
Correctness and Efficiency Criteria for the
Multi-Phase Task Model
Rémi Meunier #

IRIT, AUSY, INSA Toulouse, France

Thomas Carle #

IRIT, Universite Toulouse 3 Paul Sabatier, CNRS, France

Thierry Monteil #

IRIT, INSA Toulouse, CNRS, France

Abstract
This paper investigates how the multi-phase representation of real-time tasks impacts their im-
plementation and the precision of the interference analysis in a multi-core context. In classical
scheduling and interference analyses, tasks are represented as a single phase with a duration equal
to their Worst-Case Execution Time (WCET) in isolation, annotated with their worst-case number
of accesses. We propose a general formal definition of a task model in which tasks are represented
as a sequence of such phases: the multi-phase model. We then provide a set of general correction
criteria for the implementation of tasks represented in the multi-phase model, which is agnostic
of the analysis method applied on the tasks. We also use the multi-phase model on an avionics
case-study and study its impact on the interference analysis. Finally, we define a set of efficiency
criteria using a statistical study of the most efficient multi-phase shapes.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Computer
systems organization → Multicore architectures; Computer systems organization → Embedded
software

Keywords and phrases Task model, Interference, Multicore architectures

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.9

Funding This work was supported by a grant overseen by the French National Research Agency
(ANR) as part of the MeSCAliNe (ANR-21-CE25-0012) project.

1 Introduction

The growing adoption of multi-core processors in industrial real-time systems [21,22] raises
the challenge of providing safe and tight Worst-Case Execution Time (WCET) bounds
for tasks running in parallel on separate cores. Indeed, in multi-core architectures, the
cores execute their processes/threads independently from one another, but they share some
hardware components such as caches, buses and memories. Interference may happen in these
shared components: when a task requires to access a component which is already in use
by another task running on another core, it has to wait until the component is free again.
This phenomenon incurs execution delays which depend on the context of the task execution
(which other tasks are running in parallel, and are they accessing the shared resources ?).
In traditional single-core WCET analysis [1, 3], each task is analysed in isolation i.e. as
if no other task was running in parallel. Then a schedulability or Worst-Case Response
Time (WCRT) analysis is performed using a model in which each task is represented by
its WCET, in order to guarantee that each individual task meets its deadline or that the
system as a whole meets an end-to-end timing constraint. A direct consequence of the delays
incurred by interference is that traditional WCETs no longer represent a safe upper-bound
on the execution time of the tasks when they are run on multi-core processors. It becomes
necessary to model tasks using at least their WCET in isolation and their worst-case number

© Rémi Meunier, Thomas Carle, and Thierry Monteil;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 9; pp. 9:1–9:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:remi.meunier@irit.fr
https://orcid.org/0000-0002-5329-8969
mailto:thomas.carle@irit.fr
https://orcid.org/0000-0002-1411-1030
mailto:thierry.monteil@irit.fr
https://orcid.org/0000-0001-6031-5555
https://doi.org/10.4230/LIPIcs.ECRTS.2022.9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Correctness and Efficiency Criteria for the Multi-Phase Task Model

of accesses to shared components, and to perform an additional interference analysis in order
to obtain a safe over-estimation of their execution time. However, this classical model, which
maps one task to one temporal phase was not designed with interference analysis in mind,
and may not be the best-suited to analyse tasks running in parallel.

More recent models represent each task as a sequence of phases, each characterized
by a WCET and a number of accesses, either as an attempt to increase the precision
of the interference analysis [2, 4, 19], or in order to build schedules in which there is no
interference [9, 20]. This multi-phase abstraction maps temporal phases to actual sections of
code which are separated by synchronizations. The shape of the phases may be dictated by
a programming model in which the programmers insert synchronizations at particular points
(e.g. [9]), or may be designed during the analysis and enforced by synchronizations that are
injected in the code afterwards (e.g. [5]).

In the remainder of the paper, we focus on memory accesses as the sole source for
interference in the system. However, the abstractions that we describe naturally support
any other kind of interference source: the only thing that changes is the analyses that must
be performed on the code in order to obtain the abstract models of the tasks, which are
not considered in the scope of the paper. In particular, we consider non-preemptive static
(or fixed-priority time-triggered) scheduling, but limited preemptions could be supported by
adapting classic cache-related preemption delay (CRPD) computation techniques.

In this paper we make the following contributions:
we give a general, formal description of the multi-phase model that is agnostic of the
method used to analyze the tasks. As such it can be seen as a generalization of the
2-phase [18] and 3-phase [9] models, and as an extension of the model of [5] to the notion
of synchronizations.
we investigate the relationship between the phases and the synchronizations that enforce
them, that is to say between the multi-phase analysis model of tasks and their actual
implementation. We show that synchronizations are not mandatory at the boundaries
between two consecutive phases, and provide criteria to validate the implementation of a
task w.r.t. the assumptions that were made during the analysis. Once again the criterion
is agnostic about the way the analysis is actually performed.
we apply the multi-phase model on an avionics case-study, and show that correlating the
shape of the model to the actual behavior of the tasks may not lead to the best results.
As a result we investigate how the shape of multi-phase representations impacts the
result of static interference analysis, and deduce a promising heuristic objective to build
multi-phase models of tasks. Since we discuss a general model and not a particular
method, this study is based on a statistical experiment relying on synthetic artifacts.

The paper is organized as follows: we present the related work in Section 2 and we
introduce formal definitions in Section 3. Then, in Section 4 we study the relationship
between phases and synchronizations. In Section 5, we present our results on the ROSACE
case-study. In Section 6, we detail our statistical study of the multi-phase model, and finally
we conclude in Section 7.

2 Related Work

The problem of identifying, quantifying and possibly reducing the interference between
real-time tasks running on multi-core processors is one of the most pressing issues that the
real-time community is facing. Consequently, a lot of work has been done already, and various
methods have been developed, although none of them seems to be entirely satisfying [13].

R. Meunier, T. Carle, and T. Monteil 9:3

One of the most comprehensive approaches so far, presented in [6], uses the execution
traces of the tasks composing the system, and models all the hardware components shared
between cores (e.g. buses, RAMs) in order to quantify the exact worst-case amount of
interference in the system, given a fixed priority scheduling policy. This analysis method is
thus able to provide a safe and tight interference-aware WCRT for a task system. However
the authors point out that working with all the possible execution traces of all the tasks
composing a system is not feasible for realistic, industrial systems. They advocate the use of
a more abstract representation of the tasks execution in order to overcome this intractability
issue, but do not provide such an abstraction. It thus remains open to find a suitable
candidate abstraction to achieve a trade-off between tractability and precision of the analysis.

Other approaches, inspired by compilation methods and low-level code analysis, use static
scheduling approaches to handle, reduce or suppress the interference in the system. These
methods are inspired by the PRedictable Execution Model (PREM) introduced in [18]. This
model, originally designed for single-core processors with Input/Output registers, abstracts
the execution of tasks as a sequence of so called memory and execution phases. In a memory
phase, the core executes only memory (or I/O register) operations, which require to send or
receive data across an interconnect. In an execution phase however, the code is executed
locally in the core, and is guaranteed not to make accesses to the interconnect. As a result,
only the memory phases are subject to interference. The Acquisition Execution Restitution
(AER) model [9] can be seen as an extension of the PREM model to the context of avionics
systems running on multi-core architectures. In AER, each task is divided into exactly three
phases: an acquisition phase that loads to a core-local memory (cache or scratchpad) all
the code and data which may be necessary to execute the task, an execution phase that
executes the task code locally, and a restitution phase in which the results of the task are
written back to the shared memory. A static schedule of the tasks is computed in which the
acquisition and restitution phases of tasks are guaranteed not to happen simultaneously, and
synchronizations are inserted to enforce this schedule. As a result, the system is completely
free from interference. This line of work simplifies the analysis, by completely suppressing
the interference in the system, but also introduces some limitations of its own. First, in
these approaches, the tasks software has to be written with the phases in mind: this imposes
constraints on the way the code is written, and makes it challenging to use legacy code.
Automatic transformations of functions into the AER/PREM model have been developed as
an attempt to shift the design burden from the programmer to the compiler [10,11,14–16,23].
However, all these methods perform consequent modifications of the applications in order
to make them comply with the AER/PREM model, and thus do not solve the limitations
regarding legacy code. As a second limitation, the pre-loading of the tasks code and data
increases the memory requirements of the system by forcing the load of code and data which
may not be used during the execution phase (e.g. due to conditional execution). Finally, the
static nature of these solutions is compatible to systems in which certification constraints are
very high (e.g. avionics systems), but may be too rigid for less critical applications.

