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Abstract
The development of multicore-based embedded real-time systems is a complex process that encom-
passes several phases. During the software design and development phases (DDP), and prior to the
validation phase, key decisions are taken that cover several aspects of the system under development,
from hardware selection and configuration, to the identification and mapping of software functions
to the processing nodes. The timing dimension steers a large fraction of those decisions as the
correctness of the final system ultimately depends on the implemented functions being able to execute
within the allotted time budgets. Early execution time figures already in the DDP are thus needed
to prevent flawed design decisions resulting in timing misbehavior being intercepted at the timing
analysis step in the advanced development phases, when rolling back to different design decisions is
extremely onerous. Multicore timing interference compounds this situation as it has been shown to
largely impact execution time of tasks and, therefore, must be factored in when deriving early timing
bounds. To effectively prevent misconfigurations while preserving resource efficiency, early timing
estimates, typically derived from previous projects or early versions of the software functions, should
conservatively and tightly overestimate the timing requirements of the final system configuration
including multicore contention. In this work, we show that multi-linear regression (MLR) models
and neural network (NN) models can be used to predict the impact of multicore contention on tasks’
execution time and hence, derive contention-aware early time budgets, as soon as a release (binary)
of the application is available. However, those techniques widely used in the mainstream domain
minimize the average/mean case and the predicted impact of contention frequently underestimates
the impact that can potentially arise at run time. In order to cover this gap, we propose the use of
quantile regression neural networks (QRNN), which are specifically designed to predict the desired
high quantile. QRNN reduces the number of underestimations compared to MLR and NN models
while containing the overestimation by preserving the high quality prediction. For a set of workloads
composed by representative kernels running on a NXP T2080 processor, QRNN reduces the number
of underestimations to 8.8% compared to 46.8% and 31.3% for MLR and NN models respectively,
while keeping the average over estimation in 1%. QRNN exposes a parameter, the target quantile,
that allows controlling the behavior of the predictions so it adapts to user’s needs.
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1 Introduction

Software applications control an increasing number of complex functionalities in real-time
embedded products. For example, in the automotive domain, Advanced Driver Assistance
System (ADAS) functionalities, like lane keeping and obstacle detection, in modern cars
are implemented in software, which is going to be the central element to reach full (L5)
autonomy. This trend towards smarter artificial intelligence based on-board software drives
an unprecedented increase in the size of the software component of embedded real-time
systems in domains like automotive and avionics. In fact, embedded real-time products
already encompass software with millions of lines of code. On the other hand, the use of
multicores to provide the required computing performance compounds the complexity to
develop and validate multi-million line real-time software products.

During the design and development phases (DDP) engineering process, the integrator
selects the configuration of the hardware by choosing values for the control registers (critical
configuration settings in CAST-32A [9] jargon). Also, in order to complete the intended final
configuration (IFC) [9], the integrator determines the mapping of tasks to each computational
node, which in turn determines which tasks will be co-executed in the multicore and
hence, compete for its resources. Those decisions are steered by the timing and functional
requirements of the software functions the system is meant to support. Based on those
requirements and the system schedule, the software providers are assigned a time budget for
each of their software function which is meant not to be exceeded at run time. In the DDP,
multiple configuration scenarios (e.g, configuration, task mapping, schedules) are assessed in
order to converge to the system’s IFC.

However, timing budgets are only consolidated against timing requirements in the late
validation phases when timing analysis is typically performed to derive reliable worst-case
execution time (WCET) bounds for each task. Capturing a timing misconfiguration so late
in the development process will result in costly roll-backs in the design and implementation
phases. In particular, building on optimistic timing estimates to derive and allocate time
budgets to an application will result in timing violations to arise in the verification and
validation stages and will require changes to the application itself and/or to the system
schedule, which will cause the system to undergo once again through the V&V process.
For this reason, while early figures are not meant to be as accurate as late WCET timing
bounds, they are still required to conservatively over-estimate tasks’ timing requirements as
much as possible. Moderate over-estimation can lead to slight over-provisioning and will not
jeopardize the overall system timing behavior.

Providing early timing estimates for the software functionalities is a challenging task in
many ways as estimates are typically derived from previous experience on past projects or
from representative early software implementations. The provision of such early estimates is
even more challenging when the system is deployed on multicore platforms because tasks
affect each other timing behavior causing variable access latencies when simultaneously
accessing shared hardware resources. This translates into variability in their execution time,
typically referred to as multicore timing interference or contention impact, which can cause
20x or more performance degradation [29, 55] and ultimately complicates the determination
of trustworthy time bounds.
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Exploring and assessing a large set of scenarios in the DDP requires assessing also the
impact of contention in each considered configuration, where task mapping and schedule play
a critical role. A naive approach to derive contention information during DDP consists in
exhaustively executing each scenario on the actual board collecting evidence on how tasks
affect each other timing. This approach, however, is quickly defeated by the time it takes
to carry each experiment, which can limit the design space (i.e the schedules) that can be
explored. Instead, a faster approach consists in developing multicore prediction models that
can provide accurate estimates of tasks execution time when co-executed in a multicore.

Analysis. Multi-linear regression (MLR) models and neural network (NN) models, which
have been originally developed for the mainstream domain [52, 11, 59, 34], can be adapted
to the problem at hand to explore a large fraction of the design space in a short amount
of time. In particular, such models could be in principle exploited to produce early timing
estimates of a system as soon as a binary release of the applications is available. While
these approaches produce reasonably accurate estimates of tasks’ execution time, they are
inherently designed to predict the average behavior of the phenomena they model, since
the most accurate prediction is the one closer to the majority of cases and thus closer to
average or median patterns. As we observed, it is crucial for early estimates in DDP to
be over-approximating the behavior in the final configuration and we must seek for more
conservative models to diminish the risk of being misled into optimistic estimates.

Proposal. On these grounds, we propose a prediction model based on quantile-regression
neural networks (QRNN) that can conservatively predict the impact of multicore timing
interference. QRNN aim at optimizing the quantile regression loss function which, generically,
allows approximating any conditional desired quantile. This enables the user to choose the
(high) quantile that best adapts to its needs. Overall, QRNN allows fast evaluation of system
configuration by providing conservative, yet accurate, predictions of contention impact.

Evaluation. We show the benefits of QRNN over MLR and NN on a set of representative
kernels used in artificial intelligence software for autonomous operation on an avionics
representative multicore processor, the NXP T2080. Our results show that QRNN reduces
the number of workloads for which time budgets under estimate (i.e. are lower than the
actual multicore contention time of the task) to 8.8% compared to 46.8% and 31.3% for MLR
and NN, respectively.

The rest of this work is organized as follows. Section 2 narrows down the specific multicore
contention problem addressed and introduces MLR and NN. Section 3 introduces QRNN.
Section 4 presents our evaluation framework. Section 5 reports on the experimental results.
Section 6 covers the most relevant related work. Section 7 presents some lines that can be
explored as a follow up of this work. Section 8 presents the main conclusions of this work.

