
Response-Time Analysis for Non-Preemptive
Periodic Moldable Gang Tasks
Geoffrey Nelissen #

Eindhoven University of Technology, The Netherlands

Joan Marcè i Igual #

Eindhoven University of Technology, The Netherlands

Mitra Nasri #

Eindhoven University of Technology, The Netherlands

Abstract
Gang scheduling has long been adopted by the high-performance computing community as a way to
reduce the synchronization overhead between related threads. It allows for several threads to execute
in lock steps without suffering from long busy-wait periods or be penalized by large context-switch
overheads. When combined with non-preemptive execution, gang scheduling significantly reduces
the execution time of threads that work on the same data by decreasing the number of memory
transactions required to load or store the data. In this work, we focus on two main types of gang
tasks: rigid and moldable. A moldable gang task has a presumed known minimum and maximum
number of cores on which it can be executed at runtime, while a rigid gang task always executes on
the same number of cores. This work presents the first response-time analysis for non-preemptive
moldable gang tasks. Our analysis is based on the notion of schedule abstraction; a new approach
for response-time analysis with the promise of high accuracy. Our experiments on periodic rigid
gang tasks show that our analysis is 4.9 times more successful in identifying schedulable tasks than
the existing utilization-based test for rigid gang tasks.

2012 ACM Subject Classification Computer systems organization → Real-time systems

Keywords and phrases schedulability analysis, response time analysis, moldable gang tasks, rigid
gang tasks, schedule abstraction graph, multiprocessor, non-preemptive

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.12

Funding Joan Marcè i Igual: This work was made with the support of the NWO SAM-FMS project
(project number 17931) as a part of the MASCOT program.
Mitra Nasri: This work was made with the support of the EU ECSEL Joint Undertaking under
grant agreement no 101007260 (project TRANSACT).

1 Introduction

Gang scheduling is a scheduling approach that groups and executes parallel threads as a
“gang”. A gang of threads reserves a set of cores for their execution. The threads have exclusive
access to those cores from the moment they start to execute until they complete or get
preempted. Since the early 80s, gang scheduling has been adopted by the high-performance
computing community [23] as a way to reduce synchronization overheads between related
threads, and to optimize the access time to shared data in data-intensive applications [12].
It allows for many threads to execute in lock steps without suffering from long busy-wait
periods or be penalized by large context-switch overheads. Furthermore, it reduces the
number of memory transactions by allowing the application to load its data only once for all
threads rather than once per thread.

© Geoffrey Nelissen, Joan Marcè i Igual, and Mitra Nasri;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 12; pp. 12:1–12:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:g.r.r.j.p.nelissen@tue.nl
https://orcid.org/0000-0003-4141-6718
mailto:J.Marce.i.Igual@tue.nl
https://orcid.org/0000-0003-2369-0246
mailto:m.nasri@tue.nl
https://orcid.org/0000-0002-1052-8437
https://doi.org/10.4230/LIPIcs.ECRTS.2022.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Gang scheduling is a versatile model and has various applications. It is used to assign
resources to applications in data centers, to schedule hardware tasks on field programmable
gate arrays (FPGAs) [5], and is also used in graphics processor units (GPUs) [2] where each
kernel thread-block needs a fixed number of cores before its execution starts.

The efficiency of gang scheduling improves significantly when it is combined with non-
preemptive execution. It then results in smaller execution times as it eradicates the need to
reload data into memory after each preemption. This is usually a crucial factor to optimize the
worst-case execution time of a gang task, which often treats large amounts of data. Despite
these benefits, to the best of our knowledge, no theoretical analysis exists for obtaining a safe
upper bound on the worst-case response time of gang tasks under non-preemptive scheduling.

In this work, we provide the first worst-case response-time (WCRT) analysis for two
generic classes of gang tasks, namely, rigid and moldable, where tasks are scheduled by
a non-preemptive job-level fixed-priority (JLFP) scheduling policy (e.g., non-preemptive
deadline monotonic (DM), earliest-deadline first (EDF), etc.). A rigid gang task requires a
fixed number of cores to execute its threads. Thus, a job released by a rigid gang task cannot
start its execution until at least the number of cores it requires are available. A moldable
gang task, however, uses a minimum and a maximum number of cores on which it may be
executed. Each job of a moldable task may then be allocated a different number of cores by
the scheduler depending on how many cores are available at its start time. As a result, the
actual execution time of a job of a moldable task depends on the actual number of cores
allocated by the scheduler to that job at runtime. It is worth noting that rigid gang is only a
particular case of moldable gang. Yet, due to its potentials to adapt its level of parallelism
according to the number of cores available, the analysis of moldable gang tasks is a much
more challenging problem than that of rigid gang tasks.

Related work. Gang tasks, or so called “coscheduled threads”, were introduced by Ouster-
hout et al. [23] in 1982. From the late 80s, it has been known that the optimal scheduling of
non-preemptive gang (NPGang) tasks is an NP-complete problem as it requires solving a bin
packing problem at the core [6]. Since then, further studies have focused on designing more
efficient scheduling algorithms either to improve the average-case response time [32] or to
reduce the effect of fragmentation [11], which happens when the number of idle cores is not
enough to start executing any of the pending jobs.

Work on real-time rigid gang. Goossens et al. [13] show that preemptive gang scheduling
under a JLFP policy is not sustainable [7] w.r.t. execution time variation. Since then, two
schedulability tests [9,13] and one optimal scheduling policy [15] have been introduced for
preemptive rigid gang under FP scheduling. However, neither of the tests nor the optimal
scheduling policy are applicable on non-preemptive gang tasks. Recently, Dong and Liu [10]
introduced a utilization-based test for non-preemptive sporadic gang tasks. That work is
the closest to ours as it considers non-preemptive gang tasks. However, it cannot be used
to compute an upper bound on the response-time of the tasks as it only outputs a yes/no
answer that indicates whether the task set is schedulable or not. It is also limited to rigid
gang tasks and cannot analyze moldable gang tasks.

Work on real-time moldable and malleable gang. Malleable gang tasks are a generalization
of moldable gang tasks according to which a job may change its level of parallelism during its
execution. Kato et al. [16] and Richard et al. [26] propose sufficient schedulability tests for
preemptive moldable gang scheduling under global EDF. Berten et al. [4] propose a greedy
scheduling algorithm and its schedulability test for preemptive moldable gangs. Collette
et al. [8] present a feasibility test as well as a scheduling algorithm that minimizes the

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:3

number of cores required to schedule malleable gang tasks. In their work, they also show
that EDF is not an optimal policy for malleable gang. However, these results are again
limited to preemptive tasks and have not been extended (and cannot be easily adapted) to
non-preemptive scheduling.

Work on bundle scheduling. In 2019, Wasly et al. [30] have extended the classical
rigid gang task model and proposed the bundled task model (BTM) along with a sufficient
schedulability test. Bundle tasks are modelled as a succession of “bundles” with precedence
constraints between them. Each bundle is preemptively scheduled and follows a rigid gang
model. However, each bundle may request a different number of cores than other bundles,
thereby providing a mean to change the parallelism of the task throughout its execution.
Nevertheless, similar to prior work, the existing tests for bundle scheduling have been designed
for preemptive execution and are not applicable to non-preemptive scheduling.

Work on schedule-abstraction-based analyses. Our response-time analysis for non-preemp-
tive gang tasks is based on the notion of schedule abstraction, a new type of response-time
analysis that provides highly accurate schedulability results (as shown in [31]). It was
first proposed in 2017 [18] and, since then, has been applied to various response-time
analysis problems for non-preemptive scheduling on single-core [18,24,25] and multicore
platforms [19,20,22], and is also being extended to the analysis of Ethernet TSN [28].

Contributions. In this paper, we propose a new analysis that uses the idea of schedule
abstraction [19] to derive the best-case and worst-case response times (BCRT and WCRT)
of a set of periodic rigid and/or moldable gang tasks scheduled by a non-preemptive JLFP
scheduling policy (detailed in Section 2). To the best of our knowledge, this is the first
response-time analysis for non-preemptive moldable (and rigid) gang tasks.

