximation-aware real-time neural network. In

2018 IEEE Real-Time Systems Symposium (RTSS), 2018. doi:10.1109/RTSS.2018.00017.
4 Soroush Bateni, Husheng Zhou, Yuankun Zhu, and Cong Liu. PredJoule: A timing-predictable

energy optimization framework for deep neural networks. In 2018 IEEE Real-Time Systems
Symposium (RTSS), December 2018. doi:10.1109/RTSS.2018.00020.

5 Adam Betts and Alastair Donaldson. Estimating the wcet of gpu-accelerated applications
using hybrid analysis. In 2013 25th Euromicro Conference on Real-Time Systems (ECRTS),
2013. doi:10.1109/ECRTS.2013.29.

6 Alexey Bochkovskiy, Chien-Yao Wang, and Hong-Yuan Mark Liao. YOLOv4: Optimal speed
and accuracy of object detection, 2020. doi:10.48550/arXiv.2004.10934.

7 Ting-Wu Chin, Ruizhou Ding, and Diana Marculescu. AdaScale: Towards real-time video
object detection using adaptive scaling. In Proceedings of Machine Learning and Systems 2019,
pages 431–441. 2019.

8 Ting-Wu Chin, Chia-Lin Yu, Matthew Halpern, Hasan Genc, Shiao-Li Tsao, and Vijay Janapa
Reddi. Domain-specific approximation for object detection. IEEE Micro, 38(1):31–40, 2018.
doi:10.1109/MM.2018.112130335.

9 Hiroyuki Chishiro, Kazutoshi Suito, Tsutomu Ito, Seiya Maeda, Takuya Azumi, Kenji Funaoka,
and Shinpei Kato. Towards heterogeneous computing platforms for autonomous driving.
In 2019 IEEE International Conference on Embedded Software and Systems (ICESS), 2019.
doi:10.1109/ICESS.2019.8782446.

10 Yoojin Choi, Mostafa El-Khamy, and Jungwon Lee. Towards the limit of network quantization.
In Proceedings of the 5th International Conference on Learning Representations, ICLR ’17,
2017.

11 Darknet. https://github.com/AlexeyAB/darknet.
12 Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for autonomous driving?

the kitti vision benchmark suite. In Conference on Computer Vision and Pattern Recognition
(CVPR), 2012. doi:10.1109/CVPR.2012.6248074.

13 Ross Girshick. Fast R-CNN. 2015 IEEE International Conference on Computer Vision (ICCV),
2015. doi:10.1109/ICCV.2015.169.

14 Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for
accurate object detection and semantic segmentation. 2014 IEEE Conference on Computer
Vision and Pattern Recognition, 2014. doi:10.1109/CVPR.2014.81.

15 Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish Narayanan. Deep learning
with limited numerical precision. In Proceedings of the 32nd International Conference on
International Conference on Machine Learning - Volume 37, ICML’15. JMLR.org, 2015.

16 Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections
for efficient neural networks. In Proceedings of the 28th International Conference on Neural
Information Processing Systems - Volume 1, NIPS’15, Cambridge, MA, USA, 2015. MIT Press.

17 Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. Mask R-CNN. 2017 IEEE
International Conference on Computer Vision (ICCV), October 2017. doi:10.1109/ICCV.
2017.322.

18 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2016. doi:10.1109/CVPR.2016.90.

19 Seonyeong Heo, Sungjun Cho, Youngsok Kim, and Hanjun Kim. Real-time object detection
system with multi-path neural networks. In 2020 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2020. doi:10.1109/RTAS48715.2020.000-8.

https://apollo.auto/index.html
https://github.com/Autoware-AI/core_perception
https://github.com/Autoware-AI/core_perception
https://doi.org/10.1109/RTSS.2018.00017
https://doi.org/10.1109/RTSS.2018.00020
https://doi.org/10.1109/ECRTS.2013.29
https://doi.org/10.48550/arXiv.2004.10934
https://doi.org/10.1109/MM.2018.112130335
https://doi.org/10.1109/ICESS.2019.8782446
https://github.com/AlexeyAB/darknet
https://doi.org/10.1109/CVPR.2012.6248074
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/ICCV.2017.322
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/RTAS48715.2020.000-8

S. Heo, S. Jeong, and H. Kim 2:21

20 Vesa Hirvisalo. On static timing analysis of gpu kernels. In 14th International Workshop on
Worst-Case Execution Time Analysis, OpenAccess Series in Informatics (OASIcs), 2014.

21 Yijie Huangfu and Wei Zhang. Static wcet analysis of gpus with predictable warp scheduling.
In 2017 IEEE International Symposium on Real-Time Computing (ISORC), 2017. doi:
10.1109/ISORC.2017.24.

22 Wonseok Jang, Hansaem Jeong, Kyungtae Kang, Nikil Dutt, and Jong-Chan Kim. R-TOD:
Real-time object detector with minimized end-to-end delay for autonomous driving. In 2020
IEEE Real-Time Systems Symposium (RTSS), pages 191–204, 2020. doi:10.1109/RTSS49844.
2020.00027.

23 Woochul Kang and Jaeyong Chung. DeepRT: Predictable deep learning inference for
cyber-physical systems. Real-Time Systems, 55(1):106–135, January 2019. doi:10.1007/
s11241-018-9314-y.

24 Shinpei Kato, Eijiro Takeuchi, Yoshio Ishiguro, Yoshiki Ninomiya, Kazuya Takeda, and
Tsuyoshi Hamada. An open approach to autonomous vehicles. IEEE Micro, 35(6):60–68, 2015.
doi:10.1109/MM.2015.133.

25 Shinpei Kato, Shota Tokunaga, Yuya Maruyama, Seiya Maeda, Manato Hirabayashi, Yuki
Kitsukawa, Abraham Monrroy, Tomohito Ando, Yusuke Fujii, and Takuya Azumi. Autoware
on board: Enabling autonomous vehicles with embedded systems. In Proceedings of the 9th
ACM/IEEE International Conference on Cyber-Physical Systems, ICCPS ’18, pages 287–296.
IEEE Press, 2018. doi:10.1109/ICCPS.2018.00035.

26 Jung-Eun Kim, Richard Bradford, Man-Ki Yoon, and Zhong Shao. ABC: Abstract prediction
before concreteness. In 2020 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1103–1108, 2020. doi:10.23919/DATE48585.2020.9116479.

27 Seulki Lee and Shahriar Nirjon. SubFlow: A dynamic induced-subgraph strategy toward
real-time dnn inference and training. In 2020 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2020. doi:10.1109/RTAS48715.2020.00-20.

28 Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning fil-
ters for efficient convnets. In Proceedings of the 5th International Conference on Learning
Representations, ICLR ’17, 2017.

29 Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E. Haque, Lingjia Tang,
and Jason Mars. The architectural implications of autonomous driving: Constraints and
acceleration. In Proceedings of the 23rd International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’18. Association for Computing
Machinery, 2018. doi:10.1145/3173162.3173191.

30 Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
Feature pyramid networks for object detection. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017. doi:10.1109/CVPR.2017.106.

31 Shengzhong Liu, Shuochao Yao, Xinzhe Fu, Huajie Shao, Rohan Tabish, Simon Yu, Ayoosh
Bansal, Heechul Yun, Lui Sha, and Tarek Abdelzaher. Real-time task scheduling for machine
perception in in intelligent cyber-physical systems. IEEE Transactions on Computers, 2021.
doi:10.1109/TC.2021.3106496.

32 Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed, Cheng-Yang Fu,
and Alexander C. Berg. SSD: Single shot multibox detector. In Bastian Leibe, Jiri Matas,
Nicu Sebe, and Max Welling, editors, Computer Vision – ECCV 2016. Springer International
Publishing, 2016. doi:10.1007/978-3-319-46448-0_2.

33 Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier nonlinearities improve neural
network acoustic models. In Proceedings of the 30th International Conference on Machine
Learning, 2013.

34 Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 779–788, 2016. doi:10.1109/CVPR.2016.91.

ECRTS 2022

https://doi.org/10.1109/ISORC.2017.24
https://doi.org/10.1109/ISORC.2017.24
https://doi.org/10.1109/RTSS49844.2020.00027
https://doi.org/10.1109/RTSS49844.2020.00027
https://doi.org/10.1007/s11241-018-9314-y
https://doi.org/10.1007/s11241-018-9314-y
https://doi.org/10.1109/MM.2015.133
https://doi.org/10.1109/ICCPS.2018.00035
https://doi.org/10.23919/DATE48585.2020.9116479
https://doi.org/10.1109/RTAS48715.2020.00-20
https://doi.org/10.1145/3173162.3173191
https://doi.org/10.1109/CVPR.2017.106
https://doi.org/10.1109/TC.2021.3106496
https://doi.org/10.1007/978-3-319-46448-0_2
https://doi.org/10.1109/CVPR.2016.91

2:22 RTScale: Sensitivity-Aware Adaptive Image Scaling for Real-Time Object Detection

35 Joseph Redmon and Ali Farhadi. YOLO9000: Better, faster, stronger. In The IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), July 2017. doi:10.1109/CVPR.2017.
690.

36 Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards real-time
object detection with region proposal networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 39(6), 2017. doi:10.1109/TPAMI.2016.2577031.

37 Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
doi:10.1109/CVPR.2015.7298594.

38 Hamid Tabani, Matteo Fusi, Leonidas Kosmidis, Jaume Abella, and Francisco J. Cazorla.
IntPred: Flexible, fast, and accurate object detection for autonomous driving systems. In
Proceedings of the 35th Annual ACM Symposium on Applied Computing, SAC ’20. Association
for Computing Machinery, 2020. doi:10.1145/3341105.3373918.

39 Tesla Model S Owners Manual. https://www.tesla.com/sites/default/files/model_s_
owners_manual_north_america_en_us.pdf, April 2020.

40 Vijay V. Vazirani. Approximation Algorithms. Springer Publishing Company, Incorporated,
2010. doi:10.1007/978-3-662-04565-7.

41 Yecheng Xiang and Hyoseung Kim. Pipelined data-parallel cpu/gpu scheduling for multi-dnn
real-time inference. In 2019 IEEE Real-Time Systems Symposium (RTSS), pages 392–405,
2019. doi:10.1109/RTSS46320.2019.00042.

42 Shuochao Yao, Yifan Hao, Yiran Zhao, Huajie Shao, Dongxin Liu, Shengzhong Liu, Tianshi
Wang, Jinyang Li, and Tarek Abdelzaher. Scheduling real-time deep learning services as
imprecise computations. In 2020 IEEE 26th International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), pages 1–10, 2020. doi:10.1109/
RTCSA50079.2020.9203676.

43 Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht
Madhavan, and Trevor Darrell. BDD100K: A diverse driving dataset for heterogeneous
multitask learning. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. doi:10.1109/CVPR42600.2020.00271.

44 Xiaofan Zhang, Haoming Lu, Cong Hao, Jiachen Li, Bowen Cheng, Yuhong Li, Kyle Rupnow,
Jinjun Xiong, Thomas Huang, Honghui Shi, Wen-Mei Hwu, and Deming Chen. SkyNet:
a hardware-efficient method for object detection and tracking on embedded systems. In
Proceedings of Machine Learning and Systems 2020, pages 216–229. 2020.

45 Husheng Zhou, Soroush Bateni, and Cong Liu. S3DNN: Supervised streaming and scheduling for
gpu-accelerated real-time dnn workloads. In 2018 IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 190–201, 2018. doi:10.1109/RTAS.2018.00028.

46 Menglong Zhu and Mason Liu. Mobile video object detection with temporally-aware feature
maps. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
5686–5695, 2018. doi:10.1109/CVPR.2018.00596.

47 Xizhou Zhu, Jifeng Dai, Lu Yuan, and Yichen Wei. Towards high performance video object
detection. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 7210–7218, 2018. doi:10.1109/CVPR.2018.00753.

48 Xizhou Zhu, Yujie Wang, Jifeng Dai, Lu Yuan, and Yichen Wei. Flow-guided feature aggrega-
tion for video object detection. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 408–417, 2017. doi:10.1109/ICCV.2017.52.

49 Xizhou Zhu, Yuwen Xiong, Jifeng Dai, Lu Yuan, and Yichen Wei. Deep feature flow for video
recognition. In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 4141–4150, 2017. doi:10.1109/CVPR.2017.441.

https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/CVPR.2017.690
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1145/3341105.3373918
https://www.tesla.com/sites/default/files/model_s_owners_manual_north_america_en_us.pdf
https://www.tesla.com/sites/default/files/model_s_owners_manual_north_america_en_us.pdf
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1109/RTSS46320.2019.00042
https://doi.org/10.1109/RTCSA50079.2020.9203676
https://doi.org/10.1109/RTCSA50079.2020.9203676
https://doi.org/10.1109/CVPR42600.2020.00271
https://doi.org/10.1109/RTAS.2018.00028
https://doi.org/10.1109/CVPR.2018.00596
https://doi.org/10.1109/CVPR.2018.00753
https://doi.org/10.1109/ICCV.2017.52
https://doi.org/10.1109/CVPR.2017.441

ACETONE: Predictable Programming Framework
for ML Applications in Safety-Critical Systems
Iryna De Albuquerque Silva !

ONERA, Toulouse, France

Thomas Carle !

IRIT – Univ Toulouse 3 – CNRS, France

Adrien Gauffriau !

Airbus, Toulouse, France

Claire Pagetti !

ONERA, Toulouse, France

Abstract
Machine learning applications have been gaining considerable attention in the field of safety-critical
systems. Nonetheless, there is up to now no accepted development process that reaches classical safety
confidence levels. This is the reason why we have developed a generic programming framework called
ACETONE that is compliant with safety objectives (including traceability and WCET computation)
for machine learning. More practically, the framework generates C code from a detailed description
of off-line trained feed-forward deep neural networks that preserves the semantics of the original
trained model and for which the WCET can be assessed with OTAWA. We have compared our
results with Keras2c and uTVM with static runtime on a realistic set of benchmarks.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Software notations and tools

Keywords and phrases Real-time safety-critical systems, Worst Case Execution Time analysis,
Artificial Neural Networks implementation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.3

Supplementary Material Software (ECRTS 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.1.6

Funding This project received funding from the French “Investing for the Future – PIA3” program
within the Artificial and Natural Intelligence Toulouse Institute (ANITI).

1 Introduction

The use of artificial intelligence approaches is already of vital importance in many research
areas. In particular, when embedded in aircraft systems, intelligent algorithms could help in
tasks such as navigation, predictive maintenance and air traffic control, improving safety and
saving environmental resources. Nonetheless, not much progress has been made in embedding
machine learning solutions in safety-critical systems as most of those applications do not
reach classical safety confidence levels and are not implemented with accepted development
process [2, 5]. The scope of this work is the safe real-time implementation of neural networks
on embedded platforms.

Context. We focus on safety-critical domains and in particular on aeronautics that is subject
to certification. The question of how to safely and reliably implement a neural network on an
adequate hardware is of vital importance. Indeed, certification requirements, in particular
those of the DO 178-C [14]1, impose strong guarantees on the quality of the code and expect
the designer to:

1 Classical guidance for the implementation process of the software items

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Iryna De Albuquerque Silva, Thomas Carle, Adrien Gauffriau, and Claire Pagetti;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 3; pp. 3:1–3:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:iryna.de_albuquerque_silva@onera.fr
https://orcid.org/0000-0003-2603-7947
mailto:thomas.carle@irit.fr
https://orcid.org/0000-0002-1411-1030
mailto:adrien.gauffriau@airbus.com
mailto:claire.pagetti@onera.fr
https://orcid.org/0000-0001-7265-1839
https://doi.org/10.4230/LIPIcs.ECRTS.2022.3
https://doi.org/10.4230/DARTS.8.1.6
https://doi.org/10.4230/DARTS.8.1.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Predictable Code for Machine Learning Applications

ensure traceability between the requirements and the (source) code;
compute the WCET (Worst Case Execution Time) [39] for each piece of code;
run intensive testing to verify the compliance of the implementation to the requirements.
This includes unit tests to verify both that the executable provides the intended function
and there is no hidden unintended function (by activating all the branches of the code).

The purpose is thus to provide a programming framework compliant with these objectives
for machine learning. This work is restricted to off-line trained feed-forward deep neural
networks (referred to simply as neural networks or DNN subsequently). The off-line design of
such neural networks is done by defining the structure (that is the number and the type of
layers), choosing the training data set and using a learning framework such as Tensorflow [1]
or PyTorch [28]. The result of the design is called the inference model: it comprises a
neural network with its parameters (e.g. weights, biases, activation functions or kernels).
The implementation – the part we focus on – consists in coding the inference model in an
adequate programming language and porting the code on the target hardware.

Contributions. The first challenge brought by the implementation is the semantic preserva-
tion: the reproducibility of the behavior observed when executing the inference model within
the training tool on the target hardware. Thus our first contribution (see section 2) is to
formally define the semantics of DNN (by extending and formalizing existing works of the
literature) and explaining the challenges brought by the current frameworks. Indeed, the
training tools such as Tensorflow/Keras or PyTorch do not encode the basic operations,
such as convolutions (and thus matrices operations) in the same manner.

The second challenge is predictability: the capacity to assess the worst-case execution
time (WCET) of a sequential code. In the ML literature, most of the implementations
are done on GPUs or TPUs with a runtime engine such as Tensorflow that interprets
the computation graph, i.e., a graph describing the mathematical structure of the neural
network. Such an interpreter uses dynamic memory and scheduling allocation and as we
focus on safety-critical domain – and more specifically avionics –, such an approach is not
practical for two reasons. First, the hardware targets that are compatible with certification
are not those mentioned earlier. We thus focus on general purpose multi-core commercial
off-the-shelf (COTS) hardware such as the T1042 from NXP, the Coolidge from Kalray [18]
or the keystone from Texas Instrument [37] (used in the experiments). Second, the programs,
including the application, the RTOS and the runtime, must be predictable. There are some
initiatives to make such runtime predictable such as eIQ and KaNN. However, there is still
a large amount of work and proof to show the capability to compute a WCET for these
tools. This is the reason why we target a more classical static approach which consists in
generating an equivalent C code to execute the model (no interpretation) such as proposed
in [8]. Our second contribution is the development of ACETONE (Avionics C code generator
for Neural NEtworks), a framework that generates a real-time C code semantically equivalent
to the inference model (see section 3) and that fits the aeronautic requirements. We made a
particular effort on the software architecture to make the framework:

modular : it is very simple to add new DNN structures, new types of layers or new
refinement of the existing ones.
very easy to use: a person non familiar with our framework can very quickly generate
their C code and port them on their target;
extremely traceable: looking at the generated C code, it is humanly possible to trace back
to the original exported DNN model, which is an expected property from the DO-178C;

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:3

predictable: we used a static WCET analyzer of the literature, OTAWA [4] developed at
the University of Toulouse, to assess the WCET of the code. This means that the C code
is expected to run sequentially on a single core (no parallelization targeted in this paper),
all the memory allocations are static and the schedule (here the sequence of executions)
is also static. The compilation of the C code to a binary must also use the flag -O0 (no
compiler optimization). These restrictions are important to keep in mind to understand
the philosophy of the code generation.

The last contribution is a thorough evaluation of our framework together with a comparison
with state of the art C code generator frameworks, namely Keras2c [10] and uTVM with static
C runtime [35]. Section 4 details the methodology: we have selected a set of representative
benchmarks and identified a set of criteria to assess the quality of a code (in accordance with
the DO-178C objectives listed above). Section 5 gives the results of the experiments. We were
able to assess most of our criteria for all the benchmarks and frameworks. In particular, we
have ported the binary on an arm Cortex-A15 of the keystone [37] to compare the measured
and worst-case execution times. Overall, in terms of performance, we are comparable to and
even slightly better than the other frameworks. This stems, for uTVM, from the restrictions
needed for predictability and the compilation with -O0. In that sense, our implementations
are optimal with respect to our criteria.

2 Reminder on Deep Neural Networks

We focus on the inference of off-line trained feed-forward Deep Neural Networks (DNN).
More precisely, we consider convolutional neural networks (CNN) and multi-perceptron (or
fully-connected) neural networks.

2.1 Functions performed by DNN
There are multiple ways to define DNNs: directed graphs, computational graphs or simply
the mathematical functions transforming the input into the output. The latter is the way we
propose to explain the computations needed to be done by the C code. The input of those
functions can be seen as a multi-dimensional vector also called tensor. Subsequently, we will
only consider 1D-, 2D- and 3D-tensors but to save space, we only provide definitions for 3D.
We only consider inference with one input (no batch).

▶ Definition 1 (Tensor). A 3D-tensor T is represented by its size (nh, nw, nc) where nh is
the height, nw the width and nc the number of channels (or feature maps). We denote by
Tx1,x2,x3 the value of T for the indices x1, x2, x3. We denote by T [s11 : s21, ..., s1k : s2k] the
slice of T of all the values Ts11+x1,...,s1k+xk

with i ∈ [1, k] and xi ∈ [1, s2i − s1i].

▶ Definition 2 (Feed-forward Deep Neural Network). A feed-forward neural network N =<

l1, . . . , ln > is a succession of layers li taking as input the output of the previous layer li−1.
The first layer takes the input tensor. A layer can be of type(l) ∈ {act, bias, padd, conv, pool,
batch norm, flat, dense} where act is an activation, padd is a padding, bias is a bias adding,
conv is a convolution, pool is a pooling, batch norm is normalization, flat is flattening and
dense is a perceptron. A layer comes with a set of parameters (e.g. weights or stride).

▶ Definition 3 (Function associated to a DNN). The function fN computed by a DNN N =<

l1, . . . , ln > is the composition of the functions computed by each layer fN = fln ◦ . . . ◦ fl1 .

The semantics of each function is given in [38]. We give the definition, with mathematical
equations, of the main layers used in the use cases depicted in section 4.1.

ECRTS 2022

3:4 Predictable Code for Machine Learning Applications

▶ Definition 4 (Activation function). Let f : R −→ R be a function (e.g. ReLu, sigmoid).
The activation function Af applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor
O = Af (I) of size (nh, nw, nc) defined by Ox,y,z = f(Ix,y,z) for all x ≤ nh, y ≤ nw and
z ≤ nc. We could also write Ox,y,z = map(I, f).

▶ Definition 5 (Bias layer associated function). Let B be a 3D-tensor of size (nh, nw, nc). The
bias function BB applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor O = BB(I)
of size (nh, nw, nc) defined by Ox,y,z = Ix,y,z + Bx,y,z for all x ≤ nh, y ≤ nw and z ≤ nc.

▶ Definition 6 (Padding layer associated function). Let p = (pt, pb, pl, pr) be a 4-tuple of
integers representing the padding to be applied on each border of a 3D-tensor. The padding
function Pp applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor O = Pp(I) of
size (oh, ow, oc) with oh = nh + pt + pb, ow = nw + pl + pr and oc = nc such that

Ox,y,z =
{

0 if x ≤ pt or x > nh + pt or y ≤ pl or y > nw + pl

Ix−pt,y−pl,z otherwise

▶ Definition 7 (2D-convolution associated function). Let K be a vector of 3D-tensors
[K1, K2, . . ., Knb_kernel] representing the kernels of the convolution. Each kernel Ki is of size
(fh, fw, fc). Let s = (sh, sw) be the stride parameter with sh and sw two integers. The 2D-
convolution2 CK,s applied to a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor O = CK,s(I)
of size (oh, ow, oc) with oh =

⌊
nh−fh

sh
+ 1

⌋
, ow =

⌊
nw−fw

sw
+ 1

⌋
and oc = nb_kernel. We have

Ox,y,z =
∑fh

i=1
∑fw

j=1
∑fc

m=1 Kz
i,j,m ·Ish·(x−1)+i,sw·(y−1)+j,m for all x ≤ oh, y ≤ ow and z ≤ oc.

Note that also we must have fc = nc thus, convolutions are often applied on 3D-tensors on
which padding has been applied first to fit the sizes. See definition 14.

▶ Definition 8 (Pooling layer associated function). Let s = (sh, sw) be the stride parameters,
let k = (kh, kw) be the height and width of the window and let f : Rkh.kw −→ R be a function
(e.g. max or average). The pooling applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-
tensor O = Poolk,s,f (I) of size (oh, ow, oc) with oh =

⌊
nh−kh

sh
+ 1

⌋
, ow =

⌊
nw−kw

sw
+ 1

⌋
and

oc = nc with Ox,y,z = f(I[sh·(x−1)+1 : sh·(x−1)+kh+1][sw·(y−1)+1 : sw·(y−1)+kw+1][z]).

▶ Definition 9 (Batch norm layer associated function). Let γ be 1D-tensor of size nc be the
scale, let β be 1D-tensor of size nc be the offset, let µ be 1D-tensor of size nc be the mean (on
the batch fixed during the training), let V be 1D-tensor of size nc be the variance (on the batch
fixed during the training), let ϵ be a float used to ensure no division per 0. The batch norm
applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor O = BN γ,β,µ,σ,ϵ(I) of size
(nh, nw, nc) with Ox,y,z = γz√

Vz+ϵ
· Ix,y,z +

(
βz − µz√

Vz+ϵ

)
. We often denote by αz = γz√

Vz+ϵ

and Bz =
(

βz − µz·γz√
Vz+ϵ

)
, so that Ox,y,z = αz · Ix,y,z + Bz.

▶ Definition 10 (Flattening layer). The flattening layer applied to a 3D-tensor I of size
(nh, nw, nc) outputs the 1D-tensor O = F lat(I) of size no = nh × nw × nc such that
Ox = I

x mod nw,
⌊

x mod (nh·nw)
nw

⌋
,
⌊

x
nh·nw

⌋.

▶ Definition 11 (Dense layer). Let W be a 2D-tensor of size (no, ni) (for the weights) and B

be a 1D-tensor of size no (for the biases). The dense layer applied to a 1D-tensor I of size ni

outputs the 1D-tensor of size no O = Dense(I) = W · I + B, i.e. Ox =
∑ni

k=1 Wx,k · Ik + Bx.

2 There may be an additional parameter, that is the dilatation supported by the code generation and not
detailed here.

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:5

Then, we can define easily the function associated to a DNN from those basic functions.

▶ Example 12 (Multi-perceptron / fully-connected neural network). A fully-connected neural
network is a succession of dense and activation layers. The function associated to the DNN
of figure 1 is N = fl3 ◦ fl2 ◦ fl1 = A3(W3 · (A2(W2 · (A1(W1 · I + B1)) + B2)) + B3). Its
structure corresponds to 2 hidden layers with 3 neurons each, 2 inputs and 1 output. Short
notation: (2, 3, 3).

x1

x2

y1

Figure 1 Fully-connected NN.

conv1

28x28x1

6

pool1

24x24x6

6

conv2

12x12x6

16

8x8x16

pool2

16

4x4x6 96

flat

120 84

dense1 2 3

10

Figure 2 LeNet-5 CNN.

▶ Example 13 (LeNet-5). The LeNet-5 [23] model is the basic CNN developed for handwritten
digits images recognition. We used the pre-trained LeNet-5 from Keras which is shown in
figure 2. Such a graphical representation is classical to highlight the layers and the number
of feature maps.

The size of the input / output tensors are shown on the figure. The first 2D-convolution
conv1 takes inputs of size 28 × 28 × 1, is composed of 6 kernels Ki of size 5 × 5 × 1 and of a
stride s = (1, 1). The activation function tanh is applied to the outputs. The first pooling
layer pool1 is an average pooling with stride s = (2, 2) and window k = (2, 2). The second
2D-convolution conv2 is composed of 16 kernels Ki of size 5 × 5 × 6 and of a stride s = (1, 1).
The activation function tanh is applied to the outputs. The second pooling layer pool2 is
an average pooling with stride s = (2, 2) and window k = (2, 2). The 3D-tensor of size
6 × 6 × 4 is flattened in a 1D-tensor of size 96. There are three dense layers with respectively
(ni, no) = (96, 120), (ni, no) = (120, 84) and (ni, no) = (84, 10). The two first dense layers
apply the activation function tanh and the last one a softmax. Thus the function associated
to this LeNet-5 is: N = Asoftmax ◦ fdense3 ◦ Atanh ◦ fdense2 ◦ Atanh ◦ fdense1 ◦ fflat ◦ fpool2 ◦
Atanh ◦ fconv2 ◦ fpool1 ◦ Atanh ◦ fconv1.

2.2 Semantics-preserving model transformation
At this stage, it is acceptable to transform the DNN model as long as the semantics is
preserved. This can be interesting when it yields an improvement of the implementation.
We list here some transformations worth to be made before coding.

▶ Definition 14 (Extended 2D-convolution layers). In the literature, convolutions usually
integrate other parameters than those listed in definition 7. Indeed, a convolution is often
defined together with the padding, the activation function and even in some cases with a bias.
We thus denote by Cp,K,s,B,f = Af ◦ BB ◦ CK,s ◦ Pp (all combinations by removing a function
work). Note that this is common to consider bias B in convolution where Bx1,y1,z = Bx2,y2,z

with x1 ̸= x2 and y1 ̸= y2.

▶ Property 1 (Well-balanced 2D-convolution layers). It is usual to have the output height and
width equal to the input height and width, i.e. oh = nh and ow = nw. In that case, we must
have nh = ⌊ nh+pt+pb−fh

sh
+ 1⌋ and nw = ⌊ nw+pl+pr−fw

sw
+ 1⌋. The padding should also satisfy

pt + pb − fh = −1 and pl + pr − fw = −1.

ECRTS 2022

3:6 Predictable Code for Machine Learning Applications

▶ Property 2 (Portability issue between training frameworks). We remark that for a given
kernel size, several solutions may exist to the equations of property 1. For instance, with
a kernel size of (5, 5) and stride of 1, 4 different paddings for each dimension satisfy the
equations. Thus classical frameworks like Tensorflow or PyTorch have different strategies
(thus imply different semantics) when implementing a convolution that preserves the input
size for height and width.

▶ Property 3 (Max pooling and ReLu activation layers). Applying a ReLu activation layer
before a max pooling layer is semantically equivalent to applying the ReLu activation layer
after the max pooling layer. However, the number of operations is reduced when applying the
ReLu activation after if the stride s = (sh, sw) of the pooling satisfies sh > 1 or sw > 1.

Proof. Let us assume that the input tensor I is of size (nh, nw, nc) and that we do the ReLu
before the pooling. Then we will do Ox,y,z = max(ReLu(I[sh.(x − 1) + 1 : sh.(x − 1) + kh +
1][sw.(y−1)+1 : sw.(y−1)+kw +1][z]))) thus ReLu will be applied nh×nw ×nc times. On the
contrary, if the ReLu is done after the pooling, we will do Ox,y,z = ReLu(max(I[sh.(x−1)+1 :
sh.(x − 1) + kh + 1][sw.(y − 1) + 1 : sw.(y − 1) + kw + 1][z]))) thus the ReLu will be applied
oh × ow × oc times. Note also that max(max(xi), 0) = max(max((xi, 0)), thus the semantics
is preserved. ◀

▶ Property 4 (Merging a batch norm with a convolution). Applying a batch norm layer after
a convolution layer is semantically equivalent to applying a single convolution with modified
kernels and bias. This reduces the number of operations and saves memory bandwidth required
for storing intermediate tensors.

Proof. Let suppose that the input tensor I is of size (nh, nw, nc) and that we have a
convolution layer Cp,K,s,B,f followed by a batch-norm layer BN α,B. The output tensor is
O = BN α,B(Cp,K,s,B,f (I)).

Ox,y,z = f
(

αz.
(∑fh

i=1
∑fw

j=1
∑fc

m=1 Kz
i,j,m.Ish·(x−1)+i,sh·(y−1)+j,m + Bx,y,z

)
+ Bz

)
= f

(∑fh

i=1
∑fw

j=1
∑fc

m=1 αz.Kz
i,j,m.Ish·(x−1)+i,sh·(y−1)+j,m + α.Bx,y,z + Bz

)
This is the equation of a convolution C′

p,α.K,s,α.B+B,f ◀

2.3 Model description for the code generation
Once a model has been trained, validated and possibly optimized with semantics-preserving
transformations, its detailed description can be exported from the learning framework. As
we want to generate the inference associated code, we assume the DNN representation to be
cleaned from any irrelevant training-related feature (e.g. loss). A first challenge brought by
the implementation is the semantic preservation: the reproducibility of the behavior observed
at the end of the design when executing the inference model within the training tool and on
the hardware target. Even though the semantics is clear in the literature, the training tools
do not encode the (default) operations3 in the same manner. This is particularly true for
convolutions, where some implementations start from the top left and some from the bottom
right of the matrix, or compute the padding in a different way. This has been observed
in [24] and could be reproduced by experimenting with the frameworks. There are lots of
works tackling the interoperability among frameworks, by proposing conversion tools [24] or

3 when not specifying in detail the parameters, which could be very tricky

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:7

defining open source formats such as protobuf [15], onnx [3] or nnef [38] (Neural Network
Exchange Format). A description must contain all the necessary information to encode the
same behaviour: this includes the number of layers, the type of every layer, the parameters of
each layer including the activation function specification and anything required to reproduce
the behaviour. So far, nnef is the most adequate format as it contains the necessary elements
to reconstruct most of the semantics of a model. We currently use a degraded version of
nnef in json to allow full text description (and not binary) to help the debugging but as
future work we will comply with the nnef.

3 C back-end

We have developed a Python prototype to generate C code. We do not detail the front-end
which first imports the json description file, focusing instead on the back-end. We reuse the
semantics of definition 3 considering every layer as an independent programming function
for the code generation. The forward-pass for inference then consists in calling each layer
function in the correct order with the accurate parameters and inputs.

3.1 Software architecture
The C back-end is composed of a library of functions and other model-dependent files. This
library is, to a certain extent, hard-coded as the bodies of functions needed for inference are
defined in the Python prototype and the corresponding C files will be generated whenever
needed. The model-dependent files refer to the weights, biases and auxiliary parameters that
are also written as C files.

NeuralNetwork

+layers : list of Layers
+user option : list

+load model()
+generate inference code()
+forward pass()

V1

+layers : list of Layers
+ user option : list

+generate inference code()
+forward pass()

V2

+layers : list of Layers
+user option : list

+generate inference code()
+forward pass()

V3

+layers : list
+layer fusion : bool

+generate inference code()
+forward pass()

Figure 3 Software architecture
– several versions.

Layers

+idx : int

+generate inference code()
+compute layer()

Dense

+weights : Numeric
+biases : Numeric
+input size : int
+output size : int

+generate inference
code(version)
+compute layer()

Conv2D

+nb kernels : int
+kernels size : int,int,int
+weights : Numeric
+stride : int,int
+input size: int,int,int

+generate inference
code(version)
+compute layer()

Pool

+stride : int,int
+window : int,int
+input size: int,int,int

+generate inference
code(version)
+compute layer()

MaxPool

+generate inference
code(version)
+compute layer()

AvgPool

+generate inference
code(version)
+compute layer()

Others

Figure 4 Software architecture of layers.

Figure 3 shows the software architecture as an uml diagram. There are several compilation
strategies named V1, V2 and V3. We decided to proceed like that in order to allow a design
space exploration (DSE): our goal was to understand what is the most suited approach for a
given model and hardware. The main class NeuralNetworks contains two variables: layers that
contains the list of Layers (another class defined hereafter) and user_option that captures
the options chosen by the user for the generation, such as applying semantics-preserving
transformations or selecting the version. That class defines three methods (in addition
to the classical init): load_model which imports the json DNN description; forward_pass

ECRTS 2022

3:8 Predictable Code for Machine Learning Applications

that concatenates the layers to encode the DNN function as the composition of layers and
generate_inference_code which generates the C code. All the classes V1, V2 and V3 inherit
from the NeuralNetworks class.

Figure 4 shows the Layers class which is inherited by several sub-classes, one per type
of layer. The main class stores the idx of the layer and basically defines two abstract
methods. The first is generate_inference_code, that implements the semantics of the layer
in C language, and the second is compute_layer, that actually executes the functions of the
layer, mainly for debugging and evaluation.

For each type of layer, we define the parameters (e.g. the weights and biases for dense)
as variables and the methods (generate_inference_code and compute_layer) are refined. We
did not detail all the layers (others grouping the missing ones).

The prototype supports all the layers defined in section 2.1 and the ReLu, Hyperbolic
Tangent, Sigmoid and Linear activation functions.

3.2 Version 1 – generic inference function

A layer is defined as a data type, a struct statement, whose fields encode the parameters
(e.g., type or input size). Every layer has the same definition and their particular parameters
will be defined as constants in a header file. The first hidden layer of the fully-connected
neural network of example 12 is a Dense layer depicted in listing 1.

Listing 1 A Dense layer – see Definition 11.
double biases_Dense_01 [3] = { 0 . 0 7 5 4 3 8 0 5 9 8 6 6 4 2 8 3 8 , 0 . 0 2 5 2 0 0 5 7 9 3 1 5 4 2 3 9 6 5 , 0 . 0 3 7 0 4 4 9 7 9 6 3 1 9 0 0 7 9 } ;

. . .
struct Layer net [nb_layers] {

[1] = {
. l a y e r _ t y p e = Dense ,
. l a y e r _ s i z e = l 1 _ s i z e , / / o u t p u t _ s i z e
. w e i g h t s = weights_Dense_01 ,
. b i a s e s = biases_Dense_01 ,
. a c t v _ f u n c t i o n = r e l u ,
. pad = 0x0 ,
. . . } , . . . } ;

layer_type and actv_function are function pointers to the aforementioned functions of
the C library. The other fields are pointers, mostly to arrays which are also written to C
source files. In the example, the biases field points to a static double array of size 3 shown in
the listing. Unnecessary fields point to null. The whole network is treated as an array, an
indexed linear sequence, of these structures.

Afterwards, an inference function is defined (see listing 2). It is a generic function, i.e.
identical for every DNN (whether fully-connected or not), responsible for connecting the
layers. It simply consists in 2 nested for loops (one ranging over the number of layers and
the second ranging over the number of operations to be done for the current layer).

Listing 2 Inference – see Definition 3.
f o r (i n t i =1; i < nb_layers ; ++i) {

net [i] . l a y e r _ t y p e (i , output_pre , output_cur) ;
f o r (i n t j = 0 ; j < net [i] . l a y e r _ s i z e ; ++j){

output_pre [j] = output_cur [j] ; }}

This logic of having generic definitions for the layers functions leads to a helpful simplicity
in terms of execution and code size. However, using function pointers leads the WCET
analysis tool to consider that each call made in the loop is a call to the most expensive
function (or to the same function in worst context), which can be very pessimistic.

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:9

3.3 Version 2 – inlined inference function
The second version keeps the definition and declaration of layers as was done for Version 1.
What changed is the inference function which is optimized by in-lining the programming
functions for layers and activations, i.e., directly writing their body to the C file. The only
parameters stored in a header C file are the weights and biases, since loops bounds are now
hard-coded, meaning that the inference function is no longer generic. The Listing 3 gives
part of the inference function for the first dense layer of example 12.

Listing 3 Dense layer in-lined code of the inference function.
f o r (i n t i = 0 ; i < 3 ; ++i) { / / D e n s e _ 1

d o t p r o d u c t = 0 ;
f o r (i n t j = 0 ; j < 2 ; ++j) {

d o t p r o d u c t += output_pre [j] ∗ weights_Dense_01 [(i + 3∗ j)] ; }
d o t p r o d u c t += biases_Dense_01 [i] ;
output_cur [i] = d o t p r o d u c t > 0 ? d o t p r o d u c t : 0 ; } . . .

The straightforward effect of this optimization is improving time performance since we
eliminate the function-call and struct parsing overheads, however it comes at the cost of
using more instruction space, as we duplicate code, producing larger source files, which can
be prohibitive in an embedded environment. Nonetheless, OTAWA produces more precise
estimation for the WCET since we are able to provide the correct context in which layers
are executed with no overestimation for loop bounds.

3.4 Version 3 – unrolled inference function
The third version is completely different and we reuse a philosophy of full in-lining (with
loop unrolling) that can be seen à la Scade [9]. In particular, there is no declaration of layers
and parameters as was done in listing 1. Listing 4 presents the beginning of the instructions
to deal with the first dense layer of example 12.

Listing 4 Dense layer code with in-lining and loop-unrolling.
d o t p r o d u c t = 0 ; / / D e n s e _ 1
d o t p r o d u c t += nn_input [0] ∗ −1.0743303298950195;
d o t p r o d u c t += nn_input [1] ∗ 0 . 8 1 4 0 4 0 3 0 3 2 3 0 2 8 5 6 ;
d o t p r o d u c t += 0 . 0 7 5 4 3 8 0 5 9 8 6 6 4 2 8 3 8 ;
output_cur [0] = d o t p r o d u c t > 0 ? d o t p r o d u c t : 0 ;
d o t p r o d u c t = 0 ;
d o t p r o d u c t += nn_input [0] ∗ −0.18220123648643494;
d o t p r o d u c t += nn_input [1] ∗ 0 . 7 0 3 6 4 9 6 9 9 6 8 7 9 5 7 8 ;
d o t p r o d u c t += 0 . 0 2 5 2 0 0 5 7 9 3 1 5 4 2 3 9 6 5 ;
output_cur [1] = d o t p r o d u c t > 0 ? d o t p r o d u c t : 0 ;

The main advantages of this optimization are the elimination of computational overhead
due to branching on the termination condition and the delay of reading data from memory,
since everything needed for the layers operations is self contained in a C source file. Similarly
to Version 2, we have the capacity of doing a better instruction pipelining. Additionally, we
remove incertitude about the execution path, which is advantageous for the WCET analysis.
However, it worsens the drawback already identified in the V2: the instruction space becomes
huge and for large DNNs, the approach is not sustainable.

4 Comparative approach for C code generation frameworks

In order to test in practice the advantages and limitations of our framework, as well as its
behavior compared to the other frameworks in the literature, we have defined the following
methodology. We have selected a set of representative benchmarks (section 4.1) of the
literature compliant with our restrictions (e.g. feed-forward DNN with restricted types of
layers). The idea was to consider a large test campaign by varying several parameters (number

ECRTS 2022

3:10 Predictable Code for Machine Learning Applications

and type of layers, data type of parameters, type of activation). We then define three criteria
to assess the quality of implementation in accordance with the DO-178C requirements (see
section 4.2). In particular, not all criteria require the same level of test campaign: computing
the WCET needs to be done once whereas the measurements need to be repeated several
times. Finally, we introduce the two code generation frameworks selected for comparison
(see section 4.3).

4.1 Benchmark description
Fully-connected networks – ACAS-Xu experience. The first models correspond to the
classical fully-connected networks as shown in the example 12. We rely in particular on the
airborne collision avoidance system for unmanned aircraft (ACAS-Xu) [27]. The ACAS-Xu
system takes five input variables, i.e., information from sensors measurements, and computes
five action advisories, represented by scores. The original design relies on a set of off-line
computed lookup tables (LUT) to make avoidance decisions. Some work [19, 12] proposed
to replace those LUT with some surrogate neural networks in order to reduce the memory
footprint and thus to improve the execution time. We consider several DNN models with
various structures, all with a ReLU activation function in hidden layers, linear activation for
output layer and floating-point single precision (FP32) data type:

regular structures with the same number of neurons per layer. We consider 7 hidden
layers with reg50 (50 neurons per layer), reg100 (100 neurons per layer) and reg200 (200
neurons per layer);
decreasing structures with decr128 (5 hidden layers of size (128, 128, 64, 32, 16)) and
decr256 (6 hidden layers of size (256, 256, 128, 64, 32, 16));

LeNet-5. The LeNet-5 model [23] refers to the feed-forward convolutional neural network
introduced in the example 13. It is one of the earliest models of this type and is known for
promoting the development of deep learning with the introduction of the back-propagation
algorithm. Although this model is simple, it contains the main basic layers: convolution,
pooling and dense layers. All the layers have the same tangent hyperbolic activation function,
except for the last one, where a softmax is performed. Thus, it has 44,426 trainable parameters
to stock and an inference pass executes 572,504 floating-point operations (FLOPs).

CifarNet. CifarNet was first introduced in [20] and was for a long time the state-of-the-art
model used to solve the object classification problem on the Cifar-10 dataset, which consists
of 32 x 32 RGB images of 10 classes. CifarNet is composed of three convolutional layers,
and its pooling layers, followed by two dense layers (see figure 5). The ReLu activation
function is applied to all the layers. The main difference with LeNet-5 is that it has a
three-dimensional input and the convolutional layers have additional parameters such as
padding and a non equal to 1 stride, which adds some complexity in terms of computation.
With this configuration the number of trainable parameters increases to 122,570 alongside
with 9,18 million FLOPs for inference.

...

conv1

32x32x3

32

ks=5x5x3
s=1x1

...

max pool1

30x30x32

32

k=2x2
s=2x2

...64

conv2

15x15x32

ks=3x3x32
s=1x1

...

max pool2

13x13x64

64

k=2x2
s=2x2

...
6x6x64

64

conv3

ks=3x3x64
s=1x1

flat

4x4x64 1024

dense1

ni=1024
no=64

64

dense2

ni=64
no=10

10

Figure 5 CifarNet CNN.

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:11

AlexNet. The AlexNet architecture was first defined in [21] and is considered as one of the
most influential works in computer vision. Indeed, thanks to the use of convolution layers
and GPUs to accelerate deep learning, it achieved a considerably improved performance over
other methods in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) of 2012.
The ImageNet dataset [13] is composed of 256 x 256 RGB images categorized under 1000
object class categories. AlexNet has five convolution layers, three pooling layers and three
dense layers (see figure 64) with approximately 61 million tunable parameters and 1,64 billion
FLOPs. Additionally, this model uses the ReLU activation function, which was presented as
novelty and proved to be more efficient in learning phase than the, at the time, standard
hyperbolic tangent [21].

...

conv1

228x228x3
64

ks=11x11x3
s=4x4

...

max pool1

55x55x64

64

k=3x3
s=2x2

...192

conv2

27x27x64

ks=5x5x64
s=1x1

...

max pool2

27x27x192

192

k=3x3
s=2x2

...
13x13x192

384

conv3

ks=3x3x192
s=1x1

...
13x13x384

256

conv4

ks=3x3x384
s=1x1

...
13x13x256

256

conv5
ks=3x3x256

s=1x1

...
13x13x256

256

max pool3
k=3x3
s=2x2

...256

avg pool4

6x6x56

k=1x1
s=1x1

4096

flat

6x6x256

dense1
ni=4096
no=4096

dense2
ni=4096
no=4096

4096

dense3
ni=4096
no=1000

4096 1000

Figure 6 AlexNet CNN.

4.2 Criteria of comparison
We have identified three criteria of comparison that correspond to the most important
avionics constraints to be respected.

Semantic preservation. To validate the correctness of the code generation, we need to
prove the semantic preservation, that is the capacity to reproduce the inference observed in
the training tool on the target. To do so, we could have used formal methods (such as Coq
[36] as was done for Velus [6]) but instead, we chose to review the code generated and run a
large campaign of tests. This technique may be less sound but is indeed an acknowledged
way in the certification standard DO178C [14]. The semantic preservation is assessed by
comparing the predictions of the C code with those provided by the training framework.

▶ Definition 15 (Semantic preservation). Let x = (x1, x2, ..., xn) be a vector representing the
training framework outputs for a given set of inputs and x̃ = (x̃1, x̃2, ..., x̃n) be the vector of
outputs of the C code execution. We define the absolute error as

∥x̃ − x∥∞ = max0≤i≤n|(x̃ − x)i|

This norm asserts a maximum bound on the error observed for a given testing sample.

Measured and Worst Case Execution Time. For each C code, we want to assess both its
performance and its predictability. The performance is evaluated by executing the code an
arm Cortex-A15 of the keystone [37] and measuring the execution time.

▶ Definition 16 (Measured execution time). To obtain the measured execution time, we run
a sample (i.e. an input) 50 times and store the average observed time.

4 There is a pre-processing that consists of a scaling from 256 x 256 to 228 x 228 of the input

ECRTS 2022

3:12 Predictable Code for Machine Learning Applications

In order to assess the predictability, we compile each C code for a lpc2138 arm-based
target, and compute its WCET with OTAWA [4]. The choice of the hardware (lpc2138
arm-based target) was dictated by the libraries available in the OTAWA framework. Even
though it is not representative of the arm Cortex-A15 of the keystone, the comparison
between the WCETs of the various versions still provides valuable insights on how the shape
of the generated code impacts the level of precision that can be achieved during the analysis.
Despite its limitations OTAWA is open-source and presently maintained, thus up to date
with current WCET calculation techniques. We did not experiment with other static timing
analysis tools that may or may not have the same limitations.

Memory layout of executable. Because it is important to efficiently use the resources in
order to be predictable and efficient, we also analyze the memory layout of the C executable.
The memory space is segmented into discrete blocks with specific purposes. We mainly focus
on the stack, data, BSS and text segments. The stack segment contains all the data needed
by a function call, including the arguments passed to the routine and its local variables. The
data segment contains the explicitly initialized global variables and static local variables, its
size does not change at runtime. Uninitialized variable data are stored in the BSS segment.
Lastly, the text segment contains the executable instructions and constant variable that can
not be modified.

4.3 Others C back-end frameworks
We chose two open-source frameworks from the TinyML [31] domain that were developed
with nearly the same objectives as ACETONE.

Keras2C. As explained in [10], the Keras2c back-end was developed to address real-time
applications and not to optimize the code for speed. Indeed, the generated C code layout
is very similar to Version 1 presented in Section 3.2, where the programming functions
describing the layers are generic and all the mutable data are passed into and out of each
function during the inference execution. Thus, in terms of timing analysis, Keras2c presents
the same downside as our first version, which is an overestimated WCET due to the inability
of passing the context in which a function is called when there are multiple occurrences of it.

Another drawback observed in this framework is the declaration of the weights of layers as
local variables initialized in the core of the function. Thus weight arrays are always allocated
on the stack. In case of large networks, heavy arrays are then stored within the stack and
such an approach is not at all recommended. Moreover, these arrays shall be initialized in
each function with a memcopy from the reference one declared by the compiler in the text
segment. This is not ideal for the computation time that is waste to copy weights for each
layer and each inference. We preferred a zero copy strategy using static variable declaration
for the weights, this saves space in the stack and computation time.

To avoid declaring to heavy array on the stack, Keras2c chooses to use dynamic memory
allocation when working with large neural networks, which implies additional certification
challenges in terms of verification and is not at all suited for WCET analysis.

MicroTVM with static C runtime. The TVM compiler [7] outputs a model execution graph
– encoded as json– and simplified parameters. In order to execute the model, the TVM
runtime has to rebuild this graph in memory, load the parameters, and then call the operator
implementations in the correct order by parsing the computation graph. This is the principle
of a graph interpreter / executor that we also found in Tensorflow.

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:13

uTVM [11] is a runtime developed to execute graphs produced by TVM on bare-metal
targets. The code generation flow remains mostly the same, specific changes are needed in
the runtime in order to avoid the usage of traditional operating-systems abstractions and
support standalone model inference. The main parts of uTVM process are:
1. the production of a relay module depending of the training framework;
2. compilation, where TVM implements each operator into tensor intermediate representation

followed by code generation;
3. integration of the generated code along with TVM C runtime library, into a user-supplied

binary project;
4. and deployment, when a binary is built and inference can be run.
A drawback of this graph executor logic in an avionics context is the amount of memory
overhead required in parsing the json, a dynamic scheduling and a dynamic memory allocation,
which we are not able to analyze.

To bypass these limitations, [35] provided a patch to uTVM that relies on a static
scheduling and memory allocation. We call that framework uTVM with static C runtime
or static uTVM subsequently. It uses the relay module produced by TVM and generates
a dedicated C source code that calls the generated operator implementations directly,
eliminating the need of a graph json parsing, and which is able to execute the model
statically. By doing minor changes in this static uTVM, we were able to proceed to a timing
analysis of the inference model and could observe that the generated code when analyzed
with OTAWA is very similar to our Version 2 (Section 3.3).

5 Experiments

This section summarizes the results when assessing the criteria for the different frameworks
and the different benchmarks. We have in addition to the benchmarks identified before,
considered VGG-16 [34]. Unfortunately, we only manage to generate the C code for V1 and
V2 and analyze the semantic preservation. Other frameworks and analyses were not able to
handle such a large network (138.36 million parameters).

Semantic preservation. We use the formula of definition 15 to compute the maximal
observed error over 1000 tests when the generated code were executed on a x86 target. The
three versions (V1, V2, V3) encode the same semantics, so no need to make them all appear.
For our tool and for Keras2c, the reference was Keras and for static uTVM it was Tensorflow
Lite. The results using single-precision FP are shown in table 1. We can note that all the
frameworks produce very similar results with errors in the order of 10−6, which is considered
acceptable. For the ACAS-Xu regular models, using the learnt parameters (weights and
biases) present in the lookup tables led to values larger than 1 (around 105) in outputs.
This had an influence in the floating point precision which in turn affected our semantic
preservation assessment, so we proceeded to use random initialized parameters and have
normalized outputs instead.

Measured and Worst Case Execution Time. We measured the inference time on the arm
Cortex-A15 (implementing the ARMv7 architecture) of the keystone. For all experiments,
caches were activated and we put data and code sections in the DDR. We used the flag
mfloat-abi=hard in order to use the neon floating point unit of the processor. C codes were
compiled without any optimization level (-O0). Table 2 shows the results where the measured
execution times (MET) are computed following definition 16.

ECRTS 2022

3:14 Predictable Code for Machine Learning Applications

Table 1 Results for the semantic preservation in FP32 precision.

Maximum error

Framework ACAS-Xu
reg50

ACAS-Xu
reg100

ACAS-Xu
reg200

ACAS-Xu
decr128

ACAS-Xu
decr256 LeNet-5 CifarNet AlexNet VGG-16

Ours (V1) 2.0265e-06 1.4305e-06 4.7683e-07 1.4305e-06 5.9604e-07 1.7881e-06 6.1988e-06 2.142e-06 4.7087e-06
Keras2C 2.0265e-06 1.4305e-06 4.7683e-07 8.34465e-07 9.5367e-07 2.0265e-06 5.6028e-06 – –

uTVM static 1.6689e-06 9.5367e-07 1.1921e-07 2.3842e-07 2.3842e-07 1.9073e-06 4.2915e-06 – –

Table 2 Measured execution times on the arm with -O0
flag.

Execution time [cycles]

Framework ACAS-Xu
reg50

ACAS-Xu
decr128

ACAS-Xu
decr256 LeNet-5 CifarNet

Ours (V1) 381 439 888 190 3 975 111 23 934 418 464 386 831
Ours (V2) 243 195 533 767 2 339 851 12 186 378 233 450 428
Ours (V3) 357 483 650 895 6 466 297 – –
Keras2C 499 315 1 104 134 4 977 515 25 786 401 642 390 830

uTVM static 416 796 681 708 2 677 785 10 201 249 193 599 362

Table 3 Measured execution
times on the arm with -O3 flag.

Execution time [cycles]

Framework ACAS-Xu
decr256 CifarNet

Ours (V2) 441 992 53 773 643
Keras2C 2 117 467 273 594 356

uTVM static 291 609 69 022 625

Among our versions, V2 produces the best MET. V2 has even a better MET than Keras2c
and static uTVM for fully-connected networks (ACAS), and is slightly slower that uTVM
for CNNs. Indeed, for the latter, static uTVM performs additional optimization (e.g. on
tensor operations). On fully-connected networks, the tensor operations are basic matrix
multiplications that do not require any optimization techniques. Keras2c has the worst MET
for all benchmarks: we attribute that to the strategy to allocate weights tensors on the stack
that adds a memcpy overhead at each layer (copy the weights from .text to stack).

Outside the avionics world, performance is looked for and thus inference codes are
generally compiled with the -O3 option. Calling for this option enables the utilization of
Single Input Multiple Data (SIMD) instructions on the keystone. We thus also compiled two
benchmarks with this flag to observe the impact. The results are given in table 3. First,
for all versions, the MET is greatly reduced, due to the SIMD instructions well adapted to
these algorithms. Keras2c has the same drawback due to copy of weights on the stack. Since
-O3 only optimizes the computation of tensor operations, the time to copy data remains the
same. Thus, the difference between Keras2c and two others remains high. Secondly, V2 has
best MET for CNN and worst with fully-connected network. We do not try to optimize the
utilization of SIMD instruction (array organization), thus we also believe this is not the case
of static uTVM. This would require a dedicated back-end for floating point unit of arm.

Table 4 WCET given by OTAWA for different benchmarks.

WCET [cycles]

Framework ACAS-Xu
reg50

ACAS-Xu
reg100

ACAS-Xu
reg200

ACAS-Xu
decr128

ACAS-Xu
decr256 LeNet-5 CifarNet

Ours (V1) 8 025 404 21 288 195 84 655 395 26 092 073 121 206 406 6 881 827 044 361 743 738 250
Ours (V2) 5 617 830 13 971 737 55 122 437 6 128 253 24 461 227 165 718 749 3 018 534 290
Keras2c 5 033 535 19 692 951 79 383 490 36 838 054 112 237 358 1 160 385 934 97 959 064 345

static uTVM 4 008 298 15 711 232 58 832 502 6 765 413 27 015 092 113 449 651 3 215 754 680

Table 4 shows the WCET of the benchmarks. OTAWA requires flow-fact information,
that is information about the control flow: loop bounds and addresses of targets for indirect
function calls (function pointers). Obtaining this information for our generated code was

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:15

easy (and making this process automatic is part of future work). For Keras2c and uTVM,
we had to first modify the generated code to analyze only the inference code (as we did for
our code), and to leave the initialization functions out of the WCET. OTAWA was not able
to provide a WCET bound for V3 nor for AlexNet and VGG-16 architectures, because those
binaries are too large and it runs out of memory during the analysis.

Looking at Table 4, we observe that shape of the C code has a significant impact on
the WCET bound. This is not simply a question of performance optimizations, but also of
the capacity to provide precise flow-fact information to the analyzer. C codes that employ
function pointers (V1 and Keras2c) overall get larger WCETs than the others, because we
were unable to provide contextual information about the layers function calls. When all
layers perform an equivalent number of operations (the ACAS-Xu regular structures), this
impact is reduced. For the other cases, the pessimism appears clearly such as for decr256.
Indeed, although decr256 performs less computations than reg200, as attested by the WCET
of V2 and static uTVM, the WCETs for V1 and Keras2c are significantly higher than the
ones of the reg200.

OTAWA assumes that each call to a layer function is a call to the worst layer. In V2, the
layers are implemented as a sequence of separate loops, and in static uTVM as a sequence of
separate instructions calling the layer functions. Consequently, OTAWA is able to benefit
from the detailed flow-fact information for these versions.

Memory layout of executable. We analyzed the memory layout of the generated codes
when compiled to ARM Cortex-A15. For the sake of simplicity, we only present the results
obtained for the ACAS-Xu reg50 model as the same trend is observed for the other models.
From Table 5 it is possible to understand how different the memory usage of the different
frameworks is.

Table 5 Memory layout of the executable generated for ACAS-Xu reg50.

Size of memory segments [bytes]

Benchmark stack .data .bss .text
Ours (V1) 240 66 548 708 17 004
Ours (V2) 158 65 860 708 18 556
Ours (V3) 140 2 444 708 1 603 980
Keras2c 129 280 – 2 840 12 744 060

static uTVM 210 – 2 808 12 688 208

In our work, we privileged writing all parameters as constants to statically allocate all
memory at compile time and better use the stack, which is also translated in the data segment
size. The non-initialized data basically corresponds to the outputs. Additionally, in V3 we
observe that the text segment is bigger since all constants are directly written in the C source
code. We notice that, V1 and V2 are very efficient in terms of .text and stack size compared
to Keras 2c or static uTVM. Because Keras2c allocates all the weights tensors on the stack,
the stack size is higher than other versions. Moreover, weights shall also be present in the
.text segment. We notice, that the stack size is much higher than the size required for storing
weights. In addition Keras 2c allocates work arrays that are not used for computing dense
layer. Our stack measurement is coherent with stack information given by gcc compiler. For
uTVM, we explain the size of the .text by all tensor operations functions embedded in the
TVM library. In our version, we only embedded necessary tensor operations function.

ECRTS 2022

3:16 Predictable Code for Machine Learning Applications

6 Related Work

We found plenty of frameworks that provide the possibility to run neural networks. Most of
them rely on an inference engine that dynamically explores a computation graph. Without
ignoring them, we decided to focus the related work on tools that are more adapted to
avionics constraints.

Generic C code generator frameworks. The first work [8] is guided by avionics constraints
as well and, in order to provide an efficient implementation of DNN inference models, the
authors developed an automatic code generator that allows preserving semantics of the trained
machine learning model. However, the code generation tool is not extensively described nor
made available.

The second is Keras2c [10]. This method consists in a library to convert Keras models
into real-time compatible C code, supporting a wide range of layers and relying only on
C standard library functions. In the section 5, we have extensively compared our results
with Keras2c. The study of [29] also investigates a predictable implementation of neural
networks for safety-critical cyber-physical systems. They embed the Keras2c code on Patmos,
a time-predictable processor, which is part of the larger T-CREST [32] project. The software
tool-chain of the latter includes a LLVM-based compiler and the Platin tool for WCET
analysis.

uTVM [11] is an extension of TVM that provides an implementation of TVM for micro-
controllers already presented in section 4.3. The adaptation of uTVM with static C runtime
[35] has extensively been compared with our results in the section 5.

N2D2 [33] is an end to end framework from the creation of the model to its implementation
including the training. On the code generation, the authors explore how approximation
techniques can improve the performance and energy efficiency of hardware accelerators in
machine learning applications. We will assess these tools as future work.

Proprietary code generator frameworks. New massively parallel hardware adapted to
neural networks need specific programming pattern in order to obtain the best possible
computation performance. Hardware manufacturers provide tools that enable clients to
generate optimized code for their target. We can cite eIQ [26] from NXP, TensorRT [25]
from NVIDIA, KaNN [17] from Kalray or OpenVINO [16] from Intel. eIQn, TensorRT and
OpenVino rely on a dynamic graph explorer runtime while KaNN proposes a static scheduling
and memory allocation. These tools only generate optimized code for specific targets and
do not implement a generic approach. Xilinx Vitis AI is a tool that generates application
code for Xilinx targets. Such targets are composed of a host CPU (from the x86 or ARM
families) and a hardware accelerator that is composed of programmable logic (FPGA). The
tool generates C code for the host, and so-called “kernels” that are called by the host (using
an API such as OpenCL) and executed by the accelerator. The data transfers between the
host and the accelerator are handled using Xilinx runtime.

CoreAVI5 claims to develop code generation toolchains for AI models compatible with
DO-178C and ISO-26262 requirements. They mainly target GPUs with Intel Tiger Lake or
AMD E9171. We were not able to assess their solution and we believe that they are only
supporting CUDA or Vulkan code generation (no C generation).

5 https://coreavi.com

https://coreavi.com

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:17

The Matlab Coder toolbox allows the generation of the C code for the inference of an
already trained network. The generated code requires no external library, which makes it
portable. Ansys6 proposes to use the Scade toolchain to generate C code compatible with
DO178C requirements. To our knowledge, this targets at this time traditional processors
and relies on the conversion of neural networks models into Lustre nodes. Then, they use
the qualified C code generator. The converter AI models into Scade will have to guarantee
the semantic preservation.

LLVM front-end frameworks. TVM [7] is a tool capable of compiling machine learning
models from different popular frameworks and generating specific low-level optimized code
for a diverse set of hardware back-ends.

MLIR (Multi-Level Intermediate Representation Overview) [22] is a LLVM intermediate
representation which was developed with the idea to use the same IR for all compiler
optimizations (hence the “Multi-Level”). It contains particular features that target machine
learning applications, in particular it is possible to represent computation graphs in MLIR.
MLIR can be instantiated into dialects that allow to put the focus on particular aspects of
the code, to specify constraints or apply specific optimizations. An example of MLIR dialect
that is particularly relevant to critical embedded applications such as the ones we target is
described in [30]: it enables the semantics of synchronous reactive applications inside an
MLIR description.

7 Conclusions

Machine learning applications are proven to be useful and are largely used in many domains,
however, most of them are not built with avionics constraints in mind. In this work, we
presented our approach to automatically reproduce the inference model of feed-forward
neural networks in C code, respecting semantic preservation, predictability and aeronautic
requirements. We proposed a framework that is modular and straightforward, capable of
generating readable and traceable code. We also compared the present work with the state
of the art and proved our approach to be competitive in the evaluated criteria.

As future work, we have already identified along the paper many improvements to be
made (e.g. compliance with nnef, automatic flow-fact generation). We will continue exploring
other frameworks to get the best practices. We also plan to target parallel C code execution.
The current versions are suitable for pipelining or parallelizing computations.

References
1 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org. URL: https://www.tensorflow.org/.

2 Erin Alves, Devesh Bhatt, Brendan Hall, Kevin Driscoll, Anitha Murugesan, and John Rushby.
Considerations in assuring safety of increasingly autonomous systems. NASA, 2018.

3 Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange. https:
//onnx.ai/, 2019.

4 C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: an Open Toolbox for Adaptive
WCET Analysis (regular paper). In IFIP Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems (SEUS), 2010.

6 https://www.ansys.com/fr-fr/products/embedded-software/

ECRTS 2022

https://www.tensorflow.org/
https://onnx.ai/
https://onnx.ai/
https://www.ansys.com/fr-fr/products/embedded-software/

3:18 Predictable Code for Machine Learning Applications

5 Siddhartha Bhattacharyya, Darren Cofer, David Musliner, Joseph Mueller, and E. Engstrom.
Certification considerations for adaptive systems. 2015 International Conference on Unmanned
Aircraft Systems, ICUAS 2015, pages 270–279, July 2015. doi:10.1109/ICUAS.2015.7152300.

6 Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel
Rieg. A formally verified compiler for lustre. In Albert Cohen and Martin T. Vechev, editors,
Proceedings of the 38th Conference on Programming Language Design and Implementation
(PLDI), pages 586–601, 2017.

7 Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q. Yan, Leyuan Wang, Yuwei
Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM: end-to-end optimization
stack for deep learning. CoRR, abs/1802.04799, 2018.

8 Sergei Chichin, Dominique Portes, Marc Blunder, and Victor Jegu. Capability to embed deep
neural networks: Study on cpu processor in avionics context. In 10th European Congress
Embedded Real Time Systems (ERTS 2020), 2020.

9 Jean-Louis Colaço, Bruno Pagano, Cédric Pasteur, and Marc Pouzet. Scade 6: From a kahn
semantics to a kahn implementation for multicore. In 2018 Forum on Specification Design
Languages (FDL), pages 5–16, 2018.

10 Rory Conlin, Keith Erickson, Joseph Abbate, and Egemen Kolemen. Keras2c: A library
for converting keras neural networks to real-time compatible C. Eng. Appl. Artif. Intell.,
100:104182, 2021.

11 TVM consortium. microTVM: TVM on bare-metal, 2021. URL: https://tvm.apache.org/
docs/topic/microtvm/index.html.

12 Mathieu Damour, Florence De Grancey, Christophe Gabreau, Adrien Gauffriau, Jean-Brice
Ginestet, Alexandre Hervieu, Thomas Huraux, Claire Pagetti, Ludovic Ponsolle, and Arthur
Clavière. Towards certification of a reduced footprint acas-xu system: A hybrid ml-based
solution. In 40th International Conference Computer Safety, Reliability, and Security (SAFE-
COMP), pages 34–48, 2021.

13 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), pages 248–255, 2009.

14 EUROCAE / RTCA. Do-178c, software considerations in airborne systems and equipment
certification, 2011.

15 Google. Protocol buffers, 2001. URL: https://developers.google.com/protocol-buffers/.
16 Intel. Open vino documentation, 2018.
17 Kalray. Kann platform for high-performance machine learning inference on kalray’s mppa®

intelligent processor, 2021.
18 Kalray. Mppa® coolidge™ processor - white paper, 2021. URL: https://www.kalrayinc.

com/documentation/.
19 Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex:

An efficient SMT solver for verifying deep neural networks. In Rupak Majumdar and Viktor
Kuncak, editors, 29th International Conference Computer Aided Verification (CAV), pages
97–117, 2017.

20 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

21 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C.
Burges, Léon Bottou, and Kilian Q. Weinberger, editors, 26th Annual Conference on Neural
Information Processing Systems, pages 1106–1114, 2012.

22 Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques A.
Pienaar, et al. MLIR: scaling compiler infrastructure for domain specific computation. In
Jae W. Lee, Mary Lou Soffa, and Ayal Zaks, editors, International Symposium on Code
Generation and Optimization, (CGO), pages 2–14, 2021.

https://doi.org/10.1109/ICUAS.2015.7152300
https://tvm.apache.org/docs/topic/microtvm/index.html
https://tvm.apache.org/docs/topic/microtvm/index.html
https://developers.google.com/protocol-buffers/
https://www.kalrayinc.com/documentation/
https://www.kalrayinc.com/documentation/

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:19

23 Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard,
Wayne E. Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten zip
code recognition. Neural Comput., 1(4):541–551, 1989.

24 Y. Liu, C. Chen, Ru Zhang, Tingting Qin, Xiang Ji, Haoxiang Lin, and Mao Yang. Enhancing
the interoperability between deep learning frameworks by model conversion. Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020.

25 NVIDIA. Tensorrt documentation, 2021.
26 NXP. Eiq™ ml software development environment, 2020. URL: https://www.nxp.com/

design/software/development-software/eiq-ml-development-environment:EIQ.
27 Michael P. Owen, Adam Panken, Robert Moss, Luis Alvarez, and Charles Leeper. Acas xu:

Integrated collision avoidance and detect and avoid capability for uas. In 2019 IEEE/AIAA
38th Digital Avionics Systems Conference (DASC), pages 1–10, 2019.

28 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

29 Hammond Pearce, Xin Yang, Partha S. Roop, Marc Katzef, and Torur Biskopsto Strom.
Designing neural networks for real-time systems. IEEE Embedded Systems Letters, pages 1–1,
2020.

30 Hugo Pompougnac, Ulysse Beaugnon, Albert Cohen, and Dumitru Potop-Butucaru. From SSA
to Synchronous Concurrency and Back. Research Report RR-9380, INRIA Sophia Antipolis -
Méditerranée (France), December 2020. URL: https://hal.inria.fr/hal-03043623.

31 Partha Pratim Ray. A review on tinyml: State-of-the-art and prospects. Journal of King Saud
University - Computer and Information Sciences, 34(4):1595–1623, 2022.

32 Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso, Jamie
Garside, et al. T-crest: Time-predictable multi-core architecture for embedded systems.
Journal of Systems Architecture, 61(9):449–471, 2015.

33 Olivier Sentieys, Silviu Filip, David Briand, David Novo, Etienne Dupuis, Ian O’Connor, and
Alberto Bosio. Adequatedl: Approximating deep learning accelerators. In 24th International
Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS 21), 2021.

34 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference
on Learning Representations (ICLR), 2015.

35 Rafael Stahl. µtvm staticrt codegen, 2021. URL: https://github.com/tum-ei-eda/utvm_
staticrt_codegen.

36 The Coq Development Team. The Coq Proof Assistant Reference Manual, version 8.0 edition,
2004. URL: http://coq.inria.fr/.

37 Texas Instruments. TCI6630K2L Multicore DSP+ARM KeyStone II System-on-Chip. Tech-
nical Report SPRS893E, Texas Instruments Incorporated, 2013.

38 The Khronos NNEF Working Group. Neural Network Exchange Format, 2018.
39 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David

Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The worst-case
execution-time problem – overview of methods and survey of tools. ACM Trans. Embed.
Comput. Syst., 2008.

ECRTS 2022

https://www.nxp.com/design/software/development-software/eiq-ml-development-environment:EIQ
https://www.nxp.com/design/software/development-software/eiq-ml-development-environment:EIQ
https://hal.inria.fr/hal-03043623
https://github.com/tum-ei-eda/utvm_staticrt_codegen
https://github.com/tum-ei-eda/utvm_staticrt_codegen
http://coq.inria.fr/

Using Quantile Regression in Neural Networks for
Contention Prediction in Multicore Processors
Axel Brando #

Barcelona Supercomputing Center (BSC), Spain

Isabel Serra #

Barcelona Supercomputing Center (BSC), Spain
Centre de Recerca Matemàtica, Barcelona, Spain

Enrico Mezzetti #

Barcelona Supercomputing Center (BSC), Spain
Maspatechnologies S.L, Barcelona, Spain

Jaume Abella #

Barcelona Supercomputing Center (BSC), Spain

Francisco J. Cazorla #

Barcelona Supercomputing Center (BSC), Spain
Maspatechnologies S.L, Barcelona, Spain

Abstract
The development of multicore-based embedded real-time systems is a complex process that encom-
passes several phases. During the software design and development phases (DDP), and prior to the
validation phase, key decisions are taken that cover several aspects of the system under development,
from hardware selection and configuration, to the identification and mapping of software functions
to the processing nodes. The timing dimension steers a large fraction of those decisions as the
correctness of the final system ultimately depends on the implemented functions being able to execute
within the allotted time budgets. Early execution time figures already in the DDP are thus needed
to prevent flawed design decisions resulting in timing misbehavior being intercepted at the timing
analysis step in the advanced development phases, when rolling back to different design decisions is
extremely onerous. Multicore timing interference compounds this situation as it has been shown to
largely impact execution time of tasks and, therefore, must be factored in when deriving early timing
bounds. To effectively prevent misconfigurations while preserving resource efficiency, early timing
estimates, typically derived from previous projects or early versions of the software functions, should
conservatively and tightly overestimate the timing requirements of the final system configuration
including multicore contention. In this work, we show that multi-linear regression (MLR) models
and neural network (NN) models can be used to predict the impact of multicore contention on tasks’
execution time and hence, derive contention-aware early time budgets, as soon as a release (binary)
of the application is available. However, those techniques widely used in the mainstream domain
minimize the average/mean case and the predicted impact of contention frequently underestimates
the impact that can potentially arise at run time. In order to cover this gap, we propose the use of
quantile regression neural networks (QRNN), which are specifically designed to predict the desired
high quantile. QRNN reduces the number of underestimations compared to MLR and NN models
while containing the overestimation by preserving the high quality prediction. For a set of workloads
composed by representative kernels running on a NXP T2080 processor, QRNN reduces the number
of underestimations to 8.8% compared to 46.8% and 31.3% for MLR and NN models respectively,
while keeping the average over estimation in 1%. QRNN exposes a parameter, the target quantile,
that allows controlling the behavior of the predictions so it adapts to user’s needs.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture

Keywords and phrases Neural Networks, Quantile Prediction, Multicore Contention

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.4

© Axel Brando, Isabel Serra, Enrico Mezzetti, Jaume Abella, and Francisco J. Cazorla;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 4; pp. 4:1–4:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:axel.brando@bsc.es
https://orcid.org/0000-0001-8103-391X
mailto:isabel.serra@bsc.es
https://orcid.org/0000-0002-2465-8574
mailto:enrico.mezzetti@bsc.es
https://orcid.org/0000-0002-1886-2931
mailto:jaume.abella@bsc.es
https://orcid.org/0000-0001-7951-4028
mailto:francisco.cazorla@bsc.es
https://orcid.org/0000-0002-3344-376X
https://doi.org/10.4230/LIPIcs.ECRTS.2022.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2 Quantile NN for Multicore Contention Prediction

Funding This work has been partially supported by the Spanish Ministry of Economy and Com-
petitiveness (MINECO) under grant PID2019-110854RB-I00 / AEI / 10.13039/501100011033 and
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 772773).

1 Introduction

Software applications control an increasing number of complex functionalities in real-time
embedded products. For example, in the automotive domain, Advanced Driver Assistance
System (ADAS) functionalities, like lane keeping and obstacle detection, in modern cars
are implemented in software, which is going to be the central element to reach full (L5)
autonomy. This trend towards smarter artificial intelligence based on-board software drives
an unprecedented increase in the size of the software component of embedded real-time
systems in domains like automotive and avionics. In fact, embedded real-time products
already encompass software with millions of lines of code. On the other hand, the use of
multicores to provide the required computing performance compounds the complexity to
develop and validate multi-million line real-time software products.

During the design and development phases (DDP) engineering process, the integrator
selects the configuration of the hardware by choosing values for the control registers (critical
configuration settings in CAST-32A [9] jargon). Also, in order to complete the intended final
configuration (IFC) [9], the integrator determines the mapping of tasks to each computational
node, which in turn determines which tasks will be co-executed in the multicore and
hence, compete for its resources. Those decisions are steered by the timing and functional
requirements of the software functions the system is meant to support. Based on those
requirements and the system schedule, the software providers are assigned a time budget for
each of their software function which is meant not to be exceeded at run time. In the DDP,
multiple configuration scenarios (e.g, configuration, task mapping, schedules) are assessed in
order to converge to the system’s IFC.

However, timing budgets are only consolidated against timing requirements in the late
validation phases when timing analysis is typically performed to derive reliable worst-case
execution time (WCET) bounds for each task. Capturing a timing misconfiguration so late
in the development process will result in costly roll-backs in the design and implementation
phases. In particular, building on optimistic timing estimates to derive and allocate time
budgets to an application will result in timing violations to arise in the verification and
validation stages and will require changes to the application itself and/or to the system
schedule, which will cause the system to undergo once again through the V&V process.
For this reason, while early figures are not meant to be as accurate as late WCET timing
bounds, they are still required to conservatively over-estimate tasks’ timing requirements as
much as possible. Moderate over-estimation can lead to slight over-provisioning and will not
jeopardize the overall system timing behavior.

Providing early timing estimates for the software functionalities is a challenging task in
many ways as estimates are typically derived from previous experience on past projects or
from representative early software implementations. The provision of such early estimates is
even more challenging when the system is deployed on multicore platforms because tasks
affect each other timing behavior causing variable access latencies when simultaneously
accessing shared hardware resources. This translates into variability in their execution time,
typically referred to as multicore timing interference or contention impact, which can cause
20x or more performance degradation [29, 55] and ultimately complicates the determination
of trustworthy time bounds.

A. Brando, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla 4:3

Exploring and assessing a large set of scenarios in the DDP requires assessing also the
impact of contention in each considered configuration, where task mapping and schedule play
a critical role. A naive approach to derive contention information during DDP consists in
exhaustively executing each scenario on the actual board collecting evidence on how tasks
affect each other timing. This approach, however, is quickly defeated by the time it takes
to carry each experiment, which can limit the design space (i.e the schedules) that can be
explored. Instead, a faster approach consists in developing multicore prediction models that
can provide accurate estimates of tasks execution time when co-executed in a multicore.

Analysis. Multi-linear regression (MLR) models and neural network (NN) models, which
have been originally developed for the mainstream domain [52, 11, 59, 34], can be adapted
to the problem at hand to explore a large fraction of the design space in a short amount
of time. In particular, such models could be in principle exploited to produce early timing
estimates of a system as soon as a binary release of the applications is available. While
these approaches produce reasonably accurate estimates of tasks’ execution time, they are
inherently designed to predict the average behavior of the phenomena they model, since
the most accurate prediction is the one closer to the majority of cases and thus closer to
average or median patterns. As we observed, it is crucial for early estimates in DDP to
be over-approximating the behavior in the final configuration and we must seek for more
conservative models to diminish the risk of being misled into optimistic estimates.

Proposal. On these grounds, we propose a prediction model based on quantile-regression
neural networks (QRNN) that can conservatively predict the impact of multicore timing
interference. QRNN aim at optimizing the quantile regression loss function which, generically,
allows approximating any conditional desired quantile. This enables the user to choose the
(high) quantile that best adapts to its needs. Overall, QRNN allows fast evaluation of system
configuration by providing conservative, yet accurate, predictions of contention impact.

Evaluation. We show the benefits of QRNN over MLR and NN on a set of representative
kernels used in artificial intelligence software for autonomous operation on an avionics
representative multicore processor, the NXP T2080. Our results show that QRNN reduces
the number of workloads for which time budgets under estimate (i.e. are lower than the
actual multicore contention time of the task) to 8.8% compared to 46.8% and 31.3% for MLR
and NN, respectively.

The rest of this work is organized as follows. Section 2 narrows down the specific multicore
contention problem addressed and introduces MLR and NN. Section 3 introduces QRNN.
Section 4 presents our evaluation framework. Section 5 reports on the experimental results.
Section 6 covers the most relevant related work. Section 7 presents some lines that can be
explored as a follow up of this work. Section 8 presents the main conclusions of this work.

2 Multicore Contention Prediction

Multicore contention modeling is a wide problem that spans several domains and stages in
the software development process [43, 11, 42, 3]. We start by narrowing down the particular
multicore contention problem we address and a set of properties for the resulting techniques
to adhere to the specific requirements of the particular application scenario (those properties
were summarized already in Section 1). The main acronyms we use are described in Table 1.

We focus on a deployment scenario in which the target multicore platform is fixed and
the set of applications to be integrated in the final embedded product is known. That is, the
functionality to be provided for the product is frozen and so is the software to implement
it. A first release of the applications has been made so there exists an executable of each

ECRTS 2022

4:4 Quantile NN for Multicore Contention Prediction

Table 1 Main acronyms used in this work.

Acronym Definition Acronym Definition
ADAS Advanced Driver Assistance System DDP Design and Development Phases
DS Data Set EMs Event Monitors
H Holdout set IFC Intended Final Configuration
M All the model hyper-parameters MAE Mean Absolute Error
MCP Multicore Processor MLR Multi-Linear Regression
MSE Mean Square Error NN Neural Network
QR Quantile Regression QRNN Quantile Regression NN
SoC System on Chip TOI Task Order Invariant
TUA Task Under Analysis TVE (T)rain, (V)alidation, t(E)st set
V&V Validation and verification

application. Applications can suffer variations as part of the natural development process
across different releases, yet preserving the same functionality. These variations include, for
instance, optimizations to its performance or functional behavior. We target a homogeneous
multicore processor in which the performance of each core is identical and the time to access
any off-core resource is the same from every core. This is the case of the T2080 when its cache
is not partitioned or when the L2 cache is configured so each core receives an even number of
ways, as we do in this work. However, it is not the case if, for instance, L2 partitions across
cores differ in size. It is nor the case for other architectures, like some models of the Intel
Xeon, in which the cores and slices of the L3 cache are connected via a ring interconnect, so
the time it takes a core to access a slice depends on their location in the ring.

Our work contrasts with other works that derive early estimates at the model level (e.g.
Matlab) [17] and estimates “as the code is written” [18]. Others focus on scenarios where the
hardware platform is not even available and compile the source code for different instruction
set architectures on generic and parameterizable processor models to obtain early timing
estimates on the impact of the architecture setup [19]. The majority of these approaches
focus on the analysis of programs in single-core scenarios and do not address the impact
of multicore contention. The works addressing multicore interference, instead, necessarily
consider more mature setups where consolidated or even final software products are made
available [52, 11, 61, 59, 50].

The goal of our contention modeling exercise is not producing a generic model for the
target platform (T2080 in our case) that is application independent. Instead, the model
considers the applications provided and contributes to speeding up the selection of the IFC.

▶ Property 1 (Prediction speed). DDP multicore contention models for real-time systems
must be fast to enable exploring large design spaces.

Several previous works [29, 55] show that contention may dominate the execution time of
tasks running in a multicore with some applications easily suffering an increase above 2x-5x
with respect to their solo execution time even for small core counts like 4 cores (corner case
programs can suffer much higher slowdown). For DDP, no reference figure has been reported
for the accuracy of timing predictions, which is in fact end-user and application dependent.
Yet, we regard the pessimism introduced by our QRNN model (1% on average and 1.49% in
the worst case) as quite reasonable for DDP. Besides it is key to produce conservative early
timing estimates that tend to over-approximate the behavior in the IFC, therefore reducing
the risk of producing optimistic estimates.

A. Brando, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla 4:5

Figure 1 Contention Models Usage. Figure 2 Contention Modelling Training.

▶ Property 2 (Tendency to Overestimation). DDP multicore contention models for real-time
systems should tend towards overestimation to reduce the risk of experiencing timing violations
too late in the development process, requiring excruciatingly onerous rollbacks and re-design.

Trustworthy execution time bounds for a task τi can be derived when the task executes in
isolation, ET solo

i . For multicore processors (MCP), software’s timing behavior also depends
on the contention factor, often considered as a ∆ over its execution time in isolation 1, which
is expressed as ET mcp

i = ET solo
i × ∆.

Deriving time budgets for the multicore execution time requires estimating a bound to ∆.
Contention bounds can be derived by experimentation, i.e. by running all potential workloads
on the target board under the IFC so that the timing budget for τi can be expressed as
TBmcp

i = ET solo
i × O∆max

i , where O∆max
i is the maximum observed contention impact

suffered by τi. However, this approach is inherently time consuming and cannot be exploited
for exploring non-negligible design spaces.

In terms of the number of workloads, for a heterogeneous multicore it can be computed as
the permutation with repetition of all contenders AC , where A is the number of applications
in the data set (DS) that can repeat in several cores and C is the number of cores. The
number of workloads reduces to CRC

A = (A+C−1)!
C!(A−1)! for homogeneous multicore architectures.

In terms of runs, depending on the experimentation environment in each run of a workload
we can obtain the slowdown for one of the tasks in the workload or all C tasks. The former,
our case, requires C runs per workload to obtain O∆n,i for each task, while the latter needs
one per workload. However, for homogeneous multicores, fewer runs are required when several
copies of the same task are present in the workload, in particular, A · CRR

A = A · (A+R−1)!
R!(A−1)!

where R = C − 1 is the number of contenders.
Overall, in the general case exhaustively covering all configurations on the real board is

unaffordable, even if each experiment requires just few milliseconds. With the number of
cores in the multicore processors evaluated in the real-time domains increasing (e.g., the
NXP Layerscape LX2160 already encompasses 16 cores), the number of workloads increases
to millions.

2.1 Contention Modeling
Contention models are generally orders of magnitude faster than experimentation in the
target board and can be executed in high-performance computing clusters, which allows many
more parallel experiments than making executions on few target boards that can be available
for experimentation. In this line, standard fully-fledged timing analysis techniques are not
fit for deriving early estimates. Measurement based timing analysis requires running each
workload on the target board whereas static timing analysis has known scalability issues.

1 The main terms used in the mathematical formulation is summarized in Table 2. Instead Table 1 shows
the main acronyms used in the main text.

ECRTS 2022

4:6 Quantile NN for Multicore Contention Prediction

Table 2 Main terms used in the formulation (notation) in this work.

Term Definition Size
A Total number of tasks (applications) in the data set
C Number of cores (e.g. C = 4)
DS Data Set
H,I Number of output and input values
hl

i i-th input/output value in layer l
J Number of EMs per task/core (e.g. J = 262)
K Number of EMs per workload, K = J · C (e.g. K = 1048)
N Number of workloads in the DS
EMn,i All the EM of task τi in workload n when it runs in isolation J

EMn All the EMs of the n-th workload (point) in the DS K

EM∗ All the EMs for all the workloads in the DS N · K

emj
n,i The j-th EM of τi of workload n 1

emk
n The k-th EM of the n-th workload (point) in the DS 1

ET mcp
i , ET solo

i Execution time of task τi in multicore processors and in isolation
O∆n,i Observed contention for τi in workload n 1
O∆n Observed Contention for all tasks in workload n C

O∆∗ Observed Contention for all workloads in the DS N · C

P ∆n,i Predicted Contention for τi in workload n 1
P ∆n Predicted Contention for all tasks in workload n C

ϕ Neural Network (function)
R C − 1
T Bmcp Time Budget in multicore

Contention models produce an estimate to contention in the form of a predicted ∆ (P ∆),
so that TBmcp

i = ET solo
i × P∆max

i , where P∆max
i is the maximum predicted contention

impact. The process of deriving P ∆max
i builds on several factors that capture the contention

a task can suffer from and generate on co-runner tasks.
In real platforms, event monitors (EMs) provide insightful information about how a task

uses shared resources, which in turn are the inherent sources of contention. EMs report
metrics like access counts to resources, hit/miss accesses to cache memories, and other
activities of the task on the underlying hardware.

In this work, we target the NXP T2080 [22], a quad-core MPSoC which is currently
considered for certification for avionics products [48]. The T2080 comprises 262 EMs that
provide insightful information on the use of resources of the analyzed application at core,
shared L2, and memory levels. For a given workload, the EMs collected for each task while
running on the T2080 in isolation are fed as input to the contention model.

As shown in Figure 1 for a quad-core processor, to predict the contention impact,
the contention models use the EMs collected (in isolation) for all the tasks in the work-
load, denoted as n, constituting a function named f . The predicted contention impact
for task τi when running in workload n, together with τj , τk, τl, is denoted as P∆n,i =
f (EMn,i, EMn,j , EMn,k, EMn,l). EMn,i ∈ RJ are all the EMs (collected in isolation) of a
task τi where J is the number of EMs read per core (J = 262 in the T2080).

For the training of the model, see Figure 2, we build on the results of executing multicore
workloads, generated from a set of A tasks that are executed on the available cores C on
the target board (one task per core). The observed (real) contention O∆n,i for each task τi

in each workload n is collected and used in order to compute P∆m,i in a different (unseen)
workload m.

A. Brando, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla 4:7

2.2 Formalization
Several techniques have been proposed in the mainstream domain for multicore contention
prediction, from which we identify two families: MLR- and NN-based models [52, 11, 59, 34].
A commonality of the different models is that they create an input data set (DS) for training.
Such input DS is composed by the EMs collected for several tasks used to compose the
workloads and the observed slowdown when executing a subset of workloads on the target
board. Reducing the subset of this input DS used for training contributes to Property 1.
The input DS is shown in Equation 1:

DS = (EM∗, O∆∗) = {(EMn, O∆n)}N
n=1 (1)

EM∗ ∈ NN×K are the EMs of all the N workloads in DS. K is the number of EMs read
in total, that for the case of the NXP T2080 is K = 4×262 = 1048, since C = 4. EMn ⊂ NK

are the EMs all the tasks in the n-th workload when executed in isolation. That is, EMn is
the concatenation of the EMs of each task composing the workload when run in isolation.

O∆∗ is the observed contention for all the tasks in all workloads in the DS. Likewise,
O∆n = {O∆n,1, . . . , O∆n,C} ⊂ RC is the contention for the C executed tasks in workload n.

2.3 Multi-Linear Regression (MLR) Models
For a Tasks Under Analysis (TUA), τi, of the n-th workload in the DS, a multi-linear model
is a linear transformation from the EM values (EMn) to the P ∆n,i =: ŷn, where i is omitted
because ŷn is always referring to the TUA. The MLR can be formulated as follows:

ŷn = W × EMn + b ⇔ ŷn = w1 · em1
n + w2 · em2

n + · · · + wK · emK
n + b (2)

x1 x2 xK

where each emk
n ∈ N is the k-th EM in the n-th workload. As we can see in Eq. 2, we

can also use {xk}K
k=1 to refer to them. EMn ∈ NK refers to the EMs input information for

workload n. wk ∈ R and b ∈ R are the weights to be learnt that define the linear combination
between the EMs values and the predicted ŷn = P∆n,i ∈ R+.

The goal of the MLR is to find the weights {W, b} that minimize a certain distance
function (known as the loss function) between the predicted output and the real response
variable value with respect to the training split set. This minimization process can be
typically performed in two different ways.

Given that the MLR is a linear combination of coefficients with the input information,
the least-square estimate of W can be computed using the DS where we identify the TUA τi,
(EM∗, {O∆n,i}N

n=1):

Ŵ = (EM∗
T · EM∗)−1 · EM∗

T · [O∆1,i, O∆2,i, · · · , O∆N,i]T , (3)

Computationally expensive.

where the T superscript denotes the matrix transpose operation, the −1 superscript refers
to the inverse of the matrix2 and [O∆1,i, O∆2,i, · · · , O∆N,i]T is the column vector that
contains all the contention values for all the N workloads. Importantly, this way of obtaining
the optimal weights has a potential drawback in most of the real-world situations, as the
inverse of an N × N matrix must be computed, which has polynomial time complexity.

2 To simplify the notation, the Ŵ matrix implicitly contains the bias b column in that case.

ECRTS 2022

4:8 Quantile NN for Multicore Contention Prediction

Figure 3 Multi-linear regressor. Figure 4 Dense neural layer. Given I layer-
input values, {hL−1

i }I
i=1, it provides H layer-

output values, {hL
h }H

h=1.

As an alternative approach to avoid computing the inverse matrix, we can compute this
minimization process by slightly modifying the weights in the gradient direction, i.e. applying
a gradient descent method. Nowadays, this differentiation process is implemented in most
relevant deep learning libraries, which allows native code to be differentiated automatically
[1, 45, 12, 7]. This derivative is computed with respect to a loss function, which can be the
mean square error (also known as least-square estimate) that approximates the conditional
mean, or an alternative function, as we will see in the next section.

2.4 Neural Network (NN) Models

A NN is also a parametric function ϕ that transforms a vector of EMn to a predicted
contention for a task under analysis τi in workload n, ŷn = P∆n,i, i.e. it is defined as
ϕ : RK → R, transforming EMn 7→ ŷn. Instead of a single matrix multiplication such as in
MLR, the NN considers several internal non-linear transformations from the input, EMn,
to produce the output value ŷn. Each of these transformations is known as a “layer” and
combines its input values and weights to produce its output, which for the last layer is the
output of the model [36, 16]. Roughly speaking, the NN combines a mixture of weights and
its input values to minimize a certain distance loss function (as in the MLR case) between
the predicted and the real response compared to the DS used to train the model.

Figure 4 represents one NN layer where {hL−1
i }I

i=1 represent the inputs to the layer and
I is the number of neurons in the layer. In the first layer that is I = K and h0

k = emk
n for

eack k = 1, · · · , K when a n-th workload is fixed. Each transformation, represented as a
rectangle in Figure 4, matches Equation 2 with the addition of the non-linear activation
function, denoted as σ, which allows the enhance approximation capabilities of the NN by
means of the layer stacking process [13]. Each layer will produce a set of outputs, {hL

h }H
h=1,

where H is the number of neurons in the next layer, then will be either used as inputs to the
next layer or as final NN output in case of the last layer.

In probabilistic terms [26, 51], the loss function aims to approximate the conditional
probability p(Y | X, M), where X represents the theoretically random variable that generate
the input values – in our case the EMn values, Y represents the corresponding random
variable that generates the contention values O∆m and, finally, M is the random variable
that characterizes all the hyper-parameters in the NN (including the number of layers, the
type of layers, the parameters about the learning configuration, etc). Importantly, the
conditional probability approximated can be affected by the hyper-parameters selection,
which is, therefore, a critical step to consider for the whole process. In this probabilistic
context, the common approach [31, 40] is to follow a Maximum Likelihood Estimation (MLE)

A. Brando, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla 4:9

or a Maximum A Posteriory (MAP) approach to compute such conditional probability and
to assume the sample mean is asymptotically normal, which consequently leads to use the
following loss function:

▶ Definition 1 (Mean Square Error). Let X ∈ RK be a covariate random variable and Y ∈ R
be a response random variable (i.e. the random variables that generates the input and output
values, respectively). Reducing the conditional 3 Mean Square Error (MSE) consists in finding
a function ϕ : RK → R, characterized by M , which approximates the conditional mean of
p(Y | X, M) by minimizing the loss function defined as

LMSE(X, Y) = E
[(

Y − ϕ(X)
)2]

≈ 1
N

N∑
n=1

(yn − ϕ(xn))2
. (4)

For the problem at hand, ϕ(xn) = ϕ(EMn) is the evaluation of the NN over the EMs
(1048 for the T2080) for a certain workload n, producing a forecast ŷn = P∆n,i. Similarly,
the MLR can be used into this equation as the ϕ function, i.e. ϕMLR(xn) = W · EMn + b.

The conditional mean is a generically good estimator, and an ideal one in scenarios where
the Central Limit Theorem is applicable. However, when the approximated p(Y | X, M)
corresponds to a heavy tailed distribution (or even has some important outliers), computing
a conditional mean can lead to unreliable decisions. Then, the median can be a more stable
estimator in the presence of certain outlier values. In fact, this is equivalent to repeat the
previous MLE reasoning for the normal distribution but using the Laplace distribution. In
such case, the conditional loss function is the following:

▶ Definition 2 (Mean Absolute Error). Let X ∈ RK be a covariate random variable and
Y ∈ R be a response random variable. Reducing the conditional 4 Mean Absolute Error
(MAE) consists in finding a function ϕ : RK → R that approximates the conditional median
of p(Y | X, M) by minimising the loss function defined as

LMSE(X, Y) = E
[∣∣∣Y − ϕ(X)

∣∣∣], (5)

which provides results that are more robust to outliers and more interpretable than
the commonly used MSE [58, 10]. However, a NN optimized with the MSE or the MAE
will predict a central conditional value. Therefore, while being appropriate for deriving
predictions that are close to the actual values, by definition it will not be able to compute
upper-bounds. In other words, a perfect MAE estimation will have a 50% probability of
having real values above and bellow the predicted point. Thus, it should not be used as a
proper high-value threshold.

While computing a confidence interval around such central value is technically possible,
this brings multiple challenges related to (i) the assumptions on the actual distribution for
each value to predict (i.e., whether it can be regarded as Gaussian or not), (ii) computational
cost to estimate the confidence interval for each predicted value across the prediction value
range, and (iii) variability in the confidence reached (or tightness of the bounds) due to the
arbitrary variability in the amount of data that can be available for each predicted value
(e.g., for some predicted value ranges we may have very few input observations). Hence, we
discard computing confidence intervals for NN based prediction.

3 The term “conditional” is added to highlight that here the information about X should be provided
to compute the error of the f with respect to Y . This also makes this definition consistent with the
conditional QR definition introduced afterwards.

ECRTS 2022

4:10 Quantile NN for Multicore Contention Prediction

Figure 5 QRNN versus MLR and NN.

3 Quantile Regression NN

As presented in the previous section, classical NN are usually optimized using the MSE (see
Eq 4) or the MAE (see Eq 5), which corresponds to estimate the conditional mean or median,
respectively. In this section, we introduce the Quantile Regression (QR) method [32, 8],
which allows approximating a desired quantile of the conditional distribution p(Y | X, M).
This is visually represented in Figure 5 that for a given 1-dimension input (the horizontal
axis) the goal is to predict the height of the points (the vertical axis). In particular,

As it can be seen, MLR assumes a linear correlation between the input and output
variable, which induces the prediction to be a conditional line.
NN introduces the possibility to learn the conditional mean (or median) in a non-linear
manner but, still, this cannot be used as an upper threshold.
QRNN allows to approximate a sky-high conditional quantile in a non-linear way, which
avoids strong assumptions such as linearity or symmetry between the predicted distribu-
tion, i.e. the conditional predicted distribution p(Y | X, M) can be skewed (such as the
initial and final part of Figure 5) and the QRNN obtains a proper response.

This is useful since we can capture confidence intervals without making strong assumptions
about the distribution function to approximate. The formal definition of QR depending on
X is as follows:

▶ Definition 3 (Quantile Regression). Let X ∈ RK be a covariate random variable and Y ∈ R
be a response random variable. Given η in the real interval [0, 1], the conditional quantile
regression (QR) consists in finding a function ϕη : RK → R which approximates the η-th
quantile of p(Y | X, M) by minimizing the η-th QR loss function defined as

LQR(X, Y, η) = E
[(

Y − ϕη(X)
)

·
(

η − 1[Y < ϕη(X)]
)]

, (6)

where 1[c] denotes the indicator function that verifies the condition c.

Unlike MSE Eq 4 or MAE Eq 5, the QR expressed in Eq 6 is not always a symmetric
function in the sense that when the predictive system over- or under-estimates it sums to
the final loss value in the same manner.

This is illustrated in Figure 6 with the representation of a QR loss function shape
centered at zero considering different quantile parameters, ηs, i.e. {LQR(X, Y, ηt)}9

t=1 where
ηt = 0.1 · t, Y is always zero, the ϕη(X) in Eq 6 is the horizontal axis value and the vertical
axis corresponds to the loss value in such conditions. As we can see in Figure 6, depending on

A. Brando, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla 4:11

Figure 6 QR loss function shape centered at
zero. The ϕη(X) in Eq 6 is the horizontal axis
value and the vertical axis corresponds to the loss
value in such conditions.

Figure 7 Behaviour of the QR loss value for
high η values. When η → 1 (red case) the under-
estimated predictions are multiplied by an almost
zero factor, which produces flat shape in η = 0.99.

the selected quantile η for the QR, its shape will be different. For instance, when the quantile
is the 10th percentile (η = 0.1) the underestimated errors are multiplied by a lower factor
than when the forecaster value ϕ(X) is overestimating. This is so because the increasing loss
value in the positive horizontal axis in such case is clearly higher than the negative part. This
effect comes from the second multiplier of the Eq 6, i.e.

(
η − 1[Y < ϕη(X)]

)
, which means

that when the real value Y is strictly lower than the predicted ŷ = ϕη(X), then the indicator
function takes the value of 1, otherwise it is 0. In the presented case, as η = 0.1, it means
that when ϕη(X) is underestimated, the difference between the real value and the predicted
value will be multiplied by 0.1, which justifies the lower increasing in the negative part of
the blue line of Figure 6 as far as the predicted value is from the (here, always zero) real
value. Contrastingly, the positive part will be multiplied by −0.9, which produces a higher
increasing as much far as the predicted value is far from the real one but also it ensures that
the loss function is always positive.

3.1 Predicting Sky-high Quantiles using QR
The problem at hand requires to have a proper sky-high quantile to ensure most of the
predictions are below. However, when we use the QR Eq. 6 to predict a quantile η → 1, i.e.
when the condition Y < ϕη(X) is satisfied, the whole expression of Eq. 6 tend to be zero
due to its second factor

(
η − 1[Y < ϕη(X)]

)
approximates to zero. This is an issue because

it implies that any overestimated point by the NN ϕη for a certain η ≈ 1 almost does not
contribute to the expected error. Hence, higher erroneous values that are overestimated are
neglected as lower erroneous values. This has a critical effect in the optimization process
because high differences, Y − ϕη(X), will not be taken into account and it will cause the
solution to be unavoidably unstable or wrong.

To solve this issue we propose a solution that considers two edges (represented in two
colors of the vertical arrow of Figure 7): First, we want to predict the higher quantile possible
to reduce the number of under-estimated cases. And second, we want to avoid the neglecting
issue that appears when we are predicting η → 1 quantiles. Therefore, (1) the NN model will
predict simultaneously several quantiles (including farther and closer quantiles to 1), and (2)
all these quantiles will be linearly related with a common previous hidden representation,
which means that they will share the last neural network layer.

As we described previously, the closer the quantile value η gets to 1, the worse the effect
of avoiding overestimated errors will be. Therefore, (1) considering several (a fixed set of)
quantiles that tends to 1 and (2) that preserves a linear relation between a common previous
representation (i.e. all the simultaneously predicted quantiles shares the same penultimate

ECRTS 2022

4:12 Quantile NN for Multicore Contention Prediction

NN layer), we can ensure that lower sky-high quantiles of the set will avoid the neglecting
issue when it appears and, at the same time, the higher approximated quantiles will try to
push for obtaining a higher extreme upper bound. Combinedly, (1) and (2) allow the model
to obtain a balanced solution in both senses. In Figure 8 is described the change we require
to perform to predict several quantiles using a single NN model.

Figure 8 Transformation from a single QR NN model to a multiple QR NN model that simultan-
eously predicts several quantiles.

As shown in Figure 8, the number of inputs and even the internal number of hidden
layers and hidden neurons are preserved (as long as it is enough complex to approximate the
desired function). The only we need to change is the number of outputs, represented as the
{qηo

}3
o=1 last neurons in Figure 8, by changing the number of neurons of the last layer. Each

of these neurons will be optimized using a different specific QR-loss function, shown in Eq. 6,
for the corresponding quantile η value.

3.2 Task Order Invariance
We set an additional constraint on our multicore contention prediction models that typical
ML models do not provide. In particular, the predicted contention for a given task must be
the same under any permutation of its contenders.

▶ Property 3 (Task Order Invariance (TOI)). For homogeneous multicores, multicore conten-
tion models for a given task τi in a given workload n must provide the same estimate (P ∆n,i)
regardless of the core where τi runs and any permutation of its contenders.

Considering a workload n consisting in tasks τi, τj , τk, and τl, the contention suffered by
each of these tasks must not be affected by the core in which tasks executes. Therefore, it
must not be affected where the task under analysis and the other tasks in the workload are.
Specifically, for a given task under analysis (TUA) τi in a certain workload n:

P∆n,i = f (EMn,i, EMn,j , EMn,k, EMn,l) = f (EMn,j , EMn,i, EMn,k, EMn,l) =
= · · · = f (EMn,l, EMn,k, EMn,j , EMn,i)

▶ Definition 4 (Task Order Invariant). Given a four-core multicore contention forecaster ϕ

and four sets of EMs, {EMn,i, EMn,j , EMn,k, EMn,l} where τi is the TUA, this forecaster
can be considered a Task Order Invariant (TOI) predictor if Equation 7 holds regardless of
the order in which EM sets appear in the parameter list, which means disregarding the core
mapping of both the TUA and the contenders, as long as they run in parallel.

ϕ(EMn,i , EMn,j , EMn,k, EMn,l) = ϕ(EMn,l, EMn,k, EMn,j , EMn,i) (7)

TUA position can change.

Same contenders with different order.

A. Brando, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla 4:13

Figure 9 Example definition of the first layer of the NN or the whole MLR model for the
T2080 to ensure they provide the same output regardless the order of the contenders. In short
for all the l = 1, · · · , O output neurons of the L-layer, wl

j+1∗262 = wl
j+2∗262 = wl

j+3∗262. Note that
wl

j , j = 1, · · · , 262 are the EMs of the TUA in this case τ0.

3.2.1 Existing Models
For MLR, in Eq. 2 the set of K weights are divided in C groups/cores of J EM each and
the j-th position for each group is the same EM (e.g. data cache misses). Each of these EM
has associated a different weight wi, wi+J , · · · , wi+(C−1)·J , which can get a different value as
part of the training. It then follows that the order in which the contenders tasks are passed
to the model affect its results. Note that the j-th counter of task τi in workload n (i.e. emj

i,n)
is the j · (i − 1)-th counter in the workload (em

j·(i−1)
n) for j = 1, · · · , J and i = 1, · · · , C.

For NN, as it can be in in Figure 4, the same logic applies. In the first layer, h0
k = emk

n

and there is a different weight associated to each h0
k with each of then potentially taking a

different value. As a result, the order of the contender tasks matters.
As an illustrative example, Figure 10a shows the contention estimates obtained with the

NN model for different permutations of the 3 contenders (C1, C2, and C3) for 5 arbitrary
workloads. We can see that depending on the of the contenders (shown in the x-axis) the
produced estimate varies showing that NN does not fulfill Property 3 (nor does MLR). Also,
across permutations the predictions can vary significantly.

3.2.2 Achieving TOI
In order to achieve TOI, we propose a method that can be commonly applied to any presented
NN model as well as the MLR. The method consists in sharing the weights across the same
EM in all cores where contenders run, as it is shown in Figure 9. Particularly, the TOI dense
layer will satisfy the following expression (τi is the TUA in workload n):

hL
l = σ

(
w1 · em1

n,i + w2 · em2
n,i + · · · + wJ · emJ

n,i

+
3∑

k=1
(wJ+1 · em1

n,k + wJ+2 · em2
n,k + . . . + w2·J · emJ

n,k)
)

, (8)

The new weight-sharing part to be TOI.

where the shaded area is the new weight-sharing part and σ is the non-linear function
or activation function introduced in Section 2, such as the REctified Linear Unit (RELU).
Importantly, when we want to produce a TOI MLR, this activation function does not appear
and, therefore, the Eq. 8 without the σ constitutes the overall model instead of a single layer
like in the NN case.

ECRTS 2022

4:14 Quantile NN for Multicore Contention Prediction

(a) Standard model prediction. (b) TOI model prediction.

Figure 10 Contention predictions of a standard model with and without the TOI for a given
workload under different contender permutations.

For the same workloads and contender permutations showed in Figure 10a, we produce
predictions with a NN in which the weight of the same EM in the different cores is shared. The
net result is that contention predictions are invariant to the permutations of the contenders
as shown in Figure 10b.

4 Experimental Setup

Our experimental setup includes the target platform and its configuration (Section 4.1), the
kernels we use to compose workloads (Section 4.2), the particular experiments we carried
out (Section 4.3), and the configuration used for the specific contention models, such as the
number and type of layers in NN and QRNN (Section 4.4).

4.1 Hardware Platform
We perform our experiments on a NXP T2080 Reference Design Board [22]. The T2080RDB
includes a NXP T2080 System on Chip (SoC) for which an avionics multi-core certification
case has been started [48]. The T2080 SoC includes a CPU cluster with 4 e6500 cores [21],
see Figure 11. Each core has its own private 32KB 8-way instruction and data caches. In
each core a core-cluster interface (CCI) serves as the bridge for data and instruction cache
requests from and to the L2. The L2 cache is shared between all the cores. The core cluster,
the DDR memory controller, the DMA and other I/O controllers are connected via the
CoreNet coherence fabric (CCF). In this work, we focus on the main path from cores to main
memory, and do not address the potential contention arising in the I/O. In order to favor
time predictability, we configure the T2080 as follows:

Figure 11 Simplified block diagram of the NXP T2080 SoC.

A. Brando, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla 4:15

Shared L2 cache: shared caches are one of the main sources of contention in modern
SoC. In order to favor predictability and simplify the work of timing analysis tools in
the validation phase, shared last level caches are typically partitioned via software (set
partitioning) or via hardware support (way partitioning). The T2080 allows each core to
be assigned a subset of the L2 cache ways. In our experiments, we assign each core a
disjoint set of 4 ways by properly configuring the L2 cache control registers.
Hyper-threading support: the hyper-threading capability in each e6500 core has been
deactivated. From a multicore contention perspective, tasks running in hyper-threading
mode in a core share not only first level instruction and data caches but also some core
resources, potentially affecting each others performance significantly.

4.2 Workloads

We use several kernels (basic operators) that are commonly used in machine learning libraries,
which in turn, are used for many operations of autonomous driving and ADAS software,
from perception and detection to planning and control. For instance, matrix multiplication
is a central element of YOLOv3 machine learning library [53] and radar applications [23, 54],
and has been shown to account in some scenarios for 67% of YOLO’s execution time [20].
The kernels we use in this work are:

Matrix Multiplication is one of the most common kernels for many functionalities like
object detection and path planning in autonomous navigation, and covariance matrix
computation in radar applications. We experimented with two versions: (1) basic (MMB),
and (2) optimized (MMO), which “tiles” input matrices to improve data locality.
(3) Matrix Transpose is another quite common matrix operator
(4) Matrix Transpose Multiply combines matrix transpose of the second matrix and
multiplication of both of them. It is used, for instance, for certain internal operations in
NN [24] and for covariance matrix computation in radar applications;
(5) Rectifier is an activation function in neural networks taking the positive value of its
argument or zero when it is negative;
(6) Image-to-Columns function is used for transforming raw RGB images into matrices in
the format needed by neural networks;
(7) Vector-multiply-add is a type of linear algebra operator.

We also used a set of basic operators with different data types and precisions. In particular,
we use (8-9) vector addition with integer long and with floating-point double precision. For
(10-11) vector multiplication and (12-13) vector division we also use integer long and fp
double types. We also use (14) quicksort sorting algorithm on a randomly ordered array. All
these operators are the building blocks for other basic functionalities in machine learning
libraries and radar applications.

Also autonomous driving frameworks like Apollo use deep and recurrent neural networks
in several stages like object detection, object tracker, etc [47]. Each of those stages works with
different input sizes. In the same vein, radar applications typically operate relatively small
matrices in comparison to camera-based and LiDAR-based object detection applications. In
order to capture this scenario in which input data may or may not fit in the different cache
levels, we have developed 3 variants of our kernels: one fitting in DL1, one fitting in 4-ways
of the L2, and one going frequently to memory. Overall, we use A = 42 kernel variants.

ECRTS 2022

4:16 Quantile NN for Multicore Contention Prediction

4.3 Experiments
We start by running each kernel in isolation and collect all EMs. EMs are read via performance
monitoring counters. While the number of EMs can easily be over hundred, the number of
performance monitoring counters is usually below 8 (it is 5 for the T2080). Hence, in order
to read all 262 EM, we carried out 53 runs in each of which we read 5 different EMs.

As a second step, we generated a data set with 4-kernel workloads randomly selected from
the set of kernels described in the previous section. We run each workload on the target board.
For the T2080, it has been reported that the same multicore run is subject to execution time
variation [57]. This happens despite exercising a tight control on the experimental setup
ensuring that in every run the state of the caches and TLBs is reset. However, other non-
resettable resources retain some state that changes across runs. To capture this variability,
we repeated each experiment run 50 times and take the high watermark execution time.
Note that our experiments show that this variability occurs for multicore executions. For
single-core executions, the variability of a repeated measured EM is below its 1% value.

In each modeling experiment, we randomly split the DS into different (sub)sets used to
train and validate the models, as commonly done in machine learning literature [15, 44]. The
Training set (T) includes the subset of data that will be used to optimize the supervised
model. The Validation set (V) includes the subset of data that will be used to decide when
to stop optimizing the supervised model. The tEst set (E) includes the subset of data that
will be used to verify the quality of the performance or accuracy of the supervised model to
generalize.

In all experiments, the percentage of workloads of the overall DS for T and V is 17%
and 2%, respectively. The remaining 81% is used as E. Note that only T and V are used
to determine the models, while the remaining E of the DS is used in this work to show the
accuracy of each model and that hence will not be needed in reality to generate the model. It
is also worth noting that when generating the T and V sets, we make sure that the number
of times each kernel is used in as TUA is the same. The contenders are generated randomly.

(a) (MAE) MLR prediction. (b) (MAE) NN prediction. (c) QRNN prediction.

Figure 12 P ∆ vs O∆ for MLR, NN, and QRNN.

4.4 Model Configuration and Libraries
The current forecasting context is a single value regression. In the presented problem,
no time-based input information exists and, therefore, it is not required to encode it into
the model by using recurrent NN layers [27, 60]. Similarly, the EMs used as inputs are
mostly counters with their own meaning, hence not having spatial proximity information.

A. Brando, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla 4:17

Consequently, convolutional NN layers [35, 2], which are specially designed for images or
text information, are not appropriate in our context. Hence, the considered NN models used
are based on fully-connected or dense layers [26], which is a Multi-Layer Perceptron (MLP)
model with the ReLU non-linear activation function [33] in the hidden layers. Additionally
to the common MLP, all the models presented in this work have the first layer customized
by following Section 3.2 to ensure TOI.

Regarding implementation, all the models were developed in TensorFlow [1] using the
Keras sub-library [12]. We used a greedy search algorithm [37, 30] to select a proper NN
architecture including between 1 and 6 hidden layers considering 100, 200, 300, 400 and 500
neurons. Each model is trained with early stopping, hence requiring different time to train,
but none exceeds 10 minutes of training. The final selected architecture includes 3 layers of
300 neurons each (including the TOI-layer) for the standard NN (with a single output), and
the same architecture for the QRNN model. Therefore, given that both hidden architectures
are analogous for those NN models (except in the case of the last layer), they have similar
general function approximation capabilities [26].

5 Experimental Results

We start by comparing the accuracy of the estimates provided by each technique. In Figure 12
we see three charts corresponding to the accuracy results of MLR, NN, and QRNN with
a target quantile4 η = 0.9. Each point represents a particular workload n with TUA τi.
The x-axis shows the slowdown observed for the TUA O∆n,i and the y-axis the predicted
contention P∆n,i. The bottom-left top-right diagonal highlighted with a red line shows
the ideal scenario in which the predicted value matches the observed one. As we can see
MLR (Figure 12a) underestimates (i.e. P∆n,i < O∆n,i) for many workloads, see points
below the red line. NN (Figure 12b) produces much tighter estimates, yet many of them
underestimated. QRNN (Figure 12c) corrects this situation significantly reducing the number
of underestimated cases while maintaining high-accuracy.

This is quantified in Figure 13 where we see that MLR underestimates in 46.8% of the
cases, NN 31.3% and QRNN reduces it down to 8.8%. In terms of amount of over- and
underestimation, Figure 14 shows x-th largest overestimated and underestimated values
(referred to as the x-th LOE and LUE value, respectively) of each model. For instance, the
(1st) largest overestimated (LOE) value is largest value of P ∆n,i/O∆n,i when P ∆n,i > O∆n,i.
Likewise the (1st) largest underestimated (LUE) value is the one with the (1st) largest distance
to value 1.0 when P∆n,i < O∆n,i, i.e. the (1st) smallest value.

Figure 13 Breakdown. Figure 14 Largest Over- and Underestimation values.

4 As it is described in Section 3.1, the proposed QRNN model predicts three different quantiles,
{0.7, 0.9, 0.99}, to support the η = 0.9 prediction and avoid negligence issues of sky-high quantiles.

ECRTS 2022

4:18 Quantile NN for Multicore Contention Prediction

In terms of LUE, MLR (red squares in Figure 14) produces the worst results with
underestimates below 0.6 even for the 20th largest value. NN (red circles in Figure 14)
produces similar underestimates that remain below 0.7 for the 20th LUE. Instead, QRNN
(re diamonds in Figure 14) reduces this significantly with underestimation very close to 1.0:
at most 0.83 and rapidly going to 0.96 for the 20th LUE.

In terms of LOE, QRNN produces worse results than MLR and NN. Yet, the LOE values
are moderate going from 1.48 (largest) to 1.34 (20th largest). It follows that, QRNN fulfills
Property 2 by tending to overestimation while keeping estimates tight.

5.1 Impact of η

In order to assess the impact of η in the results besides the value used so far η = 0.9, we
evaluate other values of η. In particular, inspired in the analysis of the distributional tails,
we select an exponential decay as follows {ηit = 1. − 0.01 ∗ 2it}, it ∈ [1, 2, 3, 4], which takes
values from 1 to 0.8, i.e. η ∈ [0.99, 0.98, 0.96, 0.92, 0.84]. Figure 15 and Figure 16 evaluate
underestimated cases and x = 15-th LUE and LOE for different values of η (similar trends
are obtained for other values of x like 10 and 20). We can see that, as η increases, the
number of under underestimated cases tends to decrease from over 16% for η = 0.8 to less
than 1% for η = 0.99. In terms of LUE and LOE, both increase. In the LUE case, this
means reducing the underestimation and in the LOE case increasing overestimation. Overall,
changing the quantile η, QRNNη provides to the end user a mechanism to control over- and
underestimation in the way it better adapts to his/her needs.

Figure 15 Underestimated cases. Figure 16 15th LOE and LUE values.

5.2 Different random partitions of the DS

Results so far have been shown for a particular breakdown of the workload space into TVE
sets. For η = 0.99 Figure 17 shows the results for 100 experiments in terms of the number
of underestimated cases (UEC) and the 15th LOE and LUE values (15LOE and 15LUE,
respectively). In each of the 100 experiments we randomly selected the workloads in TVE
sets as described in Section 4.3 and re-trained all models.

As shown, there is some variability due to the fact that, in the DS across the different
workloads, the randomly generated contenders do not properly represent the tasks in the DS.
This is illustrated in test number 2, for which we see large variations for NN results in high
15LOE and 15LUE. Despite these variations, more notable in 15LOE for QRNN and UEC
for NN, the main conclusions remain the same with QRNN tending to overestimation and
almost no underestimation (15LUE is very close to 1 and UEC to 0 for QRNN).

A. Brando, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla 4:19

Figure 17 Number of over-estimated cases and the 15th LOE and LUE value for 100 experiments.

5.3 Changes to the applications
In the application scenario we address, as introduced in Section 2, the applications composing
the software component of the embedded real-time product are fixed. However, as part of
the usual incremental development process, applications can suffer some updates. This might
cause some improvements to the functional behavior of the application, and more importantly
to us, it can change the usage of hardware shared resources. Obviously, the more the updated
versions differ in their resource usage from previous versions, the more challenging it is to
produce tight estimates. In order to capture this situation, we assess the impact of varying
some of the applications in the task set. In particular, we consider a scenario in which the
QRNN model has been trained with a basic version of matrix multiplication (MMB) that
is afterwards optimized resulting in an optimized version of matrix multiplication (MMO).
This implies having a holdout set (H) for QRNN, which is an isolated subset of data that
will be used to check the capabilities of the model to predict scenarios that could not be
observed or are slightly different.

In practical terms, this means that we remove MMO (only use MMB) from TVE so that
the weights of the resulting QRNN do not factor in MMO (but MMB). To assess the impact
on accuracy, we query QRNN with MMO, so we make contention predictions for MMO,
which was not used in TVE. Figure 18a shows the results when we use as contenders of MMO
only kernels already used in TVE and in Figure 18b when we also use MMO as contender.
In both cases QRNN behaves quite well, keeping both, the number of underestimated cases
low and the overall prediction accuracy quite tight. Figure 18c shows the results of the
predictions for the kernels already in TVE (that is, all but MMO) when the set of contenders
contain at least one copy of MMO. The same trend holds with low number of overestimations
(below 3.5%) while accuracy is kept high.

5.4 Execution time requirements
In order to assess the speed of the inference of the models, we perform experiments with
TensorFlow software library v2.3.0 on an AMD Ryzen 9 3950X Processor. Our results show
that MLR performs 1.25X107 predictions per second while NN and QRNN 1.48X105 and
1.46X105 per second respectively when running the library in a single core. While MLR is
faster, we have seen that its accuracy results are rather poor. When we use all 16 cores,
performance for NN and QRNN scales perfectly so that we can make more that 2.3X106

predictions per second. Overall, a wide design space can be covered with the presented
QRNN model, hence achieving the Property 1.

ECRTS 2022

4:20 Quantile NN for Multicore Contention Prediction

(a) MMO vs existing kernels. (b) MMO vs all kernels. (c) Existing vs all kernels.

Figure 18 QRNN predictions when MMO is used instead of MMB.

6 Related Works

The importance of capturing timing requirements already in DDP of embedded real-time
systems is widely recognized [17, 5, 42, 19, 18, 49]. Existing approaches mainly focus on
deriving and exploit early timing bounds to guide architectural exploration and steer design
decisions: early WCET figures are obtained either by exploiting simulation of software designs
or partial implementations thereof [17, 18, 3], or by using actual observations to abstract
away from certain architectural features [42, 19]. In fact, the main objective of these works
is providing quick estimates at the expense of loosening accuracy. However, those works do
not address the impact of multicore contention, which is the main focus of our work.

ML techniques are widely used in several fields of computer science [46, 41], for the design,
optimization, and simulation of computer systems. In the context of time critical systems,
approaches building on statistical and machine learning techniques have been proposed to
model uncertainties in deriving timing bounds for tasks running in single cores, both in
early and late development stages. In [5, 25] statistical approaches are leveraged to model
uncertainties in timing estimation rather than predicting WCET figures, but do not apply to
multicore systems. Still on single core systems, a hybrid approach using ML to build the
timing model within a standard static WCET analysis framework has been proposed in [4].

Preliminary approaches for deriving early WCET estimates based on machine learning
techniques are proposed in [6, 28], where relevant code-level constructs such as arithmetic
and memory operations, and conditionals, are used to train simple regression models for
WCET computation. Our approach builds on hardware events rather than source code, and
focuses on predicting multicore contention instead.

The use of machine learning techniques to model the impact of multicore contention has
been mainly investigated from the perspective of high-performance systems in the mainstream
domain [52, 11, 61, 59, 50]. These works aim at preventing average performance degradation
and implement linear regression models to predict the impact of multicore contention. In
the scope of real-time systems, non-linear regression with random forest has been recently
assessed for predicting multicore interference [14]. In contrast with our work, the proposed
approaches are mainly oriented towards average performance estimation and in all cases, the
underlying models do not prioritize overestimation as a fundamental requirement to avoid
timing misconfiguration to arise in the later development stages. Instead, we introduce the
use of QRNN for improved and tunable – conservative – prediction accuracy.

A. Brando, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla 4:21

Few works address the need for conservative timing estimates in DDP from the perspective
of real-time systems. Early modeling of multicore contention in time-critical systems is
addressed in [19, 49], where an empirical approach is presented to capture the worst-case
impact of contention on a given platform, which is later used to inflate the execution time of
a task in isolation, to obtain a bound guaranteed to hold under any workload. While closer
in spirit to our method, the inflated execution time estimates can result in up to 20x bigger
than programs’ execution time in isolation even for 4-core setups, which makes them barely
useful for DDP exploration. The work in [34] proposed an NN approach for deriving early
WCET bounds using the program features collected at the source code level by applying
static WCET analysis methods. We instead build on hardware events to model multicore
contention and use QRNN to force accurate but conservative timing estimates.

7 Future Work

In terms of future work, we identify several research opportunities. First, we have used
all the EMs available in the underlying platform. However, while EMs provide insightful
information about the activities in the processor, a subset of them could suffice to capture
the most relevant factors affecting multicore contention. In this line, techniques like principal
component analysis could be used for selecting relevant EMs, allowing a dimensionality
reduction of the contention models and therefore faster and more accurate models.

It is also the case that, so far, we have used EM collected during the execution of each
application in isolation. In fact, contention models could also build on EMs collected during
the execution of a subset of the workloads, as this would provide more accurate information
about how a given application reacts to contention. The other side of the coin is that
experimentation time would increase and training would be more complex. We are interested
in exploring trade-offs between accuracy and complexity.

Focusing on the bigger picture, contention models are to be queried by system-level
optimization models to explore, for instance, different task schedules based on the expected
contention. System-level optimizers require modeling how tasks overlap in time and how
events are distributed within each task execution. The latter aspect may call for collecting
EMs within tasks phases rather than end to end. Still at system level, contention models
can also be extended to cover other devices beyond memory for which activity descriptors –
e.g. in the form of EMs or system-level metrics – are available.

Finally, the present article focuses on NN models, which are just one of the state-of-the-art
ML models for regression purposes. NN models are not the only ones designed to learn
a conditional quantile using QR. For instance, decision trees [39], random forests [38, 14]
or Gradient Boosting [56] methods can be used with analogous purposes. As future work,
a comparison between extra QR-based models can be performed to assess the functional
approximation capabilities of each model in the current forecasting problem.

8 Conclusions

Early contention estimates in multicore setups tightly upper-bounding real contention
reduce the risk to detect timing misconfiguration in late phases of the development process
that would result in costly changes to the system design and/or implementation. We
use quantile-regression neural networks (QRNN) as an alternative to common NN and
multi-linear regression (MLR) models to drastically decrease scenarios with contention
underestimation while preserving tightness. Moreover, our approach achieves task order

ECRTS 2022

4:22 Quantile NN for Multicore Contention Prediction

independence to provide identical contention estimates for equivalent task permutations with
identical contention in practice. Both, tendency towards – tight – overestimation and task-
order independence are, in our view, fundamental properties for the use of contention models
in real-time systems, besides prediction speed. Our results show that QRNN consistently
reduces the number of underestimated contention bounds with respect to NN and MLR
while its η parameter allows the user to find the tradeoff that fits best his/her needs.

References
1 Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. Tensorflow: A system for large-scale machine learning. In 12th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 16), pages 265–283,
2016. doi:http://10.5281/zenodo.4724123.

2 Saad Albawi, Tareq Abed Mohammed, and Saad Al-Zawi. Understanding of a convolutional
neural network. In 2017 International Conference on Engineering and Technology (ICET),
pages 1–6. IEEE, 2017. doi:10.1109/ICEngTechnol.2017.8308186.

3 Peter Altenbernd, Jan Gustafsson, Björn Lisper, and Friedhelm Stappert. Early execution time-
estimation through automatically generated timing models. Real-Time Systems, 52(6):731–760,
2016. doi:10.1007/s11241-016-9250-7.

4 Abderaouf Nassim Amalou, Isabelle Puaut, and Gilles Muller. WE-HML: hybrid WCET
estimation using machine learning for architectures with caches. In RTCSA 2021 - 27th IEEE
International Conference on Embedded Real-Time Computing Systems and Applications, pages
1–10, Online Virtual Conference, France, August 2021. IEEE. URL: https://hal.inria.fr/
hal-03280177.

5 Jakob Axelsson. A method for evaluating uncertainties in the early development phases of
embedded real-time systems. In RTCSA, 2005. doi:10.1109/RTCSA.2005.12.

6 Armelle Bonenfant, Denis Claraz, Marianne de Michiel, and Pascal Sotin. Early WCET
Prediction Using Machine Learning. In Jan Reineke, editor, 17th International Workshop
on Worst-Case Execution Time Analysis (WCET 2017), volume 57 of OpenAccess Series in
Informatics (OASIcs), pages 5:1–5:9, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/OASIcs.WCET.2017.5.

7 James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL:
http://github.com/google/jax.

8 Axel Brando, Joan Gimeno, Jose A Rodríguez-Serrano, and Jordi Vitrià. Deep non-crossing
quantiles through the partial derivative. International Conference on Artificial Intelligence
and Statistics, 2022. URL: https://proceedings.mlr.press/v151/brando22a.html.

9 Certification Authorities Software Team. CAST-32A Multi-core Processors, 2016.
10 Tianfeng Chai and Roland R Draxler. Root mean square error (rmse) or mean absolute error

(mae)?–arguments against avoiding rmse in the literature. Geoscientific model development,
7(3):1247–1250, 2014. doi:10.5194/gmd-7-1247-2014.

11 Yuxia Cheng, Wenzhi Chen, Zonghui Wang, and Yang Xiang. Precise contention-aware
performance prediction on virtualized multicore system. Journal of Systems Architecture,
72:42–50, 2017. Design Automation for Embedded Ubiquitous Computing Systems. doi:
10.1016/j.sysarc.2016.06.006.

12 François Chollet. Keras, 2015. URL: https://github.com/fchollet/keras.

https://doi.org/http://10.5281/zenodo.4724123
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1007/s11241-016-9250-7
https://hal.inria.fr/hal-03280177
https://hal.inria.fr/hal-03280177
https://doi.org/10.1109/RTCSA.2005.12
https://doi.org/10.4230/OASIcs.WCET.2017.5
http://github.com/google/jax
https://proceedings.mlr.press/v151/brando22a.html
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.1016/j.sysarc.2016.06.006
https://doi.org/10.1016/j.sysarc.2016.06.006
https://github.com/fchollet/keras

A. Brando, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla 4:23

13 Francois Chollet. Deep Learning with Python. Manning Publications Co., USA, 1st edition,
2017. doi:doi/10.5555/3203489.

14 Cédric Courtaud, Julien Sopena, Gilles Muller, and Daniel Gracia Pérez. Improving prediction
accuracy of memory interferences for multicore platforms. In 2019 IEEE Real-Time Systems
Symposium (RTSS), pages 246–259, 2019. doi:10.1109/RTSS46320.2019.00031.

15 Harris Drucker, Christopher J Burges, Linda Kaufman, Alex Smola, and Vladimir Vapnik.
Support vector regression machines. Advances in neural information processing systems, 9,
1996. doi:10.5555/2998981.2999003.

16 Oliver Duerr, Beate Sick, and Elvis Murina. Probabilistic Deep Learning: With Python, Keras
and TensorFlow Probability. Manning Publications, 2020. URL: https://tensorchiefs.
github.io/dl_book.

17 Raimund Kirner et al. Fully automatic worst-case execution time analysis for matlab/simulink
models. In ECRTS, 2002.

18 Trevor Harmon et al. Fast, interactive worst-case execution time analysis with back-annotation.
IEEE Trans. Industrial Informatics, 8(2), 2012.

19 C Ferdinand, R Heckmann, D Kästner, K Richter, N Feiertag, and M Jersak. Integration
of code-level and system-level timing analysis for early architecture exploration and reliable
timing verification. In ERTS2 2010, Embedded Real Time Software & Systems, 2010.

20 Fernando Fernandes dos Santos, Lucas Draghetti, Lucas Weigel, Luigi Carro, Philippe Navaux,
and Paolo Rech. Evaluation and mitigation of soft-errors in neural network-based object
detection in three gpu architectures. In 2017 47th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), pages 169–176. IEEE, June 2017.
doi:10.1109/dsn-w.2017.47.

21 Freescale semicondutor. e6500 Core Reference Manual. https://www.nxp.com/docs/en/
reference-manual/E6500RM.pdf, 2014. E6500RM. Rev 0. 06/2014.

22 Freescale semicondutor. QorIQ T2080 Reference Manual, 2016. Also supports T2081. Doc.
No.: T2080RM. Rev. 3, 11/2016.

23 Jonah Gamba. Automotive Radar Applications, pages 123–142. Springer Singapore, Singapore,
2020. doi:10.1007/978-981-13-9193-4_9.

24 Leon A Gatys, Alexander S Ecker, and Matthias Bethge. Image style transfer using convolu-
tional neural networks. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2414–2423, 2016.

25 P. Giusto, G. Martin, and E. Harcourt. Reliable estimation of execution time of embedded
software. In Proceedings Design, Automation and Test in Europe. Conference and Exhibition
2001, pages 580–588, 2001. doi:10.1109/DATE.2001.915082.

26 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016. URL:
http://www.deeplearningbook.org.

27 Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

28 Thomas Huybrechts, Siegfried Mercelis, and Peter Hellinckx. A New Hybrid Approach
on WCET Analysis for Real-Time Systems Using Machine Learning. In Florian Brandner,
editor, 18th International Workshop on Worst-Case Execution Time Analysis (WCET 2018),
volume 63 of OpenAccess Series in Informatics (OASIcs), pages 5:1–5:12, Dagstuhl, Germany,
2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.WCET.2018.5.

29 Javier Jalle, Mikel Fernandez, Jaume Abella, Jan Andersson, Mathieu Patte, Luca Fossati,
Marco Zulianello, and Francisco J. Cazorla. Bounding resource-contention interference in the
next-generation multipurpose processor (ngmp). In Proceedings of the 8th European Congress
on Embedded Real Time Software and Systems (ERTS2), 2016.

30 Haifeng Jin, Qingquan Song, and Xia Hu. Auto-keras: An efficient neural architecture search
system. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1946–1956, 2019. doi:10.48550/arXiv.1806.10282.

ECRTS 2022

https://doi.org/doi/10.5555/3203489
https://doi.org/10.1109/RTSS46320.2019.00031
https://doi.org/10.5555/2998981.2999003
https://tensorchiefs.github.io/dl_book
https://tensorchiefs.github.io/dl_book
https://doi.org/10.1109/dsn-w.2017.47
https://www.nxp.com/docs/en/reference-manual/E6500RM.pdf
https://www.nxp.com/docs/en/reference-manual/E6500RM.pdf
https://doi.org/10.1007/978-981-13-9193-4_9
https://doi.org/10.1109/DATE.2001.915082
http://www.deeplearningbook.org
https://doi.org/10.4230/OASIcs.WCET.2018.5
https://doi.org/10.48550/arXiv.1806.10282

4:24 Quantile NN for Multicore Contention Prediction

31 Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? Neural Information Processing Systems, 2017, pages 5580–5590, 2017.

32 Roger Koenker and Kevin F Hallock. Quantile regression. Journal of economic perspectives,
15(4):143–156, 2001. doi:10.1257/jep.15.4.143.

33 Alex Krizhevsky and Geoff Hinton. Convolutional deep belief networks on cifar-10. Unpublished
manuscript, 40(7):1–9, 2010.

34 Vikash Kumar. Deep neural network approach to estimate early worst-case execution time. In
Proceedings of Digital Avionics Systems Conference (DASC), 2021.

35 Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images, speech, and time series.
The handbook of brain theory and neural networks, 3361(10):1995, 1995.

36 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521(7553):436–444,
2015. URL: https://www.nature.com/articles/nature14539.

37 Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias Muller, Ali Thabet, and Bernard
Ghanem. Sgas: Sequential greedy architecture search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 1620–1630, 2020.

38 Nicolai Meinshausen. Quantile regression forests. Journal of Machine Learning Research,
7:983–999, December 2006. doi:10.5555/1248547.1248582.

39 AV Meshcheryakov, VV Glazkova, SV Gerasimov, and IV Mashechkin. Measuring the
probabilistic photometric redshifts of x-ray quasars based on the quantile regression of ensembles
of decision trees. Astronomy Letters, 44(12):735–753, 2018. doi:10.1134/S1063773718120058.

40 Kevin P Murphy. Probabilistic machine learning: an introduction. MIT press, 2022.
41 Atul Negi and K Rajesh. A review of ai and ml applications for computing systems. In 2019 9th

International Conference on Emerging Trends in Engineering and Technology - Signal and In-
formation Processing (ICETET-SIP-19), pages 1–6, 2019. doi:10.1109/ICETET-SIP-1946815.
2019.9092299.

42 Stefana Nenova and Daniel Kastner. Worst-case timing estimation and architecture exploration
in early design phases. In In Niklas Holsti, editor, 9th Intl. Workshop on Worst-Case Execution
Time (WCET) Analysis, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2009.

43 Jan Nowotsch, Michael Paulitsch, Daniel Buhler, Henrik Theiling, Simon Wegener, and Michael
Schmidt. Multi-core interference-sensitive WCET analysis leveraging runtime resource capacity
enforcement. In 26th Euromicro Conference on Real-Time Systems, ECRTS, 2014.

44 Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, David Sculley, Sebastian Nowozin, Joshua
Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model’s uncertainty?
evaluating predictive uncertainty under dataset shift. Advances in neural information processing
systems, 32, 2019.

45 Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch, 2017.

46 Drew Penney and Lizhong Chen. A survey of machine learning applied to computer architecture
design. ArXiv, abs/1909.12373, 2019. arXiv:1909.12373.

47 Roger Pujol, Hamid Tabani, Leonidas Kosmidis, Enrico Mezzetti, Jaume Abella, and Fran-
cisco J Cazorla. Generating and exploiting deep learning variants to increase heterogeneous
resource utilization in the nvidia xavier. In 31st Euromicro Conference on Real-Time Systems
(ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

48 David Radack, Harold G. Tiedeman, and Paul Parkinson. Civil certification of multi-core
processing systems in commercial avionics. Technical report, Rockwell Collins, 2018.

49 Petar Radojković, Sylvain Girbal, Arnaud Grasset, Eduardo Quiñones, Sami Yehia, and
Francisco J Cazorla. On the evaluation of the impact of shared resources in multithreaded
cots processors in time-critical environments. ACM Transactions on Architecture and Code
Optimization (TACO), 8(4):1–25, 2012.

50 Jitendra Kumar Rai, Atul Negi, and Rajeev Wankar. Machine learning based performance pre-
diction for multi-core simulation. In Chattrakul Sombattheera, Arun Agarwal, Siba K. Udgata,
and Kittichai Lavangnananda, editors, Multi-disciplinary Trends in Artificial Intelligence,
pages 236–247, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

https://doi.org/10.1257/jep.15.4.143
https://www.nature.com/articles/nature14539
https://doi.org/10.5555/1248547.1248582
https://doi.org/10.1134/S1063773718120058
https://doi.org/10.1109/ICETET-SIP-1946815.2019.9092299
https://doi.org/10.1109/ICETET-SIP-1946815.2019.9092299
http://arxiv.org/abs/1909.12373

A. Brando, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla 4:25

51 Russell Reed and Robert J MarksII. Neural smithing: supervised learning in feedforward
artificial neural networks. Mit Press, 1999. doi:10.7551/mitpress/4937.001.0001.

52 Shenyuan Ren, Ligang He, Junyu Li, Zhiyan Chen, Peng Jiang, and Chang-Tsun Li. Contention-
aware prediction for performance impact of task co-running in multicore computers. Wireless
Networks, February 2019. doi:10.1007/s11276-018-01902-7.

53 Hamid Tabani, Roger Pujol, Jaume Abella, and Francisco J. Cazorla. A cross-layer review of
deep learning frameworks to ease their optimization and reuse. In 2020 IEEE 23rd International
Symposium on Real-Time Distributed Computing (ISORC), pages 144–145. IEEE, May 2020.
doi:10.1109/isorc49007.2020.00030.

54 Lee Teschler. The basics of automotive radar, 2019. URL: https://www.designworldonline.
com/the-basics-of-automotive-radar/.

55 Prathap Kumar Valsan, Heechul Yun, and Farzad Farshchi. Taming non-blocking caches to
improve isolation in multicore real-time systems. In 2016 IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), Vienna, Austria, April 11-14, 2016, 2016.

56 Jasper Velthoen, Clément Dombry, Juan-Juan Cai, and Sebastian Engelke. Gradient boosting
for extreme quantile regression. arXiv preprint, 2021. arXiv:2103.00808.

57 Sergi Vilardell, Isabel Serra, Roberto Santalla, Enrico Mezzetti, Jaume Abella, and Francisco J.
Cazorla. HRM: merging hardware event monitors for improved timing analysis of complex
mpsocs. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., 39(11):3662–3673, 2020.
doi:10.1109/TCAD.2020.3013051.

58 Cort J Willmott and Kenji Matsuura. Advantages of the mean absolute error (mae) over
the root mean square error (rmse) in assessing average model performance. Climate research,
30(1):79–82, 2005. URL: https://www.jstor.org/stable/24869236.

59 Felippe Vieira Zacarias, Rajiv Nishtala, and Paul Carpenter. Contention-aware application
performance prediction for disaggregated memory systems. In Proceedings of the 17th ACM
International Conference on Computing Frontiers, CF ’20, pages 49–59, New York, NY, USA,
2020. Association for Computing Machinery. doi:10.1145/3387902.3392625.

60 Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv preprint, 2014. arXiv:1409.2329.

61 Jiacheng Zhao, Huimin Cui, Jingling Xue, and Xiaobing Feng. Predicting cross-core per-
formance interference on multicore processors with regression analysis. IEEE Trans. Parallel
Distrib. Syst., 27(5):1443–1456, May 2016. doi:10.1109/TPDS.2015.2442983.

ECRTS 2022

https://doi.org/10.7551/mitpress/4937.001.0001
https://doi.org/10.1007/s11276-018-01902-7
https://doi.org/10.1109/isorc49007.2020.00030
https://www.designworldonline.com/the-basics-of-automotive-radar/
https://www.designworldonline.com/the-basics-of-automotive-radar/
http://arxiv.org/abs/2103.00808
https://doi.org/10.1109/TCAD.2020.3013051
https://www.jstor.org/stable/24869236
https://doi.org/10.1145/3387902.3392625
http://arxiv.org/abs/1409.2329
https://doi.org/10.1109/TPDS.2015.2442983

A Formal Link Between Response Time Analysis
and Network Calculus
Pierre Roux # Ñ

ONERA, Toulouse, France
DTIS – Université de Toulouse, F-31055 Toulouse, France

Sophie Quinton # Ñ

Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LIG, F-38000 Grenoble, France

Marc Boyer # Ñ

ONERA, Toulouse, France
DTIS – Université de Toulouse, F-31055 Toulouse, France

Abstract
Classical Response Time Analysis (RTA) and Network Calculus (NC) are two major formalisms
used for the verification of real-time properties. We offer mathematical links between these two
different theories. Based on these links, we then prove the equivalence of various key notions in both
frameworks. This enables specialists of both formalisms to get increase confidence on their models, or
even, like the authors, to discover errors in theorems by investigating apparent discrepancies between
some notions expected to be equivalent. The presented mathematical results are all mechanically
checked with the interactive theorem prover Coq, building on existing formalizations of RTA and
NC. Establishing such a link between NC and RTA paves the way for improved real-time analyses
obtained by combining both theories to enjoy their respective strengths (e.g., multicore analyses for
RTA or clock drifts for NC).

2012 ACM Subject Classification Computer systems organization → Real-time system specification;
Networks → Formal specifications; Software and its engineering → Formal methods; General and
reference → Verification

Keywords and phrases Response Time Analysis, Network Calculus, dense time, discrete time,
response time, formal proof, Coq

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.5

Supplementary Material Software (ECRTS 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.1.3

Funding This work has been partially supported by the French national research organization ANR
(grant ANR-17-CE25-0016) through the RT-PROOFS project.

1 Introduction

Classical Response Time Analysis (RTA) and Network Calculus (NC, together with its
variant Real-Time Calculus) are two major formalisms used for the verification of real-time
properties. Some of the differences between RTA and NC are well-known: RTA tends to
be based on discrete time while NC relies on dense time, there is no notion of task in NC,
etc. Still, fully understanding the implications of such differences – enough, for example, to
be able to compare the state of the art in both approaches – requires a solid expertise in
both formalisms, which very few people have. To the best of our knowledge, no formal link
has ever been proposed to relate models and verification techniques from both worlds. This
is now made easier by recent work on formalizing each technique separately using the Coq
interactive theorem prover: RTA in Prosa [9] and NC in NCCoq [22].

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Pierre Roux, Sophie Quinton, and Marc Boyer;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 5; pp. 5:1–5:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pierre.roux@onera.fr
https://www.onera.fr/fr/staff/pierre-roux
https://orcid.org/0000-0003-2910-4738
mailto:sophie.quinton@inria.fr
https://team.inria.fr/spades/quinton
https://orcid.org/0000-0003-1838-2345
mailto:marc.boyer@onera.fr
https://www.onera.fr/fr/staff/marc-boyer
https://orcid.org/0000-0003-0344-6991
https://doi.org/10.4230/LIPIcs.ECRTS.2022.5
https://doi.org/10.4230/DARTS.8.1.3
https://doi.org/10.4230/DARTS.8.1.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 A Formal Link Between Response Time Analysis and Network Calculus

In this paper, we provide the foundations for a formal connection between RTA and NC.
Specifically, we show how to translate the behavior of a real-time system as formalized in
Prosa into a trace as specified in NCCoq, and conversely. This requires in particular a clean
formalization of time and how to switch back and forth between discrete and dense time.
We also relate core modeling concepts of NC, namely arrival curves and FIFO scheduling, to
their Prosa counterparts. All definitions and proofs are formalized in Coq and available as
additional material submitted together with this paper.

Our work is significant in many ways. First, it makes it easier for experts of one of the
two approaches to understand the other by formally relating definitions. Second, given that
a formal specification in Coq may be incorrect (meaning that it does not correspond to its
informal definition), linking RTA and NC definitions is a way to increase confidence in these
definitions. This has in fact led us to discover a bug in the definition of static priority in NC,
as discussed at the end of the paper. Third, our formal connection provides the necessary
foundations to compare existing analyses: proving that they are equivalent, that one is
strictly more precise than another, or that they are incomparable. In addition, we hope that
this connection can be used to build improved analyses based on a combined use of RTA
and NC. Last, but not least, another strong contribution of this paper is its formalization of
clocks. Discrete time is not a well suited setting for addressing issues related to clock drifts.
The formal connection provided here between discrete and dense time represents a first step
towards handling clock drifts in Coq.

This paper is organized as follows. Section 2 discusses related work. Section 3 provides
an informal overview of the contribution. Sections 4 and 5 then present in a formal way the
relevant state of the art regarding modeling in Coq of RTA and NC, respectively. Section 6
presents our first contribution, which formally links physical time (as in NC) and discrete
clock-based time (as in Prosa). Sections 7, 8 and 9 then provide formal links between arrival
sequences and cumulative curves, response times and horizontal deviations, request bound
functions and arrival curves, respectively. Finally, Section 10 addresses properties at the
scheduling level regarding FIFO and fixed-priority scheduling and Section 11 concludes.

All along the paper, definitions and lemmas are tagged with their (name) in the companion
Coq development. No pen-and-paper proof of any result is provided in the paper: we focus
instead on intuitions and explanations. Of course, we can only do that because the provided
Coq proofs provide a much higher level of confidence.

2 Related Work

Building an analysis to guarantee that a system satisfies some real-time requirement is often
a complex process, requiring long and error-prone proofs. One way to increase confidence in
the correctness of such analyses is to use model checking, as e.g., in [5] to verify schedulers.
Model checkers are automatic but less versatile than proof assistants such as Coq [10] or
Isabelle/HOL [26]. In this paper, we follow a recent trend in the real-time community towards
computer-assisted formal specifications and proofs using Coq1.

Coq [10] is a proof assistant, i.e., a tool offering (1) a language to state theorems and
describe their proofs, and (2) software – think of it as a compiler – for verifying these proofs.
It can also be used to develop software whose execution is proved to be conform to their
(formal) specification such as the CompCert C compiler [19] or the CertiKOS operating

1 See for example the Call to Action at ECRTS 2016, Real Proofs for Real Time: Let’s do better than
“almost right” [1]. Note that a similar momentum was given a decade ago in the programming language
community. A number of mechanized formalizations (using either Coq or other tools) now appear each
year at POPL, their main conference.

P. Roux, S. Quinton, and M. Boyer 5:3

system [13]. When checking a proof, Coq will complain if a lemma is used without providing
a proof for one of its hypotheses or if the proved hypotheses do not match the expected ones.
Of course, Coq cannot guarantee that the formalization indeed corresponds to what was
intended, so readability of the specification is key in Coq.

The main mathematical concepts of RTA have been formally defined and proved, with
Coq, in the Prosa library [9]. This work has since seen many extensions. For example, [8]
uses Coq as much for formalization purposes as for verification, while [7, 12] both use Coq as
a powerful tool for providing abstract proofs which can then be instantiated into a variety
of more concrete analyses. CertiCAN [11] represents a third type of application of Coq in
relation to Prosa, in that it not only produces Coq proofs of various real-time analyses of the
CAN protocol (from which efficient analysis tools can be extracted) but it can also be used
to certify the results of non-certified industrial tools such as RTaW-Pegase. In yet another
related line of work, [14, 15] have shown that it is possible to use Prosa for the schedulability
analysis of a real-time OS kernel, namely CertiKOS.

On the NC side, first results on the formal verification of NC computation were presented
in [20]. The aim was to verify that an existing tool was correctly using the NC theory.
An Isabelle/HOL library was developed, specifying the main concepts of NC (flows and
servers, arrival and service curves) and stating the main theorems but without proving them2.
The NC tool was then instrumented to provide not only a result, but also a proof on how
NC had been used to produce that result. Isabelle/HOL was in charge of checking the
correctness of this proof. Much more recently, actual proofs, this time using Coq, of the core
mathematical concepts of NC have been provided in [22]. Actual computations of such non
trivial manipulations of functions in the min-plus dioids can also be verified using Coq [23].

Regarding the specific contribution of this paper, namely the link between RTA and
NC, note that comparing theories that coexist in the real-time community is not a new
challenge [21], yet little research has been done on building bridges between them. Recent
work has focused on connecting Compositional Performance Analysis (CPA, [24]) and NC
into a common formal framework [6, 17], however not using proof assistants.

3 Overview of the Contribution

Before going into detail, let us provide here an informal description of the contributions of
this paper, based on simple examples of RTA and NC execution traces.

Figure 1 shows a usual representation of a RTA trace, which contains here a single
job characterized by its arrival time arr(j) and its cost, both of which are integers. The
scheduling of j determines the service it receives, and thus its completion time end(j). Note
that cost and instants are all integers but instants denote some points in time whereas a
cost is a workload. The response time of j is defined as end(j) − arr(j). A more detailed
description of RTA will be presented in Section 4.

Figure 2 shows a comparable trace in NC. NC models workload using the notion of
cumulative curve. A cumulative curve A is a non-decreasing function from R+ to R+, whose
semantics is that A(t) represents a cumulative amount of work (in bits or CPU cycles). Like
in RTA, the domain and image of A are the same sets, but the domain represents a (dense)
time set whereas the image represents an amount of work. A curve can represent an amount
of work demand, or an amount of work received. For instance, the crossing of a server by
a packet is represented by two functions, the arrival cumulative curve A, whose value is
null up to the packet arrival and is increased by the packet size at its arrival time, and a

2 They were assumed to be correct, since they have been established in the literature for long.

ECRTS 2022

5:4 A Formal Link Between Response Time Analysis and Network Calculus

clock ticks1 2 3 4 5 6 7 8 9

w
or

k

1
2

Figure 1 RTA: Scheduling of a job j with arr(j) = 1, cost(j) = 4 and the service received by job
equal to 1 at instants 2 and 5, and equal to 2 at instant 3, leading to end(j) = 6.

departure cumulative curve D which is also null up to the packet departure and is increased
by the packet size at its departure time. The delay is then defined as the horizontal deviation
between A and D (the formal definition of which will be given in Section 5).

time1 2 3 4 5 6 7 8 9

by
te

s

1
2
3
4

A

D

hDev(A,D)

Figure 2 NC: Arrival and departure cumulative curves representing a packet of size 4 entering a
server at time 1 and leaving at time 6.

The relation between RTA and NC appears quite simple when comparing Figures 1 and 2,
but the similarity between the graphical horizontal lines hides a major difference. Time in
NC is the physical time, common to all calculators or switches (neglecting relativity effects)
whereas time in RTA is the clock time, given by a hardware element, subject to imprecision
and drifts.

Let us now discuss a slightly more complex example. In RTA, a task is a (possibly infinite)
sequence of jobs, and the response time of the task in a schedule is the maximum of all
individual response times. In NC, a flow is commonly represented by a single cumulative
sequence. Note that the information is not exactly the same in both models. First, the
NC model does not precisely represent the instants at which a task is scheduled, and only
represents completion times. Since it does not represent the scheduling itself, it cannot
support properties on scheduling. Second, the NC model of flow has no notion of individual
packets or jobs. For example, when looking at Figure 3, representing the arrival and departure
of two packets of size 4, one cannot guess if the packet leaving at time 6 is the first or the
second one. In fact, even the number of packets is unknown: the jump of size 4 at time
1 could be created by a single packet of size 4, but also by 2 packets of size 2, and so on.
Nevertheless, under the assumption that all jobs of the same task are scheduled with FIFO
order, we can prove that the horizontal deviation is equivalent to the response time. Third,
the RTA model does not capture clock drifts, making it more difficult to plug systems with
different clocks, whereas NC uses the real universal time and can easily handle clock drift
between systems.

We can now detail the core contributions reported in this paper, as follows:
a clock model linking RTA and NC time, that can handle clock drifts;
a mapping of each job j in a Prosa trace to a pair (Aj , Dj) in NC;
a proof that the horizontal deviation hDev(Aj , Dj) is equal to the response time of job j

in case of perfect clocks, and a valid upper bound in presence of clock drifts;

P. Roux, S. Quinton, and M. Boyer 5:5

clock ticks1 2 3 4 5 6 7 8 9

w
or

k

1
2

clock ticks1 2 3 4 5 6 7 8 9

w
or

k
1
2

time1 2 3 4 5 6 7 8 9

by
te

s

1
2
3
4
5
6
7
8

A
D

hDev(A,D)

Figure 3 Graphical representation of two different schedulings of two jobs j, j′ and the associated
arrival and departure curves (A, D). Note that NC curves cannot distinguish the two schedulings.

similar results for entire tasks and not just single jobs;
a translation of a request bound function from RTA into an arrival curve from NC and
vice versa;
an equivalence between RTA and NC definitions of FIFO;
an error found in a NC theorem during some preliminary works toward an equivalence on
static priority.

All these items have been formalized in Coq based on the Prosa and NCCoq frameworks.

As already mentioned, this equivalence is only based on job release time, completion time
and cost, ignoring the scheduling itself. Then, the property on FIFO relies on the observable
part related to input/output, not on its internal implementation. And the result on static
priority than will be presented in Section 10.2 is only a preliminary work. The modeling of
the schedule will be discussed in the conclusion.

4 Response Time Analysis

Let us provide a more formal description of how the general concepts used by RTA are
specified in Prosa. The Prosa library is structured around three main parts:

behavior/ provides a trace-based semantics of real-time systems and is meant to be as
generic as possible. This part represents the common ground for all other parts of Prosa.
model/ contains a variety of modeling concepts which can be used to specify real-
time systems, e.g., regarding task arrivals, preemptions, scheduling policies, platform
abstractions etc. This part is meant to be used as a library, where one can pick definitions
suitable for a specific system model.
analysis/ is where response time or schedulability analysis proofs are located.

In the rest of this section, we present the definitions from the Prosa library that are
needed to relate RTA and NC. For readability, we omit trivial well-formedness conditions
and a few basic definitions.

ECRTS 2022

5:6 A Formal Link Between Response Time Analysis and Network Calculus

4.1 Behavior
The behavior part of Prosa is the core of the library, so most of its concepts are used in our
work. First, let us recall that Prosa is based on a discrete model of time, so time is defined
using natural numbers. This is formalized in Coq in the file time.v of Prosa as

Definition duration := nat.
Definition instant := nat.

To insist on this and avoid confusion with the dense time used by NC, we use in this paper
the term tick for what is called instant in Prosa, and number of ticks for durations.

A job in Prosa is an abstract type with decidable equality: given two jobs, one can at least
determine whether they are the same job or not. One can specify additional job parameters
such as cost or arrival. Note that the cost of a job, which denotes the amount of service it
requires to complete, is of type work (also represented using natural numbers), which would
correspond in a real system to a number of processor cycles.

▶ Definition 1. (job_cost, job_arrival) The cost of a job j, of type work, is denoted
cost(j). The arrival of a job j, of type tick, is denoted arr(j).

This is formalized in Coq in the file job.v of Prosa as

Definition JobType := eqType.
Definition work := nat.
Class JobCost (Job : JobType) := job_cost : Job -> work.
Class JobArrival (Job : JobType) := job_arrival : Job -> instant.

An arrival sequence is then defined as a function mapping any tick to the (finite) sequence
of jobs that arrive at that tick.

▶ Definition 2. (arrival_sequence) Given a type of jobs Job, an arrival sequence is a
function arrseq : N → 2Job.

This is formalized in Coq in the file arrival_sequence.v of Prosa as

Definition arrival_sequence (Job : JobType) := instant -> seq Job.

A schedule essentially specifies which jobs are scheduled at every tick, and how much
service they receive. In practice, depending on the specific execution platform, a lot more
information may be relevant. This is why Prosa provides an abstract notion of processor
state, which provides at least the above information about jobs scheduled and service. A
schedule is then defined as a function that maps a tick to a processor state.

▶ Definition 3. (schedule) A schedule is a function sched : N → PState. Given an instance
of the abstract processor state class, the service received by a job j in a processor state
p ∈ PState is denoted service_in(j, p).

This is formalized in Coq in the file schedule.v of Prosa as

Definition schedule (PState : Type) := instant -> PState.

with

Class ProcessorState (Job : JobType) (PState : Type) :=
{ service_in : Job -> PState -> work; (* ... *) }.

P. Roux, S. Quinton, and M. Boyer 5:7

Given a schedule and an instance of the abstract notion of processor state, one can derive
the service received by a job at a given tick, between two given ticks, or up to a given tick.

▶ Definition 4. (service) Given a schedule sched, the service received by a job j before a
tick t ∈ N, denoted service(j, t), is defined as

∑
0≤t′<t service_in(j, sched(t′)).

This is formalized in Coq in the file service.v as

Context {Job : JobType} {PState : Type} ‘{ProcessorState Job PState}.
Variable sched : schedule PState.

Definition service_at (j : Job) (t : instant) := service_in j (sched t).
Definition service_during (j : Job) (t1 t2 : instant) :=

\sum_(t1 <= t < t2) service_at j t.
Definition service (j : Job) (t : instant) := service_during j 0 t.

