
ACETONE: Predictable Programming Framework
for ML Applications in Safety-Critical Systems
Iryna De Albuquerque Silva !

ONERA, Toulouse, France

Thomas Carle !

IRIT – Univ Toulouse 3 – CNRS, France

Adrien Gauffriau !

Airbus, Toulouse, France

Claire Pagetti !

ONERA, Toulouse, France

Abstract
Machine learning applications have been gaining considerable attention in the field of safety-critical
systems. Nonetheless, there is up to now no accepted development process that reaches classical safety
confidence levels. This is the reason why we have developed a generic programming framework called
ACETONE that is compliant with safety objectives (including traceability and WCET computation)
for machine learning. More practically, the framework generates C code from a detailed description
of off-line trained feed-forward deep neural networks that preserves the semantics of the original
trained model and for which the WCET can be assessed with OTAWA. We have compared our
results with Keras2c and uTVM with static runtime on a realistic set of benchmarks.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Software notations and tools

Keywords and phrases Real-time safety-critical systems, Worst Case Execution Time analysis,
Artificial Neural Networks implementation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.3

Supplementary Material Software (ECRTS 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.1.6

Funding This project received funding from the French “Investing for the Future – PIA3” program
within the Artificial and Natural Intelligence Toulouse Institute (ANITI).

1 Introduction

The use of artificial intelligence approaches is already of vital importance in many research
areas. In particular, when embedded in aircraft systems, intelligent algorithms could help in
tasks such as navigation, predictive maintenance and air traffic control, improving safety and
saving environmental resources. Nonetheless, not much progress has been made in embedding
machine learning solutions in safety-critical systems as most of those applications do not
reach classical safety confidence levels and are not implemented with accepted development
process [2, 5]. The scope of this work is the safe real-time implementation of neural networks
on embedded platforms.

Context. We focus on safety-critical domains and in particular on aeronautics that is subject
to certification. The question of how to safely and reliably implement a neural network on an
adequate hardware is of vital importance. Indeed, certification requirements, in particular
those of the DO 178-C [14]1, impose strong guarantees on the quality of the code and expect
the designer to:

1 Classical guidance for the implementation process of the software items

C
o
n
si
st

en
t *
Complete * W

ell D
o
cu
m
ented * Easy t

o R

eu
se
 *

 *
 Evaluated

 *
 E
C
R
T
S
 *

 Ar
tifact *

 A
E

© Iryna De Albuquerque Silva, Thomas Carle, Adrien Gauffriau, and Claire Pagetti;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 3; pp. 3:1–3:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:iryna.de_albuquerque_silva@onera.fr
https://orcid.org/0000-0003-2603-7947
mailto:thomas.carle@irit.fr
https://orcid.org/0000-0002-1411-1030
mailto:adrien.gauffriau@airbus.com
mailto:claire.pagetti@onera.fr
https://orcid.org/0000-0001-7265-1839
https://doi.org/10.4230/LIPIcs.ECRTS.2022.3
https://doi.org/10.4230/DARTS.8.1.6
https://doi.org/10.4230/DARTS.8.1.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Predictable Code for Machine Learning Applications

ensure traceability between the requirements and the (source) code;
compute the WCET (Worst Case Execution Time) [39] for each piece of code;
run intensive testing to verify the compliance of the implementation to the requirements.
This includes unit tests to verify both that the executable provides the intended function
and there is no hidden unintended function (by activating all the branches of the code).

The purpose is thus to provide a programming framework compliant with these objectives
for machine learning. This work is restricted to off-line trained feed-forward deep neural
networks (referred to simply as neural networks or DNN subsequently). The off-line design of
such neural networks is done by defining the structure (that is the number and the type of
layers), choosing the training data set and using a learning framework such as Tensorflow [1]
or PyTorch [28]. The result of the design is called the inference model: it comprises a
neural network with its parameters (e.g. weights, biases, activation functions or kernels).
The implementation – the part we focus on – consists in coding the inference model in an
adequate programming language and porting the code on the target hardware.

Contributions. The first challenge brought by the implementation is the semantic preserva-
tion: the reproducibility of the behavior observed when executing the inference model within
the training tool on the target hardware. Thus our first contribution (see section 2) is to
formally define the semantics of DNN (by extending and formalizing existing works of the
literature) and explaining the challenges brought by the current frameworks. Indeed, the
training tools such as Tensorflow/Keras or PyTorch do not encode the basic operations,
such as convolutions (and thus matrices operations) in the same manner.

The second challenge is predictability: the capacity to assess the worst-case execution
time (WCET) of a sequential code. In the ML literature, most of the implementations
are done on GPUs or TPUs with a runtime engine such as Tensorflow that interprets
the computation graph, i.e., a graph describing the mathematical structure of the neural
network. Such an interpreter uses dynamic memory and scheduling allocation and as we
focus on safety-critical domain – and more specifically avionics –, such an approach is not
practical for two reasons. First, the hardware targets that are compatible with certification
are not those mentioned earlier. We thus focus on general purpose multi-core commercial
off-the-shelf (COTS) hardware such as the T1042 from NXP, the Coolidge from Kalray [18]
or the keystone from Texas Instrument [37] (used in the experiments). Second, the programs,
including the application, the RTOS and the runtime, must be predictable. There are some
initiatives to make such runtime predictable such as eIQ and KaNN. However, there is still
a large amount of work and proof to show the capability to compute a WCET for these
tools. This is the reason why we target a more classical static approach which consists in
generating an equivalent C code to execute the model (no interpretation) such as proposed
in [8]. Our second contribution is the development of ACETONE (Avionics C code generator
for Neural NEtworks), a framework that generates a real-time C code semantically equivalent
to the inference model (see section 3) and that fits the aeronautic requirements. We made a
particular effort on the software architecture to make the framework:

modular : it is very simple to add new DNN structures, new types of layers or new
refinement of the existing ones.
very easy to use: a person non familiar with our framework can very quickly generate
their C code and port them on their target;
extremely traceable: looking at the generated C code, it is humanly possible to trace back
to the original exported DNN model, which is an expected property from the DO-178C;

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:3

predictable: we used a static WCET analyzer of the literature, OTAWA [4] developed at
the University of Toulouse, to assess the WCET of the code. This means that the C code
is expected to run sequentially on a single core (no parallelization targeted in this paper),
all the memory allocations are static and the schedule (here the sequence of executions)
is also static. The compilation of the C code to a binary must also use the flag -O0 (no
compiler optimization). These restrictions are important to keep in mind to understand
the philosophy of the code generation.

The last contribution is a thorough evaluation of our framework together with a comparison
with state of the art C code generator frameworks, namely Keras2c [10] and uTVM with static
C runtime [35]. Section 4 details the methodology: we have selected a set of representative
benchmarks and identified a set of criteria to assess the quality of a code (in accordance with
the DO-178C objectives listed above). Section 5 gives the results of the experiments. We were
able to assess most of our criteria for all the benchmarks and frameworks. In particular, we
have ported the binary on an arm Cortex-A15 of the keystone [37] to compare the measured
and worst-case execution times. Overall, in terms of performance, we are comparable to and
even slightly better than the other frameworks. This stems, for uTVM, from the restrictions
needed for predictability and the compilation with -O0. In that sense, our implementations
are optimal with respect to our criteria.

2 Reminder on Deep Neural Networks

We focus on the inference of off-line trained feed-forward Deep Neural Networks (DNN).
More precisely, we consider convolutional neural networks (CNN) and multi-perceptron (or
fully-connected) neural networks.

2.1 Functions performed by DNN
There are multiple ways to define DNNs: directed graphs, computational graphs or simply
the mathematical functions transforming the input into the output. The latter is the way we
propose to explain the computations needed to be done by the C code. The input of those
functions can be seen as a multi-dimensional vector also called tensor. Subsequently, we will
only consider 1D-, 2D- and 3D-tensors but to save space, we only provide definitions for 3D.
We only consider inference with one input (no batch).

