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Abstract
In deterministic time-aware networks, such as TTEthernet (TTE) and Time Sensitive Networking
(TSN), time-triggered (TT) communication are often routed and scheduled without taking into
account other critical traffic such as Rate-Constrained (RC) traffic. Consequently, the impact of
a static transmission schedule for TT traffic can prevent RC traffic from fulfilling their timing
constraints.

In this paper, we present a general framework for routing, scheduling and formal timing analysis
(FTA) in deterministic time-aware networks (e.g. TSN, TTE). The general framework drives an
iterative execution of different modules (i.e. routing, scheduling and FTA) searching for a solution
that fulfills an arbitrary number of defined constraints (e.g. maximum end-to-end RC and TT latency)
and optimization goals (e.g. minimize reception jitter). The result is an iteratively improved solution
including the routing configuration for TT and RC flows, the static TT schedule, a formal analysis for
the RC traffic, as well as any additional outputs satisfying user constraints (e.g. maximum RC jitter).
We then do a performance evaluation of the general framework, with a proposed implementation of
the necessary modules for TTEthernet networks with mixed time-triggered and rate-constrained
traffic. The evaluation of our studied realistic use case shows that, using the general framework, the
end-to-end latency for RC traffic can be reduced up to 28.3%, and the number of flows not fulfilling
their deadlines divided by up to 3 compared to existing methods.

2012 ACM Subject Classification Networks → Network performance evaluation

Keywords and phrases TSN, TTEthernet, AFDX, AVB, Modeling, Routing, Scheduling, Formal
timing analysis, Worst-case analysis, Performance evaluation

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.8

Funding This paper is part of the ADACORSA project that has received funding within the ECSEL
JU in collaboration with the EU H2020 Programme and National Authorities, under grant agreement
876019.

1 Introduction

For many application domains, the temporal behavior of critical communication flows needs
to be formally validated. For example, in aerospace the authorities require the proof of
correctness as part of the certification process, as it also occurs in emerging industrial
automation systems, with respect to critical traffic fulfilling end-to-end latency, jitter and
available memory requirements. These proofs have been provided through analysis methods
like Network Calculus [10, 8, 4] or the more recent Compositional performance evaluation [24],
for technologies like Avionics Full DupleX (AFDX) [1], TTEthernet (TTE) [12, 20] or Time
Sensitive Networking (TSN) [11].

Deterministic time-aware networks such as TSN and TTE enhance the event-triggered Rate
Constrained traffic class (RC) with a fully synchronous time-triggered (TT) communication
paradigm offering stringent guarantees, deterministic real-time temporal behavior, and
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composability. For the TT traffic class, determinism is ensured via an offline communication
schedule enforcing the contention-free and timely delivery of critical frames across switched
multi-hop networks within defined latency and jitter bounds.

The schedule synthesis for the TT traffic class is typically done either through heuristic-
based approaches [21, 5] or optimal algorithms based on MiP or SMT solvers [19, 7, 3, 18].

The classical method considering routing, scheduling and FTA is to perform each of these
steps sequentially. However, this means that manual intervention to correct non-optimal
routing is often necessary, which can be very difficult. In particular, when routing is based
on methods such as load balancing, where modifying one route can have repercussions on
multiple flows. For this reason, approaches in which the steps computing the schedules and
routes are coupled have been developed, using methods such as ILP [17, 6]. However, these
approaches do not incorporate a formal timing analysis, so no alternative solutions can be
easily explored if the RC constraints are not fulfilled.

To our knowledge, two previous works integrate the formal timing analysis of RC traffic
when computing routes for both RC and TT traffic flows along with the schedule for TT
traffic [9, 27]. However, both methods consider the end-to-end latency as the single user
constraint. Additionally, we discuss in Section 2 several flaws leading to long computation
times and inefficiencies that we address with our proposed method.

In this paper we provide a general framework for deterministic time-aware networks with
mixed time-triggered and rate-constrained traffic classes, computing the static routing and
scheduling configuration such as the constraints of both traffic classes are fulfilled. In our
method, the routing, scheduling, and formal timing analysis modules can be implemented and
customized by the user according to their own requirements. Moreover, additional RC or TT
constraints (e.g. end-to-end latency, frame-memory limitations, etc...) can be incorporated
to drive the search towards better solutions.

The main contributions of this paper are twofold, we propose: i) a general search for
routing and scheduling which considers formal timing analysis of RC in Section 3; and
ii) we conduct a performance evaluation with an application of the general framework for
TTEthernet networks, including the time-triggered and rate-constrained traffic classes, in a
realistic use case in Section 4 for which we developed a set of modules combining heuristic
routing and SMT solver based scheduling with a formal RC analysis based on Network
Calculus. To complement the analysis we compare our results with those of the current
state-of-the-art in Section 4.4.

2 Related Work

Increasing the performance of time-triggered and event-triggered traffic has been pursued
in previous works using methods to either improve the routes or the schedule instants of
frames, by including event-triggered constraints into the scheduling problem formulation,
or by applying a combination of these. To enhance TT traffic, the routing and scheduling
can be done jointly using heuristics [25], or Integer Linear Programming (ILP) formulations
[17, 6]. However, when using ILP, the complex worst-case timing analysis necessary to assess
the RC constraints cannot be integrated into the ILP formulation as they are not linear.

Other approaches develop enhanced heuristics incorporating RC constraints guiding the
search for a schedule. In [22, 7], the routing of flows is fixed and the computation of TT
offsets is done considering the RC constraints of TTE. Results show that the schedulability
of RC traffic can be significantly improved (e.g doubled in [7]) with a heuristic search.
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Finally, at the time of writing this section and to the best of our knowledge, there are
two published approaches [9, 27] on integrating the formal timing analysis of RC traffic with
the routing and scheduling.

In [9], the proposed method is developed specifically for a TSN network with scheduled
802.1Qbv (i.e. TT traffic) and AVB flows (i.e. RC traffic). However, we have identified a
few limitations impacting the efficiency of the approach: the routing strategy is to re-route
only TT flows, without trying to re-route RC flows. Besides limiting the solution space, this
re-routing strategy is computationally expensive since a TT flow also requires re-scheduling.
Additionally, the scheduling strategy is to re-schedule all TT flows at every new step, which
again is a very time consuming operation.

In [27], a method to optimize the routing is proposed for TTE networks, including the
TT and RC traffic classes. In their, approach the authors use the RC end-to-end latencies
when computing the routes for RC flows. However, the computation of the TT routes is done
using load balancing independently from RC traffic properties. Moreover, when searching for
a solution for the RC constraints, the TT routes are already fixed, which limits the solution
space.

Additionally, we have noted that in both [9, 27], the RC constraints are limited to the
end-to-end latency constraint, which does not map to typical industry requirements, usually
including jitter and frame-memory restrictions (e.g. backlog).

In this paper, we introduce a generalized search framework that can be used for any
deterministic time-aware network. We propose to explore the solution space by re-routing
and re-scheduling one flow at a time, to avoid the expensive cost of re-scheduling all the
flows after the initial schedule is computed. For our performance evaluation in Section 4, we
present an implementation of all three functions for TTEthernet. In particular, our method
can re-route any RC or TT flow, as well as re-schedule individual TT-flows, although it
reduces as much as possible the re-scheduling operation, as it is the most expensive step. The
search includes a formal analysis step including extensive RC constraints for our test-case,
namely end-to-end latency, jitter, and memory occupancy.