Finally, a job completes its execution when it has received at least as much service as its
cost3. The definition of a response time bound follows.

▶ Definition 5. (job_response_time_bound) A number of ticks r+ is a response time bound
for a job j if service(j, arr(j) + r+) ≥ cost(j).

This is formalized in Coq as

Definition completed_by (j : Job) (t : instant) :=
service j t >= job_cost j.

Definition job_response_time_bound (j : Job) (R : duration) :=
completed_by j (job_arrival j + R).

We will in addition use a related definition from the analysis part, which introduces
the notion of completion sequence.

▶ Definition 6. (completion_sequence) Given an arrival sequence arrseq and a schedule
sched, the corresponding completion sequence, denoted endseq(arrseq, sched), is the function
N → 2Job that maps each tick t to the jobs that complete at t.

This is formalized in Coq using the following definition from service.v

Definition completes_at (j : Job) (t : instant) :=
~~ completed_by j t.-1 && completed_by j t.

and then in the file completion_sequence.v as

Definition completion_sequence : arrival_sequence Job :=
fun t => [seq j <- arrivals_up_to arr_seq t | completes_at sched j t].

We have now all the basic concepts required to describe the behavior of a real-time system
for RTA, except the notion of readiness, which is not needed in this paper. In the following,
we will sometimes use the term trace to refer to a pair (arrseq, sched).

3 Note that we do not impose that a job receives exactly the amount of service corresponding to its cost.
It could indeed receive more than needed to complete from the processor in the last tick of its execution.

ECRTS 2022

5:8 A Formal Link Between Response Time Analysis and Network Calculus

4.2 Model
Unlike behavior, which is intended to be as universal as possible and to which all analyses
using Prosa must relate, the model part is really meant as a library to be extended and
picked from depending on the target system model and analysis. In this paper we will only
use basic constructs from this part of Prosa to specify tasks and request bound functions.

Similar to jobs, a task in Prosa is nothing more than an abtract type with decidable
equality. One usually specifies a task cost, and a function to relate jobs and tasks.

▶ Definition 7. (job_task, task_cost) The task of a job j is denoted task(j). The cost of
a task tsk, of type work, is denoted cost(tsk).

This is formalized in Coq in the file concept.v of Prosa as

Definition TaskType := eqType.
Class JobTask (Job : JobType) (Task : TaskType) := job_task : Job -> Task.
Class TaskCost (Task : TaskType) := task_cost : Task -> duration.

Defining the arrival of a task is less trivial than for a job and there exists a variety of
models in Prosa for doing so, including periodic and sporadic arrival models. Prosa also
defines arrival curves, which however constrain the number of arrivals rather that the amount
of requested workload as in NC. We use here request bound functions, which are closer to
the NC arrival curves.

▶ Definition 8. (request_bound) A request bound is a monotonic function rbf : N → N
such that rbf (0) = 0. An arrival sequence arrseq satisfies an upper request bound rbf for a
given task tsk if for any ticks t1, t2 ∈ N such that t1 ≤ t2, the cumulative cost of all jobs of
tsk that arrive in arrseq between t1 and t2 is bounded by rbf (t2 − t1).

This is formalized in Coq in the file request_bound_functions.v of Prosa as

Definition valid_request_bound_function (request_bound : duration -> work)
:= request_bound 0 = 0 ∧ monotone leq request_bound.

Definition respects_max_request_bound (tsk : Task) (max_request_bound :
duration -> work) := ∀ (t1 t2 : instant), t1 <= t2 ->

cost_of_task_arrivals arr_seq tsk t1 t2 <= max_request_bound (t2 - t1).

Let us now introduce the first definition that is not already part of Prosa. We specify the
FIFO property, which guarantees that jobs complete in the order in which they arrive.

▶ Definition 9. (FIFO_property) A trace (arrseq, sched) is said to respect the FIFO property
when for any two jobs j1, j2, if j1 arrives before j2 then it also completes before it, that is:

∀j1, j2, ∀t1, t2, t′
2,

(j1 ∈ arrseq(t1) ∧ j2 ∈ arrseq(t2) ∧ t1 < t2 ∧ j2 ∈ endseq(arrseq, sched)(t′
2)) =⇒

∃t′
1, t′

1 ≤ t′
2 ∧ j1 ∈ endseq(arrseq, sched)(t′

1).

For flexibility, we use a version of the FIFO property that applies to jobs of a specific pair of
tasks. If it holds for all pairs of a task set then we end up with the above property. The
advantage of this version is that it can be used to express the general FIFO property as
well as the specific FIFO order between jobs of the same task (which is related to task
sequentiality in Prosa).

P. Roux, S. Quinton, and M. Boyer 5:9

▶ Definition 10. (FIFO_per_task_property) A trace (arrseq, sched) is said to respect the
FIFO property with respect to two tasks tsk1 and tsk2 when any job j2 in tsk2 completes after
all jobs j1 arrived before it in tsk1, that is:

∀j1, j2, ∀t1, t2, t′
2, (task(j1) = tsk1 ∧ task(j2) = tsk2 ∧

j1 ∈ arrseq(t1) ∧ j2 ∈ arrseq(t2) ∧ t1 < t2 ∧ j2 ∈ endseq(arrseq, sched)(t′
2)) =⇒

∃t′
1, t′

1 ≤ t′
2 ∧ j1 ∈ endseq(arrseq, sched)(t′

1).

Note that there is a definition of FIFO in the model part of the Prosa library, which
we do not use. First because it is quite complex, in the sense that it is derived from a
more general notion of job level fixed priority. It is therefore more convenient to use a more
straightforward definition for connecting RTA to NC. Formally relating our direct definition
of FIFO to the Prosa definition is left for future work. Second, and more importantly, the
Prosa FIFO definition is in fact different from ours, as it constrains the scheduling of jobs in
a first-come-first-serve manner while the above definition constrains the order in which jobs
complete. In particular, the Prosa FIFO scheduling does not necessarily guarantee the FIFO
property in multicore systems. The notion of server in NC is very different from the notion
of scheduler in RTA, and as a result a formal link between the two can only succeed at the
interface, expressed in terms of arrivals and completions.

5 Network Calculus

Similarly to how the Prosa library is formalizing RTA analyses in Coq, the NC theory
is formalized in the NCCoq library, which is available at https://gitlab.mpi-sws.org/
proux/nc-coq. A short overview can be found in [22]. This section introduces the notions
from NCCoq that we have used in our work.

5.1 Behavior
NC models dense time using the set of real numbers R, and more specifically its subset of
nonnegative values R+ := {x ∈ R | x ≥ 0}. Positive real numbers R∗

+ := {x ∈ R | x > 0} as
well as extended reals R := R ∪ { −∞, +∞ } also play an important role. In the NCCoq
formalization, these fundamental definitions are taken from the MathComp Analysis library [2]
and respectively noted R : realType, {nonneg R}, {posnum R} and \bar R. NC relies on
a few classes of functions, defined as follows.

▶ Definition 11. (F) F := R+ → R is the set of functions from R+ to R.

This is formalized in Coq in the file RminStruct.v of NCCoq as

Definition F := {nonneg R} -> \bar R.

▶ Definition 12. (Fplus) F+ := {f ∈ F | 0 ≤ f} is the subset of functions from F that are
nonnegative.

This is formalized in Coq as

Definition F_0 : F := fun=> 0%E.
Definition nonNegativeF := [qualify a f | F_0 <= f]%O.
Record Fplus := { Fplus_val :> F; _ : Fplus_val \is a nonNegativeF }.

ECRTS 2022

https://gitlab.mpi-sws.org/proux/nc-coq
https://gitlab.mpi-sws.org/proux/nc-coq

5:10 A Formal Link Between Response Time Analysis and Network Calculus

where the first line defines f0 : F the constant4 function equal to 0 ∈ R; the second line
defines the nonnegative functions as functions that are larger than f0. The third line uses a
common Coq construction, where the subset of a set X satisfying a property P is defined as
records with an element x ∈ X of this set (here, Fplus_val of type5 F) and an unnamed _
proof of P (x) (here, a proof that Fplus_val is a nonnegative function).

▶ Definition 13. (Fup) F↑ := {f ∈ F+ | ∀xy, x ≤ y ⇒ f(x) ≤ f(y)} is the subset of nonde-
creasing functions from F+.

The Coq formalization Fup proceeds similarly to Fplus.
Now equipped with these basic definitions, we can define the main object of NC: data

flow cumulative curves. They play a similar role to arrival sequences in RTA.

▶ Definition 14. (flow_cc) A cumulative curve is a function f ∈ F↑ satisfying
f(0) = 0
f is left continuous
f only takes finite values: ∀t, f(t) ∈ R+

We denote C the set of cumulative curves.

This is formalized in Coq in the file cumulative_curves.v of NCCoq.
NC defines delays using the notion of horizontal deviation between two cumulative curves.

▶ Definition 15. (hDev_at, hDev) For f, g ∈ F and t ∈ R+, the horizontal deviation
hDev(f, g, t) ∈ R+ between f and g at t is defined as

hDev(f, g, t) := inf {d ∈ R+ | f(t) ≤ g(t + d)}

and the horizontal deviation hDev(f, g) ∈ R+ between f and g is defined as

hDev(f, g) := sup {hDev(f, g, t) | t ∈ R+}.

This is formalized in Coq in the file deviations.v of NCCoq.
Finally, servers constitute the last main notion of NC to model concrete behaviors.

NCCoq includes a few different flavors of servers. This notion would relate to the notion
of scheduler in the RTA world. There is however is no such thing formalized in the core
of Prosa, which is based on schedules in the behavior and on scheduling policies (that are
predicates on traces) in the model part. We thus simply omit servers from the current paper,
in which we will directly deal with input and output cumulative curves.

5.2 Model
Just like request bound functions are a tool to express contracts on arrivals in RTA, arrival
curves are the NC tool to specify inputs of servers.

4 0 ∈ R is denoted 0%E in Coq, %E being the scope annotation for extended real notations in the MathComp
Analysis library [2].

5 The :> syntax makes Fplus_val a Coq coercion, meaning Fplus_val will be inserted automatically by
Coq to cast a Fplus as a F wherever needed. In practice, this means that a value of type Fplus can be
used just like a function of type F.

P. Roux, S. Quinton, and M. Boyer 5:11

▶ Definition 16. (is_maximal_arrival) A function α ∈ F is an arrival curve for any
cumulative curve A when

∀t, d ∈ R+, A(t + d) − A(t) ≤ α(d)

This is formalized in Coq in the file arrival_curves.v of NCCoq.
This concludes our overview of the already existing definitions that are needed to present

our contribution in the remainder of the paper.

6 Dense versus Discrete Time

Hardware clocks are devices whose aim is to provide a measure of time, generally based on a
physical oscillator, characterized by its frequency f . Based on [16], we may distinguish ideal
clocks, when the difference between two signal occurrences is exactly 1/f , from constant
drifted clocks, when the difference between two signal occurrences is exactly ρ/f , where ρ − 1
represents the drift (commonly related to the temperature), or more general constraints [25].
In computers, the time value is computed as a function based on a counter incremented at
each signal occurrence.

Thus, Section 6.1 will introduce a universal notion of clock, to make a link between time
and its discrete measurement, and Section 6.2 will introduce elements on the clock quality.
The Coq definitions and lemmas referenced in this section can be found in the file clock.v.

6.1 Clocks
Since RTA relies on a discrete notion of time (ticks are in N) whereas NC uses real times
in R+, we need a link between discrete and dense times in order to relate both theories.
A simple solution would be to use the canonical injection of N in R+, that is, to consider
each tick n ∈ N as happening at real time n ∈ R+. However, doing this would preclude any
modeling of behaviors such as clock drifts. We thus need a more generic modeling. To that
end, we first introduce the notion of universal clock.

▶ Definition 17. (uclock) A universal clock is a function c : N → R+ satisfying
c(0) = 0
there exists a min_intertickc ∈ R∗

+ such that for all n ∈ N, we have

c(n + 1) ≥ c(n) + min_intertickc.

Thus given a clock c, the real value c(n) is the physical time of the n-th clock tick. The
condition c(0) = 0 means that the clock starts right away while the min_intertickc is mostly
there to exclude functions such as n 7→ 1 − 1

n which could cause all kinds of Zeno phenomena.
While we now have a link from discrete to dense time, it would be useful to get some

kind of inverse from dense to discrete time. One can notice that, thanks to the condition on
min_intertickc above, for any clock c and real time r, there is a tick n that happens exactly
at time r or is the next one after r.

▶ Lemma 18. (next_tick_ex) For any clock c and r ∈ R+, there exist n ∈ N such that
r ≤ c(n) and for all n′ < n, we have c(n′) < r.

This gives us a function nextc : R+ → N.

▶ Definition 19. (next_tick) For any clock c, we denote nextc : R+ → N the function
mapping each r to the n given by Lemma 18.

ECRTS 2022

5:12 A Formal Link Between Response Time Analysis and Network Calculus

tick1 2 3 4 5 6

re
al

tim
e

0.1
0.2
0.3
0.4
0.5
0.6 c

real time0.1 0.2 0.3 0.4 0.5 0.6

tic
k

1
2
3
4
5
6 nextc

Figure 4 Graphical representation of an arbitrary clock c and its inverse function nextc.

This is illustrated in Figure 4 and formalized as follows in Coq: we first prove Lemma 18

Lemma next_tick_ex (c : uclock) (r : {posnum R}) :
{ n | r%:nngnum <= (c n)%:nngnum

∧ ∀ n’, (n’ < n)%N -> (c n’)%:nngnum < r%:nngnum }.

where {n|P(n)} is a Coq notation for “there exists a n such that P (n)”. Since such a proof
is a simply dependent pair (n, proofof P (n)), one can use the first projection proj1_sig to
extract n out of it.

Definition next_tick (c : uclock) (r : {posnum R}) : instant :=
proj1_sig (next_tick_ex c r).

▶ Remark 20. We could as well have chosen n such that r < c(n) rather than r ≤ c(n). The
current choice appeared more convenient to match the left continuity conditions of NC.

Once clocks are defined, one can use Coq to formally verify a few lemmas about them.
In practice, we have proved about a dozen lemmas that came useful in the remaining of our
formal development, among which

▶ Lemma 21. (next_tick_0) For any clock c, then nextc(0) = 0.

▶ Lemma 22. (uclockK) For any clock c, any tick n ∈ N, then nextc(c(n)) = n.

6.2 Pseudo Periodic Clocks
Although the condition on min_intertickc in the definition of clocks was primarily introduced
to rule out Zeno phenomena, it can also be used to model clocks whose time between two
subsequent ticks is lower bounded. In addition, we will need to model clocks whose intertick
time is also upper bounded. Such clocks can be seen as periodic clocks with an inexact
period that can vary between some minimal and maximal value. They are thus called pseudo
periodic clocks.

▶ Definition 23. (ppuclock) A pseudo periodic clock is a clock c such that there exist
max_intertick satisfying min_intertickc ≤ max_intertick and for all n, we have c(n+1) ≤
c(n) + max_intertick.

▶ Example 24. (periodic_uclock) Periodic clocks are a special case of pseudo periodic
clocks for which min_intertickc = max_intertick and the n-th tick happens exactly at
time n × period.

P. Roux, S. Quinton, and M. Boyer 5:13

Program Definition periodic_uclock (period : {posnum R}) : ppuclock :=
Build_ppuclock

(Build_uclock (fun n => (n%:R * period%:num)%:nng) _ period _)
period _ _.

Thus, a clock c such that: ∀n, c(n + 1) − c(n) = 10−9s is a periodic clock representing
an ideal 1MHz clock, whereas a clock such that: ∀n, c(n + 1) − c(n) = (10−9 + 10−12)s is
also a periodic clock, but representing a 1MHz clock with a constant drift of 0.1%. Finally,
any clock such that: ∀n, c(n + 1) − c(n) ∈ [10−9 − 10−12, 10−9 + 10−12] is a pseudo periodic
clock with a non constant drift not greater than 0.1%.

As a tool to link physical time and clock ticks, these definitions of clocks will be pervasive
to link RTA and NC in the rest of this paper. Using different clocks for different parts of a
system then enables to model drift between different physical clocks.

7 Linking Arrival Sequences and Cumulative Curves

Equipped with this notion of clock, we can now relate arrival sequences from RTA to
cumulative curves from NC. We first do so for a single job then for an entire task.

The Coq definitions and lemmas referenced in this section can be found in the file
flow_cc_of_arrival_sequence.v.

7.1 For a Single Job
▶ Definition 25. (flow_cc_of_job) Given a job j and a clock c, one can build a cumulative
curve Aj ∈ C, as seen in Section 5, defined by

Aj : R+ → R+ (1)

t 7→

{
0 if t ≤ c (arr(j))
cost(j) otherwise.

(2)

We can thus establish a relation between jobs and cumulative curves.

▶ Definition 26. (related_job_flow_cc) A job j, with its cost and arrival time, and a
cumulative curve A are related when A is exactly the function Aj of Definition 25.

7.2 For an Entire Task
We can proceed similarly for a task with multiple jobs.

▶ Definition 27. (flow_cc_of_arrival_sequence) Given an arrival sequence arrseq, a
clock c and a task tsk, the cumulative curve Atsk ∈ C is defined by

Atsk : R+ → R+ (3)

t 7→
∑

j ∈
⋃

{arrseq(i) | i<nextc(t)},

task(j)=tsk

cost(j). (4)

In Coq, we first define the arrival for a given task between two instants t1 and t2.

ECRTS 2022

5:14 A Formal Link Between Response Time Analysis and Network Calculus

Let arrivals_of_tsk (arr_seq : arrival_sequence Job) tsk t1 t2 :=
[seq j <- arrivals_between arr_seq t1 t2 | job_task j == tsk].

Then, given a clock c, we define the cumulative curve

Program Definition flow_cc_of_arrival_sequence
(s : arrival_sequence Job) (c : uclock) (tsk : Task) :=

Build_flow_cc (Build_Fup (Build_Fplus
(fun t => (\sum_(j <- arrivals_of_tsk s tsk O (next_tick c t))

job_cost j)%:R%:E)
_) _) _.

It is worth noting here that, although it may not be immediately apparent in the pen-and-
paper Definition 27, this definition involves some proofs6 to prove that Atsk is actually a
cumulative curve, i.e., is in C.

We can thus establish a relation between arrival sequences and cumulative curves.

▶ Definition 28. (related_arrival_flow_cc) Given a clock c and a task tsk, an arrival
sequence arrseq and a cumulative curve A are related when A is exactly the function Atsk of
Definition 27.

Finally, we can prove that the cumulative curve for a task is nothing else than the sum of
the cumulative curves for each individual job in the task.

▶ Lemma 29. (flow_cc_of_arrival_sequence_of_job) Given a clock c, a task tsk and
an arrival sequence arrseq, we have for all t ∈ R+:

Atsk(t) =
∑

j ∈
⋃

{arrseq(i) | i<nextc(t)},

task(j)=tsk

Aj(t).

Note that we may want to write Atsk(t) =
∑

j∈
⋃

{ arrseq(i) },task(j)=tsk Aj(t) since Aj(t) = 0
for jobs arriving after t, but it would lead to infinite sums whose convergence has to be
proved to Coq. The given statement is equivalent and more convenient.

We now have a link between the main concrete behavior notions in RTA and NC, namely
arrival sequences and cumulative curves. This link constitutes the basis enabling to relate
other notions in the rest of the paper: notions of response time and delay, contracts with
request bound functions and arrivals curves or various scheduling policies.

8 Linking Response Time and Horizontal Deviation

Equipped with a formal link between RTA’s arrival sequences and NC’s cumulative curves,
we can now relate response times and horizontal deviations. Again, we first do so for a single
job then for an entire task with multiple jobs.

The Coq definitions and lemmas referenced in this section can be found in the file delay.v.

6 By filling the holes _ of Program Definition, the proofs themselves are present in the source file but
omitted here for the sake of clarity.

P. Roux, S. Quinton, and M. Boyer 5:15

8.1 For a Single Job
▶ Definition 30. (arrival_sequence_of_job) Given a set of jobs Job and a job j ∈ Job,
we define the arrival sequence arrseqj of this job as

arrseqj : N → 2Job (5)

t 7→

{
{ j } if t = arr(j)
∅ otherwise.

(6)

We then prove that this arrival sequence is consistent with the considered job_arrival
function, meaning that j ∈ arrseqj(arr(j)).

▶ Lemma 31. (arrival_sequence_of_job_consistent) The arrival sequence arrseqj of a
job j, as defined in Definition 30, is consistent with the arrival time of j.

Thus, from a response time bound on an arrival sequence, one can deduce a horizontal
deviation on related arrival curves.

▶ Lemma 32. (hDev_of_job_response_time) Given a pseudo periodic clock c, for a given
job j, a related cumulative curve A and a cumulative curve D related to the completion
sequence of j, if some r+ ∈ N is a response time bound for j, then

hDev(A, D) ≤ r+ × max_intertickc.

Note that here, a pseudo periodic clock, and not just a clock, is required because the result
involves the upper bound max_intertick between two consecutive clock ticks. A similar
result holds in the reverse direction.

▶ Lemma 33. (job_response_time_of_hDev) Given a clock c, for a given job j, a related
cumulative curve A and a cumulative curve D related to the completion sequence of j, given
a bound on the horizontal deviation between A and D, if the horizontal deviation between A

and D is bounded by r+ × min_intertickc for some r+ ∈ N

hDev(A, D) ≤ r+ × min_intertickc

then r+ is a response time bound for j.

Note that this involves the bound min_intertickc between two consecutive clock ticks.

8.2 For an Entire Task
We can proceed similarly for entire tasks. Thus, from a task response time bound on an
arrival sequence, one can deduce an horizontal deviation on related arrival curves.

▶ Lemma 34. (hDev_of_task_response_time) Given a pseudo periodic clock c, a task tsk,
an arrival sequence arrseq, a related arrival curve A, a schedule sched and a cumulative curve
D related to its completion sequence endseq(arrseq, sched), if some r+ ∈ N is a response
time bound for all jobs of task tsk, then

hDev(A, D) ≤ r+ × max_intertickc.

ECRTS 2022

5:16 A Formal Link Between Response Time Analysis and Network Calculus

There is a big caveat for the reverse direction: since NC is unable to distinguish individual
jobs, as cumulative curves only register the sum of their costs7, one needs to add an
additional FIFO hypothesis that the jobs are ordered the same way in the arrival and
completion sequences. We end up with the following result to derive a RTA response time
bound from a NC horizontal deviation.

▶ Lemma 35. (task_response_time_of_hDev) Given a clock c, a task tsk, an arrival
sequence arrseq, a related cumulative curve A, a schedule sched, and a cumulative curve D

related to its completion sequence endseq(arrseq, sched), if the FIFO property of Definition 10
is satisfied with tsk1 := tsk and tsk2 := tsk and if the horizontal deviation between A and D

is bounded by r+ × min_intertickc for some r+ ∈ N:

hDev(A, D) ≤ r+ × min_intertickc

then r+ is a response time bound for all jobs of task tsk.

We now have a way to interpret RTA analyses results in a NC setting and vice versa.

9 Linking Request Bound Functions and Arrival Curves

The links established between RTA and NC in the previous sections were only pertaining
to the behavior subsections of Sections 4 and 5, defining respectively RTA and NC. That
is, those notions are purely mathematical, no actual computation is made on them. On
the contrary, the notions of request bound functions (RBF) and arrival curves, defined in
the model subsections of Sections 4 and 5, are actually manipulated by analyses. They
are “computational” objects and not mere mathematical definitions. Thus, given a RBF,
a “constructive” definition of a related arrival curve could enable to actually communicate
results from a RTA analysis to a NC one, and vice versa. The current section precisely aims
at building such “constructive” links.

The Coq definitions and lemmas referenced in this section can be found in the files
arrival_curve_of_request_bound_function.v and
request_bound_function_of_arrival_curve.v.

9.1 From Request Bound Functions to Arrival Curves
Given a RBF and a clock, one can define an arrival curve in F+.

▶ Definition 36. (arrival_curve_of_request_bound_function) Given rbf : N → N and
a clock c, we can define αrbf : F+ as

αrbf : R+ → R+ (7)

d 7→ rbf
(⌈

d

min_intertickc

⌉)
. (8)

Moreover, if the RBF is valid, then the arrival curve can be proved to be in F↑, i.e., it is
nondecreasing.

▶ Lemma 37. (arrival_curve_of_valid_request_bound_function) For any rbf and
clock c, if rbf is a valid RBF (according to Definition 8), then αrbf : F↑.

7 See the example in Section 3 with Figure 3.

P. Roux, S. Quinton, and M. Boyer 5:17

One can then prove that our definition indeed translates RBFs into arrival curves.

▶ Lemma 38. (arrival_curve_of_request_bound_function_is_maximal_arrival)
Given a clock c, a task tsk, an arrival sequence arrseq, a cumulative curve A and a RBF rbf ,
then if arrseq and A are related for task tsk, if rbf is a valid RBF for tsk in arrseq, then
αrbf is an arrival curve for A.

It is worth noting that this correspondence is tight for periodic clocks (i.e., one can prove8

the converse of Lemma 38) but can be conservative otherwise.

9.2 From Arrival Curves to Request Bound Functions
Conversely, from an arrival curve in F , one can define a RBF.

▶ Definition 39. (request_bound_function_of_arrival_curve) Given α : F and a
pseudo periodic clock c, we can define rbf α : N → N as

rbf α : N → N (9)

d 7→

{
0 if d ≤ 0
⌈α (d × max_intertickc)⌉ otherwise.

(10)

Note that this requires a pseudo periodic clock as it involves max_intertick. Also note that
rbf α(0) is explicitly set to 0 because RTA defines valid RBFs as starting at 0 whereas NC
has no such requirement9 on α. This definition is encoded as follows in Coq.

Definition request_bound_function_of_arrival_curve
(alpha : F) (c : ppuclock) : duration -> nat :=

fun d =>
if (d <= 0)%N then 0%N else

‘|ceil (fine (alpha (d%:R * (ppuclock_max_intertick c)%:num)%:nng%R)
)|%N.

There are two things worth noticing about that Coq statement that were not immediately
apparent in Definition 39. First, there is an additional absolute value ‘|.| around the ceiling
function ceil. This is needed for the definition to typecheck because the ceiling function
returns a (signed) integer whereas we need a natural number. In practice, since its argument
is always nonnegative, it is a no-op. Second, we need to insert fine because α : F returns
values in R whereas ceil expects an input in R. fine acts as the identity function on R and
maps infinites to 0. This will require an extra finiteness hypothesis in the next two lemmas.

When the arrival curve is in F↑, the RBF can be proved valid.

▶ Lemma 40. (valid_request_bound_function_of_arrival_curve) Given α : F↑ and a
pseudo periodic clock c, if α only takes finite values (i.e., for all d, α(d) ∈ R), then rbf α is a
valid RBF.

One can then prove that our definition indeed translates arrival curves to RBFs.

8 C.f., lemma arrival_curve_of_request_bound_function_respects_max_request_bound.
9 Even if, in practice, arrival curves with α(0) ̸= 0 are of no interest hence never used, the set F enjoys a

nice algebraic structure of dioid which {α : F | α(0) = 0} doesn’t and NC makes extensive use of this
algebraic structure.

ECRTS 2022

5:18 A Formal Link Between Response Time Analysis and Network Calculus

▶ Lemma 41. (request_bound_function_of_arrival_curve_respects_max_request_bound)
Given a pseudo periodic clock c, a task tsk, an arrival sequence arrseq, a cumulative curve A

and α : F↑ such that for all d, α(d) ∈ R, then if arrseq and A are related for task tsk, if α is
an arrival curve for A, then rbf α is a RBF for task tsk in s.

Again this is tight only for periodic clocks.
The definitions of αrbf and rbf α do not appear directly computable as they act on an

infinite domain but practical implementations of RTA or NC analyses usually handle some
kind of periodic functions10, in which case αrbf and rbf α can be actually computed. We
believe this is a powerful result, offering an effective way to translate RTA results into NC
hypotheses and vice versa. This enables us to combine the two theories and take advantage
of their respective strengths to derive real-time analysis results that none of the techniques
alone could provide.

10 Linking Scheduling Properties

We have already mentioned in Section 3 that the contribution does not address the scheduling
itself. Nevertheless, the First In First Out (FIFO) property as given in Definition 10 is not
a scheduling policy, but a property on schedulings. We are thus able to show equivalence
of the FIFO property in both formalisms, as presented in Section 10.1. Moreover, while
doing preliminary works toward an equivalence of static priority schedulings, an issue was
uncovered, as presented in Section 10.2.

10.1 FIFO
While the definition of FIFO in the RTA setting, as provided in Definition 10, appears
relatively straightforward, the NC definition may be much more enigmatic to anyone but
NC experts. We prove that this NC definition matches the RTA one, thus giving it a higher
confidence. The NC definition of the FIFO service policy is as follows.

▶ Definition 42. For n ∈ N, the cumulative curves Ai and Di for i < n are said to respect
the FIFO service policy when

∀i, j ∈ { 0, . . . , n − 1 } , ∀t, u ∈ R+, Ai(u) < Di(t) =⇒ Aj(u) ≤ Dj(t).

The Coq definitions and lemmas referenced in this section can be found in the file fifo.v.
We prove in particular the equivalence between the RTA and NC definitions of FIFO.

▶ Lemma 43. (FIFO_arrival_sequences_to_flow_cc) Given a clock c, an arrival sequence
arrseq, a schedule sched, two cumulative curves A and D respectively related to arrseq and
the completion sequence endseq(arrseq, sched), if arrseq and sched respect the (RTA) FIFO
property (for any pair of tasks, according to Definition 10), then A and D respect the (NC)
FIFO policy (according to Definition 42).

Note that for the converse to hold, we require the extra hypothesis that each task satisfies
the FIFO policy with itself, because NC is blind on the order of jobs within a single task, as
illustrated on Figure 3 in Section 3.

10 For the very precise reason that it is possible to perform actual computations on this subclass of
functions and that actual real-time behaviors are commonly periodic.

P. Roux, S. Quinton, and M. Boyer 5:19

▶ Lemma 44. (FIFO_flow_cc_to_arrival_sequences) Given a clock c, an arrival sequence
arrseq, a schedule sched, two cumulative curves A and D respectively related to arrseq and
the completion sequence endseq(arrseq, sched), if A and D respect the (NC) FIFO policy
(according to Definition 42) and if for any task tsk, the arrival sequence arrseq and schedule
sched satisfy the FIFO policy between task tsk and itself, then arrseq and sched respect the
(RTA) FIFO policy (for any pair of tasks, according to Definition 10).

Thus, we have seen that the definitions of FIFO in RTA and NC do match. This is a
worthwhile result as its strengthens our confidence in both definitions. In particular, being
more abstract, the NC definition easily looks rather mysterious for a non NC expert.

10.2 Fixed/Static Priority
Although the NC definition of static priority looks more natural than its definition of FIFO,
we were eager to prove the same kind of equivalence for it. Here is the definition of fully
preemptive static priority as given in [3, Def. 7.8]

▶ Definition 45. Given n ∈ N, the cumulative curves Ai and Di for i < n satisfy the static
priority service policy when, for all i < n:

∀s, t ∈ R+,

∀u ∈ [s, t] ,
∑
j≺i

Aj(u) >
∑
j≺i

Dj(u)

 =⇒ Di(t) = Di(s)

where ≺ is a total order on { 0, . . . , n − 1 }.

In this definition, a flow j has a higher priority than i when j ≺ i.
Equipped with this definition, the following lemma is proved.

▶ Lemma 46. (FP_arrival_sequence_to_flow_cc) Given a clock c, an arrival sequence
arrseq satisfying sequential readiness and a schedule sched on a fully preemptive ideal unipro-
cessor, a priority ≺, two cumulative curves A and D respectively related to arrseq and
the completion sequence endseq(arrseq, sched), if arrseq and sched respect the (RTA) fixed
priority policy relative to ≺, then A and D respect the (NC) static priority policy (according
to Definition 45).

The reverse doesn’t hold since, as already explained, the departure curve D doesn’t represent
the scheduling sched but only the related completion sequence.

It is worth noting that the main theorem using Definition 45, given in [3, Thm. 7.6]
is wrong11 and was proved in NCCoq by strengthening the above definition, replacing
the left-closed interval [s, t] by the left-open one (s, t]. This small change was deemed
innocuous at the time and did not raise further attention12. While attempting to prove the
equivalence of the strengthened hypothesis with the RTA definition of the fully preemptive
fixed priority policy, it became obvious that the hypothesis strengthening was not that
innocuous as it broke the equivalence with RTA. Following this discovery, the theorem in
NCCoq (SP_residual_service_curve in file static_priority.v of NCCoq) was rather
fixed by strengthening another hypothesis, namely demanding the service curve of the
aggregate server to be a cumulative curve13 in C.

11 Counter example: consider two flows 1 and 2 with 1 ≺ 2, respective arrivals A1 := s2 and A2 := s1 and
departures D1 := s4 and D2 := s2 (with sd defined as t 7→ 0 when t ≤ d and t 7→ 1 otherwise) and an
aggregated strict service β defined as d 7→ 0 when d < 2 and d 7→ 1 otherwise.

12 Maybe because it was the most obvious hypothesis strengthening to make the proof given in [3] work.
13 This hypothesis strengthening is reasonably innocuous as most service curves already live in C and could

otherwise be easily under-approximated by a service curve in C.

ECRTS 2022

5:20 A Formal Link Between Response Time Analysis and Network Calculus

This experience report is particularly interesting as it shows how formal proofs of
equivalence between two theories can unveil errors that where overlooked for a few years.

11 Conclusion

In this paper, we have built bridges between Response Time Analysis (RTA) and Network
Calculus (NC) and formalized them with the Coq proof assistant. This shows how the
notions of job, task, trace, response time, in RTA are related to the notions of arrival curve,
departure curve and delay in NC. To do so, we have formalized a notion of (possibly drifty)
clock and proved that what is called FIFO in both formalisms represents the same constraints.
We also prove that bounds computed in one framework are valid in the other one, even when
considering clock drifts.

The related work presented in Section 2 was already providing increased confidence
into RTA and NC by achieving formal proofs in Coq of already known results, sometimes
discovering bugs in proofs or in the results themselves. The new formal bridges between
these two theories that coexist in the real-time community bring more than just confidence.

First, the most obvious contribution is a better mutual understanding between both
communities. Such a comparison between different points of view may help each community
in its reflection on its own models (e.g., NC has a notion of per-flow server, capturing several
behaviors and not bound to a scheduling policy, whereas RTA has a notion of global trace,
and sets of traces, but no scheduler).

Second, being able to go back and forth between theories allows us to analyze a complete
system by using each theory where it is the most convenient and to combine the results to
get the best of both theories in each component, like in [18] or more recently, in [17].

Finally, a third result, unexpected when we started this work, concerns the strength of
modeling. Formal work makes it possible to check that some theory is correct, in the sense
that the model fulfills some properties. But there is no way to check that the model reflects
the reality. Building formal bridges between models is thus an effective way to increase
our confidence in these models. For example, as reported in Section 10.2, this unveiled a
weakness in the definition of static priority in the NC formal model.

These results open opportunities for future research. They provide a strong background
for schedulability analyses in presence of clock drifts. They could also be pursued per-se to
provide more links between RTA and NC, and also provide links with CPA.

Future work will consists in modeling the schedule itself. It may be possible for example
to represent in NC the cumulative curves of release, schedule and completion of the job of
Figure 1 as illustrated in Figure 5, inspired from [4, §2.3].

time1 2 3 4 5 6 7 8 9

by
te

s

1
2
3
4

Release
Schedule
Completion

Figure 5 NC: Cumulative curves representing the job of Figure 1 and its schedule.

P. Roux, S. Quinton, and M. Boyer 5:21

References
1 28th Euromicro Conference on Real-Time Systems, ECRTS 2016, Toulouse, France, July 5-8,

2016. IEEE Computer Society, 2016. URL: https://ieeexplore.ieee.org/xpl/conhome/
7557819/proceeding.

2 Reynald Affeldt, Cyril Cohen, Marie Kerjean, Assia Mahboubi, Damien Rouhling, and
Kazuhiko Sakaguchi. Competing inheritance paths in dependent type theory: a case study in
functional analysis. In IJCAR 2020 - International Joint Conference on Automated Reasoning,
pages 1–19, Paris, France, June 2020. URL: https://hal.inria.fr/hal-02463336.

3 Anne Bouillard, Marc Boyer, and Euriell Le Corronc. Deterministic Network Calculus:
From Theory to Practical Implementation. John Wiley & Sons, Ltd, October 2018. doi:
10.1002/9781119440284.

4 Anne Bouillard and Éric Thierry. An algorithmic toolbox for network calculus. Discrete
Event Dynamic Systems, 18(1):3–49, October 2008. http://www.springerlink.com/content/
876x51r6647r8g68/. doi:10.1007/s10626-007-0028-x.

5 Khaoula Boukir, Jean-Luc Béchennec, and Anne-Marie Déplanche. Requirement specification
and model-checking of a real-time scheduler implementation. In Liliana Cucu-Grosjean,
Roberto Medina, Sebastian Altmeyer, and Jean-Luc Scharbarg, editors, 28th International
Conference on Real Time Networks and Systems, RTNS 2020, Paris, France, June 10, 2020,
pages 89–99. ACM, 2020. doi:10.1145/3394810.3394817.

6 Marc Boyer and Pierre Roux. Embedding network calculus and event stream theory in
a common model. In Proc. of the 21st IEEE Int. Conf. on Emerging Technologies and
Factory Automation (ETFA 2016), Berlin, Germany, September 2016. doi:10.1109/ETFA.
2016.7733565.

7 Sergey Bozhko and Björn B. Brandenburg. Abstract response-time analysis: A formal
foundation for the busy-window principle. In Marcus Völp, editor, 32nd Euromicro Conference
on Real-Time Systems, ECRTS 2020, July 7-10, 2020, Virtual Conference, volume 165 of
LIPIcs, pages 22:1–22:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ECRTS.2020.22.

8 Felipe Cerqueira, Geoffrey Nelissen, and Björn B. Brandenburg. On Strong and Weak
Sustainability, with an Application to Self-Suspending Real-Time Tasks. In Sebastian Altmeyer,
editor, 30th Euromicro Conference on Real-Time Systems (ECRTS 2018), volume 106 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 26:1–26:21, Dagstuhl, Germany, 2018.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECRTS.2018.26.

9 Felipe Cerqueira, Felix Stutz, and Björn B Brandenburg. PROSA: A case for readable
mechanized schedulability analysis. In 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), pages 273–284. IEEE, 2016.

10 The Coq development team. The Coq proof assistant reference manual, 2020. Version 8.13.
URL: https://coq.inria.fr.

11 Pascal Fradet, Xiaojie Guo, Jean-François Monin, and Sophie Quinton. Certican: A tool
for the coq certification of CAN analysis results. In 25th IEEE Real-Time and Embedded
Technology and Applications Symposium, RTAS 2019, Montreal, QC, Canada, April 16-18,
2019, pages 182–191, 2019. doi:10.1109/RTAS.2019.00023.

12 Pascal Fradet, Maxime Lesourd, Jean-François Monin, and Sophie Quinton. A generic coq
proof of typical worst-case analysis. In 2018 IEEE Real-Time Systems Symposium, RTSS
2018, Nashville, TN, USA, December 11-14, 2018, pages 218–229. IEEE Computer Society,
2018. doi:10.1109/RTSS.2018.00039.

13 Ronghui Gu, Zhong Shao, Hao Chen, Xiongnan (Newman) Wu, Jieung Kim, Vilhelm Sjöberg,
and David Costanzo. Certikos: An extensible architecture for building certified concurrent
OS kernels. In Kimberly Keeton and Timothy Roscoe, editors, 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, November
2-4, 2016, pages 653–669. USENIX Association, 2016. URL: https://www.usenix.org/
conference/osdi16/technical-sessions/presentation/gu.

ECRTS 2022

https://ieeexplore.ieee.org/xpl/conhome/7557819/proceeding
https://ieeexplore.ieee.org/xpl/conhome/7557819/proceeding
https://hal.inria.fr/hal-02463336
https://doi.org/10.1002/9781119440284
https://doi.org/10.1002/9781119440284
https://doi.org/10.1007/s10626-007-0028-x
https://doi.org/10.1145/3394810.3394817
https://doi.org/10.1109/ETFA.2016.7733565
https://doi.org/10.1109/ETFA.2016.7733565
https://doi.org/10.4230/LIPIcs.ECRTS.2020.22
https://doi.org/10.4230/LIPIcs.ECRTS.2020.22
https://doi.org/10.4230/LIPIcs.ECRTS.2018.26
https://coq.inria.fr
https://doi.org/10.1109/RTAS.2019.00023
https://doi.org/10.1109/RTSS.2018.00039
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/gu

5:22 A Formal Link Between Response Time Analysis and Network Calculus

14 Xiaojie Guo, Maxime Lesourd, Mengqi Liu, Lionel Rieg, and Zhong Shao. Integrating Formal
Schedulability Analysis into a Verified OS Kernel. In Computer Aided Verification, pages
496–514, New York, United States, July 2019. doi:10.1007/978-3-030-25543-5_28.

15 Xiaojie Guo, Lionel Rieg, and Paolo Torrini. A generic approach for the certified schedulability
analysis of software systems. In RTCSA 2021 - 27th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, pages 1–10, Houston (online),
United States, August 2021. URL: https://hal.archives-ouvertes.fr/hal-03540548.

16 ITU-T. Definitions and terminology for synchronization networks. Technical Report Recom-
mendation G.810, International telecommunication union (ITU), 1996.

17 Leonie Köhler, Borislav Nikolić, and Marc Boyer. Increasing accuracy of timing models: From
cpa to cpa+. In Proc. of the Design, Automation and Test in Europe Conference and Exhibition
(DATE), Florence, Italy, March 2019.

18 Simon Künzli, Arne Hamann, Rolf Ernst, and Lothar Thiele. Combined approach to system
level performance analysis of embedded systems. In Soonhoi Ha, Kiyoung Choi, Nikil D. Dutt,
and Jürgen Teich, editors, Proceedings of the 5th International Conference on Hardware/Soft-
ware Codesign and System Synthesis, CODES+ISSS 2007, Salzburg, Austria, September 30 -
October 3, 2007, pages 63–68. ACM, 2007. doi:10.1145/1289816.1289835.

19 Xavier Leroy. Formal verification of a realistic compiler. Commun. ACM, 52(7):107–115, 2009.
doi:10.1145/1538788.1538814.

20 Etienne Mabille, Marc Boyer, Loïc Fejoz, and Stephan Merz. Towards certifying network
calculus. In Proc. of the 4th Conference on Interactive Theorem Proving (ITP 2013), Rennes,
France, July 2013.

21 Simon Perathoner, Ernesto Wandeler, Lothar Thiele, Arne Hamann, Simon Schliecker, Rafik
Henia, Razvan Racu, Rolf Ernst, and Michael González Harbour. Influence of different system
abstractions on the performance analysis of distributed real-time systems. In Proceedings of
the 7th ACM & IEEE international conference on Embedded software (EMSOFT’07), pages
193–202, New York, NY, USA, 2007. ACM. doi:10.1145/1289927.1289959.

22 Lucien Rakotomalala, Marc Boyer, and Pierre Roux. Formal Verification of Real-time Networks.
In JRWRTC 2019, Junior Workshop RTNS 2019, TOULOUSE, France, November 2019. URL:
https://hal.archives-ouvertes.fr/hal-02449140.

23 Lucien Rakotomalala, Pierre Roux, and Marc Boyer. Verifying min-plus computations with
coq. In Aaron Dutle, Mariano M. Moscato, Laura Titolo, César A. Muñoz, and Ivan Perez,
editors, NASA Formal Methods - 13th International Symposium, NFM 2021, Virtual Event,
May 24-28, 2021, Proceedings, volume 12673 of Lecture Notes in Computer Science, pages
287–303. Springer, 2021. doi:10.1007/978-3-030-76384-8_18.

24 Jonas Rox and Rolf Ernst. Compositional performance analysis with improved analysis tech-
niques for obtaining viable end-to-end latencies in distributed embedded systems. International
Journal on Software Tools for Technology Transfer, 15(3):171–187, 2013.

25 Ludovic Thomas and Jean-Yves Le Boudec. On time synchronization issues in time-sentive
networks with regulators and nonideal clocks. Proceedings of the ACM on Measurement and
Analysis of Computing SystemsJune 2020 Article No.: 27, 4(2), June 2020. doi:10.1145/
3392145.

26 Makarius Wenzel. The Isabelle/Isar Reference Manual, 2021. Version 2021-1. URL: https:
//isabelle.in.tum.de.

https://doi.org/10.1007/978-3-030-25543-5_28
https://hal.archives-ouvertes.fr/hal-03540548
https://doi.org/10.1145/1289816.1289835
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1289927.1289959
https://hal.archives-ouvertes.fr/hal-02449140
https://doi.org/10.1007/978-3-030-76384-8_18
https://doi.org/10.1145/3392145
https://doi.org/10.1145/3392145
https://isabelle.in.tum.de
https://isabelle.in.tum.de

Unikernel-Based Real-Time Virtualization Under
Deferrable Servers: Analysis and Realization
Kuan-Hsun Chen #

University of Twente, The Netherlands

Mario Günzel #

TU Dortmund University, Germany

Boguslaw Jablkowski #

EMVICORE GmbH, Dortmund, Germany

Markus Buschhoff #

EMVICORE GmbH, Dortmund, Germany

Jian-Jia Chen #

TU Dortmund University, Germany

Abstract
For cyber-physical systems, real-time virtualization optimizes the hardware utilization by consol-
idating multiple systems into the same platform, while satisfying the timing constraints of their
real-time tasks. This paper considers virtualization based on unikernels, i.e., single address space
kernels usually constructed by using library operating systems. Each unikernel is a guest operating
system in the virtualization and hosts a single real-time task.

We consider deferrable servers in the virtualization platform to schedule the unikernel-based
guest operating systems and analyze the worst-case response time of a sporadic real-time task
under such a virtualization architecture. Throughout synthesized tasksets, we empirically show that
our analysis outperforms the restated analysis derived from the state-of-the-art, which is based on
Real-Time Calculus. Furthermore, we provide insights on implementation-specific issues and offer
evidence that the proposed scheduling architecture can be effectively implemented on top of the
Xen hypervisor while incurring acceptable overhead.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Software and its engineering → Real-time systems software

Keywords and phrases Unikernel, Virtualization, Reservation Servers, Deferrable Servers, Cyber-
Physical Systems, Real-Time Systems

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.6

Supplementary Material Software (ECRTS 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.1.2

Funding This work has been supported by Deutsche Forschungsgemeinschaft (DFG), as part of
Sus-Aware (Project No. 398602212). This result is part of a project (PropRT) that has received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 865170).

1 Introduction

Virtualization technology has been widely and successfully used in data centers and cloud
environments to consolidate multiple systems as virtual machines (VMs) into the same
platform (so-called host). Due to the increasing use of multi-core processors in embedded and
cyber-physical systems (CPS’s), platform virtualization now is gaining traction also in these
domains [15], since it allows for cost reduction, increases efficiency and enhances flexibility.

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Kuan-Hsun Chen, Mario Günzel, Boguslaw Jablkowski, Markus Buschhoff, and
Jian-Jia Chen;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 6; pp. 6:1–6:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:k.h.chen@utwente.nl
https://orcid.org/0000-0002-7110-921X
mailto:mario.guenzel@tu-dortmund.de
https://orcid.org/0000-0001-7575-7014
mailto:b.jablkowski@emvicore.de
mailto:m.buschhoff@emvicore.de
mailto:jian-jia.chen@cs.uni-dortmund.de
https://orcid.org/0000-0001-8114-9760
https://doi.org/10.4230/LIPIcs.ECRTS.2022.6
https://doi.org/10.4230/DARTS.8.1.2
https://doi.org/10.4230/DARTS.8.1.2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Unikernel-Based Real-Time Virtualization

However, virtualization technology was initially not designed to cope with strict timing
constraints and those are inherent to CPS’s. In such systems, meeting timing requirements
(so-called timeliness) is as important as the functional correctness. Depending on the
applications, a deadline miss may result in lower service quality or even a catastrophic system
failure in the worst case. Thus, virtualization must be compatible to real-time software stack
and satisfy the time constraints by employing hypervisor-level real-time scheduling policies.

In order to satisfy timing requirements in virtualized environments, e.g., the popular
Xen hypervisor [36, 37], periodic server-based approaches have been widely used – especially
deferrable servers [33]. For instance, the real-time deferrable server (RTDS) scheduler [35, 36]
has been officially1 supported in Xen since 2015, by which each virtual CPU (vCPU) is
treated as one deferrable server assigned with an execution budget and a (replenishment)
period to serve its corresponding VMs. The budget of the vCPU is consumed only when a task
is running on the vCPU. To ensure each real-time task is served sufficiently, corresponding
timing analyses [3, 31, 30] should be employed to compute the required capacity for each
server budget. Under such setups, the scheduling decision involves two levels, the hypervisor
scheduler and the schedulers within the VMs, in a hierarchical manner.

To account for the interplay of servers and tasks, the applicability of such server-based
approaches is based on the tightness of corresponding worst-case response time analyses. Note
that a task system deployment under over pessimistic analyses may lead to unnecessarily
low hardware utilization. For deferrable servers, Saewong et al. developed a sufficient
schedulability analysis based on an assumption that server capacity is made available at the
very end of the server’s period in the worst case [28]. Davis and Burns further developed an
exact test to ultimately optimize the schedulability of deferrable servers [8].

However, they also showed that the schedulability of deferrable servers is worse than the
other server-based approaches, like periodic servers [29] and sporadic servers [32], due to the
well-known phenomenon of back-to-back hits [8, 6], i.e., the interference introduced by the
suspension of higher priority servers. As the state-of-the-art, Cuijpers and Bril in [7] discussed
that the schedulability of deferrable servers is possible to outperform periodic servers and
sporadic servers, if one deferrable server only serves one single task. Under such a constraint,
the behavior of the deferrable server is no longer influenced by the presence of low-priority
tasks. However, a general task model is considered based on real-time calculus [34].

As reported in an empirical study [1], the periodic task activation and the sporadic
activation with minimum inter-arrival time are a common industry practice, i.e., 82% and
47% respectively over the investigated systems, and different types of task activation might
be involved in the same systems. Thus, it is practically relevant whether the worst-case
response time analysis from [7] can be further tightened for a periodic or sporadic task.

Contributions. In this work, we explore deferrable servers for unikernel-based virtualization,
in which each server serves only one single sporadic task on a virtualized platform. Specifically,
we develop the corresponding worst-case response time analysis under fixed-priority scheduling.
In practice, we leverage the concept of unikernel to motivate and realize the proposed
scheduling architecture. In a nutshell, the contributions of this work are as follows:

We present why unikernel-based virtualization can facilitate the schedulability of deferrable
servers. Specifically, we present how to convert the analysis proposed by Cuijpers and Bril
in [7] to sporadic tasks served by deferrable servers. Under one practical scenario, our
worst-case response time analysis dominates the state-of-the-art (see Section 4).

1 https://wiki.xenproject.org/wiki/Xen_Project_Schedulers

https://wiki.xenproject.org/wiki/Xen_Project_Schedulers

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:3

Table 1 Notation used in this paper.

Symbol Definition
τi = (Ti, Ci) Sporadic task
Ti Minimum inter-arrival time
Ci Worst-case execution time
DSi = (Pi, Qi) Deferrable server
Pi Replenishment period
Qi Capacity
R−DS

i (x) Worst-case response time for x time units on DSi

R+DS
i (x) Worst-case resumed time for x time units on DSi

Secondly, we explain how to realize our unikernel-based approach on top of the Xen
hypervisor with a few design details. Under the proposed deferrable server model, we
implement our own hypervisor scheduler and keep the routines of scheduler bookkeeping
and budget replenishment as efficient as possible (see Section 5).
Finally, we compare our analysis with the state-of-the-art [7] with synthetic periodic
task systems. The results show that the applicability of deferrable servers indeed can
be greatly improved (see Section 6.1). In addition, we also conduct a case study based
on the Xen hypervisor with our deferrable server model and show that our approach of
unikernel-based virtualization is feasible in practice (see Section 6.2).

2 Deferrable Server and Task model

We consider that deferrable servers [33] are adopted to preserve the required bandwidth of
each virtualized CPS application, so-called virtual machine (VM). Since each VM is realized
as a unikernel with one specific vCPU, each VM is treated as one deferrable server DSi

serving only one single sporadic task τi. A sporadic task τi releases an infinite number of
task instances, called jobs, in which the worst-case execution time (WCET) of any of them
is at most Ci and the arrival times of any two consecutive jobs of them must be separated
by at least the minimum inter-arrival time Ti. The jobs of task τi are served based on
the first-come first-serve policy within DSi. Please note that our worst-case response time
analysis does not require any limitation on the type of task deadlines, i.e., even arbitrary
deadline tasks with deadline Di > Ti are allowed.

Each deferrable server DSi is denoted as a tuple (Pi, Qi), where Pi is its replenishment
period and Qi is its capacity. If the j-th replenishment time is t, then the next replenishment
time is t + Pi. The budget of a deferrable server DSi is set to Qi initially and is consumed
linearly while the corresponding task τi is served. When the budget becomes 0, the server
DSi needs to wait until the next replenishment time. At the time instant to replenish the
server DSi, the budget is replenished to Qi and any unused time budget is lost at the end of
each replenishment period. The first job release of every task τi is assumed to be after the
first budget replenishment of DSi.

Deferrable servers are scheduled based on preemptive fixed-priority (static-priority)
scheduling. For a multiprocessor platform, it is possible to apply partitioned or global
scheduling for the deferrable servers. Under a partitioned scheduling paradigm, a deferrable
server (vCPU) is dedicated to one physical processor (pCPU). Under a global scheduling
paradigm, a deferrable server (vCPU) can migrate from one physical processor to another.

ECRTS 2022

6:4 Unikernel-Based Real-Time Virtualization

3 Service Condition and Execution Scenarios of Deferrable Servers

In this section we discuss how the service condition of deferrable servers can be sufficiently
tested on different systems. By analyzing the possible behaviors of a job served by a deferrable
server, two lemmas are derived to provide some useful properties for the next section.

3.1 Service Condition of Deferrable Servers
Under the adopted scheduling paradigm, if the capacity of a deferrable server DSk within
the given replenishment period is feasible, we say that DSk fulfills its service condition. That
is, in this case, any request of Qk amount of computation demand of its served task τk at
the moment when the budget is fully replenished must be finished within Pk amount of time.
This assumption is also required in the related work [7, 8, 28, 20]. Otherwise, one can provide
an over-specified capacity Qk that can never be guaranteed within one period Pk, and the
worst-case analysis also has to investigate interplay with the virtualization scheduler.

As a deferrable server DSi retains its unused budget until the next replenishment period
when no job requests it to serve, it can be considered that DSi voluntarily suspends its
execution [6]. As a result, a DSi may impose back-to-back interference to lower-priority servers
(or tasks). Such back-to-back interference can be considered as bursty interference [20, 5], i.e.,
one additional job should be considered by extending the classical critical instant theorem,
or release jitter of DSi, which can be set to Pi − Qi [8].

A sufficient service condition test for DSk is a sufficient test to validate whether DSk

fulfills its service condition or not. Therefore, under uniprocessor preemptive fixed-priority
scheduling of systems composed of only fixed-priority deferrable servers, also stated in [8], a
sufficient service condition test for the deferrable servers is

∀ DSk, ∃0 < t ≤ Pk, Qk +
∑

DSi∈hpk

⌈
t + Pi − Qi

Pi

⌉
Qi ≤ t (1)

where hpk is the set of deferrable servers whose priorities are higher than DSk. It has
been shown that

∑
DSi

Qi

Pi
≤ ln 3

2 ≈ 0.40546 ensures that the condition stated in Eq. (1)
holds [5, 20].2

For multiprocessor systems, under partitioned scheduling, the condition in Eq. (1) can
be directly applied by defining hpk as the set of higher-priority deferrable servers assigned
on the same physical processor as DSk. Under global preemptive fixed-priority scheduling
of systems composed of only fixed-priority deferrable servers on m homogeneous (identical)
physical processors, a sufficient service condition test can be written as3

∀ DSk, ∃0 < t ≤ Pk, Qk +

∑
DSi∈hpk

⌈
t+Pi−Qi

Pi

⌉
Qi

m
≤ t (2)

where hpk is the set of deferrable servers whose priorities are higher than DSk under global
scheduling and m is the number of homogeneous processors.

Although the sufficient service condition tests in Eqs. (1) and (2) are valid for systems
composed of only deferrable servers, they can be extended to consider the co-existence of
typical sporadic tasks and other fixed-priority servers by adding corresponding interference
terms. More specifically, let I(t) be the worst-case interference of the higher-priority servers
and/or tasks for an interval length t. For the rest of this paper, we assume that the sufficient
service condition for DSk is:

∃0 < t ≤ Pk, Qk + I(t) ≤ t (3)

2 Their proof in [20] ensures a weaker condition: ∀DSk, ∃0 < t ≤ Pk, Qk +
∑

DSi∈hpk

⌈
t+Pi

Pi

⌉
Qi ≤ t.

3 A sketched proof is provided in Appendix for completeness.

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:5

In order to analyze the worst-case response time of a sporadic task τk served by DSk,
we further need two additional properties based on finer granularity of the service provided
by DSk. In particular, the worst-case response time R−DS

k (x) for requesting x amount of
computation demand, for 0 ≤ x ≤ Qk, can be derived as:

R−DS
k (x) = inf {t|x + I(t) = t} (4)

Moreover, right after finishing x amount of computation demand, the deferrable server DSk

may be preempted by other higher-priority activities. We further define the worst-case
resumed time R+DS

k (x), for 0 ≤ x < Qk, as the longest time that DSk finishes x amount of
computation demand and is scheduled to serve further demands if they exist. That is:

R+DS
k (x) = inf {t|(x + ϵ) + I(t) = t} for infinitesimal ϵ > 0

= inf {t|x + I(t) < t} (5)

We note that R+DS
k (Qk) is not defined above, as it is unnecessary in our analysis, and the

proper definition involves more complications.
Since I(t) is usually of the form

∑
i

⌈
t+ji

Pi

⌉
ρi, where ji and ρi are some real values like

ji = (Pi − Qi) and ρi = Qi in Equation (1), the exact value of R−DS
k (x) can be computed

using fixed-point iterations, where t is increased gradually until x + I(t) = t is reached. The
exact value of R+DS

k (x) can be obtained by fixed-point iterations as well, if the standard
interference function I(t) is replaced by

∑
i

(⌊
t+ji

Pi

⌋
+ 1

)
ρi.

Please note that the sufficient service condition test, i.e., Eq. (3), is only introduced to
give an intuition behind the definition of R−DS

k (x) and R+DS
k (x). However, our analysis is

not limited to the scenarios where Eq. (3) holds, but only to all possible scenarios where
the service condition holds, i.e., any request of Qk amount of computation demand must be
finished within Pk amount of time when the budget is fully replenished. If this condition is
ensured by any means, our timing analysis is applicable.

3.2 Serving one Task by a Deferrable Server
In this section we have a closer look at how a deferrable server DSk serves a job J released
by the task τk at time rJ . At the job release of J there may be unfinished backlog L(rJ),
i.e., unfinished execution demand from previously released jobs of τk. Moreover, we denote
by C(rJ) ≤ Ck the computation demand of J at its release rJ . Whenever there is available
budget B(t) > 0 of the server DSk, the budget can be used to serve first the backlog L(t)
and if the backlog reaches L(t) = 0 then the budget is used to serve the computation demand
C(t) of J . The first time the computation demand reaches 0 is called the finish fJ of J , i.e.,
we have C(fJ) = 0.

If at the release rJ of the job J there is enough budget to complete both the backlog
L(rJ) and the computation demand C(rJ) then the job J finishes as soon as additional
L(rJ) + C(rJ) budget is consumed.

▶ Lemma 1. If a job J of task τk is released at time rJ and the remaining budget of DSk is
higher than the execution demand C(rJ) of J at time rJ plus the backlog L(rJ) from previous
jobs of τk at time rJ , then J finishes within R−DS

k (L(rJ) + Ck) time units.

Proof. If the budget is higher than the execution time plus the backlog at time rJ , then
J and all previously released unfinished jobs can execute whenever the server DSk is not
interfered. The job J finishes when L(rJ)+C(rJ) amount of computation demand is finished,
which is after at most R−DS

k (L(rJ) + Ck) time units. ◀

ECRTS 2022

6:6 Unikernel-Based Real-Time Virtualization

In particular whenever there is no backlog and the remaining budget at time rJ is at
least Ck time units, then the job J finishes within R−DS

k (Ck) time units.
However, there are cases in which the budget is not sufficient:

▶ Definition 2 (Exhausted budget). We say the budget B is exhausted by job J if there exists
a point in time t such that the following conditions are met:

There is remaining computation demand C(t) > 0 that wants to consume the budget.
The budget B(t) = 0 has reached 0.
Instead the processor idles or a lower priority server (or task) is served.

In such a case the jobs have to wait until the next budget replenishment br to be served.
If after the budget replenishment the budget B(br) = Qk is sufficient to finish the backlog
and computation demand, i.e., Qk ≥ L(br) + C(br), then the worst-case response time of J

can be described by the following lemma.

▶ Lemma 3. If after a budget replenishment at time br the remaining backlog L(br) and the
remaining computation demand C(br) can be fully served, i.e., Qk ≥ L(br) + C(br), then the
job has a response time of at most (br − rJ) + R−DS

k (L(br) + C(br)) time units.

Proof. Similar to Lemma 1, at time br the remaining computation demand of L(br) + C(br)
has to be finished. Since the budget is high enough, i.e., Qk ≥ L(br) + C(br), this takes
at most R−DS

k (L(br) + C(br)) time units. The response time of J is the result of the time
it takes from the release of J until br plus the time to finish the remaining computation
demand, i.e., (br − rJ) + R−DS

k (L(br) + C(br)). ◀

4 Worst-Case Response Time Analysis for One Single Task

In this section, we provide a worst-case response time analysis for a sporadic task τk served
by a deferrable server DSk, which fulfills its service condition. That is, throughout this
section, we implicitly assume that R−DS

k (Qk) ≤ Pk. Furthermore, the utilization of task τk

is assumed to be no more than the utilization of the deferrable server DSk, i.e., Ck

Tk
≤ Qk

Pk
;

otherwise, the worst-case response time of task τk is by definition unbounded.
We first explain how to convert the analysis in [7] based on real-time calculus to sporadic

tasks served by DSk. Then, we provide our analysis for a scenario that Tk ≥ Pk and Ck ≤ Qk,
and demonstrate the dominance of our analysis over the analysis in [7] when considering
sporadic tasks in Section 4.2. As our analysis requires to evaluate sup0≤x<Ck

R+DS
k (x) +

R−DS
k (Ck − x), we explain how to implement this search in Section 4.3.

4.1 Existing Analysis Converting from Real-Time Calculus
We restate here the analysis from Cuijpers and Bril [7] based on real-time calculus for
sporadic tasks. Note that we use a slightly different notation system from that in [7] due to
notation discrepancy between real-time calculus and real-time scheduling theory. Suppose
that rk(t) is the accumulated workload in time interval [0, t) for task τk.

Let S be some S > 0 such that

rk(s + S) − rk(s) ≤ Qk

Pk
× S, ∀s ≥ 0 (6)

Under the assumption that Ck

Tk
≤ Qk

Pk
, setting S to Ck × Pk

Qk
ensures that

S = Ck × Pk

Qk
≤ Ck × Tk

Ck
= Tk and rk(s + S) − rk(s) ≤ Ck = Ck

S
× S = Qk

Pk
× S,

i.e., Eq. (6) holds.

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:7

As for the deferrable server DSk, if it has a full budget at time t, its service provision from
time interval t to t + R−DS

k (h) is at least h. This notation is the inverse representation of the
accumulative service in real-time calculus under the same assumption. In terms of real-time
calculus, DSk is guaranteed to provide at least h amount of service within an interval length
of R−DS

k (h).
Let h be the minimum value ≤ Qk such that

h

R−DS
k (h)

≥ rk(s + S) − rk(s)
S

, ∀s ≥ 0. (7)

Let H denote R−DS
k (h) for brevity. Cuijpers and Bril [7] showed that the worst-case response

time of τk is upper bounded by S + 2H.
With the above definitions of H and S, we can restate the worst-case response time

analysis from Cuijpers and Bril [7] for sporadic tasks.

▶ Theorem 4. Suppose that the deferrable server DSk fulfills its service condition and that
Ck

Tk
≤ Qk

Pk
. Then

S can be set to Ck × Pk

Qk
≤ Tk

H is upper bounded by R−DS
k (Qk) ≤ Pk

The worst-case response time of a sporadic task τk served by DSk is upper bounded by

Ck × Pk

Qk
+ 2R−DS

k (Qk) ≤ Ck × Pk

Qk
+ 2Pk ≤ Tk + 2Pk.

Proof. It comes directly from Theorem 1 in [7] and the above analysis of S and H. ◀

4.2 Our Analysis for Sporadic Tasks
One practical scenario is that the replenishment period Pk is set to its served task period Tk,
and the capacity Qk is set to Ck, i.e., Tk = Pk and Ck = Qk. Such a configuration might be
out of intuition by expecting the period alignment is perfect. Assuming the timing behaviors
of servers are the same as tasks, the Liu and Layland bound [19] might be applicable at the
first glance. However, the response time of a task may still be interfered by a backlog of the
previous unfinished job due to any potential misalignment. Hence, a corresponding timing
analysis is still needed.

The analysis in Theorem 4 is applicable for sporadic tasks. However, for the scenario
with Tk ≥ Pk and Ck ≤ Qk, in this section, we show that a tighter analysis can be achieved
by examining the interplay between τk and DSk more closely.

▶ Definition 5 (Consecutive DS service interval). An interval G = [a, b) ⊆ R is called a
consecutive DS service interval if it is a minimal interval such that the following properties
are met:

a and b are time instances where DSk replenishes its budget.
All jobs of τk that are released during G finish their execution during G.
Only jobs of τk that are released during G can be executed.

A consecutive DS service interval can be constructed in the following way: Let a be a
time instant such that 1) DSk replenishes its budget at a, 2) there is no unfinished job of τk

at time a, and 3) a job of τk is released during [a, a + Pk). Then, we set b to be the time of
the next replenishment of DSk such that there is again not unfinished job of τk at time b.
The interval [a, b) is a consecutive DS service interval. Please note that every job is inside a
consecutive DS service interval as the above procedure to construct consecutive DS service
intervals can be repeated for the whole time domain.

ECRTS 2022

6:8 Unikernel-Based Real-Time Virtualization

job release of τk budget replenishment of DSk job execution

b1 Ck − b1 b2 Ck − b2

br1 br2 br3 br4a = br0 b = br5

γ1 γ2 γ3 γ4

Figure 1 Analysis scenario for Theorem 7. We analyse the second job J2 (marked in grey) in the
consecutive DS service interval [a, b).

The first job in any consecutive DS service interval receives budget Qk. Under the
assumption that Ck ≤ Qk this job finishes after at most R−DS

k (Ck) time units.

▶ Lemma 6. Under the assumption that Ck ≤ Qk and Tk ≥ Pk, the following holds:
1. Between any two budget replenishments there is at most one job release.
2. Every job finishes until the second replenishment period after the job release.
3. There is at most one previous unfinished job of τk at any job release of τk.
4. There are at most two jobs of τk executed between two consecutive budget replenishments

of DSk.

Proof. 1: If there would be two job releases between two budget replenishments, then
Tk < Pk, which contradicts our assumption.
2: By contradiction: Assume that J is the earliest job such that it does not finish until the
second replenishment period after its release. Let bri−1 and bri the two consecutive budget
replenishments before and after the release of J . By 1, the previous job J ′ is released before
bri−1. Moreover, since J is the first job such that 2 does not hold, J ′ finishes until bri. At
time bri there is no backlog from J ′ or from earlier jobs. The computation demand at bri by
J is at most Ck ≤ Qk. By Lemma 3 the job J finishes until bri + R−DS

k (Ck) ≤ bri + Pk by
the sufficient service assumption stated in Section 3.1.
3 and 4: Follow directly from 1 and 2. ◀

▶ Theorem 7. Suppose that the deferrable server DSk fulfills its service condition and that
Ck

Tk
≤ Qk

Pk
. If Ck ≤ Qk and Tk ≥ Pk, then

Rτ
k ≤ max

(
(Pk − Tk) + sup

0≤x<Ck

(R+DS
k (x) + R−DS

k (Ck − x)), R−DS
k (Ck)

)
(8)

Proof. We prove this theorem over induction of the jobs in each consecutive DS service
interval. Let G be some consecutive DS service interval. We show by induction that for all
jobs that are released during G, the upper bound on the worst-case response time given by
Eq. (8) holds. We denote by Ji the i-th job that is released by τk during G. Moreover, we
denote by γi the time between the release of Ji and the subsequent budget replenishment bri.
Due to the assumption that Tk ≥ Pk, we have γ1 ≥ γ2 + (Tk −Pk) ≥ γ3 + 2(Tk −Pk) ≥ . . . as
demonstrated in Figure 1. By Lemma 6 there is at least one budget replenishment between
any two consecutive job releases. Indeed, there is exactly one budget replenishment between
two consecutive job releases since otherwise the earlier job would finish until the second
budget replenishment after its release and the consecutive DS service interval would end.
Therefore Ji is always released during bri−1 and bri. We define bi as the time that Ji is
executed before bri and Rτ

k,i be the response time of the job Ji. For the intermediate jobs Ji

in the consecutive DS service interval we show that the following holds:

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:9

backlog no backlog
budget not exhausted between (not possible) Rτ

k,i ≤ R−DS
k (Ck)

release of Ji and bri γi ≤ R+DS
k (bi)

(Case 2) (Case 1)

budget exhausted between Rτ
k,i ≤ (Pk − Tk) + R+DS

k (bi) + R−DS
k (Ck − bi)

release of Ji and bri γi ≤ R+DS
k (bi)

(Case 3)

Moreover, for the last job Ji in consecutive DS service intervals (if a last job exists) we show
that the following holds:

backlog no backlog
budget not exhausted between Rτ

k,i ≤ Rτ
k,i−1 R−DS

k (Ck)
release of Ji and bri (Case 2) (Case 1)

budget exhausted between Rτ
k,i ≤ (Pk − Tk) + R+DS

k (bi) + R−DS
k (Ck − bi)

release of Ji and bri γi ≤ R+DS
k (bi)

(Case 3)

First job J1. At the release of J1 there is Qk ≥ Ck amount of budget and no backlog from
previous jobs. Therefore, the budget is not exhausted between the release of J1 and the next
budget replenishment. Hence, the first job is always in Case 1. By Lemma 1 the response
time Rτ

k,1 of J1 is upper bounded by R−DS
k (Ck). If J1 is an intermediate job, then it does

not finish before br1. In particular an execution demand of b1 time units could be served
between the release of J1 and br1, although there was enough budget available. We conclude
that the worst-case resumed time R+DS

k (b1) has to be at least γ1.

Induction step Ji−1 → Ji. Under the assumption that Ji−1 is an intermediate job, we
show that for Ji the bounds presented in the tables still hold.
Case 1: The budget is not exhausted between the release of Ji and bri, and there is no backlog

from Ji−1. This job behaves analogously to the first job J1. The worst-case response time
Rτ

k,i is upper bounded by R−DS
k (Ck) due to Lemma 1. If Ji is the last job in G, then this

is the only bound from the table to be proven. Otherwise, γi ≤ R+DS
k (bi) holds since only

an execution demand of bi time units during the interval of length γi could be served.
Case 2: The budget is not exhausted between the release of Ji and bri, and there is backlog

from Ji−1. In this case there is demand at all times during bri−1 and the release of Ji. If
Ji would not finish before bri, then the budget would be exhausted no later than at time
bri−1 +R−DS

k (Qk) ≤ bri. This is not possible by the assumption of this case. Therefore in
this case Ji must finish before bri and is therefore always the last job in the consecutive
DS service interval G. Since the job finishes before bri we have Rτ

k,i ≤ γi ≤ γi−1 which is
upper bounded by Rτ

k,i−1 since Ji−1 has to finish after bri−1 to produce a backlog for Ji.
Case 3: The budget is exhausted between the release of Ji and bri. For this case, it is irrele-

vant if Ji is an intermediate or the last job since the same properties have to be proven.
Since by Lemma 6 the job finishes until the second budget replenishment after its release,
this means at the replenishment time bri there is no backlog from the previous job Ji−1.
Moreover, the remaining computation demand from Ji is at most Ck − bi ≤ Qk. By
Lemma 3 the response time of Ji is upper bounded by γi + R−DS

k (Ck − bi). Moreover,
we know that γi ≤ (Pk − Tk) + γi−1 ≤ (Pk − Tk) + R−DS

k (bi−1). Since Ji−1 has to be
served by DSk for Qk − bi time units after bri−1 such that Ji exhausts the budget of

ECRTS 2022

6:10 Unikernel-Based Real-Time Virtualization

t

t 7→ I(t) + x

t 7→ t

x

R−DS
k (x)

Figure 2 Computation of R−DS
k (x) by finding

the intersection of two functions.

x

x 7→ R−DS
k (x)

d1

d2

d3

c1 c2 c3

Figure 3 Shape of R−DS
k (x).

DSk before bri, we have bi−1 ≤ Ck − (Qk − bi), resulting in bi−1 ≤ bi. We conclude that
γi ≤ (Pk −Tk) + γi−1 ≤ (Pk −Tk) + R−DS

k (bi−1) ≤ (Pk −Tk) + R−DS
k (bi) ≤ R−DS

k (bi) and
the worst-case response time is upper bounded by (Pk − Tk) + R+DS

k (bi) + R−DS
k (Ck − bi).

Conclusion. By induction we have proven that the bounds from the above stated tables
hold. Since bi < Ck holds for those jobs with exhausted budget, the response time bound in
Eq. (8) holds for all jobs by analyzing all consecutive DS service intervals. ◀

▶ Theorem 8 (Dominance discussion). The worst-case response time bound presented in
Theorem 7 dominates the bound from Theorem 4 when Ck ≤ Qk and Tk ≥ Pk.

Proof. As (Pk − Tk) ≤ 0 by assumption, the worst-case response time bound provided
in Theorem 7 is upper bounded by sup0≤x<Ck

R+DS
k (x) + R−DS

k (Ck). Since R+DS
k (x) ≤

R−DS
k (Ck) for all x < Ck, the bound from Theorem 7 is also upper bounded by 2R−DS

k (Ck) ≤
Ck · Pk

Qk
+ 2R−DS

k (Qk) which is the bound from Theorem 4. ◀

4.3 Efficient Computation of Worst-Case Response Time Bound
For the computation of the worst-case response time upper bound presented in Theorem 7
the supremum

sup
0≤x<Ck

R+DS
k (x) + R−DS

k (Ck − x) (9)

has to be computed. In this section we discuss a method to do this efficiently without
computing the values for R+DS

k and R−DS
k at every point using fixed-point iterations. As

presented in Section 3.1, I(t) is of the form
∑

i

⌈
t+ji

Pi

⌉
ρi for some positive real values ji, Pi

and ρi. Fixed-point iterations can be used to compute the value of R−DS
k (x), in particular

the intersection between the functions t 7→ t and t 7→ I(t) + x is computed, as presented in
Figure 2.

The efficient presentation and formulation presented in this section is based on the
observation that R−DS

k (x) and R+DS
k (x) coincide and grow linearly if the intersection with

I + x is on a plateau, i.e., if I is constant during the interval (R−DS
k (x) − δ, R−DS

k (x) + δ)
then R−DS

k (y) = R−DS
k (x) + (y − x) for all y ∈ (x − δ, x + δ). At those points x where there is

a jump of I at R−DS
k (x), the values of R+DS

k (x) and R−DS
k (x) are computed using fixed-point

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:11

Algorithm 1 Computation of all values in S with ci ≤ Ck.

Input: I(t) =
∑

i

⌈
t+ji

Pi

⌉
· ρi

Output: The set S with all values (ci, di) where ci ≤ Ck.

1: S := []; x := 0
2: while x ≤ Ck do
3: Compute R−DS

k (x) and R+DS
k (x) by fixed-point iterations.

4: c := x; d := R+DS
k (x)−R−DS

k (x)
5: Add (c, d) to the set S
6: x := x + mini (−(x + ji) mod Pi) ▷ Time until next jump.
7: return S

iterations. The shape of R−DS
k is presented in Figure 3. Please note that the shape of R−DS

k

and R+DS
k coincide during the linear parts and only at the jumps (c1, c2, . . .) the function

R−DS
k takes the lower value and R+DS

k takes the higher value.
Based on the shape of the functions R−DS

k and R+DS
k , there exists a set of tuples

S = {(c1, d1), (c2, d2), (c3, d3), . . .} such that

R−DS
k (x) = x +

∑
(ci,di)∈S

χx>ci
· di and R+DS

k (x) = x +
∑

(ci,di)∈S

χx≥ci
· di (10)

where χx>ci is 1 if x > ci and 0 else, and χx≥ci is 1 if x ≥ ci and 0 else. The computation
of the values of S is presented in Algorithm 1. In each step of the while-loop the size of a
jump is computed by the difference between R−DS

k and R+DS
k , and the corresponding tuple

is added to the set S. Afterwards, the time until the next jump is computed by finding
the next point in time where the intersection t with x + I(t) reaches a jump, i.e., after
mini (−(x + ji) mod Pi) additional time units.

With the representation of R−DS
k and R+DS

k achieved in Eq. (10), the supremum in Eq. (9)
can be rewritten as

sup
0≤x<Ck

R+DS
k (x) + R−DS

k (Ck − x) (11)

= x +
∑

(ci,di)∈S

χx≥ci
· di + sup

0≤x<Ck

x +
∑

(ci,di)∈S

χCk−x>ci
· di (12)

= Ck +
∑

(ci,di)∈S

(χx≥ci
+ χx<Ck−ci

) · di (13)

In particular, only finitely many cases have to be checked to find the exact solution of the
supremum formulated in Eq. (9).

5 Architecture Model

In this section, we present our unikernel-based architecture for hosting virtualized CPS
applications. First, we introduce the concept of unikernel-based CPS applications. Next, we
shorty describe the Xen architecture as well as its implications for scheduling and compare it
with our approach. Finally, we provide some design and implementation details.

5.1 Unikernel-based CPS Applications
In data-centers and cloud environments, each VM is expected to host a general purpose
operating system to ease the effort of porting legacy software with a lot of inherent libraries
and functionalities. However, most CPS applications are functionally dedicated, single-
purposed and thus not dependent on additional functionality. Due to the encapsulation of

ECRTS 2022

6:12 Unikernel-Based Real-Time Virtualization

Figure 4 depicts the typical scheduling archi-
tecture in platform virtualization: The schedul-
ing decision is split into two layers, the OS sched-
uler of the guest and the hypervisor scheduler.

Figure 5 illustrates our approach where
scheduling decisions are reduced to one layer
only, due to the adaptation of unikernels.

superfluous libraries and the execution of non-essential processes that are not related to the
task of interest, deploying real-time tasks of CPS on a general-purpose OS in fact arises
various issues like resource efficiency and timing predictability.

Towards this, several efforts have been made in recent years for the realization of single-
purpose appliances [21, 22, 24, 26], so called unikernels. These are sealed, single-purpose VM
images that can be constructed using the concept of library operating systems (LibOS) [12, 13].
LibOS’s allow for the tailoring of an OS code base to the particular needs of a given task, by
which only those parts of the OS API are included into the VM image.

This approach has several advantages. Unikernels are characterized by a minimal VM
image size which highly increases their security properties, due to the minimal attack surface
for malicious code injections This also translates to a substantial reduction of overall system
resource usage. Moreover, unikernels can be instantiated and become fully functional within
only a few milliseconds. It has further been shown that unikernels are more efficient and
safer than modern container technologies [23]. Please note that while unikernels have indeed
a minimal attack surface in comparison with full-fledged operating systems and are fully
isolated from other guests, depending on the given scenario, some additional security defence
mechanisms would have to be adopted, but considered out of scope in this work.

Considering these benefits of unikernels, as well as the fact that most CPS applications
are specialized and functionally dedicated tasks and can be implemented as single-purpose
appliances, CPS applications provide an excellent target for unikernels.

5.2 Scheduling Architecture
The case-study results presented in this paper are linked to the Xen hypervisor [2], which we
have chosen to realize our unikernel-based approach for hosting virtualized CPS applications.
Xen is a type 1 hypervisor and allows for the consolidation of multiple systems on a single
platform. Xen runs directly on host’s hardware and is the first software layer to execute after
the bootloader. The hypervisor is responsible for managing hardware resources, including
CPUs and memory. It also handles timers and the scheduling of VMs. Specific to Xen is a
privileged VM called Domain 0. It is the first VM to load under Xen, it holds the drivers to
the underlying hardware and this is also where the toolstack resides that enables management
of further VMs. Typically Domain 0 is deployed on Linux. In order to make use of the
existing drivers in Domain 0, Xen uses an approach called paravirtualization, which exposes
an API to the guest VM for delegating privileged instructions, including driver calls. This
approach is much more efficient than emulation. The backbone of the paravirtualization

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:13

driver concept under Xen is the split device driver model. The drivers consist of two parts:
the front-end and the back-end. The front-end is situated in the guest VM while the back-end
resides in Domain 0. Both parts are isolated and communicate through shared memory.

As shown in Figure 4, the scheduling decision in Xen is split into two tiers. The bottom
tier is constituted by the hypervisor scheduler which assigns virtual CPUs (vCPU) to physical
CPUs (pCPU). The second tier consists of the guest operating system schedulers within
virtual machines, which in turn assign their threads to vCPUs. This split is needed for two
reasons. The first being the possibility to abstract physical resources (e.g. pCPUs) into logical
resources (e.g. vCPUs) which is a premise for achieving better hardware utilization. Secondly,
it allows the hypervisor to enforce timing isolation between the concurrently running VMs.
For systems that comprise of task sets without strict timing requirements and that implement
a fair share scheduler, this architecture allows for a high resource utilization while at the same
time preventing any faulty or compromised VM from hijacking system resources, and by this
from negatively influencing the behavior of other VMs in the system. However, when it comes
to the need of providing timing guarantees, this scheduling architecture also complicates the
corresponding schedulability analysis. As discussed in Section 3.1, the suspension behavior
of deferrable servers additionally interferes with the response time of lower priority servers or
tasks in the worst case. While improving the applicability of deferrable servers in Section 4.3,
our approach, i.e., one sporadic task per server, aligns well with the concept of unikernels, by
which CPS applications are deployed as single tasked VMs. As shown in Figure 5, this renders
the scheduler instances inside the VMs obsolete. Due to the fact that each of our unikernels
hosts a single task, there is no point of assigning more than one vCPU per unikernel.

5.2.1 Real-Time Networking
As in practice, CPS applications commonly assume distributed architectures, the I/O
processing of network packets is a matter of particular importance. Xen handles packet
processing in Domain 0 where the network driver resides. Each instantiated VM under Xen is
connected to a dedicated virtual network interface (VIF) and a corresponding dedicated VIF-
thread. This is the context where the actual packet processing takes place. Unfortunately,
by default, the VIF-threads in Xen are scheduled independently of the priority of their
VMs. This can lead to priority violation, i.e., the order of packet processing mismatches
the priorities of vCPUs. In order to solve this issue, we align the priorities of the packet
processing threads with the corresponding priorities of the vCPUs in the hypervisor scheduler.

5.3 Design Principles
In our model, each vCPU is implemented as a deferrable server and is described by its
capacity and replenishment period. Due to our adaptation of unikernels, each vCPU has only
one task assigned to it. The vCPU is released under the sporadic task activation. The budget
denotes the amount of time a vCPU can consume for its execution during the replenishment
period. The budget of the vCPU is set to the given capacity at its replenishment periodically.
The vCPU can either be runnable or blocked. While running, the vCPU consumes its budget.
A vCPU with a depleted budget will not be scheduled. If there are no eligible (runnable and
with budget) vCPUs, the hypervisor will schedule an idle vCPU. As vCPUs are implemented
as deferrable servers, they can defer their budget to be used at a later time. However, the
budget cannot be preserved and transferred into the next period. Budgets that were not
consumed during their current periods are lost.

ECRTS 2022

6:14 Unikernel-Based Real-Time Virtualization

Our implementation relies on partitioned queues, i.e., each pCPU possesses and manages
its own run queue of vCPUs. That is, the scheduling model is under (multiprocessor)
partitioned scheduling paradigm. The priorities are statically assigned to the vCPUs according
to their replenishment periods, following the rate-monotonic (RM) policy. As mentioned
in Section 3.1, the utilization bound ln(3/2) ≈ 0.40546 guarantees the sufficient service
condition of the deferrable servers on one physical processor, whereas a tighter analysis can
be achieved by adopting Eq. (1). Each time a vCPU is assigned to a run queue, the vCPU is
inserted accordingly to its priority. In the case of the RM algorithm, the highest priority is
given to the VM with the shortest replenishment period. In this process also the priorities
of all lower prioritized vCPUs are updated. Scenarios where a vCPU is assigned to a run
queue include the instantiation of a new VM or an existing VM becoming runnable. Blocked
vCPUs are removed from the run queue.

5.4 Implementation on Xen

The Xen hypervisor provides an interface to schedulers by exposing an abstract scheduler
struct which contains pointers to functions which have to be implemented when adding a new
scheduler to Xen. The scheduler policy independent code is situated in the scheduler.c file.
All of the functions defined in the interface have analogs in this file. It comprises scheduler
policy independent code which after execution calls the specialized functions from a specific
scheduler implementation. The most important function in schedule.c is schedule(). As the
name suggests, this function is executed when a scheduling decision is needed. In order
to choose the next vCPU to run, it deschedules the currently running vCPU and calls the
specialized do_schedule() function from the custom scheduler file. The default scheduling
policy for Xen is implemented in the Credit Scheduler which is a fair-share scheduler and
therefore not suitable for scheduling tasks with real-time constraints. We have extended Xen
with our own scheduler that implements our deferrable server model. In the following, we
shorty describe some of its implementation details.

The do_schedule() function is critical to the performance of the scheduler, as it is invoked
very often. Therefore, we have designed it to be fast and simple. In order to achieve this, we
keep our run queue sorted. The sorting process is conducted while inserting or reinserting
vCPUs after instantiation or unblocking. As the run queue is already sorted with respect
to vCPUs priorities, our do_schedule() function has to conduct only two operations. First,
it updates the bookkeeping (consumed budget) for the currently running vCPU. Secondly,
it chooses the next vCPU to run from the top of the run queue. In the case that there are
no eligible vCPUs to run, the algorithm returns the idle vCPU. In our implementation, the
scheduling quantum is set to 100 µs, at which the server budget is updated. The pseudocode
for our function is depicted in Algorithm 2.

Another aspect worth mentioning is the implementation of the budget replenishment.
One way to implement budget replenishment is inside the do_schedule() function. However,
this would break the efficiency of this function, due to the unnecessarily high amount of
budget validations. In most cases, the do_schedule() will be invoked more often than budget
replenishment is necessary. Therefore, we transferred this functionality to timers. For each
of the vCPUs a timer is instantiated with a period that equals the replenishment period of
the task. The replenishment itself is happening inside the timer handler. We have extended
our toolstack for the scheduler interface in the management domain with the possibility to
migrate replenishment timers to other pCPUs in the system. This allows for testing and
fine-tuning of the impact of timer interrupts on scheduling.

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:15

Algorithm 2 Pseudocode of the do_schedule() function from our deferrable server scheduler.

1: next = null
2: consumeBudget(getCurrentVCPU)
3: for each vCPU in RunQ do
4: if vCPU.isRunnable then
5: if vCPU.hasBudget then
6: next ← vCPU
7: break
8: if vCPU == null then
9: next ← idleVCPU

10: return next

10 50 100
0.0

0.2

0.4

0.6

Figure 6 W CRTOur
W CRTSOT A

for different number n

of servers per test.

10% 20% 30% 40%
0.0

0.2

0.4

0.6

Figure 7 W CRTOur
W CRTSOT A

for different total util-
ization U on one processor.

6 Evaluation and Discussion

Firstly we evaluate the tightness of our response time analysis in comparison to the state of
the art [7]. Then, we conduct an empirical case study on a previously synthesized task set.
With this case study we aim at showing that our approach of unikernel-based virtualization
under deferrable servers is feasible in practice.

6.1 Numerical Simulation

We conducted numerical evaluation to compare our worst-case response time bound (The-
orem 7) with the upper bound derived from [7] (Theorem 4). We present two experiments: 1)
we distinguish different number of servers, and 2) we distinguish different total utilization of
the servers, i.e., U =

∑
DSi

Qi

Pi
. To synthesize a system with n servers with a total utilization

of U we applied 4 steps:
We generated n utilization values Ui ∈ (0, 1) that add up to the total utilization U by
applying the UUniFast method presented in [4].
We generated n replenishment periods Pi by drawing them log-uniformly from the interval
[1, 100][ms] as it is suggested in [11] for the generation of task sets.
We generated n servers DS1, . . . , DSn by specifying the replenishment periods Pi from
above and by setting the capacity Qi to Pi · Ui. Priorities are set in rate-monotonic order.
We generated the tasks τi by drawing the minimum inter-arrival time Ti uniformly at
random from the interval [1.0Pi, 1.5Pi] and by drawing the worst-case execution time Ci

uniformly at random from the interval [0.5Qi, 1.0Qi].

ECRTS 2022

6:16 Unikernel-Based Real-Time Virtualization

In the first experiment we generated 1000 sets of servers and their tasks at random
using the procedure specified at the beginning of this section for each given number of
servers in {10, 50, 100}. For each system in the first experiment, the utilization was drawn
uniformly from the interval [0.1, 0.4] since it has been shown in [5] or Theorem 8 in [20] that
U ≤ ln 3

2 ≈ 0.40546 guarantees that the service condition stated in Eq. (1) holds.
In the second experiment we generated 1000 sets of servers and their tasks at random using

the same procedure specified previously for each given total utilization in {0.1, 0.2, 0.3, 0.4}.
For each system in the second experiment, the number of servers n was drawn uniformly at
random from the interval [10, 100].

We applied our worst-case response time analysis (WCRTOur) and the converted analysis,
i.e., Theorem 4, derived from the real-time calculus based worst-case response time analysis
in [7] (WCRTSOT A). In Figures 6 and 7 we present the values of W CRTOur

W CRTSOT A
for all tasks in

the tests as boxplots. In particular the lower the value, the better the performance of our
analysis is. The medians are depicted by a horizontal line, the boxes mark a quartile of the
data points, and the whiskers present all values.

We observe in Figure 6 that our bound is in median 90.5% smaller than the worst-case
response time bound from Theorem 4. Although the number of servers per test does not
make a difference in the performance of our method compared to the state of the art, in
Figure 7 we can see that the utilization has an impact. The higher the utilization, the closer
our bound gets to the bound of the state of the art. However, even with 40% utilization, our
bound is in median still 84.4% smaller than the bound derived by the state of the art.

Please note that we limited our experiments for U ≤ ln 3
2 ≈ 0.40546 so that the service

condition of a deferrable server is always fulfilled. Otherwise, the service condition of a
deferrable server cannot be always guaranteed and the focus of the evaluation would be drifted
to the service condition tests of deferrable servers. However, our analysis in Theorems 4 and 7
is applicable as long as the deferrable server can fulfill its service condition.

6.2 Case Study
In this subsection, we describe our practical case study. We provide the experiment setup,
the measurement methodology and present the results. Similar to the numerical simulation,
we synthesize four periodic tasks with a total utilization 40%, and specify the capacity and
replenishment period for each deferrable server. Their parameters are shown in Table 2.
Note that we stick to periodic tasks to focus on the incurring overhead. They are deployed
in form of four unikernels, which are instantiated on the same single processor core. Domain
0 receives one separate core.

The experiments were conducted on a commercial off-the-shelf hardware, a barebone
Intel NUC Kit with an Intel i5-8259U 4-core processor running at a constant speed of 2.3
GHz. Turbo Mode, hyper-threading as well as all power management features were disabled.
Domain 0 ran on a 64-Bit version of Ubuntu 20.04.1 LTS Server with a para-virtualized
Linux kernel 5.4.0-59-generic. The used hypervisor was Xen in version 4.14.1 extended with
our deferrable server scheduler and our toolstack.

6.2.1 Benchmark
For the purpose of this case study a User Datagram Protocol (UDP)-based client-server
benchmark has been implemented in the programming language C. The client-server model
fits the distributed nature of CPS’s. The benchmark servers represent our CPS tasks (e.g.
protection or control algorithms) deployed as unikernels. The computational workloads of

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:17

Table 2 Four periodic tasks and their corresponding deferrable servers for our case study. Note
that the time unit is [ms] and the WCRT of each task is derived from our analysis.

Periodic Task Deferrable Server WCRT
T1 = 12, C1 = 1 P1 = 10, Q1 = 2 1
T2 = 20, C2 = 4 P2 = 20, Q2 = 4 12
T3 = 60, C3 = 8 P3 = 50, Q3 = 10 26
T4 = 130, C4 = 9 P4 = 100, Q4 = 10 79

the tasks have been configured to fit the parameters of the analyzed task set as Table 2. The
benchmark clients are used for triggering the computation inside the unikernels by generating
requests (network packets). The requests can be interpreted as, for example, sensor values
for a given task. After completing its computation, each task sends a response packet to
the corresponding client. The responses can be seen as control commands destined for an
actuator in a given CPS. The architecture of our benchmark is depicted in Figure 8.

During benchmarking we collect three different types of latencies for every single re-
quest/response pair. The most important one is the task response time – a) in Figure 8. We
define it as the time interval between the moment when a network packet (request) destined
for a given unikernel (task) arrives at the bottom of the Linux TCP/IP network stack in
Domain 0 and the time-stamp at which a corresponding departing packet is delegated to the
network adapter for a response transmission. In other words, the packet arrival time-stamp
and the corresponding packet departure time-stamp correlate with the task release and task
finish times from our schedulability analysis. In order to collect these values, we hook into
the TCP/IP stack layer-2 kernel functions using systemtap4 [27] and log the appropriate
time-stamps. Another latency type is the task execution time – b) in Figure 8. It allows for
quantifying the amount of processor cycles a task needed for completing is workload from the
moment it has been scheduled to the point of time where it finishes its computation. We use
it to estimate or verify the actual computational workload of our task on the given hardware.
To this end, we implemented a clock cycle precise measurement technique as in [25]. This
type is not suited for measuring the task response time, as it does not account for the time a
given task may remain blocked after its release, e.g. due to its lower priority. On the client,
we can also measure the round-trip times for the request/response pairs – c) in Figure 8. We
use them to check the plausibility of the other latency types.

Last but not least, before we can present and discuss the results, we have to address
the aspect of latencies related to networking. The schedulability analysis from Section 4
currently concentrates on local scheduling and does not account for latencies imposed by
networking. However, the response times measured by the means of our benchmark include
delays related the entire software network stack of the host. Therefore, for the purpose of
the following case study, we empirically estimated the latencies related to the network stack
and adjusted our computed worst-case response time bounds with the worst-case network
processing time. In the course of our experiments, the worst-case latency for the network
stack did not exceed 250 µs and amounted on average to 157 µs.

4 https://sourceware.org/systemtap

ECRTS 2022

https://sourceware.org/systemtap

6:18 Unikernel-Based Real-Time Virtualization

Hardware

Hypervisor

Domain 0

TCP/IP-Stack

Unikernel

Benchmark
Server (Task)

NIC Driver Backend Frontend

Hardware

Linux

Benchmark
Client

a)

b)

c)

Figure 8 Benchmark architecture and the latencies measurement locations.

VM1 VM2 VM3 VM4

0
5

10
15

20
25

D
el

ay
[m

s]

Figure 9 Boxplots of the response
time values for the different VMs.

Table 3 The minimum value, arithmetic mean, stand-
ard deviation, worst-case response time and the worst-case
response time bound for the different VMs.

VM Min. x σ WCRT WCRT(B)

VM1 1 ms 1.11 ms 0.047 ms 1.215 ms 1.25 ms

VM2 3.88 ms 4.42 ms 0.49 ms 5.83 ms 12.25 ms

VM3 7.86 ms 10.99 ms 2.02 ms 14.03 ms 26.25 ms

VM4 8.84 ms 15.54 ms 5.14 ms 27.83 ms 79.25 ms

6.2.2 Case Study Results

In the following, we present and discuss the results of our case study. In order to estimate
the response times of the evaluated VMs, a total of twenty-two thousand measurements
have been conducted. The results are depicted in form of four boxplots in Figure 9 and the
corresponding numerical values are presented in Table 3. Please note that the estimated
worst case delay, i.e., 250 µs, as discussed above is added into each WCRT(B) of VMs.

As can be seen in Figure 9, our deferrable server services the four VMs accordingly to
their priorities. Further, there are no outliers. This means that during the entire experiment
none of the VMs experienced any spikes in their latencies. This in turn translates to a
deterministic execution behavior. The standard deviation values from Table 3 support this
evidence. In the case of the highest prioritized VM1, σ amounts to 47 µs – and this includes
the variances caused by the network stack. For comparison, the σ computed from the task
execution times collected inside VM1 (see Figure 8, collection point b) amounts to 12 µs.

Next, in the case study none of the empirically measured WCRTs exceeds the computed
WCRTs bounds, i.e., WCRT (B), from our analysis. This information can be gathered by
comparing the WCRTs in Table 3. The comparison also shows that for decreasing VM
priorities the computed bounds become more and more conservative.

Our case study leads to the conclusion that our approach is not only feasible but can be
efficiently and safely realized in practice even on common-off-the-shelf hardware.

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:19

7 Related Work

Various virtualization techniques have been developed as a promising approach for embedded
systems and latency-sensitive cloud computing [14]. The scheduling of VMs often implies a
hierarchy of schedulers [9]. For hierarchical scheduling, server-based approaches are often
considered to represent each virtual machine with its own real-time tasks as a single entity,
which is scheduled by the hypervisor. Under fixed-priority scheduling, there are several
server-based approaches, e.g., periodic server [29], sporadic server [32], deferrable servers [33].
The concept of deferrable servers was first introduced in [33]. It was originally designated
to handle aperiodic activation in hard real-time systems. Afterwards, it has been utilized
for resource budgets in [8, 28], where most of timing analyses assume each server may serve
multiple tasks. As shown in [8], the lower priority tasks served by deferrable servers, however,
may suffer from the back-to-back interference of higher priority tasks, resulting in a lower
schedulability than the other periodic server approaches even under an exact schedulability
test. Cuijpers and Bril in [7] showed that the response timing analysis proposed in [8] is no
longer exact, in the absence of a low-priority task. When a deferrable server only serves a
single task, the applicability of deferrable servers could be better. The result was based on
real-time calculus [34], which considers a general model of task activation. In this work, we
focus on sporadic tasks to derive a tighter worst-case response time analysis.

For using server-based approaches in virtualization, Shin and Lee in [31] developed the
compositional scheduling framework (CSF) to compute the capacity of each server, given the
replenishment period and the properties of tasks and their scheduler. RT-Xen was introduced
in [35], adopting server-based approaches to schedule VMs. The CSF was introduced to RT-
Xen for assuring the schedulability of tasks [17]. Both global and partitioned EDF schedulers
were implemented for supporting multicore scheduling at the host-level [36]. In this work, we
also adopt the deferrable server. However, as RT-Xen was implemented to comply with the
compositional scheduling theory and addresses an architecture where scheduling decisions
are divided between the hypervisor and the guest OS level, it is not suitable to realize our
unikernel-based scheduling model. Therefore, we have extended the Xen hypervisor with our
own scheduling infrastructure that implements our deferrable server model.

Lackorzyński et al. were the first to introduce the concept of flattening the hierarchical
scheduling [16], where the task information is exported to the hypervisor scheduler. Drescher
et al. further proposed to abandon the usage of server-based approaches to achieve ExVM [10].
However, as also noted in [10, 18], such flattening mechanisms might either break the temporal
isolation between VMs, or expose task-specific information from a VM, which might not be
appealing to the purpose of using virtualization for CPS’s. Similarly, RTVirt [37] proposed
to enable a cross-layer communication over the schedulers in two different tiers. Although
this mechanism can adapt the scheduling decisions according to the dynamic changes, the
potential concern is similar to the aforementioned flattening mechanisms. In this work, the
main insight is to constrain the number of served real-time tasks of each deferrable server to
a single one, without violating any important properties.

8 Conclusions

In this work, we proposed to leverage the scheduling architecture of unikernel-based vir-
tualization to facilitate the schedulability of deferrable servers, in which each server only
serves one sporadic task. We presented how to derive the worst-case response time analysis
under practical scenarios. The evaluation results show that our analysis outperforms the

ECRTS 2022

6:20 Unikernel-Based Real-Time Virtualization

restated analysis based on the state-of-the-art [7]. In addition, we demonstrated that the
unikernel-based architecture can be effectively implemented on top of the Xen hypervisor [2]
and conducted a case study to evaluate the applicability of the proposed approach.

In future work we plan to investigate more scenarios over different relationships between a
sporadic task and its deferrable server, e.g., scenarios with Tk ≤ Pk. Further exploration may
unleash the full power of the deferrable servers and eventually benefit more CPS applications
under real-time virtualization.

References
1 Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I. Davis. An

empirical survey-based study into industry practice in real-time systems. In 2020 IEEE Real-
Time Systems Symposium (RTSS), pages 3–11, 2020. doi:10.1109/RTSS49844.2020.00012.

2 Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf Neugebauer,
Ian Pratt, and Andrew Warfield. Xen and the art of virtualization. SIGOPS Oper. Syst. Rev.,
37(5):164–177, October 2003. doi:10.1145/1165389.945462.

3 Sanjoy Baruah and Nathan Fisher. Component-based design in multiprocessor real-time
systems. In 2009 International Conference on Embedded Software and Systems, pages 209–214,
2009. doi:10.1109/ICESS.2009.71.

4 Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005. doi:10.1007/s11241-005-0507-9.

5 Jian-Jia Chen, Wen-Hung Huang, and Cong Liu. k2U: A general framework from k-point
effective schedulability analysis to utilization-based tests. In Real-Time Systems Symposium
(RTSS), pages 107–118, 2015. doi:10.1109/RTSS.2015.18.

6 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang, Björn B. Brandenburg,
Konstantinos Bletsas, Cong Liu, Pascal Richard, Frédéric Ridouard, Neil C. Audsley, Raj
Rajkumar, Dionisio de Niz, and Georg von der Brüggen. Many suspensions, many problems:
a review of self-suspending tasks in real-time systems. Real Time Syst., 55(1):144–207, 2019.
doi:10.1007/s11241-018-9316-9.

7 Pieter J. L. Cuijpers and Reinder J. Bril. Towards budgeting in real-time calculus: Deferrable
servers. In Proceedings of the 5th International Conference on Formal Modeling and Analysis
of Timed Systems, FORMATS’07, pages 98–113, Berlin, Heidelberg, 2007. Springer-Verlag.

8 Robert I. Davis and Alan Burns. Hierarchical fixed priority pre-emptive scheduling. In RTSS,
pages 389–398, 2005. doi:10.1109/RTSS.2005.25.

9 Z. Deng and J.W.-S. Liu. Scheduling real-time applications in an open environment. In
Proceedings Real-Time Systems Symposium (RTSS), pages 308–319, 1997. doi:10.1109/REAL.
1997.641292.

10 Michael Drescher, Vincent Legout, Antonio Barbalace, and Binoy Ravindran. A flattened
hierarchical scheduler for real-time virtualization. In Proceedings of the 13th International
Conference on Embedded Software, EMSOFT ’16, New York, NY, USA, 2016. Association for
Computing Machinery. doi:10.1145/2968478.2968501.

11 Paul Emberson, Roger Stafford, and Robert I Davis. Techniques for the synthesis of multipro-
cessor tasksets. In WATERS, pages 6–11, 2010.

12 D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: An operating system architecture
for application-level resource management. In Proceedings of the 15th ACM Symposium on
Operating Systems Principles, pages 251–266, 1995. doi:10.1145/224056.224076.

13 Bryan Ford, Godmar Back, Greg Benson, Jay Lepreau, Albert Lin, and Olin Shivers. The
flux oskit: A substrate for kernel and language research. In Proceedings of the Sixteenth ACM
Symposium on Operating System Principles, pages 38–51, 1997.

14 Marisol García-Valls, Tommaso Cucinotta, and Chenyang Lu. Challenges in real-time virtu-
alization and predictable cloud computing. Journal of Systems Architecture, 60(9):726–740,
2014. doi:10.1016/j.sysarc.2014.07.004.

https://doi.org/10.1109/RTSS49844.2020.00012
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1109/ICESS.2009.71
https://doi.org/10.1007/s11241-005-0507-9
https://doi.org/10.1109/RTSS.2015.18
https://doi.org/10.1007/s11241-018-9316-9
https://doi.org/10.1109/RTSS.2005.25
https://doi.org/10.1109/REAL.1997.641292
https://doi.org/10.1109/REAL.1997.641292
https://doi.org/10.1145/2968478.2968501
https://doi.org/10.1145/224056.224076
https://doi.org/10.1016/j.sysarc.2014.07.004

K.-H. Chen, M. Günzel, B. Jablkowski, M. Buschhoff, and J.-J. Chen 6:21

15 Boguslaw Jablkowski and Olaf Spinczyk. Cps-xen: A virtual execution environment for
cyber-physical applications. In Luís Miguel Pinho, Wolfgang Karl, Albert Cohen, and Uwe
Brinkschulte, editors, Architecture of Computing Systems - ARCS 2015 - 28th International
Conference, Porto, Portugal, March 24-27, 2015, Proceedings, volume 9017 of Lecture Notes
in Computer Science, pages 108–119. Springer, 2015. doi:10.1007/978-3-319-16086-3_9.

16 Adam Lackorzyński, Alexander Warg, Marcus Völp, and Hermann Härtig. Flattening hier-
archical scheduling. In Proceedings of the Tenth ACM International Conference on Embedded
Software, EMSOFT ’12, pages 93–102, New York, NY, USA, 2012. Association for Computing
Machinery. doi:10.1145/2380356.2380376.

17 Jaewoo Lee, Sisu Xi, Sanjian Chen, Linh T. X. Phan, Chris Gill, Insup Lee, Chenyang Lu,
and Oleg Sokolsky. Realizing compositional scheduling through virtualization. In Proceedings
of the 2012 IEEE 18th Real Time and Embedded Technology and Applications Symposium,
RTAS ’12, pages 13–22, USA, 2012. IEEE Computer Society. doi:10.1109/RTAS.2012.20.

18 Haoran Li, Meng Xu, Chong Li, Chenyang Lu, Christopher Gill, Linh Phan, Insup Lee,
and Oleg Sokolsky. Multi-mode virtualization for soft real-time systems. In 2018 IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 117–128,
2018. doi:10.1109/RTAS.2018.00022.

19 C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a hard-real-
time environment. Journal of the ACM, 20(1):46–61, 1973. doi:10.1145/321738.321743.

20 Cong Liu and Jian-Jia Chen. Bursty-interference analysis techniques for analyzing complex
real-time task models. In 2014 IEEE Real-Time Systems Symposium, pages 173–183, 2014.
doi:10.1109/RTSS.2014.10.

21 Anil Madhavapeddy, Thomas Leonard, Magnus Skjegstad, Thomas Gazagnaire, David Sheets,
Dave Scott, Richard Mortier, Amir Chaudhry, Balraj Singh, Jon Ludlam, Jon Crowcroft, and
Ian Leslie. Jitsu: Just-in-time summoning of unikernels. In Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation, NSDI’15, pages 559–573, USA,
2015. USENIX Association.

22 Anil Madhavapeddy, Richard Mortier, Charalampos Rotsos, David Scott, Balraj Singh,
Thomas Gazagnaire, Steven Smith, Steven Hand, and Jon Crowcroft. Unikernels: Library
operating systems for the cloud. SIGARCH Comput. Archit. News, 41(1):461–472, March
2013. doi:10.1145/2490301.2451167.

23 Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit Sati,
Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My vm is lighter (and safer) than
your container. In Proceedings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 218–233, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3132747.3132763.

24 Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda, Roberto
Bifulco, and Felipe Huici. ClickOS and the art of network function virtualization. In 11th
USENIX Symposium on Networked Systems Design and Implementation, pages 459–473, 2014.

25 Gabriele Paoloni. How to benchmark code execution times on intel® ia-32 and ia-64 instruction
set architectures, 2010.

26 Donald E. Porter, Silas Boyd-Wickizer, Jon Howell, Reuben Olinsky, and Galen C. Hunt.
Rethinking the library OS from the top down. In Rajiv Gupta and Todd C. Mowry, editors,
Proceedings of the 16th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 291–304. ACM, 2011. doi:10.1145/1950365.1950399.

27 Vara Prasad, William Cohen, FC Eigler, Martin Hunt, Jim Keniston, and J Chen. Locating
system problems using dynamic instrumentation. In 2005 Ottawa Linux Symposium, pages
49–64, 2005.

28 Saowanee Saewong, Ragunathan Rajkumar, John P. Lehoczky, and Mark H. Klein. Analysis
of hierarchical fixed-priority scheduling. In ECRTS, pages 173–181, 2002. URL: http:
//csdl.computer.org/comp/proceedings/ecrts/2002/1665/00/16650173abs.htm.

ECRTS 2022

https://doi.org/10.1007/978-3-319-16086-3_9
https://doi.org/10.1145/2380356.2380376
https://doi.org/10.1109/RTAS.2012.20
https://doi.org/10.1109/RTAS.2018.00022
https://doi.org/10.1145/321738.321743
https://doi.org/10.1109/RTSS.2014.10
https://doi.org/10.1145/2490301.2451167
https://doi.org/10.1145/3132747.3132763
https://doi.org/10.1145/1950365.1950399
http://csdl.computer.org/comp/proceedings/ecrts/2002/1665/00/16650173abs.htm
http://csdl.computer.org/comp/proceedings/ecrts/2002/1665/00/16650173abs.htm

6:22 Unikernel-Based Real-Time Virtualization

29 Lui Sha, John P. Lehoczky, and Ragunathan Rajkumar. Solutions for some practical problems
in prioritized preemptive scheduling. In IEEE Real-Time Systems Symposium (RTSS), pages
181–191, 1986.

30 Insik Shin, Arvind Easwaran, and Insup Lee. Hierarchical scheduling framework for virtual
clustering of multiprocessors. In 2008 Euromicro Conference on Real-Time Systems, pages
181–190, 2008. doi:10.1109/ECRTS.2008.28.

31 Insik Shin and Insup Lee. Compositional real-time scheduling framework. In 25th IEEE
International Real-Time Systems Symposium, pages 57–67, 2004. doi:10.1109/REAL.2004.15.

32 Brinkley Sprunt, Lui Sha, and John P. Lehoczky. Aperiodic task scheduling for hard real-time
systems. Real-Time Systems, 1(1):27–60, 1989.

33 J.K. Strosnider, J.P. Lehoczky, and Lui Sha. The deferrable server algorithm for enhanced
aperiodic responsiveness in hard real-time environments. IEEE Transactions on Computers,
44(1):73–91, 1995. doi:10.1109/12.368008.

34 Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for scheduling
hard real-time systems. In IEEE International Symposium on Circuits and Systems, Emerging
Technologies for the 21st Century, pages 101–104, 2000. doi:10.1109/ISCAS.2000.858698.

35 Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. Rt-xen: Towards real-time
hypervisor scheduling in xen. In 2011 Proceedings of the Ninth ACM International Conference
on Embedded Software (EMSOFT), pages 39–48, 2011.

36 Sisu Xi, Meng Xu, Chenyang Lu, Linh T. X. Phan, Christopher Gill, Oleg Sokolsky, and
Insup Lee. Real-time multi-core virtual machine scheduling in xen. In Proceedings of the 14th
International Conference on Embedded Software, EMSOFT ’14, New York, NY, USA, 2014.
Association for Computing Machinery. doi:10.1145/2656045.2656066.

37 Ming Zhao and Jorge Cabrera. Rtvirt: Enabling time-sensitive computing on virtualized
systems through cross-layer cpu scheduling. In Proceedings of the Thirteenth EuroSys Con-
ference, EuroSys ’18, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3190508.3190527.

A Appendix

▶ Lemma 9. Under global preemptive fixed-priority scheduling of systems composed of only
fixed-priority deferrable servers on m homogeneous (identical) physical processors, a sufficient
service condition test can be written as Eq. (2).

Proof. This can be proved by contrapositive. Suppose that the service condition to provide
capacity Qk for DSk cannot be fulfilled during a period from a to a + Pk for contrapositive.
Under multiprocessor global preemptive fixed-priority scheduling, it implies that whenever
DSk is not served, the m processors are busy serving other higher-priority workload (i.e.,
servers in this case). The amount of execution time a higher-priority DSi can be executed
from a to a + t is upper-bounded by

⌈
t+Pi−Qi

Pi

⌉
Qi, by considering the back-to-back hitting.

Therefore, we know that ∃ DSk, ∀0 < t ≤ Pk, Qk +
∑

DSi∈hpk

⌈
t+Pi−Qi

Pi

⌉
Qi

m > t. By taking the
negation of the above condition, we reach the conclusion. ◀

https://doi.org/10.1109/ECRTS.2008.28
https://doi.org/10.1109/REAL.2004.15
https://doi.org/10.1109/12.368008
https://doi.org/10.1109/ISCAS.2000.858698
https://doi.org/10.1145/2656045.2656066
https://doi.org/10.1145/3190508.3190527

A Mathematical Comparison Between
Response-Time Analysis and Real-Time Calculus
for Fixed-Priority Preemptive Scheduling
Victor Pollex # Ñ

INCHRON AG, Erlangen, Germany

Frank Slomka # Ñ

Institute of Embedded Systems/Real-Time Systems, Faculty of Engineering and Computer Science,
Universität Ulm, Germany

Abstract
Fixed-priority preemptive scheduling is a popular scheduling scheme for real-time systems. This is
accompanied by a vast amount of research on how to analyse and check whether these systems satisfy
their real-time requirements. Two methods that emerged from this research are the response-time
analysis and the real-time calculus. These two methods have been compared empirically on the
basis of several abstract systems showing that for some systems one method gives better results
than the other and for other systems both methods appear to give the same results. However,
empirical analyses inherently contain uncertainty. To get a definitive answer we compare both
methods mathematically and we show that both methods give the same results for systems that use
fixed-priority preemptive scheduling and independent tasks.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Embedded and cyber-physical systems; Software and its engineering →
Scheduling

Keywords and phrases real-time systems, fixed-priority scheduling, response-time analysis, real-time
calculus

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.7

Funding Victor Pollex : This work was supported by Federal Ministry of Education and Research
under the grant agreement number 01IS21031A.
Frank Slomka: This work was supported by Federal Ministry of Education and Research under the
grant agreement number 01IS21031B.

1 Introduction

For real-time systems it is necessary to verify that they meet their real-time requirements.
Two of the methods that have emerged to verify these systems are the response-time analysis
(RTA) and the real-time calculus (RTC). The response-time analysis originates from a
proof [12, Theorem 5] that shows when a real-time system that periodically runs a set of
independent tasks will always produce results on time. Whereas the origin of the real-time
calculus is a mathematical framework [6, 7] to find a bound for the delay that a data stream
is subjected to when flowing through a packet switched network.

Over time large amounts of work was produced regarding the response-time analysis
and the real-time calculus that covers, among other things, different scheduling algorithms,
different patterns on how tasks recur, and dependencies between tasks as well as empirical
comparisons.

In distributed real-time systems where the activation of tasks can follow a complex pattern,
the real-time calculus, due to its more expressive model, appears to produce the same or
better results than the response-time analysis [14, Benchmark 1]. When the distributed real-

© Victor Pollex and Frank Slomka;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 7; pp. 7:1–7:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:victor.pollex@inchron.com
https://www.inchron.com
mailto:frank.slomka@uni-ulm.de
https://www.uni-ulm.de/en/in/es/
https://doi.org/10.4230/LIPIcs.ECRTS.2022.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 Response-Time Analysis vs. Real-Time Calculus

time system is a feedback loop, then both methods appear to produce the same results [14,
Benchmark 2]. However, when the distributed real-time system has a cyclic dependency or
there are data dependencies, then the response-time analysis appears to produce the same or
better results than the real-time calculus [14, Benchmark 3 and 4].

All of these comparisons are empirical. Therefore, we only have an indication that one
method might always produce the same or better results than the other. However, we do
not know for certain. So, to get a definitive answer we compare these methods formally.
By means of a mathematical proof we show that both methods produce the same results
when the real-time system uses fixed-priority preemptive scheduling and their tasks are
independent.

Structure of the Paper

The remainder of this paper has the following structure: First we describe the related work in
Section 2. Then we introduce the models and the analyses of the response-time analyses and
the real-time calculus in Section 3. Subsequently, in Section 4 we describe the assumptions
that we use and formally compare the response-time analysis with the real-time calculus by
means of a mathematical proof. We conclude the paper with a summary in Section 5.

2 Related Work

In their seminal paper [12] Liu and Layland introduce a sufficient test for real-time systems
that run a set of independent tasks which recur periodically, have an implicit deadline, and
are subject to the fixed-priority preemptive scheduling algorithm. For the same type of
real-time systems, Joseph and Pandya improve the analysis in [9] by supplying an exact test.
Moreover, their test is not only suitable for tasks with implicit deadlines, but also for tasks
with restricted deadlines. Lehoczky presents in [11] a further improvement to the previous
test by extending the exact test to also include tasks with arbitrary deadlines, which then
Tindell et al. further extend in [25] to allow tasks to have a release jitter. Similarly, Audsley
et al. improve in [1] the exact test where they assume that the set of tasks have implicit
deadlines, but they allow the tasks to block internally and have a release jitter. In [24]
Tindell and Clark provides a test that combines all of these improvements. Audsley et al.
present in [2] an historic perspective on fixed-priority preemptive scheduling. In [16] Richter
presents an abstract representation of the bounds on how often the tasks recur. Based on
which, Schliecker et al. introduce in [18] the multiple event busy time as a generalization of
the concept of busy period which many response-time analyses use.

The work of Cruz [6, 7] is considered seminal for network calculus which is a mathematical
framework to find bounds for the latency that network components cause on bit streams [10].
Fidler presents in [8] a comprehensive survey of the models that the network calculus uses
Based on the network calculus, Thiele et al. introduce in [23] the models for the real-
time calculus, how to get these models from a recurring real-time task, and they describe
a schedulability test with these models for systems that use a fixed-priority preemptive
scheduling algorithm. Chakraborty et al. refine in [5] the real-time calculus to calculate
tighter bounds and apply it to scheduling networks. Wandeler improves the real-time calculus
further in [26].

In [14] Perathoner et al. use several small abstract systems to empirically benchmark
various formal performance analyses with these systems. Among the analyses are the response-
time analysis and the real-time calculus. They show that neither of these two analyses always

V. Pollex and F. Slomka 7:3

outperforms the other. But rather it depends on the characteristics of the system under
analysis whether one outperforms the other. However, this is an empirical comparison. We
compare them mathematically instead.

Naedele et al. present in [13] a schedulability test with the real-time calculus for a system
that uses a fixed-priority preemptive scheduling algorithm. They indicate that it is possible
to derive the test in [25] from their schedulability test. Similarly, Pollex et al. show in [15] a
generalization of the response-time analysis with the help of the real-time calculus. They
exemplarily derive the analysis in [25] from the real-time calculus. However, we use the more
general schedulability test from [17] for our comparison.

In [17] Schliecker presents the multiple event busy time, how to derive it for fixed-priority
preemptive scheduling, and an accompanying analysis as an extension of the work in [25].
They also show how to derive a multiple event busy time from the service curves of the
real-time calculus. However, there is no discussion how the multiple event busy times, the
one extended from [25] and the other derived from the service curve of the real-time calculus,
relate to each other. We show that they are in fact identical.

Boyer and Roux propose in [3, 4] a model which can embed the models that the network
calculus and the response-time analysis use, therefore making it possible to analyse a system
that uses both models. However, they only look into how to interface between the different
models and not how the individual analyses compare. Furthermore, much of the mathematical
background that they use assumes real-valued functions that have the extended non-negative
real numbers as domain and co-domain. We generalise some of them, where we assume
mappings that use partially ordered sets or lattices as domain and co-domain.

Depending whether the real-time systems use fixed or dynamic priority scheduling,
the existing analyses differ because of the different mathematical requirements on the
models. In [19, 20] Slomka and Sadeghi introduce a new mathematical framework based
on mathematical tools from electric engineering to analyse real-time systems. This new
mathematical framework makes it possible to describe an unified analysis for real-time
systems that use fixed and/or dynamic priority scheduling. They also describe existing
analyses like [25] and analyses for real-time systems with dynamic priority scheduling with the
new mathematical framework. Based on this mathematical framework, Slomka and Sadeghi
show in [21] preliminary work for investigating the relationship between the response-time
analysis and the real-time calculus. They sketch possible similarities, however they do not
express the real-time calculus with their new mathematical framework, let alone compare
them.

3 Models and Analyses

To analyse a real-time system we need to appropriately model it. Since we compare the
response-time analyses with the real-time calculus, we first describe the assumptions and
notations that both analyses have in common followed by a running example that we use
to illustrate the concepts of both analyses. Second, we present the common mathematical
concepts that both analyses use. Third, we restate the notation and the analyses themselves
as presented in [17] and [26] for the response-time analysis and the real-time calculus,
respectively.

3.1 Common Assumptions and Notation
We assume that the real-time system has a single core processor that uses a fixed-priority
scheduler which allows a higher priority task to preempt a lower priority task at any time.
The set of tasks Γ that is assigned to the processor has n tasks τi, where i ∈ {1, . . . , n}. We

ECRTS 2022

7:4 Response-Time Analysis vs. Real-Time Calculus

0 5 10 15 20 25 30

τ1

τ2

Time

Ta
sk

s

Figure 1 Worst-case schedule of the system described in Example 1.

only consider events that cause the system to release a job of a task which the system then
puts into the ready queue of the scheduler. The scheduler is work-conserving, i.e. whenever a
job of a task is in the ready queue, the scheduler assigns a job to the processor to execute
it. Each task τi has a unique priority which defines a strict order on the set of tasks Γ. We
use the index of τi to also represent the priority of the task. A lower numerical value of the
index means that the task has a higher priority, i.e. task τ3 has a higher priority than task
τ8. The tasks are independent from each other. There are no data dependencies, temporal
dependencies, or any other dependencies between them. Also, the jobs of the tasks do not
use any shared resources other than the processor.

To illustrate the concepts of both analyses we use the following running example of a
real-time system.

▶ Example 1. Let the system consist of two tasks Γ := {τ1, τ2}, where τ1 has a higher
priority than τ2. Task τ1 releases a job every p1 := 6 time units, has a release jitter of j1 := 4
time units, and the processor needs c+

1 := 2 time units to process each of its jobs. Similarly,
task τ2 releases a job every p2 := 12 time units, has a release jitter of j2 := 8 time units, and
the processor needs c+

2 := 3 time units to process each of its jobs.
Figure 1 shows the worst-case schedule for this system. Task τ1 releases a job at time

points 0, 2, and from then on every p1 time units. Similarly, task τ2 releases a job at time
points 0, 4, and from then on every p2 time units. The processor completes the first job
of task τ2 at 7 time units and the second job at 12 time units. So, the length of the time
interval for the first two jobs from their release to when the processor completes them is
7 − 0 = 7 and 12 − 4 = 8 time units, respectively. Because at 12 time units an interval starts
where no jobs are pending and therefore the processor is idle, we can conclude that a job
of task τ2 will never need more than 8 time units from the time it was released until the
processor completes it.

3.2 Common Mathematical Notation and Definitions
First we introduce common mathematical notation and definitions. Then we present three
mathematical definitions which are fundamental to many lemmas on which the theorem of
our main contribution bases.

The set of positive integers and non-negative integers is N and N0, respectively. Further-
more, the set of real numbers, the extended real numbers (includes −∞ and ∞), and the
non-negative real numbers is R, R, and R+

0 , respectively.

V. Pollex and F. Slomka 7:5

▶ Definition 2 (Monotonicity). Let f : X → Y be a mapping from a partially ordered set X

to a partially ordered set Y , then f is isotone or antitone if

∀x1, x2 ∈ X : x1 ≤ x2 ⇒ f(x1) ≤ f(x2) or (1a)
∀x1, x2 ∈ X : x1 ≤ x2 ⇒ f(x1) ≥ f(x2), respectively. (1b)

Isotone mappings are also called order-preserving or in case of functions increasing or
non-decreasing. Similarly, antitone mappings are also called order-reversing, decreasing, or
non-increasing.

▶ Definition 3 (Directional Continuity). Let f : X → R be a function from a subset X of the
real numbers, then f is continuous on the left or right at x ∈ X if

∀ϵ > 0 ∃δ > 0 ∀ξ ∈ X ∩ (x − δ, x) : |f(ξ) − f(x)| < ϵ or (2a)
∀ϵ > 0 ∃δ > 0 ∀ξ ∈ X ∩ (x, x + δ) : |f(ξ) − f(x)| < ϵ, respectively. (2b)

If f is continuous on the left or right at every element of X, then f is called continuous on the
left or right, respectively. Alternatively, f can be called left-continuous or right-continuous.

The models use several functions like the event load function (Definition 8) or the arrival
curves (Definition 11) which in general are increasing, but not strictly increasing. Therefore,
their inverse functions do not necessarily exist, but their closely related pseudo-inverse do.
We define the pseudo-inverse of a function with the help of its contour set.

▶ Definition 4 (Contour Set). Let f : X → Y be a mapping from a set X to a partially
ordered set Y , then the lower contour set Xf≤y and the upper contour set Xy≤f of f at
y ∈ Y are

Xf≤y := {x ∈ X : f(x) ≤ y} and (3a)
Xy≤f := {x ∈ X : y ≤ f(x)} . (3b)

▶ Definition 5 (Pseudo-Inverse). Let f : X → Y be a mapping from a subset X of a complete
lattice L to a partially ordered set Y , then the pseudo-inverse f−1 : Y → L and f−1 : Y → L

at y ∈ Y are

f−1(y) := inf Xy≤f and (4a)

f−1(y) := sup Xf≤y (4b)

with the convention that inf ∅ = sup X and sup ∅ = inf X.

Note that we do not require that f is increasing as in [4, Definition 5]. This makes the
new result in Lemma 50 possible. Also, note that the image of the pseudo-inverses f−1 and
f−1 is a subset of the complete lattice L and not a subset of X. The reason is that the
pseudo-inverses are the infimum and supremum of subsets of X. These do not necessarily
have to be in X, but they are in L. To illustrate this, we use the following example.

▶ Example 6. Let f : I → R be a function from the open interval I := (1, 6) to the real
numbers where f(x) = x when x ∈ (1, 3], f(x) = 3 when x ∈ (3, 4], and f(x) = x − 2
when x ∈ (4, 6). See Figure 2a for a plot of f . Table 1 shows the contour sets and their
respective pseudo-inverses for any y ∈ R. Lastly, Figures 2b and 2c show the plots for the
pseudo-inverses f−1 and f−1. As Table 1 shows, the pseudo-inverses attain the values 1 and
6, which are not in I.

ECRTS 2022

7:6 Response-Time Analysis vs. Real-Time Calculus

Table 1 Resulting contour sets, Iy≤f and If≤y, and their respective pseudo-inverses, f−1(y) and
f−1(y), for any y ∈ R for function f defined in Example 6.

y ∈ Iy≤f f−1(y)

(−∞, 1] I 1
(1, 2] [y, 6) y

(2, 3] [y, 4] ∪ [y + 2, 6) y

(3, 4) [y + 2, 6) y + 2
[4, ∞) ∅ 6

y ∈ If≤y f−1(y)

(−∞, 1] ∅ 1
(1, 2] (1, y] y

(2, 3) (1, y] ∪ (4, y + 2] y + 2
[3, 4) (1, y + 2] y + 2
[4, ∞) I 6

1 2 3 4 5 6
1

2

3

4

(a) Plot of f .
0 1 2 3 4 5

1

2

3

4

5

6

(b) Plot of f−1.
0 1 2 3 4 5

1

2

3

4

5

6

(c) Plot of f−1.

Figure 2 Plot of the functions f defined in Example 6 and its pseudo-inverses f−1 and f−1.

▶ Definition 7 (Deconvolution). Let f : R+
0 → R+

0 and g : R+
0 → R+

0 be increasing functions.
The deconvolution in inf-plus ⊘ and in sup-plus ⊘ are defined as follows [10, Definition
3.1.13 and 3.2.2]:

(f ⊘ g)(x) := sup
0≤ξ

{f(x + ξ) − g(ξ)} (5a)

(f ⊘ g)(x) := inf
0≤ξ

{f(x + ξ) − g(ξ)} (5b)

3.3 Response-Time Analysis
Over time, events occur that release jobs of tasks. To capture the density of these events for
a task τi, the response-time analysis uses two functions, the event load function η+

i and the
event distance function δ−

i .

▶ Definition 8 (Event Load Function). Confer [17, p. 53, (3.3)]. The upper event load
function for task τi maps a length of a time interval to an upper bound of the number of
events that can occur in any time interval of that length and is denoted by

η+
i : R+

0 → N0. (6)

▶ Definition 9 (Event Distance Function). Confer [17, p. 53, (3.1)]. The minimum event
distance function for task τi maps a number of events to a lower bound of the length of a
time interval in which at least that amount of events occur and is denoted by

δ−
i : R+

0 → R+
0 . (7)

Given q events, every interval in which at least q events occur has a length of at least δ−
i (q).

Or, in any interval with a length smaller than δ−
i (q) less than q events occur.

V. Pollex and F. Slomka 7:7

η+
2

0 5 10 15 20
0

1

2

3

Length of interval ∆

N
um

be
r

of
ev

en
ts

(a) The event load function η+
2 of

task τ2.

δ−
2

B+
2 (2)

B+
2 δ−

2 (2)

0 1 2 3
0

4

8

12

16

20

Number of events

Le
ng

th
of

in
te

rv
al

∆
(b) The event distance function δ−

2 and the multiple event busy time
function B+

2 of task τ2.

Figure 3 The concepts of the response-time analysis applied on the system described in Example 1.

Both the event load function and the event distance function are closely related, such
that we can derive one function from the other. The relationship between these functions
is that one function is essentially the pseudo-inverse of the other. Commonly, we have the
upper event load function and from that we derive the minimum event distance function
with (cf. [17, p. 54, (3.7)])

δ−
i := η+

i

−1
. (8)

Additionally, a task has a worst-case execution-time c+
i which describes the maximum

amount of processor time without any interference of higher priority task that a job needs
for the processor to execute it.

The worst-case response time r+
i of task τi is bounded by (cf. [17, p. 64, (3.22)])

r+
i ≤ max

q∈N0

{
B+

i (q) − δ−
i (q)

}
. (9)

Equation (9) uses the multiple event busy time function B+
i : N0 → R+

0 , cf. [17, p. 63,
Definition 3.6]. For fixed priority preemptive scheduling the multiple event busy time
function is (cf. [17, p. 64, (3.23)])

B+
i (q) = min

∆∈R+
0

∆ : ∆ = q · c+
i +

i−1∑
j=1

(
η+

j (∆) · c+
j

) . (10)

In (10) we explicitly specify the smallest fix-point to resolve any possible mathematical
ambiguity, because that is how [17, p. 64, (3.23)] is intended.

▶ Example 10. Given the system in Example 1 we exemplarily derive the various functions
of the response-time analysis for it.

For task τ1 the worst-case execution time is the same as given in the example system,
i.e. c+

1 = 2. Because task τ1 has the highest priority, the multiple event busy time function
is B+

1 (q) = q · c+
1 according to Equation (10). With the release of jobs every p1 = 6 time

units and a release jitter of j1 = 4 time units, the event load function is η+
1 (∆) =

⌈
∆+j1

p1

⌉
for

∆ > 0 and η+
1 (∆) := 0 for ∆ = 0. Now that we have the event load function we derive the

event distance function according to Equation (8), i.e. δ−
1 (q) = max{0, ⌈q − 1⌉ · p1 − j1}.

ECRTS 2022

7:8 Response-Time Analysis vs. Real-Time Calculus

Similarly, for task τ2 the worst-case execution time is the same as in the example system,
i.e. c+

2 = 3. According to Equation (8) the multiple event busy time function B+
2 has

to consider the interference from the higher priority task τ1 which results in B+
2 (q) =

q · c+
2 +

⌈
q·c+

2 +8
4 − 1

⌉
· c+

1 for q > 0 and B+
2 (q) = 0 for q = 0. Task τ2 releases jobs

every p2 = 12 time units and has a release jitter of j2 = 8 time units, therefore its event
load functions is η+

2 (∆) =
⌈

∆+j2
p2

⌉
for ∆ > 0 and η+

2 (∆) = 0 for ∆ = 0. Deriving the
event distance function from the event load function according to Equation (8) results in
δ−

2 (q) = max{0, ⌈q − 1⌉ · p2 − j2}.
Now that we have both the multiple event busy time function B+

2 and the event distance
function η+

2 for task τ2 we can calculate the upper bound for the worst-case response-time,
see Figure 3b for a plot with both of these functions. The worst-case response-time for task
τ2 is not greater than r+

2 ≤ maxq∈N0

{
B+

i (q) − δ−
i (q)

}
= max{0 − 0, 7 − 0, 12 − 4, . . .} = 8

time units. Note that we do not necessarily need to compute all the values of the multiple
event busy time function B+

2 . In a schedulable system there will be a point when there are
no pending jobs of task τ2 that could defer the execution of any of its following jobs, cf. [17,
p. 72, Theorem 3.9].

3.4 Real-Time Calculus
The real-time calculus models a task with the Greedy Processing Component which has
event-based arrival curves αi and resource-based service curves βi as input.

▶ Definition 11 (Event-Based Arrival Curves). Confer [26, p. 16, Def. 1] and [26, p. 73,
Def. 3]. Let R[s, t) denote the number of events that occur in the interval [s, t), where s ∈ R+

0
is a point in time before t ∈ R+

0 , i.e. s ≤ t. Then, the event-based lower arrival curve
α− : R+

0 → R+
0 and the event-based upper arrival curve α+ : R+

0 → R+
0 satisfy for every

point in time t ∈ R and every length of interval ∆ ∈ R+
0 the property:

α−(∆) ≤ R[t, t + ∆) ≤ α+(∆) (11)

▶ Definition 12 (Resource-Based Service Curves). Confer [26, p. 19, Def. 2] and [26, p. 73,
Def. 6]. Let C[s, t) denote the amount of resources that are available in the interval [s, t),
where s ∈ R+

0 is a point in time before t ∈ R+
0 , i.e. s ≤ t. Then, the resource-based lower

service curve β− : R+
0 → R+

0 and the resource-based upper service curve β+ : R+
0 → R+

0
satisfy for every point in time t ∈ R and every length of interval ∆ ∈ R+

0 the property:

β−(∆) ≤ C[t, t + ∆) ≤ β+(∆) (12)

The arrival curves α− and α+ map a length of a time interval to a lower, respectively
upper, bound of the amount of events that can occur in any interval of that length which
causes the system to release jobs. Similarly, the service curves β− and β+ map a length of
a time interval to a lower, respectively upper, bound of the amount of resources that are
available in any interval of that length to execute any pending jobs. However, the arrival
curves in Definition 11 are event-based, which map from a length of an interval to a number
of events. But, the service curves in Definition 12 are resource-based, which map from a
length of an interval to an amount of resources. Number of events and amount of resources
are not comparable. So, we need to transform at least one of them into the other. Which we
do with workload curves.

V. Pollex and F. Slomka 7:9

▶ Definition 13 (Workload Curves). Confer [26, p. 74, Def. 7]. Let W (u) denote the amount
of resources that are necessary to process u consecutive events, then the lower workload curve
γ− : R+

0 → R+
0 and the upper workload curve γ+ : R+

0 → R+
0 satisfy for u ∈ R+

0 and v ∈ R+
0

consecutive events, where u ≤ v, the property:

γ−(v − u) ≤ W (v) − W (u) ≤ γ+(v − u) (13)

To transform the resource-based lower service curve into its event-based form, we compose
(◦) it with the pseudo-inverse of the upper workload curve. Confer [26, p. 74, (4.6)] and [26,
p. 75, (4.11)].

β
− = γ+−1 ◦ β− (14)

Similarly, we transform the event-based upper arrival curve into its resource-based form by
composing it with the upper workload curve. Confer [26, p. 75, (4.8)].

α+ = γ+ ◦ α+ (15)

With the arrival curve and the service curve in either the resource-based form or the
event-based form, we can describe an upper bound on the delay of task τi. This is the longest
time that the processor needs to execute a job of task τi. From the time the event occurred
which released the job until the job was completely executed. We describe this upper bound
with the notion of the largest horizontal distance between functions.

▶ Definition 14 (Largest horizontal distance between functions). Confer [10, p. 154, (3.21)].
Let f, g : R+

0 → R+
0 be increasing functions, then the largest horizontal distance ↔ between f

and g is

f ↔ g := sup
λ∈R+

0

{
inf

µ∈R+
0

{µ : f(λ) ≤ g(λ + µ)}
}

(16)

With the event-based upper arrival curve α+
i and lower service curve β

−
i of task τi, we can

express the upper bound of the delay of task τi by means of the largest horizontal distance
between functions and is (cf. [26, p. 26, (2.11)])

α+
i ↔ β

−
i . (17)

However, we need the event-based lower service curve β
−
i for task τi. Given a task τi with its

corresponding arrival and service curves, then the remaining lower service curve is (cf. [26,
p. 23, (2.10) or p. 201, (A.15)])

β−
j (∆) = sup

0≤λ≤∆

{
β−

i (λ) − α+
i (λ)

}
or β−

j = (β−
i − α+

i)↗
. (18)

In the latter part of Equation (18) we apply an increasing operator, which is defined as

▶ Definition 15 (Increasing operator). Let F be the set of functions f : R+
0 → R and Ix the

interval [0, x] for a non-negative real number x, then the increasing operator ↗ : F → F is

f↗(x) := sup
ξ∈Ix

{f(ξ)} (19)

The increasing operator transforms a function f into an increasing function and it is a closure
operator.

ECRTS 2022

7:10 Response-Time Analysis vs. Real-Time Calculus

0 5 10 15 20
−5

0

5

10

15

(a) Plot of β−
1 − α+

1 .
0 5 10 15 20

−5

0

5

10

15

(b) Plot of β−
2 = (β−

1 − α+
1)↗.

Figure 4 The resource-based lower service curve β−
2 of task τ2 for the system described in

Examples 1 and 19 according to Equation (18) by applying the increasing operator.

▶ Remark 16. Let F be the set of functions f : R+
0 → R, then

f↗ is increasing (20)

Proof. Let Ix the interval [0, x] for a non-negative real number x, x1, x2 ∈ R+
0 with x1 ≤ x2,

then Ix1 ⊆ Ix2 , therefore f↗(x1) = supξ∈Ix1
{f(ξ)} ≤ supξ∈Ix2

{f(ξ)} = f↗(x2). ◀

▶ Remark 17 (Increasing closure). Let F be the set of functions f : R+
0 → R, then the increasing

operator ↗ : F → F is a closure operator on the partially ordered set (F, ≤), where ≤ is the
pointwise order on functions.

Proof. Let f, g ∈ F be functions and Ix the interval [0, x] for a non-negative real number x,
then
(a) f ≤ f↗: Because x is an element in Ix it follows that f(x) ≤ supξ∈Ix

{f(ξ)} = f↗(x).
(b) f ≤ g ⇒ f↗ ≤ g↗: Follows directly from Equation (19).
(c) f↗↗ = f↗: Follows from Equations (19) and (20), i.e. f↗↗(x) = supξ∈Ix

{
f↗(ξ)

}
=

f↗(x).
Because the increasing operator ↗ satisfies (a)–(c), it is a closure operator. ◀

For the case of fixed-priority preemptive scheduling the lower available service curve β−
i

is the lower remaining service curve of the next higher priority task τi−1. See Figure 4 that
shows the available service curve β−

2 of task τ2 or the lower remaining service curve of task τ1
for the system described in Examples 1 and 19. When i = 1 then the lower available service
curve of the highest priority task τ1 is equal to the lower available service curve to the entire
scheduler itself, i.e. β−

1 = β−.
Similarly to the horizontal distance between functions (Definition 14) we define the

vertical distance between functions.

▶ Definition 18 (Largest vertical distance of functions). Confer [10, p. 154, (3.20)]. Let
f, g : R+

0 → R+
0 be increasing functions, then the largest vertical distance ↕ between f and

g is

f ↕ g := sup
ξ∈R+

0

{f(ξ) − g(ξ)} = sup(f − g) (21)

V. Pollex and F. Slomka 7:11

α+
2

β
−
2

α+
2 ↔ β

−
2

0 5 10 15 20
0

1

2

3

4

Length of interval ∆

N
um

be
r

of
ev

en
ts

Figure 5 The event-based upper arrival curve α+
2 , the event-based lower service curve β

−
2 , and

the upper bound of the delay α+
2 ↔ β

−
2 for τ2 of the system described in Example 1.

▶ Example 19. Given the system in Example 1 we exemplarily derive the various functions
of the real-time calculus for it.

For task τ1 be event-based upper arrival curve is α+
1 (∆) =

⌈
∆+j1

p1

⌉
for ∆ > 0 and

α+
1 (∆) = 0 for ∆ = 0. Because task τ1 has the highest priority, the resource-based

lower service curve is β−
1 (∆) = ∆. Lastly, the upper workload curve is γ+

1 (q) = q · c+
1 .

Similarly, for task τ2 the event-based upper arrival curve is α+
2 (∆) =

⌈
∆+j2

p2

⌉
for ∆ > 0

and α+
2 (∆) = 0 for ∆ = 0. According to Equation (18) the resource-based lower service

curve is β−
2 (∆) = sup0≤λ≤∆

{
β−

1 (λ) − α+
1 (λ)

}
, see Figure 4b for a plot of β−

2 , and the upper
workload curve is γ+

2 (q) = q · c+
2 .

Figure 5 shows the event-based upper arrival curve α+
2 and the event-based lower service

curve β
−
2 of task τ2. From those we derive the upper bound of the delay α+

2 ↔ β
−
2 which is

12 − 4 = 8 time units.

4 Formal Comparison of the RTA with the RTC

In this section we formally compare the upper bound for the worst-case response-time,
Equation (9), that the response-time analysis uses with the upper bound for the delay,
Equation (17), that the real-time calculus uses. For a fair comparison we must ensure
identical initial conditions, therefore we make the following assumptions:
▶ Assumption 20. For mathematical reasons, every curve (α+

i , β−, and γ+) is increasing and
not bounded above, lower curves (β−) are right-continuous, and upper curves (α+

i and γ+)
are left-continuous.
For the event-based upper arrival curve α+

i this means that an interval of greater length
exists where at least as many events occur than in any interval of the same or smaller length
and if the system keeps running for all eternity, an infinite amount of events will occur.
▶ Assumption 21. Jobs of tasks do not starve, every job finishes after a finite amount of
time. For a set of n tasks, we express this by assuming that the available service for the
lowest priority task τn is not bounded above, i.e. for all r ∈ R+

0 a ∆ ∈ R+
0 exists such that

r < β−
n (∆).

This implies that the resource-based lower service curve β−
i for every task i ∈ {1, . . . , n} is

not bounded above.
▶ Assumption 22. The event load function and the event-based upper arrival curve for a task
τi are equal, i.e. η+

i = α+
i , because both model exactly the same.

ECRTS 2022

7:12 Response-Time Analysis vs. Real-Time Calculus

Examples for how to define the event load function for common event models are in [16,
p. 50] or in [26, p. 16, Ex. 1]. All those definitions satisfy Assumption 20.

▶ Assumption 23. An implicit assumption of the response-time analysis is that one unit
of processor time is available per time unit. Therefore, the lower bound of the available
resources that a fixed-priority preemptive scheduler has is β−(∆) = ∆, cf. [26, p. 20, Ex. 2].

The resource-based lower service curve β−(∆) = ∆ is not bounded above and is continuous.
Therefore, it is also right-continuous and thus satisfies Assumption 20.

▶ Assumption 24. Furthermore, the response-time analysis assumes that every job of a task
τi needs at most c+

i processor time to execute. So, we have for the upper workload curve
γ+

i (q) = q · c+
i .

This also satisfies Assumption 20.
Under Assumptions 20–24 we provide our main contribution, Theorem 31, a proof that

the upper bound for the worst-case response-time of the response-time analysis, Equation (9),
and the upper bound for the delay of the real-time calculus, Equation (17), are equal for
every task in a set of independent tasks as described in Section 3.1.

We divide the proof of Theorem 31 into several steps and begin by revisiting Figures 3b
and 5. These show the functions that the response-time analysis and the real-time calculus
use to model the system in Example 1. Both analyses calculate the same upper bound for
the worst-case response-time or delay. It appears that the functions in Figure 3b are the
pseudo-inverse of the functions in Figure 5. So, there seem to exist a relation between the
horizontal distance between functions, Equation (16), and the vertical distance between
functions, Equation (21). This turns out to be the case, Lemma 25. Next, we need to compare
the pseudo-inverse of the event-based upper arrival curve α+

i

−1 and the pseudo-inverse of the
event-based lower service curve β

−
i

−1
with the event distance function δ−

i and the multiple
event busy time function B+

i . The former is straight forward, Remark 26, however the
latter is more challenging. For that we need to determine what the pseudo-inverse of the
resource-based lower service curve β−

i

−1 is, Lemma 27. From it, we then have to derive the
pseudo-inverse of the event-based lower service curve β

−
i

−1
, Lemma 28. With that we can

compare the pseudo-inverse of the event-based lower service curve β
−
i

−1
with the multiple

event busy time function B+
i , Lemma 29. Lastly, we need to verify that the different domains

of the pseudo-inverse of the event-based lower service curve β
−
i

−1
and the multiple event

busy time function B+
i do not affect the comparison, Lemma 30. After all these steps we can

finally prove the equality of the upper bound of the worst-case response-time, Equation (9),
and the upper bound for the delay, Equation (17), in Theorem 31.

▶ Lemma 25. Let f, g : R+
0 → R+

0 be increasing functions that are not bounded above, then
the largest horizontal distance between f and g is equal to the largest vertical distance between
g−1 and f−1.

f ↔ g = g−1 ↕ f−1 (22)

Proof. f and g are both increasing, so we use the equality of Equation (52). Both functions
f and g are also not bounded above, therefore we use Equation (49), Definition 7, and
Definition 18.

f ↔ g
(52)= (g ⊘ f)−1(0) (49)= (g−1 ⊘ f−1)(0) (5a)= sup

ξ∈R+
0

{
g−1(ξ) − f−1(ξ)

} (21)= g−1 ↕ f−1 ◀

V. Pollex and F. Slomka 7:13

▶ Remark 26. Let Γ be a set of n independent tasks as described in Section 3.1 and let
Assumption 22 hold, then for any task τi of Γ the event distance function δ−

i is equal to the
pseudo-inverse of the event-based upper arrival curve α+

i

−1.

δ−
i = α+

i

−1 (23)

Proof. The minimum event distance function is equal to the pseudo-inverse of the upper event
load function Equation (8). And the upper event load function is equal to the event-based
upper service curve, Assumption 22.

δ−
i

(8)= η+
i

−1 = α+
i

−1
◀

▶ Lemma 27. Let Γ be a set of n independent tasks as described in Section 3.1 and let
Assumptions 20 and 21 hold, then the pseudo-inverse of the resource-based lower service
curve β−

i

−1 of task τi is

β−
i

−1(r) = min
∆∈R+

0

∆ : ∆ = β−−1

r +
i−1∑
j=1

α+
j (∆)

 (24)

Proof. Let fi(λ) := β−(λ) −
∑i−1

j=1 α+
j (λ) and gi,r(∆) := β−−1

(
r +

∑i−1
j=1 α+

j (∆)
)

.
(a) β− is upper semi-continuous: Follows from Assumption 20 and Lemma 36.
(b) α+

i is lower semi-continuous: Follows from Assumption 20 and Lemma 36.
(c) −α+

i is upper semi-continuous: Follows from (b) and Lemma 34.
(d) fi is upper semi-continuous: Follows from (a) and (c) and Lemma 35.
(e) β−

i (∆) = sup0≤λ≤∆ {fi(λ)}, the resource-based lower service curve of task τi is the
increasing closure of fi: Follows from Equation (50).

(f) fi is not bounded above: Let x be a non-negative real number and Ix be the interval [0, x].
Because fi is upper semi-continuous, (d), and I∆ is a compact set, then fi achieves its
maximum in I∆. Therefore, for every ∆ ∈ R+

0 a λ ∈ I∆ exists such that β−
i (∆) = fi(λ).

From Assumption 21 we have that β−
i is not bounded above, so for every r ∈ R+

0 there
exist a ∆ ∈ R+

0 and subsequently a λ ∈ R+
0 such that r < β−

i (∆) = fi(λ). Therefore, fi

is not bounded above.
(g) gi,r is increasing: Follows from Assumption 20 and Equation (42a) and that increasing

functions are closed under addition and composition.
(h) r ≤ fi(∆) ⇔ ∆ ≥ gi,r(∆): Follows from Assumption 20 and Equation (41)

r ≤ fi(∆) ⇔ r ≤ β−(∆) −
i−1∑
j=1

α+
j (∆) ⇔ β−(∆) ≥ r +

i−1∑
j=1

α+
j (∆)

(41)⇔ ∆ ≥ β−−1

r +
i−1∑
j=1

α+(∆)

 ⇔ ∆ ≥ gi,r(∆)

(i) gi,r has a smallest fix-point: fi is not bounded above, (f), so we have that for any r ∈ R+
0

a ∆ ∈ R+
0 exists such that

fi(∆) > r ⇔ β−(∆) −
i−1∑
j=1

α+
j (∆) > r ⇔ β−(∆) > r +

i−1∑
j=1

α+
j (∆)

ECRTS 2022

7:14 Response-Time Analysis vs. Real-Time Calculus

holds. This implies that β−(∆) ≥ r +
∑i−1

j=1 α+
j (∆). Because of Assumption 20, we

apply Equation (41), and we get ∆ ≥ β−−1
(

r +
∑i−1

j=1 α+
j (∆)

)
= gi,r(∆). Let I be

the closed interval [0, ∆] of real numbers, then I is a complete lattice. Because of (g)
and gi,r(∆) ≤ ∆, the restriction of gi,r to I maps to itself, i.e. gr(I) ⊆ I. Therefore,
according to Lemma 56, gr has a smallest fix-point in I.

Equation (24) follows from Equation (47), because of (d) and (e), (h), and (i).

β−
i

−1(r) (47)= fi
−1(r) (4a)=

(3b)
inf

∆∈R+
0

{∆ : r ≤ fi(∆)} (h)= inf
∆∈R+

0

{∆ : ∆ ≥ gi,r(∆)}

(i)= min
∆∈R+

0

{∆ : ∆ = gi,r(∆)} = min
∆∈R+

0

∆ : ∆ = β−−1

r +
i−1∑
j=1

α+(∆)

 ◀

▶ Lemma 28. Let Γ be a set of n independent tasks as described in Section 3.1 and let
Assumptions 20 and 21 hold, then the pseudo-inverse of the event-based lower service curve
β

−
i

−1
of task τi is

β
−
i

−1
(q) = min

∆∈R+
0

∆ : ∆ = β−−1

γ+
i (q) +

i−1∑
j=1

α+
j (∆)

 (25)

Proof. We expand the event-based lower service curve into the composition of the pseudo-
inverse of the upper workload curve and the resource-based lower service curve. The pseudo-
inverse of the upper workload curve is increasing, Equation (42b), and right-continuous, Equa-
tion (43b). So, we expand the pseudo-inverse of the composition according to Equation (45b).
The upper workload curve is increasing and left-continuous according to Assumption 20,
therefore the two pseudo-inverse operations cancel each other out, Equation (46a).

β
−
i

−1 (14)=
(

γ+
i

−1 ◦ β−
i

)−1
(45b)= β−

i

−1 ◦ γ+
i

−1−1 (46a)= β−
i

−1 ◦ γ+
i

We satisfy the antecedents of Lemma 27, and so we get

(β−
i

−1 ◦ γ+
i)(q) (24)= min

∆∈R+
0

∆ : ∆ = β−−1

γ+
i (q) +

i−1∑
j=1

α+
j (∆)

 ◀

▶ Lemma 29. Let Γ be a set of n independent tasks as described in Section 3.1 and let
Assumptions 20–24 hold, then for any task τi of Γ the multiple event busy time function B+

i

is equal of the pseudo-inverse of the event-based lower service curve β
−
i

−1

B+
i = β

−
i

−1
(26)

Proof. First we abbreviate some expressions. Let fi(q, ∆) := β−−1
(

γ+
i (q) +

∑i−1
j=1 α+

j (∆)
)

and gi(q, ∆) := q · c+
i +

∑i−1
j=1

(
η+

j (∆) · c+
j

)
.

(a) β
−
i

−1
(q) = min∆∈R+

0
{∆ : ∆ = fi(q, ∆)}: Follows from Lemma 28.

(b) β−−1(r) = r: Follows from Assumption 23 and Definition 5.

V. Pollex and F. Slomka 7:15

(c) fi(q, ∆) = gi(q, ∆): Follows from (b), Equation (15), Assumption 24, and Assumption 22

fi(q, ∆) = β−−1

γ+
i (q) +

i−1∑
j=1

α+
j (∆)

 (b)= γ+
i (q) +

i−1∑
j=1

α+
j (∆)

(15)= γ+
i (q) +

i−1∑
j=1

γ+
j

(
α+

j (∆)
)

= q · c+
i +

i−1∑
j=1

(
α+

j (∆) · c+
j

)
= q · c+

i +
i−1∑
j=1

(
η+

j (∆) · c+
j

)
= gi(q, ∆)

(d) B+
i (q) = min∆∈R+

0
{∆ : ∆ = gi(q, ∆)}: Follows from Equation (10).

Equation (26) follows directly from (a), (c), and (d)

β
−
i

−1
(q) (a)= min

∆∈R+
0

{∆ : ∆ = fi(q, ∆)} (c)= min
∆∈R+

0

{∆ : ∆ = gi(q, ∆)} (d)= B+
i (q) ◀

▶ Lemma 30. Let f : R+
0 → R+

0 and g : R+
0 → N0, then

max
n∈N0

{
f−1(n) − g−1(n)

}
= sup

r∈R+
0

{
f−1(r) − g−1(r)

}
(27)

Proof. Let h := f−1 − g−1,bX := supx∈X {h(x)}, r a non-negative real number and n := ⌈r⌉
a non-negative integer.
(a) bN0 ≤ bR+

0
: Follows from N0 being a subset of R+

0 .
(b) f−1(r) ≤ f−1(n): Follows from r ≤ n and Equation (42a).
(c) g−1(r) = g−1(n): Follows from Definitions 4 and 5 and because the co-domain of g are

the non-negative integers

g−1(r) = inf
x∈R+

0

{x : r ≤ g(x)} = inf
x∈R+

0

{x : ⌈r⌉ ≤ g(x)} = g−1(⌈r⌉) = g−1(n)

(d) h(r) ≤ h(n): Follows from (b) and (c)
(e) bR+

0
≤ bN0 : Follows because for every r ∈ R+

0 an n ∈ N0 exists such that h(r) ≤ h(n).
This Lemma follows from (a) and (e). ◀

▶ Theorem 31. Let Γ be a set of n independent tasks as described in Section 3.1 and let
Assumptions 20–24 hold, then for any task τi of Γ the upper bound for the worst-case response
time from the response-time analysis is equal to the upper bound for the delay from the
real-time calculus.

max
q∈N0

{
B+

i (q) − δ−
i (q)

}
= α+

i ↔ β
−
i (28)

Proof. First we substitute the multiple event busy time function B+
i with the pseudo-inverse

of the event-based lower service curve β
−
i

−1
, Lemma 29 and the event distance function δ−

i

with the pseudo-inverse of the event-based upper the arrival curve α+
i

−1, Remark 26.

max
q∈N0

{
B+

i (q) − δ−
i (q)

} (26)= max
q∈N0

{
β

−
i

−1
(q) − δ−

i (q)
}

(23)= max
q∈N0

{
β

−
i

−1
(q) − α+

i

−1(q)
}

ECRTS 2022

7:16 Response-Time Analysis vs. Real-Time Calculus

Next we interchange the maximum max with the supremum sup and change the set from
the non-negative integers N0 to the non-negative real numbers R+

0 (Lemma 30). This results
in the vertical distance between the pseudo-inverse of the event-based lower service curve
β

−
i

−1
and the pseudo-inverse of the event-based upper arrival curve α+

i

−1 by Definition 18:

max
q∈N0

{
β

−
i

−1
(q) − α+

i

−1(q)
}

(27)= sup
λ∈R+

0

{
β

−
i

−1
(λ) − α+

i

−1(λ)
}

(21)= β
−
i

−1
↕ α+

i

−1

Finally, we apply the equality between the vertical distance of the pseudo-inverse functions
and the horizontal distance between the functions, Lemma 25, so that we ultimately get
Equation (17), the upper bound for the delay.

β
−
i

−1
↕ α+

i

−1 (22)= α+
i ↔ β

−
i ◀

5 Summary

We looked into the existing analyses for real-time systems with a single processor that uses
the fixed-priority preemptive scheduling algorithm to process a set of independent tasks that
do not share any resources other than the processor. One is the response-time analysis that
Schliecker presents in [17] and the other is the real-time calculus that Wandeler describes
in [26]. Both use abstract event models and produce upper bounds on the amount of time
that the processor needs to complete the tasks. The existing empirical comparisons could
only give us indications as how these two analyses compare.

However, we can now give a definite answer. We gave a mathematical proof that both
analyses produce for the investigated type of systems identical upper bounds. So, from a
mathematical point of view both analyses are equivalent and regarding the results it does
not matter which analysis is used. However, a different criteria, like run-time complexity,
can favour one over the other.

References
1 Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings. Applying

new scheduling theory to static priority pre-emptive scheduling. Software Engineering Journal,
8(5):284–292, September 1993. doi:10.1049/sej.1993.0034.

2 Neil C. Audsley, Alan Burns, Robert I. Davis, Ken W. Tindell, and Andy J. Wellings. Fixed
Priority Pre-emptive Scheduling: An Historical Perspective. Real Time Systems, 8(2-3):173–198,
March 1995. doi:10.1007/BF01094342.

3 Marc Boyer and Pierre Roux. A common framework embedding network calculus and event
stream theory. Technical report, ONERA - The french aerospace lab, May 2016. Preprint.
URL: https://hal.archives-ouvertes.fr/hal-01311502.