In [23], the authors evaluate the PREM and AER models in different scenarios in which
interference is either prohibited or can be tolerated. They conclude that for a given task
system, tolerating interference is more effective in terms of WCRT than building a schedule
without interference at all. In the same spirit, the Time Interest Points (TIPs) approach [5]
has been developed to reconcile the multi-phased task model with legacy code. In this
model, a multi-phase representation of the tasks is obtained through static analysis of the
binary code of the tasks. As a consequence, no restriction is put on the way the source code
must be written. Each phase of a task may perform a certain amount of memory accesses,

ECRTS 2022

9:4 Correctness and Efficiency Criteria for the Multi-Phase Task Model

which is determined by the analysis. Using this representation, an interference analysis
can be performed as part of a WCRT analysis such as the one in [6], or as part of a static
scheduling/compiling approach (e.g. [7, 8]). Moreover, the analysis can be tuned in order to
produce different representations of the same task (as in [5]). However, to the best of our
knowledge, no study has yet been performed in order to define what a “good” multi-phased
representation is. In this paper we provide a first answer to this question.

3 Formal Models

Notation Definition

τ i task i

ϕi
k phase k in the representation of τ i

ϕi
k.d start date of ϕi

k without interference
ϕi

k.dur worst-case duration of ϕi
k without interference

ϕi
k.m maximum number of memory accesses performed within ϕi

k

ti
j execution trace j of task τ i

ηi
j,k node k in trace ti

j

ηi
j,k.it instruction represented by ηi

j,k

ηi
j,k.d worst-case execution date of ηi

j,k without interference
ηi

j,k.m maximum number of memory accesses performed by ηi
j,k

ηi
j,k.sync True if the node is synchronized, i.e. cannot be executed before its ηi

j,k.d

slast(ηi
j,k) last synchronized node before ηi

j,k in trace ti
j

ti
j |ϕi

k

restriction of trace ti
j to ϕi

k, i.e. the set of nodes in ti
j that may execute during ϕi

k

We model a system of real-time tasks τ i (i ≥ 0). Each task is represented in two separate
ways, as depicted in Figure 1:

a “time-centric” representation called multi-phase. In this abstraction, the task is modelled
by a sequence of time slots, called phases, which covers its WCET. We call this sequence
of phases a profile. Each phase is associated with an upper bound on the number of
memory accesses that the task can perform during the corresponding time slot. This
representation is used to statically compute the schedule and perform the interference
analysis of the system (in a timing-compositional approach). The mapping between tasks
and multi-phase profiles is not bijective: multiple profiles can be found which represent
the same task.
a “code-centric” representation. In this abstraction, a task is represented by all its
possible execution traces (i.e. all the possible sequences of instructions executed from the
start of the task to its end). Since this set may be too large to analyze in practice, we
consider memory-centric traces: only instructions which may perform memory accesses1

are represented in the traces, and the rest of the instructions is abstracted by computing
local WCETs. This representation is an intermediate step to go from the binary code

1 In modern processors, the actual accesses may not be performed as soon as the corresponding instruction
is executed e.g. if a store buffer delays store operations. However it is possible to statically bound the
time window during which the access can be performed. For clarity reasons, we consider in this paper
only the date when the instruction initiates the access in the pipeline, but the model can be easily
extended to work with an interval of potential access dates.

R. Meunier, T. Carle, and T. Monteil 9:5

of a task to its multi-phase representation, and back: it allows the number of memory
accesses in each phase to be bounded correctly, and to insert synchronization code at the
correct locations in the binary to enforce the scheduling choices.

t

2 possible
profiles for

 span span

Figure 1 Three traces and two profiles for task τ i. Red and green rectangles show the potential
span of nodes ηi

2,3 and ηi
1,7 respectively.

The scope of this paper does not include the methods required to obtain trace-based and
phase-based representations of tasks. We focus instead on the relationship between these
two abstraction levels. In this section, we describe these models formally and present this
relationship.

3.1 Task Models
We denote Pi = {ϕi

l|0 ≤ k < Φi} the ordered set of phases (i.e. the multi-phase profile)
representing the execution of task τ i, with Φi the number of phases. Each ϕi

l is defined by:
ϕi

l.d: its start date.
ϕi

l.dur: its worst-case duration in isolation (without interference).
ϕi

l.m: the worst-case number of memory accesses that may be performed within
[ϕi

l.d, ϕi
l.d + ϕi

l.dur[.
The date of ϕi

0, which is also the start date of task τ i without interference, is set when the
static schedule of the system is built. Then, for each ϕi

l (l > 0) the start date is defined by:

ϕi
l.d = ϕi

0.d +
∑

0≤q<l

ϕi
q.dur (1)

Alternatively, we can define recursively the start date of each phase (except the first one) by:

∀l > 0, ϕi
l.d = ϕi

l−1.d + ϕi
l−1.dur

In order to compute the worst-case number of memory accesses performed during a given
phase (i.e. ϕi

l.m), the code portions of τ i that may be executed during ϕi
l must be identified

and analyzed. To do so, we introduce Ti = {ti
j |0 ≤ j < T i} the set of execution traces of

τ i, where T i is the number of traces. Each trace corresponds to a possible execution of τ i

(corresponding to a particular set of inputs) and is a sequence of nodes ηi
j,k representing

instructions with 0 ≤ k < N i
j the node’s index in its sequence. ηi

j,0 is the entry point of task
τ i and each node is defined by:

ECRTS 2022

9:6 Correctness and Efficiency Criteria for the Multi-Phase Task Model

ηi
j,k.it : the instruction represented by ηi

j,k. Here, an instruction is not just understood
as an element of the core ISA (e.g. the ADD instruction), but as a particular instruction
in the binary code of the task. Thus, nodes from different traces may reference the same
instruction in the code.
ηi

j,k.m ∈ N : the worst-case number of memory accesses performed by ηi
j,k.it.

ηi
j,k.d : the worst-case execution date of ηi

j,k.it in trace ti
j .

3.2 Synchronized Nodes
As pointed out in Section 2, working on the complete set of execution traces of all tasks
composing the system is not realistic. As a consequence, we formulate our correctness criteria
using memory-centric abstract traces: the nodes composing the traces that we consider only
represent the instructions that may perform memory accesses. The rest of the instructions is
abstracted by computing local WCETs between consecutive memory accesses and accounting
for these durations in the worst-case execution date of the nodes (ηi

j,k.d)2. As a result, in this
model each node is guaranteed not to execute after its worst-case date, but is a priori able to
execute anytime before this date. In order to account safely for the accesses in the phases, we
thus would have to account for the accesses performed by a node in all phases that start before
the worst-case date of this node. This would lead to huge over-approximations. In order to
limit this approximation, some selected nodes must be synchronized: synchronization code is
inserted in the program to ensure that the synchronized nodes cannot be executed before
their worst-case date. The synchronization code can be added by the programmer directly in
the source code of the tasks, by the compiler as part of a low-level compilation pass, or during
an automatic code re-engineering process to adapt legacy code to the multi-phase model. We
attract the reader’s attention to two particular aspects of the model described in Section 3.1:
(i) the execution date for nodes that reference the same instruction in different traces and
(ii) the modelling of instructions inside loops which may appear multiple times in the same
trace at different dates. Both these aspects have to do with the way synchronizations are
implemented in the tasks. When complex synchronization mechanisms are used (e.g. that
are aware of the current execution trace or of the iteration count in the current loop), the
same memory instruction in the code may be modelled as two (or more) nodes with different
dates, which perfectly fits the model. If, however, the synchronization mechanism is unaware
of the context, the worst-case execution date of nodes that reference the same instruction on
separate traces must be the same. Since the model uses worst-case dates, the date chosen
for all these nodes must be the maximum date amongst them. Additionally, without a
context-aware mechanism, synchronizations inside loops become impossible to implement, so
the model naturally fits this case. In this paper, we voluntarily keep the model as general as
possible and make no assumption on the implementation of the synchronization mechanisms
in order to formulate correctness criteria that apply in all circumstances.

To keep track of the synchronized nodes, we add the boolean attribute ηi
j,k.sync which is

true if the node is synchronized and false otherwise.
Using these synchronizations, the accesses performed by any node must only be accounted

for in the phases that: (1) finish after the last synchronization prior to the node AND (2)
start before the worst-case date of the node.