3 General Framework description

The goal of our proposed general framework is to compute, within a configurable time interval,
the best possible network configuration including routing, scheduling, and formal timing
analysis (FTA), as well as optional parametrization and user-defined constraints.

The general framework implements a search algorithm leveraging the work of predefined
functions for routing, scheduling, and FTA. Each of these three functions is encapsulated in
a module, and can be adapted to implement existing or future solutions found in literature
(e.g. for scheduling, heuristic solver [21], SMT solver [19, 7]). The interfaces of each module
(i.e. set of non-optional input and outputs) are defined in Section 3.3.

We begin by describing the general search algorithm in Section 3.2. Then, the different
modules are detailed in Sections 3.3 to 3.8.

3.1 Network and System Models
We define a general model wherein a network N comprises a set V of nodes and E of links, and
a set of F of communication streams, or flows, with one sender (talker) and one or multiple
receivers (listeners), and wherein FT T ⊂ F represents the subset of TT flows and FRC ⊂ F
represents the subset of RC flows. The set C represents the set of communication constraints,
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like maximum end-to-end latency, jitter, or any other optional routing, scheduling, or shaping
constraint. For convenience, we also define P as the complete set of possible network routes
between any of the nodes in N and all of the other.

A flow f ∈ F is characterized by the tuple ⟨f.path, f.deadline⟩, wherein path ∈ P relates
to the selected network route between the flow sender and receiver(s), and deadline ∈ N
corresponds to a maximum end-to-end latency bound requirement. Note that, for the sake of
simplicity, we omit to characterize in detail the implicit 1 : N relation of flows with its sender
node and one, or multiple, receiver nodes. A TT flow f ∈ FT T is further characterized by
its time-triggered transmission instant1, f.offset ∈ N.

We also define O as the set of solutions in the configuration space, wherein a solution
o ∈ O represents a possible output of the general framework. The subsets ORC ,OT T ⊂ O
represent, respectively, the RC and TT solution space.

We further introduce F1
s : ⟨fsi

, i ∈ N⟩, and respectively, F3
s : ⟨fsi

, i ∈ N⟩, as sorted lists,
or sequences, with index in the natural numbers, wherein each sequence is equivalent to the
respective set, namely set(F1

s ) ≡ FT T and set(F3
s ) ≡ F . Note that the sort operation is

described in Section 3.3.

3.2 General search algorithm
The main workflow behind the search algorithm, represented in Algorithm 1, consists of
incrementally (re)routing or (re)scheduling one flow at a time following sorted lists maintained
by the scheduling and FTA modules. Thanks to three feedback loops, depicted in Figure 1,
one flow is identified in each iteration as a candidate to be (re)routed and/or (re)scheduled
aiming at iteratively converging towards a better solution. After trying to find an initial
solution (line 2), we start the search by ensuring all the TT traffic is routed and scheduled
(Loop 1, line 5), as it is a necessary step before doing the formal timing analysis of the
RC traffic. Secondly, if the RC traffic does not fulfill its constraints, we attempt to find
an acceptable solution by keeping the same routing and only rescheduling TT flows one at
the time (Loop 2, line 8). If this fails, then we attempt to reroute a flow (Loop 3, line 11).
Hence, with these three feedback loops we explore both routing and scheduling alternatives
extensively while limiting time expensive steps such as rescheduling all the TT flows at once.

Routing Scheduling Formal Timing
Analysis

TT-only routing
feedback loop 

TT scheduling
feedback loop 

TT+RC routing
feedback loop 

Inputs

&


Configuration

parameters


Outputs

(Loop 1) (Loop 2)

(Loop 3)

Figure 1 General framework workflow.

1 Note that we characterize the output of the schedule operation applied to a TT Flow to comprise
offsets, referring to the transmission instant of said TT Flow on each hop along its route. However,
certain time-triggered networks may require additional information, like for example a priority queue
assignment in the case of IEEE 802.1Qbv with multiple TT queues (cf. [3]), or alternatively, a mapping
to a GCL transmission window (cf. [18]). We claim that accounting for additional elements in the
characterization of the schedule output is a trivial generalization and we remain with the simplified
notation for the sake of clarity.
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Algorithm 1 Main algorithm.

Require: N ,F , C
1: mem ← memories
2: initialize(N ,F , mem) ▷ See Algorithm 2
3: repeat
4: if ∃f ∈ FT T : sch.checkConstraints(f) = false then
5: execute(Loop1) ▷ Algorithm 3 in Section 3.5
6: end if
7: if ∃f ∈ FRC : fta.checkConstraints(f,FRC ,N , C) = false then ▷ Formal timing

analysis
8: execute(Loop2) ▷ Algorithm 4 in Section 3.6
9: end if

10: if ∃f ∈ FRC : fta.checkConstraints(f,FRC ,N , C) = false then
11: execute(Loop3) ▷ Algorithm 5 in Section 3.7
12: end if
13: until ∀f ∈ FRC : fta.checkConstraints(f,FRC ,N , C) = true ∧
14: ∀f ∈ FT T : sch.checkConstraints(f) = true

▼ Inputs: The main algorithm takes the typical inputs when computing network routing
and scheduling, i.e. the specification of network topology, N , and flows, F , as well as optional
timing and routing constraints, C.

▲ Outputs: The output of the algorithm consist of the typical outputs generated by
network routing and scheduling algorithms, namely a route for each RC and TT flows as
well as a TT flow schedule. Additional shaping or scheduling parameters (e.g. AVB reserved
bandwidth, WRR weights if TTE is extended to include these) as well as custom metrics (e.g.
minimum end-to-end deadlines, minimum memory configurations) can be optionally added
to the output as required. In the particular case of RC shaping and scheduling parameters,
these are optionally computed in the FTA module, in Algorithms 1 and 4.

As the solution space can be very extensive, we limit the search algorithm in three
dimensions: first, we limit the number of routes that will be tested for each flow. Secondly,
we limit the number of iterations performed when computing a new schedule for a particular
set of paths. Thirdly, we limit the number of flows that may be selected before re-sorting
the list of flows, i.e. rearranging the selection order of those flows. Therefore, we define the
following configuration parameters, directing the solution space exploration:

▼ Configuration parameters:
conf.maxExploredPaths: maximum number of paths that may be explored for each flow
in both routing feedback loops (see Section 3.8.2).
conf.maxSchedIterations: maximum number of iterations in a TT scheduling feedback
loop (see Section 3.6);
conf.maxExploredFlowReset: maximum number of flows from the sorted list of flows
that can be explored before re-sorting the list (see Section 3.8.1).

These parameters expose different trade-offs enabling the customization of the search
to the specifications of given use cases. For instance, limiting the number of routes per
flows, conf.maxExploredPaths, allows testing more flows within a reasonable amount of
time. Limiting the number of schedule search iterations, conf.maxSchedIterations, allows
testing more routes for each flow. However, the down-side of these limitations is that an
optimal solution may be missed or the search may remain within a local optima.

ECRTS 2022
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3.3 Module requirements
There are three main functions to be fulfilled for out general framework: routing, scheduling
and formal timing analysis. Each function is decoupled from the other two as an independent
module, with a defined interface between them. We define the scope of each module with an
enumeration of requirement.

The framework allows to leverage existing methods for the implementation of each of its
modules. We describe here the requirements for the general case and detail an implementation
in Section 4, which is later used in the evaluation in Section 4.2.