2 Multicore Contention Prediction

Multicore contention modeling is a wide problem that spans several domains and stages in
the software development process [43, 11, 42, 3]. We start by narrowing down the particular
multicore contention problem we address and a set of properties for the resulting techniques
to adhere to the specific requirements of the particular application scenario (those properties
were summarized already in Section 1). The main acronyms we use are described in Table 1.

We focus on a deployment scenario in which the target multicore platform is fixed and
the set of applications to be integrated in the final embedded product is known. That is, the
functionality to be provided for the product is frozen and so is the software to implement
it. A first release of the applications has been made so there exists an executable of each

ECRTS 2022
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Table 1 Main acronyms used in this work.

Acronym Definition Acronym Definition
ADAS Advanced Driver Assistance System DDP Design and Development Phases
DS Data Set EMs Event Monitors
H Holdout set IFC Intended Final Configuration
M All the model hyper-parameters MAE Mean Absolute Error
MCP Multicore Processor MLR Multi-Linear Regression
MSE Mean Square Error NN Neural Network
QR Quantile Regression QRNN Quantile Regression NN
SoC System on Chip TOI Task Order Invariant
TUA Task Under Analysis TVE (T)rain, (V)alidation, t(E)st set
V&V Validation and verification

application. Applications can suffer variations as part of the natural development process
across different releases, yet preserving the same functionality. These variations include, for
instance, optimizations to its performance or functional behavior. We target a homogeneous
multicore processor in which the performance of each core is identical and the time to access
any off-core resource is the same from every core. This is the case of the T2080 when its cache
is not partitioned or when the L2 cache is configured so each core receives an even number of
ways, as we do in this work. However, it is not the case if, for instance, L2 partitions across
cores differ in size. It is nor the case for other architectures, like some models of the Intel
Xeon, in which the cores and slices of the L3 cache are connected via a ring interconnect, so
the time it takes a core to access a slice depends on their location in the ring.

Our work contrasts with other works that derive early estimates at the model level (e.g.
Matlab) [17] and estimates “as the code is written” [18]. Others focus on scenarios where the
hardware platform is not even available and compile the source code for different instruction
set architectures on generic and parameterizable processor models to obtain early timing
estimates on the impact of the architecture setup [19]. The majority of these approaches
focus on the analysis of programs in single-core scenarios and do not address the impact
of multicore contention. The works addressing multicore interference, instead, necessarily
consider more mature setups where consolidated or even final software products are made
available [52, 11, 61, 59, 50].

The goal of our contention modeling exercise is not producing a generic model for the
target platform (T2080 in our case) that is application independent. Instead, the model
considers the applications provided and contributes to speeding up the selection of the IFC.

▶ Property 1 (Prediction speed). DDP multicore contention models for real-time systems
must be fast to enable exploring large design spaces.

Several previous works [29, 55] show that contention may dominate the execution time of
tasks running in a multicore with some applications easily suffering an increase above 2x-5x
with respect to their solo execution time even for small core counts like 4 cores (corner case
programs can suffer much higher slowdown). For DDP, no reference figure has been reported
for the accuracy of timing predictions, which is in fact end-user and application dependent.
Yet, we regard the pessimism introduced by our QRNN model (1% on average and 1.49% in
the worst case) as quite reasonable for DDP. Besides it is key to produce conservative early
timing estimates that tend to over-approximate the behavior in the IFC, therefore reducing
the risk of producing optimistic estimates.



A. Brando, I. Serra, E. Mezzetti, J. Abella, and F. J. Cazorla 4:5

Figure 1 Contention Models Usage. Figure 2 Contention Modelling Training.

▶ Property 2 (Tendency to Overestimation). DDP multicore contention models for real-time
systems should tend towards overestimation to reduce the risk of experiencing timing violations
too late in the development process, requiring excruciatingly onerous rollbacks and re-design.

Trustworthy execution time bounds for a task τi can be derived when the task executes in
isolation, ET solo

i . For multicore processors (MCP), software’s timing behavior also depends
on the contention factor, often considered as a ∆ over its execution time in isolation 1, which
is expressed as ET mcp

i = ET solo
i × ∆.

Deriving time budgets for the multicore execution time requires estimating a bound to ∆.
Contention bounds can be derived by experimentation, i.e. by running all potential workloads
on the target board under the IFC so that the timing budget for τi can be expressed as
TBmcp

i = ET solo
i × O∆max

i , where O∆max
i is the maximum observed contention impact

suffered by τi. However, this approach is inherently time consuming and cannot be exploited
for exploring non-negligible design spaces.

In terms of the number of workloads, for a heterogeneous multicore it can be computed as
the permutation with repetition of all contenders AC , where A is the number of applications
in the data set (DS) that can repeat in several cores and C is the number of cores. The
number of workloads reduces to CRC

A = (A+C−1)!
C!(A−1)! for homogeneous multicore architectures.

In terms of runs, depending on the experimentation environment in each run of a workload
we can obtain the slowdown for one of the tasks in the workload or all C tasks. The former,
our case, requires C runs per workload to obtain O∆n,i for each task, while the latter needs
one per workload. However, for homogeneous multicores, fewer runs are required when several
copies of the same task are present in the workload, in particular, A · CRR

A = A · (A+R−1)!
R!(A−1)!

where R = C − 1 is the number of contenders.
Overall, in the general case exhaustively covering all configurations on the real board is

unaffordable, even if each experiment requires just few milliseconds. With the number of
cores in the multicore processors evaluated in the real-time domains increasing (e.g., the
NXP Layerscape LX2160 already encompasses 16 cores), the number of workloads increases
to millions.

2.1 Contention Modeling
Contention models are generally orders of magnitude faster than experimentation in the
target board and can be executed in high-performance computing clusters, which allows many
more parallel experiments than making executions on few target boards that can be available
for experimentation. In this line, standard fully-fledged timing analysis techniques are not
fit for deriving early estimates. Measurement based timing analysis requires running each
workload on the target board whereas static timing analysis has known scalability issues.

1 The main terms used in the mathematical formulation is summarized in Table 2. Instead Table 1 shows
the main acronyms used in the main text.

ECRTS 2022
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Table 2 Main terms used in the formulation (notation) in this work.