2 System Model

2.1 Platform and Task Model

We assume a platform made of m identical cores on which we execute a set of n non-
preemptive periodic moldable gang tasks. We consider periodic tasks since they are present
in more than 80% of real-time systems according to the recent survey of Akesson et al. [1] on
the industry practice in real-time systems. Each task τk (1 ≤ k ≤ n) periodically releases
non-preemptive moldable gang jobs. Whenever the scheduler dispatches a job Ji, it can chose
on how many cores to execute Ji out of a set Pi (see Section 2.2 for a detailed description of
the scheduler). The set Pi contains all the valid options to parallelize the execution of a job
Ji. For each possible number of cores p ∈ P that may be allocated to Ji, job Ji will execute
for a minimum of Cmin

i (p) and a maximum of Cmax
i (p) time units before completing its

execution. In other words, Cmin
i (p) and Cmax

i (p) are the best- and worst-case execution times
(BCET and WCET) of the job as a function of the number of cores on which it executes.
We assume that jobs may experience a bounded release jitter, that may arise from timer
inaccuracy, interrupt latency, or queuing delays. That is, a job Ji may be released at any
time within an interval [rmin

i , rmax
i] where rmin

i is its earliest release time and rmax
i is its latest

release time.
In sum, each job Ji ∈ J is then defined by the tuple ([rmin

i , rmax
i], C̄min

i , C̄max
i , Pi, di)

where rmin
i and rmax

i are the earliest and latest release times of Ji; di is its absolute deadline;
Pi is the set of core counts on which Ji may execute; C̄min

i and C̄max
i are vectors such that

each entry Cmin
i (p) and Cmax

i (p) contains the BCET and WCET of Ji on p cores, respectively.

ECRTS 2022

12:4 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

For ease of notation, we define mmin
i = min{p | p ∈ Pi} and mmax

i = max{p | p ∈ Pi} as
the minimum and maximum number of cores on which job Ji may execute. We also define
the function nexti(p) for all values p < mmax

i as a function that returns the smallest number
of cores larger than p on which job Ji can execute. That is, nexti(p) = min{k ∈ Pi | k > p}.
Without loss of generality, we assume that 1 ≤ mmin

i ≤ mmax
i ≤ m for all jobs. That is, job

Ji cannot execute on less than one core and cannot request more cores than the number of
cores in the platform. We also assume that the values in C̄min

i and C̄max
i are monotonically

decreasing. That is, a job may execute on more cores only if it decreases its execution time.
As mentioned before, rigid gang is a special form of moldable gang, namely, if mmin

i =
mmax

i (and thus |Pi| = 1) for a job Ji, then the job is said to be rigid, otherwise, it is
moldable. If all jobs released by a task are rigid, then the task is rigid.

Our response-time analysis is based on schedule abstraction which must be applied on
a finite observation window (or job set). For periodic tasks with synchronous releases,
constrained deadlines (i.e., deadlines smaller than or equal to periods) and with or without
release jitter, the length of the observation window is the task set’s hyperperiod H, i.e, the
least common multiple of all tasks’ periods [14]. Thus, the job set J must include all jobs
released by all tasks during the interval [0, H). Further discussions on how to create job sets
for periodic tasks with offsets or arbitrary deadlines are found in [18] and [14].

It is worth noting that despite focusing on periodic tasks, our analysis is applicable to any
arbitrary job set as well. This is helpful, for example, to analyze tasks with bursty release
patterns or with complex arrival models such as generalized multi-frame tasks [21].

2.2 Scheduler Model

Jobs are scheduled non-preemptively using a work-conserving global job-level fixed priority
(JLFP) scheduling algorithm that is assumed to follow the following set of rules:

▶ Rule 1. A job Ji is considered ready at time t if and only if it is released at or before t, it
is not yet completed at t and it is not already executing at time t.

▶ Rule 2. A job Ji is considered eligible to be dispatched at time t if and only if it is ready
at time t and there are at least mmin

i cores available at time t.

▶ Rule 3. The scheduler is invoked whenever a job is released or a job completes.

▶ Rule 4. At every invocation of the scheduler, the highest priority eligible job is chosen to
be dispatched.

▶ Rule 5. The dispatched job is assigned a number of cores equal to the maximum value in Pi

that is smaller than or equal to the number of free cores at the time at which it is dispatched
(i.e., it always executes on as many cores as possible so as to maximize its parallelism).

▶ Rule 6. The number of cores allocated to a job cannot change during its execution

▶ Rule 7. The execution of a job cannot be preempted once it started.

▶ Rule 8. No core may remain idle as long as there are eligible jobs to be dispatched.

Since we assume a JLFP scheduling algorithm, we use the notations hpi and lpi to refer
to the set of higher and lower priority jobs than job Ji, respectively.

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:5

3 Worst-Case Response-Time Analysis

To check the schedulability of a task set, we compute an upper bound on the worst-case
response time (WCRT) of each task by calculating an upper bound on the WCRT of each
job of the tasks in the observation window (e.g., hyperperiod). If the WCRT of a task is not
larger than its deadline, then the task is deemed schedulable.

As already mentioned, we use a schedule abstraction-based analysis [18–20] as opposed
to, e.g., a critical-instant-based analysis [3], in order to compute the WCRT of every job in a
job set J . In this section, we first explain preliminaries on schedule abstraction (Sec. 3.1)
and the challenges to build such an analysis for gang tasks (Sec. 3.2). We then elaborate on
how we model the system state for gang tasks (Sec. 3.3) and provide a top-down description
of the analysis in Sec. 3.4. We then discuss the details of the algorithm in Sec. 4 and 5

3.1 Preliminaries on Schedule-Abstraction Technique

Motivation. Schedule abstraction [18–20] is a recently developed technique to analyze
the best- and worst-case response times of a set of jobs. It efficiently explores the set of
“possible” schedules that can be generated by the job set under a given scheduling policy.
A recent comparison between the schedule abstraction and an exact response-time analysis
in UPPAAL (a generic formal verification tool) on a set of independent non-preemptive
periodic tasks scheduled by global fixed-priority scheduling shows that it is more than
three-order-of-magnitude faster than UPPAAL while having almost 100% accuracy [31],
i.e., it is able to detect almost all schedulable task sets. Since then, further improvements
using partial-order reduction techniques [24,25] have yet accelerated the analysis by five
additional orders-of-magnitude in comparison to [18]. This impressive gain, which now allows
to analyze hundreds of tasks non-preemptively scheduled on a single core platform in a
matter of seconds, was achieved at the cost of a negligible added pessimism on the WCRT
estimation. However, this improved version of the analysis is currently limited to the analysis
of single-core platforms and is therefore not directly applicable nor extendable to the analysis
of gang scheduling on multiprocessor platforms yet. For this reason, in this section, we focus
on the original idea of the schedule-abstraction graph (SAG) as it was presented in [19].

In terms of accuracy, it has been shown that the SAG analysis is far less pessimistic than
critical-instant-based analyses when applied on more complex problems such as the response-
time analysis of parallel tasks (with directed-acyclic graph dependencies) on multiprocessor
platforms [19]. Namely, for platforms with 4 to 16 cores, the schedule-abstraction technique
is 2 to 4.3 times more successful in identifying schedulable task sets than the analysis of [27]
based on the critical-instant theory.

Key idea. Assuming a deterministic scheduling policy and no uncertainty in the release
and execution times of the jobs, a job set will have only one possible schedule (which can
also be obtained by simulating the schedule of the job set during the observation window).
Under uncertainties, however, multiple schedules could occur. The schedule-abstraction
technique combines these schedules whenever they relate to the same job dispatching ordering
on the platform. To defer the state-space explosion and hence scale to reasonably large
system sizes, the schedule-abstraction technique uses two key ideas: (i) combining (and
abstracting) schedules that share the same jobs dispatching ordering and (ii) introducing
merging techniques that allow combining partial schedules (or job orderings) whose future can
be explored together (e.g., because they are followed b the same future scheduling decisions).

ECRTS 2022

12:6 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Schedule-abstraction graph (SAG). It abstracts all possible schedules of a given job set J
in the form of a directed graph G = ⟨V, E⟩, where V is the set of vertices (referred to as nodes)
and E is the set of edges each of which connects a pair of vertices to each other. A path in
the graph G represents a possible order of scheduling decisions taken by the scheduler. Each
node v ∈ V represents the set of system states that may result from the scheduling decisions
encoded on the paths that reach to v. A directed edge connecting a node v to a node v′ in G
represents a scheduling decision (i.e., dispatching of a job) taken by the scheduler that brings
the set of system states represented by v to a subset of the system states represented by v′.
A scheduling decision is equivalent to dispatching a job on the platform. Hence, each edge in
the graph is labeled by a job. Since the existing analyses that use the schedule-abstraction
graph are designed for non-preemptive jobs, the best- and worst-case completion time of a
job only depends on its start time, and thus on the system state v after which it is dispatched.
The earliest and latest completion time of the dispatched job is also recorded on the edge of
the graph.

Given the potential uncertainty on the release and execution times of the jobs, a job Ji

may appear in different places in the schedule abstraction graph (i.e., after different sequences
of scheduling decisions). Therefore, the WCRT of a job is given by the largest completion
time recorded on all edges referencing that job in the SAG.