2 Our criteria are also valid for simple tasks for which obtaining and manipulating the exact timed
execution traces is possible

R. Meunier, T. Carle, and T. Monteil 9:7

This is illustrated in Figure 1, which depicts 3 execution traces (ti
0, ti

1 and ti
2) and 2

possible profiles for a task τ i. Synchronized nodes are depicted in black in the traces. The
red (resp. green) rectangle shows the time window in which the accesses of node ηi

2,3 (resp.
ηi

1,7) must be accounted for. In the first profile, the accesses of ηi
1,7 must be considered in

phases ϕi
2 and ϕi

3, whereas in the second profile, they would only be considered in ϕi
3.

It is important to note that since ηi
j,k.d is a worst-case date, if node ηi

j,k is synchronized,
then its execution date is exactly3 ηi

j,k.d. We denote slast(ηi
j,k) the last synchronized node

before ηi
j,k in trace ti

j . By convention, we set slast(ηi
j,k) = ηi

j,k when ηi
j,k.sync.

To account for the tasks schedule, for all tasks τ i, the entry node (on any trace ti
j) is

synchronized and its worst-case execution date is set to the start of the first phase of the
profile:

▶ Property 1. ∀i, j : ηi
j,0.sync ∧ ηi

j,0.d = ϕi
0.d

The worst-case date of any other node ηi
j,k with k > 0 is defined according to the date of the

last synchronized node on its trace:

▶ Property 2. ηi
j,k.d = ηi

j,s.d +
∑

s≤t<k

wcet(ηi
j,t.it, ηi

j,t+1.it)

where wcet(ηi
j,t.it, ηi

j,t+1.it) is the WCET between instructions ηi
j,t.it and ηi

j,t+1.it, and ηi
j,s

is slast(ηi
j,k) if ¬ηi

j,k.sync and slast(ηi
j,k−1) otherwise.

A node ηi
j,k can only be executed in the interval [slast(ηi

j,k).d, ηi
j,k.d]. As we saw in the

example of Figure 1, this interval may overlap with several phases of the task profile.
We denote ti

j |ϕi
l

the set of nodes in trace ti
j that may be executed within [ϕi

l.d, ϕi
l.d+ϕi

l.dur[,

called the restriction of trace ti
j to phase ϕi

l:

ti
j |ϕi

l

= {ηi
j,k|(ηi

j,k.d ≥ ϕi
l.d) ∧ (slast(ηi

j,k).d < ϕi
l.d + ϕi

l.dur)}

The notion of restriction of a trace to a phase is illustrated in Figure 2 on 3 traces over
phase ϕi

1.

t

Figure 2 Restrictions of traces ti
0, ti

1 and ti
2 to phase ϕi

1.

3.3 Maximum Number of Accesses in a Phase
The number of accesses that may be performed during a phase for an individual trace is
equal to the sum of the accesses of the nodes from this trace that may be executed in the
phase. During the execution of a task, only one trace executes (which one depends on the

3 With a precision of a few cycles depending on the implementation of the synchronization mechanism.

ECRTS 2022

9:8 Correctness and Efficiency Criteria for the Multi-Phase Task Model

execution context): as a consequence, the worst-case number of accesses performed during a
phase is equal to the maximum number of accesses that may be performed by any execution
trace during that phase.

▶ Property 3. The worst-case number of accesses that may be performed during phase ϕi
l,

denoted ϕi
l.m, is equal to the maximum of accesses per trace during phase ϕi

l:

ϕi
l.m = max

0≤j<T i
(

∑
ηi

j,k
∈ti

j|ϕi
l

ηi
j,k.m)

▶ Correctness criterion 1. The formula of Property 3 provides a conservative estimation of
the number of memory accesses that can occur during the phases of a multi-phase profile.

Since nodes may span over multiple phases, the number of accesses counted task-wise may be
overestimated, even when some nodes are synchronized. However, nodes from a trace which
span over multiple phases may be “covered” by other nodes from another trace performing
more accesses on a given phase. For example, in Figure 2, if we consider that each node
performs 1 access, trace ti

2 is the local worst trace on ϕi
3 with 4 nodes performing accesses

and trace ti
1 is the local worst trace on ϕi

2 with 3 nodes performing accesses. On phase ϕi
1,

traces ti
0 and ti

1 both have 3 nodes performing accesses. In such circumstances, although
node ηi

0,4 spans over ϕi
3, ϕi

2 and ϕi
1, it does not contribute to any over-approximation.

We quantify the task-wise over-approximation of memory accesses compared to the
1-phase model, by computing the difference between the sum of accesses accounted for in
each phase, and the worst trace-wise number of accesses.

▶ Property 4. The memory access over-approximation in a multi-phase profile of a task τ i

compared to its 1-phase representation is equal to:

∆ = (
∑

0≤l<Φi

ϕi
l.m) − max

0≤j<T i
(

∑
0≤k<Ni

j

ηi
j,k.m)

4 Consequences of the Interference Analysis

Notation Definition

ϕi
l.p timing penalty added to ϕi

l due to potential interference
ϕi

l.d
post-analysis start date of ϕi

l

ηi
j,k.d# worst-case date of node ηi

j,k in the presence of interference

In this section, we consider a task system for which an analysis has provided a multi-phase
model as well as a selection of synchronized nodes for each task. We assume that this task
system is scheduled statically (the ϕi

0.d for each τ i are selected and the start dates of the
other phases are computed using equation 1), and that an interference analysis (such as
e.g. [7]) is applied to compute and account for the effect of potential interference between the
tasks phases, assuming the timing-compositionality of the target processor [12]. In practice,
each phase that potentially suffers from interference is extended using a time penalty, and
the next phases are postponed accordingly. This extension may violate assumptions that
were made on the correspondence between phases and traces: in particular the restrictions
of traces to phases that were computed prior to the interference analysis may no longer
be correct, resulting in the possibility that some contentions between cores may happen in
phases in which they were not accounted for.

R. Meunier, T. Carle, and T. Monteil 9:9

4.1 Example

(a)

(b)

(c)

t

Figure 3 A trace and its corresponding phases representation : (a) in isolation, (b) after the
interference analysis, red rectangles are the timing penalty added for each phase, (c) after a correction
on nodes dates.

Figure 3 displays trace ti
2 and the profile from Figure 2, at three stages of the analysis:

(a) depicts the trace and phases before the interference analysis. We have:
ti
2|ϕi

0

= {ηi
2,0, ηi

2,1} ; ti
2|ϕi

1

= {ηi
2,2, ηi

2,3} ; ti
2|ϕi

2

= {ηi
2,4, ηi

2,5} ; ti
2|ϕi

3

= {ηi
2,6, ηi

2,7, ηi
2,8, ηi

2,9}

Additionally, we consider that for this task, ϕi
1.m = 2 and ϕi

2.m = 2.
(b) shows the same trace and profile after the interference analysis (assuming other tasks
in the system): the effect of interference is materialized by timing penalties on the phases
(the red rectangles after each phase). ti

2|ϕi
1

, ti
2|ϕi

2

and ti
2|ϕi

3

are different than in (a):

ti
2|ϕi

0

={ηi
2,0, ηi

2,1}; ti
2|ϕi

1

={ηi
2,2, ηi

2,3, ηi
2,4, ηi

2,5}; ti
2|ϕi

2

= {ηi
2,5, ηi

2,6, ηi
2,7, ηi

2,8}; ti
2|ϕi

3

= {ηi
2,8, ηi

2,9}

As a consequence, the worst-case amount of accesses that can happen during phases ϕi
1

and ϕi
2 is higher than what was assumed and therefore their interference penalty and

those of the tasks scheduled in parallel are no longer conservative.
(c) represents a solution to respect the model’s assumptions of (a): the synchronized date
of ηi

2,4 (resp. ηi
2,6) is set to the new starting date of ϕi

2 (resp. ϕi
3), which is the unique

phase in which it was accounted for in (a). With this slight modification, the restrictions
of ti

2 to each phase are identical to the ones in (a) and the ϕi
l.m that was computed in

isolation for each phase remains correct.

4.2 Enforcing the Model’s Assumptions and the Analysis Results
Since the duration and start dates of phases can be changed as a result of the interference
analysis, new attributes are added to the formal model of the phases:

ϕi
l.p ≥ 0 is the timing penalty added to ϕi

l due to potential interference. It is a conservative
bound computed during the interference analysis.
ϕi

l.d
is the post-analysis date of ϕi

l, i.e. its start date taking into account the potential
interference in the system.