4 Marc Boyer and Pierre Roux. Embedding network calculus and event stream theory in a
common model. In 21st IEEE International Conference on Emerging Technologies and Factory
Automation, ETFA 2016, Berlin, Germany, September 6-9, 2016, pages 1–8. IEEE, 2016.
doi:10.1109/ETFA.2016.7733565.

5 Samarjit Chakraborty, Simon Künzli, and Lothar Thiele. A General Framework for Analysing
System Properties in Platform-Based Embedded System Designs. In 2003 Design, Automation
and Test in Europe Conference and Exposition (DATE 2003), 3-7 March 2003, Munich,
Germany, pages 10190–10195. IEEE Computer Society, 2003. doi:10.1109/DATE.2003.10083.

6 Rene L. Cruz. A Calculus for Network Delay, Part I: Network Elements in Isolation. IEEE
Transactions on Information Theory, 37(1):114–131, January 1991. doi:10.1109/18.61109.

https://doi.org/10.1049/sej.1993.0034
https://doi.org/10.1007/BF01094342
https://hal.archives-ouvertes.fr/hal-01311502
https://doi.org/10.1109/ETFA.2016.7733565
https://doi.org/10.1109/DATE.2003.10083
https://doi.org/10.1109/18.61109

V. Pollex and F. Slomka 7:17

7 Rene L. Cruz. A Calculus for Network Delay, Part II: Network Analysis. IEEE Transactions
on Information Theory, 37(1):132–141, January 1991. doi:10.1109/18.61110.

8 Markus Fidler. A Survey of Deterministic and Stochastic Service Curve Models in the
Network Calculus. IEEE Communications Surveys & Tutorials, 12(1):59–86, 2010. doi:
10.1109/SURV.2010.020110.00019.

9 Mathai Joseph and Paritosh Pandya. Finding Response Times in a Real-Time System. The
Computer Journal, 29(5):390–395, January 1986. doi:10.1093/comjnl/29.5.390.

10 Jean-Yves Le Boudec and Patrick Thiran. Network Calculus: A Theory of Deterministic
Queuing Systems for the Internet, volume 2050 of Lecture Notes in Computer Science. Springer,
2001. doi:10.1007/3-540-45318-0.

11 John P. Lehoczky. Fixed Priority Scheduling of Periodic Task Sets with Arbitrary Deadlines.
In Proceedings of the Real-Time Systems Symposium - 1990, Lake Buena Vista, Florida, USA,
December 1990, pages 201–209. IEEE Computer Society, December 1990. doi:10.1109/REAL.
1990.128748.

12 C. L. Liu and James W. Layland. Scheduling Algorithms for Multiprogramming in a Hard-
Real-Time Environment. Journal of the ACM, 20(1):46–61, January 1973. doi:10.1145/
321738.321743.

13 Martin Naedele, Lothar Thiele, and Michael Eisenring. Characterizing Variable Task
Releases and Processor Capacities. Technical report, ETH Zürich, 1999. doi:10.3929/
ethz-a-004289034.

14 Simon Perathoner, Ernesto Wandeler, Lothar Thiele, Arne Hamann, Simon Schliecker, Rafik
Henia, Razvan Racu, Rolf Ernst, and Michael González Harbour. Influence of Different System
Abstractions on the Performance Analysis of Distributed Real-Time Systems. In Christoph M.
Kirsch and Reinhard Wilhelm, editors, Proceedings of the 7th ACM & IEEE International
conference on Embedded software, EMSOFT 2007, September 30 - October 3, 2007, Salzburg,
Austria, pages 193–202. ACM, 2007. doi:10.1145/1289927.1289959.

15 Victor Pollex, Steffen Kollmann, and Frank Slomka. Generalizing Response-Time Analysis. In
16th IEEE International Conference on Embedded and Real-Time Computing Systems and
Applications, RTCSA 2010, Macau, SAR, China, 23-25 August 2010, pages 203–211. IEEE
Computer Society, 2010. doi:10.1109/RTCSA.2010.36.

16 Kai Richter. Compositional Scheduling Analysis Using Standard Event Models. PhD
thesis, Technical University Carolo-Wilhemina of Braunschweig, 2005. doi:10.24355/dbbs.
084-200511080100-362.

17 Simon Schliecker. Performance Analysis of Multiprocessor Real-Time Systems with Shared
Resources. PhD thesis, Technical University Carolo-Wilhemina of Braunschweig, 2011. doi:
10.24355/dbbs.084-201111210932-0.

18 Simon Schliecker, Jonas Rox, Matthias Ivers, and Rolf Ernst. Providing Accurate Event Models
for the Analysis of Heterogeneous Multiprocessor Systems. In Catherine H. Gebotys and
Grant Martin, editors, Proceedings of the 6th International Conference on Hardware/Software
Codesign and System Synthesis, CODES+ISSS 2008, Atlanta, GA, USA, October 19-24, 2008,
pages 185–190. ACM, 2008. doi:10.1145/1450135.1450177.

19 Frank Slomka and Mohammadreza Sadeghi. HeRTA: Heaviside Real-Time Analysis, 2020.
Preprint. doi:10.48550/arXiv.2007.12112.

20 Frank Slomka and Mohammadreza Sadeghi. Beyond the limitations of real-time scheduling
theory: a unified scheduling theory for the analysis of real-time systems. SICS Software-
Intensive Cyber Physical Systems, 35(3-4):201–236, 2021. doi:10.1007/s00450-021-00429-1.

21 Frank Slomka and Mohammadreza Sadeghi. Work-in-Progress Abstract: On the relationship
between scheduling theory and real-time calculus. In 27th IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications, RTCSA 2021, Houston, TX,
USA, August 18-20, 2021, pages 195–197. IEEE, 2021. doi:10.1109/RTCSA52859.2021.00030.

22 Alfred Tarski. A lattice-theoretical fixpoint theorem and its applications. Pacific Journal of
Mathematics, 5(2):285–309, 1955. doi:10.2140/pjm.1955.5.285.

ECRTS 2022

https://doi.org/10.1109/18.61110
https://doi.org/10.1109/SURV.2010.020110.00019
https://doi.org/10.1109/SURV.2010.020110.00019
https://doi.org/10.1093/comjnl/29.5.390
https://doi.org/10.1007/3-540-45318-0
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1109/REAL.1990.128748
https://doi.org/10.1145/321738.321743
https://doi.org/10.1145/321738.321743
https://doi.org/10.3929/ethz-a-004289034
https://doi.org/10.3929/ethz-a-004289034
https://doi.org/10.1145/1289927.1289959
https://doi.org/10.1109/RTCSA.2010.36
https://doi.org/10.24355/dbbs.084-200511080100-362
https://doi.org/10.24355/dbbs.084-200511080100-362
https://doi.org/10.24355/dbbs.084-201111210932-0
https://doi.org/10.24355/dbbs.084-201111210932-0
https://doi.org/10.1145/1450135.1450177
https://doi.org/10.48550/arXiv.2007.12112
https://doi.org/10.1007/s00450-021-00429-1
https://doi.org/10.1109/RTCSA52859.2021.00030
https://doi.org/10.2140/pjm.1955.5.285

7:18 Response-Time Analysis vs. Real-Time Calculus

23 Lothar Thiele, Samarjit Chakraborty, and Martin Naedele. Real-time calculus for scheduling
hard real-time systems. In IEEE International Symposium on Circuits and Systems, ISCAS
2000, Emerging Technologies for the 21st Century, Geneva, Switzerland, 28-31 May 2000,
Proceedings, pages 101–104. IEEE, 2000. doi:10.1109/ISCAS.2000.858698.

24 Ken Tindell and John Clark. Holistic schedulability analysis for distributed hard real-time
systems. Microprocessing and Microprogramming, 40(2-3):117–134, April 1994. doi:10.1016/
0165-6074(94)90080-9.

25 Ken W. Tindell, Alan Burns, and Andy J. Wellings. An Extendible Approach for Analyzing
Fixed Priority Hard Real-Time Tasks. Real-Time Systems, 6(2):133–151, March 1994. doi:
10.1007/BF01088593.

26 Ernesto Wandeler. Modular Performance Analysis and Interface-Based Design for Embedded
Real-Time Systems. PhD thesis, Swiss Federal Institute of Technology Zurich, 2006. doi:
10.3929/ethz-a-005328667.

A Properties of Semi-Continuous Functions

▶ Definition 32 (Lower and Upper Limit). Let f : X → R be a function from a subset X of
the real numbers, then the lower respectively upper limit of f at an accumulation point x for
X is

lim inf
ξ→x

f(ξ) := sup
r>0

inf
ξ∈X

{f(ξ) : 0 < |ξ − x| < r} respectively (29a)

lim sup
ξ→x

f(ξ) := inf
r>0

sup
ξ∈X

{f(ξ) : 0 < |ξ − x| < r} . (29b)

Note that in Definition 32 the domain X of f has no further restrictions. In particular X

does not have to be dense.

▶ Definition 33 (Semi-Continuity). Let f : X → R be a function from a subset X of the real
numbers to the extended real numbers, then f is lower respectively upper semi-continuous at
x ∈ X if

f(x) ≤ lim inf
ξ→x

f(ξ) respectively (30a)

f(x) ≥ lim sup
ξ→x

f(ξ). (30b)

If f is lower respectively upper semi-continuous at every element x ∈ X, then we call f a
lower respectively upper semi-continuous function.

▶ Lemma 34 (Duality of Semi-Continuity). Let f : X → R be a function from a subset X of
the real numbers to the extended real numbers, then

f is lower semi-continuous ⇔ −f is upper semi-continuous (31)

Proof. Let x be an element of X, then it follows from Definition 33, i.e.

f(x) ≤ lim inf
ξ→x

f(ξ) ⇔ −f(x) ≥ − lim inf
ξ→x

f(ξ) ⇔ −f(x) ≥ lim sup
ξ→x

−f(ξ) ◀

▶ Lemma 35 (Semi-Continuous Functions are Closed under Addition). Let f, g : X → R be
lower respectively upper semi-continuous functions from a subset X of the real numbers to the
extended real numbers, then f + g is lower respectively upper semi-continuous, if no x ∈ X

exists such that f(x) + g(x) is of the type −∞ + ∞.

https://doi.org/10.1109/ISCAS.2000.858698
https://doi.org/10.1016/0165-6074(94)90080-9
https://doi.org/10.1016/0165-6074(94)90080-9
https://doi.org/10.1007/BF01088593
https://doi.org/10.1007/BF01088593
https://doi.org/10.3929/ethz-a-005328667
https://doi.org/10.3929/ethz-a-005328667

V. Pollex and F. Slomka 7:19

Proof. Let x be an element of X, then if follows from Definition 33, i.e.

f(x) + g(x) ≤ lim inf
ξ→x

f(x) + lim inf
ξ→x

g(x) ≤ lim inf
ξ→x

f(x) + g(x) respectively

f(x) + g(x) ≥ lim sup
ξ→x

f(x) + lim sup
ξ→x

g(x) ≥ lim sup
ξ→x

f(x) + g(x). ◀

▶ Lemma 36. Let f : I → R be an increasing function from an interval I of the real numbers,
then

f is lower semi-continuous if f is left-continuous (32a)
f is upper semi-continuous if f is right-continuous (32b)

Proof. Let x ∈ I and f be left-continuous respectively right-continuous, then

lim inf
ξ→x

f(ξ) = sup
r>0

inf
ξ∈I

{f(ξ) : 0 < |ξ − x| < r} ≥ sup
r>0

f(x − r) = f(x)

lim sup
ξ→x

f(ξ) = inf
r>0

sup
ξ∈I

{f(ξ) : 0 < |ξ − x| < r} ≤ inf
r>0

f(x + r) = f(x) ◀

B Properties of Pseudo-Inverses

▶ Lemma 37. Confer [3, Proposition 6, (6) and (7)]. Let f : X → Y be a mapping from a
subset X of a complete lattice L to a partially ordered set Y , then for an element x ∈ X and
an element y ∈ Y

y ≤ f(x) ⇒ f−1(y) ≤ x and (33a)

f(x) ≤ y ⇒ x ≤ f−1(y). (33b)

Proof of (33a). Let y ≤ f(x), then x ∈ Xy≤f , therefore f−1(y) = inf Xy≤f ≤ x. ◀

Proof of (33b). Let f(x) ≤ y, then x ∈ Xf≤y, therefore x ≤ sup Xf≤y = f−1(y). ◀

▶ Lemma 38. Confer [3, Proposition 6, (14) and (12)]. Let f : X → Y be a mapping from
a subset X of a complete lattice L to a totally ordered set Y , then for an element x ∈ X and
an element y ∈ Y

x < f−1(y) ⇒ f(x) < y and (34a)

f−1(y) < x ⇒ y < f(x). (34b)

Proof of (34a). Let x < f−1(y), then the partial order of X implies that ¬(f−1(y) ≤ x).
We can then apply Equation (33a) whose contraposition implies ¬(y ≤ f(x)). The total
order of Y then implies f(x) < y. ◀

Proof of (34b). Let f−1(y) < x, then the partial order of X implies that ¬(x ≤ f−1(y)).
We can then apply Equation (33b) whose contraposition implies ¬(f(x) ≤ y). The total
order of Y then implies y < f(x). ◀

▶ Lemma 39. Confer [3, Proposition 6, (8), (9), and (10)]. Let f : X → Y be an isotone
mapping from a totally ordered subset X of a complete lattice L to a partially ordered set Y ,
then for an element x ∈ X and an element y ∈ Y

f(x) < y ⇒ x ≤ f−1(y) and (35a)

y < f(x) ⇒ f−1(y) ≤ x. (35b)

f−1(y) < x ⇒ y ≤ f(x) (36)

ECRTS 2022

7:20 Response-Time Analysis vs. Real-Time Calculus

Proof of (35a). Let f(x) < y and let ξ be an element of Xy≤f , then we have f(x) < y ≤ f(ξ).
This implies x < ξ, because f is isotone and X is totally ordered. Therefore, x is a lower
bound of Xy≤f , so x ≤ inf Xy≤f = f−1(y). ◀

Proof of (35b). Let y < f(x) and let ξ be an element of Xf≤y, then we have f(ξ) ≤ y < f(x).
This implies ξ < x, because f is isotone and X is totally ordered. Therefore, x is an upper
bound of Xf≤y, so f−1(y) = sup Xf≤y ≤ x. ◀

Proof of (36). Let f−1(y) < x, the infimum of Xy≤f is less than x. Then a ξ ∈ Xy≤f must
exist such that f−1(y) ≤ ξ < x, due to how the infimum is defined and because X is a totally
ordered set. On the one hand from ξ ∈ Xy≤f follows that y ≤ f(ξ), on the other hand from
ξ < x follows f(ξ) ≤ f(x), because f is isotone, subsequently y ≤ f(x) holds. ◀

▶ Lemma 40. Let f : R+
0 → R+

0 be a function that is not bounded above, then the image of
f−1 is a subset of the non-negative real numbers.

f−1(R+
0) ⊆ R+

0 , (37)

Proof. Let R+
0 ∪ {∞} be the complete lattice of which R+

0 is a subset of and let y be in R+
0 .

Since f is not bounded above, a non-negative real number x exists (x ∈ R+
0) that satisfies

y < f(x).
On the one hand y < f(x) implies f−1(y) ≤ x according to (33a). On the other hand

the relation R+
0 ⊇ Xy≤f implies 0 = inf R+

0 ≤ inf Xy≤f = f−1(y). Therefore f−1(y) is a
non-negative real number. ◀

▶ Lemma 41. Confer [3, Proposition 6, (17), and (18)]. Let f : X → R be an increasing
and left-continuous function from a subset X of the real numbers R, then for an element
x ∈ X and an element y ∈ R

y < f(x) ⇒ f−1(y) < x (38a)

x ≤ f−1(y) ⇒ f(x) ≤ y (38b)

Proof. Let y < f(x). Because f is left-continuous a δ > 0 exists for ε = f(x)−y > 0 such that
|f(x)−f(ξ1)| < ε holds for any ξ1 ∈ X where x− δ < ξ1 < x. From |f(x)−f(ξ1)| < f(x)−y

it follows that y < f(ξ1). Let ξ2 be an element of Xf≤y, hence f(ξ2) ≤ y < f(ξ1) holds. Since
f is increasing and X is totally ordered it follows that ξ2 < ξ1, therefore ξ1 is an upper bound
of Xf≤y. So sup Xf≤y = f−1(y) ≤ ξ1 < x. The contraposition x ≤ f−1(y) ⇒ f(x) ≤ y

follows directly. ◀

▶ Lemma 42. Confer [3, Proposition 6, (15), and (16)]. Let f : X → R be an increasing
and right-continuous function from a subset X of the real numbers R, then for an element
x ∈ X and an element y ∈ R

f(x) < y ⇒ x < f−1(y) (39a)
f−1(y) ≤ x ⇒ y ≤ f(x) (39b)

Proof. Let f(x) < y. Because f is right-continuous a δ > 0 exists for ε = y − f(x) >

0 such that |f(ξ1) − f(x)| < ε holds for any ξ1 ∈ X where x < ξ1 < x + δ. From
|f(ξ1) − f(x)| < y − f(x) it follows that f(ξ1) < y. Let ξ2 be an element of Xy≤f , hence
f(ξ1) < y ≤ f(ξ2) holds. Since f is increasing and X is totally ordered it follows that ξ1 < ξ2,
therefore ξ1 is a lower bound of Xy≤f . So x < ξ1 ≤ f−1(y) = inf Xy≤f . The contraposition
f−1(y) ≤ x ⇒ y ≤ f(x) follows directly. ◀

V. Pollex and F. Slomka 7:21

▶ Lemma 43. Let f : X → R be an increasing and left-continuous functions from a subset
X of the real numbers R, then for an element x ∈ X and an element y ∈ R

f(x) ≤ y ⇔ x ≤ f−1(y) (40)

Proof. Follows directly from Equations (33b) and (38b).

f(x) ≤ y
(33b)⇒ x ≤ f−1(y) (38b)⇒ f(x) ≤ y ◀

▶ Lemma 44. Let f : X → R be an increasing and right-continuous function from a subset
X of the real numbers R, then for an element x ∈ X and an element y ∈ R

y ≤ f(x) ⇔ f−1(y) ≤ x (41)

Proof. Follows directly from Equations (33a) and (39b).

y ≤ f(x) (33a)⇒ f−1(y) ≤ x
(39b)⇒ y ≤ f(x) ◀

▶ Lemma 45 (Isotone pseudo-inverse). Confer [3, Proposition 3]. Let f : X → Y be a
mapping from a subset X of a complete lattice L to a partially ordered set Y , then

f−1 is isotone (42a)

f−1 is isotone (42b)

Proof of (42a). Confer [10, p. 131, Theorem 3.1.2]. Let y1 and y2 be elements of Y with
y1 ≤ y2 and let x be an element of Xy2≤f . Then, we have f(x) ≥ y2 ≥ y1, so x is
also an element of Xy1≤f . Therefore Xy1≤f is a superset of Xy2≤f and subsequently
f−1(y1) = inf Xy1≤f ≤ inf Xy2≤f = f−1(y2). ◀

Proof of (42b). Let y1 and y2 be elements of Y with y1 ≤ y2 and let x be an element of
Xf≤y1 . Then, we have f(x) ≤ y1 ≤ y2, so x is also an element of Xf≤y2 . Therefore Xf≤y1 is
a subset of Xf≤y2 and subsequently f−1(y1) = sup Xf≤y1 ≤ sup Xf≤y2 = f−1(y2). ◀

▶ Lemma 46 (Directional continuity of pseudo-inverse). Confer [3, Proposition 5]. Let
f : I → R be an increasing function from an interval I of the real numbers R, then

f−1 is left-continuous (43a)

f−1 is right-continuous (43b)

Proof of (43a). Let y be a real number and ε > 0.

Case f−1(y) − ε < inf I. For any δ > 0 and for any υ ∈ (y − δ, y) we have f−1(y) − ε <

inf I ≤ f−1(υ). Therefore, we get f−1(y) − f−1(υ) < ε.

Case inf I ≤ f−1(y) − ε. Note that f−1(y) − ε < f−1(y) ≤ sup I. Because I is an
interval of the real numbers, a real number ξ ∈ I exists such that f−1(y) − ε < ξ < f−1(y).
By applying Equation (34a) ξ < f−1(y) implies f(ξ) < y. Let δ := y − f(ξ), then for all
υ ∈ R∩ (y − δ, y) we have y − δ = f(ξ) < υ. Through Equation (35a) this implies ξ ≤ f−1(υ).
So, together with f−1(y) − ε < ξ we get f−1(y) − f−1(υ) < ε. ◀

ECRTS 2022

7:22 Response-Time Analysis vs. Real-Time Calculus

Proof of (43b). Let y be a real number and ε > 0.

Case sup I < f−1(y) + ε. For any δ > 0 and for any υ ∈ (y, y + δ) we have f−1(υ) ≤
sup I < f−1(y) + ε. Therefore, we get f−1(υ) − f−1(y) < ε.

Case f−1(y) + ε ≤ sup I. Note that inf I ≤ f−1(y) < f−1(y) + ε. Because I is an
interval of the real numbers, a real number ξ ∈ I exists such that f−1(y) < ξ < f−1(y) + ε.
By applying Equation (34b) f−1(y) < ξ implies y < f(ξ). Let δ := f(ξ) − y, then for all
υ ∈ R∩ (y, y + δ) we have υ < f(ξ) = y + δ. Through Equation (35b) this implies f−1(υ) ≤ ξ.
So, together with ξ < f−1(y) + ε we get f−1(υ) − f−1(y) < ε. ◀

▶ Lemma 47 (Pseudo-inverse operator is antitone). Let f : X → Y and g : X → Y be mappings
from a subset X of a complete lattice L to a partially order set Y , then

f ≤ g ⇒ f−1 ≥ g−1 (44a)

f ≤ g ⇒ f−1 ≥ g−1 (44b)

Proof of (44a). Let f ≤ g, y an element of Y , and x an element of Xy≤f , then y ≤ f(x) ≤
g(x), so Xy≤f ⊆ Xy≤g, and subsequently f−1(y) = inf Xy≤f ≥ inf Xy≤g = g−1(y). ◀

Proof of (44b). Let f ≤ g, y and element of Y , and x an element of Xg≤y, then y ≥ g(x) ≥
f(x), so Xg≤y ⊆ Xf≤y, and subsequently f−1(y) = sup Xf≤y ≥ sup Xg≤y = g−1(y). ◀

▶ Lemma 48 (Pseudo-inverse of a composition). Confer [3, Proposition 6, (25) and (24)].
Let f : X → Y be a function from a subset X of a complete lattice L to a subset Y of the
real numbers and let g : Y → R be an increasing function, then

(g ◦ f)−1 = (f−1 ◦ g−1) if g is left-continuous (45a)
(g ◦ f)−1 = (f−1 ◦ g−1) if g is right-continuous (45b)

Proof of (45a). Let z be a real number and let g be left-continuous, then we can apply
Equation (40) and we get

(g ◦ f)−1(z) (4b)= sup
x∈X

{x : g(f(x)) ≤ z} (40)= sup
x∈X

{
x : f(x) ≤ g−1(z)

} (4b)= (f−1 ◦ g−1)(z) ◀

Proof of (45b). Let z be a real number and let g be right-continuous, then we can apply
Equation (41) and we get

(g ◦ f)−1(z) (4a)= inf
x∈X

{x : z ≤ g(f(x))} (41)= inf
x∈X

{
x : g−1(z) ≤ f(x)

} (4a)= (f−1 ◦ g−1)(z) ◀

▶ Lemma 49 (The Pseudo-Inverse Operators are inverse to each other). Let f : X → R be an
increasing function from a subset X of R, then

f−1−1
= f if f is left-continuous (46a)

f−1−1 = f if f is right-continuous (46b)

Proof of (46a). Let x be an element of X and let f be left-continuous, then we can apply
Equation (40) and we get

f−1−1
(x) (4a)= inf X

x≤f−1
(3b)= inf

y∈R

{
y : x ≤ f−1(y)

} (40)= inf
y∈R

{y : f(x) ≤ y} = f(x) ◀

V. Pollex and F. Slomka 7:23

Proof of (46b). Let x be an element of X and let f be right-continuous, then we can apply
Equation (41) and we get

f−1−1(x) (4b)= sup Xf
−1≤x

(3a)= sup
y∈R

{
y : f−1(y) ≤ x

} (41)= sup
y∈R

{y : y ≤ f(x)} = f(x) ◀

▶ Lemma 50. Let f : R+
0 → R+

0 be an upper semi-continuous function and g := f↗ be the
increasing closure of f , then

f−1 = g−1 (47)

Proof. Let x be a non-negative real number and let Ix be the interval [0, x], then
(a) f ≤ g: Follows directly from g being the increasing closure of f , Remark 17.
(b) f−1 ≤ g−1: f is upper semi-continuous, Ix is a compact set, therefore f achieves its

maximum in Ix and an element x0 ∈ Ix with x0 ≤ x exists where f(x0) = g(x).
Let y be a non-negative real number. Then, for every element x ∈ Xy≤g there exists a
x0 ≤ x where y ≤ g(x) = f(x0). Therefore, x0 is an element of Xy≤f and subsequently
f−1(y) = inf Xy≤f ≤ inf Xy≤g = g−1(y).

(c) f−1 ≥ g−1: Follows from (a) and (44a).
Equation (47) follows from (b) and (c). ◀

C Properties of Deconvolution

▶ Lemma 51 (Monotonicity of Deconvolution). Let f : R+
0 → R+

0 be an increasing function
and g : R+

0 → R+
0 a function, then

(f ⊘ g) is increasing (48)

Proof. Let x1 and x2 be non-negative real numbers (x1, x2 ∈ R+
0) such that x1 ≤ x2.

From x1 ≤ x2 follows that x1 + ξ ≤ x2 + ξ holds for every ξ ∈ R+
0 and subsequently

f(x1 + ξ) ≤ f(x2 + ξ), since f is increasing. Furthermore f(x1 + ξ) − g(ξ) ≤ f(x2 + ξ) − g(ξ)
holds for every ξ ∈ R+

0 , therefore

(f ⊘ g)(x1) = inf
ξ∈R+

0

{f(x1 + ξ) − g(ξ)} ≤ inf
ξ∈R+

0

{f(x2 + ξ) − g(ξ)} = (f ⊘ g)(x2) ◀

▶ Theorem 52. Let f, g : R+
0 → R+

0 be increasing functions that are not bounded above, then

(f ⊘ g)−1 = (f−1 ⊘ g−1) (49)

Proof. Let y ∈ R+
0 be a non-negative real number.

(a) f−1(R+
0) ⊆ R+

0 : Follows from f being not bounded above and Equation (37).
(b) g−1(R+

0) ⊆ R+
0 : Follows from g being not bounded above and Equation (37).

i.e. the images of f−1 and g−1 are subsets of the non-negative real numbers, therefore
(f−1 ⊘ g−1) is well-defined.

Part 1 shows that (f ⊘ g)−1 ≤ (f−1 ⊘ g−1):
Let x be a non-negative real number such that x < (f ⊘ g)−1(y). According to (34a)
this implies (f ⊘ g)(x) < y and due to (5b) a non-negative real number ξ exists that
satisfies f(x + ξ) − g(ξ) < y. Furthermore a non-negative real number υ exists such that
f(x + ξ) − y < υ ≤ g(ξ), because g(ξ) is a non-negative real number.

ECRTS 2022

7:24 Response-Time Analysis vs. Real-Time Calculus

On the one hand f is increasing, therefore f(x + ξ) < y + υ implies x + ξ ≤ f−1(y + υ)
according to (35a), so x ≤ f−1(y + υ) − ξ. On the other hand υ ≤ g(ξ) implies g−1(υ) ≤ ξ

according to (33a). This results altogether in x+g−1(υ) ≤ f−1(y+υ)−ξ+g−1(υ) ≤ f−1(y+υ)
and due to (a) and (b) ultimately in x ≤ f−1(y + υ) − g−1(υ) ≤ supλ∈R+

0
{f−1(y + λ) −

g−1(λ)} = (f−1 ⊘ g−1)(y).
In conclusion, the set Xl,y :=

{
x ∈ R+

0 : x < (f ⊘ g)−1(y)
}

is a subset of the set Xr,y :={
x ∈ R+

0 : x ≤ (f−1 ⊘ g−1)(y)
}

. Since (f ⊘ g)−1(y) = sup Xl,y and sup Xr,y = (f−1 ⊘
g−1)(y) this implies (f ⊘ g)−1(y) ≤ (f−1 ⊘g−1)(y).Furthermore y is chosen arbitrarily, hence
(f ⊘ g)−1 ≤ (f−1 ⊘ g−1).

Part 2 shows that (f ⊘ g)−1 ≥ (f−1 ⊘ g−1):
Let x be a non-negative real number that satisfies x < (f−1 ⊘ g−1)(y). Due to (5a) a non-
negative real number υ exists such that x < f−1(y +υ)−g−1(υ). Furthermore a non-negative
real number ξ exists that satisfies g−1(υ) < ξ < f−1(y + υ) − x due to (a) and (b).

On the one hand x + ξ < f−1(y + υ) implies f(x + ξ) < y + υ according to (34a). On
the other hand g is increasing, therefore g−1(υ) < ξ implies υ ≤ g(ξ) according to (36). This
results altogether in f(x+ ξ) < y +g(ξ) and thus (f ⊘g)(x) ≤ f(x+ ξ)−g(ξ) < y. Because f

is increasing, so is (f ⊘ g) according to (48), therefore (f ⊘ g)(x) < y implies x ≤ (f ⊘ g)−1(y)
according to (35a).

In conclusion the set Xr,y :=
{

x ∈ R+
0 : x < (f−1 ⊘ g−1)(y)

}
is a subset of the set

Xl,y :=
{

x ∈ R+
0 : x ≤ (f ⊘ g)−1(y)

}
. Since (f ⊘ g)−1(y) = sup Xl,y and sup Xr,y = (f−1 ⊘

g−1)(y) this implies (f ⊘ g)−1(y) ≥ (f−1 ⊘g−1)(y).Furthermore y is chosen arbitrarily, hence
(f ⊘ g)−1 ≥ (f−1 ⊘ g−1).

Combining both parts yields the desired equality (f ⊘ g)−1 = (f−1 ⊘ g−1). ◀

D Other Properties

▶ Lemma 53. Confer [15, Lemma 1]. Let Γ be a set of n independent tasks as described in
Section 3.1 and let Assumption 20 hold, then the resource-based lower service curve β−

i of
task τi is

β−
i (∆) = sup

0≤λ≤∆

β−(λ) −
i−1∑
j=1

α+
j (λ)

 (50)

Proof. See [15, Lemma 1]. ◀

▶ Lemma 54. Confer [10, p. 154]1. Let f, g : R+
0 → R+

0 be increasing functions, then

f ↔ g = inf
µ∈R+

0

{
µ : ∀λ ∈ R+

0 , f(λ) ≤ g(λ + µ)
}

(51)

Proof. Let Aλ :=
{

µ ∈ R+
0 : f(λ) ≤ g(λ + µ)

}
, d(λ) := inf Aλ, and B :=

⋂
λ∈R+

0
Aλ, then

f ↔ g = supλ∈R+
0

{d(λ)} and infµ∈R+
0

{
µ : ∀λ ∈ R+

0 , f(λ) ≤ g(λ + µ)
}

= inf B.

1 Le Boudec and Thiran textually state Equation (51) in [10, p. 154] without proof and mistakenly refer
to the vertical deviation [10, p. 154, (3.20)] and not the horizontal deviation [10, p. 154, (3.21)].

V. Pollex and F. Slomka 7:25

Case 1. The set Aλ is empty for some λ ∈ R+
0 .

(a) f ↔ g = ∞: For that λ ∈ R+
0 we have d(λ) = inf Aλ = inf ∅ = ∞, therefore f ↔ g =

supλ∈R+
0

{d(λ)} = ∞.
(b) infµ∈R+

0

{
µ : ∀λ ∈ R+

0 , f(λ) ≤ g(λ + µ)
}

= ∞: Because there is a λ ∈ R+
0 where Aλ is

the empty set, the set B =
⋂

λ∈R+
0

Aλ = ∅ is also empty. Therefore,

inf
µ∈R+

0

{
µ : ∀λ ∈ R+

0 , f(λ) ≤ g(λ + µ)
}

= inf B = inf ∅ = ∞.

Case 2. The set Aλ is not empty for every λ ∈ R+
0 .

(c) Aλ is an interval with sup Aλ = ∞: Follows directly from g being increasing, i.e. let
λ ∈ R+

0 and µ ∈ Aλ, then for any ξ ∈ R+
0 such that ξ ≥ µ we have g(λ + ξ) ≥ g(λ + µ),

therefore ξ ∈ Aλ and sup Aλ = ∞.
(d) B is an interval: Follows directly from (c), an intersection of intervals is an interval.
(e) µ ∈ B ⇒ f ↔ g ≤ µ: µ ∈ B ⇒ ∀λ ∈ R+

0 : µ ∈ Aλ ⇒ ∀λ ∈ R+
0 : d(λ) ≤ µ ⇒

supλ∈R+
0

{d(λ)} ≤ µ ⇒ f ↔ g ≤ µ

(f) µ /∈ B ⇒ µ ≤ f ↔ g: µ /∈ B ⇒ ∃λ ∈ R+
0 : µ /∈ Aλ ⇒ ∃λ ∈ R+

0 : µ ≤ d(λ) ≤
supλ∈R+

0
{d(λ)} = f ↔ g

Equation (51) follows from (d)–(f), i.e.

f ↔ g = inf B = inf
µ∈R+

0

{
µ : ∀λ ∈ R+

0 , f(λ) ≤ g(λ + µ)
}

◀

▶ Lemma 55. Let f, g : R+
0 → R+

0 be increasing functions, then the horizontal distance
between them is

f ↔ g = (g ⊘ f)−1(0) (52)

Proof. f and g are increasing, so we can use the equality of Equation (51). After some
rearranging we apply the definition for the deconvolution in inf-plus, Equation (5b), and for
the pseudo-inverse, Equation (4a).

f ↔ g
(51)= inf

µ∈R+
0

{
µ : ∀λ ∈ R+

0 , f(λ) ≤ g(λ + µ)
}

= inf
µ∈R+

0

{
µ : ∀λ ∈ R+

0 , 0 ≤ g(λ + µ) − f(λ)
}

= inf
µ∈R+

0

{
µ : 0 ≤ inf

λ∈R+
0

{g(λ + µ) − f(λ)}
}

(5b)= inf
µ∈R+

0

{µ : 0 ≤ (g ⊘ f)(µ)} (4a)= (g ⊘ f)−1(0) ◀

▶ Lemma 56. Confer [22, p. 286, Lemma 1]. Let f : A → A be an increasing function from
and into a complete lattice A and let P be the set of fix-points of f , then P is not empty, P

is a complete lattice and

sup P = sup
x∈A

{x : f(x) ≥ x} ∈ P (53a)

inf P = inf
x∈A

{x : f(x) ≤ x} ∈ P (53b)

Proof. See [22, p. 286, Lemma 1] ◀

ECRTS 2022

General Framework for Routing, Scheduling and
Formal Timing Analysis in Deterministic
Time-Aware Networks
Anaïs Finzi !

TTTech Computertechnik AG, Wien, Austria

Ramon Serna Oliver !

TTTech Computertechnik AG, Wien, Austria

Abstract
In deterministic time-aware networks, such as TTEthernet (TTE) and Time Sensitive Networking
(TSN), time-triggered (TT) communication are often routed and scheduled without taking into
account other critical traffic such as Rate-Constrained (RC) traffic. Consequently, the impact of
a static transmission schedule for TT traffic can prevent RC traffic from fulfilling their timing
constraints.

In this paper, we present a general framework for routing, scheduling and formal timing analysis
(FTA) in deterministic time-aware networks (e.g. TSN, TTE). The general framework drives an
iterative execution of different modules (i.e. routing, scheduling and FTA) searching for a solution
that fulfills an arbitrary number of defined constraints (e.g. maximum end-to-end RC and TT latency)
and optimization goals (e.g. minimize reception jitter). The result is an iteratively improved solution
including the routing configuration for TT and RC flows, the static TT schedule, a formal analysis for
the RC traffic, as well as any additional outputs satisfying user constraints (e.g. maximum RC jitter).
We then do a performance evaluation of the general framework, with a proposed implementation of
the necessary modules for TTEthernet networks with mixed time-triggered and rate-constrained
traffic. The evaluation of our studied realistic use case shows that, using the general framework, the
end-to-end latency for RC traffic can be reduced up to 28.3%, and the number of flows not fulfilling
their deadlines divided by up to 3 compared to existing methods.

2012 ACM Subject Classification Networks → Network performance evaluation

Keywords and phrases TSN, TTEthernet, AFDX, AVB, Modeling, Routing, Scheduling, Formal
timing analysis, Worst-case analysis, Performance evaluation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.8

Funding This paper is part of the ADACORSA project that has received funding within the ECSEL
JU in collaboration with the EU H2020 Programme and National Authorities, under grant agreement
876019.

1 Introduction

For many application domains, the temporal behavior of critical communication flows needs
to be formally validated. For example, in aerospace the authorities require the proof of
correctness as part of the certification process, as it also occurs in emerging industrial
automation systems, with respect to critical traffic fulfilling end-to-end latency, jitter and
available memory requirements. These proofs have been provided through analysis methods
like Network Calculus [10, 8, 4] or the more recent Compositional performance evaluation [24],
for technologies like Avionics Full DupleX (AFDX) [1], TTEthernet (TTE) [12, 20] or Time
Sensitive Networking (TSN) [11].

Deterministic time-aware networks such as TSN and TTE enhance the event-triggered Rate
Constrained traffic class (RC) with a fully synchronous time-triggered (TT) communication
paradigm offering stringent guarantees, deterministic real-time temporal behavior, and

© Anaïs Finzi and Ramon Serna Oliver;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 8; pp. 8:1–8:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anais.finzi@tttech.com
mailto:ramon.serna.oliver@tttech.com
https://doi.org/10.4230/LIPIcs.ECRTS.2022.8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 General Framework for Routing, Scheduling and Formal Timing Analysis

composability. For the TT traffic class, determinism is ensured via an offline communication
schedule enforcing the contention-free and timely delivery of critical frames across switched
multi-hop networks within defined latency and jitter bounds.

The schedule synthesis for the TT traffic class is typically done either through heuristic-
based approaches [21, 5] or optimal algorithms based on MiP or SMT solvers [19, 7, 3, 18].

The classical method considering routing, scheduling and FTA is to perform each of these
steps sequentially. However, this means that manual intervention to correct non-optimal
routing is often necessary, which can be very difficult. In particular, when routing is based
on methods such as load balancing, where modifying one route can have repercussions on
multiple flows. For this reason, approaches in which the steps computing the schedules and
routes are coupled have been developed, using methods such as ILP [17, 6]. However, these
approaches do not incorporate a formal timing analysis, so no alternative solutions can be
easily explored if the RC constraints are not fulfilled.

To our knowledge, two previous works integrate the formal timing analysis of RC traffic
when computing routes for both RC and TT traffic flows along with the schedule for TT
traffic [9, 27]. However, both methods consider the end-to-end latency as the single user
constraint. Additionally, we discuss in Section 2 several flaws leading to long computation
times and inefficiencies that we address with our proposed method.

In this paper we provide a general framework for deterministic time-aware networks with
mixed time-triggered and rate-constrained traffic classes, computing the static routing and
scheduling configuration such as the constraints of both traffic classes are fulfilled. In our
method, the routing, scheduling, and formal timing analysis modules can be implemented and
customized by the user according to their own requirements. Moreover, additional RC or TT
constraints (e.g. end-to-end latency, frame-memory limitations, etc...) can be incorporated
to drive the search towards better solutions.

The main contributions of this paper are twofold, we propose: i) a general search for
routing and scheduling which considers formal timing analysis of RC in Section 3; and
ii) we conduct a performance evaluation with an application of the general framework for
TTEthernet networks, including the time-triggered and rate-constrained traffic classes, in a
realistic use case in Section 4 for which we developed a set of modules combining heuristic
routing and SMT solver based scheduling with a formal RC analysis based on Network
Calculus. To complement the analysis we compare our results with those of the current
state-of-the-art in Section 4.4.

2 Related Work

Increasing the performance of time-triggered and event-triggered traffic has been pursued
in previous works using methods to either improve the routes or the schedule instants of
frames, by including event-triggered constraints into the scheduling problem formulation,
or by applying a combination of these. To enhance TT traffic, the routing and scheduling
can be done jointly using heuristics [25], or Integer Linear Programming (ILP) formulations
[17, 6]. However, when using ILP, the complex worst-case timing analysis necessary to assess
the RC constraints cannot be integrated into the ILP formulation as they are not linear.

Other approaches develop enhanced heuristics incorporating RC constraints guiding the
search for a schedule. In [22, 7], the routing of flows is fixed and the computation of TT
offsets is done considering the RC constraints of TTE. Results show that the schedulability
of RC traffic can be significantly improved (e.g doubled in [7]) with a heuristic search.

A. Finzi and R. Serna Oliver 8:3

Finally, at the time of writing this section and to the best of our knowledge, there are
two published approaches [9, 27] on integrating the formal timing analysis of RC traffic with
the routing and scheduling.

In [9], the proposed method is developed specifically for a TSN network with scheduled
802.1Qbv (i.e. TT traffic) and AVB flows (i.e. RC traffic). However, we have identified a
few limitations impacting the efficiency of the approach: the routing strategy is to re-route
only TT flows, without trying to re-route RC flows. Besides limiting the solution space, this
re-routing strategy is computationally expensive since a TT flow also requires re-scheduling.
Additionally, the scheduling strategy is to re-schedule all TT flows at every new step, which
again is a very time consuming operation.

In [27], a method to optimize the routing is proposed for TTE networks, including the
TT and RC traffic classes. In their, approach the authors use the RC end-to-end latencies
when computing the routes for RC flows. However, the computation of the TT routes is done
using load balancing independently from RC traffic properties. Moreover, when searching for
a solution for the RC constraints, the TT routes are already fixed, which limits the solution
space.

Additionally, we have noted that in both [9, 27], the RC constraints are limited to the
end-to-end latency constraint, which does not map to typical industry requirements, usually
including jitter and frame-memory restrictions (e.g. backlog).

In this paper, we introduce a generalized search framework that can be used for any
deterministic time-aware network. We propose to explore the solution space by re-routing
and re-scheduling one flow at a time, to avoid the expensive cost of re-scheduling all the
flows after the initial schedule is computed. For our performance evaluation in Section 4, we
present an implementation of all three functions for TTEthernet. In particular, our method
can re-route any RC or TT flow, as well as re-schedule individual TT-flows, although it
reduces as much as possible the re-scheduling operation, as it is the most expensive step. The
search includes a formal analysis step including extensive RC constraints for our test-case,
namely end-to-end latency, jitter, and memory occupancy.

3 General Framework description

The goal of our proposed general framework is to compute, within a configurable time interval,
the best possible network configuration including routing, scheduling, and formal timing
analysis (FTA), as well as optional parametrization and user-defined constraints.

The general framework implements a search algorithm leveraging the work of predefined
functions for routing, scheduling, and FTA. Each of these three functions is encapsulated in
a module, and can be adapted to implement existing or future solutions found in literature
(e.g. for scheduling, heuristic solver [21], SMT solver [19, 7]). The interfaces of each module
(i.e. set of non-optional input and outputs) are defined in Section 3.3.

We begin by describing the general search algorithm in Section 3.2. Then, the different
modules are detailed in Sections 3.3 to 3.8.

3.1 Network and System Models
We define a general model wherein a network N comprises a set V of nodes and E of links, and
a set of F of communication streams, or flows, with one sender (talker) and one or multiple
receivers (listeners), and wherein FT T ⊂ F represents the subset of TT flows and FRC ⊂ F
represents the subset of RC flows. The set C represents the set of communication constraints,

ECRTS 2022

8:4 General Framework for Routing, Scheduling and Formal Timing Analysis

like maximum end-to-end latency, jitter, or any other optional routing, scheduling, or shaping
constraint. For convenience, we also define P as the complete set of possible network routes
between any of the nodes in N and all of the other.

A flow f ∈ F is characterized by the tuple ⟨f.path, f.deadline⟩, wherein path ∈ P relates
to the selected network route between the flow sender and receiver(s), and deadline ∈ N
corresponds to a maximum end-to-end latency bound requirement. Note that, for the sake of
simplicity, we omit to characterize in detail the implicit 1 : N relation of flows with its sender
node and one, or multiple, receiver nodes. A TT flow f ∈ FT T is further characterized by
its time-triggered transmission instant1, f.offset ∈ N.

We also define O as the set of solutions in the configuration space, wherein a solution
o ∈ O represents a possible output of the general framework. The subsets ORC ,OT T ⊂ O
represent, respectively, the RC and TT solution space.

We further introduce F1
s : ⟨fsi

, i ∈ N⟩, and respectively, F3
s : ⟨fsi

, i ∈ N⟩, as sorted lists,
or sequences, with index in the natural numbers, wherein each sequence is equivalent to the
respective set, namely set(F1

s) ≡ FT T and set(F3
s) ≡ F . Note that the sort operation is

described in Section 3.3.

3.2 General search algorithm
The main workflow behind the search algorithm, represented in Algorithm 1, consists of
incrementally (re)routing or (re)scheduling one flow at a time following sorted lists maintained
by the scheduling and FTA modules. Thanks to three feedback loops, depicted in Figure 1,
one flow is identified in each iteration as a candidate to be (re)routed and/or (re)scheduled
aiming at iteratively converging towards a better solution. After trying to find an initial
solution (line 2), we start the search by ensuring all the TT traffic is routed and scheduled
(Loop 1, line 5), as it is a necessary step before doing the formal timing analysis of the
RC traffic. Secondly, if the RC traffic does not fulfill its constraints, we attempt to find
an acceptable solution by keeping the same routing and only rescheduling TT flows one at
the time (Loop 2, line 8). If this fails, then we attempt to reroute a flow (Loop 3, line 11).
Hence, with these three feedback loops we explore both routing and scheduling alternatives
extensively while limiting time expensive steps such as rescheduling all the TT flows at once.

Routing Scheduling Formal Timing
Analysis

TT-only routing
feedback loop

TT scheduling
feedback loop

TT+RC routing
feedback loop

Inputs
&

Configuration
parameters

Outputs

(Loop 1) (Loop 2)

(Loop 3)

Figure 1 General framework workflow.

1 Note that we characterize the output of the schedule operation applied to a TT Flow to comprise
offsets, referring to the transmission instant of said TT Flow on each hop along its route. However,
certain time-triggered networks may require additional information, like for example a priority queue
assignment in the case of IEEE 802.1Qbv with multiple TT queues (cf. [3]), or alternatively, a mapping
to a GCL transmission window (cf. [18]). We claim that accounting for additional elements in the
characterization of the schedule output is a trivial generalization and we remain with the simplified
notation for the sake of clarity.

A. Finzi and R. Serna Oliver 8:5

Algorithm 1 Main algorithm.

Require: N ,F , C
1: mem ← memories
2: initialize(N ,F , mem) ▷ See Algorithm 2
3: repeat
4: if ∃f ∈ FT T : sch.checkConstraints(f) = false then
5: execute(Loop1) ▷ Algorithm 3 in Section 3.5
6: end if
7: if ∃f ∈ FRC : fta.checkConstraints(f,FRC ,N , C) = false then ▷ Formal timing

analysis
8: execute(Loop2) ▷ Algorithm 4 in Section 3.6
9: end if

10: if ∃f ∈ FRC : fta.checkConstraints(f,FRC ,N , C) = false then
11: execute(Loop3) ▷ Algorithm 5 in Section 3.7
12: end if
13: until ∀f ∈ FRC : fta.checkConstraints(f,FRC ,N , C) = true ∧
14: ∀f ∈ FT T : sch.checkConstraints(f) = true

▼ Inputs: The main algorithm takes the typical inputs when computing network routing
and scheduling, i.e. the specification of network topology, N , and flows, F , as well as optional
timing and routing constraints, C.

▲ Outputs: The output of the algorithm consist of the typical outputs generated by
network routing and scheduling algorithms, namely a route for each RC and TT flows as
well as a TT flow schedule. Additional shaping or scheduling parameters (e.g. AVB reserved
bandwidth, WRR weights if TTE is extended to include these) as well as custom metrics (e.g.
minimum end-to-end deadlines, minimum memory configurations) can be optionally added
to the output as required. In the particular case of RC shaping and scheduling parameters,
these are optionally computed in the FTA module, in Algorithms 1 and 4.

As the solution space can be very extensive, we limit the search algorithm in three
dimensions: first, we limit the number of routes that will be tested for each flow. Secondly,
we limit the number of iterations performed when computing a new schedule for a particular
set of paths. Thirdly, we limit the number of flows that may be selected before re-sorting
the list of flows, i.e. rearranging the selection order of those flows. Therefore, we define the
following configuration parameters, directing the solution space exploration:

▼ Configuration parameters:
conf.maxExploredPaths: maximum number of paths that may be explored for each flow
in both routing feedback loops (see Section 3.8.2).
conf.maxSchedIterations: maximum number of iterations in a TT scheduling feedback
loop (see Section 3.6);
conf.maxExploredFlowReset: maximum number of flows from the sorted list of flows
that can be explored before re-sorting the list (see Section 3.8.1).

These parameters expose different trade-offs enabling the customization of the search
to the specifications of given use cases. For instance, limiting the number of routes per
flows, conf.maxExploredPaths, allows testing more flows within a reasonable amount of
time. Limiting the number of schedule search iterations, conf.maxSchedIterations, allows
testing more routes for each flow. However, the down-side of these limitations is that an
optimal solution may be missed or the search may remain within a local optima.

ECRTS 2022

8:6 General Framework for Routing, Scheduling and Formal Timing Analysis

3.3 Module requirements
There are three main functions to be fulfilled for out general framework: routing, scheduling
and formal timing analysis. Each function is decoupled from the other two as an independent
module, with a defined interface between them. We define the scope of each module with an
enumeration of requirement.

The framework allows to leverage existing methods for the implementation of each of its
modules. We describe here the requirements for the general case and detail an implementation
in Section 4, which is later used in the evaluation in Section 4.2.

Routing (rt), manages functions related to finding network routes for RC and TT flows.
The module shall provide:

findRoute(f ∈ F ,N , C): finds an initial path in N for flow f , subject to constraints
C;
allPaths(f ∈ F ,N , C) a list of possible paths in N for flow f , subject to constraints
C.

Scheduling (sch), manages functions related to TT traffic. It shall provide:
schedule(f, C) → OT T attempts to schedule TT flow f ∈ FT T , subject to constraints
C;
checkConstraints(f ∈ FT T) → boolean evaluates whether flow f ∈ FT T has been
successfully scheduled (i.e. has transmission offset(s));
sortFlows(1,FT T) sort operation over the set FT T of TT flows, for Loop 1, used to
prioritize the flows and guide the search toward a better solution;
sortPaths(f ∈ F): sorted list of paths of TT flow f for Loop 1, used to prioritize the
paths to guide the search toward a better solution, optionally supported by scheduling
information;
costFunction(OT T → R): cost function to assess a partial solution or save the best
solution, in Loop 1.
output ∈ OT T : module output, including a TT schedule.

Formal timing analysis (fta), manages network analysis, related to either both RC
and TT flows, or only RC flows. It shall provide:

checkConstraints(f,FRC ,N , C) → boolean : evaluates whether the RC flow f ∈
FRC fulfills the constraints in C;
impossibilityTest (FRC ,N , C) → boolean necessary test for constraints in C
being fulfilled by flows FRC in N for any flow path and/or TT offset (e.g. the
maximum end-to-end latency constraint required is below the minimum possible
end-to-end latency on the shortest path);
feasibilityTest(FRC ,N , C) → boolean evaluates whether the constraints in C
can possibly be fulfilled for the flows FRC in N with the current flow paths;
portImpact(f ∈ F): evaluates if the path flow f has any port in common with the
paths of RC flows which are not yet fulfilling their constraints;
sortFlows(3,F): sort operation over the set F , for Loop 3;
sortFlows(2, FT T): sort operation over the set FT T ;
sortPaths(f ∈ F): sorted list of paths of flow f , for Loop 3;
costFunction(O) → R: cost function to assess a partial solution or save the best
solution, in Loop 3.
output ∈ ORC : module output, including the parameters for RC shaping/scheduling
(e.g. WRR weights, AVB bandwidth reservation) and output requirements (e.g.
necessary memory reservation)

A. Finzi and R. Serna Oliver 8:7

3.4 Search initialization

Algorithm 2 Search Initialization algorithm.

Require: N ,F , C, mem
1: for all f ∈ F do ▷ Attempts to route all flows
2: rt.findRoute(f,N , C)
3: end for
4: for all f ∈ FT T do ▷ Attempts to schedule all TT flows
5: sch.schedule(f,N , C)
6: end for
7: if ∀f ∈ FT T : sch.checkConstraints(f) = true then
8: mem.savedOffsets[f] ← f.offset, f.path ▷ Save current paths and offsets
9: end if ▷ Initialize search memories

10: for all f ∈ F do
11: mem.exploredPath_3[f] ← f.path

12: mem.defaultPaths[f] ← f.path

13: mem.exploredPathSets ← mem.exploredPathSets
⋃
⟨f, f.path⟩

14: end for
15: mem.currentFlow_3 ← NULL
16: mem.F1

s ← ∅
17: mem.F3

s ← ∅
18: mem.allTTPathsExplored = false

In a a first step, the search computes an initial routing and scheduling solution, followed
by the initialization of the memories necessary to keep track of the progress, as defined in
Algorithm 2. First, all the routes are computed (line 2). Note that there is an implicit failure
termination if an initial route cannot be found for each of the flows, meaning that the set
of flows is not feasible with the given topology, and hence causing the search to abort with
failure. Secondly, the algorithm attempts to schedule TT flows (line 5). Afterward, the
memories (mem) used in the global search are initialized, namely:

mem.savedOffsets[f ∈ FT T] ← {⟨p1, O1⟩..⟨pn, On⟩ : fi ∈ FT T , pj ∈ P , Oi =
{o0

i ..ok
i }, oj

i ∈ N}: stores the latest successfully scheduled set of TT paths and their
offsets. Note that offsets are represented as a set of values corresponding to the trans-
mission offset on each port of a multicast route; mem.savedOffsets is used as a restore
point to a previous state in which TT Flows were both routed and scheduled, before
continuing the search. The use of mem.savedOffsets will be detailed in Loops 1 and 2.
mem.exploredPathSets ← {S0..Sn} : Si = {⟨f i

0, pi
0⟩..⟨f i

m, pi
m⟩ : f i

j ∈ F , pi
j ∈ P}, i ∈ N:

storing the set of explored path sets (each flow in a set is associated to one path), shared
by the routing feedback loops. This is mainly used to determine whether all solution
have been explored;
mem.defaultPaths[f ∈ F] ← {p0..pn : pi ∈ P}: storing the so-called default paths
previously used by the routing searches. The definition and use of the default paths is
detailed in Section 3.5.
mem.exploredPaths_3[f ∈ F] ← {p0..pn : pi ∈ P}: storing the sets of explored paths for
each flow (each flow is associated to a list of explored paths) for Loop 3.
mem.currentFlow_3 ← f ∈ FT T : stores the flows currently being re-routed in Loop 3.
It is used to select a new flow to reroute.

ECRTS 2022

8:8 General Framework for Routing, Scheduling and Formal Timing Analysis

mem.F1
s : stores a sorted list of the elements of FT T , wherein FT T

sk
is the k + 1th element

in the list.
mem.F3

s : stores a sorted list of the elements of F , wherein Fsk
is the k + 1th element in

the list.
mem.allTTPathsExplored ← (boolean) flags when all the TT paths have been explored;

Once the initialization is performed the search of a solution begins as described in the
following sections.

3.5 Loop 1: TT-only routing feedback loop
Algorithm 3 (Loop 1) tries to re-route and schedule TT flows if not all TT flows were
scheduled, either following the initial routing or a re-routing step from Loop 3. The goal is to
find a solution in which all TT flows are routed and scheduled, regardless of the RC traffic.

Algorithm 3 Loop 1: TT-only routing feedback loop.

Require: N ,FT T , C, mem
1: for all fk ∈ FT T do
2: mem.exploredPaths_1[fk] ← {fk.path} ▷ Initialize with current paths
3: end for
4: mem.currentFlow_1 ← NULL

5: mem.F1
s ← sch.sortFlows(1,FT T) ▷ Sort the list of TT flows

6: while ∃fk ∈ FT T : sch.checkConstraints(fk) = false) ∧ mem.allTTPathsExplored
= false do

7: f ′ ← selectFlowPath(1,mem.exploredPaths_1) ▷ See Algorithm 7
8: schedule(f,N , C)
9: mem.currentFlow_1 ← f ′

10: if sch.costFunction(output) < sch.costFunction(mem.bestOutput) then
11: mem.bestOutput ← current output
12: end if
13: if ∀fi ∈ FT T : sch.checkConstraints(fi) = true then
14: for all fj ∈ FT T do ▷ Save paths and offsets
15: mem.savedOffsets[fj] ← f.offset, f.path

16: end for
17: end if
18: updateMemories(1, f ′, mem) ▷ See Algorithm 6
19: end while
20: if ∃fk ∈ FT T : sch.checkConstraints(fk) = false then
21: if mem.savedOffsets ̸= ∅ then
22: for all fj ∈ FT T do ▷ Reset paths and offsets
23: fj .offset← mem.savedOffsets[fj].offset
24: fj .path← mem.savedOffsets[fj].path
25: end for
26: else
27: exitPartialSolution(mem.bestOutput) ▷ Or fail without output
28: end if
29: end if

The search starts from an initial set of paths, called default path (stored in
mem.defaultPaths) and a flow selected to be rerouted. If no schedule is found with any of
its different possible paths, the selected flow is set back to the default path, and another

A. Finzi and R. Serna Oliver 8:9

flow is chosen. Restoring the path to the already explored default path adds stability to the
search process. Algorithm 6 details how new default paths can be selected in order to test
the different permutations.

Algorithm 3 (Loop 1) uses three memories:
mem.exploredPaths_1[f ∈ FT T]← {p0..pn : pi ∈ P}: storing the sets of explored paths
for each TT flow (each flow is associated to a list of explored paths) for Loop 1;
mem.currentFlow_1 ← f ∈ FT T : stores the flows currently being rerouted in Loop 1;
mem.bestOutput ← o ∈ O: stores the best solution found so far. This includes all the
outputs listed in Section 3.2 which are already available in the current state of the search.

The algorithm begins initializing exploredPaths_1 with the current paths (lines 1 to 3),
and then sorting the set of flows (line 5). Following, a search for a feasible solution is initiated,
until either all TT flows are scheduled or all path permutations have been explored (line 6).
Within the search, a flow is selected using Algorithm 7, then rerouted, and attempted to be
scheduled (lines 7 and 8), following the update of mem.currentFlow_1 and mem.bestOutput
(lines 9 to 12).

If a schedule has been found for all TT flows, the paths and offsets are stored in
mem.savedOffsets (lines 13 to 17), which if needed, can be used to restore a solution with
feasible TT traffic offsets (see lines 22 to 25). This is necessary when all available TT path
combinations have been tested and Loop 1 finishes, but there remain still untested RC paths
that may be explored via Loop 3. Note that the search algorithm may fail and exit in Loop 1,
either with a partial or no solution at all, if, directly after the initialization, no valid TT
schedule has been found after having explored all paths (line 27).

Finally, after saving the paths and offsets, mem.exploredPathsSets and
mem.defaultPaths are updated as described in Algorithm 6 (line 18).

3.6 Loop 2: TT scheduling feedback loop
Algorithm 4 (Loop 2), identifies, supported by the FTA module, the TT flow with a higher
impact on RC traffic (line 17), which is then re-scheduled (line 18) with the aim of finding a
solution improving RC traffic performance.

Algorithm 4 uses two memories:
mem.exploredOffsets[f ∈ FT T] ← {O0..On : Oi = {o0

i ..ok
i }, oj

i ∈ N} : stores the sets
of explored offsets for each flow (each flow is associated to a list of explored offsets). Note
that offsets are represented as a set of values corresponding to the transmission offset on
each port of a multicast route;
mem.diversification ← {f0..fn : fi ∈ F}: tracks the flows already selected for diversi-
fication purposes, allowing to select alternative flows and explore different part of the
solution space. Hence, avoiding iterations over stable regions of the solution space by
always choosing the same flows.

The search ends when a feasible solution is found or when either the maximum number
of iterations, defined in the configuration parameter conf.maxSchedIterations (see Sec-
tion 3.2), is reached, or else when the diversification memory contains all flows (line 16),
meaning that no other flow is left to be selected (lines 24 to 28).

Note that Algorithm 4 is a generalization of Algorithm 1 in [7], so we only detail here the
main improvements, namely
1. allowing an arbitrary number of constraints C, including the end-to-end latency, as well

as the possibility of storing the best solution found so far at any given time (cf. lines 7
and 33);

ECRTS 2022

8:10 General Framework for Routing, Scheduling and Formal Timing Analysis

Algorithm 4 Loop 2: TT scheduling feedback loop.

Require: N ,F , C, mem , conf, currentOutput
1: it_loop2 ← 0
2: mem.exploredOffsets, mem.diversification ← ∅
3: if mem.F1

s = ∅ then
4: mem.F1

s ← fta.sortFlows(2,FT T)
5: end if
6: if costFunction(currentOutput) < costFunction(mem.bestOutput) then
7: mem.bestOutput ← currentOutput
8: end if
9: fullfilled ← ∀f ∈ FRC : fta.checkConstraints(f,F , C) ▷ Run the FTA Analysis

10: if fullfilled = false ∧ fta.impossibilityTest(N ,FRC , C) = true then
11: exit
12: else if fullfilled = false ∧ fta.feasibilityTest(N ,FRC , C) = true then
13: for all fk ∈ FT T do ▷ Reset offsets
14: fk.offset← mem.savedOffsets[fk].offset

15: end for
16: while ∃fj ∈ FRC : fta.checkConstraints(fj ,N ,FRC , C)=false ∧

|mem.diversification|< |FT T |∧ it_loop2 < conf.maxSchedIterations do

17: f ′ ← mem.FT T
s0

▷ Select flow impacting most RC
18: sch.schedule(f ′,N , C)
19: if f ′.offset ̸∈ mem.exploredOffsets[f ′] then
20: mem.diversification ← ∅
21: end if
22: while f ′.offset ∈ mem.exploredOffsets[f ′] ∧ |mem.diversification| < |FT T |

do
23: mem.diversification ← mem.diversification ∪f ′

24: k ← 0
25: repeat ▷ Select first flow not in mem.diversification
26: f ′ ←mem.FT T

sk

27: k ← k + 1
28: until f ′ ̸∈ mem.diversification
29: sch.schedule(f ′,N , C)
30: end while
31: ∀f ∈ FRC : fta.checkConstraints(f,F , C)
32: if costFunction(currentOutput) < costFunction(mem.bestOutput) then
33: mem.bestOutput ← currentOutput
34: end if
35: for all fk ∈ FT T do ▷ Update explored offsets
36: mem.exploredOffsets[fk] ← mem.exploredOffsets[fk] ∪fk.offset

37: end for
38: it_loop2 ← it_loop2 + 1
39: end while
40: end if

A. Finzi and R. Serna Oliver 8:11

2. the addition of an impossibility check (cf. line 10) as well as a feasibility check (cf. line 12)
to avoid searching for solutions when none exists;

3. before a flow is re-scheduled (line 18), all other TT flow offsets are reset to the values
stored in mem.savedOffsets (lines 13 to 15), already presented in Loop 1. We found
that the re-scheduling in Loop 2 can lead to a stable but non-optimal area of the solution
space. By restoring the state stored before Loop 2 after re-routing a flow, it is more likely
to avoid this area and, hence, find solutions otherwise inaccessible.

3.7 Loop 3: RC+TT routing feedback loop
Finally, the third feedback loop, represented in Algorithm 5, uses the same principle as
Loop 1. Namely, if no feasible solution is found after all paths of a specific flow have been
tested, the flow is set back to the default path and a new search iteration begins (see line 3
in Algorithm 1). In the case of Loop 3, the selected flow can be either a TT or an RC flow,
which enables testing a large array of solutions while trying to prioritize the more likely to
succeed first.

Algorithm 5 Loop 3: TT+RC routing feedback loop.

Require: N ,F , C, mem, conf
1: if mem.F3

s = ∅ then
2: mem.F3

s ← fta.sortFlows(3,F)
3: end if
4: f ′ = selectFlowPath(3,mem.exploredPaths_3) ▷ See Algorithm 7
5: mem.currentFlow_3 ← f ′

6: if f ′ ∈ FT T then
7: for all fk ∈ FT T do ▷ Reset offsets
8: fk.offset← mem.savedOffsets[fk].offset

9: end for
10: sch.schedule(f ′,N , C)
11: if ∀fj ∈ FT T : sch.checkConstraints(fj) = true then
12: mem.savedOffsets[fj] ← fj .offset, fj .path, ∀fj ∈ FT T ▷ Save path and offsets
13: end if
14: end if
15: updateMemories(3, f ′, mem) ▷ See Algorithm 6

Algorithm 5 (Loop 3) begins sorting the flows if they have not been sorted yet (lines 1
to 3). Then a new flow is selected and rerouted (line 4), followed by the update of
mem.currentFlow_3 in line 5. If the selected flow is TT, it must then be rescheduled.
As Loop 3 follows Loop 2, the offsets are restored to the saved values to avoid stable but
non-optimal solution space areas (lines 7 to 9), similar to Subsection 3.6. Next the new
offsets are computed for the selected flow (line 10) and if successful, they are stored in
mem.savedOffsets (line 12). If the TT flow cannot be rescheduled, then Loop 1 follow (see
line 4 in Algorithm 1).

3.8 Common support algorithms
In this section, we describe two algorithms supporting both Loop 1 and Loop 3. Algorithm 6
updates the memories and manage the default paths, while Algorithm 7 implements the
selection of a new flows and paths.

ECRTS 2022

8:12 General Framework for Routing, Scheduling and Formal Timing Analysis

3.8.1 Update of memories
The goal of Algorithm 6 is to update the memories tracking the progress of the search, such
as the set of explored paths mem.exploredPaths_i and mem.exploredPathSets.

Algorithm 6 updateMemories(i).

Require: N ,F , C, mem, conf, mod ∈ {sch, fta}, i ∈ {1,3} ▷ Current loop index (1,3)
1: fc =mem.currentFlow_i ▷ Current flow in Loop i,∈ {1, 3}
2: mem.exploredPaths_i[fc] ← fc.path ▷ Update path selected flow
3: if (

⋃
⟨fk, fk.path⟩ : fk ∈mem.F i

s) ̸∈ mem.exploredPathSets then
4: mem.exploredPathSets ← mem.exploredPathSets

⋃
⟨fi, fi.path⟩ : ∀fi ∈ F

5: if |mem.exploredPaths_i| ≥ conf.maxExploredFlowReset ∨
[
i = 3∧

fta.portImpact(fc.path) = false
]

then
6: mem.exploredPaths_i[fc] ← ∅
7: mem.F i

s ← mod.sortFlows(i,F i)
8: end if
9: else if ∀fp∀pq : fp ∈mem.F i

s, pq ∈ rt.allPaths(fp,N , C), pq ∈ mem.exploredPath_i
then ▷ All flow paths tested for current default paths

10: if i = 1∧ savedOffsets ̸= ∅ ∧ ∀fp∀pq : fp ∈mem.F i
s, pq ∈ rt.allPaths(fp,N , C), pq ∈

mem.defaultPaths then
11: ▷ All flow paths tested as default paths
12: mem.allTTPathsExplored ← true
13: for all fl ∈ FT T do ▷ Reset paths and offsets
14: fl.path = savedOffsets[fl].path

15: fl.offset = savedOffsets[fl].offset

16: end for
17: else
18: f ′.path = selectFlowPath(i, mem.usedDefaultPaths) ▷ Algorithm 7
19: if f ′ ∈ FT T then
20: for all fl ∈ FT T do ▷ Reset offset
21: fl.offset ← mem.savedOffsets[fl]
22: end for
23: sch.schedule(f ′, C)
24: if ∀f ∈ FT T : sch.checkConstraints(f) = true then
25: for all fl ∈ FT T do ▷ Save path and offsets
26: mem.savedOffsets[fl] ← fl.offset, fl.path

27: end for
28: end if
29: end if ▷ Update default path
30: mem.defaultPaths[f ′].path← mem.defaultPaths[f ′].path

⋃
f ′.path

31: mem.exploredPaths_i ← ∅
32: mem.F i

s ← mod.sortFlows(i,F i)
33: end if
34: else if fc = mem.F i

sk
: k = |mem.F i

s| − 1 then ▷ All flows of the current set were tested
35: mem.exploredPaths_i ← ∅
36: mem.F i

s ← mod.sortFlows(i,mem.F i)
37: end if

A. Finzi and R. Serna Oliver 8:13

For Loop 1 and 3 we use the default path memory to explore around a stable set of paths,
i.e. the default paths, and only after that exploration is concluded the set of default paths is
updated and a new exploration around the new stable set of paths begins. With this, we
avoid the excessive time it would take to explore all the solutions around the default paths,
when it is likely that not all of them lead to feasible solutions.

A first part of our strategy to guide the search toward a better part of the solution space
is to sort the flows, as already explained. However, this is not sufficient due to the fact that
when a new path is found, or the default paths change, it has a global impact on the totality
of flows. This leads to the need to regularly re-sort the flows so as to continue testing those
with the highest impact on the flows causing more trouble to the algorithm. It is important
to note that always re-sorting is also not a good approach, as it can lead to selecting always
the same flows and not making progress.

In Section 3.2 we define conf.maxExploredFlowReset, which lets the user configure after
how many tested flows the memories mem.exploredPaths_i are reset and the flows resorted.
This parameter can be tailored based on the characteristics of the network.

The algorithm begins setting the current flow (line 1) and updating mem.exploredPaths_i
(line 2). Then, if the current set of path is unknown to mem.exploredPathSets it is added
(line 3). If enough flows have been explored or if, in Loop 3, the path of the current flow has
no impact on the flows not fulfilling their constraints, then mem.exploredPaths_i is reset
and the flows resorted (lines 6 and 7).

However, if the path set has already been explored and all combinations of flow paths
have been testes for the current default paths (line 9), it is checked if, in Loop 1, all the
TT path combinations have been tested (lines 10). If that is the case and there are saved
offsets in mem.savedOffsets, then mem.allTTPathsExplored is set to true and the paths
and offsets are resets to the saved values (lines 13 to 16). If that is not the case, then a new
default path is selected (line 18). If it consists of a TT flow, its offsets are reset to the saved
values, if possible (line 20) and the flow is rescheduled (line 23). If all TT flows are scheduled,
then the paths and offsets are saved in mem.savedOffsets (line 25). Following, the memory
mem.defaultPaths is updated with the new default path (line 30), and the flows are resorted
to select the more promising flows around the newly chosen default paths. Finally, if the
selected flow was the last on the list (line 34), mem.exploredPaths_i is updated and the
flows again resorted (lines 35 and 36) in preparation for the next iteration.

3.8.2 Selection of a flow and path

Algorithm 7 is used to select a flow and its new path within Loops 1 and 3. The algorithm
selects the first untested path of the current flow fc in the sorted list of flows (line 25).

Additionally, we define sortPaths(fc, conf.maxExploredPaths) instantiating the func-
tions sortPaths(fc), respectively from the FTA module in Loop 1, or the Scheduling module
in Loop 3, and selecting the first conf.maxExploredPaths items of the provided sorted list.

The algorithm tries setting the current flow (line 1) or, if none (line 2), selects the
first flow from the sorted list (line 3). If the maximum configured number of flows (i.e.
conf.maxExploredPaths) has been reached (line 4), the flow path is reset to the latest
default path (lines 5). If the flow happens to be TT, the offsets are resets, if possible, (lines 7
to 9) and the flow is reschedule (line 10). Upon success, the paths and offsets are saved
(lines 12 to 14).

The next flow in the sorted list is selected as the new current flow (line 17) and the first
path not in memory is selected to reroute the flow (lines 19 to 24).

ECRTS 2022

8:14 General Framework for Routing, Scheduling and Formal Timing Analysis

Algorithm 7 SelectFlowPath(i): Flow and Path selection.

Require: N ,F , C, conf, i ∈ {1, 3}, mem
1: fc = mem.currentFlow_i ▷ Current flow for Loop i, i ∈ {1, 3}
2: if fc = NULL then
3: fc ←mem.F i

s0
▷ First flow in the sorted list

4: else if |memory[fc]| = conf.maxExploredPaths then
5: fc.path← mem.defaultPaths[fc].path[k]: k=|mem.defaultPaths[fc]|-1
6: if fc ∈ FT T then
7: for all fn ∈ FT T do
8: fn.offset ← mem.savedOffsets[fn] ▷ Reset offset
9: end for

10: sch.schedule(fc,N , C)
11: if ∀fk ∈ FT T : sch.checkConstraints(fk) = true then
12: for all fn ∈ FT T do
13: mem.savedOffsets[fn] ← fn.offset, fn.path ▷ Save offset and path
14: end for
15: end if
16: end if
17: fc ←mem.F i

sk+1
: mem.F i

sk
= fc ▷ Next flow in the sorted list

18: end if
19: P s ← sortPaths(fc, conf.maxExploredPaths)
20: j ← 0
21: while P s

j ∈ memory[fc] do
22: j ← j+1
23: end while
24: fc.path← P s

j ▷ Set first sorted path not in memory[fc]
25: return fc

Note that the Algorithm 7 is instantiated with the inputs i ∈ {1, 3} and memory =
mem.exploredPaths_i (e.g. line 4 in Algorithm 5) to select the new current flow, or with
the inputs i ∈ {1, 3} and memory = mem.defaultPaths (see line 18 in Algorithm 6) to select
a new default path.

4 Performance evaluation

We have so far presented a general search framework for routing, scheduling and formal
timing analysis. In this section, we present a performance evaluation with an implementation
of the framework for TTEthernet, following a detailed industrial case study supporting our
analysis, and a discussion of the evaluation results.

4.1 Implementation of modules for TTEthernet
For the performance evaluation, we consider two user-provided input constraints, namely
maximum end-to-end latency for RC and TT flows, and maximum available frame memory
for switches. The output provided by the general framework, in addition to the paths and
schedule, are the i) jitter of RC flows at the switch ports, ii) queue memory reservation
requirements for critical traffic, allowing to properly dimension the switch memory and

A. Finzi and R. Serna Oliver 8:15

maximizing the remaining capacity for best-effort traffic, and iii) minimum end-to-end delay
for RC flows (i.e. minimum achievable deadlines) based on the best solution found (i.e. with
the minimum cost function).

We detail below the implementation of each module function described in Section 3.3
used for the evaluation of the general framework.

Routing (rt) is implemented as follows:
findRoute(): is an implementation of the method in [2] with additional load balancing;
allPaths(): leverages the JAVA library JGraphT [13, 15] to compute all possible
paths using the class AllDirectedPaths;

Scheduling (sch) consists of an SMT-based scheduler as described in [7]:
schedule(): is computed using the constraints in [7], Section III C;
checkConstraints(): is a trivial check of the existence of offsets for the flow;
sortFlows(): detailed in Algorithm 8;
sortPaths(): detailed in Algorithm 9;
costFunction(): is directly proportional to the number of non-scheduled TT flows;

Formal timing analysis (fta), implements Network Calculus with linear curves2:
checkConstraints(): checks the RC constraints by implementing the TTE model
proposed in [26], additionally considering the higher priority Protocol Control Frames
(PCFs) flows in TTEthernet3. Therefore, it subtracts the PCF arrival curve (i.e. the
maximum amount of data that can arrive in any time interval) alongside the TT arrival
curve (cf. Theorems 3 and 7 in [26]);
impossibilityTest(): implements a simple check returning true when at least one
flow exists, for which its maximum end-to-end deadline is less than its minimum possible
end-to-end latency on the shortest path (based on the fastest possible transmission
delays);
feasibilityTest(): implements a necessary optimistic analysis, whereby instead of
considering the impact of the TT flow offsets as [26] to compute the maximum burst of
TT traffic impacting RC, it only considers, in each output port, the maximum frame size
among all transmitted TT flows. Therefore, the worst-case output port delays will be
greater than or equal to the optimistic bound, and consequently, feasibilityTest()
returns false if there is at least one flow with its maximum end-to-end deadline being
less than the optimistic computed value;
portImpact(): checks if the input flow intersects with a flow not fulfilling its con-
straints;
sortFlows(), Loop 2 : the sorted list of TT flows with highest impact on RC flows
is computed by sorting TT flows from highest to lowest cardinality (Card). For details
refer to lines 2 to 14 of Algorithm 2 in [7];
sortFlows(), Loop 3 : the sorted list of RC+TT flows with highest impact on RC
flows not fulfilling their deadlines4 is computed using Algorithm 8, with mod=FTA,
wherein fta.intersections(j ∈ F) is the number of ports in the current path of
flow j which are in common with the flows not fulfilling their constraints;

2 Network Calculus is a framework allowing to compute upper-bounds for flow delays as well as backlogs,
which we use to check the fulfillment of RC constraints, such as end-to-end latency, jitter and memory
occupancy (cf. [14].

3 Protocol Control Frames (PCFs) are Ethernet frames periodically transmitted by Synchronization
Master nodes to implement the fault-tolerant clock synchronization in TTEthernet (cf. [12])

4 Note that Loop 3 is only iterated if all TT flows are scheduled.

ECRTS 2022

8:16 General Framework for Routing, Scheduling and Formal Timing Analysis

sortPaths(): Algorithm 9 implements the sorted list of paths;
costFunction(): is assessed by adding i) the number of non-scheduled TT flows, plus
ii) among all flows, the average difference between the flow deadline and its assigned
end-to-end delay;

Algorithm 8 Best flow to re-route for sch.sortFlows(1,FT T) and fta.sortFlows(3,F).

Require: F , i ∈ {1, 3}, fA, fB ∈ F , mod ∈ {sch, fta}
1: schA ← mod.checkConstraints(fA)
2: schB ← mod.checkConstraints(fB)
3: if fA ∈ FRC ∧ fB ∈ FT T then ▷ Case Loop 3
4: return fA

5: else if schA = false ∧schB = true then
6: return fA

7: else if schA = false ∧schB = false ∧fA.deadline > fB .deadline then
8: return fA

9: else if
[
schA = true ∧schB = true ∧

{
mod.intersections(fA) >

mod.intersections(fB) ∨ { mod.intersections(fA) = mod.intersections(fB)
∧(fA.deadline− fA.delay) > (fB .deadline− fB .delay)}

}]
then

10: return fA

11: else
12: return fB

13: end if

In Algorithm 8 we denote deadlinej the deadline, and delayj the end-end-end latency, of
TT flow fj . When instantiated with mod = sch, sch.intersections(fj ∈ FT T) computes
the number of ports in the path of TT flow fj which are in common with the non-scheduled
TT flows (note that a port in common with n flows is accounted n times).

RC flows are the best candidates to be rerouted as they do not necessitate rescheduling,
which is very time expensive (line 3), therefore they are sorted first. The next best flows are
flows not fulfilling their constraints (line 5), followed by flows not fulfilling their constraints
with larger deadlines (line 7). The rationale of this strategy is the following: during
initialization, in Algorith 2, the selected paths tend to be among the shortest paths available.
Therefore, by rerouting flows on potentially longer (and hopefully less loaded) paths, there is
a higher chance to both find an acceptable path for the current flow and decrease its impact
on other flows having shorter deadlines, which may likely not fulfill their deadlines on longer
paths anyway. Finally, for flows fulfilling their constraints, those with the highest impact on
flows not fulfilling their constraints are chosen, with the expectation of decreasing this impact
by using a new path (lines 9 and 13). If the resulting impact is equivalent, the flow with the
largest difference between deadline and their calculated end-to-end latency is selected, for
the the reason of having a larger leeway.

In algorithm 9 we denote sch.totalBandwidth(p ∈ P) the sum of the bandwidth of
TT flows in each output port of path. We denote fta.totalBandwidth(path) the sum of
the bandwidth of RC+TT flows in each output port of path (the computation is done as
the maximum of the sum per receiver, same as for fta.totalTime(path_i)). The function
fta.intersections(path) is equivalent to fta.intersections(j ∈ F), but applied to the
input path, instead of the current path of flow j;

To compare different paths of an RC flow (lines 1 to 4), a rough estimation of the
RC end-to-end latency is used, using data previously computed via Network Calculus.
Therefore totalTime(path_i, receiver) is computed for each flow receiver, as the sum

A. Finzi and R. Serna Oliver 8:17

Algorithm 9 Best path to re-route for sortPaths(f ∈ F).

Require: f ∈ F , p1, p2 ∈ P , mod ∈ {sch, fta}
1: if f ∈ FRC∧ fta.checkConstraints(f) = false then
2: if fta.totalTime(p1) < fta.totalTime(p2) then
3: return p1
4: end if
5: else if

[
mod.intersections(p1) < mod.intersections(p2)

]
∨

[
mod.intersections(p1) == mod.intersections(p2) ∧ (mod.totalBandwidth(p1) <
mod.totalBandwidth(p2))

]
then

6: return p1
7: end if
8: return p2

of the delays in each output port of path_i from the sender to a receiver. We denote
fta.totalTime(path_i) as the maximum of totalTime(path_i, receiver) over all the
receivers of flow_i of path_i. Hence, the algorithm begins by selecting the path with the
strictly smaller estimated total end-to-end-delay using totalTime(p1) (line 2). This is more
likely to be a valid path for the current flow.

For a TT flow, the preferred path is that with less intersections with flows not fulfilling
their constraints, to lessen the impact of this flow on them (line 5). If the number of
intersections are identical, then the less loaded path is preferred, since the flow should have
better chances of fulfilling its deadline as well as interfering with fewer other flows (line 5).

4.2 Industrial case study: the Orion network
For the performance evaluation we consider the Orion network, illustrated in Figure 2,
based on the Orion Crew Exploration Vehicle (CEV), 606E baseline as presented in [9] and
described in [23, 16]. The network consists of i) 99 TT flows with periods varying from
7.5 ms to 187.5 ms and maximum frame sizes between 87 bytes and 1518 bytes; ii) 87 RC
flows with periods from 4 ms to 128 ms and maximum frame sizes from 89 to 1499 bytes.
Each TT and RC flow i has a defined deadline constraint, denoted as deadline_initial_i.

End System

Switch

Figure 2 Orion network topology.

We have empirically determined two sets of input parameters listed in Table 1. We
have observed that 10 is a good limit for trying to re-schedule TT flows in Loop 2 and,
similarly, we have settled to 70% of the total number of RC+TT flows for the parameter
conf.maxExploredPaths. Both settings show to be a good compromise exploring TT re-

ECRTS 2022

8:18 General Framework for Routing, Scheduling and Formal Timing Analysis

routing without exhausting all possibilities, which result in a highly computationally expensive
step. We have selected two different values for conf.maxExploredPaths, i.e. 2 and 10, to
show the large impact this specific parameter has. Nevertheless, we foresee that a further
study of the sensitivity of the parameters in a wider range of use cases would be beneficial in
future work.

Table 1 Sets of input parameters.

Parameter GF: MEP 10 GF: MEP 2
conf.maxSchedIterations 10 10
conf.maxExploredPaths 10 2
conf.maxExploredFlowReset 0.7 × 187 0.7 × 187

To assess our proposal, we compare GF: MEP 2 and GF: MEP 10 to three other results
from literature:

GF Shortest path: we consider that the general framework is not limited by the con-
figuration parameters conf.maxSchedIterations, conf.maxExploredPaths, and that
conf.maxExploredFlowReset=0, i.e. the flows are always resorted and the memory
mem.exploredPaths_i cleared. Moreover, the flows not fulfilling their constraints are
sorted as proposed in Algorithm 8, and the flows fulfilling their constraints are sorted
from highest to lowest end-to-end latency, while the path are sorted from shortest to
longest. The schedule is computed with SMT, using the constraints of Section III C [7];
Scheduling loop [7]: we implement the solution described in [7]
Static (no loop) [19]: we consider that routing and scheduling are set with the initial
solutions described in Section 4.1 and [19].

We would have liked to compare our proposal to [27], and [9], but as will be explained in
Section 4.4, we lack information about their use cases to be able to do a proper comparison.
However, with the three methods selected for comparison, we will be able to assess the impact
of both re-routing and re-scheduling (i.e.Static (no loop)), the importance of re-routing in
addition to re-scheduling (i.e. Scheduling loop), and the importance of selecting the best
parameters and heuristics in the modules (i.e. GF Shortest path).

We have defined two test cases: i) computation of minimum end-to-end deadline con-
straints, and ii) analysis of deadline reduction. For i), we set all the deadlines to their
initial values, except the deadline of the flows for which we want to obtain the minimum
possible. Those are initialized to their minimum end-to-end latency based on the fastest
possible transmission (i.e. minimum latency without any queuing delay). We set a timeout
to conclude the search after 1 hour with the best found solution. For ii), we analyze the
execution time (denoted exec. time), and cost function (denoted cost), when varying the
deadlines of all RC flows proportionally to the initial deadline within the range 50%..100%,
as shown in Table 2. For this experiment we set the timeout value to 24 hours.

It is important to note that for a small network, limiting conf.maxExploredPaths may
limit the number of explored flows and paths, due to some part of the solution space not
being accessible. Indeed, experiments run on a network with only 4 switches and 10 flows
showed GF: MEP 10 to perform better. However, for larger networks, the solution space
becomes so large that exploring all possibilities tends to be intractable. Therefore, guiding
the search with the parameter conf.maxExploredPaths shows effective. In the proposed
Orion Network, both GF: MEP 10 and GF: MEP 2 explore the solution space until a
solution is found or until a timeout expires. Limiting conf.maxExploredPaths does not
significantly affect the total number of explored solutions, but instead guides more strongly
the search toward regions of the solution space more likely to contain better solutions.

A. Finzi and R. Serna Oliver 8:19

4.3 Evaluation results

In our tests, the switch memory constraints were always fulfilled, so we concentrated our
efforts on the end-to-end deadlines. Note that an evaluation similar to the one we provide
here could also address the switch jitter and switch memory allocation.The results of test case
i) are presented in Figure 3. The minimum deadlines provided by the search are normalized
using the minimum deadlines found for the Static (no loop) case.

The results in Figure 3 show that GF: MEP 2 and GF: MEP 10 find much lower deadlines
than either the Scheduling loop and the Static (no loop) searches. In fact, on average, the
deadlines found with GF: MEP 2 (resp. GF: MEP 10) are smaller by 21% (resp. 12%)
compared to Static (no loop), with a maximum decrease of 28.3% for rc_850 (resp. 23.1%
for rc_190). On the contrary, Scheduling loop only reduces the minimum deadlines by 1.8%
on average, with results ranging from a slight increase of 0.9% for rc_620 to a decrease of
4.5% for rc_560.

The increase of minimum deadlines compared to Static (no loop) is due to the use of an
optimization function added in the SMT as described in [7]. While it typically decreases the
average delays, due to the nature of the optimization constraint and SMT solvers, in some
cases it can also do the opposite.

With respect to GF: Shortest path, we see that the minimum deadlines found are on
average 1.1% lower than the deadlines found with Static (no loop), from an increase of 1.6%
to a decrease of 5.1%. This first set of results confirms that guiding more strongly the search
with smaller values of conf.maxExploredPaths is effective for large networks.

0.7

0.75

0.8

0.85

0.9

0.95

1

rc_00 rc_90 rc_190 rc_300 rc_440 rc_560 rc_620 rc_780 rc_850

N
o

rm
al

is
ed

 m
in

im
u

m
 d

ea
d

lin
e

Flow

GF: MEP 2

GF: MEP 10

GF: Shortest path

Scheduling loop

Static (no loop)

Figure 3 Normalised minimum deadlines for 9 randomly selected flows.

The results of test case ii) are presented in Table 2. In addition, we run an experiment
with GF: MEP 2 with deadline settings to 55%, for which we obtained an acceptable solution
(i.e. cost = 0) in 18h 32min. With the exception of Static (no loop), all other results in the
range 100% to 80% are equivalent, finding an acceptable solution after the first iteration
within 20 min. We can see that without the SMT optimization function, i.e. Static (no loop),
the computation time is shorter, i.e. 13 min. However, with Static (no loop) the deadlines
cannot be reduced under 75%, with a cost function value of 1.000013. With Scheduling loop
(resp. GF: Shortest path) however, the deadlines are reduced to 70%, but at the cost of
a large computation time, i.e 56 min (resp. 2h 43min). With GF: MEP 10, we are able
to reduce the deadlines down to 65%, and with GF: MEP 2 we find a solution for 55%.

ECRTS 2022

8:20 General Framework for Routing, Scheduling and Formal Timing Analysis

Unsurprisingly, the execution time increases when the deadlines decrease, i.e. when a solution
is more difficult to find. Nevertheless, at 70%, GF: MEP 2 finds a solution twice as fast as
Scheduling loop, and 6 times faster than GF: Shortest path.

Table 2 Results when varying deadlines from 100% to 50% of the initial deadlines.

deadlines 100% & 80% 75% 70%
metrics exec. time cost exec. time cost exec. time cost

GF: MEP 2 20 min 0 22 min 0 26 min 0
GF: MEP 10 20 min 0 22 min 0 32 min 0

GF: shortest path 20 min 0 28 min 0 2h 43min 0
Scheduling loop [7] 20 min 0 53 min 0 56 min 0
Static (no loop) [19] 13 min 0 13 min 0 13 min 1.000013

deadlines 65% 60% 50%
metrics exec. time cost exec. time cost exec. time cost

GF:MEP 2 45 min 0 4h 20min 0 24h 2.00094
GF: MEP 10 55 min 0 24h 1.000028 24h 3.00055

GF: shortest path 24h 1.00026 24h 2.00044 24h 6.00100
Scheduling loop [7] 24h 1.00040 24h 2.00041 24h 6.00066
Static (no loop) [19] 13 min 2.00027 13 min 4.00029 13 min 6.00075

Hence, in our test case ii), we have shown that GF: MEP 2 improves the maximum
deadline reduction by at least 26.7%, from 75% to 55% compared to Static (no loop), and
finds an acceptable solution quicker than the other searches we compared it to, when the
deadlines are constraining (e.g. 70%). When no solution is found within the allocated time,
GF: MEP 2 is the search that finds the solution with the smallest cost (e.g. 50%). The
number of flows not fulfilling their constraints is divided by 3 when the deadlines are divided
by 2 (i.e. 50%).

The two test cases show that with our proposed general framework, we can largely reduce
the deadlines with regard to the compared state-of-the-art, i.e. Scheduling loop [7] and Static
(no loop) [19]. This is because both methods explore a much reduced solution space compared
to our proposal and, in particular, due to the fixed routing (and scheduling for Static(no
loop)), they are unable to find better solutions.

The comparison between GF: MEP 2 and GF: MEP 10 shows the importance of selecting
good parameters for the search, and the comparison with GF: shortest path shows the
importance of selecting good parameters and good heuristics to obtain good results. In the
case of shortest path, we observe that i) many paths which are longer in terms of number of
hops but shorted in terms of delays are disregarded, and ii) the lists are constantly resorted,
which is time expensive and can cause a lack of diversity in the selected flows and paths.

We can see that selecting a low value for conf.maxExploredPaths works well on large
network in which exploring all solution within an acceptable time limit is not reasonable, and
so potentially, reducing the solution space does not affect the number of explored solution
compared to setting a larger value of conf.maxExploredPaths. Indeed, the only difference
is which solution are being tested within the time limit. However, for smaller network larger
values of conf.maxExploredPaths are advisable so as not to limit the number of explored
solutions.

A. Finzi and R. Serna Oliver 8:21

4.4 Comparison to related work
To conclude the performance evaluation, we compare our results to those found in four
previous works: [19], [7], [27], and [9]. In Section 4.3, we have compared our proposed method
against previous literature, namely: Scheduling loop [7] and Static (no loop) [19]. We have
shown that compared to Static (no loop) (resp. Scheduling loop), our proposed solution can
decrease the minimum deadlines by up to 28.3% (resp. 26.9%).

In [27], the authors compare their proposed method to the shortest paths (SPA) in a
TTE network. They used SMT to compute the TT schedule as described in [19]. So, Static
(no loop) is very close to the SPA implemented in [27]. In the performance evaluation of [27],
we see that they obtain a maximum reduction of 6.41% of the worst-case delays compared to
SPA, which is significantly less than the 28.3% we have obtained with our proposed method
(the minimum deadline being equal to the worst-case delay). The execution times are not
provided in [27], so we cannot compare the results for this metric.

In [9], the evaluation is done on a TSN network, using the schedulability of the flows to
assess the solution. Unfortunately, not enough information about deadlines and traffic load
is provided, which prevents a performance comparison in our evaluation.

5 Conclusion

In this paper we have presented a general framework for routing, scheduling and formal
timing analysis in deterministic networks (e.g. TSN, TTE). The general framework leverages
user-defined modules (i.e. routing, scheduling and Formal Timing analysis) to search for a
solution fulfilling arbitrary constraints (e.g end-to-end RC and TT delays) and outputs the
best found solution (i.e. TT and RC routing, TT schedule) based on a defined cost-function.

We have provided implementation details for an instantiation of the general framework
for TTEthernet, with example module implementations, input and output constraints, and
cost functions. With this implementation we have evaluated the performance of our proposed
general framework, compared to two state of the art methods.

We have shown that selecting good heuristics and good parameters is of paramount
importance to obtain good results, and that the minimum deadlines (i.e. worst-case delays)
can be reduced up to 28.3% with our proposed method, compared to the state-of-the-art
solution. We have also shown that we are able to divide by up to 3 the number of flows not
fulfilling their constraints compared to prior work.

The importance of good parametrization has been highlighted to select each parameter
value and obtain the best solutions in the least amount of time. However, future work is
necessary to analyze the impact of each parameter on the cost function and execution time,
subject to networks and flow characteristics.

References
1 AEEC. ARINC PROJECT PAPER 664, AIRCRAFT DATA NETWORKS, PART7, AFDX

NETWORK (DRAFT). AERONAUTIC RADIO, INC., 2551 Riva Road, Annapolis, Maryland
21401-7465, November 2003.

2 Moses Charikar, Chandra Chekuri, To-yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha, and
Ming Li. Approximation algorithms for directed steiner problems. Journal of Algorithms,
33(1):73–91, 1999.

3 Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmelik, and Wilfried Steiner. Scheduling
real-time communication in IEEE 802.1Qbv Time Sensitive Networks. In 24th International
Conference on Real-Time Networks and Systems (RTNS). ACM, 2016.

ECRTS 2022

8:22 General Framework for Routing, Scheduling and Formal Timing Analysis

4 J. Diemer, D. Thiele, and R. Ernst. Formal worst-case timing analysis of Ethernet topologies
with strict-priority and AVB switching. In Proc. International Symposium on Industrial
Embedded Systems (SIES). IEEE Computer Society, 2012.

5 Frank Dürr and Naresh Ganesh Nayak. No-wait packet scheduling for IEEE Time-sensitive
Networks (TSN). In Proc. RTNS. ACM, 2016.

6 Jonathan Falk, Frank Dürr, and Kurt Rothermel. Exploring practical limitations of joint
routing and scheduling for TSN with ILP. In 2018 IEEE 24th International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 136–146.
IEEE, 2018.

7 Anaïs Finzi and Silviu S. Craciunas. Integration of SMT-based scheduling with RC network
calculus analysis in TTEthernet networks. In 2019 24th IEEE International Conference on
Emerging Technologies and Factory Automation (ETFA), pages 192–199. IEEE, 2019.

8 Fabrice Frances, Christian Fraboul, and Jérôme Grieu. Using network calculus to optimize
the AFDX network. In Embeeded Real Time Software and Systems (ERTS), 2006.

9 Voica Gavriluţ, Luxi Zhao, Michael L Raagaard, and Paul Pop. AVB-aware routing and
scheduling of time-triggered traffic for TSN. Ieee Access, 6:75229–75243, 2018.

10 Jérôme Grieu. Analyse et évaluation de techniques de commutation Ethernet pour
l’interconnexion des systèmes avioniques. PhD thesis, INPT, 2004.

11 Institute of Electrical and Electronics Engineers, Inc. Time-Sensitive Networking Task Group.
http://www.ieee802.org/1/pages/tsn.html, 2016. retrieved 30-Nov-2020.

12 Issuing Committee: As-2d2 Deterministic Ethernet And Unified Networking. SAE AS6802
Time-Triggered Ethernet. https://www.sae.org/standards/content/as6802/, 2011. re-
trieved 30-Nov-2020.

13 JGraphT team and contributors. JGraphT, September 2016. version: 1.0.0. URL: https:
//jgrapht.org/.

14 J.Y. Le Boudec and P. Thiran. Network calculus: a theory of deterministic queuing systems
for the Internet, chapter 1, pages 3–81. Springer-Verlag, 2001.

15 Dimitrios Michail, Joris Kinable, Barak Naveh, and John V. Sichi. JGraphT—A Java Library
for Graph Data Structures and Algorithms. ACM Trans. Math. Softw., 46(2), May 2020.

16 M Paulitsch, E Schmidt, B Gstottenbauer, C Scherrer, and Kantz H. Time-triggered commu-
nication (industrial applications). Time-Triggered Communication, pages 121–152, 2011.

17 Eike Schweissguth, Peter Danielis, Dirk Timmermann, Helge Parzyjegla, and Gero Mühl.
ILP-based joint routing and scheduling for time-triggered networks. In Proceedings of the 25th
International Conference on Real-Time Networks and Systems, pages 8–17, 2017.

18 Ramon Serna Oliver, Silviu S. Craciunas, and Wilfried Steiner. IEEE 802.1Qbv gate control
list synthesis using array theory encoding. In Proc. Real-Time and Embedded Technology and
Applications Symposium (RTAS). IEEE, 2018.

19 Wilfried Steiner. An evaluation of SMT-based schedule synthesis for time-triggered multi-hop
networks. In Proc. RTSS. IEEE, 2010.

20 Wilfried Steiner, Günther Bauer, Brendan Hall, and Michael Paulitsch. TTEthernet: Time-
Triggered Ethernet. In Roman Obermaisser, editor, Time-Triggered Communication. CRC
Press, August 2011.

21 Domiţian Tămaş-Selicean, Paul Pop, and Wilfried Steiner. Synthesis of communication
schedules for TTEthernet-based mixed-criticality systems. In Proc. CODES+ISSS. ACM,
2012.

22 Domiţian Tămaş-Selicean, Paul Pop, and Wilfried Steiner. Synthesis of communication sched-
ules for TTEthernet-based mixed-criticality systems. In Proceedings of the eighth IEEE/ACM/I-
FIP international conference on Hardware/software codesign and system synthesis, pages
473–482, 2012.

23 Domiţian Tămaş-Selicean, Paul Pop, and Wilfried Steiner. Design optimization of TTEthernet-
based distributed real-time systems. Real-Time Systems, 51(1):1–35, 2015.

http://www.ieee802.org/1/pages/tsn.html
https://www.sae.org/standards/content/as6802/
https://jgrapht.org/
https://jgrapht.org/

A. Finzi and R. Serna Oliver 8:23

24 Daniel Thiele, Philip Axer, and Rolf Ernst. Improving formal timing analysis of switched
Ethernet by exploiting FIFO scheduling. In Proceedings of the 52nd Annual Design Automation
Conference, page 41. ACM, 2015.

25 Qinghan Yu and Ming Gu. Adaptive group routing and scheduling in multicast time-sensitive
networks. IEEE Access, 8:37855–37865, 2020.

26 Luxi Zhao, Paul Pop, Qiao Li, Junyan Chen, and Huagang Xiong. Timing analysis of rate-
constrained traffic in TTEthernet using network calculus. Real-Time Systems, 53(2):254–287,
2017.

27 Zhong Zheng, Feng He, and Huagang Xiong. Routing optimization of Time-Triggered Ethernet
based on genetic algorithm. In 2020 AIAA/IEEE 39th Digital Avionics Systems Conference
(DASC), pages 1–8. IEEE, 2020.

ECRTS 2022

Correctness and Efficiency Criteria for the
Multi-Phase Task Model
Rémi Meunier #

IRIT, AUSY, INSA Toulouse, France

Thomas Carle #

IRIT, Universite Toulouse 3 Paul Sabatier, CNRS, France

Thierry Monteil #

IRIT, INSA Toulouse, CNRS, France

Abstract
This paper investigates how the multi-phase representation of real-time tasks impacts their im-
plementation and the precision of the interference analysis in a multi-core context. In classical
scheduling and interference analyses, tasks are represented as a single phase with a duration equal
to their Worst-Case Execution Time (WCET) in isolation, annotated with their worst-case number
of accesses. We propose a general formal definition of a task model in which tasks are represented
as a sequence of such phases: the multi-phase model. We then provide a set of general correction
criteria for the implementation of tasks represented in the multi-phase model, which is agnostic
of the analysis method applied on the tasks. We also use the multi-phase model on an avionics
case-study and study its impact on the interference analysis. Finally, we define a set of efficiency
criteria using a statistical study of the most efficient multi-phase shapes.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Multicore architectures; Computer systems organization → Embedded
software

Keywords and phrases Task model, Interference, Multicore architectures

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.9

Funding This work was supported by a grant overseen by the French National Research Agency
(ANR) as part of the MeSCAliNe (ANR-21-CE25-0012) project.

1 Introduction

The growing adoption of multi-core processors in industrial real-time systems [21,22] raises
the challenge of providing safe and tight Worst-Case Execution Time (WCET) bounds
for tasks running in parallel on separate cores. Indeed, in multi-core architectures, the
cores execute their processes/threads independently from one another, but they share some
hardware components such as caches, buses and memories. Interference may happen in these
shared components: when a task requires to access a component which is already in use
by another task running on another core, it has to wait until the component is free again.
This phenomenon incurs execution delays which depend on the context of the task execution
(which other tasks are running in parallel, and are they accessing the shared resources ?).
In traditional single-core WCET analysis [1, 3], each task is analysed in isolation i.e. as
if no other task was running in parallel. Then a schedulability or Worst-Case Response
Time (WCRT) analysis is performed using a model in which each task is represented by
its WCET, in order to guarantee that each individual task meets its deadline or that the
system as a whole meets an end-to-end timing constraint. A direct consequence of the delays
incurred by interference is that traditional WCETs no longer represent a safe upper-bound
on the execution time of the tasks when they are run on multi-core processors. It becomes
necessary to model tasks using at least their WCET in isolation and their worst-case number

© Rémi Meunier, Thomas Carle, and Thierry Monteil;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 9; pp. 9:1–9:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:remi.meunier@irit.fr
https://orcid.org/0000-0002-5329-8969
mailto:thomas.carle@irit.fr
https://orcid.org/0000-0002-1411-1030
mailto:thierry.monteil@irit.fr
https://orcid.org/0000-0001-6031-5555
https://doi.org/10.4230/LIPIcs.ECRTS.2022.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Correctness and Efficiency Criteria for the Multi-Phase Task Model

of accesses to shared components, and to perform an additional interference analysis in order
to obtain a safe over-estimation of their execution time. However, this classical model, which
maps one task to one temporal phase was not designed with interference analysis in mind,
and may not be the best-suited to analyse tasks running in parallel.

More recent models represent each task as a sequence of phases, each characterized
by a WCET and a number of accesses, either as an attempt to increase the precision
of the interference analysis [2, 4, 19], or in order to build schedules in which there is no
interference [9, 20]. This multi-phase abstraction maps temporal phases to actual sections of
code which are separated by synchronizations. The shape of the phases may be dictated by
a programming model in which the programmers insert synchronizations at particular points
(e.g. [9]), or may be designed during the analysis and enforced by synchronizations that are
injected in the code afterwards (e.g. [5]).

In the remainder of the paper, we focus on memory accesses as the sole source for
interference in the system. However, the abstractions that we describe naturally support
any other kind of interference source: the only thing that changes is the analyses that must
be performed on the code in order to obtain the abstract models of the tasks, which are
not considered in the scope of the paper. In particular, we consider non-preemptive static
(or fixed-priority time-triggered) scheduling, but limited preemptions could be supported by
adapting classic cache-related preemption delay (CRPD) computation techniques.

In this paper we make the following contributions:
we give a general, formal description of the multi-phase model that is agnostic of the
method used to analyze the tasks. As such it can be seen as a generalization of the
2-phase [18] and 3-phase [9] models, and as an extension of the model of [5] to the notion
of synchronizations.
we investigate the relationship between the phases and the synchronizations that enforce
them, that is to say between the multi-phase analysis model of tasks and their actual
implementation. We show that synchronizations are not mandatory at the boundaries
between two consecutive phases, and provide criteria to validate the implementation of a
task w.r.t. the assumptions that were made during the analysis. Once again the criterion
is agnostic about the way the analysis is actually performed.
we apply the multi-phase model on an avionics case-study, and show that correlating the
shape of the model to the actual behavior of the tasks may not lead to the best results.
As a result we investigate how the shape of multi-phase representations impacts the
result of static interference analysis, and deduce a promising heuristic objective to build
multi-phase models of tasks. Since we discuss a general model and not a particular
method, this study is based on a statistical experiment relying on synthetic artifacts.

The paper is organized as follows: we present the related work in Section 2 and we
introduce formal definitions in Section 3. Then, in Section 4 we study the relationship
between phases and synchronizations. In Section 5, we present our results on the ROSACE
case-study. In Section 6, we detail our statistical study of the multi-phase model, and finally
we conclude in Section 7.

2 Related Work

The problem of identifying, quantifying and possibly reducing the interference between
real-time tasks running on multi-core processors is one of the most pressing issues that the
real-time community is facing. Consequently, a lot of work has been done already, and various
methods have been developed, although none of them seems to be entirely satisfying [13].

R. Meunier, T. Carle, and T. Monteil 9:3

One of the most comprehensive approaches so far, presented in [6], uses the execution
traces of the tasks composing the system, and models all the hardware components shared
between cores (e.g. buses, RAMs) in order to quantify the exact worst-case amount of
interference in the system, given a fixed priority scheduling policy. This analysis method is
thus able to provide a safe and tight interference-aware WCRT for a task system. However
the authors point out that working with all the possible execution traces of all the tasks
composing a system is not feasible for realistic, industrial systems. They advocate the use of
a more abstract representation of the tasks execution in order to overcome this intractability
issue, but do not provide such an abstraction. It thus remains open to find a suitable
candidate abstraction to achieve a trade-off between tractability and precision of the analysis.

Other approaches, inspired by compilation methods and low-level code analysis, use static
scheduling approaches to handle, reduce or suppress the interference in the system. These
methods are inspired by the PRedictable Execution Model (PREM) introduced in [18]. This
model, originally designed for single-core processors with Input/Output registers, abstracts
the execution of tasks as a sequence of so called memory and execution phases. In a memory
phase, the core executes only memory (or I/O register) operations, which require to send or
receive data across an interconnect. In an execution phase however, the code is executed
locally in the core, and is guaranteed not to make accesses to the interconnect. As a result,
only the memory phases are subject to interference. The Acquisition Execution Restitution
(AER) model [9] can be seen as an extension of the PREM model to the context of avionics
systems running on multi-core architectures. In AER, each task is divided into exactly three
phases: an acquisition phase that loads to a core-local memory (cache or scratchpad) all
the code and data which may be necessary to execute the task, an execution phase that
executes the task code locally, and a restitution phase in which the results of the task are
written back to the shared memory. A static schedule of the tasks is computed in which the
acquisition and restitution phases of tasks are guaranteed not to happen simultaneously, and
synchronizations are inserted to enforce this schedule. As a result, the system is completely
free from interference. This line of work simplifies the analysis, by completely suppressing
the interference in the system, but also introduces some limitations of its own. First, in
these approaches, the tasks software has to be written with the phases in mind: this imposes
constraints on the way the code is written, and makes it challenging to use legacy code.
Automatic transformations of functions into the AER/PREM model have been developed as
an attempt to shift the design burden from the programmer to the compiler [10,11,14–16,23].
However, all these methods perform consequent modifications of the applications in order
to make them comply with the AER/PREM model, and thus do not solve the limitations
regarding legacy code. As a second limitation, the pre-loading of the tasks code and data
increases the memory requirements of the system by forcing the load of code and data which
may not be used during the execution phase (e.g. due to conditional execution). Finally, the
static nature of these solutions is compatible to systems in which certification constraints are
very high (e.g. avionics systems), but may be too rigid for less critical applications.

In [23], the authors evaluate the PREM and AER models in different scenarios in which
interference is either prohibited or can be tolerated. They conclude that for a given task
system, tolerating interference is more effective in terms of WCRT than building a schedule
without interference at all. In the same spirit, the Time Interest Points (TIPs) approach [5]
has been developed to reconcile the multi-phased task model with legacy code. In this
model, a multi-phase representation of the tasks is obtained through static analysis of the
binary code of the tasks. As a consequence, no restriction is put on the way the source code
must be written. Each phase of a task may perform a certain amount of memory accesses,

ECRTS 2022

9:4 Correctness and Efficiency Criteria for the Multi-Phase Task Model

which is determined by the analysis. Using this representation, an interference analysis
can be performed as part of a WCRT analysis such as the one in [6], or as part of a static
scheduling/compiling approach (e.g. [7, 8]). Moreover, the analysis can be tuned in order to
produce different representations of the same task (as in [5]). However, to the best of our
knowledge, no study has yet been performed in order to define what a “good” multi-phased
representation is. In this paper we provide a first answer to this question.

3 Formal Models

Notation Definition

τ i task i

ϕi
k phase k in the representation of τ i

ϕi
k.d start date of ϕi

k without interference
ϕi

k.dur worst-case duration of ϕi
k without interference

ϕi
k.m maximum number of memory accesses performed within ϕi

k

ti
j execution trace j of task τ i

ηi
j,k node k in trace ti

j

ηi
j,k.it instruction represented by ηi

j,k

ηi
j,k.d worst-case execution date of ηi

j,k without interference
ηi

j,k.m maximum number of memory accesses performed by ηi
j,k

ηi
j,k.sync True if the node is synchronized, i.e. cannot be executed before its ηi

j,k.d

slast(ηi
j,k) last synchronized node before ηi

j,k in trace ti
j

ti
j |ϕi

k

restriction of trace ti
j to ϕi

k, i.e. the set of nodes in ti
j that may execute during ϕi

k

We model a system of real-time tasks τ i (i ≥ 0). Each task is represented in two separate
ways, as depicted in Figure 1:

a “time-centric” representation called multi-phase. In this abstraction, the task is modelled
by a sequence of time slots, called phases, which covers its WCET. We call this sequence
of phases a profile. Each phase is associated with an upper bound on the number of
memory accesses that the task can perform during the corresponding time slot. This
representation is used to statically compute the schedule and perform the interference
analysis of the system (in a timing-compositional approach). The mapping between tasks
and multi-phase profiles is not bijective: multiple profiles can be found which represent
the same task.
a “code-centric” representation. In this abstraction, a task is represented by all its
possible execution traces (i.e. all the possible sequences of instructions executed from the
start of the task to its end). Since this set may be too large to analyze in practice, we
consider memory-centric traces: only instructions which may perform memory accesses1

are represented in the traces, and the rest of the instructions is abstracted by computing
local WCETs. This representation is an intermediate step to go from the binary code

1 In modern processors, the actual accesses may not be performed as soon as the corresponding instruction
is executed e.g. if a store buffer delays store operations. However it is possible to statically bound the
time window during which the access can be performed. For clarity reasons, we consider in this paper
only the date when the instruction initiates the access in the pipeline, but the model can be easily
extended to work with an interval of potential access dates.

R. Meunier, T. Carle, and T. Monteil 9:5

of a task to its multi-phase representation, and back: it allows the number of memory
accesses in each phase to be bounded correctly, and to insert synchronization code at the
correct locations in the binary to enforce the scheduling choices.

t

2 possible
profiles for

 span span

Figure 1 Three traces and two profiles for task τ i. Red and green rectangles show the potential
span of nodes ηi

2,3 and ηi
1,7 respectively.

The scope of this paper does not include the methods required to obtain trace-based and
phase-based representations of tasks. We focus instead on the relationship between these
two abstraction levels. In this section, we describe these models formally and present this
relationship.

3.1 Task Models
We denote Pi = {ϕi

l|0 ≤ k < Φi} the ordered set of phases (i.e. the multi-phase profile)
representing the execution of task τ i, with Φi the number of phases. Each ϕi

l is defined by:
ϕi

l.d: its start date.
ϕi

l.dur: its worst-case duration in isolation (without interference).
ϕi

l.m: the worst-case number of memory accesses that may be performed within
[ϕi

l.d, ϕi
l.d + ϕi

l.dur[.
The date of ϕi

0, which is also the start date of task τ i without interference, is set when the
static schedule of the system is built. Then, for each ϕi

l (l > 0) the start date is defined by:

ϕi
l.d = ϕi

0.d +
∑

0≤q<l

ϕi
q.dur (1)

Alternatively, we can define recursively the start date of each phase (except the first one) by:

∀l > 0, ϕi
l.d = ϕi

l−1.d + ϕi
l−1.dur

In order to compute the worst-case number of memory accesses performed during a given
phase (i.e. ϕi

l.m), the code portions of τ i that may be executed during ϕi
l must be identified

and analyzed. To do so, we introduce Ti = {ti
j |0 ≤ j < T i} the set of execution traces of

τ i, where T i is the number of traces. Each trace corresponds to a possible execution of τ i

(corresponding to a particular set of inputs) and is a sequence of nodes ηi
j,k representing

instructions with 0 ≤ k < N i
j the node’s index in its sequence. ηi

j,0 is the entry point of task
τ i and each node is defined by:

ECRTS 2022

9:6 Correctness and Efficiency Criteria for the Multi-Phase Task Model

ηi
j,k.it : the instruction represented by ηi

j,k. Here, an instruction is not just understood
as an element of the core ISA (e.g. the ADD instruction), but as a particular instruction
in the binary code of the task. Thus, nodes from different traces may reference the same
instruction in the code.
ηi

j,k.m ∈ N : the worst-case number of memory accesses performed by ηi
j,k.it.

ηi
j,k.d : the worst-case execution date of ηi

j,k.it in trace ti
j .

3.2 Synchronized Nodes
As pointed out in Section 2, working on the complete set of execution traces of all tasks
composing the system is not realistic. As a consequence, we formulate our correctness criteria
using memory-centric abstract traces: the nodes composing the traces that we consider only
represent the instructions that may perform memory accesses. The rest of the instructions is
abstracted by computing local WCETs between consecutive memory accesses and accounting
for these durations in the worst-case execution date of the nodes (ηi

j,k.d)2. As a result, in this
model each node is guaranteed not to execute after its worst-case date, but is a priori able to
execute anytime before this date. In order to account safely for the accesses in the phases, we
thus would have to account for the accesses performed by a node in all phases that start before
the worst-case date of this node. This would lead to huge over-approximations. In order to
limit this approximation, some selected nodes must be synchronized: synchronization code is
inserted in the program to ensure that the synchronized nodes cannot be executed before
their worst-case date. The synchronization code can be added by the programmer directly in
the source code of the tasks, by the compiler as part of a low-level compilation pass, or during
an automatic code re-engineering process to adapt legacy code to the multi-phase model. We
attract the reader’s attention to two particular aspects of the model described in Section 3.1:
(i) the execution date for nodes that reference the same instruction in different traces and
(ii) the modelling of instructions inside loops which may appear multiple times in the same
trace at different dates. Both these aspects have to do with the way synchronizations are
implemented in the tasks. When complex synchronization mechanisms are used (e.g. that
are aware of the current execution trace or of the iteration count in the current loop), the
same memory instruction in the code may be modelled as two (or more) nodes with different
dates, which perfectly fits the model. If, however, the synchronization mechanism is unaware
of the context, the worst-case execution date of nodes that reference the same instruction on
separate traces must be the same. Since the model uses worst-case dates, the date chosen
for all these nodes must be the maximum date amongst them. Additionally, without a
context-aware mechanism, synchronizations inside loops become impossible to implement, so
the model naturally fits this case. In this paper, we voluntarily keep the model as general as
possible and make no assumption on the implementation of the synchronization mechanisms
in order to formulate correctness criteria that apply in all circumstances.

To keep track of the synchronized nodes, we add the boolean attribute ηi
j,k.sync which is

true if the node is synchronized and false otherwise.
Using these synchronizations, the accesses performed by any node must only be accounted

for in the phases that: (1) finish after the last synchronization prior to the node AND (2)
start before the worst-case date of the node.

2 Our criteria are also valid for simple tasks for which obtaining and manipulating the exact timed
execution traces is possible

R. Meunier, T. Carle, and T. Monteil 9:7

This is illustrated in Figure 1, which depicts 3 execution traces (ti
0, ti

1 and ti
2) and 2

possible profiles for a task τ i. Synchronized nodes are depicted in black in the traces. The
red (resp. green) rectangle shows the time window in which the accesses of node ηi

2,3 (resp.
ηi

1,7) must be accounted for. In the first profile, the accesses of ηi
1,7 must be considered in

phases ϕi
2 and ϕi

3, whereas in the second profile, they would only be considered in ϕi
3.

It is important to note that since ηi
j,k.d is a worst-case date, if node ηi

j,k is synchronized,
then its execution date is exactly3 ηi

j,k.d. We denote slast(ηi
j,k) the last synchronized node

before ηi
j,k in trace ti

j . By convention, we set slast(ηi
j,k) = ηi

j,k when ηi
j,k.sync.

To account for the tasks schedule, for all tasks τ i, the entry node (on any trace ti
j) is

synchronized and its worst-case execution date is set to the start of the first phase of the
profile:

▶ Property 1. ∀i, j : ηi
j,0.sync ∧ ηi

j,0.d = ϕi
0.d

The worst-case date of any other node ηi
j,k with k > 0 is defined according to the date of the

last synchronized node on its trace:

▶ Property 2. ηi
j,k.d = ηi

j,s.d +
∑

s≤t<k

wcet(ηi
j,t.it, ηi

j,t+1.it)

where wcet(ηi
j,t.it, ηi

j,t+1.it) is the WCET between instructions ηi
j,t.it and ηi

j,t+1.it, and ηi
j,s

is slast(ηi
j,k) if ¬ηi

j,k.sync and slast(ηi
j,k−1) otherwise.

A node ηi
j,k can only be executed in the interval [slast(ηi

j,k).d, ηi
j,k.d]. As we saw in the

example of Figure 1, this interval may overlap with several phases of the task profile.
We denote ti

j |ϕi
l

the set of nodes in trace ti
j that may be executed within [ϕi

l.d, ϕi
l.d+ϕi

l.dur[,

called the restriction of trace ti
j to phase ϕi

l:

ti
j |ϕi

l

= {ηi
j,k|(ηi

j,k.d ≥ ϕi
l.d) ∧ (slast(ηi

j,k).d < ϕi
l.d + ϕi

l.dur)}

The notion of restriction of a trace to a phase is illustrated in Figure 2 on 3 traces over
phase ϕi

1.

t

Figure 2 Restrictions of traces ti
0, ti

1 and ti
2 to phase ϕi

1.

3.3 Maximum Number of Accesses in a Phase
The number of accesses that may be performed during a phase for an individual trace is
equal to the sum of the accesses of the nodes from this trace that may be executed in the
phase. During the execution of a task, only one trace executes (which one depends on the

3 With a precision of a few cycles depending on the implementation of the synchronization mechanism.

ECRTS 2022

9:8 Correctness and Efficiency Criteria for the Multi-Phase Task Model

execution context): as a consequence, the worst-case number of accesses performed during a
phase is equal to the maximum number of accesses that may be performed by any execution
trace during that phase.

▶ Property 3. The worst-case number of accesses that may be performed during phase ϕi
l,

denoted ϕi
l.m, is equal to the maximum of accesses per trace during phase ϕi

l:

ϕi
l.m = max

0≤j<T i
(

∑
ηi

j,k
∈ti

j|ϕi
l

ηi
j,k.m)

▶ Correctness criterion 1. The formula of Property 3 provides a conservative estimation of
the number of memory accesses that can occur during the phases of a multi-phase profile.

Since nodes may span over multiple phases, the number of accesses counted task-wise may be
overestimated, even when some nodes are synchronized. However, nodes from a trace which
span over multiple phases may be “covered” by other nodes from another trace performing
more accesses on a given phase. For example, in Figure 2, if we consider that each node
performs 1 access, trace ti

2 is the local worst trace on ϕi
3 with 4 nodes performing accesses

and trace ti
1 is the local worst trace on ϕi

2 with 3 nodes performing accesses. On phase ϕi
1,

traces ti
0 and ti

1 both have 3 nodes performing accesses. In such circumstances, although
node ηi

0,4 spans over ϕi
3, ϕi

2 and ϕi
1, it does not contribute to any over-approximation.

We quantify the task-wise over-approximation of memory accesses compared to the
1-phase model, by computing the difference between the sum of accesses accounted for in
each phase, and the worst trace-wise number of accesses.

▶ Property 4. The memory access over-approximation in a multi-phase profile of a task τ i

compared to its 1-phase representation is equal to:

∆ = (
∑

0≤l<Φi

ϕi
l.m) − max

0≤j<T i
(

∑
0≤k<Ni

j

ηi
j,k.m)

4 Consequences of the Interference Analysis

Notation Definition

ϕi
l.p timing penalty added to ϕi

l due to potential interference
ϕi

l.d
post-analysis start date of ϕi

l

ηi
j,k.d# worst-case date of node ηi

j,k in the presence of interference

In this section, we consider a task system for which an analysis has provided a multi-phase
model as well as a selection of synchronized nodes for each task. We assume that this task
system is scheduled statically (the ϕi

0.d for each τ i are selected and the start dates of the
other phases are computed using equation 1), and that an interference analysis (such as
e.g. [7]) is applied to compute and account for the effect of potential interference between the
tasks phases, assuming the timing-compositionality of the target processor [12]. In practice,
each phase that potentially suffers from interference is extended using a time penalty, and
the next phases are postponed accordingly. This extension may violate assumptions that
were made on the correspondence between phases and traces: in particular the restrictions
of traces to phases that were computed prior to the interference analysis may no longer
be correct, resulting in the possibility that some contentions between cores may happen in
phases in which they were not accounted for.

R. Meunier, T. Carle, and T. Monteil 9:9

4.1 Example

(a)

(b)

(c)

t

Figure 3 A trace and its corresponding phases representation : (a) in isolation, (b) after the
interference analysis, red rectangles are the timing penalty added for each phase, (c) after a correction
on nodes dates.

Figure 3 displays trace ti
2 and the profile from Figure 2, at three stages of the analysis:

(a) depicts the trace and phases before the interference analysis. We have:
ti
2|ϕi

0

= {ηi
2,0, ηi

2,1} ; ti
2|ϕi

1

= {ηi
2,2, ηi

2,3} ; ti
2|ϕi

2

= {ηi
2,4, ηi

2,5} ; ti
2|ϕi

3

= {ηi
2,6, ηi

2,7, ηi
2,8, ηi

2,9}

Additionally, we consider that for this task, ϕi
1.m = 2 and ϕi

2.m = 2.
(b) shows the same trace and profile after the interference analysis (assuming other tasks
in the system): the effect of interference is materialized by timing penalties on the phases
(the red rectangles after each phase). ti

2|ϕi
1

, ti
2|ϕi

2

and ti
2|ϕi

3

are different than in (a):

ti
2|ϕi

0

={ηi
2,0, ηi

2,1}; ti
2|ϕi

1

={ηi
2,2, ηi

2,3, ηi
2,4, ηi

2,5}; ti
2|ϕi

2

= {ηi
2,5, ηi

2,6, ηi
2,7, ηi

2,8}; ti
2|ϕi

3

= {ηi
2,8, ηi

2,9}

As a consequence, the worst-case amount of accesses that can happen during phases ϕi
1

and ϕi
2 is higher than what was assumed and therefore their interference penalty and

those of the tasks scheduled in parallel are no longer conservative.
(c) represents a solution to respect the model’s assumptions of (a): the synchronized date
of ηi

2,4 (resp. ηi
2,6) is set to the new starting date of ϕi

2 (resp. ϕi
3), which is the unique

phase in which it was accounted for in (a). With this slight modification, the restrictions
of ti

2 to each phase are identical to the ones in (a) and the ϕi
l.m that was computed in

isolation for each phase remains correct.

4.2 Enforcing the Model’s Assumptions and the Analysis Results
Since the duration and start dates of phases can be changed as a result of the interference
analysis, new attributes are added to the formal model of the phases:

ϕi
l.p ≥ 0 is the timing penalty added to ϕi

l due to potential interference. It is a conservative
bound computed during the interference analysis.
ϕi

l.d
is the post-analysis date of ϕi

l, i.e. its start date taking into account the potential
interference in the system.

After the interference analysis, the start date of some tasks may be postponed due to
interference that delays previous tasks. ϕi

0.d# is thus fixed by applying the interference
analysis results to the initial schedule. The start dates of all other phases ϕi

l describing the
execution of τ i are computed as:

ϕi
l.d

= ϕi
0.d# +

∑
0≤q<l

(ϕi
q.dur + ϕi

q.p) (2)

ECRTS 2022

9:10 Correctness and Efficiency Criteria for the Multi-Phase Task Model

▶ Correctness criterion 2. The synchronization dates in the final implementation of tasks
must at least be equal to the start date of the corresponding phase: for each synchronization
node ηi

j,k ∈ ti
j |ϕi

n

, the synchronization date is set to at least ϕi
n.d#. This way it is guaranteed

that nodes after ηi
j,k cannot execute and thus produce accesses before the start of ϕi

n.

It seems straightforward that, by construction, a task set implemented using this rule
is guaranteed to fulfill the assumptions made during the interference analysis: during the
execution of the system, memory accesses will only occur at times that were accounted for
during the analysis, and thus the amount of interference cannot be larger in practice than
what was accounted for. However, although this implementation rule directly guarantees
that accesses are not performed before the phases in which they are accounted for, it may
be harder to convince oneself that they cannot occur later than the end of these phases.
Consequently, and given the potentially critical nature of the tasks modelled in the multi-
phase representation, we provide in the remainder of the section a formal proof of the
correctness of this implementation scheme w.r.t. the result of the interference analysis. Once
again, this is completely agnostic of the analysis method, as long as it correctly provides a
conservative bound on the interference level.

We denote ηi
j,k.d# the post-analysis worst-case date of node ηi

j,k. The post-analysis dates
of nodes are upper bounds on the worst-case execution dates of nodes in the presence of
interference. We start by characterizing those bounds in our formal model (Properties 5, 6
and 7), and then use them to prove the correctness of the implementation of a multi-phase
model of tasks.

First, the post-analysis execution date of the entry point of each task τ i is the post
analysis start date of its first phase ϕi

0.

▶ Property 5. For any task τ i: ∀j < T i, ηi
j,0.d# = ϕi

0.d#

Second, correctness criterion 2 has the following consequences for the post-analysis
execution date of any synchronized node ηi

j,k (except the entry point) of any task τ i:
if the phase ϕi

n in which the node was supposed to be executed is postponed due to
interference penalties on previous phases, the node cannot be executed before the post-
analysis start date of ϕi

n.
if previous synchronized nodes see their execution dates postponed, the synchronization
date of ηi

j,k must be postponed accordingly, and thus computed from the post-analysis
date of the previous synchronized node ηi

j,s. In this case, we must consider the interference
that can take place between ηi

j,s and ηi
j,k. If there exists one or more phases that span

entirely between the two nodes, their penalties are added to the post-analysis date of
ηi

j,k (which is conservative). Moreover, by convention we count in the post-analysis date
of ηi

j,k the entire amount of penalty of the phase to which it belongs (which is also
conservative since it accounts for the interference that can occur on each access in the
phase prior to the synchronization node, and on each access that may occur until the
next synchronization node).

▶ Property 6. For any synchronized node ηi
j,k of any trace ti

j of task τ i:

(k > 0 ∧ ηi
j,k.sync ∧ ηi

j,k ∈ ti
j |ϕi

n

∧ ηi
j,s = slast(ηi

j,k−1) ∧ ηi
j,s ∈ ti

j |ϕi
m

)

⇒ ηi
j,k.d# = max(ϕi

n.d#, ηi
j,s.d# +

∑
s≤l<k

wcet(ηi
j,l.it, ηi

j,l+1.it) +
∑

m<b≤n

ϕi
b.p)

R. Meunier, T. Carle, and T. Monteil 9:11

▶ Correctness criterion 3. The synchronization dates in the final implementation of tasks
must not be set to a value higher than the date computed in Property 6.

Finally, for any non-synchronized node, its post-analysis date accounts for the possible
postponing of the previous synchronized node ηi

j,s. Note that the potential interference
occurring between them has been accounted for entirely in the post-analysis date of the
previous synchronized node.

▶ Property 7. For any non-synchronized node ηi
j,k of any trace ti

j of task τ i:

(¬ηi
j,k.sync ∧ ηi

j,s = slast(ηi
j,k)) ⇒ ηi

j,k.d# = ηi
j,s.d# +

∑
s≤l<k

wcet(ηi
j,l.it, ηi

j,l+1.it)

4.3 Proof of Correctness
We now prove that any task system which respects the 3 correctness criteria is correct
w.r.t. the results of the interference analysis i.e. cannot generate interference that was not
accounted for.

First, the difference between the start date of a synchronized node ηi
j,k before and after

the interference analysis is bounded by the difference between the start date of the phase ϕi
l

in which it is executed, before and after the interference analysis, added to the maximum
amount of interference that can occur in ϕi

l.

▶ Lemma 1. ∀ηi
j,k: (ηi

j,k.sync ∧ ηi
j,k ∈ ti

j |ϕi
l

) ⇒ ηi
j,k.d# − ηi

j,k.d ≤ ϕi
l.d

− ϕi
l.d + ϕi

l.p

Proof. We will prove by induction that the property is true for all synchronized nodes.
If ηi

j,k is the entry node of τ i, the proof is direct using Properties 1 and 5. Otherwise,
using Property 6, ηi

j,k.d# is either equal to ϕi
l.d

or must be computed from the previous
synchronized node on trace ti

j . Let ηi
j,s = slast(ηi

j,k−1), and assume that the property is true
for ηi

j,s. Then,
If ηi

j,k.d# = ϕi
l.d

#:
since ηi

j,k ∈ ti
j |ϕi

l

, by definition ηi
j,k.d ≥ ϕi

l.d, and thus ηi
j,k.d# − ηi

j,k.d ≤ ϕi
l.d

− ϕi
j .d.

Otherwise:
ηi

j,k.d# = ηi
j,s.d# +

∑
s≤a<k

wcet(ηi
j,a.it, ηi

j,a+1.it) +
∑

m<b≤l

ϕi
b.p. Using Property 2, we

get: ηi
j,k.d# − ηi

j,k.d = ηi
j,s.d# − ηi

j,s.d +
∑

m<b≤l

ϕi
b.p. The induction hypothesis gives us:

ηi
j,s.d# − ηi

j,s.d ≤ ϕi
m.d# − ϕi

m.d + ϕi
m.p, where ϕi

m is the phase in which ηi
j,s executes. If

m = l (i.e. both nodes execute in the same phase) the property is directly proven for
node ηi

j,k. Otherwise, m < l and then ϕi
l.d

− ϕi
l.d = ϕi

m.d# − ϕi
m.d +

∑
m≤b<l

ϕi
b.p (using

Equations 1 and 2), and thus the property is also proven.
By induction, we just proved that the property holds for all synchronized nodes. ◀

We are now ready to prove the correctness property:

▶ Theorem 1. For any task system that respects correctness criteria 1, 2 and 3, for any ηi
j,k

of any task τ i, if ηi
j,k spans over a phase ϕi

l after the interference analysis, then ηi
j,k was

necessarily accounted in the restriction of trace ti
j to ϕi

l before the analysis:

∀0 ≤ j < T i, ∀0 ≤ k < N i
j , ∀0 ≤ l < Φi :

[slast(ηi
j,k).d#, ηi

j,k.d#] ∩ [ϕi
l.d

#, ϕi
l.d

+ ϕi
l.dur + ϕi

l.p[̸= ∅ ⇒ ηi
j,k ∈ ti

j |ϕi
l

ECRTS 2022

9:12 Correctness and Efficiency Criteria for the Multi-Phase Task Model

Proof. The case where ηi
j,k is the entry node is direct. For all other nodes we consider

separately the case of synchronized nodes and of non-synchronized nodes.

Case 1: ηi
j,k.sync is true:

By convention, slast(ηi
j,k) = ηi

j,k. Let us assume ϕi
l such that ηi

j,k.d# ∈ [ϕi
l.d

#, ϕi
l.d

+
ϕi

l.dur + ϕi
l.p[. Let us denote ϕi

z the phase such that ηi
j,k ∈ ti

j |ϕi
z

(z is unique because ηi
j,k

is synchronized). We want to prove that l = z. Using Property 6, either ηi
j,k.d# = ϕi

z.d#

or it is greater. If it is equal, then directly ϕi
l = ϕi

z because phases of the same task do
not overlap. Otherwise, if z > l then ηi

j,k.d# > ϕi
z.d# ≥ ϕi

l.d
+ ϕi

l.dur + ϕi
l.p which

contradicts the assumption. So z would have to be less than l. Now, since ηi
j,k ∈ ti

j |ϕi
z

,

ηi
j,k.d − ϕi

z.d < ϕi
z.dur. At the same time, ηi

j,k.d# ≥ ϕi
l.d

≥ ϕi
z.d# + ϕi

z.dur + ϕi
z.p, so

ηi
j,k.d# − ϕi

z.d# ≥ ϕi
z.dur + ϕi

z.p. This contradicts Lemma 1, from which we conclude
that l = z. This concludes the proof for case 1.

Case 2: ηi
j,k.sync is false:

Let ϕi
l such that [slast(ηi

j,k).d#, ηi
j,k.d#]∩ [ϕi

l.d
#, ϕi

l.d
+ϕi

l.dur +ϕi
l.p[̸= ∅. Let us denote

ϕi
m the phase to which slast(ηi

j,k).d# belongs, and assume by absurd that ηi
j,k ̸∈ ti

j |ϕi
l

.

Then by definition either (slast(ηi
j,k).d > ϕi

l.d + ϕi
l.dur) or (ηi

j,k.d < ϕi
l.d).

If slast(ηi
j,k).d > ϕi

l.d + ϕi
l.dur: then m > l, and thus using Property 6: slast(ηi

j,k).d# ≥
ϕi

m.d# ≥ ϕi
l.d

+ ϕi
l.dur + ϕi

l.p, which contradicts the original assumption.
If ηi

j,k.d < ϕi
l.d, then using Property 2: slast(ηi

j,k).d +
∑

s≤t<k

wcet(ηi
j,t.it, ηi

j,t+1.it) < ϕi
l.d.

Then, we can deduce:
slast(ηi

j,k).d# +
∑

s≤t<k

wcet(ηi
j,t.it, ηi

j,t+1.it) < ϕi
l.d + slast(ηi

j,k).d# − slast(ηi
j,k).d

P rop. 7⇒ ηi
j,k.d# < ϕi

l.d + slast(ηi
j,k).d# − slast(ηi

j,k).d

⇒ ηi
j,k.d# < ϕi

l.d + slast(ηi
j,k).d# − slast(ηi

j,k).d +
l−1∑

b=m+1

ϕi
b.p

Lemma 1⇒ ηi
j,k.d# < ϕi

l.d + ϕi
m.d# − ϕi

m.d + ϕi
m.p +

l−1∑
b=m+1

ϕi
b.p

⇒ ηi
j,k.d# < ϕi

m.d# + ϕi
m.p +

l−1∑
b=m+1

ϕi
b.p +

l−1∑
b=m

ϕi
b.dur

⇒ ηi
j,k.d# < ϕi

l.d
#

which contradicts the initial hypothesis. We conclude that necessarily ηi
j,k ∈ ti

j |ϕi
l

. ◀

We just proved that the correctness criteria that we enumerated in the first part of the
paper guarantee that the implementation of a task system described in the multi-phase
model is correct w.r.t. a chosen interference-aware static schedule. These criteria are very
simple, which makes them easy to verify and offers a lot of room for optimizations in the
analysis of tasks, both in order to derive a profile for tasks and to select the synchronization
nodes. In the remainder of the paper, we concentrate on the efficiency of the model w.r.t.
the interference analysis. We start by experimenting the multi-phase model on a case study,
and then perform a statistical analysis in order to derive general efficiency criteria which can
in the future serve as an objective function for analysis heuristics.

R. Meunier, T. Carle, and T. Monteil 9:13

5 Efficiency of the Multi-Phase Model on the ROSACE Case-Study

ROSACE [17] is a flight controller case-study composed of 15 communicating tasks running
at different frequencies. We followed the Time Interest Points methodology described in [5]
to obtain the worst-case execution traces and multi-phase profiles for the ROSACE tasks.
Basically, we used the OTAWA static analysis tool to:

Detect the instructions that are not statically guaranteed to result in a cache hit.
Build an “abstract” CFG in which the nodes are the instructions that were detected in
the previous step. Each edge of this graph is decorated with the WCET of the code
portion between its source and sink nodes, computed using OTAWA.
Build the execution traces by enumerating this graph. In our experiments on ROS-
ACE, the average number of traces by task was around 88, with a peak at 1280 for
the aircraft_dynamics task. The graph enumeration may lead to combinatorial explo-
sion for arbitrarily complex applications. This issue can be mitigated by adding extra
synchronizations in the traces (e.g. at the end of a if-then-else or loop construct) that
factorize multiple traces for the rest of the enumeration.
For each trace, generate a multi-phase profile in which each memory access has a dedicated
phase spanning the duration of the access, using the worst-case dates in the trace.
Build the intersection of the profiles of all traces. This intersection is a profile that keeps
all access phases from all traces. The rest of the profile is composed of phases guaranteed
to feature no access.
From this profile, extract the phases with a size larger than a parameter δ in which no
access occurs. Parameter δ, which we varied in our experiments, specifies a minimum
size threshold for the phases of the generated profiles.
For the remainder of the phases in the intersection profile, fuse them together if their
duration is less than δ.

This method creates multi-phase profiles for tasks but says nothing about the selection of
the synchronization nodes. We thus added a very simple method to select synchronization
nodes, using the correctness criteria of Sections 3 and 4. For each phase ϕi

l, we selected as
synchronized node for each trace ti

j the first node ηi
j,k with ϕi

l.d ≤ ηi
j,k.d < ϕi

l.d + ϕi
l.dur

(if such a node exists). None of the tasks needed context-aware synchronizations so the
synchronization date was always chosen as the worst-case date of the synchronized instruction
in the program. The combination of the heuristic and of our node selection pass does not
perform any optimization. In our analysis, we considered a target hardware architecture
composed of a multicore processor (2, 4 or 8 cores) in which each core features a L1 LRU
data cache, and an instruction scratchpad which holds the totality of the code needed by the
core to execute. Additionally, we considered a memory latency of 50 cycles for non-cached
accesses. The tasks were compiled for ARM targets, and we considered that the cores were
running at a frequency of 10MHz (otherwise the tasks WCETs were too small compared to
their periods so there was no interference in the schedule).

Table 1 presents statistics on the multi-phase profiles of the ROSACE tasks for 3 values
of δ. This parameter has a consequent impact on the number of phases, on the number of
synchronizations and on the over-approximation (defined in Property 4) in the generated
profiles. With a δ equal to 50 cycles (the memory latency of our targets), 569 phases
are generated for all tasks. Our method determined 315 synchronizations nodes which
corresponds to roughly 1 synchronization every 6 or 7 instructions on average. This number
may be too high to be realistically used in practice, but is in part due to the small tasks
of the case-study which are composed of only a few tens of instructions. As δ grows, the

ECRTS 2022

9:14 Correctness and Efficiency Criteria for the Multi-Phase Task Model

Table 1 Rosace multi-phase tasks statistics for 3 multi-phase minimum duration (δ).

δ = 50 δ = 500 δ = 1000
Task instr traces ov_app sync phases ov_app sync phases ov_app sync phases

(#) (#) (%) (#) (#) (%) (#) (#) (%) (#) (#)
engine 40 1 0 10 18 0 4 4 0 2 2
elevator 47 1 0 9 15 0 3 4 0 2 2
aircraft_dyn 1217 1280 21.18 92 167 12.94 37 38 11.76 22 23
h_filter 77 4 0 18 34 0 7 7 0 5 4
az_filter 77 4 0 17 32 0 7 7 0 5 4
q_filter 106 12 14.29 32 55 0 11 9 0 8 5
vz_filter 106 12 10.34 32 55 0 11 9 0 8 5
va_filter 77 4 0 17 32 0 7 7 0 5 4
h_command 18 1 0 7 13 0 2 2 0 1 1
altitude_hold 65 3 6.25 15 26 0 7 6 0 5 3
vz_control 70 1 0 23 44 0 7 8 0 4 4
va_control 73 1 0 24 45 0 7 8 0 4 4
va_command 18 1 0 7 13 0 2 2 0 1 1
delta_th 15 1 0 6 10 0 2 2 0 1 1
delta_e 15 1 0 6 10 0 2 2 0 1 1
TOTAL 2021 1327 7.88 315 569 3.33 116 115 3.03 74 64

Gain (2 cores) 7.83% 6.79% 6.01%
Gain (4 cores) 13.21% 8.45% 7.48%
Gain (8 cores) 7.60% 3.74% 2.14%

number of generated phases and of synchronization nodes get lower: 115 phases and 116
synchronizations for δ = 500, and 64 phases and 74 synchronizations for δ = 1000, with 4 tasks
having only 1 phase in their representation. Our method for selecting the synchronizations
and counting the accesses in each phase is basic: it respects correctness criterion 1, but does
not optimize the number of synchronizations. As a result, on each trace one node is selected
as synchronization for each phase, even when it is not necessary. This explains in part the
high count for synchronizations. These synchronizations can be implemented by a variety of
methods. One naive method is to poll a register that counts the number of cycles (e.g. a
time stamp counter) until the start date of the corresponding phase is reached. This can be
implemented with a simple loop composed of only a few instructions (depending on the ISA
it can be as small as 3 instructions – compare, conditional jump, jump back). The precision
of each synchronization depends on the depth of the pipeline (which imposes the duration of
the jumps), but these small overheads can be taken into account in the analysis, and they do
not accumulate as the number of phases grows, because the synchronizations are based on
dates, not durations. Context-aware synchronizations (e.g. inside loops) are more complex to
implement, and may impose restrictions on the analysis. Since there was no need for those in
the ROSACE case-study, we leave for future work the efficient and correct implementation
of context-aware synchronizations.

Figure 4 displays the generated traces and two profiles for the az_filter task. When
δ = 1000, the profile is composed exclusively of phases in which the number of memory
accesses is strictly positive. On the other hand, when δ = 50 most of the profile is composed
of phases guaranteed to perform no memory access.

Using the generated profiles, we produced static schedules of the application for target
processors featuring 2, 4 and 8 cores. The schedules represent one hyper-period of the
tasks. The tasks were mapped to cores following their utilization (using a simple greedy
algorithm) and scheduled using the rate monotonic policy with the frequencies specified
in the original paper [17]. We then performed an interference analysis: we detected the
phases that overlap with each other 2 by 2 on different cores and extended them using
a penalty computed as the maximum number of contentions multiplied by the cost of a

R. Meunier, T. Carle, and T. Monteil 9:15

Figure 4 az_filter task: traces (top) and generated profile (bottom).

memory access. Moreover, the total penalty that a phase can suffer from any other core
(taken separately) is bounded by the number of accesses of the phase. This is a classical
interference computation assuming e.g. a FIFO bus. We measured the total reserved time
for the tasks (including the interference penalties) on the hyper-period, using the classical
1-phase model, and using our generated multi-phase profiles. We computed the gain as:
gain = (time_1_phase − time_multi_phase)/time_1_phase and reported it in Table 1.
The multi-phase model yields a gain of 7.83% (resp. 13.21% and 7.60%) with δ equal to 50
cycles on 2 cores (resp. 4 and 8 cores). The gain gets reduced as δ grows and the generated
profiles resemble more and more the 1-phase model. However, even in the case of δ = 1000,
the multi-phase model outperforms the 1-phase model by 6.01% (resp. 7.48%, 2.14%) on 2
cores (resp. 4 cores, 8 cores). One noticeable point is that the profiles with a lower δ have
a higher over-approximation and still get the best gains compared to the 1-phase model:
over-approximation at the profile level is not an indicator of the good performance of the
model at the task-system level.
Our conclusions from the case-study are the following:

the multi-phase model can yield a substantial gain compared to the 1-phase model.
the over-approximation in the profile of an individual task is not correlated to the gain
obtained at the task system level. Consequently, the optimal profile for a task may not
be derived from its execution behavior (when do the memory accesses happen?), but
from extrinsic properties. As we show in Section 6.2, particular shapes of profiles behave
significantly better than others during the interference analysis.
a trade-off must be found during the construction of the tasks profiles between the number
of synchronizations and the efficiency (the gain) of the model.
this gain is computed after the schedule is built and the interference analysis is performed
and is thus not accessible when the profiles are being constructed: other criteria must be
found, which can be computed directly during the construction of the profiles.

In an attempt to find such criteria and to confirm these conclusions, we performed a statistical
study which we describe in the next section.

6 Profile Shape-Based Efficiency Criteria

In this section, we investigate how the shape of multi-phase profiles impacts the result of
the interference analysis. As we show in this section, we found efficiency criteria which
concern the multi-phase model itself and are thus extrinsic to the analysed tasks. To do

ECRTS 2022

9:16 Correctness and Efficiency Criteria for the Multi-Phase Task Model

so, we conducted a statistical study on synthetic profiles generated using multiple input
parameters that are summed up in Table 2. Profiles are generated by choosing the values
for the attributes of the phases, using random draws from normal distributions centered
around the input parameters: for example inside a generated profile, each phase has its own
duration and number of accesses, but in average the durations and number of accesses meet
the input parameters. We do not consider system-level parameters such as task periodicity,
data dependencies or elaborate mapping and scheduling strategies in this section because
our focus is on showing how the model reacts in the presence of interference. We thus choose
a setting in which a lot of tasks are executed in parallel with no slack time.

Table 2 Tests input parameters.

Parameter Values section 6.2 Values section 6.3
Over-approximation of accesses (%) 0 to 30 (step 5) 0 to 30 (step 5)
Nb tasks per core {1, 2, 3} {2, 3, 4, 5}
Interference time penalty (cycles) {5, 10, 20} {5, 10}
Accesses per cycle 0.01 to 0.1 (step 0.01) 0.01 to 0.1 (step 0.01)
Nb long phases per UP L type task {5, 10, 15, 20} {5, 10, 15, 20}
Avg. number of short phases per long phase {2, 3, 4, 5} {2, 3, 4, 5}
Task duration (cycles) 17,500 to 175,000 17,500 to 175,000

6.1 Tests Execution and Metrics
The execution of a test consists in three steps. First, we generate the set of multi-phase
profiles corresponding to the input parameters. The generated tasks all share the same period,
have no explicit data dependency and have a synchronous release. Then, we map the tasks
into a number of cores specified for each test and schedule them as soon as possible, with no
optimization in the mapping or scheduling choices. This context stresses the multi-phase
model. Finally, we perform an interference analysis on the scheduled task system, as we
did with the ROSACE case-study. The over-approximation level (cf. Property 4) is an
input parameter to the tests. The ROSACE case-study showed that this over-approximation
is not directly correlated with the gain yielded by the multi-phase model, so the study of
synthetic profiles will provide us valuable insight on the performance of the model. Since
we schedule the tasks as soon as possible with no slack, we redefine the notion of gain
using the end dates of the schedules obtained with the 1-phase and multi-phase models:
gain = (end_1_phase − end_multi_phase)/end_1_phase.

6.2 Looking for the Best Multi-Phase Profile Shapes
We started by generating shapes composed of sequences of phases of similar durations (with
a standard deviation of 500 cycles), which we call Uniform Profiles (UP). The 3 UP kinds
generated are depicted in Figure 5a: long (L) profiles composed only of long phases, short
(S) profiles composed only of short phases or mix (M) profiles divided in 2 equal parts with
respectively long and short phases. We performed 352,800 tests with different combinations of
generation parameters. Each core is only assigned tasks of one UP kind (S, L or M) and has
the same number of tasks, which all have the same duration and are released synchronously.
With this setup, only the kind of UP assigned may differ for each core, so an easy comparison
between the various combinations of UP kinds can be performed.

We tested all the combinations of the profiles on 2, 4 and 8 cores. Our results showed
that the best profiles hosted the 3 categories S, M and L with a majority of S profiles. This
is coherent because the multi-phase model increases its gain whenever, for a given phase, the

R. Meunier, T. Carle, and T. Monteil 9:17

L

S

M

t

UP
types

AP

(a) Examples of possible UP types and AP.

0 5 10 15 20 25 30
Maximum over-approximation (%)

0

20

40

60

80

100

Sh
ar
e
of
 p
os

iti
ve

 re
su

lts
 (%

)

99.92
95.77

81.89

66.47

54.16
45.23

38.72

99.58

71.22

51.45

39.26
31.52

26.29 22.53

AP
UP

(b) Tests with positive gain according to the max-
imum over-approximation value included.

Figure 5 AP vs UP profiles.

number of accesses it may perform is higher than the number of possible concurrent accesses
from phases running in parallel (and it does not exceed the total accesses of the tasks in
parallel). In this experiment each task has strictly the same size, so the probability to fall
into this case is higher with S profiles which are composed of more phases.

As the combination of short and long phases, with more short phases than long ones,
performed better in our first experiment, we then tested a different profile shape that allows
an alternation between short and long phases in the tasks as depicted in the bottom of Figure
5a. We name this profile shape Alternation Profile (AP). We compared the results of AP
with the other profile shapes using the same test parameters. The results, given in Figure 5b,
indicate that AP systematically outperforms UP regardless of the over-approximation value
and of the other parameters. Therefore, we focus on AP as the best multi-phase profile for
the rest of the experiments.

▶ Efficiency criterion 1. Multi-phase profiles which alternate between long phases and grapes
of small phases tend to perform better than other shapes.

6.3 Comparison Between Multi-Phase AP and 1-Phase Model
In this section we assess the performance of the AP shape using a pool of 806,400 tests in
which tasks lengths vary in a range of ±25% around a value that is provided as input to the
test generator. We first consider task profiles in which all phases perform memory accesses.
Figure 6a gives the share of experiments in which the multi-phase AP outperforms its 1-phase
counterpart for different values of maximum over-approximation (blue bars). When there is
no over-approximation, the multi-phase model almost always performs better. The 1-phase
model does not perform as well as the AP until all experiments with over-approximations
ranging from 0% to 30% are included. According to Figure 6b (dashed lines), the share
of positive results significantly decreases with the number of cores in our tests when the
system-wise over-approximation value is superior to 10%, in particular when more than two
cores are involved. This is coherent with the fact that the over-approximation of accesses is
amplified as the number of cores grows when performing the interference analysis. In our
experiments on the ROSACE case-study, the over-approximation always remained under
10% system-wise, regardless of the size of the phases. As a conclusion:

▶ Efficiency criterion 2. The over-approximation plays a lesser role than the shape of
the profile at the level of individual tasks, but should still be kept within acceptable levels
system-wise, preferably under 10%.

ECRTS 2022

9:18 Correctness and Efficiency Criteria for the Multi-Phase Task Model

0 5 10 15 20 25 30
Maximum over-approximation (%)

0

20

40

60

80

100
Sh

ar
e
of
 p
os

iti
ve

 re
su

lts
 (%

) 98.9 96.4
87.8

76.5
66.1

57.4
50.3

99.9 99.7 98.5 95.8 92.1 88.0 83.8

Full accesses (xp2) Empty phases (xp3)

(a) Ratio of tests with positive gain.

0 5 10 15 20 25 30
Over-approximation value (%)

0

20

40

60

80

100

Sh
ar
e
of
 p
os
iti
ve

 re
su

lts
 (%

)

2 cores-xp3
2 cores-xp2

4 cores-xp3
4 cores-xp2

8 cores-xp3
8 cores-xp2

(b) Tests with positive gain by core number.

Figure 6 Experiments with accesses in each phase (xp2) and with phases without accesses (xp3).

−0.2 0.0 0.2 0.4 0.6
Gain value

0

5000

10000

15000

20000

Nb
 re

su
lts

KDE Gauss xp2
xp2

(a) AP profiles without empty phases (xp2).

−0.2 0.0 0.2 0.4 0.6
Gain value

0

1000

2000

3000

4000

Nb
 re

su
lts

KDE Gauss xp3
xp3

(b) AP profiles with 1/3 of empty phases (xp3).

Figure 7 Gain distribution for AP profiles with 0 to 10% of over-approximation.

This can be achieved by increasing the number of synchronizations. A special effort must
be put on the traces with the most accesses as the over-approximation at the phase-level is
propagated to the task-level only if it concerns, for each phase, the trace having the most
accesses. The over-estimation can also be reduced by fusing phases together when locally
some traces perform most of their accesses in different phases.

Moreover, when the over-approximation cannot be lowered, scheduling optimizations can
be applied in the same spirit as the ones used in AER in order to contain the negative effect
of over-approximation.

In the profiles generated for the above experiments, all phases perform accesses. Non-
etheless, the presence of phases without accesses in profiles is expected in practice e.g. due
to cache effects, and is likely to improve the AP results. Indeed, phases running in parallel
with other phases without accesses are guaranteed not to cause contention, while they would
in the 1-phase model. Therefore, we performed a new series of tests to estimate the impact
of phases without accesses in AP profiles. We modified the profiles already generated for
the previous experiments, by randomly selecting one third of each task’s phases and setting
their accesses count to 0. The results are presented in Figures 6a (orange bars) and 6b (full
lines). First, the share of positive results is significantly improved and still at more than
80% when including results with 30% of over-approximation, so the model is less sensitive to
over-approximation. This is linked to situations where accesses due to over-approximation
are in parallel with no other accesses so they do not lead to additional penalties. Second,
the gain distribution with over-approximation ranging from 0 to 10%, given by Figures 7a
and 7b, is also significantly improved with an average value of 20.1% while it is 5.3% for
profiles without empty phases. Consequently:

R. Meunier, T. Carle, and T. Monteil 9:19

▶ Efficiency criterion 3. Phases that perform no access have a significant positive effect on
the interference analysis results.

As we saw with ROSACE the number of synchronizations, of phases that perform no access
and the over-approximation can be adjusted as a trade-off in the analysis.

7 Conclusion and Future Work

We presented a formal framework for the multi-phase task model including a set of properties
that guarantee the correctness of the implemented task system. These properties are agnostic
about the methods that generate the profiles and select the location of the synchronizations
that enforce them. We combined our criteria to a simple heuristic to obtain multi-phase
representations of tasks on the ROSACE case-study, and concluded that the shape of the
model impacts the efficiency of the interference analysis, regardless of the analyzed task. We
thus conducted a statistical study in order to investigate which kinds of profiles perform the
best. We concluded that profiles alternating long and short phases tend to perform better, and
that profiles featuring phases that do not perform accesses are particularly efficient. As part
of future work, we plan on defining an automatic method for the design of optimized multi-
phase profiles from the tasks binary code, and on defining scheduling optimizations which
benefit from the multi-phase model. Moreover, we will work on the efficient implementation
of context-aware synchronizations, focusing on regular synchronization patterns inside loop
iterations.

References
1 AbsInt. aiT. https://www.absint.com/ait/index.htm.
2 Jatin Arora, Cláudio Maia, Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar. Bus-

contention aware schedulability analysis for the 3-phase task model with partitioned scheduling.
In Audrey Queudet, Iain Bate, and Giuseppe Lipari, editors, RTNS’2021: 29th International
Conference on Real-Time Networks and Systems, Nantes, France, April 7-9, 2021, pages
123–133. ACM, 2021. doi:10.1145/3453417.3453433.

3 Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. OTAWA: an
open toolbox for adaptive WCET analysis. In Sang Lyul Min, Robert G. Pettit IV, Peter P.
Puschner, and Theo Ungerer, editors, Software Technologies for Embedded and Ubiquitous
Systems - 8th IFIP WG 10.2 International Workshop, SEUS 2010, Waidhofen/Ybbs, Austria,
October 13-15, 2010. Proceedings, volume 6399 of Lecture Notes in Computer Science, pages
35–46. Springer, 2010. doi:10.1007/978-3-642-16256-5_6.

4 Thomas Carle and Hugues Cassé. Reducing timing interferences in real-time applications
running on multicore architectures. In Florian Brandner, editor, 18th International Workshop
on Worst-Case Execution Time Analysis, WCET 2018, July 3, 2018, Barcelona, Spain,
volume 63 of OASIcs, pages 3:1–3:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/OASIcs.WCET.2018.3.

5 Thomas Carle and Hugues Cassé. Static extraction of memory access profiles for multi-core
interference analysis of real-time tasks. In Christian Hochberger, Lars Bauer, and Thilo
Pionteck, editors, Architecture of Computing Systems - 34th International Conference, ARCS
2021, Virtual Event, June 7-8, 2021, Proceedings, volume 12800 of Lecture Notes in Computer
Science, pages 19–34. Springer, 2021. doi:10.1007/978-3-030-81682-7_2.

6 Robert I. Davis, Sebastian Altmeyer, Leandro Soares Indrusiak, Claire Maiza, Vincent Nélis,
and Jan Reineke. An extensible framework for multicore response time analysis. Real Time
Syst., 54(3):607–661, 2018. doi:10.1007/s11241-017-9285-4.

ECRTS 2022

https://www.absint.com/ait/index.htm
https://doi.org/10.1145/3453417.3453433
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.4230/OASIcs.WCET.2018.3
https://doi.org/10.1007/978-3-030-81682-7_2
https://doi.org/10.1007/s11241-017-9285-4

9:20 Correctness and Efficiency Criteria for the Multi-Phase Task Model

7 Maximilien Dupont de Dinechin, Matheus Schuh, Matthieu Moy, and Claire Maiza. Scaling
up the memory interference analysis for hard real-time many-core systems. In 2020 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2020, Grenoble, France, March
9-13, 2020, pages 330–333. IEEE, 2020. doi:10.23919/DATE48585.2020.9116460.

8 Keryan Didier, Dumitru Potop-Butucaru, Guillaume Iooss, Albert Cohen, Jean Souyris,
Philippe Baufreton, and Amaury Graillat. Correct-by-construction parallelization of hard
real-time avionics applications on off-the-shelf predictable hardware. ACM Trans. Archit. Code
Optim., 16(3):24:1–24:27, 2019. doi:10.1145/3328799.

9 G. Durrieu, M. Faugère, S. Girbal, D. Gracia Pérez, C. Pagetti, and W. Puffitsch. Predictable
flight management system implementation on a multicore processor. In ERTS’14, 2014.