3.2 Challenges in Analyzing Gang Tasks using Schedule Abstraction
Two of the clear differences between this work and previous works on schedule abstraction
[18–20,22] is that: (1) a job of a gang task may need more than one core to start executing,
hence cores may remain idle even when there is pending workload, and (2) a single job may
release (or free) more than one core simultaneously. These two particularities imply that the
time at which different cores start and stop executing workload is somewhat synchronized.
Thus, there is a need for system state representation that allows us to keep track of such
synchronization between cores in order to correctly and efficiently analyze possible schedules.
Furthermore, due to reason (1), the existing rules for analyzing global JLFP scheduling
policies are not applicable to the gang scheduling algorithm introduced in Sec. 2.2. This
means that new expansion and merge rules must be designed.

3.3 System-State Representation
To keep track of the number of cores claimed by a gang job at the time it is being dispatched on
the platform and hence to address challenge (2) in Sec. 3.2, we encode additional information
on the edges of the graph. In our new schedule abstraction, an edge between nodes v and
v′ will not only be labeled with the job Ji that is being dispatched after state v but it also
includes the number of cores that are claimed by Ji at the time it has been dispatched.

To address challenge (1) in Sec. 3.2, we develop a new model to encode a system state
using four data: (i) the set S(v) of all jobs that have already been dispatched to reach the
system state represented by node v, (ii) the set of all possible instants at which cores may
become available to execute new workload, and (iii) the number of cores that might be freed
at the exact same time, and (iv) the time at which those cores become available (recall that
a gang job executes on p parallel cores and thus releases p cores when it completes).

To encode (ii), we use m intervals. Each interval Ak(v) = [Amin
k (v), Amax

k (v)] (with
1 ≤ k ≤ m) encloses all the time instants at which k cores may become available to execute
new workload in node v in G. That is, Amin

k (v) is the time until which there are certainly
less than k cores available, and Amax

k (v) is the time by which at least k cores are certainly

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:7

Figure 1 Example of two possible execution scenarios for J3 and their resulting system states.
(a) initial state, (b) J3 scheduled with p = 1, (c) J3 scheduled with p = 2.

available to execute new jobs. We call Amin
k (v) and Amax

k (v) the earliest and latest availability
time of k cores for system state v, and we call Ak(v) the availability interval of k cores in
state v. In the following, when there is no ambiguity, we do not explicitly write the system
state v when referring to Ak, Amin

k and Amax
k .

To encode (iii) and (iv) and thus know how many cores may be freed simul-
taneously by a single job at what time, we store a set of pairs of values F ={〈

f1(v), M1(v)
〉
,
〈
f2(v), M2(v)

〉
, . . .

}
such that each pair Fℓ(v) =

〈
fℓ(v), Mℓ(v)

〉
has the

following meaning: at least Mℓ(v) cores will be freed by a single job no earlier than time
fℓ(v). By definition, we have that the total number of cores that may be freed is equal to m,
i.e.,

∑
ℓ>0 Mℓ(v) = m, and the earliest time fℓ(v) at which a group of cores may be freed

must also correspond to the earliest time at which some core may become available, i.e.,
∀ℓ, ∃k s.t. fℓ(v) = Amin

k (v).

▶ Example 1. Figure (1a) shows a system with m = 4 cores where two jobs have been
scheduled: J1 on one core, and J2 on three cores. J1 must finish within the interval [5, 10],
and J2 must finish within [10, 15]. Therefore, one core becomes possibly available at time 5
and three additional cores become possibly available simultaneously at time 10. Similarly, one
core is certainly available at time 10 and three more cores become certainly available at time
15. Thus, F = {⟨5, 1⟩, ⟨10, 3⟩}, A1 = [5, 10], A2 = [10, 15], A3 = [10, 15] and A4 = [10, 15].

Now, assume that a job J3 is released at time 1 with P3 = {1, 2}, Cmin
3 (1) = 10,

Cmin
3 (2) = 7, Cmax

3 (1) = 11 and Cmax
3 (2) = 8. Two execution scenarios are possible, hence

two new system states are created. If J1 finishes before J2 then one core will be freed and J3
will be scheduled with p = 1. This means that J3 starts executing at the earliest at time 5
and at the latest at time 10. For p = 1 we know that the best-case and worst-case execution
time of J3 is 10 and 11, respectively. Therefore, the finish time interval of J3 is [15, 21]. Then,
as shown in Figure (1b), three cores become possibly available at time 10 and one additional
core becomes possibly available at time 15. Therefore, we have F = {⟨10, 3⟩, ⟨15, 1⟩}, and
the availability intervals become A1 = [10, 15], A2 = [10, 15], A3 = [10, 15] and A4 = [15, 20].

However, in another execution scenario where J1 and J2 finish at the same time, J3
will be dispatched on p = 2 cores. This can only happen at time 10. For p = 2, the
execution-time interval of J3 is [7, 8], leading to the finish-time interval [17, 18]. Thus, the
new availability intervals are A1 = [10, 15], A2 = [10, 15], A3 = [17, 18], A4 = [17, 18] and
F = {⟨10, 2⟩, ⟨17, 2⟩} as shown in Figure (1c).

ECRTS 2022

12:8 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Algorithm 1 Algorithm to generate a schedule abstraction graph.
Input : Job set J
Outputs : Bounds on the BCRT and WCRT of every job in J ;

1 ∀Ji ∈ J , BCRT i ←∞, WCRT i ← 0;
2 initialize G with a root node v1 with S(v1) = ∅, Ak(v1) = [0, 0], ∀1 ≤ k ≤ m, and
F(v1) = {(0, m)};

3 while ∃ a leaf node v s.t. S(v) ̸= J do
4 P ← the shortest path from v1 to a leaf node v;
5 v ← the leaf vertex of P ;
6 for each job Ji ∈ J \ S do
7 for ∀p ∈ Pi do
8 if Ji may be dispatched next on p cores then
9 Compute the earliest and latest finish time EFTp

i and LFTp
i of Ji on p cores;

10 BCRT i ← min{EFTp
i − rmin

i , BCRT i};
11 WCRT i ← max{LFTp

i − rmin
i , WCRT i};

12 Build the next states using Alg. 2;
13 Try to merge the new system states with other nodes in G (Sec. 5);
14 return BCRT i, WCRT i for all Ji ∈ J ;

3.4 Constructing the Schedule Abstraction Graph
The schedule-abstraction graph for a job set J is built according to Algorithm 1 following a
breadth-first strategy. The algorithm starts by building an initial node v1 representing the
state of the system when no job started to execute yet. Therefore, v1 is initialized with an
empty set of scheduled jobs (S(v1) = ∅), with all cores potentially and certainly available at
time 0 (i.e., Ak(v1) = [0, 0], ∀1 ≤ k ≤ m,) and with all m cores being freed simultaneously at
time 0 (i.e., F(v1) = {⟨0, m⟩}).

Then, for each node in the graph that has not been analyzed yet (Line 3), Algorithm 1
checks which jobs that have not been scheduled yet may be dispatched next by the scheduler
and on how many cores they may be executed (Lines 6 to 8). For each such job Ji and number
of cores p, the earliest and latest completion times EFTp

i and LFTp
i of the job are computed

(Line 9). If the computed completion times result in larger (smaller, respectively) worst-case
(best-case, respectively) response times for Ji than those computed on other path of the
graph (i.e., for other sequences of scheduling decisions), then it updates the recorded values
WCRT i and BCRT i for their WCRT and/or BCRT (Lines 10 to 11). Finally, Algorithm 1
uses Algorithm 2 presented later in Section 4.3 to build all system states that may result
from scheduling Ji on p cores in state v (Line 12) and hence expand the graph. Section 4
provides more details and explanations about this expansion phase.

To defer a potential state-space, Algorithm 1 tries to merge the newly created nodes with
existing ones and hence reduce the number of branches in the graph (Algorithm 1). Section 5
provides more details about this merge phase. Finally, the algorithm stops when no more job
can be added to any of the leaf nodes, namely, when the set of scheduled jobs in each leaf
node is equal to the set of input jobs (i.e., S(v) = J).

4 Expansion Phase

The expansion phase has three consecutive steps: (1) for each job Ji that was not dispatched
yet (i.e., Ji ̸∈ S(v)) and for each possible number of cores p ∈ Pi, check whether Ji may
be the next job dispatched by the scheduler on exactly p cores in state v, (2) if Ji may be

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:9

dispatched next, compute the earliest and latest finish times of Ji, and finally, (3) build
the new system states resulting from the scheduler dispatching Ji on p cores in state v. We
discuss each of those steps in Sections 4.1–4.3.