After the interference analysis, the start date of some tasks may be postponed due to
interference that delays previous tasks. ϕi

0.d# is thus fixed by applying the interference
analysis results to the initial schedule. The start dates of all other phases ϕi

l describing the
execution of τ i are computed as:

ϕi
l.d

= ϕi
0.d# +

∑
0≤q<l

(ϕi
q.dur + ϕi

q.p) (2)

ECRTS 2022

9:10 Correctness and Efficiency Criteria for the Multi-Phase Task Model

▶ Correctness criterion 2. The synchronization dates in the final implementation of tasks
must at least be equal to the start date of the corresponding phase: for each synchronization
node ηi

j,k ∈ ti
j |ϕi

n

, the synchronization date is set to at least ϕi
n.d#. This way it is guaranteed

that nodes after ηi
j,k cannot execute and thus produce accesses before the start of ϕi

n.

It seems straightforward that, by construction, a task set implemented using this rule
is guaranteed to fulfill the assumptions made during the interference analysis: during the
execution of the system, memory accesses will only occur at times that were accounted for
during the analysis, and thus the amount of interference cannot be larger in practice than
what was accounted for. However, although this implementation rule directly guarantees
that accesses are not performed before the phases in which they are accounted for, it may
be harder to convince oneself that they cannot occur later than the end of these phases.
Consequently, and given the potentially critical nature of the tasks modelled in the multi-
phase representation, we provide in the remainder of the section a formal proof of the
correctness of this implementation scheme w.r.t. the result of the interference analysis. Once
again, this is completely agnostic of the analysis method, as long as it correctly provides a
conservative bound on the interference level.

We denote ηi
j,k.d# the post-analysis worst-case date of node ηi

j,k. The post-analysis dates
of nodes are upper bounds on the worst-case execution dates of nodes in the presence of
interference. We start by characterizing those bounds in our formal model (Properties 5, 6
and 7), and then use them to prove the correctness of the implementation of a multi-phase
model of tasks.

First, the post-analysis execution date of the entry point of each task τ i is the post
analysis start date of its first phase ϕi

0.

▶ Property 5. For any task τ i: ∀j < T i, ηi
j,0.d# = ϕi

0.d#

Second, correctness criterion 2 has the following consequences for the post-analysis
execution date of any synchronized node ηi

j,k (except the entry point) of any task τ i:
if the phase ϕi

n in which the node was supposed to be executed is postponed due to
interference penalties on previous phases, the node cannot be executed before the post-
analysis start date of ϕi

n.
if previous synchronized nodes see their execution dates postponed, the synchronization
date of ηi

j,k must be postponed accordingly, and thus computed from the post-analysis
date of the previous synchronized node ηi

j,s. In this case, we must consider the interference
that can take place between ηi

j,s and ηi
j,k. If there exists one or more phases that span

entirely between the two nodes, their penalties are added to the post-analysis date of
ηi

j,k (which is conservative). Moreover, by convention we count in the post-analysis date
of ηi

j,k the entire amount of penalty of the phase to which it belongs (which is also
conservative since it accounts for the interference that can occur on each access in the
phase prior to the synchronization node, and on each access that may occur until the
next synchronization node).

▶ Property 6. For any synchronized node ηi
j,k of any trace ti

j of task τ i:

(k > 0 ∧ ηi
j,k.sync ∧ ηi

j,k ∈ ti
j |ϕi

n

∧ ηi
j,s = slast(ηi

j,k−1) ∧ ηi
j,s ∈ ti

j |ϕi
m

)

⇒ ηi
j,k.d# = max(ϕi

n.d#, ηi
j,s.d# +

∑
s≤l<k

wcet(ηi
j,l.it, ηi

j,l+1.it) +
∑

m<b≤n

ϕi
b.p)

R. Meunier, T. Carle, and T. Monteil 9:11

▶ Correctness criterion 3. The synchronization dates in the final implementation of tasks
must not be set to a value higher than the date computed in Property 6.

Finally, for any non-synchronized node, its post-analysis date accounts for the possible
postponing of the previous synchronized node ηi

j,s. Note that the potential interference
occurring between them has been accounted for entirely in the post-analysis date of the
previous synchronized node.

▶ Property 7. For any non-synchronized node ηi
j,k of any trace ti

j of task τ i:

(¬ηi
j,k.sync ∧ ηi

j,s = slast(ηi
j,k)) ⇒ ηi

j,k.d# = ηi
j,s.d# +

∑
s≤l<k

wcet(ηi
j,l.it, ηi

j,l+1.it)

4.3 Proof of Correctness
We now prove that any task system which respects the 3 correctness criteria is correct
w.r.t. the results of the interference analysis i.e. cannot generate interference that was not
accounted for.

First, the difference between the start date of a synchronized node ηi
j,k before and after

the interference analysis is bounded by the difference between the start date of the phase ϕi
l

in which it is executed, before and after the interference analysis, added to the maximum
amount of interference that can occur in ϕi

l.

▶ Lemma 1. ∀ηi
j,k: (ηi

j,k.sync ∧ ηi
j,k ∈ ti

j |ϕi
l

) ⇒ ηi
j,k.d# − ηi

j,k.d ≤ ϕi
l.d

− ϕi
l.d + ϕi

l.p

Proof. We will prove by induction that the property is true for all synchronized nodes.
If ηi

j,k is the entry node of τ i, the proof is direct using Properties 1 and 5. Otherwise,
using Property 6, ηi

j,k.d# is either equal to ϕi
l.d

or must be computed from the previous
synchronized node on trace ti

j . Let ηi
j,s = slast(ηi

j,k−1), and assume that the property is true
for ηi

j,s. Then,
If ηi

j,k.d# = ϕi
l.d

#:
since ηi

j,k ∈ ti
j |ϕi

l

, by definition ηi
j,k.d ≥ ϕi

l.d, and thus ηi
j,k.d# − ηi

j,k.d ≤ ϕi
l.d

− ϕi
j .d.

Otherwise:
ηi

j,k.d# = ηi
j,s.d# +

∑
s≤a<k

wcet(ηi
j,a.it, ηi

j,a+1.it) +
∑

m<b≤l

ϕi
b.p. Using Property 2, we

get: ηi
j,k.d# − ηi

j,k.d = ηi
j,s.d# − ηi

j,s.d +
∑

m<b≤l

ϕi
b.p. The induction hypothesis gives us:

ηi
j,s.d# − ηi

j,s.d ≤ ϕi
m.d# − ϕi

m.d + ϕi
m.p, where ϕi

m is the phase in which ηi
j,s executes. If

m = l (i.e. both nodes execute in the same phase) the property is directly proven for
node ηi

j,k. Otherwise, m < l and then ϕi
l.d

− ϕi
l.d = ϕi

m.d# − ϕi
m.d +

∑
m≤b<l

ϕi
b.p (using

Equations 1 and 2), and thus the property is also proven.
By induction, we just proved that the property holds for all synchronized nodes. ◀

We are now ready to prove the correctness property:

▶ Theorem 1. For any task system that respects correctness criteria 1, 2 and 3, for any ηi
j,k

of any task τ i, if ηi
j,k spans over a phase ϕi

l after the interference analysis, then ηi
j,k was

necessarily accounted in the restriction of trace ti
j to ϕi

l before the analysis:

∀0 ≤ j < T i, ∀0 ≤ k < N i
j , ∀0 ≤ l < Φi :

[slast(ηi
j,k).d#, ηi

j,k.d#] ∩ [ϕi
l.d

#, ϕi
l.d

+ ϕi
l.dur + ϕi

l.p[̸= ∅ ⇒ ηi
j,k ∈ ti

j |ϕi
l

ECRTS 2022

9:12 Correctness and Efficiency Criteria for the Multi-Phase Task Model

Proof. The case where ηi
j,k is the entry node is direct. For all other nodes we consider

separately the case of synchronized nodes and of non-synchronized nodes.