▶ Definition 1 (Tensor). A 3D-tensor T is represented by its size (nh, nw, nc) where nh is
the height, nw the width and nc the number of channels (or feature maps). We denote by
Tx1,x2,x3 the value of T for the indices x1, x2, x3. We denote by T [s11 : s21, ..., s1k : s2k] the
slice of T of all the values Ts11+x1,...,s1k+xk

with i ∈ [1, k] and xi ∈ [1, s2i − s1i].

▶ Definition 2 (Feed-forward Deep Neural Network). A feed-forward neural network N =<

l1, . . . , ln > is a succession of layers li taking as input the output of the previous layer li−1.
The first layer takes the input tensor. A layer can be of type(l) ∈ {act, bias, padd, conv, pool,
batch norm, flat, dense} where act is an activation, padd is a padding, bias is a bias adding,
conv is a convolution, pool is a pooling, batch norm is normalization, flat is flattening and
dense is a perceptron. A layer comes with a set of parameters (e.g. weights or stride).

▶ Definition 3 (Function associated to a DNN). The function fN computed by a DNN N =<

l1, . . . , ln > is the composition of the functions computed by each layer fN = fln ◦ . . . ◦ fl1 .

The semantics of each function is given in [38]. We give the definition, with mathematical
equations, of the main layers used in the use cases depicted in section 4.1.

ECRTS 2022

3:4 Predictable Code for Machine Learning Applications

▶ Definition 4 (Activation function). Let f : R −→ R be a function (e.g. ReLu, sigmoid).
The activation function Af applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor
O = Af (I) of size (nh, nw, nc) defined by Ox,y,z = f(Ix,y,z) for all x ≤ nh, y ≤ nw and
z ≤ nc. We could also write Ox,y,z = map(I, f).

▶ Definition 5 (Bias layer associated function). Let B be a 3D-tensor of size (nh, nw, nc). The
bias function BB applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor O = BB(I)
of size (nh, nw, nc) defined by Ox,y,z = Ix,y,z + Bx,y,z for all x ≤ nh, y ≤ nw and z ≤ nc.

▶ Definition 6 (Padding layer associated function). Let p = (pt, pb, pl, pr) be a 4-tuple of
integers representing the padding to be applied on each border of a 3D-tensor. The padding
function Pp applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor O = Pp(I) of
size (oh, ow, oc) with oh = nh + pt + pb, ow = nw + pl + pr and oc = nc such that

Ox,y,z =
{

0 if x ≤ pt or x > nh + pt or y ≤ pl or y > nw + pl

Ix−pt,y−pl,z otherwise

▶ Definition 7 (2D-convolution associated function). Let K be a vector of 3D-tensors
[K1, K2, . . ., Knb_kernel] representing the kernels of the convolution. Each kernel Ki is of size
(fh, fw, fc). Let s = (sh, sw) be the stride parameter with sh and sw two integers. The 2D-
convolution2 CK,s applied to a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor O = CK,s(I)
of size (oh, ow, oc) with oh =

⌊
nh−fh

sh
+ 1

⌋
, ow =

⌊
nw−fw

sw
+ 1

⌋
and oc = nb_kernel. We have

Ox,y,z =
∑fh

i=1
∑fw

j=1
∑fc

m=1 Kz
i,j,m ·Ish·(x−1)+i,sw·(y−1)+j,m for all x ≤ oh, y ≤ ow and z ≤ oc.

Note that also we must have fc = nc thus, convolutions are often applied on 3D-tensors on
which padding has been applied first to fit the sizes. See definition 14.

▶ Definition 8 (Pooling layer associated function). Let s = (sh, sw) be the stride parameters,
let k = (kh, kw) be the height and width of the window and let f : Rkh.kw −→ R be a function
(e.g. max or average). The pooling applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-
tensor O = Poolk,s,f (I) of size (oh, ow, oc) with oh =

⌊
nh−kh

sh
+ 1

⌋
, ow =

⌊
nw−kw

sw
+ 1

⌋
and

oc = nc with Ox,y,z = f(I[sh·(x−1)+1 : sh·(x−1)+kh+1][sw·(y−1)+1 : sw·(y−1)+kw+1][z]).

▶ Definition 9 (Batch norm layer associated function). Let γ be 1D-tensor of size nc be the
scale, let β be 1D-tensor of size nc be the offset, let µ be 1D-tensor of size nc be the mean (on
the batch fixed during the training), let V be 1D-tensor of size nc be the variance (on the batch
fixed during the training), let ϵ be a float used to ensure no division per 0. The batch norm
applied on a 3D-tensor I of size (nh, nw, nc) outputs a 3D-tensor O = BN γ,β,µ,σ,ϵ(I) of size
(nh, nw, nc) with Ox,y,z = γz√

Vz+ϵ
· Ix,y,z +

(
βz − µz√

Vz+ϵ

)
. We often denote by αz = γz√

Vz+ϵ

and Bz =
(

βz − µz·γz√
Vz+ϵ

)
, so that Ox,y,z = αz · Ix,y,z + Bz.

▶ Definition 10 (Flattening layer). The flattening layer applied to a 3D-tensor I of size
(nh, nw, nc) outputs the 1D-tensor O = F lat(I) of size no = nh × nw × nc such that
Ox = I

x mod nw,
⌊

x mod (nh·nw)
nw

⌋
,
⌊

x
nh·nw

⌋.

▶ Definition 11 (Dense layer). Let W be a 2D-tensor of size (no, ni) (for the weights) and B

be a 1D-tensor of size no (for the biases). The dense layer applied to a 1D-tensor I of size ni

outputs the 1D-tensor of size no O = Dense(I) = W · I + B, i.e. Ox =
∑ni

k=1 Wx,k · Ik + Bx.

2 There may be an additional parameter, that is the dilatation supported by the code generation and not
detailed here.

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:5

Then, we can define easily the function associated to a DNN from those basic functions.

▶ Example 12 (Multi-perceptron / fully-connected neural network). A fully-connected neural
network is a succession of dense and activation layers. The function associated to the DNN
of figure 1 is N = fl3 ◦ fl2 ◦ fl1 = A3(W3 · (A2(W2 · (A1(W1 · I + B1)) + B2)) + B3). Its
structure corresponds to 2 hidden layers with 3 neurons each, 2 inputs and 1 output. Short
notation: (2, 3, 3).

x1

x2

y1

Figure 1 Fully-connected NN.

conv1

28x28x1

6

pool1

24x24x6

6

conv2

12x12x6

16

8x8x16

pool2

16

4x4x6 96

flat

120 84

dense1 2 3

10

Figure 2 LeNet-5 CNN.

▶ Example 13 (LeNet-5). The LeNet-5 [23] model is the basic CNN developed for handwritten
digits images recognition. We used the pre-trained LeNet-5 from Keras which is shown in
figure 2. Such a graphical representation is classical to highlight the layers and the number
of feature maps.

The size of the input / output tensors are shown on the figure. The first 2D-convolution
conv1 takes inputs of size 28 × 28 × 1, is composed of 6 kernels Ki of size 5 × 5 × 1 and of a
stride s = (1, 1). The activation function tanh is applied to the outputs. The first pooling
layer pool1 is an average pooling with stride s = (2, 2) and window k = (2, 2). The second
2D-convolution conv2 is composed of 16 kernels Ki of size 5 × 5 × 6 and of a stride s = (1, 1).
The activation function tanh is applied to the outputs. The second pooling layer pool2 is
an average pooling with stride s = (2, 2) and window k = (2, 2). The 3D-tensor of size
6 × 6 × 4 is flattened in a 1D-tensor of size 96. There are three dense layers with respectively
(ni, no) = (96, 120), (ni, no) = (120, 84) and (ni, no) = (84, 10). The two first dense layers
apply the activation function tanh and the last one a softmax. Thus the function associated
to this LeNet-5 is: N = Asoftmax ◦ fdense3 ◦ Atanh ◦ fdense2 ◦ Atanh ◦ fdense1 ◦ fflat ◦ fpool2 ◦
Atanh ◦ fconv2 ◦ fpool1 ◦ Atanh ◦ fconv1.