4.1 Dispatch Condition

To check whether a job Ji may be the next job dispatched by the scheduler on p cores in
system state v, we first compute the earliest time ESTp

i (v) at which that job would be
starting to execute on p cores if it was the only job left to execute. Then, we compute the
latest time LSTp

i (v) at which it must have started in order to be the first job dispatched by the
scheduler considering all the other pending jobs in the system. It is crucial to understand that
LSTp

i (v) is defined under the condition that Ji is going to be the first job being dispatched
after the state v. Scenarios where Ji is not the first job to be dispatched after the state v

will be automatically explored during future expansions of the graph.
If LSTp

i (v) is larger than or equal to ESTp
i (v), then there exists an execution scenario

in which Ji may be the next job dispatched on p cores by the scheduler. Otherwise, if
LSTp

i (v) < ESTp
i (v), then either Ji cannot be dispatched on p cores or there will always be

another job dispatched before Ji.

4.1.1 Earliest Start Time

The earliest start time ESTp
i (v) of Ji on p cores (p ∈ Pi) depends on the following properties:

(i) by Rule 2, Ji cannot start before it is released (i.e, ESTp
i (v) ≥ rmin

i);
(ii) there must be at least p cores available to start to execute Ji on p cores; and
(iii) by Rule 5, if p < mmax

i , then less than nexti(p) cores may be available when Ji is
dispatched (otherwise, by Rule 5, it would be dispatched on more than p cores).

Hence, as proven in Lemma 2 below, we can compute ESTp
i (v) as follows

ESTp
i (v) = max{rmin

i , tp
gang(v)} (1)

tp
gang(v) =

{
Amin

p (v) if p = mmax
i ,

A∗
p(v) otherwise.

(2)

where we define A∗
p(v) as the earliest time at which at least p cores but less than nexti(p)

cores may become available. Note that A∗
p(v) is different from Amin

p (v) in the sense that
Amin

p (v) only ensures that at least p cores are available but does not enforce that there are
less than nexti(p) available cores. Section 4.1.2 will explain how to compute A∗

p(v).

▶ Lemma 2. A job Ji cannot start executing on exactly p cores before time ESTp
i (v).

Proof. We analyze two cases:
Case 1. If p = mmax

i , job Ji cannot start before to be released (i.e., before rmin
i) and cannot

start until at least p cores are available (i.e., at Amin
p (v)). Thus, Ji cannot start before

max{rmin
i , Amin

p (v)}, thus proving the claim for the case p = mmax
i in Equation (1).

Case 2. If p < mmax
i , again, job Ji cannot start before rmin

i and at least p cores are available.
Furthermore, by Rule 5, Ji cannot start executing on p cores if nexti(p) or more cores
are available. Thus, Ji cannot start before max{rmin

i , A∗
p(v)}. ◀

ECRTS 2022

12:10 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

4.1.2 Computing A∗
p(v)

Let Aexact
k (v) be the earliest time at which exactly k cores may become available. Then, the

earliest time at which at least p cores but less than nexti(p) cores may become available is
given by A∗

p(v) = mink{Aexact
k (v) | p ≤ k < nexti(p)}.

The value of Aexact
k (v) can be computed from the information available in F(v). Specifi-

cally, we must find a subset F ′ ⊆ F(v) such that
∑

Fℓ∈F ′ Mℓ = k and for which the time
at which the latest core is freed (i.e., the time given by maxFℓ∈F ′{fℓ}) is minimum. The
earliest time Aexact

k (v) at which exactly k cores may become available is then equal to the
time at which the last core in F ′ is freed, i.e., Aexact

k (v) = maxFℓ∈F ′{fℓ}.
If there is no subset F ′ ⊆ F(v) such that

∑
Fℓ∈F ′ Mℓ = k, then there is no possibility for

exactly k cores to become simultaneously available in system state v, i.e., there will always
be more cores or less cores available at any time. In that case, we set Aexact

k (v) = +∞.
Note that to avoid computing all combinations of values in F(v) to compute Aexact

k (v),
one can use text-book solutions that solve the subset-sum problem. Namely, using dynamic
programming [17] for the subset-sum problem, one can compute A∗

p(v) with a complexity
O(s · N) where s is the maximum sum to find, and N is the number of elements in the set F .
In our case, both s and the size of F are upper-bounded by the number of cores m resulting
to an O(m2) complexity.

4.1.3 Latest Start Time
The latest time LSTp

i at which job Ji may start to execute on p cores assuming that it is
the next job that is dispatched by the scheduler depends on three factors:

(i) The time tp
avail(v) at which at least nexti(p) cores become available, since, if mmax

i > p,
the scheduler would then dispatch Ji on more than p cores (instead of p cores);

(ii) The time twc(v) at which another job than Ji certainly becomes eligible for execution,
since Ji will not be dispatched first if it has not been dispatched before twc(v);

(iii) The time tp
high(v) at which a higher-priority job may become eligible, since to be

dispatched before any other job, Ji must be dispatched before time tp
high(v).

We explain how to compute bounds on those three time instants.
First, according to Rule 5, if Ji starts to execute on p cores at time LSTp

i , then either
p is the maximum number of cores on which Ji may execute, i.e., p = mmax

i , or there are
no more than p cores available at time LSTp

i . Since Amax
nexti(p)(v) denotes the time by which

nexti(p) cores will certainly become available, we have that

LSTp
i (v) ≤ tp

avail(v) (3)

where

tp
avail(v) =

{
Amax

nexti(p)(v) − 1 if p < mmax
i ,

+∞ otherwise.
(4)

Second, if Ji is the first job dispatched by the scheduler until time LSTp
i , then according

to Rules 3 and 8, there must be no other job that was eligible to be dispatched before LSTp
i .

Since by Rule 2, a job Jj is eligible only if it is ready and there are at least mmin
j cores

available, we must have

LSTp
i (v) ≤ twc(v) (5)

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:11

with

twc(v) = min
Jj ̸∈S(v)

{max{rmax
j , Amax

mmin
j

(v)}}, (6)

where rmax
j is the latest time at which a job Jj that was not scheduled yet (i.e., Jj ̸∈ S(v))

may be released, and Amax
mmin

j
(v) is the latest time by which the minimum number of cores

mmin
j requested by Jj will be available to execute Jj .

Third, according to Rule 4, if job Ji is dispatched at time LSTp
i and it is the first job

dispatched by the scheduler in system state v, then Ji must be the highest priority eligible
job until time LSTp

i . That is,

LSTp
i (v) < tp

high(v), (7)

with

tp
high(v) =

∞
min

Jj∈{hpi ∩{J \S(v)}}

{
tp
h(Ji, Jj)

}
, (8)

where min∞
x∈S{x} = +∞ if S = ∅, otherwise, min∞

x∈S{x} = minx∈S{x}, and

tp
h(Ji, Jj) =

rmax
j if mmin

j ≤ p,

max{rmax
j , Amax

mmin
j

} otherwise.
. (9)

▶ Lemma 3. Ji will not be the first job dispatched in system state v or will not be dispatched
on exactly p cores, if it did not start to execute before time tp

high(v) as defined by Equation (8).

Proof. We prove that a not-yet-dispatched higher-priority job Jj (i.e., Jj ∈ {hpi ∩{J \S(v)})
will be dispatched before Ji if Ji did not start executing before tp

h(Ji, Jj). It then directly
follows that Ji will not be the first job dispatched on p cores if Ji did not start to execute
before tp

high(v) = min∞
Jj∈{hpi ∩{J \S(v)}}

{
tp
h(Ji, Jj)

}
, hence proving the lemma. We consider

two cases:
Case 1. If mmin

j ≤ p, then the higher-priority job Jj requires fewer cores than the number
of cores requested by job Ji. Thus, if job Jj is released when Ji become eligible, then
according to Rule 2, Jj is also eligible, and because Jj has a higher priority than Ji,
the scheduler will dispatch Jj instead of Ji (Rule 4). Therefore, Ji cannot be scheduled
before Jj on p cores if it did not start to execute before rmax

j . This proves that Jj will be
dispatched before Ji if Ji did not start to execute before tp

h(Ji, Jj).
Case 2. If mmin

j > p, then, according to Rule 2, the higher-priority job Jj becomes eligible
when it is released and when mmin

j cores are available. This happens at the latest at time
max{rmax

j , Amax
mmin

j
(v)}. Then, because Jj has a higher priority than Ji, the scheduler will

dispatch Jj if Ji did not start to execute before max{rmax
j , Amax

mmin
j

(v)} (Rule 4). Thus,
we proved that Jj will be dispatched before Ji if Ji did not start to execute before
tp
h(Ji, Jj). ◀

▶ Corollary 4. Job Ji cannot be dispatched on p cores and be the first job dispatched in state
v later than LSTp

i (v) = min{tp
avail(v), twc(v), thigh(v) − 1}.