10 Björn Forsberg, Marco Solieri, Marko Bertogna, Luca Benini, and Andrea Marongiu. The
predictable execution model in practice: Compiling real applications for COTS hardware.
ACM Trans. Embed. Comput. Syst., 20(5):47:1–47:25, 2021. doi:10.1145/3465370.

11 Frédéric Fort and Julien Forget. Code generation for multi-phase tasks on a multi-core
distributed memory platform. In 25th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, RTCSA 2019, Hangzhou, China, August
18-21, 2019, pages 1–6. IEEE, 2019. doi:10.1109/RTCSA.2019.8864558.

12 Sebastian Hahn, Michael Jacobs, and Jan Reineke. Enabling compositionality for multicore
timing analysis. In Alain Plantec, Frank Singhoff, Sébastien Faucou, and Luís Miguel Pinho,
editors, Proceedings of the 24th International Conference on Real-Time Networks and Systems,
RTNS 2016, Brest, France, October 19-21, 2016, pages 299–308. ACM, 2016. doi:10.1145/
2997465.2997471.

13 Claire Maiza, Hamza Rihani, Juan Maria Rivas, Joël Goossens, Sebastian Altmeyer, and
Robert I. Davis. A survey of timing verification techniques for multi-core real-time systems.
ACM Comput. Surv., 52(3):56:1–56:38, 2019. doi:10.1145/3323212.

14 Renato Mancuso, Roman Dudko, and Marco Caccamo. Light-prem: Automated software
refactoring for predictable execution on COTS embedded systems. In 2014 IEEE 20th
International Conference on Embedded and Real-Time Computing Systems and Applications,
Chongqing, China, August 20-22, 2014, pages 1–10. IEEE Computer Society, 2014. doi:
10.1109/RTCSA.2014.6910515.

15 Joel Matejka, Björn Forsberg, Michal Sojka, Zdenek Hanzálek, Luca Benini, and Andrea
Marongiu. Combining PREM compilation and ILP scheduling for high-performance and pre-
dictable mpsoc execution. In Quan Chen, Zhiyi Huang, and Pavan Balaji, editors, Proceedings
of the 9th International Workshop on Programming Models and Applications for Multicores and
Manycores, PMAM@PPoPP 2018, February 25, 2018, Vienna, Austria, pages 11–20. ACM,
2018. doi:10.1145/3178442.3178444.

16 Claire Pagetti, Julien Forget, Heiko Falk, Dominic Oehlert, and Arno Luppold. Automated
generation of time-predictable executables on multicore. In Yassine Ouhammou, Frédéric
Ridouard, Emmanuel Grolleau, Mathieu Jan, and Moris Behnam, editors, Proceedings of the
26th International Conference on Real-Time Networks and Systems, RTNS 2018, Chasseneuil-
du-Poitou, France, October 10-12, 2018, pages 104–113. ACM, 2018. doi:10.1145/3273905.
3273907.

17 Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron. The ROSACE
case study: From simulink specification to multi/many-core execution. In 20th IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2014, Berlin, Germany, April
15-17, 2014, pages 309–318. IEEE Computer Society, 2014. doi:10.1109/RTAS.2014.6926012.

18 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A predictable execution model for cots-based embedded systems. In
17th IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2011,
Chicago, Illinois, USA, 11-14 April 2011, pages 269–279. IEEE Computer Society, 2011.
doi:10.1109/RTAS.2011.33.

https://doi.org/10.23919/DATE48585.2020.9116460
https://doi.org/10.1145/3328799
https://doi.org/10.1145/3465370
https://doi.org/10.1109/RTCSA.2019.8864558
https://doi.org/10.1145/2997465.2997471
https://doi.org/10.1145/2997465.2997471
https://doi.org/10.1145/3323212
https://doi.org/10.1109/RTCSA.2014.6910515
https://doi.org/10.1109/RTCSA.2014.6910515
https://doi.org/10.1145/3178442.3178444
https://doi.org/10.1145/3273905.3273907
https://doi.org/10.1145/3273905.3273907
https://doi.org/10.1109/RTAS.2014.6926012
https://doi.org/10.1109/RTAS.2011.33

R. Meunier, T. Carle, and T. Monteil 9:21

19 Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and Lothar Thiele.
Worst case delay analysis for memory interference in multicore systems. In Giovanni De Micheli,
Bashir M. Al-Hashimi, Wolfgang Müller, and Enrico Macii, editors, Design, Automation and
Test in Europe, DATE 2010, Dresden, Germany, March 8-12, 2010, pages 741–746. IEEE
Computer Society, 2010. doi:10.1109/DATE.2010.5456952.

20 Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut. Hiding communication
delays in contention-free execution for spm-based multi-core architectures. In Sophie Quinton,
editor, 31st Euromicro Conference on Real-Time Systems, ECRTS 2019, July 9-12, 2019,
Stuttgart, Germany, volume 133 of LIPIcs, pages 25:1–25:24. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ECRTS.2019.25.

21 O. Sander, F. Bapp, L. Dieudonne, T. Sandmann, and J. Becker. The promised future of
multi-core processors in avionics systems. CEAS Aeronautical Journal, 2017. doi:10.1007/
s13272-016-0228-x.

22 J. Schneider, M. Bohn, and R. Rößger. Migration of automotive real-time software to multicore
systems: First steps towards an automated solution. In 22nd EUROMICRO Conference on
Real-Time Systems, 2010.

23 Matheus Schuh, Claire Maiza, Joël Goossens, Pascal Raymond, and Benoît Dupont de Dinechin.
A study of predictable execution models implementation for industrial data-flow applications
on a multi-core platform with shared banked memory. In 41st IEEE Real-Time Systems
Symposium, RTSS 2020, Houston, TX, USA, December 1-4, 2020, pages 283–295. IEEE, 2020.
doi:10.1109/RTSS49844.2020.00034.

ECRTS 2022

https://doi.org/10.1109/DATE.2010.5456952
https://doi.org/10.4230/LIPIcs.ECRTS.2019.25
https://doi.org/10.1007/s13272-016-0228-x
https://doi.org/10.1007/s13272-016-0228-x
https://doi.org/10.1109/RTSS49844.2020.00034

Overrun-Resilient Multiprocessor Real-Time
Locking
Zelin Tong !

University of North Carolina at Chapel Hill, NC, USA

Shareef Ahmed !

University of North Carolina at Chapel Hill, NC, USA

James H. Anderson !

University of North Carolina at Chapel Hill, NC, USA

Abstract
Existing real-time locking protocols require accurate worst-case execution time (WCET) estimates for
both tasks and critical sections (CSs) in order to function correctly. On multicore platforms, however,
the only seemingly viable strategy for obtaining such estimates is via measurements, which cannot
produce a true WCET with certainty. The absence of correct WCETs can be partially ameliorated
by enforcing execution budgets at both the task and CS levels and by using a locking protocol that is
resilient to budget overruns, i.e., that ensures that the schedulability of non-overrunning tasks is not
compromised by tasks that do overrun their budgets. Unfortunately, no fully overrun-resilient locking
protocol has been proposed to date for multiprocessor systems. To remedy this situation, this paper
presents two such protocols, the OR-FMLP and the OR-OMLP, which introduce overrun-resiliency
mechanisms to two existing multiprocessor protocols, the spin-based FMLP and suspension-based
global OMLP, respectively. In devising such mechanisms, undo code can be problematic. For the
important locking use case of protecting shared data structures, it is shown that such code can
be avoided entirely by using abortable critical sections, a concept proposed herein that leverages
obstruction-free synchronization techniques. Experiments are presented that demonstrate both the
effectiveness of the mechanisms introduced in this paper and their cost.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases Real-Time Systems, Real-Time Synchronization, Budget Enforcement

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.10

Related Version Full Version: https://cs.unc.edu/~anderson/papers/ecrts22-long.pdf

Supplementary Material Software (Experiment Code): https://cs.unc.edu/~anderson/papers/
Experiments.tar

Funding Supported by NSF grants CPS 1837337, CPS 2038855, and CPS 2038960, ARO grant
W911NF-20-1-0237, and ONR grant N00014-20-1-2698.

1 Introduction

Many safety-critical systems require real-time safety certification that hinges on both timing
analysis and schedulability analysis. The goal of timing analysis is to produce worst-case
execution times (WCETs) for executable code. Schedulability analysis then determines
whether a system’s timing constraints are met, assuming valid WCETs are provided. Due to
the advent of multicore technologies, work on timing and schedulability analysis has largely
focused on the multiprocessor case in recent years [11,17,34].

A troubling disconnect. In the multiprocessor case, a largely unnoticed fundamental
disconnect exists when using timing- and schedulability-analysis together to validate real-
time correctness. There is consensus today that static timing-analysis tools may never be

© Zelin Tong, Shareef Ahmed, and James H. Anderson;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 10; pp. 10:1–10:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ztong@cs.unc.edu
mailto:shareef@cs.unc.edu
mailto:anderson@cs.unc.edu
https://doi.org/10.4230/LIPIcs.ECRTS.2022.10
https://cs.unc.edu/~anderson/papers/ecrts22-long.pdf
https://cs.unc.edu/~anderson/papers/Experiments.tar
https://cs.unc.edu/~anderson/papers/Experiments.tar
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Overrun-Resilient Multiprocessor Real-Time Locking

a practical reality for multicore machines due to the highly complex nature of multicore
architectures [43]. The only alternative is to use measurement-based timing analysis, a topic
that has been the focus of considerable recent work [16,18]. With measurement-based timing
analysis, however, one can never be certain that the true WCET of a piece of code is ever
captured (hereafter, we assume “WCET” means “true WCET”). Thus, it is necessary to
distinguish between the WCET of a piece of code and its provisioned execution time (PET)
as obtained via measurements and assumed in schedulability analysis. Note that WCETs are
generally unknowable, and a PET may likely be less than the corresponding WCET.

Mitigating this disconnect. Any safety risk introduced by assuming such PETs can be
avoided by instead using (guaranteed) execution-time (upper) bounds (ETBs) obtained under
unrealistically pessimistic conditions. For example, any execution speedups due to caches and
pipelining might be defined away, bus contention might be over-approximated, etc. While
such ETBs might be safe to use as PETs, this would likely be impractical on a multicore
machine, as an ETB could easily be many times larger than the corresponding WCET. In
fact, system-wide pessimism could be high enough to negate the processing capacity of all
“additional” cores [32]. Thus, more reasonable measurement-based PETs are inevitable.

A system provisioned assuming such PETs can have correct tasks whose PETs are at least
their WCETs, and faulty tasks whose PETs are less than their WCETs. Hopefully, PET
overruns (faults) should be rare. Moreover, when they do occur, they should be contained.
The usual approach here is to treat PETs as execution-time budgets that are enforced by the
operating system (OS). Such an approach can ensure the following desirable property.
P1 The response times of correct tasks, as derived using PETs, are not increased by a PET

overrun of a faulty task.

Task-level budgeting is not enough. Unfortunately, due to various realities of real systems,
task-level budget management alone is an incomplete solution to the timing/schedulability
disconnect. This paper is directed at providing a deep look at one such reality: the need
to support locking protocols for arbitrating accesses to shared resources. In this setting, we
actually care about various different PETs, WCETs, and ETBs. For example, in addition to
task-level PETs, PETs are needed for individual critical sections (CSs), and various locking-
protocol and OS code sequences. To avoid confusion, we will add a qualifying prefix when
referring to non-task-level terms – e.g., “CS PET” refers to the PET of a CS, while “PET”
(without qualification) refers to a task-level PET. When locking protocols are introduced,
CS PETs (and also various protocol- and OS-related PETs) are used to determine blocking
times when tasks access shared resources. Incorrect blocking-time estimates due to inaccurate
PETs can completely compromise schedulability guarantees.

Overrun-resilient locking protocols. To address this issue, we propose in this paper the
notion of an overrun-resilient locking protocol. In addition to not causing a violation of P1,
such a protocol must also uphold its CS-level variant:
P2 The response times of correct tasks, as derived using PETs, are not increased by a CS

PET overrun of a faulty task.

It’s not so easy. The obvious solution to satisfying P1 and P2 is to assign budgets to
both tasks and CSs as given by their respective PETs. The main new complication that
arises when doing this is the need to abort the CS of some task when one of these budgets is
overrun. Such aborts should be avoided if possible, but they cannot be entirely precluded.

Z. Tong, S. Ahmed, and J. H. Anderson 10:3

Table 1 Properties satisfied by prior work. (“NC” means the work does not consider how to
satisfy the specified property. As explained in Sec. 9, some of these “NC” entries can be changed to
“Y” at the expense of very pessimistic provisioning assumptions).

Protocol Multi-
processor P1 P2 P3 Protocol Multi-

processor P1 P2 P3

ICSs [30] N Y Y Y FMLP [9] Y N N N
RRP [3] N Y Y NC M-BWI [20] Y N N NC

RACPwP [39] N Y Y NC vMPCP [31] Y Y N NC
SIRAP [6] N Y N NC M-BROE [8] Y Y N NC
OMLP [12] Y N N N This Work Y Y Y Y

For example, a CS budget overrun will necessarily cause a CS abort. The usual approach to
aborting work is to execute undo code. Presumably, a PET would have to be associated with
such code. What happens if the abort code overruns its PET? Additionally, certain code
sequences exist pertaining to lock and budget management for which overruns are similarly
problematic. For example, when a CS is aborted, the unlock logic must execute to free the
resource. What if the PET associated with this unlock code is overrun? It is not clear how
these perplexing “chicken and egg” problems can be addressed. Whatever the solution, an
overrun-resilient locking protocol must uphold a third property:
P3 The response times of correct tasks, as derived using PETs, are not increased by the

budget-enforcement mechanism.

Related work. Various locking protocols have been proposed in prior work that considers
budget overruns. However, no prior work focusing on multiprocessors fully considers properties
P1–P3. Relevant prior work is summarized in Tbl. 1 and discussed in detail in Sec. 9.

Contributions. In this paper, we present overrun-resilient multiprocessor locking protocols
that satisfy P1–P3. Our contributions are fourfold. First, we introduce the overrun-resilient
flexible multiprocessor locking protocol (OR-FMLP), an overrun-resilient extension of the
spin-based FMLP [9]. Second, we introduce the overrun-resilient global optimal multiprocessor
locking protocol (OR-OMLP), an overrun-resilient extension of the suspension-based global
OMLP [12]. Third, for the important locking use case of coordinating accesses to shared data
structures, we propose the concept of an abortable CS, which facilitates satisfying P2 and P3.
Finally, we present the results of an experimental evaluation of the cost of overrun-resilient
locking and its isolation benefits with respect to timing faults.

Both the OR-FMLP and OR-OMLP use a concept called a “forbidden zone” [28] to satisfy
P1. A forbidden zone (FZ) is a length of time at the end of a job’s task budget during which
any lock request will be denied. However, the application of this concept is very different in
the two protocols. To circumvent the various chicken-and-egg problems related to P3, ETBs
must be used for certain code sequences. As ETBs can be very pessimistic, reliance on them
should be minimized. With this in mind, we carefully sift through the various design choices
and conclude that in a spinlock like the OR-FMLP, coarse-grained FZs should be used that
include both CS execution time and blocking time, while in a suspension-based lock like the
OR-OMLP, fine-grained FZs based on CS execution times only are better.

Our notion of an abortable CS requires no undo code when aborting CSs. An abortable
CS uses word-based obstruction-free [25] software transactional memory (STM) techniques
to linearize a CS to a single write instruction. Obstruction-freedom is a type of non-blocking
synchronization that must be used with a contention manager to ensure progress under

ECRTS 2022

10:4 Overrun-Resilient Multiprocessor Real-Time Locking

contention. In our case, the contention manager is a locking protocol. We show that using
such a strong contention manager enables significant simplifications in obstruction-free code.

Organization. In the rest of this paper, we provide necessary background information
(Sec. 2), delve further into task and CS budget management (Sec. 3), present the OR-FMLP,
the OR-OMLP, and the abortable CS concept (Secs. 4–6), present our experimental results
(Sec. 7), discuss certain practical implications of our work (Sec. 8), review related work (Sec. 9),
and conclude (Sec. 10).

2 System Model and Background

Task model. We consider a system of n implicit-deadline1 sporadic tasks τ1, τ2, . . . , τn to
be scheduled on m identical processors by a global job-level fixed-priority scheduler; we
assume global earliest-deadline-first (G-EDF) scheduling, unless stated otherwise. Each task
τi releases a potentially infinite sequence of jobs Ji,1Ji,2 . . . (we omit the job index if it is
irrelevant). Each task τi has a period Ti specifying the minimum spacing between consecutive
job releases. Each task has a PET obtained via measurement-based timing analysis.

Resource model. We consider a system that has a set {ℓ1, . . . , ℓnr
} of serially reusable

shared resources. To ensure mutually exclusive resource access, a locking protocol must be
employed. When a job Ji requires a resource ℓk, it issues a request R for ℓk. R is satisfied
as soon as Ji holds ℓk, and completes when Ji releases ℓk. R is active from its issuance to its
completion. Ji must wait until R can be satisfied if it is held by another job. It may do so
either by busy-waiting (or spinning) in a tight loop, thereby wasting processor time, or by
being suspended by the OS until R is satisfied. A resource access is called a critical section
(CS). Each CS has a CS PET obtained via measurement-based timing analysis. We consider
non-nested resource requests only. We let Γk to denote the set of tasks that share ℓk.

Priority inversions. Priority-inversion blocking (or pi-blocking) occurs when a job is delayed
and this delay cannot be attributed to higher-priority demand for processing time. Under a
given real-time locking protocol, a job may experience pi-blocking each time it requests a
resource – this is called request blocking. In addition, a preemptive ready job may experience
pi-blocking due to the non-preemptive execution of lower-priority jobs – this is called non-
preemptive blocking. On multiprocessors, the formal definition of pi-blocking actually depends
on how schedulability analysis is done. For example, of relevance to suspension-based locks,
analysis may be either suspension-oblivious (s-oblivious) or suspension-aware (s-aware) [12].
Under s-oblivious analysis, suspension time is analytically treated as computation time.

FMLP. Under the FMLP [9], non-preemptive spin locks are used to ensure mutually exclusive
resource access.2 Each job that is blocked on a resource busy-waits within a FIFO queue.

1 The results of this paper do not depend on the choice of deadline constraints. Implicit deadlines are
assumed for simplicity.

2 There are actually two FMLP variants: short (spin-based) and long (suspension-based). We are
considering the short variant here.

Z. Tong, S. Ahmed, and J. H. Anderson 10:5

R1R2R4

resource
holder

FIFO queuepriority queue

Figure 1 The global OMLP
queue structure for 3 pro-
cessors.

Time
J1

J2

J3

J4

J5

0 5 10

Critical Section
Normal Execution

Suspension

Lock Release
Request Issuance
Job Completion
Job Deadline
Job Release

Spinning

Figure 2 Jobs issuing requests to the global OMLP
with m = 3. (The notation in this figure is also used in
subsequent figures).

Global OMLP. The global OMLP [12] is a suspension-based locking protocol that has
asymptotically optimal pi-blocking under s-oblivious analysis. The global OMLP ensures
O(m) pi-blocking by utilizing a dual-queue structure, with an m-element FIFO queue fed into
by a priority queue, as shown in Fig. 1. A new request is enqueued in the FIFO queue (resp.,
priority queue) if there are fewer than (resp., at least) m active requests. When the request
at the head of the FIFO queue (i.e., the resource holder) completes, it is dequeued, the next
request (if any) in the FIFO queue becomes satisfied, and the highest-priority request (if
any) in the priority queue is moved to the tail of the FIFO queue.

▶ Example 1. Fig. 2 shows five jobs that issue requests to the global OMLP with m = 3.
Fig. 1 shows the global OMLP queues at time 3.5, where Ji’s request is denoted by Ri. The
first three issued requests are enqueued directly in the FIFO queue. Thus, R4 is satisfied
before R3, although J4 has lower priority than J3. Since the FIFO queue is full, R5 and
R3 are enqueued in the priority queue upon issuance. When R1 completes at time 6, R2
becomes satisfied, and R3 is moved from the priority queue to the FIFO queue, as J3 has
higher priority than J5. Thus, R3 is satisfied before R5, despite being issued later.

For ease of notation, we henceforth assume that all jobs of each task include one request
for the same resource, and this request is preceded and followed by non-resource-accessing
code. This assumption enables us to refer to a job’s CS without ambiguity. We stress that
we are making this assumption only for simplicity; none of our results actually depend on it.

3 Budget Management

Execution budgets that are enforced at runtime are obtained by inflating base budgets that
pertain to the execution of task code by adding certain overheads. Additional overheads
are then added to obtain analytical budgets that are used in schedulability analysis. In this
section, we provide details concerning these budgeting notions and relevant overheads.

Base budgets. We define the base task budget (resp., base CS budget) of a task τi (resp.,
τi’s CS), denoted by Cb

i (resp., Lb
i), as its PET (resp., CS PET).

What is and is not included in base budgets. Timing analysis is applied to determine
relevant PETs for a task independently of the task system that contains it. As lock-related
blocking times are system-dependent, we assume that they are not included in base task
budgets. The lock/unlock logic of a suspension-based lock is executed in the OS and hence

ECRTS 2022

10:6 Overrun-Resilient Multiprocessor Real-Time Locking

Time
Ji

t1 t2 t3 t4 t5

Base budget
Execution budget
Analytical budget

Task-budgeting
timer start
Task-budgeting
timer stop

Figure 3 Illustration of base, execution, and ana-
lytical budgets.

Time
τ1

τ2

τ3

0 5 10 15

Budget of τ3

2

9

τ3’s CS
budget

τ3’s task
budget

Figure 4 Budget consumption and re-
plenishment. Overheads/delays other than
spinning are omitted to avoid clutter.

would not be included in base task budgets. In contrast, for a spinlock, this logic executes at
user level. However, as seen later, to satisfy P3, we must take special care in dealing with
this logic, so we assume it is not included in base task budgets.

When measurement-based timing analysis is applied, preemptions are notoriously difficult
to deal with due to difficulties in predicting cache interactions. For this reason, we assume
that CSs are executed non-preemptively and that their base budgets are determined assuming
cold caches. However, we do not preclude preemptions outside of CSs, as long as base task
budgets include cache-related preemption and migration delay (CPMD), which is a cost that
is incurred by a job to re-establish lost cache affinity after a preemption or migration. As
the focus of this paper is not timing analysis, determining valid CPMDs is out of scope.

Timers. To enforce base task and CS budgets, we require the usage of timers supported
by the OS, which we call task- and CS-budgeting timers, respectively. Such a timer starts
when the relevant entity (an entire job or a CS) starts executing and stops when the entity
is preempted (not allowed for CSs), aborted (see below), or completes execution. Between
starting and stopping, a timer is active.

Execution budgets. In reality, timers cannot be started and stopped in zero time. To start
a timer, timer-handling code executes in the OS. We assume no knowledge of the exact
structure of this code but do require that an ETB is specified for it. When this code executes,
we know that the timer starts at some time point, but not precisely when. Stopping a timer
is similar. In order to safely police base budgets, we must account for these timer activities.
To do so, we instead police adjusted execution budgets as defined next.

The task execution budget Ce
i of a task τi is obtained by inflating its base task budget Cb

i

by adding the worst-case cost of all task- and CS-budgeting timer overheads, as provisioned
by their ETBs, that may be incurred by a job of τi. The CS execution budget Le

i of τi’s CS
is similarly obtained by inflating its base CS budget Lb

i by adding the worst-case cost of all
CS-budgeting timer overheads, as provisioned by their ETBs, associated with that CS.

In overrun-resilient locking protocols that we propose, these execution budgets are enforced
at runtime. Specifically, we set the task- or CS-budgeting timer of a job to expire when
the corresponding task or CS execution budget is exhausted. A job overruns its task/CS
execution budget if it does not complete execution before the relevant timer expires.

▶ Example 2. Consider job Ji in Fig. 3. (We consider analytical budgets later.) Starting
(resp., stopping) Ji’s task-budgeting timer entails executing OS code during [t2, t3) (resp.,

Z. Tong, S. Ahmed, and J. H. Anderson 10:7

[t4, t5)). Thus, Ji’s task execution budget is derived by inflating its base task budget by
(t3 − t2) + (t5 − t4) units.

We assume that execution budgets are managed via the following rules.

Consumption Rule: A job Ji consumes its task (resp., CS) execution budget at the rate
of one execution unit per unit of time when its task-budgeting (resp., CS-budgeting)
timer is active.

Since a task- or CS-budgeting timer expires when the corresponding execution budget is
exhausted, a job cannot consume that execution budget when it is 0.

Replenishment Rule: Ji’s task execution budget is set to Ce
i when it is released. Ji’s

CS execution budget is set to Le
i when it issues a lock request.

▶ Example 3. Fig. 4 depicts three G-EDF-scheduled tasks on two processors. τ1 and τ3
use resource ℓ1, which is protected by a spinlock. τ3’s task (resp., CS) execution budget is
9.0 units (resp., 2.0 units). At time 0, J3,1 is scheduled and its task-budgeting timer starts.
J3,1 consumes 1.0 unit of its task execution budget within the time interval [0, 1) during
which its task-budgeting timer is active. J3,1 is preempted by J2,1 at time 1, causing its
task-budgeting timer to stop. Thus, J3,1’s task execution budget remains the same during
the time interval [1, 3). At time 3, J3,1 is scheduled again and it continues executing until
completing at time 11, consuming 8.0 units of its task execution budget.

J3,1 issues a request for ℓ1 at time 6 that is satisfied at time 8 (when its CS-budgeting
timer starts) and completes at time 10 (after consuming its entire CS execution budget).

Analytical budgets. Some overhead/delay sources do not cause task or CS execution budget
to be consumed. However, such sources can impact schedulability. We define the analytical
task budget of task τi, denoted Ca

i , by inflating its task execution budget to account for all
overheads/delays. We define the analytical CS budget of τi’s CS, denoted La

i , by inflating its
CS execution budget to account for all overheads/delays affecting that CS.

▶ Example 2 (Cont’d). Ji in Fig. 3 suffers pi-blocking during the time interval [t1, t2) due to
a non-preemptively executing lower-priority job. Since Ji is not scheduled during [t1, t2), its
execution budget does not decrease during this interval. However, Ji may miss its deadline
due to the delay caused by this pi-blocking. Thus, Ji’s analytical task budget is derived by
inflating its task execution budget by t2 − t1.

Overheads/Delays. We consider the following overheads/delays that are either locking- or
timer-related overheads. We summarize the overheads/delays that affect base and execution
task and CS budgets under the OR-FMLP and OR-OMLP in Tbl. 2 and all introduced notation
in Tbl. 3. Note that we require ETBs of these overheads to avoid introducing “chicken and
egg” problems in satisfying P3, as discussed in Sec. 1.

(i) Budgeting-timer overheads. We denote the ETBs of starting, stopping, and expiring a
budgeting-timer by ∆tb, ∆te, and ∆tt, respectively. Since we focus on timer overheads
that are due to a CS execution, accounting for overheads due to starting/stopping a
task-budgeting timer for resuming/suspending a job’s non-CS code is out of scope.

(ii) Locking and unlocking overheads. We denote the ETBs of executing the lock and unlock
logic (for both spinlocks and suspension-based locks) by ∆lock and ∆unlock, respectively.

(iii) Request blocking. We let Bi denote a bound on request blocking incurred by τi’s request.

ECRTS 2022

10:8 Overrun-Resilient Multiprocessor Real-Time Locking

Table 2 OR-FMLP and OR-OMLP overhead impact.

Overheads Base task budgets Task exec. budgets
OR-FMLP OR-OMLP OR-FMLP OR-OMLP

Budgeting-timer × × ✓ ✓
Locking & unlocking × × ✓ ✓
Request blocking × × ✓ ×
Non-preemptive blocking × × × ×

(iv) Non-preemptive blocking. We let NPBi denote a bound on non-preemptive blocking
incurred by τi.

Accounting for these overheads in analytical budgets is a well-researched topic [10]. We detail
the required overhead inflation in task and CS execution budgets under the OR-FMLP and
OR-OMLP in Secs. 4 and 5, respectively.

Simplifying assumptions. In order to focus only on those overheads/delays of direct relevance
to overrun-resilient locking and to simplify the description of the OR-FMLP and OR-OMLP,
we make the following assumptions.

A1 ETBs of all overheads are known.
A2 The cost of aborting a CS is included in the ETB of expiring the CS-budgeting timer.
A3 All overheads/delays other than task- and CS-budgeting timer overheads, locking and

unlocking overheads, and request and non-preemptive blocking are negligible.

We discuss how A1 and A3 can be relaxed in Sec. 8 and how to support A2 in Sec. 6.

Refining P1–P3. Properties P1–P3 can be ensured by maintaining the following properties.
P1.1 If a job’s task execution budget expires, then it has no active request (to satisfy P1).
P2.1 If the CS execution budget of a CS expires, then the CS is aborted without corrupting

shared-resource state (to satisfy P2).
P3.1 Execution-time variances in executing timer-handling and lock/unlock logic cannot

cause task and CS execution budgets to be exceeded (to satisfy P3).
We show how to satisfy P1.1 and P3.1 in the OR-FMLP and OR-OMLP in Secs. 4 and 5. We
also show how to satisfy P2.1 in Sec. 6 for the case of shared data structures. In order to
focus on P1.1 and P3.1 for now, we make the following assumption.
A4 Property P2.1 is satisfied.

4 OR-FMLP

In this section, we introduce the overrun-resilient flexible multiprocessor locking protocol
(OR-FMLP), an extension of the FMLP [9] that achieves overrun resiliency by enforcing
task and CS execution budgets. Like the FMLP, a job is non-preemptive when executing
the OR-FMLP (while both spinning and executing its CS). The OR-FMLP satisfies P1.1 by
using a previously proposed concept called a forbidden zone (FZ) [27] that aids in budget
enforcement – in fact, the OR-FMLP is very similar to a protocol called the “Skip Protocol”
presented in [27]. In our setting, however, much care is required in deriving execution budgets
so that “chicken and egg” problems are avoided. The goal of avoiding such problems has a
major bearing on the overall lock design and its analysis.

Z. Tong, S. Ahmed, and J. H. Anderson 10:9

Table 3 Notation summary.

Symbol Meaning Symbol Meaning
n Number of tasks La

i Analytical CS budget of τi’s CS
m Number of processors ∆tb ETB of starting overhead for a task- or CS-

budgeting timer
τi ith task ∆te ETB of stopping overhead for a task- or

CS-budgeting timer
Ji,j jth job of τi ∆tt ETB of expiring overhead for a task- or

CS-budgeting timer
Ti Period of τi ∆lock ETB of locking overhead
ℓk kth shared resource ∆unlock ETB of unlocking overhead
Cb

i Base task budget of τi ∆abort ETB of overhead for aborting a request
Ce

i Task execution budget of τi Bi Maximum request blocking time of τi

Ca
i Analytical task budget of τi NPBi Maximum non-preemptive blocking time of

τi

Lb
i Base CS budget of τi’s CS Γk Set of tasks that shares a resource ℓk

Le
i CS execution budget of τi’s CS fi Forbidden-zone length for Ji

Design goal. Spinlocks provide mutual exclusion without OS support, eliminating system-
call overheads. While some timer-related OS support is needed, our overriding design goal is
nonetheless the following.
G1 Minimize the number of the OS invocations.

Managing CS-budgeting timers. To prevent CS execution budget overruns, OS invocations
are needed, contrary to G1, to manage CS-budgeting timers. It is perhaps theoretically
possible to avoid using such timers by having the CS itself repeatedly monitor the CS
execution budget remaining, but such an approach would have very high overhead.

Satisfying P1.1. We satisfy P1.1 by employing FZs, as mentioned above. When a job is
allocated its task execution budget, a portion of that budget at the end constitutes its FZ. A
job is not allowed to issue a resource request during its FZ. The length of Ji’s FZ, denoted
by fi, is the maximum task execution budget of Ji that can be consumed when a request of
Ji is active. Under the OR-FMLP, this task execution budget consumption includes both
its CS length and spinning time. The OR-FMLP adds an additional “FZ check” prior to
performing the locking logic of the FMLP. This check, which is assumed to be part of the
locking overhead of the OR-FMLP, can be implemented entirely in user space by having
the OS record the current time as given by the local timestamp counter (TSC) in a shared
control page whenever a job begins or resumes execution. Using this recorded value and the
current local TSC value, a job can determine whether it is in its FZ.

▶ Example 4. Fig. 5(a) depicts two jobs that issue requests to the OR-FMLP for resource ℓ1.
Assume that J2’s task execution budget is 7.0 units and its CS execution budget is 2.0 units.
J2 could potentially be blocked by J1 for 3.0 time units, the length of J1’s CS execution. J2
enters its FZ at time 2 as it does not have sufficient task execution budget to spin for 3.0
time units and then execute its CS for 2.0 time units. Thus, its request is denied at time 4.

Satisfying P3.1. To satisfy P3.1, we derive task and CS execution budgets by accounting
for all lock- and timer-related overheads/delays, given in Tbl. 2, using their ETBs. Before

ECRTS 2022

10:10 Overrun-Resilient Multiprocessor Real-Time Locking

Time
J1

J2

0 5

Denied
request

Budget of J2

5
7

fi

Forbidden zone

(a) OR-FMLP.

Time
J1

J2

0 5

Aborted
request

Budget of J2

3
7

fi

Forbidden zone

(b) Fine-grained variant.

Figure 5 Illustration of FZs. Overheads/delays other than spinning are omitted to avoid clutter.

Lb
i

Le
i

La
i

Cb
i

Ce
i

fi

Time
R

t1 t2 t3 t4 t5 t6 t7 t8 t9

Lock

Unlock

CS-budgeting
timer start
CS-budgeting
timer stop

Figure 6 OR-FMLP request timeline with overheads included.

deriving these terms, we first give the rules of the OR-FMLP.

OR-FMLP Rules. We assume the following properties, which we justify later.
B1 The execution and analytical budgets of all tasks and CSs have been determined.
B2 A job’s FZ length can be derived from task/CS base, execution, and analytical budgets.
When a job Ji attempts to issue a request R for a resource ℓk, it proceeds according to the
following rules (Ji is non-preemptive while executing according to these rules).
F1 R is issued only if Ji’s remaining task execution budget is at least fi; otherwise, R is

denied. Issued requests spin (if necessary) in per-resource FIFO queues until satisfied.
(Policies for handling denied or aborted requests are an application-level concern.)

F2 When R is satisfied, Ji’s CS-budgeting timer is set to expire Le
i time units in the future.

F3 When Ji’s CS completes, Ji’s CS-budgeting timer is stopped and Ji releases ℓk. If the
CS-budgeting timer expires prior to CS completion, then ℓk is released (i.e., Ji’s CS is
aborted, as allowed by Assumption A4).

Addressing B1 and B2. We now address Properties B1 and B2. Fig. 6 depicts the execution
of a request R of a job Ji, with overheads included, during the time interval from R’s
issuance until its completion. During this interval, Ji issues R by inserting R into the FIFO
spin-queue during [t1, t2), spins (if required) during [t2, t3), starts its CS-budgeting timer
during [t3, t5), executes its CS during [t5, t6), stops its CS-budgeting timer during [t6, t8),
and unlocks its acquired resource during [t8, t9). Using this figure as a reference, we now
derive the various terms mentioned in B1 and B2.

CS execution budget. We derive Le
i by inflating Lb

i to account for its CS execution budget
consumption due to CS-budgeting timer overheads. Since Ji’s CS executes non-preemptively

Z. Tong, S. Ahmed, and J. H. Anderson 10:11

under the OR-FMLP, Ji incurs CS-budgeting timer overheads only when its CS starts and
completes execution. However, the CS-budgeting timer can start or stop at an arbitrary
time point within the OS’s timer-handling code, as shown by times t4 and t7 in Fig. 6,
respectively. Since (t5 − t4) ≤ ∆tb and (t7 − t6) ≤ ∆te, Ji’s CS execution budget is consumed
by at most ∆tb + ∆te units due to starting and stopping its CS-budgeting timer. Expiring
the CS-budgeting timer does not consume any CS execution budget because it occurs only
when the CS execution budget is fully consumed. Thus, we have

Le
i = Lb

i + ∆tb + ∆te. (1)

Analytical CS budget. The above derivation of Le
i pessimistically assumes that t4 (resp., t7)

is close to t3 (resp., t8). In reality, t4 (resp., t7) could instead be close to t5 (resp., t6),
implying that we must inflate again for timer overheads in determining the analytical CS
budget. With this in mind, we derive La

i , represented by [t3, t8) in Fig. 6, by inflating Le
i to

account for its task execution budget consumption due to CS-budgeting timer overheads. Ji’s
task execution budget is consumed by at most Le

i units during [t4, t7). Before (resp., after)
the CS-budgeting timer actually starts (resp., stops), the timer-handling code may execute
for at most ∆tb (resp., ∆te) time units during [t3, t4) (resp., [t7, t8)). If the CS-budgeting
timer of Ji expires, then the expiration and CS abort take at most ∆tt time units (by
Assumption A2). Since the timer stop and expiration cannot both occur for a CS, we have

La
i = Le

i + ∆tb + max(∆te, ∆tt). (2)

Request blocking time. Under the FMLP, a request R for a resource ℓk by a job Ji can be
blocked by at most m − 1 requests for ℓk by other jobs. A request R′ by a job Jj that blocks
R can do so for the entire duration when R′ is satisfied. This duration includes the time
needed for R′ to (i) start its the CS-budgeting timer, (ii) execute its CS, (ii) stop/expire its
CS-budgeting timer, and then (iv) unlock ℓk. This time interval is analogous to [t3, t9) for
Jj in Fig. 6. La

j upper bounds the total time for (i)–(iii) and ∆unlock upper bounds the time
for (iv). It follows that

Bi =
∑

m−1 largest in Γk

(La
j + ∆unlock). (3)

FZ length. Ji’s FZ length, fi, is the maximum task execution budget of Ji that can be
consumed during the time interval when its request R is active. This time interval corresponds
to [t1, t9) in Fig. 6. Ji issues R during [t1, t2), which takes at most ∆lock time units. It then
busy-waits for at most Bi time units during [t2, t3). It subsequently executes its CS and
timer-handling code for at most La

i time units during [t3, t8) and then unlocks ℓk during
[t8, t9), which requires at most ∆unlock time units. Therefore,

fi = Bi + ∆lock + La
i + ∆unlock. (4)

Task execution budget. We derive Ji’s task execution budget by inflating its base task
budget to account for spinning time, locking and unlocking overheads, and task- and
CS-budgeting timer overheads incurred when its request R is active (see Tbl. 2). These
overheads/delays correspond to all of [t1, t9) except [t5, t6) in Fig. 6. Since fi (resp., Lb

i)
corresponds to [t1, t9) (resp., [t5, t6)), Ji’s task execution budget is

Ce
i = Cb

i + fi − Lb
i .

ECRTS 2022

10:12 Overrun-Resilient Multiprocessor Real-Time Locking

Analytical task budget. Ji’s analytical task budget is obtained by inflating its task execution
budget to account for non-preemptive blocking and a potential task-budgeting timer expira-
tion. Expiring the task-budgeting timer takes at most ∆tt time units. Because jobs invoke
the OR-FMLP non-preemptively, a newly released job may be blocked by lower-priority jobs
for the duration of m CSs (inflated to include overheads). Reasoning similarly to (3), we
have

NPBi =
∑

m largest
(La

j + ∆unlock).

Therefore, Ji’s analytical task budget is

Ca
i = Ce

i + NPBi + ∆tt.

Fine-grained FZs and why they are problematic. FZs were originally proposed to be
policed upon CS entry [27], but here we have policed them in a more coarse-grained way by
also including spinning time. We made this choice to avoid interactions with the OS, per
Goal G1, to maintain the use of simple user-level synchronization code, and to reduce the
length of code sequences that require ETBs. Here we briefly explore the fine-grained choice
of defining FZ lengths based on CS execution times only.

The main advantage of the fine-grained approach is that FZ lengths are shorter. However,
now a job may exhaust its task execution budget while executing within the locking protocol.
In this case, its request must be extracted from the FIFO spin-queue. Letting ∆abort denote
that time required to do this, it can be shown that (4) can be replaced by

fi = max(La
max + ∆unlock, ∆abort). (5)

▶ Example 5. Fig. 5(b) depicts two jobs that issue requests for resource ℓ1. At time 3, J2
issues a request R for ℓ1. Assume that J2’s task and CS execution budgets are 7.0 and 2.0
units, respectively, and extracting R from the FIFO spin-queue requires 3.0 time units.
Then, J2’s fine-grained FZ length is max{2, 3} = 3. Thus, J2 reaches its FZ at time 4 after
consuming 4.0 units of its task execution budget.

Significant prior research has been directed at abortable spinlocks that allow requests to
be aborted [1,2,29,33,38,44]. Two approaches have been investigated in designing such locks.
The first approach aborts requests “lazily” by setting a removal flag [2, 33, 38, 44]. Proper
request removal is performed later by another job whose resource request is pending or
satisfied. This removal requires O(m2) time [33], which can significantly increase FZ lengths.
In the second approach, an aborted request is removed immediately [1, 29]. In existing
algorithms, such a removal requires O(min(m, log n)) time complexity or worse. Moreover,
abortable spinlocks require complicated lock/unlock/abort logic. This would significantly
increase the ETBs associated with that logic. In contrast, a simple ticket lock can be used in
the course-grained variant, thus reducing the length of code sequences requiring ETBs.

5 OR-OMLP

In this section, we introduce the overrun-resilient O(m) locking protocol (OR-OMLP). The
original OMLP executes CSs preemptively and uses priority inheritance [37] as a progress
mechanism to ensure that if a job waiting to access a resource ℓk is among the m highest-
priority jobs, then the currently satisfied request for ℓk is scheduled. The OR-OMLP executes
CSs non-preemptively (for the timing-analysis-related reasons discussed in Sec. 3) but retains
priority inheritance as a progress mechanism. Priority inheritance is still needed to ensure that

Z. Tong, S. Ahmed, and J. H. Anderson 10:13

when a (non-preemptive) CS ends, the next queued request will be satisfied if it is blocking
a job whose priority is among the top m. Non-preemptive CSs do not alter the OMLP’s
request-blocking bounds, but introduce non-preemptive blocking, which the OMLP avoids.

Similar to the OR-FMLP, the OR-OMLP uses FZs and ETBs of lock- and timer-related
overheads to satisfy P1.1 and P3.1, respectively, but here, FZs are fine-grained (i.e., policed
on CS entry). Having already seen how these basic mechanisms work in the context of the
OR-FMLP, we proceed directly to defining the rules of the OR-OMLP.

OR-OMLP rules. Our description of the OR-OMLP focuses on a single resource ℓk, for
which there are two queues, an m-element FIFO queue FQ and a priority queue PQ, as shown
in Fig. 1. When a job Ji attempts to issue a request R for ℓk, it follows the rules below,
which are specified assuming that B1 and B2 in Sec. 4 hold, and that a job’s task-budgeting
timer starts (resp., stops) when it begins (resp., ceases) to execute.

O1 R is issued only if Ji’s remaining task execution budget is at least fi; otherwise, R is
denied. If not denied, R is enqueued in FQ if fewer than m requests for ℓk are already
active; otherwise, it is added to PQ.

O2 All queued jobs except the job at the head of FQ are suspended. The job at the head of
FQ inherits the priority of the highest-priority job in FQ or PQ.

O3 If R becomes the head of FQ at time t, then it is satisfied and Ji becomes eligible to be
scheduled at time t (this depends on its perhaps-inherited priority). If Jj ’s request was the
head of FQ before time t and Ji is among the m highest-priority jobs at time t but cannot
preempt the lowest-priority scheduled job due to non-preemptivity, then Ji preempts Jj

(even if Jj is one of the top m priority jobs). Once scheduled, Ji’s CS-budgeting timer is
set to expire Le

i time units in the future, and Ji executes its CS non-preemptively.
O4 When Ji’s CS completes, its CS-budgeting timer is stopped, Ji releases ℓk, and Ji

becomes preemptive. If instead its CS-budgeting timer expires prior to its CS completion,
then ℓk is released (i.e., R is aborted, as allowed by Assumption A4). In either case, R is
dequeued from FQ and the highest-priority request from PQ is moved to the tail of FQ.

Lazy preemptions. In addition to the above rules, we enact preemptions (except the
preemption mentioned by Rule O3) lazily by delaying any preemption until the lowest-priority
scheduled job becomes preemptable instead of preempting the first-available lower-priority
job [10, §3.3.3]. Lazy preemptions prevent a job from incurring repeated pi-blocking each time
a higher-priority job is released when the scheduler implementation is link-based [10, §3.3.3],
which we assume.

▶ Example 6. Lazy preemption is depicted in Fig. 7. Three jobs are scheduled on two
processors under link-based G-EDF. When J3 is released at time 2, the scheduler links J3 to
processor 1, which is executing the lowest-priority job among both processors. Since J1 is
scheduled on processor 1 and is nonpreemptive at time 2, J3 is not scheduled. At time 5, J1
becomes preemptive again, and J3, the job linked to processor 1, is scheduled on processor 1.
Further details concerning lazy preemptions and link-based scheduling are given in an online
appendix [41].

Addressing B1 and B2. We deal with these properties similarly as for the OR-FMLP.
Fig. 8 depicts the execution of a request R of a job Ji, with overheads included. We omit
CS-budgeting timers in Fig. 8 as their accounting is the same as for the OR-FMLP, but we

ECRTS 2022

10:14 Overrun-Resilient Multiprocessor Real-Time Locking

Time
J1

J2

J3

0 5 10

Non-preemptive execution

Execution of processor 1

Execution of processor 2

Figure 7 Example illustrating lazy preemptions and link-based scheduling.

La
i

Ce
i

fi

Time
R

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10t11

Unlock
Lock

Task-budgeting timer start
Task-budgeting timer stop

Figure 8 Timeline of an active request under the OR-OMLP.

include task-budgeting timers as they are relevant to suspension-based locks. Ji’s lock request
is issued by enqueueing it in the relevant queue during [t1, t2). If ℓk is held by another job,
then Ji suspends. Before suspending Ji at t4, Ji’s task-budgeting timer is stopped during
[t2, t4). Ji’s task-budgeting timer is started during [t5, t6) after it is scheduled again upon
satisfaction of R at t5. During [t7, t8), Ji’s CS-budgeting timer starts, its CS executes, and
then its CS-budgeting timer stops. Ji unlocks ℓk during [t8, t9). If Ji is preempted due to
Rule O3 after it unlocks ℓk, then its task-budgeting timer is stopped during [t9, t11). Using
this figure as reference, we now derive the various terms mentioned in B1 and B2.

CS execution and analytical budgets. Since CSs execute non-preemptively, the analysis
of CS execution and analytical budgets is the same as under the OR-FMLP. Thus, Ji’s CS
execution budget and analytical CS budgets are determined by (1) and (2), respectively.

Task execution budget. Locking and unlocking overheads during [t1, t2) and [t8, t9), re-
spectively, occur when Ji’s task-budgeting timer is active and thus consume at most ∆lock

and ∆unlock units, respectively, of Ji’s task execution budget. Ji’s task-budgeting timer
actually starts (resp., stops) at an arbitrary time point t6 (resp., t3 and t10) within the OS’s
timer-handling code. Thus, (t3 − t2) + (t10 − t9) ≤ 2∆te (resp., (t7 − t6) ≤ ∆tb) units are
consumed from Ji’s task execution budget when Ji is suspended/preempted (resp., resumed).
By the FZ check in Rule O1, Ji’s task-budgeting timer cannot expire when R is active. The
CS-budgeting timer overheads are accounted for in La

i , and are at most La
i − Lb

i . Thus, Ji’s
task execution budget is

Ce
i = Cb

i + ∆lock + ∆unlock + ∆tb + 2∆te + La
i − Lb

i .

FZ length. fi is given by the maximum task execution budget of Ji that can be consumed
during the time interval when R is active. Ji consumes its task execution budget throughout
all of [t1, t9) except within [t3, t6). Therefore,

fi = ∆lock + ∆unlock + ∆tb + ∆te + La
i .

Z. Tong, S. Ahmed, and J. H. Anderson 10:15

Request blocking. Under the OMLP, a job Ji can be pi-blocked by the length of at most
2(m − 1) requests for ℓk [12]. This result hinges on a progress mechanism, which ensures
the progress of the job Jj holding ℓk whenever Ji is request-blocked. Under the OR-OMLP,
Rule O3 and priority inheritance ensure the same progress property. When Jj becomes the
head of FQ, Rule O3 ensures that it is scheduled if its (perhaps-inherited) priority is one
of the top m despite any non-preemptive execution of lower-priority jobs. This may cause
non-preemptive blocking for the previous resource holder (if any), which we discuss later.
Priority inheritance ensures that Jj can be scheduled when its priority is raised because of
Ji’s request issuance. (We give a formal proof in an online appendix [41].)

By preserving the same progress property as the OMLP, the OR-OMLP has the same
request-blocking bounds as the OMLP. A request R′ by Jj can pi-block Ji for the duration
in which R′ is satisfied, which is analogous to the time interval [t5, t9) in Fig. 8. This
duration includes the time needed for R′ to (i) start its task-budgeting timer, (ii) start its
CS-budgeting timer, (iii) execute its CS, (iv) stop its CS-budgeting timer, and (v) unlock ℓk.
∆tb upper bounds (i), La

i upper bounds (ii)–(iv), and ∆unlock upper bounds (v). Additionally,
Jj can be preempted before the next job holding ℓk can be scheduled. This causes Jj ’s
task-budgeting timer to stop during [t9, t11), which takes at most ∆te time. Therefore,

Bi = 2 · (m − 1) · (∆tb + ∆unlock + ∆te + max
τj∈Γk

{La
j }). (6)

Non-preemptive blocking. With lazy preemptions, Ji can incur non-preemptive blocking
when it releases ℓk (due to Rule O3). (We give an example of the latter case in an online
appendix [41].) Note that a job can be pi-blocked when a resource is released even under the
OMLP if there is a task with non-preemptive sections [10, §3.3.3]. However, such pi-blocking
can be analytically treated the same as pi-blocking incurred upon job release by considering
the remaining portion of the job as a new job. Each job release can cause pi-blocking for the
length of at most one CS [10, §3.3.3]. Reasoning as above for (6), we have

NPBi = 2 · (∆tb + ∆unlock + ∆te + max{La
j }).

Analytical task budget. We derive Ca
i by inflating Ce

i to account for request blocking time
Bi, non-preemptive blocking time NPBi, task-budgeting timer expiration overhead ∆tt, and
task-budgeting timer starting/stopping overheads during [t3, t4), [t5, t6), and [t10, t11). Since
(t4 − t3) + (t11 − t10) ≤ 2∆te and (t6 − t5) ≤ ∆tb, we have

Ca
i = Ce

i + Bi + NPBi + ∆tb + 2∆te + ∆tt.

Coarse-grained FZs. Is it possible to have a OR-OMLP variant with coarse-grained FZs
like the OR-FMLP? Such a variant would actually be quite tricky to implement due to the
need to track task budget consumption by waiting jobs. A waiting job’s task budget should
be consumed only when it is pi-blocked, and under s-oblivious analysis, not all suspension
time “counts” as pi-blocking time [12]. This nuance greatly complicates budget tracking.

6 Abortable Critical Sections

In this section, we introduce abortable CSs, which enable operations on shared data structures
to be aborted without undo code. Abortable CSs are inspired by word-based obstruction-free
STM, which linearizes multiple operations to a single instruction, but can only ensure
progress in the presence of a contention manager. By executing instructions in CSs, the

ECRTS 2022

10:16 Overrun-Resilient Multiprocessor Real-Time Locking

locking protocol serves as a strong contention manager, allowing us to simplify and address
issues in prior obstruction-free techniques.

Undo code problem. The following example shows the necessity of undo code when an
ordinary CS is aborted.

▶ Example 7. Consider the Modify procedure in Alg. 1, which updates a two-word buffer
M [1..2] by incrementing each M [i] by M [1]’s value. If the procedure is aborted after
completing the first for-loop iteration, then the buffer is left in an inconstent state. In order
to restore M to a valid state, undo code would need to set M [1] to its old value.

While the undo code above is simple, such code can be much more complicated for
operations that make many changes to object state. Undo code also needs to be provisioned
using its ETB to satisfy P3.1, which can be as pessimistic as the ETB of the CS itself.

Prior work on versioning techniques. Prior work on versioning techniques attempt to
obviate undo code through various means, but they all have unfortunate limitations in our
context. Interruptible CSs (ICSs [30]) use the idea of a continuation [42] to eliminate undo
code by appending memory modifications to a log, which will be applied before the next CS
entry. Unfortunately, ICSs can force short CSs to apply the memory modifications of long CSs.
When CSs only modify memory, each CS length may increase by the length of the longest
CS in the system. Object-based obstruction-free STMs [21, 26, 35] do not face this issue, but
may require coarse-grained copies of an entire data structure when only small modifications
are performed. Word-based variants [22–24] eliminate the need for coarse-grained copying,
but require a garbage collector. Other protocols such as TL2 [19] fix both the problems of
word-based STMs and continuations, but can require a lengthy clean-up process on abort.

Our abortable CS concept leverages locks as a strong contention manager. It also addresses
the issue present in ICSs, and word-based STMs’ reliance on garbage collectors without
requiring a lengthy clean-up process like TL2. We now explain this concept by showing how
to convert Modify into an abortable version, AbortableModify, also given in Alg. 1. We
first describe the data structures involved.

Data structures. We represent each M [i] using the structure shown in Fig. 9(a) and
associate a CS, e.g., an invocation of AbortableModify, with a transaction record as
defined in Fig. 9(b). The fields M [i].old and M [i].new contain the valid value of M [i] – i.e.,
the value written by the last unaborted request involving a write to M [i] – before and after
reaching the linearization point, respectively.3 We modify only M [i].new within a CS before
it reaches its linearization point. The txn field of M [i] is a pointer to a transaction record,
which is set when M [i] is updated in AbortableModify.

The rc1 and rc2 fields in a transaction record count the number of M [i] structures that
point to that record, which are used to determine when the record is no longer in use, as
discussed later. The done field indicates whether the CS corresponding to the record has
successfully been completed or not. The computation of a CS linearizes to a single write that
sets its transaction record’s done field to true. Thus, we maintain the following invariant.
I M [i].old contains M [i]’s valid value if M [i].txn.done is false or M [i].txn is NULL. M [i].new

contains M [i]’s valid value if M [i].txn.done is true.

3 M [i] is a pointer, so technically we should use notation like M [i]→old to indicate that it must be
dereferenced before accessing the old field. We have opted for simpler notation that is more readable.

Z. Tong, S. Ahmed, and J. H. Anderson 10:17

Algorithm 1 Example buffer data structure.

Variables:
M [1..2] : A shared array of words

1: procedure Modify(M)
2: x := M [1]
3: for i ∈ {1, 2} do
4: M [i] := M [i] + x

5: end for
6: end procedure

Variables:
M [1..2] : A shared array of type in Fig. 9(a)
data : Ptr of data structure in Fig. 9(a)
txn : Ptr to txn_record in Fig. 9(b)
new_txn : Ptr to txn_record in Fig. 9(b)
free_stack : Stack of free transaction records
free_stack_top : Ptr to top of free_stack

1: procedure AbortableModify(M)
2: new_txn := NULL
3: if M [1].txn ̸= NULL ∧ M [1].txn.done

then
4: x := M [1].new

5: else
6: x := M [1].old

7: end if
8: for i ∈ {1, 2} do
9: txn := M [i].txn

10: data := &(M [i])
11: if txn ̸= NULL then
12: if txn.done then

13: data.old := data.new
14: end if
15: txn.rc1 := txn.rc1 − 1
16: if txn.rc1 = 0 then
17: txn.done := false
18: txn.next := free_stack_top
19: free_stack_top := txn
20: end if
21: data.txn := NULL
22: txn.rc2 := txn.rc2 − 1
23: end if
24: txn := new_txn
25: if new_txn = NULL then
26: txn := free_stack_top
27: txn.rc2 := txn.rc2 + 1
28: data.txn := txn
29: free_stack_top :=
30: free_stack_top.next
31: txn.rc1 := txn.rc1 + 1
32: else
33: txn.rc2 := txn.rc2 + 1
34: data.txn := txn
35: txn.rc1 := txn.rc1 + 1
36: end if
37: new_txn := txn
38: data.new := data.old + x
39: end for
40: new_txn.done := true
41: end procedure

The next field in a transaction record is used to maintain a stack free_stack of free
transaction records that are not pointed to by any M [i]. This free_stack is used to reuse a
transaction record for future CSs. We now describe the code in AbortableModify.

Reads of shared variables. Lines 3–6 in AbortableModify replace line 2 of Modify.
These lines read M [1]’s valid value from either the new or old field of M [1] based on Invariant I.

Writes of shared variables. Lines 9–39 in AbortableModify replace the write to M [i] in
line 4 of Modify. We note that, while these lines reflect our general transformation process
for making a CS abortable, it is possible to shorten this code for this simple example. A
write to M [i] in AbortableModify occurs in three steps: (i) unlink M [i] from its old
transaction record to enable future reuse of that record; (ii) link M [i] with the transaction
record corresponding to this CS invocation; and (iii) commit that invocation, i.e., make it
take effect atomically. We now explain these steps.

Step (i): Unlinking. Lines 12–22 in AbortableModify unlink M [i] from its old transaction
record stored in txn by line 9. We depict the steps of unlinking in Fig. 10, where inset (a)
shows an initial state prior to executing lines 12–22. To maintain Invariant I, lines 12 and 13

ECRTS 2022

10:18 Overrun-Resilient Multiprocessor Real-Time Locking

struct {
old: word
new: word
txn: Ptr to txn_record

} data

(a) Data element structure.

struct {
rc1: int
rc2: int
done: boolean
next: Ptr to txn_record

} txn_record

(b) Transaction record structure.

Figure 9 Data structures for abortable CS.

txn

new = 4

old = 2

rc1 = 1

done = T

rc2 = 1

M [i] txn

(a)

txn

new = 4

old = 4

rc1 = 1

done = T

rc2 = 1

M [i] txn

(b)

txn

new = 4

old = 4

rc1 = 0

done = T

rc2 = 1

M [i] txn

(c)

txn

new = 4

old = 4

rc1 = 0

done = F

rc2 = 1

M [i] txn

(d)

txn

new = 4

old = 4

rc1 = 0

done = F

rc2 = 1

M [i] txn

(e)

txn

new = 4

old = 4

rc1 = 0

done = F

rc2 = 0

M [i] txn

(f)

free stack top free stack top free stack top

NULL NULL

free stack top txn ′free stack top txn ′free stack top txn ′

Figure 10 Unlinking process. The field txn.next is not shown.

copy M [i].new to M [i].old if txn.done is true, as shown in Fig. 10(b). Lines 15, 21, and 22
decrement rc1 and rc2 of txn before and after setting M [i].txn to NULL, respectively, as
shown in insets (c)–(f) of Fig. 10. If rc1 becomes 0 after line 15, as shown in Fig. 10(c), then
lines 17–19 push txn onto free_stack and unset its done field, as shown in Fig. 10(d).

Step (ii): Linking. Lines 24–35 link M [i] to a transaction record. Line 24 assigns new_txn to
txn, which is the transaction record corresponding to this invocation of AbortableModify.
We illustrate the linking process when new_txn is NULL by considering insets (b)–(f) of
Fig. 10 in reverse order. Fig. 10(f) shows an initial state after executing line 26 of the linking
process when new_txn is NULL. Insets (e), (d), (c), and (b) of Fig. 10 illustrate incrementing
rc2 (line 27), linking txn to M [i] (line 28), removing txn from free_stack (line 29), and
incrementing rc1 (line 30), respectively. After this linking process, line 36 sets new_txn
to txn to ensure that future loop iterations use this same transaction record. Also, line 37
performs the write operation (from line 4 of Modify) by updating M [i].new.

Step (iii): Committing. The CS is committed by simply setting new_txn.done to true in
line 39. It is this one-line commit at the end that obviates the need for any undo code.

Why two reference counters? To see why using only one counter is problematic, consider
again the unlinking process shown in Fig. 10. If only rc1 is used and the CS is aborted
after executing the step in Fig. 10(c), then txn is left in an inconsistent state, i.e., its rc1
field indicates no structure points to txn yet one does. Using both rc1 and rc2 enables this
“inopportune” CS abort to be detected by simply checking whether rc1 is smaller than rc2 .
To fix the inconsistent transaction record in this case, we add a small code sequence to the

Z. Tong, S. Ahmed, and J. H. Anderson 10:19

OS timer-handling code that deals with CS-budgeting timer expirations. This code completes
the remaining steps of unlinking by executing lines 15–21 of AbortableModify if txn.rc1 is
smaller than txn.rc2 (with an additional check of txn = free_stack_top in line 15 to prevent
inserting txn to free_stack twice). The timer-handling code can access the CS-specific
variables involved in these actions via a control page shared with the CS’s task. Note that
the added timer-handling code is the same for all abortable CSs and deriving the EBT of
expiring the CS-budgeting timer after adding this code supports Assumption A2. Similar
inopportune CS aborts can affect the linking process, and they are dealt with similarly.

Generalizing to arbitrary shared data structures. For clarity, we presented the idea of an
abortable CS via a simple example. However, in an online appendix [41], we present a set
of routines for performing necessary actions (reading, writing, linking, unlinking), a set of
rules to transform any ordinary CS into an abortable one, and an invariant-based proof that
shows that these rules are correct. In our simple example, reading and writing occurred at
the granularity of words. However, in the general scheme, any granularity can be assumed.

Have we really eliminated undo code? One could argue that abortable CSs merely
intertwine undo-related actions with ordinary CS code. If this is so, do they offer any real
advantages over simply following ordinary CS code with potential undo code? The answer is
yes. With separate undo code, the “chicken and egg” problem mentioned in Sec. 1 arises:
the undo code would have to be budgeted, and to avoid exhausting that budget, an ETB
would have to be assumed for it, which could be very costly. Perhaps one could take the
same “intertwined view” and inflate the cost of any CS by its undo cost, but then how is the
(separate) undo code ever triggered? Presumably, the combined budget would have to be
factored into two parts, one for the ordinary CS code and one for the undo code, bringing us
back to the chicken-and-egg problem. While abortable CSs are immune from these problems,
further research into supporting real-time undo code would certainly be valuable.

7 Experimental Evaluation

To assess the costs and benefits of overrun-resilient locking, we conducted two sets of
experiments under LITMUSRT [10, 15] on an eight-core 2.1GHz Intel Xeon Silver processor.
To increase timing predictability, we disabled hyperthreading, low CPU power states, and
CPU frequency scaling.

Experiment 1. We first assessed the costs of using abortable CSs that satisfy P2.1 vs. using
CS ETBs to provision CS execution budgets. As a baseline, we measured the execution times
of ordinary (non-abortable) operations on buffers, queues, and binary heaps. To assess the
cost of abortable CSs, we compared the baseline to the execution times of corresponding
abortable CS implementations. To assess CS ETB budget provisioning (which assumes
unrealistically pessimistic conditions), we compared the baseline to the execution times of
cacheless runs of the ordinary operations. Two metrics were considered: the worst-case (resp.,
average-case) inflation factor of an operation is the ratio between the observed maximum
(resp., average) execution times of abortable/cacheless CS vs. that of the baseline. As this is
not a paper on timing analysis, we note that the ETBs assumed here are provided to give a
plausible sense of the pessimism they may entail; we make no claim that they are in fact
upper bounds, or if they are, that they cannot be safely tightened.

ECRTS 2022

10:20 Overrun-Resilient Multiprocessor Real-Time Locking

Table 4 Comparison between abortable and ordinary CSs.

Data structure Buffer
Write

Buffer
Read

Queue
Enqueue

Queue
Dequeue

Heap
Insert

Heap
Extract

WC Baseline 39.0 ns 33.3 ns 46.7 ns 48.6 ns 89.5 ns 203.8 ns
WC Abortable 161.9 ns 76.2 ns 97.1 ns 252.4 ns 300.9 ns 981.9 ns
WC Cacheless 13.0 µs 11.0 µs 22.7 µs 20.6 µs 32.3 µs 15.9 µs

WC Abortable Inflation 4.14× 2.28× 2.08× 5.19× 2.95× 4.08×
AC Abortable Inflation 6.91× 2.55× 2.47× 5.53× 5.88× 3.36×
WC Cacheless Inflation 332.7× 329.8× 486.9× 424.4× 360.7× 784.2×
AC Cacheless Inflation 93.5× 113.5× 304.8× 200.8× 245.6× 882.4×

For each implementation, we determined the maximum and average duration of each
operation (measured using the timestamp counter) through 10,000 trials, running alongside
contention-generating tasks that contend for the memory bus. We separately measured the
duration of our timing code and subtracted it from our results. For the read/write buffer, we
used a one-word buffer with single-word reads and writes. We initialized the queue and heap
to contain 1,000 items. Our results, shown in Tbl. 4, support the following observations.

▶ Observation 1. The worst-case inflation factor of abortable CSs was around two to five.

▶ Observation 2. The inflation factors for running cacheless was in the hundreds.

The extremely high inflation factors for running cacheless were due to both instructions
and data being accessed from main memory instead of mainly the L1 cache. While the effects
of disabling caches on other processor mechanisms such as branch prediction, pipelining, and
prefetching are not well documented, we suspect that these factors also contributed to the
slowdown, especially in the case of heaps where branching code is common.

Experiment 2. We assessed the impacts of CS execution budget overruns under the OR-
FMLP, OR-OMLP, FMLP, and OMLP by executing a task system consisting of an equal
number of synthetic non-overrunning correct tasks and overrunning faulty tasks. (We did
not examine task execution budget overruns because they require application-dependent
mitigation; note, however, that common mitigations such as aborting the overrunning job
can break the FMLP and OMLP.) Each task τi had (Ce

i , Ti) = (1ms, 40ms). We generated
enough tasks so that the sum of all analytical task utilizations (Ca

i /Ti) was 0.8m.
The task system had a single shared resource for which each job issued a single request.

For each synthetic task τi, we generated its CS execution budget Le
i and an actual CS

execution time, denoted Li, via three steps. When jobs of these synthetic tasks execute CSs,
they acquire a lock and spin for the duration of the actual CS execution time. First, for each
correct task τi, we set Le

i to 0.2ms and Li to 0.19ms (which was sufficient to preclude budget
overruns due to overheads). Second, for each faulty task τi, we set Le

i to 0.2ms under the
FMLP and OMLP. Since abortable CSs require more execution budget, we inflated Le

i for
each faulty task τi under the OR-FMLP and OR-OMLP by considering three different inflation
scenarios based on the data given for buffers, queues, and heaps in Tbl. 4. For each scenario,
we inflated each such Le

i by the worst-case abortable-CS inflation factor of that scenario’s
data structure in Tbl. 4. Third, for each faulty task τi, we determined Li by a type-1 Gumbel
distribution.4 Under the FMLP and OMLP, the mean of this Gumbel distribution was set

4 The Gumbel distribution is often used to represent measurement-based probabilistic WCETs [18].

Z. Tong, S. Ahmed, and J. H. Anderson 10:21

0.00 0.05 0.10 0.15 0.20 0.25 0.30
probability of faulty jobs overrunning CS budget

10

15

20

25

co
rre

ct
 ta

sk
s m

ax
 re

sp
on

se
 ti

m
e

(u
s)

FMLP
OR-FMLP, Buffer Inflation
OR-FMLP, Queue Inflation
OR-FMLP, Heap Inflation

Figure 11 FMLP vs. OR-FMLP results.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
probability of faulty jobs overrunning CS budget

3

4

5

6

7

8

9

10

co
rre

ct
 ta

sk
s m

ax
 re

sp
on

se
 ti

m
e

(u
s)

OMLP
OR-OMLP, Buffer Inflation
OR-OMLP, Queue Inflation
OR-OMLP, Heap Inflation

Figure 12 OMLP vs. OR-OMLP results.

at 0.05ms. Under the OR-FMLP and OR-OMLP, this mean was inflated according to the
average-case abortable-CS inflation factor given in Tbl. 4 for the corresponding scenario. We
varied the probability of a job of a faulty task ovrerrunning its CS execution budget from 0.0
to 0.3 with a step size of 0.05. The variance of the Gumbel distribution was determined by
this probability value.

For each inflation scenario and CS execution budget overrun probability, we executed the
task system for 10 minutes and measured the maximum response time among all correct
tasks. Figs. 11 and 12 plot the recorded response times that supports following observations.

▶ Observation 3. The worst-case response times of correct tasks under the OR-FMLP (resp.,
OR-OMLP) stayed relatively constant as the overrun probability increased.

▶ Observation 4. Cost/benefit tradeoffs are evident in these curves. For example, for buffers
in Fig. 12, overrun-resilient protocols increased response times for overrun probabilities less
than 0.10 and decreased them for greater probabilities.

8 Revisiting Assumptions A1 and A3

We now return to Assumptions A1 and A3.

Assumption A1. As we have seen, user-level budgets have a fundamental dependency on
the execution times of certain OS code paths. If one defines budgets for those code paths,
then what entity would enforce them? The only alternative to budgeting is to require ETBs
for these code paths, but this has major implications for real-time OS (RTOS) designs. For
example, modern OSs tend to be highly preemptive, but preemptions greatly complicate
measurement-based timing analysis. To avoid “chicken and egg” problems, RTOS designs
need to be rethought, with enabling reliable timing analysis for critical code paths being a
first-class concern. These code paths should be simple and non-preemptive and should have
reasonable ETBs. Techniques like cache locking may help in this regard.

Assumption A3. Standard techniques [10] can account for the overheads/delays considered
negligible by A3. From a timing-analysis point of view, the overhead of most concern is
CPMD, as it is incurred on preemptions, which as noted already, are hard to deal with in
timing analysis due to difficulties in predicting cache state. These difficulties have important
implications for synchronization and scheduling: CSs that execute on a CPU (as opposed to,
e.g., an I/O device) should be non-preemptive, and tasks should either be non-preemptive or
only preemptive at certain “preemption points” [13]. While both task-scheduling options
have been studied for simple task models [7, 14,36], they warrant further attention in more
complex models relevant today, such those based on processing graphs [4, 40,45].

ECRTS 2022

10:22 Overrun-Resilient Multiprocessor Real-Time Locking

9 Related Work

Locking protocols that consider budget overruns (shown in Tbl. 1) have been explored in the
past. However, none satisfy properties P1–P3, which define our notion of overrun resiliency.

Satisfying P1. To satisfy P1, a protocol must deal with jobs overrunning their budgets
while in a CS. Prior work such as M-BWI and vMPCP satisfy P1 by allowing task budget
overruns to occur inside of CSs and account for them analytically. In contrast, SIRAP and
M-BROE satisfy P1 using FZs, introduced in [27], to avoid task budget overruns inside of
CSs. Tradeoffs between satisfying P1 using FZs and overrun accounting are detailed in [5].

Satisfying P2. M-BWI and vMPCP both require accurate CS WCETs to produce correct
overrun accounting. SIRAP and M-BROE also require accurate CS WCETs to correctly
provision FZs. Since CS WCETs may exceed CS PETs, protocols that rely on forbidden
zones and overrun accounting do not satisfy P2. In the absence of correct CS WCETs, ICSs
and protocols such as RRP and RACPwP satisfy both P1 and P2 by aborting CSs when
their budgets overrun. To maintain consistent state for shared data structures, ICSs, RRP,
and RACPwP use versioning techniques.

Satisfying P3. No prior work considers P3. However, all protocols that satisfy P1 can
satisfy P3 when ETBs are used to account for corresponding budget-enforcement mechanisms.
Unfortunately, all protocols that satisfy P2 use versioning techniques that make copies of
modified data. Thus, when CSs only modify data, the ETBs of versioning techniques can
be as large as the CS ETBs, nullifying the benefits of ensuring P2. Only ICSs avoid the
problem by allowing shared-resource state to remain consistent even when a job is aborted
while executing the versioning technique, satisfying P3. However, ICSs are intended for
uniprocessors, thus the ICS versioning technique cannot handle concurrent resource accesses.

In this work, we proposed the OR-FMLP and OR-OMLP, which in conjunction with
abortable CSs, yield overrun-resilient locking protocols. In fact, prior work on versioning
techniques can also be used with the OR-FMLP and OR-OMLP to yield overrun-resilient
protocols. However, those prior works have unfortunate tradeoffs as discussed in Sec. 6.

10 Conclusion

We have presented the OR-FMLP and the OR-OMLP, which are overrun-resilient variants of
the FMLP and the OMLP, respectively. Both the OR-FMLP and the OR-OMLP utilize FZs
and the ability to abort CSs to circumvent problems associated with overrunning task and
CS budgets. As our designs of these two protocols suggest, it is better to apply FZs in a
coarse-grained way in a spinlock but in a fine-grained way in a suspension-based lock. For
both protocols, we have carefully worked out how execution budgets should be defined. To
easily apply these protocols to support operations on shared data structures, we have also
presented abortable CSs, which enable such operations to be aborted with no undo code.

In future work, we plan to consider aborting CSs in other contexts, such as when using
locks to access shared hardware resources. We also intend to investigate other types of locks,
such as k-exclusion locks and reader/writer locks, as well as mechansims for allocating “slack”
generated by underrunning CSs to overrunning CSs. Additionally, full budgeting support
enables the possibility of freeing system capacity by intentionally under-budgeting certain
computations at the expense of aborting work more often; we plan to explore this possibility

Z. Tong, S. Ahmed, and J. H. Anderson 10:23

as well. This paper also establishes a need for timing-analysis techniques that can guarantee
safe ETBs without exorbitant pessimism. The various “chicken and egg” problems we have
pointed out warrant scrutiny as well.

References
1 A. Alon and A. Morrison. Deterministic abortable mutual exclusion with sublogarithmic

adaptive rmr complexity. In Proceedings of the 40th ACM Symposium on Principles of
Distributed Computing, pages 27–36, 2018.

2 J. Anderson, R. Jain, and K. Jeffay. Efficient object sharing in quantum-based real-time
systems. In Proceedings of the 19th IEEE Real-Time Systems Symposium, pages 346–355,
1998.

3 M. Asberg, T. Nolte, and M. Behnam. Resource sharing using the rollback mechanism in
hierarchically scheduled real-time open systems. In Proceedings of the 19th IEEE Real-Time
and Embedded Technology and Applications Symposium, pages 129–140, 2013.

4 S. Baruah, V. Bonifaci, and A. Marchetti-Spaccamela. The global EDF scheduling of systems
of conditional sporadic DAG tasks. In Proceedings of the 27th Euromicro Conference on
Real-Time Systems, pages 222–231, 2015.

5 M. Behnam, T. Nolte, M. Asberg, and R. Bril. Overrun and skipping in hierarchically scheduled
real-time systems. In Proceedings of the 15th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pages 519–526, 2009.

6 M. Behnam, I. Shin, T. Nolte, and M. Nolin. Sirap: A synchronization protocol for hierarchical
resource sharingin real-time open systems. In Proceedings of the International Conference on
Embedded Software, pages 279–288, 2007.

7 M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F. Esposito, and M. Caccamo. Preemption
points placement for sporadic task sets. In Proceedings of the 22nd Euromicro Conference on
Real-Time Systems, pages 251–260, 2010.

8 A. Biondi, G. Buttazzo, and M. Bertogna. Supporting component-based development in
partitioned multiprocessor real-time systems. In Proceedings of the 27th Euromicro Conference
on Real-Time Systems, pages 269–280, 2015.

9 A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. A flexible real-time locking protocol
for multiprocessors. In Proceedings of the 13th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pages 47–56, 2007.

10 B. Brandenburg. Scheduling and Locking in Multiprocessor Real-time Operating Systems. PhD
thesis, University of North Carolina at Chapel Hill, 2011.

11 B. Brandenburg. Multiprocessor Real-Time Locking Protocols, pages 1–99. Springer, 2020.
12 B. Brandenburg and J. Anderson. Optimality results for multiprocessor real-time locking. In

Proceedings of the 31st IEEE Real-Time Systems Symposium, pages 49–60, 2010.
13 A. Burns. Preemptive priority based scheduling: An appropriate engineering approach.

Advances in Real-Time Systems, pages 225–248, 1994.
14 G. Buttazzo, M. Bertogna, and G. Yao. Limited preemptive scheduling for real-time systems.

A survey. IEEE Transactions on Industrial Informatics, 9(1):3–15, 2013.
15 J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson. LITMUSRT: A testbed for

empirically comparing real-time multiprocessor schedulers. In Proceedings of the 27th IEEE
Real-Time Systems Symposium, pages 111–126, 2006.

16 F. Cazorla, L. Kosmidis, E. Mezzetti, C. Hernandez, J. Abella, and T. Vardanega. Probabilistic
worst-case timing analysis: Taxonomy and comprehensive survey. ACM Computing Surveys,
52(1):14:1–14:35, 2019.

17 R. Davis and A. Burns. A survey of hard real-time scheduling for multiprocessor systems.
ACM Computing Surveys, 43(4):35:1–35:44, 2011.

18 R. Davis and L. Cucu-Grosjean. A survey of probabilistic timing analysis techniques for
real-time systems. Leibniz Transactions on Embedded Systems, 6(1):03:1–03:60, 2019.

ECRTS 2022

10:24 Overrun-Resilient Multiprocessor Real-Time Locking

19 D. Dice, O. Shalev, and N. Shavit. Transactional locking II. In Proceedings of the 20th
International Symposium on Distributed Computing, volume 4167, pages 194–208, 2006.

20 D. Faggioli, G. Lipari, and T. Cucinotta. Analysis and implementation of the multiprocessor
bandwidth inheritance protocol. Real Time Systems, 48(6):789–825, 2012.

21 K. Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, UK, 2003.
22 T. Harris and K. Fraser. Language support for lightweight transactions. In Proceedings of the

18th Annual ACM SIGPLAN Conference on Object-Oriented Programing, Systems, Languages,
and Applications, pages 388–402, 2003.

23 T. Harris, S. Marlow, S. Peyton-Jones, and M. Herlihy. Composable memory transactions.
Commununications of the ACM, 51(8):91–100, 2008.

24 T. Harris, M. Plesko, A. Shinnar, and D. Tarditi. Optimizing memory transactions. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 14–25, 2006.

25 M. Herlihy, V. Luchangco, and M. Moir. Obstruction-free synchronization: Double-ended
queues as an example. In Proceedings of the 23rd International Conference on Distributed
Computing Systems, pages 522–529, 2003.

26 M. Herlihy, V. Luchangco, M. Moir, and W. Scherer. Software transactional memory for
dynamic-sized data structures. In Proceedings of the 22nd Annual Symposium on Principles
of Distributed Computing, pages 92–101, 2003.

27 P. Holman and J. Anderson. Locking in Pfair-scheduled multiprocessor systems. In Proceedings
of the 23rd IEEE Real-Time Systems Symposium, pages 149–158, 2002.

28 P. Holman and J. Anderson. Locking under Pfair scheduling. ACM Transactions on Computer
Systems, 24(2):140–174, 2006.

29 P. Jayanti. Adaptive and efficient abortable mutual exclusion. In Proceedings of the 22nd
Annual Symposium on Principles of Distributed Computing, pages 295–304, 2003.

30 T. Johnson and K. Harathi. Interruptible critical sections. Technical Report TR94-007,
University of Florida, 1994.

31 H. Kim, S. Wang, and R. Rajkumar. vMPCP: A synchronization framework for multi-core
virtual machines. In Proceedings of the 35th IEEE Real-Time Systems Symposium, pages
86–95, 2014.

32 N. Kim, B. Ward, M. Chisholm, C.-Y. Fu, J. Anderson, and F.D. Smith. Attacking the one-out-
of-m multicore problem by combining hardware management with mixed-criticality provisioning.
In Proceedings of the 22nd IEEE Real-Time Embedded Technology and Applications Symposium,
pages 49–160, April 2016.

33 H. Lee. Fast local-spin abortable mutual exclusion with bounded space. In Proceedings of the
14th International Conference on Principles of Distributed Systems, pages 364–379, 2010.

34 C. Maiza, H. Rihani, J. Rivas, J. Goossens, S. Altmeyer, and R. Davis. A survey of timing
verification techniques for multi-core real-time systems. ACM Computing Surveys, 52(3):56:1–
56:38, 2019.

35 V. Marathe, M. Spear, A. Acharya C. Heriot, D. Eisenstat, W. Scherer, and M. Scott. Lowering
the overhead of nonblocking software transactional memory. Technical report, University of
Rochester, November 2006.

36 M. Nasri, G. Nelissen, and B. Brandenburg. A response-time analysis for non-preemptive job
sets under global scheduling. In Proceedings of the 30th Euromicro Conference on Real-Time
Systems, volume 106, pages 9:1–9:23, 2018.

37 R. Rajkumar. Real-time synchronization protocols for shared memory multiprocessors. In
Proceedings of the 10th International Conference on Distributed Computing Systems, pages
116–123, 1990.

38 M. Scott. Non-blocking timeout in scalable queue-based spin locks. In Proceedings of the 21st
Annual Symposium on Principles of Distributed Computing, pages 31–40, 2002.

39 T. Springer, S. Peter, and T. Givargis. Resource synchronization in hierarchically scheduled real-
time systems using preemptive critical sections. In Proceedings of the 17th IEEE International

Z. Tong, S. Ahmed, and J. H. Anderson 10:25

Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing, pages
293–300, 2014.

40 M. Stigge, P. Ekberg, N. Guan, and W. Yi. The digraph real-time task model. In Proceedings
of the 17th IEEE Real-Time and Embedded Technology and Applications Symposium, pages
71–80, 2011.

41 Z. Tong, S. Ahmed, and J. Anderson. Overrun-resilient multiprocessor real-time locking
(longer version), 2022. URL: http://jamesanderson.web.unc.edu/papers/.

42 J. Turek, D. Shasha, and S. Prakash. Locking without blocking: Making lock based concurrent
data structure algorithms nonblocking. In Proceedings of the 11th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems, pages 212–222, 1992.

43 R. Wilhelm. Real time spent on real time (invited talk). In Proceedings of the 41st IEEE
Real-Time Systems Symposium, pages 1–2, 2020.

44 R. Wisniewski, L. Kontothanassis, and M. Scott. High performance synchronization algorithms
for multiprogrammed multiprocessors. In Proceedings of the 5th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming, pages 199–206, 1995.

45 K. Yang, G. Elliott, and J. Anderson. Analysis for supporting real-time computer vision
workloads using OpenVX on multicore+GPU platforms. In Proceedings of the 23th International
Conference on Real-Time Networks and Systems, pages 77–86, 2015.

ECRTS 2022

http://jamesanderson.web.unc.edu/papers/

Scheduling Offset-Free Systems Under FIFO
Priority Protocol
Matheus Ladeira #

ISAE ENSMA, Chasseneuil, France
University of Poitiers, France

Emmanuel Grolleau #

ISAE-ENSMA, Chasseneuil, France
University of Poitiers, France

Fabien Bonneval #

Ecole Nationale de l’Aviation Civile, Toulouse, France

Gautier Hattenberger #

Ecole Nationale de l’Aviation Civile, Toulouse, France

Yassine Ouhammou #

ISAE-ENSMA, Chasseneuil, France
University of Poitiers, France

Yuri Hérouard #

ISAE-ENSMA, Chasseneuil, France

Abstract
On UAVs, telemetry messages are often sent following a FIFO schedule, and some messages, depending
on the FIFO queue state may suffer long delays, and can even be lost if the FIFO queue is full.
Considering the high complexity of the problem of assigning offsets to periodic tasks, we propose a
new heuristic, called GCD+, that we compare to the methods of the state of the art, showing that
GCD+ significantly outperforms them on synthetic tasks sets. Then we use a real UAV use case,
based on Paparazzi autopilot, to show that GCD+ behaves well. The proposed algorithm is meant
to be the new Paparazzi’s automatic offset assignment method for messages.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture;
Computer systems organization → Embedded software

Keywords and phrases Scheduling, non-preemptible, heuristics, FIFO, autopilot

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.11

Supplementary Material Source code for an implementation of GCD+ in Python was submitted under
LGPL license to artefact evaluation, and can be found in: https://github.com/lias-laboratory/
gcdplus
Software (ECRTS 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.1.4

Funding This project has received funding from the ECSEL Joint Undertaking (JU) under grant
agreement No 826610. The JU receives support from the European Union’s Horizon 2020 research
and innovation programme and Spain, Austria, Belgium, Czech Republic, France, Italy, Latvia,
Netherlands.

1 Introduction

When conceiving an Unmanned Aerial System (UAS), i.e., a flying drone and every supporting
device in the drone’s network, the communication between the drone and the Ground Control
Station (GCS) or the remote pilot may be critical, since it may determine if the drone is

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Matheus Ladeira, Emmanuel Grolleau, Fabien Bonneval, Gautier Hattenberger,
Yassine Ouhammou, and Yuri Hérouard;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:matheus.ladeira@ensma.fr
https://orcid.org/0000-0002-3488-3468
mailto:emmanuel.grolleau@ensma.fr
https://orcid.org/0000-0001-7045-9819
mailto:fabien.bonneval@enac.fr
mailto:gautier.hattenberger@enac.fr
https://orcid.org/0000-0002-2986-5249
mailto:yassine.ouhammou@ensma.fr
https://orcid.org/0000-0003-3776-4736
mailto:yuri.herouard@etu.isae-ensma.fr
https://doi.org/10.4230/LIPIcs.ECRTS.2022.11
https://github.com/lias-laboratory/gcdplus
https://github.com/lias-laboratory/gcdplus
https://doi.org/10.4230/DARTS.8.1.4
https://doi.org/10.4230/DARTS.8.1.4
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Scheduling Offset-Free Systems Under FIFO Priority Protocol

certifiable or not for a specific mission [15]. Without a reliable communication link and the
guarantee that the GCS or the remote pilot can take control of the drone, safety and security
of every entity in the surroundings must be insured only by its autonomous functionalities.
This requires the development of very complex and, therefore, expensive embedded skills.

Hence, guaranteeing the nominal behaviour of the communication system is an important
step in drone development and configuration. Nevertheless, not only a larger communication
band can improve the exchange of messages between the different parts of the UAS: the
choice of the moments in which these messages are sent, by orchestrating their periods and
the moments of the first message transmissions, can play an important role in order to avoid
large waiting queues and, consequently, message delays or even losses. Some message delays
can make the GCS conclude falsely that the communication is lost and enter in fail-safe
mode.

LINK

SERVER

UAV

Other tools

Simulator
Messages (debug)

Joystick
Network bridges
User applications

...

GCS

Ground Control
Station

Available Firmwares

Fixedwing

Rotorcraft

Hybrid

Rover

downlink
(datallink class)

uplink
(telemetry class)

air-to-air

Flight controller
Sensors, actuators, propulsion

Payload

publish / subscribe middleware

Communication library
PPRZLINK

Log telemetry
Dispatch messages

Paparazzi UAV

(ground class)

Airborne Segment

Ground Segment

Figure 1 Paparazzi system architecture.

Amongst current solutions for the problem, we can highlight the one used in Paparazzi
[3, 11, 16], the open source autopilot developed by ENAC (École Nationale d’Aviation Civile,
France) and used in many research-related domains. It is conceived using modular functions
for the control algorithm, that are called in a single execution thread, one after the other
according to a defined pattern of execution. In parallel, a telemetry thread is responsible
for sending telemetry data through a wireless channel to a ground station, as depicted in
Figure 1. Each type of message has a defined range of possible sizes and a specific period in
which it will be sent. The messages are sent following a First-In-First-Out (FIFO) scheduling
policy.

In their current approach, message periods are chosen and adapted so that they yield a
very high hyperperiod, i.e., the time it takes for the pattern of message transmission to start
repeating (mathematically, it is the Lowest Common Multiple of all message periods). If

M. Ladeira et al. 11:3

every message is called to be sent in the same moment in time, this will happen only once in
every hyperperiod. Therefore, by adjusting periods such that their LCM is high enough, the
system will have only one simultaneous activation of all the messages in a very long period
of time – days, years, millennia, or even further. However, this simultaneous call can still
happen, while there are other methods that may prevent it completely.

The problem of message transmission in a single communication link is analogous to the
problem of scheduling non-preemptive tasks on a single processor. More specifically, this is
equivalent to the problem of finding offsets in an offset-free system of periodic tasks under
FIFO scheduling (thus tasks are non-preemptive), which has been studied in the literature.

In this article, we analyse the problem of message and task scheduling, proposing GCD+,
a new method to seek for better offsets and to avoid deadline misses. Section 2 explores in
depth the motivating case for this development. Section 3 presents a mathematical model
for the problem. Section 4 brings to light other heuristics that deal with the same problem.
Section 5 describes our contribution: the new heuristic method. Section 6 compares our
heuristic to three heuristics found in the literature. Section 7 applies the new method to a
real case involving the Paparazzi autopilot, and finally, Section 8 concludes the paper.

2 Motivating Example

Currently, in order to avoid critical events (several simultaneous message calls), the adopted
strategy in Paparazzi consists of two methods applied in parallel. The first one is changing
message periods in small amounts (from about 1% to 10%), so that the critical case for any
two messages only happens once in a very long interval (the hyperperiod, calculated as the
LCM of the periods). For example, instead of using the periods 3 and 5 seconds, which will
compose an execution pattern that will repeat every 15 seconds (i.e. the hyperperiod is 15
seconds long), one can choose to use periods of 3.1 and 5.1 seconds, which yield a hyperperiod
of 158.1 seconds. This technique can help reduce the interference specially considering sets
of several messages, which will have a very large hyperperiod, meaning that concurrent calls
become less probable. However, it does not guarantee that critical cases will not happen,
and it might lead to unexpected long delays that are very hard to reproduce.

The second method, complementary to the first, relies on the use of offsets, so the critical
instant does not happen at t = 0. The first message to be evaluated is assigned an offset of
0; the second one, an offset equivalent to 10% of its period; the third one, 20% of its period;
and so on (and, when the counter reaches 100%, it resets to 0 so that every offset is smaller
than the respective period).

Using offsets is a well-known strategy to increase the schedulability of task systems:
finding the right combination of offsets for each set of tasks in order to avoid overlapping [7].
The problem consists in choosing offsets in an offset-free system such as to avoid load peaks.
Hence, instead of being called at every instant t = n · Ti (where n ∈ N and Ti is the period
in which τi is executed), a task would be called at every instant t = Oi + n · Ti (where Oi is
an initial offset given to τi). By coordinating the individual offsets of each task according
to their periods and to the other periods in the system, it might be possible to completely
prevent critical cases or, at least, reduce the maximum possible interference between messages
– and in a mathematically predictable way.

The analogy between message and task scheduling holds due to the fact that the transmis-
sion of a message happens at a defined rate, such as the processing of individual instructions
in a CPU, and the message sizes are analogous to the execution times of the tasks. These,
however, must be considered non-preemptible, since once a message starts being sent, the

ECRTS 2022

11:4 Scheduling Offset-Free Systems Under FIFO Priority Protocol

process cannot be interrupted by a new arriving message. Also, due to implementation
constraints (namely a ring buffer used to store output messages) the first message to arrive
in the transmission queue will be the first to be sent, and therefore they are under a FIFO
scheduling policy.

Paparazzi uses a configuration file to describe its telemetry, where each message is
characterized by a period and an offset. Therefore, increasing schedulability by changing the
offset does not require changing a single line of the C code of the autopilot, saving testing
and validation efforts.

In our case, the goal is not only to meet deadlines, but also to minimize the response
time of the messages. This goal is related to the freshness of data sent over the datalink.
Indeed, the longer a message is kept in a queue before being sent, the less representative of
the state of the system it is.

In the following sections, we will analyse the behaviour of task systems (but the analogy
between processing non-preemptible tasks and sending telemetry messages holds for every
case).

3 Problem Statement

Figure 2 Model of execution of a set of two periodic tasks under FIFO with different offsets. The
up arrows represent task releases.

An offset-free task system [7] Φ of n periodic tasks executing in a single processor under
FIFO scheduling (and, therefore, non-preemptive), each task τ ′

i (such that i ∈ [1, n] ⊂ N)
being given by a tuple composed of two positive integers – its period Ti and its Worst Case
Execution Time (WCET) ci –, is given by Equation 1.

Φ ≜ {τ ′
i | τ ′

i = (Ti, ci) ∀i ∈ [1, n]} (1)

We are interested in finding a vector of n integers Oi such that the concrete task system
Θ, defined by Equation 2, is schedulable and, in order to guarantee data freshness, where
the tasks have the smallest starting time. Since the scheduler is non-preemptive, an earlier
starting time means a lower response time.

Θ ≜ {τi | τi = (τ ′
i , Oi) ∀i ∈ [1, n]} (2)

In order to do that, like in [7, 18, 1], we will make use of Theorem 1. Nevertheless until
now, it has been used to guarantee space between releases of pairs of tasks, but in our GCD+
heuristic, we use it to guarantee space between more tasks than two, hence the name of our
heuristic.

▶ Theorem 1 ([18]). Given two concrete tasks τi and τj , the minimum distance between the
release of a job of τi and the next job of τj is given by:

∆i,j = (Oj −Oi) mod GCD(Ti, Tj) (3)

M. Ladeira et al. 11:5

Using the example depicted in Figure 2 and considering that τ1 has an offset O1 = 1, a
period T1 = 16 and an execution time c1 = 8, and that τ2 has an offset O2 = 0, a period
T2 = 12 and an execution time c2 = 4, the minimum distance between the release of a job of
τ1 and the next release of τ2 is:

∆1,2 = (O2 −O1) mod GCD(T1, T2) = (0− 1) mod 4 = 3

Similarly, the minimum distance between the release of a job of τ2 and the next release
of a job of τ1 is:

∆2,1 = (O1 −O2) mod GCD(T1, T2) = (1− 0) mod 4 = 1

By taking Equation 3 and comparing its result to ci, if ci > ∆i,j and jobs use their
WCET, it is guaranteed that there will be a delay in the execution of a job of τj , and this
delay will be of at least ci −∆i,j . Therefore, we can define a lower bound Ii,j for the largest
interference caused by the execution of a job of τi on the execution of the next job of τj as
being the amount of time the execution of τi overlaps into the minimum distance from its
request to the subsequent request of τj . So, we have Equation 4.

Ii,j ≜

{
0 if ci ≤ ∆i,j , or i = j

ci −∆i,j otherwise
(4)

Note that we use a FIFO scheduling policy, and that if a job is released before another
one, then the former will be executed before the latter. The interference that a job under
analysis can suffer when it is released is therefore the remaining execution time of the job in
execution (if any) plus the sum of the worst-execution times of the jobs which are ready at
or before the release of the job under analysis. The value of Ii,j , if positive, shows the lowest
bound for the biggest amount of delay that will be caused in the execution of a job of τj due
to the execution of a job of τi. The maximum delay can still be larger than Ii,j in case any
backlog occurs, as will be seen in a following example.

Using the example in Figure 2, the lower bound for the maximum delay that τ1 causes in
τ2 is:

I1,2 = c1 −∆1,2 = 8− 3 = 5

And the minimal value for the maximum delay that τ2 causes in τ1 is:

I2,1 = c2 −∆2,1 = 4− 1 = 3

It can be seen from Figure 2 that the maximum delays suffered by tasks τ1 and τ2 are
effectively correspondent to I2,1 and I1,2, respectively. However, considering the same system
but with c2 = 6 instead of 4, I2,1 = 5, but instead the simulation shows that a maximum
delay of 6 happens. This can be explained by the presence of a backlog (an accumulation of
preceding delays).

This lower bound can be far from the real maximum delay in the case for more than two
tasks in a system, since delays can more easily accumulate. Yet, reducing the lower bound for
the maximum interference in task pairs is shown to improve the system’s schedulability [7, 8].

▶ Proposition 2. If Ii,j = 0 ∀i, j, then there is no delay in the execution of the system, i.e.,
every task job τi,k ends its execution time in the instant ri,k + ci ∀i, k.

ECRTS 2022

11:6 Scheduling Offset-Free Systems Under FIFO Priority Protocol

Proof. We prove it by recurrence. If Ii,j = 0 ∀i, j, the first task job to be requested will
certainly finish its execution before the next job request to happen, since no task executes
before it. Hence, the next job will not have any initial delays, and since Ii,j = 0 ∀i, j, it will
also finish its execution before the next request, and so on. ◀

The goal of this paper is to present a method to look for the state of null interference
discussed in Proposition 2 if this state exists.

4 State of the Art

Some methods have been proposed to assign offsets to systems independently of their scheduler
(FIFO, Earliest Deadline First, etc.), such as the heuristic proposed in this paper. Given the
complexity of the problem, well described by [7], the use of heuristics is a common approach
to solving it. In [7], the authors have proposed an algorithm (hereafter called Goossens’s
Heuristics) to order every possible task pair in a set according to a decreasing order of the
GCD of their periods, so each pair of tasks (starting from the highest GCD) is given a pair
of offsets which are apart by half of their GCD. The goal is to try to separate as much as
possible the task calls. The complexity of the algorithm is O(n2 · (log Tmax + log n2)). We
can think of a slight modification to this method by separating the “half instant” (call instant
plus half of the execution time) of every task, instead of their calls. This modification is
hereafter called Modified Goossens’s Heuristics.

Later, a modification of the previous heuristics is proposed in [8], regarding the priority
that determines the order in which task pairs are evaluated, but keeping the principle of
separating as much as possible the task calls. Four new priority assignments are evaluated,
based on expressions containing the pairwise GCDs. The algorithm complexity is, therefore,
considered to be the same.

Also, a method is proposed in [9] (hereafter called CAN Message Heuristics) to look for
the longest least-charged time interval in the interval [0, Tmax), and then put the task call in
the middle of that interval (starting from the task with the lowest period. Its complexity is
said to be O(n · Tmax), therefore it is pseudo-polynomial.

Paparazzi currently uses a method where each message has an offset correspondent to a
multiple of 10% of its period (modulo 100%) [17]. The multiple is defined at the moment
the message is added to the set, such that: the first message has an offset correspondent to
0% of its period; the second, 10%; the third, 20%; and so on. In mathematical notation:
Oi = ((i− 1) mod 10) · 0.1 · Ti. Its complexity is, hence, O(n).

Moreover, some methods were proposed specifically for FIFO schedulers. In [1], the
authors explore several properties for FIFO schedulers and derive a sufficient (but not
necessary) test to assess the schedulability of a task set (given the tasks’ periods, execution
times and offsets). However, they do not propose a method for calculating the tasks’ offsets
other than assigning random values, while in [12] the authors do present such a method.
Their proposal consists in using one or several offsets per task in order to reproduce, under
FIFO, the schedule constructed by another scheduler (Earliest Deadline First, for example).
Nevertheless, implementing this approach in the case of the Paparazzi autopilot would require
the autopilot’s code to be modified, retested and revalidated, while a single offset per task
requires only a specific configuration (already expected by the code).

M. Ladeira et al. 11:7

(a) O1 = 0 and O2 = 1. (b) Solution presented
by Goossens’s heuristics:
O1 = 0 and O2 = 2.

(c) Solution presented by
modified Goossens’s heur-
istics: O1 = 0 and O2 = 3.

Figure 3 Representation of the execution of a system around a modular circle of size 4, with
T1 = 16, c1 = 3, T2 = 12 and c2 = 1.

5 Contribution

This paper’s contribution relies on the extension of a simple yet very useful technique to
analyse pairs of tasks, allowing it to be used on whole sets of tasks. This technique is based
on the modular arithmetic around the GCD of their periods, which is based on Theorem 1.
Therefore, it needs a “sufficiently large” GCD to function properly, i.e., the GCD of all the
periods cannot be smaller than any execution time. Otherwise, this method will give poor
results.

If we analyse the modular circle around the GCD(Ti, Tj), hereafter also referred to as
GCDi,j , and we represent the execution of those tasks from their release to their end, we
can rapidly see if there will be any overlap in execution, such as in Figure 3a. The overlap in
the GCD circle means that there will be an instant during the execution where there will be
a task release, but another one will already be in execution. Similarly, if there is no overlap,
then there will not be any delay whatsoever if there is no backlog.

The method presented here intends to reduce execution overlaps, but considering the
system as a whole instead of pairs of tasks. For this, we take advantage of a property of
semi-harmonic task sets, which means their task periods are all multiple of a given value
Ω. This can be the case for several task systems, specially when we consider that there
are several techniques to adapt task periods in given ranges so that they can approach this
semi-harmony [2, 20, 4, 19, 13].

To better understand the method, we can start with an example. Let us suppose we want
to assign an offset for a task τ3 of period T3 = 8 and execution time of c3 = 2 in the system
represented by Figure 3c. We might have the impression that adding any task to the system
would cause an overlap in execution times. However, even if the circle looks fully occupied,
the system still has some free spaces, as seen in Figure 4.

Figure 4 Execution of τ1 (top, green), τ2 (middle, blue) and τ3 (bottom, red).

In fact, when comparing the GCD circle with the real execution of the system, τ1 is
released only once every T1

GCD1,2
= 4 GCDs. On the right side of Figure 5, it is represented in

green in GCDs 0, 4 and 8. This means that there is still room to execute, without interference

ECRTS 2022

11:8 Scheduling Offset-Free Systems Under FIFO Priority Protocol

with the two considered tasks, within the 3 GCDs out of 4 which are not used by τ1, using
τ1 reserved slot on the GCD circle. This reserved slot is called a section, and is represented
on the left part of Figure 5 as a yellow sector in the central pie chart. Sections are partitions
of the GCD cycle that will be allocated to tasks which have to be collocated on the same
GCD cycle. For example, since τ1 and τ2 have respective periods of 16 and 12, there will be
one time interval of size 4 such that τ1 and τ2 are both released each LCM of the periods.
Now, if we consider τ3, of period 8, since GCD1,3 is twice as large as GCD1,2,3, τ3 can be
added to the system using the section allocated to τ1 because it can always alternate with
τ1. Since this section is a partition over the GCD cycle, it will not interfere with τ2 either.
This is represented in Figure 5, where task τ3 is assigned to the second GCD circle, at the
beginning of the yellow section, and will then use this section on circles numbered 1 + 2k for
any natural integer k.

0

1

2

3

Section 𝑝 = 2

Section 𝑝 = 3

Figure 5 Representation of the execution of τ1 (green), τ2 (blue), τ3 (red) and τ4 (dashed grey)
over the overall GCD circle (left) and the cycles 0 to 11 composing the hyperperiod (right).

Several other tasks could also be added without interfering with the rest of the system,
in the unused spaces seen in Figure 5. For example, if we consider τ2, the ratio T2

GCD1,2
= 3

allows execution within the 2 GCDs over 3 which are not used by τ2. Therefore, we could add,
without creating interference, one or several tasks using the section used by τ2 (represented
in purple on Figure 5) two GCDs over three in the same way as τ3 used τ1’s unused GCD
section. In both cases, we can observe that this addition of tasks without interference is
always possible if the period of these additional tasks is a multiple of GCD1,2. As a result, by
construction, if n− 2 tasks were added to the initial system of two tasks using this method,
GCD1,...,n = GCD1,2.

Note that this condition is sufficient but not necessary to add a new task to a system
without interference. For example, if we consider the system Φ = {τ1 = (T1 = 6, c1 =
1), τ2 = (T2 = 10, c2 = 1)}, an additional task τ3 = (T3 = 15, c3 = 1) can be added without
interference while T3 is not a multiple of GCD1,2. We do not seek a necessary and sufficient
condition of non overlap, because we know that finding non overlapping intervals is a hard
problem. Indeed, the simultaneous in-congruence problem, which is at the root of this
problem, is NP-hard in the strong sense [5].

In the problem tackled by this paper, we do not have the freedom to change periods,
but we can retain the main idea by working with the GCD of all the tasks to try to find
offsets minimizing the interference. In an attempt to consider the system holistically instead

M. Ladeira et al. 11:9

of a union of independent pairs of tasks, the proposed heuristics of this paper considers
the GCD of all the periods. In our context, the time unit being the duration of a bit
on the network, and the periods of the telemetry messages often being multiples of tens,
hundreds or thousands of milliseconds, we expect the global GCD to be large in general in
real applications.

The global GCD, hereafter called Ω, is defined in Equation 5.

Ω = GCD1,2,...,n (5)

If two tasks have a GCD between their periods which is greater than Ω, it is possible to
arrange them as it was done for τ3 in the preceding example. On the other hand, if their
GCD is exactly Ω, then they must be put in a modular circle around Ω to be analysed,
because over the hyperperiod, there will be a time window of size Ω where both tasks will be
released.

Our method seeks that sort of arrangement in any given system by checking how many
distinct sections (reserved slots, such as the one shared by τ1 and τ3 in the example) will
need to co-exist in Ω, so that groups of tasks can be scheduled according to their respective
sections and that each section will have its own reserved interval of time, without ever
overlapping with other sections. The amount of sections will be given after analysing the
quotient of each task period by Ω: if the GCD between two quotients is greater than one, it
means that their respective tasks can be put in the same section in the mod Ω circle without
creating an overlap in execution times. This quotient will be called a task’s subperiod as
defined in Equation 6.

TSi = Ti

Ω (6)

From the example in Figure 4, TS1 = 4, TS2 = 3 and TS3 = 2. Note that TS1 and TS3

are multiple of 2 (which is why we characterize their section as prime p = 2 in Figure 5),
and that TS2 is co-prime with the other two. Since TS2 = 3, the section assigned to τ2 is
characterized by a prime p = 3.

If we divide the whole execution of the system into cycles of Ω units of time such as in
the right side of Figure 5, each task can be released periodically every TSi cycles. So, τ1
can be released every four cycles, and τ3, every two cycles. The algorithm shall be able to
schedule τ3 so that it avoids being released in the same cycle as τ1. This can be done by
analysing the possible cycles it can be assigned to: since its subperiod is only two, it can only
be assigned to cycle zero or cycle one (assigning it to cycle two is the same as assigning it to
cycle zero due to its periodicity). For cycle zero, the section for multiples of two is already
occupied by τ1, but cycle one is free. Then, it can be assigned to start at the beginning of
the section of prime two in cycle one.

To sum up, we have three values to choose for each task:
1. The cycle number between 0 and TSi

− 1;
2. The section within the cycle, acting as a partition, whose prime has to be a divisor of the

subperiod;
3. An offset inside the section, in case two tasks share the same cycle and section (e.g., if we

want to add τ4 with T4 = 8 and c4 = 1 in cycle one, in the section of prime p = 2, right
after every execution of τ3, represented in dashed gray on Figure 5).

For each assignment above there is a partial offset, respectively OC , OS and OI , such
that the final offset will be given by Equation 7. Tasks assigned to start at the same cycle
will have the same OC , while those that use the same section (multiples of the same prime)
will share the same OS , and if they share both OC and OS they will have to have distinct OI .

ECRTS 2022

11:10 Scheduling Offset-Free Systems Under FIFO Priority Protocol

Oi = Ω OCi
+ OSi

+ OIi
(7)

Using our example in Figure 5, τ1 and τ2 have OC = 0 since they are executed in the first
cycle, while τ3 has OC = 1. As τ1 and τ3 share the same section, they have the same OS = 0,
while τ2 has OS = 3, which is the moment in the GCD circle when their section begins. And,
since every task starts in the same time as their respective section, every OI = 0. A new task
τ4 with T4 = 8 and c4 = 1, set to be executed right after τ3 finishes its execution (as seen in
Figure 5), would share the same values of OC and OS with τ3, but would have OI = 2.

Note that, if we want to add a task τ5 such that T5 = 20 and, therefore, TS5 = 5,
independently of the execution time of the task, GCD+ would have to create a new section:
those for subperiods multiple of 5. The section will be put to begin its execution right after
the one for multiples of 3 (i.e., for τ5, OC = 4). It will necessarily result in an interference in
every task in the section for multiples of 2, as GCD+ was not able to find a better solution.

Algorithm 1 represents the algorithm to determine the values of each partial offset. First,
it calculates Ω, the overall GCD of all the periods. Based on this value, it assigns tasks one
by one to the section that will increase the least in size (i.e., for every cycle, the longest it
takes for its tasks to finish their execution). By doing this, it can calculate the partial offsets
OCi

and OIi
so that the task can start as soon as possible in the section without overlapping

with any other. When every task is assigned, it can then calculate each section size and
finally apply an offset to each section, so one is released only after the previous has finished
its execution. Its complexity is O(n · (log Tmax +

√
Tmax + log Tmax

log log Tmax
· (log Tmax + Tmax)))

using the Euclid’s algorithm for finding GCDs in O(log Tmax), a sieve to factor numbers in
approximately O(

√
Tmax) and considering the number of distinct prime factors of a number

to be at most log Tmax

log log Tmax
. Note that the last Tmax is only a superior bound to TSi , and the

algorithm generally works very far from this bound.

Algorithm 1 GCD+.

Require: Φ = {(Ti, ci) | i, Ti, ci ∈ N ∧ i ∈ [1, n]}
Ensure: O = {Oi | i, Oi ∈ N ∧ i ∈ [1, n] ∧Oi < Ti}

1: Ω← GCD({∀ Ti})
2: for all τi ∈ Φ do
3: if Ti = Ω then assign(τi, 1)
4: else
5: Find prime factors of TSi (Equation 6)
6: Choose prime p such that assigning τi to it increases its section size by the least

possible amount
7: assign(τi, p), defining the cycle OC and internal offset OI

8: end if
9: end for

10: calculate every OS (section sizes)
11: for all τi ∈ Φ do calculate Oi according to Equation 7
12: end for

M. Ladeira et al. 11:11

6 Performance comparison

6.1 Experimental setup and chosen metrics
Random task sets are generated according to the methodology proposed in [10], to generate
an unbiased distribution of utilization factors.

In order to generate representative task periods, there are two available methods in the
literature. The first one, used in [1] for generating semi-harmonic task sets, chooses a random
integer between defined lower and upper bounds, and multiplies the random number to a
defined value, of which every period will be a multiple of. The second one [6], more general
than the first, generates task periods from a finite set of possibilities according to a given
factor distribution. The latter was chosen due to it being more representative of real-world
scenarios.

The method for generating task periods works as follows: a set of prime numbers {pi} is
given to the algorithm as an input. Each prime pi related to a unique vector {xj ∈ N} of
size ni. The vector represents the probability distribution that the corresponding exponent
will be chosen to compose the final period. In other words, the probability that the factor
p

(j−1)
i will compose the generated period is xj/

∑
k xk). The possible values for the periods

are limited to
∏

i p
(ni−1)
i , and so is the hyperperiod of the system.

The generating set of vectors for each task period is obtained from the factors present
in the periods of a real set of messages from Paparazzi1. This file, in addition to being
used in the real telemetry system of rotorcraft equipped with Paparazzi, contains periods
that were purposefully tuned to increase the hyperperiod (using 11.1 seconds instead of 10,
for example). This causes the overall GCD to be reduced, approaching then a worst-case
scenario in our domain of application. Yet, the overall GCD has proven to be sufficiently
large.

The generated periods and generated utilization factors are multiplied to obtain the
execution times. These are then rounded to the nearest integer. Task sets that have any
execution time rounded to 0 are discarded, since they will not have the effective number of
tasks that were demanded. Also, only sets for which the GCD of all the periods is greater or
equal to the largest execution time will be used. This case is often found in real applications
such as Paparazzi, and is needed for our heuristics to work properly.

Then, the algorithms for finding the offsets are used in each task set. After each offset
assignment algorithm is run, the respective concrete task sets are simulated over an interval
equivalent to two hyperperiods plus the greatest offset and, for every task in every set, its
maximum delay ηi is registered (the largest period of time between a task release and the
beginning of its execution). This value represents the largest interference a task suffers. The
delays can then be put directly in a box plot to be analysed in their brute form, where each
task in each set will have its data point indicating the value of its maximum delay, and these
data points will be condensed in boxes where each box represents a single algorithm for offset
assignment.

However, while a certain absolute value for a delay (for example, 1000 time units) can
mean a significant deadline miss (e.g., a task with period 500 with implicit deadline), for
others it can mean only an “affordable” amount of 10% of its period (e.g., a task with period
10000 in a system with few and low-utilization tasks). Therefore, we must also evaluate the
ratio between each delay and each corresponding task period to better evaluate the obtained
results.

1 https://github.com/paparazzi/paparazzi/blob/master/conf/telemetry/default_rotorcraft.xml

ECRTS 2022

https://github.com/paparazzi/paparazzi/blob/master/conf/telemetry/default_rotorcraft.xml

11:12 Scheduling Offset-Free Systems Under FIFO Priority Protocol

If a task was delayed at most by 100 time units in a system in which the shortest task
executes in 200 time units, then it performed better than one that had the same maximum
delay but in a system where the maximum execution time is 50, indicating that task delays
have been chained and, in our case, probably more messages are waiting in the queue. Hence,
to look for signs of chaining delays, we also analyse the ratio between the delay and the
maximum execution time of other tasks in the set.

To evaluate the response time of each task, the maximum delay summed to the execution
time of each task is normalized with respect to each execution time. Values close to 1 will
indicate a small relative change to the response time.

A final analysis takes into account the schedulability of each task set. If any implicit
deadline was missed, the task set is marked as unschedulable under FIFO. Then, the amount
of schedulable sets is counted for each offset-assignment method, and they are compared
between each other for each value of the total utilization factor.

In summary, the metrics used in the analysis are in the following list:
1. interference of other tasks ηi

2. interference normalized by period ηi/Ti

3. interference normalized by concurrent tasks’ maximal duration ηi/max{∀τk ̸=τi}(ck)
4. maximum response time (ηi + ci)/ci

5. schedulability

6.2 Results
The codes of some heuristic methods cited in Section 4, as well as the new contribution were
implemented and executed in Python 3.9.6, using a laptop with Ubuntu 18.04.1, Intel Core
i7-4710MQ CPU (2.50GHz, 4 cores, 8 threads, 2054MHz), and 16 GB of RAM.

GCD+ is comparatively evaluated using sets of 8 and 16 tasks. The limit on the number
of tasks is due to the duration of the simulation used to compute the metrics. The time
for each method to yield an offset assignment is measured and, later, the resulting offset
assignments are evaluated in a simulation according to the criteria presented before. The
simulation stores the maximum delays of each task (the difference between the time it starts
its execution and the time it was called). Also, simulations with 1000 sets and then 2000
sets resulted in identical graphs, so we use only 1000 sets as a sufficient sample. The offset
calculation time for each group of sets is shown in Table 1 for sets with 70% utilization.
Other utilization values did not present significant variations.

Table 1 Average time to assign offsets (results from 1000 filtered sets at 70% utilization).

Method Time - 8 tasks (µs) Time - 16 tasks (µs)
GCD+ 54.8 151
Paparazzi method [17] 4.78 9.11
Goossens’s method [7] 22.8 74.7
CAN message method [9] 45.7 346

Table 1 shows that the time to calculate offsets is very small from a human perspective
for every method. It also shows that every method is scalable, and therefore we can focus
solely on their results.

Box-plots are used to represent simulation results, where each heuristic method has its
box. In the plots, the median (50th percentile) is represented as an orange continuous bar,
the limits of the box are the first quartile (25th percentile) and third quartile (75th percentile),

M. Ladeira et al. 11:13

and whiskers span from a box limit until the furthest value such that its size is, at most, 1.5
times the distance between the first and third quartile. All values beyond the whisker limits
are considered outliers and are not represented in order to allow readability. However, the
representations showing outliers follow the same tendencies as shown in the following figures.
The mean value is also represented, as a dashed green bar.

For sets of 8 tasks, the behaviour of the systems can be seen in Figure 6 for 70% utilization
and in Figure 7 for 90% utilization. Similarly, the behaviour for 16 task systems is seen in
Figure 8 for 70% utilization and in Figure 9 for 90% utilization. In these figures, the box
plot furthest to the left shows the first metric (ηi), the one at its right side shows the second
metric (ηi/Ti) and so on.

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

100

200

300

400

500

Maximum Delays

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.2

0.4

0.6

0.8

1.0

MaxDelay / Period

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.5

1.0

1.5

2.0

2.5
MaxDelay / max(ExecTimes)

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

MaxRespTime/ExecTime

Figure 6 Delays extracted from simulations for 1000 filtered sets of 8 tasks, with U = 70%.

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

100

200

300

400

500

600

700
Maximum Delays

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.00

0.25

0.50

0.75

1.00

1.25

1.50

MaxDelay / Period

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.5

1.0

1.5

2.0

2.5

MaxDelay / max(ExecTimes)

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s
0

5

10

15

20

MaxRespTime/ExecTime

Figure 7 Delays extracted from simulations for 1000 filtered sets of 8 tasks, with U = 95%.

ECRTS 2022

11:14 Scheduling Offset-Free Systems Under FIFO Priority Protocol

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

100

200

300

400

500

600

Maximum Delays

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

MaxDelay / Period

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

MaxDelay / max(ExecTimes)

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

10

20

30

40

50

60

MaxRespTime/ExecTime

Figure 8 Delays extracted from simulations for 1000 filtered sets of 16 tasks, with U = 70%.

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

100

200

300

400

500

600

700

800
Maximum Delays

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.5

1.0

1.5

2.0

MaxDelay / Period

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

MaxDelay / max(ExecTimes)

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

10

20

30

40

50

60

MaxRespTime/ExecTime

Figure 9 Delays extracted from simulations for 1000 filtered sets of 16 tasks, with U = 95%.

From the box plots, it can be seen that, for GCD+, every quartile (first, second and
third) is significantly closer to the ideal value in every situation than those for the other
heuristics, as well as the boundaries of the whiskers and the mean values. For utilization
factors of 70%, GCD+ was able to keep the delay of the great majority of tasks under 60%
and 80% of their periods in the case of sets of 8 and 16 tasks, respectively. Other heuristics,
however, show whiskers going beyond the value of 100% in these same situations.

It is also noticeable how every heuristic method has more trouble reducing delays when
the task count increases, notably with respect to the ratio between maximum response
times and execution times – this ratio tripled when the task count doubled. Increasing the
utilization factor is another factor that worsens the maximum delays for every heuristic
method.

M. Ladeira et al. 11:15

Figure 10 Schedulability for 1000 filtered sets of 8 tasks, from U = 50% to 98%.

Figure 11 Schedulability for 1000 filtered sets of 16 tasks, from U = 50% to 98%.

In order to evaluate the schedulability of these task sets with respect to the utilization
factors, an implicit deadline was considered for every task, and if a set has a task that missed
a deadline, it is considered unschedulable. Figure 10 and Figure 11 were then obtained
for sets of 8 and 16 tasks, respectively. GCD+ shows a significant advantage relative to
every other heuristic in every situation that is shown. For sets of 8 tasks, at 80% utilization
factor, there is an increase of at least 50% in the number of schedulable sets, while for 90%
utilization there are about twice as much schedulable sets when using GCD+. For sets of 16
tasks, the increase is even more pronounced: from about 2x at 50% utilization to about 4x
at 90%.

The significant improvement seen in the presented results can be explained by certain
limitations of the other methods. Paparazzi method tries to distribute the offsets without
taking into account the relations between the messages. The CAN Message heuristic method,
when trying to distribute the first calls over the maximum period, ignores the effects over the
hyperperiod, during which two tasks that were initially put far away can fall into a critical
case. The Goossens’s heuristic method, although it considers some interactions between

ECRTS 2022

11:16 Scheduling Offset-Free Systems Under FIFO Priority Protocol

pairs of tasks during the whole hyperperiod, has a trap: when several tasks have the same
period, it will tend to assign the same offset to all of them, intentionally creating a critical
case. Furthermore, its random component might lead to undesired critical cases. The fact
that it does not take into account the execution times of tasks has no apparent effect in its
results, since the Modified Goossens’s Heuristic (which does take them into account) had the
exact same results as the original method.

7 Case Study

An adapted real-world scenario was set up in order to measure the applicability of GCD+.
A telemetry configuration file was used to define the messages that a Paparazzi autopilot
implementation sends periodically, such that the telemetry is composed of the messages
described in Table 2. The column c indicates the content size of the message, without adding
any protocol header or tail.

Table 2 Paparazzi telemetry values.

i ID T (s) c (B)
1 ALIVE 2 17
2 ROTORCRAFT_FP 1 58
3 INS_REF 1 32
4 ROTORCRAFT_NAV_STATUS 1 15
5 ENERGY 1 21
6 DATALINK_REPORT 1 11
7 DL_VALUE 0.2 5
8 ROTORCRAFT_STATUS 0.2 20
9 STATE_FILTER_STATUS 0.2 4
10 AIR_DATA 0.2 28
11 INS 0.2 36
12 GPS_INT 0.1 57
13 IMU_GYRO_SCALED 0.04 12
14 IMU_ACCEL_SCALED 0.04 12
15 IMU_ACCEL_RAW 0.02 12
16 IMU_GYRO_RAW 0.02 12

The messages are sent to a UART channel, which is normally connected to an antenna to
transmit the data, but for this test and to ignore any effects related to the transmission of
radio waves, messages are read directly in the UART channel in our experiment. According
to its protocol, every byte has a start and an end bit added to it, which makes it transmit 10
bits per byte. It was configured to transmit 57600 bits per second. In addition, the Paparazzi
protocol used (Pprzlink V2.0) adds 8 bytes to each message for header and checksum2.

Therefore, to use the time it takes for a bit to be transmitted as a unit of time, i.e.,
1/57600 second, values for periods have to be multiplied by 57600, and the amount of bytes
in every message, after the 8 Pprzlink bytes are added, have to be multiplied by 10. With
these converted values, we can analyse this case using GCD+. Its results are presented in
Figure 12.

Figure 12 shows that, using GCD+, every message has a delay under 10% of its period,
in comparison to 80%, 170% and even 270% in other heuristics. These delays represent at
most 20% of the maximum length of other messages, while the third metric shows that there
was a significant chaining of interferences for all the other heuristics. Also, deadline misses
were registered for the methods Goossens and Paparazzi, while the system was schedulable
using offsets from GCD+ and CAN Message heuristics.

2 https://wiki.paparazziuav.org/wiki/Messages_Format

https://wiki.paparazziuav.org/wiki/Messages_Format

M. Ladeira et al. 11:17

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

500

1000

1500

2000

2500

3000

Maximum Delays

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0.0

0.5

1.0

1.5

2.0

2.5

MaxDelay / Period

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s

0

1

2

3

4

5

MaxDelay / max(ExecTimes)

GCD+

Pap
ara

zzi
 m

eth
od

Goo
sse

ns'
s H

eu
ris

tic
s (

C)

Mod
ifie

d G
oo

sse
ns'

s H
eu

ris
tic

s (
C)

CAN Mess
ag

e H
eu

ris
tic

s
0

5

10

15

20

25

MaxRespTime/ExecTime

Figure 12 Delays extracted from simulations for the case study.

From the physical analysis, before the implementation of GCD+, some messages were
lost due to a full buffer, as it can be seen in Figure 13. The figure is a screen capture from
the software Logic 2, for analysing the data acquired from the UART setup. The first line
(Channel 0) represents the raw bits sent in the UART port; the second one (Channel 1) goes
from a low to a high state every time the autopilot blocks the UART buffer, as it is writing
a message to be sent in the channel, and from high to low when in releases the buffer; the
third line (Channel 2) goes from high to low or from low to high when the buffer is already
full (a lot of messages in the queue) and, hence, the buffer refused to accept a message from
the autopilot (i.e., a message loss). It can be seen that there is a message loss at every 2
seconds. This problem was avoided with the offsets given by the heuristics presented in this
paper, as it can be seen in Figure 14, where no message is ever lost. The image shows less
than 3 seconds of data capturing, but the complete test was made for 20 seconds.

Figure 13 Screen capture from the analysis of a Paparazzi telemetry case with a message loss at
every 2 seeconds.

ECRTS 2022

11:18 Scheduling Offset-Free Systems Under FIFO Priority Protocol

Figure 14 Screen capture from the analysis of an improved Paparazzi telemetry case with no
more message losses.

This case study confirms what can be seen in simulations. Moreover, the case studies
in telemetry usually confirm the fact that the global GCD is large, giving an advantage to
GCD+.

8 Conclusion

In this article, we have proposed GCD+ a new method for finding suitable offsets for tasks in
execution or messages in transmission under FIFO scheduling. It was compared in simulations
to State-of-the-Art methods using a random task set generator and in a real case, presenting
better results than the others in both scenarios. In addition, the new method was compared
against the one used in Paparazzi in a physical setup of the autopilot, confirming the better
result obtained in the simulation. GCD+ proved its efficiency, notably for the cases of a
semi-harmonic set where the maximum execution time is not greater than the GCD of all
task periods.

GCD+ can be extended in the future to support other cases. For example, GCD+ could
be extended to handle multi-periodic precedence constraints, such as described in [14]. It
would allow applying this method to the computation of offsets in the case of monolithic
periodic tasks integrating a static scheduler, which are central in most UAV autopilots. Also,
the integration of GCD+ into the configuration tool of Paparazzi is planned in the near
future.

References
1 Sebastian Altmeyer, Sakthivel Manikandan Sundharam, and Nicolas Navet. The case for fifo

real-time scheduling. Technical report, University of Luxembourg, 2016.
2 Chaitanya Belwal and Albert MK Cheng. Generating bounded task periods for experimental

schedulability analysis. In 2011 IFIP 9th International Conference on Embedded and Ubiquitous
Computing, pages 249–254. IEEE, 2011.

3 Pascal Brisset, Antoine Drouin, Michel Gorraz, Pierre-selim Huard, and Jeremy Tyler. The
Paparazzi Solution. HAL, 2006.

4 Vicent Brocal, Patricia Balbastre, Rafael Ballester, and Ismael Ripoll. Task period selection
to minimize hyperperiod. In ETFA2011, pages 1–4. IEEE, 2011.

M. Ladeira et al. 11:19

5 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

6 Joel Goossens and Christophe Macq. Limitation of the hyper-period in real-time periodic task
set generation. In In Proceedings of the RTS Embedded System (RTS’01. Citeseer, 2001.

7 Joël Goossens. Scheduling of offset free systems. Real-Time Systems, 24(2):239–258, 2003.
8 Mathieu Grenier, Joël Goossens, and Nicolas Navet. Near-optimal fixed priority preemptive

scheduling of offset free systems. In 14th International Conference on Real-Time and Networks
Systems (RTNS’06), pages 35–42, 2006.

9 Mathieu Grenier, Lionel Havet, and Nicolas Navet. Pushing the Limits of CAN - Scheduling
Frames with Offsets Provides a Major Performance Boost. 4th European Congress on Embedded
Real Time Software (ERTS 2008), 2008.

10 David Griffin, Iain Bate, and Robert I Davis. Generating utilization vectors for the systematic
evaluation of schedulability tests. In 2020 IEEE Real-Time Systems Symposium (RTSS), pages
76–88. IEEE, 2020.

11 Gautier Hattenberger, Murat Bronz, and Michel Gorraz. Using the paparazzi UAV system for
scientific research. In IMAV 2014, International Micro Air Vehicle Conference and Competition
2014, page 247, 2014.

12 Mitra Nasri, Robert I Davis, and Björn B Brandenburg. Fifo with offsets: High schedulability
with low overheads. In 2018 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 271–282. IEEE, 2018.

13 Mitra Nasri and Gerhard Fohler. An efficient method for assigning harmonic periods to hard
real-time tasks with period ranges. In 2015 27th Euromicro Conference on Real-Time Systems,
pages 149–159. IEEE, 2015.

14 Thanh-Dat Nguyen, Yassine Ouhammou, Emmanuel Grolleau, Julien Forget, Claire Pagetti,
and Pascal Richard. Design and analysis of semaphore precedence constraints: A model-based
approach for deterministic communications. In 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 231–236. IEEE, 2018.

15 Réda Nouacer, Mahmoud Hussein, Huascar Espinoza, Yassine Ouhammou, Matheus Ladeira,
and Rodrigo Castiñeira. Towards a framework of key technologies for drones. Microprocessors
and Microsystems, 77:103142, 2020.

16 Paparazzi developers. Paparazzi home page. https://paparazziuav.org. Accessed: 02-02-
2022.

17 Paparazzi developers. Paparazzi offset generation source code. https://github.com/
paparazzi/paparazzi/blob/master/sw/tools/generators/gen_periodic.ml. Accessed: 02-
02-2022.

18 Rodolfo Pellizzoni and Giuseppe Lipari. Feasibility analysis of real-time periodic tasks with
offsets. Real-Time Systems, 30(1-2):105–128, 2005. doi:10.1007/s11241-005-0506-x.

19 Ismael Ripoll and Rafael Ballester-Ripoll. Period selection for minimal hyperperiod in periodic
task systems. IEEE Transactions on Computers, 62(9):1813–1822, 2012.

20 Jia Xu. A method for adjusting the periods of periodic processes to reduce the least com-
mon multiple of the period lengths in real-time embedded systems. In Proceedings of 2010
IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applica-
tions, pages 288–294. IEEE, 2010.

ECRTS 2022

https://paparazziuav.org
https://github.com/paparazzi/paparazzi/blob/master/sw/tools/generators/gen_periodic.ml
https://github.com/paparazzi/paparazzi/blob/master/sw/tools/generators/gen_periodic.ml
https://doi.org/10.1007/s11241-005-0506-x

Response-Time Analysis for Non-Preemptive
Periodic Moldable Gang Tasks
Geoffrey Nelissen #

Eindhoven University of Technology, The Netherlands

Joan Marcè i Igual #

Eindhoven University of Technology, The Netherlands

Mitra Nasri #

Eindhoven University of Technology, The Netherlands

Abstract
Gang scheduling has long been adopted by the high-performance computing community as a way to
reduce the synchronization overhead between related threads. It allows for several threads to execute
in lock steps without suffering from long busy-wait periods or be penalized by large context-switch
overheads. When combined with non-preemptive execution, gang scheduling significantly reduces
the execution time of threads that work on the same data by decreasing the number of memory
transactions required to load or store the data. In this work, we focus on two main types of gang
tasks: rigid and moldable. A moldable gang task has a presumed known minimum and maximum
number of cores on which it can be executed at runtime, while a rigid gang task always executes on
the same number of cores. This work presents the first response-time analysis for non-preemptive
moldable gang tasks. Our analysis is based on the notion of schedule abstraction; a new approach
for response-time analysis with the promise of high accuracy. Our experiments on periodic rigid
gang tasks show that our analysis is 4.9 times more successful in identifying schedulable tasks than
the existing utilization-based test for rigid gang tasks.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases schedulability analysis, response time analysis, moldable gang tasks, rigid
gang tasks, schedule abstraction graph, multiprocessor, non-preemptive

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.12

Funding Joan Marcè i Igual: This work was made with the support of the NWO SAM-FMS project
(project number 17931) as a part of the MASCOT program.
Mitra Nasri: This work was made with the support of the EU ECSEL Joint Undertaking under
grant agreement no 101007260 (project TRANSACT).

1 Introduction

Gang scheduling is a scheduling approach that groups and executes parallel threads as a
“gang”. A gang of threads reserves a set of cores for their execution. The threads have exclusive
access to those cores from the moment they start to execute until they complete or get
preempted. Since the early 80s, gang scheduling has been adopted by the high-performance
computing community [23] as a way to reduce synchronization overheads between related
threads, and to optimize the access time to shared data in data-intensive applications [12].
It allows for many threads to execute in lock steps without suffering from long busy-wait
periods or be penalized by large context-switch overheads. Furthermore, it reduces the
number of memory transactions by allowing the application to load its data only once for all
threads rather than once per thread.

© Geoffrey Nelissen, Joan Marcè i Igual, and Mitra Nasri;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 12; pp. 12:1–12:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:g.r.r.j.p.nelissen@tue.nl
https://orcid.org/0000-0003-4141-6718
mailto:J.Marce.i.Igual@tue.nl
https://orcid.org/0000-0003-2369-0246
mailto:m.nasri@tue.nl
https://orcid.org/0000-0002-1052-8437
https://doi.org/10.4230/LIPIcs.ECRTS.2022.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Gang scheduling is a versatile model and has various applications. It is used to assign
resources to applications in data centers, to schedule hardware tasks on field programmable
gate arrays (FPGAs) [5], and is also used in graphics processor units (GPUs) [2] where each
kernel thread-block needs a fixed number of cores before its execution starts.

The efficiency of gang scheduling improves significantly when it is combined with non-
preemptive execution. It then results in smaller execution times as it eradicates the need to
reload data into memory after each preemption. This is usually a crucial factor to optimize the
worst-case execution time of a gang task, which often treats large amounts of data. Despite
these benefits, to the best of our knowledge, no theoretical analysis exists for obtaining a safe
upper bound on the worst-case response time of gang tasks under non-preemptive scheduling.

In this work, we provide the first worst-case response-time (WCRT) analysis for two
generic classes of gang tasks, namely, rigid and moldable, where tasks are scheduled by
a non-preemptive job-level fixed-priority (JLFP) scheduling policy (e.g., non-preemptive
deadline monotonic (DM), earliest-deadline first (EDF), etc.). A rigid gang task requires a
fixed number of cores to execute its threads. Thus, a job released by a rigid gang task cannot
start its execution until at least the number of cores it requires are available. A moldable
gang task, however, uses a minimum and a maximum number of cores on which it may be
executed. Each job of a moldable task may then be allocated a different number of cores by
the scheduler depending on how many cores are available at its start time. As a result, the
actual execution time of a job of a moldable task depends on the actual number of cores
allocated by the scheduler to that job at runtime. It is worth noting that rigid gang is only a
particular case of moldable gang. Yet, due to its potentials to adapt its level of parallelism
according to the number of cores available, the analysis of moldable gang tasks is a much
more challenging problem than that of rigid gang tasks.

Related work. Gang tasks, or so called “coscheduled threads”, were introduced by Ouster-
hout et al. [23] in 1982. From the late 80s, it has been known that the optimal scheduling of
non-preemptive gang (NPGang) tasks is an NP-complete problem as it requires solving a bin
packing problem at the core [6]. Since then, further studies have focused on designing more
efficient scheduling algorithms either to improve the average-case response time [32] or to
reduce the effect of fragmentation [11], which happens when the number of idle cores is not
enough to start executing any of the pending jobs.

Work on real-time rigid gang. Goossens et al. [13] show that preemptive gang scheduling
under a JLFP policy is not sustainable [7] w.r.t. execution time variation. Since then, two
schedulability tests [9,13] and one optimal scheduling policy [15] have been introduced for
preemptive rigid gang under FP scheduling. However, neither of the tests nor the optimal
scheduling policy are applicable on non-preemptive gang tasks. Recently, Dong and Liu [10]
introduced a utilization-based test for non-preemptive sporadic gang tasks. That work is
the closest to ours as it considers non-preemptive gang tasks. However, it cannot be used
to compute an upper bound on the response-time of the tasks as it only outputs a yes/no
answer that indicates whether the task set is schedulable or not. It is also limited to rigid
gang tasks and cannot analyze moldable gang tasks.

Work on real-time moldable and malleable gang. Malleable gang tasks are a generalization
of moldable gang tasks according to which a job may change its level of parallelism during its
execution. Kato et al. [16] and Richard et al. [26] propose sufficient schedulability tests for
preemptive moldable gang scheduling under global EDF. Berten et al. [4] propose a greedy
scheduling algorithm and its schedulability test for preemptive moldable gangs. Collette
et al. [8] present a feasibility test as well as a scheduling algorithm that minimizes the

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:3

number of cores required to schedule malleable gang tasks. In their work, they also show
that EDF is not an optimal policy for malleable gang. However, these results are again
limited to preemptive tasks and have not been extended (and cannot be easily adapted) to
non-preemptive scheduling.

Work on bundle scheduling. In 2019, Wasly et al. [30] have extended the classical
rigid gang task model and proposed the bundled task model (BTM) along with a sufficient
schedulability test. Bundle tasks are modelled as a succession of “bundles” with precedence
constraints between them. Each bundle is preemptively scheduled and follows a rigid gang
model. However, each bundle may request a different number of cores than other bundles,
thereby providing a mean to change the parallelism of the task throughout its execution.
Nevertheless, similar to prior work, the existing tests for bundle scheduling have been designed
for preemptive execution and are not applicable to non-preemptive scheduling.

Work on schedule-abstraction-based analyses. Our response-time analysis for non-preemp-
tive gang tasks is based on the notion of schedule abstraction, a new type of response-time
analysis that provides highly accurate schedulability results (as shown in [31]). It was
first proposed in 2017 [18] and, since then, has been applied to various response-time
analysis problems for non-preemptive scheduling on single-core [18,24,25] and multicore
platforms [19,20,22], and is also being extended to the analysis of Ethernet TSN [28].

Contributions. In this paper, we propose a new analysis that uses the idea of schedule
abstraction [19] to derive the best-case and worst-case response times (BCRT and WCRT)
of a set of periodic rigid and/or moldable gang tasks scheduled by a non-preemptive JLFP
scheduling policy (detailed in Section 2). To the best of our knowledge, this is the first
response-time analysis for non-preemptive moldable (and rigid) gang tasks.

2 System Model

2.1 Platform and Task Model

We assume a platform made of m identical cores on which we execute a set of n non-
preemptive periodic moldable gang tasks. We consider periodic tasks since they are present
in more than 80% of real-time systems according to the recent survey of Akesson et al. [1] on
the industry practice in real-time systems. Each task τk (1 ≤ k ≤ n) periodically releases
non-preemptive moldable gang jobs. Whenever the scheduler dispatches a job Ji, it can chose
on how many cores to execute Ji out of a set Pi (see Section 2.2 for a detailed description of
the scheduler). The set Pi contains all the valid options to parallelize the execution of a job
Ji. For each possible number of cores p ∈ P that may be allocated to Ji, job Ji will execute
for a minimum of Cmin

i (p) and a maximum of Cmax
i (p) time units before completing its

execution. In other words, Cmin
i (p) and Cmax

i (p) are the best- and worst-case execution times
(BCET and WCET) of the job as a function of the number of cores on which it executes.
We assume that jobs may experience a bounded release jitter, that may arise from timer
inaccuracy, interrupt latency, or queuing delays. That is, a job Ji may be released at any
time within an interval [rmin

i , rmax
i] where rmin

i is its earliest release time and rmax
i is its latest

release time.
In sum, each job Ji ∈ J is then defined by the tuple ([rmin

i , rmax
i], C̄min

i , C̄max
i , Pi, di)

where rmin
i and rmax

i are the earliest and latest release times of Ji; di is its absolute deadline;
Pi is the set of core counts on which Ji may execute; C̄min

i and C̄max
i are vectors such that

each entry Cmin
i (p) and Cmax

i (p) contains the BCET and WCET of Ji on p cores, respectively.

ECRTS 2022

12:4 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

For ease of notation, we define mmin
i = min{p | p ∈ Pi} and mmax

i = max{p | p ∈ Pi} as
the minimum and maximum number of cores on which job Ji may execute. We also define
the function nexti(p) for all values p < mmax

i as a function that returns the smallest number
of cores larger than p on which job Ji can execute. That is, nexti(p) = min{k ∈ Pi | k > p}.
Without loss of generality, we assume that 1 ≤ mmin

i ≤ mmax
i ≤ m for all jobs. That is, job

Ji cannot execute on less than one core and cannot request more cores than the number of
cores in the platform. We also assume that the values in C̄min

i and C̄max
i are monotonically

decreasing. That is, a job may execute on more cores only if it decreases its execution time.
As mentioned before, rigid gang is a special form of moldable gang, namely, if mmin

i =
mmax

i (and thus |Pi| = 1) for a job Ji, then the job is said to be rigid, otherwise, it is
moldable. If all jobs released by a task are rigid, then the task is rigid.

Our response-time analysis is based on schedule abstraction which must be applied on
a finite observation window (or job set). For periodic tasks with synchronous releases,
constrained deadlines (i.e., deadlines smaller than or equal to periods) and with or without
release jitter, the length of the observation window is the task set’s hyperperiod H, i.e, the
least common multiple of all tasks’ periods [14]. Thus, the job set J must include all jobs
released by all tasks during the interval [0, H). Further discussions on how to create job sets
for periodic tasks with offsets or arbitrary deadlines are found in [18] and [14].

It is worth noting that despite focusing on periodic tasks, our analysis is applicable to any
arbitrary job set as well. This is helpful, for example, to analyze tasks with bursty release
patterns or with complex arrival models such as generalized multi-frame tasks [21].

2.2 Scheduler Model

Jobs are scheduled non-preemptively using a work-conserving global job-level fixed priority
(JLFP) scheduling algorithm that is assumed to follow the following set of rules:

▶ Rule 1. A job Ji is considered ready at time t if and only if it is released at or before t, it
is not yet completed at t and it is not already executing at time t.

▶ Rule 2. A job Ji is considered eligible to be dispatched at time t if and only if it is ready
at time t and there are at least mmin

i cores available at time t.

▶ Rule 3. The scheduler is invoked whenever a job is released or a job completes.

▶ Rule 4. At every invocation of the scheduler, the highest priority eligible job is chosen to
be dispatched.

▶ Rule 5. The dispatched job is assigned a number of cores equal to the maximum value in Pi

that is smaller than or equal to the number of free cores at the time at which it is dispatched
(i.e., it always executes on as many cores as possible so as to maximize its parallelism).

▶ Rule 6. The number of cores allocated to a job cannot change during its execution

▶ Rule 7. The execution of a job cannot be preempted once it started.

▶ Rule 8. No core may remain idle as long as there are eligible jobs to be dispatched.

Since we assume a JLFP scheduling algorithm, we use the notations hpi and lpi to refer
to the set of higher and lower priority jobs than job Ji, respectively.

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:5

3 Worst-Case Response-Time Analysis

To check the schedulability of a task set, we compute an upper bound on the worst-case
response time (WCRT) of each task by calculating an upper bound on the WCRT of each
job of the tasks in the observation window (e.g., hyperperiod). If the WCRT of a task is not
larger than its deadline, then the task is deemed schedulable.

As already mentioned, we use a schedule abstraction-based analysis [18–20] as opposed
to, e.g., a critical-instant-based analysis [3], in order to compute the WCRT of every job in a
job set J . In this section, we first explain preliminaries on schedule abstraction (Sec. 3.1)
and the challenges to build such an analysis for gang tasks (Sec. 3.2). We then elaborate on
how we model the system state for gang tasks (Sec. 3.3) and provide a top-down description
of the analysis in Sec. 3.4. We then discuss the details of the algorithm in Sec. 4 and 5

3.1 Preliminaries on Schedule-Abstraction Technique

Motivation. Schedule abstraction [18–20] is a recently developed technique to analyze
the best- and worst-case response times of a set of jobs. It efficiently explores the set of
“possible” schedules that can be generated by the job set under a given scheduling policy.
A recent comparison between the schedule abstraction and an exact response-time analysis
in UPPAAL (a generic formal verification tool) on a set of independent non-preemptive
periodic tasks scheduled by global fixed-priority scheduling shows that it is more than
three-order-of-magnitude faster than UPPAAL while having almost 100% accuracy [31],
i.e., it is able to detect almost all schedulable task sets. Since then, further improvements
using partial-order reduction techniques [24,25] have yet accelerated the analysis by five
additional orders-of-magnitude in comparison to [18]. This impressive gain, which now allows
to analyze hundreds of tasks non-preemptively scheduled on a single core platform in a
matter of seconds, was achieved at the cost of a negligible added pessimism on the WCRT
estimation. However, this improved version of the analysis is currently limited to the analysis
of single-core platforms and is therefore not directly applicable nor extendable to the analysis
of gang scheduling on multiprocessor platforms yet. For this reason, in this section, we focus
on the original idea of the schedule-abstraction graph (SAG) as it was presented in [19].

In terms of accuracy, it has been shown that the SAG analysis is far less pessimistic than
critical-instant-based analyses when applied on more complex problems such as the response-
time analysis of parallel tasks (with directed-acyclic graph dependencies) on multiprocessor
platforms [19]. Namely, for platforms with 4 to 16 cores, the schedule-abstraction technique
is 2 to 4.3 times more successful in identifying schedulable task sets than the analysis of [27]
based on the critical-instant theory.

Key idea. Assuming a deterministic scheduling policy and no uncertainty in the release
and execution times of the jobs, a job set will have only one possible schedule (which can
also be obtained by simulating the schedule of the job set during the observation window).
Under uncertainties, however, multiple schedules could occur. The schedule-abstraction
technique combines these schedules whenever they relate to the same job dispatching ordering
on the platform. To defer the state-space explosion and hence scale to reasonably large
system sizes, the schedule-abstraction technique uses two key ideas: (i) combining (and
abstracting) schedules that share the same jobs dispatching ordering and (ii) introducing
merging techniques that allow combining partial schedules (or job orderings) whose future can
be explored together (e.g., because they are followed b the same future scheduling decisions).

ECRTS 2022

12:6 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Schedule-abstraction graph (SAG). It abstracts all possible schedules of a given job set J
in the form of a directed graph G = ⟨V, E⟩, where V is the set of vertices (referred to as nodes)
and E is the set of edges each of which connects a pair of vertices to each other. A path in
the graph G represents a possible order of scheduling decisions taken by the scheduler. Each
node v ∈ V represents the set of system states that may result from the scheduling decisions
encoded on the paths that reach to v. A directed edge connecting a node v to a node v′ in G
represents a scheduling decision (i.e., dispatching of a job) taken by the scheduler that brings
the set of system states represented by v to a subset of the system states represented by v′.
A scheduling decision is equivalent to dispatching a job on the platform. Hence, each edge in
the graph is labeled by a job. Since the existing analyses that use the schedule-abstraction
graph are designed for non-preemptive jobs, the best- and worst-case completion time of a
job only depends on its start time, and thus on the system state v after which it is dispatched.
The earliest and latest completion time of the dispatched job is also recorded on the edge of
the graph.

Given the potential uncertainty on the release and execution times of the jobs, a job Ji

may appear in different places in the schedule abstraction graph (i.e., after different sequences
of scheduling decisions). Therefore, the WCRT of a job is given by the largest completion
time recorded on all edges referencing that job in the SAG.

3.2 Challenges in Analyzing Gang Tasks using Schedule Abstraction
Two of the clear differences between this work and previous works on schedule abstraction
[18–20,22] is that: (1) a job of a gang task may need more than one core to start executing,
hence cores may remain idle even when there is pending workload, and (2) a single job may
release (or free) more than one core simultaneously. These two particularities imply that the
time at which different cores start and stop executing workload is somewhat synchronized.
Thus, there is a need for system state representation that allows us to keep track of such
synchronization between cores in order to correctly and efficiently analyze possible schedules.
Furthermore, due to reason (1), the existing rules for analyzing global JLFP scheduling
policies are not applicable to the gang scheduling algorithm introduced in Sec. 2.2. This
means that new expansion and merge rules must be designed.

3.3 System-State Representation
To keep track of the number of cores claimed by a gang job at the time it is being dispatched on
the platform and hence to address challenge (2) in Sec. 3.2, we encode additional information
on the edges of the graph. In our new schedule abstraction, an edge between nodes v and
v′ will not only be labeled with the job Ji that is being dispatched after state v but it also
includes the number of cores that are claimed by Ji at the time it has been dispatched.

To address challenge (1) in Sec. 3.2, we develop a new model to encode a system state
using four data: (i) the set S(v) of all jobs that have already been dispatched to reach the
system state represented by node v, (ii) the set of all possible instants at which cores may
become available to execute new workload, and (iii) the number of cores that might be freed
at the exact same time, and (iv) the time at which those cores become available (recall that
a gang job executes on p parallel cores and thus releases p cores when it completes).

To encode (ii), we use m intervals. Each interval Ak(v) = [Amin
k (v), Amax

k (v)] (with
1 ≤ k ≤ m) encloses all the time instants at which k cores may become available to execute
new workload in node v in G. That is, Amin

k (v) is the time until which there are certainly
less than k cores available, and Amax

k (v) is the time by which at least k cores are certainly

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:7

Figure 1 Example of two possible execution scenarios for J3 and their resulting system states.
(a) initial state, (b) J3 scheduled with p = 1, (c) J3 scheduled with p = 2.

available to execute new jobs. We call Amin
k (v) and Amax

k (v) the earliest and latest availability
time of k cores for system state v, and we call Ak(v) the availability interval of k cores in
state v. In the following, when there is no ambiguity, we do not explicitly write the system
state v when referring to Ak, Amin

k and Amax
k .

To encode (iii) and (iv) and thus know how many cores may be freed simul-
taneously by a single job at what time, we store a set of pairs of values F ={〈

f1(v), M1(v)
〉
,
〈
f2(v), M2(v)

〉
, . . .

}
such that each pair Fℓ(v) =

〈
fℓ(v), Mℓ(v)

〉
has the

following meaning: at least Mℓ(v) cores will be freed by a single job no earlier than time
fℓ(v). By definition, we have that the total number of cores that may be freed is equal to m,
i.e.,

∑
ℓ>0 Mℓ(v) = m, and the earliest time fℓ(v) at which a group of cores may be freed

must also correspond to the earliest time at which some core may become available, i.e.,
∀ℓ, ∃k s.t. fℓ(v) = Amin

k (v).

▶ Example 1. Figure (1a) shows a system with m = 4 cores where two jobs have been
scheduled: J1 on one core, and J2 on three cores. J1 must finish within the interval [5, 10],
and J2 must finish within [10, 15]. Therefore, one core becomes possibly available at time 5
and three additional cores become possibly available simultaneously at time 10. Similarly, one
core is certainly available at time 10 and three more cores become certainly available at time
15. Thus, F = {⟨5, 1⟩, ⟨10, 3⟩}, A1 = [5, 10], A2 = [10, 15], A3 = [10, 15] and A4 = [10, 15].

Now, assume that a job J3 is released at time 1 with P3 = {1, 2}, Cmin
3 (1) = 10,

Cmin
3 (2) = 7, Cmax

3 (1) = 11 and Cmax
3 (2) = 8. Two execution scenarios are possible, hence

two new system states are created. If J1 finishes before J2 then one core will be freed and J3
will be scheduled with p = 1. This means that J3 starts executing at the earliest at time 5
and at the latest at time 10. For p = 1 we know that the best-case and worst-case execution
time of J3 is 10 and 11, respectively. Therefore, the finish time interval of J3 is [15, 21]. Then,
as shown in Figure (1b), three cores become possibly available at time 10 and one additional
core becomes possibly available at time 15. Therefore, we have F = {⟨10, 3⟩, ⟨15, 1⟩}, and
the availability intervals become A1 = [10, 15], A2 = [10, 15], A3 = [10, 15] and A4 = [15, 20].

However, in another execution scenario where J1 and J2 finish at the same time, J3
will be dispatched on p = 2 cores. This can only happen at time 10. For p = 2, the
execution-time interval of J3 is [7, 8], leading to the finish-time interval [17, 18]. Thus, the
new availability intervals are A1 = [10, 15], A2 = [10, 15], A3 = [17, 18], A4 = [17, 18] and
F = {⟨10, 2⟩, ⟨17, 2⟩} as shown in Figure (1c).

ECRTS 2022

12:8 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Algorithm 1 Algorithm to generate a schedule abstraction graph.
Input : Job set J
Outputs : Bounds on the BCRT and WCRT of every job in J ;

1 ∀Ji ∈ J , BCRT i ←∞, WCRT i ← 0;
2 initialize G with a root node v1 with S(v1) = ∅, Ak(v1) = [0, 0], ∀1 ≤ k ≤ m, and
F(v1) = {(0, m)};

3 while ∃ a leaf node v s.t. S(v) ̸= J do
4 P ← the shortest path from v1 to a leaf node v;
5 v ← the leaf vertex of P ;
6 for each job Ji ∈ J \ S do
7 for ∀p ∈ Pi do
8 if Ji may be dispatched next on p cores then
9 Compute the earliest and latest finish time EFTp

i and LFT p
i of Ji on p cores;

10 BCRT i ← min{EFT p
i − rmin

i , BCRT i};
11 WCRT i ← max{LFT p

i − rmin
i , WCRT i};

12 Build the next states using Alg. 2;
13 Try to merge the new system states with other nodes in G (Sec. 5);
14 return BCRT i, WCRT i for all Ji ∈ J ;

3.4 Constructing the Schedule Abstraction Graph
The schedule-abstraction graph for a job set J is built according to Algorithm 1 following a
breadth-first strategy. The algorithm starts by building an initial node v1 representing the
state of the system when no job started to execute yet. Therefore, v1 is initialized with an
empty set of scheduled jobs (S(v1) = ∅), with all cores potentially and certainly available at
time 0 (i.e., Ak(v1) = [0, 0], ∀1 ≤ k ≤ m,) and with all m cores being freed simultaneously at
time 0 (i.e., F(v1) = {⟨0, m⟩}).

Then, for each node in the graph that has not been analyzed yet (Line 3), Algorithm 1
checks which jobs that have not been scheduled yet may be dispatched next by the scheduler
and on how many cores they may be executed (Lines 6 to 8). For each such job Ji and number
of cores p, the earliest and latest completion times EFT p

i and LFT p
i of the job are computed

(Line 9). If the computed completion times result in larger (smaller, respectively) worst-case
(best-case, respectively) response times for Ji than those computed on other path of the
graph (i.e., for other sequences of scheduling decisions), then it updates the recorded values
WCRT i and BCRT i for their WCRT and/or BCRT (Lines 10 to 11). Finally, Algorithm 1
uses Algorithm 2 presented later in Section 4.3 to build all system states that may result
from scheduling Ji on p cores in state v (Line 12) and hence expand the graph. Section 4
provides more details and explanations about this expansion phase.

To defer a potential state-space, Algorithm 1 tries to merge the newly created nodes with
existing ones and hence reduce the number of branches in the graph (Algorithm 1). Section 5
provides more details about this merge phase. Finally, the algorithm stops when no more job
can be added to any of the leaf nodes, namely, when the set of scheduled jobs in each leaf
node is equal to the set of input jobs (i.e., S(v) = J).

4 Expansion Phase

The expansion phase has three consecutive steps: (1) for each job Ji that was not dispatched
yet (i.e., Ji ̸∈ S(v)) and for each possible number of cores p ∈ Pi, check whether Ji may
be the next job dispatched by the scheduler on exactly p cores in state v, (2) if Ji may be

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:9

dispatched next, compute the earliest and latest finish times of Ji, and finally, (3) build
the new system states resulting from the scheduler dispatching Ji on p cores in state v. We
discuss each of those steps in Sections 4.1–4.3.

4.1 Dispatch Condition

To check whether a job Ji may be the next job dispatched by the scheduler on p cores in
system state v, we first compute the earliest time EST p

i (v) at which that job would be
starting to execute on p cores if it was the only job left to execute. Then, we compute the
latest time LST p

i (v) at which it must have started in order to be the first job dispatched by the
scheduler considering all the other pending jobs in the system. It is crucial to understand that
LST p

i (v) is defined under the condition that Ji is going to be the first job being dispatched
after the state v. Scenarios where Ji is not the first job to be dispatched after the state v

will be automatically explored during future expansions of the graph.
If LST p

i (v) is larger than or equal to EST p
i (v), then there exists an execution scenario

in which Ji may be the next job dispatched on p cores by the scheduler. Otherwise, if
LST p

i (v) < EST p
i (v), then either Ji cannot be dispatched on p cores or there will always be

another job dispatched before Ji.

4.1.1 Earliest Start Time

The earliest start time EST p
i (v) of Ji on p cores (p ∈ Pi) depends on the following properties:

(i) by Rule 2, Ji cannot start before it is released (i.e, EST p
i (v) ≥ rmin

i);
(ii) there must be at least p cores available to start to execute Ji on p cores; and
(iii) by Rule 5, if p < mmax

i , then less than nexti(p) cores may be available when Ji is
dispatched (otherwise, by Rule 5, it would be dispatched on more than p cores).

Hence, as proven in Lemma 2 below, we can compute EST p
i (v) as follows

EST p
i (v) = max{rmin

i , tp
gang(v)} (1)

tp
gang(v) =

{
Amin

p (v) if p = mmax
i ,

A∗
p(v) otherwise.

(2)

where we define A∗
p(v) as the earliest time at which at least p cores but less than nexti(p)

cores may become available. Note that A∗
p(v) is different from Amin

p (v) in the sense that
Amin

p (v) only ensures that at least p cores are available but does not enforce that there are
less than nexti(p) available cores. Section 4.1.2 will explain how to compute A∗

p(v).

▶ Lemma 2. A job Ji cannot start executing on exactly p cores before time EST p
i (v).

Proof. We analyze two cases:
Case 1. If p = mmax

i , job Ji cannot start before to be released (i.e., before rmin
i) and cannot

start until at least p cores are available (i.e., at Amin
p (v)). Thus, Ji cannot start before

max{rmin
i , Amin

p (v)}, thus proving the claim for the case p = mmax
i in Equation (1).

Case 2. If p < mmax
i , again, job Ji cannot start before rmin

i and at least p cores are available.
Furthermore, by Rule 5, Ji cannot start executing on p cores if nexti(p) or more cores
are available. Thus, Ji cannot start before max{rmin

i , A∗
p(v)}. ◀

ECRTS 2022

12:10 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

4.1.2 Computing A∗
p(v)

Let Aexact
k (v) be the earliest time at which exactly k cores may become available. Then, the

earliest time at which at least p cores but less than nexti(p) cores may become available is
given by A∗

p(v) = mink{Aexact
k (v) | p ≤ k < nexti(p)}.

The value of Aexact
k (v) can be computed from the information available in F(v). Specifi-

cally, we must find a subset F ′ ⊆ F(v) such that
∑

Fℓ∈F ′ Mℓ = k and for which the time
at which the latest core is freed (i.e., the time given by maxFℓ∈F ′{fℓ}) is minimum. The
earliest time Aexact

k (v) at which exactly k cores may become available is then equal to the
time at which the last core in F ′ is freed, i.e., Aexact

k (v) = maxFℓ∈F ′{fℓ}.
If there is no subset F ′ ⊆ F(v) such that

∑
Fℓ∈F ′ Mℓ = k, then there is no possibility for

exactly k cores to become simultaneously available in system state v, i.e., there will always
be more cores or less cores available at any time. In that case, we set Aexact

k (v) = +∞.
Note that to avoid computing all combinations of values in F(v) to compute Aexact

k (v),
one can use text-book solutions that solve the subset-sum problem. Namely, using dynamic
programming [17] for the subset-sum problem, one can compute A∗

p(v) with a complexity
O(s · N) where s is the maximum sum to find, and N is the number of elements in the set F .
In our case, both s and the size of F are upper-bounded by the number of cores m resulting
to an O(m2) complexity.

4.1.3 Latest Start Time
The latest time LST p

i at which job Ji may start to execute on p cores assuming that it is
the next job that is dispatched by the scheduler depends on three factors:

(i) The time tp
avail(v) at which at least nexti(p) cores become available, since, if mmax

i > p,
the scheduler would then dispatch Ji on more than p cores (instead of p cores);

(ii) The time twc(v) at which another job than Ji certainly becomes eligible for execution,
since Ji will not be dispatched first if it has not been dispatched before twc(v);

(iii) The time tp
high(v) at which a higher-priority job may become eligible, since to be

dispatched before any other job, Ji must be dispatched before time tp
high(v).