2.2 Semantics-preserving model transformation
At this stage, it is acceptable to transform the DNN model as long as the semantics is
preserved. This can be interesting when it yields an improvement of the implementation.
We list here some transformations worth to be made before coding.

▶ Definition 14 (Extended 2D-convolution layers). In the literature, convolutions usually
integrate other parameters than those listed in definition 7. Indeed, a convolution is often
defined together with the padding, the activation function and even in some cases with a bias.
We thus denote by Cp,K,s,B,f = Af ◦ BB ◦ CK,s ◦ Pp (all combinations by removing a function
work). Note that this is common to consider bias B in convolution where Bx1,y1,z = Bx2,y2,z

with x1 ̸= x2 and y1 ̸= y2.

▶ Property 1 (Well-balanced 2D-convolution layers). It is usual to have the output height and
width equal to the input height and width, i.e. oh = nh and ow = nw. In that case, we must
have nh = ⌊ nh+pt+pb−fh

sh
+ 1⌋ and nw = ⌊ nw+pl+pr−fw

sw
+ 1⌋. The padding should also satisfy

pt + pb − fh = −1 and pl + pr − fw = −1.

ECRTS 2022

3:6 Predictable Code for Machine Learning Applications

▶ Property 2 (Portability issue between training frameworks). We remark that for a given
kernel size, several solutions may exist to the equations of property 1. For instance, with
a kernel size of (5, 5) and stride of 1, 4 different paddings for each dimension satisfy the
equations. Thus classical frameworks like Tensorflow or PyTorch have different strategies
(thus imply different semantics) when implementing a convolution that preserves the input
size for height and width.

▶ Property 3 (Max pooling and ReLu activation layers). Applying a ReLu activation layer
before a max pooling layer is semantically equivalent to applying the ReLu activation layer
after the max pooling layer. However, the number of operations is reduced when applying the
ReLu activation after if the stride s = (sh, sw) of the pooling satisfies sh > 1 or sw > 1.

Proof. Let us assume that the input tensor I is of size (nh, nw, nc) and that we do the ReLu
before the pooling. Then we will do Ox,y,z = max(ReLu(I[sh.(x − 1) + 1 : sh.(x − 1) + kh +
1][sw.(y−1)+1 : sw.(y−1)+kw +1][z]))) thus ReLu will be applied nh×nw ×nc times. On the
contrary, if the ReLu is done after the pooling, we will do Ox,y,z = ReLu(max(I[sh.(x−1)+1 :
sh.(x − 1) + kh + 1][sw.(y − 1) + 1 : sw.(y − 1) + kw + 1][z]))) thus the ReLu will be applied
oh × ow × oc times. Note also that max(max(xi), 0) = max(max((xi, 0)), thus the semantics
is preserved. ◀

▶ Property 4 (Merging a batch norm with a convolution). Applying a batch norm layer after
a convolution layer is semantically equivalent to applying a single convolution with modified
kernels and bias. This reduces the number of operations and saves memory bandwidth required
for storing intermediate tensors.

Proof. Let suppose that the input tensor I is of size (nh, nw, nc) and that we have a
convolution layer Cp,K,s,B,f followed by a batch-norm layer BN α,B. The output tensor is
O = BN α,B(Cp,K,s,B,f (I)).

Ox,y,z = f
(

αz.
(∑fh

i=1
∑fw

j=1
∑fc

m=1 Kz
i,j,m.Ish·(x−1)+i,sh·(y−1)+j,m + Bx,y,z

)
+ Bz

)
= f

(∑fh

i=1
∑fw

j=1
∑fc

m=1 αz.Kz
i,j,m.Ish·(x−1)+i,sh·(y−1)+j,m + α.Bx,y,z + Bz

)
This is the equation of a convolution C′

p,α.K,s,α.B+B,f ◀

2.3 Model description for the code generation
Once a model has been trained, validated and possibly optimized with semantics-preserving
transformations, its detailed description can be exported from the learning framework. As
we want to generate the inference associated code, we assume the DNN representation to be
cleaned from any irrelevant training-related feature (e.g. loss). A first challenge brought by
the implementation is the semantic preservation: the reproducibility of the behavior observed
at the end of the design when executing the inference model within the training tool and on
the hardware target. Even though the semantics is clear in the literature, the training tools
do not encode the (default) operations3 in the same manner. This is particularly true for
convolutions, where some implementations start from the top left and some from the bottom
right of the matrix, or compute the padding in a different way. This has been observed
in [24] and could be reproduced by experimenting with the frameworks. There are lots of
works tackling the interoperability among frameworks, by proposing conversion tools [24] or

3 when not specifying in detail the parameters, which could be very tricky

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:7

defining open source formats such as protobuf [15], onnx [3] or nnef [38] (Neural Network
Exchange Format). A description must contain all the necessary information to encode the
same behaviour: this includes the number of layers, the type of every layer, the parameters of
each layer including the activation function specification and anything required to reproduce
the behaviour. So far, nnef is the most adequate format as it contains the necessary elements
to reconstruct most of the semantics of a model. We currently use a degraded version of
nnef in json to allow full text description (and not binary) to help the debugging but as
future work we will comply with the nnef.

3 C back-end

We have developed a Python prototype to generate C code. We do not detail the front-end
which first imports the json description file, focusing instead on the back-end. We reuse the
semantics of definition 3 considering every layer as an independent programming function
for the code generation. The forward-pass for inference then consists in calling each layer
function in the correct order with the accurate parameters and inputs.

3.1 Software architecture
The C back-end is composed of a library of functions and other model-dependent files. This
library is, to a certain extent, hard-coded as the bodies of functions needed for inference are
defined in the Python prototype and the corresponding C files will be generated whenever
needed. The model-dependent files refer to the weights, biases and auxiliary parameters that
are also written as C files.

NeuralNetwork

+layers : list of Layers
+user option : list

+load model()
+generate inference code()
+forward pass()

V1

+layers : list of Layers
+ user option : list

+generate inference code()
+forward pass()

V2

+layers : list of Layers
+user option : list

+generate inference code()
+forward pass()

V3

+layers : list
+layer fusion : bool

+generate inference code()
+forward pass()

Figure 3 Software architecture
– several versions.

Layers

+idx : int

+generate inference code()
+compute layer()

Dense

+weights : Numeric
+biases : Numeric
+input size : int
+output size : int

+generate inference
code(version)
+compute layer()

Conv2D

+nb kernels : int
+kernels size : int,int,int
+weights : Numeric
+stride : int,int
+input size: int,int,int

+generate inference
code(version)
+compute layer()

Pool

+stride : int,int
+window : int,int
+input size: int,int,int

+generate inference
code(version)
+compute layer()

MaxPool

+generate inference
code(version)
+compute layer()

AvgPool

+generate inference
code(version)
+compute layer()

Others

Figure 4 Software architecture of layers.

Figure 3 shows the software architecture as an uml diagram. There are several compilation
strategies named V1, V2 and V3. We decided to proceed like that in order to allow a design
space exploration (DSE): our goal was to understand what is the most suited approach for a
given model and hardware. The main class NeuralNetworks contains two variables: layers that
contains the list of Layers (another class defined hereafter) and user_option that captures
the options chosen by the user for the generation, such as applying semantics-preserving
transformations or selecting the version. That class defines three methods (in addition
to the classical init): load_model which imports the json DNN description; forward_pass

ECRTS 2022

3:8 Predictable Code for Machine Learning Applications

that concatenates the layers to encode the DNN function as the composition of layers and
generate_inference_code which generates the C code. All the classes V1, V2 and V3 inherit
from the NeuralNetworks class.

