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Abstract
High-performance real-time systems are becoming increasingly common in several application
domains, including automotive, robotics, and embedded. To meet the growing performance require-
ments of the emerging applications, these systems often adopt a heterogeneous System-on-Chip
hardware architecture comprising multiple high-performance CPUs and one or more domain-specific
accelerators. At the same time, the applications running on these systems are subject to stringent
real-time and safety requirements. Due to the non-deterministic execution model of the compute
elements involved and the co-location of the workloads, which leads to contention of the shared
hardware resources, designing and orchestrating such applications is particularly challenging. In
fact, the demand for novel methodologies, tools, and best practices to assist application designers
working on high-performance real-time systems has never been stronger.

To stimulate innovation in this area, this document outlines an industrial case study from the
automotive domain targeting an Arm-based hardware platform. The selected application is an
augmented reality head-up display, which can be considered a representative example of a high-
performance real-time use case. This case study will serve as the basis for a (multi-year) challenge
involving real-time and embedded systems researchers across academia and industry that will be
kicked off at the 34th Euromicro Conference on Real-Time Systems (ECRTS) 2022.
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1 Introduction

As computing becomes ubiquitous, we observe increased interactions between devices and
the physical world, which implies dealing more often with real-time and safety requirements.
At the same time, the growing complexity of the end applications and the amount of data
to be processed contribute to raising the performance requirements of the compute devices.
These two trends lead to the proliferation of high-performance real-time systems.

Such systems are usually characterized by the co-location of multiple workloads on a
single compute substrate, typically a heterogeneous System-on-Chip (SoC). This is done to
improve the overall utilization of system resources by enabling their reuse (e.g., IO devices,
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hardware accelerators, etc.), and to improve the efficiency of data sharing across workloads.
Workloads executing on such systems are defined as mixed-criticality [14]: each of them
requires a potentially different Level of Service from the system, e.g., requiring a deadline
to be met, a certain memory latency not to be exceeded, or bandwidth of requests being
satisfied by a compute unit such as a GPU, with varying consequences, from soft recoverable
errors to catastrophic failures, if those requirements are not met by the system at any point
in time.

Co-locating multiple workloads with varying levels of criticality and priority comes at
the cost of potential performance degradation due to the risk of interference between these
workloads executing on shared resources, and thus increases the complexity of real-time anal-
ysis. The challenge in designing mixed-criticality systems is primarily to guarantee sufficient
partitioning/isolation while still achieving high performance. Hence, it becomes necessary to
be able to provision resources in a quantifiable and predictable way, regardless of whether
the execution time of a workload may have non-deterministic external dependencies, such
as non-deterministic data values or the arrival of non-deterministic events (e.g., interrupts).
This is crucial for computing the Worst-Case Execution Time (WCET) for the real-time
workloads being executed on the platform, and to ensure smooth and responsive operation
of the general-purpose operating system (GPOS) workloads.

Addressing the above issues in a comprehensive way is one of the biggest challenges
faced by system and application designers across various domains, in particular in the
automotive, robotics, and Internet of Things (IoT) sectors. For this reason, we believe
that it is very important to stimulate research across industry and academia around high-
performance real-time themes. In this context, we would like to introduce the real-time
research community to the Industrial Challenge associated with the Euromicro Conference
on Real-Time Systems (ECRTS). Based on the success of the past editions of the challenge,
which were part of the Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), a satellite workshop of ECRTS, we plan to follow a similar
format: the challenge participants will be asked to address a specific set of initial questions,
targeting approximately a 1-year timeline, and, based on the interest of the community
and the reception of the initial set of activities, we will propose additional, more advanced,
activities to be addressed in the following years. This document provides an outline of the
scope and activities that we envision for the challenge. We propose an augmented reality
head-up display application as a motivating case study, which we hope will provide an
interesting testbed for innovative approaches in the areas of tools, methodologies and best
practices to analyze high-performance real-time systems.

While the description of the case study provided in this document is a good start-
ing point for the groups willing to start working on the challenge, we anticipate that
further refinements to the definition of the case study and/or to the challenge activi-
ties will be released in the next months, together with deliverables including simulation
tools, profiling data and reference input sets for the various software tasks. The web page
https://www.ecrts.org/arm-industrial-challenge/ will be used to share such updates
and deliverables. If participants will have additional questions, we encourage them to submit
them to the #industrial-challenge Discord channel – we will monitor the channel and
address those questions in a timely fashion.