We explain how to compute bounds on those three time instants.
First, according to Rule 5, if Ji starts to execute on p cores at time LST p

i , then either
p is the maximum number of cores on which Ji may execute, i.e., p = mmax

i , or there are
no more than p cores available at time LST p

i . Since Amax
nexti(p)(v) denotes the time by which

nexti(p) cores will certainly become available, we have that

LST p
i (v) ≤ tp

avail(v) (3)

where

tp
avail(v) =

{
Amax

nexti(p)(v) − 1 if p < mmax
i ,

+∞ otherwise.
(4)

Second, if Ji is the first job dispatched by the scheduler until time LST p
i , then according

to Rules 3 and 8, there must be no other job that was eligible to be dispatched before LST p
i .

Since by Rule 2, a job Jj is eligible only if it is ready and there are at least mmin
j cores

available, we must have

LST p
i (v) ≤ twc(v) (5)

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:11

with

twc(v) = min
Jj ̸∈S(v)

{max{rmax
j , Amax

mmin
j

(v)}}, (6)

where rmax
j is the latest time at which a job Jj that was not scheduled yet (i.e., Jj ̸∈ S(v))

may be released, and Amax
mmin

j
(v) is the latest time by which the minimum number of cores

mmin
j requested by Jj will be available to execute Jj .

Third, according to Rule 4, if job Ji is dispatched at time LST p
i and it is the first job

dispatched by the scheduler in system state v, then Ji must be the highest priority eligible
job until time LST p

i . That is,

LST p
i (v) < tp

high(v), (7)

with

tp
high(v) =

∞
min

Jj∈{hpi ∩{J \S(v)}}

{
tp
h(Ji, Jj)

}
, (8)

where min∞
x∈S{x} = +∞ if S = ∅, otherwise, min∞

x∈S{x} = minx∈S{x}, and

tp
h(Ji, Jj) =

rmax
j if mmin

j ≤ p,

max{rmax
j , Amax

mmin
j

} otherwise.
. (9)

▶ Lemma 3. Ji will not be the first job dispatched in system state v or will not be dispatched
on exactly p cores, if it did not start to execute before time tp

high(v) as defined by Equation (8).

Proof. We prove that a not-yet-dispatched higher-priority job Jj (i.e., Jj ∈ {hpi ∩{J \S(v)})
will be dispatched before Ji if Ji did not start executing before tp

h(Ji, Jj). It then directly
follows that Ji will not be the first job dispatched on p cores if Ji did not start to execute
before tp

high(v) = min∞
Jj∈{hpi ∩{J \S(v)}}

{
tp
h(Ji, Jj)

}
, hence proving the lemma. We consider

two cases:
Case 1. If mmin

j ≤ p, then the higher-priority job Jj requires fewer cores than the number
of cores requested by job Ji. Thus, if job Jj is released when Ji become eligible, then
according to Rule 2, Jj is also eligible, and because Jj has a higher priority than Ji,
the scheduler will dispatch Jj instead of Ji (Rule 4). Therefore, Ji cannot be scheduled
before Jj on p cores if it did not start to execute before rmax

j . This proves that Jj will be
dispatched before Ji if Ji did not start to execute before tp

h(Ji, Jj).
Case 2. If mmin

j > p, then, according to Rule 2, the higher-priority job Jj becomes eligible
when it is released and when mmin

j cores are available. This happens at the latest at time
max{rmax

j , Amax
mmin

j
(v)}. Then, because Jj has a higher priority than Ji, the scheduler will

dispatch Jj if Ji did not start to execute before max{rmax
j , Amax

mmin
j

(v)} (Rule 4). Thus,
we proved that Jj will be dispatched before Ji if Ji did not start to execute before
tp
h(Ji, Jj). ◀

▶ Corollary 4. Job Ji cannot be dispatched on p cores and be the first job dispatched in state
v later than LST p

i (v) = min{tp
avail(v), twc(v), thigh(v) − 1}.

Proof. It directly follows from the combination of Equations (3), (5) and (7). ◀

ECRTS 2022

12:12 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

4.1.4 Dispatch Condition
A job Ji may be dispatched on p cores (with p ∈ Pi) and may be the first job dispatched by
the scheduler in a system state v only if the earliest time at which it may be dispatched on p

cores is no later than the latest time at which it may be the first job to be dispatched. That
is, it must respect the following inequality:

EST p
i (v) ≤ LST p

i (v) (10)

▶ Theorem 5. A job Ji may be dispatched on p cores and be the first job dispatched by the
scheduler in system state v only if EST p

i (v) < ∞ and Inequality (10) is respected.

Proof. It is obvious that the earliest start time EST p
i (v) of Ji must be smaller than ∞ to

ensure that Ji may start to execute in system state v. Hence, we focus on Inequality (10). By
contradiction, assume that (i) a job Ji is the first job dispatched by the scheduler in system
state v, that (ii) Ji is assigned p core by the scheduler and that (iii) Ji does not respect
Inequality (10). Let ts be the time at which Ji starts executing. By Lemma 2, we have that
ts ≥ EST p

i (v). Thus, by assumption (iii) and the definition of LST p
i (v) given in Corollary 4,

we have ts > tp
avail or ts > twc or ts ≥ thigh. We analyse each case independently.

ts > tp
avail . Since by Equation (4), tp

avail ≥ Amax
nexti(p)(v) − 1 and because ts > tp

avail , we
have ts ≥ Amax

nexti(p)(v). Therefore, at least nexti(p) cores are available at time ts. Thus,
by Rule 5, Ji is dispatched on at least nexti(p) cores. This contradicts the assumption (ii)
that Ji is dispatched on p cores.
ts > twc. By definition of twc, a job certainly became eligible to be dispatched by time
twc. Therefore, a job must have been dispatched by the scheduler at or before twc. This
contradicts the assumption (i) that Ji is the first job dispatched by the scheduler and Ji

is dispatched at time ts.
ts ≥ tp

high. By Lemma 3, Ji is not the highest-priority eligible job at time ts. Thus,
by Rule 4, it is not the first job dispatched by the scheduler, hence contradicting the
assumption (i).

We thus reached a contradiction in all cases, which proves the claim. ◀

4.2 Job Finish Times
The earliest time at which a job Ji may complete its execution when dispatched on p cores is
when it starts at the earliest (i.e., at EST p

i (v)) and executes for its best-case execution time
on p cores (i.e., for Cmin

i (p)). That is,

EFT p
i (v) = EST p

i (v) + Cmin
i (p) (11)

Similarly, the latest time at which a job Ji may complete its execution when it is the
next job dispatched and it is dispatched on p cores is when it starts as late as possible (i.e.,
at LST p

i (v)) and it runs for its WCET on p cores (i.e., for Cmax
i (p)). That is,

LFT p
i (v) = LST p

i (v) + Cmax
i (p) (12)

4.3 Building New System States
If job Ji satisfies the dispatch condition for p cores in state v, then there are execution
scenarios in which the scheduler may dispatch Ji on p cores in system state v. For each such
scenario, we build a new node v′ representing the system state resulting from scheduling
Ji on p cores. Apart from adding Ji to the set of scheduled jobs S(v′), there are two data
structures that must be updated. The set of availability intervals, and the set of earliest
simultaneous core releases F . We discuss these in the following sub-sections.

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:13

4.3.1 New Set of Earliest Simultaneous Core Releases F
Our discussion has two parts. We first cover the case where the number of cores p assigned to
Ji is smaller than its maximum parallelism mmax

i , and then cover the case where p = mmax
i .

4.3.1.1 p < mmax
i

If p < mmax
i , then exactly p cores must be available when Ji starts to execute (Rule 5). Yet,

any combination of simultaneously released cores that sum to p and are possibly released
between the earliest and latest start time of Ji may be used to execute Ji. Because there
may be more than one such combination, we first identify every subset F=p

k of elements
in F(v) such that

∑
Fℓ∈F=p

k
Mℓ(v) = p and ∀Fℓ ∈ F=p

k , fℓ(v) ≤ LST i(v). Then, for each
subset F=p

k ⊆ F(v) that meets those conditions, we create a new node v′
k in the graph that

represents the system state resulting from dispatching Ji on the specific p cores contained in
F=p

k . The new set of earliest simultaneous core releases F(v′
k) in the new state v′

k is then
built according to Lemma 6.

▶ Lemma 6. Let node v′
k result from executing Ji on the p cores in F=p

k , then the set of
earliest simultaneous core releases is F(v′

k) =
{

⟨EFT p
i (v), p⟩

}
∪

{
F(v) \ F=p

k

}
.

Proof. Since v′
k considers a system state that results from dispatching job Ji on p cores, p

cores will be released simultaneously by Ji when it finishes its execution. This happens no
earlier than the earliest finish time EFT p

i (v) of Ji. Therefore, F(v′
k) ⊇

{
⟨EFT p

i (v), p⟩
}

.
Furthermore, because by assumption Ji executes on the cores in F=p

k , the time at
which the cores in F(v) \ F=p

k are released is not impacted by the execution of Ji. Thus,
F(v′

k) ⊇
{

F(v) \ F=p
k

}
. ◀

4.3.1.2 p = mmax
i

When the number of cores p assigned to Ji is equal to its maximum parallelism mmax
i , there

must be at least p but also potentially more than p cores available when Ji starts to execute.
Thus, differently from the case covered above, we identify every subset F≥p

k of F(v) whose
elements sum up to at least p. That is,

∑
Fℓ∈F≥p

k

Mℓ(v) ≥ p and ∀Fℓ ∈ F≥p
k , fℓ(v) ≤ LST i(v).

As before, for each subset F≥p
k , we create a new node v′

k whose set of earliest simultaneous
core releases F(v′

k) is computed according to Lemmas 7 and 8.

▶ Lemma 7. If all the cores in F≥p
k are released when Ji starts to execute, then Ji starts no

earlier than tk = max
Fℓ∈F≥p

k

{fℓ}.

Proof. By definition of Fℓ, the Mℓ cores modeled by Fℓ are all released at the earliest at
time fℓ. Thus, all the cores in F≥p

k are available no earlier than max
Fℓ∈F≥p

k

{fℓ}. Since Ji

starts when all cores in F≥p
k are available, this proves the claim. ◀

▶ Lemma 8. Let node v′
k result from executing Ji on p of the cores in F≥p

k , then the set of
earliest simultaneous core releases is F(v′

k) =
{

⟨EFT p
i (v), p⟩

}
∪

{
⟨tk, (s−p)⟩

}
∪

{
F(v)\F≥p

k

}
where s is the number of cores in F≥p

k , i.e, s =
∑

Fℓ∈F≥p
k

Mℓ(v).

Proof. Since v′
k considers a system state that results from dispatching job Ji on p cores, p

cores will be released simultaneously by Ji when it finishes its execution. This happens no
earlier than the earliest finish time EFT p

i (v) of Ji. Therefore, F(v′
k) ⊇

{
⟨EFT p

i (v), p⟩
}

.

ECRTS 2022

12:14 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Algorithm 2 Build all system states resulting from dispatching Ji on p cores in v.

1 for ∀Fp
k ⊆ F(v) s.t. conditions of Sec. 4.3.1 are respected do

2 Add a node v′
k to the sched.-abstraction graph G;

3 S(v′
k)← S(v) ∪ {Ji};

4 Compute PA and CA according to Lemmas 9 and 11;
5 Sort PA and CA in non-decreasing order ;
6 ∀x, 1 ≤ x ≤ m, Ak(v′

k) = [PAx, CAx];
7 Compute F(v′

k) according to Lemmas 6 and 8;
8 Connect v to v′

k with an edge;

Furthermore, by assumption, all cores in F≥p
k are free when Ji starts to execute. Therefore,

all (s − p) cores in F≥p
k on which Ji does not execute are free from Ji’s start time onward.

By Lemma 7, Ji starts no earlier than tk. Hence, F(v′
k) ⊇

{
⟨tk, (s − p)⟩

}
.

Finally, because Ji executes on the cores in F≥p
k , the time at which the cores in F(v)\F≥p

k

are released is not impacted by the execution of Ji. Thus, F(v′
k) ⊇

{
F(v) \ F≥p

k

}
. ◀

4.3.2 New Availability Intervals
To construct the availability intervals Ax(v′

k) (1 ≤ x ≤ m) of a system state v′
k reachable

from v, we build the set PA of all instants at which each core may potentially be available,
and the set CA of the latest possible times at which each core will certainly become available
after dispatching Ji on p cores in F=p

k or F≥p
k (depending on whether p < mmax

i or p = mmax
i

as discussed above). We do so using Lemmas 9 and 11.

▶ Lemma 9. A set of lower bounds on the time instants at which each core may potentially
become available to execute new workload in v′

k is given by

PA =
{

p × {EFT p
i (v)}

}
∪

{
max(Amin

x (v), tk) | p < x ≤ m
}

where p × {EFT p
i (v)} means that EFT p

i (v) appears p times in the set.

Proof. First, since v′
k considers a system state that results from dispatching job Ji on p

cores, at least p cores will become available no earlier than the earliest finish time EFT p
i (v)

of Ji. Therefore, PA must contain p times EFT p
i (v).

Second, by Rule 8, Ji will always be dispatched on the p first cores that become available.
Therefore, the earliest time at which the (m − p) remaining cores may become available is
the earliest time at which the (m − p) latest cores may become available before dispatching
Ji. By definition of the availability intervals, those times are {Amin

x (v) | p < x ≤ m}.
Finally, since job Ji is the first job dispatched by the scheduler in state v, and because

by Lemma 7, tk is the earliest time at which Ji is dispatched, cores can start to execute new
workload no earlier than tk in v′

k. Combining the three facts above prove the claim. ◀

▶ Corollary 10. A lower bound on the time at which x cores are potentially available to
execute new workload in v′

k (i.e., Amin
x (v′

k)) is given by the xth element in the non-decreasingly
ordered set PA.

Proof. Since PA contains a lower bound on the availability time of every core in state v′
k,

the xth element in the ordered set is a lower bound on the availability time of x cores. ◀

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:15

▶ Lemma 11. A set of upper bounds on the time instants at which each core will certainly
become available to execute new workload in v′

k is given by

CA =
{

p × {LFT p
i (v)}

}
∪

{
max{Amax

x (v), tk} | p < x ≤ m
}

.

Proof. Since v′
k represents a system state resulting from dispatching job Ji on p cores, there

must be at least p cores that will become available to execute new workload no later than
the latest finish time of Ji. That is, there must be p values no smaller than LFT p

i (v) in CA,
i.e., CA ⊇

{
p × {LFT p

i (v)}
}

.
Furthermore, all (m − p) cores that do not execute Ji will be freed no later than the

certain availability time of the (m − p) latest cores that become available in the initial
system state v (i.e., the system state before dispatching Ji). Those times are given by{

Amax
x (v) | p < x ≤ m

}
.

Finally, since job Ji is the first job dispatched by the scheduler in v, and because tk is the
earliest time at which Ji is dispatched (Lemma 7), cores can start to execute new workload
no earlier than tk in v′

k. Combining all the above, we prove the lemma. ◀

▶ Corollary 12. An upper bound on the time at which x cores are certainly available to
execute new workload in v′

k (i.e., Amax(v′
k)) is given by the xth element in the non-decreasingly

ordered set CA.

Proof. Same proof as Corollary 10, replacing PA with CA. ◀

The complete procedure to build the system states resulting from dispatching Ji on p

cores in state v is summarized in Algorithm 2.

5 Merge Phase

The merge phase aims at merging a newly created node vk with a previously existing node
vq (and create a combined state vz) when they have the same set of scheduled jobs and their
core-availability intervals intersects:

▶ Rule 9. If vk and vq are two nodes such that S(vk) = S(vq) and ∀x, 1 ≤ x ≤ m, Ax(vk) ∩
Ax(vq) ̸= ∅, then vk and vq are merged into a single state vz.

The availability intervals of the merged state vz are then computed so that they enclose
the availability intervals of both states vk and vq. That is, ∀x | 1 ≤ x ≤ m:

Ax(vz) =
[

min{Amin
x (vk), Amin

x (vq)}, max{Amax
x (vk), Amax

x (vq)}
]
. (13)

This way, all possible combinations of instants at which cores become available in either
state vk or vq is also possible in vz.

Additionally, the set of earliest simultaneous core releases F(vz) of the merged state is
computed using Algorithm 3. In essence, for both initial states vk and vq, Algorithm 3 sorts
the groups of cores that are simultaneously released in a non-decreasing order with respect to
the time at which they are released. It then breaks the groups of simultaneously released cores
in smaller ones so that the size of the groups match in both states (lines 3–10), i.e., after the
transformation we have |F ′(vk)| = |F ′(vq)| and ∀x, 1 ≤ x ≤ |F ′(vk)|, M ′

x(vk) = M ′
x(vq). It

then keeps the groups of cores that are released the earliest and assign them to F(vz) (lines 10–
14), i.e., |F(vz)| = |F ′(vk)| = |F ′(vq)| and ∀x, 1 ≤ x ≤ |F ′(vk)|, Mx(vz) = M ′

x(vk) = M ′
x(vq)

and fx(vz) = min{f ′
x(vk), f ′

x(vq)}.

ECRTS 2022

12:16 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Algorithm 3 Merge of F(vk) and F(vq) into F(vz).

input :F(vk) and F(vq)
output :F(vz)

1 F ′(vk) = F ′(vq) = ∅;
2 while F(vk) ̸= ∅ ∧ F(vq) ̸= ∅ do
3 Extract the pair ⟨fK , MK⟩ such that fK is the minimum value in F(vk) and, in case of

tie, MK is the minimum among the tying values. For F(vq) extract ⟨fQ, MQ⟩ using the
same rule;

4 Mnew ← min {MK , MQ};
5 Add ⟨fK , Mnew⟩ to F ′(vk);
6 Add ⟨fQ, Mnew⟩ to F ′(vq);
7 MK ←MK −Mnew;
8 MQ ←MQ −Mnew;
9 Add ⟨fK , MK⟩ to F(vk) if MK > 0 ;

10 Add ⟨fQ, MQ⟩ to F(vq) if MQ > 0 ;
11 forall 1 ≤ x ≤ |F ′(vk)| do
12 fx(vz) = min{f ′

x(vk), f ′
x(vq)};

13 Mx(vz) = M ′
x(vk);

14 Add ⟨fx(vz), Mx(vz)⟩ to F(vz);
15 return F(vz);

We now prove that all simultaneous core release patterns that are possible in one of the
two initial states vk or vq is also possible in the new merged state vz.

▶ Lemma 13. If exactly p cores may be available at time t in either vk or vq, then exactly p

cores may be available at time t in vz.

Proof. Assume that v refers to either vk or vq. Each group of cores Fℓ(v) ∈ F(v) is
subdivided in one or several smaller groups of cores in F(vz) (lines 3–10 in Algorithm 3),
that is, ∃F ′ ⊆ F(vz),

∑
Fx(vz)∈F ′ Mx(vz) = Mℓ(v). Furthermore, each group of cores in the

subset F ′ has an earliest release time that is earlier than or at the same time as that of Fℓ

(lines 10–14), i.e., ∀Fx(vz) ∈ F ′, fx(vz) ≤ fℓ(v). Since for every group of cores that can be
simultaneously released at a given time t in v there is a set F ′ in vz composed of the same
number of cores, each with an earliest release time no later than t, it then holds that the
cores in F ′ can also be simultaneously released at t. This proves the lemma. ◀

6 Proof of Correctness

Now that the complete algorithm for building the schedule-abstraction graph has been
presented, we prove that the analysis covers all possible execution scenarios and hence returns
safe bounds on the BCRT and WCRT of each job in the analyzed job set J .

▶ Theorem 14. For any possible execution scenario such that Ji executes on p cores and
finishes at time t, there is a path ⟨v1, . . . , vk⟩ in the schedule-abstraction graph such that Ji

passes the dispatch condition on p cores in vk and t ∈ [EFT p
i (vk), LFT p

i (vk)].

Proof. Assume that the availability intervals and the set of earliest simultaneous core releases
F(vk) of state vk safely model the actual availability times and simultaneous releases of the
m cores resulting from the sequence of scheduling decisions encoded in the path ⟨v1, . . . , vk⟩.

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:17

We prove that t ∈ [EFT p
i (vk), LFT p

i (vk)], that Ji passes the dispatch condition in vk and
that each state v′

k created by Algorithm 2 because of executing Ji on p cores in vk, correctly
models the actual availability times and simultaneous releases of the cores after executing Ji

on p cores.
Under the inductive assumption stated above, Lemma 2 and Corollary 4 prove that

EST p
i (vk) and LST p

i (vk) are safe lower- and upper-bounds on the start time of Ji on p cores
in vk, respectively. Furthermore, since gang jobs are non-preemptive, Equations (11) and (12)
are safe lower- and upper-bounds on t (i.e., t ∈ [EFT p

i (vk), LFT p
i (vk)]). Moreover, since

t ∈ [EFT p
i (vk), LFT p

i (vk)], it must hold that EFT p
i (vk) ≤ LFT p

i (vk), and thus the condition
of Equation (10) is respected. Then, Lemmas 6 and 8 and Corollaries 10 and 12 prove that
the simultaneous releases of the cores and their availability is correctly modeled in each newly
created state v′

k resulting from scheduling Ji on p cores. Therefore, the inductive assumption
is respected for v′

k. Also, according to Lemma 13, potentially merging v′
k with another node

in Algorithm 1 maintains the validity of the inductive assumption.
Finally, since all cores are assumed to be free in the initial system state, the inductive

assumption (i.e., correct availability intervals and simultaneous core releases) obviously holds
for v1 and thus follows by induction on all the states created by Algorithm 1. ◀

7 Empirical Evaluation

We performed experiments to: (i) evaluate whether the proposed analysis improves schedula-
bility in comparison to the state of the art, (ii) understand the influence of mmin and mmax

on schedulability of moldable gang tasks, and (iii) evaluate the runtime of our analysis.
The experiments were conducted by applying Algorithm 1 to the analysis of rigid and

moldable gang tasks under a non-preemptive JLFP policy (some experiments use non-
preemptive G-EDF and others G-RM as reported in Table 1). We compared our results
with the test by Dong and Liu [10] as it is the only existing test for non-preemptive gang
tasks. It is worth noting that the test of Dong and Liu considers sporadic tasks while we
have performed the analysis on periodic tasks. We, however, decided to keep this comparison
since it is currently the only available test that can be applied on periodic gang tasks.

We implemented Algorithm 1 in C++ and performed the analysis on a cluster using
AMD Ryzen Threadripper 2920X 12-Core and Intel Core i9-9900K processors. All machines
are equipped with 64 GiB of RAM. Roughly, 60% of the experiments ran on the AMD and
40% on the Intel machines. We report the CPU time as the runtime of the analysis.

7.1 Experiments on Synthetic Task Sets

We generate periodic task sets using the same established method used in prior studies
[15,19,20]. We randomly generated n utilization values with a total sum of m × U , where U

is the system utilization and m is the number of cores. This was carried out using Stafford’s
RandFixSum algorithm [29] (where we ensure that the utilization Ui of each task is in the
interval [0.001, mmin

i]). To avoid cases where the hyperperiod is impractically large due to
incompatible task periods, we choose the period values with a log-uniform distribution in the
interval [10000, 100000] with a granularity of 5000 (as in [20]). Additionally, we discard every
task set that contains more than 100,000 jobs in its hyperperiod. To allow comparison with
the state-of-the-art, release jitter is set to 0. Note that this favourably impacts our analysis
runtime since the schedule abstraction graph branches less often for such setting.

ECRTS 2022

12:18 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Table 1 Specification of the experiments performed.

Experiment mmm nnn mmmmin
i mmmmax

i max UUU i Policy
a-seq-random

8 20
1 {1, 2, 3, . . . , m} 1

NP G-RMa-seq-divisor {1, 2, 4, 8}
a-gang-random {1, 2, 3, . . . , m} {1, 2, 3, . . . , m}

m× Ua-gang-divisor {1, 2, 4, 8} {1, 2, 4, 8}
b 8 20 mmin = mmax {1, 2, 4, 6, 8} m× U NP G-EDF
c 8 8–24 1 {1, 2, . . . , 8} 1 NP G-RM
d 4 10 1 {1, 2, 3, 4} 1 NP G-RM
e 8 20 1 {1, 2, . . . , 8} 1 NP G-RM
f 16 32 1 {1, 2, . . . , 16} 1 NP G-RM

To evaluate the impact of mmin
i and mmax

i on schedulability, we assign different values for
mmin

i and mmax
i for each experiment depending on its purpose, as detailed in Table 1. The

max Ui value specifies the maximum utilization that a single task may have in the specified
experiment. The values of mmin

i and mmax
i in experiments a-seq-random and a-gang-random

are selected randomly with a uniform distribution from the set {1, 2, . . . , m}. In experiments
a-seq-divisor and a-gang-divisor, these values are selected randomly from the set {1, 2, 4, 8}
which is composed of the divisors of the number of cores m = 8, we always ensure that
mmin

i < mmax
i when picking random values. Experiment (b) assumes a rigid gang model,

thus, mmin
i = mmax

i for all tasks. Finally, in experiments (c)– (f) we show results for the
generation methods seq-random, gang-random and when all tasks share the same mmin

i and
mmax

i values. In the latter case, mmin
i = 1 and mmax

i varies from 1 to 16.
In our experiments, jobs of a task τi can execute on any number of cores within

[mmin
i , mmax

i]. Their BCET and WCET on p cores (with p ∈ [mmin
i , mmax

i]) are set to⌊
Ui×Ti

2×p

⌋
and

⌊
Ui×Ti

p

⌋
, respectively. Hence, execution time decreases with an increasing

number of cores, and BCET is half the WCET.
Figure 2 shows the results of each experiment. For each data point in the plots, we

generate 450 random task sets and report the schedulability ratio (i.e., the percentage of
task sets deemed schedulable by the analysis). Additionally, we report the runtime of the
schedulability analysis for each task set tested in experiments (d), (e), and (f) as a function
of the number of jobs in their hyperperiod.

7.2 Schedulability Results
Impact of system utilization on rigid gang tasks. As shown in Figure 2b, The SAG analysis
clearly outperforms the utilization-based test of Dong and Liu for any value of mmax. For
instance, Dong and Liu’s test does not detect any schedulable task set at U=40% while our
analysis confirms that between 95 and 100% (depending on the maximum task parallelism
mmax

i) of these task sets are in fact schedulable. More importantly, our analysis identifies 4.9
times more schedulable task sets than [10] (over all mmax

i values from 1 to 8). This value is
computed by taking the ratio between the surface below all schedulability curves obtained
with our analysis and the surface below all schedulability curves of Dong and Liu’s test.
Another observation is that rigid gang tasks with mmax

i = 8 have the highest schedulability
in comparison to rigid gangs with mmax

i < 8. When mmax
i = 8, tasks can only start when

all 8 cores are available, hence, the schedulability problem boils down to a schedulability
analysis for a uniprocessor platform, where the SAG analysis is highly accurate (see [18]).

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:19

(a)

20 40 60 80 100
Utilization %

0

20

40

60

80

100

Sc
he

du
la

bi
lit

y
%

gang-random
gang-divisor

seq-random
seq-divisor

20 40 60 80 100
Utilization %

0

20

40

60

80

100

Sc
he

du
la

bi
lit

y
%

(b)

20 40 60 80 100
Utilization %

mmax

1
2

3
4

6
8

20 40 60 80 100
Utilization %

Test
Our analysis
Dong & Liu

20 40 60 80 100
Utilization %

(c)

8 10 12 14 16 18 20 22 24
Number of tasks

mmax

1
2

3
4

6
8

gang
seq

8 10 12 14 16 18 20 22 24
Number of tasks

(d)

20 40 60 80 100
Utilization %

0

20

40

60

80

100

Sc
he

du
la

bi
lit

y
%

mmax

1
2

3
4

gang
seq

20 40 60 80 100
Utilization %

0

20

40

60

80

100

Sc
he

du
la

bi
lit

y
%

(e)

20 40 60 80 100
Utilization %

mmax

1
2

3
4

6
8

gang
seq

20 40 60 80 100
Utilization %

(f)

20 40 60 80 100
Utilization %

mmax

4
7

8
9

16 gang
seq

20 40 60 80 100
Utilization %

(d-runtime)

0 20000 40000 60000 80000 100000
Num jobs

0

500

1000

1500

2000

2500

3000

CP
U

tim
e

(s
)

Non-random Random

0 20000 40000 60000 80000 100000
Num jobs

0

500

1000

1500

2000

2500

3000

CP
U

tim
e

(s
)

(e-runtime)

0 20000 40000 60000 80000 100000
Num jobs

0

1000

2000

3000

4000

5000

6000

CP
U

tim
e

(s
)

Non-random Random

0 20000 40000 60000 80000 100000
Num jobs

0

1000

2000

3000

4000

5000

6000

CP
U

tim
e

(s
)

(f-runtime)

0 20000 40000 60000 80000 100000
Num jobs

0

2000

4000

6000

8000

10000

CP
U

tim
e

(s
)
Non-random Random

0 20000 40000 60000 80000 100000
Num jobs

0

2000

4000

6000

8000

10000

CP
U

tim
e

(s
)

Figure 2 Experimental results. (a) moldable gang tasks with m=8, (b) rigid gang tasks with
m=8, dashed lines are the Dong and Liu’s test [10] and the continuous lines are ours, (c) moldable
gang tasks with m=8, U=0.7 and mmin = 1, (d) moldable gang tasks with m=4 and mmin = 1, (e)
moldable gang tasks with m=8 and mmin = 1, (f) moldable gang tasks with m=16 and mmin = 1.

Impact of utilization and task parallelism on moldable gang tasks. As shown in Figure 2a
(see explanation of the curves in experimental setup), task sets with mmin

i set to 1 for all
tasks (i.e., curves a-seq-random and a-seq-divisor) have a higher-schedulability ratio because
they can be dispatched as soon as one or more cores become free. If mmin

i ≥ 1, however,
tasks may experience longer blocking (waiting for their minimum number of cores to be
freed) and frequent priority inversions with lower-priority tasks “stealing” available cores
from higher-priority ones as it can be seen in a-gang-random and a-gang-divisor curves.

Furthermore, we compared the difference between choosing mmax to be a random value
from 1 to m (the number of cores) and be a random value that is a divisor of m, i.e.,
mmax ∈ {1, 2, 4, 8}. In the latter case (see curves a-seq-divisor and a-gang-divisor), the
schedulability ratio slightly improves in comparison to the former. This slight improvement
is caused by having a few less scenarios where cores are left idle with pending workload.
However, the impact remains rather small.

ECRTS 2022

12:20 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Impact of the number of tasks and task parallelism on moldable gang tasks. Figure 2c
shows the effect of the number of moldable gang tasks when U = 70%. When mmax = 1,
the results are identical to non-preemptive global scheduling since each task can claim only
one core. Also, when mmax = 8, the scheduler described in Section 2.2 will execute all jobs
on p = 8 cores, which is equivalent to single-core scheduling. Thus, as the number of tasks
increases, the execution time of the tasks decreases and the results become closer to those of
single-core preemptive scheduling. That is why the schedulability ratio increases.

Similarly, when mmax
i is set to 2 or 4 for all tasks, then the scheduler of Section 2.2

behaves identically to a non-preemptive global scheduler on 4 and 2 cores respectively, hence
explaining the typical tendency witnessed for such systems. From this experiment, we can
conclude that a larger maximum task parallelism is beneficial for schedulability. When mmax

i

is set to 3, 6 or is randomly chosen for each task, many jobs cannot be dispatched with
their maximum number of cores due to mmax

i not being a divisor of the number of cores.
Therefore, consistently with what is seen in Figure (2e) discussed later, the schedulability
ratio falls to 0.

Impact of the number of cores and task parallelism on moldable gang tasks. Figure 2d
shows that in a system with four processors, configuring mmax to 3 causes a significant lower
schedulability ratio than with other values. With eight cores (Figure 2e), setting mmax to 3
or 6 also yields lower schedulability ratios (the same is true for mmax = 5 and mmax = 7,
even though we do not show the results here to avoid clutter). The same effect is visible
when mmax is chosen randomly for each task. This shows the positive impact of using a same
mmax value that is a divisor of the number of cores for all tasks. When it is the case, all
the jobs will always be scheduled with p = mmax because, as soon as a job finishes, it frees
exactly the same number of cores as the next job needs to execute with mmax cores. This
eliminates the problem of some cores being available but not used due to all pending jobs
requesting more cores than available. When mmax is not a divisor of m, some jobs may be
executing with mmax cores while others may execute with smaller values of p, this causes an
imbalance in execution times that leads to more frequent deadline misses.

Runtime of the analysis. Figure 2 shows the runtime of the SAG analysis when all tasks
share the same mmax value (blue) and when mmax is assigned randomly (orange) for the
experiments (d)–(f). It shows that the runtime is well below 1000 s in a vast majority
of experiments, and the worst-case runtime is below 100 minutes for task sets with 20
tasks scheduled on platforms with 8 cores (see Figure 2e-runtime). For 16 cores executing
32 tasks, we start to see experiments timing out when the number of jobs increases and
mmax is assigned randomly (note that those are reported as being deemed unschedulable in
Figure (2f)).

Comparison with existing tests for global scheduling of sequential tasks. For the case
where the schedulability problem can be reduced to an equivalent global JLFP scheduling
problem of non-preemptive sequential tasks, we compared our results with those of the
SAG-based test of [19], i.e., the most accurate analysis we are aware of for such systems. All
task sets that were detected as schedulable by the test of [19] were also deemed schedulable
by our analysis. This suggests that our new analysis reduces to that of [19] in the special case
where all tasks share a same mmax value that divides the number of cores m. A comparison
against other sufficient tests for global JLFP scheduling can be found in [19].

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:21

8 Summary and Conclusion

We proposed a new response-time analysis for rigid and moldable gang tasks scheduled under
a non-preemptive JLFP scheduling policy. As far as we know, our work is the first effort
to provide sound worst-case (and best-case) response time bounds for such systems. Our
analysis is based on the notion of schedule abstraction and efficiently explores all possible
sequences of scheduling decisions that may happen during the runtime of the system.

Our experiments show that for periodic rigid gang tasks, our analysis is able to identify 4.9
times more schedulable task sets than the state of the art analysis. Moreover, our experiments
revealed the importance of choosing proper values for the minimum and maximum parallelism
assigned to moldable gang tasks. We observed that assigning the same value mmax

i to all
tasks yields the best performance, specially when mmax

i is a divisor of the number of cores.
We plan on extending our analysis to add support for precedence constraints between

moldable gang jobs, and on improving the runtime and memory consumption of our analysis
by extending the very promising partial order reduction techniques presented in [24,25].
Among other steps, this will require to develop a fast sufficient schedulability test for
non-preemptive moldable gang tasks.

References
1 Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I. Davis. An

empirical survey-based study into industry practice in real-time systems. In IEEE Real-Time
Systems Symposium (RTSS), pages 1–9, 2020.

2 Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, and F. Donelson Smith.
GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed. In IEEE Real-Time Systems
Symposium (RTSS), pages 104–115, 2017.

3 Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings. Applying
new scheduling theory to static priority preemptive scheduling. Software Engineering Journal,
8(5):284–292, 1993.

4 Vandy Berten, Pierre Courbin, and Joël Goossens. Gang fixed priority scheduling of periodic
moldable real-time tasks. In Junior Researcher Workshopon Real-Time Computing (JRWRTC),
pages 9–12, 2011.

5 A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo. A Framework for
Supporting Real-Time Applications on Dynamic Reconfigurable FPGAs. In IEEE Real-Time
Systems Symposium (RTSS), pages 1–12, 2016.

6 Jacek Blazewicz, Mieczyslaw Drabowski, and Jan Weglarz. Scheduling Multiprocessor Tasks
to Minimize Schedule Length. IEEE Transactions on Computers, c-35(5):389–393, 1986.

7 Felipe Cerqueira, Geoffrey Nelissen, and Björn B Brandenburg. On strong and weak sustain-
ability, with an application to self-suspending real-time tasks. In Euromicro Conference on
Real-Time Systems (ECRTS), pages 26–1, 2018.

8 Sébastien Collette, Liliana Cucu, and Joël Goossens. Integrating job parallelism in real-time
scheduling theory. Information Processing Letters, 106(5):180–187, 2008.

9 Zheng Dong and Cong Liu. Analysis techniques for supporting hard real-time sporadic gang
task systems. Real-Time Systems, 55(3):641–666, 2019.

10 Zheng Dong and Cong Liu. Work-in-progress: Non-preemptive scheduling of sporadic gang
tasks on multiprocessors. In Work-in-Progress of IEEE Real-Time Systems Symposium (WiP-
RTSS), pages 512–515. IEEE, 2019.

11 Dror G. Feitelson. Packing schemes for gang scheduling. In Job Scheduling Strategies for
Parallel Processing (JSSPP), pages 89–110, 1996.

12 Dror G. Feitelson and Larry Rudolph. Gang scheduling performance benefits for fine-grain
synchronization. Journal of Parallel and Distributed Computing, 16(4):306–318, 1992.

ECRTS 2022

12:22 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

13 Joël Goossens and Vandy Berten. Gang FTP scheduling of periodic and parallel rigid real-
time tasks. In International Conference on Real-Time Networks and Systems (RTNS), pages
189–196, 2010.

14 Joël Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean. Periodicity of real-time
schedules for dependent periodic tasks on identical multiprocessor platforms. Real-Time
Systems, 52(6):808–832, 2016.

15 Joël Goossens and Pascal Richard. Optimal scheduling of periodic gang tasks. Leibniz
transactions on embedded systems, 3(1):4:1–4:18, 2016.

16 Shinpei Kato and Yutaka Ishikawa. Gang EDF scheduling of parallel task systems. In IEEE
Real-Time Systems Symposium (RTSS), pages 459–468, 2009.

17 Konstantinos Koiliaris and Chao Xu. Faster Pseudopolynomial Time Algorithms for Subset
Sum. ACM Transactions on Algorithms, 15(3):1062–1072, 2019.

18 Mitra Nasri and Björn B. Brandenburg. An exact and sustainable analysis of non-preemptive
scheduling. In IEEE Real-Time Systems Symposium (RTSS), pages 1–12, 2017.

19 Mitra Nasri, Nelissen Geoffrey, and Björn B. Brandenburg. Response-Time Analysis of
Limited-Preemptive Parallel DAG Tasks Under Global Scheduling. In Euromicro Conference
on Real-Time Systems (ECRTS), volume 133, pages 21:1–21:23, 2019.

20 Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. A Response-Time Analysis for
Non-Preemptive Job Sets under Global Scheduling. In Euromicro Conference on Real-Time
Systems (ECRTS), volume 106, pages 9:1–9:23, 2018.

21 Saranya Natarajan, Mitra Nasri, David Broman, Björn B. Brandenburg, and Geoffrey Nelissen.
From code to weakly hard constraints: A pragmatic end-to-end toolchain for timed C. In
IEEE Real-Time Systems Symposium (RTSS), pages 167–180, 2019.

22 Suhail Nogd, Geoffrey Nelissen, Mitra Nasri, and Björn B. Brandenburg. Response-Time
Analysis for Non-Preemptive Global Scheduling with FIFO Spin Locks. In IEEE Real-Time
Systems Symposium (RTSS), pages 115–127, 2020.

23 John K. Ousterhout. Scheduling Techniques for Concurrent Systems. In International
Conference on Distributed Computing Systems (ICDCS), pages 22–30, 1982.

24 Sayra Ranjha, Mitra Nasri, and Geoffrey Nelissen. Work-in-progress: Partial-order reduction
in reachability-based response-time analyses. In 2021 IEEE Real-Time Systems Symposium
(RTSS), pages 544–547, 2021.

25 Sayra Ranjha, Geoffrey Nelissen, and Mitra Nasri. Partial-order reduction for schedule-
abstraction-based response-time analyses of non-preemptive tasks. In IEEE 28th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 121–132, 2022.

26 Pascal Richard, Joël Goossens, and Shinpei Kato. Comments on “Gang EDF Schedulability
Analysis”, 2017. arXiv:1705.05798.

27 Maria A. Serrano, Alessandra Melani, Sebastian Kehr, Marko Bertogna, and Eduardo Quiñones.
An analysis of lazy and eager limited preemption approaches under DAG-based global fixed
priority scheduling. In IEEE International Symposium on Real-Time Distributed Computing
(ISORC), pages 193–202, 2017.

28 Srinidhi Srinivasan, Geoffrey Nelissen, and Reinder J. Bril. Work-in-progress: Analysis of
tsn time-aware shapers using schedule abstraction graphs. In Real-Time Systems Symposium
(RTSS), pages 508–511, 2021.

29 Roger Stafford. Random vectors with fixed sum. Technical report, University of Oxford, 2006.
URL: http://www.mathworks.com/matlabcentral/fileexchange/9700.

30 Saud Wasly and Rodolfo Pellizzoni. Bundled scheduling of parallel real-time tasks. In IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 130–142,
2019.

31 Beyazit Yalcinkaya, Mitra Nasri, and Björn B. Brandenburg. An exact schedulability test for
non-preemptive self-suspending real-time tasks. In IEEE/ACM Design, Automation and Test
in Europe (DATE), pages 1222–1227, 2019.

32 Yanyong Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam. An integrated approach to
parallel scheduling using gang-scheduling, backfilling, and migration. IEEE Transactions on
Parallel and Distributed Systems, 14(3):236–247, 2003.

http://arxiv.org/abs/1705.05798
http://www.mathworks.com/matlabcentral/fileexchange/9700

Response-Time Analysis for Self-Suspending Tasks
Under EDF Scheduling
Federico Aromolo
Scuola Superiore Sant’Anna, Pisa, Italy

Alessandro Biondi
Scuola Superiore Sant’Anna, Pisa, Italy

Geoffrey Nelissen
Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract
The self-suspending task model proved to be particularly effective in capturing the timing behavior
of real-time systems characterized by complex execution patterns, such as computation offloading to
hardware accelerators, inter-core synchronization by means of multiprocessor locking protocols, and
highly parallel computation. Most of the existing results for the timing analysis of self-suspending
tasks do not support the widely adopted Earliest Deadline First (EDF) scheduling algorithm, being
instead primarily focused on fixed-priority scheduling. This paper presents a response-time analysis
for constrained-deadline self-suspending tasks scheduled under EDF on a uniprocessor system.
The proposed analysis is based on a model transformation from self-suspending sporadic tasks to
sporadic tasks with jitter, which can then be analyzed using a state-of-the-art analysis method for
EDF scheduling. Experimental results are presented to compare the performance of the proposed
technique in terms of schedulability ratio with that of the pessimistic suspension-oblivious approach
and with a less general technique for task sets with implicit deadlines.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Real-time schedulability

Keywords and phrases Real-Time Systems, Schedulability Analysis, Self-Suspending Tasks, EDF
Scheduling

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.13

Supplementary Material Software (ECRTS 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.1.5

1 Introduction

Modern embedded software systems are characterized by execution behaviors that are
becoming increasingly complex. For instance, with the emergence of heterogeneous computing
platforms that combine scalar multiprocessors with specialized hardware accelerators such
as Field-Programmable Gate Arrays (FPGAs) and Graphics Processing Units (GPUs), the
possibility of speeding up compute-intensive operations by offloading some computational
activities to the accelerators has become commonplace. Complex execution behaviors also
arise in multiprocessing due to inter-core synchronization. For example, this is the case for
locking protocols that regulate the access to resources that are shared by tasks running on
different processors, or for parallel tasks that dispatch computational activities upon multiple
processors, with some of those activities being subject to precedence constraints specified
according to a graph-based topology.

Such execution behaviors share the common pattern that some of the computational
activities in the system may need to wait for some event to occur before continuing with their
execution. In particular, for the case of computation offloading to hardware accelerators,

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Federico Aromolo, Alessandro Biondi, and Geoffrey Nelissen;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ECRTS.2022.13
https://doi.org/10.4230/DARTS.8.1.5
https://doi.org/10.4230/DARTS.8.1.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

the task performing the offloading must wait for the event signaling the completion of the
accelerated workload. Instead, in the case of locking protocols, a task requesting access to a
shared resource has to wait for the permission to access that resource in accordance to the
specifics of the protocol. Finally, in the presence of precedence constraints, a subtask may
have to wait for its predecessor subtasks to complete before starting its execution.

Since the delays incurred by a task when waiting for such events to occur may be
significant, the typical implementation forces the task to relinquish the processor by having
it suspend itself until the expected event occurs, as a way to avoid wasting processor time.
The self-suspending task model was introduced to deal with the timing analysis of systems
involving tasks that may suspend themselves to wait for an event to occur. This model has
been extensively studied during the last decade, and proved to be a particularly effective
tool to analyze the complex execution patterns exhibited by modern embedded systems from
the point of view of their timing behavior [8].

Despite the effectiveness of EDF in dealing with both uniprocessor and multiprocessor
scheduling problems, most of the existing analytical results for self-suspending tasks do
not support the popular Earliest Deadline First (EDF) scheduling algorithm, being instead
primarily focused on fixed-priority scheduling. In particular, none of the existing works
provide a specialized and effective method to bound the response times of constrained-deadline
self-suspending tasks in the specific case of uniprocessor systems.

Contributions. This paper presents a response-time analysis method for dynamic self-
suspending tasks with constrained deadlines scheduled under EDF on a uniprocessor system.
The analysis is based on a model transformation to the sporadic task model with release jitter
and on the application of the exact worst-case response time (WCRT) analysis for sporadic
tasks with jitter by Spuri [21]. An experimental comparison with the baseline suspension-
oblivious approach, which pessimistically treats suspensions as additional computation [8],
shows significant improvements in terms of the number of accepted task sets. For the less
general case of task sets with implicit deadlines, in which the relative deadline of each task is
equal to the minimum inter-arrival time of the task, the proposed approach is also compared
with the state-of-the-art suspension-aware response time analysis by Günzel et al. [17]. In
this case, the two approaches are shown to provide comparable performance.

Paper structure. The rest of this paper is organized as follows. Section 2 provides an
overview of the literature on self-suspending task systems. Section 3 describes the system
model and terminology considered in the paper. Section 4 presents the analytical derivation of
the proposed approach and the resulting response-time analysis algorithm. The experimental
results are reported and discussed in Section 5. Finally, Section 6 concludes the paper and
discusses possible avenues for future work.

2 Related work

A comprehensive survey of the literature on self-suspending tasks was recently published
by Chen et al. [8]. As discussed in that survey, many of the previous works on the analysis
of real-time self-suspending tasks were found to be flawed. In addition to establishing a
common framework for the analysis of self-suspending task systems, the survey by Chen et
al. [8] aimed at collecting amendments to as many of those flawed works as possible.

Two main models exist for self-suspending tasks. The segmented self-suspending task
model considers tasks whose execution behavior is determined by a fixed interleaving sequence
of computation and suspension intervals, where each interval is characterized by a specific

F. Aromolo, A. Biondi, and G. Nelissen 13:3

maximum length. The dynamic self-suspending task model, on the other hand, only assumes a
total maximum execution time and a total maximum suspension time, computed, respectively,
across all execution and suspension intervals. In an attempt to reduce the pessimism of
response-time analyses for the dynamic self-suspending task model, von der Brüggen et
al. [22] introduced the hybrid suspension model, which is similar to the dynamic model but
assumes a limit on the maximum number of suspension intervals allowed for each job.

The typical analysis strategies for self-suspending tasks include modeling suspension
time as computation, modeling the effect of suspension on other tasks as release jitter, and
modeling the effect of suspension as a blocking term in the response-time analysis.

One of the most prominent works on the analysis of dynamic self-suspending tasks under
uniprocessor fixed-priority scheduling is the work by Chen et al. [7], which proposed a
response-time analysis for the dynamic self-suspending task model with constrained deadlines
that dominates all other existing schedulability tests by combining elements of both the
jitter-based and the blocking-based analyses. Similarly to the approach in the present paper,
the proof for the analysis in [7] is based on a schedule transformation procedure followed by
the analysis of the transformed schedule. Later, Günzel et al. [16] generalized the approach
of [7] to the case where tasks have arbitrary deadlines and their releases are modeled by
arrival curves.

For the case of segmented self-suspending tasks, Nelissen et al. [20] proposed a response-
time analysis based on optimization methods for tasks with constrained deadlines scheduled
under uniprocessor fixed-priority scheduling. For the case of multiprocessor systems, Liu and
Anderson [18] derived the first suspension-aware WCRT analysis for dynamic self-suspending
tasks under global scheduling. As discussed in [8], both the fixed-priority analyses from [20]
and [18] required later revision due to some incorrect statements that were discovered within
the respective proof frameworks.

Concerning the analysis of self-suspending task models under EDF scheduling, Liu and
Anderson [18] also proposed a response-time analysis approach for multiprocessor global
EDF scheduling of arbitrary-deadline tasks, which also supports soft real-time scheduling by
means of tardiness thresholds. The approach by Dong and Liu [10] provides a utilization-
based schedulability test for dynamic self-suspending tasks under multiprocessor global EDF
scheduling for the case of implicit deadlines, and was later shown to be equivalent to the
suspension-oblivious analysis for the case of uniprocessor systems [17]. Günzel et al. [17]
provided the first response-time analysis for the dynamic model under EDF, for the case of
implicit deadlines. That same work showed that an earlier analysis by Devi [9] that tried to
solve the same problem was indeed flawed.

Self-suspending task models see fruitful application in the analysis of hardware-accelerated
task systems in the context of heterogeneous computing. The case of hardware acceleration
by means of Graphics Processing Units (GPUs) was explored in the works by Dong et
al. [11] and Elliot et al. [12]. Biondi et al. [4] applied the segmented suspension model to the
analysis of hardware acceleration on Field-Programmable Gate Arrays (FPGAs) embedded
in emerging system-on-a-chip platforms.

Numerous works on the analysis of multiprocessor synchronization protocols hinge on
self-suspending task models to derive a suitable real-time analysis. In this context, self-
suspending task models can capture the behavior of tasks that suspend themselves while
waiting to acquire a shared resource protected by a suspension-based locking mechanism.
Detailed discussion on these works can be found in the most recent survey on multiprocessor
locking protocols by Brandenburg [5].

Relevant applications of self-suspending task models also include the analysis of real-time
parallel workloads. Fonseca et al. [14] considered a transformation to the segmented model for
the analysis of parallel tasks under multiprocessor partitioned scheduling. The event-driven

ECRTS 2022

13:4 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

delay-induced (EDD) task model was introduced by Aromolo et al. [1] to model parallel
topologies that incorporate delays in the concept of precedence constraints, with applications
in the analysis of hardware-accelerated systems and of partitioned parallel tasks. The EDD
task model was analyzed by means of a transformation to the dynamic self-suspending task
model.

Concerning the analysis of non-suspending sporadic tasks with release jitter under
uniprocessor EDF scheduling, the work by Spuri [21] generalizes previous results by Baruah
et al. [2] to obtain both a feasibility test and an exact WCRT analysis based on the workload
analysis approach. These approaches were later revised by George et al. [15] to provide some
algorithmic efficiency improvements to the resulting analyses. To date, the technique by
Spuri [21], combined with the efficiency enhancements in [15], represents a valid approach to
check the feasibility of a set of sporadic tasks with jitter and to obtain their exact WCRTs.

3 System model

We consider a set Γ = {τ1, ..., τn} of n sporadic self-suspending real-time tasks executing
on a single processor and described according to the dynamic self-suspending (DSS) task
model [8]. Each task τi releases a potentially infinite sequence of jobs τi,1, . . . , τi,j , . . . and
is characterized by a tuple (Ci, Si, Ti, Di), where Ci represents the worst-case execution
time (WCET), Si is the maximum suspension time of each job of τi, Ti is the minimum
inter-arrival time between the jobs of τi, and Di is the relative deadline of the task, with
Di ≤ Ti (constrained deadlines). A job of τi may execute for up to Ci time units and may
suspend itself at any point in its execution. When suspending, the job yields the processor for
the execution of other tasks. The total suspension time of a job of τi across all its suspension
intervals is upper bounded by Si time units. The minimum inter-arrival time Ti represents
the minimum amount of time separating successive jobs of τi.

We assume that job releases occur without jitter, so that each job τi,j is released as
soon as it arrives. That is, if ai,j and ri,j represent, respectively, the arrival time and the
release time of τi,j , then it holds that ai,j = ri,j . Once it has arrived, a job τi,j is expected
to complete its execution within Di time units. Let fi,j denote the finishing time of a job
τi,j of τi. We say that τi,j meets its deadline if fi,j is no greater than its absolute deadline
di,j = ri,j + Di. The response time of a job τi,j is given by Ri,j = fi,j − ai,j = fi,j − ri,j .
The worst-case response time (WCRT) Ri of a task τi is defined as the maximum possible
response time across the jobs of τi. A job that is released and not yet completed is said to
be pending.

Tasks in Γ are scheduled on the processor in a preemptive fashion according to the Earliest
Deadline First (EDF) algorithm, which belongs to the class of job-level fixed-priority (JLFP)
scheduling policies. Under EDF, each job τi,j is assigned a fixed priority level according to
its absolute deadline di,j , such that a job with an earlier deadline has a higher priority. Ties
are broken arbitrarily in case multiple jobs have the same absolute deadline.

4 Analysis

This section shows how to derive a schedulability test for a DSS task set Γ scheduled on a
single processor under EDF scheduling, based on the response-time analysis (RTA) approach.
In this approach, an upper bound Ri on the WCRT is derived for each task τi ∈ Γ; then, the
task set is deemed schedulable if Ri ≤ Di holds for every task τi ∈ Γ.

F. Aromolo, A. Biondi, and G. Nelissen 13:5

The analysis for each task τi consists in deriving a transformation of the task set Γ to a
task set Γ′

i of sequential sporadic real-time tasks with jitter, such that the WCRT Ri of τi

in Γ is upper bounded by the WCRT R′
i of the corresponding task τ ′

i in Γ′
i. The task set

Γ′
i can then be analyzed according to the analysis by Spuri [21], hence obtaining a suitable

upper bound for the response time of the DSS task τi.
For simplicity in the presentation, we assume that execution on the processor follows a

discrete-time model where a unit of time corresponds to the length of the smallest relevant
time scale in the system (e.g., the length of a processor cycle). The task schedule can then
be seen as a sequence of time slices, each with a length of one time unit, within which the
scheduling decisions are unaltered.

4.1 Sequential sporadic tasks with jitter
Since our proposed analysis is based on the idea of transforming the set of DSS tasks Γ into a
set of sequential sporadic tasks with jitter, we introduce the terminology associated to sporadic
tasks with jitter. Let Γ′ = {τ ′

1, ..., τ ′
n} represent a task set of sequential sporadic tasks with

release jitter scheduled on a single processor under preemptive EDF. Each sporadic task with
jitter τ ′

i releases a potentially infinite sequence of jobs τ ′
i,1, . . . , τ ′

i,j , . . . and is characterized
by a tuple (C ′

i, J ′
i , T ′

i , D′
i), where C ′

i represents the worst-case execution time (WCET), J ′
i is

the maximum release jitter of each job of τ ′
i , T ′

i is the minimum inter-arrival time between
the jobs of τ ′

i , and D′
i is the relative deadline of the task, with D′

i ≤ T ′
i . The minimum

inter-arrival time T ′
i represents the minimum amount of time separating successive arrivals of

jobs of τ ′
i . The maximum release jitter J ′

i is the maximum time a job of τ ′
i can spend waiting

for release after its arrival. Specifically, letting a′
i,j and r′

i,j represent, respectively, the arrival
time and the release time of a job τ ′

i,j of τ ′
i , it holds that r′

i,j − a′
i,j ≤ J ′

i . Once it has arrived,
a job τ ′

i,j is expected to complete its execution within D′
i time units. Let f ′

i,j denote the
finishing time of a job τ ′

i,j . The absolute deadline of τ ′
i,j is defined as d′

i,j = a′
i,j + D′

i, and is
considered respected if f ′

i,j ≤ d′
i,j . The response time of a job τ ′

i,j is given by R′
i,j = f ′

i,j−a′
i,j .

The worst-case response time (WCRT) R′
i of a task τ ′

i is defined as the maximum possible
response time across the jobs of τ ′

i .

4.2 Schedule transformation
By sustainability of self-suspending tasks with respect to their WCETs [6], the WCRT Ri of
a task τi ∈ Γ is produced in a schedule σ of Γ in which all jobs τj,l of all tasks τj ∈ Γ execute
up to their respective WCETs Cj . In the following procedure, we show how to transform
the schedule σ in order to obtain a preemptive EDF schedule σ′ in which none of the jobs
self-suspend and where the response time of at least one of the jobs of τ ′

i in σ′ is equal to Ri.

Step 1 Initially set σ′ := σ.
Step 2 Let τi,k represent a job of τi in σ with response time Ri,k = Ri. Let τ ′

i,k represent
the job of σ′ corresponding to τi,k. Remove all jobs in σ′ with lower priority than
τ ′

i,k, i.e., all jobs with deadline greater than d′
i,k.

Step 3 Replace all suspension intervals of jobs of τ ′
i in σ′ in which the processor is idle with

execution intervals of equivalent length for τ ′
i .

Step 4 Let tf represent the finishing time of τ ′
i,k and tb represent the earliest time instant in

σ′ at and after which the processor is continuously busy until tf , and let IB = [tb, tf)
represent the busy interval for job τ ′

i,k. Identify the set of carry-in jobs CB for the
busy interval IB as the set of jobs suspended at time tb− 1 and that finish at or after
tb in σ′. Remove all jobs in σ′ released before tb that do not belong to CB .

ECRTS 2022

13:6 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

Step 5 Let t0 represent the earliest release time among the jobs in CB. Traverse all time
slices in σ′ within the interval [t0, tb), from tb down to t0. For each such time slice TI

in which the processor is idle, if there is at least one time slice before TI in which
the processor is busy executing a job of CB , let TE represent the latest of such time
slices and JE represent the corresponding job, then, move the execution time of JE

in TE from TE to TI .
Step 6 Let t′

b represent the (updated) earliest time instant in σ′ at and after which the
processor is continuously busy until tf , and let I ′

B = [t′
b, tf) represent the (extended)

busy interval for job τ ′
i,k. For each job JC in CB , if r′

C < t′
b, where r′

C represents the
release time of JC , postpone the release time r′

C of JC to t′
b, without modifying the

arrival time or the execution pattern of JC in σ′. This corresponds to introducing a
release jitter of length t′

b − a′
C for JC , where a′

C represents the arrival time of JC .
Step 7 Remove all the execution that takes place at or after tf from σ′.
Step 8 Traverse the processor time slices in σ′ located within I ′

B , from t′
b up to tf . For each

such time slice TL, if a job JL which is not one of the highest-priority jobs that are
pending in TL is executing in TL, let JH represent any one of the highest-priority
jobs that are pending in TL, and let TH represent the earliest time slice after TL in
which the processor is busy executing JH , then, move the execution time of JH in
TH from TH to TL and move the execution time of JL in TL from TL to TH .

4.2.1 Transformation example
Figure 1 provides an example that illustrates the schedule transformation procedure. In
the provided schedules, upwards dashed arrows, upwards solid arrows, and downwards solid
arrows represent, respectively, the arrival time, the release time, and the absolute deadline
of a job, while white rectangles and grey rectangles represent, respectively, execution and
self-suspension for a job.

Figure 1(a) illustrates an example schedule σ of a set of DSS tasks Γ = {τ1, τ2, τ3, τ4}.
When applying the transformation procedure for task τ1, the transformed schedule σ′ is set
to be identical to σ in Step 1. Assume that the job τi,k identified in Step 2 corresponds to
job τ1,3 in the example. Figure 1(b) shows the transformed schedule σ′ after Step 3 of the
transformation. Then, the transformed schedule after Step 6 is provided in Figure 1(c), where
the busy interval IB = [tb, tf) and the extended busy interval I ′

B = [t′
b, tf) are highlighted.

The set of carry-in jobs CB for IB is composed of the first job of τ ′
2 and the first job of τ ′

3,
and t0 is set to coincide with the release of the first job of τ ′

2. Note that, in Step 6, the
release time of the first job of τ ′

2 is delayed to coincide with t′
b. Finally, Figure 1(d) provides

the resulting transformed schedule σ′, obtained after Step 8. Note that the response time
R′

1,3 of τ ′
1,3 was not altered in the transformation, i.e., R′

1,3 = R1,3.

4.2.2 Properties of the transformed schedule
The following properties of σ′ can be derived based on the transformation procedure.

The following lemma establishes that the start of the extended busy interval t′
b happens

at or before tb.

▶ Lemma 1. In the schedule σ′, the extended busy interval I ′
B starts at or before tb; i.e., it

holds that t′
b ≤ tb.

Proof. By definition, at the beginning of Step 4, the processor is continuously busy within
the busy interval IB = [tb, tf), and, at the beginning of Step 6, the processor is continuously
busy within the extended busy interval I ′

B = [t′
b, tf). Note that the right end of the intervals

F. Aromolo, A. Biondi, and G. Nelissen 13:7

time

(a) Example schedule σ, equivalent to σ′ after Step 1 of the transformation.

time

(b) Example schedule σ′ after Step 3 of the transformation.

time

(c) Example schedule σ′ after Step 6 of the transformation.

time

(d) Example schedule σ′ after Step 8 of the transformation.

Figure 1 Transformation example.

ECRTS 2022

13:8 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

IB and I ′
B is the same, since it is defined as tf in both cases. Given these definitions, it is

sufficient to show that I ′
B cannot be smaller than IB in order to prove the lemma. In other

words, it must be shown that the interval where the processor is continuously busy until
tf at the beginning of Step 6 cannot be shorter than the interval where the processor is
continuously busy until tf at the beginning of Step 4. In Step 4, jobs released before tb

and not belonging to CB are removed from σ′. In order to derive a contradiction, consider
one such job Jj and assume that it executed for at least one time slice within IB before
it was removed from σ′ in Step 4. By the definition of the busy interval IB , the processor
must have been idle at time instant tb − 1 at the beginning of Step 4. Therefore, Jj is
suspended at tb − 1. In fact, if Jj is not suspended at tb − 1, then, by the work-conserving
property of EDF, either Jj is executing at tb − 1 or a job with higher or equal priority than
Jj is executing at tb − 1. This contradicts the fact that the processor is idle at tb − 1. It
follows that Jj satisfies the definition of carry-in job, since it is suspended at time tb − 1
and it executes at or after tb. This is in contradiction with the assumption that Jj does not
belong to CB . As a result, Step 4 does not alter the execution pattern within [tb, tf) in σ′.
Finally, note that Step 5 does not affect the execution pattern within [tb, tf) in σ′, since the
execution slices from jobs in CB can only be moved up to tb − 1 in Step 5. Therefore, it
holds that the busy interval I ′

B identified at the beginning of Step 6 can only be larger than
or equal to IB . ◀

The following lemma shows that the execution within σ′ takes place wholly within the
extended busy interval I ′

B .

▶ Lemma 2. In the schedule σ′, the processor can be busy only within the extended busy
interval I ′

B.

Proof. To obtain the lemma, we prove that (i) the processor cannot be busy at or after tf

and (ii) the processor cannot be busy before t′
b.

(i) In Step 7, all the execution that takes place at or after tf is removed from σ′. Then,
note that the execution slice interchanges within Step 8 can only occur between time slices
that were already busy at the end of Step 7. As a result, the processor cannot be busy at or
after tf in σ′.

(ii) In Step 4, all jobs released before tb that do not belong to CB are removed from σ′.
Therefore, only jobs in CB can execute before tb in σ′ after Step 4. In Step 4, t0 is defined
such that t0 ≤ tb, and the execution slices of jobs in CB are only moved within the interval
[t0, tb). Thus, no job of σ′ executes before t0 after Step 5. As a result, in case t′

b = t0 in
Step 6, no execution of jobs in CB can take place before t′

b. Then, note that the case t′
b < t0

cannot occur, since t′
b is defined in Step 6 as the earliest time instant at and after which the

processor is continuously busy until tf , while the processor is idle before t0 at the beginning
of Step 6. In the following, consider the case in which t′

b > t0. By definition of t′
b, the time

slice TI = [t′
b − 1, t′

b) corresponding to t′
b − 1 is necessarily idle. Given that t′

b > t0, and, by
Lemma 1, t′

b ≤ tb, it holds that TI = [t′
b − 1, t′

b) ⊆ [t0, tb). If time slice TI in [t0, tb) is idle
after Step 5, then it means there are no execution slices of jobs in CB before TI . Thus,
no execution slices of jobs in CB can take place before t′

b after Step 6. Finally, note that
the execution slice interchanges within Step 8 can only occur between time slices that were
already busy after Step 5; therefore, no job of σ′ executes before t′

b after Step 8. ◀

The following lemma shows that the processor is continuously busy within the extended
busy interval I ′

B after the transformation procedure.

F. Aromolo, A. Biondi, and G. Nelissen 13:9

▶ Lemma 3. In the schedule σ′, the processor is continuously busy within the extended busy
interval I ′

B.

Proof. In Step 6, the extended busy interval I ′
B = [t′

b, tf) is identified by construction as
an interval in which the processor is continuously busy. Removing the execution of jobs in
σ′ that takes place at or after tf in Step 7 does not alter the execution pattern within I ′

B .
Then, the execution slice interchanges within Step 8 can only occur between time slices that
were already busy at the beginning of Step 6. Therefore, the processor is continuously busy
within the extended busy interval I ′

B in the transformed schedule σ′. ◀

The following lemma shows that jobs of the task under analysis τ ′
i cannot be categorized

as carry-in jobs in Step 4 of the schedule transformation.

▶ Lemma 4. The set CB of carry-in jobs for the busy interval IB does not contain any job
of τ ′

i .

Proof. By the definition of the busy interval IB in Step 4, the processor is idle at time
instant tb − 1. Then, in order for a job τ ′

i,l of τ ′
i to belong to the set CB , it must hold that

τ ′
i,l is suspended when the processor is idle at time tb − 1 in Step 4. This is impossible since,

in Step 3, all suspension intervals of jobs of τ ′
i in which the processor is idle are replaced

with execution intervals of equivalent length for that job. ◀

The following lemma shows that the response time of job τi,k is preserved after the
transformation.

▶ Lemma 5. The response time of job τ ′
i,k in σ′ is equal to the response time of τi,k in σ,

i.e., it holds that R′
i,k = Ri,k.

Proof. In Step 2, all jobs with priority lower than that of τ ′
i,k are removed from the schedule

σ′. Therefore, τ ′
i,k is one of the jobs that share the lowest priority in the schedule σ′.

In Step 3, additional execution slices of τ ′
i,k can only be added before its finishing time

f ′
i,k = fi,k. Then, in Step 4, only jobs that are released before tb can be removed from σ′.

Note that, by definition, the right end of the busy interval IB = [tb, tf) defined in Step 4
corresponds to the finishing time f ′

i,k of τ ′
i,k, with f ′

i,k = fi,k. In addition, in Step 3, all
suspension intervals of τ ′

i,k in which the processor is idle are replaced with execution intervals
of equivalent length for τ ′

i,k; thus, within the interval [a′
i,k, f ′

i,k), the processor is either busy
executing τ ′

i,k or another job with higher or equal priority than τ ′
i,k. It follows that the

start of the busy period tb must necessarily occur at or before the arrival time a′
i,k of τ ′

i,k.
Therefore, Step 4 does not affect the execution of τ ′

i,k. Similarly, Step 5 only affects the
execution of jobs belonging to CB, which, by definition, are released before tb. Thus, the
execution of τ ′

i,k is not affected by Step 5. Then, in Step 7, removing the execution of jobs
in σ′ taking place at or after tf does not affect the finishing time of τ ′

i,k. Finally, in Step 8,
execution slices of a job JH can only be anticipated to an earlier time slice TE if JH has
higher priority than the job executing in TE . Since τ ′

i,k is one of the jobs that share the
lowest priority in the schedule σ′, it is not possible that the final execution slice of τ ′

i,k is
anticipated in Step 8. Therefore, the finishing time of τ ′

i,k after the transformation is given
by f ′

i,k = fi,k. In addition, since arrival times for jobs of σ′ are not modified with respect to
the corresponding jobs of σ within the transformation procedure, it holds that a′

i,k = ai,k. It
follows that R′

i,k = f ′
i,k − a′

i,k = fi,k − ai,k = Ri,k. ◀

The following lemma shows that jobs in σ′ are scheduled in accordance with the preemptive
EDF scheduling policy.

ECRTS 2022

13:10 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

▶ Lemma 6. For any time slice Tσ in the schedule σ′, the processor executes one of the jobs
with earliest absolute deadline that are pending in Tσ, if any.

Proof. The statement trivially holds for any time slice of σ′ in which no job is ready for
execution. By Lemma 2, the time slices in which the processor is busy are limited to the
busy interval I ′

B. Concerning the time slices within I ′
B, in Step 8, for each time slice TL

within I ′
B, the schedule σ′ is modified such that one of the highest-priority jobs that are

pending in TL is executing in TL. The statement follows since the priority ordering in Step 8
is determined according to the EDF scheduling policy. ◀

The following lemma guarantees that the execution of a job in σ′ cannot occur before the
release time of the corresponding job in σ.

▶ Lemma 7. Consider a job τ ′
j,l of a task τ ′

j in σ′. The execution of τ ′
j,l that takes place in

σ′ does not start before rj,l.

Proof. The execution of the job τj,l corresponding to job τ ′
j,l in σ cannot start before its

release time rj,l. In the following, we show that no execution slices for job τ ′
j,l are added

before rj,l within the transformation procedure. In Step 3, additional execution time can
only be introduced for a job τ ′

j,l in a time slice TS where τ ′
j,l is suspended in σ, meaning that

τ ′
j,l was released before TS . In Step 5, execution slices of jobs in CB can only be delayed to

a later time slice, meaning that no execution slices of τ ′
j,l are introduced before rj,l. Finally,

consider that, in case an execution slice of τ ′
j,l is moved as part of Step 8, then either one of

the following scenarios occurs:
1. An execution slice of τ ′

j,l originally occurring at TH is anticipated to TL. By construction
of Step 8, in order for this situation to occur, τ ′

j,l must have been pending in TL, meaning
that it was released at or before the start of TL.

2. An execution slice of τ ′
j,l originally occurring at TL is delayed to TH , which occurs after

TL by construction. Since job τ ′
j,l was executing in TL, the release time rj,l must have

occurred at or before the start of TH .
As a result, no matter how many times the execution slices of τ ′

j,l are moved in Step 8, no
execution slices of τ ′

j,l are introduced before rj,l. ◀

The following lemma shows that jobs in σ′ do not execute before their release time.

▶ Lemma 8. Consider a job τ ′
j,l of a task τ ′

j in σ′. Job τ ′
j,l does not execute before its release

time r′
j,l.

Proof. The release time of a job τ ′
j,l in σ′ can only be modified in Step 6 of the transformation.

In case τ ′
j,l does not belong to CB , its release time is not modified in Step 6, meaning that

r′
j,l = rj,l in the transformed schedule σ′. By Lemma 7, the execution of a job τ ′

j,l in σ′

does not start before rj,l. Therefore, in case τ ′
j,l /∈ CB , τ ′

j,l does not execute before r′
j,l in σ′.

Similarly, in case τ ′
j,l ∈ CB and r′

j,l ≥ t′
b at the beginning of Step 6, the release time of τ ′

j,l

is not modified, therefore r′
j,l = rj,l, and, by Lemma 7, the execution of τ ′

j,l in σ′ does not
start before rj,l. Finally, in case τ ′

j,l ∈ CB and r′
j,l < t′

b at the beginning of Step 6, then the
release time of τ ′

j,l is set to r′
j,l = t′

b. By Lemma 2, none of the jobs in σ′ execute outside the
busy interval I ′

B = [t′
b, tf), thus τ ′

j,l does not execute before r′
j,l = t′

b. ◀

The following lemma provides an upper bound on the release jitter introduced for the
jobs in σ′.

F. Aromolo, A. Biondi, and G. Nelissen 13:11

▶ Lemma 9. Consider a job τ ′
j,l of a task τ ′

j in σ′. The release jitter of τ ′
j,l is upper bounded

by Rj − Cj.

Proof. Since arrival times are not altered for jobs of σ′ with respect to σ, it holds that
a′

j,l = aj,l. Within the schedule transformation, the release time of jobs in σ′ can only be
postponed for jobs of CB (in Step 6). Therefore, in case τ ′

j,l does not belong to CB, the
release jitter of τ ′

j,l is given by r′
j,l − a′

j,l = rj,l − aj,l = 0. In the following, consider the
case in which τ ′

j,l belongs to CB. In case the release time r′
j,l is not modified in Step 6,

then the release jitter of τ ′
j,l is 0. Otherwise, the release time r′

j,l is set to t′
b. Therefore,

in the latter case, the resulting release jitter for τ ′
j,l is given by r′

j,l − a′
j,l = t′

b − aj,l. By
definition of carry-in job, the finishing time of τ ′

j,l is greater than or equal to tb in Step 4.
Furthermore, because Step 5 does not alter the schedule σ′ at or after tb, the finishing time
of τ ′

j,l is unchanged at the end of Step 5, i.e., just before the release time r′
j,l is postponed

in Step 6 to yield the release jitter of τ ′
j,l. In addition, note that, by the assumption that

job τj,l executes for its WCET Cj in σ, and since none of the steps in the transformation
up to Step 6 reduce or increase the total execution time of any job in CB, τ ′

j,l executes
for Cj units of time in σ′ at the beginning of Step 6. Finally, by Lemma 8, the execution
of τ ′

j,l only takes place at or after r′
j,l = t′

b in Step 6. It follows that, at the beginning of
Step 6, fj,l ≥ t′

b + Cj . As a result, the release jitter introduced for τ ′
j,l in Step 6 can be

upper bounded as t′
b − aj,l ≤ fj,l − Cj − aj,l = Rj,l − Cj ≤ Rj − Cj . ◀

4.3 Model transformation to enable the response-time analysis
To prove that the schedule σ′ resulting from the schedule transformation is suitable to be
analyzed as a set of sequential sporadic tasks with jitter, we first define a legal schedule for a
set of sequential sporadic tasks with jitter under preemptive EDF scheduling.

▶ Definition 10. A schedule σ′ is considered legal with respect to preemptive EDF scheduling
of a set Γ′ of sequential sporadic tasks with jitter if the following statements hold for each job
τ ′

j,l of all tasks τ ′
j in σ′:

Property 1. The minimum inter-arrival time constraint is satisfied; i.e., if l > 1, it
holds that a′

j,l ≥ a′
j,l−1 + T ′

j.
Property 2. The absolute deadline d′

j,l of τ ′
j,l is such that d′

j,l = a′
j,l + D′

j.
Property 3. The processor does not execute τ ′

j,l for more than C ′
j units of time.

Property 4. The release of τ ′
j,l takes place at or after its arrival; i.e., it holds that

r′
j,l ≥ a′

j,l.
Property 5. The processor does not execute τ ′

j,l before its release time r′
j,l.

Property 6. The release jitter constraint is satisfied, i.e., it holds that r′
j,l − a′

j,l ≤ J ′
j.

Property 7. For each time slice from the release time r′
j,l up to the finishing time f ′

j,l

of τ ′
j,l, the processor is either busy executing τ ′

j,l or another job with absolute deadline
smaller or equal than that of τ ′

j,l.

The following lemma shows that σ′ is a legal preemptive EDF schedule of a set of
sequential sporadic tasks with jitter.

▶ Lemma 11. Consider a task set Γ′
i = {τ ′

1, ..., τ ′
n} of sequential sporadic tasks with release

jitter, with τ ′
i = (Ci + Si, 0, Ti, Di) and τ ′

j = (Cj , Rj − Cj , Tj , Dj) for all τ ′
j ≠ τ ′

i . The
transformed schedule σ′ is a legal schedule of Γ′

i under preemptive EDF scheduling.

Proof. In the following, we show that σ′ complies with Definition 10 with respect to task
set Γ′

i. First, note that the arrival times and the absolute deadlines of the jobs in σ′ are kept
equal to the arrival times and absolute deadlines of the corresponding jobs in σ. Therefore,

ECRTS 2022

13:12 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

Property 1 and Property 2 in Definition 10 hold for each job in σ′. Then, consider that
the schedule transformation procedure does not increment the cumulative execution time
of jobs of τ ′

j in σ′ such that τ ′
j ̸= τ ′

i , thus the amount of execution for such jobs is within
Cj . In addition, the execution time of jobs of τ ′

i is not incremented by more than Si (in
Step 3). Therefore, Property 3 holds for each job in σ′. Within the schedule transformation,
the release times of jobs in σ′ can only be modified for jobs of CB (in Step 6). By Lemma 4,
jobs of τ ′

i do not belong to the set CB ; therefore, it holds that r′
i,l = ri,l for each job τ ′

i,l of
τ ′

i . As a result, r′
i,l = a′

i,l holds for each job τ ′
i,l of τ ′

i . Then, consider a job τ ′
j,l that belongs

to CB . If at the beginning of Step 6 r′
j,l < t′

b, then the release time of τ ′
j,l is postponed to t′

b;
therefore, it holds that r′

j,l ≥ a′
j,l in the transformed schedule σ′. Otherwise, the release time

of τ ′
j,l is not modified, i.e., r′

j,l = a′
j,l. Thus, Property 4 holds for all jobs in σ′. Property 5

and Property 6 follow directly from Lemma 8 and Lemma 9, respectively, for each job in σ′.
Finally, by Lemma 6, for any time slice Tσ in the schedule σ′, the processor executes one of
the jobs with earliest absolute deadline that are pending in Tσ, if any. Therefore, Property 7
holds for each job in σ′. ◀

The following theorem shows how to obtain a task set Γ′
i of sequential sporadic tasks

with jitter that can be analyzed in order to obtain a WCRT upper bound for task τi.

▶ Theorem 12. Given a task set Γ of DSS tasks, the WCRT Ri of a task τi ∈ Γ is upper
bounded by the WCRT R′

i of a sequential sporadic task τ ′
i in Γ′

i, where Γ′
i = {τ ′

1, ..., τ ′
n}

is a set of sequential sporadic tasks with release jitter, with τ ′
i = (Ci + Si, 0, Ti, Di) and

τ ′
j = (Cj , Rj − Cj , Tj , Dj) for all τ ′

j ̸= τ ′
i .

Proof. By Lemma 5, the response time of job τ ′
i,k in σ′ is equal to the response time of τi,k

in σ, which is in turn equivalent to the WCRT Ri of the task under analysis τi; i.e., it holds
that R′

i,k = Ri,k = Ri. In addition, since by Lemma 11 σ′ represents a legal schedule of Γ′
i

under preemptive EDF scheduling, it holds that R′
i,k ≤ R′

i. It follows that Ri ≤ R′
i. ◀

4.4 Response-time analysis algorithm
The schedulability of a task set Γ of DSS tasks can be verified by means of the iterative
approach described in Algorithm 1. The algorithm produces a vector of WCRT upper bounds
R =

[
R1, ..., Rn

]
for all tasks in Γ using Theorem 12 (ModelTransformation at line 10),

starting from the initial condition in which Ri is set to Di for each τi ∈ Γ. Then, the
algorithm iteratively applies Theorem 12 to each task τi ∈ Γ in order to obtain the WCRT R′

i

of task τ ′
i by means of the response-time analysis approach by Spuri [21] (JitterAnalysis

at line 11). At each iteration, the value of Ri in R is set to the newly obtained R′
i in case

R′
i < Ri, and the task set is deemed schedulable if R′

i ≤ Di holds for each τi ∈ Γ. Otherwise,
the iterative loop continues until either the task set is deemed schedulable or the vector R is
not updated within the iteration, in which case the task set is deemed not schedulable.

The use of this iterative algorithm is supported by the following reasoning. Assume that
the behavior of the preemptive EDF scheduler is altered by means of a run-time mechanism
M that forcibly terminates all jobs at the time of their absolute deadline. With mechanism
M in place, the relative deadline Di represents a valid upper bound on the WCRT Ri of
a task τi in Γ. Then, if in a given iteration of the algorithm the WCRT upper bound R′

i

obtained for each task τi is found to be lower than or equal to the corresponding deadline Di,
then all the possible jobs of all tasks in Γ will terminate within their absolute deadline. In
this situation, the mechanism M does not need to prevent execution for any job, therefore
its presence is irrelevant and the resulting behavior is equivalent to standard preemptive

F. Aromolo, A. Biondi, and G. Nelissen 13:13

EDF scheduling, wherein M is not deployed. Otherwise, if in the same iteration at least one
of the WCRT upper bounds R′

i for a task τi is found to be greater than the corresponding
relative deadline Di, then the task set cannot be deemed schedulable at that iteration. Then,
if at least one of the WCRT upper bounds in R was updated, the algorithm proceeds to the
next iteration to potentially reduce the WCRT upper bounds of the other tasks in Γ. This
reasoning was also adopted in [19] to obtain a similar iterative approach for the derivation of
WCRT upper bounds in systems where tasks synchronize their access to shared resources.
Note that, by construction, in a given iteration beyond the first, each of the values in R is
less or equal than the corresponding value at the previous iteration, and that the algorithm
terminates as soon as none of the values in R are updated after an iteration.

When applying Theorem 12 within the algorithm to analyze a task τi ∈ Γ (at line 10),
note that the exact value of the WCRT Rj of each task τj ̸= τi is not known; therefore,
when constructing Γ′

i, Rj −Cj must be used as an upper bound of the jitter of τ ′
j in place of

J ′
j = Rj−Cj . To ensure that the algorithm remains consistent with this substitution, consider

a generic iteration of the algorithm. In case Rj was never updated during the previous
iterations of the algorithm, then Rj = Dj , and, assuming M is active, Dj = Rj ≥ Rj .
Instead, if Rj was updated in at least one of the previous iterations of the algorithm, then
Rj must have been set to Rj = R′

j , where R′
j was obtained by analyzing τj by means of task

set Γ′
j in Theorem 12 with respect to previous values of the WCRT upper bounds in R. In

this case, by Theorem 12, it holds that Rj ≤ R′
j , with R′

j computed with respect to Γ′
j ; thus,

Rj ≤ Rj . As a result, Rj ≥ Rj holds for both cases. Therefore, since Rj − Cj ≥ Rj − Cj ,
and since increasing the maximum jitter parameter for a task in a task set of sporadic tasks
with jitter cannot reduce the WCRT of tasks in that task set, Rj − Cj can be used as a safe
upper bound on the jitter J ′

j of τ ′
j for the analysis of τi.

Note that the response-time analysis by Spuri [21] can only be applied to systems that are
not overloaded, i.e., to those systems for which the system utilization factor U ′ =

∑
τ ′

i
∈Γ′

C′
i

T ′
i

does not exceed one. Therefore, this condition must be verified in Algorithm 1 before a
task set Γ′

i can be analyzed. Given a task set Γ′
i generated to analyze a task τi in Γ, this

precondition on the system utilization is satisfied if Si

Ti
+

∑
τj∈Γ

Cj

Tj
≤ 1. This is because

the WCET C ′
i of τ ′

i is incremented by Si with respect to the original task τi ∈ Γ, while the
WCET C ′

j of tasks τ ′
j ̸= τ ′

i is kept equal to Cj . However, note that the resulting utilization
factor for each task set Γ′

i to be analyzed in Algorithm 1 is independent of the values of the
jitter J ′

i , i.e., it is independent of the values of the elements of R. Therefore, it is sufficient
to check if Si

Ti
+

∑
τj∈Γ

Cj

Tj
≤ 1 holds for each task under analysis τi ∈ Γ before starting the

iterative refinement of the WCRT upper bounds R in Algorithm 1 (NecessaryConditions
at line 2).

Finally, note that the iterative loop does not need to terminate immediately in case the
task set is deemed to be schedulable (i.e., when R′

i ≤ Di holds for each τi ∈ Γ). In fact, it is
possible to obtain tighter WCRT upper bounds by performing additional iterations with the
updated vector R.

5 Experimental results

This section presents the results of an experimental evaluation of the proposed response-time
analysis approach. For the case of constrained deadlines, we propose a comparison with the
suspension-oblivious approach. Then, for the case of implicit deadlines, where the relative
deadline of each task is equal to its minimum inter-arrival time, the proposed approach is
also compared with the response-time analysis technique by Günzel et al. [17].

ECRTS 2022

13:14 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

Algorithm 1 Schedulability analysis for a task set Γ.

1: procedure SchedulabilityTest(Γ)
2: if NecessaryConditions(Γ) = FALSE then
3: return FALSE
4: end if
5: ∀τi ∈ Γ, Ri ← Di

6: update← TRUE
7: while update = TRUE do
8: update← FALSE
9: for all τi ∈ Γ do

10: Γ′
i ← ModelTransformation(Γ, i, R)

11: R′
i ← JitterAnalysis(Γ′

i, i)
12: if R′

i < Ri then
13: Ri ← R′

i

14: update← TRUE
15: end if
16: end for
17: if ∀τi ∈ Γ, R′

i ≤ Di then
18: return TRUE
19: end if
20: end while
21: return FALSE
22: end procedure

5.1 Experimental setup

The proposed experiments are based on the analysis of randomly generated task sets. The
task set generator used in the experiments was instrumented as follows. The number of
tasks generated for each task set is set to a fixed number n. For each task set, the UUniFast
algorithm by Bini and Buttazzo [3] was used to generate a set of utilization values Ui, such
that U =

∑
τi∈τi

Ui, where U is a generation parameter representing the system utilization,
which is varied within the experiments. For each task τi in the randomly generated task
set, the minimum inter-arrival time was selected from a discrete log-uniform distribution
in the range [Tmin, Tmax], where Tmin and Tmax are generation parameters representing
the minimum and the maximum possible value of Ti, as suggested by Emberson et al. [13].
The WCET of τi was then set to Ci = Ui · Ti. The maximum suspension time Si of τi was
selected from a discrete uniform distribution in the range [(Ti − Ci) · βmin, (Ti − Ci) · βmax],
where βmin and βmax are generation parameters such that βmin ∈ [0, 1] and βmax ∈ [0, 1].
The relative deadline Di of τi was selected from a discrete uniform distribution in the
range [Ci + (Ti − Ci) · α, Ti], where α is a generation parameter such that α ∈ [0, 1] for
the experiments with constrained deadlines, so that Di ≤ Ti, and is instead equal to 1 for
the experiments with implicit deadlines, so that Di = Ti. In the experiments, the system
utilization U is varied from 0 to 1 in increments of 0.05. For each value of U , 1000 task
sets were tested using the approaches under evaluation. The performance metric for the
experiments is the schedulability ratio with respect to a specific system utilization U ; i.e.,
the ratio of task sets deemed schedulable by a specific analysis approach over the number of
task sets generated for the system utilization point U .

F. Aromolo, A. Biondi, and G. Nelissen 13:15

5.2 Results with constrained deadlines

For the case of constrained deadlines, the performance of the proposed approach (SS-RTA)
in terms of schedulability ratio is compared with that of the suspension-oblivious RTA
approach (SO-RTA). In the SO-RTA approach, suspensions are regarded as additional
computation time, and the resulting task set is evaluated with the EDF analysis by Spuri [21].
In particular, the task set analyzed in SO-RTA is constructed as Γ′ = {τ ′

1, . . . , τ ′
n}, where

τ ′
i = (Ci + Si, 0, Ti, Di) for each τi ∈ Γ. Figures 2(a)-(c) report the results of the experiments

with constrained deadlines. In these experiments, the values of Tmin and Tmax were set
to 100 and 1000, respectively. Figure 2(a) shows that the proposed approach outperforms
the suspension-oblivious approach by a significant margin, even with moderate amounts of
suspension. When the parameter βmax is increased to 0.6 (Figure 2(b)), the schedulability
ratio obtained with the suspension-oblivious analysis approaches 0, even for low values of
utilization. As shown in Figure 2(c), the proposed approach retains significant schedulability
ratios even with the shorter deadlines introduced by generating task sets with shorter relative
deadlines (i.e., with a smaller value of α).

5.3 Results with implicit deadlines

The results of the experiments on implicit deadlines are provided in Figures 2(d)-(f). In these
experiments, the proposed approach (SS-RTA) is compared with the suspension-oblivious
approach (SO-RTA) and the state-of-the-art RTA for implicit deadlines by Günzel et al. [17]
(SA-RTA). In this case, for the SO-RTA approach, it is sufficient to inflate the WCETs
of each task by the maximum suspension time and to check whether the utilization of the
resulting task set is less than or equal to 1. In addition, the performance of the schedulability
test obtained with the logic OR of SS-RTA and SA-RTA, which deems a task set under
analysis schedulable in case at least one of SS-RTA and SA-RTA deems the task set
schedulable, is reported in the experiments (OR-RTA). The values of Tmin and Tmax are
again set to 100 and 1000, respectively. Figure 2(d) shows that, when relatively small values of
βmin and βmax are applied, SA-RTA outperforms SS-RTA by a slight margin. Nonetheless,
it should be noted that the combination of the two approaches (OR-RTA) provides some
improvement over using SA-RTA by itself. This means that the two approaches are not
comparable, in the sense that there exist task sets that are deemed schedulable by SS-RTA
and that are deemed not schedulable by SA-RTA, and vice-versa. The gap between the two
approaches is reduced with larger values for the maximum suspension time of the generated
tasks, i.e., when βmax is increased to 0.6 (Figure 2(e)). Finally, Figure 2(f) shows that the
the performance of the proposed approach surpasses the performance of SA-RTA when
more tasks are included in each task set (n = 15).

Overall, these experiments show that the performance levels of the proposed approach
SS-RTA and of the state-of-the art approach SA-RTA are comparable, and that neither of
the methods dominates the other. In fact, the strongest performance is obtained with the
combined approach OR-RTA, which theoretically dominates both approaches and provides
slight empirical improvements under specific system configurations. It should be noted that
the main advantage of SS-RTA over SA-RTA is that it allows evaluating task sets with
constrained deadlines in addition to task sets with implicit deadlines. Finally, the experiments
show that both approaches vastly outperform the basic suspension-oblivious approach, which
is only capable of accepting a very limited number of task sets under the evaluated scenarios.

ECRTS 2022

13:16 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1
Sc

he
d.

ra
tio

(a) n = 5, βmin = 0.1, βmax = 0.3, α = 0.8

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Sc
he

d.
ra

tio

(b) n = 5, βmin = 0.0, βmax = 0.6, α = 0.8

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Sc
he

d.
ra

tio

(c) n = 5, βmin = 0.0, βmax = 0.6, α = 0.6

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Sc
he

d.
ra

tio

(d) n = 5, βmin = 0.1, βmax = 0.3, α = 1.0

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Sc
he

d.
ra

tio

(e) n = 5, βmin = 0.0, βmax = 0.6, α = 1.0

0 0.2 0.4 0.6 0.8 1
0

0.2
0.4
0.6
0.8

1

Sc
he

d.
ra

tio

(f) n = 15, βmin = 0.0, βmax = 0.6, α = 1.0

System utilization (U)
SS-RTA SO-RTA SA-RTA OR-RTA

Figure 2 Comparison of the proposed RTA approach with state-of-the-art techniques in terms of
the schedulability ratio obtained with different system configurations.

6 Conclusions and future work

This paper presented a response-time analysis for dynamic self-suspending tasks under
preemptive EDF scheduling with constrained deadlines. The analysis is based on a model
transformation to sporadic tasks with release jitter and on the subsequent application of a
state-of-the-art analysis for the target task model. Experiments on randomly generated task
sets compared the performance of the proposed approach in terms of schedulability ratio in
the case of both implicit and constrained deadlines. The proposed approach significantly
outperformed the baseline suspension-oblivious analysis in all the evaluated scenarios. Then,
the approach was shown to provide comparable performance with the state-of-the-art response-
time analysis for implicit deadlines by Günzel et al. [16]. Most importantly, the schedulability
test which combines the two analyses was shown to outperform both techniques, meaning that
the proposed approach does not dominate the response-time analysis by Günzel et al. [16]
and vice-versa. Future work should consider leveraging the insights from both techniques to
obtain a unifying analysis which can provide tighter WCRT upper bounds for the analysis
of constrained-deadline self-suspending task systems under EDF. In addition, the proposed
approach can be applied to the analysis of the EDD task model [1] towards the derivation of
a response-time analysis for parallel tasks scheduled by the partitioned EDF algorithm and
the analysis of hardware acceleration patterns under EDF scheduling.

References

1 Federico Aromolo, Alessandro Biondi, Geoffrey Nelissen, and Giorgio Buttazzo. Event-driven
delay-induced tasks: Model, analysis, and applications. In Proceedings of the 27th IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS 2021), pages 53–65.
IEEE, 2021.

F. Aromolo, A. Biondi, and G. Nelissen 13:17

2 Sanjoy K. Baruah, Louis E. Rosier, and Rodney R. Howell. Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one processor. Real-Time
Systems, 2(4):301–324, 1990.

3 Enrico Bini and Giorgio C. Buttazzo. Measuring the performance of schedulability tests.
Real-Time Systems, 30(1-2):129–154, 2005.

4 Alessandro Biondi, Alessio Balsini, Marco Pagani, Enrico Rossi, Mauro Marinoni, and Giorgio
Buttazzo. A framework for supporting real-time applications on dynamic reconfigurable
FPGAs. In Proceedings of the 37th IEEE Real-Time Systems Symposium (RTSS 2016), pages
1–12. IEEE, 2016.

5 Björn B. Brandenburg. Multiprocessor real-time locking protocols. In Yu-Chu Tian and
David Charles Levy, editors, Handbook of Real-Time Computing, pages 1–99. Springer, 2020.

6 Felipe Cerqueira, Geoffrey Nelissen, and Björn B. Brandenburg. On strong and weak sus-
tainability, with an application to self-suspending real-time tasks. In Proceedings of the 30th
Euromicro Conference on Real-Time Systems (ECRTS 2018), pages 26:1–26:21, 2018.

7 Jian-Jia Chen, Geoffrey Nelissen, and Wen-Hung Huang. A unifying response time analysis
framework for dynamic self-suspending tasks. In Proceedings of the 28th Euromicro Conference
on Real-Time Systems (ECRTS 2016), pages 61–71. IEEE, 2016.

8 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang, Björn Brandenburg, Kon-
stantinos Bletsas, Cong Liu, Pascal Richard, Frédéric Ridouard, Neil Audsley, Raj Rajkumar,
and Georg von der Brüggen. Many suspensions, many problems: A review of self-suspending
tasks in real-time systems. Real-Time Systems, 55(1):144–207, 2019.

9 UmaMaheswari C. Devi. An improved schedulability test for uniprocessor periodic task
systems. In Proceedings of the 15th Euromicro Conference on Real-Time Systems (ECRTS
2003), pages 23–30. IEEE, 2003.

10 Zheng Dong and Cong Liu. Closing the loop for the selective conversion approach: A
utilization-based test for hard real-time suspending task systems. In Proceedings of the 37th
IEEE Real-Time Systems Symposium (RTSS 2016), pages 339–350. IEEE, 2016.

11 Zheng Dong, Cong Liu, Soroush Bateni, Kuan-Hsun Chen, Jian-Jia Chen, Georg von der
Brüggen, and Junjie Shi. Shared-resource-centric limited preemptive scheduling: A com-
prehensive study of suspension-based partitioning approaches. In Proceedings of the 24th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 2018), pages
164–176. IEEE, 2018.

12 Glenn A. Elliott, Bryan C. Ward, and James H. Anderson. GPUSync: A framework for
real-time GPU management. In Proceedings of the 34th IEEE Real-Time Systems Symposium
(RTSS 2013), pages 33–44. IEEE, 2013.

13 Paul Emberson, Roger Stafford, and Robert I. Davis. Techniques for the synthesis of multi-
processor tasksets. In Proceedings of the 1st International Workshop on Analysis Tools and
Methodologies for Embedded and Real-time Systems (WATERS 2010), pages 6–11, 2010.

14 José Fonseca, Geoffrey Nelissen, Vincent Nélis, and Luís Miguel Pinho. Response time
analysis of sporadic DAG tasks under partitioned scheduling. In Proceedings of the 11th IEEE
Symposium on Industrial Embedded Systems (SIES 2016), pages 1–10. IEEE, 2016.

15 Laurent George, Nicolas Rivierre, and Marco Spuri. Preemptive and non-preemptive real-time
uniprocessor scheduling. Research Report RR-2966, INRIA, France, 1996.

16 Mario Günzel, Niklas Ueter, and Jian-Jia Chen. Suspension-aware fixed-priority schedulability
test with arbitrary deadlines and arrival curves. In Proceedings of the 42nd IEEE Real-Time
Systems Symposium (RTSS 2021), pages 418–430. IEEE, 2021.

17 Mario Günzel, Georg von der Brüggen, and Jian-Jia Chen. Suspension-aware earliest-deadline-
first scheduling analysis. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 39(11):4205–4216, 2020.

18 Cong Liu and James H. Anderson. Suspension-aware analysis for hard real-time multiprocessor
scheduling. In Proceedings of the 25th Euromicro Conference on Real-Time Systems (ECRTS
2013), pages 271–281. IEEE, 2013.

ECRTS 2022

13:18 Response-Time Analysis for Self-Suspending Tasks Under EDF Scheduling

19 Geoffrey Nelissen and Alessandro Biondi. The SRP resource sharing protocol for self-suspending
tasks. In Proceedings of the 39th IEEE Real-Time Systems Symposium (RTSS 2018), pages
361–372. IEEE, 2018.

20 Geoffrey Nelissen, José Fonseca, Gurulingesh Raravi, and Vincent Nélis. Timing analysis of
fixed priority self-suspending sporadic tasks. In Proceedings of the 27th Euromicro Conference
on Real-Time Systems (ECRTS 2015), pages 80–89. IEEE, 2015.

21 Marco Spuri. Analysis of deadline scheduled real-time systems. Research Report RR-2772,
INRIA, France, 1996.

22 Georg von der Brüggen, Wen-Hung Huang, and Jian-Jia Chen. Hybrid self-suspension models
in real-time embedded systems. In Proceedings of the 23rd IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA 2017), pages 1–9.
IEEE, 2017.

An Approach to Formally Specifying the Behaviour
of Mixed-Criticality Systems
Alan Burns #

University of York, UK

Cliff B. Jones #

Newcastle University, Newcastle upon Tyne, UK

Abstract
This paper proposes a formal framework for describing the relationship between a criticality-aware
scheduler and a set of application tasks that are assigned different criticality levels. The exposition
employs a series of examples starting with scheduling simple jobs and then moving on to mixed-
criticality robust and resilient tasks. The proposed formalism extends the rely-guarantee approach,
which facilitates formal reasoning about the functional behaviour of concurrent systems, to address
real-time properties.

2012 ACM Subject Classification Computer systems organization → Embedded and cyber-physical
systems; Software and its engineering → Real-time schedulability

Keywords and phrases real-time, scheduling, mixed criticality, rely/guaranteed conditions

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.14

Funding This research has been supported in part by EPSRC (UK) grants, STRATA and MCCps
and by Leverhulme Trust grant RPG-2019-020.

Acknowledgements The authors acknowledge useful suggestions made by Iain Bate, Sanjoy Baruah
and Ian Hayes.

1 Introduction

Since Vestal published his seminal paper in 2007 [61], there have been a wealth of models
and protocols published [16, 17] on the topic of Mixed Criticality Systems (MCS). One of
the aims of this wide ranging set of techniques is to improve the survivability of systems by
providing a variety of degraded behaviours that can take effect if the system experiences
overrunning execution times.

Inevitably these techniques require significant support from the underlying operating
system. Unfortunately commercially-available, general-purpose, RTOSs do not provide this
support. Hence, in order to utilise many of the more advanced scheduling ideas that are to
be found in the MCS literature, it is necessary to develop the code for a bespoke scheduler as
part of the application. Programming languages such as Ada [11] do provide the primitives
necessary for this software to be developed but to deliver a reliable MCS scheduler the
MCS protocols and models must be precisely specified. Research papers that focus on the
algorithmic properties of protocols tend to give, at best, informal descriptions of the actual
required run-time behaviour of the required scheduler.

The objective of the research described in this paper is to develop a framework for formally
specifying and reasoning about timing correctness properties of mixed-criticality systems. The
following paragraphs explain this objective in greater detail. In general, correctness in safety-
critical systems can be considered from two perspectives: (i) (pre-run-time) verification, and
(ii) (run-time) survivability.

© Alan Burns and Cliff B. Jones;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 14; pp. 14:1–14:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:alan.burns@york.ac.uk
mailto:cliff.jones@ncl.ac.uk
https://doi.org/10.4230/LIPIcs.ECRTS.2022.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

Pre-run-time verification of a safety-critical system involves verifying, prior to deployment,
that the run-time behaviour of the system will be consistent with expectations. Verification
assumptions are made regarding the kinds of circumstances that will be encountered by the
system during run-time and guarantees are used to specify the required runtime behaviour
of the system (provided that the assumptions hold).

In contrast, survivability addresses expectations of system behaviour in the event that the
assumptions fail to hold fully (in which case a fault or error is said to have occurred during
run-time). Survivability may further be considered to comprise two notions: robustness and
resilience [14]. Informally, the robustness of a system is a measure of the degree of fault it
can tolerate without compromising the quality of service it offers; resilience refers to the
degree of fault for which it can provide a degraded, yet acceptable, criticality-aware quality
of service.

The contribution of this paper is to develop a framework for the formal specification of
MCS; we define a formal approach that:

Demonstrates that the Rely/Guarantee approach (see Section 2) can be extended to
cover temporal properties (see Section 3) of concurrent systems (in addition to their
functionality).
Precisely specifies the required behaviour of a run-time scheduler (in normal and degraded
modes of operation).
Enables proofs to be developed and discharged that employ the contract(s) between the
jobs and tasks comprising an application, and the scheduler.
Enables, with additional specifications of the functional elements of the scheduler, the
code of the scheduler to be produced as a refinement of these specifications.
Enables the scheduler to be replaced or modified by verifying that a new version satisfies
the original specification.
Identifies the assumptions that the analysis (scheduling and execution time) makes such
that the result of the analysis confirms that the system will meet its timing requirements.
Enables the many approaches to resilience and robustness to be compared – this requires
the formal framework to be sufficiently expressive to capture the semantics of the various
schemes that have been proposed.

This initial description of our approach focusses on the specification aspects; future work will
address verification. We do however demonstrate where proof can be used to ensure that,
whenever a degraded mode must be entered, its prerequisites are ensured by the guaranteed
conditions of the mode that has just been abandoned. We also make explicit the proof
obligations on the offline scheduling analysis that must be applied to the application prior to
deployment.

We explain the elements of the framework via a series of related, increasingly challenging,
examples. The initial examples are sufficiently straightforward that, arguably, a full formal
specification is not required; however the later examples do show the value of precise
specifications. The examples illustrate the approach with at most two criticality levels, this
helps to explain the framework, but again the full value of a formal approach comes when the
system has increased complexity as happens when there are three or more criticality levels.

In this paper an MCS is assumed to consist of a finite set of jobs/tasks and a single specific
Scheduler. Rely and guarantee conditions capture the run-time relationship between the
Scheduler and the jobs/tasks, yielding a specification of the necessary behaviours/properties
of the Scheduler. Note that this process does not delve into the internal structure of the
Scheduler: the scheduling-theoretic issues of how it meets its specification (if indeed it can)
is not the focus of this work. Rather, in this paper we are only seeking to provide a clear and

A. Burns and C. B. Jones 14:3

intuitive explanation of the formalism. The history of formal methods (such as Hoare Logic)
leads us to believe that methods can be developed for showing that specific MC-scheduling
algorithms can satisfy (or not) the proof obligations that arise from the Rely/Guarantee
(R/G) specifications. Related work in this area includes PROSA which addresses mechanised
verification of results from scheduling analysis [21, 10]. (Mechanisation of R/G reasoning is
on-going [29, 22]).

Organisation. The paper is organised as follows. After an introduction to R/G conditions
(Section 2), the basic properties of the proposed framework are developed in Section 3 via a
focus on jobs – this allows the approach to be motivated and explained. Mixed-criticality
jobs are then covered in Section 4 including the introduction of fault-tolerance via modes of
operation each with their own R/G conditions. Extensions of the same ideas to tasks are
then given in Sections 5 and 6. Conclusions are in Section 7.

2 Introduction to Rely/Guarantee conditions

Hoare’s “Axiomatic Approach” provides the basis of a development method for sequential
programs. Although [32] employed post conditions of single states, subsequent development
methods such as VDM [39], B [1] and Event-B [2] use relational post conditions that define
acceptable final states with respect to their initial values. Crucially, there is a relatively
obvious notion of compositionality for sequential programs where a specification can be
replaced by anything that satisfies its pre/post condition specification.

Finding compositional development methods for the development of concurrent programs
proved to be difficult precisely because of the “interference” that comes with (shared-variable)
concurrency. One approach is to record and reason about interference using rely and guarantee
conditions [37, 38] (a more algebraic presentation of the ideas is covered in [31]). The details
and proof obligations of the R/G approach are not the main issue in the current paper. The
basic idea is straightforward: just as pre conditions define a subset of possible starting states
on which a component is expected to operate, rely conditions record interference that the
specified component must tolerate; and, just as post conditions abstract from algorithms
to achieve the transition from initial to final state, guarantee conditions are relations that
define the maximum interference that the component may inflict on its environment. It is
important to remember that pre and rely conditions are assumptions that a developer is
invited to make; in contrast, guarantee and post conditions are obligations on the code to be
created. A guarantee condition needs to be satisfied (only) as long as the corresponding rely
condition is respected. Stating this negatively, if the environment makes a transition that
does not satisfy the rely condition, the developed code is free from further obligations.

The R/G idea targeted the design of concurrent programs where the R/G conditions
provide a way of decomposing designs. Papers such as [30, 42, 19] show that the R/G idea
can be used to tackle the design of fault-tolerant CPS by using rely conditions to describe
assumptions about physical system components. Where the physical components exhibit
continuous change, the rely conditions record assumptions about the rate of such changes.
This work also showed how layered R/G conditions can assist in addressing fault tolerance;
resilience is represented by hierarchically related R/Gs – strong rely conditions address
full functionality, weaker rely conditions are matched with lesser guarantees (perhaps only
the safety-critical aspects), even weaker rely conditions might only guarantee safe fail-stop
behaviour. These properties of related R/G conditions are central to the framework developed
in this paper.

ECRTS 2022

14:4 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

3 Job-based system model

This section focuses on a system comprising a set of jobs, J , that are managed by a Scheduler
(denoted by the symbol S). A representative job, j ∈ J , has a relative deadline of Dj ,
arrives (and is released for execution) at time aj and thus has an absolute deadline at time
dj = aj + Dj . Let fj denote the time at which it completes (finishes) its execution.1 The set
act(J , t) is the subset of J containing the jobs that are active at time t, i.e.

j ∈ act(J , t) ⇔ j ∈ J ∧ (aj ≤ t < fj)

A job that is immediately terminated on arrival (as required in specific circumstances by
some MCS protocols) has fj = aj ; it is deemed never to be active and to have missed its
deadline.

We assume a discrete time model in which all job parameters are given as non-negative
rational numbers with arbitrary precision. Time is an external physical phenomenon: the
Scheduler has no control over the passage of time.

The specification of each job, j, consists of its pre-condition, Pj , post-condition Qj , rely
condition Rj and guarantee condition Gj . In this paper each of these conditions is expressed
as a predicate over the system state. For an actual system these conditions will capture
both the functional and timing behaviour of the job; here we focus only on the temporal
properties. This requires that system states are indexed by time2 and that the rely and
guarantee conditions directly reference time. We write RS(t)/GS(t) for the Scheduler and
Rj(t)/Gj(t) for jobs.

Properties that should remain true as time progresses are normally classed as invariants
but here are represented as rely or guarantee conditions. This is because the jobs (and
Scheduler) must take action in order to maintain correct behaviour – a job will miss its
deadline if it is not scheduled appropriately.

The primary concern for each job is its execution time; and hence we define, for each job
j, ej(t) which is the amount of execution time the job has consumed up to time t. There are
obvious properties (axioms) for e:

∀j ∈ J , t • ej(t) ≤ WCETj (1)

where WCET is the worst-case execution time of the job;

∀j ∈ J , t1, t2, t1 < t2 • ej(t2) − ej(t1) ≤ t2 − t1 (2)

no job can execute faster than “real time”;

∀j ∈ J , t1, t2, t1 < t2 • ej(t1) ≤ ej(t2) (3)

a job cannot “lose” execution time; and

∀j ∈ J •
(

∀t ≤ aj • ej(t) = 0 ∧ ∀t ≥ fj • ej(t) = ej(f)
)

(4)

a job cannot execute before it arrives or after it has finished.

1 A job that is yet to finish has f=∞; a job that is permanently suspended but never terminated retains
this value.

2 A slightly different approach to handling the progress of time was taken in [40]. In that paper a
distinction is made between an abstract notion of T ime and the ClockV alues stored in a computer.

A. Burns and C. B. Jones 14:5

In this section the scheduler is deemed to exist for the entire life-time of the system, it is
therefore specified by a single rely condition RS(t) and a single guarantee condition GS(t).

The following derivations first illustrate the basic approach with a set of single criticality
jobs. Note that the role of the formal framework is to represent precisely the relationship
between the Scheduler and the client jobs in a range of degraded and partial behaviours. It
is not a model of a particular scheduler’s run-time behaviour; rather it is a specification of
the required properties of any scheduler (and its schedulability test) that is being proposed
for the particular problem under investigation.

A key feature of mixed-criticality models is that they allow a system to degrade gracefully
when faults occur. This leads to the Scheduler’s run-time behaviour having different modes
of operation. In each mode, different R and G conditions for the jobs and scheduler are
defined, as is the transition between R/G contracts.

We start by considering a finite set of jobs that each have the same criticality; there is no
degraded behaviour and hence only a single mode of operation. A job j is characterised by its
Worst-Case Execution Time, WCETj (this is a value that will not be known with certainty)
and Cj an estimate of WCETj . The timely execution of a job relies on this estimate of
WCET being valid, and the Scheduler can only meet its obligations with a reliance of each
job executing for no more than Cj . If these rely conditions hold, a valid Scheduler guarantees
to manage the processing capacity so as to ensure that all jobs complete by their deadlines
regardless of when the jobs arrive; each job guarantees to execute, when active, for no more
than Cj .

Note that the value Cj plays a number of roles: the job relies on its environment behaving
according to whatever model or measuring process was used to derive Cj , but the job also
has a contract with the scheduler not to execute for more than Cj . The scheduler is assumed
to have used some form of analysis to verify (offline usually) that, if all jobs respect their
guarantee conditions, then it will be able to provide the necessary capacity to each job.
Hence the job can rely upon being allowed to execute for up to Cj before its deadline.

With all four axioms ((1)-(4) above) in force, the rely and guarantee conditions of any
valid Scheduler are as follows:

RS(t) def= ∀j ∈ act(J , t) • ej(t) ≤ Cj

GS(t) def= ∀j ∈ act(J , t) • t + (Cj − ej(t)) ≤ dj

The Scheduler relies on all jobs executing within their estimated WCET and guarantees
to provide sufficient resource, following a defined policy, to ensure that each job always
has sufficient space to complete before its deadline (i.e. that t + (Cj − ej(t)) ≤ dj). 3 The
Scheduler’s guarantee is an obligation that must be achieved by its code – i.e. the Scheduler’s
offline schedulability test must ensure this property. The conditions RS(t) and GS(t) are
defined to refer only to jobs that are active at time t.

In order to satisfy GS , the Scheduler must manage the dispatching of jobs in an appropriate
manner. If necessary it will allocate to each job up to Cj execution time. It follows that if
WCETj ≤ Cj then each job will terminate by its deadline (i.e. fj ≤ dj).

The R and G conditions of each active job are therefore:

Rj(t) def= WCETj ≤ Cj ∧ t + (Cj − ej(t)) ≤ dj

Gj(t) def= ej(t) ≤ Cj

3 An alternative formulation [12] to the one presented here is for the Scheduler to guarantee a budget (of
at least C for each job), and for each job to rely on this budget. Example specifications and further
investigations indicated that the method defined in the current paper is the more realistic and effective.

ECRTS 2022

14:6 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

At run-time, the job does not need to be aware of its deadline or current execution time;
although more expressive and flexible behaviours may require this. Once a job (j) terminates
the Rj and Gj conditions no longer apply.

The constraints imposed upon execution time are represented as guarantees and not
post-conditions for a number of reasons:
1. post-conditions are, by definition, required to hold upon termination, but a failure may

lead to the job not terminating;
2. to add fault tolerance (i.e. to cope with jobs whose estimated execution times are not

respected) we will need to know the point in time at which a rely condition fails to hold
(and hence a guarantee condition no longer has to hold); and

3. deadlines may change (or be removed) during the execution of the job (see later examples).

The semantics of rely/guarantee conditions is that guarantees are required to be met
as long as the rely conditions are satisfied. If a job overruns and breaks its guarantee that
ej(t) ≤ Cj there must be a rely condition “at fault”. For this reason, we explicitly include
WCETj ≤ Cj in the rely condition: in an environment where this assumption does not hold,
a job is not obliged to guarantee its temporal properties.

If the environment (hardware platform including the influence of concurrently executing
jobs, preemption effects on cache etc.) behaves such that the WCET estimate of some job
k is exceeded, then this job may execute for more than Ck, thus breaking its guarantee
condition. As a consequence the rely condition for the Scheduler would not be satisfied and
hence it would be under no obligation to provide the necessary capacity to every job – some
jobs may still be active at their deadlines. This takes us to the topic of survivability and
how MCS supports graceful degradation.

4 Mixed-criticality jobs

To illustrate how a level of resilience can be added, two criticality levels are considered: HI-
crit and LO-crit; with JL a set of LO-crit jobs, JH a set of HI-crit jobs, and J = JL ∪ JH.
Job h is a representative HI-crit job; l is a representative LO-crit job; j continues to represent
any job. So, for example, Rh(t) is the rely condition for any HI-crit job, h ∈ JH. With Mixed-
Criticality jobs there are two estimates of Cj : Cj(L) and Cj(H); with Cj(L) ≤ Cj(H) [61].

It is initially assumed that the system is either in the Normal mode, in which case all
jobs should meet their deadlines, or in the HI-crit mode in which only the HI-crit jobs are
guaranteed to meet their deadlines. For the Normal (N) mode the (R, G) conditions are as
above except that Cj(L) replaces Cj in Rj , Gj , RS and GS :

RN
S (t) def= ∀j ∈ act(J , t) • ej(t) ≤ Cj(L)

GN
S (t) def= ∀j ∈ act(J , t) • t + (Cj(L) − ej(t)) ≤ dj

RN
j (t) def= WCETj ≤ Cj(L) ∧ t + (Cj(L) − ej(t)) ≤ dj

GN
j (t) def= ej(t) ≤ Cj(L)

The rely and guarantee conditions for the N mode are therefore:

RN (t) = RN
S (t) ∧

∧
j∈J

RN
j (t)

GN (t) = GN
S (t) ∧

∧
j∈J

GN
j (t)

A. Burns and C. B. Jones 14:7

Most of these rely and guarantee conditions are mutually supportive in the sense that they
“cancel out” when looking at the whole system. The only rely condition that depends on
external compliance is:

∀j ∈ J • WCETj ≤ Cj(L)

4.1 Adding resilience to HI-crit jobs
Considering HI-crit jobs (h ∈ JH) and their rely condition:

RN
h (t) def= WCETh ≤ Ch(L) ∧ t + (Ch(L) − eh(t)) ≤ dh

We want to give a higher (safer) bound on WCET, so we consider a more conservative value
(Ch(H)), where Ch(H) > Ch(L). Now for all HI-crit jobs (h) we have a new HI-crit mode
(H) and:

RH
h (t) def= WCETh ≤ Ch(H) ∧ t + (Ch(H) − eh(t)) ≤ dh

GH
h (t) def= eh(t) ≤ Ch(H)

The Scheduler’s definition for mode H is

RH
S (t) def= ∀h ∈ act(JH, t) • eh(t) ≤ Ch(H) ∧ ∀l ∈ act(JL, t) • el(t) ≤ Cl(L)

GH
S (t) def= ∀h ∈ act(JH, t) • t + (Ch(H) − eh(t)) ≤ dh

In this HI-crit mode there is no obligation to provide any level of service to the lower
criticality jobs or indeed to prevent these jobs from using resources (perhaps at a background
priority in a priority-based scheduler). Hence:

RH
l (t) def= WCETl ≤ Cl(L)

GH
l (t) def= el(t) ≤ Cl(L)

The above specification is, however, not sufficient for many of the protocols advocated
for mixed-criticality scheduling. The standard “mixed-criticality” mechanism for being able
to add more capacity to the HI-crit jobs is to take computation time away from the LO-crit
jobs. Or, more precisely, to no longer execute these jobs. This further adds to the guarantees
of the Scheduler.

To facilitate this functionality it is necessary to know the time at which RN
S became false

(i.e. when an active HI-crit job has first executed for C(L) without terminating). We refer
to this as mode N’s deviation time, ηN ; defined by the following property:

∃ηN , h ∈ act(JH, ηN) • eh(ηN) ≥ Ch(L) ∧ ∀t, t < ηN , g ∈ act(JH, t) • eg(t) < Cg(L)

At the deviation time RN
S becomes false, mode N is left and, simultaneously4, mode H

is entered. The rely and guarantee conditions RH(t) and GH(t) apply for t ≥ ηN .

4 The notion of simultaneous is taken from the Timebands [18] framework that allows instantaneous
actions to be defined at one time band (granularity) but implemented by an activity at a finer time
band.

ECRTS 2022

14:8 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

We assume here the extreme Vestal behaviour of not executing LO-crit jobs again after
ηN . This leads to a full specification for the guarantee condition for the Scheduler:

GH
S (t) def= ∀h ∈ act(JH, t) • t + (Ch(H) − eh(t)) ≤ dh ∧ ∀l ∈ act(JL, t) • el(t) = el(ηN)

with a simplified rely condition as the Scheduler no longer relies on the behaviour of LO-crit
jobs as it guarantees that they do not execute:

RH
S (t) def= ∀h ∈ act(JH, t) • eh(t) ≤ Ch(H)

and therefore:

RH(t) = RH
S (t) ∧

∧
l∈JL

RH
l (t)

∧
h∈JH

RH
h (t)

GH(t) = GH
S (t) ∧

∧
l∈JL

GH
l (t)

∧
h∈JH

GH
h (t)

This strategy of pausing all LO-crit jobs is not an option that the Scheduler could choose,
but a requirement that is part of the specification of the job’s behaviour – and hence must
be explicitly contained in GH

S .
With this specification the LO-crit jobs are suspended; but they may execute later in

another mode (perhaps after their deadlines). To abort these and future LO-crit jobs, rather
than preempt them indefinitely, the Scheduler could (if specified to do so) enforce termination:

∀t, t > ηN • act(JL, t) = ∅

4.2 Transitioning from mode N to mode H

The specification above requires a movement from mode N to mode H. To provide useful
fault tolerance, it must be true that, whenever the rely condition for N fails to be satisfied,
the corresponding rely condition for H is satisfied (and remains so) i.e. at time ηN when
RN (ηN) no longer pertains: RH(ηN) is satisfied. If RH(ηN) is true then the guarantee
condition, GH(t), is delivered for all t > ηN , and as a consequence RH(t) must hold.

In general a mode change could involve modes with unrelated functionality and hence
the truth of the rely condition in the new mode would need to be asserted independently of
the rely condition in the old mode. This is identical to what is required at system startup
where the rely condition of the initial mode must be established. In this work, however, we
require a more constrained relationship between the modes:

▶ Definition 1. Mode B is a weakened form of mode A if
1. for all times (t) before ηA when RA(t) is true then RB(t) is true (i.e. RA(t) ⇒ RB(t));

and
2. at time ηA when some aspect of RA(ηA) is no longer true RB(ηA) remains true.
As RB(ηA) is true, it followed that GB(t) is true for all t > ηA.

Counter Example. We require that mode H is a weakening of mode N . Consider the
first element of the definition of weakening: in two of the three rely conditions, this is indeed
the case as:

RN
S (t) ⇒ RH

S (t); RN
l (t) ⇒ RH

l (t)

but RN
h (t) does not have a simple relationship to RH

h (t). The first conjunct is a weakening
of the “external” rely condition as WCETh ≤ Ch(L) ⇒ WCETh ≤ Ch(H). The second
conjunct is, however, a strengthening; hence modes N and H do not have the required
hierarchical relationship – H is not a weakened form of N .

A. Burns and C. B. Jones 14:9

A Modified Definition of Mode N (N∗). In order to assert that mode H is a weakened
form of the initial mode it is necessary to constrain the behaviour of the Scheduler further
in the Normal mode. It must do more than simply guarantee to provide for all jobs C(L)
before the deadline d, it must also reserve sufficient slack so that, at any time a switch can
be made, it is possible to guarantee C(H) before d.

It follows that, for a HI-crit jobs, h, to be schedulable in both N∗ and H modes, there
exists a virtual deadline vh with

vh ≤ dh − (Ch(H) − Ch(L))

that is defined (and confirmed) by the applicable scheduling analysis, such that: if the
Scheduler in mode N∗ guarantees C(L) by v, then the Scheduler in mode H will be able
to guarantee C(H) by d.5 To accommodate this constraint the guarantee condition of the
Scheduler in mode N∗ must be modified to:

GN∗

S (t) def= ∀j ∈ act(J , t) • t + (Cj(L) − ej(t)) ≤ vj

and the Rely conditions of HI-crit jobs becomes

RN∗

h (t) def= WCETh ≤ Ch(L) ∧ t + (Ch(L) − eh(t)) ≤ vh

For LO-crit jobs (l) vl = dl and hence GN
S has not changed for these jobs. For HI-crit jobs

(h) there is a proof obligation on the scheduling analysis to demonstrate:

∀t, h ∈ act(JH, t) • GN∗

S (t) ⇒ t + (Ch(H) − eh(t)) ≤ dh (5)

Such an obligation could be verified using mechanised proof tools such as PROSA [21, 10].

▶ Lemma 2. Mode H is a weakening of mode N∗.

Proof. As noted above ∀t : RN
S (t) ⇒ RH

S (t) and RN
l (t) ⇒ RH

l (t). The modification to
N∗ does not effect these rely conditions. Also WCETh ≤ Ch(L) ⇒ WCETh ≤ Ch(H)
(as Ch(H) ≥ Ch(L)). Finally t + (Ch(L) − eh(t)) ≤ vh ⇒ t + (Ch(H) − eh(t)) ≤ dh as
vh ≤ dh − (Ch(H) − Ch(L)).

The second step is to show that, at time ηN∗ (when RN∗(ηN∗) fails), RH(ηN∗) remains
true. Condition RN∗(ηN∗) is false because the WCET , for some HI-crit job k, is not
bounded by Ck(L). Moreover ηN∗ is the first time instant at which RN∗ is false. Hence at
time ηN∗ , RN∗

k (ηN∗) is false, but RH
k (ηN∗) is true as Ck(H) > Ck(L).6 ◀

This weakening property and the proof obligation represented by eqn (5) are therefore
sufficient to ensure that, whenever the Normal mode must be abandoned, the HI-crit mode
can be entered and will deliver its guaranteed behaviour. The final point to note about the
transition from N∗ to H is that the Guarantee conditions are also weakened. The system
moves from guaranteeing all job deadlines to just guaranteeing the HI-crit ones. Hence
GN∗(t) ⇒ GH(t).

5 This virtual deadline is used directly in the EDF-based scheduling scheme EDF-VD [5] and in fixed-
priority scheduling is equivalent to the worst-case (maximum) computed response time of the HI-crit
job in the Normal mode [6]. Note whatever scheduling protocol is employed at run-time there is an
implicit (if not explicit) virtual deadline in the Normal mode. If this were not the case then there would
be insufficient spare capacity in the Normal mode to satisfy the extra demand of the HI-crit mode.

6 Strictly, we require Ck(H) > Ck(L)+δ where δ is the minimum time step that the system can undertake
in its discrete model of time.

ECRTS 2022

14:10 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

4.3 Postponing the deviation time

As noted in the introduction, the main focus of this paper is to motivate and define a formal
framework for the specification of mixed criticality systems. In this section we are able to
give an example of how this framework can be utilised.

A system is considered to degrade at deviation time ηN∗ which is defined, above, as the
first time that a HI-crit job executes beyond its C(L) constraint. But if this deviation time
could be postponed then the dynamics of the system may alleviate the need to make the
mode change – the LO-crit jobs could continue to meet their deadlines. Possible favourable
dynamic behaviours include sporadic jobs not arriving at their maximum rate, and other jobs
executing for less than their maximum C(L) bound. To explore the possibility of delaying
the deviation time consider again the specification of the N∗ mode:

RN∗

S (t) def= ∀j ∈ act(J , t) • ej(t) ≤ Cj(L)

GN∗

S (t) def= ∀j ∈ act(J , t) • t + (Cj(L) − ej(t)) ≤ vj

RN∗

j (t) def= WCETj ≤ Cj(L) ∧ t + (Cj(L) − ej(t)) ≤ vj

GN∗

j (t) def= ej(t) ≤ Cj(L)

where vj = dj for LO-crit jobs and vl ≤ dl − (Cl(H) − Cl(L)) for HI-crit jobs.
If all jobs behave according to this R/G specification then all virtual deadlines will be

met. This implies there is a weakened form of behaviour (which we denote as mode N̂∗):

RN̂∗

S (t) def= ∀j ∈ act(J , t) • t ≤ vj

GN̂∗

j (t) def= t ≤ vj

with GN̂∗

S = GN∗

S and RN̂∗

j = RN∗

j .
From the definition of the virtual deadline we have RN∗

S ⇒ R̂N∗

S and GN∗

j ⇒ ĜN∗

j .
The deviation time (when R̂N∗

S becomes false for the first time) is now when a HI-crit
job is still executing at its virtual deadline. And this time is likely to be significantly later
than that provided by the earlier definition. Note also that this alternative definition of the
deviation time for the normal mode changes what needs to be monitored – from execution
time to elapsed time. This is likely to reduce the runtime overheads of the MCS scheduler.

Again it is straightforward to prove that mode H is a weakening of (the modified) mode
N̂∗, and the proof obligation on the offline scheduling analysis (eqn (5)) must again be used
to validate the v values assigned to each HI-crit job. Recent scheduling results [8] have
demonstrated that for fixed priority-based scheduling and AMC-rtb analysis the same v

values are valid for the original definition of deviation time and the one derived in this section.
That paper also demonstrated the benefits in terms of run-time performance that is gained
from postponing the mode change.

The proposed framework allowed this new protocol to be easily defined and verified.
Further properties can be proven (such as the above definition of deviation time being the
latest possible). In this introductory paper, however, priority is given to extending the
framework to task-based systems.

A. Burns and C. B. Jones 14:11

5 Task-based system model

The above treatment of mixed-criticality jobs has demonstrated that the proposed specification
framework has sufficient expressive power to capture the properties commonly required of
job-based systems. The scheduling literature typically describes jobs as being organised
within tasks – in this section we extend the study to cope with tasks.

A real-time system is deemed to consist of a set of tasks. A single execution of the code
of a task is a job. So a task gives rise to a sequence of jobs. The scheduler determines the
order in which jobs from different tasks are executed. With a task-based model there is an
assumption that the duration of the system is unbounded. This means that any specification
framework must cater for the return of the system from any degraded mode back to the
initial mode for the system (and to allow these mode changes to occur numerous times). We
assume that each task k delivers a potentially unbounded sequence of jobs, k1, k2 etc, with
job km having arrival time am

k and completion time fm
k . This sequence is not “reset” as new

modes are entered; it continues to extend indefinitely.
This treatment focuses on issues related to execution time and mixed criticality. It does

not directly address the rely and guarantee conditions related to when and how a task is
released for execution. For example, time-triggered tasks require their job releases to be
guaranteed by some Dispatcher; and event-triggered tasks rely on their releasing events
obeying some minimum separation requirement. These issues are covered here by each task
guaranteeing that its jobs do not arrive too early – a rely condition for the Scheduler.

The system is again assumed to be defined over two criticality levels, LO-crit and HI-crit,
and to have two modes of behaviour: N∗ and H. We however drop, for ease of presentation,
the superscript from N in the following. To define a general model, each of the defining
temporal parameters of each task (D, T, C, V) has an L and a H value.

We again make use of sets: T is the set of all tasks, TL the set of LO-crit tasks, and TH
the set of HI-crit tasks, and T = TL ∪ TH. The axioms defined in Section 3 still apply.

At any time t, each task k has a single current job. We let c(t) be the index of this job
(for ease of presentation, we just use c for this index as the t value is always implied). Hence
the current job of task k is denoted by kc. This job may have finished, but the next job
of this task has not yet arrived (f c

k ≤ t < ac+1
k). In task models that allow a job to arrive

before the previous job of the same task has finished (i.e. tasks with D > T), the “current”
job is the one that arrived first.

We modify the definition of “active” to cater for tasks; a task is active if its current job
has not yet terminated:

k ∈ act(T , t) ⇔ k ∈ T ∧ (ac
k ≤ t < f c

k)

In each of the criticality modes the relative parameters (Vk and Dk) are added to the arrival
time ac

k to give the absolute values: vc
k, dc

k(L) and dc
k(H).

5.1 Vestal-inspired example
This section specifies the required behaviour of the system (Scheduler and tasks) for a typical
model inspired by the Vestal approach [61]. The properties of this model are, briefly:

System starts in the mode N in which all jobs of all tasks execute for no more than C(L)
and all job deadlines are met.
All LO-crit tasks are assumed (or constrained) to execute for no more than C(L).
All HI-crit tasks are assumed (or constrained) to execute for no more than C(H).
If any, or indeed all, HI-crit tasks execute for more than C(L) then:

ECRTS 2022

14:12 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

all HI-crit tasks must still meet their deadlines;
all LO-crit tasks have their periods and deadlines increased, but must still meet their
deadlines.

If there is an idle instant then the system must return to the Normal mode of operation.

This extension of the Vestal model is often referred to as the elastic task model [20] in which
the periods and deadlines of LO-crit tasks are extended from Tl(L) (and Dl(L)) to Tl(H)
(and Dl(H)), but are still guaranteed.

The major difference when moving from jobs to tasks is that each task, like the Scheduler,
exists for the full duration of the time spent in each mode. Although individual jobs terminate,
the task does not (in the model being utilised here). So Rk(t) and Gk(t) are the rely and
guarantee conditions of task k, but they refer to the job that is current (and possibly active)
at time t.

For the Vestal-inspired model outlined above we have, for all LO-crit tasks, l ∈ TL, Cl(L) =
Cl(H), Tl(H) > Tl(L), Dl(H) > Dl(L) and Vl = Dl(L) and for all HI-crit tasks, h ∈ TH,
Ch(L) < Ch(H), Th(L) = Th(H), Dh(L) = Dh(H) and Vh < Dh(L) − (Ch(H) − CH(L)).

The conditions for the normal mode N are:

RN
S (t) def= ∀k ∈ act(T , t) • ec

k(t) ≤ Ck(L) ∧ (c > 1 ⇒ ac
k − ac−1

k ≥ Tk(L))

GN
S (t) def= ∀k ∈ act(T , t) • t + (Ck(L) − ec

k(t)) ≤ vc
k

RN
k (t) def= WCETk ≤ Ck(L) ∧ k ∈ act(T , t) ⇒ t + (Ck(L) − ec

k(t)) ≤ vc
k(L)

GN
k (t) def= ec

k(t) ≤ Ck(L) ∧ (c > 1 ⇒ ac
k − ac−1

k ≥ Tk(L))

RN
S contains the separation condition: if the current job is not the first instantiation of the

task then it must arrive at least Tk(L) after the previous job.
In the HI-crit mode, H, we have a similar formulation but with different parameters:

RH
S (t) def= ∀k ∈ act(T , t) • ec

k(t) ≤ Ck(H) ∧ (c > 1 ⇒ ac
k − ac−1

k ≥ Tk(H))

GH
S (t) def= ∀k ∈ act(T , t) • t + (Ck(H) − ec

k(t)) ≤ dc
k(H)

RH
k (t) def= WCETk ≤ Ck(H) ∧ k ∈ act(T , t) ⇒ t + (Ck(H) − ec

k(t)) ≤ dc
k(H)

GH
k (t) def= ec

k(t) ≤ Ck(H) ∧ (c > 1 ⇒ ac
k − ac−1

k ≥ Tk(H))

These two formulations can easily be combined into a single specification that is a function
of the mode (N or H) but are separated here to improve readability.

5.2 Transitioning from N to H

In this and the following section we consider the movement between modes; from Normal,
N , to the HI-crit mode, H, and then the return to the Normal mode. In a long-lived
task-based system there may be many such transitions between N and H . Each time a mode
is entered, we consider this to be a new occurrence of the mode and therefore there is a new
occurrence of the Scheduler for that mode. A move from N to H involves one occurrence of
the N -mode Scheduler terminating and, instantaneously, a new occurrence of the H-mode

A. Burns and C. B. Jones 14:13

Scheduler starting its execution7. A natural linkage between Scheduler occurrences is for the
post-condition of one mode, say A (QA

S), to ensure the pre-condition of the follow-on mode,
B (P B

S), with QA
S ⇒ P B

S .
We note that the two mode changes contained within this task-based two-level mixed

criticality system are of a quite different nature. The movement from N to H is forced, as
N must be left. But the transition from H back to N is one of preference – both modes are
acceptable, but the functional behaviour of the system is enhanced by being in the N mode.

In Section 4.2 we noted that as mode N is left at time ηN , due to RN (ηN) being false,
we must prove that RH(ηN) is true. This involves two steps. First, at any time t < ηN ,
RN (t) ⇒ RH(t). Second, at time ηN , when RN (ηN) is broken, RH(ηN) remains true.

Following the approach in Section 4.2, the task model has again made use of a virtual
deadline for HI-crit jobs; from this we derive the proof obligation:

∀t, h ∈ act(TH, t) • GN
S (t) ⇒ t + (Ch(H) − ec

h(t)) ≤ dc
h(H) (6)

Counter Example. With this Vestal-inspired example, the periods of the LO-crit tasks
are expanded when the H mode is entered. It is therefore not true that ac

l − ac−1
l ≥ Tl(L) ⇒

ac
l − ac−1

l ≥ Tl(H) as Tl(H) > Tl(L). Hence RN
S does not imply RH

S .
A Modified Definition of Mode H (H∗). We must again modify the specification. However

on this occasion rather than strengthen the rely condition in mode N we weaken the definition
of the rely condition for the Scheduler in the HI-crit mode:

RH∗

S (t) def= ∀k ∈ act(T , t) • ec
k(t) ≤ Ck(H) ∧ (c > 1 ∧ t > ηN ⇒ ac

k − ac−1
k ≥ Tk(H))

Note the addition of t > ηN , the constraint on the arrival times of jobs in the new
mode only applies strictly after ηN . The Guarantee condition of mode H∗ is unchanged
(GH∗(t) = GH(t)) and for the tasks: RH∗

k (t) = RH
k (t), and GH∗

k (t) = GH
k (t).

▶ Lemma 3. Mode H∗ is a weakening of mode N .

Proof. First, ∀t < ηN : For LO-crit tasks: Cl(H) = Cl(L) and vc
l = dc

l hence RN
l = RH

l (so
RN

l ⇒ RH
l). For HI-crit tasks: WCETh ≤ Ch(L) ⇒ WCETh ≤ Ch(H) (as Ch(H) ≥ Ch(L));

and t+(Ch(L)−ec
h(t)) ≤ vc

h ⇒ t+(Ch(H)−ec
h(t)) ≤ dc

h as vc
h ≤ dc

h−(Ch(H)−Ch(L)). Hence
RN

h ⇒ RH∗

h . For the Scheduler, the first conjunct is appropriate as ec
k(t) ≤ Ck(L) ⇒ ec

k(t) ≤
Ck(H), the second conjunct does not apply as t < ηN .

The second step (showing RH∗ is true at time ηN) follows the proof of Lemma 2; noting
again that the second conjunct of RH∗

S (t) does not apply when t = ηN . ◀

As RH∗(ηN) is true, it follows that GH∗(t) is true for all t > ηN and hence RH∗(t) is
true for all t ≥ ηN as long as all task execution times are bounded by Ck(H).

The proof obligations on the necessary scheduling analysis must allow for all LO-crit
generated jobs to arrive at the time of the mode change. One of the advantages of this
more formal specification of the Scheduler’s behaviour is that it helps identify this constraint
explicitly. We note that many examples of published scheduling algorithms for mixed-
criticality systems (for example [15]) do allow LO-crit jobs to arrive (and subsequently
execute) at the time of the mode change even if that would not be allowed in the new mode.

7 An implementation may utilise a single Scheduler that modifies its behaviour depending upon which
mode is current. Nevertheless, from a modelling point of view we consider each occurrence of the
Scheduler to be a distinct execution.

ECRTS 2022

14:14 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

However this property is often hidden within the analysis (by the use of a “floor plus one”
rather than a “ceiling” representation of job arrivals). Within our formal framework the
property is explicit.

To summarise, in order to prove that RH is true whenever a forced mode change can
occur, we note three distinct situations:
1. Conjuncts within RH are weakened forms of those in RN and remain true.
2. Conjuncts in RN must be strengthened so that they then imply the corresponding

conjunctions in RH .
3. Conjuncts in RH must be weakened so that they are implied by the corresponding

conjunctions in RL.
The above example makes use of all three strategies.

5.3 Transitioning from H to N

As long as the execution times of the HI-crit tasks are bounded by their C(H) estimates,
the system will stay in the H mode. All the rely conditions will remain true. However it is
desirable to return to the Normal mode if possible as this mode provides a better level of
service – i.e. LO-crit tasks will be able to occur more often and have shorter deadlines.

Once the over-running HI-crit job that caused the transition to mode H has terminated,
there is the possibility that all new jobs can be released with their LO-crit parameters
and, if they all execute for no more than C(L), all deadlines can be met. But we know
that any scheduling scheme can only guarantee deadlines if there is bounded (indeed often
zero) residual work in the system at the time the Normal mode is (re-)activated [7]. It is
therefore scheduler specific as to when the system is “safe” to return to the Normal N mode
of operation.

May/must constraints [19] are useful here. If the system is idle (there are no jobs to
execute), it is usual to state that the scheduler must return the system to the Normal mode,
but it may make this change earlier if a proof obligation has shown that such a transition is
safe.

In terms of the framework presented in this paper a switch back to N mode is allowed
only when the scheduling obligations (as represented by GN

S) of that mode can be satisfied
by the current Scheduler. If these obligations are satisfied, the move from H to N can be
sanctioned by an appropriate pre-condition on the Normal mode. An example of one such
pre-condition is the commonly used protocol that the Normal mode can only be (re-)entered
at time t if there are no active jobs at time t (other than ones that arrive at time t):

P N
S (t) def= k ∈ act(T , t) ⇒ ac

k = t

The Scheduler for the Normal mode can therefore assume this property and it is the
responsibility of the Scheduler in the HI-crit mode to enforce it whenever it invokes a mode
change back to Normal. In other words this is a post-condition for the Scheduler in mode H :

QH
S (t) def= k ∈ act(T , t) ⇒ ac

k = t

6 Robustness and resilience

Here we extend the treatment for tasks to show how we can more systematically specify
levels of robustness and resilience for mixed-criticality systems, the motivation here being to
develop a means of quantifying robustness and resilience. The first step in this process is to
specify the various schemes being proposed.

A. Burns and C. B. Jones 14:15

Informal definitions of robustness and resilience are provided in [14] – i.e. the robustness
of a system is a measure of the level of faults it can tolerate without compromising the
quality of service it offers; resilience, by contrast, refers to the level of faults for which it can
provide degraded yet acceptable (e.g. safe) quality of service. It is noted in [14] that there
are a number of standard responses in the fault tolerance literature for systems that suffer
transient faults (equating to one or more concurrent job failures in this work):
1. Fail (Fully) Operational – all tasks/jobs execute correctly (i.e. meet their deadlines).
2. Fail Robust – some tasks are allowed to skip a job but all non-skipped jobs execute

correctly and complete by their deadlines; the quality of service at all criticality levels is
unaffected by job skipping. Many periodic control tasks have this property [62]; there
is sufficient inertia in the physical system to allow the occasional control signal to be
missed.

3. Fail Resilient – some lower criticality tasks are given reduced service such as having their
periods/deadlines extended, priorities dropped and/or their execution budgets reduced; if
the budget is reduced to zero then this is equivalent to subsequent jobs of the task being
abandoned.

4. Fail Safe/Restart – where the level of failure exceeds what Fail Resilient bounds can
accommodate, more extreme responses are required including rebooting or system shut-
down (if the application has a fail-safe state). If a fail-safe state cannot be achieved then
the system may need to rely on best-effort tactics that have no guarantees. This is, of
course, the last resort to achieving survivability.

6.1 Failure modes
The framework developed above has been extended to include a number of more complex
behaviours that arise from supporting robust and resilient behaviour. In this section we
briefly outline a set of possible failure modes.

Fail operational – FO. A HI-crit job experiences a fault if it executes for more than C(L).
One measure of Fail Operational is therefore the number of such job failures that can be
accommodated while still meeting all task deadlines. However, if a job from a HI-crit task
executes for more than C(L), we still assume that the C(H) bound remains operational.

One criticism of those models derived from Vestal [61] is that they usually assume that
any overrun of C(L) results in an execution time of C(H). In practice this is very unlikely
to occur, a minor overrun is more likely. We therefore introduce a parameter, CO, that
represents a unit of overrun (for all jobs). Fail Operational is a measure of how many such
overruns can be accommodated. Let O denote this number over all the tasks. A HI-crit
job that executes for more than Ch(L) but less than Ch(L) + CO has an O value of 1. In
general, a task has an O value of n if its overrun is between (n − 1) ∗ CO and n ∗ CO.

The metric for Fail Operational is therefore the maximum O value allowed (FO) in a
defined interval, IO. This interval could be of a fixed length (and would usually be much
greater than the maximum task period). Alternatively it could be the interval from the
current time back to when there was an idle moment, m, defined by:

∃m, m < t •
(

∀k ∈ act(T , m) • ac
k = m) ∧

∀n, m < n < t • (∃k • k ∈ act(T , n) ∧ ac
k < n)

)
so the only active tasks at time m are those that released a job at that time, and there are
active tasks that have not just been released for all times between m and t. Note m must
exist as system startup (time 0) matches the definition of m as the only active tasks are
those released at time 0. We note that m is a function of t, hence m(t) in the following.

ECRTS 2022

14:16 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

To compute O at time t, we need to know how many overruns each job has experienced.
This can be computed as follows:

O =
∑

∀h∈TH,s • t>as
h

≥m(t)

⌈
es

h(t) − Ch(L)
CO

⌉
0

where ⌈⌉0 constrains the ceiling function to return a value no less than 0.
If this value is greater than 1 but no greater than FO then the system mode should be

Fail Operational (FO) with all tasks meeting their deadlines. It follows that the rely and
guarantee conditions for the Scheduler are as follows. Remember that for LO-crit tasks
C(H) = C(L):

RF O
S (t) def= ∀k ∈ act(T , t) • ec

k(t) ≤ Ck(H) ∧ (ac
k = t ∧ c > 1) ⇒ ac

k − ac−1
k ≥ Tk(L) ∧

∑
∀h∈TH,s • t>as

h
≥m(t)

⌈
ek

h(t) − Ch(L)
CO

⌉
0

≤ FO

GF O
S (t) def= ∀k ∈ act(T , t) • t + Ck(L) − ec

k(t) ≤ vc
k ∧

∀h ∈ TH • ac
h ≥ m(t) ∧ ec

h(t) > Ch(L) ⇒ t + Ck(H) − ec
k(t) ≤ dc

k(H)

As there are no overruns in the normal mode we can deduce that RN
S ⇒ RF O

S .
Note this formulation is structurally different from that given earlier for a pure Vestal-like

model. What the Scheduler must rely on is a property of the whole set of HI-crit tasks, not
a specific property of each individual task. The Scheduler can therefore guarantee Ch(H)
(by the task’s deadline) to any HI-crit tasks that overrun. But this guarantee is subject to
the rely condition remaining true (i.e. there is a bound on the number and extent of these
overruns).

The specification of the HI- and LO-crit tasks in the normal mode, and for most tasks
in the FO mode, is simply

RF O
k (t) def= WCETk ≤ Ck(L) ∧ k ∈ act(T , t) ⇒ t + Ck(L) − ec

k(t) ≤ vc
k

GF O
k (t) def= ec

k(t) ≤ Ck(L) ∧ (ac
k = t ∧ c > 1) ⇒ ac

k − ac−1
k ≥ Tk(L)

But for the tasks that overrun, they experience a mode change that moves the system to a
variant of FO:

RF O∗

h (t) def= WCETh ≤ Ch(H) ∧ h ∈ act(TH, t) ⇒ t + Ch(H) − ec
h(t) ≤ dc

h(H)

GF O∗

h (t) def= ec
h(t) ≤ Ch(H) ∧ (ac

h = t ∧ c > 1) ⇒ ac
h − ac−1

h ≥ Th(H)

For the non overrunning tasks and the Scheduler RF O∗ = RF O, and GF O∗ = GF O.
A small number of tasks experiencing this change will not cause the Scheduler to change

mode, unless its rely condition is invalidated. The proof obligation (6) will again ensure that
RF O∗

h is a weakening of RN
h and RF O

h .
In summary, a system stays in the normal mode until a single HI-crit task executes for

more than C(L). The system then moves to mode FO with the overrunning task behaving
according to mode FO∗. Further HI-crit tasks may overrun and move to mode FO∗.
Eventually either an idle instant occurs and the system will return to the normal mode N ,
or the FO count is breached and RF O

S is invalidated. The system will now fail unless there is
a further degraded mode it can transition to; such a mode is considered next.

A. Burns and C. B. Jones 14:17

Fail robust – FR. A robust task is one that can safely drop one non-started job in a defined
time interval. Each task (be it HI-crit or LO-crit), as part of its definition, has a robustness
parameter, w. If a task has successfully completed the execution of w consecutive jobs then
the Scheduler can drop the next job (before it has been given any execution time). As such
jobs should only be dropped if they have to be, this requires a new mode: FR (Fail Robust).
This mode will only be entered if the rely condition of the Scheduler in mode FO becomes
false (i.e there are more than FO overruns). Within FR FR overruns will be tolerated (with
FR > FO); i.e.∑

∀h∈TH,s • t>as
h

≥m(t)

⌈
es

h(t) − Ch(L)
CO

⌉
0

≤ FR

We introduce a predicate, reqk(t) (short for required) that returns true if the current
job of task k at time t must be executed. Tasks that require all their jobs to execute are
assigned, for ease of presentation, w = 0. The conditions for the current job (kc) of task k to
be required are: (1) wk = 0, or (2) the task has not yet executed wk jobs, i.e. c ≤ w, or (3)
one of the previous wk jobs (before c) had a zero execution time – this is an indication that
the job was dropped. This leads to the following definition:

reqk(t) def= wk = 0 ∨ c ≤ wk ∨ ∃s, s ∈ c − wk..c − 1 • es
k(fs

k) = 0

In other words, reqj(t) is false only when the last wj jobs of τj (i.e. jc−1
j , jc−2

j , . . . j
c−wj

j)
have completed successfully. A non robust task is always “required” (in that its current job
must always complete). The R/G conditions can again be easily derived for the Fail Robust
mode:

RF R
S (t) def= ∀k ∈ act(T , t) • ec

k(t) ≤ Ck(H) ∧ (ac
k = t ∧ c > 1) ⇒ ac

k − ac−1
k ≥ Tk(L) ∧∑

∀h∈TH,s • t>as
h

≥m(t)

⌈
es

h(t) − Ch(L)
CO

⌉
0

≤ FR

Note this is a weakening of the rely condition as RF O
S ⇒ RF R

S which follows from FR > FO

i.e. more overruns can be tolerated in the Fail Robust mode.
We can now complete the full specification. The Scheduler only guarantees execution

time to those jobs that are required; moreover, if a job is not required the Scheduler ensures
it does not execute.

GF R
S (t) def= ∀k ∈ act(T , t) • reqk(t) ⇒ t + Ck(L) − ec

k(t) ≤ vc
k ∧

∀k ∈ T • ac
k = t ∧ ¬reqk(t) ⇒ f c

k = t ∧

∀h ∈ TH • ac
h ≥ m(t) ∧ ek

h(t) > Ch(L) ⇒ t + Ck(H) − ec
k(t) ≤ dc

k(H)

The tasks only need execution time if they are required; their guarantee conditions remain
true even if the current job does not execute.

RF R
k (t) def= WCETk ≤ Ck(L) ∧ k ∈ act(T , t) ∧ reqk(t) ⇒ t + Ck(L) − ec

k(t) ≤ vc
k

GF R
k (t) def= ec

k(t) ≤ Ck(L) ∧ (ac
k = t ∧ c > 1) ⇒ ac

k − ac−1
k ≥ Tk(L)

As with mode FO, an individual HI-crit task can fail (rely condition becomes invalid, false)
leading to a weakened specification:

ECRTS 2022

14:18 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

RF R∗

h (t) def= WCETh ≤ Ch(H) ∧ h ∈ act(TH, t) ⇒ t + Ch(H) − ec
h(t) ≤ dc

h(H)

GF R∗

h (t) def= ec
h(t) ≤ Ch(H) ∧ (ac

h = t ∧ c > 1) ⇒ ac
h − ac−1

h ≥ Th(H)
Note the reqk condition has been removed from the rely condition as the current job must
be required to execute as it has a non-zero execution time (i.e. a value that exceeded C(L));
also this is another weakening of the rely condition.

Again with this specification the Scheduler must rely on a property of the whole set of
HI-crit tasks, not a specific property of each individual task.

Fail resilient (graceful degradation) – GD. Once the count of job failures becomes greater
than FR, the FR mode must be abandoned as the rely condition of the Scheduler becomes
false. To add resilience, a number of different general strategies for graceful degradation have
been discussed in the literature [55, 45, 54]. Some strategies are hierarchical, in that they
form a natural progression of increasingly severe forms of degradation that are invoked by
increasingly severe forms of failure. Others take the form of alternative approaches.

All strategies are defined by their level of fault tolerance (the maximum O count they
can deal with) and their impact on LO-crit tasks. Example strategies include:
1. Increasing the periods and deadlines of LO-crit tasks [60, 59, 36, 58, 57, 53, 25], called

task stretching, the elastic task model or multi-rate (also see Section 5.1)
2. Imposing only a weakly-hard constraint on the LO-crit tasks [24, 51]
3. Decreasing the computation times of the LO-crit tasks [13, 4], perhaps by utilising an

imprecise mixed-criticality (IMC) model [50, 52, 49, 33] or budget control [26, 27]
4. Moving some LO-crit tasks to a different processor that has not experienced a criticality

mode change [63, 64, 35, 3].
5. Abandoning LO-crit work in a disciplined sequence [23, 34, 28, 56, 46, 47].
Some example strategies have already been described in the paper. Of course the specific
set of schemes that may be applicable will depend on the details of the application. Never-
theless, any collection of approaches can be (partially) ordered using preferences and the
strengths/weaknesses of the rely conditions of the Scheduler.

In general, the full set of modes forms a lattice with the Normal N mode at the top, and
the Fail Safe (FS) mode at the bottom (see below). Preferences are assigned to reflect the
structure of this lattice (N is the most preferred mode, FS the least). The least preferred
resilient mode is the one that represents the total abandonment of all LO-crit jobs. We define
this to be the backstop mode (BM). In the following BM is entered after the failure of GD:

RBM
S (t) def= ∀h ∈ act(TH, t) • ec

h(t) ≤ Ch(H) ∧ (ac
h = t ∧ c > 1) ⇒ ac

h − ac−1
h ≥ Th(H)

GBM
S (t) def= ∀h ∈ act(TH, t) • t + Ch(H) − ec

h(t) ≤ dc
h ∧ ∀l ∈ act(TL, t) • ec

h(t) = ec
h(ηGD)

where again ηGD is the time this mode is entered (i.e. when some graceful degradation mode,
GD must be abandoned). Now no active LO-crit jobs execute.

RBM
h (t) def= WCETh ≤ Ch(H) ∧ h ∈ act(TH, t) ⇒ t + Ch(H) − ec

h(t) ≤ dc
h(H)

GBM
h (t) def= eh

j (t) ≤ Ch(H) ∧ (ac
h = t ∧ c > 1) ⇒ ac

h − ac−1
h ≥ Th(H)

RBM
l (t) def= true

GBM
l (t) def= (ac

l = t) ⇒ (f c
l = t)

hence any newly arrived LO-crit job is immediately finished (aborted).

A. Burns and C. B. Jones 14:19

Fail safe/restarts – FS. The final “strategy” is fail safe, perhaps via fail stop, followed by
a subsequent restart (which may use a cold, warm or hot standby). It is not the purpose of
this paper to review these approaches to fault tolerance. But for completeness we note that
wherever possible there should be a mode (FS) which guarantees a fail safe outcome.

P F S
S

def= true

RF S
S (t) def= true

GF S
S (t) def= t ≤ (ηBM + DF S

S)

QF S
S

def= safe_shut_down

where DF S
S is the (relative) deadline of the scheduler in this mode – there is a bound on how

far t can reach.
This mode must be the lowest preference mode (i.e. be at the base of the lattice). It can

always be entered, but must only be entered when all Schedulers in other modes have rely
conditions that are false. Note we give the Scheduler a deadline in this mode to instigate the
shut-down activity, but no further functional information can be given as the Scheduler is no
longer operational.

6.2 Robust and resilient mode changes
In the above discussion a number of Scheduler modes have been introduced. They naturally
form a sequence based on preference; the inverse of this sequence describes the behaviour of
the system as it experiences graceful degradation:

N → FO → FR → GD → BM → FS

An application could have a number of intermediate modes between FR and BM . In addition
there could be a number of “best-effort” (not guaranteed) behaviours/modes between BM

and FS.
For the set of operational modes it will be necessary to show they form a hierarchy:

RN ⇒ RF O ⇒ RF R ⇒ RGD ⇒ RBM ⇒ RF S

Moreover, at the time a rely condition becomes invalid and the next mode is entered (at times
ηN , ηF O, ηF R,ηBM), it can be proven (see Lemmas 2 and 3) that the new rely condition is
true and henceforth the guarantee condition holds.

In contrast to this gradual decline in functionality, a system that is programmed to
recover will move directly from any of the degraded modes back to mode N . This move is
driven by preference; but to reenter the Normal mode there will be some prerequisites. As
noted in Section 5.3 this could be simply that at the time the Normal mode is re-entered
there are no active tasks that had been released prior to this time.

7 Conclusions and Future Work

There is extensive published work on Mixed-Criticality scheduling and implementation, but
not on their formal specification. We believe formalisation is essential since the notion of
mixed criticality has subtle semantics: often concepts such as correctness, resilience and
robustness are neither straightforward nor intuitive for such systems. The R/G approach
has proved a successful formalism for specifying non-real-time safety-critical systems and our
main contribution in this paper is to extend R/G to (i) time, and (ii) multiple criticalities.

ECRTS 2022

14:20 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

The proposed framework is based on an ordering of modes (in general, this would form
a lattice) with the normal mode (N) being at the top and a Fail Stop (FS) mode at the
base. Each mode has an R/G coupling with a move down the ordering accompanied by a
weakening of the rely and guarantee conditions. Examples were used to show that to obtain
a true hierarchical relationship between the rely conditions (e.g. RA ⇒ RB, for modes A
and B), it is often necessary to strengthen the RA and/or weaken the RB conditions. A
movement of the system down the ordering (from mode A to B) occurs only when forced by
RA no longer being true. At this time it is necessary to prove that RB remains true. The
return of the system back to mode N is sanctioned by the rely and pre conditions of N being
reestablished.

The examples presented in this paper have demonstrated that the developed approach
has the expressive power necessary to enable a wide range of possible runtime strategies to be
precisely specified and evaluated (in terms of their internal consistency). Further work will
address the application of the R/G specifications in the development of the necessary run-time
code that will be needed to support these mixed-criticality protocols. This would benefit
from mechanical proof support as undertaken by the PROSA team [21, 10]. Although this
work is not covered in the current paper there is ample evidence that R/G specifications can
form the basis for the formal development of implementations. A useful example is tackled
in [43, 41]: although not scheduling per se, Simpson’s 4-slot algorithm is a delicate piece of
intricate code for asynchronous communication mechanisms. A number of other examples of
developments based on R/G specifications are listed and/or tackled in [48, 31, 44, 9].

References

1 J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University Press,
1996.

2 J.-R. Abrial. The Event-B Book. Cambridge University Press, Cambridge, UK, 2010.
3 J. Baik and K. Kang. Schedulability analysis for task migration under multiple mixed-criticality

systems. In Proc Korean Society of Computer Science, page X, 2019.
4 S. K. Baruah, A. Burns, and Z. Guo. Scheduling mixed-criticality systems to guarantee some

service under all non-erroneous behaviours. In Proc. ECRTS, pages 131–140, 2016.
5 S.K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. van der Ster, and

L. Stougie. Mixed-criticality scheduling of sporadic task systems. In Proc. of the 19th Annual
European Symposium on Algorithms (ESA 2011) LNCS 6942, Saarbruecken, Germany, pages
555–566, 2011.

6 S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed criticality systems.
In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 34–43, 2011.

7 I. Bate, A. Burns, and R.I. Davis. An enhanced bailout protocol for mixed criticality embedded
software. IEEE Transactions on Software Engineering, 43(4):298–320, 2016.

8 I. Bate, A. Burns, and R.I. Davis. Analysis-runtime co-design for adaptive mixed criti-
cality scheduling. In Proc. of forthcoming IEEE RTAS, Pre publication version privately
communicated., 2022.

9 R. Bornat and H. Amjad. Explanation of two non-blocking shared-variable communication
algorithms. Formal Aspects of Computing, 25(6):893–931, 2013.

10 S. Bozhko and B.B. Brandenburg. Abstract response-time analysis: A formal foundation for
the busy-window principle. In Marcus Völp, editor, 32nd Euromicro Conference on Real-
Time Systems (ECRTS 2020), volume 165 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 22:1–22:24, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für
Informatik.

A. Burns and C. B. Jones 14:21

11 A. Burns. Why the expressive power of programming languages such as Ada is needed for
future cyber physical systems. In Ada-Europe International Conference on Reliable Software
Technologies, pages 3–11. Springer, 2016.

12 A. Burns, S. Baruah, C.B. Jones, and I. Bate. Reasoning about the relationship between the
scheduler and mixed-criticality jobs. In Proc. 7th Int. RTSS Workshop On Mixed Criticality
Systems (WMC), pages 17–22, 2019.

13 A. Burns and S.K. Baruah. Towards a more practical model for mixed criticality systems. In
Proc. 1st Workshop on Mixed Criticality Systems (WMC), RTSS, pages 1–6, 2013.

14 A. Burns, R. Davis, S. K. Baruah, and I. Bate. Robust mixed-criticality systems. IEEE
Transactions on Computers, 67(10):1478–1491, 2018.