Proof. It directly follows from the combination of Equations (3), (5) and (7). ◀

ECRTS 2022

12:12 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

4.1.4 Dispatch Condition
A job Ji may be dispatched on p cores (with p ∈ Pi) and may be the first job dispatched by
the scheduler in a system state v only if the earliest time at which it may be dispatched on p

cores is no later than the latest time at which it may be the first job to be dispatched. That
is, it must respect the following inequality:

ESTp
i (v) ≤ LSTp

i (v) (10)

▶ Theorem 5. A job Ji may be dispatched on p cores and be the first job dispatched by the
scheduler in system state v only if ESTp

i (v) < ∞ and Inequality (10) is respected.

Proof. It is obvious that the earliest start time ESTp
i (v) of Ji must be smaller than ∞ to

ensure that Ji may start to execute in system state v. Hence, we focus on Inequality (10). By
contradiction, assume that (i) a job Ji is the first job dispatched by the scheduler in system
state v, that (ii) Ji is assigned p core by the scheduler and that (iii) Ji does not respect
Inequality (10). Let ts be the time at which Ji starts executing. By Lemma 2, we have that
ts ≥ ESTp

i (v). Thus, by assumption (iii) and the definition of LSTp
i (v) given in Corollary 4,

we have ts > tp
avail or ts > twc or ts ≥ thigh. We analyse each case independently.

ts > tp
avail . Since by Equation (4), tp

avail ≥ Amax
nexti(p)(v) − 1 and because ts > tp

avail , we
have ts ≥ Amax

nexti(p)(v). Therefore, at least nexti(p) cores are available at time ts. Thus,
by Rule 5, Ji is dispatched on at least nexti(p) cores. This contradicts the assumption (ii)
that Ji is dispatched on p cores.
ts > twc. By definition of twc, a job certainly became eligible to be dispatched by time
twc. Therefore, a job must have been dispatched by the scheduler at or before twc. This
contradicts the assumption (i) that Ji is the first job dispatched by the scheduler and Ji

is dispatched at time ts.
ts ≥ tp

high. By Lemma 3, Ji is not the highest-priority eligible job at time ts. Thus,
by Rule 4, it is not the first job dispatched by the scheduler, hence contradicting the
assumption (i).

We thus reached a contradiction in all cases, which proves the claim. ◀

4.2 Job Finish Times
The earliest time at which a job Ji may complete its execution when dispatched on p cores is
when it starts at the earliest (i.e., at ESTp

i (v)) and executes for its best-case execution time
on p cores (i.e., for Cmin

i (p)). That is,

EFTp
i (v) = ESTp

i (v) + Cmin
i (p) (11)

Similarly, the latest time at which a job Ji may complete its execution when it is the
next job dispatched and it is dispatched on p cores is when it starts as late as possible (i.e.,
at LSTp

i (v)) and it runs for its WCET on p cores (i.e., for Cmax
i (p)). That is,

LFTp
i (v) = LSTp

i (v) + Cmax
i (p) (12)

4.3 Building New System States
If job Ji satisfies the dispatch condition for p cores in state v, then there are execution
scenarios in which the scheduler may dispatch Ji on p cores in system state v. For each such
scenario, we build a new node v′ representing the system state resulting from scheduling
Ji on p cores. Apart from adding Ji to the set of scheduled jobs S(v′), there are two data
structures that must be updated. The set of availability intervals, and the set of earliest
simultaneous core releases F . We discuss these in the following sub-sections.

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:13

4.3.1 New Set of Earliest Simultaneous Core Releases F
Our discussion has two parts. We first cover the case where the number of cores p assigned to
Ji is smaller than its maximum parallelism mmax

i , and then cover the case where p = mmax
i .

4.3.1.1 p < mmax
i

If p < mmax
i , then exactly p cores must be available when Ji starts to execute (Rule 5). Yet,

any combination of simultaneously released cores that sum to p and are possibly released
between the earliest and latest start time of Ji may be used to execute Ji. Because there
may be more than one such combination, we first identify every subset F=p

k of elements
in F(v) such that

∑
Fℓ∈F=p

k
Mℓ(v) = p and ∀Fℓ ∈ F=p

k , fℓ(v) ≤ LST i(v). Then, for each
subset F=p

k ⊆ F(v) that meets those conditions, we create a new node v′
k in the graph that

represents the system state resulting from dispatching Ji on the specific p cores contained in
F=p

k . The new set of earliest simultaneous core releases F(v′
k) in the new state v′

k is then
built according to Lemma 6.

▶ Lemma 6. Let node v′
k result from executing Ji on the p cores in F=p

k , then the set of
earliest simultaneous core releases is F(v′

k) =
{

⟨EFTp
i (v), p⟩

}
∪

{
F(v) \ F=p

k

}
.

Proof. Since v′
k considers a system state that results from dispatching job Ji on p cores, p

cores will be released simultaneously by Ji when it finishes its execution. This happens no
earlier than the earliest finish time EFTp

i (v) of Ji. Therefore, F(v′
k) ⊇

{
⟨EFTp

i (v), p⟩
}

.
Furthermore, because by assumption Ji executes on the cores in F=p

k , the time at
which the cores in F(v) \ F=p

k are released is not impacted by the execution of Ji. Thus,
F(v′

k) ⊇
{

F(v) \ F=p
k

}
. ◀

4.3.1.2 p = mmax
i

When the number of cores p assigned to Ji is equal to its maximum parallelism mmax
i , there

must be at least p but also potentially more than p cores available when Ji starts to execute.
Thus, differently from the case covered above, we identify every subset F≥p

k of F(v) whose
elements sum up to at least p. That is,

∑
Fℓ∈F≥p

k

Mℓ(v) ≥ p and ∀Fℓ ∈ F≥p
k , fℓ(v) ≤ LST i(v).

As before, for each subset F≥p
k , we create a new node v′

k whose set of earliest simultaneous
core releases F(v′

k) is computed according to Lemmas 7 and 8.

▶ Lemma 7. If all the cores in F≥p
k are released when Ji starts to execute, then Ji starts no

earlier than tk = max
Fℓ∈F≥p

k

{fℓ}.

Proof. By definition of Fℓ, the Mℓ cores modeled by Fℓ are all released at the earliest at
time fℓ. Thus, all the cores in F≥p

k are available no earlier than max
Fℓ∈F≥p

k

{fℓ}. Since Ji

starts when all cores in F≥p
k are available, this proves the claim. ◀

▶ Lemma 8. Let node v′
k result from executing Ji on p of the cores in F≥p

k , then the set of
earliest simultaneous core releases is F(v′

k) =
{

⟨EFTp
i (v), p⟩

}
∪

{
⟨tk, (s−p)⟩

}
∪

{
F(v)\F≥p

k

}
where s is the number of cores in F≥p

k , i.e, s =
∑

Fℓ∈F≥p
k

Mℓ(v).

Proof. Since v′
k considers a system state that results from dispatching job Ji on p cores, p

cores will be released simultaneously by Ji when it finishes its execution. This happens no
earlier than the earliest finish time EFTp

i (v) of Ji. Therefore, F(v′
k) ⊇

{
⟨EFTp

i (v), p⟩
}

.

ECRTS 2022

12:14 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Algorithm 2 Build all system states resulting from dispatching Ji on p cores in v.

1 for ∀Fp
k ⊆ F(v) s.t. conditions of Sec. 4.3.1 are respected do

2 Add a node v′
k to the sched.-abstraction graph G;

3 S(v′
k)← S(v) ∪ {Ji};

4 Compute PA and CA according to Lemmas 9 and 11;
5 Sort PA and CA in non-decreasing order ;
6 ∀x, 1 ≤ x ≤ m, Ak(v′

k) = [PAx, CAx];
7 Compute F(v′

k) according to Lemmas 6 and 8;
8 Connect v to v′

k with an edge;

Furthermore, by assumption, all cores in F≥p
k are free when Ji starts to execute. Therefore,

all (s − p) cores in F≥p
k on which Ji does not execute are free from Ji’s start time onward.

By Lemma 7, Ji starts no earlier than tk. Hence, F(v′
k) ⊇

{
⟨tk, (s − p)⟩

}
.