In the remainder of this document, Section 2 will describe the case study considered in
detail. Section 3 will cover the key activities of the challenge, including a description of
the related work; while some of the related work is mainly pertinent to the initial set of
questions addressed to the challenge participants, we cover other related work that could be
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relevant to follow-up questions, in order to expand the scope of the challenge. Section 4 will
present the recommended platforms for the evaluation of the case study. The resources that
will be provided to the challenge participants, which include analysis tools, pointers to the
recommended software implementations for the main application tasks, and profiling data,
will be covered in Section 5. We will conclude with final remarks in Section 6.

2 Case Study

The case study selected for the Industrial Challenge 2022 is an augmented reality head-up
display application (AR HUD) for the automotive market, appropriately simplified to allow
the study of its real-time aspects within the anticipated timeline and scope of the challenge.

AR HUDs extend the exterior view of the traffic conditions in front of the vehicle with
virtual information (augmentations) for the driver. They are used to improve the situational
awareness of drivers by displaying graphics that interact with the driver’s field-of-view (FOV).
The information provided is generated from real-time sensor data and typically includes
advanced driver assistance system (ADAS) alerts and navigational cues overlaid on real-world
objects. AR HUDs have started to appear in high-end cars and are expected to become a
relatively common feature in the future due to the safety and comfort enhancements that
they bring to the driving experience. At the same time, given their demanding compute
and real-time requirements, AR HUDs are good examples of high-performance real-time
applications where the interactions between the software tasks and the utilization of the
shared hardware resources need to be carefully orchestrated to meet the desired functionality
and performance goals.

Figure 1 An example of AR HUD (from [13]).

A key requirement for AR HUDs is the ability to project the images with enough positional
accuracy to create the illusion that they appear as "fused" with the real world. This can be
particularly challenging in driving scenarios due to the rapidly changing environment and
the amount of sensor data to process and to present to the driver. In addition, to adjust the
image to the driver’s viewpoint, an eye tracking or head pose estimation function is normally
used, which determines the appropriate amount of rotation/distortion to apply to the image
frame. Another important requirement for AR HUDs is the ability to project images at a
sufficient distance in front of the driver (around 10m): projecting images at longer distances
reduces the accommodation time for the eyes between the real world and the HUD images; in
addition, the ability of the human vision system to distinguish depth from other real-world
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objects diminishes greatly beyond 7m – this factor can have implications on the complexity
of the required eye tracking/head pose estimation function. Finally, high frame rates are
necessary to avoid negatively impacting the user experience.

The implementation of an AR HUD system requires several functions, which can be
decomposed into different software tasks. Figure 2 shows those functions, their decomposi-
tion into software tasks and a hypothetical mapping of such tasks onto the SoC compute
resources (please refer to Section 2.5 for more details on the target hardware platform). The
decomposition shows that we have a mix of real-time critical tasks and high-priority tasks,
which can be mapped onto different concurrent CPU threads, thus making this case study
non-trivial for real-time analysis. The head pose estimation task, implemented through a
neural network, benefits from being mapped onto a high-throughput accelerator, either a
GPU or a dedicated Neural Processing Unit (NPU). The following subsections will provide a
detailed description of the tasks.
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Figure 2 Software tasks comprising the AR HUD case study and their hypothetical mapping
onto the SoC compute resources. Purple blocks represent real-time critical tasks, while yellow blocks
represent non-critical, high-priority, tasks. Red contours highlight the mapping to the compute
blocks, i.e., CPU threads and GPU/NPU tasks. The arrows indicate the high-level data flow.

2.1 SLAM
A Visual Simultaneous Localization and Mapping (SLAM) function is required to determine
the orientation and trajectory of the vehicle and to generate a map of its surroundings. The
output of this function is then used to generate the HUD graphic images and to position
them within the driver’s FOV.

The SLAM implementation selected for this case study is based on OV2SLAM [5], a high-
performance feature-based SLAM supporting both monocular or stereo camera setups. While
other SLAM techniques can offer improved accuracy, OV2SLAM is one of the techniques
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with a publicly available implementation that aims at supporting real-time performance for a
variety of realistic scenarios, (e.g., including autonomous driving), and can trade-off accuracy
to maintain the required real-time performance.