Figure 4 shows the Layers class which is inherited by several sub-classes, one per type
of layer. The main class stores the idx of the layer and basically defines two abstract
methods. The first is generate_inference_code, that implements the semantics of the layer
in C language, and the second is compute_layer, that actually executes the functions of the
layer, mainly for debugging and evaluation.

For each type of layer, we define the parameters (e.g. the weights and biases for dense)
as variables and the methods (generate_inference_code and compute_layer) are refined. We
did not detail all the layers (others grouping the missing ones).

The prototype supports all the layers defined in section 2.1 and the ReLu, Hyperbolic
Tangent, Sigmoid and Linear activation functions.

3.2 Version 1 – generic inference function

A layer is defined as a data type, a struct statement, whose fields encode the parameters
(e.g., type or input size). Every layer has the same definition and their particular parameters
will be defined as constants in a header file. The first hidden layer of the fully-connected
neural network of example 12 is a Dense layer depicted in listing 1.

Listing 1 A Dense layer – see Definition 11.
double biases_Dense_01 [3] = { 0 . 0 7 5 4 3 8 0 5 9 8 6 6 4 2 8 3 8 , 0 . 0 2 5 2 0 0 5 7 9 3 1 5 4 2 3 9 6 5 , 0 . 0 3 7 0 4 4 9 7 9 6 3 1 9 0 0 7 9 } ;

. . .
struct Layer net [nb_layers] {

[1] = {
. l a y e r _ t y p e = Dense ,
. l a y e r _ s i z e = l 1 _ s i z e , / / o u t p u t _ s i z e
. w e i g h t s = weights_Dense_01 ,
. b i a s e s = biases_Dense_01 ,
. a c t v _ f u n c t i o n = r e l u ,
. pad = 0x0 ,
. . . } , . . . } ;

layer_type and actv_function are function pointers to the aforementioned functions of
the C library. The other fields are pointers, mostly to arrays which are also written to C
source files. In the example, the biases field points to a static double array of size 3 shown in
the listing. Unnecessary fields point to null. The whole network is treated as an array, an
indexed linear sequence, of these structures.

Afterwards, an inference function is defined (see listing 2). It is a generic function, i.e.
identical for every DNN (whether fully-connected or not), responsible for connecting the
layers. It simply consists in 2 nested for loops (one ranging over the number of layers and
the second ranging over the number of operations to be done for the current layer).

Listing 2 Inference – see Definition 3.
f o r (i n t i =1; i < nb_layers ; ++i) {

net [i] . l a y e r _ t y p e (i , output_pre , output_cur) ;
f o r (i n t j = 0 ; j < net [i] . l a y e r _ s i z e ; ++j){

output_pre [j] = output_cur [j] ; }}

This logic of having generic definitions for the layers functions leads to a helpful simplicity
in terms of execution and code size. However, using function pointers leads the WCET
analysis tool to consider that each call made in the loop is a call to the most expensive
function (or to the same function in worst context), which can be very pessimistic.

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:9

3.3 Version 2 – inlined inference function
The second version keeps the definition and declaration of layers as was done for Version 1.
What changed is the inference function which is optimized by in-lining the programming
functions for layers and activations, i.e., directly writing their body to the C file. The only
parameters stored in a header C file are the weights and biases, since loops bounds are now
hard-coded, meaning that the inference function is no longer generic. The Listing 3 gives
part of the inference function for the first dense layer of example 12.

Listing 3 Dense layer in-lined code of the inference function.
f o r (i n t i = 0 ; i < 3 ; ++i) { / / D e n s e _ 1

d o t p r o d u c t = 0 ;
f o r (i n t j = 0 ; j < 2 ; ++j) {

d o t p r o d u c t += output_pre [j] ∗ weights_Dense_01 [(i + 3∗ j)] ; }
d o t p r o d u c t += biases_Dense_01 [i] ;
output_cur [i] = d o t p r o d u c t > 0 ? d o t p r o d u c t : 0 ; } . . .

The straightforward effect of this optimization is improving time performance since we
eliminate the function-call and struct parsing overheads, however it comes at the cost of
using more instruction space, as we duplicate code, producing larger source files, which can
be prohibitive in an embedded environment. Nonetheless, OTAWA produces more precise
estimation for the WCET since we are able to provide the correct context in which layers
are executed with no overestimation for loop bounds.

3.4 Version 3 – unrolled inference function
The third version is completely different and we reuse a philosophy of full in-lining (with
loop unrolling) that can be seen à la Scade [9]. In particular, there is no declaration of layers
and parameters as was done in listing 1. Listing 4 presents the beginning of the instructions
to deal with the first dense layer of example 12.

Listing 4 Dense layer code with in-lining and loop-unrolling.
d o t p r o d u c t = 0 ; / / D e n s e _ 1
d o t p r o d u c t += nn_input [0] ∗ −1.0743303298950195;
d o t p r o d u c t += nn_input [1] ∗ 0 . 8 1 4 0 4 0 3 0 3 2 3 0 2 8 5 6 ;
d o t p r o d u c t += 0 . 0 7 5 4 3 8 0 5 9 8 6 6 4 2 8 3 8 ;
output_cur [0] = d o t p r o d u c t > 0 ? d o t p r o d u c t : 0 ;
d o t p r o d u c t = 0 ;
d o t p r o d u c t += nn_input [0] ∗ −0.18220123648643494;
d o t p r o d u c t += nn_input [1] ∗ 0 . 7 0 3 6 4 9 6 9 9 6 8 7 9 5 7 8 ;
d o t p r o d u c t += 0 . 0 2 5 2 0 0 5 7 9 3 1 5 4 2 3 9 6 5 ;
output_cur [1] = d o t p r o d u c t > 0 ? d o t p r o d u c t : 0 ;

The main advantages of this optimization are the elimination of computational overhead
due to branching on the termination condition and the delay of reading data from memory,
since everything needed for the layers operations is self contained in a C source file. Similarly
to Version 2, we have the capacity of doing a better instruction pipelining. Additionally, we
remove incertitude about the execution path, which is advantageous for the WCET analysis.
However, it worsens the drawback already identified in the V2: the instruction space becomes
huge and for large DNNs, the approach is not sustainable.

4 Comparative approach for C code generation frameworks

In order to test in practice the advantages and limitations of our framework, as well as its
behavior compared to the other frameworks in the literature, we have defined the following
methodology. We have selected a set of representative benchmarks (section 4.1) of the
literature compliant with our restrictions (e.g. feed-forward DNN with restricted types of
layers). The idea was to consider a large test campaign by varying several parameters (number

ECRTS 2022

3:10 Predictable Code for Machine Learning Applications

and type of layers, data type of parameters, type of activation). We then define three criteria
to assess the quality of implementation in accordance with the DO-178C requirements (see
section 4.2). In particular, not all criteria require the same level of test campaign: computing
the WCET needs to be done once whereas the measurements need to be repeated several
times. Finally, we introduce the two code generation frameworks selected for comparison
(see section 4.3).