Routing (rt), manages functions related to finding network routes for RC and TT flows.
The module shall provide:

findRoute(f ∈ F ,N , C): finds an initial path in N for flow f , subject to constraints
C;
allPaths(f ∈ F ,N , C) a list of possible paths in N for flow f , subject to constraints
C.

Scheduling (sch), manages functions related to TT traffic. It shall provide:
schedule(f, C) → OT T attempts to schedule TT flow f ∈ FT T , subject to constraints
C;
checkConstraints(f ∈ FT T ) → boolean evaluates whether flow f ∈ FT T has been
successfully scheduled (i.e. has transmission offset(s));
sortFlows(1,FT T ) sort operation over the set FT T of TT flows, for Loop 1, used to
prioritize the flows and guide the search toward a better solution;
sortPaths(f ∈ F): sorted list of paths of TT flow f for Loop 1, used to prioritize the
paths to guide the search toward a better solution, optionally supported by scheduling
information;
costFunction(OT T → R): cost function to assess a partial solution or save the best
solution, in Loop 1.
output ∈ OT T : module output, including a TT schedule.

Formal timing analysis (fta), manages network analysis, related to either both RC
and TT flows, or only RC flows. It shall provide:

checkConstraints(f,FRC ,N , C) → boolean : evaluates whether the RC flow f ∈
FRC fulfills the constraints in C;
impossibilityTest (FRC ,N , C) → boolean necessary test for constraints in C
being fulfilled by flows FRC in N for any flow path and/or TT offset (e.g. the
maximum end-to-end latency constraint required is below the minimum possible
end-to-end latency on the shortest path);
feasibilityTest(FRC ,N , C) → boolean evaluates whether the constraints in C
can possibly be fulfilled for the flows FRC in N with the current flow paths;
portImpact(f ∈ F): evaluates if the path flow f has any port in common with the
paths of RC flows which are not yet fulfilling their constraints;
sortFlows(3,F): sort operation over the set F , for Loop 3;
sortFlows(2, FT T ): sort operation over the set FT T ;
sortPaths(f ∈ F): sorted list of paths of flow f , for Loop 3;
costFunction(O) → R: cost function to assess a partial solution or save the best
solution, in Loop 3.
output ∈ ORC : module output, including the parameters for RC shaping/scheduling
(e.g. WRR weights, AVB bandwidth reservation) and output requirements (e.g.
necessary memory reservation)
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3.4 Search initialization

Algorithm 2 Search Initialization algorithm.

Require: N ,F , C, mem
1: for all f ∈ F do ▷ Attempts to route all flows
2: rt.findRoute(f,N , C)
3: end for
4: for all f ∈ FT T do ▷ Attempts to schedule all TT flows
5: sch.schedule(f,N , C)
6: end for
7: if ∀f ∈ FT T : sch.checkConstraints(f) = true then
8: mem.savedOffsets[f ] ← f.offset, f.path ▷ Save current paths and offsets
9: end if ▷ Initialize search memories

10: for all f ∈ F do
11: mem.exploredPath_3[f ] ← f.path

12: mem.defaultPaths[f ] ← f.path

13: mem.exploredPathSets ← mem.exploredPathSets
⋃
⟨f, f.path⟩

14: end for
15: mem.currentFlow_3 ← NULL
16: mem.F1

s ← ∅
17: mem.F3

s ← ∅
18: mem.allTTPathsExplored = false

In a a first step, the search computes an initial routing and scheduling solution, followed
by the initialization of the memories necessary to keep track of the progress, as defined in
Algorithm 2. First, all the routes are computed (line 2). Note that there is an implicit failure
termination if an initial route cannot be found for each of the flows, meaning that the set
of flows is not feasible with the given topology, and hence causing the search to abort with
failure. Secondly, the algorithm attempts to schedule TT flows (line 5). Afterward, the
memories (mem) used in the global search are initialized, namely:

mem.savedOffsets[f ∈ FT T ] ← {⟨p1, O1⟩..⟨pn, On⟩ : fi ∈ FT T , pj ∈ P, Oi =
{o0

i ..ok
i }, oj

i ∈ N}: stores the latest successfully scheduled set of TT paths and their
offsets. Note that offsets are represented as a set of values corresponding to the trans-
mission offset on each port of a multicast route; mem.savedOffsets is used as a restore
point to a previous state in which TT Flows were both routed and scheduled, before
continuing the search. The use of mem.savedOffsets will be detailed in Loops 1 and 2.
mem.exploredPathSets ← {S0..Sn} : Si = {⟨f i

0, pi
0⟩..⟨f i

m, pi
m⟩ : f i

j ∈ F , pi
j ∈ P}, i ∈ N:

storing the set of explored path sets (each flow in a set is associated to one path), shared
by the routing feedback loops. This is mainly used to determine whether all solution
have been explored;
mem.defaultPaths[f ∈ F ] ← {p0..pn : pi ∈ P}: storing the so-called default paths
previously used by the routing searches. The definition and use of the default paths is
detailed in Section 3.5.
mem.exploredPaths_3[f ∈ F ] ← {p0..pn : pi ∈ P}: storing the sets of explored paths for
each flow (each flow is associated to a list of explored paths) for Loop 3.
mem.currentFlow_3 ← f ∈ FT T : stores the flows currently being re-routed in Loop 3.
It is used to select a new flow to reroute.

ECRTS 2022
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mem.F1
s : stores a sorted list of the elements of FT T , wherein FT T

sk
is the k + 1th element

in the list.
mem.F3

s : stores a sorted list of the elements of F , wherein Fsk
is the k + 1th element in

the list.
mem.allTTPathsExplored ← (boolean) flags when all the TT paths have been explored;

Once the initialization is performed the search of a solution begins as described in the
following sections.

3.5 Loop 1: TT-only routing feedback loop
Algorithm 3 (Loop 1) tries to re-route and schedule TT flows if not all TT flows were
scheduled, either following the initial routing or a re-routing step from Loop 3. The goal is to
find a solution in which all TT flows are routed and scheduled, regardless of the RC traffic.

Algorithm 3 Loop 1: TT-only routing feedback loop.

Require: N ,FT T , C, mem
1: for all fk ∈ FT T do
2: mem.exploredPaths_1[fk] ← {fk.path} ▷ Initialize with current paths
3: end for
4: mem.currentFlow_1 ← NULL

5: mem.F1
s ← sch.sortFlows(1,FT T ) ▷ Sort the list of TT flows

6: while ∃fk ∈ FT T : sch.checkConstraints(fk) = false) ∧ mem.allTTPathsExplored
= false do

7: f ′ ← selectFlowPath(1,mem.exploredPaths_1) ▷ See Algorithm 7
8: schedule(f,N , C)
9: mem.currentFlow_1 ← f ′

10: if sch.costFunction(output) < sch.costFunction(mem.bestOutput) then
11: mem.bestOutput ← current output
12: end if
13: if ∀fi ∈ FT T : sch.checkConstraints(fi) = true then
14: for all fj ∈ FT T do ▷ Save paths and offsets
15: mem.savedOffsets[fj ] ← f.offset, f.path

16: end for
17: end if
18: updateMemories(1, f ′, mem) ▷ See Algorithm 6
19: end while
20: if ∃fk ∈ FT T : sch.checkConstraints(fk) = false then
21: if mem.savedOffsets ̸= ∅ then
22: for all fj ∈ FT T do ▷ Reset paths and offsets
23: fj .offset← mem.savedOffsets[fj ].offset
24: fj .path← mem.savedOffsets[fj ].path
25: end for
26: else
27: exitPartialSolution(mem.bestOutput) ▷ Or fail without output
28: end if
29: end if

The search starts from an initial set of paths, called default path (stored in
mem.defaultPaths) and a flow selected to be rerouted. If no schedule is found with any of
its different possible paths, the selected flow is set back to the default path, and another
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flow is chosen. Restoring the path to the already explored default path adds stability to the
search process. Algorithm 6 details how new default paths can be selected in order to test
the different permutations.