For this case study, we assume a stereo camera setup: the SoC is connected to a pair of
external cameras through Automotive Ethernet. The cameras have High-Definition (HD)
resolution (1920x1080 pixels) and frame acquisition is expected to be performed at a relatively
high target rate, in the range 30-60 frames per second (FPS). A Network Interface Card
(NIC) receives new frames from the cameras and deposits them into a memory buffer, so
that they can be read by the consumer tasks.

The front-end task includes the following sub-tasks:
image pre-processing: a contrast enhancement technique is applied to all new frames to
increase the dynamic range. Dynamic range in photography describes the ratio between
the maximum and minimum measurable light intensities. Bright parts of the image can
get much brighter, so the image seems to have more "depth" aiding the following stages of
processing. The algorithm also limits the intensity changes due to exposure adaptation
as the car drives through bright and shaded regions;
keypoint tracking: an optical flow algorithm is applied to determine the keypoints and their
motion, based on a pyramidal implementation of the inverse compositional Lucas-Kanade
(LK) algorithm; keypoints are interesting portions of the images (eg: corners of objects in
the image) that are tracked in consecutive frames. The number of keypoints are generally
configurable in the algorithm.
outlier filtering: outlier keypoints are identified by applying RANSAC filtering based on
the epipolar constraint and removed in order to improve the accuracy of the camera pose
estimation;
pose estimation: this is performed by minimization of the 3D keypoints reprojection
errors using a robust Huber cost function;
keyframe creation: if the number of tracked 3D keypoints (i.e. the keypoints with prior
information on their real 3D position) w.r.t. the last keyframe gets under a threshold or
if a significant parallax is detected, a new keyframe is created. The scenario of number of
tracked 3D keypoints falling below a threshold when compared to 3D keypoints in the
last keyframe occurs when there is drastic changes in the scene while driving. This will
be detected and a new keyframe needs be created for the new scene.

More details for these sub-tasks are available in [5]. The front-end pipeline is fully monocular,
limiting all its operations to frames provided by the left camera, even if a stereo setup is
available.

The mapping thread is responsible for processing every new keyframe to create new 3D
map points by triangulation (both stereo & temporal triangulation with a stereo camera
setup) and to perform local map tracking in order to minimize drift. These two sub-tasks
have different real-time requirements: triangulation needs to operate at the full frame rate
as it is critical for keeping accurate pose estimation in the front-end; the local map tracking
operation, on the other hand, does not need to run at the full frame rate and it is executed
and aborted if a new keyframe is available. However, it is beneficial to keep the local map
tracking task as a higher priority task than, for instance, general-purpose or background
tasks, as its frequency of execution has an impact on the overall SLAM accuracy.

The state optimization thread is responsible for running a local bundle adjustment (BA)
pass, that is applied to refine the poses of the most recent keyframes and 3D map points’
positions, and a keyframes filtering pass, that is applied to filter redundant keyframes in
order to reduce the runtime of future instances of BA.

ECRTS 2022



1:6 Industrial Challenge 2022: A High-Performance Real-Time Case Study on Arm

As with most high-performance real-time SLAM implementations, OV2SLAM leverages
multi-threading to achieve real-time performance. As highlighted in Figure 2, the considered
implementation of OV2SLAM relies on three CPU threads.

While OV2SLAM supports loop closure, this feature is disabled for this case study: due
to the nature of the AR HUD application, the construction of a global map is, in fact,
largely unnecessary. Loop closure and global map construction are more useful in scenarios
where the user will revisit the same region of the map, e.g., for an AR wearable use case.
However, while driving, this is more of a rare scenario and hence global map construction is
not required.

The source code for the implementation of OV2SLAM that we plan to use as reference
for the challenge is listed in Section 5.3.