Case 1: ηi
j,k.sync is true:

By convention, slast(ηi
j,k) = ηi

j,k. Let us assume ϕi
l such that ηi

j,k.d# ∈ [ϕi
l.d

#, ϕi
l.d

+
ϕi

l.dur + ϕi
l.p[. Let us denote ϕi

z the phase such that ηi
j,k ∈ ti

j |ϕi
z

(z is unique because ηi
j,k

is synchronized). We want to prove that l = z. Using Property 6, either ηi
j,k.d# = ϕi

z.d#

or it is greater. If it is equal, then directly ϕi
l = ϕi

z because phases of the same task do
not overlap. Otherwise, if z > l then ηi

j,k.d# > ϕi
z.d# ≥ ϕi

l.d
+ ϕi

l.dur + ϕi
l.p which

contradicts the assumption. So z would have to be less than l. Now, since ηi
j,k ∈ ti

j |ϕi
z

,

ηi
j,k.d − ϕi

z.d < ϕi
z.dur. At the same time, ηi

j,k.d# ≥ ϕi
l.d

≥ ϕi
z.d# + ϕi

z.dur + ϕi
z.p, so

ηi
j,k.d# − ϕi

z.d# ≥ ϕi
z.dur + ϕi

z.p. This contradicts Lemma 1, from which we conclude
that l = z. This concludes the proof for case 1.

Case 2: ηi
j,k.sync is false:

Let ϕi
l such that [slast(ηi

j,k).d#, ηi
j,k.d#]∩ [ϕi

l.d
#, ϕi

l.d
+ϕi

l.dur +ϕi
l.p[̸= ∅. Let us denote

ϕi
m the phase to which slast(ηi

j,k).d# belongs, and assume by absurd that ηi
j,k ̸∈ ti

j |ϕi
l

.

Then by definition either (slast(ηi
j,k).d > ϕi

l.d + ϕi
l.dur) or (ηi

j,k.d < ϕi
l.d).

If slast(ηi
j,k).d > ϕi

l.d + ϕi
l.dur: then m > l, and thus using Property 6: slast(ηi

j,k).d# ≥
ϕi

m.d# ≥ ϕi
l.d

+ ϕi
l.dur + ϕi

l.p, which contradicts the original assumption.
If ηi

j,k.d < ϕi
l.d, then using Property 2: slast(ηi

j,k).d +
∑

s≤t<k

wcet(ηi
j,t.it, ηi

j,t+1.it) < ϕi
l.d.

Then, we can deduce:
slast(ηi

j,k).d# +
∑

s≤t<k

wcet(ηi
j,t.it, ηi

j,t+1.it) < ϕi
l.d + slast(ηi

j,k).d# − slast(ηi
j,k).d

P rop. 7⇒ ηi
j,k.d# < ϕi

l.d + slast(ηi
j,k).d# − slast(ηi

j,k).d

⇒ ηi
j,k.d# < ϕi

l.d + slast(ηi
j,k).d# − slast(ηi

j,k).d +
l−1∑

b=m+1

ϕi
b.p

Lemma 1⇒ ηi
j,k.d# < ϕi

l.d + ϕi
m.d# − ϕi

m.d + ϕi
m.p +

l−1∑
b=m+1

ϕi
b.p

⇒ ηi
j,k.d# < ϕi

m.d# + ϕi
m.p +

l−1∑
b=m+1

ϕi
b.p +

l−1∑
b=m

ϕi
b.dur

⇒ ηi
j,k.d# < ϕi

l.d
#

which contradicts the initial hypothesis. We conclude that necessarily ηi
j,k ∈ ti

j |ϕi
l

. ◀

We just proved that the correctness criteria that we enumerated in the first part of the
paper guarantee that the implementation of a task system described in the multi-phase
model is correct w.r.t. a chosen interference-aware static schedule. These criteria are very
simple, which makes them easy to verify and offers a lot of room for optimizations in the
analysis of tasks, both in order to derive a profile for tasks and to select the synchronization
nodes. In the remainder of the paper, we concentrate on the efficiency of the model w.r.t.
the interference analysis. We start by experimenting the multi-phase model on a case study,
and then perform a statistical analysis in order to derive general efficiency criteria which can
in the future serve as an objective function for analysis heuristics.

R. Meunier, T. Carle, and T. Monteil 9:13

5 Efficiency of the Multi-Phase Model on the ROSACE Case-Study

ROSACE [17] is a flight controller case-study composed of 15 communicating tasks running
at different frequencies. We followed the Time Interest Points methodology described in [5]
to obtain the worst-case execution traces and multi-phase profiles for the ROSACE tasks.
Basically, we used the OTAWA static analysis tool to:

Detect the instructions that are not statically guaranteed to result in a cache hit.
Build an “abstract” CFG in which the nodes are the instructions that were detected in
the previous step. Each edge of this graph is decorated with the WCET of the code
portion between its source and sink nodes, computed using OTAWA.
Build the execution traces by enumerating this graph. In our experiments on ROS-
ACE, the average number of traces by task was around 88, with a peak at 1280 for
the aircraft_dynamics task. The graph enumeration may lead to combinatorial explo-
sion for arbitrarily complex applications. This issue can be mitigated by adding extra
synchronizations in the traces (e.g. at the end of a if-then-else or loop construct) that
factorize multiple traces for the rest of the enumeration.
For each trace, generate a multi-phase profile in which each memory access has a dedicated
phase spanning the duration of the access, using the worst-case dates in the trace.
Build the intersection of the profiles of all traces. This intersection is a profile that keeps
all access phases from all traces. The rest of the profile is composed of phases guaranteed
to feature no access.
From this profile, extract the phases with a size larger than a parameter δ in which no
access occurs. Parameter δ, which we varied in our experiments, specifies a minimum
size threshold for the phases of the generated profiles.
For the remainder of the phases in the intersection profile, fuse them together if their
duration is less than δ.

This method creates multi-phase profiles for tasks but says nothing about the selection of
the synchronization nodes. We thus added a very simple method to select synchronization
nodes, using the correctness criteria of Sections 3 and 4. For each phase ϕi

l, we selected as
synchronized node for each trace ti

j the first node ηi
j,k with ϕi

l.d ≤ ηi
j,k.d < ϕi

l.d + ϕi
l.dur

(if such a node exists). None of the tasks needed context-aware synchronizations so the
synchronization date was always chosen as the worst-case date of the synchronized instruction
in the program. The combination of the heuristic and of our node selection pass does not
perform any optimization. In our analysis, we considered a target hardware architecture
composed of a multicore processor (2, 4 or 8 cores) in which each core features a L1 LRU
data cache, and an instruction scratchpad which holds the totality of the code needed by the
core to execute. Additionally, we considered a memory latency of 50 cycles for non-cached
accesses. The tasks were compiled for ARM targets, and we considered that the cores were
running at a frequency of 10MHz (otherwise the tasks WCETs were too small compared to
their periods so there was no interference in the schedule).

Table 1 presents statistics on the multi-phase profiles of the ROSACE tasks for 3 values
of δ. This parameter has a consequent impact on the number of phases, on the number of
synchronizations and on the over-approximation (defined in Property 4) in the generated
profiles. With a δ equal to 50 cycles (the memory latency of our targets), 569 phases
are generated for all tasks. Our method determined 315 synchronizations nodes which
corresponds to roughly 1 synchronization every 6 or 7 instructions on average. This number
may be too high to be realistically used in practice, but is in part due to the small tasks
of the case-study which are composed of only a few tens of instructions. As δ grows, the

ECRTS 2022

9:14 Correctness and Efficiency Criteria for the Multi-Phase Task Model

Table 1 Rosace multi-phase tasks statistics for 3 multi-phase minimum duration (δ).

δ = 50 δ = 500 δ = 1000
Task instr traces ov_app sync phases ov_app sync phases ov_app sync phases

(#) (#) (%) (#) (#) (%) (#) (#) (%) (#) (#)
engine 40 1 0 10 18 0 4 4 0 2 2
elevator 47 1 0 9 15 0 3 4 0 2 2
aircraft_dyn 1217 1280 21.18 92 167 12.94 37 38 11.76 22 23
h_filter 77 4 0 18 34 0 7 7 0 5 4
az_filter 77 4 0 17 32 0 7 7 0 5 4
q_filter 106 12 14.29 32 55 0 11 9 0 8 5
vz_filter 106 12 10.34 32 55 0 11 9 0 8 5
va_filter 77 4 0 17 32 0 7 7 0 5 4
h_command 18 1 0 7 13 0 2 2 0 1 1
altitude_hold 65 3 6.25 15 26 0 7 6 0 5 3
vz_control 70 1 0 23 44 0 7 8 0 4 4
va_control 73 1 0 24 45 0 7 8 0 4 4
va_command 18 1 0 7 13 0 2 2 0 1 1
delta_th 15 1 0 6 10 0 2 2 0 1 1
delta_e 15 1 0 6 10 0 2 2 0 1 1
TOTAL 2021 1327 7.88 315 569 3.33 116 115 3.03 74 64