Algorithm 3 (Loop 1) uses three memories:
mem.exploredPaths_1[f ∈ FT T ]← {p0..pn : pi ∈ P}: storing the sets of explored paths
for each TT flow (each flow is associated to a list of explored paths) for Loop 1;
mem.currentFlow_1 ← f ∈ FT T : stores the flows currently being rerouted in Loop 1;
mem.bestOutput ← o ∈ O: stores the best solution found so far. This includes all the
outputs listed in Section 3.2 which are already available in the current state of the search.

The algorithm begins initializing exploredPaths_1 with the current paths (lines 1 to 3),
and then sorting the set of flows (line 5). Following, a search for a feasible solution is initiated,
until either all TT flows are scheduled or all path permutations have been explored (line 6).
Within the search, a flow is selected using Algorithm 7, then rerouted, and attempted to be
scheduled (lines 7 and 8), following the update of mem.currentFlow_1 and mem.bestOutput
(lines 9 to 12).

If a schedule has been found for all TT flows, the paths and offsets are stored in
mem.savedOffsets (lines 13 to 17), which if needed, can be used to restore a solution with
feasible TT traffic offsets (see lines 22 to 25). This is necessary when all available TT path
combinations have been tested and Loop 1 finishes, but there remain still untested RC paths
that may be explored via Loop 3. Note that the search algorithm may fail and exit in Loop 1,
either with a partial or no solution at all, if, directly after the initialization, no valid TT
schedule has been found after having explored all paths (line 27).

Finally, after saving the paths and offsets, mem.exploredPathsSets and
mem.defaultPaths are updated as described in Algorithm 6 (line 18).

3.6 Loop 2: TT scheduling feedback loop
Algorithm 4 (Loop 2), identifies, supported by the FTA module, the TT flow with a higher
impact on RC traffic (line 17), which is then re-scheduled (line 18) with the aim of finding a
solution improving RC traffic performance.

Algorithm 4 uses two memories:
mem.exploredOffsets[f ∈ FT T ] ← {O0..On : Oi = {o0

i ..ok
i }, oj

i ∈ N} : stores the sets
of explored offsets for each flow (each flow is associated to a list of explored offsets). Note
that offsets are represented as a set of values corresponding to the transmission offset on
each port of a multicast route;
mem.diversification ← {f0..fn : fi ∈ F}: tracks the flows already selected for diversi-
fication purposes, allowing to select alternative flows and explore different part of the
solution space. Hence, avoiding iterations over stable regions of the solution space by
always choosing the same flows.

The search ends when a feasible solution is found or when either the maximum number
of iterations, defined in the configuration parameter conf.maxSchedIterations (see Sec-
tion 3.2), is reached, or else when the diversification memory contains all flows (line 16),
meaning that no other flow is left to be selected (lines 24 to 28).

Note that Algorithm 4 is a generalization of Algorithm 1 in [7], so we only detail here the
main improvements, namely
1. allowing an arbitrary number of constraints C, including the end-to-end latency, as well

as the possibility of storing the best solution found so far at any given time (cf. lines 7
and 33);
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Algorithm 4 Loop 2: TT scheduling feedback loop.

Require: N ,F , C, mem , conf, currentOutput
1: it_loop2 ← 0
2: mem.exploredOffsets, mem.diversification ← ∅
3: if mem.F1

s = ∅ then
4: mem.F1

s ← fta.sortFlows(2,FT T )
5: end if
6: if costFunction(currentOutput) < costFunction(mem.bestOutput) then
7: mem.bestOutput ← currentOutput
8: end if
9: fullfilled ← ∀f ∈ FRC : fta.checkConstraints(f,F , C) ▷ Run the FTA Analysis

10: if fullfilled = false ∧ fta.impossibilityTest(N ,FRC , C) = true then
11: exit
12: else if fullfilled = false ∧ fta.feasibilityTest(N ,FRC , C) = true then
13: for all fk ∈ FT T do ▷ Reset offsets
14: fk.offset← mem.savedOffsets[fk].offset

15: end for
16: while ∃fj ∈ FRC : fta.checkConstraints(fj ,N ,FRC , C)=false ∧

|mem.diversification|< |FT T |∧ it_loop2 < conf.maxSchedIterations do

17: f ′ ← mem.FT T
s0

▷ Select flow impacting most RC
18: sch.schedule(f ′,N , C)
19: if f ′.offset ̸∈ mem.exploredOffsets[f ′] then
20: mem.diversification ← ∅
21: end if
22: while f ′.offset ∈ mem.exploredOffsets[f ′] ∧ |mem.diversification| < |FT T |

do
23: mem.diversification ← mem.diversification ∪f ′

24: k ← 0
25: repeat ▷ Select first flow not in mem.diversification
26: f ′ ←mem.FT T

sk

27: k ← k + 1
28: until f ′ ̸∈ mem.diversification
29: sch.schedule(f ′,N , C)
30: end while
31: ∀f ∈ FRC : fta.checkConstraints(f,F , C)
32: if costFunction(currentOutput) < costFunction(mem.bestOutput) then
33: mem.bestOutput ← currentOutput
34: end if
35: for all fk ∈ FT T do ▷ Update explored offsets
36: mem.exploredOffsets[fk] ← mem.exploredOffsets[fk] ∪fk.offset

37: end for
38: it_loop2 ← it_loop2 + 1
39: end while
40: end if
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2. the addition of an impossibility check (cf. line 10) as well as a feasibility check (cf. line 12)
to avoid searching for solutions when none exists;

3. before a flow is re-scheduled (line 18), all other TT flow offsets are reset to the values
stored in mem.savedOffsets (lines 13 to 15), already presented in Loop 1. We found
that the re-scheduling in Loop 2 can lead to a stable but non-optimal area of the solution
space. By restoring the state stored before Loop 2 after re-routing a flow, it is more likely
to avoid this area and, hence, find solutions otherwise inaccessible.

3.7 Loop 3: RC+TT routing feedback loop
Finally, the third feedback loop, represented in Algorithm 5, uses the same principle as
Loop 1. Namely, if no feasible solution is found after all paths of a specific flow have been
tested, the flow is set back to the default path and a new search iteration begins (see line 3
in Algorithm 1). In the case of Loop 3, the selected flow can be either a TT or an RC flow,
which enables testing a large array of solutions while trying to prioritize the more likely to
succeed first.

Algorithm 5 Loop 3: TT+RC routing feedback loop.