15 A. Burns and R.I. Davis. Response-time analysis for mixed-criticality systems with arbitrary
deadlines. In Proc. Workshop on Mixed Criticality Systems (WMC), pages 13–18, 2017.

16 A. Burns and R.I. Davis. A survey of research into mixed criticality systems. ACM Computer
Surveys, 50(6):1–37, 2017.

17 A. Burns and R.I. Davis. Mixed criticality systems: A review (13th edition). Technical
Report MCC-1(13), available at https://www-users.cs.york.ac.uk/b̃urns/review.pdf and
the White Rose Repository, Department of Computer Science, University of York, 2022.

18 A. Burns and I.J. Hayes. A timeband framework for modelling real-time systems. Real-Time
Systems Journal, 45(1–2):106–142, June 2010.

19 A. Burns, I.J. Hayes, and C.B. Jones. Deriving specifications of control programs for cyber
physical systems. Computer Journal, 63(5):774–790, 2020.

20 G. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive rate control. In IEEE
Real-Time Systems Symposium, pages 286–295, 1998.

21 F. Cerqueira, F. Stutz, and B.B. Brandenburg. PROSA: A case for readable mechanized
schedulability analysis. In Proc. 28th Euromicro Conference on Real-Time Systems (ECRTS),
Leibniz International Proceedings in Informatics (LIPIcs), pages 273–284, Dagstuhl, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

22 Diego Machado Dias. Mechanising an algebraic rely-guarantee refinement calculus. PhD thesis,
School of Computing, Newcastle University, 2017.

23 T. Fleming and A. Burns. Incorporating the notion of importance into mixed criticality
systems. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd Workshop on Mixed Criticality
Systems (WMC), RTSS, pages 33–38, 2014.

24 O. Gettings, S. Quinton, and R.I. Davis. Mixed criticality systems with weakly-hard constraints.
In Proc. International Conference on Real-Time Networks and Systems (RTNS)), pages 237–
246, 2015.

25 C. Gill, J. Orr, and S. Harris. Supporting graceful degradation through elasticity in mixed-
criticality federated scheduling. In Jing Li and Zhishan Guo, editors, Proc. 6th Workshop on
Mixed Criticality Systems (WMC), RTSS, pages 19–24, 2018.

26 X. Gu and A. Easwaran. Dynamic budget management with service guarantees for mixed-
criticality systems. In Proc. Real-Time Systems Symposium (RTSS), pages 47–56. IEEE,
2016.

27 X. Gu and A. Easwaran. Dynamic budget management and budget reclamation for mixed-
criticality systems. Real-Time Systems, 55:552–597, 2019.

28 X. Gu, K.-M. Phan, A. Easwaran, and I. Shin. Resource efficient isolation mechanisms in
mixed-criticality scheduling. In Proc. 27th ECRTS, pages 13–24. IEEE, 2015.

29 I. J. Hayes. Generalised rely-guarantee concurrency: An algebraic foundation. Formal Aspects
of Computing, 28(6):1057–1078, November 2016.

30 I.J. Hayes, M. Jackson, and C.B. Jones. Determining the specification of a control system
from that of its environment. In Keijiro Araki, Stefani Gnesi, and Dino Mandrioli, editors,
FME 2003: Formal Methods, volume 2805 of LNCS, pages 154–169. Springer Verlag, 2003.

ECRTS 2022

https://www-users.cs.york.ac.uk/~burns/review.pdf

14:22 An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

31 I.J. Hayes and C.B. Jones. A guide to rely/guarantee thinking. In Jonathan Bowen, Zhiming
Liu, and Zili Zhan, editors, Engineering Trustworthy Software Systems – Third International
School, SETSS 2017, volume 11174 of LNCS, pages 1–38. Springer, 2018.

32 C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576–580, 1969.

33 L. Huang, I-H. Hou, S.S. Sapatnekar, and J. Hu. Graceful degradation of low-criticality tasks
in multiprocessor dual-criticality systems. In Proc. of the 26th International Conference on
Real-Time Networks and Systems, RTNS, pages 159–169. ACM, 2018.

34 P. Huang, P. Kumar, N. Stoimenov, and L. Thiele. Interference constraint graph: A new
specification for mixed-criticality systems. In Proc. 18th Emerging Technologies and Factory
Automation (ETFA), pages 1–8. IEEE, 2013.

35 S. Iacovelli, R. Kirner, and C. Menon. ATMP: An adaptive tolerance-based mixed-criticality
protocol for multi-core systems. In Proc. IEEE 13th International Symposium on Industrial
Embedded Systems (SIES), pages 1–9, 2018.

36 M. Jan, L. Zaourar, and M. Pitel. Maximizing the execution rate of low criticality tasks in
mixed criticality system. In Proc. 1st WMC, RTSS, pages 43–48, 2013.

37 C.B. Jones. Development Methods for Computer Programs including a Notion of Interference.
PhD thesis, Oxford University, June 1981. Printed as: Programming Research Group, Technical
Monograph 25.

38 C.B. Jones. Specification and design of (parallel) programs. In Proc. of IFIP, pages 321–332.
North-Holland, 1983.

39 C.B. Jones. Systematic Software Development using VDM. Prentice Hall International, second
edition, 1990. URL: http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/Jones1990.
pdf.

40 C.B. Jones and A. Burns. A rely-guarantee specification of mixed-criticality scheduling.
In Valentin Cassano and Nazareno Aguirre, editors, Mathematical Foundations of Software
Engineering: Essays in Honor of Tom Maibaum on the Occasion of his Retirement, Tribute
Series. College Publications, 2022.

41 C.B. Jones and I.J. Hayes. Possible values: Exploring a concept for concurrency. Journal of
Logical and Algebraic Methods in Programming, 85(5):972–984, 2016.

42 C.B. Jones, I.J. Hayes, and M.A. Jackson. Deriving specifications for systems that are
connected to the physical world. In Cliff B. Jones, Zhiming Liu, and Jim Woodcock, editors,
Formal Methods and Hybrid Real-Time Systems, volume 4700 of Lecture Notes in Computer
Science, pages 364–390. Springer Verlag, 2007.

43 C.B. Jones and K.G. Pierce. Elucidating concurrent algorithms via layers of abstraction and
reification. Formal Aspects of Computing, 23(3):289–306, 2011.

44 C.B. Jones and N. Yatapanage. Investigating the limits of rely/guarantee relations based on
a concurrent garbage collector example. Formal Aspects of Computing, 31(3):353–374, 2019.
on-line April 2018.

45 J.C. Laprie. Dependable computing and fault tolerance: Concepts and terminology. In Digest
of Papers, The Fifteenth Annual International Symposium on Fault-Tolerant Computing, pages
2–11, Michigan, USA, 1985.

46 J. Lee, H.S. Chwa, L.T.X. Phan, I. Shin, and I. Lee. MC-ADAPT: Adaptive task dropping in
mixed-criticality scheduling. ACM Trans. Embed. Comput. Syst., 16:163:1–163:21, 2017.

47 J. Lee and J. Lee. Mc-flex: Flexible mixed-criticality real-time scheduling by task-level mode
switch. IEEE Transactions on Computers, page online, 2021. doi:10.1109/TC.2021.3111743.

48 Hongjin Liang, Xinyu Feng, and Ming Fu. A rely-guarantee-based simulation for verifying
concurrent program transformations. In Proc. 39th annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’12, pages 455–468, New York, NY,
USA, 2012.

http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/Jones1990.pdf
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/Jones1990.pdf
https://doi.org/10.1109/TC.2021.3111743

A. Burns and C. B. Jones 14:23

49 D. Liu, N. Guan, J. Spasic, G. Chen, S. Liu, T. Stefanov, and W. Yi. Scheduling analysis of
imprecise mixed-criticality real-time tasks. IEEE Transactions on Computers, 67(7):975–991,
July 2018.

50 D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi. EDF-VD scheduling
of mixed-criticality systems with degraded quality guarantees. In Proc. IEEE RTSS, pages
35–46, 2016.

51 R. Medina, E. Borde, and L. Pautet. Directed acyclic graph scheduling for mixed-criticality
systems. In Johann Blieberger and Markus Bader, editors, Reliable Software Technologies –
Ada-Europe, pages 217–232. Springer International Publishing, 2017.

52 R.M. Pathan. Improving the quality-of-service for scheduling mixed-criticality systems on
multiprocessors. In Marko Bertogna, editor, Proc. Euromicro Conference on Real-Time
Systems (ECRTS), volume 76 of Leibniz International Proc. in Informatics (LIPIcs), pages
19:1–19:22. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017.

53 S. Ramanathan, A. Easwaran, and H. Cho. Multi-rate fluid scheduling of mixed-criticality
systems on multiprocessors. Real-Time Systems, 54:247–277, 2018.

54 B. Randell, J-C. Laprie, H. Kopetz, and B. Littlewood(Eds.). Predictably Dependable Comput-
ing Systems. Springer, 1995.

55 B. Randell, P.A. Lee, and P.C. Treleaven. Reliability issues in computing system design. ACM
Computing Surveys, 10(2):123–165, 1978.

56 J. Ren and L.T.X. Phan. Mixed-criticality scheduling on multiprocessors using task grouping.
In Proc. 27th ECRTS, pages 25–36. IEEE, 2015.

57 H. Su, P. Deng, D. Zhu, and Q. Zhu. Fixed-priority dual-rate mixed-criticality systems:
Schedulability analysis and performance optimization. In Proc. Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 59–68. IEEE, 2016.

58 H. Su, N. Guan, and D. Zhu. Service guarantee exploration for mixed-criticality systems. In
Proc. Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 1–10.
IEEE, 2014.

59 H. Su and D. Zhu. An elastic mixed-criticality task model and its scheduling algorithm. In
Proc. of the Conference on Design, Automation and Test in Europe, DATE, pages 147–152,
2013.

60 H. Su, D. Zhu, and D. Mosse. Scheduling algorithms for elastic mixed-criticality tasks in
multicore systems. In Proc. RTCSA, 2013.

61 S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution
time assurance. In Proc. Real-Time Systems Symposium (RTSS), pages 239–243, 2007.

62 N. Vreman, A. Cervin, and M. Maggio. Stability and Performance Analysis of Control Systems
Subject to Bursts of Deadline Misses. In Björn B. Brandenburg, editor, Proc. Euromicro
Conference on Real-Time Systems (ECRTS), volume 196 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 15:1–15:23, Dagstuhl, Germany, 2021. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik.

63 H. Xu and A. Burns. Semi-partitioned model for dual-core mixed criticality system. In 23rd
International Conference on Real-Time Networks and Systems (RTNS 2015), pages 257–266,
2015.

64 H. Xu and A. Burns. A semi-partitioned model for mixed criticality systems. Journal of
Systems and Software, 150:51–63, 2019.

ECRTS 2022

Achieving Isolation in Mixed-Criticality Industrial
Edge Systems with Real-Time Containers
Marco Barletta !

Università degli Studi di Napoli Federico II, Italy

Marcello Cinque !

Università degli Studi di Napoli Federico II, Italy

Luigi De Simone !

Università degli Studi di Napoli Federico II, Italy

Raffaele Della Corte !

Università degli Studi di Napoli Federico II, Italy

Abstract
Real-time containers are a promising solution to reduce latencies in time-sensitive cloud systems.
Recent efforts are emerging to extend their usage in industrial edge systems with mixed-criticality
constraints. In these contexts, isolation becomes a major concern: a disturbance (such as timing
faults or unexpected overloads) affecting a container must not impact the behavior of other containers
deployed on the same hardware. In this paper, we propose a novel architectural solution to achieve
isolation in real-time containers, based on real-time co-kernels, hierarchical scheduling, and time-
division networking. The architecture has been implemented on Linux patched with the Xenomai
co-kernel, extended with a new hierarchical scheduling policy, named SCHED_DS, and integrating the
RTNet stack. Experimental results are promising in terms of overhead and latency compared to
other Linux-based solutions. More importantly, the isolation of containers is guaranteed even in
presence of severe co-located disturbances, such as faulty tasks (elapsing more time than declared)
or high CPU, network, or I/O stress on the same machine.

2012 ACM Subject Classification Software and its engineering → Real-time systems software

Keywords and phrases Real-time, Mixed-criticality, Containers, Edge computing

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.15

Supplementary Material Software (ECRTS 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.1.1

Funding This work has been partially supported by the project COSMIC of UNINA DIETI and
by the R&D project “REINForce: REsearch to INspire the Future” (CDS000609), funded by the
Italian Ministry for Economic Development (MISE).

1 Introduction

Nowadays, we are witnessing the spread of cloud (including fog and edge) technologies in
industrial domain and cyber-physical systems, such as Industrial Internet of Things (IIoT) [31],
Industry 4.0, automotive [2], enabling the remote housing of critical software components
on the edge of infrastructure, according to the software defined everything trend [51]. In
these scenarios, edge computing systems can be seen as mixed-criticality systems (MCSs) [5],
consolidating real-time tasks with different levels of criticality along non–real-time tasks, all
of them on a reduced number of computing nodes in order to reduce the size, weight, power,
and cost of hardware. An example is represented by the predictive maintenance of a wind
turbine based on artificial intelligence, where the real-time data acquisition/prepossessing
is run on the same edge node of a deep neural network [41]. Another example is real-time

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Marco Barletta, Marcello Cinque, Luigi De Simone, and Raffaele Della Corte;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 15; pp. 15:1–15:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:marco.barletta@unina.it
https://orcid.org/0000-0002-9973-4068
mailto:macinque@unina.it
https://orcid.org/0000-0003-1455-8614
mailto:luigi.desimone@unina.it
https://orcid.org/0000-0002-6008-2656
mailto:raffaele.dellacorte2@unina.it
https://orcid.org/0000-0002-1280-6875
https://doi.org/10.4230/LIPIcs.ECRTS.2022.15
https://doi.org/10.4230/DARTS.8.1.1
https://doi.org/10.4230/DARTS.8.1.1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Achieving Industrial Edge MCS Isolation with RT-Containers

control in Industry 4.0 applications, where control activities are designed as tasks with
different levels of criticality that perform the control functions, visualization, and interaction
with other devices on the same node [47].

Given this scenario, timeliness and isolation become major concerns, since a deadline
miss could result in a severe failure or hazard. For example, if a critical virtualized ECU on
a car is late at handling a brake pedal command, due to a co-located disturbance caused by
a non-critical component, this could result in a crash [44]. Similarly, late sensor feedback in
a smart factory could bring to the blocking of a production line or even cause injuries.

Recently, container-based virtualization has been gaining the limelight in cloud envir-
onments for several reasons: low overhead, simplified migration/orchestration of software
appliances, and increased scalability if compared to traditional hypervisor-based approach.
Containers are thus considered today a key technology to achieve high workload consolidation
and to better exploit hardware resources. For the same reasons, they are starting to attract
interest for the realization of real-time systems [7, 48]. However, the adoption of containers
in industrial edge systems requires facing compelling challenges due to isolation guarantees
needed between different co-located workloads. First, strict resource reservation (such as
CPU and network bandwidth) must be guaranteed with acceptable overheads (e.g., low
scheduling latency), to grant predictable timing behavior to networked tasks running within
critical containers. Second, disturbances must not affect the correct execution of such tasks,
other containers (e.g., timing faults in tasks elapsing longer than declared), or the system in
general (e.g., unexpected high CPU, I/O, or network load on the same machine).

Several approaches implementing real-time containers have been proposed in literature.
Among these, we focus on Linux co-kernel–based solutions due to their wide use in industrial
settings, e.g., for robot control [18,58] and industrial networking support [30], and to their
known benefits in terms of latency [13,26] and isolation, as they make Linux fully preemptable
in favor of real-time tasks. Nevertheless, co-kernel–based container solutions available to date
enforce isolation through active monitoring, which introduces overhead and represents a single
point of failure. In addition, existing real-time containers solutions focus on CPU reservation,
neglecting network isolation issues, which are fundamental for networked real-time tasks in
industrial edge systems.

We aim to overcome existing issues, proposing a novel architectural solution to achieve
container isolation in mixed-criticality edge systems. Specifically, our contributions are:

a hierarchical scheduling solution, named SCHED_DS, for real-time containers managed by
a real-time co-kernel, which results in promising scheduling runtimes (about hundreds of
ns on our setting) with no need of active monitoring but proactively isolating CPU;
a schedulability test, adapted from early results [16], to verify the feasibility of deployment
of a newly created container on existing infrastructure, useful for orchestration purposes;
a POSIX-compliant API to foster the transparent adoption of the solution by practitioners;
the integration of the solution with a real-time networking stack (specifically, RTnet [33]),
to achieve network bandwidth guarantees with time-division medium access.

The proposed architecture has been implemented on the Xenomai co-kernel [32], by modifying
its SCHED_QUOTA to fit a hierarchical deferrable server model (allowing theoretical treatment
for schedulability analysis). The resulting policy, SCHED_DS, is transparently adopted by
real-time tasks running within containers through our API, which also enables containers to
use the real-time network. Experimental results show the benefits of the proposed solution
in our settings, which exhibit a scheduling runtime in the order of hundreds of nanoseconds,
and an overhead lower than 0.1%. More importantly, they highlight the isolation properties
of our solution, as tasks run within critical containers are not impacted by faulty tasks
running in other containers or by the presence of high CPU, network, or I/O load on the
same hardware. Finally, the proposed solution outperforms, in terms of task activation

M. Barletta, M. Cinque, L. De Simone, and R. Della Corte 15:3

latency, recent state-of-the-art implementations based on low-latency Linux containers and
hierarchical scheduling, in respect to which our solution can be seen as complementary. For
instance, compared to PREEMPT_RT, we assessed a relative improvement of at least 30%.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3
describes the proposed architecture (see Subsection 3.1), the system model and schedulability
analysis (see Subsection 3.2), and the proposed hierarchical scheduling solution (see Subsec-
tion 3.3). Section 4 gives implementation details of the architecture on top of the Xenomai
co-kernel. Section 5 provides a thorough experimental analysis for proving the applicability
of the proposed architecture. Section 6 concludes the paper.

2 Related Work

Currently, mixed-criticality systems development, particularly in edge computing scenarios,
brings several stringent requirements like tiny memory footprints (a few MBs or even KBs),
fast instantiation times (tens of milliseconds or less), high network throughput (10-40 Gb/s),
high consolidation (e.g., being able to run thousands of instances on a single commodity
server), and a reduced attack surface for certification purposes. For this reason, lightweight
virtualization approaches, like containers, are becoming attractive and starting to be explored
in industrial domains.

PREEMPT_RT. Recent studies have started to explore the possibility to use containers
to run real-time tasks. For example, [36] presents an empirical study on the problem of
minimizing computational and networking latencies for Radio Access Networks through
lightweight containers. The study analyzes the performance of Docker containers running on
the top of a Linux kernel patched with the well-known PREEMPT_RT [17,45]. This modifies
the Linux kernel in order to provide real-time guarantees (e.g., predictability, low latencies)
still using a single-kernel approach. The results highlight that using PREEMPT_RT improves
latencies on Docker containers when compared to a generic kernel. Similarly, authors in [38]
propose a sandboxed environment, still based on Docker containers on a PREEMPT_RT-based
Linux kernel, in the context of an automotive scenario. In [29] a container-based architecture
for real-time automation controllers is proposed, using Docker and LXC containers on top
of a Linux patched with the PREEMPT_RT real-time kernel patch. Experiments have been
done using both Docker and LXC containers running on top of a Linux OS patched with the
PREEMPT_RT real-time kernel patch. Tests emphasize that the use of containers for control
applications can meet the requirements of the target systems.

RT-cgroups. Other solutions in literature are based on the control groups (cgroups) [40].
Currently, the Linux kernel offers the real-time group scheduling (rt-cgroups) to host real-
time containers [54]. However, the implemented algorithm is somehow unclear [1] and even
worse the PREEMPT_RT patch has been in conflict with this kind of group scheduling, allowing
only a low latency configuration (until v5.15.34) [25] and preventing the fully preemptable
one. In [1], the authors propose to modify the rt-cgroups implementation by using a
real-time deadline-based scheduling policy. The offered solution extends the SCHED_DEADLINE
policy to schedule Linux control groups. It implements a two-level hierarchical scheduling
framework [19] [42] in Linux, allowing user threads to be scheduled with fixed priorities inside
the control group scheduled by SCHED_DEADLINE.

ECRTS 2022

15:4 Achieving Industrial Edge MCS Isolation with RT-Containers

Co-kernel approach. Besides cgroups, alternative approaches include using real-time Linux
co-kernels, such as RTAI [20] and Xenomai [32]. The main idea behind the co-kernel approach
is to have a small real-time core running at higher priority, which can intercept interrupts and
defer them if needed. This choice allows keeping the benefits of the Linux ecosystem (e.g., fully
re-using container engines and control group features), while making Linux fully-preemptable
in favor of real-time tasks and including the support for real-time networking in the co-kernel,
making them a good fit for industrial settings [18,30, 58]. Generally, RTOS and co-kernel
approaches outperform PREEMPT_RT in terms of latencies and task-switch times, while Linux
is better on average performance, as expected by its GPOS nature [6, 13,14,26,27,45]. On
this line, Tasci et al. [50] leveraged both real-time patch and co-kernel approaches to run
real-time control applications within Docker containers. In our past work ([8] and [9])
we adopted RTAI to schedule hard real-time tasks within containers, using either fixed
priorities in the former or Earliest Deadline First (EDF) [35] in the latter. The idea is to fully
inherit the advantages of the co-kernel, in terms of real-time performance and functionalities,
while letting tasks within containers keep using the same application programming interface.
However, both solutions require active monitoring of tasks run within containers, to tolerate
timing failures, which introduces overhead and a single point of failure to the architecture.
Further, our solution in [8] requires a global fixed-priority assignment that may limit the
adoption of built-in orchestrators, as priorities might be re-assigned if a container needs to
be moved from a host to another during its lifespan.

Container orchestration. Container-based virtualization is an attractive choice for time-
sensitive edge systems also for the orchestration capabilities provided, such as migration,
balancing, and high-availability mechanisms. For example, in [28] and [4] the need for a
Kubernetes-compatible [53] edge container orchestrator is highlighted since edge devices are
gaining enough power to run containerized services while remaining small and low-powered.
Different comparisons and analyses to understand the advantages and disadvantages of the
existing orchestrators for edge cloud are made in the two studies. In [24,49] containers based
on rt-cgroups are integrated into Kubernetes in order to orchestrate real-time containers
for low latency applications, while in [12] the same containers have been integrated into
OpenStack in order to build a framework for NFV for next generation networks. In [59] a
latency-aware edge computing platform based on Storm is introduced to run computer vision
applications with a real-time response time exploiting edge resources. In the context of the
LF Edge foundation [52], Xilinx is currently developing a Xen-based lightweight orchestration
solution called RunX [57]. RunX allows running containers as VMs, either with the provided
custom-built Linux-based kernel with a Busybox-based ramdisk, or with a container-specific
kernel/ramdisk. Despite some efforts from both industry and academia, there is the need for
further analysis in the context of mixed-criticality edge computing systems.

Hypervisor-based solutions. A consolidated trend for time and space partitioning in mixed-
criticality systems is to use hypervisor-based solutions, with the aim to completely separate
real-time kernels from non–real-time ones. RT-Xen [56] is a real-time hypervisor scheduling
framework, which extends Xen to support VMs with real-time performance requirements
as well as to enable both global and partitioned VM schedulers. XTRATUM [39] is a type
1 hypervisor designed for real-time embedded system. XTRATUM can be used to build
partitioned systems, and provides both temporal and spatial separation. The Wind River
VxWorks RTOS [55] features a Virtualization Profile that integrates a real-time embedded,
type-1 hypervisor into VxWorks. The hypervisor is able to slow down general-purpose

M. Barletta, M. Cinque, L. De Simone, and R. Della Corte 15:5

operating systems to ensure that real-time ones can execute without performance impact.
Jailhouse [46] is a Linux-based partitioning hypervisor for mixed-critical applications; it
enables asymmetric multiprocessing to run both bare-metal applications or guest operating
systems (including RTOS). Jailhouse splits physical resources into isolated compartments
named cells, with a root cell dedicated to run the Linux kernel and the hypervisor itself, and
non-root cells assigned to one guest OS. Bao [37] is an open-source lightweight embedded
hypervisor for mixed-criticality systems. Bao aims at providing isolation for fault-containment
and real-time guarantees, through a static partitioning hypervisor architecture: resources are
statically partitioned and assigned at VM instantiation time.

Our proposal advances the state-of-the-art in terms of readiness for industrial settings,
since we propose a complementary solution to Linux real-time containers that fully exploits
the advantages of co-kernels, while overcoming the current limitations of co-kernel–based
container solutions. In particular, we avoid global fixed-priority assignment and active
monitoring, using hierarchical scheduling and enabling proactive temporal protection at
the co-kernel level, to provide guaranteed CPU bandwidths (i.e., utilization) to different
tasks grouped in different containers. Further, the proposed architecture is designed to
easily support container orchestration tools in the context of edge computing scenarios, and
it integrates a real-time networking stack accessible from containers, an aspect of crucial
importance for mixed-criticality edge and neglected by the current literature on real-time
containers. Finally, concerning hypervisor-based solutions, our container-based approach
allows running multiple isolated Linux systems on a single host with minimal space and
performance overhead, avoiding the need of running full VMs (each one replicating the
entire OS stack). Other tiny hypervisor-based solutions are based on the concept of static
partitioning [37, 39, 46]. This makes the environment less prone to changes since this kind of
hypervisor includes a one-to-one mapping between virtual CPUs and physical CPUs, and
devices are mapped directly into the guest memory areas. Despite the lightness of these
approaches, in our context, the use of container-based solutions paves the way to service
orchestration and migration, automatic and easy deployment of tasks, which is fundamental
with changing environments at the edge level.

3 Proposal

3.1 Architecture
Figure 1 depicts our proposed architecture for achieving isolation in real-time containers.
Similarly to earlier proposals [8, 9], we envision the concept of real-time containers (rt-
containers) hosting real-time tasks (rt-tasks) and run on the top of an operating system with
real-time scheduling capabilities. The idea is letting rt-containers run along with traditional
containers (running non–real-time tasks) on the same machine, with temporal isolation
guarantees for rt-tasks. This enables a container-based mixed-criticality environment.

The proposal encompasses an engine layer based on the Docker container engine (although
other container engines should work too) and includes a feasibility checker, which executes a
schedulability test to verify (in terms of both CPU and network) if a new rt-container can
be created on the computing node, without affecting the containers already hosted. This is
particularly useful for orchestration purposes. Moreover, compared to solutions in [1,54], our
proposal is based on Linux kernel coupled with a real-time co-kernel.

Differently from existing co-kernel-based solutions [8,9], which enforce temporal protection
of rt-tasks through a dedicated real-time monitoring component, our proposal leverages a
hierarchical group scheduling approach, called SCHED_DS. The idea is to map the rt-tasks

ECRTS 2022

15:6 Achieving Industrial Edge MCS Isolation with RT-Containers

running within an rt-container in a task group at OS co-kernel level, where each group has
its own bandwidth (i.e., slices of CPU time) limitation. In this way, the CPU consumption
of rt-tasks is limited, by design, over a globally defined period. The rt-tasks with common
requirements are pooled in groups; each group receives a share of the global period. Therefore,
our proposal does not require active monitoring for temporal protection of rt-tasks, which
represents a single point of failure as well as a source of overhead [8,9]. Moreover, differently
from the solution in [8], the priority assignment is not globally fixed: within an rt-container,
the developer is free to choose task priority levels, as the group CPU bandwidth will be
independently guaranteed by the hierarchical scheduler.

Figure 1 The proposed rt-container architecture.

Our proposal includes also the rt-lib layer, which provides a transparent mapping of
rt-tasks onto the underlying real-time core. rt-lib exposes a POSIX compliant API towards
rt-tasks by hiding the information exchanged between the container level and the OS layer,
including the one to leverage the co-kernel scheduling policies. It is worth noting that, once
a task within a rt-container is mapped to a real-time group (through the rt-lib API) and
starts to run, it is scheduled directly by the real-time co-kernel. Hence, it fully preempts
Linux and all indirection levels above have no impact on real-time path of the tasks and
their scheduling latency.

Finally, we want to remark that our solution integrates also a real-time networking
stack for real-time containers, in contrast with past studies. This could be useful in a
container-based cloud/edge environment, where several containers, with both non–real-time
and real-time requirements, can communicate over the network [11,43]. We rely on the RTnet
stack [33] usually shipped with real-time co-kernels (such as Xenomai and RTAI) to provide
a real-time networking stack. RTnet works with a pluggable real-time medium access control
(MAC) policy on standard Ethernet hardware. It offers, by default, a MAC TDMA (Time
Division Multiple Access) policy, which consists in allocating a time slot to each physical
node of the network for sending/receiving traffic.

Real-time networking guarantees for rt-containers are enforced by assigning a slot to each
rt-container, as if they were physical nodes on the network, taking advantage of the RTnet
multi-slot configuration. Therefore, the rt-lib is in charge of mapping a socket opened by an
rt-container with a RTnet socket that has its own slot for transmitting packets. Figure 2
shows an example of TDMA scheduling in the context of rt-containers, in which each slot is
identified on the node by an ID, and each node has a default slot for sending traffic (ID 0).

The network relies on a master node providing sync frames, which delimit the TDMA
cycles. Since slots cannot overlap, an entity such as an orchestration system should store
all the information needed (e.g. slot times and offsets) to assign slots to containers and to

M. Barletta, M. Cinque, L. De Simone, and R. Della Corte 15:7

Figure 2 Example of TDMA scheduling.

change dynamically the network configuration. Indeed, RTnet allows adding, removing, or
modifying time slots dynamically. For these reasons, the container admission request should
contain the network requirements (time slot needed) as well, other than CPU bandwidth. For
non–real-time networking instead, well-known methods can be used such as non–real-time
buddy tasks, which use the standard Linux networking stack. We highlight that non–real-time
traffic is allowed in RTnet in a tunneled way, if necessary.

Figure 3 depicts a typical industrial edge networking scenario in which our proposal can
be successfully adopted. The scenario includes a real-time RTnet network interconnecting two
edge RT-Servers (acting as slaves), a master node, sensors, and actuators. The RT-Servers
run several containers and carry out part of the workload with critical timing requirements;
however, they can also run non–real-time workloads. The master node represents a high
precision clock node supporting RTnet TDMA, which is kept separated from RT-Servers to
improve reliability and security. The RT-Servers are connected to both the industrial RTnet
and the Internet with two distinct Network Interface Controllers (NICs). In this scenario the
rt-containers architecture in Figure 1 can be deployed on RT-Servers in order to manage the
scheduling and orchestration of both real-time and non–real-time workloads while ensuring
isolation of rt-containers, which may contain critical tasks to retrieve data from sensors and
send commands to actuators through the industrial network.

Figure 3 Potential scenario: deployment of rt-containers on real-time edge servers.

3.2 System Model
We assume a system composed of M rt-containers, each of them with an assigned CPU
bandwidth (i.e., utilization) UC

j , a priority level Pj , possibly a network timeslot TSj and a
criticality level CLj , where j ∈ [0, M]. The criticality represents the severity of consequences
in case of failure and it is a notion different from priority, that could be assigned by the
schedulability algorithm.

Each rt-container hosts Nj sporadic hard real-time tasks τ j
i : i = 0...Nj −1, characterized

by a WCET Cj
i , a minimum inter-arrival separation (or period) T j

i and a priority level
P j

i : i = 0...Nj − 1. We assume T j
i to be coincident with the relative deadline Dj

i of the
task. Priorities within a container can be freely assigned by the application designer. We
assume that tasks can suffer from timing failures, i.e., they can run for a time greater than
their declared WCET, because of a wrong timing analysis or a bug inside the code, like an

ECRTS 2022

15:8 Achieving Industrial Edge MCS Isolation with RT-Containers

endless loop. Overall, the system is composed of a set Γ of N tasks, each of them assigned
to an rt-container with a given bandwidth. With Γ(j) we indicate the subset of tasks within
the j-th rt-container. Thus: Γ = Γ(0) ∪ ... ∪ Γ(M − 1) and Γ(k) ∩ Γ(h) = ∅, where k ̸= h.
The minimum CPU bandwidth of each rt-container is defined as the sum of its task CPU
utilization, defined as U j

i = Cj
i /T j

i . We define the overall system bandwidth as: UT OT =∑M−1
j=0

∑Nj−1
i=0 U j

i .
We assume non–real-time tasks, internal or external to containers, running with a best-

effort policy, receiving the bandwidth unused by the real-time tasks. The model must provide
isolation from potential timing failures due to both excessive non–real-time workload on the
same machine and faulty tasks, exceeding their declared WCET, run within rt-containers. In
order to provide isolation, we rely on bandwidth reservation, assuming a two-level scheduler
with a deferrable server1 at the root level: each rt-container is thus mapped on a server.
At the leaf level, the policy is a fixed priority preemptive scheduler, serving tasks within
containers. The admission check is performed by the RT-container engine via the feasibility
checker (implementation details in Section 4), or by an orchestrator. We can take advantage
of the schedulability analysis presented in [15, 16], where an exact response time analysis
improving the already existing analyzes for hierarchical fixed priority schedulers is presented.
We recap briefly the test. The response time analysis is described by equations (1) and (2).

Li(wi) = Ci +
∑

∀j∈hp(i)

⌈
wi + Jj

Tj

⌉
Cj with w

0
i = Ci +

(⌈
Ci

CS

⌉
− 1

)
(TS − CS) (1)

w
n+1
i = L(w

n
i) +

(⌈
L(wn

i)
Cs

⌉
− 1

)
(Ts − Cs) +

∑
∀X∈hp(S)

servers

max

(
0, wn

i −
(⌈

L(wn
i

)
Cs

⌉
− 1

)
Ts

)
+ JX

TX

 CX (2)

Equation (1) represents the task load at priority level i and higher, ready to be executed
in the busy period wi. hp(i) is the set of tasks that have priorities higher than task τi (the
task under analysis) within the same server (i.e., a container in our study), and Jj is the
release jitter of the task, which is 0 for a bound task and TS − CS for unbound tasks, due to
the functioning of the server. Equation (2) is a recursive relation for wi, namely the interval
between the time a task is released and its completion time, where hp(S) are the higher
priority servers (i.e., containers) for the server S of the task under analysis, JX is the release
jitter of the higher priority server X, which is TX − CX for a deferrable server.

The equations model the critical instant for a task scheduled belonging to the server.
The recurrence starts with the value in Equation (1) and ends either when wn+1

i = wn
i , in

this case wn
i + Ji indicates the task response time, or when wn+1

i > Di − Ji, thus the task is
not schedulable. It is worth nothing that for the schedulability of a task only the budget
of higher priority servers is needed. Therefore, even if tasks belonging to other servers (i.e.,
other rt-containers) are faulty, the schedulability analysis does not need to be modified.

In order to ease the implementation, we hypothesize that the refill timer, i.e., the timer
driving the replenishment of the deferrable server budget, is shared between every task group,
thus server periods elapse in a lockstep fashion and there is no chance to suffer from back to
back hits, which is typical in deferrable servers. This simplifies the third term in Equation (2),
which can be rewritten as:

1 A deferrable server [35] is the simplest of bandwidth-preserving servers, and it provides a good tradeoff
between implementation complexity and low response times. It has an execution budget Cs that is
replenished each period Ts. A deferrable server preserves its budget until the end of the period.

M. Barletta, M. Cinque, L. De Simone, and R. Della Corte 15:9

∑
∀X∈hp(S)

servers

CX (3)

This is possible since having common periods for all servers, a server can run for no more than
its runtime budget in each period. This simplification can be demonstrated analytically and
we provided the demonstration in an appendix 2. This also simplifies the server schedulability
analysis, since we just have to keep the sum of budgets beneath the period value. Therefore,
the server scheduling test becomes:

∑
∀S

CS ≤ T , where S represents a server, and CS

represents its budget in a period, which is obtained as CS = US ∗ T , where US is the server
bandwidth and T is the common period.

Since the period is fixed, we can use algorithms presented in [16] for optimal schedulability,
i.e., the optimal priority assignment or the optimal server capacity allocation. Even if
theoretically both algorithms could be used, the optimal priority assignment one requires to
assign in advance a bandwidth to containers, which makes it hard to obtain a schedulable
set. It is more practical to know container criticality that can be associated with a suitable
priority and then compute the needed bandwidth. Therefore, we decide to use the optimal
server capacity allocation algorithm described in [16].

Similarly to server scheduling, the test for the network is:
∑

∀N

∑
∀Snet∈N TSS ≤ Tcycle ,

where N is an RTnet node, Snet is a container requiring RTnet, Tcycle is the length of the
TDMA cycle and TSS are timeslots not overlapping in time. It is important to notice that
despite the network timeslot being independent of the CPU time, it must be taken into
account for task dependencies.

3.3 The SCHED_DS policy
In this section, we describe the proposed hierarchical scheduling solution, named SCHED_DS,
for real-time containers managed by a real-time co-kernel. We assume two levels of runqueues:
one for the groups and one for tasks belonging to each group. The policy works as follows.
It picks the highest priority group with a ready thread, checks its budget and if expired
it is moved to an expired list and another group is picked. If the group has budget, the
policy picks the highest priority ready thread within the group. The thread is removed
from the runqueue, and if the group becomes empty, it is removed from the group runnable
queue. The thread starts running and a timer is armed to expire at the end of the budget.
Periodically, a refill timer moves all expired groups back to the runqueue and replenishes
budgets. When a thread becomes ready it is enqueued in the runnable queue of its group
and if it is the only thread in the queue the group is enqueued in the group runnable queue.
Algorithm 1 presents the pick function of SCHED_DS.

4 Implementation

4.1 A Xenomai-based implementation
For implementing the SCHED_DS policy, we chose Xenomai as a co-kernel due to its flexibility,
maintainability, and extensibility, and its POSIX-compliant library. Above all, Xenomai
recently introduced SCHED_QUOTA and SCHED_TP policies as partitioned hierarchical schedul-
ing solutions, useful to overcome SCHED_FIFO limits. The SCHED_QUOTA policy enforces a

2 Appendix is available at http://www.fedoa.unina.it/13352/

ECRTS 2022

http://www.fedoa.unina.it/13352/

15:10 Achieving Industrial Edge MCS Isolation with RT-Containers

Algorithm 1 sched_ds_pick pseudocode.
tg = thread group, rq = runqueue, Told is the scheduled out thread, otg = group of Told.

1: procedure sched_ds_pick
2: now ← current time
3: if tg of Told is null then
4: goto pick (6)
5: subtract (now - start_time) from otg budget
6: pick highest priority ready tg from rq
7: if tg is null then
8: stop limit timer
9: return null

10: if tg is empty then
11: dequeue tg
12: goto pick (6)

13: if tg runtime budget is 0 then
14: enqueue tg in expired queue
15: goto pick (6)
16: start_time of tg ← now
17: pick highest prio ready thread from tg rq
18: if otg == tg AND limit timer is running

AND budget_refilled == false then
19: goto out (22)
20: budget_refilled ← false
21: arm limit timer to go off at now+tg budget
22: decrease active threads in tg
23: return selected thread

limitation on the CPU consumption of threads over a globally defined period, known as the
quota interval. This is done by pooling threads with common requirements into groups, and
giving each group a share of the global period. On the other hand, the SCHED_TP policy
is a temporal partition scheduler that allows installing a schedule made up of consecutive
time windows in a fixed-cyclic style, leaving slots for non–real-time tasks. Even though a
prototype based on SCHED_TP was built and tested, we preferred leveraging on SCHED_QUOTA
because of its flexibility (e.g., it allows adding and removing single groups at runtime), which
is required in cloud/edge contexts. We remark that Xenomai maintainers have partially
already addressed the lack of the PID namespace support, which anyway does not undermine
the contribution of this study.

4.2 The SCHED_QUOTA Limitations
The SCHED_QUOTA policy acts in this way: it picks the highest priority ready thread, and the
budget of its group is checked. If it is expired, the thread is moved to an expired list and
another thread is picked, otherwise, it starts running with a timer armed to expire at the end
of the budget. Periodically, the refill timer moves all expired threads back to the runqueue
and replenishes budgets. This implementation revealed three major limitations: (L1) the
vanilla policy is not actually hierarchical since scheduling is at thread-level; further, the notion
of quota group only regards the budget evaluation, which is done for each picked thread,
causing an O(N) complexity; (L2) there is no notion of group priority, since SCHED_QUOTA
relies on the unique fixed-priority runqueue, thus giving no assurance about isolation between
threads of different groups; (L3) the scheduler entails a credit mechanism, along with other
subtle problems, that prevent from modeling a quota group as a deferrable server.

Starting from (L3), we highlight a devious problem: as soon as the refill timer expires, the
budgets are refilled, a rescheduling is forced, and the consumed CPU time is subtracted from
the budget of the outgoing quota group. This could result in a group starting the new period
with a reduced budget if it kept the highest priority before and after the refill. A related
problem is that when a group starts executing, the limit timer is armed to expire when the
budget is exhausted, without taking care if this moment in time precedes or follows a budget
refill. Figure 4 shows an example of the described problem. We consider two groups, Group
0 (G0) and Group 1 (G1), where G0 has a capacity equals to 3 over a quota period equal to
5, and a priority higher than G1. A G1 thread (τ0 in G1) starts a request and will be served
according to remaining budget for G1 . Further, at the end of the first quota period (i.e., at
t5), a Group 0 thread (τ1 in G0) starts to execute, with the limit timer armed to expire at

M. Barletta, M. Cinque, L. De Simone, and R. Della Corte 15:11

time tA (i.e., current time, t5, plus the remaining capacity). After t5, a refill occurs. Due to
the implementation, and assuming that the thread τ1 in G0 consumed 1 unit of capacity, the
budget of Group 0 passes from 3 to 2, but the limit timer is left untouched. At tA, the timer
expires and Group 0 is scheduled out. Thus, in the second quota period, Group 0 runs for a
total of 2 units of time, even if its capacity is 3. We expect the Group 0 to run for 3 units
every 5 to resemble a deferrable server, and the timer armed to expire at tB .

Figure 4 SCHED_QUOTA problem. Dashed lines for group budget rensemble the ideal behavior of a
deferrable server, while solid lines are the real behavior as implemented in the proposed policy.

Moreover, according to limitation (L2) (see above), two threads belonging to different
groups or other scheduling classes share the same range of priority levels within the shared
queue. This would mix in time the execution of SCHED_QUOTA threads and other threads,
nonetheless mixing up threads belonging to different groups with no clue of group priority,
with no assurance about temporal isolation of different groups. This behavior of SCHED_QUOTA
is inadequate to achieve a proper hierarchical scheduler. A solution that uses a user-level
priority remapping would result in a restricted priority range, along with another problem
(see limitation (L1) above): when a budget expires, the scheduler tries to pick every ready
thread of that group in priority order, evaluating exhausted budget for each thread; since
the number of threads in a group is not bounded, this operation has an O(N) complexity,
where N is the number of consecutive exhausted threads. Similar analysis keeps for refill
function that moves expired threads to runqueue.

4.3 Implementation details
We implemented the proposed SCHED_DS policy by modifying the existing SCHED_QUOTA
policy in Xenomai in order to obtain a truly hierarchical scheduler that solves the limita-
tions described above. The Xenomai-based implementation is provided in [3]. The main
modifications regard the functions refill_handler, which replenishes budgets every quota
period, xnsched_quota_enqueue/requeue/dequeue, which handle the queue moving, and
xnsched_quota_pick, which selects the thread to be executed. We created an additional
level of scheduling with a runqueue for each group, in order to avoid the single common
runqueue, and extending the group structure to encompass a priority level needed to create
an order relation between groups to be queued. Furthermore, we created a fixed-priority
FIFO runqueue that hosts runnable groups along with a list holding expired groups. We
addressed the limitations mentioned in Subsection 4.2 as described in the following:

L1. In the pathological situation formerly considered, the SCHED_DS policy will evaluate
the budget of the whole group instead of evaluating for every single thread, moving only
group structures if needed. These operations are O(1) because the number of groups is
upper-bounded by a kernel parameter (by default 32).

ECRTS 2022

15:12 Achieving Industrial Edge MCS Isolation with RT-Containers

L2. SCHED_DS policy isolates threads of different groups within the queue, since we do
not use anymore the shared FIFO runqueue, allowing usage of the entire priority range
without mixing threads of different groups.
L3. SCHED_DS policy adds a boolean that is set when the refill timer expires and evaluated
during xnsched_quota_pick execution, when a true value prevents the reduction o the
budget of the formerly running quota group.

Compared to the xnsched_quota_pick implementation, we removed some unnecessary checks
by improving performance and reducing overhead. Indeed, we allowed empty groups in
the group runqueue, dynamically checking for this condition and removing them. This
modification has the aim to relieve the following recurring pattern: a group with only one
thread is scheduled, next the thread is removed from the group and after that, the group is
removed from the queue. When rescheduling is triggered, the currently running thread is
requeued as well as its group, causing a heavily ordered insertion, that could be potentially
useless if the currently running thread is still the highest priority thread. According to the
example shown in Figure 4, the boolean check of budget_refilled implies no budget reduction
at the scheduling after the refill, the group then starts the new quota period with a full
budget. Indeed, the check at line 18 of Algorithm 1 will fail, and the scheduler is obliged to
arm once again the limit timer, which will now expire in tB , in fulfillment of our requirement
about the deferrable server behavior.

4.4 Feasibility Checker and rt-lib

We implemented a feasibility checker that parses the input and computes the tests introduced
in Subsection 3.2. This consists of 600 LOC of Python code, which calls two C programs
that use Xenomai services to bring up and tear down groups.

The rt-lib layer is implemented as a header file that relies on the –wrap linker flag to
override the POSIX wrapper functions defined by Xenomai. Overridden functions belong to
two distinct groups: one for hiding the complexity of thread management and one for the
RTnet socket management. The first group of functions uses the original data structures to
find and operate on the related extended ones. This exposes to the user a standard POSIX
API that under the hood replaces real-time scheduling policies with SCHED_DS. On the other
hand, networking functions ensure that a newly created socket calls an ioctl to bind to the
allotted RTnet timeslot.

5 Experimental Results

In this section, we report the experimentation we performed on the implemented architecture.
The experimentation aims to: i) measure scheduling policy runtimes; ii) estimate the overall
throughput overhead as seen by the tasks to understand if the proposed algorithm can be
practically used with negligible risk and to derive a suitable server period; iii) assess temporal
isolation under several disturbances conditions, evaluating the solution in terms of number
of failures, specifically, the deadline misses of the real-time tasks under non–real-time stress
and faulty real-time container; iv) estimate the RTnet error deviation for sending packets
through measurements achieved on a real network deployment; v) estimate the activation
latency of the scheduler, comparing results with state-of-art solutions for real-time containers.
In Table 1, there is a summary of experimental parameters used in the following tests.

The host system is equipped with an Intel Core I5-6500, 16 GB DDR4 RAM, Samsung
970EVO SSD, running Linux Mint 20.1, kernel v5.4.77 patched with Xenomai v3.1, and Docker
v20.10.7. To reduce hardware sources of non-determinism, we disabled power optimizations,
frequency scaling, Intel SpeedStep, TurboBoost, and C-States.

M. Barletta, M. Cinque, L. De Simone, and R. Della Corte 15:13

Table 1 Values and rationale behind parameters used in the experimentation.

Parameter Ref. Sec. Value Rationale

Groups/Threads 5.1 2*3 up to 6*9 Understand how execution times vary with numbers of threads
spread along an order of magnitude.

Runs 5.1 5 Sufficient to average out transient behaviors.
Repetitions 5.2 50 Computed by the sample size formula, to have 90% confidence.
Quota period 5.2 1 ms to 10 ms Reasonable for the hardware used and DS runtimes obtained.
Target quota 5.2 40% Sufficient runtime to show overhead effects.

Yielding period 5.2 0.1, 1, 10 ms Different orders of magnitude, in the range below the quota
period.

Duration 5.2 10 s Enough to verify the overhead, on the base of the period.
UT OT limit 5.3 85% From [9], utilization > 90 % brings system to instability.

WCET buffer 5.3 30 µs
Max activation latency measured through the Xenomai official
guide plus hardware unpredictability measured.

Additional band 5.3 1 % Compensate scheduling overhead under stress.
Repetitions 5.3 30 Tradeoff between statistical significance and time needed.

Containers/tasks 5.3 2*2 up to 2*6 Reasonable numbers to find schedulable tasksets with small
periods.

Task periods 5.3 1 ms up to 2 s Reasonable real-time periods for a general purpose hardware.
Duration 5.3 60 s Reasonable with regard to task periods.
TDMA cycle 5.4 6 ms Reasonable time based on the roundtrip time measured.
Repetitions 5.5 60 Sample size formula for 90% confidence.
Sampling period 5.5 100 µs Default period of the test.

Duration 5.5 60 s Enough to experiment outliers due to kernels. Several orders
of magnitude above the period.

Task WCET 5.6 1.8 ms Avoid budget limitation of the policies to simplify analysis.
Task Period 5.6 10 ms Reasonable for the WCET to have as many sampling as possible.

(a) CDF of runtimes of xnsched_pick_next. (b) CDF of runtimes of refill_handler.

Figure 5 CDF runtimes of SCHED_DS (TG = Thread Group).

5.1 SCHED_DS Runtimes
We estimate the runtime of the main functions of the scheduler for a first quality evalu-
ation. Both the xnsched_pick_next and the refill_handler runtimes were plotted, in
order to understand which quota period could have been suitable for the system. The
xnsched_pick_next checks the current thread status and, if needed, calls a requeue and
a sched_pick for each scheduling policy in priority order, until a thread is found. The
refill_handler was described previously in Section 3.3 and represents a periodic fixed
overhead. Therefore, we can have an upper bound of enqueue, dequeue, and requeue functions,
and an upper bound of the xnsched_ds_pick function, i.e., the one described in Algorithm 1.
Runtimes are taken with a couple of clock monotonic timestamps, at the beginning and end
of the functions under exam, under different workloads: 2 thread groups with 3 threads

ECRTS 2022

15:14 Achieving Industrial Edge MCS Isolation with RT-Containers

each; 4 groups with 6 threads each; 6 groups with 9 threads; a mixed workload created as
described in Section 5.3, with a random group number between 2 and 6, and a random thread
number between 2 and 7 for each group. For the first three loads, two tasks for the group are
permanently running in order to exhaust the budget at every period. The selected number of
groups/threads have the only aim to understand how execution times vary with an increasing
number of threads during nominal execution. Results in terms of CDF (averaged over 5
runs) are shown in Figures 5a and 5b. The workloads run on a single CPU and thread/group
numbers have the only purpose to exercise the system with an increasing stress, to have an
estimation of the overhead. A replenishment takes in the worst case 630 ns (Figure 5b), with
a much lower average time, while the pick function has a worst case of 1,343 ns (Figure 5a),
but it generally presents much lower runtimes: around 450 ns the CDF value is almost one.

5.2 SCHED_DS Overhead
In order to estimate the overhead induced by the proposed scheduler, we adapted the test
for SCHED_QUOTA of the Xenomai suite. The test is an application that creates FIFO threads,
which increment a counter and then yield in favor of another thread after a specified amount
of time, called yielding period hereinafter. The obtained counter will be then used as a
reference value. Next, a number of SCHED_DS threads, in the same amount as the FIFO
threads, are created. The SCHED_DS threads belong to a group created with a determined
quota, and have the same body as the FIFO ones. At the end of the application (after a
timeout of 10 seconds), the SCHED_DS counters are compared to the FIFO reference. In this
way, the effective percentage of the runtime of SCHED_DS threads can be computed. It should
be noted that the results depend on the length of the quota period. The smaller period is
used, the more overhead is induced and the smaller effective runtime percentage is computed
at the end of the test. The SCHED_DS threads within the test are run with 1ms, 2.5ms, 5ms,
7.5ms, 10ms quota periods, assigning a target quota equal to 40%. Moreover, we experiment
100 µs, 1ms, and 10ms as yielding periods for both SCHED_FIFO and SCHED_DS threads. For
each test, we run 12 threads (FIFO threads to compute the reference values and SCHED_DS
threads to compute the overhead), with a random activation phase with regard to the server
period to reduce anomalies that depend the first and last period execution. Each test is
repeated 50 times for statistical significance purposes. Afterward, the average of the runtimes
percentage, fixing the same quota period and yielding period, are computed and plotted with
90% of confidence.

(a) Varying quota and yielding periods. (b) Under stress scenarios.

Figure 6 Runtime percentages of running SCHED_DS threads.

M. Barletta, M. Cinque, L. De Simone, and R. Della Corte 15:15

Figure 6a shows the obtained runtime results by varying both quota and yielding periods,
along with the quota target percentage, i.e., 40% indicated by the dotted red line. It can be
noted that when the quota period is 1ms the induced overhead is approximately 0.05 − 0.1%,
while with a quota period of 2.5 ms the estimated overhead is lower, i.e., between 0.02 and
0.05%. Differently, with a quota period equal to 10 ms the results show a runtime percentage
greater than 40%. This is probably due to both the thread phasing with regard to the
beginning of the first period and the deferrable server behavior: indeed, threads can benefit
from the entire runtime budget over a reduced quota period because of late arrival. For lower
yielding periods, the overhead is greater, as expected. Furthermore, we highlight that the
runtime percentage difference between the yielding period of 100 µs compared to both 1ms

and 10ms is clear since at 1ms and 10ms the scheduling policy preemption dominates the
number of yielding preemptions. According to the results obtained for the overhead, we set
the quota period for the subsequent test equal to 2.5ms since it represents a good choice for
the schedulability compared to the other periods tested.

We compute also the overhead of SCHED_DS under various stress conditions. The dis-
turbances are generated via the stress-ng tool [22]. We impose hard pinning for the CPU
core that executes the stress load by using the –taskset flag. We test different stress load
scenarios, i.e., no load (tests executed with no load), cpu (a heavy arithmetic computation
to fully use one CPU core), io (an IO load using one worker spinning on sync() command
to force writes data buffered in memory out to disk), hdd (a disk load that starts one worker
generating various operations towards the disk), netdev (a network load where a worker
exercises various netdevice ioctl commands for all available network interface controllers)
and udp (a network load starting a pair of client and server workers that transmits data
using UDP on localhost). Regarding stress tests, we still perform 50 repetitions for statistical
significance purposes. The quota period is set equal to 2.5ms and the yielding period equal
to 1ms. Figure 6b shows the obtained results, which highlight that scheduling efficiency
slightly decreases under stress conditions. The results under stress conditions compared to
the no load ones are approximately 0.03 − 0.04% lower, with udp and hdd as worst loads
because of the high volume of interrupts generated.

5.3 Failure Isolation Test
In this section, we perform tests for the proposed scheduling policy for revealing potential
temporal isolation issues. The tests include, first, the scheduler correctness (whether it behaves
as expected). Further, we want to obtain real performances in the field of SCHED_DS under
synthetic workloads, against several stress conditions. We demonstrate that the provided
proactive temporal isolation successfully prevents failures (deadline misses) propagation
within the system, crossing criticality levels. Specifically, the test assumes two criticality
levels, thus including two real-time containers: one container with a high priority and the
other one with a low priority.

The total bandwidth UT OT is spread over the two containers using the RandFixedSum
algorithm [21] (we used the Python implementation [23]), such that UT OT = ULOW + UHI ,
where ULOW and UHI are the bandwidths of low-priority and high-priority rt-containers,
respectively. For both containers a group of tasks is created through the RandFixedSum
algorithm as well, such that the tasks bandwidth for each container is Uj =

∑Nj−1
i=0 U j

i ,
where j ∈ {LOW, HI} and Nj is the number of tasks of the container j. The periods used
as input for the algorithm range in likely times for real-time tasks (ms up to s). Priorities
are assigned to the two task groups according to the order of creation, while the algorithm
in [16] and Equations 1, 2, 3 are used to determine the minimum bandwidth needed for the
containers to have a schedulable task set.

ECRTS 2022

15:16 Achieving Industrial Edge MCS Isolation with RT-Containers

Tasks within a task group are ordered following Rate Monotonic (RM) rules [34]. If the
sum of required bandwidth needed to have a schedulable task set is greater than 85%, the
current task set is discarded, and a new one is generated. The required bandwidth of each
container is increased by 1% to compensate for the scheduling overhead. In the algorithm,
a little margin of 30 µs is added to WCET of each task to consider maximum Xenomai
scheduling latency plus a margin due to hardware unpredictability. Moreover, for each task,
there is a lower threshold WCET of 30 µs that allows avoiding borderline situations, e.g.,
workloads too short to be properly emulated on x86 architectures. For the same reason, each
group must have a total utilization greater than 0.1% quota.

Once created a task set with the given constraints and computed the needed bandwidth
for each container, quota groups are created, and synthetic load is created through the
rt-app [10], exploiting the CPU property to pin tasks on a CPU core, the run property to
create a workload of a determined time, the scheduler policy and absolute timer properties to
select the SCHED_DS policy and generate a periodic timer. The rt-app has been modified and
recompiled for our purposes, linking real-time libraries. Each thread logs some information
for each iteration in a pre-allocated memory area. The slack time, defined as next activation
time minus current finish time, can be used to compute deadline miss occurrences; indeed, a
negative slack means that the task has finished after the start of the next period.

Tests are run with varying total bandwidth UT OT : 50, 55, 60, 65, 70 percent of the
CPU usage. In each container, there is a random number of threads, chosen between 2 and
6 (excluded). 30 repetitions are done for each combination of total bandwidth and stress
condition. Stress conditions considered in this test include a scenario, namely low-hi, in
which the low-priority container behaves as declared, while the high-priority container is
faulty, i.e., it executes tasks with a runtime of 1.8 times than declared. This scenario aims to
detect if quota groups are correctly isolated in time: the high-priority container is faulty since
has an actual load almost twice the declared. The desired behavior is that the lower priority
container will be isolated from the faulty container. Thus, we expect deadline misses in the
high-priority container but no deadline miss in the low-priority container, which could be
potentially more critical than the high-priority one. The other tested stress scenarios are the
same as the ones described in Section 5.2. These scenarios aim to understand the behavior of
the system under various non–real-time workloads. We expect to have no deadline miss at all.
Each experiment lasts 60 seconds. Task periods are sampled with a loguniform distribution,
with a granularity of 1 ms, with a minimum period of 1 ms, and a maximum period of 2 s.
As expected, no failures came out from experiments under non–real-time stress-ng load. It is
worth mentioning that, although the server period is 2, 500 µs, the schedulability test can
guarantee shorter period tasks as well the time to execute, and despite the needed bandwidth
is quite high, several tasks with a period of 1 ms have been scheduled in the low-priority
container. We tested the 1 ms quota period and their schedulability is a lot easier. The results
meet our expectations under the low-hi scenario as well. The high-priority container presents
a high number of failures (in terms of deadline misses), while the low-priority container
achieves the correct execution.

Figure 7 shows the boxplots of the deadline misses in the low-hi scenario. Each point
represents the sum of the number of deadlines misses from all tasks in a container, while
on the x-axis there is the total bandwidth used to generate the task set. It is worth noting
that some tests run with no deadline miss: this is likely due to the extra bandwidth, or the
pessimistic behavior of the schedulability test. The test seems to have quite encouraging
results, as SCHED_DS can resist several high-stress conditions and temporal isolation is assured.

M. Barletta, M. Cinque, L. De Simone, and R. Della Corte 15:17

Figure 7 Boxplots of deadline misses for the low-hi scenario across different usage percentage of
total bandwidth UTOT.

5.4 RTnet
In this section, we perform tests to show the real-time capabilities of the proposed RTnet
wrapper used within containers and in presence of non-real-time traffic disturbances. The
aim is to highlight that the RTnet stack is characterized by a low average and standard
deviation of the sending delay (defined as the difference between the expected sending time
and the actual one) even under non–real-time tunneled traffic. Tests were run on two HP
z230 workstations, equipped with an Intel Core i7-4790, 16 GB RAM, and an i217-LM
network controller with rt_e1000e driver. NICs were linked to a 100 MBit/s switch through
cat6 Ethernet cables. The machines hosted Ubuntu Server 21.04, with Linux kernel v5.4.77
patched with Xenomai v3.1.1.

The TDMA cycle was set to 6 ms, with slots of 1 ms. The transmission delay of the sync
frame from the setup was estimated at around 112 µs (computed as described in [33]). We
start a couple of containers on the slave node, i.e., the RT-Server1 in Figure 3, in which
they spawn one periodic thread each, with coprime periods to force coincidence for network
transmission within the same TDMA cycle. These tasks send a UDP packet towards the
master, i.e., the Master node in Figure 3, for each period. Further, at the host level on
the RT-Server1 , we used the socat tool to send, continuously, a file in UDP broadcast, in
order to generate non–real-time traffic. These UDP packets are automatically divided into
fragments by the RTnet stack to fit the slot reserved for non–real-time traffic. We recorded
the actual sending timestamp and scheduled sending timestamp for the sync frames, and
sending timestamps for slave packets. The slave properly used the estimated transmission
delay to adjust the slot starting times [33]: the sending offset of the outgoing packets with
regard to the arrival time of sync frames were not integer multiples of slot durations, and 112
µs was the offset that minimized the sum of squared errors, defined as the difference of time
to the nearest multiple of slot duration from sync frame. The mean, minimum, maximum,
and standard deviation of the difference between scheduled sending timestamp and actual
sending timestamp for sync frames were respectively 385.8, 257, 1, 499, and 103.2 ns. On the
other hand, keeping into account the correction of 112 µs, the slave errors for sending frames
were characterized by an average of 211.8 ns and a standard deviation of 1, 006.7 ns, showing
good predictability with regard to a non–real-time RTnet stack.

5.5 Task Activation Latencies
In this section, we aim to estimate the tasks activation latencies provided by our solution
and use them to compare the proposal with the following alternative solutions for real-time
containers based on hierarchical scheduling: i) Linux low-latency vanilla rt-cgroups (LL

ECRTS 2022

15:18 Achieving Industrial Edge MCS Isolation with RT-Containers

hereinafter) and ii) rt-cgroups patched as described in [1] (HCBS hereinafter). Kernels in LL
and HCBS are in low-latency configuration due to reasons explained in Section 2. Despite
we set our solution as complementary (i.e., designed for usage in different use cases), we
compare our implementation with LL and HCBS since they are the only ones to date based
on group scheduling. The vanilla rt-cgroups allow dividing CPU time, specifying how much
time can be spent running in a given period. The runtime is allocated to each real-time
group (rt-group), and other groups will not be allowed to use it. The time not allocated
to a rt-group is used to run SCHED_OTHER tasks. Currently, this feature still lacks an EDF
scheduler to use non-uniform periods. The low-latency kernel version is the same as Xenomai
(v5.4.77), while HCBS supports an older kernel version (i.e., v5.2.8). Kernel settings are
almost the same, the only differences between the configurations are constrained by patches.
The latency test provided by Xenomai test suite is modified to run with SCHED_FIFO for
Linux, making a lift and shift of data structures used, creating an independent program. We
further adapted this latency test to support SCHED_DS threads.

Figure 8 Boxplots of task activation latencies. In no load scenario, for HCBS, we removed two
outliers at 114 and 118 µs for readability. P is the proposed solution.

We run the latency test for 60 seconds for each targeted solutions (i.e., the proposed
one, LL, and HCBS) according to stress load scenarios described in Section 5.2. For each
test, we saved the maximum latency and the overruns. We repeated each test 60 times for
statistical significance purposes. The task period is left as the default value used in the
original Xenomai latency test, i.e., 100 µs.

Figure 8 shows boxplots of the latency experienced by the analyzed solutions under
different disturbances, while Table 2 provides the mean and standard deviation of the
obtained maximum latencies. It can be noted that No stress, cpu, io, and netdev loads
provide similar results. The proposal seems to be robust against all the disturbances, giving
persistently lower latencies (∼ 10 µs). Under udp and hdd loads, both the LL and HCBS
provide higher latencies, with a mean of the maximum latencies about 60 times worse than
the proposed solution and a non-negligible standard deviation. We expected this behavior
since both udp and hdd loads raise a high volume of interrupts, which heavily affect kernel
performance despite the low-latency configuration of the Linux kernel. Our co-kernel–based
implementation is not affected significantly by such high interrupts load, making it a good
fit for critical high-frequency tasks for industrial control. Finally, we tried to switch the SSD
disk with HDD one. We noticed a non-negligible difference under the hdd load, concluding
that latencies are mostly caused by drivers, which probably present non-preemptible sections.
For the sake of brevity, we do not report this experiment. The difference between LL and
HCBS is not significant, thus the main reason behind high latencies is not the hierarchical
scheduler itself, but the preemption model of Linux. On the other hand, Xenomai makes
Linux fully preemptible, thus Xenomai outperforms other kernels.

M. Barletta, M. Cinque, L. De Simone, and R. Della Corte 15:19

Table 2 Maximum task activation latency.

Proposed LL HCBS
Load Mean [µs] Std Mean [µs] Std Mean [µs] Std

no load 5.332 0.509 22.334 12.075 28.396 18.464
cpu 5.367 0.665 18.477 10.743 25.795 11.813
io 5.695 0.726 25.016 13.083 30.771 14.328

hdd 5.983 1.061 572.969 50.047 599.308 19.923
netdev 5.231 0.600 17.718 10.643 25.082 14.313

udp 5.879 0.253 369.252 58.109 368.706 73.646

5.6 Comparison with PREEMPT_RT

Since the low-latency configuration is not able to always guarantee timeliness, in this section
we directly compare Xenomai against PREEMPT_RT. The PREEMPT_RT patch has recently solved
the conflict with rt-cgroups, from kernel v5.15.34. However, we highlight that without the
HCBS patch, the rt-cgroup scheduler does not fit any theoretical model for schedulability.
We ran rt-app in a container for 60 seconds, sampling the worst task activation latency and
slack time along the minute for each of the stress loads considered in the previous test. The
slack time is defined as d − a − C, where d is the task deadline, a is the arrival time, and C

its WCET. We repeated each test 60 times for statistical significance purposes. The rt-app
generates a single thread with a period of 10 ms and a runtime of 1.8 ms, to avoid budget
limitation of the scheduling policies. Obtained results are shown in Figure 9.

Figure 9 Boxplots of both worst task activation latencies (lower is better) and slack times (higher
is better) under different stress loads.

Activation latencies, although comparable, are always lower for Xenomai under each
stress, with an average improvement of at least 30% in the case of the udp load, and above
50% for the hdd load, which is still particularly troublesome for Linux. The lower latencies
with regard the low-latency configuration confirm our statement that high latencies in the
previous experiments are due to non-preemptible sections. Even the slack time for the
proposed system is closer to the expected (i.e., 8200µs). Moreover, the slack time of our
solution presents a lower standard deviation with regard to PREEMPT_RT, probably due
to a lower predictability and higher the complexity of Linux, along its difficulty to handle
workloads. Once again, under hdd load, Linux presents the worst outlier.

6 Conclusion

In this work, we introduced a novel architecture for real-time containers by leveraging a
hierarchical deferrable server scheduler in a real-time co-kernel. We integrated the solution
with a real-time networking stack (i.e., RTnet) for communication purposes, and provided
the schedulability test and a user-level APIs to deploy the containers. The proposed
architecture has been implemented extending the Xenomai co-kernel; the source code has

ECRTS 2022

15:20 Achieving Industrial Edge MCS Isolation with RT-Containers

been made publicly available. Extensive experimental tests have been performed, showing
that the proposed solution is promising in terms of latency, overhead, and, most importantly,
isolation against disturbances. Specifically, a low-priority container can resist against severe
misbehavior of a high-priority container, with no impact in terms of timing failures (i.e., no
deadline miss). Further, comparing the proposed architecture with solutions in the state
of the art, we obtain benefits in terms of task activation latencies. Future works aim at
supporting rt-containers in the context of container orchestration platforms (e.g., Kubernetes),
in order to create a fully-automated mixed-criticality industrial edge/cloud solution.

References
1 L. Abeni, A. Balsini, and T. Cucinotta. Container-based real-time scheduling in the linux

kernel. SIGBED Rev., 16(3):33–38, November 2019.
2 Amazon Inc. Getting started with cloud-native automotive software development. URL:

https://catalog.us-east-1.prod.workshops.aws/v2/workshops/12f31c93-5926-4477-
996c-d47f4524905d/en-US. Accessed 17th June 2022.

3 Marco Barletta, Marcello Cinque, Luigi De Simone, and Raffaele Della Corte. Xeno-containers,
GitLab repo. https://dessert.unina.it:8088/marcobarlo/xeno-containers.

4 Sebastian Böhm and Guido Wirtz. Profiling lightweight container platforms: Microk8s and
k3s in comparison to kubernetes. In Proc. ZEUS, pages 65–73, 2021.

5 A. Burns and R. I. Davis. Mixed Criticality Systems – a review. Tech Rep of the University
of York, 2018. URL: https://www-users.cs.york.ac.uk/burns/review.pdf.

6 Felipe Cerqueira and Björn Brandenburg. A comparison of scheduling latency in linux, preempt-
rt, and litmus rt. In 9th Annual workshop on operating systems platforms for embedded real-time
applications, pages 19–29. SYSGO AG, 2013.

7 Marcello Cinque, Domenico Cotroneo, Luigi De Simone, and Stefano Rosiello. Virtualizing
mixed-criticality systems: A survey on industrial trends and issues. Elsevier Future Generation
Computer Systems, 2021.

8 Marcello Cinque, Raffaele Della Corte, Antonio Eliso, and Antonio Pecchia. Rt-cases:
Container-based virtualization for temporally separated mixed-criticality task sets. In 31st Eur-
omicro Conference on Real-Time Systems (ECRTS 2019). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2019.

9 Marcello Cinque, Raffaele Della Corte, and Roberto Ruggiero. Preventing timing failures in
mixed-criticality clouds with dynamic real-time containers. In 2021 17th European Dependable
Computing Conference (EDCC), pages 17–24. IEEE, 2021.

10 Multiple contributors. Scheduler tools /rt-app. https://github.com/scheduler-tools/
rt-app. Accessed 17th June 2022.

11 Breno Costa, Joao Bachiega Jr, Leonardo Rebouças de Carvalho, and Aleteia PF Araujo.
Orchestration in fog computing: A comprehensive survey. ACM Computing Surveys (CSUR),
55(2):1–34, 2022.

12 Tommaso Cucinotta, Luca Abeni, Mauro Marinoni, Riccardo Mancini, and Carlo Vitucci.
Strong temporal isolation among containers in openstack for nfv services. IEEE Transactions
on Cloud Computing, pages 1–1, 2021.

13 N. T. Dantam et al. The ach library: A new framework for real-time communication. IEEE
Robotics Automation Magazine, 22(1):76–85, 2015.

14 Neil T Dantam, Daniel M Lofaro, Ayonga Hereid, Paul Y Oh, Aaron D Ames, and Mike
Stilman. The ach library: A new framework for real-time communication. IEEE Robotics &
Automation Magazine, 22(1):76–85, 2015.

15 R.I. Davis and A. Burns. Hierarchical fixed priority pre-emptive scheduling. In 26th IEEE
International Real-Time Systems Symposium (RTSS’05), pages 10 pp.–398, 2005. doi:10.
1109/RTSS.2005.25.

https://catalog.us-east-1.prod.workshops.aws/v2/workshops/12f31c93-5926-4477-996c-d47f4524905d/en-US
https://catalog.us-east-1.prod.workshops.aws/v2/workshops/12f31c93-5926-4477-996c-d47f4524905d/en-US
https://dessert.unina.it:8088/marcobarlo/xeno-containers
https://www-users.cs.york.ac.uk/burns/review.pdf
https://github.com/scheduler-tools/rt-app
https://github.com/scheduler-tools/rt-app
https://doi.org/10.1109/RTSS.2005.25
https://doi.org/10.1109/RTSS.2005.25

M. Barletta, M. Cinque, L. De Simone, and R. Della Corte 15:21

16 Rob Davis and Alan Burns. An investigation into server parameter selection for hierarchical
fixed priority pre-emptive systems. In 16th International Conference on Real-Time and Network
Systems (RTNS 2008), 2008.

17 Daniel Bristot de Oliveira, Daniel Casini, Rômulo Silva de Oliveira, and Tommaso Cucinotta.
Demystifying the real-time linux scheduling latency. In 32nd Euromicro Conference on
Real-Time Systems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

18 Raimarius Delgado, Bum-Jae You, and Byoung Wook Choi. Real-time control architecture
based on xenomai using ros packages for a service robot. Journal of Systems and Software,
151:8–19, 2019.

19 Zhong Deng and JW-S Liu. Scheduling real-time applications in an open environment. In
Proceedings Real-Time Systems Symposium, pages 308–319. IEEE, 1997.

20 Dipartimento di Ingegneria Aerospaziale del Politecnico di Milano (DIAPM). RTAI - the
RealTime Application Interface for Linux. https://www.rtai.org/. Accessed 17th June 2022.

21 P. Emberson, R. Stafford, and R.I. Davis. Techniques for the synthesis of multiprocessor
tasksets. WATERS’10, January 2010.

22 Colin Ian King et al. Stress-ng GitHub repository. https://github.com/ColinIanKing/
stress-ng. Accessed 17th June 2022.

23 Cucinotta et al. Taskset generator. https://gitlab.retis.santannapisa.it/t.cucinotta/
rtsim/-/blob/master/src/taskset_generator/taskgen.py. Accessed 17th June 2022.

24 Stefano Fiori, Luca Abeni, and Tommaso Cucinotta. Rt-kubernetes—containerized real-time
cloud computing. In 37th ACM/SIGAPP Symposium on Applied Computing (SAC ’22), 2022.

25 The Linux Foundation. Know Limitations of PREEMPT_RT patch. https://wiki.
linuxfoundation.org/realtime/documentation/known_limitations. Accessed 17th June
2022.

26 C. Garre, D. Mundo, M. Gubitosa, and A. Toso. Real-time and real-fast performance of
general-purpose and real-time operating systems in multithreaded physical simulation of
complex mechanical systems. Mathematical Problems in Engineering, 2014, 2014.

27 Carlos Garre, Domenico Mundo, Marco Gubitosa, and Alessandro Toso. Performance compar-
ison of real-time and general-purpose operating systems in parallel physical simulation with
high computational cost. Technical report, SAE Technical Paper, 2014.

28 Tom Goethals, Filip De Turck, and Bruno Volckaert. Fledge: Kubernetes compatible container
orchestration on low-resource edge devices. In International Conference on Internet of Vehicles,
pages 174–189. Springer, 2019.

29 T. Goldschmidt, S. Hauck-Stattelmann, S. Malakuti, and S. Grüner. Container-based archi-
tecture for flexible industrial control applications. Journal of Systems Architecture, 84:28–36,
2018.

30 Thakor Bhishmapalsinh Jitendrasinh and Shripad Deshpande. Implementation of can bus
protocol on xenomai rtos on arm platform for industrial automation. In 2016 International
Conference on Computation of Power, Energy Information and Commuincation (ICCPEIC),
pages 165–169. IEEE, 2016.

31 Kuljeet Kaur, Sahil Garg, Gagangeet Singh Aujla, Neeraj Kumar, Joel JPC Rodrigues, and
Mohsen Guizani. Edge computing in the industrial internet of things environment: Software-
defined-networks-based edge-cloud interplay. IEEE communications magazine, 56(2):44–51,
2018.

32 Jan Kiszka. Xenomai Homepage. URL: https://source.denx.de/Xenomai/xenomai/-/wikis
/home. Accessed 17th June 2022.

33 Jan Kiszka and Bernardo Wagner. Rtnet-a flexible hard real-time networking framework. In
2005 IEEE Conference on Emerging Technologies and Factory Automation, volume 1, pages
8–pp. IEEE, 2005.

34 John Lehoczky, Lui Sha, and Yuqin Ding. The rate monotonic scheduling algorithm: Exact
characterization and average case behavior. In RTSS, volume 89, pages 166–171, 1989.

35 Jane W. S. Liu. Real-Time Systems. Prentice Hall, Upper Saddle River, NJ, 2000.

ECRTS 2022

https://www.rtai.org/
https://github.com/ColinIanKing/stress-ng
https://github.com/ColinIanKing/stress-ng
https://gitlab.retis.santannapisa.it/t.cucinotta/rtsim/-/blob/master/src/taskset_generator/taskgen.py
https://gitlab.retis.santannapisa.it/t.cucinotta/rtsim/-/blob/master/src/taskset_generator/taskgen.py
https://wiki.linuxfoundation.org/realtime/documentation/known_limitations
https://wiki.linuxfoundation.org/realtime/documentation/known_limitations
https://source.denx.de/Xenomai/xenomai/-/wikis/home
https://source.denx.de/Xenomai/xenomai/-/wikis/home

15:22 Achieving Industrial Edge MCS Isolation with RT-Containers

36 C.-N. Mao et al. Minimizing latency of real-time container cloud for software radio access
networks. In IEEE 7th International Conference on Cloud Computing Technology and Science,
pages 611–616, 2015.

37 José Martins, Adriano Tavares, Marco Solieri, Marko Bertogna, and Sandro Pinto. Bao:
A lightweight static partitioning hypervisor for modern multi-core embedded systems. In
Workshop on Next Generation Real-Time Embedded Systems (NG-RES 2020). Schloss Dagstuhl-
Leibniz-Zentrum für Informatik, 2020.

38 Philip Masek, Magnus Thulin, Hugo Sica de Andrade, Christian Berger, and Ola Benderius.
Systematic evaluation of sandboxed software deployment for real-time software on the example
of a self-driving heavy vehicle. CoRR, abs/1608.06759, 2016. arXiv:1608.06759.

39 Miguel Masmano, Ismael Ripoll, Alfons Crespo, and J Metge. Xtratum: a hypervisor for
safety critical embedded systems. In 11th Real-Time Linux Workshop, pages 263–272. Citeseer,
2009.

40 Paul Menage. Cgroups. https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.
txt. Accessed 17th June 2022.

41 Hassan Ghasemzadeh Mohammadi, Rahil Arshad, Sneha Rautmare, Suraj Manjunatha,
Maurice Kuschel, Felix Paul Jentzsch, Marco Platzner, Alexander Boschmann, and Dirk
Schollbach. DeepWind: An Accurate Wind Turbine Condition Monitoring Framework via
Deep Learning on Embedded Platforms. In Proc. ETFA, volume 1, pages 1431–1434, 2020.

42 M. S. Mollison, J. P. Erickson, J. H. Anderson, S. K. Baruah, and J. A. Scoredos. Mixed-
Criticality Real-Time Scheduling for Multicore Systems. 10th IEEE International Conference
on Computer and Information Technology, Bradford, pp. 1864-1871, 2010.

43 Harald Mueller, Spyridon V. Gogouvitis, Andreas Seitz, and Bernd Bruegge. Seamless
computing for industrial systems spanning cloud and edge. In 2017 International Conference
on High Performance Computing Simulation (HPCS), pages 209–216, 2017.

44 Thorsten Piper, Stefan Winter, Oliver Schwahn, Suman Bidarahalli, and Neeraj Suri. Mitig-
ating timing error propagation in mixed-criticality automotive systems. In 2015 IEEE 18th
International Symposium on Real-Time Distributed Computing, pages 102–109. IEEE, 2015.

45 Federico Reghenzani, Giuseppe Massari, and William Fornaciari. The real-time linux kernel:
A survey on preempt_rt. ACM Computing Surveys (CSUR), 52(1):1–36, 2019.

46 Siemens AG. Jailhouse hypervisor source code. URL: https://github.com/siemens/
jailhouse.

47 José Simó, Patricia Balbastre, Juan Francisco Blanes, José-Luis Poza-Luján, and Ana Guasque.
The role of mixed criticality technology in industry 4.0. Electronics, 10(3):226, 2021.

48 V. Struhár et al. Real-Time Containers: A Survey. In 2nd Workshop on Fog Computing and
the IoT, volume 80 of OpenAccess Series in Informatics, pages 7:1–7:9, Dagstuhl, Germany,
2020.

49 Václav Struhár, Silviu S. Craciunas, Mohammad Ashjaei, Moris Behnam, and Alessandro V.
Papadopoulos. React: Enabling real-time container orchestration. In 26th IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA), pages 1–8, 2021.

50 T. Tasci, J. Melcher, and A. Verl. A container-based architecture for real-time control applica-
tions. In 2018 IEEE International Conference on Engineering, Technology and Innovation
(ICE/ITMC), pages 1–9, 2018.

51 Lane Thames and Dirk Schaefer. Software-defined cloud manufacturing for industry 4.0.
Procedia cirp, 52:12–17, 2016.

52 The Linux Foundation. Homepage of LF Edge Foundation. https://elisa.tech/.
53 The Linux Foundation. Kubernetes Home Page. https://kubernetes.io/.
54 The Linux Foundation. Real-time group scheduling. https://www.kernel.org/doc/

Documentation/scheduler/sched-rt-group.txt. Accessed 17th June 2022.
55 Wind River Systems, Inc. WindRiver VxWorks Virtualization Profile. http://www.windriver.

com/products/vxworks/technology-profiles/#virtualization. Accessed 17th June 2022.

http://arxiv.org/abs/1608.06759
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://www.kernel.org/doc/Documentation/cgroup-v1/cgroups.txt
https://github.com/siemens/jailhouse
https://github.com/siemens/jailhouse
https://elisa.tech/
https://kubernetes.io/
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
https://www.kernel.org/doc/Documentation/scheduler/sched-rt-group.txt
http://www.windriver.com/products/vxworks/technology-profiles/#virtualization
http://www.windriver.com/products/vxworks/technology-profiles/#virtualization

M. Barletta, M. Cinque, L. De Simone, and R. Della Corte 15:23

56 Sisu Xi, Meng Xu, Chenyang Lu, Linh TX Phan, Christopher Gill, Oleg Sokolsky, and Insup
Lee. Real-time multi-core virtual machine scheduling in xen. In 2014 International Conference
on Embedded Software (EMSOFT), pages 1–10. IEEE, 2014.

57 Xilinx. RunX GitHub repository. https://github.com/Xilinx/runx.
58 Chengjing Yu, Xudong Ma, Fang Fang, Kun Qian, Shun Yao, and Yanping Zou. Design of

controller system for industrial robot based on rtos xenomai. In 2017 12th IEEE Conference
on Industrial Electronics and Applications (ICIEA), pages 221–226. IEEE, 2017.

59 Wuyang Zhang, Sugang Li, Luyang Liu, Zhenhua Jia, Yanyong Zhang, and Dipankar
Raychaudhuri. Hetero-edge: Orchestration of real-time vision applications on heterogen-
eous edge clouds. In IEEE INFOCOM 2019-IEEE Conference on Computer Communications,
pages 1270–1278. IEEE, 2019.

ECRTS 2022

https://github.com/Xilinx/runx

Parallelism-Aware High-Performance
Cache Coherence with Tight Latency Bounds
Reza Mirosanlou #

University of Waterloo, Canada

Mohamed Hassan #

McMaster University, Hamilton, Canada

Rodolfo Pellizzoni #

University of Waterloo, Canada

Abstract
In Commercial-Off-The-Shelf (COTS) systems-on-chip, processing elements communicate data
through a shared memory hierarchy, and a coherent high-performance interconnect, where the de
facto standard to handle shared data is through a coherence protocol. Driven by the extraordinary
demands from modern real-time embedded system applications to generate, process, and communicate
massive amounts of data, recent efforts aim to ensure timing predictability while integrating cache
coherence in multi-core real-time systems. However, we observe that most of these efforts compromise
system average performance upon offering predictability guarantees. Motivated by this observation,
this work proposes an arbiter aimed at providing a predictable, coherent shared cache hierarchy
solution, yet with a negligible performance degradation compared to COTS solutions. We achieve
this goal by adopting a high-performance-driven architecture including a split-transaction bus
and bankized shared cache. In addition, all accesses are arbitrated through a global ordering
mechanism. Our proposed arbiter operates alongside conventional coherence protocols without
requiring any protocol modifications. Furthermore, we leverage the Duetto reference model by
pairing the proposed arbiter and a high-performance arbiter. We evaluate our solution based
on both synthetic and SPLASH-3 benchmarks, showing that we can significantly outperform the
state-of-the-art in predictable cache coherence, while offering a COTS-level performance.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture;
Computer systems organization → Embedded hardware

Keywords and phrases Predictability, Cache, COTS, Arbitration, Real-time system

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.16

Acknowledgements We would like to thank the anonymous reviewers for their valuable feedback, and
our shepherd for helping to significantly improve this paper. This work has been supported in part by
NSERC, CMC Microsystems, and TII. Any opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily reflect the views of the
sponsors.

1 Introduction

Enabling data sharing is imperative in modern embedded systems—automotive, Unmanned
Air Vehicles (UAVs), and Internet-of-Things (IoT) to name a few. In these systems, massive
amounts of data have to be collected (sensor fusion, cameras, etc), communicated through
interconnect(s), and processed by various processing elements. As a result, recent efforts
have been proposed to shift away from the independent task model, where tasks do not
share data to a more-practical model that embraces data sharing and enables inter-core
communication [5, 4, 21, 10, 33, 6, 34, 17]. Among these solutions, we find those leveraging
cache-coherent interconnects to be promising due to their performance benefits as well as
transparency to the software stack. In addition, cache coherence is already the standard de
facto in Commercial-Off-The-Shelf (COTS) multi-core platforms.

© Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 16; pp. 16:1–16:27

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rmirosan@uwaterloo.ca
mailto:mohamed.hassan@mcmaster.ca
mailto:rpellizz@uwaterloo.ca
https://doi.org/10.4230/LIPIcs.ECRTS.2022.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

However, real-time embedded systems impose their own unique challenges, which do not
exist in these performance-oriented COTS platforms. Predictability comes at the top of the
list of these challenges; the architecture has to be predictable by-design to facilitate the timing
analysis, which is necessary to provide timing guarantees to tasks running on the system.
Originally designed with performance as the main goal, COTS cache coherent interconnects
deploy several re-orderings and optimizations that hinder their predictability. It has been
shown that even deploying a simple COTS coherence protocol such as the Modified-Shared-
Invalid (MSI) protocol on top of a Time Division Multiplexing (TDM)-based interconnect
revokes the system predictability [10, 16].

1.1 Related Work: Predictable Cache Coherence
To address this problem, recently the community has proposed several works that aim at
implementing predictable cache coherence solutions. However, most existing solutions impose
both coherence protocol as well as architectural modifications [10, 37, 18, 16, 17] or at the
very least require specific hardware support [9]. These changes have led in early works to
a quadratic increase in the worst-case memory latency (WCL) [10, 37, 18] (Problem 1).
Moreover, mandating coherence protocol modifications discourages a real adoption of these
solutions from the industry since adoption and verification of a new coherence protocol is
known to be one of the most complex architectural tasks [36, 30] (Problem 2). PISCOT [15]
addresses these problems by deploying of COTS coherence protocols on split-transaction
interconnects. It also reduces the quadratic worst-case coherence latency to be linear in the
number of cores. Nonetheless, PISCOT achieves this tight WCL by deploying two techniques
that limit the overall memory performance compared to COTS solutions. The first is a
TDM-based request bus, which is needed to enforce predictability, and the second is limiting
the number of requests that each core can issue to the interconnect to one, which is needed
to achieve the aforementioned tight latency (Problem 3). Additionally, similar to all
existing work, PISCOT models the data bus and the last-level cache (LLC) as a single shared
resource, and hence, no parallelism is possible in accessing the LLC (Problem 4). In COTS
platforms, since bank processing times are much longer than the data transfer on the bus,
LLC is usually a bankized memory, where different banks can process requests in parallel to
improve system’s performance [2].

1.2 Contributions
Motivated by these limitations, this paper makes the following contributions: 1) We propose
DUEPCO: a novel real-time arbitration scheme for managing memory accesses in the cache
hierarchy. This arbiter models the cache hierarchy as independent and parallel resources: the
request (control) bus, the response (data) bus, while each LLC’s bank is a resource of its own.
This is key to leverage parallelism among these components to improve average performance,
while tightening memory latency bounds (addressing 1 and 4). More details about this
arbiter are in Section 4. 2) Our proposed arbiter operates alongside conventional coherence
protocols without requiring any protocol modifications (addressing 2). 3) In Section 5, we
provide a timing analysis that ensures predictability by statically bounding the worst-case
latency suffered by any memory request. Unlike the solutions in [10, 16, 18, 37], and similar
to [15, 9, 17], this bound is linear in the number of cores (addressing 1). 4) To further
address the performance-predictability trade-off, in Section 6 we show how to extend the
Duetto reference model [25, 26] to our cache architecture. This is achieved by integrating two
arbiters: a High-performance Arbiter (HPA) offers the system a COTS-level performance

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:3

most of the time, while the proposed Real-time Arbiter (RTA) runs in parallel and is only
utilized when necessary to meet timing guarantees (addressing 3). 5) Finally, in Section 7
we evaluate the proposed arbiter against the state-of-the-art predictable coherency solution
as well as a baseline COTS solution using both synthetic and SPLASH-3 [31] benchmarks.
Our evaluation shows that our arbiter outperforms state-of-the-art predictable solutions
in terms of average memory latency by an average of 1.74×, while providing comparable
worst-case latency bounds to the best predictable mechanism. Employing Duetto can further
improve system throughput by up to 6.4× at the cost of some degradation in latency bounds.

2 Background

2.1 Hardware Cache Coherence
Cache coherence is ubiquitous in shared memory multiprocessors since it enables shared data
communication between cores while ensuring the system maintains data correctness. Data
correctness is achieved when all cores consume (upon request by load/store instructions) the
most recent copy of data. Coherence protocols employed in current Commercial-off-the-Shelf
(COTS) systems are extensions of the basic Modified-Shared-Invalid (MSI) protocol [36].
MSI consists of three fundamental stable states: 1) Modified (M): corresponds to memory
blocks that have been modified (dirty) by a write in a private/shared cache; hence, the
core/LLC is the owner of this cache line; 2) Shared (S): corresponds to the blocks that are
unmodified (clean) and held by one or more cores; 3) Invalid (I): contains potentially stale
and incoherent datum and both loads and stores will miss when accessing invalid blocks.
Note that the protocol allows multiple cores to have a cache line in the S state, while only
one core could have a cache line in the M state. According to the observed memory activity,
the state of the cache line copies will be changed in the cache controllers. There exist two
types of hardware cache coherence mechanisms based on how cores and the shared memory
perceive the memory activity: 1) snooping bus-based cache coherence [36] in which all cores
broadcast all the memory activities on the bus; 2) directory-based cache coherence [38] in
which every activity will be communicated through a centralized directory that tracks the
information regarding the cache lines among all cores. In this work, we employ snooping
bus-based coherence as they are normally deployed in multi-core systems with up to 16
cores [32, 3, 27] and also deployed in state-of-the-art efforts [15, 10, 17, 18].

2.2 Arbitration
Simultaneous access to physical shared resources such as shared bus have a significant effect
on the execution time of the applications. Therefore, having an arbiter is necessary when
multiple cores try to access the shared resource simultaneously. Similar to the other shared
resources in the system, different arbitration schemes lead to different timing characterizations
of the system [7, 28, 11, 40, 17, 15, 10, 8, 7, 24, 29, 23]. The memory bus in multicore systems
is one of the primary sources of interference. Therefore, a predictable arbiter guarantees that
each requesting core is granted the bus eventually in a defined upper-bound amount of time.
In COTS platforms, a high-performance arbiter is commonly used to maximize the overall
performance. First-Come-First-Serve (FCFS) [19] is one example in this context that does
not provide any latency guarantee for the shared memory accesses (assuming that there is
no bound on reordering requests) and favors the cores that generate more requests to the
shared resource and operate faster than the other cores in the system. On the other hand,

ECRTS 2022

16:4 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

Figure 1 Architecture model.

this could potentially lead to a case where a request from a slower core takes a very long
time to get service. Another approach is to assign a fixed priority to a certain processor but
this type of arbitration policy cannot provide a guarantee to lower priority requests.

The level of complexity of the coherence protocols heavily relies on the underlying deployed
interconnect network architecture. For instance, atomic/unified buses significantly simplify
the protocol implementation; however, the performance of the system will be significantly
degraded as all the cores are required to wait until the granted core finishes its interconnect
usage; hence, serializing the accesses. In COTS platforms such as ARM Corelink CCI550
and Intel’s QPI, the shared bus is usually implemented as a split-transaction interconnect
in order to improve system performance. This is achieved by concurrently managing both
coherent messages and data responses [35] such that the request bus and response bus will be
separated. This architecture allows pipelining operation for the requests and responses on the
bus and increases the flexibility in terms of the arbitration. In detail, a split-transaction bus
can provide responses in an order different from the request bus depending on the arbitration
on request and response buses.

3 System Model

In this section, we first detail the hardware architecture considered in this paper along
with the coherency assumptions. Then, we explain how requests generated by the cores are
processed by the proposed hardware architecture and how the latency for each request is
constructed.

3.1 Architecture and Coherency
An overview of the proposed hardware architectural model is delineated in Figure 1. We
consider a multi-core system with M Out-Of-Order (OOO) requestors1 including processing
cores, P1, ..., Pi, ..., PM where each requestor has exclusive access to a private cache. All
cores have also access to a shared memory that we assume is an on-chip Last-Level Cache
(LLC). We assume that tasks running on the cores can share data among each other; hence,
a coherency protocol must be employed in the system to allow coherent actions among cores
and LLC. We consider both data transfers between a private cache and the LLC, as well
as direct Cache-to-Cache (C2C) transfers between private caches, which exhibit improved
average-case performance. In this paper, we adopt the MSI coherency protocol that includes
three fundamental stable states as discussed in Section 2. Notice that we use the MSI as an

1 We use cores and requestors interchangeably throughout the paper.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:5

exemplar protocol; however, the proposed solution can work in tandem with other protocols.
This is because we do not modify the coherency protocol by any means and all proposed
elements of the design are independent of the details of the implemented protocol. This also
simplifies the verification efforts compared to the approaches that alter protocols.

Instead of a unified interconnect commonly deployed in real-time architectures, we consider
a split-transaction bus in which all communications between cores and LLC is done using two
separate buses: 1) request bus, which is responsible for broadcasting the coherency messages;
2) response bus, which is a dedicated interconnect to transfer the data responses from/to
cores. These two buses operate in parallel to improve the performance of the system. The
request bus and response bus take a certain amount of time to transfer message packet and
data response, which we represent with tREQ and tRESP , respectively. In order to maximize
the parallelism in the system, we propose to bankize the LLC such that multiple requests
can be processed simultaneously. Bankizing LLC is a common approach in COTS platforms
to increase system’s performance such as in Intel’s architecture [2]. Therefore, we assume
that the LLC consists of N independent banks, b1, ..., bi, ..., bN where each bank consumes a
certain amount of time tBANK to process writing data to (or retrieving data from) the cache
data array inside each bank. In addition, LLC banks could be shared among all cores [12]
or partially shared similar to [22]. In our model, we assume the former. Similar to existing
related works [40, 17, 15, 10, 8], in this paper, we only focus on the interference suffered by
the L1-LLC traffic due to coherence, shared cache(s), and shared interconnects and do not
model the extra interference occurring in off-chip memory due to LLC misses. This latter
can be bounded using other existing orthogonal approaches such as [39, 12, 13, 7].

We assume that each cache entity (private and LLC) has its own set of interconnect
buffers: TxMsg, RxMsg, TxResp, and RxResp to register the incoming/outgoing messages and
data responses. RxMsg contains the incoming message packets from the request bus. We
assume that every message will be decoded immediately in the private cache and each LLC
bank even if the bank is busy writing/retrieving data from its data array. TxMsg contains
the outgoing message packets from any core/bank that must snoop on the request bus. For
instance, if a core asks to modify a cache line that it is not in possession of, the core must
inform other cores by a coherency message (GetM) and push it in its own TxMsg buffer to
be propagated on the request bus. This allows other cores/LLC to be aware of this action.
RxResp contains the data responses coming from the response bus. RxResp at each core
includes data response that the bank provides or data response due to a cache-to-cache
transfer. RxResp at LLC bank includes the data response supplied by the cores in case of
write-back. Notice that unlike RxResp buffers of each core, the data responses placed in
LLC RxResp must be processed in the bank which takes tBANK to process. Finally, TxResp
includes the responses that need to be transferred on the response bus. The request bus,
response bus, and LLC banks act as independent shared resources which conduct their
own independent arbitration policies. In detail, the request bus arbiter is responsible to
arbitrate the messages residing in TxMsg and the data responses inside TxResp buffers are
arbitrated through the response bus arbiter. Similarly, each arbiter at LLC bank arbitrates
the message/responses in RxMsg and RxResp buffers.

3.2 Request Processing and Order of Arbitration
From the perspective of the coherency architecture, a requestor issues requests to the system
based on the following activities in L1 cache: 1) load miss requests; 2) store miss requests,
including stores to a cache line in S state; 3) replacement requests due to a write-back to
shared memory or caused by an eviction. As mentioned earlier in this section, the proposed

ECRTS 2022

16:6 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

(a) P1 executes load to A owned by P0. (b) P1 executes store/load to A owned by LLC bank.

(c) P1 replace A to LLC bank. (d) P1 executes store to A owned by P0.

Figure 2 The sequence of arbitration based on the request type.

architecture applies the arbitration schemes at all different resources including request bus,
response bus, and each bank in LLC. Requests can experience different sequences of services
on the arbitration resources. In detail, we consider three different types T of requests,
depending on the sequence of arbitration: 1) REQ:RESP:BANK meaning that it first needs to
broadcast on the request bus, then the data response will be propagated on the response
bus and finally the data response should be processed at LLC bank; 2) REQ:BANK:RESP
representing requests that need to first broadcast on the request bus, then the shared bank
must process and fetch the data response and finally this data response must be propagated
over the response bus; 3) REQ:RESP: the last category is related to cache-to-cache transfers.
In such a scenario, after broadcasting the message on the request bus, the response will be
supplied by the owner core on the response bus.

Figure 2 depicts all possible cases in which a request can be processed based on its type
and coherency status. Figure 2a represents a scenario where core P1 aims to load cache line
A; therefore, it first needs to broadcast its action by sending the required coherency message
on the request bus. Here, the owner of A is P0 and the cache line A is in M coherency
state; hence, according to MSI coherency protocol, P0 must send A to both core P1 and
the LLC bank by pushing the response data into RxResp buffer of P1 and the bank. Then,
P1 receives its data response; however, the data still needs to be processed inside the bank
which requires tBANK time. Note that all of these actions are eligible to execute after their
corresponding arbitration issue them the grant to access the resource. Hence, the sequence
of arbitration for this request follows REQ:RESP:BANK.

In Figure 2b a load/store request from P1 targets cache line A which is owned by the
shared bank. Therefore, the bank is responsible to process the request, and then it can
be returned to the core through the response bus. Hence, the sequence of arbitration for
this request follows REQ:BANK:RESP. For the replacement request shown in Figure 2c, after
broadcasting the message, the core needs to transfer the data to the LLC bank by sending
it to the RxResp buffer of bank. Hence, the sequence of arbitration for this request follows
REQ:RESP:BANK. Finally, Figure 2d shows a scenario where P1 tries to store to cache line A

while the line is owned by P0. According to the MSI coherency protocol, the LLC bank
is not required to acknowledge this action; therefore, sending the response from P0 to P1
suffices the store request and the sequence of arbitration for this request follows REQ:RESP.

Finally, to maintain the correctness of execution, the service order for requests to the same
cache line must respect the order in which the requests are issued on the request bus. Once
a request starts being issued on the request bus, we say that it depends on previous requests
to the same cache line which have already been issued on the request bus but not completed
yet. Since requests are issued one at a time on the request bus, this means that requests

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:7

Figure 3 The lower priority request from P1 depends on the higher priority request of P0 to the
same cache line A.

to the same cache line form a chain of dependencies, where requests are ordered based on
when they are issued on the request bus. Due to dependencies, requests must complete in
the same order in which they are issued on the request bus. In addition, some requests
might not move to the next resource even though their process is finished at the current
resource. Specifically, we say that a request is ready on a resource if it can be considered
for arbitration at that resource. A request becomes ready on REQ when it arrives. For a
RESP or BANK resource, a request becomes ready when it finishes processing at its previous
resource, or when the previous request in the chain of dependencies finishes on that resource
(if such previous request exists and uses the resource), whichever happens later. Figure 3
shows an example with two requests of different types targeting the same cache line A: the
request of P0 follows the scenario in Figure 2b while P1 follows Figure 2a. Since the request
of P0 is issued on the request bus first, the request of P1 depends on it and, to maintain
consistency, it cannot start service on the response bus until P0 finishes receiving the data
from the response bus.

3.3 Latency Model
Now, we are able to precisely define the request latency from the core perspective. We
assume that the requests of each core Pi can be ordered based on their arrival time. Hence,
we can index them as ri,1, ..., ri,j , Each request has a type T according to its sequence.
Since OOO cores might issue multiple requests simultaneously and the LLC contains many
independent banks, they can serve multiple requests simultaneously. It is thus important to
formally define the finish time and processing time of a request.

▶ Definition 1 (Arrival and Finish Time). Let ta
i,j be the arrival time of request ri,j, that is,

the time at which ri,j is queued in TxMsg. The finish time tf
i,j of ri,j is the time at which the

last action in its sequence is completed. This includes writing to the shared bank if the type
of sequence is REQ:RESP:BANK or receiving the response from the response bus if the type of
sequence is REQ:BANK:RESP and REQ:RESP. We say a request is outstanding if it has already
arrived but is not finished yet. We say a request is pending if it is outstanding and it has
already started or completed being issued on the request bus.

Note that while the concept of a pending request is not used in this section, it will be
relevant when defining the arbiter behavior in Section 4 because, as previously explained,
requests to the same cache line become dependent on each other once they become pending.

▶ Definition 2 (Processing Latency). For any request ri,j , let precj be the index of the request
ri,precj

of Pi with latest finish time among those that arrived before ri,j (i.e., such that
precj < j). Then the processing latency of ri,j is max

(
0, tf

i,j − max(tf
i,precj

, ta
i,j)

)
.

ECRTS 2022

16:8 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

ri,j

ri,j+1

ri,j+2

Processing of ri,j

time

t
a
i,j

ta
i,j+1

ta
i,j+2

t f
i,j

t
f

i,j+1

t
f
i,j+2

Processing of ri,j+2

Figure 4 Processing latency example. Assume that all previous requests ri,l with l < j finish
before ta

i,j . We use ↑ for the arrival time ta
i,j of each request and ↓ for its finish time tf

i,j .

▶ Definition 3 (Oldest Request). At any time t, the oldest request of a requestor (if any) is
the earliest arrived request of that requestor that is still outstanding at t.

Figure 4 delineates a clarifying example, borrowed from [25], where three requests arrive
from the same core such that precj+1 = precj+2 = j. ri,j becomes the oldest request as soon
as it arrives at ta

i,j . Initially, both ri,j+1 and ri,j+2 are non-oldest requests. Similar to related
work, we are interested in bounding the processing latency of requests. This is due to the fact
that when a requestor issues multiple requests and stalls until they finish, the stall time is
upper bounded by the sum of the processing latencies of the requests. In detail, as discussed
in [20, 39], the latency suffered by a real-time task running on a core accessing a shared
resource can be bounded by the sum of the processing latency of the requests issued by the
task. For this reason, the processing latency of ri,j+1, which is covered by the processing
time of ri,j , is set to zero. Notice that a non-oldest request might or might not become the
oldest request of its requestor. As shown in the example, ri,j+2 becomes oldest once ri,j

finishes, while ri,j+1 never became oldest and its processing time is zero. For this reason, we
only need to consider the processing latency of oldest requests. Finally, if a request becomes
oldest, by definition it does so at time max(tf

i,precj
, ta

i,j) when its processing latency starts.

3.4 Task Analysis
In Section 5, we will derive a bound on the processing latency for each of the three types of
request defined in Section 3.2. The total access latency for a task can then be determined by
summing the product of the number of requests of each type issued by the task by the WCL
for that type [14].

We assume that a portion of accesses by the task targets data shared with other cores,
while some accesses are to non-shared data. For each case, we need to retrieve the number
of load miss requests, store miss requests, and the number of replacements from the task.
For non-shared data, approaches based on either profiling or static analysis can be used to
extract the number of requests. For shared data, to the best of our knowledge, no general
method exists to determine which cache lines exists in the cache of the other cores at any
point of time. A safe assumption can be adopted where every load request on shared data is
considered a load miss, and every store request on shared data is considered a store miss [15].
However, if better assumptions can be made based on code analysis, our framework can take
advantage of them by deriving different latency bounds for each type of request.

Note that based on Figure 2, for shared data, load misses can be of type REQ:RESP:BANK
or REQ:BANK:RESP, as shown in Figures 2a and 2b, while store misses can be either
REQ:BANK:RESP or REQ:RESP. For non-shared data, load and store misses can only be of type
REQ:BANK:RESP. Replacements can only follow REQ:RESP:BANK as shown in Figure 2c. If we
cannot determine the specific type of a request based on task analysis, we simply consider
the largest latency among the types to which the request might belong.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:9

4 Proposed Arbiter

This section describes the behavioral details of the proposed arbiter. The proposed arbiter
considers the realistic hardware architecture introduced in Section 3 and maintains pre-
dictability by design while maximizing average-case performance. Based on the hardware
architecture, there exist three distinct types of resources in the system. Formally, we capture
the behavior of the proposed arbiter by a set of rules. In order to predictably manage
interference among different cores, the arbiter maintains a unified Global Round-Robin
(GRR) order of requestors across all resources. A requestor is removed from the GRR queue
after the oldest request of that requestor completes at its last resource, and it is inserted at
the back of the queue either immediately when it has any other request or when its next
request arrives. At any point in time, the Global Request Queue shown in Figure 1 contains
all outstanding requests in the system as well as their state in terms of their next resource
that they need to get processed on. In addition, a work-conserving approach is used at each
resource to increase overall system performance. Specifically, the proposed arbiter deploys a
two-level arbitration mechanism: 1) oldest requests over non-oldest per core; 2) GRR order
among the oldest requests; if no oldest request is ready, GRR over non-oldest requests.

Rule 1. (Global Round-Robin Ordering) The arbiter maintains a Global Round-Robin
order of requestors across all resources. Each request is associated with a GRR priority as
follows: given two outstanding requests rp,q, ri,j , rp,q has higher GRR priority than ri,j if:
(1) rp,q is oldest and ri,j is not oldest; or (2) rp,q and ri,j are both oldest or both non-oldest,
and Pp is ahead of Pi in the GRR order of requestors.

Note that GRR priorities for oldest requests are static, in the sense that they never
change while an oldest request is outstanding: this is because the relative requestor order
in the GRR queue is fixed once the request becomes oldest. However, GRR priorities for
non-oldest requests are not static: specifically, a non-oldest request rp,q might have higher
GRR priority than a non-oldest request ri,j at time t, but its GRR priority might become
lower than ri,j at some later time t′ once an oldest request of Pp completes, forcing Pp to be
enqueued at the back of the GRR queue (assuming that rp,q does not become oldest at t′).

The arbiter manages each resource independently, selecting the highest priority request
that is ready on each resource. Since requests that are ready on the request bus do not
depend on other requests, the arbiter manages the request bus according to strict GRR
priorities. However, requests that are ready on a bank or the response bus might depend
on each other. To correctly arbitrate in the presence of dependant requests, we further
introduce a priority inheritance mechanism, where a lower-priority pending request inherits
the priority of a higher-priority request that depends on it. Note a further complexity: a
lower-priority pending request might target the same cache line as a higher-priority request,
but the higher-priority request does not depend on it if the higher-priority request has not yet
started being issued on the request bus. However, the higher-priority request will eventually
become pending and thus depend on the lower-priority one. To capture such behavior, we
extend the concept of dependency to the one of eventual dependency to include both requests
that are currently dependent, but also requests that will be dependent in the future once
they become pending. Based on this concept, we can define dynamic priorities that are used
to arbitrate on each bank and the response bus.

Rule 2. (Priority Inheritance) The dynamic priority of a request is equal to the highest
priority between its own GRR priority and (if the request is pending) the GRR priority of
any other request that eventually depends on it.

ECRTS 2022

16:10 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

Rule 3. (Resource Arbitration) The arbiter manages all three resources, including request
bus, response bus, and each LLC banks, independently. On the request bus, the arbiter
selects the ready request with the highest GRR priority. On the response bus and each
bank, the arbiter selects the request that is ready on the corresponding resource and has the
highest dynamic priority.

As before, eventually dependent requests form an eventual chain of dependencies, based
on the order in which they either already became or will become pending. Note that since
the request bus follows strict GRR priorities, an oldest request that is not pending yet will
be preceded in the eventual chain of dependency by all already pending requests to the same
cache line, as well as by all other oldest requests to the same cache line that are not pending
yet and have higher GRR priority.

The proposed arbiter supports out-of-order execution, allowing processing cores to issue
multiple requests simultaneously. Based on Rule 3, it is clear that if the arbiter allows many
non-oldest requests to the same cache line to be sent, then an oldest request could arrive
and suffer priority inversion on all those non-oldest requests. Therefore, to limit the amount
of priority inversion in the system, we set a parameter kceil ≥ 0, that controls the possibility
of sending non-oldest requests ahead of a possible oldest request to the same cache line.

Rule 4. (Request Blocking) When applying Rule 3 on the request bus, the arbiter does not
consider a non-oldest request ri,j if there are already other kceil pending non-oldest requests
to the same cache line.

5 Latency Analysis

In this section, we detail the latency analysis for the proposed arbiter. Specifically, consider
an oldest request under analysis rua of type T targeting a bank bk, and let ta

ua, tf
ua, tf

precua

be its arrival, finish time, and the finish time of the request with latest finish time among
those that arrived before rua and belong to the same core. We first show how to compute an
upper bound to the remaining latency (time to finish) tf

ua − tnow of rua at time tnow, based
on the current state of the resource - following related work [25], we call this the dynamic
bound. Then, we obtain the static worst-case bound ∆(T , kceil), i.e. an upper bound to the
processing latency of any request of type T for a given value of kceil, by maximizing the
dynamic bound over all possible states of the system at time tnow = max(tf

precua
, ta

ua) when
rua becomes oldest.

5.1 Dynamic Latency Analysis

Depending on its type T and its current state at time tnow, rua will need to be serviced on
one or more resources; in analogy to processor scheduling, we say that rua must execute
on those resources. As in Section 3.2, we use REQ to denote the request bus, RESP for the
response bus, and BANK for bank bk.

We start by proving a fundamental property of the proposed arbitration scheme; namely,
the fact that, despite the priority inheritance mechanism in arbitration Rule 2, a lower-priority
request ri,j cannot increase its dynamic priority above rua after time tnow.

▶ Lemma 4. Consider any request ri,j other than rua. If ri,j has lower dynamic priority
than rua at tnow, or has not arrived in the system yet, then its dynamic priority cannot
become higher than rua at any time t > tnow while both requests are outstanding.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:11

Proof. We first show that the dynamic priority of rua cannot decrease after tnow. By
arbitration Rule 2, the dynamic priority of rua at tnow is equal to either its GRR priority,
or the GRR priority of a higher-priority request rp,q that eventually depends on rua. Since
rua is oldest, such GRR priorities are static and cannot decrease. Furthermore, as noted in
Section 3.2, the coherency protocol forces requests to finish in dependency order. Hence, if
rua inherits the GRR priority of rp,q at tnow, then rp,q cannot finish before rua, and thus the
dynamic priority of rua cannot decrease below the GRR priority of rp,q.

Next, we show that the GRR priority of ri,j cannot become higher than the dynamic
priority of rua: (1a) if ri,j is already oldest at time tnow, then its GRR priority is static and
thus cannot increase; (1b) otherwise, the GRR priority of ri,j increases when it becomes
oldest after tnow, but it must still be lower than the one of rua since GRR priorities for oldest
requests are based on when they become oldest (which is when their core is pushed to the
back of the GRR queue).

In summary, we have shown that the dynamic priority of rua cannot decrease after tnow,
and the GRR priority of ri,j cannot increase past it. Therefore, ri,j can only acquire a higher
dynamic priority than rua based on Rule 2 if it inherits the GRR priority of an oldest request
rp,q such that: (A) rp,q is either rua or has a higher GRR priority than rua; (B) at time tnow,
ri,j has either not arrived yet, or does not inherit the priority of rp,q; (C) at some time t

after tnow, ri,j is inheriting the priority of rp,q. We now show that this is impossible.
Since by (A) the static GRR priority of rp,q must be equal to or higher than rua, it

follows that rp,q must already be outstanding and oldest at tnow. We next consider two
possible cases: (2a) rp,q is pending at tnow; (2b) not pending. In case (2a), note that the set
of requests that rp,q depends upon are fixed when rp,q becomes pending; hence (B) and (C)
cannot simultaneously hold. In case (2b), for (B) and (C) to be satisfied, ri,j must target the
same cache line as rp,q and become pending after tnow and before rp,q. However, this is again
impossible: since the GRR priority of ri,j is lower than rua and thus rp,q, it follows that by
Rule 3, ri,j cannot be serviced on the request bus and become pending before rp,q. ◀

Based on Lemma 4, we can evaluate at time tnow which requests have higher priority
than rua and can thus interfere with it. In details, let RREQ (RBANK , RRESP) be the set
of outstanding requests with GRR (respectively, dynamic) priority higher than or equal
to rua at time tnow, including rua itself, and which have not yet started executing on REQ
(respectively, BANK or RESP) 2. Since GRR priorities for oldest requests are static, no request
that is not included in RREQ can become higher GRR priority than rua, and thus interfere
with it on REQ, at any time t > tnow; and by Lemma 4, the same holds for RBANK , RRESP

on BANK and RESP.
Next, we formalize the dependencies among requests that target the same cache line as

rua. We do so by constructing a DAG, where each node represents the execution of one
request in the eventual chain of dependencies on a resource.

▶ Definition 5 (Dependency DAG). The dependency DAG for rua at time tnow is a directed
acyclic graph G = (V, E) where: (1) V is a set of nodes; each node is of the form {ri,j , res},
where ri,j is either rua or one of the requests that targets the same cache line as rua and
precedes it in the eventual chain of dependencies, while res is one of the resources on which
ri,j has not yet finished executing at tnow; (2) E is a set of edges of two types: (2a) for

2 Note that the sets comprise only requests that have yet to start executing on a resource because in
Lemma 7 we will account for the interference of requests that have already started executing on each
resource in a different manner

ECRTS 2022

16:12 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

Figure 5 Example dependency DAG. The eventual chain of dependencies comprises requests
(rp,q, ri,j , rua).

each request ri,j, E includes an edge {ri,j , res′} → {ri,j , res} if the two nodes exist in the
graph and ri,j executes on res′ before res; (2b) for each pair of consecutive requests rp,q, ri,j

in the eventual chain of dependencies, E includes edges {rp,q, RESP} → {ri,j , RESP} and
{rp,q, BANK} → {ri,j , BANK} if the corresponding nodes exist in the graph.

Example: assume that at time tnow, there are three outstanding requests targeting the
same cache line: rp,q of type REQ:BANK:RESP became pending first, and has already executed
on BANK but not yet finished on RESP; ri,j , also of type REQ:BANK:RESP, became pending
after rp,q and has completed executing on REQ but not yet finished on BANK; and rua is of
type T = REQ:RESP:BANK and not yet pending. Then, the eventual chain of dependencies is
(rp,q, ri,j , rua), and the dependency DAG is depicted in Figure 5.

Note that by definition and based on Section 3.2, the dependency DAG contains an
edge between two nodes whenever the second node cannot become ready before the first
one finishes executing. Therefore, if a node {ri,j , res} in the dependency DAG has no
predecessors, then it must be ready on res at tnow. Otherwise, it becomes ready once all
predecessor nodes finish executing. We can then define the latency for a node as follows. The
latency window for a node {ri,j , res} with one or two immediate predecessors spans from
the time it becomes ready on res, until the time it finishes executing on res, and its latency
is the difference between the two times. If {ri,j , res} has no predecessor, then its latency
window spans from tnow until the time it finishes executing given that we do not want to
account for latency before tnow. The latency for a (directed) path through G is simply the
sum of the latencies of the constituent nodes. Finally, note that as pointed out in Section 4,
requests in the eventual chain of dependencies for rua, and thus the dependency graph, are
either already pending or are oldest. Therefore, arbitration Rule 4 cannot block any such
request, and thus we do not need to consider it when determining the latency of a path.

We can now derive the remaining latency for rua. In details, in Lemma 6 we first show
that its remaining latency must be equal to the latency of a critical path in the dependency
DAG, that is, a path that starts from a node with no precedessors and finishes with the
last node of rua. Then, in Lemma 7, we show that the latency of a critical path is upper
bounded by Equation 1. Therefore, the remaining latency of rua can be computed by taking
the maximum of Equation 1 over every potential critical path in the DAG.

▶ Lemma 6. The remaining latency tf
ua − tnow for rua at time tnow is equal to the latency of

some path P in its dependency DAG whose last node is {rua, res} and res is the last resource
on which rua executes. In such critical path, each node becomes ready when the previous one
finishes executing, except for the first node which has no predecessor and is ready at tnow.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:13

Proof. We iteratively construct the critical path P as follows. We first start from the path
that contains only node {rua, res}. Note that by definition, such node finishes executing at
tf
ua. We then have two possible cases: (1) the node has no precedessor; (2) it has one or two

immediate precedessors. In case (1), rua is ready on res at tnow. Therefore, the latency of
the node, which is equal to the latency of P , is tf

ua − tnow and the lemma follows. In case (2),
rua becomes ready on res, and thus the latency window for the node starts, when one of its
immediate predecessor nodes finishes executing. Let {ri,j , res′} be such node. We can then
add it to the beginning of P and repeat the same reasoning: if the node has no predecessor,
then ri,j must be ready on res′ at tnow and thus its latency window spans from tnow to the
beginning of the latency window for {rua, res}. Therefore, again the latency of P is equal
to tf

ua − tnow. If instead {ri,j , res′} has one or two immediate precedessors, we continue
the iteration by adding one such node to the path. But since the graph is by definition a
DAG (hence has no cycles) and the number of nodes is finite, the iteration must eventually
terminate. The lemma follows. ◀

▶ Lemma 7. The latency of a critical path P is upper bounded by:

cres +
∑

res∈SP

|Rres| · tres + KBANK(P) · (tBANK − 1) + KRESP (P) · (tRESP − 1), (1)

where res is the resource on which the first node in P executes, cres is the remaining time
to finish executing the current executing request on res at tnow (if any, otherwise 0), SP is
the set of all resources on which nodes in P execute (with the exception of the first note if
it already started executing on res at tnow), and KBANK(P) (KRESP (P)) is the number of
nodes in P that executes on BANK (respectively, RESP) and are preceded in P by a node that
does not execute on BANK (respectively, RESP).

Proof. We first consider the case in which the first node in P has not yet started executing
on res. For each res ∈ SP , we consider the total latency of nodes in P that execute on res.
Since latencies are computed during time windows when a request in P is ready on res, it
follows that the only executions that can contribute to the total latency are: (1) for each
node {ri,j , res}, at most one request that is already executing on res at the beginning of
its window. For the first node in P, by definition the length of such execution is cres. For
every other node, since the request is already executing, it can be bound as tres − 1. (2)
Requests in P that have not yet started executing on res (since otherwise they would be
included in the previous category). (3) Other requests that have not yet started executing
on res and have higher GRR priority (if res is REQ) or higher dynamic priority (if res is
BANK or RESP) than some request in P that has not yet started executing on res. Note that
lower priority requests can only be included in category (1). Also, as noted in Section 4,
requests that precede rua in the extended chain of dependencies, and can thus be included
in P, must either be pending (and hence have higher or equal dynamic priority than rua)
or be non-pending and have higher GRR priority than rua. Hence, requests in category (2)
are included in Rres; and since no request that is not included in Rres can acquire higher
priority than rua after tnow, requests in category (3) must also be included in Rres. Therefore,
|Rres| · tres upper bounds the contributions on requests in categories (2) and (3).

It remains to determine the number of requests in (1). Note that if a node executing
on res is preceded in P by a node executing on the same resource (either RESP or BANK),
then no request can be executing at the beginning of its window, since it corresponds to the
time at which the preceding node finishes executing on res. Hence, the number of requests
can be bounded by the number of nodes that are preceded by another node executing on a

ECRTS 2022

16:14 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

Figure 6 Example paths with maximal number of RESP → BANK and BANK → RESP edges for a rua of
type T = REQ:RESP:BANK. The eventual chain of dependencies comprises requests (..., r4, r3, r2, rua).

different resource, plus possibly the first node in the path. By definition, this adds a latency
of cres + KBANK(P) · (tBANK − 1) + KRESP (P) · (tRESP − 1). Adding the contribution of
categories (2) and (3) to the one of (1) yields Equation 1.

Finally, we consider the case in which the first node in P is already executing on res at
time tnow. In this case, the latency of the first node is simply cres, and no other request can
execute in its latency window. The same reasoning as above can then be applied to the other
nodes in P , given that SP does not account for the first node. This again results in a latency of
|Rres|·tres for (2) and (3) and a latency of KBANK(P)·(tBANK −1)+KRESP (P)·(tRESP −1)
for (1), which added to cres for the first node yields Equation 1. ◀

Example. consider the example in Figure 5. The three possible critical paths are
P ′ = {rp,q, RESP} → {ri,j , RESP} → {rua, RESP} → {rua, BANK}, P ′′ = {ri,j , BANK} →
{ri,j , RESP} → {rua, RESP} → {rua, BANK}, and P ′′′ = {rua, REQ} → {rua, RESP} →
{ri,j , BANK}. Note that no critical path can include edge {ri,j , BANK} → {rua, BANK}, as
the DAG includes the longer path P ′′ between {ri,j , BANK} and {rua, BANK}, and thus
{rua, BANK} must become ready once {rua, RESP} finishes. Further note that for P ′′ we
have res = BANK, SP = {BANK, RESP}, KBANK(P ′′) = 1, KRESP (P ′′) = 1. Its latency can
be upper bounded by summing: the remaining time cBANK to finish executing the current
executing request on BANK (if any); plus the maximum time tRESP − 1 to finish executing
a request once ri,j becomes ready on RESP; plus the maximum time tBANK − 1 to finish
executing a request once rua becomes ready on BANK; plus the time |RBANK | · tBANK to
execute requests with higher or equal priority (including the ones in the DAG) that have
not yet started executing on BANK; plus the time |RRESP | · tRESP to execute requests with
higher or equal priority that have not yet started executing on RESP.

Lemmas 6 and 7 provide a way to estimate the remaining latency for rua. However, they
require constructing the dependency DAG and all possible critical paths. As it will become
clear in Section 6, to apply the Duetto reference model we need to estimate the remaining
latency online in hardware at every clock cycle. Therefore, we next derive a simpler, albeit
conservative, way to determine the remaining latency. Specifically, we replace KBANK(P)
and KRESP (P) with upper bounds KBANK(C) and KRESP (C) which depend only on the
number C of requests in the dependency DAG; this ensures that at run-time, we only need
to maintain the list of requests in the eventual chain of dependencies and which resources
they need to execute upon, but not the detailed DAG structure.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:15

▶ Lemma 8. For C ≥ 1, define:

KBANK(T , C) =

⌊(C + 1)/2⌋ if T = REQ:BANK:RESP
⌈(C + 1)/2⌉ if T = REQ:RESP:BANK
⌈(C − 1)/2⌉ if T = REQ:RESP

(2)

KRESP (T , C) =

⌈(C + 1)/2⌉ if T = REQ:BANK:RESP
⌊(C + 1)/2⌋ if T = REQ:RESP:BANK
⌊(C + 1)/2⌋ if T = REQ:RESP

(3)

For a rua of type T and any critical path P comprising nodes of C requests, it holds:
(1) KBANK(P) ≤ KBANK(C)−1 if the first node in P executes on BANK, and KBANK(P) ≤
KBANK(C) otherwise; (2) KRESP (P) ≤ KRESP (C) − 1 if the first node in P executes on
RESP, and KRESP (P) ≤ KRESP (C) otherwise.

Proof. First note that by construction, only the first node in P can execute on REQ; all
other nodes must execute on either BANK or RESP. Therefore, KBANK(P) and KRESP (P)
are maximized when P comprises the maximum number of edges from a node executing on
RESP to a node on BANK (an edge RESP → BANK), and from a node on BANK to a node on
RESP (an edge BANK → RESP). Note that if two consecutive requests in the eventual chain of
dependencies are of the same type (for example, REQ:RESP:BANK), then any path over BANK
and RESP nodes belonging to those two requests can have only one such edge (in this example,
the two possible paths are RESP → BANK → BANK and RESP → RESP → BANK); on the other
hand, if two consecutive requests are one of type REQ:RESP:BANK and the other of type
REQ:BANK:RESP, then the path can have one edge RESP → BANK and one BANK → RESP. Hence,
KBANK(P), KRESP (P) are maximized when requests in the eventual chain of dependencies
switch between the two types.

Next consider T = REQ:RESP:BANK. Figure 6 shows the resulting DAG when requests
in the chain switch types, together with two possible critical paths with C = 4 (even) and
C = 3 (odd) requests, where the first node executes on REQ. By construction, the path
comprises an edge RESP → BANK for rua, and for every second request before it; hence,
the number of such edges is ⌈C/2⌉. In addition, if C is even, there is a REQ → BANK
edge for the first request. Hence, the maximum value of KBANK(P) can be computed as
KBANK(REQ:RESP:BANK, C) = ⌈(C + 1)/2⌉; except that if P starts with a node on BANK,
then that node is not preceded by any other node, hence the maximum value of KBANK(P) is
KBANK(REQ:RESP:BANK, C) − 1. Similarly for KRESP (P), we note that the path comprises
an edge BANK → RESP for the request before rua, and for every second request before it; plus
an edge REQ → RESP if C is odd. Hence, the maximum value of KRESP (P) can be computed
as KRESP (REQ:RESP:BANK, C) = ⌊(C + 1)/2⌋, or KRESP (REQ:RESP:BANK, C) − 1 if the first
node in P is on RESP. This concludes the proof for T = REQ:RESP:BANK.

For brevity, we omit the proof for T = REQ:RESP and T = REQ:BANK:RESP, since the deriv-
ation is equivalent; in particular, note that KRESP (REQ:RESP, C) = KRESP (REQ:RESP:BANK,

C) but KBANK(REQ:RESP, C) = KBANK(REQ:RESP:BANK, C) − 1, since with T = REQ:RESP
we miss the RESP → BANK edge for rua; while for T = REQ:BANK:RESP we have KRESP (REQ:
BANK:RESP, C) = KBANK(REQ:RESP:BANK, C) and KBANK(REQ:BANK:RESP, C) =
KRESP (REQ:RESP:BANK, C) since the two cases are specular. ◀

▶ Theorem 9. The remaining latency tf
ua − tnow for a rua of type T at time tnow is upper

bounded by:

cinit +
∑

res∈Sua

|Rres| · tres + KBANK(T , C) · (tBANK − 1) + KRESP (T , C) · (tRESP − 1), (4)

ECRTS 2022

16:16 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

where Sua is the set of all resources on which the C requests for nodes in the dependency
DAG have not yet started executing, and cinit = cREQ if any node in the DAG executes on
REQ, cinit = 0 otherwise.

Proof. By Lemma 6, the remaining latency of rua is equal to the latency of a critical path
P, which is upper bounded by Equation 1. Note that by definition, only the first node in
P might have already started executing at tnow. Hence, it holds: SP ⊆ Sua, which implies∑

res∈SP
|Rres| · tres ≤

∑
res∈Sua

|Rres| · tres. Let C ′ be the number of requests for nodes in
P; by definition, C ′ ≤ C. By cases on the resource on which the first node in P executes.

REQ: by definition we have cinit = cREQ = cres and by Lemma 8 and since KBANK(T , C),
KRESP (T , C) are monothonic in C it holds KBANK(P) ≤ KBANK(T , C ′) ≤ KBANK(T , C),
KRESP (P) ≤ KRESP (T , C ′) ≤ KRESP (T , C). Hence, the latency of P in Equation 1 is
upper bounded by Equation 4.

RESP: we have cinit = 0, cres = cRESP and by Lemma 8 and monotonicity it holds
KRESP (P) ≤ KRESP (T , C) − 1, KBANK(P) ≤ KBANK(T , C). Hence starting from Equa-
tion 1 and noting that by definition it must hold cRESP ≤ tRESP − 1, we obtain:

cRESP +
∑

res∈SP

|Rres| · tres + KBANK(P) · (tBANK − 1) + KRESP (P) · (tRESP − 1)

≤ cRESP − (tRESP − 1) +
∑

res∈SP

|Rres| · tres + KBANK(T , C) · (tBANK − 1) +

+KRESP (T , C) · (tRESP − 1)
≤

∑
res∈Sua

|Rres| · tres + KBANK(T , C) · (tBANK − 1) + KRESP (T , C) · (tRESP − 1),(5)

hence the latency is again upper bounded by Equation 4.
BANK: we have cinit = 0, cres = cBANK and by Lemma 8 and monotonicity it holds

KBANK(P) ≤ KBANK(T , C)−1, KRESP (P) ≤ KRESP (T , C); repeating the same derivation
as for the RESP case, we again find that Equation 1 is upper bounded by Equation 4. ◀

5.2 Static Analysis

We compute the static worst-case latency ∆(T , kceil) by maximizing Equation 4 over all
possible values of the parameters. The resulting bounds in Theorem 10 depend on kceil and
M : by definition, there are at most M oldest request at any point in time, meaning that at
most M − 1 requests can have higher GRR priority than rua. The theorem computes two
separate bounds for kceil = 0 and kceil > 0: for the former, in the worst-case all M oldest
requests target the same cache line, while for the latter, each oldest request targets a different
cache line and suffers interference from kceil non-oldest requests based on arbitration Rule 4.

▶ Theorem 10. The static latency for any request of type T is upper bounded by:

∆(T , 0) = tREQ − 1 + M · tREQ + M · tBANK + M · tRESP

+KBANK(T , M) · (tBANK − 1) + KRESP (T , M) · (tRESP − 1) (6)

if kceil = 0, while if kceil > 0 it is upper bounded by:

∆(T , kceil) = tREQ − 1 + M · tREQ + M · (kceil + 1) · tBANK + M · (kceil + 1) · tRESP

+KBANK(T , kceil + 1) · (tBANK − 1) + KRESP (T , kceil + 1) · (tRESP − 1). (7)

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:17

Proof. By definition, the static latency is equal to the maximum remaining latency of any
request rua of type T that becomes oldest at time tnow. By Theorem 9, such latency is upper
bounded by Equation 4; hence, we can upper bound ∆(T , kceil) by maximizing Equation 4.

Note that the equation is maximized by using the maximum value cinit = cREQ = tREQ−1,
and latency contributions on all three resources such that Sua = {REQ,BANK,RESP}. By
definition, the set RREQ can comprise at most rua itself and one oldest request for each
other core; hence, we have at most |RREQ| = M .

We next consider the number of requests C for nodes in the dependency DAG of rua,
which comprise rua and requests that precede rua in its eventual chain of dependencies,
as well as the number of requests |RBANK |, |RRESP |. Let H be the number of oldest
requests that precede rua in the eventual chain of dependencies. By Rule 4, the number of
non-oldest requests that precede rua in the chain is bounded by kceil. Hence, the maximum
number of requests in the dependency DAG is C = kceil + H + 1. Since requests in
RBANK , RRESP must have higher dynamic priority than rua, the only requests that can be
included are: (1) the C requests in the DAG; (2) the remaining M − H − 1 oldest requests;
(3) non-oldest requests that inherit the priority of such M − H − 1 oldest requests; again by
Rule 4, their number is bounded by (M − H − 1) · kceil. Summing over (1)-(3), we obtain:
|RRESP | = |RBANK | = M · (kceil + 1) − H · kceil. If kceil = 0, then the cardinality of the
sets is constant in H, while C, and thus the values of KRESP (T , C) and KRESP (T , C), are
non-decreasing in H ; hence, Equation 4 is maximized when H = M − 1, yielding Equation 6.

Finally, consider the case of kceil > 0. Note that based on Equation 3, 2 and independently
from T , it holds: KRESP (T , kceil + 1 + H) ≤ KRESP (T , kceil + 1) + H, and similarly
KBANK(T , kceil + 1 + H) ≤ KBANK(T , kceil + 1) + H. Substituting the values of the
parameters in Equation 4 we thus obtain:

tREQ − 1 + M · tREQ + M · (kceil + 1) · tBANK − H · kceil · tBANK

+M · (kceil + 1) · tRESP − H · kceil · tRESP

+KBANK(T , kceil + 1 + H) · (tBANK − 1) + KRESP (T , kceil + 1 + H) · (tRESP − 1)
≤ tREQ − 1 + M · tREQ + M · (kceil + 1) · tBANK − H · kceil · tBANK

+M · (kceil + 1) · tRESP − H · kceil · tRESP

+KBANK(T , kceil + 1) · (tBANK − 1) + H · (tBANK − 1) +
+KRESP (T , kceil + 1) · (tRESP − 1) + H · (tRESP − 1)

≤ tREQ − 1 + M · tREQ + M · (kceil + 1) · tBANK + M · (kceil + 1) · tRESP

+KBANK(T , kceil + 1) · (tBANK − 1) + KRESP (T , kceil + 1) · (tRESP − 1), (8)

which is the expression in Equation 7. ◀

6 Applying Duetto to Cache Coherence Design

In this section, we first briefly review the Duetto reference model introduced in [25] to address
the average performance and predictability trade-off in shared resource management in
multi-core systems. We then discuss how the reference model must be extended to account
for the peculiarities of our cache system and form the DUEPCO architecture.

6.1 Background: Duetto Reference Model
The key idea behind Duetto is that it augments a COTS High-Performance Arbiter (HPA)
with a Real-time Arbiter (RTA) such that both arbiters operate in parallel. The RTA is
analyzable in the sense that it provides strict latency bounds on requests; specifically, we

ECRTS 2022

16:18 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

use the arbiter described in Section 4. The HPA is designed to maximize average-case
performance. In our implementation, the HPA uses commodity FCFS at all resources but
respects the dependencies among requests to the same cache line. Arbiters control resources
by issuing commands—for our cache resource, the command dictates which requests, if any,
should start executing on each resource. Every clock cycle, Duetto selects either the command
from the HPA or the command from the RTA and issues it to the resources. Ideally, the
system utilizes the HPA most of the time, hence benefiting from its performance gains, and
only switches to the RTA if there is a risk that a latency guarantee will be missed. Note
that the global request queue is shared by the HPA and RTA. Since both arbiters make
decisions based on the requests stored in the queue, a request is removed from the queue
only after it finishes based on the actual commands issued by Duetto. Given that both
arbiters can process requests out-of-order, this does not add extra complexity to the queue
implementation.

In more details, for each requestor Pi and each request type T , Duetto associates a
relative deadline Di(T) which represents the maximum tolerable processing latency for any
oldest request of that type and requestor. Such deadline can be configured by the system
designer (for example, by writing to memory-mapped registers exposed by the hardware),
and must be used in place of the static WCL when performing task analysis. Higher deadline
values increase the worst-case resource access latency for a task, but can enable Duetto to
remain in HPA mode longer. A DTracker module is responsible for tracking the absolute
deadline of each oldest request based on its associated relative deadline and the time it
becomes oldest. As long as Di(T) ≥ ∆(T , kceil) for all requestors and types, Duetto formally
guarantees that all absolute deadlines will be met. This is achieved by using a Worst-case
Latency Estimator (WCLator) module to estimate the remaining processing latency of each
outstanding request at run-time, assuming that Duetto selects the HPA in the current clock
cycle and then switches to the RTA in all future cycles. If for every requestor, the estimated
finish time of its oldest request from WCLator is lower than or equal to its absolute deadline,
then Duetto selects the HPA. Otherwise, it selects the RTA. The key observation is that
using online information on the state of the system (resources, state of the RTA arbiter, and
queued requests) allows us to greatly reduce the pessimism inherent in the static latency
computation; hence, unless the system becomes overloaded, Duetto can keep selecting the
HPA. Note that in [25], the model is demonstrated on a simple resource. However, in [26],
Duetto has been applied to the design of a more complex DRAM controller where, similarly
to our cache system, each request requires multiple commands to be serviced.

6.2 Model Extensions
Compared to the approach in [25, 26], we must extend the reference model in two fundamental
ways to apply it to our cache design. First of all, it is important to notice that for the Duetto
deadline guarantee to hold, the static worst-case latency must be computed assuming any
valid state of the resource at the time t when the request under analysis becomes oldest; this
is because the HPA might be selected at any time before t. However, when we computed
the static latency in Theorem 10, we bounded the cardinality of sets RBANK and RRESP

assuming that arbitration Rule 4 always applies, as this ensures that no more than kceil

non-oldest requests can inherit the priority of an oldest request. Unfortunately, the HPA
does not need to satisfy such rule, and can instead execute any number of requests to the
same cache line on the REQ bus before an oldest request to that line arrives and its latency is
considered by the WCLator; at which point it is too late to switch to the RTA.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:19

To address this issue, we make a conceptual change to the model of the resource. Specific-
ally, we declare that all states where there are more than kceil pending non-oldest requests
to the same cache line are invalid. This ensures that the derived static bound is correct, but
does not solve the underline problem as now the HPA might be issuing invalid commands.
In [25], we suggest that when the HPA cannot be guaranteed to work correctly, a checker
module can be added to check the validity of the commands issued by the HPA. Therefore,
we add an additional checker component that works as follows: every clock cycle, the checker
receives from the RTA information on the number of pending requests per cache line, which
the RTA maintains to enforce Rule 4. If cREQ = 0 and the global request queue contains at
least one non-oldest request that must execute on the REQ bus and targets a cache line for
which there are kceil pending non-oldest requests, the HPA might issue such request on REQ
and reach an invalid resource state. Hence, in this case the checker overrides the WCLator to
forcibly select the RTA. While this approach solves the unbounded priority inversion problem,
it has a downside: for low values of kceil and/or heavy data sharing among requestors, the
checker might be forced to continuously select the RTA, resulting in performance loss. We
explore this behavior in more details in the evaluation Section 7.

The second extension is related to the request type. Both [25] and [26] assume that the
type of a request is known when the request becomes oldest. However, in our system, the
sequence of resources accessed by a request, and thus its type, is only known after the request
is executed on the REQ bus and the owner of the corresponding cache line is determined. For
this reason, before an oldest request finishes executing on REQ, the WCLator must use the
smallest among all deadlines for the possible types for the request. Once the request type is
known, the WCLator switches to using the deadline for that type.

6.3 WCLator Design
We designed the WCLator following the methodology outlined in [25]. For each oldest
request and given the state of the resource and global request queue, we first enumerate all
commands that the HPA could issue in this clock cycle. For each command, we then use the
dynamic analysis of Theorem 9 (possibly with modified value of the parameters) to compute
the remaining latency for the request. The WCLator then compares the largest computed
latency against the deadline for the request to determine whether the HPA can be selected.
As noted in Section 6.2, in our implementation we do not know the type of a request until
it finishes executing on REQ. Hence, to safely account for the values of Sua, RBANK and
RRESP in Equation 4, we assume that all outstanding requests that have not yet finished
executing on REQ must access both BANK and RESP.

Consider an oldest request rua. To illustrate the behavior of the WCLator, we enumerate
the cases assuming that cinit = cREQ (the case for cinit = 0 is similar but easier, since the
chain of dependencies for rua cannot be affected):
1. If cREQ > 0, then no command can be issued on REQ in this clock cycle, and no estimation

is required. Note that if cBANK = 0 or cRESP = 0, the HPA could start executing a
request on BANK or RESP in this clock cycle; however, because Equation 4 always assumes
the worst case where the maximum blocking time is suffered on successive resources,
it follows that the bound is still safe no matter the command issued by HPA on BANK
and/or RESP. Therefore, for the remaining cases, we assume cREQ = 0 and consider the
command issued on REQ.

2. No command: the HPA might be non-work conserving and decide to issue no command
in the current cycle. In this case, the bound is equal to Equation 4 plus one, to account
for the wasted clock cycle.

ECRTS 2022

16:20 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

3. rua: since rua will start executing, we would need to apply Equation 4 after removing
it from RREQ, but setting cREQ = tREQ to account for the rua execution. In addition,
if there are higher-priority requests to the same cache line as rua which have not yet
executed on REQ, we would need to remove such requests from RBANK , RRESP and
adjust KBANK(T , C), KRESP (T , C). Note that the obtained bound will always be lower
than case 2); therefore, in practice the WCLator does not need to consider this case.

4. A lower-priority request ri,j , which does not inherit a higher priority than rua after
becoming pending: we use Equation 4 with cREQ = tREQ.

5. A lower-priority request ri,j that inherits a higher priority than rua: in addition to the
previous case, we need to include the request in RBANK , RRESP . Furthermore, if ri,j

targets the same cache line as rua, KBANK(T , C), KRESP (T , C) must be adjusted.
6. A higher-priority request rp,q to either the same or a different cache line than rua: we

use Equation 4 with no change to parameters. Since this bound is always lower than 2),
again we do not need to consider it.

In this work, our goal is to evaluate the performance of the proposed system architecture
and arbitration scheme based on cycle-accurate simulation; a full system implementation
is deferred to future work. Nonetheless, given its potential complexity, we briefly comment
on the WCLator implementation. Since the WCLator is a hardware component, all the
cases above can be estimated in parallel for each request under analysis, and each result
compared against the request deadline. Hence, the hardware latency is dominated by the
computation of Equation 4. The value of cREQ can be maintained by a simple counter.
Similarly, the value of |Rres| can be maintained in separate counters for each rua and each
resource based on the state of the GRR arbitration. Multiplications can be avoided by
storing the corresponding values in look-up tables indexed by the corresponding parameter.
Another counter can be used to keep track of the number of requests C in the eventual
chain of dependencies for each rua, and index a look-up table that returns the value of
KBANK(T , C) · (tBANK − 1) + KRESP (T , C) · (tRESP − 1). The final computation is then
obtained by adding at most 5 terms together, which can be performed with cascaded adders
of width at most 11 bits for M = 8 requestors. In summary, we do not expect the WCLator
implementation to constrain the clock speed.

7 Evaluation Results

We employed the open-source, cycle-accurate architectural simulation framework provided
by [15] to evaluate the performance of the proposed mechanisms and compare them with
other solutions. We emulate quad- and octa-core systems clocked at 2.5 GHz. Each system
has a 32 KB 4-way set-associative per-core private L1 data cache (similar to ARM Cortex
A53 [1]), and a 4 MB 8-ways set-associative L2 shared cache consisting of multiple separated
banks. The cores are OOO and can issue up to 10 memory requests in parallel. Both L1 and
LLC have a cache line size of 64 bytes. Each core/LLC bank is equipped with a dedicated
cache controller that implements the MSI coherence state machine. We compare results for
the proposed arbiter described in Section 4, which we denote as RTA, against state-of-the-art
approaches including PMSI [10], PMSI* [17] and PISCOT [15] which also provide analytical
WCL bounds and present the best average-case performance. PMSI employs unified bus
architecture and provides relative high-performance gains compared to other approaches
such as shared data-aware scheduling and private cache bypassing through deploying cache
coherence modifications and accessing the shared data. However, its WCL is quadratic in the
number of cores in the system. PMSI* follows a systematic approach that achieves the same

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:21

Figure 7 Per-request worst-case latency.

0

2

4

6

8

Synth 1 Synth 2 Synth 3

E
x
e

cu
ti

o
n

 T
im

e
 [

M
il

 C
y

cl
e

s]

PISCOT-C2C τ1=10:40 τ2=20:30

τ3=30:20 τ4=40:10 τ5=50:0

Figure 8 Sensitivity test for RTA against
PISCOT-C2C.

static WCL as bypassing the shared cache and provides a tighter WCL bound compared to
PMSI. However, both of these techniques rely on many coherency modifications and expose
performance loss compared to other approaches. On the other hand, PISCOT decouples the
request and response bus and leverages the split-transaction interconnect to achieve a tighter
WCL compared to PMSI and considerable performance gains. We also compare against the
COTS HPA as described in Section 6.1, which aims to achieve high average-case performance.

Request bus latency is configured to 4 cycles (tREQ = 4). The response bus latency
in PISCOT is comparable to the TDM slot size in PMSI as well as PMSI* and we set
them to 50 cycles in our evaluation similar to [15]. However, for RTA, the latency of all
resources is configurable. Throughout this section, unless otherwise specified, we configure
RTA with tRESP = 10 cycles, 8 banks that consume tBANK = 40 cycles to process requests
and parameter kceil = 1. Similar to existing works [18, 10, 15], we assume that accesses that
hit in the L1 cache take a single clock cycle and, as discussed in Section 3.1, LLC is a perfect
cache (all LLC accesses are hits) to avoid extra delay from accessing the off-chip memory
subsystem.

We employ SPLASH-3 [31] benchmark suite as it is a representative of multi-threaded
applications with data sharing. In addition, we craft a wide set of synthetic benchmarks that
stresses the implemented solutions. All contain mixed read and write requests to the LLC
and we engineered the requests’ addresses such that all requests miss in the L1 cache; hence,
stress on the bus and the shared cache banks will be maximized. Different benchmarks in
this set exhibit different sharing percentage as well. Due to space limitation, we show the
results of three of these benchmarks (Synth 1, Synth 2, Synth 3) that show unique insights.
There is no data-sharing among the cores in Synth 1 while Synth 2 and Synth 3 exhibit
10% and 20% data-sharing respectively. In all benchmarks, the foreground core represents a
high load core that bursts requests to bus/LLC, and the background cores are accessing the
shared bus/LLC less frequently. Interleaving across the banks is handled using address bits
themselves such that a core could access all banks as much as possible. In detail, we use bit
6th (bits zero to 5th are for the cache line offset) towards the MSB in the address bits of the
request to determine which LLC bank it needs to be processed in.

ECRTS 2022

16:22 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

7.1 Per-Request Worst-Case Latency

Figure 7 shows the static WCL bounds for requests generated by the cores and misses in L1
caches (see Section 5) from REQ:RESP:BANK type which represents the largest static WCL
among the three types. We compare PMSI, PMSI*, PISCOT and PISCOT-C2C (with core
to core transfers), and the proposed RTA mechanism with different values of the configurable
parameter kceil. From this experiment, we can make the following observations: 1) PMSI
shows a significantly higher latency bound compared to the other approaches, and the latency
bound increases quadratically with scaling the number of cores. The significant added latency
is due to the coherence interference on the shared data. PMSI* on the other hand presents
tight static WCL bound but at the cost of performance degradation [15, 17]; 2) PISCOT
shows looser bound compared to both PISCOT-C2C and PMSI* but similar to RTA since
core to core transfers enable the arbiters to bypass the LLC when an owner core must respond
to other cores; 3) RTA with kceil = 1 shows up to 1.18× looser bound compared to PISCOT
but significantly tighter bound compared to PMSI. Notice that this extra amount in latency
bound is due to the scheduling decisions that are made in RTA which allow one non-oldest
request to process in LLC banks. This gives the system a significant advantage in terms
of average performance as we will show in the next sections. It is worthwhile to stress the
existing trade-off between RTA with different values of kceil and PISCOT-C2C. RTA with
kceil = 0 represents a configuration that forces the ordering of processing such that requests
are only processed if they are oldest (no non-oldest request is allowed to process in the shared
banks). This improves the WCL bound such that it becomes tighter and very similar to
PISCOT-C2C. However, Duetto does not work with this configuration of RTA (kceil = 0)
since this prevents the system from reasonably leveraging the performance of the HPA; the
checker module is forced to select the RTA if there is any non-oldest request needing to be
serviced on the request bus.

7.2 RTA Sensitivity Test

The underlying architecture proposed in Section 3 is fully configurable to resemble the
conventional high-performance bus/LLC designs. In this section, we conduct a sensitivity test
on the RTA using synthetic benchmarks to justify the most efficient (and the worst) design that
is aligned with commercial architectures and compare it against PISCOT-C2C. We configured
a quad-core system with tREQ = 4 and then gradually varied tBANK and tRESP latencies. In
order to run a fair comparison, the parameters are determined such that tRESP +tBANK = 50,
the response bus latency for PISCOT-C2C. Assuming τ = tRESP : tBANK represents a
configuration of RTA in which the latency of shared banks in LLC is tBANK and the latency of
response bus equals tRESP , Figure 8 shows the execution time of the foreground core running
each of the three synthetic benchmarks. As discussed, RTA increases the parallelism through
bankized LLC. Therefore, as we increase tBANK in LLC and coincidentally decrease tRESP ,
we observe that the system performance improves by finishing the task under analysis faster.
In other words, by reducing the response bus latency, a significant amount of arbitration
stress will be transferred to the banks rather than the response bus; hence, the system’s
overall performance increases by allowing more transactions to be serviced simultaneously.
In detail, the core under analysis in RTA, τ1 running Synth 1 outperforms PISCOT-C2C
by 4.58× in terms of overall throughput of the system. Note that in τ5 where there is no
parallelism in RTA, we observe a negligible performance loss compared to PISCOT-C2C
(maximum 1% in overall throughput) since response bus arbiter in PISCOT-C2C is FCFS
while RTA employs a fair round-robin mechanism through GRR. Going forward, we chose τ1

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:23

Figure 9 Total observed memory latency of Splash-3. Values in y-axis are in log scale.

(a) RTA. (b) HPA. (c) DUEPCO.

Figure 10 Observed latencies under different arbitration schemes.

as it resembles the configuration with a higher level of parallelism resembling a more realistic
architecture. For example, Intel’s architectures utilize a bankized shared cache to hide the
shared bank processing time, which is higher than the data transfer on the bus [2].

7.3 Average Performance: SPLASH-3
We next evaluate the average performance of RTA against PISCOT-C2C based on SPLASH-3
benchmarks. Figure 9 shows the cumulative processing latency of all memory requests
generated by a quad-core system. Overall, RTA shows an average latency reduction of 1.74×
compared to PISCOT-C2C for kceil = 0, and of 2.1× for kceil = 1. This shows that even for
realistic benchmarks, bankizing L2 leads to a significant improvement in the performance
of the memory subsystem. Processing non-oldest requests leads to further performance
improvements, but as previously noted based on Figure 7, this comes at the cost of increased
WCL bounds.

7.4 Observed Request Latency
In the last two sets of experiments, we focus on the behavior of our Duetto design, which
we call DUEPCO, compared to the RTA and HPA. Note that we configure the relative
deadline for each type of request to be equal to its static WCL bound. Figures 10a, 10b,
and 10c delineate the observed latency in number of cycles suffered by oldest miss requests
of type REQ:BANK:RESP generated by a quad-core system. We show request latencies greater
than 80 cycles for better visibility and run the experiment with Synth 3 benchmark (other
benchmarks/request types show similar behavior). The RTA latency bound for this setup is

ECRTS 2022

16:24 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

0

1

2

3

4

5

6

7

N
o

rm
al

iz
ed

 T
h

ro
u

gh
p

u
t

G
eo

 M
ea

n

PISCOT-C2C RTA-kceil=0 RTA-kceil=1 DUEPCO HPA

(a)

4

4.5

5

5.5

6

6.5
DUEPCO HPA

(b)

Figure 11 Total throughput of the system.

476 cycles based on the derived WCL analysis in Section 5 which is shown as a red bar in
the figures. In HPA, we observe large latency spikes throughout the execution up to 3420
cycles since HPA favors requests from the cores that generate the highest number of requests,
are faster, and target the banks that are idle which can starve (theoretically) or delay for a
long time (practically) requests targeting busy banks. Figure 10a shows that RTA respects
the latency bound for all requests from every core and the latencies are always below the
WCL bound. However, there is a gap between the latencies and the static WCL bound since
static analysis conducted in Section 5 must assume that the oldest requests of all cores access
the same bank at the same time in addition to the non-oldest requests, which is unlikely in
practice. Finally, Figure 10c shows that DUEPCO stretches the latency of requests towards
the latency bound, but the bound is never violated. This allows the system to continue
selecting the HPA as long as possible.

7.5 Average Performance: Synthetic Benchmarks

To measure the average performance of DUEPCO, we use the total throughput of the
system based on synthetic benchmarks to stress the system. Figure 11a shows the geometric
mean of throughput across all cores for RTA, HPA and DUEPCO normalized to the overall
throughput of PISCOT-C2C. The figure represents the results for four different setups:
1) a quad-core system running Synth 1; 2) a quad-core system running Synth 3; 3) an
octa-core system running Synth 1; 4) an octa-core system running Synth 3. We make the
following observations: 1) RTA, HPA, and DUEPCO outperform the single-bank architecture
approach deployed in PISCOT-C2C significantly, by up to 6.4×; 2) DUEPCO shows very
small slowdown compared to HPA in synth 1 and synth 3 - 4 core (at most 2%); 3) in
an octa-core system and synth 3 benchmark, we observe a slowdown of 11%. Following the
discussion in Section 6, since DUEPCO employs RTA with kceil = 1, it has to exclude the
invalid states from the HPA by switching to RTA. Recall that Synth 3 benchmark exposes
20% data-sharing among the cores, and this leads to the case that multiple cores compete
to access the same cache line in a particular bank. Therefore, DUEPCO selects the RTA
regardless of the WCLator estimation according to the checker logic. However, by increasing
the number of allowed requests to the same cache line (kceil), we expect that DUEPCO
selects the HPA more often. As shown in Figure 11b, DUEPCO that employs RTA with
kceil = 3 exhibits only 1% slowdown compared to HPA. Notice that relaxing the parameter
kceil forces us to use a higher value for the static WCL bound for each oldest request as
shown in Figure 7. Therefore, we do not consider higher values for the parameter.

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:25

8 Conclusions

Employing shared memory in multi-core platforms improves programmer productivity and
degrades the obstacle to using such platforms in real-time systems. Hardware cache coherence
can accommodate such shared memory and extend the advantages of on-chip caching to
all system memory. However, extending hardware cache coherence throughout traditional
schemes such as coherency protocol modifications to provide predictability hurts the perform-
ance of the system. In this work, we demonstrate that by employing the COTS interconnect
architecture along with proposing to bankize the on-chip cache, DUEPCO is able to pair a
clever global arbitration mechanism with Duetto to significantly improve the performance of
the system while providing predictability. Notice that while we propose DUEPCO with simple
buses, potentially the same arbitration scheme could be added to other bus architectures
such as AXI in ARM platforms. However, the fundamental constraint to consider is that the
arbiter must have exclusive visibility into the queues of each requestor.

References
1 Arm cortex-a53 mpcore processor technical reference manual r0p3. https://developer.arm.

com/documentation/ddi0500/e/level-1-memory-system/about-the-l1-memory-system.
Accessed: 2022-01-23.

2 Intel® 64 and ia-32 architectures optimization reference manual. https://www.intel.com
/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-
optimization-manual.pdf. Accessed: 2021-07-20.

3 ARM. Arm® cortex®-r8 mpcore processor. https://developer.arm.com/documentation/
100400/0001/xdc1471434436160, 2019.

4 Matthias Becker, Dakshina Dasari, Borislav Nikolic, Benny Akesson, Vincent Nélis, and Thomas
Nolte. Contention-free execution of automotive applications on a clustered many-core platform.
In 28th Euromicro Conference on Real-Time Systems, ECRTS 2016, Toulouse, France, July
5-8, 2016, pages 14–24. IEEE Computer Society, 2016. doi:10.1109/ECRTS.2016.14.

5 Micaiah Chisholm, Namhoon Kim, Bryan C Ward, Nathan Otterness, James H Anderson,
and F Donelson Smith. Reconciling the tension between hardware isolation and data sharing
in mixed-criticality, multicore systems. In 2016 IEEE Real-Time Systems Symposium (RTSS),
pages 57–68. IEEE, 2016. doi:10.1109/RTSS.2016.015.

6 Giovani Gracioli, Rohan Tabish, Renato Mancuso, Reza Mirosanlou, Rodolfo Pellizzoni,
and Marco Caccamo. Designing Mixed Criticality Applications on Modern Heterogeneous
MPSoC Platforms. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019),
pages 27:1–27:25, Dagstuhl, Germany, 2019.

7 Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. A comparative study
of predictable dram controllers. ACM Trans. Embed. Comput. Syst., 17(2), February 2018.
doi:10.1145/3158208.

8 Mohamed Hassan. Heterogeneous mpsocs for mixed-criticality systems: Challenges and
opportunities. IEEE Design & Test, 35(4):47–55, 2017.

9 Mohamed Hassan. Discriminative coherence: Balancing performance and latency bounds
in data-sharing multi-core real-time systems. In 32nd Euromicro Conference on Real-Time
Systems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

10 Mohamed Hassan, Anirudh M Kaushik, and Hiren Patel. Predictable cache coherence for multi-
core real-time systems. In 2017 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 235–246. IEEE, 2017.

11 Mohamed Hassan and Hiren Patel. Criticality- and requirement-aware bus arbitration for
multi-core mixed criticality systems. In 2016 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 1–11, 2016. doi:10.1109/RTAS.2016.7461327.

ECRTS 2022

https://developer.arm.com/documentation/ddi0500/e/level-1-memory-system/about-the-l1-memory-system
https://developer.arm.com/documentation/ddi0500/e/level-1-memory-system/about-the-l1-memory-system
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-optimization-manual.pdf
https://developer.arm.com/documentation/100400/0001/xdc1471434436160
https://developer.arm.com/documentation/100400/0001/xdc1471434436160
https://doi.org/10.1109/ECRTS.2016.14
https://doi.org/10.1109/RTSS.2016.015
https://doi.org/10.1145/3158208
https://doi.org/10.1109/RTAS.2016.7461327

16:26 Parallelism-Aware High-Performance Cache Coherence with Tight Latency Bounds

12 Mohamed Hassan, Hiren Patel, and Rodolfo Pellizzoni. A framework for scheduling dram
memory accesses for multi-core mixed-time critical systems. In 21st IEEE Real-Time and
Embedded Technology and Applications Symposium, pages 307–316. IEEE, 2015.

13 Mohamed Hassan and Rodolfo Pellizzoni. Bounding dram interference in cots heterogeneous
mpsocs for mixed criticality systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2323–2336, 2018. doi:10.1109/TCAD.2018.2857379.

14 Mohamed Hassan and Rodolfo Pellizzoni. Analysis of memory-contention in heterogeneous
cots mpsocs. In Euromicro Conference on Real-Time Systems, 2020.

15 Salah Hessien and Mohamed Hassan. The best of all worlds: Improving predictability at the
performance of conventional coherence with no protocol modifications. In 2020 IEEE Real-Time
Systems Symposium (RTSS), pages 218–230, 2020. doi:10.1109/RTSS49844.2020.00029.

16 Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Patel. Designing predictable cache
coherence protocols for multi-core real-time systems. IEEE Transactions on Computers,
70(12):2098–2111, 2021. doi:10.1109/TC.2020.3037747.

17 Anirudh Mohan Kaushik and Hiren Patel. A systematic approach to achieving tight worst-
case latency and high-performance under predictable cache coherence. In 2021 IEEE 27th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 105–117,
2021. doi:10.1109/RTAS52030.2021.00017.