Gain (2 cores) 7.83% 6.79% 6.01%
Gain (4 cores) 13.21% 8.45% 7.48%
Gain (8 cores) 7.60% 3.74% 2.14%

number of generated phases and of synchronization nodes get lower: 115 phases and 116
synchronizations for δ = 500, and 64 phases and 74 synchronizations for δ = 1000, with 4 tasks
having only 1 phase in their representation. Our method for selecting the synchronizations
and counting the accesses in each phase is basic: it respects correctness criterion 1, but does
not optimize the number of synchronizations. As a result, on each trace one node is selected
as synchronization for each phase, even when it is not necessary. This explains in part the
high count for synchronizations. These synchronizations can be implemented by a variety of
methods. One naive method is to poll a register that counts the number of cycles (e.g. a
time stamp counter) until the start date of the corresponding phase is reached. This can be
implemented with a simple loop composed of only a few instructions (depending on the ISA
it can be as small as 3 instructions – compare, conditional jump, jump back). The precision
of each synchronization depends on the depth of the pipeline (which imposes the duration of
the jumps), but these small overheads can be taken into account in the analysis, and they do
not accumulate as the number of phases grows, because the synchronizations are based on
dates, not durations. Context-aware synchronizations (e.g. inside loops) are more complex to
implement, and may impose restrictions on the analysis. Since there was no need for those in
the ROSACE case-study, we leave for future work the efficient and correct implementation
of context-aware synchronizations.

Figure 4 displays the generated traces and two profiles for the az_filter task. When
δ = 1000, the profile is composed exclusively of phases in which the number of memory
accesses is strictly positive. On the other hand, when δ = 50 most of the profile is composed
of phases guaranteed to perform no memory access.

Using the generated profiles, we produced static schedules of the application for target
processors featuring 2, 4 and 8 cores. The schedules represent one hyper-period of the
tasks. The tasks were mapped to cores following their utilization (using a simple greedy
algorithm) and scheduled using the rate monotonic policy with the frequencies specified
in the original paper [17]. We then performed an interference analysis: we detected the
phases that overlap with each other 2 by 2 on different cores and extended them using
a penalty computed as the maximum number of contentions multiplied by the cost of a

R. Meunier, T. Carle, and T. Monteil 9:15

Figure 4 az_filter task: traces (top) and generated profile (bottom).

memory access. Moreover, the total penalty that a phase can suffer from any other core
(taken separately) is bounded by the number of accesses of the phase. This is a classical
interference computation assuming e.g. a FIFO bus. We measured the total reserved time
for the tasks (including the interference penalties) on the hyper-period, using the classical
1-phase model, and using our generated multi-phase profiles. We computed the gain as:
gain = (time_1_phase − time_multi_phase)/time_1_phase and reported it in Table 1.
The multi-phase model yields a gain of 7.83% (resp. 13.21% and 7.60%) with δ equal to 50
cycles on 2 cores (resp. 4 and 8 cores). The gain gets reduced as δ grows and the generated
profiles resemble more and more the 1-phase model. However, even in the case of δ = 1000,
the multi-phase model outperforms the 1-phase model by 6.01% (resp. 7.48%, 2.14%) on 2
cores (resp. 4 cores, 8 cores). One noticeable point is that the profiles with a lower δ have
a higher over-approximation and still get the best gains compared to the 1-phase model:
over-approximation at the profile level is not an indicator of the good performance of the
model at the task-system level.
Our conclusions from the case-study are the following:

the multi-phase model can yield a substantial gain compared to the 1-phase model.
the over-approximation in the profile of an individual task is not correlated to the gain
obtained at the task system level. Consequently, the optimal profile for a task may not
be derived from its execution behavior (when do the memory accesses happen?), but
from extrinsic properties. As we show in Section 6.2, particular shapes of profiles behave
significantly better than others during the interference analysis.
a trade-off must be found during the construction of the tasks profiles between the number
of synchronizations and the efficiency (the gain) of the model.
this gain is computed after the schedule is built and the interference analysis is performed
and is thus not accessible when the profiles are being constructed: other criteria must be
found, which can be computed directly during the construction of the profiles.

In an attempt to find such criteria and to confirm these conclusions, we performed a statistical
study which we describe in the next section.

6 Profile Shape-Based Efficiency Criteria

In this section, we investigate how the shape of multi-phase profiles impacts the result of
the interference analysis. As we show in this section, we found efficiency criteria which
concern the multi-phase model itself and are thus extrinsic to the analysed tasks. To do

ECRTS 2022

9:16 Correctness and Efficiency Criteria for the Multi-Phase Task Model

so, we conducted a statistical study on synthetic profiles generated using multiple input
parameters that are summed up in Table 2. Profiles are generated by choosing the values
for the attributes of the phases, using random draws from normal distributions centered
around the input parameters: for example inside a generated profile, each phase has its own
duration and number of accesses, but in average the durations and number of accesses meet
the input parameters. We do not consider system-level parameters such as task periodicity,
data dependencies or elaborate mapping and scheduling strategies in this section because
our focus is on showing how the model reacts in the presence of interference. We thus choose
a setting in which a lot of tasks are executed in parallel with no slack time.

Table 2 Tests input parameters.

Parameter Values section 6.2 Values section 6.3
Over-approximation of accesses (%) 0 to 30 (step 5) 0 to 30 (step 5)
Nb tasks per core {1, 2, 3} {2, 3, 4, 5}
Interference time penalty (cycles) {5, 10, 20} {5, 10}
Accesses per cycle 0.01 to 0.1 (step 0.01) 0.01 to 0.1 (step 0.01)
Nb long phases per UP L type task {5, 10, 15, 20} {5, 10, 15, 20}
Avg. number of short phases per long phase {2, 3, 4, 5} {2, 3, 4, 5}
Task duration (cycles) 17,500 to 175,000 17,500 to 175,000

6.1 Tests Execution and Metrics
The execution of a test consists in three steps. First, we generate the set of multi-phase
profiles corresponding to the input parameters. The generated tasks all share the same period,
have no explicit data dependency and have a synchronous release. Then, we map the tasks
into a number of cores specified for each test and schedule them as soon as possible, with no
optimization in the mapping or scheduling choices. This context stresses the multi-phase
model. Finally, we perform an interference analysis on the scheduled task system, as we
did with the ROSACE case-study. The over-approximation level (cf. Property 4) is an
input parameter to the tests. The ROSACE case-study showed that this over-approximation
is not directly correlated with the gain yielded by the multi-phase model, so the study of
synthetic profiles will provide us valuable insight on the performance of the model. Since
we schedule the tasks as soon as possible with no slack, we redefine the notion of gain
using the end dates of the schedules obtained with the 1-phase and multi-phase models:
gain = (end_1_phase − end_multi_phase)/end_1_phase.

6.2 Looking for the Best Multi-Phase Profile Shapes
We started by generating shapes composed of sequences of phases of similar durations (with
a standard deviation of 500 cycles), which we call Uniform Profiles (UP). The 3 UP kinds
generated are depicted in Figure 5a: long (L) profiles composed only of long phases, short
(S) profiles composed only of short phases or mix (M) profiles divided in 2 equal parts with
respectively long and short phases. We performed 352,800 tests with different combinations of
generation parameters. Each core is only assigned tasks of one UP kind (S, L or M) and has
the same number of tasks, which all have the same duration and are released synchronously.
With this setup, only the kind of UP assigned may differ for each core, so an easy comparison
between the various combinations of UP kinds can be performed.

We tested all the combinations of the profiles on 2, 4 and 8 cores. Our results showed
that the best profiles hosted the 3 categories S, M and L with a majority of S profiles. This
is coherent because the multi-phase model increases its gain whenever, for a given phase, the

R. Meunier, T. Carle, and T. Monteil 9:17

L

S

M

t

UP
types

AP

(a) Examples of possible UP types and AP.

0 5 10 15 20 25 30
Maximum over-approximation (%)

0

20

40

60

80

100

Sh
ar
e
of
 p
os

iti
ve

 re
su

lts
 (%

)

99.92
95.77

81.89

66.47

54.16
45.23

38.72

99.58

71.22

51.45

39.26
31.52

26.29 22.53

AP
UP

(b) Tests with positive gain according to the max-
imum over-approximation value included.

Figure 5 AP vs UP profiles.

number of accesses it may perform is higher than the number of possible concurrent accesses
from phases running in parallel (and it does not exceed the total accesses of the tasks in
parallel). In this experiment each task has strictly the same size, so the probability to fall
into this case is higher with S profiles which are composed of more phases.