Require: N ,F , C, mem, conf
1: if mem.F3

s = ∅ then
2: mem.F3

s ← fta.sortFlows(3,F)
3: end if
4: f ′ = selectFlowPath(3,mem.exploredPaths_3) ▷ See Algorithm 7
5: mem.currentFlow_3 ← f ′

6: if f ′ ∈ FT T then
7: for all fk ∈ FT T do ▷ Reset offsets
8: fk.offset← mem.savedOffsets[fk].offset

9: end for
10: sch.schedule(f ′,N , C)
11: if ∀fj ∈ FT T : sch.checkConstraints(fj) = true then
12: mem.savedOffsets[fj ] ← fj .offset, fj .path, ∀fj ∈ FT T ▷ Save path and offsets
13: end if
14: end if
15: updateMemories(3, f ′, mem) ▷ See Algorithm 6

Algorithm 5 (Loop 3) begins sorting the flows if they have not been sorted yet (lines 1
to 3). Then a new flow is selected and rerouted (line 4), followed by the update of
mem.currentFlow_3 in line 5. If the selected flow is TT, it must then be rescheduled.
As Loop 3 follows Loop 2, the offsets are restored to the saved values to avoid stable but
non-optimal solution space areas (lines 7 to 9), similar to Subsection 3.6. Next the new
offsets are computed for the selected flow (line 10) and if successful, they are stored in
mem.savedOffsets (line 12). If the TT flow cannot be rescheduled, then Loop 1 follow (see
line 4 in Algorithm 1).

3.8 Common support algorithms
In this section, we describe two algorithms supporting both Loop 1 and Loop 3. Algorithm 6
updates the memories and manage the default paths, while Algorithm 7 implements the
selection of a new flows and paths.
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3.8.1 Update of memories
The goal of Algorithm 6 is to update the memories tracking the progress of the search, such
as the set of explored paths mem.exploredPaths_i and mem.exploredPathSets.

Algorithm 6 updateMemories(i).

Require: N ,F , C, mem, conf, mod ∈ {sch, fta}, i ∈ {1,3} ▷ Current loop index (1,3)
1: fc =mem.currentFlow_i ▷ Current flow in Loop i,∈ {1, 3}
2: mem.exploredPaths_i[fc] ← fc.path ▷ Update path selected flow
3: if (

⋃
⟨fk, fk.path⟩ : fk ∈mem.F i

s) ̸∈ mem.exploredPathSets then
4: mem.exploredPathSets ← mem.exploredPathSets

⋃
⟨fi, fi.path⟩ : ∀fi ∈ F

5: if |mem.exploredPaths_i| ≥ conf.maxExploredFlowReset ∨
[
i = 3∧

fta.portImpact(fc.path) = false
]

then
6: mem.exploredPaths_i[fc] ← ∅
7: mem.F i

s ← mod.sortFlows(i,F i)
8: end if
9: else if ∀fp∀pq : fp ∈mem.F i

s, pq ∈ rt.allPaths(fp,N , C), pq ∈ mem.exploredPath_i
then ▷ All flow paths tested for current default paths

10: if i = 1∧ savedOffsets ̸= ∅ ∧ ∀fp∀pq : fp ∈mem.F i
s, pq ∈ rt.allPaths(fp,N , C), pq ∈

mem.defaultPaths then
11: ▷ All flow paths tested as default paths
12: mem.allTTPathsExplored ← true
13: for all fl ∈ FT T do ▷ Reset paths and offsets
14: fl.path = savedOffsets[fl].path

15: fl.offset = savedOffsets[fl].offset

16: end for
17: else
18: f ′.path = selectFlowPath(i, mem.usedDefaultPaths) ▷ Algorithm 7
19: if f ′ ∈ FT T then
20: for all fl ∈ FT T do ▷ Reset offset
21: fl.offset ← mem.savedOffsets[fl]
22: end for
23: sch.schedule(f ′, C)
24: if ∀f ∈ FT T : sch.checkConstraints(f) = true then
25: for all fl ∈ FT T do ▷ Save path and offsets
26: mem.savedOffsets[fl] ← fl.offset, fl.path

27: end for
28: end if
29: end if ▷ Update default path
30: mem.defaultPaths[f ′].path← mem.defaultPaths[f ′].path

⋃
f ′.path

31: mem.exploredPaths_i ← ∅
32: mem.F i

s ← mod.sortFlows(i,F i)
33: end if
34: else if fc = mem.F i

sk
: k = |mem.F i

s| − 1 then ▷ All flows of the current set were tested
35: mem.exploredPaths_i ← ∅
36: mem.F i

s ← mod.sortFlows(i,mem.F i)
37: end if



A. Finzi and R. Serna Oliver 8:13

For Loop 1 and 3 we use the default path memory to explore around a stable set of paths,
i.e. the default paths, and only after that exploration is concluded the set of default paths is
updated and a new exploration around the new stable set of paths begins. With this, we
avoid the excessive time it would take to explore all the solutions around the default paths,
when it is likely that not all of them lead to feasible solutions.

A first part of our strategy to guide the search toward a better part of the solution space
is to sort the flows, as already explained. However, this is not sufficient due to the fact that
when a new path is found, or the default paths change, it has a global impact on the totality
of flows. This leads to the need to regularly re-sort the flows so as to continue testing those
with the highest impact on the flows causing more trouble to the algorithm. It is important
to note that always re-sorting is also not a good approach, as it can lead to selecting always
the same flows and not making progress.

In Section 3.2 we define conf.maxExploredFlowReset, which lets the user configure after
how many tested flows the memories mem.exploredPaths_i are reset and the flows resorted.
This parameter can be tailored based on the characteristics of the network.

The algorithm begins setting the current flow (line 1) and updating mem.exploredPaths_i
(line 2). Then, if the current set of path is unknown to mem.exploredPathSets it is added
(line 3). If enough flows have been explored or if, in Loop 3, the path of the current flow has
no impact on the flows not fulfilling their constraints, then mem.exploredPaths_i is reset
and the flows resorted (lines 6 and 7).

However, if the path set has already been explored and all combinations of flow paths
have been testes for the current default paths (line 9), it is checked if, in Loop 1, all the
TT path combinations have been tested (lines 10). If that is the case and there are saved
offsets in mem.savedOffsets, then mem.allTTPathsExplored is set to true and the paths
and offsets are resets to the saved values (lines 13 to 16). If that is not the case, then a new
default path is selected (line 18). If it consists of a TT flow, its offsets are reset to the saved
values, if possible (line 20) and the flow is rescheduled (line 23). If all TT flows are scheduled,
then the paths and offsets are saved in mem.savedOffsets (line 25). Following, the memory
mem.defaultPaths is updated with the new default path (line 30), and the flows are resorted
to select the more promising flows around the newly chosen default paths. Finally, if the
selected flow was the last on the list (line 34), mem.exploredPaths_i is updated and the
flows again resorted (lines 35 and 36) in preparation for the next iteration.

3.8.2 Selection of a flow and path

Algorithm 7 is used to select a flow and its new path within Loops 1 and 3. The algorithm
selects the first untested path of the current flow fc in the sorted list of flows (line 25).

Additionally, we define sortPaths(fc, conf.maxExploredPaths) instantiating the func-
tions sortPaths(fc), respectively from the FTA module in Loop 1, or the Scheduling module
in Loop 3, and selecting the first conf.maxExploredPaths items of the provided sorted list.

The algorithm tries setting the current flow (line 1) or, if none (line 2), selects the
first flow from the sorted list (line 3). If the maximum configured number of flows (i.e.
conf.maxExploredPaths) has been reached (line 4), the flow path is reset to the latest
default path (lines 5). If the flow happens to be TT, the offsets are resets, if possible, (lines 7
to 9) and the flow is reschedule (line 10). Upon success, the paths and offsets are saved
(lines 12 to 14).