4.1 Benchmark description
Fully-connected networks – ACAS-Xu experience. The first models correspond to the
classical fully-connected networks as shown in the example 12. We rely in particular on the
airborne collision avoidance system for unmanned aircraft (ACAS-Xu) [27]. The ACAS-Xu
system takes five input variables, i.e., information from sensors measurements, and computes
five action advisories, represented by scores. The original design relies on a set of off-line
computed lookup tables (LUT) to make avoidance decisions. Some work [19, 12] proposed
to replace those LUT with some surrogate neural networks in order to reduce the memory
footprint and thus to improve the execution time. We consider several DNN models with
various structures, all with a ReLU activation function in hidden layers, linear activation for
output layer and floating-point single precision (FP32) data type:

regular structures with the same number of neurons per layer. We consider 7 hidden
layers with reg50 (50 neurons per layer), reg100 (100 neurons per layer) and reg200 (200
neurons per layer);
decreasing structures with decr128 (5 hidden layers of size (128, 128, 64, 32, 16)) and
decr256 (6 hidden layers of size (256, 256, 128, 64, 32, 16));

LeNet-5. The LeNet-5 model [23] refers to the feed-forward convolutional neural network
introduced in the example 13. It is one of the earliest models of this type and is known for
promoting the development of deep learning with the introduction of the back-propagation
algorithm. Although this model is simple, it contains the main basic layers: convolution,
pooling and dense layers. All the layers have the same tangent hyperbolic activation function,
except for the last one, where a softmax is performed. Thus, it has 44,426 trainable parameters
to stock and an inference pass executes 572,504 floating-point operations (FLOPs).

CifarNet. CifarNet was first introduced in [20] and was for a long time the state-of-the-art
model used to solve the object classification problem on the Cifar-10 dataset, which consists
of 32 x 32 RGB images of 10 classes. CifarNet is composed of three convolutional layers,
and its pooling layers, followed by two dense layers (see figure 5). The ReLu activation
function is applied to all the layers. The main difference with LeNet-5 is that it has a
three-dimensional input and the convolutional layers have additional parameters such as
padding and a non equal to 1 stride, which adds some complexity in terms of computation.
With this configuration the number of trainable parameters increases to 122,570 alongside
with 9,18 million FLOPs for inference.

...

conv1

32x32x3

32

ks=5x5x3
s=1x1

...

max pool1

30x30x32

32

k=2x2
s=2x2

...64

conv2

15x15x32

ks=3x3x32
s=1x1

...

max pool2

13x13x64

64

k=2x2
s=2x2

...
6x6x64

64

conv3

ks=3x3x64
s=1x1

flat

4x4x64 1024

dense1

ni=1024
no=64

64

dense2

ni=64
no=10

10

Figure 5 CifarNet CNN.

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:11

AlexNet. The AlexNet architecture was first defined in [21] and is considered as one of the
most influential works in computer vision. Indeed, thanks to the use of convolution layers
and GPUs to accelerate deep learning, it achieved a considerably improved performance over
other methods in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) of 2012.
The ImageNet dataset [13] is composed of 256 x 256 RGB images categorized under 1000
object class categories. AlexNet has five convolution layers, three pooling layers and three
dense layers (see figure 64) with approximately 61 million tunable parameters and 1,64 billion
FLOPs. Additionally, this model uses the ReLU activation function, which was presented as
novelty and proved to be more efficient in learning phase than the, at the time, standard
hyperbolic tangent [21].

...

conv1

228x228x3
64

ks=11x11x3
s=4x4

...

max pool1

55x55x64

64

k=3x3
s=2x2

...192

conv2

27x27x64

ks=5x5x64
s=1x1

...

max pool2

27x27x192

192

k=3x3
s=2x2

...
13x13x192

384

conv3

ks=3x3x192
s=1x1

...
13x13x384

256

conv4

ks=3x3x384
s=1x1

...
13x13x256

256

conv5
ks=3x3x256

s=1x1

...
13x13x256

256

max pool3
k=3x3
s=2x2

...256

avg pool4

6x6x56

k=1x1
s=1x1

4096

flat

6x6x256

dense1
ni=4096
no=4096

dense2
ni=4096
no=4096

4096

dense3
ni=4096
no=1000

4096 1000

Figure 6 AlexNet CNN.

4.2 Criteria of comparison
We have identified three criteria of comparison that correspond to the most important
avionics constraints to be respected.

Semantic preservation. To validate the correctness of the code generation, we need to
prove the semantic preservation, that is the capacity to reproduce the inference observed in
the training tool on the target. To do so, we could have used formal methods (such as Coq
[36] as was done for Velus [6]) but instead, we chose to review the code generated and run a
large campaign of tests. This technique may be less sound but is indeed an acknowledged
way in the certification standard DO178C [14]. The semantic preservation is assessed by
comparing the predictions of the C code with those provided by the training framework.

▶ Definition 15 (Semantic preservation). Let x = (x1, x2, ..., xn) be a vector representing the
training framework outputs for a given set of inputs and x̃ = (x̃1, x̃2, ..., x̃n) be the vector of
outputs of the C code execution. We define the absolute error as

∥x̃ − x∥∞ = max0≤i≤n|(x̃ − x)i|

This norm asserts a maximum bound on the error observed for a given testing sample.

Measured and Worst Case Execution Time. For each C code, we want to assess both its
performance and its predictability. The performance is evaluated by executing the code an
arm Cortex-A15 of the keystone [37] and measuring the execution time.

▶ Definition 16 (Measured execution time). To obtain the measured execution time, we run
a sample (i.e. an input) 50 times and store the average observed time.

4 There is a pre-processing that consists of a scaling from 256 x 256 to 228 x 228 of the input

ECRTS 2022

3:12 Predictable Code for Machine Learning Applications

In order to assess the predictability, we compile each C code for a lpc2138 arm-based
target, and compute its WCET with OTAWA [4]. The choice of the hardware (lpc2138
arm-based target) was dictated by the libraries available in the OTAWA framework. Even
though it is not representative of the arm Cortex-A15 of the keystone, the comparison
between the WCETs of the various versions still provides valuable insights on how the shape
of the generated code impacts the level of precision that can be achieved during the analysis.
Despite its limitations OTAWA is open-source and presently maintained, thus up to date
with current WCET calculation techniques. We did not experiment with other static timing
analysis tools that may or may not have the same limitations.

Memory layout of executable. Because it is important to efficiently use the resources in
order to be predictable and efficient, we also analyze the memory layout of the C executable.
The memory space is segmented into discrete blocks with specific purposes. We mainly focus
on the stack, data, BSS and text segments. The stack segment contains all the data needed
by a function call, including the arguments passed to the routine and its local variables. The
data segment contains the explicitly initialized global variables and static local variables, its
size does not change at runtime. Uninitialized variable data are stored in the BSS segment.
Lastly, the text segment contains the executable instructions and constant variable that can
not be modified.

4.3 Others C back-end frameworks
We chose two open-source frameworks from the TinyML [31] domain that were developed
with nearly the same objectives as ACETONE.

Keras2C. As explained in [10], the Keras2c back-end was developed to address real-time
applications and not to optimize the code for speed. Indeed, the generated C code layout
is very similar to Version 1 presented in Section 3.2, where the programming functions
describing the layers are generic and all the mutable data are passed into and out of each
function during the inference execution. Thus, in terms of timing analysis, Keras2c presents
the same downside as our first version, which is an overestimated WCET due to the inability
of passing the context in which a function is called when there are multiple occurrences of it.

Another drawback observed in this framework is the declaration of the weights of layers as
local variables initialized in the core of the function. Thus weight arrays are always allocated
on the stack. In case of large networks, heavy arrays are then stored within the stack and
such an approach is not at all recommended. Moreover, these arrays shall be initialized in
each function with a memcopy from the reference one declared by the compiler in the text
segment. This is not ideal for the computation time that is waste to copy weights for each
layer and each inference. We preferred a zero copy strategy using static variable declaration
for the weights, this saves space in the stack and computation time.

To avoid declaring to heavy array on the stack, Keras2c chooses to use dynamic memory
allocation when working with large neural networks, which implies additional certification
challenges in terms of verification and is not at all suited for WCET analysis.

MicroTVM with static C runtime. The TVM compiler [7] outputs a model execution graph
– encoded as json– and simplified parameters. In order to execute the model, the TVM
runtime has to rebuild this graph in memory, load the parameters, and then call the operator
implementations in the correct order by parsing the computation graph. This is the principle
of a graph interpreter / executor that we also found in Tensorflow.