Term Definition Size
A Total number of tasks (applications) in the data set
C Number of cores (e.g. C = 4)
DS Data Set
H,I Number of output and input values
hl

i i-th input/output value in layer l
J Number of EMs per task/core (e.g. J = 262)
K Number of EMs per workload, K = J · C (e.g. K = 1048)
N Number of workloads in the DS
EMn,i All the EM of task τi in workload n when it runs in isolation J

EMn All the EMs of the n-th workload (point) in the DS K

EM∗ All the EMs for all the workloads in the DS N · K

emj
n,i The j-th EM of τi of workload n 1

emk
n The k-th EM of the n-th workload (point) in the DS 1

ET mcp
i , ET solo

i Execution time of task τi in multicore processors and in isolation
O∆n,i Observed contention for τi in workload n 1
O∆n Observed Contention for all tasks in workload n C

O∆∗ Observed Contention for all workloads in the DS N · C

P ∆n,i Predicted Contention for τi in workload n 1
P ∆n Predicted Contention for all tasks in workload n C

ϕ Neural Network (function)
R C − 1
T Bmcp Time Budget in multicore

Contention models produce an estimate to contention in the form of a predicted ∆ (P ∆),
so that TBmcp

i = ET solo
i × P∆max

i , where P∆max
i is the maximum predicted contention

impact. The process of deriving P ∆max
i builds on several factors that capture the contention

a task can suffer from and generate on co-runner tasks.
In real platforms, event monitors (EMs) provide insightful information about how a task

uses shared resources, which in turn are the inherent sources of contention. EMs report
metrics like access counts to resources, hit/miss accesses to cache memories, and other
activities of the task on the underlying hardware.

In this work, we target the NXP T2080 [22], a quad-core MPSoC which is currently
considered for certification for avionics products [48]. The T2080 comprises 262 EMs that
provide insightful information on the use of resources of the analyzed application at core,
shared L2, and memory levels. For a given workload, the EMs collected for each task while
running on the T2080 in isolation are fed as input to the contention model.

As shown in Figure 1 for a quad-core processor, to predict the contention impact,
the contention models use the EMs collected (in isolation) for all the tasks in the work-
load, denoted as n, constituting a function named f . The predicted contention impact
for task τi when running in workload n, together with τj , τk, τl, is denoted as P∆n,i =
f (EMn,i, EMn,j , EMn,k, EMn,l). EMn,i ∈ RJ are all the EMs (collected in isolation) of a
task τi where J is the number of EMs read per core (J = 262 in the T2080).

For the training of the model, see Figure 2, we build on the results of executing multicore
workloads, generated from a set of A tasks that are executed on the available cores C on
the target board (one task per core). The observed (real) contention O∆n,i for each task τi

in each workload n is collected and used in order to compute P∆m,i in a different (unseen)
workload m.
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2.2 Formalization
Several techniques have been proposed in the mainstream domain for multicore contention
prediction, from which we identify two families: MLR- and NN-based models [52, 11, 59, 34].
A commonality of the different models is that they create an input data set (DS) for training.
Such input DS is composed by the EMs collected for several tasks used to compose the
workloads and the observed slowdown when executing a subset of workloads on the target
board. Reducing the subset of this input DS used for training contributes to Property 1.
The input DS is shown in Equation 1:

DS = (EM∗, O∆∗) = {(EMn, O∆n)}N
n=1 (1)

EM∗ ∈ NN×K are the EMs of all the N workloads in DS. K is the number of EMs read
in total, that for the case of the NXP T2080 is K = 4×262 = 1048, since C = 4. EMn ⊂ NK

are the EMs all the tasks in the n-th workload when executed in isolation. That is, EMn is
the concatenation of the EMs of each task composing the workload when run in isolation.

O∆∗ is the observed contention for all the tasks in all workloads in the DS. Likewise,
O∆n = {O∆n,1, . . . , O∆n,C} ⊂ RC is the contention for the C executed tasks in workload n.

2.3 Multi-Linear Regression (MLR) Models
For a Tasks Under Analysis (TUA), τi, of the n-th workload in the DS, a multi-linear model
is a linear transformation from the EM values (EMn) to the P ∆n,i =: ŷn, where i is omitted
because ŷn is always referring to the TUA. The MLR can be formulated as follows:

ŷn = W × EMn + b ⇔ ŷn = w1 · em1
n + w2 · em2

n + · · · + wK · emK
n + b (2)

x1 x2 xK

where each emk
n ∈ N is the k-th EM in the n-th workload. As we can see in Eq. 2, we

can also use {xk}K
k=1 to refer to them. EMn ∈ NK refers to the EMs input information for

workload n. wk ∈ R and b ∈ R are the weights to be learnt that define the linear combination
between the EMs values and the predicted ŷn = P∆n,i ∈ R+.

The goal of the MLR is to find the weights {W, b} that minimize a certain distance
function (known as the loss function) between the predicted output and the real response
variable value with respect to the training split set. This minimization process can be
typically performed in two different ways.

Given that the MLR is a linear combination of coefficients with the input information,
the least-square estimate of W can be computed using the DS where we identify the TUA τi,
(EM∗, {O∆n,i}N

n=1):

Ŵ = (EM∗
T · EM∗)−1 · EM∗

T · [O∆1,i, O∆2,i, · · · , O∆N,i]T , (3)

Computationally expensive.

where the T superscript denotes the matrix transpose operation, the −1 superscript refers
to the inverse of the matrix2 and [O∆1,i, O∆2,i, · · · , O∆N,i]T is the column vector that
contains all the contention values for all the N workloads. Importantly, this way of obtaining
the optimal weights has a potential drawback in most of the real-world situations, as the
inverse of an N × N matrix must be computed, which has polynomial time complexity.

2 To simplify the notation, the Ŵ matrix implicitly contains the bias b column in that case.

ECRTS 2022



4:8 Quantile NN for Multicore Contention Prediction

Figure 3 Multi-linear regressor. Figure 4 Dense neural layer. Given I layer-
input values, {hL−1

i }I
i=1, it provides H layer-

output values, {hL
h }H

h=1.

As an alternative approach to avoid computing the inverse matrix, we can compute this
minimization process by slightly modifying the weights in the gradient direction, i.e. applying
a gradient descent method. Nowadays, this differentiation process is implemented in most
relevant deep learning libraries, which allows native code to be differentiated automatically
[1, 45, 12, 7]. This derivative is computed with respect to a loss function, which can be the
mean square error (also known as least-square estimate) that approximates the conditional
mean, or an alternative function, as we will see in the next section.

2.4 Neural Network (NN) Models

A NN is also a parametric function ϕ that transforms a vector of EMn to a predicted
contention for a task under analysis τi in workload n, ŷn = P∆n,i, i.e. it is defined as
ϕ : RK → R, transforming EMn 7→ ŷn. Instead of a single matrix multiplication such as in
MLR, the NN considers several internal non-linear transformations from the input, EMn,
to produce the output value ŷn. Each of these transformations is known as a “layer” and
combines its input values and weights to produce its output, which for the last layer is the
output of the model [36, 16]. Roughly speaking, the NN combines a mixture of weights and
its input values to minimize a certain distance loss function (as in the MLR case) between
the predicted and the real response compared to the DS used to train the model.