The next flow in the sorted list is selected as the new current flow (line 17) and the first
path not in memory is selected to reroute the flow (lines 19 to 24).

ECRTS 2022



8:14 General Framework for Routing, Scheduling and Formal Timing Analysis

Algorithm 7 SelectFlowPath(i): Flow and Path selection.

Require: N ,F , C, conf, i ∈ {1, 3}, mem
1: fc = mem.currentFlow_i ▷ Current flow for Loop i, i ∈ {1, 3}
2: if fc = NULL then
3: fc ←mem.F i

s0
▷ First flow in the sorted list

4: else if |memory[fc]| = conf.maxExploredPaths then
5: fc.path← mem.defaultPaths[fc].path[k]: k=|mem.defaultPaths[fc]|-1
6: if fc ∈ FT T then
7: for all fn ∈ FT T do
8: fn.offset ← mem.savedOffsets[fn] ▷ Reset offset
9: end for

10: sch.schedule(fc,N , C)
11: if ∀fk ∈ FT T : sch.checkConstraints(fk) = true then
12: for all fn ∈ FT T do
13: mem.savedOffsets[fn] ← fn.offset, fn.path ▷ Save offset and path
14: end for
15: end if
16: end if
17: fc ←mem.F i

sk+1
: mem.F i

sk
= fc ▷ Next flow in the sorted list

18: end if
19: P s ← sortPaths(fc, conf.maxExploredPaths)
20: j ← 0
21: while P s

j ∈ memory[fc] do
22: j ← j+1
23: end while
24: fc.path← P s

j ▷ Set first sorted path not in memory[fc]
25: return fc

Note that the Algorithm 7 is instantiated with the inputs i ∈ {1, 3} and memory =
mem.exploredPaths_i (e.g. line 4 in Algorithm 5) to select the new current flow, or with
the inputs i ∈ {1, 3} and memory = mem.defaultPaths (see line 18 in Algorithm 6) to select
a new default path.

4 Performance evaluation

We have so far presented a general search framework for routing, scheduling and formal
timing analysis. In this section, we present a performance evaluation with an implementation
of the framework for TTEthernet, following a detailed industrial case study supporting our
analysis, and a discussion of the evaluation results.

4.1 Implementation of modules for TTEthernet
For the performance evaluation, we consider two user-provided input constraints, namely
maximum end-to-end latency for RC and TT flows, and maximum available frame memory
for switches. The output provided by the general framework, in addition to the paths and
schedule, are the i) jitter of RC flows at the switch ports, ii) queue memory reservation
requirements for critical traffic, allowing to properly dimension the switch memory and
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maximizing the remaining capacity for best-effort traffic, and iii) minimum end-to-end delay
for RC flows (i.e. minimum achievable deadlines) based on the best solution found (i.e. with
the minimum cost function).

We detail below the implementation of each module function described in Section 3.3
used for the evaluation of the general framework.

Routing (rt) is implemented as follows:
findRoute(): is an implementation of the method in [2] with additional load balancing;
allPaths(): leverages the JAVA library JGraphT [13, 15] to compute all possible
paths using the class AllDirectedPaths;

Scheduling (sch) consists of an SMT-based scheduler as described in [7]:
schedule(): is computed using the constraints in [7], Section III C;
checkConstraints(): is a trivial check of the existence of offsets for the flow;
sortFlows(): detailed in Algorithm 8;
sortPaths(): detailed in Algorithm 9;
costFunction(): is directly proportional to the number of non-scheduled TT flows;

Formal timing analysis (fta), implements Network Calculus with linear curves2:
checkConstraints(): checks the RC constraints by implementing the TTE model
proposed in [26], additionally considering the higher priority Protocol Control Frames
(PCFs) flows in TTEthernet3. Therefore, it subtracts the PCF arrival curve (i.e. the
maximum amount of data that can arrive in any time interval) alongside the TT arrival
curve (cf. Theorems 3 and 7 in [26]);
impossibilityTest(): implements a simple check returning true when at least one
flow exists, for which its maximum end-to-end deadline is less than its minimum possible
end-to-end latency on the shortest path (based on the fastest possible transmission
delays);
feasibilityTest(): implements a necessary optimistic analysis, whereby instead of
considering the impact of the TT flow offsets as [26] to compute the maximum burst of
TT traffic impacting RC, it only considers, in each output port, the maximum frame size
among all transmitted TT flows. Therefore, the worst-case output port delays will be
greater than or equal to the optimistic bound, and consequently, feasibilityTest()
returns false if there is at least one flow with its maximum end-to-end deadline being
less than the optimistic computed value;
portImpact(): checks if the input flow intersects with a flow not fulfilling its con-
straints;
sortFlows(), Loop 2 : the sorted list of TT flows with highest impact on RC flows
is computed by sorting TT flows from highest to lowest cardinality (Card). For details
refer to lines 2 to 14 of Algorithm 2 in [7];
sortFlows(), Loop 3 : the sorted list of RC+TT flows with highest impact on RC
flows not fulfilling their deadlines4 is computed using Algorithm 8, with mod=FTA,
wherein fta.intersections(j ∈ F) is the number of ports in the current path of
flow j which are in common with the flows not fulfilling their constraints;

2 Network Calculus is a framework allowing to compute upper-bounds for flow delays as well as backlogs,
which we use to check the fulfillment of RC constraints, such as end-to-end latency, jitter and memory
occupancy (cf. [14].

3 Protocol Control Frames (PCFs) are Ethernet frames periodically transmitted by Synchronization
Master nodes to implement the fault-tolerant clock synchronization in TTEthernet (cf. [12])

4 Note that Loop 3 is only iterated if all TT flows are scheduled.
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sortPaths(): Algorithm 9 implements the sorted list of paths;
costFunction(): is assessed by adding i) the number of non-scheduled TT flows, plus
ii) among all flows, the average difference between the flow deadline and its assigned
end-to-end delay;

Algorithm 8 Best flow to re-route for sch.sortFlows(1,FT T ) and fta.sortFlows(3,F).

Require: F , i ∈ {1, 3}, fA, fB ∈ F , mod ∈ {sch, fta}
1: schA ← mod.checkConstraints(fA)
2: schB ← mod.checkConstraints(fB)
3: if fA ∈ FRC ∧ fB ∈ FT T then ▷ Case Loop 3
4: return fA

5: else if schA = false ∧schB = true then
6: return fA

7: else if schA = false ∧schB = false ∧fA.deadline > fB .deadline then
8: return fA

9: else if
[
schA = true ∧schB = true ∧

{
mod.intersections(fA) >

mod.intersections(fB) ∨ { mod.intersections(fA) = mod.intersections(fB)
∧(fA.deadline− fA.delay) > (fB .deadline− fB .delay)}

}]
then

10: return fA

11: else
12: return fB

13: end if

In Algorithm 8 we denote deadlinej the deadline, and delayj the end-end-end latency, of
TT flow fj . When instantiated with mod = sch, sch.intersections(fj ∈ FT T ) computes
the number of ports in the path of TT flow fj which are in common with the non-scheduled
TT flows (note that a port in common with n flows is accounted n times).