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:13

uTVM [11] is a runtime developed to execute graphs produced by TVM on bare-metal
targets. The code generation flow remains mostly the same, specific changes are needed in
the runtime in order to avoid the usage of traditional operating-systems abstractions and
support standalone model inference. The main parts of uTVM process are:
1. the production of a relay module depending of the training framework;
2. compilation, where TVM implements each operator into tensor intermediate representation

followed by code generation;
3. integration of the generated code along with TVM C runtime library, into a user-supplied

binary project;
4. and deployment, when a binary is built and inference can be run.
A drawback of this graph executor logic in an avionics context is the amount of memory
overhead required in parsing the json, a dynamic scheduling and a dynamic memory allocation,
which we are not able to analyze.

To bypass these limitations, [35] provided a patch to uTVM that relies on a static
scheduling and memory allocation. We call that framework uTVM with static C runtime
or static uTVM subsequently. It uses the relay module produced by TVM and generates
a dedicated C source code that calls the generated operator implementations directly,
eliminating the need of a graph json parsing, and which is able to execute the model
statically. By doing minor changes in this static uTVM, we were able to proceed to a timing
analysis of the inference model and could observe that the generated code when analyzed
with OTAWA is very similar to our Version 2 (Section 3.3).

5 Experiments

This section summarizes the results when assessing the criteria for the different frameworks
and the different benchmarks. We have in addition to the benchmarks identified before,
considered VGG-16 [34]. Unfortunately, we only manage to generate the C code for V1 and
V2 and analyze the semantic preservation. Other frameworks and analyses were not able to
handle such a large network (138.36 million parameters).

Semantic preservation. We use the formula of definition 15 to compute the maximal
observed error over 1000 tests when the generated code were executed on a x86 target. The
three versions (V1, V2, V3) encode the same semantics, so no need to make them all appear.
For our tool and for Keras2c, the reference was Keras and for static uTVM it was Tensorflow
Lite. The results using single-precision FP are shown in table 1. We can note that all the
frameworks produce very similar results with errors in the order of 10−6, which is considered
acceptable. For the ACAS-Xu regular models, using the learnt parameters (weights and
biases) present in the lookup tables led to values larger than 1 (around 105) in outputs.
This had an influence in the floating point precision which in turn affected our semantic
preservation assessment, so we proceeded to use random initialized parameters and have
normalized outputs instead.

Measured and Worst Case Execution Time. We measured the inference time on the arm
Cortex-A15 (implementing the ARMv7 architecture) of the keystone. For all experiments,
caches were activated and we put data and code sections in the DDR. We used the flag
mfloat-abi=hard in order to use the neon floating point unit of the processor. C codes were
compiled without any optimization level (-O0). Table 2 shows the results where the measured
execution times (MET) are computed following definition 16.

ECRTS 2022

3:14 Predictable Code for Machine Learning Applications

Table 1 Results for the semantic preservation in FP32 precision.

Maximum error

Framework ACAS-Xu
reg50

ACAS-Xu
reg100

ACAS-Xu
reg200

ACAS-Xu
decr128

ACAS-Xu
decr256 LeNet-5 CifarNet AlexNet VGG-16

Ours (V1) 2.0265e-06 1.4305e-06 4.7683e-07 1.4305e-06 5.9604e-07 1.7881e-06 6.1988e-06 2.142e-06 4.7087e-06
Keras2C 2.0265e-06 1.4305e-06 4.7683e-07 8.34465e-07 9.5367e-07 2.0265e-06 5.6028e-06 – –

uTVM static 1.6689e-06 9.5367e-07 1.1921e-07 2.3842e-07 2.3842e-07 1.9073e-06 4.2915e-06 – –

Table 2 Measured execution times on the arm with -O0
flag.

Execution time [cycles]

Framework ACAS-Xu
reg50

ACAS-Xu
decr128

ACAS-Xu
decr256 LeNet-5 CifarNet

Ours (V1) 381 439 888 190 3 975 111 23 934 418 464 386 831
Ours (V2) 243 195 533 767 2 339 851 12 186 378 233 450 428
Ours (V3) 357 483 650 895 6 466 297 – –
Keras2C 499 315 1 104 134 4 977 515 25 786 401 642 390 830

uTVM static 416 796 681 708 2 677 785 10 201 249 193 599 362

Table 3 Measured execution
times on the arm with -O3 flag.

Execution time [cycles]

Framework ACAS-Xu
decr256 CifarNet

Ours (V2) 441 992 53 773 643
Keras2C 2 117 467 273 594 356

uTVM static 291 609 69 022 625

Among our versions, V2 produces the best MET. V2 has even a better MET than Keras2c
and static uTVM for fully-connected networks (ACAS), and is slightly slower that uTVM
for CNNs. Indeed, for the latter, static uTVM performs additional optimization (e.g. on
tensor operations). On fully-connected networks, the tensor operations are basic matrix
multiplications that do not require any optimization techniques. Keras2c has the worst MET
for all benchmarks: we attribute that to the strategy to allocate weights tensors on the stack
that adds a memcpy overhead at each layer (copy the weights from .text to stack).

Outside the avionics world, performance is looked for and thus inference codes are
generally compiled with the -O3 option. Calling for this option enables the utilization of
Single Input Multiple Data (SIMD) instructions on the keystone. We thus also compiled two
benchmarks with this flag to observe the impact. The results are given in table 3. First,
for all versions, the MET is greatly reduced, due to the SIMD instructions well adapted to
these algorithms. Keras2c has the same drawback due to copy of weights on the stack. Since
-O3 only optimizes the computation of tensor operations, the time to copy data remains the
same. Thus, the difference between Keras2c and two others remains high. Secondly, V2 has
best MET for CNN and worst with fully-connected network. We do not try to optimize the
utilization of SIMD instruction (array organization), thus we also believe this is not the case
of static uTVM. This would require a dedicated back-end for floating point unit of arm.

Table 4 WCET given by OTAWA for different benchmarks.

WCET [cycles]

Framework ACAS-Xu
reg50

ACAS-Xu
reg100

ACAS-Xu
reg200

ACAS-Xu
decr128

ACAS-Xu
decr256 LeNet-5 CifarNet

Ours (V1) 8 025 404 21 288 195 84 655 395 26 092 073 121 206 406 6 881 827 044 361 743 738 250
Ours (V2) 5 617 830 13 971 737 55 122 437 6 128 253 24 461 227 165 718 749 3 018 534 290
Keras2c 5 033 535 19 692 951 79 383 490 36 838 054 112 237 358 1 160 385 934 97 959 064 345

static uTVM 4 008 298 15 711 232 58 832 502 6 765 413 27 015 092 113 449 651 3 215 754 680

Table 4 shows the WCET of the benchmarks. OTAWA requires flow-fact information,
that is information about the control flow: loop bounds and addresses of targets for indirect
function calls (function pointers). Obtaining this information for our generated code was

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:15

easy (and making this process automatic is part of future work). For Keras2c and uTVM,
we had to first modify the generated code to analyze only the inference code (as we did for
our code), and to leave the initialization functions out of the WCET. OTAWA was not able
to provide a WCET bound for V3 nor for AlexNet and VGG-16 architectures, because those
binaries are too large and it runs out of memory during the analysis.

Looking at Table 4, we observe that shape of the C code has a significant impact on
the WCET bound. This is not simply a question of performance optimizations, but also of
the capacity to provide precise flow-fact information to the analyzer. C codes that employ
function pointers (V1 and Keras2c) overall get larger WCETs than the others, because we
were unable to provide contextual information about the layers function calls. When all
layers perform an equivalent number of operations (the ACAS-Xu regular structures), this
impact is reduced. For the other cases, the pessimism appears clearly such as for decr256.
Indeed, although decr256 performs less computations than reg200, as attested by the WCET
of V2 and static uTVM, the WCETs for V1 and Keras2c are significantly higher than the
ones of the reg200.