2.2 Head Pose Estimation
Before being rendered on the AR HUD, images usually require some forms of correction to
accommodate for the real-time position of the driver’s viewpoint. Such corrections are usually
applied by relying on the output of a eye tracking/gaze estimation or head pose estimation
function. For that, there are many factors affecting the choice of the specific algorithm used
and its complexity. As anticipated at the beginning of this section, the complexity of these
solutions depends on some high-level design parameters of the HUD, like the virtual image
distance – longer distances require more complex display hardware, but at the same time
can alleviate the complexity of the eye tracking function and allow for simpler methods to
be used. In this case study, to keep the problem tractable, we assume that a long virtual
image distance is indeed achievable by the HUD and that a head pose estimation method is
adequate to solve the issue of determining the driver’s viewpoint.

The implementation of the head pose estimation function selected for this case study is
Hopenet, which is based on a convolutional neural network (CNN) approach [16]. Hopenet
requires a simple RGB monocular camera as input – we assume that another HD camera is
installed inside the vehicle, directed towards the driving position, providing input frames via
Automotive Ethernet to the SoC at the same target rate of the external cameras (30-60 FPS
range).

As CNNs are amenable to hardware acceleration, either through a GPU or through a
more dedicated Neural Processing Unit (NPU) or machine learning accelerator, the task
should be mapped to one of those compute units, based on the specific platform selected by
the challenge participants in their evaluation (Section 4).

In terms of real-time requirements, the head pose estimation task is considered a non-
real-time critical, but high-priority, task, as highlighted in Figure 2. The accuracy of the
head pose estimation is important, but a small number of frames can be dropped without
affecting the general functionality of the application.

There are different versions of Hopenet publicly available, based on different input machine
learning frameworks and resolutions/datasets. A reference implementation for Hopenet that
we recommend is listed in Section 5.3.

2.3 Aggressor Workloads
While the software tasks required to implement the functionality of the AR HUD (summarized
in Figure 2) constitute the main workload for the target system, as part of the challenge
we will consider introducing other aggressor workloads, competing for the shared hardware
resources, that will run alongside the main workload.
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Table 1 Parameters characterizing synthetic software tasks, for which reference implementations
might not be available (e.g., proprietary/closed-source code bases). Modifications or additions to
this list will be agreed with the challenge participants.

Parameter Units

Compute intensity FLOPS, IntOPS
Memory access bandwidth MBps
Input memory buffer capacity MB
Output memory buffer capacity MB

In the context of the AR HUD use case, workloads implementing some other functionalities
that are typically found in a digital cockpit may be co-located on the same SoC. Figure 3
shows some examples of such workloads. As part of the challenge, we will select one or more
of these workloads to be included in the selected use case as aggressor workloads w.r.t. the
main AR-HUD workload.

Instrument Data

Int Cam 0

Ext Cam 0

Ext Cam 1

5G Data

Wing Cam 0

Wing Cam 1

Instrument Cluster 16.6 ms

Augmented Reality HUD 16.6 ms

Navigation Applications 16.6 ms

Digital Wing Mirrors 16.6 ms

Passenger Gaming 16.6 ms

Figure 3 Example of co-located workloads and their deadlines (in red) for a modern digital
cockpit.

2.4 Characterization of Tasks
In order to perform the activities described in Section 3, a characterization of the tasks of the
considered case study will be required. For those tasks where a public software implementation
is available, the characterization can be done by running/simulating the tasks on the selected
evaluation platform and by either directly collecting the required statistics or by offline
analysis of profiling information gathered during execution (see Section 4 for a description of
the suggested evaluation platforms). This is the case, in particular, for the tasks belonging to
the SLAM and Head Pose Estimation functions. The characteristics of the remaining tasks,
including the aggressor ones, will be shared in the initial phase of the challenge. Different
options will then be available on how to model the execution of such synthetic tasks on the
evaluation platforms, that are partly discussed in Section 4.

Table 1 reports some key parameters that will be provided for each synthetic task.

ECRTS 2022
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2.5 Hardware Target
The target system for the considered case study is a platform comprising a cluster of high-
performance Arm A-profile CPU cores, connected to a typical multi-level cache hierarchy
configuration. The system will also feature a GPU and optionally an NPU.

The specific details of the hardware target will be shared in the initial phase of the
challenge with the participants, and will take into account the specific evaluation platform
chosen (Section 4).