As the combination of short and long phases, with more short phases than long ones,
performed better in our first experiment, we then tested a different profile shape that allows
an alternation between short and long phases in the tasks as depicted in the bottom of Figure
5a. We name this profile shape Alternation Profile (AP). We compared the results of AP
with the other profile shapes using the same test parameters. The results, given in Figure 5b,
indicate that AP systematically outperforms UP regardless of the over-approximation value
and of the other parameters. Therefore, we focus on AP as the best multi-phase profile for
the rest of the experiments.

▶ Efficiency criterion 1. Multi-phase profiles which alternate between long phases and grapes
of small phases tend to perform better than other shapes.

6.3 Comparison Between Multi-Phase AP and 1-Phase Model
In this section we assess the performance of the AP shape using a pool of 806,400 tests in
which tasks lengths vary in a range of ±25% around a value that is provided as input to the
test generator. We first consider task profiles in which all phases perform memory accesses.
Figure 6a gives the share of experiments in which the multi-phase AP outperforms its 1-phase
counterpart for different values of maximum over-approximation (blue bars). When there is
no over-approximation, the multi-phase model almost always performs better. The 1-phase
model does not perform as well as the AP until all experiments with over-approximations
ranging from 0% to 30% are included. According to Figure 6b (dashed lines), the share
of positive results significantly decreases with the number of cores in our tests when the
system-wise over-approximation value is superior to 10%, in particular when more than two
cores are involved. This is coherent with the fact that the over-approximation of accesses is
amplified as the number of cores grows when performing the interference analysis. In our
experiments on the ROSACE case-study, the over-approximation always remained under
10% system-wise, regardless of the size of the phases. As a conclusion:

▶ Efficiency criterion 2. The over-approximation plays a lesser role than the shape of
the profile at the level of individual tasks, but should still be kept within acceptable levels
system-wise, preferably under 10%.

ECRTS 2022

9:18 Correctness and Efficiency Criteria for the Multi-Phase Task Model

0 5 10 15 20 25 30
Maximum over-approximation (%)

0

20

40

60

80

100
Sh

ar
e
of
 p
os

iti
ve

 re
su

lts
 (%

) 98.9 96.4
87.8

76.5
66.1

57.4
50.3

99.9 99.7 98.5 95.8 92.1 88.0 83.8

Full accesses (xp2) Empty phases (xp3)

(a) Ratio of tests with positive gain.

0 5 10 15 20 25 30
Over-approximation value (%)

0

20

40

60

80

100

Sh
ar
e
of
 p
os
iti
ve

 re
su

lts
 (%

)

2 cores-xp3
2 cores-xp2

4 cores-xp3
4 cores-xp2

8 cores-xp3
8 cores-xp2

(b) Tests with positive gain by core number.

Figure 6 Experiments with accesses in each phase (xp2) and with phases without accesses (xp3).

−0.2 0.0 0.2 0.4 0.6
Gain value

0

5000

10000

15000

20000

Nb
 re

su
lts

KDE Gauss xp2
xp2

(a) AP profiles without empty phases (xp2).

−0.2 0.0 0.2 0.4 0.6
Gain value

0

1000

2000

3000

4000

Nb
 re

su
lts

KDE Gauss xp3
xp3

(b) AP profiles with 1/3 of empty phases (xp3).

Figure 7 Gain distribution for AP profiles with 0 to 10% of over-approximation.

This can be achieved by increasing the number of synchronizations. A special effort must
be put on the traces with the most accesses as the over-approximation at the phase-level is
propagated to the task-level only if it concerns, for each phase, the trace having the most
accesses. The over-estimation can also be reduced by fusing phases together when locally
some traces perform most of their accesses in different phases.

Moreover, when the over-approximation cannot be lowered, scheduling optimizations can
be applied in the same spirit as the ones used in AER in order to contain the negative effect
of over-approximation.

In the profiles generated for the above experiments, all phases perform accesses. Non-
etheless, the presence of phases without accesses in profiles is expected in practice e.g. due
to cache effects, and is likely to improve the AP results. Indeed, phases running in parallel
with other phases without accesses are guaranteed not to cause contention, while they would
in the 1-phase model. Therefore, we performed a new series of tests to estimate the impact
of phases without accesses in AP profiles. We modified the profiles already generated for
the previous experiments, by randomly selecting one third of each task’s phases and setting
their accesses count to 0. The results are presented in Figures 6a (orange bars) and 6b (full
lines). First, the share of positive results is significantly improved and still at more than
80% when including results with 30% of over-approximation, so the model is less sensitive to
over-approximation. This is linked to situations where accesses due to over-approximation
are in parallel with no other accesses so they do not lead to additional penalties. Second,
the gain distribution with over-approximation ranging from 0 to 10%, given by Figures 7a
and 7b, is also significantly improved with an average value of 20.1% while it is 5.3% for
profiles without empty phases. Consequently:

R. Meunier, T. Carle, and T. Monteil 9:19

▶ Efficiency criterion 3. Phases that perform no access have a significant positive effect on
the interference analysis results.

As we saw with ROSACE the number of synchronizations, of phases that perform no access
and the over-approximation can be adjusted as a trade-off in the analysis.

7 Conclusion and Future Work

We presented a formal framework for the multi-phase task model including a set of properties
that guarantee the correctness of the implemented task system. These properties are agnostic
about the methods that generate the profiles and select the location of the synchronizations
that enforce them. We combined our criteria to a simple heuristic to obtain multi-phase
representations of tasks on the ROSACE case-study, and concluded that the shape of the
model impacts the efficiency of the interference analysis, regardless of the analyzed task. We
thus conducted a statistical study in order to investigate which kinds of profiles perform the
best. We concluded that profiles alternating long and short phases tend to perform better, and
that profiles featuring phases that do not perform accesses are particularly efficient. As part
of future work, we plan on defining an automatic method for the design of optimized multi-
phase profiles from the tasks binary code, and on defining scheduling optimizations which
benefit from the multi-phase model. Moreover, we will work on the efficient implementation
of context-aware synchronizations, focusing on regular synchronization patterns inside loop
iterations.

References
1 AbsInt. aiT. https://www.absint.com/ait/index.htm.
2 Jatin Arora, Cláudio Maia, Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo Tovar. Bus-

contention aware schedulability analysis for the 3-phase task model with partitioned scheduling.
In Audrey Queudet, Iain Bate, and Giuseppe Lipari, editors, RTNS’2021: 29th International
Conference on Real-Time Networks and Systems, Nantes, France, April 7-9, 2021, pages
123–133. ACM, 2021. doi:10.1145/3453417.3453433.

3 Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. OTAWA: an
open toolbox for adaptive WCET analysis. In Sang Lyul Min, Robert G. Pettit IV, Peter P.
Puschner, and Theo Ungerer, editors, Software Technologies for Embedded and Ubiquitous
Systems - 8th IFIP WG 10.2 International Workshop, SEUS 2010, Waidhofen/Ybbs, Austria,
October 13-15, 2010. Proceedings, volume 6399 of Lecture Notes in Computer Science, pages
35–46. Springer, 2010. doi:10.1007/978-3-642-16256-5_6.

4 Thomas Carle and Hugues Cassé. Reducing timing interferences in real-time applications
running on multicore architectures. In Florian Brandner, editor, 18th International Workshop
on Worst-Case Execution Time Analysis, WCET 2018, July 3, 2018, Barcelona, Spain,
volume 63 of OASIcs, pages 3:1–3:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/OASIcs.WCET.2018.3.

5 Thomas Carle and Hugues Cassé. Static extraction of memory access profiles for multi-core
interference analysis of real-time tasks. In Christian Hochberger, Lars Bauer, and Thilo
Pionteck, editors, Architecture of Computing Systems - 34th International Conference, ARCS
2021, Virtual Event, June 7-8, 2021, Proceedings, volume 12800 of Lecture Notes in Computer
Science, pages 19–34. Springer, 2021. doi:10.1007/978-3-030-81682-7_2.

6 Robert I. Davis, Sebastian Altmeyer, Leandro Soares Indrusiak, Claire Maiza, Vincent Nélis,
and Jan Reineke. An extensible framework for multicore response time analysis. Real Time
Syst., 54(3):607–661, 2018. doi:10.1007/s11241-017-9285-4.