OTAWA assumes that each call to a layer function is a call to the worst layer. In V2, the
layers are implemented as a sequence of separate loops, and in static uTVM as a sequence of
separate instructions calling the layer functions. Consequently, OTAWA is able to benefit
from the detailed flow-fact information for these versions.

Memory layout of executable. We analyzed the memory layout of the generated codes
when compiled to ARM Cortex-A15. For the sake of simplicity, we only present the results
obtained for the ACAS-Xu reg50 model as the same trend is observed for the other models.
From Table 5 it is possible to understand how different the memory usage of the different
frameworks is.

Table 5 Memory layout of the executable generated for ACAS-Xu reg50.

Size of memory segments [bytes]

Benchmark stack .data .bss .text
Ours (V1) 240 66 548 708 17 004
Ours (V2) 158 65 860 708 18 556
Ours (V3) 140 2 444 708 1 603 980
Keras2c 129 280 – 2 840 12 744 060

static uTVM 210 – 2 808 12 688 208

In our work, we privileged writing all parameters as constants to statically allocate all
memory at compile time and better use the stack, which is also translated in the data segment
size. The non-initialized data basically corresponds to the outputs. Additionally, in V3 we
observe that the text segment is bigger since all constants are directly written in the C source
code. We notice that, V1 and V2 are very efficient in terms of .text and stack size compared
to Keras 2c or static uTVM. Because Keras2c allocates all the weights tensors on the stack,
the stack size is higher than other versions. Moreover, weights shall also be present in the
.text segment. We notice, that the stack size is much higher than the size required for storing
weights. In addition Keras 2c allocates work arrays that are not used for computing dense
layer. Our stack measurement is coherent with stack information given by gcc compiler. For
uTVM, we explain the size of the .text by all tensor operations functions embedded in the
TVM library. In our version, we only embedded necessary tensor operations function.

ECRTS 2022

3:16 Predictable Code for Machine Learning Applications

6 Related Work

We found plenty of frameworks that provide the possibility to run neural networks. Most of
them rely on an inference engine that dynamically explores a computation graph. Without
ignoring them, we decided to focus the related work on tools that are more adapted to
avionics constraints.

Generic C code generator frameworks. The first work [8] is guided by avionics constraints
as well and, in order to provide an efficient implementation of DNN inference models, the
authors developed an automatic code generator that allows preserving semantics of the trained
machine learning model. However, the code generation tool is not extensively described nor
made available.

The second is Keras2c [10]. This method consists in a library to convert Keras models
into real-time compatible C code, supporting a wide range of layers and relying only on
C standard library functions. In the section 5, we have extensively compared our results
with Keras2c. The study of [29] also investigates a predictable implementation of neural
networks for safety-critical cyber-physical systems. They embed the Keras2c code on Patmos,
a time-predictable processor, which is part of the larger T-CREST [32] project. The software
tool-chain of the latter includes a LLVM-based compiler and the Platin tool for WCET
analysis.

uTVM [11] is an extension of TVM that provides an implementation of TVM for micro-
controllers already presented in section 4.3. The adaptation of uTVM with static C runtime
[35] has extensively been compared with our results in the section 5.

N2D2 [33] is an end to end framework from the creation of the model to its implementation
including the training. On the code generation, the authors explore how approximation
techniques can improve the performance and energy efficiency of hardware accelerators in
machine learning applications. We will assess these tools as future work.

Proprietary code generator frameworks. New massively parallel hardware adapted to
neural networks need specific programming pattern in order to obtain the best possible
computation performance. Hardware manufacturers provide tools that enable clients to
generate optimized code for their target. We can cite eIQ [26] from NXP, TensorRT [25]
from NVIDIA, KaNN [17] from Kalray or OpenVINO [16] from Intel. eIQn, TensorRT and
OpenVino rely on a dynamic graph explorer runtime while KaNN proposes a static scheduling
and memory allocation. These tools only generate optimized code for specific targets and
do not implement a generic approach. Xilinx Vitis AI is a tool that generates application
code for Xilinx targets. Such targets are composed of a host CPU (from the x86 or ARM
families) and a hardware accelerator that is composed of programmable logic (FPGA). The
tool generates C code for the host, and so-called “kernels” that are called by the host (using
an API such as OpenCL) and executed by the accelerator. The data transfers between the
host and the accelerator are handled using Xilinx runtime.

CoreAVI5 claims to develop code generation toolchains for AI models compatible with
DO-178C and ISO-26262 requirements. They mainly target GPUs with Intel Tiger Lake or
AMD E9171. We were not able to assess their solution and we believe that they are only
supporting CUDA or Vulkan code generation (no C generation).

5 https://coreavi.com

https://coreavi.com

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:17

The Matlab Coder toolbox allows the generation of the C code for the inference of an
already trained network. The generated code requires no external library, which makes it
portable. Ansys6 proposes to use the Scade toolchain to generate C code compatible with
DO178C requirements. To our knowledge, this targets at this time traditional processors
and relies on the conversion of neural networks models into Lustre nodes. Then, they use
the qualified C code generator. The converter AI models into Scade will have to guarantee
the semantic preservation.

LLVM front-end frameworks. TVM [7] is a tool capable of compiling machine learning
models from different popular frameworks and generating specific low-level optimized code
for a diverse set of hardware back-ends.

MLIR (Multi-Level Intermediate Representation Overview) [22] is a LLVM intermediate
representation which was developed with the idea to use the same IR for all compiler
optimizations (hence the “Multi-Level”). It contains particular features that target machine
learning applications, in particular it is possible to represent computation graphs in MLIR.
MLIR can be instantiated into dialects that allow to put the focus on particular aspects of
the code, to specify constraints or apply specific optimizations. An example of MLIR dialect
that is particularly relevant to critical embedded applications such as the ones we target is
described in [30]: it enables the semantics of synchronous reactive applications inside an
MLIR description.

7 Conclusions

Machine learning applications are proven to be useful and are largely used in many domains,
however, most of them are not built with avionics constraints in mind. In this work, we
presented our approach to automatically reproduce the inference model of feed-forward
neural networks in C code, respecting semantic preservation, predictability and aeronautic
requirements. We proposed a framework that is modular and straightforward, capable of
generating readable and traceable code. We also compared the present work with the state
of the art and proved our approach to be competitive in the evaluated criteria.

As future work, we have already identified along the paper many improvements to be
made (e.g. compliance with nnef, automatic flow-fact generation). We will continue exploring
other frameworks to get the best practices. We also plan to target parallel C code execution.
The current versions are suitable for pipelining or parallelizing computations.

References
1 Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

et al. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org. URL: https://www.tensorflow.org/.

2 Erin Alves, Devesh Bhatt, Brendan Hall, Kevin Driscoll, Anitha Murugesan, and John Rushby.
Considerations in assuring safety of increasingly autonomous systems. NASA, 2018.

3 Junjie Bai, Fang Lu, Ke Zhang, et al. Onnx: Open neural network exchange. https:
//onnx.ai/, 2019.

4 C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat. OTAWA: an Open Toolbox for Adaptive
WCET Analysis (regular paper). In IFIP Workshop on Software Technologies for Future
Embedded and Ubiquitous Systems (SEUS), 2010.

6 https://www.ansys.com/fr-fr/products/embedded-software/

ECRTS 2022

https://www.tensorflow.org/
https://onnx.ai/
https://onnx.ai/
https://www.ansys.com/fr-fr/products/embedded-software/

3:18 Predictable Code for Machine Learning Applications

5 Siddhartha Bhattacharyya, Darren Cofer, David Musliner, Joseph Mueller, and E. Engstrom.
Certification considerations for adaptive systems. 2015 International Conference on Unmanned
Aircraft Systems, ICUAS 2015, pages 270–279, July 2015. doi:10.1109/ICUAS.2015.7152300.