3 Challenge Activities

The main tasks of the challenge are:
1. Analysis of performance bounds: Perform the response time analysis and worst-case

execution time analysis following any methodology deemed suitable to the use case and
platform considered. For this step, the challenge participants can choose to assume
the absence of shared resources and other observable interference effects. The input for
this first step is a description of the software tasks and their dependencies, commonly
expressed as direct acyclic graphs (DAGs).

2. Optimizations: Perform one or more of the following optimization activities:
a. Data-flow analysis: Given the challenge use case decomposed into one or more software

task DAGs, analyze its data-flows, resource usage and compute requirements, and
work on one or more optimizations as follows.

b. Scheduling: Design one or more scheduling policies that can achieve better system
utilization and data sharing between tasks.

c. Resource mapping: Efficient mapping of tasks to the various hardware components
(processing nodes and resources) in the platform, in order to maximise efficiency and
minimize contention.

d. Shared resource interference monitoring and performance isolation: Propose and/or
implement shared resources monitoring strategies and design hardware and/or software
techniques for shared resource contention mitigation.

3.1 Related Work
This section provides a short survey of real-time analysis techniques proposed in literature, in
order to establish a common terminology and provide additional background to the challenge
activities described at the top of this section.

3.1.1 Analysis of Performance Bounds
If shared resources in a system are required to provide a deterministic level of service, as
defined in Section 1, then the performance of workloads executing on such a system can be
found using various known methods, including static analysis, by measurement under worst-
case conditions, or by means of formal tools. A static analysis attempts to estimate WCET
without actually running the full software on the system. This approach can quickly estimate
WCET, however requires the software to be profiled carefully and the traffic simulated on
the system in order to come up with an accurate estimate [3, 12]. Another way of estimating
performance bounds is by empirical means, i.e., by actually measuring it while running the
mixed-criticality tasks on the system [20, 4]. This analysis requires due diligence during
run-time for co-locating tasks that result in the highest amount of interference during their
execution. We encourage the participants to make use of any tools they see best fit for this
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challenge and/or they feel most comfortable with. We also encourage the participants to
explore more than one technique or even a hybrid approach and to make recommendations
based on the achieved results.

3.1.2 Data-flow Analysis

The data-flow model is simple and assumes that a workload can be broken into a series of
tasks performed by or with the support of identifiable resources, that co-operate to achieve
the higher-level objectives of such a workload in a non-trivial way. Workloads might be
dependent on external events or inputs. When this applies, the mapping of tasks to specific
resources might need to be determined dynamically at run-time. For tasks that can be
executed in parallel (no immediate dependency between the tasks), assigning priorities is
not a trivial task. Literature has demonstrated that a classic approach of assigning higher
priorities based on the criticality levels and using them during scheduling decisions may
result in poor system utilization [1, 19]. Novel run-time robustness mechanisms implemented
in the OS/hypervisor layers that support graceful degradation of non-critical tasks partly
addresses the system utilization problem [2, 1].

3.1.3 Analysis of Resource Sharing Policies

Shared resources contribute to the execution of a workload by providing one or more services
to it. Some form of arbitration, either implicit or explicit, will regulate how users of resources
are granted access to those, either in time or space (as in space of the resource) or both. If a
resource is shared in time, for it to provide performance isolation, it must hold true that
the service it provides to one of its users must be bounded without requiring knowledge of
previously serviced users in time. If a resource is shared concurrently (in space), for it to
provide performance isolation, it must hold true that the service it provides to one of its
users must be bounded without requiring knowledge of concurrently serviced users.

Several techniques have been proposed in literature, e.g., restricting cache line evictions,
cache coloring and partitioning, and also regulating memory traffic generated by a particular
task in order to reduce the risk of interference between multiple workloads [21, 11, 8]. More
recently, dedicated hardware support was added using FPGAs in order to strictly isolate the
cores and avoid contention on shared resources such as last-level caches [6]. The focus on
literature so far has been heavily around shared memory and bandwidth contention. We
envisage that in future systems the problem will start surfacing around domain specific
accelerators, that are usually shared across different tasks. This new class of accelerators
comes with a different set of constraints due to the limited support for virtualization and
preemption of tasks.

3.1.4 Monitoring of Shared Resource Interference

Monitoring shared resources provides insights into what causes contention on shared system
resources and enables to implement contention mitigation strategies in the system. Upon
determining the activities that make up a workload, we ask the participants how to implement
or leverage a monitoring infrastructure that can enable observation of the shared resources
involved in the computation of the system workloads. In detail, a monitor infrastructure
should allow to determine the utilization of shared resources by their users to enable the
setup and enforcement of service level agreements.