RC flows are the best candidates to be rerouted as they do not necessitate rescheduling,
which is very time expensive (line 3), therefore they are sorted first. The next best flows are
flows not fulfilling their constraints (line 5), followed by flows not fulfilling their constraints
with larger deadlines (line 7). The rationale of this strategy is the following: during
initialization, in Algorith 2, the selected paths tend to be among the shortest paths available.
Therefore, by rerouting flows on potentially longer (and hopefully less loaded) paths, there is
a higher chance to both find an acceptable path for the current flow and decrease its impact
on other flows having shorter deadlines, which may likely not fulfill their deadlines on longer
paths anyway. Finally, for flows fulfilling their constraints, those with the highest impact on
flows not fulfilling their constraints are chosen, with the expectation of decreasing this impact
by using a new path (lines 9 and 13). If the resulting impact is equivalent, the flow with the
largest difference between deadline and their calculated end-to-end latency is selected, for
the the reason of having a larger leeway.

In algorithm 9 we denote sch.totalBandwidth(p ∈ P) the sum of the bandwidth of
TT flows in each output port of path. We denote fta.totalBandwidth(path) the sum of
the bandwidth of RC+TT flows in each output port of path (the computation is done as
the maximum of the sum per receiver, same as for fta.totalTime(path_i)). The function
fta.intersections(path) is equivalent to fta.intersections(j ∈ F), but applied to the
input path, instead of the current path of flow j;

To compare different paths of an RC flow (lines 1 to 4), a rough estimation of the
RC end-to-end latency is used, using data previously computed via Network Calculus.
Therefore totalTime(path_i, receiver) is computed for each flow receiver, as the sum
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Algorithm 9 Best path to re-route for sortPaths(f ∈ F).

Require: f ∈ F , p1, p2 ∈ P, mod ∈ {sch, fta}
1: if f ∈ FRC∧ fta.checkConstraints(f) = false then
2: if fta.totalTime(p1) < fta.totalTime(p2) then
3: return p1
4: end if
5: else if

[
mod.intersections(p1) < mod.intersections(p2)

]
∨

[
mod.intersections(p1) == mod.intersections(p2) ∧ ( mod.totalBandwidth(p1) <
mod.totalBandwidth(p2) )

]
then

6: return p1
7: end if
8: return p2

of the delays in each output port of path_i from the sender to a receiver. We denote
fta.totalTime(path_i) as the maximum of totalTime(path_i, receiver) over all the
receivers of flow_i of path_i. Hence, the algorithm begins by selecting the path with the
strictly smaller estimated total end-to-end-delay using totalTime(p1) (line 2). This is more
likely to be a valid path for the current flow.

For a TT flow, the preferred path is that with less intersections with flows not fulfilling
their constraints, to lessen the impact of this flow on them (line 5). If the number of
intersections are identical, then the less loaded path is preferred, since the flow should have
better chances of fulfilling its deadline as well as interfering with fewer other flows (line 5).

4.2 Industrial case study: the Orion network
For the performance evaluation we consider the Orion network, illustrated in Figure 2,
based on the Orion Crew Exploration Vehicle (CEV), 606E baseline as presented in [9] and
described in [23, 16]. The network consists of i) 99 TT flows with periods varying from
7.5 ms to 187.5 ms and maximum frame sizes between 87 bytes and 1518 bytes; ii) 87 RC
flows with periods from 4 ms to 128 ms and maximum frame sizes from 89 to 1499 bytes.
Each TT and RC flow i has a defined deadline constraint, denoted as deadline_initial_i.

End System

Switch

Figure 2 Orion network topology.

We have empirically determined two sets of input parameters listed in Table 1. We
have observed that 10 is a good limit for trying to re-schedule TT flows in Loop 2 and,
similarly, we have settled to 70% of the total number of RC+TT flows for the parameter
conf.maxExploredPaths. Both settings show to be a good compromise exploring TT re-
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routing without exhausting all possibilities, which result in a highly computationally expensive
step. We have selected two different values for conf.maxExploredPaths, i.e. 2 and 10, to
show the large impact this specific parameter has. Nevertheless, we foresee that a further
study of the sensitivity of the parameters in a wider range of use cases would be beneficial in
future work.

Table 1 Sets of input parameters.

Parameter GF: MEP 10 GF: MEP 2
conf.maxSchedIterations 10 10
conf.maxExploredPaths 10 2
conf.maxExploredFlowReset 0.7 × 187 0.7 × 187

To assess our proposal, we compare GF: MEP 2 and GF: MEP 10 to three other results
from literature:

GF Shortest path: we consider that the general framework is not limited by the con-
figuration parameters conf.maxSchedIterations, conf.maxExploredPaths, and that
conf.maxExploredFlowReset=0, i.e. the flows are always resorted and the memory
mem.exploredPaths_i cleared. Moreover, the flows not fulfilling their constraints are
sorted as proposed in Algorithm 8, and the flows fulfilling their constraints are sorted
from highest to lowest end-to-end latency, while the path are sorted from shortest to
longest. The schedule is computed with SMT, using the constraints of Section III C [7];
Scheduling loop [7]: we implement the solution described in [7]
Static (no loop) [19]: we consider that routing and scheduling are set with the initial
solutions described in Section 4.1 and [19].

We would have liked to compare our proposal to [27], and [9], but as will be explained in
Section 4.4, we lack information about their use cases to be able to do a proper comparison.
However, with the three methods selected for comparison, we will be able to assess the impact
of both re-routing and re-scheduling (i.e.Static (no loop)), the importance of re-routing in
addition to re-scheduling (i.e. Scheduling loop), and the importance of selecting the best
parameters and heuristics in the modules (i.e. GF Shortest path).

We have defined two test cases: i) computation of minimum end-to-end deadline con-
straints, and ii) analysis of deadline reduction. For i), we set all the deadlines to their
initial values, except the deadline of the flows for which we want to obtain the minimum
possible. Those are initialized to their minimum end-to-end latency based on the fastest
possible transmission (i.e. minimum latency without any queuing delay). We set a timeout
to conclude the search after 1 hour with the best found solution. For ii), we analyze the
execution time (denoted exec. time), and cost function (denoted cost), when varying the
deadlines of all RC flows proportionally to the initial deadline within the range 50%..100%,
as shown in Table 2. For this experiment we set the timeout value to 24 hours.

It is important to note that for a small network, limiting conf.maxExploredPaths may
limit the number of explored flows and paths, due to some part of the solution space not
being accessible. Indeed, experiments run on a network with only 4 switches and 10 flows
showed GF: MEP 10 to perform better. However, for larger networks, the solution space
becomes so large that exploring all possibilities tends to be intractable. Therefore, guiding
the search with the parameter conf.maxExploredPaths shows effective. In the proposed
Orion Network, both GF: MEP 10 and GF: MEP 2 explore the solution space until a
solution is found or until a timeout expires. Limiting conf.maxExploredPaths does not
significantly affect the total number of explored solutions, but instead guides more strongly
the search toward regions of the solution space more likely to contain better solutions.
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4.3 Evaluation results

In our tests, the switch memory constraints were always fulfilled, so we concentrated our
efforts on the end-to-end deadlines. Note that an evaluation similar to the one we provide
here could also address the switch jitter and switch memory allocation.The results of test case
i) are presented in Figure 3. The minimum deadlines provided by the search are normalized
using the minimum deadlines found for the Static (no loop) case.