18 Anirudh Mohan Kaushik, Paulos Tegegn, Zhuanhao Wu, and Hiren Patel. Carp: A data
communication mechanism for multi-core mixed-criticality systems. In 2019 IEEE Real-Time
Systems Symposium (RTSS), pages 419–432, 2019. doi:10.1109/RTSS46320.2019.00044.

19 Manpreet S Khaira. Fast first-come first served arbitration method, November 12 1996. US
Patent 5,574,867.

20 Hyoseung Kim, Dionisio de Niz, Björn Andersson, Mark Klein, Onur Mutlu, and Ragunathan
Rajkumar. Bounding memory interference delay in cots-based multi-core systems. In 2014
IEEE 19th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages
145–154, 2014. doi:10.1109/RTAS.2014.6925998.

21 Namhoon Kim, Micaiah Chisholm, Nathan Otterness, James H. Anderson, and F. Donelson
Smith. Allowing shared libraries while supporting hardware isolation in multicore real-time
systems. In 2017 IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), pages 223–234, 2017. doi:10.1109/RTAS.2017.14.

22 Benjamin Lesage, Isabelle Puaut, and André Seznec. Preti: Partitioned real-time shared cache
for mixed-criticality real-time systems. In Proceedings of the 20th International Conference on
Real-Time and Network Systems, pages 171–180, 2012.

23 Reza Mirosanlou, Danlu Guo, Mohamed Hassan, and Rodolfo Pellizzoni. Mcsim: An extensible
dram memory controller simulator. IEEE Computer Architecture Letters, 19(2):105–109, 2020.
doi:10.1109/LCA.2020.3008288.

24 Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni. Drambulism: Balancing
performance and predictability through dynamic pipelining. In 2020 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 82–94, 2020. doi:
10.1109/RTAS48715.2020.00-15.

25 Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni. Duetto: Latency guarantees at
minimal performance cost. In 2021 Design, Automation Test in Europe Conference Exhibition
(DATE), pages 1136–1141, 2021. doi:10.23919/DATE51398.2021.9474062.

26 Reza Mirosanlou, Mohamed Hassan, and Rodolfo Pellizzoni. DuoMC: Tight DRAM Latency
Bounds with Shared Banks and Near-COTS Performance. In ACM International Symposium
on Memory Systems (MEMSYS), pages 1–14, 2021.

27 NXP. Qorlq® t4240, t4160 and t4080 multicore processors, 2018.
28 Marco Paolieri, Eduardo Quiñones, Francisco J Cazorla, Guillem Bernat, and Mateo Valero.

Hardware support for wcet analysis of hard real-time multicore systems. ACM SIGARCH
Computer Architecture News, 37(3), 2009.

https://doi.org/10.1109/TCAD.2018.2857379
https://doi.org/10.1109/RTSS49844.2020.00029
https://doi.org/10.1109/TC.2020.3037747
https://doi.org/10.1109/RTAS52030.2021.00017
https://doi.org/10.1109/RTSS46320.2019.00044
https://doi.org/10.1109/RTAS.2014.6925998
https://doi.org/10.1109/RTAS.2017.14
https://doi.org/10.1109/LCA.2020.3008288
https://doi.org/10.1109/RTAS48715.2020.00-15
https://doi.org/10.1109/RTAS48715.2020.00-15
https://doi.org/10.23919/DATE51398.2021.9474062

R. Mirosanlou, M. Hassan, and R. Pellizzoni 16:27

29 Rodolfo Pellizzoni, Bach D. Bui, Marco Caccamo, and Lui Sha. Coscheduling of cpu and i/o
transactions in cots-based embedded systems. In 2008 Real-Time Systems Symposium, pages
221–231, 2008. doi:10.1109/RTSS.2008.42.

30 Fong Pong and Michel Dubois. A new approach for the verification of cache coherence protocols.
IEEE Transactions on Parallel and Distributed Systems, 6(8):773–787, 1995.

31 Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. Splash-3: A properly
synchronized benchmark suite for contemporary research. In 2016 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pages 101–111. IEEE,
2016.

32 Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso, Jamie
Garside, Kees Goossens, Sven Goossens, Scott Hansen, Reinhold Heckmann, et al. T-crest:
Time-predictable multi-core architecture for embedded systems. Journal of Systems Architec-
ture, 61(9):449–471, 2015.

33 Nathanaël Sensfelder, Julien Brunel, and Claire Pagetti. Modeling cache coherence to expose
interference (artifact). In Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

34 Nathanal Sensfelder, Julien Brunel, and Claire Pagetti. On how to identify cache coherence:
Case of the nxp qoriq t4240. In 32nd Euromicro Conference on Real-Time Systems (ECRTS
2020). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2020.

35 Ashok Singhal, Bjorn Liencres, Jeff Price, Frederick M Cerauskis, David Broniarczyk, Gerald
Cheung, Erik Hagersten, and Nalini Agarwal. Implementing snooping on a split-transaction
computer system bus, November 2 1999. US Patent 5,978,874.

36 Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory consistency and cache
coherence. Synthesis lectures on computer architecture, 6(3):1–212, 2011.

37 Nivedita Sritharan, Anirudh Kaushik, Mohamed Hassan, and Hiren Patel. Enabling predictable,
simultaneous and coherent data sharing in mixed criticality systems. In 2019 IEEE Real-Time
Systems Symposium (RTSS), pages 433–445, 2019. doi:10.1109/RTSS46320.2019.00045.

38 Calvin K Tang. Cache system design in the tightly coupled multiprocessor system. In
Proceedings of the June 7-10, 1976, national computer conference and exposition, pages
749–753, 1976.

39 Zheng Pei Wu, Yogen Krish, and Rodolfo Pellizzoni. Worst case analysis of dram latency in
multi-requestor systems. In 2013 IEEE 34th Real-Time Systems Symposium, pages 372–383,
2013. doi:10.1109/RTSS.2013.44.

40 Zhuanhao Wu, Anirudh Mohan Kaushik, Paulos Tegegn, and Hiren Patel. A hardware platform
for exploring predictable cache coherence protocols for real-time multicores. In 2021 IEEE
27th Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 92–104,
2021. doi:10.1109/RTAS52030.2021.00016.

ECRTS 2022

https://doi.org/10.1109/RTSS.2008.42
https://doi.org/10.1109/RTSS46320.2019.00045
https://doi.org/10.1109/RTSS.2013.44
https://doi.org/10.1109/RTAS52030.2021.00016

Predictably and Efficiently Integrating COTS
Cache Coherence in Real-Time Systems
Mohamed Hossam ! Ï

McMaster University, Hamilton, Canada

Mohamed Hassan ! Ï

McMaster University, Hamilton, Canada

Abstract
The adoption of multi-core platforms in embedded real-time systems mandates predictable system
components. Such components must guarantee the satisfaction of the timing constraints of various
applications running on the system. One of the components that can break the system predictability
is cache coherence, which ensures the correctness of shared data. This paper proposes a solution
towards the enablement of predictable cache coherent real-time systems. The solution uses existing
COTS coherence protocols and proposes a methodology to integrate them with legacy real-time
arbiters without imposing any required modification to either of them. Doing so, the paper also works
as an exploratory study of the integration of various coherence protocols with various predictable
arbitration schemes leading to a total of 12 different architecture configurations. Evaluation against
four state-of-the-art predictable coherence solutions as well as COTS-based solutions show that the
proposed approach achieves the tightest existing latency bounds among predictable solutions with
minimal performance degradation over the COTS ones.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Real-time system architecture; Computer systems organization → Multicore
architectures

Keywords and phrases Coherence, Shared Data, Caches, Multi-Core, Real-Time, Memory

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.17

Supplementary Material PCC-sim, an open source cache simulator
Software: https://gitlab.com/FanosLab/pcc-sim

1 Introduction

Compared to traditional real-time embedded systems, modern applications of embedded
systems impose fundamentally new set of challenges. Examples of these applications are
prevalent in domains such as automotive, unmanned air vehicles (UAVs), space, and in-
dustry 4.0. With the transition towards more autonomy in these domains, the challenges are
correlated to processing massive amounts of data, which requires unprecedented computation
power as well as memory bandwidth. Moreover, this data processing must happen as quick
as its incoming rate from the external physical environment (e.g. camera frame rate in
a self-deriving car or an incoming vital signal from a patient). This dictates a minimal
acceptable average performance of the computing system. Meanwhile, the fact that these are
safety-critical systems, they have the stringent requirement of predicable performance. This
is expressed in terms of deadlines that should never be exceeded under all conditions. To
be able to provide this predictable performance, the hardware architecture itself should be
predictable to enable the derivation of reasonable bounds on the worst-case execution time
(WCET) of all running tasks.

Architecting computing systems to meet all the aforementioned requirements becomes a
challenging task since they can conflict with each other. An example of such conflict that is
relevant to the focus of this paper is data sharing. Most existing research in the predictable

© Mohamed Hossam and Mohamed Hassan;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 17; pp. 17:1–17:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohamed.hossam@mcmaster.ca
https://www.ece.mcmaster.ca/faculty/hassan/people/hossam.html
mailto:mohamed.hassan@mcmaster.ca
https://www.ece.mcmaster.ca/faculty/hassan/people/hassan.html
https://doi.org/10.4230/LIPIcs.ECRTS.2022.17
https://gitlab.com/FanosLab/pcc-sim
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Predictable Cache Coherence

management of multi-core hardware assumes tasks do not share data [8]. This is because data
sharing can infringe the isolation properties promised by these techniques [18]. Nonetheless,
this is no longer possible for the aforementioned domains since inter-task communication
through data sharing is a key to the functionality of these systems [28, 17]. For example,
in automotive, measured values from several sensors need to be consumed by multiple
functions [11].

Considering average performance requirements, cache coherence seems to be the appealing
solution to enable data sharing both from academic [22, 23] and industry [9] perspective.
Therefore, this paper focuses on cache coherence as the data sharing mean in multi-core
real-time systems. Despite having a recent attention from the real-time community, the
approach followed by the majority of existing works is to ensure predictability by mandating
modifications to either the commercial-off-the-shelf (COTS) coherence protocols only [14],
the legacy predictable interconnects or arbitration schemes [17], or both [15, 18, 27, 20, 19].
In contrast, this paper contributes to the efforts of enabling predictable and
coherent sharing of data in real-time systems by proposing PCC: a solution that
integrates COTS coherence protocols into legacy predictable real-time arbitration
schemes without requiring any modifications to either of them. This solution is
based on the following observation. The usually abstracted bus architecture in the real-time
research is physically composed of several parallel buses in COTS platforms. In particular, the
interconnect between private caches and the shared cache either deploys a communication bus
for the communication among the private caches, which is separate from the bus connecting
these private caches to the shared cache [3], or it enables several point-to-point connectivity
that allows for overlapping transfers [1, 7]. This enables the data to be sent to different
destinations simultaneously; in particular, from a core’s private cache to another private
cache as well as to the shared memory. A more thorough discussion about this observation is
presented in the system model in Section 4. Leveraging this observation, the paper makes
the following contributions.

1) It illustrates how to predictably integrate COTS coherence protocols into the legacy
predictable real-time arbiters without imposing any architectural modifications to the
protocol itself nor to the underlying predictable arbitration scheme. This is key since
it has been established by prior works that directly doing so will lead to unpredictable
behaviors [18]. However, we show how exploiting the architectural capability mentioned
in the previous observation can restore predictability to the real-time multi-core system
upon integrating cache coherence to it.

2) The predictability of the solution is proven by a formal timing analysis that we introduce in
Section 6. Unlike existing works, this analysis is generalized to apply to various real-time
arbiters as well as various COTS coherence protocols. Additionally, a key aspect of this
work is that the provided bounds stand the same regardless of the pipeline architecture
of the cores, whether in-order or out-of-order (OoO).

3) To confirm the claimed integrability, we deploy a wide set of COTS coherence protocols as
well as predictable arbitration schemes. In addition to the modified-shared-invalid (MSI)
protocol that is adopted by most existing works, we also fully implement the MESI (E
refers to Exclusive) and MOESI (O refers to Owned) protocols, which, unlike the simple
MSI protocol, are common on multi-core platforms. For instance, the MESI protocol
is adopted by the ARM’s most-recent Cortex-R82 [4], while the MOESI is adopted by
ARM’s A53 processor [2]. For predictable arbiters, we exemplify the generality of the
solution by implementing time division multiplexing (TDM), round robin (RR), weighted
RR (WRR), and harmonic RR (HRR). This results in 12 different implemented and
studied cache coherent architectures.

M. Hossam and M. Hassan 17:3

4) These rich system configurations enable us to conduct extensive case studies, which in
turn lead to several novel observations about the various design trade-offs of choosing the
coherence protocol as well as the arbitration mechanism from the predictability perspective
of multi-core real-time systems. These observations are discussed in details in Section 7.

5) We compare against four predictable cache coherent techniques [15, 18, 19] as well as
against conventional COTS coherence techniques. Results show that PCC is able to
achieve the tightest bound for existing predictable coherence solutions, with a minimal
performance degradation compared to COTS solutions.

2 Background

In this section, we cover the fundamentals of cache coherence protocols and shared bus
arbitration.

2.1 Coherence Protocols
A Coherence protocol is the mechanism that cache controllers employ in multi-core systems
to ensure the correctness of the data. The correctness is achieved by guaranteeing that all
the cores have access to the latest version of the data. Thus, coherence protocols enforce
Single-writer-multiple-reader (SWMR) invariant to keep the coherency of the data. The
basic protocol that many COTS architecture implements is MSI.

MSI protocol consists of three main states: Modified(M), Shared(S), and Invalid(I)
where each cache line in the private cache should be either in one of these states or in the
transition to one of them. M state grants read and write permissions to the core that has
the cache line. Due to SWMR invariant, only a single core can have a certain cache line in
M state at a time, and other cores cannot privately cache this line during this time. Cores
can request lines for modification by issuing GetM message on the shared bus. On the other
hand, S state is a read only state, where multiple cores can have the same cache line in this
state. Cores request lines for read by broadcasting GetS message on the bus. The last state
is I which indicates that the data of a cache line is not available in the private cache or the
data is stale. I state does not allow reading or writing to the data.

Extensions can be applied to MSI by adding one or more states such as the exclusive (E)
and the owner (O) state. These extensions result in the famous protocols: MESI, MOSI,
and MOESI. E state is similar to S state as both are read only states, but E state indicates
that only one core has this cache line in its private cache. This allows such core to move
from E to M silently without issuing GetM message. The other state, O is also a read only
state, but it gives the core the ownership of the cache line, meaning this core should respond
to other cores’ requests for this line instead of the shared memory.

Transient States. Besides these standard states, which are called stable states, there are
number of states that indicate the transitions between the stable states, and they are called
transient states. Transient states are crucial due to the non-atomicity of the interconnect
between cache memories. For instance, if core Ci requires to write to a cache line in the
I state, it will issue a GetM message and wait for receiving the data. Before the data is
received, the cache line can neither be in the I nor the M states; therefore, a transient state
is required to define this transitional period. Conventionally, this state is named IMd, which
shows the source and destination states, and the superscript indicates the reason of the state
(d indicates waiting for data). In order to complete this example, we can assume that while
Ci is waiting for data, it observes a GetM message from another core Cj . Accordingly, Ci

should change the state of the line from IMd to IMdI. IMdI indicates that after the data
arrives and write is performed, the cache line should be moved to I state. Some of these
transient states are depicted in Figure 2 and discussed within the example in Section 3.

ECRTS 2022

17:4 Predictable Cache Coherence

Bus GetM(A) GetM(A) GetM(A)

TDM Slot C2 C0 C1 C2

Larb Lacc

C0, C1, and C2
write req. to A

t

t + x

Bus GetM(A) GetM(A) GetM(A)

Core access C0 C1 C2

Larb Lacc

C0, C1, and C2
write req. to A

Bus GetM(A) GetM(B) GetM(C) GetM(A) GetM(B) GetM(A)

Core access C0 C0 C0 C1 C1 C2

Larb Lacc

C0, C1, and C2
write req. to A,B, and C

Bus GetM(A) GetM(A) GetM(B) GetM(B) GetM(C) GetM(A)

Core access C0 C1 C0 C1 C0 C2

Larb Lacc

C0, C1, and C2
write req. to A,B, and C

(a) TDM (c) WRR

(b) RR (d) HRR

Figure 1 The worst-case latency of different bus arbiters. C2 is the core under analysis.

2.2 Bus Arbitration
In embedded systems, the communication medium between private caches from one side and
the shared memory from the other side is usually a shared bus. A bus arbiter is responsible
for organizing accesses of the cores to the bus. Figure 1 shows the worst-case latency (WCL)
of different predictable arbiters. A predictable arbiter should grant access to the bus to
the requesting core in a predictable bounded latency. Figure 1a shows the latency of TDM
arbiter, which dedicates a fixed time slot for each core to access the bus. The WCL of
TDM is govern by WCL = N × S, where N is the number of cores and S is the slot width.
The width of the slot is chosen to have S ≥ (Larb + Lacc), where Larb is the bus latency to
broadcast a request and Lacc is the latency of data transfers over the bus. Similarly, Figure
1b shows the latency of RR arbiter, which is a dynamic arbiter that keeps a cyclic list of
cores with ready requests. WCL of RR is calculated by WCL = (N − 1) × (Larb + Lacc).
There are multiple variants of RR, the most common are WRR and HRR. Both WRR and
HRR allow cores to have different arbitration weights. WRR’s WCL can be calculate as
shown in Figure 1c, for a core Cj WCL is

∑N−1
i=0,i ̸=j Wi × (Larb + Lacc), where Wi is the

weight of core Ci. WCL of HRR is calculated differently, as shown in Figure 1d the weights
of the cores are distributed harmonically, therefore the WCL of Cj in HRR can be calculated
using (⌈HP/Wj⌉ − 1) × (Larb + Lacc), where HP is the hyper-period of the cyclic list of the
cores, and it is equal to the summation of all the weights.

3 Related Work and Motivation

In the way of adopting the multi-core systems in real-time applications, many efforts have been
conducted to facilitate this adoption by predictably managing interference among different
cores upon accessing shared hardware resources in the system. Examples of these resources
are caches [5, 12, 14, 15, 18, 19, 21, 27], interconnects [17, 20], and main memory [10, 13, 16].
Among these works, the most relevant to this paper are the ones focusing on enabling coherent
data sharing through hardware coherence protocols [14, 15, 18, 19] and the ones aiming at
predictably arbitrating accesses to the shared cache [17, 20].

M. Hossam and M. Hassan 17:5

PMSI [15] provides predictable cache coherence by modifying the legacy MSI protocol
and implementing it on top of a unified TDM bus. The work was extended in [18] by
adopting a MESI-based solution. PMSI (and PMESI) suffers from two main drawbacks. 1)
Its WCL is quadratic in the number of cores, which makes it very pessimistic. 2) It requires
modifications to both the COTS coherence protocol and the underlying architecture. The first
drawback hinders its usability for real-time systems with tight latency requirements, while
the second one makes it hard to adopt by industrial entities since designing and verifying
new coherence protocols is known to be one of the most tedious architectural tasks [23, 24].

In order to elaborate PMSI’s operation graphically, we use the example in Figure 2. The
example crafts a scenario that highlights the key features and drawbacks of PMSI. Moreover,
it is used to explain the rest of the related approaches, and in Section 5 we utilize the example
to present PCC’s operation and how it tackles the other approaches’ downsides. The example
shows the different latency components of the write request from core C2 to the memory
location A. Initially, at 1 cores C0 and C2 have write requests to A which is cached in the
shared memory. At 2 , C1 has a read request from the memory location B which is modified
by C2. Afterwards at 7 , C2 has a read request from A followed by a read request from B.
Towards the end at 8 , C1 requests another read from B.

The breakdown of PMSI’s latency is illustrated in Figure 2a, where cores issue their
request messages only during their dedicated TDM slots. C0 issues a GetM message at 1
and receives the data from the shared memory in the same slot. On the other hand, C2
issues its message at 3 which entails that C0 changes A’s state from M to MIwb according
to PMSI protocol. MIwb indicates a transition from M state to I state after writing data back
to the shared memory. Regarding the request latency, its first component is Larb, which is
the time between a core having a request until the request is broadcast on the bus. Since
PMSI does not allow cache-to-cache transfers, C2 has to wait for a complete TDM period to
receive A after C0 writes it back to the shared memory at 4 . The duration between the
request broadcast and the data being ready to be sent (the time between 4 to 5) is the
inter-coherence latency (Linter−coh), which appears because of the coherence interference
between the cores, such as the write-back from C0. Nonetheless, C2 cannot receive A at
5 because of the previous request from C1 at 2 which requires C2 to write B back to the
shared memory. Accordingly, C2 receives A at 6 instead of 5 , and this delay is defined as
the intra-coherence latency (Lintra−coh) that results from the intra-core interference between
a core’s demanding requests and its write-backs. The last latency component is Lacc, and the
total latency per request is the summation of all the aforementioned components. Clearly, the
WCL of such behavior is very pessimistic as the latency of c2’s write(A) illustrates. Finally,
the requests at 7 and 8 are all hits, because PMSI allows read from the modified cached
lines (such as A) as well as previously modified lines (such as B). These two features, which
are inherited from MSI, result in a relatively good average-case performance as shown in
Table 1.

DISCO [14] makes the observation that write requests are the reason of PMSI’s excessive
WCL due to the need for write-backs. Hence, it proposes to tighten this WCL by discrimin-
ating between read and write requests. This is done by prohibiting modified cache lines from
being stored in the private L1 caches of cores; instead, all write requests must be serviced
at the shared memory directly. The tight WCL can be observed from Figure 2b, where the
write requests from C0 and C2 are serviced during the same slots they are issued in at 1
and 3 . Moreover, C1’s request at 2 is serviced directly from the shared memory, unlike the
case of PMSI, because C2 is not allowed to privately cache the modified B line. Nonetheless,
WCL comes at the cost of average performance which is embodied in the misses of the read

ECRTS 2022

17:6 Predictable Cache Coherence

C0 GetM(A)
A: I → IMd

Rx(A)
A: IMd → M A: M → MIwb WB(A)

A: MIwb → I ⋯

C1 GetS(B)
B: I → ISd

Rx(B)
B: ISd → S ⋯

C2 B: M → MSwb GetM(A)
A: I → IMd

WB(B)
B: MSwb → S

Rx(A)
A: IMd → M ⋯

Data
Direction

SM to C0 C0 to SM C2 to SM SM to C1 SM to C2

TDM Slot C0 C1 C2 C0 C1 C2 C0 C1 C2 ⋯

C0: write(A) → Miss
C2: write(A) → Miss

Larb Linter-coh Lacc

C1: read(B) → Miss

Lintra-coh

2

5 63

4

C1: read(B) → Hit

1 7 8

C2: read(B) → Hit
C2: read(A) → Hit

C0 GetM(A)
A: I

Rx(A)
A: I ⋯

C1 GetS(B)
B: I → Isd

Rx(B)
B: ISd → S ⋯

C2 GetM(A)
A: I

Rx(A)
A: I

GetS(A)
A: I → Isd

Rx(A)
A: ISd → M

GetS(B)
B: I → ISd

Rx(B)
B: ISd → M ⋯

Data
Direction

SM to C0 SM to C1 SM to C2 SM to C2 SM to C1

TDM Slot C0 C1 C2 C0 C1 C2 C0 C1 C2 	⋯

C0: write(A) → Miss
C2: write(A) → Miss

Larb Lacc

C1: read(B) → Miss

2

3

C1: read(B) → HitC2: read(B) → MissC2: read(A) → Miss

1 7 8

C0 GetM(A)
A: I → IMd

Rx(A)
A: IMd → M

Send A
A: M → I

C1 GetS(B)
B: I → ISd

Rx(B)
B: ISd → M

Send B
B: M → I

GetS(B)
B: I → ISd

Rx(B)
B: ISd → M

C2 Send B
B: M → I

GetM(A)
A: I → IMd

Rx(A)
A: IMd → M

GetS(B)
B: I → ISd

Rx(B)
B: ISd → M

Send B
B: M → I

Data
Direction

SM to C0 C2 to C1 C0 to C2 C1 to C2 C2 to C1

TDM Slot C0 C1 C2 C0 C1 C2 C0 C1

C0: write(A) → Miss
C2: write(A) → Miss

Larb Lacc

C1: read(B) → Miss

2
3

C1: read(B) → Miss
C2: read(B) → Miss
C2: read(A) → Hit

1 7 8

(c) PMSI*

(b) DISCO

(a) PMSI/PMESI

Figure 2 The memory latency of the write request to A from core C2 in a 3-core system that
implements unified bus to connect privates cache with the shared memory. The bus uses TDM
arbitration with fixed slot width; however, the figure shows different sizes for the slots in order to fit
into the page width. In the beginning of the scenario, A resided in the shared memory, while B was
modified by C2.

M. Hossam and M. Hassan 17:7

Table 1 Summary of the properties of the related work along with PCC’s properties. ✗ indicates
that the ✗ is not supported, while ✓ indicates it is supported. features with several marks indicate a
score for each work. For example, ✗✗✓✓ indicates a score of 2/4, ✗✗✗✓ indicates 1/4, ✗✓ indicates
a score of 1/2, and ✓✓ indicates a score of 2/2.

Related work Per-req. WCL Bus Arch. Supports OoO Exe. Supports COTS Protocols Supports different
arbiters

Supports C2C
Data Transfer average performance

PMSI/ PMESI Quadratic Unified ✗✗ ✗ ✗ ✗ ✗✗✓✓

DISCO/ DISCOSharedW Linear Unified ✓✓ ✗ ✓ ✗ ✗✓✓✓

PMSI∗/ PMESI∗ Linear Unified ✗✗ ✗ ✗ ✓ ✗✗✗✓

PISCOT Linear Split ✗✓ ✓ ✗ ✓ ✓✓✓✓

PCC Linear Unified ✓✓ ✓ ✓ ✓ ✓✓✓✓

requests from C2 that come after 7 . It also requires hardware support to enable selective
bypassing of L1 caches for write requests. The author also proposed DISCO-SharedW in [14]
as an enhanced version allowing the caching of modified cache lines in the L1 caches if they
are to a private data that is not shared amongst cores. This optimization provides a good
balance between a tight WCL and good performance. However, it assumes the availability of
a prior information about the shared data. Accordingly, DISCO-SharedW scores a relatively
high average-case performance in Table 1’s comparison.

The PMSI∗ and PMESI∗ solutions are proposed in [19] to be modified versions of the
original PMSI/PMESI protocol. Similar to DISCO, they aim at reducing the quadratic WCL
of PMSI by mitigating the impact of write-backs. Unlike DISCO, they limit the number
of write-backs that have to go to the shared memory. This is achieved by deploying two
techniques. 1) They enable direct communication between private caches, similar to this work.
2) They remove some of the standard transitions in the MSI and the MESI protocols. In
particular, if a core owns a line in the modified state, they disallow such line from being
shared among several cores afterwards; i.e., such line can only be accessed by a single core
at a time. The reason for this modification is to make this line directly transferable among
cores while avoiding the need to transfer this line to the shared memory (until eviction). An
example to this transition is C1’s read request at 2 , where C1 receives B directly from C2
but C2 invalidates B after its transfer. While achieving a linear WCL in number of cores,
this solution suffers from a significant performance penalty due to disabling simultaneous
sharing of such lines and the possibly ping-pong effect as a result. The ping-pong effect
appears between the read requests from C2 and C1 at 7 and 8 ; thus, PMSI∗ and PMESI∗

are given the worst performance score in Table 1.
PISCOT [17] follows a different approach by deploying a split-bus interconnect that

implements a TDM request bus to broadcast coherence requests and a first-come first-serve
(FCFS) response bus to transfer data responses. PISCOT is the only previous solution that
enables the deployment of conventional coherence protocols without modifications. It also
leverages the split-bus interconnect to achieve high average performance, while maintaining
predictability with tight latency bounds. Another aspect of PISCOT compared to all existing
works is its support to OoO cores by considering cores with multiple outstanding requests.
Nonetheless, we find this support to be limited since it only services one request at a time;
mainly to ensure the tight latency bounds. PCC similar to PISCOT enables the adoption of
COTS coherence protocols in real-time systems without modifications. In doing so, unlike
PISCOT, which requires a specific split-bus architecture, PCC enables the usage of legacy
prevalent real-time bus architectures and arbiters. PCC also supports OoO cores and since it
allows all requests to be non-preemptively serviced once their corresponding messages are
broadcasted, it does not put any constraint on the OoO behavior of cores, while offering the
tight WCL that is independent of the core pipeline architecture.

ECRTS 2022

17:8 Predictable Cache Coherence

L1

Core0

Last-level Cache /
off-chip memory

Snooping Bus

Coren

L1

Figure 3 The system model.

Table 1 summarize the differences between all the aforementioned approaches, and from
that we can conclude the features that should be present in the proposed approach. Initially,
the per-request WCL should be linear with the number of cores without compromising
the average-case performance. Also, PCC should be independent of the coherence protocol
therefore it can incorporate COTS protocols without any modifications. Moreover, it uses
unified bus architecture with the ability of cache-to-cache data transfer to guarantee both
tight WCL bounds and high performance. Finally, it should support OoO pipelines without
changing the WCL, and it should not assume any prior information about shared data. All
the previous point are also summarized in the last row of Table 1.

4 System Model

We consider a multi-core system that has N cores as shown in Figure 3.

Cores Architecture and Cache Hierarchy. Unlike most of the existing related work, we
do not put a constraint on the pipeline architecture of the cores, they can be in-order or
OoO or a mix of both. Each core has a private cache (L1). In addition, the system contains
a shared memory, which it can be a last level cache, off-chip memory, or both of them.
The writes from L1 to the shared memory is handled using write-allocate write-back policy,
and the cache hierarchy is inclusive such that data existing in any L1 is a subset of the
shared memory’s data. It is important to highlight that the proposed solution works for
general cache architectures. For example, the solution works seemingly for different number
of cache levels, where each core has several private caches and then the last private level of
all cores connect to a shared cache. In that case, the solution works for the bus connecting
to the shared cache. An exhaustive enumeration of all possible cache architecture is beyond
the scope of this paper; thus, for conciseness, we focus on the model depicted in Figure 3.
Another important notice is that we assume that the data will always be serviced within the
depicted memory hierarchy in Figure 3 (i.e. the shared cache will always have the line in
the valid state). This assumption is only to avoid the other sources of interference that are
beyond the scope of this paper (e.g. I/O interference [6] or off-chip memory interference [10]).

Cache Coherence. The data is kept coherent among the private caches by incorporating
any of the standard COTS coherence protocols. In this work, we exemplify by adopting
three protocols: MSI, MESI, and MOESI.

M. Hossam and M. Hassan 17:9

Bus Architecture. L1 caches and the shared memory communicate through a logical shared
snooping bus. We use the term logical here to differentiate between the logical bus model and
the actual physical implementation details of this bus. As far as the paper is concerned, we
make few assumptions about (requirements) the logical bus to be able to derive the bounds.
Aside from these requirements, the physical implementation of the bus can be realized using
any technique. These assumptions are as follows.

1) The bus allows the direct data transfers between L1 caches. Moreover, a transfer from
a sender L1 cache to another can be overlapped with a transfer to the shared memory. In
other words, a data sent from a core can be received by the shared memory and another
core simultaneously. We find these assumptions to reflect techniques adopted in COTS
architectures. For example, different existing ARM processors allow for direct transfers
between private L1s, this includes processors both real-time (e.g. Cortex-R82 [4]) and
application (e.g. Cortex-A53 [2]) families. Additionally, the data-coherent bus connecting
private L1 caches and the snooping control unit (SCU) in Arm’s MPCore processor is separate
from the bus connecting the SCU to the shared L2 cache, where the latter is AXI-based (e.g.
in A9) or with the Cache Coherence Interconnect extensions to the AXI interface (CCI-400)
such as in A15. On the other hand, for the CCI-550, the data interconnect is mentioned
to be a fully connected cross bar [1]. Another vendor’s example is the QorIQ processor
family from NXP, where the CoreNet Coherency Fabric enables point-to-point connections to
pipeline the transfers between cores and shared memories [7]. Either having a dedicated bus
or several parallel point-to-point connections will enable the required overlapped transfer.

2) The bus has a logical unified architecture. This means transferring a coherence message
and a data message cannot be overlapped. During anytime instance, either a coherence
message is being broadcast or a data message is being transferred. It is important to note
that this assumption does not prevent the coherence and data messages from being sent on
two different realized physical buses. It only requires unifying their arbitration such that
their transfers are not overlapped. This is key to enable the integration of COTS coherence
in predictable arbitration schemes with tight latency bounds, especially for OoO cores as we
will discuss in section 6.

3) Cores are granted access to the bus using a predictable arbitration scheme. This work
is not limited to a specific arbiter type, and we provide results, in Section 7, for TDM, RR,
WRR, and HRR arbiters. Once a request is granted access to the bus by the arbiter, it will
remain in service and no other request will be granted access until the in-service request is
fulfilled. The maximum time to service any request is assumed to be Lacc. For slot-based
arbitration schemes (such as TDM), the time slot of the bus arbiter should be long enough to
fit the latency of broadcasting coherence messages besides transferring data (i.e. slot width
should be at least Lacc).

The data sharing model. we don’t assume any constraints on data sharing or the shared
address space. Additionally, our proposal can work with the timing interference management
solutions like memory partitioning and coloring. Also, we don’t assume any restrictions on
the task scheduler, so any task can run on any core without any implications on the system
predictability.

5 Proposed Solution

PCC leverages the observations about the potential architectural features deployed by COTS
platforms that are specified in the system model (Section 4) to facilitate the predictable
integration of cache coherence in real-time systems without drastic degradation of performance.

ECRTS 2022

17:10 Predictable Cache Coherence

In particular, the operation of PCC makes use of these two features: 1) direct cache-to-cache
communication, and 2) a data transfer from a core can be simultaneously sent to another
core as well as the shared memory. As a result, PCC operates according to Theorem 1.

▶ Theorem 1. Once a request, Ri(A) to any cache line A from any core Ci is granted access
to the shared bus under PCC, it will be non-preemptively serviced without interference from
any other request.

Proof. Under the PCC system model described in Section 4, once a request from any core
Ci is granted access to the shared bus, the actions conducted towards its fulfillment falls
under one of the following three scenarios (depending on the type of the request as well as
the specifications of the adopted coherence protocol).
1. The requested cache line is already owned by Ci In that case, to fulfil the request,

it needs only to broadcast a coherence message. This will be the only action needed for
requests that do not necessitate a data transfer. An example is the transition from O
state to M state as a result of a write request under MOESI protocol.

2. The requested cache line is owned by the shared memory. In that case, Ci will
also need to broadcast a coherence message and then receive the data from the shared
memory. This will occur if the data is owned by the shared memory.

3. The requested cache line is owned by another core, say Cj In that case, Ci needs
to broadcast a coherence message and then receive the data from Cj .

For Scenario 1, it is clear that once Ri(A) is granted access to the bus using any predictable
arbiter, it is an exclusive access, where it can issue its message non-preemptively; and hence,
finishes its service.

For Scenario 2, after Ri(A) gains access to the bus and broadcast its message (similar
to scenario 1), it also requires to receive the requested data from the shared memory.
According to the system model in Section 4, this also happens directly once Ri(A)’s message
is broadcasted without any interruption from other requests.

For Scenario 3, there are two sub-scenarios as follows. Scenario 3(a) is the case where the
owner core Cj needs to send the data to Ci only and not the shared memory. This is the
case for example if Ri(A) is a getM(A) request, while A is modified in Cj ’s private cache.
This scenario is similar to Scenario 2 since it requires a single data transfer, while the source
of the data is now a core and not the shared memory. Therefore, same argument applies
similar to Scenario 2 such that Ri(A) finishes without any interruption.
Scenario 3(b) is a bit more involved as it requires two data transfers and not one. In this
scenario, Cj needs to send the data to both Cj and the shared memory. This occurs for
instance if Ri(A) is a getS(A) request, while A is modified in Cj ’s private cache. Leveraging
the observation about the bus architecture in Section 4, PCC is able to conduct these
two transfers in parallel; and hence, enables Ri(A) to also finish in this case without any
interruption. ◀

5.1 Illustrative Example
Now, we show the operation of PCC in action by applying it to the same example in Figure 2
and discuss how PCC offers predictability with tight bounds and no required modifications to
the coherence protocol.

Figure 4 shows the latencies of PCC in a system that utilizes TDM arbiter and MSI
coherence protocol. At 1 , C0 and C2 have write requests to A, and each request is broadcast,
afterwards, to the bus at the beginning of its core’s TDM slot. At 3 , C2, the core under
analysis, is granted access to the bus and it issues its request. During the same slot of C2,

M. Hossam and M. Hassan 17:11

C0 GetM(A)
A: I → IMd

Rx(A)
A: IMd → M

Send A
A: M → I ⋯

C1 GetS(B)
B: I → ISd

Rx(B)
B: ISd → S ⋯

C2 Send B
B: M → S

GetM(A)
A: I → IMd

Rx(A)
A: IMd → M ⋯

Data
Direction

SM to C0
C2 to C1

C0 to C2
C2 to SM

TDM Slot C0 C1 C2 ⋯

C0: write(A) → Miss
C2: write(A) → Miss

Larb Lacc

C1: read(B) → Miss

1

2
3

C1: read(B) → Hit

7 8

C2: read(B) → Hit
C2: read(A) → Hit

Figure 4 The memory latency of a write request to A from core C2 in a 3-core system that uses
PCC along with TDM arbiter and MSI coherence protocol. This figure follows the same scenario,
initial conditions, and the numbering as in Figure 2.

C0, the previous owner of A, responds with the data. Accordingly, this example contains
only two type of latencies Larb and Lacc, which they are the only types that a single request
can incur in case of PCC . Unlike PMSI, PCC does not suffer from Linter−coh or Lintra−coh

because of the fact that requests are served in a single access slot to the bus (Theorem 1).
Additionally, a core cannot have a pending write-back and a request during its access slot
because the write-backs are handled during the requestor’s access slot, and core’s access slots
are for its demanding requests only.

PCC leverages COTS coherence protocols which ensures high average-case performance.
This can be observed from the example in two instances. First at 2 , where C1 requests
reading B which is owned by C2. Consequently, C2 responds by sending B to C1 as well
as to the shared memory; hence, both C1 and C2 are allowed to keep B in S state, unlike
PMSI∗. The second instance at 3 , after C2 completes its write to A, PCC allows C2 to keep
A in M state, unlike DISCO. This results in access hits for the read request to A at 7 and
the read requests to B at 7 and 8 .

6 Timing Analysis and Predictability Guarantees

In this section, we show that PCC solution satisfies the predictability invariants proposed
in [15]. Besides, we derive PCC’s per-request WCL and the total worst-case memory latency
incurred by a task.

6.1 Satisfying Predictability Invariants

According to [15], a system that utilizes COTS coherence protocol along with a predictable
arbiter cannot guarantee a predictable memory latency. Hassan et al., also, provided in [15],
6 invariants to test the predictability of cache memory systems. Accordingly, we show in
this section that PCC satisfies all the invariants, which means COTS protocols with any
predictable arbiter can be predictable if cache-to-cache data transfers are allowed according
to the described system model.

ECRTS 2022

17:12 Predictable Cache Coherence

Invariant 1. A predictable bus arbiter must manage coherence messages on the bus such
that each core may issue a coherence request on the bus if and only if it is granted an access
slot to the bus.

▶ Lemma 2. PCC satisfies Invariant 1.

Proof. Allowing a core to issue a request on the bus is the bus arbiter’s responsibility,
and according to the system model defined in Section 4, PCC utilizes predictable arbiters.
Predictable arbiters allow cores to issue requests only in their own dedicated access slots. ◀

Invariant 2. The shared memory services requests to the same line in the order of their
arrival to the shared memory.

▶ Lemma 3. PCC satisfies Invariant 2.

Proof. Let two requests, Ri(A) and Rj(A) from two different cores Ci and Cj, respectively.
Both requests target the same cache line which is owned by the shared memory. If Ri(A)
and Rj(A) appear on the bus at ti and tj , respectively, where ti < tj , then according to
Theorem 1, Ri(A) once its message is broadcast at ti, it will not be interrupted by any other
request including Rj(A) until it is serviced, which implies here that the shared memory
finishing sending the data to Core Ci. Therefore the shared memory services the request
according to the order of their appearance on the bus which is the same order of their arrival
to the shared memory. ◀

Invariant 3. A core responds to coherence requests in the order of their arrival to that core.

▶ Lemma 4. PCC satisfies Invariant 3.

Proof. Let two requests, Ri(A) and Rj(B) from two different cores Ci and Cj, respectively.
The requests target different cache lines which are both owned by Ck. Similar to the shared
memory, if Ri appears first on the bus, Ck has to respond with the data to Ci before any other
request can broadcast its message (Theorem 1). In conclusion, cores respond immediately to
requests once they appear on the bus, therefore the requests’ arrival order is respected. ◀

Invariant 4. A write request from Ci that is a hit to a non-modified line in Ci’s private
cache has to wait for the arbiter to grant Ci an access to the bus.

▶ Lemma 5. PCC satisfies Invariant 4.

Proof. The coherence protocols dictate how the cache controllers deal with the writes to the
non-modified lines. According to the system model in Section 4, PCC incorporates COTS
protocols that necessitate a modification request (GetM or UpgM) to be broadcast before
writing to a non-modified line (i.e., a line in S state). (1)
According to Lemma 2, cores issue requests only during their access slot. (2)
From (1) and (2), a write request to a non-modified line in the core’s private cache should
wait for the core’s access slot to the bus. ◀

Invariant 5. A write request from Ci that is a hit to a non-modified line, say A, in Ci’s
private cache has to wait until all waiting cores that previously requested A get an access
to A.

M. Hossam and M. Hassan 17:13

▶ Lemma 6. PCC satisfies Invariant 5.

Proof. Assume that Ci owns non-modified cache line A in its private cache, and at time
ti, it has a write request, Ri(A), to A. In addition, assume that Cj requested access (read
or write), and its request Rj(A), to A is broadcast on the bus at time tj , where tj < ti.
Invariant 5 breaks if PCC allows serving Ri(A) before Rj(A). (1)
Whereas, Lemma 5 enforces Ci to wait until it is granted access to the bus before proceeding
with Ri(A). Let this to happen at time ti+δ, where by construction ti+δ > ti (2)
Finally, Theorem 1 dictates that once a request is broadcast, it will be serviced before any
other request can be broadcast or serviced (3)
From (1) – (3) and since tj < ti+δ, it necessitates that Rj(A) will be serviced before Ri(A);
thus, PCC satisfies Invariant 5. ◀

Invariant 6. Each core has to deploy a predictable arbitration between its own generated
requests and its responses to requests from other cores.

▶ Lemma 7. PCC satisfies Invariant 6.

Proof. From Theorem 1, cores will never have pending responses to others’ requests during
their own access time. The reason for that is because of the principle of non-preemptively
servicing the requests once they are granted access to the bus. Accordingly, the arbitration
between a core’s own generated requests and its responses always chooses the requests due
to the absence of pending responses. Therefore, PCC has the effect of this arbitration layer
intrinsically without implementing it. ◀

6.2 Per-Request WCL Analysis
According to the example in Section 5, it is clear that the latency of a single request depends

mainly on the type of the bus arbiter.

▶ Lemma 8. The per-request latency is calculated as in Equation 1, where WCLarb is the
worst-case arbitration latency.

WCLperReq = WCLarb + Lacc (1)

Proof. In worst-case, such request has to wait for WCLarb before it can be granted access to
the bus by the arbiter. Once it is granted access to the bus, according to Theorem 1, a core’s
request is non-preemptively serviced. Based on the system model, this service consumes a
maximum latency of Lacc. Therefore, the per-request worst-case latency is as depicted in
Equation 1. ◀

▶ Lemma 9. The processing latency of any request under PCC is calculated as in Equation 1
regardless of the pipeline architecture of the cores in the system (whether in-order, out-of-order
or a combination of both).

Proof. For an in-order core, the proof is straightforward. An in-order core can have a
maximum of one request in-flight at any given time. Therefore, such request do not suffer
any queuing delay from requests of the same core (it is always the head of the queue). Such
request suffers a worst-case processing latency as proven by Lemma 8. Additionally, such
core causes a maximum interference of one request on other cores since it cannot have several
requests simultaneously requiring service per construction.

ECRTS 2022

17:14 Predictable Cache Coherence

An out-of-order core, in contrast, can have several simultaneously outstanding requests.
We now prove that this behavior does not impact the processing latency of requests from
such core, nor impacts other cores. First, for requests from the core itself, we are bounding
the processing latency of any request, which is the latency suffered by such request once it
becomes at the head of the queue of its corresponding core. This is because this processing
latency is the considered one to be used when calculating the overall’s task WCET []. As
a result, no queuing delay needs to be added as a component to the latency in Lemma 8.
Second, for the interference impact from this core on other cores, we prove that it still
adheres to Lemma 8 as follows. 1) Under any of the predictable arbiters considered in the
system model, each core gets a guaranteed turn to access the bus regardless of the behavior
of other cores or the number of their outstanding requests. As a result, the arbitration
latency component, WCLarb remains the same. 2) By construction of PCC and as proven
by Theorem 1, once a request is granted access to the bus, it entertains a non-preemptive
service until it is fulfilled. This is regardless of the behavior of other cores. As a result, the
access latency component, Lacc remains the same. From 1) and 2), we finish the proof for
the out-of-order core case. ◀

6.3 Total Task’s Worst-Case Memory Latency Analysis
A task’s WCET can be computed as follows: WCET = WCCT + WCML, where the
WCCT is the worst-case computation time of the task executing on the core, and the
WCML is the total worst-case memory latency suffered by the task upon accessing the
memory. We now show how to compute the WCML using the per-request WCL derived in
Section 6.2.

WCL can be simply calculated using the per-request WCL calculated in Equation 2 as
follows, where RT is the total number of memory request issued by the task under analysis.

WCML = RT × WCLperReq (2)

Effect of Dirty Line Replacements. Another latency component that should be considered
is the effect of the write back requests due to L1 cache evictions or replacement In worst-case,
every request can trigger an eviction of a dirty cache line; and hence, creates a write back
request that it has to wait for. As a result, The WCML in Equation 2 changes to the value
calculated in Equation 3. This is because every request now has to wait for an additional
write back request that also susceptible to WCLperReq latency in worst case.

WCML = 2 · RT × WCLperReq (3)

In some systems, the number of dirty line evictions can be constrained to the number of
write requests. Accordingly, calculating WCML can be carried out using Equation 4, where
RW is the number of write requests.

WCML = RT × WCLperReq + RW × WCLperReq (4)

This is the case for instance for the MSI protocol. However, COTS protocols that implement
E state (e.g. MESI or MOESI) require PutM message for the lines in the E state, which
are clean (non-modified) lines. As a result, using Equation 4 with such protocols is not
sufficient and can lead to unsafe bounds. In that case, using a more conservative bound such
as the one in Equation 3 is the safe decision.

M. Hossam and M. Hassan 17:15

0

500

1000

1500

2000

2500

a2time01 aifirf01 basefp01 cacheb01 empty iirflt01 pntrch01 rspeed01 ttsprk01

W
C

L
(C

yc
le

s)
PMSI PMSI* PMESI PMESI* MSI-PCC_TDM MESI-PCC_TDM MOESI-PCC_TDM

Figure 5 Per-request WCL of running EEMBC benchmarks, where T-bars represent the analytical
value and solid bars are for the observed WCL among all the requests.

Effect of Hit/Miss Cache Analysis in the Presence of Coherence. Equation 3 is safe and
sufficient to be used in the case of lack of more available information from the task analysis;
however, WCML can be tighten using information from running the task under analysis in
isolation (i.e., run the task on a core while turning off the other cores). For instance, the
assumption that all demanding requests from a task incur WCLperReq is rather pessimistic,
since in most typical cases number of L1 hits is higher than the misses, and the hit latency
(LHit) is much smaller than the WCLperReq. However, it is not feasible to infer the number
of hits from the isolation analysis due to the absence of coherence interference which decreases
the hit rate. Moreover, the effect of coherence interference is not limited only to the shared
data, but it can affect the hit rate of private data as well unless the target system offers data
isolation between private and shared data in L1. Therefore, systems without data isolation
should adhere to WCML calculated by Equation 3. Whereas, if the system is capable of
isolating shared data from private data (for example by providing a separate cache partition
for each, WCML can be more tightened by Equation 5. Equation 5 is based on the fact
that if private and shared data are isolated from each other, they will not be able to evict
each other, and an isolation analysis is performed to calculate the number of requests for
private data that hit in L1 (Riso

privHit), the number requests for private data that miss in
L1 (Riso

privMiss), the number of write-backs due to replacements to private data (Riso
Repl), and

the number requests for shared data (RShared). Since no assumption can be made about
requests to shared data, all of them are assumed to be misses, and further suffering from
write-back replacement delays.

WCML =
(
Riso

privHit×LHit+(Riso
privMiss+Riso

Repl)×WCLperReq

)
+

(
2×RShared×WCLperReq

)
(5)

7 Evaluation

In order to evaluate our proposed solution, we performed a number of experiments to compare
between PCC and state-of-the-art solutions. Additionally, we conducted other experiments to
explore the effects of different combinations of bus arbiters with coherence protocols along
with different execution modes (in-order and OoO). Throughout the experiments, we used a

ECRTS 2022

17:16 Predictable Cache Coherence

0

500

1000

1500

2000

2500

ba
rne
s

ch
ole
sk
y fft

fm
m

lu_
no
n_
co
nti
g

oc
ea
n

rad
ios
ity

rad
ix

ray
tra
ce

vo
lre
nd

wa
ter
_n
sq
ua
red

wa
ter
_s
pa
tia
l

W
C

L
(C

yc
le

s)

PMSI PMSI* PMESI PMESI* MSI-PCC_TDM MESI-PCC_TDM MOESI-PCC_TDM

Figure 6 Per-request WCL of running SPLASH-3 benchmarks, where T-bars represent the
analytical value and solid bars are for the observed WCL among all the requests.

0

50

100

150

200

250

300

350

400

450

max 0 1 2 3 0 1 2 3
RR WRR HRR

W
C

L
(C

yc
le

s)

Bus Arbiter, Core Number

Cacheb01 Benchmark
MSI-PCC MESI-PCC MOESI-PCC

Figure 7 The observed WCL (solid bars) and the analytical WCL (T-bars) for Cacheb01
benchmark from EEMBC suite.

4-core system where each core has 16KB direct-mapped L1 cache, and the cores are connected
to each other and to a last level cache by a snooping unified bus. The access latency of
L1 (LHit) is 1 cycle, and the complete access slot to the bus is 54 cycles: 4 cycles for the
request latency and 50 for the data transfer. To avoid the unnecessary large latency of the
off-chip memory, we used a perfect last level cache which fits the whole data of the running
application. All the experiments were carried out using an open-source cache simulator 1,
which enables us to run trace-based simulations on memory traces collected using Intel’s
PINtool upon executing the benchmarks. We used SPLASH-3 benchmarks [26], which were
configured to execute in 4 threads where each thread runs on a separate core. Moreover, we
used benchmarks from the EEMBC [25] suite to simulate the extreme case of data sharing
and coherence interference by running four instances of the same benchmark trace on the four
cores, simultaneously. Accordingly, all the cores issue almost the same sequence of requests
and share 100% of their data.

1 https://gitlab.com/FanosLab/pcc-sim

https://gitlab.com/FanosLab/pcc-sim

M. Hossam and M. Hassan 17:17

0

50

100

150

200

250

300

350

400

450

max 0 1 2 3 0 1 2 3
RR WRR HRR

W
C

L
(C

yc
le

s)

Bus Arbiter, Core Number

Ocean Benchmark
MSI-PCC MESI-PCC MOESI-PCC

Figure 8 The observed WCL (solid bars) and the analytical WCL (T-bars) for Ocean benchmark
from SPLASH-3 suite.

0

50

100

150

200

250

300

350

400

450

500

max max 0 1 2 3 0 1 2 3
TDM RR WRR HRR

W
C

L
(C

yc
le

s)

Bus Arbiter, Core Number

WCL of Ocean Benchmark

Figure 9 The observed WCL (solid bars) and the analytical WCL (T-bars) for Ocean benchmark
from SPLASH-3 suite running in a 4-core system with OoO pipeline and MOESI coherence protocol.

7.1 Per-Request WCL
In this group of experiments, we measure the latency that is incurred by each memory request
of the running benchmark, and compare it to the analytical WCL to ensure the safety and
the tightness of the bounds. Figure 5 shows the results of running EEMBC benchmarks, and
it compares between PMSI [15], PMESI [18], PMSI∗, and PMESI∗[19]. Besides, the figure
includes three variants of PCC with the protocols MSI, MESI, and MOESI along with
TDM bus arbiter. TDM is chosen for this experiment to have a fair comparison with the
other solutions which adopt a TDM arbiter. Similarly, Figure 6 shows WCL of running the
SPLASH benchmarks.

▶ Observation 1. The observed WCLs of the solutions that implement cache-to-cache data
transfer are much tighter compared to PMSI and PMESI. Further, the analytical bounds of
PMSI and PMESI are quite pessimistic, which is clear from Figure 6 where hardly 50% of the
bound is reached. Contrarily, the other solutions, including PCC, show notably tight bounds
with both benchmarks suites.

Figures 7 and 8 delineate WCL of chosen benchmarks from EEMBC and SPLASH, respectively.
The results of the other benchmarks are consistent with Figures 7 and 8; hence, we include
the results of a single benchmark from each suite for conciseness. In this experiment, a

ECRTS 2022

17:18 Predictable Cache Coherence

1

10

100

1000

10000

M
SI

M
ES

I

M
O

ES
I

M
SI

M
ES

I

M
O

ES
I

M
SI

M
ES

I

M
O

ES
I

M
SI

M
ES

I

M
O

ES
I

TDM RR WRR HRR

W
C

M
L

(M
ilio

n
C

yc
le

s)

Bus Arbiter, Coherence Protocol

Core 0
HitLatency MissLatency ReplacementLatency

1

10

100

1000

10000

M
SI

M
ES

I

M
O

ES
I

M
SI

M
ES

I

M
O

ES
I

M
SI

M
ES

I

M
O

ES
I

M
SI

M
ES

I

M
O

ES
I

TDM RR WRR HRR

W
C

M
L

(M
ilio

n
C

yc
le

s)

Bus Arbiter, Coherence Protocol

Core 1
HitLatency MissLatency ReplacementLatency

1

10

100

1000

10000

M
SI

M
ES

I

M
O

ES
I

M
SI

M
ES

I

M
O

ES
I

M
SI

M
ES

I

M
O

ES
I

M
SI

M
ES

I

M
O

ES
I

TDM RR WRR HRR

W
C

M
L

(M
ilio

n
C

yc
le

s)

Bus Arbiter, Coherence Protocol

Core 2
HitLatency MissLatency ReplacementLatency

1

10

100

1000

10000

M
SI

M
ES

I

M
O

ES
I

M
SI

M
ES

I

M
O

ES
I

M
SI

M
ES

I

M
O

ES
I

M
SI

M
ES

I

M
O

ES
I

TDM RR WRR HRR

W
C

M
L

(M
ilio

n
C

yc
le

s)

Bus Arbiter, Coherence Protocol

Core 3
HitLatency MissLatency ReplacementLatency

Figure 10 The total memory latency of running Ocean benchmark from SPLASH-3 suite. The
T-bars represent the analytical WCML calculated using Equation 3 and the solid bars are for the
observed total memory latency. The vertical axis is in a logarithmic scale.

comparison is held between a combination of configurations that contain MSI, MESI, and
MOESI protocols along with RR, WRR, and HRR arbiters. WCLs of WRR and HRR are
reported per core due to their unfair arbitration scheme; therefore, each core has a different
bound based on its weight. The weights of the cores, in this and the following experiments,
are {4, 2, 1, 1}, and the numbers are chosen arbitrarily to show the effect of the different
weights. On the other hand, RR arbiter treats all the cores similarly; thus, the maximum
value of WCL among the cores is reported.

▶ Observation 2. There is no noticeable difference between results of Figures 7 and 8,
although EEMBC simulates a synthetic effect of all the data is shared. This indicates the
tightness and safety of WCL bounds in the case of a synthetic benchmark, like in Figure
7, and in a normal case, like Figure 8. Regarding the arbiters, RR shows a better WCL
compared to WRR, whereas its WCL is average compared to the smallest and largest WCLs
of HRR. The effect of the weights of the cores in WRR is not highly reflected into the WCLs,
and the analytical WCL appears to be loose. On the other side, WCLs of the cores in HRR
are rather tight.

To complete the study of WCL, the analytical bounds are tested in the case of OoO execution.
Figure 9 shows WCL of running a chosen benchmark from SPLASH-3 suite (the same
benchmark used in Figure 8.) The execution of the benchmark is held using cores with
OoO pipeline with a maximum of 8 outstanding requests. Additionally, TDM, RR, WRR,
and HRR are used along with MOESI coherence protocol for the comparison. MOESI
is chosen in this set of experiments since it is considered the most advance protocol among
MSI and MESI.

▶ Observation 3. The analytical bounds are still respected in the OoO execution; however,
WRR shows tighter WCLs compared to the in-order experiment shown in Figure 8. The
tightness of the WCLs is due to the ability of the OoO cores to issue multiple requests and
benefit from their high weights; therefore, the cores with lower weights are pushed to their
bounds.

M. Hossam and M. Hassan 17:19

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

M
SI

PM
SI

PM
SI
*

PM
ES
I

PM
ES
I*

M
SI

M
ES
I

M
O
ES
I

M
SI

M
ES
I

M
O
ES
I

M
SI

M
ES
I

M
O
ES
I

M
SI

M
ES
I

M
O
ES
I

M
SI

M
ES
I

M
O
ES
I

COTS-Split TDM RR WRR HRR COTS-Unified

Sl
ow
do
w
n

Bus Arbiter, Coherence Protocol

Figure 11 The average slowdown of the performance of the predictable cache solutions compared
to COTS-Split and COTS-Unified. All the values of running EEMBC benchmarks are normalized to
COTS-Split performance.

7.2 Total Task’s WCL
In this experiment, we are concerned with the total memory latency that is incurred by
each task. Similar to the previous experiment, a single benchmark from SPLASH-3 is run
using MSI, MESI, and MOESI protocols along with TDM, RR, WRR, and HRR bus
arbiters. Figure 10 shows WCML and the memory latency per each core. The latency is
broken down into the three contributors to the latency: hit, miss, and replacement latencies.
No information is assumed about the private vs shared data; and hence, WCML is calculated
using the most conservative equation (Equation 3). Results are reported per core as each
thread of the benchmark is mapped to a single core.

▶ Observation 4. The gap between WCML and the observed latency is very large because of
the pessimism in Equation 3. Regarding the protocols, MSI shows better latencies compared
to MESI and MOESI, and by looking at the replacement latency part, it is clear that
replacements are the reason for the performance degradation of MESI and MOESI. The
justification of the higher number of replacements in MESI and MOESI can be returned
to the addition of E and O states as they require a PutM message, unlike S state, before the
eviction of a cache line. An optimization that can mitigate the latency of replacements is the
empty PutM message (a PutM message that is not followed by a write-back) in the case of E
state; however, this optimization has to be coupled with a dynamic arbiter, such as RR, to
show an impact on the latency.

7.3 Average-case Performance
In this section, we compare the average-case performance between different solutions including
the solutions that implement COTS arbiters which favor performance only. Figure 11
delineates the average slowdown of each solution relative to a system that deploys an MSI
protocol along with a split bus architecture and FCFS arbiter which is denoted by COTS-Split.
This experiment runs the synthetic benchmarks of EEMBC to compare the performance of all
the previous configurations and adding to them COTS-Unified configurations. COTS-Unified
denotes a FCFS bus arbiter on top of a unified bus architecture. Similarly, Figure 12 shows
the performance results of running SPLASH-3 benchmarks.

ECRTS 2022

17:20 Predictable Cache Coherence

0.8

1

1.2

1.4

1.6

1.8

M
S

I

P
M

S
I

P
M

S
I*

P
M

E
S

I

P
M

E
S

I*

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

COTS-Split TDM RR COTS-Unified

Sl
ow
do
w
n

Bus Arbiter, Coherence Protocol

Barnes

0.8
1

1.2
1.4
1.6
1.8

2

M
S

I

P
M

S
I

P
M

S
I*

P
M

E
S

I

P
M

E
S

I*

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

COTS-Split TDM RR COTS-Unified

Sl
ow
do
w
n

Bus Arbiter, Coherence Protocol

Cholesky

0.8

1

1.2

M
S

I

P
M

S
I

P
M

S
I*

P
M

E
S

I

P
M

E
S

I*

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

COTS-Split TDM RR COTS-Unified

Sl
ow
do
w
n

Bus Arbiter, Coherence Protocol

FFT

0.8
1

1.2
1.4
1.6
1.8

2

M
S

I

P
M

S
I

P
M

S
I*

P
M

E
S

I

P
M

E
S

I*

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

COTS-Split TDM RR COTS-Unified

Sl
ow
do
w
n

Bus Arbiter, Coherence Protocol

FMM

0.8

1

1.2

1.4

1.6

M
S

I

P
M

S
I

P
M

S
I*

P
M

E
S

I

P
M

E
S

I*

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

COTS-Split TDM RR COTS-Unified

Sl
ow
do
w
n

Bus Arbiter, Coherence Protocol

LU_non_contig

0.8

1

1.2

1.4

1.6

1.8

M
S

I

P
M

S
I

P
M

S
I*

P
M

E
S

I

P
M

E
S

I*

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

COTS-Split TDM RR COTS-Unified

Sl
ow
do
w
n

Bus Arbiter, Coherence Protocol

Ocean

0.8

1

1.2

1.4

M
S

I

P
M

S
I

P
M

S
I*

P
M

E
S

I

P
M

E
S

I*

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

COTS-Split TDM RR COTS-Unified

Sl
ow
do
w
n

Bus Arbiter, Coherence Protocol

Water_nsquared

0.8

1

1.2

1.4

1.6

M
S

I

P
M

S
I

P
M

S
I*

P
M

E
S

I

P
M

E
S

I*

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

COTS-Split TDM RR COTS-Unified

Sl
ow
do
w
n

Bus Arbiter, Coherence Protocol

Water_spatial

0.8

1

1.2

1.4

1.6

M
S

I

P
M

S
I

P
M

S
I*

P
M

E
S

I

P
M

E
S

I*

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

COTS-Split TDM RR COTS-Unified

Sl
ow
do
w
n

Bus Arbiter, Coherence Protocol

Volrend

0.8
1

1.2
1.4
1.6
1.8

2
2.2
2.4

M
S

I

P
M

S
I

P
M

S
I*

P
M

E
S

I

P
M

E
S

I*

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

COTS-Split TDM RR COTS-Unified

Sl
ow
do
w
n

Bus Arbiter, Coherence Protocol

Radiosity

0.8

1

1.2

1.4

1.6

M
S

I

P
M

S
I

P
M

S
I*

P
M

E
S

I

P
M

E
S

I*

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

COTS-Split TDM RR COTS-Unified

Sl
ow
do
w
n

Bus Arbiter, Coherence Protocol

Radix

0.8

1

1.2

1.4

M
S

I

P
M

S
I

P
M

S
I*

P
M

E
S

I

P
M

E
S

I*

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

M
S

I

M
E

S
I

M
O

E
S

I

COTS-Split TDM RR COTS-Unified

Sl
ow
do
w
n

Bus Arbiter, Coherence Protocol

Raytrace

Figure 12 The slowdown of the performance of the predictable cache solutions compared to
COTS-Split and COTS-Unified. All the values of running SPLASH-3 benchmarks are normalized to
COTS-Split performance.

▶ Observation 5. The relative performance of MSI protocol compared to MESI and
MOESI, shown in Figures 11 and 12, is consistent with their total memory latency which is
discussed Observation 4. PMSI in Figure 11 shows a large performance degradation compared
to MSI with TDM arbiter, while in Figure 12 the gap between them is minimal. The reason
for this is the nature of the benchmarks as the percentage of the shared data in SPLASH is
smaller than that in EEMBC; EEMBC has 100% of data shared to impose high coherence
interference between cores. Also, we can make the same observation for PMESI and MESI
with TDM. Moreover, PMESI∗ shows the worst performance in most of the benchmarks in
Figure 12, and this is because PMESI∗ limits the cases that different cores can have the
same cache line in S state. Finally, PCC deploying MSI with RR arbiter shows the best
performance in Figure 12 and it is the closest to COTS-Split performance.

The last experiment is to compare the performance of different arbiters that are coupled
with MOESI protocol and OoO cores. Figure 13 shows the results of executing SPLASH-3
benchmarks, where the performance values of the arbiters are normalized to the values of
COTS-Unified. The other predictable solutions are excluded from this experiments as none
of them supports OoO execution.

▶ Observation 6. The average gain in performance of MOESI with RR OoO execution
compared to in-order execution is 5%. TDM shows the worst performance among the other
arbiters, while WRR shows a slightly better performance than RR and HRR.

M. Hossam and M. Hassan 17:21

0

0.5

1

1.5

2

2.5

3

ba
rne
s

ch
ole
sk
y fft

fm
m

lu_
no
n_
co
nti
g

oc
ea
n

rad
ios
ity

rad
ix

vo
lre
nd

wa
ter
_n
sq
ua
red

wa
ter
_s
pa
tia
l

Sl
ow
do
w
n

COTS_Unified TDM RR WRR HRR

Figure 13 The slowdown of the performance of MOESI-PCC compared to COTS-Unified. All
the values of running SPLASH-3 benchmarks are normalized to COTS-Unified performance.

8 Conclusion

We propose PCC: a solution to integrate COTS coherence protocols into legacy predictable
real-time arbitration schemes without requiring any modifications to either of them. Doing
so has several benefits. 1) PCC achieves tight latency bounds with minimal performance
degradation. 2) It does not impose any burden on designing or verifying new protocols,
which facilities adoption by industry. 3) It uses legacy arbitration schemes that have been
studied for a long time, which in turn carries forward the credit of their analyzability making
the proposed solution more appealing from a certification perspective. 4) It enables the
integration of any coherence protocol with any predictable arbiter in a plug-and-play fashion.
In this paper, we leveraged this capability to implement 3 different detailed coherence
protocols as well as 4 commonly-used real-time arbiters. This allowed us to carry exploratory
experiments for 12 different architectural configurations. Finally, we release the source code
of the cycle-accurate implementation of such architectures for the community to use and
expand.

References
1 ARM. ARM CoreLink CCI-550 Cache Coherent Interconnect, Technical Reference

Manual, 2015. URL: https://static.docs.arm.com/100282/0001/corelink_cci550_cache_
coherent_interconnect_technical_reference_manual_100282_0001_01_en.pdf.

2 ARM. Arm Cortex-A53 MPCore Processor Technical Reference Manual r0p4, 2016.
URL: https://developer.arm.com/documentation/ddi0500/j/Level-2-Memory-System/
Snoop-Control-Unit.

3 ARM. Arm Cortex-A9 MPCore Technical Reference Manual r4p1, 2016. URL: https:
//developer.arm.com/documentation/100486/0401/snoop-control-unit.

4 ARM. ARM Cortex-R82, Technical Reference Manual, 2021. URL: https://developer.arm.
com/documentation/101548/0002/?lang=en.

5 Ayoosh Bansal, Jayati Singh, Yifan Hao, Jen-Yang Wen, Renato Mancuso, and Marco Caccamo.
Cache where you want! reconciling predictability and coherent caching. arXiv preprint, 2019.
arXiv:1909.05349.

6 Daniel Casini, Alessandro Biondi, Giorgiomaria Cicero, and Giorgio Buttazzo. Latency analysis
of i/o virtualization techniques in hypervisor-based real-time systems. In 2021 IEEE 27th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 306–319.
IEEE, 2021.

ECRTS 2022

https://static.docs.arm.com/100282/0001/corelink_cci550_cache_coherent_interconnect_technical_reference_manual_100282_0001_01_en.pdf
https://static.docs.arm.com/100282/0001/corelink_cci550_cache_coherent_interconnect_technical_reference_manual_100282_0001_01_en.pdf
https://developer.arm.com/documentation/ddi0500/j/Level-2-Memory-System/Snoop-Control-Unit
https://developer.arm.com/documentation/ddi0500/j/Level-2-Memory-System/Snoop-Control-Unit
https://developer.arm.com/documentation/100486/0401/snoop-control-unit
https://developer.arm.com/documentation/100486/0401/snoop-control-unit
https://developer.arm.com/documentation/101548/0002/?lang=en
https://developer.arm.com/documentation/101548/0002/?lang=en
http://arxiv.org/abs/1909.05349

17:22 Predictable Cache Coherence

7 Chun Chang. A Deep Dive on the QorIQ T2080 Processor, NXP, 2014.
8 M. Chisholm, N. Kim, B. C. Ward, N. Otterness, J. H. Anderson, and F. D. Smith. Reconciling

the tension between hardware isolation and data sharing in mixed-criticality, multicore systems.
In IEEE Real-Time Systems Symposium (RTSS), 2016.

9 David Kruckemyer Craig Forrest. Arteris Ncore™ Cache Coherent Interconnect, Technology
Overview, 2006.

10 Danlu Guo, Mohamed Hassan, Rodolfo Pellizzoni, and Hiren Patel. A comparative study of
predictable dram controllers. ACM Transactions on Embedded Computing Systems (TECS),
17(2):1–23, 2018.

11 Arne Hamann, Dakshina Dasari, Simon Kramer, Michael Pressler, and Falk Wurst. Communic-
ation centric design in complex automotive embedded systems. In 29th Euromicro Conference
on Real-Time Systems (ECRTS 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2017.

12 Damien Hardy, Thomas Piquet, and Isabelle Puaut. Using bypass to tighten wcet estimates for
multi-core processors with shared instruction caches. In 2009 30th IEEE Real-Time Systems
Symposium, pages 68–77. IEEE, 2009.

13 Mohamed Hassan. On the off-chip memory latency of real-time systems: Is ddr dram really
the best option? In 2018 IEEE Real-Time Systems Symposium (RTSS), pages 495–505. IEEE,
2018.

14 Mohamed Hassan. Discriminative coherence: Balancing performance and latency bounds
in data-sharing multi-core real-time systems. In 32nd Euromicro Conference on Real-Time
Systems (ECRTS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

15 Mohamed Hassan, Anirudh M Kaushik, and Hiren Patel. Predictable cache coherence for multi-
core real-time systems. In 2017 IEEE Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 235–246. IEEE, 2017.

16 Mohamed Hassan and Rodolfo Pellizzoni. Bounding dram interference in cots heterogeneous
mpsocs for mixed criticality systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 37(11):2323–2336, 2018.

17 Salah Hessien and Mohamed Hassan. The best of all worlds: Improving predictability at
the performance of conventional coherence with no protocol modifications. In 2020 IEEE
Real-Time Systems Symposium (RTSS), pages 218–230. IEEE, 2020.

18 Anirudh Mohan Kaushik, Mohamed Hassan, and Hiren Patel. Designing predictable cache
coherence protocols for multi-core real-time systems. IEEE Transactions on Computers, 2020.

19 Anirudh Mohan Kaushik and Hiren Patel. A systematic approach to achieving tight worst-
case latency and high-performance under predictable cache coherence. In 2021 IEEE 27th
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 105–117.
IEEE, 2021.

20 Anirudh Mohan Kaushik, Paulos Tegegn, Zhuanhao Wu, and Hiren Patel. Carp: A data
communication mechanism for multi-core mixed-criticality systems. In 2019 IEEE Real-Time
Systems Symposium (RTSS), pages 419–432. IEEE, 2019.

21 Benjamin Lesage, Damien Hardy, and Isabelle Puaut. Shared data caches conflicts reduction for
wcet computation in multi-core architectures. In 18th International Conference on Real-Time
and Network Systems, page 2283, 2010.

22 MILO MK MARTIN, MARK D HILL, and DANIEL J SORIN. Why on-chip cache coherence
is here to stay. Communications of ACM, 2012.

23 Vijay Nagarajan, Daniel J Sorin, Mark D Hill, and David A Wood. A primer on memory
consistency and cache coherence. Synthesis Lectures on Computer Architecture, 15(1):1–294,
2020.

24 Fong Pong and Michel Dubois. A new approach for the verification of cache coherence protocols.
IEEE Transactions on Parallel and Distributed Systems, 6(8):773–787, 1995.

M. Hossam and M. Hassan 17:23

25 J. A. Poovey, T. M. Conte, M. Levy, and S. Gal-On. A benchmark characterization of the
EEMBC benchmark suite. IEEE Micro, 29(5):18–29, September 2009. doi:10.1109/MM.2009.
74.

26 Christos Sakalis, Carl Leonardsson, Stefanos Kaxiras, and Alberto Ros. Splash-3: A properly
synchronized benchmark suite for contemporary research. In 2016 IEEE International Sym-
posium on Performance Analysis of Systems and Software (ISPASS), pages 101–111. IEEE,
2016.

27 Nivedita Sritharan, Anirudh Kaushik, Mohamed Hassan, and Hiren Patel. Enabling predictable,
simultaneous and coherent data sharing in mixed criticality systems. In 2019 IEEE Real-Time
Systems Symposium (RTSS), pages 433–445. IEEE, 2019.

28 Mohamed Younis and Mohamed Aboutabl. Communication handling in integrated modular
avionics, October 3 2002. US Patent App. 09/821,601.

ECRTS 2022

https://doi.org/10.1109/MM.2009.74
https://doi.org/10.1109/MM.2009.74

RT-DFI: Optimizing Data-Flow Integrity for
Real-Time Systems
Nicolas Bellec !

Univ Rennes, Inria, CNRS, IRISA, France

Guillaume Hiet !

CentraleSupélec, Inria, Univ Rennes, CNRS, IRISA, France

Simon Rokicki !

Univ Rennes, Inria, CNRS, IRISA, France

Frederic Tronel !

CentraleSupélec, Inria, Univ Rennes, CNRS, IRISA, France

Isabelle Puaut !

Univ Rennes, Inria, CNRS, IRISA, France

Abstract
The emergence of Real-Time Systems with increased connections to their environment has led to a
greater demand in security for these systems. Memory corruption attacks, which modify the memory
to trigger unexpected executions, are a significant threat against applications written in low-level
languages. Data-Flow Integrity (DFI) is a protection that verifies that only a trusted source has
written any loaded data. The overhead of such a security mechanism remains a major issue that
limits its adoption. This article presents RT-DFI, a new approach that optimizes Data-Flow Integrity
to reduce its overhead on the Worst-Case Execution Time. We model the number and order of the
checks and use an Integer Linear Programming solver to optimize the protection on the Worst-Case
Execution Path. Our approach protects the program against many memory-corruption attacks,
including Return-Oriented Programming and Data-Only attacks. Moreover, our experimental results
show that our optimization reduces the overhead by 7% on average compared to a state-of-the-art
implementation.

2012 ACM Subject Classification Software and its engineering → Real-time systems software;
Security and privacy → Software and application security

Keywords and phrases Real-time system, Software security, Data-flow integrity, Worst-case execution
time

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.18

Supplementary Material Software: https://gitlab.inria.fr/nbellec1/rt-dfi

Acknowledgements We want to warmly thank AbsInt for providing the aiT WCET estimator.

1 Introduction

Real-time system (RTS) security has emerged as a growing concern with the increasing
development of connected systems such as autonomous vehicles and the Internet-of-things [33,
23]. With many real-time systems still written in memory unsafe languages such as C and
C++, the threat of memory corruption bugs remains important [37]. Previous research
proved that such vulnerabilities have been used to attack these systems [31, 18].

Protections for RTS have to consider the Worst-Case Execution Time (WCET) in their
design. In particular, the overhead of the protection on the WCET must be predictable to
ensure that the estimation of the WCET remains a safe upper-bound of any execution time.

Previous works on protecting RTS programs against memory corruption have explored the
adaptation of Control-Flow Integrity (CFI) to real-time constraints [32]. CFI ensures that the
protected program execution conforms to the statically computed program’s Control-Flow

© Nicolas Bellec, Guillaume Hiet, Simon Rokicki, Frederic Tronel, and Isabelle Puaut;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 18; pp. 18:1–18:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nicolas.bellec@irisa.fr
https://orcid.org/0000-0002-4118-4227
mailto:guillaume.hiet@centralesupelec.fr
https://orcid.org/0000-0002-7176-9760
mailto:simon.rokicki@irisa.fr
https://orcid.org/0000-0002-0195-096X
mailto:frederic.tronel@centralesupelec.fr
https://orcid.org/0000-0002-2420-6105
mailto:isabelle.puaut@irisa.fr
https://orcid.org/0000-0001-9310-9651
https://doi.org/10.4230/LIPIcs.ECRTS.2022.18
https://gitlab.inria.fr/nbellec1/rt-dfi
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems

Graph. At each branch executed by the program, CFI verifies that the branch’s target
belongs to a set of valid targets. The protection considers that any branch to an invalid
target corresponds to an attack and responds accordingly (e.g., by stopping the execution).
However, CFI cannot protect against advanced attacks that corrupt non-control data. To
protect against such threats, we have to rely on protections, such as Data-Flow Integrity
(DFI) [10, 15], which guards the program against a broader spectrum of attacks.

DFI protects the program by ensuring that every data loaded from memory has been
written by a trusted source. Software implementations of this protection are deterministic
for a WCET estimator since the whole protection resides in the program’s instructions.
However, DFI can have a significant time overhead on the protected program, despite the
optimizations that have already been proposed [10]. Furthermore, these optimizations have
not been designed for RTS and are unaware of the WCET.

In this paper, we present RT-DFI, a new software implementation of DFI that aims
at improving the WCET specifically, in contrast to state-of the-art DFI protections. Our
approach uses Integer Linear Programming (ILP) to reduce the overhead on the estimated
Worst-Case-Execution Path (WCEP). Since our objective is to reduce the overhead on the
WCET, we focused our work on a single task in the system. We evaluated RT-DFI using
aiT [21], the industry standard for static timing analysis. The results show that our approach
can reduce the overhead of DFI by up to 18% on the estimated WCET. The contributions of
this paper are the following:

We present RT-DFI, a new method to optimize software DFI for real-time systems.
Compared to the state-of-the-art, RT-DFI reduces the DFI overhead on the estimated
WCET.
We implemented RT-DFI and a state-of-the-art DFI protection for a RISC-V processor
within the LLVM compilation toolchain.
We evaluated our method on various tasks of the TACLeBench benchmark suite [17] and
showed that we obtained WCET improvements over the state-of-the-art technique, of 7%
on average.

The rest of this paper is organized as follows. Section 2 presents some background on
real-time systems and DFI. Then, we detail our contribution in Section 3. Section 4 formalizes
the constructed ILP used to optimize DFI. Section 5 contains all information on how we
conducted our experiments and presents experimental results. Section 6 presents the related
work. Finally, Section 7 concludes this paper and proposes some perspectives.

2 Background

Memory corruption attacks aim at modifying the memory of a program to break its security
properties, i.e., its confidentiality, integrity, or availability. Nowadays, many attacks have been
developed to exploit potential memory corruptions in a program, such as Return-Oriented
Programming (ROP) [9], Control-Flow bending [16], or Data-Flow bending [30]. With real-
time systems being more connected than ever, malicious actors can exploit vulnerabilities
in real-time systems to modify their behavior and break the guarantees of these systems,
potentially resulting in significant economic and safety issues.

2.1 Memory Corruption
Since the infamous Morris Worm [3], memory corruption has been a recurring problem. Many
countermeasures have been proposed to protect the programs. Some approaches prevent
the attacker from accessing crucial information for exploiting program vulnerabilities, such

N. Bellec, G. Hiet, S. Rokicki, F. Tronel, and I. Puaut 18:3

as Address Space Layout Randomization [35]. In contrast, others aim at detecting and
preventing abnormal behavior of the program. Among this second class of protection, many
previous works have studied CFI [2, 40], which detects and stops abnormal control-flow of
the program.

In practice, CFI detects branches to invalid locations in the program, and it ensures that
the return address of a function has not been hijacked. As ROP has become one of the
main techniques to exploit memory corruption [9], CFI approaches aim at increasing the
difficulty of using this technique. However, Shen et al. has shown that even in the presence
of CFI, attackers can hijack the program’s data flow to leak confidential data or modify some
security-sensitive variables [13]. Castro et al. proposed to enforce the Data-Flow Integrity
(DFI) to protect applications from such non-control data attacks [10]. However, the overhead
induced by DFI is high. Thus, reducing the cost of DFI for RTS is crucial for the adoption
of this protection.

2.2 Data-Flow Integrity

DFI as defined by Castro et al. [10] consists in instrumenting the original program code to
assign a unique tag for each store instruction of the program and taint each written byte in
memory with the tag of the corresponding store instruction. When the program loads the
data later in its execution, DFI checks the data tag to ensure that it belongs to the valid tag
set of the load. This set contains the tag of all the store instructions that can write the value
read by the load. The valid tag set is built at compile-time, using data-flow information.
The program is also instrumented to:

(A) Prevent the original application code from accessing the memory area where the tags
are stored.
(B) Store the associated tag at each store instruction.
(C) Load and verify the tag at each load instruction, using the valid tag set.

Figure 1 presents the steps that the instrumentation code executes at each load and
store. We also provide a RISC-V example of an implementation for these steps. When the
program executes a load or a store, it first verifies that the target address is neither in the
.text segment nor in the memory part that contains the tags. The instrumentation code then
computes the tag’s address to either store or load the tag. If the protected instruction is a
store, the instrumented code stores the tag before executing the original store instruction. If
the protected instruction is a load, the tag is loaded and then checked against every tag in
the valid tag set of the load. The initial load is considered legitimate and executed if the
tag belongs to the valid tag set. Otherwise, DFI detects a data-flow error, considered as an
attack.

A naive implementation of DFI can generate a code with more than 100 times the initial
execution time [10]. Thus, optimizations have been proposed to reduce the overhead of DFI.
The original paper [10] presents three optimizations: equivalent classes optimization,
redundant elimination, and a greedy tag check optimization.

The equivalent classes optimization reduces the overall number of tags by detecting
tags that always appear together in the same valid tag sets and regrouping them as a unique
tag. This optimization reduces the overall number of tags used and, more importantly,
reduces the number of checks required when a load occurs. In the original paper by Castro
et al. [10], this optimization is the most important one, reducing the overhead of DFI below
ten times the original execution time.

ECRTS 2022

18:4 RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems

Verify target address

Compute tag address

Store tag

Original Store

DFI Exception

Store Load

Verifies target
address

Compute tag address

Load tag

DFI Exception

Check tag

Original Load

store r1, off (r2)

lui t3, %hi(_rdt_base)
blt r2, t4, L1
ebreak
L1:

addi t3, r2, off
slri t3, t3, 2
slli t3, t3, 1
lui t4, %hi(_rdt_base)
add t3, t3, t4

addi t4, x0, tag
sh t4, 0(t3)

load r1, off (r2)

lui t3, %hi(_rdt_base)
blt r2, t4, L1
ebreak
L1:

addi t3, r2, off
slri t3, t3, 2
slli t3, t3, 1
lui t4, %hi(_rdt_base)
add t3, t3, t4

addi t4, x0, tag
lh t4, 0(t3)

addi t3, x0, tag1
beq t3, t3, L2
...

sw r1, off(r2)

lw r1, off(r2)

ebreak
L2:

x #tag

A

B C

A

Figure 1 DFI protection instrumentation. The left part represents the instrumentation of store
instruction. The right part represents the instrumentation of load instructions. For each, we give an
example of RISC-V implementation.

The redundant check elimination statically analyses the original program code to
find successive loads or stores in the same basic block which target the same memory cell.
When it discovers such successive instructions, it removes redundant protections. In the
case of two successive loads, it removes the protection on the second load if the valid tag
set of the first load is a subset of the valid tag set second. In the case of two consecutive
stores with the same tag, we can remove the instrumentation for the second store since it
would just overwrite the tag with itself. This optimization removes parts or the complete
protection on loads and stores when it can statically ensure that the protection is redundant.

The tag check optimization improves the checking of tags for each load by checking
multiple tags simultaneously. For this optimization, we differentiate between the tag (t),
an identifier of the store that writes into a memory location, and the tag representation
(rt), an unsigned number encoding the tag, which the optimization can modify. Rather than
verifying each tag of valid tag set one after the other in a valid tag set, we can regroup
consecutive tag representations to form intervals. In this case, we can compare the tag of
the loaded data with the limits of intervals defining the valid tag set. Checking intervals is
particularly efficient for the biggest valid tag sets. Thus, the tag check optimization modifies
the tag representations to reduce the number of intervals to check.

In the original article by Castro et al. [10], this last optimization uses a greedy algorithm
that sorts the valid tag sets by decreasing value of the following metrics: use × size with use

the number of load instructions that use the valid tag set and size the size of the valid tag
set. The algorithm then iterates on all the valid tag sets, in the order given by the metric,
and assigns consecutive tag representations to the tags in each valid tag set, skipping the
tags that already received a tag representation in a previous valid tag set.

The first issue of this algorithm is that it does not use any information about execution
paths. In particular, loop bounds or branch frequencies could help to refine the representation
allocation to focus on sets that are checked more frequently and not just that appear on
more distinct loads. The second issue is that all the tags in a given set are assigned a new
representation (except the tags that already have a new one) before analyzing another set.
This local optimization prevents improvement based on multiple sets. For example, given the
sets {A, B, C} and {A, D, E}, the optimization may treat the first set and assign 1, 2, 3 to

N. Bellec, G. Hiet, S. Rokicki, F. Tronel, and I. Puaut 18:5

respectively A, B, C and then consider the second set and assign 4 and 5 to respectively D

and E. In this case, it would be more interesting to assign 3 to A such that the second valid
tag set can also correspond to an interval.

Table 1 Valid tag sets optimizations.

Valid tag sets Tag representations
S1
S2
S3

=
=
=

{A, B, C, E}
{A, B, E}
{A, B, D}

A → 1
B → 2
C → 3

D → 4
E → 5

Equivalent classes A∼B
S1
S2
S3

=
=
=

{A, C, E}
{A, E}
{A, D}

A → 1
C → 3

D → 4
E → 5

Tag check optimization
S1
S2
S3

=
=
=

{A, C, E}
{A, E}
{A, D}

∼
∼
∼

J1, 3K
J1, 1K∪J3, 3K
J1, 1K∪J4, 4K

A → 1
C → 2

D → 4
E → 3

Optimal tag check
S1
S2
S3

=
=
=

{A, C, E}
{A, E}
{A, D}

∼
∼
∼

J1, 3K
J2, 3K
J3, 4K

A → 3
C → 1

D → 4
E → 2

Table 1 presents the effect of the optimizations on valid tag sets on a simple example. The
first column describes the valid tag sets, and the second column gives the tag representations.
Dashed lines separate each optimization. We start with an example of three sets S1, S2,
and S3. The equivalent classes optimization finds that tags A and B are equivalent and
regroups them into tag A without modifying the tag representations, which creates a gap
between the tag representations of A and C in S1. Then, the tag check optimization modifies
the tag representations to remove this gap but, as it operates set by set, it fails to notice
that A belongs both to S1 and S3. Thus, the optimization cannot close the gap between
the tag representation of A and D when it passes on S3. Finally, the figure presents a more
sophisticated optimization that we would like to obtain.

Our work uses an ILP solver combined with information on the WCEP to tackle the two
issues of tag check optimization. Notice that our goal is to improve the WCET rather than
the average runtime.

2.3 Real-Time systems
RTS are computer systems with timing constraints, often due to their interaction with
physical components. To ensure the respect of these constraints, we rely on analysis that
estimates the WCET of each task. The WCET is then used with other scheduling data
to verify that every task in the system has enough time to complete its execution. WCET
estimation is performed on the executable file of the task to have all the low-level data
available (e.g., processor instructions executed and the address of these instructions) and
for a specific architecture to consider micro-architectural effects. As commonly accepted in
the RTS community, WCET estimation is performed in isolation, leaving estimation and
consideration of interferences between tasks to the schedulability analysis step.

ECRTS 2022

18:6 RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems

Multiple analyses results are combined to perform WCET estimation. In particular,
symbolic analyses of the cache, memory, and registers improve the precision of the WCET
analysis. The value analysis safely determines the targeted memory area(s) of the instruction
for each load and store of the program and the value that this instruction writes/reads in
this memory area. This analysis results depend on the context of the instruction (e.g., the
state of the call stack or the number of iterations of the loop containing the instruction). The
analyses may over-approximate the results to avoid consuming too many resources (memory
and time) and always provide a sound result. For instance, the value analysis provides a
superset of actual memory locations. The returned set may also contain values that do not
appear at run-time. The WCET is estimated using the results of these analyses for each
basic block in the program. A path called WCEP, which maximizes the sum of the time of
the basic blocks, is computed with a technique based on ILP called Implicit Path Execution
Technique (IPET).

We can retrieve much data from the WCET estimation as a byproduct of these analyses. In
particular, knowing the WCEP allows targeting optimizations along this path, thus reducing
the WCET. Such WCEP-oriented optimizations may result in a change of the WCEP,
motivating iterative solutions to tackle WCEP-changes. RT-DFI uses path information to
iteratively reduce the cost of the tag check of DFI .

3 Overview of RT-DFI, a WCET-directed DFI scheme

Decreasing the WCET of tasks improves the schedulability of a task set. Thus, we give in this
section an overview of our approach named RT-DFI, which reduces the WCET of individual
DFI-protected tasks. We designed RT-DFI such that it has the same level of protection as
the original DFI. RT-DFI reduces the cost of tag check verifications using WCEP-oriented
optimization. The optimization is iterative to tackle WCEP changes.

3.1 Using WCEP information to optimize tag checks
We focus our work on reducing the overhead of the tag check part of DFI, as this is the
primary source of overhead [20]. The tag check overhead can be decomposed into two factors.
The first factor is the number of checks required to cover the whole valid tag set of the
load. Since the tags are checked using intervals, we can improve this factor by modifying the
representation of the tags to reduce the number of intervals that cover the valid tag set. The
second factor is the order in which we check these intervals. The tag check verifies if the tag
belongs to each interval covering the valid tag set, and jumps to the rest of the code as soon
as it finds an interval containing the tag. Thus, we can reduce the tag check overhead by
first checking the most frequent intervals. In the rest of this paper, we use interval order to
describe the order of the checks against the intervals.

RT-DFI uses the context data (number of executions in the WCEP, value analysis results)
to optimize these two factors. To improve the WCET, we perform the optimization specifically
on the WCEP. Thus, we only focus on contexts present in the WCEP. This approach also
decreases the number of loads/contexts that we consider, reducing the complexity of our
optimization problem.

In the rest of this paper, we assume that the WCET solver performs a symbolic value
analysis and that we have access to its results. The WCET solver uses this value analysis
to improve the IPET, avoiding paths in each context where the value analysis detects that
these paths are infeasible. For example, the value analysis may establish that a condition is
always satisfied in some context C0. In this case, the IPET only considers the path when the

N. Bellec, G. Hiet, S. Rokicki, F. Tronel, and I. Puaut 18:7

condition holds for the context C0, even if the alternative path is more costly for the IPET
in general. The same principle applies to the tag checks, which are a series of conditions.
Thus, although all the tag checks are present in the program code, the value analysis may
refine the IPET to bypass some checks in some contexts. When the value analysis cannot
restrict the possible tag values for a given load, it still considers that the possible values are
restricted by the valid tag set of the load since it reasons only on the legitimate executions
of the program.

load tag

check tag
vs ⟦1,3⟧

check tag
vs ⟦5,8⟧

check tag
vs ⟦10,11⟧

Exception

Rest of the
program

C0

load tag

check tag
vs ⟦1,3⟧

check tag
vs ⟦5,8⟧

Rest of the
program

Program

C1 / C2

load tag

check tag
vs ⟦1,3⟧

check tag
vs ⟦5,8⟧

Rest of the
program

check tag
vs ⟦10,11⟧

Context execution

Figure 2 Example of how checks can be bypassed in the WCEP.

For example, we present in Figure 2 a tag check with three intervals, J1, 3K, J5, 8K, and
J10, 11K. We also present the path considered by the IPET for three contexts C0, C1, and
C2 without optimization. We want to show how we can use the information from the value
analysis to improve DFI overhead. Suppose the value analysis infers that the loaded tag is
equal to 7 in context C0, is either 1 or 10 in context C1, and can take any value in context
C2. For C0, the IPET considers the path that performs the first two checks and then jumps
to the rest of the code, since the value analyses inferred that the tag belongs to the interval
of the second check. Thus, the check of J1, 3K and J5, 8K count for the time of this context
but not the check of J10, 11K. In this case, it would be more optimal to place the check of
J5, 8K as the first check for this context, as the IPET would skip the two other checks for the
context C0. For C1, the IPET has to take into account the two possible values of the tag
and can only jump to the rest of the code after the check of J10, 11K. In this context, one
way to optimize the WCET is to modify the interval orders to place J1, 3K and J10, 11K as
the two first intervals (whatever the order of these two) to skip the check of the last interval.
Another optimization is to modify the tag representations such as the new representations
of 1 and 10 belong to the same interval. In this case, we can place this new interval as the
first one to check, effectively skipping all other intervals. For the last context C2, the IPET

ECRTS 2022

18:8 RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems

cannot skip any check, as it has no information on the tag value (except that it should be
inside the valid tag set). Thus, the only way to optimize C2 is to reduce the number of
intervals that cover the valid tag set, by modifying the tag representations.

This example shows that different optimizations are possible in function of the information
provided by the value analysis. We can change the interval orders, we can modify the tag
representations, or do both. Modifying the interval orders only has a local impact on the
WCEP. On the other hand, modifying the tag representations has consequences not only
on the load we are focusing on, but also on every other load that has any of these tags in
its valid tag set. Thus, knowing if a tag representation modification is interesting is more
complex than for an interval order modification. Furthermore, multiple contexts for the same
load can have conflicting optimizations. In our example, contexts C0 and C1 can both be
optimized by modifying the interval orders, but the optimal order of C0 conflicts with the
optimal order of C1. To deal with this problem, we use an ILP solver that provides a good
solution along the whole WCEP, taking into account global effects when modifying the tag
representations.

To deal with the three possibilities seen in the previous example, we divide the contexts
of the value analysis into three types, depending on the result of the value analysis:
(a) The value analysis has determined exactly a single tag for this context (known tag

context). In this case, we know that only one test will be true and once this test is
executed, we jump to the rest of the program. Thus, we want to execute this test as
soon as possible. This case corresponds to context C0 in our previous example.

(b) The value analysis found multiple possible tags, which are a strict subset of the valid
tag set (partially known tag context). In this case, checks are skipped only when all
the tags of the context are tested. Thus, we are interested in placing the tests for these
tags as soon as possible, but the order between these tests is of no importance (for this
context). Modifying the tag representations to reduce the number of intervals is also
interesting. This case corresponds to context C1 in our previous example.

(c) The value analysis was unable to refine the possible values (i.e., the whole valid tag set
is possible) (unknown tag context). In this case, no test can be skipped. Thus, the
only way to reduce the cost of such context is to reduce the number of tests by finding a
better tag representation for this valid tag set. This case corresponds to context C2 in
our previous example.

These different types of context represent how much information we have about if and when
tests are skipped. The goal is then to use the context data to improve the tag representation
and the interval orders on the WCEP. To do so, we use an ILP model that searches for a
minimal number of tests along the WCEP. In contrast with the greedy algorithm of the first
tag check optimization described in section 2.2, an ILP can provide better solutions that
use all the information we have (see Section 5). In particular, while the greedy algorithm
only performs local improvement load per load, an ILP can find optimizations that have
a global impact on multiple loads. Furthermore, the current ILP solvers are very efficient
and propose to set a timeout to stop the resolution after a given time, which can be used to
obtain a good solution while having a bound on the time consumed by the solving algorithm.

The optimization flow is the following: the program is compiled the first time with DFI
and all the optimizations present in the original paper by Castro et al. [10]. We then use
the WCET analysis to construct an ILP that we optimize to find a better solution on the
WCEP. We modify the program with this new solution. We then repeat the optimization
process by creating a new ILP based on the new program executable, while still maintaining
the same level of optimization on the previous paths. This allows RT-DFI to converge as the
WCET reduces or stays the same. The process stops when the WCET does not improve
anymore or after a given number of iterations.

N. Bellec, G. Hiet, S. Rokicki, F. Tronel, and I. Puaut 18:9

3.2 Principle of the ILP

To optimize the WCEP, we use an ILP solver to minimize the number of checks on the
current WCEP. We use the ILP to optimize the tag representation and, for each load on the
WCEP, to find an optimal interval order. To do so, we use the result of the value analysis
for each load in the WCEP. In particular, for each load, we segregate the contexts into
known/partially known/unknown tag contexts, and we retrieve the weight of each context
in the WCET, i.e., the number of times each context is executed in the WCEP. We also
assume that check costs are the same on the WCET, whether they check against an interval
or a single tag. This allows us to model single tags as singleton intervals in our ILP. This
assumption is true in our implementation (see Section 5), where we generate code that checks
intervals as fast as a single tag using only one branch instruction (with a method explained
in [10]).

We construct the ILP with three steps:

1. We find a valid tag representation for each tag in the WCEP. We represent each tag as a
variable, and we add constraints to prevent two tags from having the same value.

2. We find an optimized interval order for each load in the WCEP. For each load, we generate
one variable per tag in the valid tag set of this load instruction, this variable representing
the interval order of the interval containing the tag. We add constraints to these variables
such that tags that must be in the same interval have the same order and tags that are
in different intervals have different orders.

3. We aggregate the order variables of each load into a weighted sum that represents the
objective function to optimize. For every context of a given load, the number of checks is
the maximum of the order variables of the possible tags of the context (i.e., how much
interval must be checked before we can skip the rest) multiplied by the weight of the
context.

For example, in Table 2, we present four tags with their tag representations (for the entire
program) and their interval orders (for a given load l). We see that for this load, tags A and
B are tested first, then tag C and finally tag D. We also present 3 contexts C0, C1 and C2
with their possible tags and the cost associated with each context as well as the overall cost.
The context C0 has B as its only possible tag, and the WCEP only checks against the first
interval before jumping to the rest of the code. Thus, the cost of C0 is 1 (the interval order
of B) times w0 (the weight of C0). For context C1, which has more possible tags (C and
D), the WCEP passes by the three checks before jumping to the rest of the code. Thus, the
cost of this context is 3 times w1. Finally, for an unknown context such as C2, the WCEP is
forced to check against all the intervals. Thus, it has a cost of 3 times w2. The objective
function is the sum of each context cost for each load.

To deal with changes of the WCEP we add new constraints to our ILP that prevent
new optimizations from destructing the previous ones, which allows RT-DFI to converge.
These new constraints have the following shape: ’previous objective function’ ≤ ’previous
objective function value’. The ’previous objective function’ is constructed the same way as the
current objective function, but with the context of the previous optimization. The ’previous
objective function value’ is just the minimal value of the objective function found by the
previous optimization. These constraints force the ILP to optimize the current WCEP while
maintaining the same level of optimization on the previous path. Of course, if we have
multiple previous WCEPs, we can add one constraint of this shape per previous WCEP.

ECRTS 2022

18:10 RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems

Table 2 An example of how the cost of the contexts are computed by the ILP for an arbitrary
load l, knowing a tag representation and the interval order.

(a) Tag representations and interval order.

Tag Representation Interval Order
(for load l)

A 2 1
B 3 1
C 5 2
D 9 3

(b) Contexts and associated costs. w0, w1 and w2
represent the weight of the contexts (the number
of time they appear in the WCEP).

Context Tags Cost
C0 B max(1) · w0
C1 C,D max(2, 3) · w1
C2 A,B,C,D max(1, 2, 3) · w2

All A,B,C,D
max(1) · w0 +

max(2, 3) · w1 +
max(1, 2, 3) · w2

4 Formal definition of the ILP for WCET-oriented tag check
optimization

In this section, we present a formal definition of the ILP we use to optimize DFI on the
WCEP. We first give a notation table and describe which data is available to construct the
ILP in Subsection 4.1. We explain in Subsection 4.2 how to compute the number of checks
for a load when the tag representations and the order of the intervals are known. We then
present in Subsection 4.3 the ILP that minimizes the number of checks on the WCEP by
optimizing the tag representations and the order of the intervals at the first iteration of the
algorithm. Finally, we explain in Subsection 4.4 the constraints we add to the ILP to handle
potential WCEP changes.

4.1 Notation table and problem formal definition

Table 3 Notation table for the mathematical terms.

Notation Type Signification
Ja, bK Interval Integer interval between a and b

l Load A protected load
L Set[Load] Set of loads in the WCEP
t Tag A tag
T Set[Tag] Set of tags checked in the WCEP
rt N The tag representation of t (fixed)
sl Set[Tag] Valid tag set of load l

Il,t Interval Interval specific to l containing rt

ϕl,t N Order of Il,t (check order) (fixed)
Cl Context A context for l in the WCEP
TCl

Set[Tag] Possible tags for the context Cl

wCl
N Number of occurrence of Cl in the WCEP

Nl N Number of checks of l in the WCEP
Succ(t) Tag t′ such as rt′ = rt + 1

N. Bellec, G. Hiet, S. Rokicki, F. Tronel, and I. Puaut 18:11

Two tables are used to formally describe the ILP. Table 3 contains the mathematical
terms we use. Note that when we use rt or ϕl,t, we consider them already fixed. Table 4
lists the ILP variables and constants used in the ILP formulation. A few notations represent
values of the mathematical domain. The difference with the ones listed in Table 3 is that
they are determined by the ILP solver and not fixed. We note them as free.

Table 4 Notation table for ILP variables and constants.

Notation Type Signification

M Constant Number greater than any factor in the ILP
(see big-M notation [22])

start Constant Tag Special tag used as the start of tag representation
end Constant Tag Special virtual tag used as the end of tag representation
V Set[Tag] T ∪ {start, end}
vt N Vertex representing tag t

entryt N Number of edges entering vt

exitt N Number of edges exiting vt

et,t′ B (boolean) There is a directed edge from t to t′ (or not)
Rt N Represent rt (free)
λ+

l,t B Represents if Succ(t) ∈ sl or not
Λ+

l,t,t′ B λ+
l,t if Rt < Rt′ else λ+

l,t′

Φl,t N Represent ϕl,t (free)
Φ+

l,t N Φl,t′ for t′ such as t’ = Succ(t)
∆l,t,t′ N Represents ∥Φl,t − Φl,t′∥
∆+

l,t,t′ N Represents ∥Φ+
l,t − Φl,t′∥

Γl,t,t′ N ∆+
l,α,β if Succ(α) ∈ sl else 0 with α, β ∈ {t, t′}, Rα < Rβ

We first recall the problem at hand and we explicit which data we have before the ILP.
We then dive into the formal construction of the ILP in the next subsections. Our goal is to
construct an ILP that can select the tag representations (globally) and interval orders (for
each load on the WCEP) to minimize the number of checks on the current WCEP. To do
so, we have data on all the contexts of each load in the WCEP. For each context Cl of the
load l, present on the WCEP, we have the result of the value analysis (in the worst-case, the
result is the valid tag set sl of l) as well as the number of occurrences of Cl in the WCEP.
When we want to iterate the optimization after a change of WCEP, we also consider that we
have the same kind of data for the previous WCEP (as we just optimized it) as well as the
value of the objective function of the last iteration. These data are used in subsection 4.4 to
never undo previous optimizations.

4.2 Computing the number of checks
For this part, we consider that we know every tag representation, written rt. We regroup
the tag representations into intervals for each load l and we assign an arbitrary order to
these intervals. Note that we can map sl to a minimal number of intervals containing only
valid tags. To do so, we consider all tags are single-element intervals and we merge adjacent
intervals until there is no more fusion possible. We note Il,t the interval specific to l that
contains rt. As the intervals can be checked in an arbitrary order, we assign to each interval
Il,t an index ϕl,t (starting at 1) which represents the order of the checks of the intervals (the
interval with index 1 is checked first then the one with index 2, etc.). Note that for two tags
t and t′, if rt ∈ Il,t′ then Il,t = Il,t′ and ϕl,t = ϕl,t′ .

ECRTS 2022

18:12 RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems

▶ Example 1.
t rt Il,t ϕl,t

A 1 J1, 2K 1
B 2 J1, 2K 1
C 4 J4, 4K 2

We provide an example with 3 tags A, B and C in Example 1. As the tag representations
are assigned for the entire program, the tag representations of A, B and C have no reason to
be contiguous. We provide the interval of each tag and an arbitrary index for each interval.

Let Cl be a context for the load l with TCl
the set of values provided by the value analysis

and wCl
the number of occurrences of Cl in the WCEP. We obtain the following number of

checks for Cl in the WCEP:

max
t∈TCl

(ϕl,t) · wCl
(1)

This formula appears because the IPET only bypasses checks once they have covered all the
possible tags of the context, and because the context appears wCl

times in the WCEP.
The number of checks for a given load is an aggregation of the number of checks for every

context of this load in the WCEP (2). The number of checks over the whole WCEP is the
sum over all the loads (3).

Nl =
∑
Cl

(max
t∈TCl

(ϕl,t) · wCl
) (2)

∑
l∈L

Nl (3)

4.3 Transformation into an ILP problem
In the previous part, we described how to compute the number of checks once the tag
representations and the interval orders are known. Thus, to construct the ILP, we only need
to construct these two components. As we describe the ILP, we use a few notation shortcuts,
(x < y), (x · b) and max(x, y, ...) to represent variables with the same value as these functions.
For more information on how to construct such variables, we refer to [22].

We choose the tag representations to form a contiguous interval since this mapping
requires the lesser space to store the tags during the program execution, and it maintains
the space overhead of DFI.

In this case, we can sort the tags by their representation. Moreover, every tag, except
the first and last tags of the interval, has a successor and a predecessor. These are precisely
the properties of a path in a graph, which is easily expressible as an ILP. Furthermore, since,
in principle, every tag can have any representation, we need a complete graph to allow all
paths. Thus, we use a complete directed graph to construct the tag representations, whose
vertices vt represent the tags t.

In this graph, we want to select a vertex-cover path, which provides us with the tag
representations. For a given path, the edge et,t′ from vt to vt′ is present if rt′ = rt + 1. To
ease the construction of the ILP, we introduce two virtual tags, start and end, which are the
start and end of the path.

In Figure 3, we present an example of the graph for 4 tags, plus start and end. We
also give an example of a path in this graph from vstart to vend, and the corresponding
tag representation mapping. We obtain this mapping by following the path and assigning
consecutive representations to each tag.

N. Bellec, G. Hiet, S. Rokicki, F. Tronel, and I. Puaut 18:13

vC

vD

vstart

vend

vE

vA

vC

vD

vstart

vend

vE

vA

start → 0

C → 1

E → 2

A → 3

D → 4

end → 5

Figure 3 Example of the tag representation by the ILP.

We introduce entryt (resp. exitt), which counts the number of edges entering (resp.
exiting) the vertex vt as well as Rt the variable containing the tag representation of t. The
constraints for the path are the following12: ∑

t,t′∈V

et,t′ = Card(V) − 1 (4)

∀t ∈ V, entryt =
∑

t′∈T \{t}

et′,t (5)

∀t ∈ V, exitt =
∑

t′∈T \{t}

et,t′ (6)

∀t ∈ T, entryt = 1 (7)
∀t ∈ T, exitt = 1 (8)

∀t, t′ ∈ V, (Rt′ + 1) − Card(T) · (1 − et′,t) ≤ Rt ≤ (Rt′ + 1) + Card(T) · (1 − et′,t) (9)
entrystart = 0, exitend = 0, Rstart = 0, Rend = Card(V) − 1 (10)

Constraint (4) forces the path to have no more edges than necessary for a path passing by
each vertex only once. Constraint (5) (resp. (6)) defines entryt (resp. exitt). Constraint (7)
(resp. (8)) forces each vertex except vstart (resp. vend) to have only 1 entry edge (resp. 1
exit edge). Constraint (9) forces Rt = Rt′ + 1 if and only if vt is the vertex next to vt′ in the
path. Finally, constraint (10) deals with the special cases of tags start and end. The overall
design of this part of the ILP is a classic directed graph representation [14] combined with
constraints (9) and (10).

We now explain how the ILP computes the interval orders. We create for each tag t

and each load l a variable Φl,t that contains the interval order of Il,t. In the case t does
not belong to sl, we assign an arbitrary number to Φl,t such that two different tags (both
not belonging to sl) have different indexes and such that these indexes are higher than the
maximum interval index of l (i.e., greater than Card(sl)). As the ILP computes the tag
representations Rt, it must also compute the intervals and their orders, as the number of
intervals and the interval themselves depends on the tag representations. We implicitly define
the intervals with the following lemma:

▶ Lemma 2. ∀t, t′ ∈ T, Il,t = Il,t′ ⇐⇒ ϕl,t = ϕl,t′

Lemma 2 expresses that if two tags are in the same interval, then they have the same index.
Thus, we can encode in the ILP that two tags t and t′ are in the same interval for the load l

if and only if Φl,t = Φl,t′ .

1 We use the classic encoding of boolean variable in ILP with false = 0 and true = 1
2 Card(S) the cardinal of S

ECRTS 2022

18:14 RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems

Writing constraints that represent if two tags t and t′ are in the same interval (for a
given l) is complex in the ILP, as it requires checking that every tag with a representation in
between Rt and Rt′ belongs to sl. To handle this problem, we use Lemma 3.

▶ Lemma 3. ∀a ≤ b, ∀S ⊂ N, Ja, bK ⊂ S ⇐⇒ (a ∈ S) ∧ (Ja + 1, bK ⊂ S)

Rather than verifying that all the tags in between Rt and Rt′ belongs to sl, we just verify
that the Succ(t) (considering that Rt < Rt′) belongs to sl and let another part of the ILP
handle the verification of a smaller interval. We can then recursively use the same Lemma
until we have no more tags in between Rt and Rt′ to check.

We can thus rewrite these two lemmas to obtain the following relation:

∀t, t′ ∈ sl, t ̸= t′, rt < rt′ , ϕl,t = ϕl,t′ ⇐⇒ ϕl,Succ(t) = ϕl,t′ (11)

with Succ(t) the tag t′ such that rt′ = rt + 1. Relation 11 explains that we can infer that
two tags belong to the same interval by knowing if the successor of one of the tags belongs
to this interval, as long as a few conditions are met. As we do not know whether Rt < Rt′

before executing the ILP, we use ILP variables that represent ∥Rl,t − Rl,t′∥3 and we build
constraints that enforce Relation 11.

∀t ∈ sl, Φ+
l,t =

∑
t′∈T

(et,t′ · Φl,t′) (12)

∀t ∈ V, λ+
l,t =

∑
t′∈sl

et,t′ (13)

∀t, t′ ∈ sl, Λ+
l,t,t′ = (Rt < Rt′) · λ+

l,t + (Rt′ < Rt) · λ+
l,t′ (14)

∀t, t′ ∈ sl, ∆l,t,t′ = (Φl,t′ < Φl,t) · (Φl,t − Φl,t′) + (Φl,t < Φl,t′) · (Φl,t′ − Φl,t) (15)
∀t, t′ ∈ sl, ∆+

l,t,t′ = (Φl,t′ < Φ+
l,t) · (Φ+

l,t − Φl,t′) + (Φ+
l,t < Φl,t′) · (Φl,t′ − Φ+

l,t) (16)

∀t, t′ ∈ sl, Γl,t,t′ = (Rt < Rt′) · λ+
l,t · ∆+

l,t,t′ + (Rt′ < Rt) · λ+
l,t′ · ∆+

l,t′,t (17)

∀t, t′ ∈ sl, ∆l,t,t′ <= Γl,t,t′ + (1 − Λ+
l,t,t′) · M (18)

∀t, t′ ∈ sl, ∆l,t,t′ >= Γl,t,t′ + (1 − Λ+
l,t,t′) (19)

Constraint (12) defines Φ+
l,t, a variable that represents ϕl,Succ(t). Constraint (13) defines

λ+
l,t, a binary variable equal to 1 if and only if Succ(t) ∈ sl. Constraint (14) defines Λ+

l,t,t′ , a
binary variable equals to λ+

l,a with a the tag with the lowest tag representation between t and
t′. Constraint (15) (resp. (16)) defines ∆l,t,t′ (resp. ∆+

l,t,t′) which represents ∥ϕl,t−ϕl,t′∥ (resp.
∥ϕl,Succ(t) − ϕl,t′∥). Constraint (17) defines Γl,t,t′ , which represents ∆+

l,α,β if Succ(α) ∈ sl

else 0, with α ̸= β ∈ {t, t′} s.a. Rα < Rβ . Finally, constraint (18) (resp. (19)) provide an
upper bound (resp. lower bound) on ∆l,t,t′ that enforces the relation expressed in (11) and
handles the case where Succ(t) and/or Succ(t′) are not in sl.

All these constraints organize the Φl,t variables such that we obtain the intervals and
their orders. We can then use the Φl,t variables to build the objective function (3) (seen in
Subsection 4.2) that we want to minimize.

4.4 Handling WCEP changes
When optimizing for the WCET, we must handle changes of the WCEP. In particular,
incremental optimizations must ensure that an iteration does not destroy the work of a
previous iteration. To do so with our ILP, we use additional constraints that prevent

3 ∥x∥ being the absolute value of x

N. Bellec, G. Hiet, S. Rokicki, F. Tronel, and I. Puaut 18:15

increasing the number of checks on the previous WCEPs. These constraints are of the
form objectivei <= resulti with objectivei being the objective function of the previous ith

iteration and resulti the minimal value of this objective function, found by the previous
iteration of the ILP solver.

As we use the same kind of variable as the real objective function, all the constructions
explained previously remain the same. This approach also allows us to reduce the complexity
of the ILP when the same tags/loads appear in two distinct WCEP (be it the previous or
current one) as we can use the same variables and constraints to represent both.

5 Experimental results

To validate RT-DFI, we implemented it for a RISC-V LLVM compiler toolchain and applied
it to a series of benchmarks from the TACLeBench benchmark suite. In subsection 5.1,
we present how we implemented RT-DFI4 and the baseline DFI protection it is compared
against, the benchmarks we used and the methodology. In subsection 5.2, we provide and
analyze the results of this experiment. We also comment in subsection 5.4 on some DFI
violations that we encountered in the benchmarks.

5.1 Experimental setup
We implemented RT-DFI using LLVM [28] as a compilation chain. PhASAR [34] produces
the valid tag set. The compilation process is performed in the following way:
1. We transform the source code into LLVM Intermediate Representation (IR) with O1

optimization switch (to avoid unnecessary load/store instructions that greatly increase
the overhead of DFI).

2. We use PhASAR to produce the valid tag sets used by DFI and integrate them into the
LLVM IR as annotations.

3. We apply the optimizations described in Section 2 on the LLVM IR to obtain the
state-of-the-art DFI presented in [10].

4. We compile the IR into a RISC-V 32-bits executable for the RudolV 5 processor. We
integrated a last pass to the RISC-V backend of LLVM that transforms DFI annotations
into assembly code. This prevents any separation between the protection and the protected
instruction and handles the case where the instruction was not present in the IR (register
scavenging, entry/exit of functions).

5. We execute RT-DFI, which produces a new IR that we can feed to the previous step.
This required to change ∼ 5, 000 lines of code in LLVM and ∼ 1, 000 lines of code in PhASAR.
We use the industry standard for static timing analysis aiT [21] to compute the WCET,
obtain the WCEP and perform value analysis. CPLEX [5] 20.1 is used to solve the ILP
problems described in section 4. The rest of the implementation is written in Python 3.8. It
orchestrates the programs (aiT, CPLEX, LLVM, PhASAR), it aggregates and unifies data
retrieved from aiT and the compilation chain (in particular, the valid tag sets), it generates
the ILP and finally, it modifies the LLVM IR to handle the new optimized tag representations
and interval orders. This represents ∼ 8, 000 lines of code in Python.

For our experiments, we use TACLeBench [17]. This benchmark suite is composed of five
groups of benchmarks:

4 https://gitlab.inria.fr/nbellec1/rt-dfi
5 https://github.com/bobbl/rudolv

ECRTS 2022

https://gitlab.inria.fr/nbellec1/rt-dfi
https://github.com/bobbl/rudolv

18:16 RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems

1. kernel contains small kernel functions such as a binary search or an md5 hash.
2. sequential contains large function blocks (e.g. cryptographic or compression algorithms).
3. test contains three synthetic programs designed to challenge the WCET analysis tools.
4. parallel contains two modified real-world parallel applications, Debie and PapaBench.
5. app contains two real applications, lift and powerwindow.
A full benchmark description can be found in [17]. Out of the five groups, we did not run our
experiments on the parallel group as we consider a bare-metal execution of the programs
without relying on a Real-Time Operating System (RTOS), which defeats the purpose of the
parallel group. We also excluded the bitonic, bitcount, fac, quicksort, recursion, ammunition,
anagram and huff_enc benchmarks as it was harder to obtain the recursion bounds for the
aiT WCET solver. Furthermore, rijndael_dec and rijndael_enc fail to pass aiT as they
violate DFI, as explained in subsection 5.4.

We focus our experiment on the aiT estimated WCET after executing RT-DFI
compared to the state-of-the-art DFI implementation. We perform two optimizations based
on the data provided by aiT. The first optimization uses the value analysis of aiT to improve
the valid tag set of our protection. In some cases, we can further reduce the valid tag sets
provided by PhASAR by using the value analysis of aiT. In particular, the data-flow analysis
used with PhASAR is field-insensitive (as [10]), and thus fails to distinguish between the
cells of an array, which forces the analysis to keep some tags that could be removed. On the
other hand, the value analysis of aiT is performed at the memory level and can help to refine
the valid tag set of PhASAR. However, we can not use only aiT to obtain the valid tag sets,
as their construction use information only available in the LLVM IR. This improvement of
the valid tag sets is a byproduct of using the value analysis of a WCET solver to optimize the
WCEP. We only present it in this section as the same result could be obtained by improving
our data-flow analysis. Since it provides interesting results, we ought to present it. The
second optimization is RT-DFI, presented in Section 4. For this second optimization, we
executed four iterations for each benchmark, to address potential WCEP changes. However,
we did not see improvement past the first iteration, so we just provided the improvement
after the first iteration in our analysis of the results. We did not bound the ILP runtime, as
all ILP were solved in less than 40 seconds.

5.2 Results
Figure 4 shows the normalized overhead factor of the state-of-the-art DFI on the WCET,
with 1 the WCET of the program without DFI. 20 out of the 47 benchmarks have an overhead
between ×1.03 and ×1.6 while the remaining 27 benchmarks have an overhead between ×1.9
and ×5. The mean overhead is ×2.38. As observed in [10], DFI can incur a high overhead on
the protected program, depending on the number of store/load instructions of the program.
This confirms the need to reduce the impact of DFI on the WCET.

Figure 5 shows for each benchmark the improvement on the WCEP in percentage
compared to the state-of-the-art when improving valid tag sets with the value analysis (value
analysis improvement in the figure) and then with RT-DFI (RT-DFI in the figure). The mean
improvement with both optimizations is 7.6% with a standard deviation of 4.4 percentage
points. We note that for 29 benchmarks out of the 47, RT-DFI is the most impactful, while
18 of the benchmarks are more impacted by the value analysis improvements. However,
among these 18 benchmarks, 10 have no improvement by RT-DFI because every load on the
WCEP has a valid tag set with a single tag, thus preventing any further optimization. These
10 benchmarks are adpcm_dec, complex_updates, cover, deg2rad, filterbank, fir2dim, iir, isqrt,
prime and rad2deg. All these benchmarks have either a very small WCET without protection

N. Bellec, G. Hiet, S. Rokicki, F. Tronel, and I. Puaut 18:17

app kernel sequential test
lif

t
po

w
er

w
in

do
w

bi
na

ry
se

ar
ch

bs
or

t
co

m
pl

ex
_u

pd
at

es
co

sf
co

un
tn

eg
at

iv
e

cu
bi

c
de

g2
ra

d fft
fil

te
rb

an
k

fir
2d

im iir
in

se
rts

or
t

is
qr

t
jfd

ct
in

t
lm

s
lu

dc
m

p
m

at
rix

1
m

d5
m

in
ve

r
pm

pr
im

e
ra

d2
de

g
sh

a st
ad

pc
m

_d
ec

ad
pc

m
_e

nc
au

di
ob

ea
m

cj
pe

g_
tra

ns
up

p
cj

pe
g_

w
rb

m
p

di
jk

st
ra

ep
ic

fm
re

f
g7

23
_e

nc
gs

m
_d

ec
gs

m
_e

nc
h2

64
_d

ec
hu

ff_
de

c
m

pe
g2

nd
es

pe
tri

ne
t

st
at

em
at

e
su

sa
n

co
ve

r
du

ff
te

st
3

0

1

2

3

4

5

benchmarks

ov
er

he
ad

 fa
ct

or

Figure 4 Overhead factor of DFI using the state-of-the-art DFI of [10] with the mean as a gray
dashed line.

app kernel sequential test

lif
t

po
w

er
w

in
do

w
bi

na
ry

se
ar

ch
bs

or
t

co
m

pl
ex

_u
pd

at
es

co
sf

co
un

tn
eg

at
iv

e
cu

bi
c

de
g2

ra
d fft

fil
te

rb
an

k
fir

2d
im iir

in
se

rts
or

t
is

qr
t

jfd
ct

in
t

lm
s

lu
dc

m
p

m
at

rix
1

m
d5

m
in

ve
r

pm
pr

im
e

ra
d2

de
g

sh
a st

ad
pc

m
_d

ec
ad

pc
m

_e
nc

au
di

ob
ea

m
cj

pe
g_

tra
ns

up
p

cj
pe

g_
w

rb
m

p
di

jk
st

ra
ep

ic
fm

re
f

g7
23

_e
nc

gs
m

_d
ec

gs
m

_e
nc

h2
64

_d
ec

hu
ff_

de
c

m
pe

g2
nd

es
pe

tri
ne

t
st

at
em

at
e

su
sa

n
co

ve
r

du
ff

te
st

3

0

5

10

15

benchmarks

im
pr

ov
em

en
t (

%
)

optimizations
RT−DFI
value analysis improvement

Figure 5 Improvement on the overhead of DFI with value-analysis optimization and RT-DFI.
The cumulated mean is represented as a gray dashed line.

ECRTS 2022

18:18 RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems

or a small DFI overhead (less than ×1.24 if the WCET without protection is higher than
10, 000 cycles). This tends to prove that having very small valid tag sets does reduce the
overhead to an acceptable level. The overhead of the smallest benchmark skyrockets as they
are mostly composed of load/store instructions.

Our optimization process spent most of its runtime executing the WCET analysis (∼ 66%
on average) or compiling the new executable (∼ 29% on average). For all the benchmarks,
the ILP solver part of RT-DFI took less than 40 seconds per problem to solve. Thus, the
main runtime cost of RT-DFI is due to our iterative process that requires to re-launch a
WCET analysis and re-build an executable at each step. As the number of steps remains
low, we do not think this is an issue for the application of RT-DFI. Furthermore, as iterative
optimization does not seem efficient, we only need two WCET analysis to perform RT-DFI.

5.3 Notes on iterative optimization
As explained before, we did not include the results for more than one iteration of RT-DFI,
as more iterations do not further reduce the WCET. We have two hypotheses as to why
iterations do not provide more improvement:

1. The constraints of the previous WCET prevent improvement on the new WCEP.
2. The WCEP has only small changes that have almost no impact on the final WCET6.

To test hypothesis 1, we relaxed the constraints of the previous WCEPs (objectivei <=
1.05 · resulti) to give more freedom to the solver. There was no overhead reduction past the
first iteration of RT-DFI. While we can argue if the relaxation is enough and that it should
depend on the WCET improvement, this tends to reject hypothesis 1. However, we must
remain prudent and more experiments are required to fully reject this hypothesis.

Hypothesis 2 is hard to prove or reject because it is hard to compute path differences
between two binaries, where instruction addresses and control-flow graphs may change due
to the optimization. We manually examined and saw this problem arise for two benchmarks,
namely lift and powerwindow, by visually examining the Control-Flow Graphs and WCEPs in
aiT. However, this method is time-consuming and error-prone. The automatization requires
handling changes in the tag representations/interval orders that are equivalent in terms of
ILP and/or WCET but may change many parts of the program. As this is a complex issue,
we do not have enough data to judge this hypothesis at the moment.

5.4 Notes on the security
Even without mounting a real attack scenario, RT-DFI detected errors on three benchmarks.
The first two errors were detected by aiT in rijndael_dec and rijndael_enc. They are due
to an off-by-one read to a buffer that loads a stack-saved register and triggers DFI. As aiT
detects this in its value analysis, it considers that DFI exception is triggered and that its
WCET analysis is unsafe. This means that providing aiT with a DFI-protected program can
help find bugs that can be corrected before reaching the market. The third error appeared
when executing sha using Qemu to test our DFI implementation. DFI detected a read to
a saved register when executing the function sha_wordcopy_fwd_aligned. This function
writes, at each iteration, a word into a buffer and then reads the word for the next iteration.
Thus, at the last iteration, a word is read past the buffer, which triggers DFI . Note that

6 in particular, due to the nature of the benchmarks that contains few paths close to the WCEP

N. Bellec, G. Hiet, S. Rokicki, F. Tronel, and I. Puaut 18:19

this error is detected at the execution by DFI , but not when using the analysis of aiT. This
shows that even simple benchmarks can have non-trivial errors that are not detected, and
the requirement for improved security protection in RTS.

6 Related work

The security of RTS has gained importance in the last decade. Closely related to DFI, CFI
protection has been studied for real-time and embedded systems [1, 24]. Mishra et al. have
written a survey on CFI techniques for RTS [32]. Using timing information to protect the
program has also been studied [4, 41]. With the advancement of attack techniques that
bypass CFI protection [8, 13], we wanted to focus on stronger protection.

Various implementations and variations of DFI have been studied. Song et al. presented
HDFI [36], a hardware variation of DFI that uses 1-bit tags to isolate private data. Liu et al.
studied TMDFI [29], a hardware DFI that modifies a lowRISC core with tag memory to reduce
the overhead. Both these approaches modify the hardware and add specific DFI instructions
to the ISA. Furthermore, the overhead is hard to predict, which does not fit real-time systems.
Feng et al. [20] presented a hardware DFI protection that uses processor-in-memory combined
with on-the-fly optimizations of memory reads/writes to reduce the memory contention of
DFI. As with the previous approaches, specific hardware supports (in particular, processor-
in-memory) are required and the overhead is not easily predictable. However, it does not
require ISA modification and instead uses standard load/store instructions. Bresch et al.
presented Trustflow [6], a hardware support for partial DFI with dedicated fast lookup tables.
However, it only protects a subset of the data that are selected by hand, it requires hardware
support and specific instructions. On the other hand, only protecting a small part of the data
remove the overhead. In our work, we have full DFI protection, we do not need hardware
support and the overhead is directly obtainable with a WCET solver.

Other methods to protect real-time systems have been proposed. Many researchers have
explored vulnerabilities in scheduling methods [11, 27] and mitigations to these vulnera-
bilities [12, 42, 38, 26, 39, 33, 25]. Fellmuth et al. [19] proposed WCET-aware block-level
artificial diversity to harden programs in RTS. Burow et al. [7] analyzed the impact of
current moving target defenses (e.g., ASLR) on the WCET. Kadar et al. [24] studied syscall
instrumentation to detect attacks in the context of embedded mixed-criticality systems.

7 Conclusion

The security of real-time systems has become an important subject in the last decade. DFI
mitigates many potential memory corruption attacks. However, current DFI protections
have an overhead that is either very high or hardly predictable. In this paper, we present a
method to reduce the overhead of software-based DFI on the WCET. We present an ILP
formulation that uses information retrieved from the WCEP to optimize the number of
checks of DFI. Our experiment shows that this method helps to reduce the DFI overhead by
a mean factor of 7.6%.

Our main limitation is that our method is designed for bare-metal applications. For
an independent set of tasks, we could use the same method, with a few tweaks to ensure
different tags for each task. However, dealing with tasks sharing resources and RTOS still
requires more work. In particular, shared resources make the data-flow information used for
DFI much harder to obtain precisely.

ECRTS 2022

18:20 RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems

While our result shows that optimizing the tag checks on the WCET can reduce the
overhead by a fair amount, other sources of overhead remain. In the future, we would like
to study the overhead due to the imprecision of the data-flow analysis. Another important
part of the overhead comes from computing at each store and load the address of the tag.
Studying how to reduce this overhead could further reduce the global overhead of DFI.
Studying the impact of hardware DFI on WCET also looks promising. Finally, we would
like to study the execution of the benchmark applications on a real hardware.

References
1 Fardin Abdi Taghi Abad, Joel van der Woude, Yi Lu, Stanley Bak, Marco Caccamo, Lui Sha,

Renato Mancuso, and Sibin Mohan. On-chip control flow integrity check for real time embedded
systems. In 1st IEEE International Conference on Cyber-Physical Systems, Networks, and
Applications, CPSNA 2013, Taipei, Taiwan, August 19-20, 2013, pages 26–31. IEEE Computer
Society, 2013. doi:10.1109/CPSNA.2013.6614242.

2 Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow Integrity. In
Proceedings of the 12th ACM Conference on Computer and Communications Security, CCS
’05, pages 340–353, New York, NY, USA, 2005. ACM. event-place: Alexandria, VA, USA.
doi:10.1145/1102120.1102165.

3 anonymous. Morris worm, November 2021. Page Version ID: 1053313243. URL: https:
//en.wikipedia.org/w/index.php?title=Morris_worm&oldid=1053313243.

4 Nicolas Bellec, Simon Rokicki, and Isabelle Puaut. Attack detection through monitoring of
timing deviations in embedded real-time systems. In Marcus Völp, editor, 32nd Euromicro
Conference on Real-Time Systems, ECRTS 2020, July 7-10, 2020, Virtual Conference, volume
165 of LIPIcs, pages 8:1–8:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.ECRTS.2020.8.

5 Christian Bliek1ú, Pierre Bonami, and Andrea Lodi. Solving mixed-integer quadratic program-
ming problems with ibm-cplex: a progress report. In Proceedings of the twenty-sixth RAMP
symposium, pages 16–17, 2014.

6 Cyril Bresch, David Hély, Stéphanie Chollet, and Ioannis Parissis. TrustFlow: A Trusted
Memory Support for Data Flow Integrity. In 2019 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pages 308–313, July 2019. ISSN: 2159-3469. doi:10.1109/ISVLSI.2019.
00063.

7 Nathan Burow, Ryan Burrow, Roger Khazan, Howard E. Shrobe, and Bryan C. Ward. Moving
target defense considerations in real-time safety- and mission-critical systems. In Hamed
Okhravi and Cliff Wang, editors, Proceedings of the 7th ACM Workshop on Moving Target
Defense, MTD@CCS 2020, Virtual Event, USA, November 9, 2020, pages 81–89. ACM, 2020.
doi:10.1145/3411496.3421224.

8 Nicholas Carlini, Antonio Barresi, Mathias Payer, David A. Wagner, and Thomas R.
Gross. Control-flow bending: On the effectiveness of control-flow integrity. In
Jaeyeon Jung and Thorsten Holz, editors, 24th USENIX Security Symposium, USENIX
Security 15, Washington, D.C., USA, August 12-14, 2015, pages 161–176. USENIX
Association, 2015. URL: https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/carlini.

9 Nicholas Carlini and David Wagner. Rop is still dangerous: Breaking modern defenses. In
23rd USENIX Security Symposium (USENIX Security 14), pages 385–399, 2014.

10 Miguel Castro, Manuel Costa, and Tim Harris. Securing Software by Enforcing Data-flow
Integrity. In Proceedings of the 7th Symposium on Operating Systems Design and Implementa-
tion, OSDI ’06, pages 147–160, Berkeley, CA, USA, 2006. USENIX Association. event-place:
Seattle, Washington. URL: http://dl.acm.org/citation.cfm?id=1298455.1298470.

11 Chien-Ying Chen, Sibin Mohan, Rodolfo Pellizzoni, Rakesh B. Bobba, and Negar Kiyavash.
A novel side-channel in real-time schedulers. In Björn B. Brandenburg, editor, 25th IEEE
Real-Time and Embedded Technology and Applications Symposium, RTAS 2019, Montreal, QC,
Canada, April 16-18, 2019, pages 90–102. IEEE, 2019. doi:10.1109/RTAS.2019.00016.

https://doi.org/10.1109/CPSNA.2013.6614242
https://doi.org/10.1145/1102120.1102165
https://en.wikipedia.org/w/index.php?title=Morris_worm&oldid=1053313243
https://en.wikipedia.org/w/index.php?title=Morris_worm&oldid=1053313243
https://doi.org/10.4230/LIPIcs.ECRTS.2020.8
https://doi.org/10.1109/ISVLSI.2019.00063
https://doi.org/10.1109/ISVLSI.2019.00063
https://doi.org/10.1145/3411496.3421224
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/carlini
http://dl.acm.org/citation.cfm?id=1298455.1298470
https://doi.org/10.1109/RTAS.2019.00016

N. Bellec, G. Hiet, S. Rokicki, F. Tronel, and I. Puaut 18:21

12 Jiyang Chen, Tomasz Kloda, Ayoosh Bansal, Rohan Tabish, Chien-Ying Chen, Bo Liu,
Sibin Mohan, Marco Caccamo, and Lui Sha. Schedguard: Protecting against schedule leaks
using linux containers. In 27th IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS 2021, Nashville, TN, USA, May 18-21, 2021, pages 14–26. IEEE, 2021.
doi:10.1109/RTAS52030.2021.00010.

13 Shuo Chen, Jun Xu, Emre Can Sezer, Prachi Gauriar, and Ravishankar K Iyer. Non-control-
data attacks are realistic threats. In USENIX Security Symposium, volume 5, 2005.

14 George Dantzig, Ray Fulkerson, and Selmer Johnson. Solution of a large-scale traveling-
salesman problem. Journal of the operations research society of America, 2(4):393–410, 1954.

15 Irene Díez-Franco and Igor Santos. Data Is Flowing in the Wind: A Review of Data-Flow
Integrity Methods to Overcome Non-Control-Data Attacks. In Manuel Graña, José Manuel
López-Guede, Oier Etxaniz, Álvaro Herrero, Héctor Quintián, and Emilio Corchado, edi-
tors, International Joint Conference SOCO’16-CISIS’16-ICEUTE’16, Advances in Intelligent
Systems and Computing, pages 536–544, Cham, 2017. Springer International Publishing.
doi:10.1007/978-3-319-47364-2_52.

16 Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard, Hamed
Okhravi, and Stelios Sidiroglou-Douskos. Control Jujutsu: On the Weaknesses of Fine-Grained
Control Flow Integrity. In Proceedings of the 22Nd ACM SIGSAC Conference on Computer
and Communications Security, CCS ’15, pages 901–913, New York, NY, USA, 2015. ACM.
event-place: Denver, Colorado, USA. doi:10.1145/2810103.2813646.

17 Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch, Christine
Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann, and Simon Wegener.
TACLeBench: A benchmark collection to support worst-case execution time research. In
Martin Schoeberl, editor, 16th International Workshop on Worst-Case Execution Time Analysis
(WCET 2016), volume 55 of OpenAccess Series in Informatics (OASIcs), pages 2:1–2:10,
Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

18 N. Falliere, L. O. Murchu, and E. Chien. W32. stuxnet dossier. Whitepaper, Symantec Corp.,
Security Response, 5:6, 2011.

19 Joachim Fellmuth, Paula Herber, Tobias F. Pfeffer, and Sabine Glesner. Securing real-
time cyber-physical systems using wcet-aware artificial diversity. In 15th IEEE Intl Conf
on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelli-
gence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cy-
ber Science and Technology Congress, DASC/PiCom/DataCom/CyberSciTech 2017, Or-
lando, FL, USA, November 6-10, 2017, pages 454–461. IEEE Computer Society, 2017.
doi:10.1109/DASC-PICom-DataCom-CyberSciTec.2017.88.

20 Lang Feng, Jiayi Huang, Jeff Huang, and Jiang Hu. Toward Taming the Overhead Monster
for Data-Flow Integrity. arXiv:2102.10031 [cs], February 2021. arXiv: 2102.10031. arXiv:
2102.10031.

21 Christian Ferdinand and Reinhold Heckmann. ait: Worst-case execution time prediction by
static program analysis. In Building the Information Society, pages 377–383. Springer, 2004.

22 Igor Griva, Stephen G Nash, and Ariela Sofer. Linear and nonlinear optimization, volume 108.
Siam, 2009.

23 Monowar Hasan, Sibin Mohan, Rodolfo Pellizzoni, and Rakesh B. Bobba. A design-space
exploration for allocating security tasks in multicore real-time systems. CoRR, abs/1711.04808,
2017. arXiv:1711.04808.

24 Marine Kadar, Gerhard Fohler, Don Kuzhiyelil, and Philipp Gorski. Safety-aware integration
of hardware-assisted program tracing in mixed-criticality systems for security monitoring. In
27th IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2021,
Nashville, TN, USA, May 18-21, 2021, pages 292–305. IEEE, 2021. doi:10.1109/RTAS52030.
2021.00031.

ECRTS 2022

https://doi.org/10.1109/RTAS52030.2021.00010
https://doi.org/10.1007/978-3-319-47364-2_52
https://doi.org/10.1145/2810103.2813646
https://doi.org/10.1109/DASC-PICom-DataCom-CyberSciTec.2017.88
http://arxiv.org/abs/2102.10031
http://arxiv.org/abs/2102.10031
http://arxiv.org/abs/1711.04808
https://doi.org/10.1109/RTAS52030.2021.00031
https://doi.org/10.1109/RTAS52030.2021.00031

18:22 RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems

25 Kristin Krüger, Gerhard Fohler, Marcus Völp, and Paulo Jorge Esteves Veríssimo. Improving
security for time-triggered real-time systems with task replication. In 24th IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications, RTCSA 2018,
Hakodate, Japan, August 28-31, 2018, pages 232–233. IEEE Computer Society, 2018. doi:
10.1109/RTCSA.2018.00036.

26 Kristin Krüger, Marcus Völp, and Gerhard Fohler. Vulnerability analysis and mitigation of
directed timing inference based attacks on time-triggered systems. In Sebastian Altmeyer,
editor, 30th Euromicro Conference on Real-Time Systems, ECRTS 2018, July 3-6, 2018,
Barcelona, Spain, volume 106 of LIPIcs, pages 22:1–22:17. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.ECRTS.2018.22.

27 Jaeheon Kwak and Jinkyu Lee. Covert timing channel design for uniprocessor real-time
systems. In Jong Hyuk Park, Hong Shen, Yunsick Sung, and Hui Tian, editors, Parallel
and Distributed Computing, Applications and Technologies, 19th International Conference,
PDCAT 2018, Jeju Island, South Korea, August 20-22, 2018, Revised Selected Papers, volume
931 of Communications in Computer and Information Science, pages 159–168. Springer, 2018.
doi:10.1007/978-981-13-5907-1_17.

28 Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong program analysis
& transformation. In International Symposium on Code Generation and Optimization, 2004.
CGO 2004., pages 75–86. IEEE, 2004.

29 Tong Liu, Gang Shi, Liwei Chen, Fei Zhang, Yaxuan Yang, and Jihu Zhang. TMDFI: Tagged
Memory Assisted for Fine-Grained Data-Flow Integrity Towards Embedded Systems Against
Software Exploitation. In 2018 17th IEEE International Conference On Trust, Security And
Privacy In Computing And Communications/ 12th IEEE International Conference On Big
Data Science And Engineering (TrustCom/BigDataSE), pages 545–550, August 2018. ISSN:
2324-9013. doi:10.1109/TrustCom/BigDataSE.2018.00083.

30 Tingting Lu and Junfeng Wang. Data-flow bending: On the effectiveness of data-flow integrity.
Computers & Security, 84:365–375, July 2019. doi:10.1016/j.cose.2019.04.002.

31 Charlie Miller and Chris Valasek. Remote exploitation of an unaltered passenger vehicle. Black
Hat USA, 2015.

32 Tanmaya Mishra, Thidapat Chantem, and Ryan M. Gerdes. Survey of control-flow integrity
techniques for embedded and real-time embedded systems. CoRR, abs/2111.11390, 2021.
arXiv:2111.11390.

33 Mitra Nasri, Thidapat Chantem, Gedare Bloom, and Ryan M. Gerdes. On the pitfalls
and vulnerabilities of schedule randomization against schedule-based attacks. In Björn B.
Brandenburg, editor, 25th IEEE Real-Time and Embedded Technology and Applications
Symposium, RTAS 2019, Montreal, QC, Canada, April 16-18, 2019, pages 103–116. IEEE,
2019. doi:10.1109/RTAS.2019.00017.

34 Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. Phasar: An inter-procedural
static analysis framework for C/C++. In TACAS (2), pages 393–410, 2019.

35 Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and Dan
Boneh. On the effectiveness of address-space randomization. In Proceedings of the 11th ACM
conference on Computer and communications security, CCS ’04, pages 298–307, New York, NY,
USA, October 2004. Association for Computing Machinery. doi:10.1145/1030083.1030124.

36 Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungyoung Lee, Taesoo Kim,
Wenke Lee, and Yunheung Paek. HDFI: Hardware-Assisted Data-Flow Isolation. In 2016
IEEE Symposium on Security and Privacy (SP), pages 1–17, May 2016. ISSN: 2375-1207.
doi:10.1109/SP.2016.9.

37 Victor van der Veen, Dennis Andriesse, Manolis Stamatogiannakis, Xi Chen, Herbert Bos, and
Cristiano Giuffrdia. The Dynamics of Innocent Flesh on the Bone: Code Reuse Ten Years
Later. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’17, pages 1675–1689, New York, NY, USA, 2017. ACM. event-place: Dallas,
Texas, USA. doi:10.1145/3133956.3134026.

https://doi.org/10.1109/RTCSA.2018.00036
https://doi.org/10.1109/RTCSA.2018.00036
https://doi.org/10.4230/LIPIcs.ECRTS.2018.22
https://doi.org/10.1007/978-981-13-5907-1_17
https://doi.org/10.1109/TrustCom/BigDataSE.2018.00083
https://doi.org/10.1016/j.cose.2019.04.002
http://arxiv.org/abs/2111.11390
https://doi.org/10.1109/RTAS.2019.00017
https://doi.org/10.1145/1030083.1030124
https://doi.org/10.1109/SP.2016.9
https://doi.org/10.1145/3133956.3134026

N. Bellec, G. Hiet, S. Rokicki, F. Tronel, and I. Puaut 18:23

38 Marcus Völp, Claude-Joachim Hamann, and Hermann Härtig. Avoiding timing channels in
fixed-priority schedulers. In Masayuki Abe and Virgil D. Gligor, editors, Proceedings of the 2008
ACM Symposium on Information, Computer and Communications Security, ASIACCS 2008,
Tokyo, Japan, March 18-20, 2008, pages 44–55. ACM, 2008. doi:10.1145/1368310.1368320.

39 Nils Vreman, Richard Pates, Kristin Krüger, Gerhard Fohler, and Martina Maggio. Minimizing
side-channel attack vulnerability via schedule randomization. In 58th IEEE Conference on
Decision and Control, CDC 2019, Nice, France, December 11-13, 2019, pages 2928–2933.
IEEE, 2019. doi:10.1109/CDC40024.2019.9030144.

40 Robert J. Walls, Nicholas F. Brown, Thomas Le Baron, Craig A. Shue, Hamed Okhravi, and
Bryan C. Ward. Control-Flow Integrity for Real-Time Embedded Systems. In Sophie Quinton,
editor, 31st Euromicro Conference on Real-Time Systems (ECRTS 2019), volume 133 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 2:1–2:24, Dagstuhl, Germany, 2019.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECRTS.2019.2.

41 Julian Wolf, Bernhard Fechner, Sascha Uhrig, and Theo Ungerer. Fine-grained timing and
control flow error checking for hard real-time task execution. In 7th IEEE International
Symposium on Industrial Embedded Systems, SIES 2012, Karlsruhe, Germany, June 20-22,
2012, pages 257–266. IEEE, 2012. doi:10.1109/SIES.2012.6356592.

42 Man-Ki Yoon, Sibin Mohan, Chien-Ying Chen, and Lui Sha. Taskshuffler: A schedule
randomization protocol for obfuscation against timing inference attacks in real-time systems.
In 2016 IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS),
Vienna, Austria, April 11-14, 2016, pages 111–122. IEEE Computer Society, 2016. doi:
10.1109/RTAS.2016.7461362.

ECRTS 2022

https://doi.org/10.1145/1368310.1368320
https://doi.org/10.1109/CDC40024.2019.9030144
https://doi.org/10.4230/LIPIcs.ECRTS.2019.2
https://doi.org/10.1109/SIES.2012.6356592
https://doi.org/10.1109/RTAS.2016.7461362
https://doi.org/10.1109/RTAS.2016.7461362

18:24 RT-DFI: Optimizing Data-Flow Integrity for Real-Time Systems

A Full experimental data

Table 5 Experimental results. Vanilla is the WCET of the program without protection. SotA
is the overhead for state-of-the-art DFI protection. VA++ is the improvement compared to SotA
using the value analysis to improve the valid tag sets. R1 (resp. Best) represents the improvement
of RT-DFI with 1 iteration (resp. 4 iterations) compared to SotA.

Bench Vanilla SotA VA++ R1 Best
adpcm_dec 2, 306 +243.24% −9.34% −9.34% −9.34%
adpcm_enc 3, 306 +213.22% −7.52% −7.59% −7.59%
audiobeam 5, 653, 355 +15.66% −0.01% −12.45% −12.45%
binarysearch 94 +119.15% −7.14% −10.71% −10.71%
bsort 167, 333 +269.44% 0.00% −4.35% −4.35%
cjpeg_transupp 10, 321, 821 +310.02% −0.00% −17.72% −17.72%
cjpeg_wrbmp 165, 680 +193.86% 0.00% −3.83% −3.83%
complex_updates 23, 941 +7.94% −15.14% −15.14% −15.14%
cosf 794, 173 +4.77% −2.10% −2.36% −2.36%
countnegative 4, 228 +114.50% 0.00% −8.26% −8.26%
cover 51 +141.18% −6.94% −6.94% −6.94%
cubic 34, 348, 748 +3.77% −1.49% −1.73% −1.73%
deg2rad 304, 652 +0.03% −2.04% −2.04% −2.04%
dijkstra 3, 624, 311, 302 +200.99% −0.00% −8.09% −8.09%
duff 372 +280.91% 0.00% −8.23% −8.23%
epic 11, 032, 999, 977 +7.40% 0.00% −14.53% −14.53%
fft 90, 043, 546 +286.45% 0.00% −9.18% −9.18%
filterbank 99, 168, 970 +5.74% −0.00% −0.00% −0.00%
fir2dim 33, 301 +23.43% −12.42% −12.42% −12.42%
fmref 18, 678, 944 +8.05% −0.01% −3.55% −3.55%
g723_enc 717, 091 +96.79% −0.52% −4.72% −4.72%
gsm_dec 1, 910, 861 +90.82% −4.71% −10.90% −10.90%
gsm_enc 3, 719, 804 +200.28% −1.37% −11.75% −11.75%
h264_dec 48, 385 +62.63% −4.34% −10.25% −10.25%
huff_dec 625, 471 +177.46% −0.42% −2.28% −2.28%
iir 5, 907 +11.07% −18.81% −18.81% −18.81%
insertsort 1, 148 +302.26% −1.15% −6.86% −6.86%
isqrt 698, 732 +23.93% −8.38% −8.38% −8.38%
jfdctint 1, 593 +184.18% −0.55% −6.54% −6.54%
lift 696, 735 +174.71% −6.33% −8.22% −8.22%
lms 3, 524, 882 +9.65% 0.00% −0.12% −0.12%
ludcmp 127, 564 +10.44% −0.03% −5.92% −5.92%
matrix1 8, 764 +399.36% 0.00% −5.71% −5.71%
md5 13, 888, 069 +174.65% −1.65% −3.70% −3.70%
minver 46, 554 +21.97% −3.74% −10.97% −10.97%
mpeg2 2, 677, 246, 923 +263.49% −0.00% −15.09% −15.09%
ndes 116, 203 +290.20% −0.95% −8.77% −8.77%
petrinet 2, 577 +376.06% 0.00% −2.66% −2.66%
pm 197, 879, 495 +10.17% −0.00% −9.18% −9.18%
powerwindow 2, 717, 332 +247.30% −6.86% −7.37% −7.37%
prime 1, 755 +12.65% −4.50% −4.50% −4.50%
rad2deg 306, 691 +0.04% −1.61% −1.61% −1.61%
sha 1, 933, 236 +296.43% −5.34% −6.22% −6.22%
st 2, 991, 897 +5.78% −2.31% −5.78% −5.78%
statemate 124, 111 +283.22% −4.21% −5.56% −5.56%
susan 388, 703, 083 +24.24% −1.55% −6.57% −6.57%
test3 235, 916, 292 +305.47% −1.17% −10.57% −10.57%

Foundational Response-Time Analysis as
Explainable Evidence of Timeliness
Marco Maida !

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Sergey Bozhko !

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
Saarbrücken Graduate School of Computer Science, Universität des Saarlandes, Germany

Björn B. Brandenburg !

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract
The paper introduces foundational response-time analysis (RTA) as a means to produce strong and
independently checkable evidence of temporal correctness. In a foundational RTA, each response-time
bound calculated comes with an auto-generated certificate of correctness – a short and human-
inspectable sequence of machine-checked proofs that formally show the claimed bound to hold. In
other words, a foundational RTA yields explainable results that can be independently verified (e.g.,
by a certification authority) in a rigorous manner (with an automated proof checker). Consequently,
the analysis tool itself does not need to be verified nor trusted. As a proof of concept, the paper
presents POET, the first foundational RTA tool. POET generates certificates based on Prosa,
the to-date largest verified framework for schedulability analysis, which is based on Coq. The
trusted computing base is hence reduced to the Coq proof checker and its dependencies. POET
currently supports two scheduling policies (earliest-deadline-first, fixed-priority), two preemption
models (fully preemptive, fully non-preemptive), arbitrary deadlines, periodic and sporadic tasks, and
tasks characterized by arbitrary arrival curves. The paper describes the challenges inherent in the
development of a foundational RTA tool, discusses key design choices, and reports on its scalability.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Formal software verification

Keywords and phrases hard real-time systems, response-time analysis, uniprocessor, Coq, Prosa,
fixed priority, EDF, preemptive, non-preemptive, verification

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.19

Supplementary Material Software (ECRTS 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.1.7

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 803111),
and from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 391919384.

Acknowledgements We thank Pierre Roux for introducing us to CoqEAL and the members of the
joint ANR-DFG project RT-PROOFS for fruitful discussions.

1 Introduction

The purpose of a response-time analysis (RTA) is to obtain safe bounds on the worst-
case response times of all critical tasks in a real-time system. To this end, the system is
described with a mathematical model, which typically comprises a workload model, a resource
model, and a scheduling policy. The model is then analyzed to derive response-time bounds,
which requires (i) a theory that rigorously justifies that the RTA correctly characterizes the
worst-case scenario, and (ii) an RTA tool that executes the concrete calculations.

C
o

n
si

st

en
t * Complete * W

ell D
o

cu
m

ented * Easy to
 R

eu
se

 *

 *
 Evaluated *

 E
C

R
T
S
 *

 Artifact *
 A

E

© Marco Maida, Sergey Bozhko, and Björn B. Brandenburg;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 19; pp. 19:1–19:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mmaida@mpi-sws.org
mailto:sbozhko@mpi-sws.org
mailto:bbb@mpi-sws.org
https://doi.org/10.4230/LIPIcs.ECRTS.2022.19
https://doi.org/10.4230/DARTS.8.1.7
https://doi.org/10.4230/DARTS.8.1.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

Both aspects are equally critical. An error in (i), such as an invalid over-generalization or
a missed corner case, leads to a flawed theory. An error in (ii), which can be any significant
bug in the tool, leads to a flawed implementation. Given the number of documented analysis
mistakes in the real-time literature (e.g., [13, 18, 28, 34]), and the reality that complex tools
are rarely bug-free, both the research community and industry have shown a growing interest
in the application of computer-assisted formal verification (e.g., [11, 21, 23]), with safety
standards also advising its use (e.g., ISO 26262, DO-178C).

However, applying the currently available proof assistants and verification tools to
mechanize RTAs and formally verify RTA tools is neither an easy nor a cheap task. Once a
theory – or the behavior of a program – is encoded in a proof assistant’s specification language,
it usually needs to be augmented with additional information (e.g., step-by-step proofs,
program invariants) before the verification procedure can succeed. This process requires
human intervention and usually takes a considerable amount of time. Moreover, developing
and maintaining a verified tool requires advanced programming skills and specialized expertise.
As a consequence of such cost and knowledge barriers, RTA tools in use today are typically
not verified, and this is unlikely to change in the foreseeable future.

In this paper, we therefore explore the challenge of obtaining trustworthy response-time
bounds without having to verify the RTA tool that produces them. To this end, we propose
foundational RTA as means to produce evidence of timeliness that can be independently
checked in a rigorous manner by an untrusting third party. As elaborated in Section 2, a
foundational RTA tool must produce proof-carrying response-time bounds, that is, bounds
that come with certificates of correctness that can be automatically checked by a proof
assistant such as Coq. The key advantage of a foundational RTA is that the trusted computing
base (TCB) is reduced to only the proof checker and its dependencies: the analysis tool
itself does not need to be trusted because the correctness of its claims can be easily and
independently verified. Therefore, the RTA tool’s source code can be updated, modified,
ported, and optimized like any other non-critical software.

The advantages of foundational RTA are obvious; its practical realizability and scalability,
however, much less so. As a proof of concept, we present the design and implementation of
the first foundational RTA tool. Our RTA tool, called POET (Prosa Obsigned Evidence of
Timeliness), works in conjunction with the formally verified Prosa framework for real-time
schedulability analysis [11], and in particular with its abstract RTA library [8]. When a
problem instance (i.e., a concrete task set, scheduling policy, and preemption model) is given
as input, POET generates, along with the usual response-time bounds, a set of formal proofs
of correctness that can be automatically machine-checked by the Coq proof assistant [42].
The process is completely automated (i.e., users do not need to write definitions nor to prove
theorems) and does not require any expertise with formal verification on behalf of the user.
Consequently, POET is the first RTA tool that can assert the correctness of its results in a
trustworthy manner without any need for the tool itself to be verified.

To summarize, this paper makes the following contributions:
We introduce the notions of foundational RTA and proof-carrying response-time bounds
(Section 2), along with the first foundational RTA tool, POET, and discuss key design
and implementation challenges (Section 4);
describe how mechanisms in POET and the overall workflow ensure the trustworthiness
of the certificates (Section 5),
discuss how POET computes the search space for each task’s response-time bound in a
manner that is both computationally efficient and verifiable (Section 6);
explain how we enabled POET to scale to numerically large task parameters, despite
Prosa’s proof-oriented (but computationally inefficient) number representation (Sec-
tion 7); and finally

M. Maida, S. Bozhko, and B. B. Brandenburg 19:3

report on an empirical evaluation of POET on synthetic task sets of realistic complexity
in terms of task count, utilization, and numerical magnitude of the parameters (Section 8).

Last but not least, POET makes it possible for users unfamiliar with Coq to benefit from
the power of formal verification. POET will be released as an open-source project.

2 Design Space of Verified RTAs

To motivate the advantages of foundational RTA and to provide context, we begin with
a brief survey of the space of possible alternatives. Given that the literature on real-time
systems in general, and on RTAs in particular, targets mission- and safety-critical systems
– such as cars, trains, aircraft, and spacecraft – RTA tools are an obvious candidate for
verification. However, while the ultimate goal is clear – the computed bounds must never be
optimistic – it is less obvious what it means to actually “verify an RTA tool” in practice. In
fact, there are many ways in which formal verification could improve the trustworthiness of
RTA tools, with differing trade-offs in terms of required effort and verification coverage.

Common flaws. To better understand the space of possible solutions, first consider the
following (non-exhaustive) list of flaws threatening the validity of response-time bounds. The
most obvious issue is that the underlying RTA theory may be incorrect (F1). Sadly, the
published record shows that this is far from just a theoretical concern: many cases of flawed
reasoning have been documented [12, 18, 28, 34, 49], Chen et al. [13] and Cerqueira et al. [11]
give more examples of incorrect analyses of processor scheduling, Indrusiak et al. [31] list
eight refuted RTAs for on-chip networks (NoCs), and new corrections still continue to appear
on a regular basis (e.g., [29, 52]). At this point in time, it has become painfully clear that
engineers would be foolish to trust an analysis to be correct just because it was peer-reviewed
and published at a well-reputed venue. Formal verification is arguably the best, and perhaps
the only way, to overcome this trustworthiness gap, especially in critical systems.

Moving on, even if the underlying analysis is not at fault, then a particular implementor
may still misinterpret the published analysis (F2), or simply overlook logic errors in the
implementation (F3) such as incorrect loop conditions or incomplete search-space traversals.
From first-hand experience, such issues do not appear to be uncommon. In a similar vein,
easy-to-overlook programming mistakes resulting in silent errors (F4), such as over- or
underflow during unchecked integer arithmetic or floating-point precision issues, plague RTA
tools just like they do applications in virtually all other domains.

Likely somewhat less common, but a real concern nonetheless, is the possibility that
software defects in other parts of the tool (F5) corrupt the state of the analysis implementation,
such as a dangling pointer in an XML or JSON parsing library, or a concurrency issue. This
can also affect tools programmed in otherwise memory-safe languages (such as OCaml or
Java) that link with native C libraries for common functionality.

Another concern related to I/O is that the parsing of the workload and system descrip-
tion (F6), especially if it is presented in a difficult-to-process format, may silently alter the
input such that an otherwise correct analysis is run on a slightly, but critically different
problem instance than intended. This is a particular concern for tools that do not produce
explainable results, that is, for tools that produce output from which it is not possible for a
human to understand how, or based on exactly which model, the result was obtained.

Last, and also decidedly least, is the concern that transient errors, such as bit flips due to
cosmic background radiation or thermal noise, could affect the RTA tool during its execution
(or the verifier, for that matter). While not unheard of, the likelihood of occurrence on an

ECRTS 2022

19:4 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

engineer’s workstation or laptop is extremely low. Furthermore, it can be safely assumed
that any critical system is analyzed not just once, and not only on just one machine, at
which point the risk of repeated transient errors at design time becomes negligible.

Clearly, an ideal “verified RTA” should mitigate all of these flaws (and more). Additional
desiderata include that it should be reasonably fast and scale to workloads of industrially
relevant size and parameter magnitudes (e.g., expressed in processor cycles or nanoseconds).
Furthermore, an ideal RTA tool should be explainable in the sense that it justifies its results
in a way that can independently checked by a third party (e.g., government regulators) for
use in (non-formal) certification processes (e.g., as commonly encountered in the avionics and
medical domains, and increasingly also in the automotive domain). How can these goals be
achieved? While a full survey of the verification literature is beyond the scope of this paper,
we can generally identify three fundamental approaches: verify the tool itself, augment an
unverified tool with a verified results validator, and the proposed foundational approach.