ECRTS 2022
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4 Evaluation Platforms

While the challenge activities can be addressed with different approaches and tools, we
propose two evaluation platforms to be considered by the participants: either a virtual
platform or a physical hardware development kit. It will be up to the participants to assess
their preferred evaluation strategy for any of the activities. We will provide a comprehensive
degree of support for the virtual platform approach, including a software starter kit to serve
as baseline for the challenge, in order to streamline platform bring-up. Support for the
hardware development kit will instead be provided on a best-effort basis.

Section 5 describes in more details what will be supplied to the participants over the
course of the challenge.

Some details of the proposed platforms are reported below:

Virtual platform: gem5 system-level simulator and AMBA Adaptive Traffic Profiles
(ATP)

Link (gem5): https://www.gem5.org/
Link (ATP): https://github.com/ARM-software/ATP-Engine
Link (gem5 and AMBA ATP): https://community.arm.com/arm-community-blogs/
b/soc-design-and-simulation-blog/posts/amba-atp-engine-3-1-
programmable-traffic-generation/

Hardware development kit: Jetson Xavier NX
Link: https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/
jetson-xavier-nx/

As the selected use case will require compute intensive tasks, we propose the adoption
of domain-specific accelerators to accelerate parts of it, as suggested in Figure 2. Ideally,
we would like to enable modelling the full behaviour of the accelerators on both evaluation
platforms. However, depending on the complexity of that approach, we will consider
alternatives based on abstracting away the behaviour of the accelerator and other hardware
components using traffic generators or approximate/synthetic models.

4.1 Virtual Platform
4.1.1 gem5
gem5 [9] is a modular event-driven simulation platform for computer architecture research,
encompassing system-level architecture as well as processor micro-architecture modelling.
It is widely used in both academia and industry for rapid early prototyping and/or design
space exploration, and it has shown to be an effective tool for providing insights into the
impact of system-level interactions when running complex workloads.

Its comprehensive model library (memories, IO devices, etc.) and the architectural support
of Armv8-A features (up to Armv8.5-A) allows it to run unmodified complex workloads like
Android and boot OSes from UEFI firmware implementations like TFA + u-boot / edkII [7].

Different CPU models, providing different degrees of abstractions and modelling fidelity,
are provided in gem5, including two simple single-cycle-per-instruction models (AtomicCPU,
TimingCPU ), an in-order pipelined model (MinorCPU ), and an out-of-order model (O3CPU ).
A memory system can be flexibly built out of caches and crossbars or through the Ruby
framework, which provides even more flexible memory system modelling.

gem5 is conceptually a Python library written in C++: the simulated platform is
configured in Python (configuration stage), but the instantiated Python models have a
matching C++ implementation that gets executed at a later stage (execution stage), once

https://www.gem5.org/
https://github.com/ARM-software/ATP-Engine
https://community.arm.com/arm-community-blogs/b/soc-design-and-simulation-blog/posts/amba-atp-engine-3-1-programmable-traffic-generation/
https://community.arm.com/arm-community-blogs/b/soc-design-and-simulation-blog/posts/amba-atp-engine-3-1-programmable-traffic-generation/
https://community.arm.com/arm-community-blogs/b/soc-design-and-simulation-blog/posts/amba-atp-engine-3-1-programmable-traffic-generation/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-xavier-nx/
https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/jetson-xavier-nx/
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Figure 4 An auto-generated diagram of a system modelled with gem5, including various processing
elements, memories and devices.

the simulation is started. This allows to get the best of both worlds: the agility for
prototyping and configuring a virtual system in Python, and the execution speed of C++
compiled code, which is crucial to reduce the simulation time for complex systems. Some
example configuration platforms are provided within the repository itself (see scripts in
configs/example/arm/). Those are meant to be starting points for building more complex
configurations, and computer architects are expected to extend or adapt them to closely
match the system under study.