Figure 4 represents one NN layer where {hL−1
i }I

i=1 represent the inputs to the layer and
I is the number of neurons in the layer. In the first layer that is I = K and h0

k = emk
n for

eack k = 1, · · · , K when a n-th workload is fixed. Each transformation, represented as a
rectangle in Figure 4, matches Equation 2 with the addition of the non-linear activation
function, denoted as σ, which allows the enhance approximation capabilities of the NN by
means of the layer stacking process [13]. Each layer will produce a set of outputs, {hL

h }H
h=1,

where H is the number of neurons in the next layer, then will be either used as inputs to the
next layer or as final NN output in case of the last layer.

In probabilistic terms [26, 51], the loss function aims to approximate the conditional
probability p(Y | X, M), where X represents the theoretically random variable that generate
the input values – in our case the EMn values, Y represents the corresponding random
variable that generates the contention values O∆m and, finally, M is the random variable
that characterizes all the hyper-parameters in the NN (including the number of layers, the
type of layers, the parameters about the learning configuration, etc). Importantly, the
conditional probability approximated can be affected by the hyper-parameters selection,
which is, therefore, a critical step to consider for the whole process. In this probabilistic
context, the common approach [31, 40] is to follow a Maximum Likelihood Estimation (MLE)
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or a Maximum A Posteriory (MAP) approach to compute such conditional probability and
to assume the sample mean is asymptotically normal, which consequently leads to use the
following loss function:

▶ Definition 1 (Mean Square Error). Let X ∈ RK be a covariate random variable and Y ∈ R
be a response random variable (i.e. the random variables that generates the input and output
values, respectively). Reducing the conditional 3 Mean Square Error (MSE) consists in finding
a function ϕ : RK → R, characterized by M , which approximates the conditional mean of
p(Y | X, M) by minimizing the loss function defined as

LMSE(X, Y ) = E
[(

Y − ϕ(X)
)2]

≈ 1
N

N∑
n=1

(yn − ϕ(xn))2
. (4)

For the problem at hand, ϕ(xn) = ϕ(EMn) is the evaluation of the NN over the EMs
(1048 for the T2080) for a certain workload n, producing a forecast ŷn = P∆n,i. Similarly,
the MLR can be used into this equation as the ϕ function, i.e. ϕMLR(xn) = W · EMn + b.

The conditional mean is a generically good estimator, and an ideal one in scenarios where
the Central Limit Theorem is applicable. However, when the approximated p(Y | X, M)
corresponds to a heavy tailed distribution (or even has some important outliers), computing
a conditional mean can lead to unreliable decisions. Then, the median can be a more stable
estimator in the presence of certain outlier values. In fact, this is equivalent to repeat the
previous MLE reasoning for the normal distribution but using the Laplace distribution. In
such case, the conditional loss function is the following:

▶ Definition 2 (Mean Absolute Error). Let X ∈ RK be a covariate random variable and
Y ∈ R be a response random variable. Reducing the conditional 4 Mean Absolute Error
(MAE) consists in finding a function ϕ : RK → R that approximates the conditional median
of p(Y | X, M) by minimising the loss function defined as

LMSE(X, Y ) = E
[∣∣∣Y − ϕ(X)

∣∣∣], (5)

which provides results that are more robust to outliers and more interpretable than
the commonly used MSE [58, 10]. However, a NN optimized with the MSE or the MAE
will predict a central conditional value. Therefore, while being appropriate for deriving
predictions that are close to the actual values, by definition it will not be able to compute
upper-bounds. In other words, a perfect MAE estimation will have a 50% probability of
having real values above and bellow the predicted point. Thus, it should not be used as a
proper high-value threshold.

While computing a confidence interval around such central value is technically possible,
this brings multiple challenges related to (i) the assumptions on the actual distribution for
each value to predict (i.e., whether it can be regarded as Gaussian or not), (ii) computational
cost to estimate the confidence interval for each predicted value across the prediction value
range, and (iii) variability in the confidence reached (or tightness of the bounds) due to the
arbitrary variability in the amount of data that can be available for each predicted value
(e.g., for some predicted value ranges we may have very few input observations). Hence, we
discard computing confidence intervals for NN based prediction.

3 The term “conditional” is added to highlight that here the information about X should be provided
to compute the error of the f with respect to Y . This also makes this definition consistent with the
conditional QR definition introduced afterwards.
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Figure 5 QRNN versus MLR and NN.

3 Quantile Regression NN

As presented in the previous section, classical NN are usually optimized using the MSE (see
Eq 4) or the MAE (see Eq 5), which corresponds to estimate the conditional mean or median,
respectively. In this section, we introduce the Quantile Regression (QR) method [32, 8],
which allows approximating a desired quantile of the conditional distribution p(Y | X, M).
This is visually represented in Figure 5 that for a given 1-dimension input (the horizontal
axis) the goal is to predict the height of the points (the vertical axis). In particular,

As it can be seen, MLR assumes a linear correlation between the input and output
variable, which induces the prediction to be a conditional line.
NN introduces the possibility to learn the conditional mean (or median) in a non-linear
manner but, still, this cannot be used as an upper threshold.
QRNN allows to approximate a sky-high conditional quantile in a non-linear way, which
avoids strong assumptions such as linearity or symmetry between the predicted distribu-
tion, i.e. the conditional predicted distribution p(Y | X, M) can be skewed (such as the
initial and final part of Figure 5) and the QRNN obtains a proper response.

This is useful since we can capture confidence intervals without making strong assumptions
about the distribution function to approximate. The formal definition of QR depending on
X is as follows:

▶ Definition 3 (Quantile Regression). Let X ∈ RK be a covariate random variable and Y ∈ R
be a response random variable. Given η in the real interval [0, 1], the conditional quantile
regression (QR) consists in finding a function ϕη : RK → R which approximates the η-th
quantile of p(Y | X, M) by minimizing the η-th QR loss function defined as

LQR(X, Y, η) = E
[(

Y − ϕη(X)
)

·
(

η − 1[Y < ϕη(X)]
)]

, (6)

where 1[c] denotes the indicator function that verifies the condition c.

Unlike MSE Eq 4 or MAE Eq 5, the QR expressed in Eq 6 is not always a symmetric
function in the sense that when the predictive system over- or under-estimates it sums to
the final loss value in the same manner.

This is illustrated in Figure 6 with the representation of a QR loss function shape
centered at zero considering different quantile parameters, ηs, i.e. {LQR(X, Y, ηt)}9

t=1 where
ηt = 0.1 · t, Y is always zero, the ϕη(X) in Eq 6 is the horizontal axis value and the vertical
axis corresponds to the loss value in such conditions. As we can see in Figure 6, depending on
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Figure 6 QR loss function shape centered at
zero. The ϕη(X) in Eq 6 is the horizontal axis
value and the vertical axis corresponds to the loss
value in such conditions.