ECRTS 2022

https://www.absint.com/ait/index.htm
https://doi.org/10.1145/3453417.3453433
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.4230/OASIcs.WCET.2018.3
https://doi.org/10.1007/978-3-030-81682-7_2
https://doi.org/10.1007/s11241-017-9285-4

9:20 Correctness and Efficiency Criteria for the Multi-Phase Task Model

7 Maximilien Dupont de Dinechin, Matheus Schuh, Matthieu Moy, and Claire Maiza. Scaling
up the memory interference analysis for hard real-time many-core systems. In 2020 Design,
Automation & Test in Europe Conference & Exhibition, DATE 2020, Grenoble, France, March
9-13, 2020, pages 330–333. IEEE, 2020. doi:10.23919/DATE48585.2020.9116460.

8 Keryan Didier, Dumitru Potop-Butucaru, Guillaume Iooss, Albert Cohen, Jean Souyris,
Philippe Baufreton, and Amaury Graillat. Correct-by-construction parallelization of hard
real-time avionics applications on off-the-shelf predictable hardware. ACM Trans. Archit. Code
Optim., 16(3):24:1–24:27, 2019. doi:10.1145/3328799.

9 G. Durrieu, M. Faugère, S. Girbal, D. Gracia Pérez, C. Pagetti, and W. Puffitsch. Predictable
flight management system implementation on a multicore processor. In ERTS’14, 2014.

10 Björn Forsberg, Marco Solieri, Marko Bertogna, Luca Benini, and Andrea Marongiu. The
predictable execution model in practice: Compiling real applications for COTS hardware.
ACM Trans. Embed. Comput. Syst., 20(5):47:1–47:25, 2021. doi:10.1145/3465370.

11 Frédéric Fort and Julien Forget. Code generation for multi-phase tasks on a multi-core
distributed memory platform. In 25th IEEE International Conference on Embedded and
Real-Time Computing Systems and Applications, RTCSA 2019, Hangzhou, China, August
18-21, 2019, pages 1–6. IEEE, 2019. doi:10.1109/RTCSA.2019.8864558.

12 Sebastian Hahn, Michael Jacobs, and Jan Reineke. Enabling compositionality for multicore
timing analysis. In Alain Plantec, Frank Singhoff, Sébastien Faucou, and Luís Miguel Pinho,
editors, Proceedings of the 24th International Conference on Real-Time Networks and Systems,
RTNS 2016, Brest, France, October 19-21, 2016, pages 299–308. ACM, 2016. doi:10.1145/
2997465.2997471.

13 Claire Maiza, Hamza Rihani, Juan Maria Rivas, Joël Goossens, Sebastian Altmeyer, and
Robert I. Davis. A survey of timing verification techniques for multi-core real-time systems.
ACM Comput. Surv., 52(3):56:1–56:38, 2019. doi:10.1145/3323212.

14 Renato Mancuso, Roman Dudko, and Marco Caccamo. Light-prem: Automated software
refactoring for predictable execution on COTS embedded systems. In 2014 IEEE 20th
International Conference on Embedded and Real-Time Computing Systems and Applications,
Chongqing, China, August 20-22, 2014, pages 1–10. IEEE Computer Society, 2014. doi:
10.1109/RTCSA.2014.6910515.

15 Joel Matejka, Björn Forsberg, Michal Sojka, Zdenek Hanzálek, Luca Benini, and Andrea
Marongiu. Combining PREM compilation and ILP scheduling for high-performance and pre-
dictable mpsoc execution. In Quan Chen, Zhiyi Huang, and Pavan Balaji, editors, Proceedings
of the 9th International Workshop on Programming Models and Applications for Multicores and
Manycores, PMAM@PPoPP 2018, February 25, 2018, Vienna, Austria, pages 11–20. ACM,
2018. doi:10.1145/3178442.3178444.

16 Claire Pagetti, Julien Forget, Heiko Falk, Dominic Oehlert, and Arno Luppold. Automated
generation of time-predictable executables on multicore. In Yassine Ouhammou, Frédéric
Ridouard, Emmanuel Grolleau, Mathieu Jan, and Moris Behnam, editors, Proceedings of the
26th International Conference on Real-Time Networks and Systems, RTNS 2018, Chasseneuil-
du-Poitou, France, October 10-12, 2018, pages 104–113. ACM, 2018. doi:10.1145/3273905.
3273907.

17 Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron. The ROSACE
case study: From simulink specification to multi/many-core execution. In 20th IEEE Real-Time
and Embedded Technology and Applications Symposium, RTAS 2014, Berlin, Germany, April
15-17, 2014, pages 309–318. IEEE Computer Society, 2014. doi:10.1109/RTAS.2014.6926012.

18 Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco Caccamo,
and Russell Kegley. A predictable execution model for cots-based embedded systems. In
17th IEEE Real-Time and Embedded Technology and Applications Symposium, RTAS 2011,
Chicago, Illinois, USA, 11-14 April 2011, pages 269–279. IEEE Computer Society, 2011.
doi:10.1109/RTAS.2011.33.

https://doi.org/10.23919/DATE48585.2020.9116460
https://doi.org/10.1145/3328799
https://doi.org/10.1145/3465370
https://doi.org/10.1109/RTCSA.2019.8864558
https://doi.org/10.1145/2997465.2997471
https://doi.org/10.1145/2997465.2997471
https://doi.org/10.1145/3323212
https://doi.org/10.1109/RTCSA.2014.6910515
https://doi.org/10.1109/RTCSA.2014.6910515
https://doi.org/10.1145/3178442.3178444
https://doi.org/10.1145/3273905.3273907
https://doi.org/10.1145/3273905.3273907
https://doi.org/10.1109/RTAS.2014.6926012
https://doi.org/10.1109/RTAS.2011.33

R. Meunier, T. Carle, and T. Monteil 9:21

19 Rodolfo Pellizzoni, Andreas Schranzhofer, Jian-Jia Chen, Marco Caccamo, and Lothar Thiele.
Worst case delay analysis for memory interference in multicore systems. In Giovanni De Micheli,
Bashir M. Al-Hashimi, Wolfgang Müller, and Enrico Macii, editors, Design, Automation and
Test in Europe, DATE 2010, Dresden, Germany, March 8-12, 2010, pages 741–746. IEEE
Computer Society, 2010. doi:10.1109/DATE.2010.5456952.

20 Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut. Hiding communication
delays in contention-free execution for spm-based multi-core architectures. In Sophie Quinton,
editor, 31st Euromicro Conference on Real-Time Systems, ECRTS 2019, July 9-12, 2019,
Stuttgart, Germany, volume 133 of LIPIcs, pages 25:1–25:24. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.ECRTS.2019.25.

21 O. Sander, F. Bapp, L. Dieudonne, T. Sandmann, and J. Becker. The promised future of
multi-core processors in avionics systems. CEAS Aeronautical Journal, 2017. doi:10.1007/
s13272-016-0228-x.

22 J. Schneider, M. Bohn, and R. Rößger. Migration of automotive real-time software to multicore
systems: First steps towards an automated solution. In 22nd EUROMICRO Conference on
Real-Time Systems, 2010.

23 Matheus Schuh, Claire Maiza, Joël Goossens, Pascal Raymond, and Benoît Dupont de Dinechin.
A study of predictable execution models implementation for industrial data-flow applications
on a multi-core platform with shared banked memory. In 41st IEEE Real-Time Systems
Symposium, RTSS 2020, Houston, TX, USA, December 1-4, 2020, pages 283–295. IEEE, 2020.
doi:10.1109/RTSS49844.2020.00034.

ECRTS 2022

https://doi.org/10.1109/DATE.2010.5456952
https://doi.org/10.4230/LIPIcs.ECRTS.2019.25
https://doi.org/10.1007/s13272-016-0228-x
https://doi.org/10.1007/s13272-016-0228-x
https://doi.org/10.1109/RTSS49844.2020.00034

	1 Introduction
	2 Related Work
	3 Formal Models
	3.1 Task Models
	3.2 Synchronized Nodes
	3.3 Maximum Number of Accesses in a Phase

	4 Consequences of the Interference Analysis
	4.1 Example
	4.2 Enforcing the Model's Assumptions and the Analysis Results
	4.3 Proof of Correctness

	5 Efficiency of the Multi-Phase Model on the ROSACE Case-Study
	6 Profile Shape-Based Efficiency Criteria
	6.1 Tests Execution and Metrics
	6.2 Looking for the Best Multi-Phase Profile Shapes
	6.3 Comparison Between Multi-Phase AP and 1-Phase Model

	7 Conclusion and Future Work