4.1.2 AMBA Adaptive Traffic Profiles
The AMBA Adaptive Traffic Profiles (ATP) is a definition of the transaction characteristics
of an hardware interface. It includes information on the types of transactions and the timing
characteristics of those transactions. Traffic profiles can be used during system simulation to
represent the behavior of a component. The simulation uses a traffic profile definition to
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Figure 5 An example of a simple .atp file

determine when a particular transaction should be issued, injecting synthetic traffic into the
system under study. The AMBA ATP Engine is the open source implementation of the ATP
specification. Its backbone is a lightweight FIFO model which injects transactions according
to the provided traffic profile (specified through an .atp file).

The APT Engine is plugged to gem5 (hosted solution) through an in-tree adaptor (see
Figure 6) and this requires to build the ATP Engine as a gem5 loadable module (please
follow the ATP Engine README.md guide). It is otherwise possible to build gem5 and ATP
together with the meta-atp layer (link: https://git.yoctoproject.org/meta-arm/tree/
meta-atp/README.md) from the meta-arm repository for Yocto.

Figure 6 How to model heterogeneous systems by connecting the ATP engine to gem5

https://git.yoctoproject.org/meta-arm/tree/meta-atp/README.md
https://git.yoctoproject.org/meta-arm/tree/meta-atp/README.md
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These items should be enough to build an evaluation platform using traffic profiles for
the computing elements of the system. We won’t provide functional NPU/GPU models; if
challenge participants will be willing to add functional models of such accelerators to the
starter kit simulation platform, prior work on integrating gem5 with approximated models
[17, 15] can be used to facilitate the platform bring-up.

4.2 Hardware Development Kit
The hardware platform suggested as alternative to the virtual platform is the Jetson Xavier
NX, whose SoC incorporates a 6-core NVIDIA Carmel Armv8.2 64-bit CPU, 384-core NVIDIA
Volta GPU with 48 Tensor Cores, and two NVIDIA Deep Learning Accelerator (NVDLA)
engines. The latter processing elements could be used to accelerate selected software tasks
as specified in Figure 2.

5 Resources

This section provides a list of the resources, including tools, input data sets and profiling
data, that will be provided for the challenge, and also the recommended open source
implementations of the main software modules of the application in the considered case
study.

5.1 Virtual Platform Starter Kit
For the virtual platform solution, we will supply:

gem5 starter kit, including a specific system configuration (detailing platform composition).
AMBA ATP profiles: traffic profiles for all tasks.

5.2 Hardware Development Starter Kit
For the hardware development kit, we will supply:

Software tasks source code: source code for most of the CPU tasks; synthetic “busy-cycle”
kernels for the remaining ones (e.g., aggressor tasks).

5.3 Recommended Open Source Software Implementations
OV2SLAM:
Implementation of OV2SLAM available on GitHub at the following URL: https://
github.com/ov2slam/ov2slam. This particular implementation targets CPUs, it lever-
ages multi-threading, and it is written in portable modern C++; it has a few dependencies
on widely available libraries and middle-ware (e.g., ROS [18]), which are described at the
same URL.
Hopenet:
Hopenet is available on GitHub at the following URL: https://github.com/natanielruiz/
deep-head-pose. For this case study, we would recommend starting from Hopenet-lite,
which is a lightweight version of Hopenet based on the simpler ShuffleNet V2 [10]
network. The source code for Hopenet-lite is available on GitHub at the following URL:
https://github.com/OverEuro/deep-head-pose-lite.

ECRTS 2022
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6 Conclusions

This document has described a high-performance real-time case study based on an augmented
reality head-up display application from the automotive market. This application is a
motivating example for the industrial challenge that will be kicked off at the ECRTS 2022
conference. An initial set of questions to prospective challenge participants has been presented,
together with initial directions on how to carry out the activities on an Arm-based evaluation
platform. Based on the experience from the past editions of the industrial challenge, we
expect the definition of the challenge itself to evolve, based on further refinements of the
use case and on feedback from the participants. The landing web page for the challenge
(https://www.ecrts.org/arm-industrial-challenge/) will provide the latest information
and it will be used to share deliverables with the real-time research community, including
tools, input sets, profiling data, and pointers to reference software implementations. The
#industrial-challenge Discord channel will be used to address questions from the challenge
participants and the research community. We encourage everyone to reach out through
the Discord channel or via email directly to the authors for clarifications, feedback and
comments.
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