Figure 7 Behaviour of the QR loss value for
high η values. When η → 1 (red case) the under-
estimated predictions are multiplied by an almost
zero factor, which produces flat shape in η = 0.99.

the selected quantile η for the QR, its shape will be different. For instance, when the quantile
is the 10th percentile (η = 0.1) the underestimated errors are multiplied by a lower factor
than when the forecaster value ϕ(X) is overestimating. This is so because the increasing loss
value in the positive horizontal axis in such case is clearly higher than the negative part. This
effect comes from the second multiplier of the Eq 6, i.e.

(
η − 1[Y < ϕη(X)]

)
, which means

that when the real value Y is strictly lower than the predicted ŷ = ϕη(X), then the indicator
function takes the value of 1, otherwise it is 0. In the presented case, as η = 0.1, it means
that when ϕη(X) is underestimated, the difference between the real value and the predicted
value will be multiplied by 0.1, which justifies the lower increasing in the negative part of
the blue line of Figure 6 as far as the predicted value is from the (here, always zero) real
value. Contrastingly, the positive part will be multiplied by −0.9, which produces a higher
increasing as much far as the predicted value is far from the real one but also it ensures that
the loss function is always positive.

3.1 Predicting Sky-high Quantiles using QR
The problem at hand requires to have a proper sky-high quantile to ensure most of the
predictions are below. However, when we use the QR Eq. 6 to predict a quantile η → 1, i.e.
when the condition Y < ϕη(X) is satisfied, the whole expression of Eq. 6 tend to be zero
due to its second factor

(
η − 1[Y < ϕη(X)]

)
approximates to zero. This is an issue because

it implies that any overestimated point by the NN ϕη for a certain η ≈ 1 almost does not
contribute to the expected error. Hence, higher erroneous values that are overestimated are
neglected as lower erroneous values. This has a critical effect in the optimization process
because high differences, Y − ϕη(X), will not be taken into account and it will cause the
solution to be unavoidably unstable or wrong.

To solve this issue we propose a solution that considers two edges (represented in two
colors of the vertical arrow of Figure 7): First, we want to predict the higher quantile possible
to reduce the number of under-estimated cases. And second, we want to avoid the neglecting
issue that appears when we are predicting η → 1 quantiles. Therefore, (1) the NN model will
predict simultaneously several quantiles (including farther and closer quantiles to 1), and (2)
all these quantiles will be linearly related with a common previous hidden representation,
which means that they will share the last neural network layer.

As we described previously, the closer the quantile value η gets to 1, the worse the effect
of avoiding overestimated errors will be. Therefore, (1) considering several (a fixed set of)
quantiles that tends to 1 and (2) that preserves a linear relation between a common previous
representation (i.e. all the simultaneously predicted quantiles shares the same penultimate
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NN layer), we can ensure that lower sky-high quantiles of the set will avoid the neglecting
issue when it appears and, at the same time, the higher approximated quantiles will try to
push for obtaining a higher extreme upper bound. Combinedly, (1) and (2) allow the model
to obtain a balanced solution in both senses. In Figure 8 is described the change we require
to perform to predict several quantiles using a single NN model.

Figure 8 Transformation from a single QR NN model to a multiple QR NN model that simultan-
eously predicts several quantiles.

As shown in Figure 8, the number of inputs and even the internal number of hidden
layers and hidden neurons are preserved (as long as it is enough complex to approximate the
desired function). The only we need to change is the number of outputs, represented as the
{qηo

}3
o=1 last neurons in Figure 8, by changing the number of neurons of the last layer. Each

of these neurons will be optimized using a different specific QR-loss function, shown in Eq. 6,
for the corresponding quantile η value.

3.2 Task Order Invariance
We set an additional constraint on our multicore contention prediction models that typical
ML models do not provide. In particular, the predicted contention for a given task must be
the same under any permutation of its contenders.

▶ Property 3 (Task Order Invariance (TOI)). For homogeneous multicores, multicore conten-
tion models for a given task τi in a given workload n must provide the same estimate (P ∆n,i)
regardless of the core where τi runs and any permutation of its contenders.

Considering a workload n consisting in tasks τi, τj , τk, and τl, the contention suffered by
each of these tasks must not be affected by the core in which tasks executes. Therefore, it
must not be affected where the task under analysis and the other tasks in the workload are.
Specifically, for a given task under analysis (TUA) τi in a certain workload n:

P∆n,i = f (EMn,i, EMn,j , EMn,k, EMn,l) = f (EMn,j , EMn,i, EMn,k, EMn,l) =
= · · · = f (EMn,l, EMn,k, EMn,j , EMn,i)

▶ Definition 4 (Task Order Invariant). Given a four-core multicore contention forecaster ϕ

and four sets of EMs, {EMn,i, EMn,j , EMn,k, EMn,l} where τi is the TUA, this forecaster
can be considered a Task Order Invariant (TOI) predictor if Equation 7 holds regardless of
the order in which EM sets appear in the parameter list, which means disregarding the core
mapping of both the TUA and the contenders, as long as they run in parallel.

ϕ( EMn,i , EMn,j , EMn,k, EMn,l ) = ϕ( EMn,l, EMn,k, EMn,j , EMn,i ) (7)

TUA position can change.

Same contenders with different order.
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Figure 9 Example definition of the first layer of the NN or the whole MLR model for the
T2080 to ensure they provide the same output regardless the order of the contenders. In short
for all the l = 1, · · · , O output neurons of the L-layer, wl

j+1∗262 = wl
j+2∗262 = wl

j+3∗262. Note that
wl

j , j = 1, · · · , 262 are the EMs of the TUA in this case τ0.

3.2.1 Existing Models
For MLR, in Eq. 2 the set of K weights are divided in C groups/cores of J EM each and
the j-th position for each group is the same EM (e.g. data cache misses). Each of these EM
has associated a different weight wi, wi+J , · · · , wi+(C−1)·J , which can get a different value as
part of the training. It then follows that the order in which the contenders tasks are passed
to the model affect its results. Note that the j-th counter of task τi in workload n (i.e. emj

i,n)
is the j · (i − 1)-th counter in the workload (em

j·(i−1)
n ) for j = 1, · · · , J and i = 1, · · · , C.

For NN, as it can be in in Figure 4, the same logic applies. In the first layer, h0
k = emk

n

and there is a different weight associated to each h0
k with each of then potentially taking a

different value. As a result, the order of the contender tasks matters.
As an illustrative example, Figure 10a shows the contention estimates obtained with the

NN model for different permutations of the 3 contenders (C1, C2, and C3) for 5 arbitrary
workloads. We can see that depending on the of the contenders (shown in the x-axis) the
produced estimate varies showing that NN does not fulfill Property 3 (nor does MLR). Also,
across permutations the predictions can vary significantly.