Finally, because Ji executes on the cores in F≥p
k , the time at which the cores in F(v)\F≥p

k

are released is not impacted by the execution of Ji. Thus, F(v′
k) ⊇

{
F(v) \ F≥p

k

}
. ◀

4.3.2 New Availability Intervals
To construct the availability intervals Ax(v′

k) (1 ≤ x ≤ m) of a system state v′
k reachable

from v, we build the set PA of all instants at which each core may potentially be available,
and the set CA of the latest possible times at which each core will certainly become available
after dispatching Ji on p cores in F=p

k or F≥p
k (depending on whether p < mmax

i or p = mmax
i

as discussed above). We do so using Lemmas 9 and 11.

▶ Lemma 9. A set of lower bounds on the time instants at which each core may potentially
become available to execute new workload in v′

k is given by

PA =
{

p × {EFTp
i (v)}

}
∪

{
max(Amin

x (v), tk) | p < x ≤ m
}

where p × {EFTp
i (v)} means that EFTp

i (v) appears p times in the set.

Proof. First, since v′
k considers a system state that results from dispatching job Ji on p

cores, at least p cores will become available no earlier than the earliest finish time EFTp
i (v)

of Ji. Therefore, PA must contain p times EFTp
i (v).

Second, by Rule 8, Ji will always be dispatched on the p first cores that become available.
Therefore, the earliest time at which the (m − p) remaining cores may become available is
the earliest time at which the (m − p) latest cores may become available before dispatching
Ji. By definition of the availability intervals, those times are {Amin

x (v) | p < x ≤ m}.
Finally, since job Ji is the first job dispatched by the scheduler in state v, and because

by Lemma 7, tk is the earliest time at which Ji is dispatched, cores can start to execute new
workload no earlier than tk in v′

k. Combining the three facts above prove the claim. ◀

▶ Corollary 10. A lower bound on the time at which x cores are potentially available to
execute new workload in v′

k (i.e., Amin
x (v′

k)) is given by the xth element in the non-decreasingly
ordered set PA.

Proof. Since PA contains a lower bound on the availability time of every core in state v′
k,

the xth element in the ordered set is a lower bound on the availability time of x cores. ◀

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:15

▶ Lemma 11. A set of upper bounds on the time instants at which each core will certainly
become available to execute new workload in v′

k is given by

CA =
{

p × {LFTp
i (v)}

}
∪

{
max{Amax

x (v), tk} | p < x ≤ m
}

.

Proof. Since v′
k represents a system state resulting from dispatching job Ji on p cores, there

must be at least p cores that will become available to execute new workload no later than
the latest finish time of Ji. That is, there must be p values no smaller than LFTp

i (v) in CA,
i.e., CA ⊇

{
p × {LFTp

i (v)}
}

.
Furthermore, all (m − p) cores that do not execute Ji will be freed no later than the

certain availability time of the (m − p) latest cores that become available in the initial
system state v (i.e., the system state before dispatching Ji). Those times are given by{

Amax
x (v) | p < x ≤ m

}
.

Finally, since job Ji is the first job dispatched by the scheduler in v, and because tk is the
earliest time at which Ji is dispatched (Lemma 7), cores can start to execute new workload
no earlier than tk in v′

k. Combining all the above, we prove the lemma. ◀

▶ Corollary 12. An upper bound on the time at which x cores are certainly available to
execute new workload in v′

k (i.e., Amax(v′
k)) is given by the xth element in the non-decreasingly

ordered set CA.

Proof. Same proof as Corollary 10, replacing PA with CA. ◀

The complete procedure to build the system states resulting from dispatching Ji on p

cores in state v is summarized in Algorithm 2.

5 Merge Phase

The merge phase aims at merging a newly created node vk with a previously existing node
vq (and create a combined state vz) when they have the same set of scheduled jobs and their
core-availability intervals intersects:

▶ Rule 9. If vk and vq are two nodes such that S(vk) = S(vq) and ∀x, 1 ≤ x ≤ m, Ax(vk) ∩
Ax(vq) ̸= ∅, then vk and vq are merged into a single state vz.

The availability intervals of the merged state vz are then computed so that they enclose
the availability intervals of both states vk and vq. That is, ∀x | 1 ≤ x ≤ m:

Ax(vz) =
[

min{Amin
x (vk), Amin

x (vq)}, max{Amax
x (vk), Amax

x (vq)}
]
. (13)

This way, all possible combinations of instants at which cores become available in either
state vk or vq is also possible in vz.

Additionally, the set of earliest simultaneous core releases F(vz) of the merged state is
computed using Algorithm 3. In essence, for both initial states vk and vq, Algorithm 3 sorts
the groups of cores that are simultaneously released in a non-decreasing order with respect to
the time at which they are released. It then breaks the groups of simultaneously released cores
in smaller ones so that the size of the groups match in both states (lines 3–10), i.e., after the
transformation we have |F ′(vk)| = |F ′(vq)| and ∀x, 1 ≤ x ≤ |F ′(vk)|, M ′

x(vk) = M ′
x(vq). It

then keeps the groups of cores that are released the earliest and assign them to F(vz) (lines 10–
14), i.e., |F(vz)| = |F ′(vk)| = |F ′(vq)| and ∀x, 1 ≤ x ≤ |F ′(vk)|, Mx(vz) = M ′

x(vk) = M ′
x(vq)

and fx(vz) = min{f ′
x(vk), f ′

x(vq)}.

ECRTS 2022

12:16 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Algorithm 3 Merge of F(vk) and F(vq) into F(vz).

input :F(vk) and F(vq)
output :F(vz)

1 F ′(vk) = F ′(vq) = ∅;
2 while F(vk) ̸= ∅ ∧ F(vq) ̸= ∅ do
3 Extract the pair ⟨fK , MK⟩ such that fK is the minimum value in F(vk) and, in case of

tie, MK is the minimum among the tying values. For F(vq) extract ⟨fQ, MQ⟩ using the
same rule;

4 Mnew ← min {MK , MQ};
5 Add ⟨fK , Mnew⟩ to F ′(vk);
6 Add ⟨fQ, Mnew⟩ to F ′(vq);
7 MK ←MK −Mnew;
8 MQ ←MQ −Mnew;
9 Add ⟨fK , MK⟩ to F(vk) if MK > 0 ;

10 Add ⟨fQ, MQ⟩ to F(vq) if MQ > 0 ;
11 forall 1 ≤ x ≤ |F ′(vk)| do
12 fx(vz) = min{f ′

x(vk), f ′
x(vq)};

13 Mx(vz) = M ′
x(vk);

14 Add ⟨fx(vz), Mx(vz)⟩ to F(vz);
15 return F(vz);

We now prove that all simultaneous core release patterns that are possible in one of the
two initial states vk or vq is also possible in the new merged state vz.

▶ Lemma 13. If exactly p cores may be available at time t in either vk or vq, then exactly p

cores may be available at time t in vz.

Proof. Assume that v refers to either vk or vq. Each group of cores Fℓ(v) ∈ F(v) is
subdivided in one or several smaller groups of cores in F(vz) (lines 3–10 in Algorithm 3),
that is, ∃F ′ ⊆ F(vz),

∑
Fx(vz)∈F ′ Mx(vz) = Mℓ(v). Furthermore, each group of cores in the

subset F ′ has an earliest release time that is earlier than or at the same time as that of Fℓ

(lines 10–14), i.e., ∀Fx(vz) ∈ F ′, fx(vz) ≤ fℓ(v). Since for every group of cores that can be
simultaneously released at a given time t in v there is a set F ′ in vz composed of the same
number of cores, each with an earliest release time no later than t, it then holds that the
cores in F ′ can also be simultaneously released at t. This proves the lemma. ◀

6 Proof of Correctness

Now that the complete algorithm for building the schedule-abstraction graph has been
presented, we prove that the analysis covers all possible execution scenarios and hence returns
safe bounds on the BCRT and WCRT of each job in the analyzed job set J .

▶ Theorem 14. For any possible execution scenario such that Ji executes on p cores and
finishes at time t, there is a path ⟨v1, . . . , vk⟩ in the schedule-abstraction graph such that Ji

passes the dispatch condition on p cores in vk and t ∈ [EFTp
i (vk), LFTp

i (vk)].

Proof. Assume that the availability intervals and the set of earliest simultaneous core releases
F(vk) of state vk safely model the actual availability times and simultaneous releases of the
m cores resulting from the sequence of scheduling decisions encoded in the path ⟨v1, . . . , vk⟩.