Verified implementation. In principle, one could verify the entire RTA tool, in particular if
it is implemented in a verification-friendly language such as OCaml or Haskell. To our
knowledge, this has not been done to-date, and whether it is even worthwhile in the context
of RTA tools is a point open for debate. Nonetheless, it is interesting to consider different
levels of specifications that such an effort could target.

The weakest specification would be that the tool computes a particular mathematical
expression, or finds a fixed-point of a certain structure, without any formal claims about
the semantical implications of this. In other words, the tool would be verified to correctly
compute a number, but no formal claim is made about the meaning of this number (i.e.,
that it is a bound). The advantage of this is that the underlying RTA does not have to be
verified, i.e., this approach could be used with any RTA in the literature. While this requires
proving the absence of F3- and F4-type flaws, it fails to mitigate F1- and F2-type flaws.

A step up would be to use the same specification for the implementation (of just the
computation, without semantics), while also verifying the employed RTA theory in a separate
effort (or using an already-verified one, e.g., [8, 11]). The resulting assurance is much
improved, as this approach prevents the historically very problematic F1-type flaws. However,
without an end-to-end verification, F2-type flaws still cannot be ruled out.

Ideally, the tool’s specification should include semantic guarantees: if the tool claims a
computed number to be a response-time bound, then there does not exist a schedule (i.e., a
trace of the analyzed model) in which the bound is exceeded. Clearly, this would be the most
desirable level to target as it completely eliminates the risk of any flaws in categories F1–F4.

The limiting factor is the implied amount of work: not only would such a semantically
rich specification require a complete verification of the underlying theory (e.g., as done in
Prosa [11]), but to also categorically avoid F5- and F6-type issues, a deep specification
and verification of all “plumbing” code (such as the input format parser) would have to be
carried out. With the contemporary software ecosystem and verification tools, this would be
a daunting task of questionable feasibility. On top of this, a verified RTA tool would not
inherently produce any additional evidence of correctness besides the computed bounds (i.e.,
its output is still not explainable). On the plus side, there is no reason to doubt that such
a tool could be fast. However, to the best of our knowledge, there have been no attempts
to-date to verify an entire RTA tool, likely due to the enormous effort that would be required.

Results validator. A different approach that side-steps the issue of having to verify the
entire RTA tool with all its real-world complexities is to instead check only the analysis
results [23, 36]. The high-level idea is to leave the actual RTA implementation unverified

M. Maida, S. Bozhko, and B. B. Brandenburg 19:5

(with all the software-engineering flexibility this brings), and to develop a second, verified
tool that independently validates the results of the RTA tool. If it is fundamentally easier to
check a solution than to find one, then this approach is beneficial in principle.

While much more attainable than a fully verified RTA implementation – as successfully
demonstrated on industrially relevant network analyses [23, 36] – it comes at the price of
having to develop the formally verified results validator, which is subject to all the afore-
mentioned challenges related to verified code. Case in point, Fradet et al.’s CertiCAN [23]
checking procedure is first verified with Coq and then automatically extracted from Coq as
an OCaml file. However, to actually obtain a useful, runnable tool, the extracted OCaml
code must still be combined with non-verified support code to handle “plumbing” tasks such
as I/O and parsing. As a result, F5- and F6-type issues remain plausible concerns.

Proof-carrying bounds. In this paper, we seek to develop a way of obtaining trustworthy
response-time bounds that avoids verifying or trusting the RTA tool altogether. To this
end, inspired by Appel’s seminal work on foundational proof-carrying code [3], we transfer
the foundational approach to the RTA setting. To elaborate on the original concept, proof-
carrying code is a (usually) low-level program, such as a sequence of instructions emitted by
a compiler, that comes with an independently checkable proof establishing its properties [38].
A foundational proof-carrying code [3] has a proof that relies only on the foundations of
mathematical logic, hence minimizing the number of additional components (ad-hoc type
systems, verification condition generators, one-off output checkers, etc.) to be trusted.

Likewise, we require a foundational RTA to produce response-time bounds that come with
a proof of correctness relying only on the mathematical logic implemented by the underlying
proof assistant, i.e., a foundational RTA yields proof-carrying response-time bounds.

To demonstrate the practicality of this idea, we present the first such tool, POET, as
a proof of concept. By analogy, POET behaves like a successful student during an exam:
when faced with a tricky computational problem (i.e., finding the response-time bound of
a task), POET not only yields the final solution (i.e., a number), but also justifies with a
sequence of proof steps why the solution is correct. In other words, the solution is explainable
in the sense that its derivation can be understood without interviewing the student about
their thought processes (i.e., knowing POET’s source code). POET thus does not have to
be trusted at all, since its answer can be independently verified.

As a foundational proof, by definition, depends only on the foundations of mathematical
logic, it necessarily includes a complete justification of both the underlying RTA and how it
applies to the specific workload. POET hence categorically avoids all flaws of types F1–F5,
and with light supervision (Section 5) sidesteps F6-type issues altogether, while inherently
producing independently checkable evidence of timeliness.

The Achilles’ heel of the foundational approach, however, is that its runtime is closely
tied to that of the underlying proof assistant that checks the generated certificates, which, as
we discuss in Sections 6–8, was a serious challenge in the realization of POET.

3 Background

POET relies on abstract RTA [8], which has been integrated into Prosa [40], a Coq [42]
framework. We briefly review each of these building blocks in turn.

Coq [42] is a widely-used, mature interactive theorem prover based on the calculus of
inductive constructions [15, 16, 39] that provides rich support for the mechanization (i.e.,
the formalization and machine-checked verification) of both nontrivial mathematical theories
(e.g., [25, 26]) and large software systems (e.g., [35]). Coq provides primarily two languages:

ECRTS 2022

19:6 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

Gallina, a formal, dependently typed specification language used to write mathematical
definitions, state theorems, and implement functional programs, and Ltac, an untyped macro
language used to steer the proof engine.

Coq is not a fully automatic theorem prover: while proof checking is automatic, proof
authoring typically requires human intervention. Once a theorem is stated, it is necessary to
provide a sequence of Ltac tactic applications (each of which can be seen as a single step of
the proof) that, starting from the stated hypotheses, allows the proof engine to reach the
claimed conclusion. As Coq allows the user to create new tactics via the Ltac language, it
is possible to introduce domain-specific automation. POET heavily relies on this feature to
completely automate the proof generation process.

Once a Coq source file (. v) has been written, it can be compiled into a lower-level
representation (generating a . vo file) and finally verified by the standalone proof checker
coqchk. The Coq compiler, coqchk, and their dependencies, form POET’s entire TCB.

Prosa [40], the schedulability analysis framework underlying POET’s certificates, uses
Coq and its popular extension ssreflect [37]. Starting from classic real-time systems
concepts, such as job, task, processor, and arrival curve, the contributors of Prosa both
mechanized classical results (e.g., the optimality of the earliest-deadline-first scheduling
policy) and developed new theories (e.g., [10, 22, 24]).

For our purposes, the most relevant theory in Prosa is abstract RTA (aRTA) [8],
which formalizes the well-known busy-window principle to derive a generic RTA applicable
to different types of workloads, scheduling policies, and preemption models. aRTA has
been instantiated for two scheduling policies (earliest-deadline-first, fixed-priority) and four
preemption models (preemptive, non-preemptive, limited-preemptive, floating non-preemptive)
in every possible combination, yielding eight different fully verified RTAs [8].

Given that all proofs have been mechanized in Prosa, a high degree of trust may be
placed upon the correctness of aRTA and its instantiations. However, a mechanized RTA
theory, much like its traditional pen-and-paper counterpart, only describes and justifies under
which conditions a claimed response-time bound is valid, but it is not, per se, an executable
program that can yield numerical results given a concrete task set. Rather, the main aRTA
proof follows an axiomatic approach by treating the scheduler, the tasks, and the claimed
response-time bounds as abstract variables on which a number of assumptions are made.
The abstract result is then derived from these assumptions.

The key idea at the heart of POET is that, by providing instantiations for all variables
(i.e., by assigning concrete values), along with a proof that all of aRTA’s assumptions are
satisfied, aRTA can be put to practical use to verify precomputed response-time bounds.
POET thus inherits the system model from aRTA, which we summarize next.

System model. aRTA assumes a discrete time model, where ε
∆= 1 represents the smallest,

indivisible unit of time (e.g., a processor cycle). The system is comprised of a set of n

independent tasks τ = {τ1, . . . , τn} scheduled on a uniprocessor. Each task τi is characterized
by its worst-case execution time Ci, its relative deadline Di, and an arrival bound αi(∆)
that upper-bounds the number of new jobs (i.e., task activations) that arrive in any interval
of length ∆. The two considered preemption models are expressed through each task’s
run-to-completion threshold RCT i, where RCT i = ε in the case of fully non-preemptive tasks,
and RCT i = Ci in the case of fully preemptive tasks. In the case of fixed-priority scheduling,
each task also has a fixed priority πi. As usual in schedulability analysis, any scheduling
overheads are presumed to be negligible or already integrated into each task’s cost Ci.

M. Maida, S. Bozhko, and B. B. Brandenburg 19:7

Over time, each task τi produces an infinite sequence of jobs {Ji,0, Ji,1, . . .}. We let J
denote the set of all jobs of all tasks. Each job Ji,j ∈ J has an arrival time ai,j , an execution
time ci,j ≤ Ci, and an absolute deadline di,j = ai,j + Di. The number of job arrivals in any
interval is constrained by the arrival bound: ∀τi, ∀t, ∀∆, |{Ji,j | t ≤ ai,j < t + ∆}| ≤ αi(∆).

Finally, for ease of reference, the arrival sequence a(t) ∆= {Ji,j | ∀i, j : ai,j = t} is a
function that maps each instant t to the (possibly empty) set of jobs released at t. The
arrival sequence and the jobs it contains are the only non-instantiated variables in POET’s
certificates, meaning that the response-time bounds are proven for all possible arrival
sequences respecting the arrival curve and worst-case execution time (WCET) of each task.

Response-time bound. By design, aRTA is independent of specific scheduling policies and
preemption models. This is achieved by formulating the RTA problem in an abstract way
that captures the essential relationships between the task set, the scheduling policy, the
preemption model, and the worst-case response time of a task under analysis [8]. We omit
these general technical details here and instead focus on the specific cases relevant to POET.

Intuitively speaking, aRTA analyzes points in the schedule at which the system is quiet,
which means that no potentially interfering workload is pending (w.r.t. the task under
analysis τi). A job’s busy window is the interval between the two closest quiet times enclosing
both the job’s arrival and completion (by definition, no quiet time occurs while the job is
pending). The core of aRTA revolves around a worst-case analysis of the busy window of an
arbitrary job Ji,j of the task under analysis τi. As Ji,j ’s busy window ends only when Ji,j

completes, a finite busy window implies a response-time bound.
To this end, an aRTA instantiation must provide (and prove correct) two essential inputs.

First, there must exist a finite bound L on the maximum busy-window length of any job
of τi, as otherwise the busy-window principle is not applicable. Second, aRTA requires
a policy-specific interference bound function IBF i(A, ∆) to be defined, with the following
semantics [8]: if a job Ji,j is released A time units after the beginning of its busy window
(where A ≥ 0, i.e., A is Ji,j ’s relative release offset), then IBF i(A, ∆) is an upper bound on
the maximum amount of potentially interfering workload arriving in any interval of length ∆.

Given a task under analysis τi with a maximum busy-window length L and a policy-
specific IBF i(A, ∆), aRTA proceeds by considering every possible arrival offset A ∈ [0, L).
For each such offset A, a solution F to the fixed-point equation

A + F = RCT i + IBF i(A, A + F) (1)

is required to exist. Intuitively, F is the maximum time it takes for a job with arrival
offset A to receive sufficient service to certainly reach the run-to-completion threshold RCT i,
at which time, by definition, it cannot be preempted anymore. Therefore, the response
time of a job with arrival offset A can be bounded by F + (Ci − RCT i). Task τi’s overall
response-time bound R is given by the maximum F encountered solving Equation (1) for
each offset A ∈ [0, L).

Search space. Practically speaking, it is impossible to check every possible arrival offset
A ∈ [0, L) since, for task sets specified with nanosecond resolution, L easily reaches magnitudes
in the order of trillions. Fortunately, it is not necessary to check every single point in the
interval, since the only varying term in Equation (1) is IBF i(A, A+F). Hence, aRTA defines
the search space of the task under analysis τi as

Ai
∆= {0} ∪ {A ∈ (0, L) | ∃∆, IBF i(A − ε, ∆) ̸= IBF i(A, ∆)} (2)

ECRTS 2022

19:8 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

Listing 1 An example POET input file (in YAML format) specifying two tasks scheduled under
the fully-preemptive fixed-priority policy. The lower-priority task (with ID 2) is periodic (Line 10)
and has a deadline exceeding the period (Line 11). The higher-priority task (with ID 1) is a sporadic
task characterized by an arrival-curve prefix (Line 5), which is specified by the length of the prefix
(220) and the list of steps of the curve in the prefix: α1(∆) = 1 for ∆ ∈ [1, 105) and α1(∆) = 2 for
∆ ∈ [105, 220). The initial value α1(0) = 0 can be omitted by convention.

1 scheduling policy: fixed-priority
2 preemption model: fully-preemptive
3 - id: 1
4 worst-case execution time: 50
5 arrival curve: [220,[[1,1],[105,2]]]
6 deadline: 100
7 priority: 2
8 - id: 2
9 worst-case execution time: 10

10 period: 30
11 deadline: 100
12 priority: 1

The search space Ai restricts the analysis to such offsets A at which the interference bound
function IBF i changes in value, hence excluding all the plateaus of the function. In practice,
this restriction results in a sparse search space, which is key to obtaining a practical runtime.

4 POET: Design and Workflow

POET is the first foundational RTA tool: it generates formal Coq proofs, i.e., certificates,
establishing the correctness of its computed response-time bounds. As a proof of concept, it
supports four concrete aRTA instantiations. Specifically, it supports real-time workloads
comprised of recurrent, independent, arbitrary-deadline tasks under fixed-priority (FP) and
earliest-deadline-first (EDF) scheduling with both the fully-preemptive (FP) and fully non-
preemptive (NP) preemption models. Task activations may be periodic or sporadic, or defined
by an arbitrary arrival curve. Due to POET’s novel and unique combination of objectives
and features, its design and implementation posed some unusual challenges. We begin with
an overview of these challenges, key design decisions, and the resulting workflow, and then
discuss central issues in more detail in the subsequent sections.

The first major requirement is usability. For foundational RTA to be successful it
must have a low barrier to adoption, which means that POET must remain accessible to
a general audience without any expertise in formal verification. In particular, users must
not be expected to be proficient in authoring Coq proofs. We therefore designed POET to
require only a human-readable YAML file specifying the task set, the scheduling policy, and
the preemption model. Listing 1 shows an example. From this simple input, which does not
differ significantly from that of other, unverified RTA tools, POET generates verified RTA
results fully automatically, without any human interaction or need for verification expertise.

The second major requirement is transparency. Since the process of calculating the
response-time bounds, generating formal proofs of their correctness, and then machine-
checking the proofs is entirely automated, it is essential to prevent silent failures. It is
thus necessary to ensure explainability of the results, that is, it must be readily possible

M. Maida, S. Bozhko, and B. B. Brandenburg 19:9

Figure 1 The POET workflow: (a) the YAML input file is used by POET to instantiate one
certificate per task; (b) each certificate is compiled and verified using Coq. The procedure is fully
automated, but open to human inspection at each step.

for a human to scrutinize in detail and fully understand the certificates. The certificates
hence must be optimized for readability and any generated artifacts must be limited to a
comprehensible size and scope. Moreover, there are ways in which machine-checked proofs
might still not justify the intended conclusions. This issue is further discussed in Section 5.

A major challenge arises from POET’s support of arbitrary arrival curves. By
supporting not only the classic periodic and sporadic task models, but also any workload
that can be characterized with arbitrary arrival curves, POET gains broad applicability to
real-world workloads (e.g., bursty workloads, workloads with jitter, irregular arrival processes,
trace-based empirical arrival bounds, etc.). However, as defined in Section 3, an arrival
curve is a function on an infinite time domain. In the input to POET, such an arrival curve
necessarily needs to be truncated to a finite arrival-curve prefix (e.g., Line 5 in Listing 1).
Unfortunately, in the context of a Coq proof, representing and computing with arrival-curve
prefixes is far more tricky than one might initially suspect. In Section 6, we discuss the
strategies adopted in POET and the resulting accuracy vs. efficiency trade-offs.

Last but not least, as already mentioned in Section 2, the computational efficiency
of the certification process proved to be a major hurdle in the implementation of POET,
ultimately affecting its design. Specifically, numerically large computations are infeasible
with the unary representation of numbers employed in ssreflect, and hence by extension
also Prosa and aRTA. However, to be practical, POET’s certificates need to support
large-magnitude parameters because in real-world task sets periods, costs, and deadlines
are often expressed in nanoseconds or processor cycles. We discuss the strategies that we
adopted in POET to realize nonetheless acceptably fast calculations in Section 7.

4.1 Implementation and Workflow

The usability and transparency considerations lead to the workflow illustrated in Figure 1.
The entire procedure comprises two phases, namely (a) the generation of certificates starting
from an input file provided by the user, and (b) the Coq compilation and proof-checking.

The input file contains all necessary information about the task set, the scheduling policy,
and the preemption model (recall Listing 1). Given an input file, POET produces one
certificate (. v file) per task by instantiating a template specific to the given scheduling policy
and preemption model. During this phase, Coq itself is not involved in any way.

ECRTS 2022

19:10 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

POET is implemented as a simple Python tool and acts for the most part as a
straightforward template engine. Certificate generation begins with a template similar to
Listing 2 (discussed in Section 4.2 below) that, instead of containing specific data (e.g., task
declarations, the value of L and R, etc.), has a uniquely named placeholder at each relevant
position. POET simply replaces each placeholder with concrete data taken either from the
YAML input file (e.g., task parameters) or computed on the fly (e.g., the value of R), and
for each task stores the result as a new . v file containing the final proof script.

Using the same principle, POET also generates data-dependent proof scripts. For instance,
each certificate needs a proof script showing that each point of the input-dependent search
space can be paired with a fixed-point solution of Equation (1). However, the generation
of data-dependent proof scripts is kept as simple as possible by implementing as much
case-analysis logic as possible as generic Ltac tactics that automate the proof. Overall,
the lion’s share of the development effort has gone into the certificate templates and the
supporting Coq libraries, whereas the Python component is relatively small and mundane
in comparison.

Once the certificates are in place, POET triggers first the Coq compiler, which will
produce compiled files (. vo) containing low-level proof terms, and finally coqchk, which
verifies the proof terms. By design, phases (a) and (b) are independent and performed
by different tools (POET and Coq). In particular, the second phase – compilation and
verification of the certificates – may be performed repeatedly and on different machines.

The generated certificates establish the soundness of the bounds computed by POET,
but do not make any tightness claims. A bug in POET could thus lead to the rejection of
feasible task sets, or might cause pessimism in the claimed bounds, but it cannot result in
incorrect bounds, as coqchk will reject any flawed certificates claiming unsafe bounds.

We chose to implement POET in Python because of our familiarity with the language
and its convenient facilities for basic file handling and text manipulation. By design, a
foundational RTA does not have to be verified itself, so the fact that Python is notoriously
difficult to verify (being a dynamically typed scripting language) did not hinder us.

4.2 The Structure of a Certificate
Listing 2 shows the certificate generated by POET for the second task of the input file of
Listing 1. The certificate starts by importing the correct support library in Line 1, which
here is the fully-preemptive FP instantiation of aRTA in the Prosa open-source framework.

The actual task-specific content starts in Line 8, which opens a scope for the subsequent
declarations. The certificate continues with straightforward declarations of the tasks in the
task set (Lines 12–23), the task set (Line 25), the identity of the task under analysis (line
26), and the analysis results (Lines 28 and 29). Recall that L is a bound on the maximum
busy-window length and R is the claimed response-time bound. Both L and R are computed
by POET; the goal of the certificate is to prove that R is indeed an upper bound on the
actual response time of any job of the task under analysis.

The first four lemmas proven by POET are auxiliary facts documenting that the user-
provided parameters are valid (e.g., periods and task costs are positive, arrival curves are
monotonic, etc.). Listing 2 shows one such example lemma in Lines 36–37. The next lemma
in Lines 87 and 88 establishes that the bound on the maximum-busy interval calculated
by POET is correct. Specifically, aRTA [8] requires L to be the solution to a fixed-point
equation that depends on the scheduling policy and preemption model.

Next, in lines 96-101, the arrival sequence is introduced. Note that no concrete definition
is given: the certificate treats the arrival sequence as a variable, i.e., the result is proven for
all possible arrival sequences respecting the hypotheses H1, . . . , H5 stated in lines 97-101. The

M. Maida, S. Bozhko, and B. B. Brandenburg 19:11

Listing 2 A simplified version of the certificate generated by POET for the second task of the
workload given in Listing 1. All proofs and comments, and some intermediate lemmas and auxiliary
definitions, have been omitted for brevity, and some details (e.g., lemma names) have been simplified.
The notation [::a;b;c] is ssreflect syntax for a list comprised of three elements a, b, and c.

1 Require prosa.results.fixed_priority.rta.fully_preemptive.
[. . .]

8 Section Certificate.
[. . .]

12 Let tsk01 := {|
13 task_id := 1;
14 task_cost := 50;
15 task_deadline := 100;
16 task_arrival := Curve_Prefix (220, [::(1, 1);(105, 2)]);
17 task_priority := 2 |}.
18 Let tsk02 := {|
19 task_id := 2;
20 task_cost := 10;
21 task_deadline := 100;
22 task_arrival := Periodic 30;
23 task_priority := 1 |}.
24

25 Let ts := [::tsk01;tsk02].
26 Let tsk := tsk02.
27

28 Let L := 80.
29 Let R := 60.

[. . .]

36 Lemma valid_arrival_curve :
37 ∀ task, task ∈ ts → max_arrivals tsk 0 = 0 ∧ monotone leq (max_arrivals tsk).

[. . .]

87 Lemma L_fixed_point :
88 total_hep_rbf ts tsk L = L.

[. . .]

96 Variable arr_seq : arrival_sequence Job.
97 Hypothesis H1 : arrival_sequence_uniq arr_seq.
98 Hypothesis H2 : all_jobs_from_taskset arr_seq ts.
99 Hypothesis H3 : arrivals_valid_job_costs arr_seq.

100 Hypothesis H4 : consistent_arrival_times arr_seq.
101 Hypothesis H5 : respects_max_arrivals arr_seq ts.

[. . .]

106 Definition sched := uni_schedule arr_seq.
[. . .]

126 Definition F_solutions := [::60;40;20].
127

128 Lemma R_is_maximum :
129 ∀ A, is_in_search_space tsk L A →
130 ∃ F, task_rbf tsk (A + 1) + total_ohep_rbf ts tsk (A + F) ≤ A + F ∧ F ≤ R.

[. . .]

143 Theorem R_bounds_response_time :
144 task_response_time_bound arr_seq sched tsk R.
145 Proof.

[. . .]

148 apply arta_response_time_bound_fp_fp.
[. . .]

167 Qed.
[. . .]

172 Corollary R_respects_deadlines :
173 task_response_time_bound arr_seq sched tsk R ∧ R ≤ task_deadline tsk.

[. . .]

181 End Certificate.
182

183 Section AssumptionLessExample.
184 Definition concrete_arr_seq := concrete_arrival_sequence ts generate_jobs_at.

[. . .]

186 Theorem R_bounds_response_time_concrete:
187 task_response_time_bound concrete_arr_seq (sched concrete_arr_seq) tsk R.

[. . .]

200 End AssumptionLessExample.

ECRTS 2022

19:12 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

hypotheses state that the arrival sequence contains each job only once (H1) and only contains
jobs of tasks in the task set (H2). Further, each job present in the sequence has a positive
cost that does not exceed its task’s WCET (H3) and its position in the arrival sequence is
consistent with its arrival time (H4). Finally, for each task in the task set, the cumulative
number of job arrivals is bounded by the arrival curve of the task (H5). Importantly, the
definitions of H1, . . . , H5 reside in Prosa, from which the certificate derives its semantics.

In Lines 126–130, the certificate shows that Equation (1) for fully-preemptive FP schedul-
ing, as specified by the user in Listing 1, holds for every A in the search space. To this end,
a sequence of solutions – for each A, the corresponding F in Equation (1) – is provided by
POET in Line 126. The data-dependent proof script (here omitted) performs a case analysis
for each A in the search space and presents the corresponding solution to the proof engine.

The overall correctness claim is stated in Lines 143–167, which states that R is indeed a
response-time bound for the task under analysis. Crucially, to prove this fact, POET applies
the main aRTA theorem for fully-preemptive FP scheduling [8] in Line 148.

Again, the definition of the predicate task_response_time_bound used in Line 144
resides in Prosa and is not specific to (nor in any way influenced by) POET. This is an
important point: any formally verified result is useful only as far as the specification that
is shown to hold is semantically meaningful. POET therefore does not provide its own
semantic specification. Instead, it delegates the semantic modeling of real-time scheduling
entirely to prior work and reuses an established specification, namely Prosa [11].

Finally, the corollary in Lines 172–173 explicitly confirms the desired result: the deadline
of the task under analysis is always respected. As a safeguard against accidental omission
of the main proof, the corollary repeats the claim from Line 144, which ensures that the
corollary cannot be proven without first completing the main proof.

The main certificate ends in Line 181, which closes the scope of the non-instantiated
variable declared in Line 96, namely the arrival sequence arr_seq. The remaining section in
Lines 183–200 is another safeguard: it repeats the main theorem of the certificate (Line 144)
in an assumption-less context (i.e., without arr_seq in scope), for a concretely defined arrival
sequence. The purpose of this section is to demonstrate that the hypotheses H1, . . . , H5
stated in lines 97-101 are free of contradictions, as we explain in more detail in Section 5.

Overall, the generated certificate resembles the flow of traditional pen-and-paper reasoning
and is sufficiently short to be inspected manually (200 lines in total). In particular, all proofs,
which are responsible for the bulk of the total line count, can be safely skipped since they
are verified by coqchk. Importantly, the certificate is intentionally readable and simple, in
the sense that only very little experience with Gallina is required to make sense of it.

5 Trustworthiness of the Procedure

By design, POET itself is not part of the TCB. In particular, any critical bugs in the tool
that result in incorrect response-time bounds will not go unnoticed by Coq (which is the
TCB) – any attempt to compile and check such corrupted certificates will result in obvious
and unmistakable errors. In this section, we thus focus on issues that could lead to silent
failures: how could auto-generated certificates still be misleading even if they are accepted
as valid by the proof checker?

Incomplete proofs. Since POET is not assumed to be correct, it might conceivably generate
an incomplete (or, in the extreme case, even completely empty) certificate that Coq would
then successfully check: a cleanly truncated (or empty) file does not contain any incorrect
proofs and hence does not give the proof checker any reason to reject it. Coq further lets the
user admit theorems, i.e., to accept them as valid without proof, treating them as axioms.

M. Maida, S. Bozhko, and B. B. Brandenburg 19:13

Though these edge cases could easily be programmatically detected by POET itself,
doing so would implicitly turn the tool into a trusted component. For the same reason,
POET cannot be in charge of reporting the results of the verification attempt to the user.
After the certificates have been generated, POET must not intervene in any way. Therefore,
any action that needs to be executed after the creation of the certificates is handled entirely
in the Coq environment. This includes printing of the results, which is done directly in Coq,
and checking that no theorems have been admitted (using coqchk).

To entirely eliminate any need to trust POET, the certificates and the output they
generate are designed to be human-readable. Although POET is fully automated, the
process is transparent and open to human supervision. In particular, a user may (i) observe
the outputs of the Coq compiler and coqchk to assess whether they succeeded, (ii) ensure
that the input and the generated certificates match in terms of task set, task parameters,
scheduling policy, and preemption model (e.g., the file in Listing 1 with Lines 1–25 of
Listing 2), and (iii) to ensure that the response-time claim is included in the verified
certificate (e.g., check whether the corollary in line 172 of Listing 2 is present).

Finally, the certificates themselves are completely transparent, too: it is easy for a user
with Coq expertise to scrutinize (i.e., interactively step through) the complete list of proof
steps that lead to the response-time bound. While we do not expect the typical user to
inspect certificates that closely, striving for readability and making the certificates generally
inviting increases their quality and ensures explainability of the results. Furthermore, it
renders them suitable as evidence of temporal correctness since a third-party auditor or
certification authority can independently study and dissect POET’s certificates down to
their fundamental definitions (as provided by Prosa) and the axioms of Coq’s logic.

Although human supervision is always welcome, only step (i) – carefully reading the
analysis outputs, a degree of supervision that any RTA tool requires – is essential. The
rather hypothetical errors caught by steps (ii) and (iii) are unlikely to manifest accidentally,
and are thus less relevant in practice. In any case, none of the steps is onerous, and each can
be easily completed without in-depth verification expertise.

Contradictions. A second, more subtle type of error is related to the possibility of con-
tradictory hypotheses in axiomatic theories such as aRTA: conclusions reached in a sound
manner from contradictory premises may still be incorrect. This potential pitfall has been
previously described in-depth by Cerqueira et al. [11]. As it is generally not possible for Coq
to detect contradictory hypotheses automatically, it is necessary to establish the absence
of contradictions on a case-by-case basis. Concretely, this requires demonstrating that it is
possible to instantiate all variables such that all hypotheses are respected simultaneously.

POET’s certificates generalize over only one variable, namely the arrival sequence arr_seq

(Lines 96–101 of Listing 2). Recall from Section 3 that the arrival sequence yields, for any
given time t, the sequence of jobs (each with a specific cost) that arrive at time t. The arrival
sequence is intentionally left uninstantiated in the certificate’s main section (Lines 8–181)
as the response-time bound must hold for any possible pattern of arrivals that respects the
workload constraints (e.g., that jobs arrive periodically).

Nonetheless, to formally prove the absence of contradictions, POET generates for each
task, in addition to the general response-time bound (Lines 143–167), a second version of
the theorem in a separate section devoid of any variables or hypotheses (Lines 183–200 in
Listing 2). In this assumption-less example, the response-time bound is proven once more to
hold by applying the general result to a concrete arrival sequence with fixed job costs, which
establishes that the general result does not make any contradictory assumptions. Technically,

ECRTS 2022

19:14 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

in Coq terminology, the type of the main result is shown to be inhabited. At this point, as
no variable or hypothesis is in scope, only a soundness flaw in coqchk (which is part of the
TCB) could allow an incorrect result to be proved.

To establish that the main result’s hypotheses are contradiction-free, it actually suffices to
instantiate any valid arrival sequence, including pathological ones in which no job ever arrives.
However, from a user’s perspective, it is more confidence-inspiring to use a nontrivial workload.
POET therefore generates an arrival sequence that, at any time, greedily maximizes the
number of arrivals of each task and their costs while respecting all workload constraints.

To summarize, neither POET nor the underlying RTA are part of the TCB, and hence do
not have to be trusted, because (1) the results of the analysis are communicated from within
the Coq environment (and not by POET itself), (2) any program defects in POET or flaws
in the underlying RTA that lead to incorrect response-time bounds will be caught by Coq (the
proof checker would fail), (3) the remote chance of mismatching assumptions in the certificate
(e.g., wrong task parameters or a change in scheduling policy) or certificate truncation are
immediately obvious to lightweight human supervision since POET’s certificates are short
and designed for readability, and (4) the risk of contradictory hypotheses is mitigated by the
inclusion of an assumption-less example that exercises the general bound in a verified manner.

6 Supporting Arbitrary Arrival Curves

A major challenge affecting POET is the representation and extrapolation of arbitrary arrival-
curve prefixes, and the fast computation of the aRTA search space Ai (recall Equation (2)),
which is closely linked to it. To reiterate, support for arbitrary arrival curves in POET is
desirable due to the flexibility it affords, enabling support for a wide range of real-world arrival
processes that are neither perfectly periodic nor described well with a single, scalar minimum
inter-arrival time. Fortunately, aRTA already supports arbitrary arrival curves [8], but only
at an ideal mathematical, non-instantiated level (i.e., aRTA’s arrival curves are functions on
an infinite domain, and not some finite representation thereof). In contrast, POET needs to
compactly represent and efficiently compute with concretely defined arrival-curve prefixes.

As sketched in Listing 1, POET expects each arrival-curve prefix to be compactly
expressed with a horizon h and a sparse sequence of m steps s1, . . . , sm. The horizon h

defines the length of the prefix (i.e., the maximum ∆ covered). A step sk = (∆k, ck) indicates
that the arrival curve αi “takes a step” at ∆k: αi(∆k − ε) < ck and αi(∆k) = ck.

Given an arrival-curve prefix with h < L, it becomes necessary to extrapolate during
analysis. Let α∗ denote the arrival curve extrapolated from the finite prefix, and let
s(t) ≜ max ({0} ∪ {ck | 1 ≤ k ≤ m ∧ ∆k ≤ t}) denote the result of looking up the number
of arrivals in an interval of length t ≤ h in the given sequence of steps. Then:

α∗(∆) ≜ ⌊∆/h⌋ · s(h) + s(∆ mod h) (3)

This choice represents a trade-off between the speed of extrapolation and analysis precision.
Equation (3) does not guarantee an optimal extrapolation – depending on the given prefix,
an extrapolation exploiting the arrival curve function’s sub-additivity may be less pessimistic.
Nonetheless, it provides the key advantages of being simple and fast to compute. In fact,
each time the proof engine has to evaluate Equation (1), several arrival curves are evaluated.
Since traversing the aRTA search space is one of the most expensive steps of certificate
checking (as we show in Section 8), it is desirable to keep Equation (3) as simple as possible.

As shown in Listing 1, POET has built-in support for periodic and sporadic tasks.
However, as a task τi with period or minimum inter-arrival time Ti can be easily described
with an arrival curve αi(∆) ≜ ⌈∆/Ti⌉, POET’s certificates work exclusively with arrival-
curve prefixes. Specifically, a task with period or minimum inter-arrival time Ti is internally

M. Maida, S. Bozhko, and B. B. Brandenburg 19:15

represented with an arrival-curve prefix with horizon h = Ti and a single step s1 = (1, 1).
This conversion is lossless: in this important special case, Equation (3) does not introduce
any pessimism since α∗(∆) = ⌊∆/h⌋ · s(h) + s(∆ mod h) = ⌊∆/Ti⌋ · 1 + s(∆ mod Ti), which
is equal to ∆

Ti
+ 0 = αi(∆) if Ti divides ∆ and equal to ⌊∆/Ti⌋ + 1 = ⌈∆/Ti⌉ = αi(∆)

otherwise.
Critically, the automatic conversion to arrival-curve prefixes is performed in POET’s

Coq libraries, and not in the Python part, hence introducing no verification gap whatsoever
while still freeing the user from having to think about this detail.

As already mentioned, the computation of the search space is the primary bottleneck
of POET. Recall from Equation (2) that aRTA defines the search space Ai for each task τi

as the set of points at which the interference bound function IBF i changes in value. Although
aRTA correctly anticipates that a sparse search space will be necessary for practical use [8],
it does not provide a way to compute it. However, the search space must be computed by the
proof engine to validate POET’s fixed-point solutions (e.g., in Line 126 of Listing 2).

To this end, we exploit the structure of Equation (3). Since the function IBF i depends
on the concrete scheduling policy, we discuss FP and EDF scheduling in sequence.

In the case of FP scheduling, Equation (2) reduces to the set of points at which the
extrapolated arrival curve of the task under analysis τi changes in value in the interval [0, L):
AFP

i = {A | A < L ∧ α∗
i (A) ̸= α∗

i (A + ε)} [8]. As shown in POET’s support libraries (which
are checked as part of every certificate), AFP

i can be easily over-approximated by repeatedly
concatenating task τi’s list of steps s1, . . . , sm.

AFP
i ⊆ {lh + s1, . . . , lh + sm | 0 ≤ l ≤ ⌊L/h⌋} (4)

Equation (4) defines a superset of the actual search space because some of the included points
may exceed L (e.g., if ⌊L/h⌋ · h + sm > L). This does not affect the analysis’s correctness as
there is no harm in evaluating superfluous offsets [8].

In the case of EDF, the search space is far more complex since it involves every task in the
task set: AEDF

i = {A | A < L ∧ ∃ τj ∈ τ, α∗
i (A + Di − Dj) ̸= α∗

i (A + ε + Di − Dj)} [8]. For
ease of computation, we decompose AEDF

i on a per-task basis such that AEDF
i =

⋃
τj∈τ AEDF

i,j ,
where AEDF

i,j = {A | A < L ∧ α∗
i (A + Di − Dj) ̸= α∗

i (A + ε + Di − Dj)}. Note that Di−Dj

is a constant on both sides of the defining inequality. If removed from both sides, we
obtain exactly AFP

i ; that is, AEDF
i,j can be thought of as AFP

i shifted by Dj −Di time units.
Analogously to Equation (4), POET thus computes AEDF

i,j as

AEDF
i,j ⊆ {lh + s1 + Dj −Di, . . . , lh + sm + Dj −Di} (5)

for 0 ≤ l ≤ ⌊L/h⌋. Again, this is an over-approximation; in particular, any negative points
are simply ignored. Finally, Equations (4) and (5) demonstrate the key benefit of the fast
extrapolation rule in Equation (3): the search space can be over-approximated easily and
relatively quickly.

7 Scalability of the Certification Procedure

One of the major challenges we encountered during the development of POET is the poor
computational performance of ssreflect’s standard number representation. Without a
working solution, this seemingly small detail can jeopardize the entire idea of foundational
RTA – for which computation in the proof engine is essential.

POET’s certificates depend on Prosa, and therefore implicitly on ssreflect, which
uses a unary representation of natural numbers. The use of a unary number representation
has clear advantages when writing proofs, as it simplifies inductive reasoning and case

ECRTS 2022

19:16 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

Listing 3 Two working scripts that prove the same lemma. However, (a) is impacted by a large
unary number, whereas in (b) no expensive computation is triggered in the proof.

(a)

1 Let x := 1000000000000000000000.
2

3 Lemma Ex1 :
4 forall y,
5 1 + x − x + y = 1 + y.
6 Proof.
7 by move⇒ y; vm_compute.
8 Qed.

(b)

1 Let x := 1000000000000000000000.
2

3 Lemma cancel_n : forall n, 1 + n − n = 1.
4 Proof. by induction n. Qed.
5

6 Lemma Ex2 : forall y, 1 + x − x + y = 1 + y.
7 Proof. by move⇒ y; rewrite cancel_n.
8 Qed.

analyses. However, even a moderately large number (like one billion), when encoded in unary,
takes considerable time to instantiate and can easily trigger stack overflows in the Coq
compiler. Roughly, on our test machine (described in Section 8), the certification process
stays somewhat feasible despite the unary representation (i.e., it takes “only” several hours)
as long as costs, periods, and deadlines remain in the order of 106 (e.g., microseconds scale).

For instance, consider the task set in Listing 1, which uses milliseconds as its unit of
measure. If we instead express all parameters in microseconds (i.e., multiply worst-case
execution times, periods, and deadlines by 103), we do not, in principle, change the RTA’s
complexity. However, when using ssreflect’s number representation, this has an enormous
impact on performance, pushing the certification time from less than three seconds to around
15 minutes. A unary representation hence renders it impossible to express task parameters in
nanoseconds or as processor cycle counts (and would thus severely limit POET’s practicality).

To illustrate the challenge posed by unary calculations, consider the trivial example in
Listing 3a. Despite its simplicity, and despite the fact that the given proof is correct, lemma
Ex1 cannot be compiled by Coq in practice (doing so would require an unreasonable amount
of time and memory). More precisely, to reduce 1 + x − x by computation, Coq needs to
build a unary representation of x, which is prohibitively expensive due to the magnitude of x.

Fortunately, it is also possible to proceed in another way that avoids the cost of unary
computation, as shown in Listing 3b, where the magnitude of x does not impact the
compilation time. In the proof of lemma Ex2, the auxiliary lemma cancel_n is used to
rewrite 1 + x − x + y into 1 + y. Since cancel_n is valid for any number n, 1 + x − x is never
evaluated, and the lemma is compiled by Coq virtually instantaneously.

The example shows that the proof engine is able to operate in the presence of large
numbers, provided that no computation is triggered. Unfortunately, this principle alone
is not enough for POET: any time a proof depends on the actual value of a number, a
computation is still necessary. Unfortunately, it is inherent in the nature of a response-time
bound to depend on specific, large numbers, which hence manifest in its proof.

The immediate solution to the scalable-computations problem would be to change the
employed number representation entirely to binary. This is indeed possible in principle, but
would imply rewriting most of Prosa and the parts of ssreflect it depends on (with
substantial additional complexity due to the binary representation), and hence is undesirable.

Instead, POET’s certificates employ a hybrid solution: every result is proven using
the standard, unary definitions and lemmas provided by Prosa and ssreflect, but large
computations are isolated and performed using a binary representation. This is easier said
than done: since the aRTA library [8] expects unary numbers, trying to apply its theorems
to binary-encoded inputs would result in type-checking errors.

M. Maida, S. Bozhko, and B. B. Brandenburg 19:17

Therefore, (a) a binary version of each unavoidable computation was implemented and
integrated into POET’s Coq support libraries, and (b) each such alternative implementation
was related to its unary counterpart via an additional corpus of proofs so that the computed
results can be substituted into the proof. More technically, for the proof engine to accept a
rewriting step (i.e., to perform a substitution), the two involved functions must be proven to
be extensionally equivalent. To this end, we applied CoqEAL [14], a Coq proof framework
for changes in data representation.

To compute a unary-numbers function using a binary-numbers counterpart, CoqEAL
requires proving a so-called refinement. Given the sets of unary numbers N1 and binary
numbers N2, consider a conversion function Φ(x) : N2 → N1 that, given a binary number,
yields its unary equivalent. Further, consider a unary-numbers predicate p1(x) : N1 → B and
its binary-numbers counterpart p2(x) : N2 → B. For the purposes of POET, a refinement can
be seen as a proof that, for any binary number x, p1(Φ(x)) = p2(x). Analogous arguments
can be made for predicates with multiple parameters and for predicates with higher-order
parameter types based on unary numbers, such as lists and tuples over N1. With a refinement
in place, a proof step triggering a computation of p1 can be replaced, similarly as in lemma
Ex2 in Listing 3b, with one involving a computation of p2, which can be performed quickly.

In conclusion, for each numeric function computed by Coq when compiling POET’s
certificates, (1) an equivalent function defined on binary numbers was implemented in the
support libraries, and (2) a refinement relating the two functions was proven. The total
support code related to refinements is roughly 1800 LOC of definitions, proofs, and tactics,
representing around 40% of the entire POET support code: enabling binary computations
comes with an extra development cost. However, the switch to binary representation
dramatically impacts runtime and memory needs and hence is essential.

Case in point, consider once again the task set in Listing 1 (expressed in milliseconds).
With the binary representation in place, the total certification time is around five seconds on
our testing machine (i.e., slightly slower than before), but stays roughly the same irrespective
of whether task parameters are given in microseconds or nanoseconds.

Finally, it is worth emphasizing that CoqEAL is not part of the TCB since, as a
Coq library, it is itself subject to full verification by coqchk. Therefore, speeding up the
computation by translating to a binary encoding does not introduce any verification gaps.

8 Empirical Evaluation

To assess POET’s runtime characteristics, we conducted an empirical evaluation using
synthetic workloads, which we generated as follows. For a given number of tasks n and
total utilization u, we used the Dirichlet-Rescale algorithm [27] to draw n utilizations values
u1, . . . , un summing to u. To exercise POET’s versatility, we considered five different types
of workloads: (i) sporadic workloads as commonly encountered in automotive systems,
(ii) sporadic workloads with a log-uniform distribution of minimum inter-arrival times,
(iii) sporadic workloads subject to job bursts, (iv) sporadic workloads subject to jitter, and
(v) sporadic arrivals distributed according to a Poisson distribution. This selection covers
a wide range from relatively well-structured arrival processes to less regular ones. Types
(i)–(iv) equivalently represent periodic workloads since the sporadic task model generalizes
the periodic one. We hence use the terms “inter-arrival time” and “period” interchangeably.

The different arrival bounds were generated as follows. Let τi denote the task for which
an arrival bound is being generated. In the case of (i), the period Ti was chosen uniformly
at random from P ≜ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}ms, a set of periods commonly

ECRTS 2022

19:18 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

encountered in automotive systems [33]. For (ii), Ti was drawn log-uniformly from [1, 100]ms.
For (iii), a bursty arrival process was defined by the maximum number of jobs in a burst
bi = 4 and the randomly chosen minimum intra-burst inter-arrival time T in

i ∈ [1, 100]µs and
the minimum inter-burst inter-arrival time Ti ∈ P . In the case of (iv), τi’s period Ti was
chosen from P and the maximum jitter was drawn uniformly at random from [0.1Ti, 3Ti].
Lastly, for (v), we considered a Poisson process with a mean arrival rate ri ≜ 1

Ti
, where Ti

was drawn uniformly at random from P . For any m and ∆, a Poisson process has a non-zero
(but rapidly diminishing) probability of yielding m arrivals in an interval of length ∆. To
convert this to an arrival curve, we defined αi(∆) such that, for any ∆, the probability of
observing more than αi(∆) job releases in an interval of length ∆ is less than 10−3.

Next, the generated arrival bounds were encoded in POET’s input format. Cases (i)
and (ii) are trivial as POET natively supports periodic and sporadic tasks. Cases (iii)–(v)
require the arrival process to be expressed as a finite arrival-curve prefix, as discussed in
Section 6. Recall that task τi’s finite arrival-curve prefix consists of two parts: a horizon hi

and a sequence of mi steps. In the case of (iii), bursty arrivals, the arrival bound can be
encoded in a lossless manner by setting hi ≜ Ti and defining mi = bi equidistant steps with
a separation of T in

i . For both (iv) and (v), we simply truncated the arrival curve by choosing
the maximum hi containing at most mi = k steps, where k differed across experiments.

Finally, the relative deadline Di was drawn from [0.3Ti, 3Ti], and the task’s WCET Ci

was set to ⌈ui · pi⌉ in cases (i) and (ii), and to limt→∞ ⌈(ui · t)/α(t)⌉ in cases (iii)–(v). All
parameters were given to POET in nanosecond resolution (i.e., ε = 1ns).

For each considered n, we let the total utilization u range from 0.5 to 0.9 in steps of 0.1.
We evaluated each supported policy: fully-preemptive FP (FP-FP), fully non-preemptive FP
(NP-FP), fully-preemptive EDF (FP-EDF), and fully non-preemptive EDF (NP-EDF). Under
FP scheduling, tasks were assigned rate-monotonic priorities. We ran all experiments on a
Linux host with two 2.50 GHz Intel Xeon “Platinum 8180” processors and 394 GiB RAM.

In the first experiment, we focused on classic sporadic tasks (i.e., type-(i) tasks). We
varied the number of tasks n from 5 to 50 in steps of 5 and, for each combination of scheduling
and preemption policy, generated 10 task sets for each cardinality (×10) and utilization (×5),
resulting in 500 task sets per policy and 2000 in total. For each workload, we measured the
end-to-end runtime of the entire workflow depicted in Figure 1 (including POET, the Coq
compiler, and coqchk) while running sequentially on a single core.

As can be seen in Figure 2a, these workloads can be easily certified by POET. There
is a clear difference between EDF and FP analyses, but no major difference between the
two preemption policies. Small workloads (n ≤ 10) are typically solved in seconds for both
EDF and FP; larger workloads take significantly more time, with FP analyses being clearly
faster. For n = 50, the mean runtime per task set was 4.2 minutes under FP-FP, 4.8 minutes
under NP-FP, 119 minutes under FP-EDF, and 122 minutes under NP-EDF. Overall, across
all cardinalities, the mean runtime per task set was 2.1 minutes under FP-FP, 2.4 minutes
under NP-FP, 38 minutes under FP-EDF, and 35 minutes under NP-EDF.

The growth in certification time dependent on n evident in Figure 2a is due to two factors:
adding a task obviously increases the number of certificates that must be generated and
checked, while also increasing the complexity of the certificates of all prior tasks.

In the second experiment, we challenged POET with more demanding workloads by
randomly choosing each task’s arrival model among types (i)-(v). The resulting workloads
are hence less structured and more complex, characterized by many nontrivial arrival curves.

M. Maida, S. Bozhko, and B. B. Brandenburg 19:19

5 10 15 20 25 30 35 40 45 50
(a) Number of tasks

10
1

10
0

10
1

10
2

10
3

C
er

tif
ic

at
io

n
tim

e
(m

in
)

NP FP
FP FP
NP EDF
FP EDF

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
(b) Number of tasks

10
1

10
0

10
1

10
2

10
3

C
er

tif
ic

at
io

n
tim

e
(m

in
)

NP FP
FP FP
NP EDF
FP EDF

Figure 2 The end-to-end runtime of POET and Coq vs. the number of tasks in (a) for classic
sporadic tasks (type (i)) and (b) mixed workloads (types (i)–(v)). Boxes range from the first to the
third quartile; whiskers extend to 1.5 times the inter-quartile range (IQR).

0.5 0.6 0.7 0.8 0.9
(a) Utilization

10
1

10
0

10
1

10
2

10
3

C
er

tif
ic

at
io

n
tim

e
(m

in
)

NP FP
FP FP
NP EDF
FP EDF

0 2500 10000 22500 40000 62500 90000
(b) Search-space size (per task, quadratic scale)

1

5
10

20

40

60

80

100
C

er
tif

ic
at

io
n

tim
e

(m
in

, q
ua

dr
at

ic
 s

ca
le

)
FP EDF
NP EDF
NP FP
FP FP

Figure 3 Based on the same data set as shown in Figure 2b, (a) the total certification runtime
vs. total utilization and (b) the single-task certification runtime vs. the task’s search-space size; note
the quadratic scale of both axes in inset (b).

In this experiment, we varied the number of tasks n from 2 to 40 in steps of 2. For
each combination of scheduling and preemption policy, we generated 5 task sets for each
cardinality (×20) and utilization (×5), resulting in 500 task sets per policy and 2000 in total.
The maximum length of arrival-curve prefixes was fixed to k = 50. As in the first experiment,
we measured the end-to-end runtime of the entire workflow running sequentially on one core.

The results of the second experiment (depicted in Figure 2b) exhibit similar trends as
in Figure 2a, but with an (expected) steeper growth in certification time. For n = 40, the
mean runtime per task set was 3.9 minutes under FP-FP, 4.2 minutes under NP-FP, 568
minutes under FP-EDF, and 466 minutes under NP-EDF. Overall, across all cardinalities,
the mean runtime per task set was 1.8 minutes under FP-FP, 2.1 minutes under NP-FP,
140 minutes under FP-EDF, and 145 minutes under NP-EDF. Clearly, POET’s scalability is
substantially reduced for such challenging workloads, but it still manages to certify workloads
of nontrivial size. Notably, the most time-consuming aspect of POET, certificate checking,
can be easily parallelized since task certificates are independent of each other. High runtimes
for large n can thus be alleviated by letting POET run coqchk in parallel on up to n cores.

Next, to better understand the primary drivers of runtime growth, we plotted the data
collected in the second experiment in two additional ways as shown in Figure 3. First, we
explored the impact of the task set’s total utilization. As can be seen in Figure 3a, in
contrast to task set cardinality, total utilization influences certification time only slightly, and

ECRTS 2022

19:20 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

2 5 10 15 25 50 100
(a) Prefix length

1

10

20

30

1.5

2

3

4
5
6
7
8

R
T

pr
ef

ix
 /

R
T

or
ig

.
NP FP
FP FP
NP EDF
FP EDF

2 5 10 15 25 50 100
(b) Prefix length

10
1

10
0

10
1

10
2

Ta
sk

 ti
m

e
(m

in
)

NP FP
FP FP
NP EDF
FP EDF

Figure 4 Number of steps in the arrival-curve prefix vs. (a) certification time of the most-
preempted task and (b) the increase in response time for arrival bounds of types (iv) and (v).

only in the case of EDF. In fact, while high utilization can impact the maximum busy-window
length in pathological cases, for the considered workloads, it did not make a significant
difference in the expected case.

The major driver of certification runtime is instead the search-space size. In fact, as can
be seen in Figure 3b, there is a clear linear correlation between the size of the search space of
a task and its certification time. Note that, in contrast to the prior figures, Figure 3b shows
the individual per-task certification time relative to the size of its search space. Certification
finished in at most 5 minutes for most of the tasks (84%), and in less than 10 minutes for
92% of the tasks regardless of the preemption model and scheduling policy, peaking at 104
minutes under FP-EDF for a task with a search space containing 104547 points.

The search space and certification time of FP-FP and NP-FP are clustered in the bottom-
left part of the plot. In contrast, FP-EDF and NP-EDF cover the entirety of the space, which
is a result of the fact that the EDF search space is inherently larger and dependent on all
tasks, as evident from Equations (4) and (5). In fact, 99% of tasks scheduled under an FP
policy had a search space containing fewer than 104 points, whereas the 99th percentile under
an EDF policy is 57470 points. Hence, task sets usually take much less time to be verified
under an FP policy, which explains the gap between the EDF and FP policies in Figure 2.

Finally, we performed a third experiment with the goal of evaluating the role of the
number of steps in arrival-curve prefixes. For this experiment, we fixed the number of tasks
to n = 25 and varied instead the prefix size of all tasks k ∈ {2, 5, 10, 15, 25, 50, 100}. For
each combination of scheduling and preemption policy, we generated 10 task sets for each
k (×7) and utilization (×5), considering task sets composed homogeneously of tasks with
either arrival model (iv) or (v) (×2), resulting in 700 task sets per policy and 2800 in total.
To arrive at a given prefix size k, we always started from an arrival curve with mi = 100
steps, and then iteratively merged steps to gradually shrink the prefix. To maximize the
effect of the loss of information that results from the shortening of the prefix, we focused
on the lowest-priority task under FP scheduling, and on the task with the largest deadline
under EDF. In both cases, we refer to this task as the most-delayed task.

First, we investigated the impact of k on RTA accuracy. Figure 4a shows the relative
increase in the response-time bound of the most-delayed task relative to its baseline response-
time bound, which was obtained using the full prefix with 100 steps. By reducing k from 100
to 2, the response-time bound for the most-delayed task reaches a staggering 20× increase,
which (as expected) drops quickly as k is increased.

The results in Figure 4a should be seen in context of the corresponding task certification
times that, as can be seen in Figure 4b, grow substantially with increasing k (note the
log scale). EDF-scheduled task sets are once again substantially more expensive to analyze.

M. Maida, S. Bozhko, and B. B. Brandenburg 19:21

Overall, Figure 4 shows that, for complex workloads with irregular arrival processes, the
number of steps of the arrival-curve prefix represents a major trade-off between certification
time and analysis accuracy. It should be noted, however, that POET always managed to
complete the certification, even for k = 100 steps. Furthermore, it is important to realize that
full certification is expected only at the final stage of development – at which point runtimes
in the order of several hours can be acceptable – and not during day-to-day development.

Overall, we consider POET to be a successful proof of concept. While the computational
efficiency of the underlying proof assistant and libraries is (as expected) a major bottleneck,
the experiments overall showed POET to cope with complex workloads and to scale to
practical workload sizes. Foundational RTA is thus not only theoretically desirable, but also
practical, and therefore worthy of further study, extension, and optimization.

9 Related Work

As already discussed in Section 2, POET draws inspiration and adopts terminology from
Appel’s classic work on foundational proof-carrying code [3], which has been highly influential.
Since its publication two decades ago, it has been widely adopted in the area of program
verification [9, 32], and continues to play a major role in state-of-the-art verification tools [41].

POET is closely linked to Prosa [11]. While Prosa is the to-date largest machine-
checked framework for real-time schedulability analysis – and presently the only one with
an implementation of aRTA [8] – it is neither the first nor the only attempt in this
direction [7, 20, 21, 46, 51]. It is worth noting that a foundational tool like POET is not
inherently related to Coq: some of the just-cited papers make use of different proof assistants,
namely Nqthm [44], PVS [45], and Isabelle/HOL [43]. Though some are more suited than
others, conceptually speaking, a foundational approach could be realized with any of these,
and each would likely pose different challenges and trade-offs. In particular, the Lean proof
assistant [19] is a modern alternative to Coq based on the same underlying logic [15, 16, 39];
Lean would likely be a viable alternative for use in foundational RTA tools.

Closest to POET in terms of objectives and approach are Mabille et al.’s results validator
for network calculus [36] (using Isabelle/HOL) and Fradet et al.’s results validator Certi-
CAN [23] (using Coq and Prosa) for the CAN RTA implemented in RTaW-Pegase [6]. In
contrast to POET, which generates proofs as explainable evidence, but is intentionally left
unverified, these tools do not generate proofs nor other evidence, but are themselves verified.

Finally, an alternative way to approach the schedulability analysis problem is to validate
the correctness of a bound with model-checking techniques. In this approach, the system under
analysis is first reduced to a model comprising a network of discrete automata with timed
semantics. Then, a model checker explores the state space of the model with the objective of
covering every possible trace, including those in which the worst-case response time of a task
is experienced. Generally speaking, model-checking has been a highly successful technique
as shown by tools like Uppaal [5] and Kronos [50] (both based on timed automata [1])
as well as HyTech [30] (based on linear hybrid automata [2]). Compared to foundational
RTA, model checking is an orthogonal technique with fundamentally different trade-offs and
challenges. As a major advantage, a model checker requires no RTA theory to be developed or
verified, since the worst case response-time is implicitly found during exploration of the state
space. However, when compared to foundational RTA, model-checking requires a significantly
larger, much more complex TCB. The reason is that practical model-checkers are typically
large, nontrivial pieces of software that, due to model checking’s well-known state-space
explosion problem and the resulting scalability challenges (e.g., [48]), have large incentives to

ECRTS 2022

19:22 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

be heavily optimized. This naturally leads to the development of advanced techniques to
prune search trees [5], speed up computations via statistical techniques [17], and hardware
acceleration [4]. Each optimization technique increases the size of the TCB and arguably
renders it more fragile. While Wimmer and Lammich [47] developed a verified unreachability
certificate checker for timed automata, they reported it to be an order of magnitude slower
and significantly more memory intensive than the state-of-the-art tool Uppaal, which limits
its practical use in the schedulability analysis of realistically sized task sets.

Regarding the explainability of results, model-checkers are capable of providing a coun-
terexample leading to a worst-case scenario (e.g., a deadline is violated), but typically do not
produce evidence that a property is not violated. Foundational RTA tools yield exactly the
opposite: they do not give counterexamples, but do provide a sequence of machine-checked
proofs that show the response-time bounds to be correct. In conclusion, both model check-
ing and proof automation are important research directions, with diverse advantages and
limitations. From a tool user’s point of view, currently neither clearly dominates the other.

10 Conclusion

We have proposed foundational RTA as a means to obtain explainable, trustworthy evidence
of temporal correctness and discussed the design and implementation of POET, the first
foundational RTA tool. A foundational RTA produces proof-carrying response-time bounds
that can be independently verified by a proof checker. Consequently, a foundational RTA
tool does not have to be trusted and can be developed like any other application, while its
results are trustworthy: fully explainable and verifiably correct.

While POET is an important first step demonstrating feasibility of the approach, for
practical use, it will be necessary to go beyond ideal uniprocessor systems. In particular, it
would be desirable t extend POET to more complex workloads (e.g., synchronization and
precedence constraints), to more realistic system models (e.g., scheduling overheads), and to
multiprocessor platforms (e.g., semi-partitioned scheduling).

References
1 Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science,

126(2):183–235, 1994.
2 Rajeev Alur, Thomas A Henzinger, and Pei-Hsin Ho. Automatic symbolic verification of

embedded systems. IEEE Transactions on Software Engineering, 22(3):181–201, 1996.
3 Andrew W Appel. Foundational proof-carrying code. In Proceedings 16th Annual IEEE

Symposium on Logic in Computer Science, pages 247–256. IEEE, 2001.
4 Jiri Barnat, Luboš Brim, Milan Ceška, and Tomáš Lamr. CUDA accelerated LTL model

checking. In 2009 15th International Conference on Parallel and Distributed Systems, pages
34–41. IEEE, 2009.

5 Gerd Behrmann, Alexandre David, Kim G Larsen, John Hakansson, Paul Petterson, Wang Yi,
and Martijn Hendriks. UPPAAL 4.0. In Proceedings of the 3rd international conference on
the Quantitative Evaluation of Systems, pages 125–126, 2006.

6 Marc Boyer, Jorn Migge, and Marc Fumey. PEGASE-a robust and efficient tool for worst-case
network traversal time evaluation on AFDX. Technical report, SAE Technical Paper, 2011.

7 Marc Boyer, Pierre Roux, Hugo Daigmorte, and David Puechmaille. A residual service
curve of rate-latency server used by sporadic flows computable in quadratic time for network
calculus. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

M. Maida, S. Bozhko, and B. B. Brandenburg 19:23

8 Sergey Bozhko and Björn B. Brandenburg. Abstract Response-Time Analysis: A Formal
Foundation for the Busy-Window Principle. In 32nd Euromicro Conference on Real-Time
Systems (ECRTS’20), July 7-10, 2020, Virtual Conference, 2020.

9 Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W Appel.
VST-Floyd: A separation logic tool to verify correctness of C programs. Journal of Automated
Reasoning, 61(1):367–422, 2018.

10 Felipe Cerqueira, Geoffrey Nelissen, and Björn B Brandenburg. On strong and weak sustain-
ability, with an application to self-suspending real-time tasks. In 30th Euromicro Conference
on Real-Time Systems (ECRTS), pages 26–1, 2018.

11 Felipe Cerqueira, Felix Stutz, and Björn B Brandenburg. PROSA: A case for readable
mechanized schedulability analysis. In 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), pages 273–284. IEEE, 2016.

12 Jian-Jia Chen and Björn B Brandenburg. A note on the period enforcer algorithm for
self-suspending tasks. Leibniz Transactions on Embedded Systems, 4(1):01–1, 2017.

13 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang, Björn Brandenburg,
Konstantinos Bletsas, Cong Liu, Pascal Richard, Frédéric Ridouard, Neil Audsley, et al. Many
suspensions, many problems: a review of self-suspending tasks in real-time systems. Real-Time
Systems, 55(1), 2019.

14 Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements for free! In International
Conference on Certified Programs and Proofs, pages 147–162. Springer, 2013.

15 Thierry Coquand and Gérard Huet. The calculus of constructions. Information and Computa-
tion, 76(2):95–120, 1988. doi:10.1016/0890-5401(88)90005-3.

16 Thierry Coquand and Christine Paulin. Inductively defined types. In International Conference
on Computer Logic, pages 50–66. Springer, 1988.

17 Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, and Zheng Wang. Time
for statistical model checking of real-time systems. In International Conference on Computer
Aided Verification, pages 349–355. Springer, 2011.

18 Robert I Davis, Alan Burns, Reinder J Bril, and Johan J Lukkien. Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Systems, 35(3), 2007.

19 Leonardo De Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming
language. In International Conference on Automated Deduction, pages 625–635. Springer,
2021.

20 Daniel de Rauglaudre. Vérification formelle de conditions d’ordonnancabilité de tâches temps
réel périodiques strictes. In JFLA-Journées Francophones des Langages Applicatifs-2012, 2012.

21 Bruno Dutertre. The priority ceiling protocol: formalization and analysis using PVS. In
Proceedings of the 21st IEEE Conference on Real-Time Systems Symposium (RTSS), pages
151–160, 1999.

22 Pascal Fradet, Xiaojie Guo, Jean-François Monin, and Sophie Quinton. A generalized digraph
model for expressing dependencies. In Proceedings of the 26th International Conference on
Real-Time Networks and Systems, pages 72–82, 2018.

23 Pascal Fradet, Xiaojie Guo, Jean-François Monin, and Sophie Quinton. CertiCAN: A tool for
the Coq certification of CAN analysis results. In RTAS, 2019.

24 Pascal Fradet, Maxime Lesourd, Jean-François Monin, and Sophie Quinton. A generic coq
proof of typical worst-case analysis. In 2018 IEEE Real-Time Systems Symposium (RTSS),
pages 218–229. IEEE, 2018.

25 Georges Gonthier. Formal proof–the four-color theorem. Notices of the AMS, 55(11):1382–1393,
2008.

26 Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot,
Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence
Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A machine-checked proof of the
odd order theorem. In Interactive Theorem Proving - 4th International Conference, ITP 2013,
Rennes, France, July 22-26, 2013. Proceedings, Lecture Notes in Computer Science, pages
163–179, 2013.

ECRTS 2022

https://doi.org/10.1016/0890-5401(88)90005-3

19:24 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

27 David Griffin, Iain Bate, and Robert I. Davis. Generating utilization vectors for the systematic
evaluation of schedulability tests. In 41st IEEE Real-Time Systems Symposium (RTSS’20),
December 1-4, Houston, TX, USA, pages 76–88. IEEE Computer Society, 2020.

28 Arpan Gujarati, Felipe Cerqueira, Björn B Brandenburg, and Geoffrey Nelissen. Correspon-
dence article: a correction of the reduction-based schedulability analysis for apa scheduling.
Real-Time Systems, 55(1):136–143, 2019.

29 Mario Günzel and Jian-Jia Chen. A note on slack enforcement mechanisms for self-suspending
tasks. Real-Time Systems, pages 1–10, 2021.

30 Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model checker for hybrid
systems. International Journal on Software Tools for Technology Transfer, 1(1-2):110–122,
1997.

31 Leandro Soares Indrusiak, Alan Burns, and Borislav Nikolic. Analysis of buffering effects
on hard real-time priority-preemptive wormhole networks. arXiv preprint arXiv:1606.02942,
2016.

32 Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al. seL4: Formal
verification of an OS kernel. In SOSP, 2009.

33 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks for
free. In 6th International Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), 2015.

34 Karthik Lakshmanan, Dionisio de Niz, and Ragunathan Rajkumar. Coordinated task schedul-
ing, allocation and synchronization on multiprocessors. In RTSS, 2009.

35 Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

36 Etienne Mabille, Marc Boyer, Loïc Fejoz, and Stephan Merz. Towards certifying network
calculus. In ITP, 2013.

37 Assia Mahboubi and Enrico Tassi. Mathematical Components. Zenodo, 2021. doi:10.5281/
zenodo.4457887.

38 George C Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 106–119, 1997.

39 Christine Paulin-Mohring. Introduction to the calculus of inductive constructions, 2015.
40 Prosa. http://prosa.mpi-sws.org/.
41 Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer,

and Deepak Garg. RefinedC: automating the foundational verification of C code with refined
ownership types. In PLDI, 2021.

42 The Coq Proof Assistant. https://coq.inria.fr.
43 The Isabelle Proof Assistant. https://isabelle.in.tum.de/.
44 The Nqthm Theorem Prover. https://www.cs.utexas.edu/users/moore/best-ideas/

nqthm/index.html.
45 The PVS Proof Assistant. https://pvs.csl.sri.com/.
46 Matthew Wilding. A machine-checked proof of the optimality of a real-time scheduling policy.

In International Conference on Computer Aided Verification, pages 369–378. Springer, 1998.
47 Simon Wimmer and Peter Lammich. Verified model checking of timed automata. In Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 61–78. Springer, 2018.

48 Beyazit Yalcinkaya, Mitra Nasri, and Björn B Brandenburg. An exact schedulability test for
non-preemptive self-suspending real-time tasks. In 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1228–1233. IEEE, 2019.

49 Maolin Yang, Jian-Jia Chen, and Wen-Hung Huang. A misconception in blocking time analyses
under multiprocessor synchronization protocols. Real-Time Systems, 53(2):187–195, 2017.

50 Sergio Yovine. Kronos: A verification tool for real-time systems. International Journal on
Software Tools for Technology Transfer, 1(1-2):123–133, 1997.

https://doi.org/10.5281/zenodo.4457887
https://doi.org/10.5281/zenodo.4457887
http://prosa.mpi-sws.org/
https://coq.inria.fr
https://isabelle.in.tum.de/
https://www.cs.utexas.edu/users/moore/best-ideas/nqthm/index.html
https://www.cs.utexas.edu/users/moore/best-ideas/nqthm/index.html
https://pvs.csl.sri.com/

M. Maida, S. Bozhko, and B. B. Brandenburg 19:25

51 Xingyuan Zhang, Christian Urban, and Chunhan Wu. Priority inheritance protocol proved
correct. In International Conference on Interactive Theorem Proving, pages 217–232. Springer,
2012.

52 Quan Zhou, Jihua Huang, Jianjun Li, and Zhi Li. Response time analysis for hybrid task sets
under fixed priority scheduling. In Proceedings of the IEEE 28th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 108–120. IEEE Computer Society,
2022.

ECRTS 2022

Using Markov’s Inequality with Power-Of-k
Function for Probabilistic WCET Estimation
Sergi Vilardell #

Polytechnic University of Catalonia, Barcelona, Spain
Barcelona Supercomputing Center (BSC), Spain

Isabel Serra #

Barcelona Supercomputing Center (BSC), Spain
Centre de Recerca Matemàtica, Barcelona, Spain

Enrico Mezzetti #

Barcelona Supercomputing Center (BSC), Spain
Maspatechnologies S.L, Barcelona, Spain

Jaume Abella #

Barcelona Supercomputing Center (BSC), Spain

Francisco J. Cazorla #

Barcelona Supercomputing Center (BSC), Spain
Maspatechnologies S.L, Barcelona, Spain

Joan del Castillo #

Autonomous University of Barcelona, Spain

Abstract

Deriving WCET estimates for software programs with probabilistic means (a.k.a. pWCET estimation)
has received significant attention during last years as a way to deal with the increased complexity of
the processors used in real-time systems. Many works build on Extreme Value Theory (EVT) that is
fed with a sample of the collected data (execution times). In its application, EVT carries two sources
of uncertainty: the first one that is intrinsic to the EVT model and relates to determining the subset
of the sample that belongs to the (upper) tail, and hence, is actually used by EVT for prediction;
and the second one that is induced by the sampling process and hence is inherent to all sample-based
methods. In this work, we show that Markov’s inequality can be used to obtain provable trustworthy
probabilistic bounds to the tail of a distribution without incurring any model-intrinsic uncertainty.
Yet, it produces pessimistic estimates that we shave substantially by proposing the use of a power-of-k
function instead of the default identity function used by Markov’s inequality. Lastly, we propose a
method to deal with sampling uncertainty for Markov’s inequality that consistently improves EVT
estimates on synthetic and real data obtained from a railway application.

2012 ACM Subject Classification Computer systems organization → Real-time system architecture

Keywords and phrases Markov’s inequality, probabilistic time estimates, probabilistic WCET,
Extreme Value Theory

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.20

Funding This work has been partially supported by the Spanish Ministry of Economy and Com-
petitiveness (MINECO) under grant PID2019-110854RB-I00 / AEI / 10.13039/501100011033 and
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No. 772773).

© Sergi Vilardell, Isabel Serra, Enrico Mezzetti, Jaume Abella, Francisco J. Cazorla, and Joan del
Castillo;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 20; pp. 20:1–20:24

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergi.vilardell@bsc.es
https://orcid.org/0000-0001-7523-6761
mailto:isabel.serra@bsc.es
https://orcid.org/0000-0002-2465-8574
mailto:enrico.mezzetti@bsc.es
https://orcid.org/0000-0002-1886-2931
mailto:jaume.abella@bsc.es
https://orcid.org/0000-0001-7951-4028
mailto:francisco.cazorla@bsc.es
https://orcid.org/0000-0002-3344-376X
mailto:castillo@mat.uab.cat
https://orcid.org/0000-0001-9169-0120
https://doi.org/10.4230/LIPIcs.ECRTS.2022.20
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Markov’s Inequality with Power-Of-k Function for pWCET Estimation

1 Introduction

Deriving Worst-Case Execution Time (WCET) estimates of programs is pivotal to show
that a real-time system meets its timing requirements [55]. A strand of works tackles this
challenge with probabilistic analysis [13] as a way to deal with the increasing complexity
of the processors used in real-time systems. These works predict the values of exceedance
probabilities of the uppermost tail (a.k.a. high quantiles) of the execution time distributions
of programs, which is normally referred to as probabilistic WCET (pWCET) estimate.

Extreme Value Theory (EVT) [16] has been consolidated as a modeling approach for
pWCET estimation [1, 7, 27, 46, 52]. Sound applications of EVT can deliver tight and
trustworthy pWCET estimates with high confidence. However, the use of EVT for pWCET
estimation suffers from several sources of uncertainty that can be categorized into statistical
and model-intrinsic (or simply model for short) uncertainty [8]. Statistical uncertainty
is, in fact, intrinsic to any sample-based process. It encompasses as the first aspect the
testing conditions under which the experiments are performed in reference to those that
can arise during system operation. Testing conditions that are representative or worse than
operation conditions are the basis to attain representativeness of the sample data (execution
time) [2, 4, 25, 38] so that the pWCET estimate holds during system operation. A second
aspect of statistical uncertainty relates to the natural uncertainty of a sampling process that,
in general, reduces as the sample size increases, and that is handled with confidence intervals.
Sampling uncertainty impacts summary statistics (e.g. mean) and tail fitting methods, whose
goodness – either of their hypotheses or outcome – is assessed with specific methods [4, 42].
Model uncertainty, instead, relates to uncertainties intrinsic to the mathematical model used
for tail prediction. In the case of EVT, model uncertainty relates to determining the threshold
from which the upper tail starts. This threshold plays a key role on the trustworthiness
(safeness) of EVT results since only samples above it (i.e. the maxima data set) are fed into
EVT for pWCET estimation. There is not an exact mathematical method to derive this
threshold. Instead, current methods estimate the tail of a distribution [10] based on plot
inference [12,19,28] and regression analysis [9].

As the first set of contributions, we show that Markov’s inequality [36] provides pWCET
estimates that are trustworthy by construction at the theoretical (analytical distribution)
level and hence, free of any model uncertainty. We, then, illustrate that Markov’s inequality
is highly pessimistic for decreasing exceedance probabilities, which are specially relevant for
pWCET estimation (Section 3). To cope with this limitation, we propose the use of Markov
with power-of-k (MIK) functions, f(X) = Xk, instead of the identity function, f(X) = X,
used by the default Markov’s formulation. We develop the MEMIK (Minimum Envelope
for Markov’s Inequality) algorithm that exploits MIK, delivering trustworthy upper-bounds
to the underlying distribution, while achieving much tighter estimates than Markov for
arbitrarily low exceedance probabilities (Section 4).

As the second set of contributions, at the empirical level, we address the statistical
uncertainty of the Markov model by proposing the RESTK (restricted k) method. In order
to approximate the expected value of Xk, also defined as the k-th moment of a distribution,
RESTK derives the sample moment of a distribution from a collected sample (Section 5).

We evaluate RESTK on a set of representative distributions and tail functions and show
that it consistently outperforms EVT: EVT produces 21.8% over-estimation on average (up
to 37%) and RESTK keeps average over-estimation at 9.4% (up to 20%). We also evaluate
RESTK on sampled data from a real railway use case: the central safety processing unit of
the European Train Control System (ETCS) reference architecture. On average, RESTK
over-estimates less than 9% with respect to real data (distribution) and it outperforms EVT.

S. Vilardell, I. Serra, E. Mezzetti, J. Abella, F. J. Cazorla, and J. del Castillo 20:3

Time

real

preal

pbound

bound

Cbound

Creal

p

1

t

et et

0

Figure 1 Generic representation of the tight-
ness of pWCET estimations. CCDF stands for
Complementary Cumulative Distribution Func-
tion.

ξ Weibull

ξ Fréchet
ξ Gumbel

ξ Beta
ξ Gamma

Weibull
Gamma

Beta
Gumbel

Fréchet

Figure 2 CCDF for GEV distributions with
ξ = −1/4, ξ = 0, and ξ = 1/4; ξ = −1/8 for Beta;
and ξ = −1/100 for Gamma.

The rest of this paper is structured as follows. Section 2 presents some relevant background,
and introduces and exemplifies EVT model uncertainty stemming from tail selection. Section 3
introduces Markov’s inequality and discusses its use for pWCET estimation. Section 4
introduces our proposal of using f(X) = Xk to tighten pWCET estimates. Section 5
introduces the RESTK method as a way to deal with statistical uncertainty for Markov’s
inequality. Section 6 compares the pWCET projections obtained with EVT and Markov
models. Section 7 shows analogous results for the railway use case. Section 8 surveys the
main related works, and Section 9 presents the main conclusions of this work.

2 Background and Problem Statement

2.1 Probabilistic WCET estimation
Let us assume a random variable X > 0, corresponding to the execution time of a real-time
program and whose maximum value is finite. We aim at bounding the probabilities of X in
its uppermost tail (i.e. high execution times) by providing safe and tight timing bounds.

An execution time probability distribution Cbound , see Figure 1, is said to upper-bound
another probability distribution Creal – so being a pWCET bound – when for any exceedance
probability p the execution time of the former, etbound(p), is higher (or equal) than that
of the latter, etreal(p). It also holds that, for any given execution time et, the exceedance
probability of the former pbound(et) is higher (or equal) than that of the latter preal(et). This
can be expressed as tightness(p) = etbound(p)

etreal(p) .

2.2 Representative Distributions
In the scope of timing analysis of real-time programs, it is reasonable to assume that the
target program will always terminate. Hence, a WCET value upper-bounding all possible
program’s executions always exists. It therefore follows that, the tail of its execution time
distribution is necessarily a light distribution, which has been shown to be safely and tightly
upper-bounded with light and exponential tail distributions [1,17,46]. For this reason, we
focus on light and exponential tails.

While heavy tails are, therefore, unnecessarily pessimistic and hence, left out of our
discussion, an execution time sample could apparently correspond to a heavy tail distribution.
This could be, for instance, the case when the sample size is not large enough to provide

ECRTS 2022

20:4 Markov’s Inequality with Power-Of-k Function for pWCET Estimation

Table 1 Reference distributions used to drive
discussions. The parameters are µ (mean), σ

(standard deviation), α (shape) β (shape), λ

(scale), and σ (scale).

Acronym Parameters
Gaussian µ = 100, σ = 10
Weibull α = 4, λ = 80
Beta α = 1/4, β = 8
Mixture µ = {5, 50, 100},

σ = 10
w = {0.6, 0.39, 0.1}

Threshold

Figure 3 EVT estimation on the mixture
distribution (three Gaussian with parameters µ =
{5, 50, 100}, σ = {10, 10, 10} and weights w =
{0.6, 0.39, 0.01}, respectively.

sufficient representativeness in a mixture distribution. In the general case, this concern
relates to the sampling process (sample size in particular), shared across all applications
of statistics, and therefore, beyond the scope of our methodology. Nevertheless, nothing
precludes the use of our methodology for heavy tails.

The different types of tails are illustrated with the Complementary Cumulative Distribu-
tion Function (CCDF) of several example distributions in Figure 2. All three Generalized
Extreme Value (GEV) distributions have location µ = 0 and scale σ = 1000: the Weibull
distribution (light tail) with shape ξ = −1/4 has a sharp slope and a maximum value (2500
in the example); Gumbel (exponential tail) with ξ = 0 has also a relatively sharp slope but
it has no maximum; and the exceedance probability for the Fréchet distribution (heavy tail)
with ξ = 1/4 decreases polynomially. The Beta (light tail) distribution has a similar profile to
the Weibull distribution and it is commonly used to model high quantiles of random variables
with a finite defined interval [3, 30, 37], which fits WCET modeling. And the Gamma (light
tail) distribution is also typically used in EVT and WCET [4].

All former distributions are unimodal, which is a common way to represent execution
time profiles. However, it has also been shown that the execution time of many programs
presents “clusters”. That is, the program’s execution time varies around two or more central
values rather than vary around a single mean. This results in mixture distributions that can
arise both in sequential applications and parallel applications [1,56,57]. As an example of
the former, let us assume a program whose execution time profile is influenced by the latency
of its load/store operations which can hit or miss the data L1 cache and L2 cache across
different runs depending on the program’s inputs. This results in a mixture distribution with
3 clusters (peaks) around the data L1, L2 and memory latencies, respectively. An example
of mixture distribution is represented by the black line in Figure 3.

Overall, we use a solid set of reference distributions that are in line with the state of the
art [4,11,27,42]. In particular, we use unimodal (Gaussian, Weibull, Beta, and Gamma) and
challenging multi-modal distributions (Gaussians and Weibulls) with different tail profiles to
increase representativeness. Besides, we use a real railway use case in Section 7. In order to
drive the explanations, we use a specific set of reference parameters for several distributions
(see Table 1), while in the evaluation section we analyze a wider set of parameters (see
Table 3). We have not included the Gamma in the reference distributions as it yields very
similar results to the Weibull. However, results are provided for two different Gamma
distributions in the (evaluation) Section 6 as part of the complete result set.

S. Vilardell, I. Serra, E. Mezzetti, J. Abella, F. J. Cazorla, and J. del Castillo 20:5

2.3 EVT usage for pWCET estimation
The main theorems of EVT can be deemed as two different ways of thinking about the
extremes [22]. The first, Block Maxima (BM), splits a sample of a distribution into fixed-size
blocks and selects the maximum value in each block. The second one, Peaks over Threshold
(PoT) defines a threshold such that the values above it are deemed as “rare enough”, i.e.
they are considered the tail of the distribution. EVT’s main result is characterized on both
theorems when the set of maxima and the threshold tend to infinity.

Both, PoT and BM, share the fundamental goal of identifying where the tail of the
distribution starts to fit the proper distribution to the tail. However, for PoT such cut point
is defined explicitly as a threshold, therefore allowing its use in the domain of distributions
from a mathematical perspective. Hence, in this work we focus on PoT for our analysis,
although mathematical uncertainties identified are generally shared by PoT and BM.

Peaks Over Threshold (PoT). Given a random variable X with a cumulative distribution
function (CDF), F, and a threshold, u > 0, such that y = x− u, the excess random variable
Xu defined as (X − u |X > u) is given by the CDF Fu defined as

Fu(y) = P (X − u ≤ y|X > u) = F (u + y)− F (u)
1− F (u) , y ≥ 0 (1)

A PoT model is a semi-parametric model where the law of X for x < u is described by the
empirical distribution, and for x > u is defined by

P (X > x) = S(x) = S(u)Su(x− u) (2)

where S(x) = 1− F (x) and Su(xu) = 1− Fu(xu) are the CCDFs, with xu = x− u.

▶ Theorem 1 (Pickands–Balkema–de Haan theorem [5]). Let F be a distribution function
such that F (x) < 1 with Fu being its conditional excess distribution function. Then, Fu

converges in probability to the generalized Pareto distribution (GPD) for large u. That is,
Fu

L−→ G(y; ξ, σ) as u→∞, where

G(y; ξ, σ) =

1−
(

1 + ξy
σ

)− 1
ξ if ξ ̸= 0

1− exp
(
− y

σ

)
if ξ = 0

(3)

With σ > 0, and y ≥ 0 when ξ ≥ 0 and 0 ≤ y ≤ −σ/ξ when ξ < 0. This result is crucial
for tail estimation. If the conditions for the theorem are met, the GPD family of functions
results in accurate estimates for the most extreme values on the tail. However, the conditions
are met when the threshold u → ∞, which brings uncertainty in the implementation of
estimates with the GPD since finite values of u need to be used.

Overall, there is an unavoidable model uncertainty when selecting the threshold u by
definition due to having to select a finite value. This is beyond specific aspects related to
statistical uncertainty from the sampling process or the threshold u estimation process. Tail
selection has been addressed by techniques like the Hill Plot based on Hill estimator [28],
the Mean Excess Plot [19], or the CV Plot [12]. The selection of the threshold u changes
the fit of the GPD model and requires careful analysis and selection to prevent GPD from
over-approximating or under-approximating the analyzed distribution.

As an illustrative (visual) example, Figure 3 shows a mixture of three Gaussians with
µ = {5, 50, 100}, σ = {10, 10, 10} and weights w = {0.6, 0.39, 0.01}. Each mode around Time
{5, 50, 100} represents a Gaussian in the mixture. For each different tail threshold u such that

ECRTS 2022

20:6 Markov’s Inequality with Power-Of-k Function for pWCET Estimation

u > 60, we fit an exponential tail, given that Gaussian distributions have exponential tails. In
Figure 3 we see three scenarios that we exemplify with approximate ranges of u. For values
of u around [60, 80] (purple lines), we see how the exceedance probability of the reference
distribution is underestimated in the Time range [80, 120] (probabilities 10−3 − 10−5). For u

in the range [120, 140] (blue-green lines), GPD over estimates the reference distribution. For
values of u above 140 (green lines), the estimate becomes increasingly tight.

3 Chebyshev and Markov Inequalities for pWCET Estimation

This section analyzes the applicability of Markov’s inequality as an alternative model to
EVT for the problem of trustworthy pWCET estimation and shows that it is not subject to
any model uncertainty, thus resulting in provably safe bounds for the analyzed distribution.
Yet, as we also show in this section, Markov’s inequality produces very pessimistic estimates.
For completeness, we start by introducing Chebyshev’s inequality, as it is the generalization
of Markov’s inequality.

3.1 Chebyshev’s Inequality
▶ Definition 2. Let X be a discrete random variable with probability function fX(x), where
x are the particular values that X can take. The expected value of X is:

E(X) =
∑
x∈X

xfX(x) =
∑
x∈X

xP (X = x) (4)

▶ Theorem 3 (Chebyshev’s Inequality [49]). Let X be a non-negative random variable, b > 0,
and f a non-negative and increasing function. Chebyshev’s inequality states that:

P (X ≥ b) ≤ E(f(X))
f(b) (5)

For WCET estimation, X corresponds to the execution time distribution to be bounded,
and b to an execution time for which we want to find its upper-bound probability.

Regarding f , it needs to be defined to realize the general Chebyshev’s inequality into a
specific upper-bound function. The function f can be any non-negative function so that for
a particular domain D, Property 6 holds.

∀x ∈ D, f(x) > 0 (6)

f must also be an increasing function so that for a given interval I, Property 7 holds.

a, b ∈ I | a < b, ⇒ f(a) ≤ f(b) (7)

Interestingly, Chebyshev’s inequality does not require determining where the actual tail
distribution starts but instead works with the entire distribution, hence removing EVT’s model
uncertainty for tail selection. In fact, Chebyshev’s inequality carries no model uncertainty.

▶ Observation 4. Chebyshev’s inequality is a model uncertainty free general model for
pWCET estimation.

Chebyshev’s inequality also applies to continuous and discrete distributions regardless of
their characteristics (e.g. shape, variance, kurtosis, etc.). Also, it is non-parametric, i.e. it
makes no assumption on parameters for the studied distribution.

S. Vilardell, I. Serra, E. Mezzetti, J. Abella, F. J. Cazorla, and J. del Castillo 20:7

(a) Gaussian distribution. (b) Weibull distribution. (c) Beta distribution. (d) Gaussian Mixture.

Figure 4 Markov’s Inequality bound for the reference distributions.

3.2 Markov’s Inequality
Markov’s inequality is a specific instantiation of Chebyshev’s inequality.

▶ Corollary 5 (Markov’s Inequality [36]). Let X > 0 and let the function f be the identity
function f(X) = X. Hence, Markov’s inequality yields:

P (X ≥ b) ≤ E(X)
b

(8)

As for the baseline Chebyshev’s inequality, Markov’s inequality holds for any real-valued
random variable with a finite expected value and positive value b. Also, it (i) is a trustworthy
upper-bound, by construction, of the underlying distribution; (ii) has no model uncertainty;
(iii) is non-parametric; and (iv) can be applied to discrete and continuous distributions.

3.3 Markov’s inequality on low probabilities
Besides trustworthiness, pWCET estimates are also required to be reasonably tight, spe-
cially for the range of relevant probabilities usually considered for pWCET estimation, e.g.
[10−6, 10−15]. In this line, our analysis shows that Markov’s inequality tends to be hardly
useful for pWCET estimation.

This is better illustrated in Figure 4 which shows for all considered distributions the
probability bounds given by Markov’s inequality. We can observe that estimates are very
pessimistic, orders of magnitude higher than the real probability. This includes the range
of probabilities of interest for pWCET estimation. In fact, we see that Markov’s inequality
never goes below 10−2 for all distributions for the execution time value range plotted.

▶ Observation 6. Markov’s inequality in its original form is too pessimistic to be usable in
practice for pWCET estimation.

4 Power-of-K functions for Markov’s Inequality

One of the main insights of this work is that the key reason for Markov’s inequality resulting
in loose pWCET bounds lies on the fact that it builds on the identity function, f(X) = X,
of a random variable. In this section, we show how a different function can lead to increased
tightness on the produced pWCET estimates while preserving trustworthiness.

In particular, we contend that the power function for any k ∈ R>0 = {k ∈ R|k > 0},
i.e. f(X) = Xk, or power-of-k function for short, can be safely used instead of the identity
function to obtain tighter and trustworthy pWCET bounds.

ECRTS 2022

20:8 Markov’s Inequality with Power-Of-k Function for pWCET Estimation

(a) Gaussian distribution. (b) Weibull distribution. (c) Beta distribution. (d) Gaussian Mixture.

Figure 5 MIK bounds for the reference distributions.

▶ Definition 7. Let X be a discrete random variable and k a positive real value. The expected
value of Xk, also defined as the k-th (theoretical) moment, is:

E(Xk) =
∑

x

xkP (X = x) (9)

▶ Corollary 8 (Markov’s Inequality to the power-of-k). Let X > 0 and let the function f be
the power-of-k function f(X) = Xk. Markov’s inequality to the power-of-k yields:

P (X ≥ b) ≤ E(Xk)
bk

(10)

Hence, the probability that X takes a value greater or equal to b is bounded by E(Xk)/bk.
This makes Markov’s inequality with f(x) = xk (MIK for short) a safe pWCET estimate
when X represents the execution time of a program.

Proof. Theorem 3 holds true when Property 6 and Property 7 are fulfilled. The power-of-k
function does not fulfill those properties in general. However, when the x domain is restricted
to the positive real numbers R>0 = {x ∈ R|x > 0}, which in fact includes the domain of
execution time profiles, the power-of-k function does fulfill Properties 6 and 7 since x is
positive, so xk is also positive and an increasing function. ◀

Overall, for this application scenario (x ∈ R>0), Equation 10 is an upper-bound when
using the power-of-k function onto the reference distribution for any value of k ∈ R>0. Hence,
it can be leveraged for pWCET estimation.

It is worth noting that other functions can exist that fulfill Properties 6 and 7. While
exploring them is part of our future work, as shown in Section 4.1, MIK (i.e. f(X) = Xk)
achieves very tight pWCET estimates which leaves small room for improvement.

▶ Observation 9. For every value of k ∈ R>0, MIK (i.e. Markov’s inequality with f(X) =
Xk) is a safe pWCET estimate when X represents the execution time of a program.

Note that there is no theoretical constraint on the maximum value of k, which can be
any positive real number k.

4.1 Tightness of MIK for increasing values of k
Once we have established the safe use of MIK for pWCET estimation, we illustrate the
impact of varying k on tightness. Figure 5 shows for several values of k, {10, 15, 25, 50}, and
the reference distributions presented before, that MIK dramatically increases the tightness

S. Vilardell, I. Serra, E. Mezzetti, J. Abella, F. J. Cazorla, and J. del Castillo 20:9

(a) Gaussian distribution. (b) Weibull distribution. (c) Beta distribution. (d) Gaussian Mixture.

Figure 6 Evolution of MIK bounds with the value of k.

provided by Markov’s inequality (Figure 4), while remaining a trustworthy upper-bound
for every value of k. We also observe that MIK tightness remains for high exceedance
probabilities, which hence makes it a promising model to provide pWCET estimates.

▶ Observation 10. Markov’s inequality with f(X) = Xk heavily reduces the pessimism of
Markov’s inequality.

Intuitively, from Figure 5, higher values of k result in tighter estimates, i.e. minimizing
the distance between the reference distribution and the upper-bound distribution. However,
this is not always the case. For instance, if we take a closer look at the Beta distribution
(Figure 5(c)), we see that at cut-off probabilities 10−3 and 10−6 the tightest MIK estimates
are not obtained for the highest value of k evaluated (50).

▶ Observation 11. For a given threshold probability, higher values of k do not necessarily
result in a tighter MIK bound.

This is better illustrated with the examples in Figure 6 that shows quantitatively the
evolution of the MIK bound obtained for varying values of k.

In this experiment, for the value of the target distribution at each probability, we evaluate
MIK for different values of k. As it can be seen, for every threshold probability and
distribution the value of k resulting in the tightest estimation is different. For instance, for
the Gaussian distribution (Figure 6(a)) and target probability 10−6, k = 71 produces the
tightest estimate, while for 10−9 and 10−12 the best k is 97 and 121, respectively. As a
general trend, we see that the lower the target exceedance probability, the higher the value
of the best k is. Yet, the highest value of k evaluated for each target probability does not
produce the tightest bound. Overall, for each probability there exists a value of k producing
the tightest upper-bound, with the optimal value of k depending on the actual reference
distribution.

▶ Observation 12. Increasing the tightness of MIK for each probability is an optimization
problem on k which only increases accuracy and does not affect trustworthiness.

In order to address this optimization problem, we propose MEMIK (Minimum Envelope
for MIK, i.e. Markov’s Inequality to the power-of-K). MEMIK combines the results of MIK
bounds obtained for any value of k by keeping, for each point in an interval, the value of
k producing the tightest estimate. This set of points form an envelope that is a provable
trustworthy and tight tail bound by construction for any exceedance probability. Therefore,
MEMIK improves the pessimistic upper-bounds of Markov’s inequality (see Figure 4), with
a much tighter envelope that is usable for pWCET estimation. Formally, the MEMIK bound
is defined as follows:

P (X ≥ b) ≤ min
k

E(Xk)
bk

for k > 0 (11)

ECRTS 2022

20:10 Markov’s Inequality with Power-Of-k Function for pWCET Estimation

Algorithm 1 Compute an envelope using Power-of-k.

1: function MEMIK(trange, tstep, pall, maxk(pall), kstep)
2: for t ∈ trange, tstep do
3: for p ∈ pall do
4: mikbest(p)←∞
5: for k ∈ ([1, maxk(p)], kstep) do
6: vpred← EVAL(t, k, p)
7: if vpred < mikbest(p) then
8: mikbest(p) = vpred

9: kbest(p) = k

10: end if
11: end for
12: envelope(t, p)←< mikbest(p), kbest(p) >

13: end for
14: end for
15: return envelope

16: end function

MEMIK, see Algorithm 1, which uses point-wise power-of-k Markov’s inequality values,
performs a simple complete exploration of MIK values over a given time range trange and
over a configurable range of k, determined by the maximum value maxk to be explored for
each probability p in the set of probabilities of interest pall. The granularity of MEMIK
exploration over t and k is determined by the tstep and kstep parameters respectively. For
each probability p in the interval of interest pall (line 3) and k in the range determined by
maxk(p) (line 5), the algorithm estimates the value of the target distribution, EVAL(t, k,
p) (line 6). To that end, we evaluate Equation 10 with E(Xk), which corresponds to the
theoretical k-th moment of the target distribution from Equation 9, obtaining vpred that we
compare to the best MIK value so far for all considered k (line 7).

The minimum MIK value produced for a given t and across all k values (mikbest(p)) is
stored, together with the corresponding kbest(p), in the data structure envelope (line 12).
Eventually, after iterating over the whole time interval, the algorithm returns the envelope
data structure (line 15) which holds the point-wise definition of the approximation envelope.
Note that, if for any value t, the value of kbest(p) matches maxk(p), then maxk(p) can be
increased to find tighter bounds.

We applied MEMIK to our reference distributions, for which we can derive the theoretical
moments. For this experiment, we varied the value of k up to 150 with kstep = 1. We
obtained the envelopes depicted in Figure 7 which provides evidence that MEMIK produces
tight and trustworthy estimates for all distributions, with an observed error of around 5%.

Overall, this section provides the key result that our proposal, Markov’s inequality to
the power-of-k (MIK), unlike EVT, suffers no model uncertainty at the theoretical level and
hence, provides correct-by-construction pWCET estimates that are much tighter than those
provided by the default Markov’s inequality. This leaves sampling uncertainty as the problem
to address.

5 Handling Markov Sampling Uncertainty

So far we have been reasoning on examples for which we could compute the theoretical k-th
moments for each distribution. This was possible since the distributions considered were
known and, hence, we could compute exactly the value of each moment (i.e. E(Xk) for each

S. Vilardell, I. Serra, E. Mezzetti, J. Abella, F. J. Cazorla, and J. del Castillo 20:11

k

(a) Gaussian distribution. (b) Weibull distribution. (c) Beta distribution. (d) Gaussian Mixture.

Figure 7 MEMIK bound (envelope) on the reference distributions.

value of k) using its analytical closed form. However, we need to consider the scenario in
which only samples are available. Hence, as for any other sample-based method, we need to
deal with the underlying sampling uncertainty.

A commonality of sample-related methods like EVT [13], and something that we also
assume, is that, input samples are independent and identically distributed [16] (i.i.d.) or at
least exhibit extremal independence [44]. The i.i.d. property can be pursued with platform
randomization [31] or data (time measurements) sample randomization [33].

For the case of the Markov’s inequality, this translates into deriving the sample moments,
referred to as Ê(Xk) (for each value of k). In particular, we need an estimator for high-order
moments that can produce good estimates for any distribution.

5.1 Sample moment estimation
The k-th moment of a random variable X can be estimated as (N is the sample size [23]):

Ê(Xk) = 1
N

N∑
i

Xk
i (12)

In general, this estimator is the best one to deal with high-order sample moments [26], as it
is asymptotically unbiased. Given that it asymptotically tends to a Gaussian distribution [6],
the properties of the Central Limit Theorem’s apply to it. However, the estimator is
asymptotically unbiased [23] only when using large amounts of data. For instance, for a
sample of a Gaussian distribution with µ = 100, σ = 10 and N = 103, the difference between
the 3rd exact moment, and the sample moment using Equation 12 is about 0.02%, it is
between 1% and 3% for the 50th moment, and can be up to 160% for the 100th moment.

When the sample moment, i.e. the estimate of the k-th moment, is higher than the
theoretical moment, there is a risk of underestimating the upper tail of the distribution by
assigning to a certain probability a smaller quantile than it has in reality. The approach we
propose to limit that risk consists in setting a maximum value of k allowed for each different
probability, which we refer to as maxk. In order to illustrate the effect of not controlling
maxk, Figure 8 assesses the tightness of MEMIK over a particular set of nine probabilities
(from 10−7 to 10−15). The red triangles represent the theoretical bound of MEMIK using
Equation 11 with E(Xk) being the theoretical moments, while the orange dots (NO RESTK)
represent the application over multiple simulations of Equation 11 using the sample moment
from Equation 12. On both applications we set up a high value for maxk, 150. We can see
how the loss of consistency of the sample moment estimator on Equation 12 results in bad
estimates.

ECRTS 2022

20:12 Markov’s Inequality with Power-Of-k Function for pWCET Estimation

Figure 8 MEMIK with sample moments
(n = 1000 and nsims = 100) on the refer-
ence Gaussian distribution with (RESTK)
and without (NO RESTK) restricting k. Also
MEMIK evaluated with theoretical moments.

M
ax

k

Figure 9 Minimum maxk values for the reference
distributions used in this work.

An intuitive way to control the gap between the k-th sample and the theoretical moments
is to vastly increase the sample size, which in our domain would require an unaffordable
number of runs of the task under analysis. Alternatively, one can control the range of values
of k explored in Equation 12. By doing so, we trade some tightness for trustworthiness. That
is, if we explore values of k until a low maxk limit, we can see in Figure 6 that the theoretical
bound is not optimal in terms of accuracy. On the other hand, small values of maxk also
limit the inaccuracy of the sample moment estimator. Note that it is not possible to identify
a general optimal value of maxk for any kind of data under analysis. The appropriate maxk

value changes across distribution types, across the same distribution type with different
parameters, and even across probabilities for a given distribution. For this reason, we propose
the restricted k method (RESTK) that builds on the information gathered directly from the
samples to derive maxk so as to produce trustworthy and tight results.

5.2 Understanding the behavior of maxk

We gain insight on the behavior of maxk along 3 axes. We analyze i) whether for a given
distribution there exists a pattern for maxk that can provide tight and safe results using the
sample moment estimator; ii) whether this pattern can be predicted using only the information
from the sample; and iii) whether the pattern can be generalized for any distribution.

We focus on the same example distributions used in previous sections. We fix the interval
[1, 150] as exploration range for k. In order to account for sample uncertainty, we perform
nsims =103 Monte-Carlo simulations, each one considering a random sample of size n=103.

We first compute Markov to the power-of-k (MIK) using Equation 10 with the sample
moment estimator in Equation 12, for all selected k. In each simulation, we increase values
of k and find the first (smallest) value of k that produces underestimation. This is computed
by comparing the estimation with the actual value of the distribution. That is, we take the
value of k for which the estimated quantile is smaller than the theoretical quantile. Then,
we set k − 1 as our maxk. For each Monte-Carlo simulation, we compute the maxk for all
target probabilities. When all simulations are performed, we keep the smallest maxk for each
probability. As a result, for each experiment of nsims Monte-Carlo simulations, we obtain
one value of maxk for each probability under study. We plot those values in Figure 9 from
which we derive two main conclusions.

S. Vilardell, I. Serra, E. Mezzetti, J. Abella, F. J. Cazorla, and J. del Castillo 20:13

We observe that the values in Figure 9 follow a linear distribution. For each distribution
we fit minima maxk values to a linear model and we derive the resulting correlation coefficient.
The correlation coefficient quantifies the strength of the linear relation between two variables.
It ranges between −1 and 1, with 1 or −1 indicating perfect correlation (all points would lie
along a straight line).

The distributions we use in this work include 4 types of unimodal distributions, 2 multi-
modal distributions and several parameters thereof (see Table 3 in Section 6). For all those
distributions, Table 2 shows that the correlation coefficient is very high and steadily stays
above 0.99. Even the empirical distributions derived from the case study analyzed in Section 7
result in a high coefficient of correlation (0.98 on average), despite they tend to produce
more variability in the estimations. Hence, empirical evidence in support of linearity for the
minimum observed value of maxk is strong for the distribution tails and range of probabilities
representative for the WCET. Besides, the application of RESTK includes a method to assess
whether the linearity property holds, building on the observed data. It is also noted that,
similar empirical reasoning is used to support statistical arguments whether phenomena
adheres to specific distributions builds on empirical tests. For instance, in the case of EVT,
previous work uses QQ-plots to assess, based on observation, whether some tails can be
considered exponential [34].

Table 2 Correlation Coefficient for all the distributions used in this work.

Gaus1 Gaus2 Weib1 Weib2 Beta1 Beta2 Gam1 Gam2 Mix1 Mix2 Mix3 Mix4
.999 .999 .999 .999 .999 .998 .999 .999 .998 .998 .997 .998

Overall, by restricting maxk, one can avoid under-estimating the upper tail of the modeled
distribution. This is exemplified in Figure 8, where the green squares (RESTK) represent
the estimates obtained for the Gaussian distribution when applying the maxk values in
Figure 9. By restricting maxk, we address the lack of trustworthiness in Figure 8 (NO
RESTK) and produce tight and trustworthy bounds. Analogous results are obtained for the
other distributions.

5.3 Deriving maxk from unknown distributions
When deriving Figure 9, we built on the values of the theoretical quantiles so as to determine
the value of k for which the sample moment starts underestimating. Given a sample of size
10p, we can estimate confidently quantiles from exceedance probabilities bigger than 1/10(p−1).
In this case, based on the law of large numbers, it is very likely to see around 10 realizations
whose probability is of the order of 10(p−1) [47]. That is, on a sample of size N = 1000 we will
see around 10 realizations whose probability is 0.01 (1%). Therefore, for a sample of size 104,
quantiles corresponding to exceedance probabilities 10−3 and 10−2 can be estimated easily
with the usual quantile estimation functions from statistical packages [29]. The computation
of confidence intervals for quantile estimation can be done using distribution-free methods
like Kaigh and Lagenbruch or bootstrap [48]; and in any case the accuracy of the estimation
can be increased using a bootstrap technique to correct variability.

RESTK estimates at least three maxk points to construct its model and assess linearity.
The latter is assessed by deriving the correlation coefficient for these three points. If such
coefficient is above a threshold th = 0.95, we deem maxk boundary to be linear and vice-versa
(in which case RESTK cannot be applied). For instance, the quantiles corresponding to
exceedance probabilities 10−3, 10−4, and 10−5 can be estimated very accurately with a sample
of size n = 106. These reference points allow us to assess when RESTK underestimates,

ECRTS 2022

20:14 Markov’s Inequality with Power-Of-k Function for pWCET Estimation

Algorithm 2 Computing the boundary necessary to apply RESTK approach.

1: function RESTKBoundary(sample, krange, kstep, nboot, nsims, ptest, pall, th)
2: for p ∈ ptest do
3: qest ← estimateQuantiles(sample, p)
4: for sim ∈ nsims do
5: sampleboot ← bootstrap(sample, nboot)
6: maxk(p)←∞
7: tightnessbest(p)←∞
8: for k ∈ krange, kstep do
9: vref ← qest

10: vpred← MIK (k, sampleboot, p)
11: tightness← vpred/vref

12: if tightness < 1 then
13: break
14: end if
15: if tightness < tightnessbest(p) then
16: currentk(p) = k

17: end if
18: end for
19: if currentk(p) < maxk(p) then
20: maxk(p) = currentk(p)
21: end if
22: end for
23: end for
24: maxk(pall)← buildLinearModel(maxk(ptest), pall)
25: if corr(maxk(pall)) < th then
26: return no pWCET estimate
27: end if
28: return maxk(pall)
29: end function

and hence generate three maxk points, one for each probability. With those points, we can
generate the regression line that projects maxk for any probability of interest (e.g., those in
Figure 9) and assess that the correlation coefficient is above the desired threshold.

Algorithm 2 generalizes the RESTK process starting from a main sample of the distribution
under analysis (size 10p), selecting the range of k to explore and the number of nsims to
run. First, RESTK estimates the quantiles at given probabilities ptest from the main sample
(Line 3), e.g. 10−(p−1), 10−(p−2), and 10−(p−3). For each simulation, nboot bootstrap samples
of size 10p−3 are generated from the main sample (Line 5). For each of these samples, we
compute the maximum k and maximum tightness for all the probabilities to test. The
predicted value vpred is obtained by computing MIK from Equation 10 with the sample
moment estimator, Ê(Xk) in Equation 12, (Line 10). The tightness of the predicted value is
computed (Line 11) by using as reference value vref the estimated quantiles obtained before
(Line 3). The algorithm finds the values of k in the considered range that produce the tightest
estimate (Lines 15-16) and terminates its exploration as soon as a k that underestimates
(tightness<1) is found (Line 12). After exploring all selected probabilities for all k and all
simulations, the algorithm returns the smallest maxk across all simulations (Lines 20-21).

S. Vilardell, I. Serra, E. Mezzetti, J. Abella, F. J. Cazorla, and J. del Castillo 20:15

(a) Gaussian (b) Weibull (c) Beta (d) Mixture

Figure 10 MEMIK with sample moments (n = 1000 and nsims = 100) on the reference distribu-
tions, hence restricting k (RESTK). Also MEMIK evaluated with theoretical moments (MEMIK),
and EVT evaluated with exponential tails (EXP) and with a GPD with light tails (GPD).

Once the maxk (e.g. for 10−(p−1), 10−(p−2), and 10−(p−3)) are obtained, RESTK builds a
linear model for all possible probabilities (Line 24). The final check (Line 25) will ensure that
the correlation of maxk is above th = 0.95, otherwise RESTK provides no pWCET estimate.
As we show in Table 2, the correlation should always be close to 1 for maxk. The threshold
th = 0.95 is a standard and stringent threshold for confidence in statistics, and used as a
way to discard estimates that do not meet the safety criteria of finding a proper maxk.

RESTK enables the computation of a value for maxk that reduces the risk of underes-
timation for any probability of interest. This can be directly exploited by running MEMIK
(Algorithm 1) on a predetermined range for k and for each probability p under study by using
maxk(p) as the upper bound for k, instead of considering an arbitrary range. Also, note that
with RESTK, we use Equation 10 with sampled moments (Ê(Xk)) as EVAL(t, k, p) function
in MEMIK. The rest of the MEMIK algorithm remains unchanged when using the RESTK
method.

6 RESTK and EVT PWCET Estimates on Distributions

Our implementation of RESTK and MEMIK is programmed in R [40]. We run experiments
on an Intel Core i5-7600K CPU clocked at 3.8GHz. The maximum execution time required
per experiment was very short, 50 milliseconds or lower. We analyze values of k in the range
k ∈ [1, 150] with kstep = 1 to estimate maxk for all reference distributions, which, as shown in
Figure 9 is a wide enough range to find the best maxk across distributions and probabilities.
For all methods compared in this section, we use a sample size of n = 106. For RESTK, we
set the number of bootstrap simulations to nboot = 2000.

For EVT, we use the PoT methodology to fit tails and the CV Plot [12] to find the
appropriate threshold for the PoT model. We use two EVT models fitted for pWCET
estimation, namely exponential and light tails models. For each specific model, a different
threshold using the CV plot will be found to ensure the best possible fit.

Exponential: with an exponential model, the shape of the GPD is fixed to ξ = 0, which
only leaves us to estimate the threshold u and the scale σ. The threshold is estimated
with the CV Plot fixing ξ = 0, which finds where the exponential tail begins. Once we
find the tail, we separate it from the rest of the sample and estimate the scale σ with it.
GPD light tails: for the light tails model, we need the value of ξ, with ξ < 0, best fitting
the data. Using the CV Plot we find the threshold u where the light tail begins. Then,
we separate the tail from the sample and estimate the shape ξ and the scale σ.

ECRTS 2022

20:16 Markov’s Inequality with Power-Of-k Function for pWCET Estimation

Table 3 Distributions used for the analysis and their respective parameters.

Acronym Type Parameters
Gaussian1 Gaussian µ = 100, σ = 10
Gaussian2 Gaussian µ = 100, σ = 50
Weibull1 Weibull α = 4, λ = 80
Weibull2 Weibull α = 8, λ = 80
Beta1 Beta α = 8, β = 1/4
Beta2 Beta α = 8, β = 1/8
Gamma1 Gamma α = 100, λ = 1
Gamma2 Gamma α = 150, λ = 1
Mixture1 Mixture of Gaussians µ = {5, 50, 100}, σ = 10, w = {0.6, 0.39, 0.1}
Mixture2 Mixture of Gaussians µ = {50, 100, 400}, σ = 50, w = {0.6, 0.39, 0.1}
Mixture3 Mixture of Weibulls λ = {5, 50, 100}, α = 4, w = {0.6, 0.39, 0.1}
Mixture4 Mixture of Weibulls λ = {5, 50, 100}, α = 8, w = {0.6, 0.39, 0.1}

Reference Distributions. We start the comparison with Figure 10 that depicts for the
reference distributions the results of PoT with exponential and light tail models (EXP and
GPD). It also shows the results obtained with MEMIK, which we can obtain as we have
the actual distributions, and RESTK. Note that MEMIK provides the theoretical bound
achievable with RESTK – it produces a safe bound and the tightest estimates. RESTK,
EXP, and GPD build on a sample (the same one for a fair comparison) of the distribution.
Following common practice, we show in Figure 10 the bias of our estimator, which is the
expected value (mean) of RESTK output. It is noted that in RESTK application process all
the distributions of this section fulfilled the linearity assessment (line 25 in Algorithm 2).

As we can see in this initial set of results, GPD tends to underestimate while EXP
increases overestimation for high exceedance probabilities. RESTK produces values that
are more consistent across all probabilities, improving EXP specially for higher exceedance
probabilities. For 10−12 overestimates are 8%, 13%, 24% and 11% for the four reference
distributions, respectively. The values increase to 13%, 20%, 37% and 17% for 10−15. It can
also be observed that the overestimation introduced by RESTK w.r.t. MEMIK to handle
sampling uncertainty is limited: at 10−12 the difference is 4.75 percentage points (p.p) on
average with a maximum of 8 p.p across all four reference distributions, and at 10−15 the
overestimation difference is 5.25 p.p on average with a maximum of 10 p.p.

Extended set of Distributions. We consider a wider set of parameters for each distribution
as listed in Table 3, resulting in 12 different distributions. The first distribution of each
type (but the Gamma) is the reference distribution with the parameters used in previous
sections. The rest of the distributions of each type encompass a different set of parameters to
increase representativeness. The set of values explored for each parameter aims at showing
the capabilities of RESTK under different scenarios. To that end we modify the following
parameters.
1. the variance of the distribution for Gaussian1 and Gaussian2; and Mixtures1 and Mixture2
2. the shape of the tail of the distribution for Beta1 and Beta2, Weibull1 and Weibull2,

Gamma1 and Gamma2, and Mixture3 and Mixture4.

S. Vilardell, I. Serra, E. Mezzetti, J. Abella, F. J. Cazorla, and J. del Castillo 20:17

Table 4 Tightness of the different models (MEK stands for MEMIK and RES for RESTK).

probability 10−12 probability 10−15

GPD EXP MEK RES GPD EXP MEK RES
Gaussian1 0.93 1.08 1.02 1.06 0.90 1.13 1.02 1.06
Gaussian2 0.90 1.20 1.05 1.14 0.86 1.28 1.03 1.11
Weibull1 0.91 1.13 1.02 1.09 0.87 1.20 1.02 1.09
Weibull2 0.96 1.09 1.03 1.04 0.94 1.14 1.05 1.04
Beta1 0.98 1.24 1.03 1.18 0.98 1.37 1.03 1.20
Beta2 0.98 1.17 1.03 1.11 0.98 1.26 1.02 1.13
Gamma1 0.93 1.09 1.03 1.07 0.89 1.11 1.03 1.07
Gamma2 0.95 1.09 1.02 1.06 0.92 1.13 1.02 1.07
Mixture1 0.92 1.11 1.03 1.03 0.88 1.17 1.02 1.02
Mixture2 0.94 1.16 1.03 1.07 0.90 1.23 1.03 1.05
Mixture3 0.88 1.25 1.03 1.15 0.83 1.37 1.02 1.13
Mixture4 0.94 1.15 1.02 1.15 0.91 1.23 1.03 1.16

This covers all possible variability scenarios as the scale and location do not affect the
results for Markov’s Inequality. As shown in [36], a change of location does not affect the
inequality if the shift keeps the random variable positive, P (X−a ≥ b−a) ≤ E(X−a)

b−a < E(X)
b .

Also, scaling the random variable X as λX where λ is real-valued, does not affect Markov’s
Inequality as P (λX ≥ λb) ≤ E(λX)

λb = λE(X)
λb = E(X)

b .
Looking at the results for the broader set of experiments in Table 4, we observe the

following:

GPD is always close to the true quantile, but in all cases it produces optimistic results.
Furthermore, the higher exceedance probability, the more optimistic the estimate is. For
instance, GPD on the Gaussian1 has a tightness of {0.93, 0.90} at p = {10−12, 10−15}
respectively. This behavior is observed for all reference distributions.
EXP follows the opposite pattern. In general, we can see in Figure 10 that, for an
exceedance probability p = 10−7, the estimates across distributions are always safe
and quite tight. However, for higher exceedance probabilities, EXP tends to give more
pessimistic estimates. For instance, EXP on the Gaussian1 has a tightness of 1.01
at p = 10−7 that increases to 1.13 at p = 10−15. At this probability and across all
distributions EXP overestimation is 21.8% on average, 37% in the worst case.
The estimates with MEMIK, i.e. with theoretical moments, are very tight, below 6% for
all distributions.
RESTK achieves results similar to MEMIK, preserving tightness and trustworthiness.
Even for very high exceedance probabilities, RESTK is able to produce consistent estimates.
Building on the Gaussian1 distribution, we see that while EXP can achieve a tighter
estimate for low exceedance probabilities (e.g. p = 10−7), EXP suffers from increased
pessimism for higher exceedance probabilities whereas RESTK stays stable. This behavior
is more striking in distributions harder to analyze like mixtures. For instance, for Mixture1
RESTK not only maintains tightness stable across probabilities, {1.03, 1.02}, but it gets
also a tighter bound than EXP for probabilities p = 10−9 and beyond as seen in Figure
10. At 10−15 RESTK estimates across all distribution overestimate by 9.4%, far below
the 21.8% of EXP. In the worst case it is 20% (w.r.t. to 37% of EXP).

ECRTS 2022

20:18 Markov’s Inequality with Power-Of-k Function for pWCET Estimation

Overall, experimental results show the ability of RESTK to produce bounds suitable
for pWCET estimation, being those trustworthy, tight and stable across probabilities and
distributions, as opposed to existing models, which fail to meet all three goals simultaneously.
The benefits of RESTK increase as the cutoff probability decreases to 10−12 – 10−15, which
are the main range of interest for pWCET estimation considering maximum failure rates of
10−9 per hour and tasks running thousands of times per hour.

7 Railway Use Case

In order to evaluate the effectiveness of RESTK, we use an industrial critical real-time use
case. In particular, we focus on the central safety processing unit of the European Train
Control System (ETCS) reference architecture. The ETCS is a safety-critical application
(SIL 4) responsible of signaling and control in the European Rail Traffic Management System
(ERTMS) framework.

ETCS protects the train motion by constantly monitoring traveled distance and speed,
and is programmed to activate the emergency break system whenever unauthorized speed
values are detected. The ETCS subsystem comprises three main tasks that are executed
sequentially to provide the required safety function: the Odometry module, estimating a
set of parameters based on the inputs collected from the train environment (e.g., estimated
position); the Service module, managing the Service braking system; and the Emergency
module, actually controlling the Emergency braking system. While all three tasks do exhibit
strict real-time requirements, we focus our evaluation on the Emergency module, the core of
the ETCS safety-critical module.

The ETCS validation suite, which is made available with the application, includes 10
different input vectors (TEST0 to TEST9) corresponding to the operating conditions for
functional and timing validation regarded as relevant by the application owner. We collected
execution times for each input vector, which stimulates a different Emergency module
operational scenario with its own timing distribution. Experiments were conducted on a
Cobham Gaisler LEON3 platform.

Ground truth. For real programs, for which the actual distribution is not known, common
practice consists in using as ‘ground truth’ the observed quantiles for samples as large as
reasonably possible (e.g. 104 [34] and 108 [46]). We follow the same approach and consider
the quantile observed for the 107 sample as the reference value. More than two weeks of
execution were needed to complete the execution of all the 107 runs per input vector (TEST).

Setup. The setup and parameters used to run RESTK are the same used for the reference
distributions. As the number of runs we have is n = 107 per input set, we make projections
for p = 10−6, for which the observed frequencies closely match the actual probability (i.e.
95% confidence intervals are within 0.1% of the mean). In this case, the estimated quantile
at probability p = 10−6 is our ground truth. Only TEST6 is an exception to this and, due
to the variability observed for that quantile, we use a 95% confidence interval, which is 1%
off the mean. In this section, we use a sample size of n = 104 for GPD, EXP and RESTK.
Note that MEMIK with theoretical moments cannot be used since the actual distribution is
unknown and we only have sampled data.

Results. As part of the RESTK application process, all the 10 distributions fulfilled the
linearity assessment (line 25 in Algorithm 2). As shown in Table 5, pWCET estimates are
similar to those presented in the previous section. In particular:

S. Vilardell, I. Serra, E. Mezzetti, J. Abella, F. J. Cazorla, and J. del Castillo 20:19

Table 5 Tightness of the estimates for the ETCS case study.

probability 10−6

GPD EXP RESTK GPD EXP RESTK
TEST0 1.01 1.21 1.10 TEST5 0.98 1.12 1.07
TEST1 0.98 1.12 1.06 TEST6 0.94 1.06 1.01
TEST2 1.00 1.13 1.11 TEST7 1.01 1.16 1.09
TEST3 0.98 1.20 1.10 TEST8 1.01 1.23 1.12
TEST4 0.99 1.17 1.13 TEST9 0.98 1.11 1.10

GPD achieves extremely tight estimates for 4 tests, with tightness up to 1.01, but on the
other 6 tests it produces optimistic results. In general, while potentially very tight, GPD
can easily underestimate the bounds.
On the other hand, EXP never underestimates although it produces pessimistic results,
as high as 23% for such a relatively low quantile.
RESTK consistently produces tighter estimates than EXP in all tests for the use case.
On average, EXP exhibits 15.1% pessimism, whereas RESTK reduces it to 8.9%.

Discussion. Overall, with the combined results over a wide set of distributions, shown in
the previous section, and the results for the ETCS case study presented in this section, we
conclude that RESTK consistently provides tighter estimates than EXP and improves for
lower exceedance probabilities.

8 Related Works

Probabilistic and statistical approaches [13, 18] have been increasingly considered as a
promising solution to cope with the rise in complexity of hardware and software systems, as
determined by unprecedented increasing computing performance requirements [20].

Extreme Value Theory (EVT), a consolidated approach for modeling and predicting the
occurrence of rare events, has emerged as the preferred option for modeling the worst-case
execution time (WCET) of software programs. EVT has been considered particularly fit
for probabilistic modeling of WCET as the latter is normally considered a rare event in
the program’s timing behavior. EVT is at the foundation of several Measurement-Based
Probabilistic Timing Analysis (MBPTA) approaches [1, 7, 13, 27, 46, 52], which have been
already positively assessed in some industrial use cases [54]. Probabilistic approaches
building on sample and population sizes have also been built for overlapping concerns across
task scheduling and timing analysis [39], hence being orthogonal to WCET estimation.
Several works assess the necessary conditions for a correct application of EVT to the timing
problem since an inattentive application of the EVT statistical tools can severely affect both
trustworthiness and quality of the derived probabilistic WCET (pWCET) bounds [24, 34,38].

Several studies focus on EVT applicability preconditions on the (timing) observations being
independent and identically distributed (i.i.d.) random variables [13, 17]. EVT has also been
shown to be applicable also to stationary data preserving extremal independence [44]. Different
statistical tests have been assessed for that purpose in the real-time literature [1, 13,17,42].
Also, platform randomization [31] or data sample randomization [33] have been used to meet
the i.i.d. requirement. However, even in case such statistical preconditions are met, the
reliability of the obtained pWCET bounds is still affected by the choice in the EVT inputs

ECRTS 2022

20:20 Markov’s Inequality with Power-Of-k Function for pWCET Estimation

(i.e. selection of samples belonging to the tail) and parameters of the fit distribution. Several
methods have been proposed for selecting and assessing the quality of EVT parameters
and sample selection and, in turn, their impact on the trustworthiness of the computed
bounds [1, 4, 43].

Statistical tests have been also proposed, for example, to assess the reliability of pWCET
bounds in [4]. Unfortunately, model uncertainty in EVT application cannot be removed or
quantified since no existing approach provides an exact, optimal method for tail selection. A
different challenge to pWCET reliability relates to representativeness of the observations [2,
4, 25, 38] which corresponds, in the timing domain, to guaranteeing the observations are
actually representative or upperbound the execution time distribution, which in fact, is
an inherent trait for any sampled-based approach. Statistical and model uncertainties in
the scope of EVT are discussed in [8] where robustness in tail estimation is achieved by
considering, together with GEV, a family of plausible probability models (i.e., close to GEV)
and selecting the most conservative estimated probability value among all models. Markov’s
and Chebyshev’s inequalities have been historically applied in a wide variety of fields such
as Engineering [50], Big Data sampling [45], and radiative transfer [51]. In the context of
real-time computing, moment-based bounds on tail probabilities have also been considered
in the scope of probabilistic schedulability analysis [14,15,21,53]. Chernoff bounds [14,15]
and generalizations thereof [53] are exploited to compute the cumulative distribution of the
interference caused by higher-priority tasks on a task response time, ultimately delivering a
probability for deadline misses. While building on application of Markov’s inequality to the
timing dimension, these approaches do not address the problem of computing probabilistic
bounds to tasks’ execution time, which are instead assumed to be available, but offer a
scalable alternative to the computational complexity of convolutions. Some works [35,41]
consider the use of Chebyshev’s inequality for WCET and/or cache hit and miss rates
estimation. However, those works consider Chebyshev’s inequality (without power-of-k
functions) only to estimate the impact of the variance on those metrics, and focus on the
analysis of statistical uncertainties. Other works consider using higher moments to improve
concentration inequalities similar to Markov [32]. Although their approach is similar, the
work focuses purely on the theoretical tightness of the probability bounding. The challenge
we overcame in our work was translating this theoretical advantage into a practical reality
for unknown distributions, which can easily lead to optimistic bounds without proper care as
we shown. That is, neither model uncertainties nor tightness aspects for pWCET estimation
for high quantiles are considered. Authors in [58] consider a similar approach to those works
for WCET estimation, but discard Chebyshev’s inequality altogether given the pessimism
expected for high quantiles.

9 Conclusions

In this work we presented for the first time a method based on Markov’s Inequality for
pWCET estimation that represents a solid alternative approach to EVT. In particular, we
showed that MIK (Markov Inequality to the power-of-k) has no model uncertainty and
proposed a method to handle sampling uncertainty (RESTK) that consistently provides
more trustworthy, tighter and stable results than EVT in different scenarios, including a
railway case study. These promising results suggest that RESTK can be effectively used as a
standalone method for pWCET estimation, or even as an alternative approach to validate
EVT results in those cases where EVT is already consolidated. In this line, the fact that
MIK (RESTK) and EVT build on completely different mathematical foundations provides
stronger evidence on the trustworthiness of the obtained pWCET estimates.

S. Vilardell, I. Serra, E. Mezzetti, J. Abella, F. J. Cazorla, and J. del Castillo 20:21

References
1 Jaume Abella, Maria Padilla, Joan Del Castillo, and Francisco J. Cazorla. Measurement-based

worst-case execution time estimation using the coefficient of variation. ACM Trans. Des.
Autom. Electron. Syst., 22(4), June 2017. doi:10.1145/3065924.

2 Jaume Abella, Eduardo Quiñones, Franck Wartel, Tullio Vardanega, and Francisco J. Cazorla.
Heart of gold: Making the improbable happen to increase confidence in MBPTA. In 26th
Euromicro Conference on Real-Time Systems, ECRTS 2014, Madrid, Spain, July 8-11, 2014,
pages 255–265. IEEE Computer Society, 2014. doi:10.1109/ECRTS.2014.33.

3 Charalampos Antoniadis, Dimitrios Garyfallou, Nestor Evmorfopoulos, and Georgios Stamoulis.
Evt-based worst case delay estimation under process variation. In 2018 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1333–1338, 2018. doi:10.23919/DATE.
2018.8342220.

4 Luis Fernando Arcaro, Karila Palma Silva, Rômulo Silva de Oliveira, and Luís Almeida.
Reliability test based on a binomial experiment for probabilistic worst-case execution times.
In 41st IEEE Real-Time Systems Symposium, RTSS 2020, Houston, TX, USA, December 1-4,
2020, pages 51–62. IEEE, 2020.

5 August Aimé Balkema and Laurens de Haan. Residual Life Time at Great Age. The Annals
of Probability, 2(5):792–804, 1974. doi:10.1214/aop/1176996548.

6 Francesco Bartolucci and Luca Scrucca. Point estimation methods with applications to
item response theory models. In Penelope Peterson, Eva Baker, and Barry McGaw, editors,
International Encyclopedia of Education (Third Edition), pages 366–373. Elsevier, Oxford,
third edition edition, 2010. doi:10.1016/B978-0-08-044894-7.01376-2.

7 Kostiantyn Berezovskyi, Luca Santinelli, Konstantinos Bletsas, and Eduardo Tovar. WCET
Measurement-Based and Extreme Value Theory Characterisation of CUDA Kernels. In
Proceedings of the 22nd International Conference on Real-Time Networks and Systems, RTNS
’14, pages 279–288, New York, NY, USA, 2014. Association for Computing Machinery. doi:
10.1145/2659787.2659827.

8 Jose Blanchet, Fei He, and Karthyek Murthy. On distributionally robust extreme value analysis.
Extremes, 23:317–347, 2020. doi:10.1007/s10687-019-00371-1.

9 Frederico Caeiro and Maria Gomes. Semi-parametric tail inference through probability-
weighted moments. Journal of Statistical Planning and Inference, 141(2):937–950, 2011.
doi:10.1016/j.jspi.2010.08.015.

10 Frederico Caeiro and Maria Gomes. Threshold selection in extreme value analysis. Extremes,
September 2014. doi:10.1007/s10687-021-00405-7.

11 Enrique Castillo, Ali Hadi, Narayanaswamy Balakrishnan, and José Sarabia. Extreme Value
and Related Models With Applications in Engineering and Science. Wiley series in probability
and statistics. Whiley, January 2005.

12 Joan Del Castillo, Jalila Daoudi, and Richard Lockhart. Methods to distinguish between
polynomial and exponential tails. Scandinavian Journal of Statistics, 41(2):382–393, 2014.
doi:10.1111/sjos.12037.

13 Francisco J. Cazorla, Leonidas Kosmidis, Enrico Mezzetti, Carles Hernandez, Jaume Abella,
and Tullio Vardanega. Probabilistic worst-case timing analysis: Taxonomy and comprehensive
survey. ACM Comput. Surv., 52(1), February 2019. doi:10.1145/3301283.

14 Kuan-Hsun Chen and Jian-Jia Chen. Probabilistic schedulability tests for uniprocessor fixed-
priority scheduling under soft errors. In 2017 12th IEEE International Symposium on Industrial
Embedded Systems (SIES), pages 1–8, 2017. doi:10.1109/SIES.2017.7993392.

15 Kuan-Hsun Chen, Niklas Ueter, Georg von der Brüggen, and Jian-Jia Chen. Efficient compu-
tation of deadline-miss probability and potential pitfalls. In 2019 Design, Automation Test
in Europe Conference Exhibition (DATE), pages 896–901, 2019. doi:10.23919/DATE.2019.
8714908.

16 Stuart Coles. An Introduction to Statistical Modeling of Extreme Values. Springer, 2001.
doi:10.1007/978-1-4471-3675-0.

ECRTS 2022

https://doi.org/10.1145/3065924
https://doi.org/10.1109/ECRTS.2014.33
https://doi.org/10.23919/DATE.2018.8342220
https://doi.org/10.23919/DATE.2018.8342220
https://doi.org/10.1214/aop/1176996548
https://doi.org/10.1016/B978-0-08-044894-7.01376-2
https://doi.org/10.1145/2659787.2659827
https://doi.org/10.1145/2659787.2659827
https://doi.org/10.1007/s10687-019-00371-1
https://doi.org/10.1016/j.jspi.2010.08.015
https://doi.org/10.1007/s10687-021-00405-7
https://doi.org/10.1111/sjos.12037
https://doi.org/10.1145/3301283
https://doi.org/10.1109/SIES.2017.7993392
https://doi.org/10.23919/DATE.2019.8714908
https://doi.org/10.23919/DATE.2019.8714908
https://doi.org/10.1007/978-1-4471-3675-0

20:22 Markov’s Inequality with Power-Of-k Function for pWCET Estimation

17 Liliana Cucu-Grosjean, Luca Santinelli, Michael Houston, Codé Lo, Tullio Vardanega, Leonidas
Kosmidis, Jaume Abella, Enrico Mezzetti, Eduardo Quiñones, and Francisco J. Cazorla.
Measurement-based probabilistic timing analysis for multi-path programs. In 2012 24th
Euromicro Conference on Real-Time Systems, pages 91–101, July 2012. doi:10.1109/ECRTS.
2012.31.

18 Robert Davis and Liliana Cucu-Grosjean. A survey of probabilistic schedulability analysis
techniques for real-time systems. Leibniz Transactions on Embedded Systems, 6(1):04–1–04:53,
2019. doi:10.4230/LITES-v006-i001-a004.

19 Anthony C. Davison and Richard L. Smith. Models for exceedances over high thresholds.
Journal of the Royal Statistical Society. Series B (Methodological), 52(3):393–442, 1990.
doi:10.1111/j.2517-6161.1990.tb01796.x.

20 Deloitte. Semiconductors – the Next Wave Opportunities and winning strategies for semicon-
ductor companies, 2019. URL: https://www2.deloitte.com/content/dam/Deloitte/cn/
Documents/technology-media-telecommunications/deloitte-cn-tmt-semiconductors-
the-next-wave-en-190422.pdf.

21 Jose L. Diaz, Daniel F. Garcia, Kanghee Kim, Chang-Gun Lee, Lucia Lo Bello, José M.
Lopez, Sang Lyul Min, and Orazio Mirabella. Stochastic analysis of periodic real-time
systems. In 23rd IEEE Real-Time Systems Symposium, 2002. RTSS 2002., pages 289–300,
2002. doi:10.1109/REAL.2002.1181583.

22 Paul Embrechts, Thomas Mikosch, and Claudia Klüppelberg. Modelling Extremal Events: For
Insurance and Finance. Springer-Verlag, Berlin, Heidelberg, 1997.

23 Ronald A. Fisher. Moments and product moments of sampling distributions. Proceedings of
the London Mathematical Society, s2-30(1):199–238, 1930. doi:10.1112/plms/s2-30.1.199.

24 Samuel Jimenez Gil, Iain Bate, George Lima, Luca Santinelli, Adriana Gogonel, and Liliana
Cucu-Grosjean. Open challenges for probabilistic measurement-based worst-case execution
time. IEEE Embedded Systems Letters, 2017. doi:10.1109/LES.2017.2712858.

25 Fabrice Guet, Luca Santinelli, and Jérôme Morio. On the representativity of execution time
measurements: Studying dependence and multi-mode tasks. In Jan Reineke, editor, 17th
International Workshop on Worst-Case Execution Time Analysis, WCET 2017, June 27, 2017,
Dubrovnik, Croatia, volume 57 of OASICS, pages 3:1–3:13. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/OASIcs.WCET.2017.3.

26 Paul R. Halmos. The Theory of Unbiased Estimation. The Annals of Mathematical Statistics,
17(1):34–43, 1946. doi:10.1214/aoms/1177731020.

27 Jeffery Hansen, Scott Hissam, and Gabriel A. Moreno. Statistical-Based WCET Estimation
and Validation. In Niklas Holsti, editor, 9th International Workshop on Worst-Case Execution
Time Analysis (WCET’09), volume 10 of OpenAccess Series in Informatics (OASIcs), pages
1–11, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. also
published in print by Austrian Computer Society (OCG) with ISBN 978-3-85403-252-6.
doi:10.4230/OASIcs.WCET.2009.2291.

28 Bruce M. Hill. A Simple General Approach to Inference About the Tail of a Distribution. The
Annals of Statistics, 3(5):1163–1174, 1975. doi:10.1214/aos/1176343247.

29 Rob Hyndman and Yanan Fan. Sample quantiles in statistical packages. The American
Statistician, 50:361–365, November 1996. doi:10.1080/00031305.1996.10473566.

30 Norman Lloyd Johnson. Continuous univariate distributions. Vol. 2. Wiley and Sons, New
York, 2nd ed. / norman l. johnson, samuel kotz, n. balakrishnan. edition, 1994.

31 Leonidas Kosmidis, Jaume Abella, Eduardo Quiñones, and Francisco J. Cazorla. A cache design
for probabilistically analysable real-time systems. In Enrico Macii, editor, Design, Automation
and Test in Europe, DATE 13, Grenoble, France, March 18-22, 2013, pages 513–518. EDA
Consortium San Jose, CA, USA / ACM DL, 2013. doi:10.7873/DATE.2013.116.

32 Bar Light. Concentration inequalities using higher moments information. arXiv, 2020.
doi:10.48550/ARXIV.2006.05130.

https://doi.org/10.1109/ECRTS.2012.31
https://doi.org/10.1109/ECRTS.2012.31
https://doi.org/10.4230/LITES-v006-i001-a004
https://doi.org/10.1111/j.2517-6161.1990.tb01796.x
https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/technology-media-telecommunications/deloitte-cn-tmt-semiconductors-the-next-wave-en-190422.pdf
https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/technology-media-telecommunications/deloitte-cn-tmt-semiconductors-the-next-wave-en-190422.pdf
https://www2.deloitte.com/content/dam/Deloitte/cn/Documents/technology-media-telecommunications/deloitte-cn-tmt-semiconductors-the-next-wave-en-190422.pdf
https://doi.org/10.1109/REAL.2002.1181583
https://doi.org/10.1112/plms/s2-30.1.199
https://doi.org/10.1109/LES.2017.2712858
https://doi.org/10.4230/OASIcs.WCET.2017.3
https://doi.org/10.1214/aoms/1177731020
https://doi.org/10.4230/OASIcs.WCET.2009.2291
https://doi.org/10.1214/aos/1176343247
https://doi.org/10.1080/00031305.1996.10473566
https://doi.org/10.7873/DATE.2013.116
https://doi.org/10.48550/ARXIV.2006.05130

S. Vilardell, I. Serra, E. Mezzetti, J. Abella, F. J. Cazorla, and J. del Castillo 20:23

33 George Lima and Iain Bate. Valid Application of EVT in Timing Analysis by Randomising
Execution Time Measurements. In 2017 IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS), pages 187–198, 2017. doi:10.1109/RTAS.2017.17.

34 George Lima, Dário Dias, and Edna Barros. Extreme Value Theory for Estimating Task
Execution Time Bounds: A Careful Look. In Euromicro Conference on Real-Time Systems,
ECRTS, 2016. doi:10.1109/ECRTS.2016.20.

35 Jyh-Charn S. Liu and Sharif M. Shahrier. On predictability of caches for real-time applications.
In Proceedings of International Workshop on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems, pages 52–56, 1994. doi:10.1109/MASCOT.1994.284448.

36 Andrey Markov. On certain applications of algebraic continued fractions. Ph.D. thesis, St.
Petersburg, 1884.

37 Thomas Mikosch. Regular variation, subexponentiality and their applications in probability
theory. International Journal of Production Economics - INT J PROD ECON, January 1999.

38 Suzana Milutinovic, Enrico Mezzetti, Jaume Abella, Tullio Vardanega, and Francisco J.
Cazorla. On uses of Extreme Value Theory fit for industrial-quality WCET analysis. In 12th
IEEE International Symposium on Industrial Embedded Systems, SIES 2017, Toulouse, France,
June 14-16, 2017, pages 1–6. IEEE, 2017. doi:10.1109/SIES.2017.7993402.

39 Sims Osborne and James H. Anderson. Simultaneous multithreading and hard real time: Can
it be safe? In Marcus Völp, editor, 32nd Euromicro Conference on Real-Time Systems, ECRTS
2020, July 7-10, 2020, Virtual Conference, volume 165 of LIPIcs, pages 14:1–14:25. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ECRTS.2020.14.

40 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for
Statistical Computing, Vienna, Austria, 2021. URL: https://www.R-project.org/.

41 Archana Ravindar and Y. N. Srikant. Estimation of probabilistic bounds on phase CPI and
relevance in WCET analysis. In Proceedings of the Tenth ACM International Conference on
Embedded Software, EMSOFT ’12, pages 165–174, New York, NY, USA, 2012. Association for
Computing Machinery. doi:10.1145/2380356.2380388.

42 Federico Reghenzani, Giuseppe Massari, and William Fornaciari. Probabilistic-WCET reliab-
ility: Statistical testing of EVT hypotheses. Microprocess. Microsystems, 77:103–135, 2020.
doi:10.1016/j.micpro.2020.103135.

43 Federico Reghenzani, Luca Santinelli, and William Fornaciari. Dealing with uncertainty
in pWCET estimations. ACM Trans. Embed. Comput. Syst., 19(5):33:1–33:23, 2020. doi:
10.1145/3396234.

44 Luca Santinelli, Jérôme Morio, Guillaume Dufour, and Damien Jacquemart. On the Sus-
tainability of the Extreme Value Theory for WCET Estimation. In Heiko Falk, editor, 14th
International Workshop on Worst-Case Execution Time Analysis, volume 39 of OpenAccess
Series in Informatics (OASIcs), pages 21–30, Dagstuhl, Germany, 2014. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.WCET.2014.21.

45 Ashwin Satyanarayana. Intelligent sampling for big data using bootstrap sampling and
Chebyshev inequality. In 2014 IEEE 27th Canadian Conference on Electrical and Computer
Engineering (CCECE), pages 1–6, 2014. doi:10.1109/CCECE.2014.6901029.

46 Karila Palma Silva, Luis Fernando Arcaro, and Romulo Silva De Oliveira. On Using GEV or
Gumbel Models When Applying EVT for Probabilistic WCET Estimation. In 2017 IEEE
Real-Time Systems Symposium (RTSS), pages 220–230, 2017. doi:10.1109/RTSS.2017.00028.

47 Didier Sornette. Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization
and Disorder: Concepts and Tools. Springer, January 2006. doi:10.1007/3-540-33182-4.

48 Seth M. Steinberg and Clarence E. Davis. Distribution-free confidence intervals for quantiles
in small samples. Communications in Statistics - Theory and Methods, 14(4):979–990, 1985.
doi:10.1080/03610928508805144.

49 Pafnuti Tchebichef. Des valeurs moyennes. Journal de mathématiques pures et appliquées,
12(2):177–184, 1867.

ECRTS 2022

https://doi.org/10.1109/RTAS.2017.17
https://doi.org/10.1109/ECRTS.2016.20
https://doi.org/10.1109/MASCOT.1994.284448
https://doi.org/10.1109/SIES.2017.7993402
https://doi.org/10.4230/LIPIcs.ECRTS.2020.14
https://www.R-project.org/
https://doi.org/10.1145/2380356.2380388
https://doi.org/10.1016/j.micpro.2020.103135
https://doi.org/10.1145/3396234
https://doi.org/10.1145/3396234
https://doi.org/10.4230/OASIcs.WCET.2014.21
https://doi.org/10.1109/CCECE.2014.6901029
https://doi.org/10.1109/RTSS.2017.00028
https://doi.org/10.1007/3-540-33182-4
https://doi.org/10.1080/03610928508805144

20:24 Markov’s Inequality with Power-Of-k Function for pWCET Estimation

50 Vladimir Utkin. Calculating the reliability of machine parts on the basis of the Chebyshev in-
equality. Russian Engineering Research, 32, January 2012. doi:10.3103/S1068798X11120264.

51 Gladimir V.G. Baranoski, Jon G. Rokne, and Guangwu Xu. Applying the exponential Cheby-
shev inequality to the nondeterministic computation of form factors. Journal of Quantitative
Spectroscopy and Radiative Transfer, 69(4):447–467, 2001. doi:10.1016/S0022-4073(00)
00095-9.

52 Sergi Vilardell, Isabel Serra, Jaume Abella, Joan Del Castillo, and Francisco J. Cazorla.
Software timing analysis for complex hardware with survivability and risk analysis. In 2019
IEEE 37th International Conference on Computer Design (ICCD), pages 227–236, 2019.
doi:10.1109/ICCD46524.2019.00036.

53 Georg von der Brüggen, Nico Piatkowski, Kuan-Hsun Chen, Jian-Jia Chen, and Katharina
Morik. Efficiently approximating the probability of deadline misses in real-time systems. In
ECRTS, 2018. doi:10.4230/LIPIcs.ECRTS.2018.6.

54 Franck Wartel, Leonidas Kosmidis, Adriana Gogonel, Andrea Baldovin, Zoë R. Stephenson,
Benoit Triquet, Eduardo Quiñones, Code Lo, Enrico Mezzetti, Ian Broster, Jaume Abella,
Liliana Cucu-Grosjean, Tullio Vardanega, and Francisco J. Cazorla. Timing analysis of an
avionics case study on complex hardware/software platforms. In Wolfgang Nebel and David
Atienza, editors, Proceedings of the 2015 Design, Automation & Test in Europe Conference
& Exhibition, DATE 2015, Grenoble, France, March 9-13, 2015, pages 397–402. ACM, 2015.
doi:10.7873/DATE.2015.0189.

55 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing,
David B. Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra,
Frank Mueller, Isabelle Puaut, Peter P. Puschner, Jan Staschulat, and Per Stenström. The
worst-case execution-time problem - overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst., 7(3):36:1–36:53, 2008. doi:10.1145/1347375.1347389.

56 Julien Worms and Sid Touati. Parametric and Non-Parametric Statistics for Program Perform-
ance Analysis and Comparison. [Research Report] RR-8875, INRIA Sophia Antipolis - I3S;
Université NiceSophia Antipolis; Université Versailles Saint Quentin en Yvelines; Laboratoire
de mathématiques deVersailles, 2017. URL: https://hal.inria.fr/hal-01286112.

57 Julien Worms and Sid Touati. Modelling program’s performance with gaussian mixtures for
parametric statistics. IEEE Transactions on Multi-Scale Computing Systems, 4(3):383–395,
2018. doi:10.1109/TMSCS.2017.2754251.

58 Pavel G. Zaykov and Jan Kubalčik. Worst-case measurement-based statistical tool. In 2019
IEEE Aerospace Conference, pages 1–10, 2019. doi:10.1109/AERO.2019.8741824.

https://doi.org/10.3103/S1068798X11120264
https://doi.org/10.1016/S0022-4073(00)00095-9
https://doi.org/10.1016/S0022-4073(00)00095-9
https://doi.org/10.1109/ICCD46524.2019.00036
https://doi.org/10.4230/LIPIcs.ECRTS.2018.6
https://doi.org/10.7873/DATE.2015.0189
https://doi.org/10.1145/1347375.1347389
https://hal.inria.fr/hal-01286112
https://doi.org/10.1109/TMSCS.2017.2754251
https://doi.org/10.1109/AERO.2019.8741824

	p000-Frontmatter
	Preface
	Organizers

	p001-Andreozzi
	1 Introduction
	2 Case Study
	2.1 SLAM
	2.2 Head Pose Estimation
	2.3 Aggressor Workloads
	2.4 Characterization of Tasks
	2.5 Hardware Target

	3 Challenge Activities
	3.1 Related Work
	3.1.1 Analysis of Performance Bounds
	3.1.2 Data-flow Analysis
	3.1.3 Analysis of Resource Sharing Policies
	3.1.4 Monitoring of Shared Resource Interference

	4 Evaluation Platforms
	4.1 Virtual Platform
	4.1.1 gem5
	4.1.2 AMBA Adaptive Traffic Profiles

	4.2 Hardware Development Kit

	5 Resources
	5.1 Virtual Platform Starter Kit
	5.2 Hardware Development Starter Kit
	5.3 Recommended Open Source Software Implementations

	6 Conclusions

	p002-Heo
	1 Introduction
	2 Background and Motivation
	2.1 Autonomous Driving and Object Detection
	2.2 Existing Object Detection Networks
	2.3 Dynamic Image Scaling

	3 Problem Statement
	4 Design
	4.1 Scale Sensitivity Inference
	4.2 Scheduling

	5 Evaluation
	5.1 Experimental Setup
	5.2 Results
	5.2.1 Accuracy and Latency
	5.2.2 Dynamic Deadline Adaptation
	5.2.3 Scale Sensitivity Inference
	5.2.4 Memory and Scheduling Overhead

	6 Related Work
	6.1 Real-time Object Detection
	6.2 Real-time DNN Inference

	7 Conclusion

	p003-DeAlbuquerqueSilva
	1 Introduction
	2 Reminder on Deep Neural Networks
	2.1 Functions performed by DNN
	2.2 Semantics-preserving model transformation
	2.3 Model description for the code generation

	3 C back-end
	3.1 Software architecture
	3.2 Version 1 – generic inference function
	3.3 Version 2 – inlined inference function
	3.4 Version 3 – unrolled inference function

	4 Comparative approach for C code generation frameworks
	4.1 Benchmark description
	4.2 Criteria of comparison
	4.3 Others C back-end frameworks

	5 Experiments
	6 Related Work
	7 Conclusions

	p004-Brando
	1 Introduction
	2 Multicore Contention Prediction
	2.1 Contention Modeling
	2.2 Formalization
	2.3 Multi-Linear Regression (MLR) Models
	2.4 Neural Network (NN) Models

	3 Quantile Regression NN
	3.1 Predicting Sky-high Quantiles using QR
	3.2 Task Order Invariance
	3.2.1 Existing Models
	3.2.2 Achieving TOI

	4 Experimental Setup
	4.1 Hardware Platform
	4.2 Workloads
	4.3 Experiments
	4.4 Model Configuration and Libraries

	5 Experimental Results
	5.1 Impact of eta
	5.2 Different random partitions of the DS
	5.3 Changes to the applications
	5.4 Execution time requirements

	6 Related Works
	7 Future Work
	8 Conclusions

	p005-Roux
	1 Introduction
	2 Related Work
	3 Overview of the Contribution
	4 Response Time Analysis
	4.1 Behavior
	4.2 Model

	5 Network Calculus
	5.1 Behavior
	5.2 Model

	6 Dense versus Discrete Time
	6.1 Clocks
	6.2 Pseudo Periodic Clocks

	7 Linking Arrival Sequences and Cumulative Curves
	7.1 For a Single Job
	7.2 For an Entire Task

	8 Linking Response Time and Horizontal Deviation
	8.1 For a Single Job
	8.2 For an Entire Task

	9 Linking Request Bound Functions and Arrival Curves
	9.1 From Request Bound Functions to Arrival Curves
	9.2 From Arrival Curves to Request Bound Functions

	10 Linking Scheduling Properties
	10.1 FIFO
	10.2 Fixed/Static Priority

	11 Conclusion

	p006-Chen
	1 Introduction
	2 Deferrable Server and Task model
	3 Service Condition and Execution Scenarios of Deferrable Servers
	3.1 Service Condition of Deferrable Servers
	3.2 Serving one Task by a Deferrable Server

	4 Worst-Case Response Time Analysis for One Single Task
	4.1 Existing Analysis Converting from Real-Time Calculus
	4.2 Our Analysis for Sporadic Tasks
	4.3 Efficient Computation of Worst-Case Response Time Bound

	5 Architecture Model
	5.1 Unikernel-based CPS Applications
	5.2 Scheduling Architecture
	5.2.1 Real-Time Networking

	5.3 Design Principles
	5.4 Implementation on Xen

	6 Evaluation and Discussion
	6.1 Numerical Simulation
	6.2 Case Study
	6.2.1 Benchmark
	6.2.2 Case Study Results

	7 Related Work
	8 Conclusions
	A Appendix

	p007-Pollex
	1 Introduction
	2 Related Work
	3 Models and Analyses
	3.1 Common Assumptions and Notation
	3.2 Common Mathematical Notation and Definitions
	3.3 Response-Time Analysis
	3.4 Real-Time Calculus

	4 Formal Comparison of the RTA with the RTC
	5 Summary
	A Properties of Semi-Continuous Functions
	B Properties of Pseudo-Inverses
	C Properties of Deconvolution
	D Other Properties

	p008-Finzi
	1 Introduction
	2 Related Work
	3 General Framework description
	3.1 Network and System Models
	3.2 General search algorithm
	3.3 Module requirements
	3.4 Search initialization
	3.5 Loop 1: TT-only routing feedback loop
	3.6 Loop 2: TT scheduling feedback loop
	3.7 Loop 3: RC+TT routing feedback loop
	3.8 Common support algorithms
	3.8.1 Update of memories
	3.8.2 Selection of a flow and path

	4 Performance evaluation
	4.1 Implementation of modules for TTEthernet
	4.2 Industrial case study: the Orion network
	4.3 Evaluation results
	4.4 Comparison to related work

	5 Conclusion

	p009-Meunier
	1 Introduction
	2 Related Work
	3 Formal Models
	3.1 Task Models
	3.2 Synchronized Nodes
	3.3 Maximum Number of Accesses in a Phase

	4 Consequences of the Interference Analysis
	4.1 Example
	4.2 Enforcing the Model's Assumptions and the Analysis Results
	4.3 Proof of Correctness

	5 Efficiency of the Multi-Phase Model on the ROSACE Case-Study
	6 Profile Shape-Based Efficiency Criteria
	6.1 Tests Execution and Metrics
	6.2 Looking for the Best Multi-Phase Profile Shapes
	6.3 Comparison Between Multi-Phase AP and 1-Phase Model

	7 Conclusion and Future Work

	p010-Tong
	1 Introduction
	2 System Model and Background
	3 Budget Management
	4 OR-FMLP
	5 OR-OMLP
	6 Abortable Critical Sections
	7 Experimental Evaluation
	8 Revisiting Assumptions A1 and A3
	9 Related Work
	10 Conclusion

	p011-Ladeira
	1 Introduction
	2 Motivating Example
	3 Problem Statement
	4 State of the Art
	5 Contribution
	6 Performance comparison
	6.1 Experimental setup and chosen metrics
	6.2 Results

	7 Case Study
	8 Conclusion

	p012-Nelissen
	1 Introduction
	2 System Model
	2.1 Platform and Task Model
	2.2 Scheduler Model

	3 Worst-Case Response-Time Analysis
	3.1 Preliminaries on Schedule-Abstraction Technique
	3.2 Challenges in Analyzing Gang Tasks using Schedule Abstraction
	3.3 System-State Representation
	3.4 Constructing the Schedule Abstraction Graph

	4 Expansion Phase
	4.1 Dispatch Condition
	4.1.1 Earliest Start Time
	4.1.2 Computing A*_p(v)
	4.1.3 Latest Start Time
	4.1.4 Dispatch Condition

	4.2 Job Finish Times
	4.3 Building New System States
	4.3.1 New Set of Earliest Simultaneous Core Releases F
	4.3.2 New Availability Intervals

	5 Merge Phase
	6 Proof of Correctness
	7 Empirical Evaluation
	7.1 Experiments on Synthetic Task Sets
	7.2 Schedulability Results

	8 Summary and Conclusion

	p013-Aromolo
	1 Introduction
	2 Related work
	3 System model
	4 Analysis
	4.1 Sequential sporadic tasks with jitter
	4.2 Schedule transformation
	4.2.1 Transformation example
	4.2.2 Properties of the transformed schedule

	4.3 Model transformation to enable the response-time analysis
	4.4 Response-time analysis algorithm

	5 Experimental results
	5.1 Experimental setup
	5.2 Results with constrained deadlines
	5.3 Results with implicit deadlines

	6 Conclusions and future work

	p014-Burns
	1 Introduction
	2 Introduction to Rely/Guarantee conditions
	3 Job-based system model
	4 Mixed-criticality jobs
	4.1 Adding resilience to HI-crit jobs
	4.2 Transitioning from mode N to mode H
	4.3 Postponing the deviation time

	5 Task-based system model
	5.1 Vestal-inspired example
	5.2 Transitioning from N to H
	5.3 Transitioning from H to N

	6 Robustness and resilience
	6.1 Failure modes
	6.2 Robust and resilient mode changes

	7 Conclusions and Future Work

	p015-Barletta
	1 Introduction
	2 Related Work
	3 Proposal
	3.1 Architecture
	3.2 System Model
	3.3 The SCHED_DS policy

	4 Implementation
	4.1 A Xenomai-based implementation
	4.2 The SCHED_QUOTA Limitations
	4.3 Implementation details
	4.4 Feasibility Checker and rt-lib

	5 Experimental Results
	5.1 SCHED_DS Runtimes
	5.2 SCHED_DS Overhead
	5.3 Failure Isolation Test
	5.4 RTnet
	5.5 Task Activation Latencies
	5.6 Comparison with PREEMPT_RT

	6 Conclusion

	p016-Mirosanlou
	1 Introduction
	1.1 Related Work: Predictable Cache Coherence
	1.2 Contributions

	2 Background
	2.1 Hardware Cache Coherence
	2.2 Arbitration

	3 System Model
	3.1 Architecture and Coherency
	3.2 Request Processing and Order of Arbitration
	3.3 Latency Model
	3.4 Task Analysis

	4 Proposed Arbiter
	5 Latency Analysis
	5.1 Dynamic Latency Analysis
	5.2 Static Analysis

	6 Applying Duetto to Cache Coherence Design
	6.1 Background: Duetto Reference Model
	6.2 Model Extensions
	6.3 WCLator Design

	7 Evaluation Results
	7.1 Per-Request Worst-Case Latency
	7.2 RTA Sensitivity Test
	7.3 Average Performance: SPLASH-3
	7.4 Observed Request Latency
	7.5 Average Performance: Synthetic Benchmarks

	8 Conclusions

	p017-Hossam
	1 Introduction
	2 Background
	2.1 Coherence Protocols
	2.2 Bus Arbitration

	3 Related Work and Motivation
	4 System Model
	5 Proposed Solution
	5.1 Illustrative Example

	6 Timing Analysis and Predictability Guarantees
	6.1 Satisfying Predictability Invariants
	6.2 Per-Request WCL Analysis
	6.3 Total Task's Worst-Case Memory Latency Analysis

	7 Evaluation
	7.1 Per-Request WCL
	7.2 Total Task's WCL
	7.3 Average-case Performance

	8 Conclusion

	p018-Bellec
	1 Introduction
	2 Background
	2.1 Memory Corruption
	2.2 Data-Flow Integrity
	2.3 Real-Time systems

	3 Overview of RT-DFI, a WCET-directed DFI scheme
	3.1 Using WCEP information to optimize tag checks
	3.2 Principle of the ILP

	4 Formal definition of the ILP for WCET-oriented tag check optimization
	4.1 Notation table and problem formal definition
	4.2 Computing the number of checks
	4.3 Transformation into an ILP problem
	4.4 Handling WCEP changes

	5 Experimental results
	5.1 Experimental setup
	5.2 Results
	5.3 Notes on iterative optimization
	5.4 Notes on the security

	6 Related work
	7 Conclusion
	A Full experimental data

	p019-Maida
	1 Introduction
	2 Design Space of Verified RTAs
	3 Background
	4 POET: Design and Workflow
	4.1 Implementation and Workflow
	4.2 The Structure of a Certificate

	5 Trustworthiness of the Procedure
	6 Supporting Arbitrary Arrival Curves
	7 Scalability of the Certification Procedure
	8 Empirical Evaluation
	9 Related Work
	10 Conclusion

	p020-Vilardell
	1 Introduction
	2 Background and Problem Statement
	2.1 Probabilistic WCET estimation
	2.2 Representative Distributions
	2.3 EVT usage for pWCET estimation

	3 Chebyshev and Markov Inequalities for pWCET Estimation
	3.1 Chebyshev's Inequality
	3.2 Markov's Inequality
	3.3 Markov's inequality on low probabilities

	4 Power-of-K functions for Markov's Inequality
	4.1 Tightness of MIK for increasing values of k

	5 Handling Markov Sampling Uncertainty
	5.1 Sample moment estimation
	5.2 Understanding the behavior of maxk
	5.3 Deriving maxk from unknown distributions

	6 RESTK and EVT PWCET Estimates on Distributions
	7 Railway Use Case
	8 Related Works
	9 Conclusions