3.2.2 Achieving TOI
In order to achieve TOI, we propose a method that can be commonly applied to any presented
NN model as well as the MLR. The method consists in sharing the weights across the same
EM in all cores where contenders run, as it is shown in Figure 9. Particularly, the TOI dense
layer will satisfy the following expression (τi is the TUA in workload n):

hL
l = σ

(
w1 · em1

n,i + w2 · em2
n,i + · · · + wJ · emJ

n,i

+
3∑

k=1
(wJ+1 · em1

n,k + wJ+2 · em2
n,k + . . . + w2·J · emJ

n,k)
)

, (8)

The new weight-sharing part to be TOI.

where the shaded area is the new weight-sharing part and σ is the non-linear function
or activation function introduced in Section 2, such as the REctified Linear Unit (RELU).
Importantly, when we want to produce a TOI MLR, this activation function does not appear
and, therefore, the Eq. 8 without the σ constitutes the overall model instead of a single layer
like in the NN case.
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(a) Standard model prediction. (b) TOI model prediction.

Figure 10 Contention predictions of a standard model with and without the TOI for a given
workload under different contender permutations.

For the same workloads and contender permutations showed in Figure 10a, we produce
predictions with a NN in which the weight of the same EM in the different cores is shared. The
net result is that contention predictions are invariant to the permutations of the contenders
as shown in Figure 10b.

4 Experimental Setup

Our experimental setup includes the target platform and its configuration (Section 4.1), the
kernels we use to compose workloads (Section 4.2), the particular experiments we carried
out (Section 4.3), and the configuration used for the specific contention models, such as the
number and type of layers in NN and QRNN (Section 4.4).

4.1 Hardware Platform
We perform our experiments on a NXP T2080 Reference Design Board [22]. The T2080RDB
includes a NXP T2080 System on Chip (SoC) for which an avionics multi-core certification
case has been started [48]. The T2080 SoC includes a CPU cluster with 4 e6500 cores [21],
see Figure 11. Each core has its own private 32KB 8-way instruction and data caches. In
each core a core-cluster interface (CCI) serves as the bridge for data and instruction cache
requests from and to the L2. The L2 cache is shared between all the cores. The core cluster,
the DDR memory controller, the DMA and other I/O controllers are connected via the
CoreNet coherence fabric (CCF). In this work, we focus on the main path from cores to main
memory, and do not address the potential contention arising in the I/O. In order to favor
time predictability, we configure the T2080 as follows:

Figure 11 Simplified block diagram of the NXP T2080 SoC.
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Shared L2 cache: shared caches are one of the main sources of contention in modern
SoC. In order to favor predictability and simplify the work of timing analysis tools in
the validation phase, shared last level caches are typically partitioned via software (set
partitioning) or via hardware support (way partitioning). The T2080 allows each core to
be assigned a subset of the L2 cache ways. In our experiments, we assign each core a
disjoint set of 4 ways by properly configuring the L2 cache control registers.
Hyper-threading support: the hyper-threading capability in each e6500 core has been
deactivated. From a multicore contention perspective, tasks running in hyper-threading
mode in a core share not only first level instruction and data caches but also some core
resources, potentially affecting each others performance significantly.

4.2 Workloads

We use several kernels (basic operators) that are commonly used in machine learning libraries,
which in turn, are used for many operations of autonomous driving and ADAS software,
from perception and detection to planning and control. For instance, matrix multiplication
is a central element of YOLOv3 machine learning library [53] and radar applications [23, 54],
and has been shown to account in some scenarios for 67% of YOLO’s execution time [20].
The kernels we use in this work are:

Matrix Multiplication is one of the most common kernels for many functionalities like
object detection and path planning in autonomous navigation, and covariance matrix
computation in radar applications. We experimented with two versions: (1) basic (MMB),
and (2) optimized (MMO), which “tiles” input matrices to improve data locality.
(3) Matrix Transpose is another quite common matrix operator
(4) Matrix Transpose Multiply combines matrix transpose of the second matrix and
multiplication of both of them. It is used, for instance, for certain internal operations in
NN [24] and for covariance matrix computation in radar applications;
(5) Rectifier is an activation function in neural networks taking the positive value of its
argument or zero when it is negative;
(6) Image-to-Columns function is used for transforming raw RGB images into matrices in
the format needed by neural networks;
(7) Vector-multiply-add is a type of linear algebra operator.

We also used a set of basic operators with different data types and precisions. In particular,
we use (8-9) vector addition with integer long and with floating-point double precision. For
(10-11) vector multiplication and (12-13) vector division we also use integer long and fp
double types. We also use (14) quicksort sorting algorithm on a randomly ordered array. All
these operators are the building blocks for other basic functionalities in machine learning
libraries and radar applications.

Also autonomous driving frameworks like Apollo use deep and recurrent neural networks
in several stages like object detection, object tracker, etc [47]. Each of those stages works with
different input sizes. In the same vein, radar applications typically operate relatively small
matrices in comparison to camera-based and LiDAR-based object detection applications. In
order to capture this scenario in which input data may or may not fit in the different cache
levels, we have developed 3 variants of our kernels: one fitting in DL1, one fitting in 4-ways
of the L2, and one going frequently to memory. Overall, we use A = 42 kernel variants.
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4.3 Experiments
We start by running each kernel in isolation and collect all EMs. EMs are read via performance
monitoring counters. While the number of EMs can easily be over hundred, the number of
performance monitoring counters is usually below 8 (it is 5 for the T2080). Hence, in order
to read all 262 EM, we carried out 53 runs in each of which we read 5 different EMs.

As a second step, we generated a data set with 4-kernel workloads randomly selected from
the set of kernels described in the previous section. We run each workload on the target board.
For the T2080, it has been reported that the same multicore run is subject to execution time
variation [57]. This happens despite exercising a tight control on the experimental setup
ensuring that in every run the state of the caches and TLBs is reset. However, other non-
resettable resources retain some state that changes across runs. To capture this variability,
we repeated each experiment run 50 times and take the high watermark execution time.
Note that our experiments show that this variability occurs for multicore executions. For
single-core executions, the variability of a repeated measured EM is below its 1% value.

In each modeling experiment, we randomly split the DS into different (sub)sets used to
train and validate the models, as commonly done in machine learning literature [15, 44]. The
Training set (T) includes the subset of data that will be used to optimize the supervised
model. The Validation set (V) includes the subset of data that will be used to decide when
to stop optimizing the supervised model. The tEst set (E) includes the subset of data that
will be used to verify the quality of the performance or accuracy of the supervised model to
generalize.

In all experiments, the percentage of workloads of the overall DS for T and V is 17%
and 2%, respectively. The remaining 81% is used as E. Note that only T and V are used
to determine the models, while the remaining E of the DS is used in this work to show the
accuracy of each model and that hence will not be needed in reality to generate the model. It
is also worth noting that when generating the T and V sets, we make sure that the number
of times each kernel is used in as TUA is the same. The contenders are generated randomly.