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:17

We prove that t ∈ [EFTp
i (vk), LFTp

i (vk)], that Ji passes the dispatch condition in vk and
that each state v′

k created by Algorithm 2 because of executing Ji on p cores in vk, correctly
models the actual availability times and simultaneous releases of the cores after executing Ji

on p cores.
Under the inductive assumption stated above, Lemma 2 and Corollary 4 prove that

ESTp
i (vk) and LSTp

i (vk) are safe lower- and upper-bounds on the start time of Ji on p cores
in vk, respectively. Furthermore, since gang jobs are non-preemptive, Equations (11) and (12)
are safe lower- and upper-bounds on t (i.e., t ∈ [EFTp

i (vk), LFTp
i (vk)]). Moreover, since

t ∈ [EFTp
i (vk), LFTp

i (vk)], it must hold that EFTp
i (vk) ≤ LFTp

i (vk), and thus the condition
of Equation (10) is respected. Then, Lemmas 6 and 8 and Corollaries 10 and 12 prove that
the simultaneous releases of the cores and their availability is correctly modeled in each newly
created state v′

k resulting from scheduling Ji on p cores. Therefore, the inductive assumption
is respected for v′

k. Also, according to Lemma 13, potentially merging v′
k with another node

in Algorithm 1 maintains the validity of the inductive assumption.
Finally, since all cores are assumed to be free in the initial system state, the inductive

assumption (i.e., correct availability intervals and simultaneous core releases) obviously holds
for v1 and thus follows by induction on all the states created by Algorithm 1. ◀

7 Empirical Evaluation

We performed experiments to: (i) evaluate whether the proposed analysis improves schedula-
bility in comparison to the state of the art, (ii) understand the influence of mmin and mmax

on schedulability of moldable gang tasks, and (iii) evaluate the runtime of our analysis.
The experiments were conducted by applying Algorithm 1 to the analysis of rigid and

moldable gang tasks under a non-preemptive JLFP policy (some experiments use non-
preemptive G-EDF and others G-RM as reported in Table 1). We compared our results
with the test by Dong and Liu [10] as it is the only existing test for non-preemptive gang
tasks. It is worth noting that the test of Dong and Liu considers sporadic tasks while we
have performed the analysis on periodic tasks. We, however, decided to keep this comparison
since it is currently the only available test that can be applied on periodic gang tasks.

We implemented Algorithm 1 in C++ and performed the analysis on a cluster using
AMD Ryzen Threadripper 2920X 12-Core and Intel Core i9-9900K processors. All machines
are equipped with 64 GiB of RAM. Roughly, 60% of the experiments ran on the AMD and
40% on the Intel machines. We report the CPU time as the runtime of the analysis.

7.1 Experiments on Synthetic Task Sets

We generate periodic task sets using the same established method used in prior studies
[15,19,20]. We randomly generated n utilization values with a total sum of m × U , where U

is the system utilization and m is the number of cores. This was carried out using Stafford’s
RandFixSum algorithm [29] (where we ensure that the utilization Ui of each task is in the
interval [0.001, mmin

i]). To avoid cases where the hyperperiod is impractically large due to
incompatible task periods, we choose the period values with a log-uniform distribution in the
interval [10000, 100000] with a granularity of 5000 (as in [20]). Additionally, we discard every
task set that contains more than 100,000 jobs in its hyperperiod. To allow comparison with
the state-of-the-art, release jitter is set to 0. Note that this favourably impacts our analysis
runtime since the schedule abstraction graph branches less often for such setting.

ECRTS 2022

12:18 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Table 1 Specification of the experiments performed.

Experiment mmm nnn mmmmin
i mmmmax

i max UUU i Policy
a-seq-random

8 20
1 {1, 2, 3, . . . , m} 1

NP G-RMa-seq-divisor {1, 2, 4, 8}
a-gang-random {1, 2, 3, . . . , m} {1, 2, 3, . . . , m}

m× Ua-gang-divisor {1, 2, 4, 8} {1, 2, 4, 8}
b 8 20 mmin = mmax {1, 2, 4, 6, 8} m× U NP G-EDF
c 8 8–24 1 {1, 2, . . . , 8} 1 NP G-RM
d 4 10 1 {1, 2, 3, 4} 1 NP G-RM
e 8 20 1 {1, 2, . . . , 8} 1 NP G-RM
f 16 32 1 {1, 2, . . . , 16} 1 NP G-RM

To evaluate the impact of mmin
i and mmax

i on schedulability, we assign different values for
mmin

i and mmax
i for each experiment depending on its purpose, as detailed in Table 1. The

max Ui value specifies the maximum utilization that a single task may have in the specified
experiment. The values of mmin

i and mmax
i in experiments a-seq-random and a-gang-random

are selected randomly with a uniform distribution from the set {1, 2, . . . , m}. In experiments
a-seq-divisor and a-gang-divisor, these values are selected randomly from the set {1, 2, 4, 8}
which is composed of the divisors of the number of cores m = 8, we always ensure that
mmin

i < mmax
i when picking random values. Experiment (b) assumes a rigid gang model,

thus, mmin
i = mmax

i for all tasks. Finally, in experiments (c)– (f) we show results for the
generation methods seq-random, gang-random and when all tasks share the same mmin

i and
mmax

i values. In the latter case, mmin
i = 1 and mmax

i varies from 1 to 16.
In our experiments, jobs of a task τi can execute on any number of cores within

[mmin
i , mmax

i]. Their BCET and WCET on p cores (with p ∈ [mmin
i , mmax

i]) are set to⌊
Ui×Ti

2×p

⌋
and

⌊
Ui×Ti

p

⌋
, respectively. Hence, execution time decreases with an increasing

number of cores, and BCET is half the WCET.
Figure 2 shows the results of each experiment. For each data point in the plots, we

generate 450 random task sets and report the schedulability ratio (i.e., the percentage of
task sets deemed schedulable by the analysis). Additionally, we report the runtime of the
schedulability analysis for each task set tested in experiments (d), (e), and (f) as a function
of the number of jobs in their hyperperiod.

7.2 Schedulability Results
Impact of system utilization on rigid gang tasks. As shown in Figure 2b, The SAG analysis
clearly outperforms the utilization-based test of Dong and Liu for any value of mmax. For
instance, Dong and Liu’s test does not detect any schedulable task set at U=40% while our
analysis confirms that between 95 and 100% (depending on the maximum task parallelism
mmax

i) of these task sets are in fact schedulable. More importantly, our analysis identifies 4.9
times more schedulable task sets than [10] (over all mmax

i values from 1 to 8). This value is
computed by taking the ratio between the surface below all schedulability curves obtained
with our analysis and the surface below all schedulability curves of Dong and Liu’s test.
Another observation is that rigid gang tasks with mmax

i = 8 have the highest schedulability
in comparison to rigid gangs with mmax

i < 8. When mmax
i = 8, tasks can only start when

all 8 cores are available, hence, the schedulability problem boils down to a schedulability
analysis for a uniprocessor platform, where the SAG analysis is highly accurate (see [18]).

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:19

(a)

20 40 60 80 100
Utilization %

0

20

40

60

80

100

Sc
he

du
la

bi
lit

y
%

gang-random
gang-divisor

seq-random
seq-divisor

20 40 60 80 100
Utilization %

0

20

40

60

80

100

Sc
he

du
la

bi
lit

y
%

(b)

20 40 60 80 100
Utilization %

mmax

1
2

3
4

6
8

20 40 60 80 100
Utilization %

Test
Our analysis
Dong & Liu

20 40 60 80 100
Utilization %

(c)

8 10 12 14 16 18 20 22 24
Number of tasks

mmax

1
2

3
4

6
8

gang
seq

8 10 12 14 16 18 20 22 24
Number of tasks

(d)

20 40 60 80 100
Utilization %

0

20

40

60

80

100

Sc
he

du
la

bi
lit

y
%

mmax

1
2

3
4

gang
seq

20 40 60 80 100
Utilization %

0

20

40

60

80

100

Sc
he

du
la

bi
lit

y
%

(e)

20 40 60 80 100
Utilization %

mmax

1
2

3
4

6
8

gang
seq

20 40 60 80 100
Utilization %

(f)

20 40 60 80 100
Utilization %

mmax

4
7

8
9

16 gang
seq

20 40 60 80 100
Utilization %

(d-runtime)

0 20000 40000 60000 80000 100000
Num jobs

0

500

1000

1500

2000

2500

3000

CP
U

tim
e

(s
)

Non-random Random

0 20000 40000 60000 80000 100000
Num jobs

0

500

1000

1500

2000

2500

3000

CP
U

tim
e

(s
)

(e-runtime)

0 20000 40000 60000 80000 100000
Num jobs

0

1000

2000

3000

4000

5000

6000

CP
U

tim
e

(s
)

Non-random Random

0 20000 40000 60000 80000 100000
Num jobs

0

1000

2000

3000

4000

5000

6000

CP
U

tim
e

(s
)

(f-runtime)

0 20000 40000 60000 80000 100000
Num jobs

0

2000

4000

6000

8000

10000

CP
U

tim
e

(s
)
Non-random Random

0 20000 40000 60000 80000 100000
Num jobs

0

2000

4000

6000

8000

10000

CP
U

tim
e

(s
)

Figure 2 Experimental results. (a) moldable gang tasks with m=8, (b) rigid gang tasks with
m=8, dashed lines are the Dong and Liu’s test [10] and the continuous lines are ours, (c) moldable
gang tasks with m=8, U=0.7 and mmin = 1, (d) moldable gang tasks with m=4 and mmin = 1, (e)
moldable gang tasks with m=8 and mmin = 1, (f) moldable gang tasks with m=16 and mmin = 1.