The results in Figure 3 show that GF: MEP 2 and GF: MEP 10 find much lower deadlines
than either the Scheduling loop and the Static (no loop) searches. In fact, on average, the
deadlines found with GF: MEP 2 (resp. GF: MEP 10 ) are smaller by 21% (resp. 12%)
compared to Static (no loop), with a maximum decrease of 28.3% for rc_850 (resp. 23.1%
for rc_190). On the contrary, Scheduling loop only reduces the minimum deadlines by 1.8%
on average, with results ranging from a slight increase of 0.9% for rc_620 to a decrease of
4.5% for rc_560.

The increase of minimum deadlines compared to Static (no loop) is due to the use of an
optimization function added in the SMT as described in [7]. While it typically decreases the
average delays, due to the nature of the optimization constraint and SMT solvers, in some
cases it can also do the opposite.

With respect to GF: Shortest path, we see that the minimum deadlines found are on
average 1.1% lower than the deadlines found with Static (no loop), from an increase of 1.6%
to a decrease of 5.1%. This first set of results confirms that guiding more strongly the search
with smaller values of conf.maxExploredPaths is effective for large networks.
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Figure 3 Normalised minimum deadlines for 9 randomly selected flows.

The results of test case ii) are presented in Table 2. In addition, we run an experiment
with GF: MEP 2 with deadline settings to 55%, for which we obtained an acceptable solution
(i.e. cost = 0) in 18h 32min. With the exception of Static (no loop), all other results in the
range 100% to 80% are equivalent, finding an acceptable solution after the first iteration
within 20 min. We can see that without the SMT optimization function, i.e. Static (no loop),
the computation time is shorter, i.e. 13 min. However, with Static (no loop) the deadlines
cannot be reduced under 75%, with a cost function value of 1.000013. With Scheduling loop
(resp. GF: Shortest path) however, the deadlines are reduced to 70%, but at the cost of
a large computation time, i.e 56 min (resp. 2h 43min). With GF: MEP 10, we are able
to reduce the deadlines down to 65%, and with GF: MEP 2 we find a solution for 55%.

ECRTS 2022



8:20 General Framework for Routing, Scheduling and Formal Timing Analysis

Unsurprisingly, the execution time increases when the deadlines decrease, i.e. when a solution
is more difficult to find. Nevertheless, at 70%, GF: MEP 2 finds a solution twice as fast as
Scheduling loop, and 6 times faster than GF: Shortest path.

Table 2 Results when varying deadlines from 100% to 50% of the initial deadlines.

deadlines 100% & 80% 75% 70%
metrics exec. time cost exec. time cost exec. time cost

GF: MEP 2 20 min 0 22 min 0 26 min 0
GF: MEP 10 20 min 0 22 min 0 32 min 0

GF: shortest path 20 min 0 28 min 0 2h 43min 0
Scheduling loop [7] 20 min 0 53 min 0 56 min 0
Static (no loop) [19] 13 min 0 13 min 0 13 min 1.000013

deadlines 65% 60% 50%
metrics exec. time cost exec. time cost exec. time cost

GF:MEP 2 45 min 0 4h 20min 0 24h 2.00094
GF: MEP 10 55 min 0 24h 1.000028 24h 3.00055

GF: shortest path 24h 1.00026 24h 2.00044 24h 6.00100
Scheduling loop [7] 24h 1.00040 24h 2.00041 24h 6.00066
Static (no loop) [19] 13 min 2.00027 13 min 4.00029 13 min 6.00075

Hence, in our test case ii), we have shown that GF: MEP 2 improves the maximum
deadline reduction by at least 26.7%, from 75% to 55% compared to Static (no loop), and
finds an acceptable solution quicker than the other searches we compared it to, when the
deadlines are constraining (e.g. 70%). When no solution is found within the allocated time,
GF: MEP 2 is the search that finds the solution with the smallest cost (e.g. 50%). The
number of flows not fulfilling their constraints is divided by 3 when the deadlines are divided
by 2 (i.e. 50%).

The two test cases show that with our proposed general framework, we can largely reduce
the deadlines with regard to the compared state-of-the-art, i.e. Scheduling loop [7] and Static
(no loop) [19]. This is because both methods explore a much reduced solution space compared
to our proposal and, in particular, due to the fixed routing (and scheduling for Static(no
loop)), they are unable to find better solutions.

The comparison between GF: MEP 2 and GF: MEP 10 shows the importance of selecting
good parameters for the search, and the comparison with GF: shortest path shows the
importance of selecting good parameters and good heuristics to obtain good results. In the
case of shortest path, we observe that i) many paths which are longer in terms of number of
hops but shorted in terms of delays are disregarded, and ii) the lists are constantly resorted,
which is time expensive and can cause a lack of diversity in the selected flows and paths.

We can see that selecting a low value for conf.maxExploredPaths works well on large
network in which exploring all solution within an acceptable time limit is not reasonable, and
so potentially, reducing the solution space does not affect the number of explored solution
compared to setting a larger value of conf.maxExploredPaths. Indeed, the only difference
is which solution are being tested within the time limit. However, for smaller network larger
values of conf.maxExploredPaths are advisable so as not to limit the number of explored
solutions.
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4.4 Comparison to related work
To conclude the performance evaluation, we compare our results to those found in four
previous works: [19], [7], [27], and [9]. In Section 4.3, we have compared our proposed method
against previous literature, namely: Scheduling loop [7] and Static (no loop) [19]. We have
shown that compared to Static (no loop) (resp. Scheduling loop), our proposed solution can
decrease the minimum deadlines by up to 28.3% (resp. 26.9%).

In [27], the authors compare their proposed method to the shortest paths (SPA) in a
TTE network. They used SMT to compute the TT schedule as described in [19]. So, Static
(no loop) is very close to the SPA implemented in [27]. In the performance evaluation of [27],
we see that they obtain a maximum reduction of 6.41% of the worst-case delays compared to
SPA, which is significantly less than the 28.3% we have obtained with our proposed method
(the minimum deadline being equal to the worst-case delay). The execution times are not
provided in [27], so we cannot compare the results for this metric.

In [9], the evaluation is done on a TSN network, using the schedulability of the flows to
assess the solution. Unfortunately, not enough information about deadlines and traffic load
is provided, which prevents a performance comparison in our evaluation.

5 Conclusion

In this paper we have presented a general framework for routing, scheduling and formal
timing analysis in deterministic networks (e.g. TSN, TTE). The general framework leverages
user-defined modules (i.e. routing, scheduling and Formal Timing analysis) to search for a
solution fulfilling arbitrary constraints (e.g end-to-end RC and TT delays) and outputs the
best found solution (i.e. TT and RC routing, TT schedule) based on a defined cost-function.

We have provided implementation details for an instantiation of the general framework
for TTEthernet, with example module implementations, input and output constraints, and
cost functions. With this implementation we have evaluated the performance of our proposed
general framework, compared to two state of the art methods.

We have shown that selecting good heuristics and good parameters is of paramount
importance to obtain good results, and that the minimum deadlines (i.e. worst-case delays)
can be reduced up to 28.3% with our proposed method, compared to the state-of-the-art
solution. We have also shown that we are able to divide by up to 3 the number of flows not
fulfilling their constraints compared to prior work.

The importance of good parametrization has been highlighted to select each parameter
value and obtain the best solutions in the least amount of time. However, future work is
necessary to analyze the impact of each parameter on the cost function and execution time,
subject to networks and flow characteristics.
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