(a) (MAE) MLR prediction. (b) (MAE) NN prediction. (c) QRNN prediction.

Figure 12 P ∆ vs O∆ for MLR, NN, and QRNN.

4.4 Model Configuration and Libraries
The current forecasting context is a single value regression. In the presented problem,
no time-based input information exists and, therefore, it is not required to encode it into
the model by using recurrent NN layers [27, 60]. Similarly, the EMs used as inputs are
mostly counters with their own meaning, hence not having spatial proximity information.
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Consequently, convolutional NN layers [35, 2], which are specially designed for images or
text information, are not appropriate in our context. Hence, the considered NN models used
are based on fully-connected or dense layers [26], which is a Multi-Layer Perceptron (MLP)
model with the ReLU non-linear activation function [33] in the hidden layers. Additionally
to the common MLP, all the models presented in this work have the first layer customized
by following Section 3.2 to ensure TOI.

Regarding implementation, all the models were developed in TensorFlow [1] using the
Keras sub-library [12]. We used a greedy search algorithm [37, 30] to select a proper NN
architecture including between 1 and 6 hidden layers considering 100, 200, 300, 400 and 500
neurons. Each model is trained with early stopping, hence requiring different time to train,
but none exceeds 10 minutes of training. The final selected architecture includes 3 layers of
300 neurons each (including the TOI-layer) for the standard NN (with a single output), and
the same architecture for the QRNN model. Therefore, given that both hidden architectures
are analogous for those NN models (except in the case of the last layer), they have similar
general function approximation capabilities [26].

5 Experimental Results

We start by comparing the accuracy of the estimates provided by each technique. In Figure 12
we see three charts corresponding to the accuracy results of MLR, NN, and QRNN with
a target quantile4 η = 0.9. Each point represents a particular workload n with TUA τi.
The x-axis shows the slowdown observed for the TUA O∆n,i and the y-axis the predicted
contention P∆n,i. The bottom-left top-right diagonal highlighted with a red line shows
the ideal scenario in which the predicted value matches the observed one. As we can see
MLR (Figure 12a) underestimates (i.e. P∆n,i < O∆n,i) for many workloads, see points
below the red line. NN (Figure 12b) produces much tighter estimates, yet many of them
underestimated. QRNN (Figure 12c) corrects this situation significantly reducing the number
of underestimated cases while maintaining high-accuracy.

This is quantified in Figure 13 where we see that MLR underestimates in 46.8% of the
cases, NN 31.3% and QRNN reduces it down to 8.8%. In terms of amount of over- and
underestimation, Figure 14 shows x-th largest overestimated and underestimated values
(referred to as the x-th LOE and LUE value, respectively) of each model. For instance, the
(1st) largest overestimated (LOE) value is largest value of P ∆n,i/O∆n,i when P ∆n,i > O∆n,i.
Likewise the (1st) largest underestimated (LUE) value is the one with the (1st) largest distance
to value 1.0 when P∆n,i < O∆n,i, i.e. the (1st) smallest value.

Figure 13 Breakdown. Figure 14 Largest Over- and Underestimation values.

4 As it is described in Section 3.1, the proposed QRNN model predicts three different quantiles,
{0.7, 0.9, 0.99}, to support the η = 0.9 prediction and avoid negligence issues of sky-high quantiles.
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In terms of LUE, MLR (red squares in Figure 14) produces the worst results with
underestimates below 0.6 even for the 20th largest value. NN (red circles in Figure 14)
produces similar underestimates that remain below 0.7 for the 20th LUE. Instead, QRNN
(re diamonds in Figure 14) reduces this significantly with underestimation very close to 1.0:
at most 0.83 and rapidly going to 0.96 for the 20th LUE.

In terms of LOE, QRNN produces worse results than MLR and NN. Yet, the LOE values
are moderate going from 1.48 (largest) to 1.34 (20th largest). It follows that, QRNN fulfills
Property 2 by tending to overestimation while keeping estimates tight.

5.1 Impact of η

In order to assess the impact of η in the results besides the value used so far η = 0.9, we
evaluate other values of η. In particular, inspired in the analysis of the distributional tails,
we select an exponential decay as follows {ηit = 1. − 0.01 ∗ 2it}, it ∈ [1, 2, 3, 4], which takes
values from 1 to 0.8, i.e. η ∈ [0.99, 0.98, 0.96, 0.92, 0.84]. Figure 15 and Figure 16 evaluate
underestimated cases and x = 15-th LUE and LOE for different values of η (similar trends
are obtained for other values of x like 10 and 20). We can see that, as η increases, the
number of under underestimated cases tends to decrease from over 16% for η = 0.8 to less
than 1% for η = 0.99. In terms of LUE and LOE, both increase. In the LUE case, this
means reducing the underestimation and in the LOE case increasing overestimation. Overall,
changing the quantile η, QRNNη provides to the end user a mechanism to control over- and
underestimation in the way it better adapts to his/her needs.

Figure 15 Underestimated cases. Figure 16 15th LOE and LUE values.

5.2 Different random partitions of the DS

Results so far have been shown for a particular breakdown of the workload space into TVE
sets. For η = 0.99 Figure 17 shows the results for 100 experiments in terms of the number
of underestimated cases (UEC) and the 15th LOE and LUE values (15LOE and 15LUE,
respectively). In each of the 100 experiments we randomly selected the workloads in TVE
sets as described in Section 4.3 and re-trained all models.

As shown, there is some variability due to the fact that, in the DS across the different
workloads, the randomly generated contenders do not properly represent the tasks in the DS.
This is illustrated in test number 2, for which we see large variations for NN results in high
15LOE and 15LUE. Despite these variations, more notable in 15LOE for QRNN and UEC
for NN, the main conclusions remain the same with QRNN tending to overestimation and
almost no underestimation (15LUE is very close to 1 and UEC to 0 for QRNN).
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Figure 17 Number of over-estimated cases and the 15th LOE and LUE value for 100 experiments.

5.3 Changes to the applications
In the application scenario we address, as introduced in Section 2, the applications composing
the software component of the embedded real-time product are fixed. However, as part of
the usual incremental development process, applications can suffer some updates. This might
cause some improvements to the functional behavior of the application, and more importantly
to us, it can change the usage of hardware shared resources. Obviously, the more the updated
versions differ in their resource usage from previous versions, the more challenging it is to
produce tight estimates. In order to capture this situation, we assess the impact of varying
some of the applications in the task set. In particular, we consider a scenario in which the
QRNN model has been trained with a basic version of matrix multiplication (MMB) that
is afterwards optimized resulting in an optimized version of matrix multiplication (MMO).
This implies having a holdout set (H) for QRNN, which is an isolated subset of data that
will be used to check the capabilities of the model to predict scenarios that could not be
observed or are slightly different.