6 Timothy Bourke, Lélio Brun, Pierre-Évariste Dagand, Xavier Leroy, Marc Pouzet, and Lionel
Rieg. A formally verified compiler for lustre. In Albert Cohen and Martin T. Vechev, editors,
Proceedings of the 38th Conference on Programming Language Design and Implementation
(PLDI), pages 586–601, 2017.

7 Tianqi Chen, Thierry Moreau, Ziheng Jiang, Haichen Shen, Eddie Q. Yan, Leyuan Wang, Yuwei
Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. TVM: end-to-end optimization
stack for deep learning. CoRR, abs/1802.04799, 2018.

8 Sergei Chichin, Dominique Portes, Marc Blunder, and Victor Jegu. Capability to embed deep
neural networks: Study on cpu processor in avionics context. In 10th European Congress
Embedded Real Time Systems (ERTS 2020), 2020.

9 Jean-Louis Colaço, Bruno Pagano, Cédric Pasteur, and Marc Pouzet. Scade 6: From a kahn
semantics to a kahn implementation for multicore. In 2018 Forum on Specification Design
Languages (FDL), pages 5–16, 2018.

10 Rory Conlin, Keith Erickson, Joseph Abbate, and Egemen Kolemen. Keras2c: A library
for converting keras neural networks to real-time compatible C. Eng. Appl. Artif. Intell.,
100:104182, 2021.

11 TVM consortium. microTVM: TVM on bare-metal, 2021. URL: https://tvm.apache.org/
docs/topic/microtvm/index.html.

12 Mathieu Damour, Florence De Grancey, Christophe Gabreau, Adrien Gauffriau, Jean-Brice
Ginestet, Alexandre Hervieu, Thomas Huraux, Claire Pagetti, Ludovic Ponsolle, and Arthur
Clavière. Towards certification of a reduced footprint acas-xu system: A hybrid ml-based
solution. In 40th International Conference Computer Safety, Reliability, and Security (SAFE-
COMP), pages 34–48, 2021.

13 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR 2009), pages 248–255, 2009.

14 EUROCAE / RTCA. Do-178c, software considerations in airborne systems and equipment
certification, 2011.

15 Google. Protocol buffers, 2001. URL: https://developers.google.com/protocol-buffers/.
16 Intel. Open vino documentation, 2018.
17 Kalray. Kann platform for high-performance machine learning inference on kalray’s mppa®

intelligent processor, 2021.
18 Kalray. Mppa® coolidge™ processor - white paper, 2021. URL: https://www.kalrayinc.

com/documentation/.
19 Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J. Kochenderfer. Reluplex:

An efficient SMT solver for verifying deep neural networks. In Rupak Majumdar and Viktor
Kuncak, editors, 29th International Conference Computer Aided Verification (CAV), pages
97–117, 2017.

20 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

21 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with deep
convolutional neural networks. In Peter L. Bartlett, Fernando C. N. Pereira, Christopher J. C.
Burges, Léon Bottou, and Kilian Q. Weinberger, editors, 26th Annual Conference on Neural
Information Processing Systems, pages 1106–1114, 2012.

22 Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques A.
Pienaar, et al. MLIR: scaling compiler infrastructure for domain specific computation. In
Jae W. Lee, Mary Lou Soffa, and Ayal Zaks, editors, International Symposium on Code
Generation and Optimization, (CGO), pages 2–14, 2021.

https://doi.org/10.1109/ICUAS.2015.7152300
https://tvm.apache.org/docs/topic/microtvm/index.html
https://tvm.apache.org/docs/topic/microtvm/index.html
https://developers.google.com/protocol-buffers/
https://www.kalrayinc.com/documentation/
https://www.kalrayinc.com/documentation/

I. De Albuquerque Silva, T. Carle, A. Gauffriau, and C. Pagetti 3:19

23 Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, Richard E. Howard,
Wayne E. Hubbard, and Lawrence D. Jackel. Backpropagation applied to handwritten zip
code recognition. Neural Comput., 1(4):541–551, 1989.

24 Y. Liu, C. Chen, Ru Zhang, Tingting Qin, Xiang Ji, Haoxiang Lin, and Mao Yang. Enhancing
the interoperability between deep learning frameworks by model conversion. Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2020.

25 NVIDIA. Tensorrt documentation, 2021.
26 NXP. Eiq™ ml software development environment, 2020. URL: https://www.nxp.com/

design/software/development-software/eiq-ml-development-environment:EIQ.
27 Michael P. Owen, Adam Panken, Robert Moss, Luis Alvarez, and Charles Leeper. Acas xu:

Integrated collision avoidance and detect and avoid capability for uas. In 2019 IEEE/AIAA
38th Digital Avionics Systems Conference (DASC), pages 1–10, 2019.

28 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in
Neural Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

29 Hammond Pearce, Xin Yang, Partha S. Roop, Marc Katzef, and Torur Biskopsto Strom.
Designing neural networks for real-time systems. IEEE Embedded Systems Letters, pages 1–1,
2020.

30 Hugo Pompougnac, Ulysse Beaugnon, Albert Cohen, and Dumitru Potop-Butucaru. From SSA
to Synchronous Concurrency and Back. Research Report RR-9380, INRIA Sophia Antipolis -
Méditerranée (France), December 2020. URL: https://hal.inria.fr/hal-03043623.

31 Partha Pratim Ray. A review on tinyml: State-of-the-art and prospects. Journal of King Saud
University - Computer and Information Sciences, 34(4):1595–1623, 2022.

32 Martin Schoeberl, Sahar Abbaspour, Benny Akesson, Neil Audsley, Raffaele Capasso, Jamie
Garside, et al. T-crest: Time-predictable multi-core architecture for embedded systems.
Journal of Systems Architecture, 61(9):449–471, 2015.

33 Olivier Sentieys, Silviu Filip, David Briand, David Novo, Etienne Dupuis, Ian O’Connor, and
Alberto Bosio. Adequatedl: Approximating deep learning accelerators. In 24th International
Symposium on Design and Diagnostics of Electronic Circuits Systems (DDECS 21), 2021.

34 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference
on Learning Representations (ICLR), 2015.

35 Rafael Stahl. µtvm staticrt codegen, 2021. URL: https://github.com/tum-ei-eda/utvm_
staticrt_codegen.

36 The Coq Development Team. The Coq Proof Assistant Reference Manual, version 8.0 edition,
2004. URL: http://coq.inria.fr/.

37 Texas Instruments. TCI6630K2L Multicore DSP+ARM KeyStone II System-on-Chip. Tech-
nical Report SPRS893E, Texas Instruments Incorporated, 2013.

38 The Khronos NNEF Working Group. Neural Network Exchange Format, 2018.
39 Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David

Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank
Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Stenström. The worst-case
execution-time problem – overview of methods and survey of tools. ACM Trans. Embed.
Comput. Syst., 2008.

ECRTS 2022

https://www.nxp.com/design/software/development-software/eiq-ml-development-environment:EIQ
https://www.nxp.com/design/software/development-software/eiq-ml-development-environment:EIQ
https://hal.inria.fr/hal-03043623
https://github.com/tum-ei-eda/utvm_staticrt_codegen
https://github.com/tum-ei-eda/utvm_staticrt_codegen
http://coq.inria.fr/

	1 Introduction
	2 Reminder on Deep Neural Networks
	2.1 Functions performed by DNN
	2.2 Semantics-preserving model transformation
	2.3 Model description for the code generation

	3 C back-end
	3.1 Software architecture
	3.2 Version 1 – generic inference function
	3.3 Version 2 – inlined inference function
	3.4 Version 3 – unrolled inference function

	4 Comparative approach for C code generation frameworks
	4.1 Benchmark description
	4.2 Criteria of comparison
	4.3 Others C back-end frameworks

	5 Experiments
	6 Related Work
	7 Conclusions