In practical terms, this means that we remove MMO (only use MMB) from TVE so that
the weights of the resulting QRNN do not factor in MMO (but MMB). To assess the impact
on accuracy, we query QRNN with MMO, so we make contention predictions for MMO,
which was not used in TVE. Figure 18a shows the results when we use as contenders of MMO
only kernels already used in TVE and in Figure 18b when we also use MMO as contender.
In both cases QRNN behaves quite well, keeping both, the number of underestimated cases
low and the overall prediction accuracy quite tight. Figure 18c shows the results of the
predictions for the kernels already in TVE (that is, all but MMO) when the set of contenders
contain at least one copy of MMO. The same trend holds with low number of overestimations
(below 3.5%) while accuracy is kept high.

5.4 Execution time requirements
In order to assess the speed of the inference of the models, we perform experiments with
TensorFlow software library v2.3.0 on an AMD Ryzen 9 3950X Processor. Our results show
that MLR performs 1.25X107 predictions per second while NN and QRNN 1.48X105 and
1.46X105 per second respectively when running the library in a single core. While MLR is
faster, we have seen that its accuracy results are rather poor. When we use all 16 cores,
performance for NN and QRNN scales perfectly so that we can make more that 2.3X106

predictions per second. Overall, a wide design space can be covered with the presented
QRNN model, hence achieving the Property 1.
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(a) MMO vs existing kernels. (b) MMO vs all kernels. (c) Existing vs all kernels.

Figure 18 QRNN predictions when MMO is used instead of MMB.

6 Related Works

The importance of capturing timing requirements already in DDP of embedded real-time
systems is widely recognized [17, 5, 42, 19, 18, 49]. Existing approaches mainly focus on
deriving and exploit early timing bounds to guide architectural exploration and steer design
decisions: early WCET figures are obtained either by exploiting simulation of software designs
or partial implementations thereof [17, 18, 3], or by using actual observations to abstract
away from certain architectural features [42, 19]. In fact, the main objective of these works
is providing quick estimates at the expense of loosening accuracy. However, those works do
not address the impact of multicore contention, which is the main focus of our work.

ML techniques are widely used in several fields of computer science [46, 41], for the design,
optimization, and simulation of computer systems. In the context of time critical systems,
approaches building on statistical and machine learning techniques have been proposed to
model uncertainties in deriving timing bounds for tasks running in single cores, both in
early and late development stages. In [5, 25] statistical approaches are leveraged to model
uncertainties in timing estimation rather than predicting WCET figures, but do not apply to
multicore systems. Still on single core systems, a hybrid approach using ML to build the
timing model within a standard static WCET analysis framework has been proposed in [4].

Preliminary approaches for deriving early WCET estimates based on machine learning
techniques are proposed in [6, 28], where relevant code-level constructs such as arithmetic
and memory operations, and conditionals, are used to train simple regression models for
WCET computation. Our approach builds on hardware events rather than source code, and
focuses on predicting multicore contention instead.

The use of machine learning techniques to model the impact of multicore contention has
been mainly investigated from the perspective of high-performance systems in the mainstream
domain [52, 11, 61, 59, 50]. These works aim at preventing average performance degradation
and implement linear regression models to predict the impact of multicore contention. In
the scope of real-time systems, non-linear regression with random forest has been recently
assessed for predicting multicore interference [14]. In contrast with our work, the proposed
approaches are mainly oriented towards average performance estimation and in all cases, the
underlying models do not prioritize overestimation as a fundamental requirement to avoid
timing misconfiguration to arise in the later development stages. Instead, we introduce the
use of QRNN for improved and tunable – conservative – prediction accuracy.
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Few works address the need for conservative timing estimates in DDP from the perspective
of real-time systems. Early modeling of multicore contention in time-critical systems is
addressed in [19, 49], where an empirical approach is presented to capture the worst-case
impact of contention on a given platform, which is later used to inflate the execution time of
a task in isolation, to obtain a bound guaranteed to hold under any workload. While closer
in spirit to our method, the inflated execution time estimates can result in up to 20x bigger
than programs’ execution time in isolation even for 4-core setups, which makes them barely
useful for DDP exploration. The work in [34] proposed an NN approach for deriving early
WCET bounds using the program features collected at the source code level by applying
static WCET analysis methods. We instead build on hardware events to model multicore
contention and use QRNN to force accurate but conservative timing estimates.

7 Future Work

In terms of future work, we identify several research opportunities. First, we have used
all the EMs available in the underlying platform. However, while EMs provide insightful
information about the activities in the processor, a subset of them could suffice to capture
the most relevant factors affecting multicore contention. In this line, techniques like principal
component analysis could be used for selecting relevant EMs, allowing a dimensionality
reduction of the contention models and therefore faster and more accurate models.

It is also the case that, so far, we have used EM collected during the execution of each
application in isolation. In fact, contention models could also build on EMs collected during
the execution of a subset of the workloads, as this would provide more accurate information
about how a given application reacts to contention. The other side of the coin is that
experimentation time would increase and training would be more complex. We are interested
in exploring trade-offs between accuracy and complexity.

Focusing on the bigger picture, contention models are to be queried by system-level
optimization models to explore, for instance, different task schedules based on the expected
contention. System-level optimizers require modeling how tasks overlap in time and how
events are distributed within each task execution. The latter aspect may call for collecting
EMs within tasks phases rather than end to end. Still at system level, contention models
can also be extended to cover other devices beyond memory for which activity descriptors –
e.g. in the form of EMs or system-level metrics – are available.

Finally, the present article focuses on NN models, which are just one of the state-of-the-art
ML models for regression purposes. NN models are not the only ones designed to learn
a conditional quantile using QR. For instance, decision trees [39], random forests [38, 14]
or Gradient Boosting [56] methods can be used with analogous purposes. As future work,
a comparison between extra QR-based models can be performed to assess the functional
approximation capabilities of each model in the current forecasting problem.

8 Conclusions

Early contention estimates in multicore setups tightly upper-bounding real contention
reduce the risk to detect timing misconfiguration in late phases of the development process
that would result in costly changes to the system design and/or implementation. We
use quantile-regression neural networks (QRNN) as an alternative to common NN and
multi-linear regression (MLR) models to drastically decrease scenarios with contention
underestimation while preserving tightness. Moreover, our approach achieves task order
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independence to provide identical contention estimates for equivalent task permutations with
identical contention in practice. Both, tendency towards – tight – overestimation and task-
order independence are, in our view, fundamental properties for the use of contention models
in real-time systems, besides prediction speed. Our results show that QRNN consistently
reduces the number of underestimated contention bounds with respect to NN and MLR
while its η parameter allows the user to find the tradeoff that fits best his/her needs.
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