Impact of utilization and task parallelism on moldable gang tasks. As shown in Figure 2a
(see explanation of the curves in experimental setup), task sets with mmin

i set to 1 for all
tasks (i.e., curves a-seq-random and a-seq-divisor) have a higher-schedulability ratio because
they can be dispatched as soon as one or more cores become free. If mmin

i ≥ 1, however,
tasks may experience longer blocking (waiting for their minimum number of cores to be
freed) and frequent priority inversions with lower-priority tasks “stealing” available cores
from higher-priority ones as it can be seen in a-gang-random and a-gang-divisor curves.

Furthermore, we compared the difference between choosing mmax to be a random value
from 1 to m (the number of cores) and be a random value that is a divisor of m, i.e.,
mmax ∈ {1, 2, 4, 8}. In the latter case (see curves a-seq-divisor and a-gang-divisor), the
schedulability ratio slightly improves in comparison to the former. This slight improvement
is caused by having a few less scenarios where cores are left idle with pending workload.
However, the impact remains rather small.

ECRTS 2022

12:20 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

Impact of the number of tasks and task parallelism on moldable gang tasks. Figure 2c
shows the effect of the number of moldable gang tasks when U = 70%. When mmax = 1,
the results are identical to non-preemptive global scheduling since each task can claim only
one core. Also, when mmax = 8, the scheduler described in Section 2.2 will execute all jobs
on p = 8 cores, which is equivalent to single-core scheduling. Thus, as the number of tasks
increases, the execution time of the tasks decreases and the results become closer to those of
single-core preemptive scheduling. That is why the schedulability ratio increases.

Similarly, when mmax
i is set to 2 or 4 for all tasks, then the scheduler of Section 2.2

behaves identically to a non-preemptive global scheduler on 4 and 2 cores respectively, hence
explaining the typical tendency witnessed for such systems. From this experiment, we can
conclude that a larger maximum task parallelism is beneficial for schedulability. When mmax

i

is set to 3, 6 or is randomly chosen for each task, many jobs cannot be dispatched with
their maximum number of cores due to mmax

i not being a divisor of the number of cores.
Therefore, consistently with what is seen in Figure (2e) discussed later, the schedulability
ratio falls to 0.

Impact of the number of cores and task parallelism on moldable gang tasks. Figure 2d
shows that in a system with four processors, configuring mmax to 3 causes a significant lower
schedulability ratio than with other values. With eight cores (Figure 2e), setting mmax to 3
or 6 also yields lower schedulability ratios (the same is true for mmax = 5 and mmax = 7,
even though we do not show the results here to avoid clutter). The same effect is visible
when mmax is chosen randomly for each task. This shows the positive impact of using a same
mmax value that is a divisor of the number of cores for all tasks. When it is the case, all
the jobs will always be scheduled with p = mmax because, as soon as a job finishes, it frees
exactly the same number of cores as the next job needs to execute with mmax cores. This
eliminates the problem of some cores being available but not used due to all pending jobs
requesting more cores than available. When mmax is not a divisor of m, some jobs may be
executing with mmax cores while others may execute with smaller values of p, this causes an
imbalance in execution times that leads to more frequent deadline misses.

Runtime of the analysis. Figure 2 shows the runtime of the SAG analysis when all tasks
share the same mmax value (blue) and when mmax is assigned randomly (orange) for the
experiments (d)–(f). It shows that the runtime is well below 1000 s in a vast majority
of experiments, and the worst-case runtime is below 100 minutes for task sets with 20
tasks scheduled on platforms with 8 cores (see Figure 2e-runtime). For 16 cores executing
32 tasks, we start to see experiments timing out when the number of jobs increases and
mmax is assigned randomly (note that those are reported as being deemed unschedulable in
Figure (2f)).

Comparison with existing tests for global scheduling of sequential tasks. For the case
where the schedulability problem can be reduced to an equivalent global JLFP scheduling
problem of non-preemptive sequential tasks, we compared our results with those of the
SAG-based test of [19], i.e., the most accurate analysis we are aware of for such systems. All
task sets that were detected as schedulable by the test of [19] were also deemed schedulable
by our analysis. This suggests that our new analysis reduces to that of [19] in the special case
where all tasks share a same mmax value that divides the number of cores m. A comparison
against other sufficient tests for global JLFP scheduling can be found in [19].

G. Nelissen, J. Marcè i Igual, and M. Nasri 12:21

8 Summary and Conclusion

We proposed a new response-time analysis for rigid and moldable gang tasks scheduled under
a non-preemptive JLFP scheduling policy. As far as we know, our work is the first effort
to provide sound worst-case (and best-case) response time bounds for such systems. Our
analysis is based on the notion of schedule abstraction and efficiently explores all possible
sequences of scheduling decisions that may happen during the runtime of the system.

Our experiments show that for periodic rigid gang tasks, our analysis is able to identify 4.9
times more schedulable task sets than the state of the art analysis. Moreover, our experiments
revealed the importance of choosing proper values for the minimum and maximum parallelism
assigned to moldable gang tasks. We observed that assigning the same value mmax

i to all
tasks yields the best performance, specially when mmax

i is a divisor of the number of cores.
We plan on extending our analysis to add support for precedence constraints between

moldable gang jobs, and on improving the runtime and memory consumption of our analysis
by extending the very promising partial order reduction techniques presented in [24,25].
Among other steps, this will require to develop a fast sufficient schedulability test for
non-preemptive moldable gang tasks.

References
1 Benny Akesson, Mitra Nasri, Geoffrey Nelissen, Sebastian Altmeyer, and Robert I. Davis. An

empirical survey-based study into industry practice in real-time systems. In IEEE Real-Time
Systems Symposium (RTSS), pages 1–9, 2020.

2 Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, and F. Donelson Smith.
GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed. In IEEE Real-Time Systems
Symposium (RTSS), pages 104–115, 2017.

3 Neil Audsley, Alan Burns, Mike Richardson, Ken Tindell, and Andy J. Wellings. Applying
new scheduling theory to static priority preemptive scheduling. Software Engineering Journal,
8(5):284–292, 1993.

4 Vandy Berten, Pierre Courbin, and Joël Goossens. Gang fixed priority scheduling of periodic
moldable real-time tasks. In Junior Researcher Workshopon Real-Time Computing (JRWRTC),
pages 9–12, 2011.

5 A. Biondi, A. Balsini, M. Pagani, E. Rossi, M. Marinoni, and G. Buttazzo. A Framework for
Supporting Real-Time Applications on Dynamic Reconfigurable FPGAs. In IEEE Real-Time
Systems Symposium (RTSS), pages 1–12, 2016.

6 Jacek Blazewicz, Mieczyslaw Drabowski, and Jan Weglarz. Scheduling Multiprocessor Tasks
to Minimize Schedule Length. IEEE Transactions on Computers, c-35(5):389–393, 1986.

7 Felipe Cerqueira, Geoffrey Nelissen, and Björn B Brandenburg. On strong and weak sustain-
ability, with an application to self-suspending real-time tasks. In Euromicro Conference on
Real-Time Systems (ECRTS), pages 26–1, 2018.

8 Sébastien Collette, Liliana Cucu, and Joël Goossens. Integrating job parallelism in real-time
scheduling theory. Information Processing Letters, 106(5):180–187, 2008.

9 Zheng Dong and Cong Liu. Analysis techniques for supporting hard real-time sporadic gang
task systems. Real-Time Systems, 55(3):641–666, 2019.

10 Zheng Dong and Cong Liu. Work-in-progress: Non-preemptive scheduling of sporadic gang
tasks on multiprocessors. In Work-in-Progress of IEEE Real-Time Systems Symposium (WiP-
RTSS), pages 512–515. IEEE, 2019.

11 Dror G. Feitelson. Packing schemes for gang scheduling. In Job Scheduling Strategies for
Parallel Processing (JSSPP), pages 89–110, 1996.

12 Dror G. Feitelson and Larry Rudolph. Gang scheduling performance benefits for fine-grain
synchronization. Journal of Parallel and Distributed Computing, 16(4):306–318, 1992.

ECRTS 2022

12:22 Response-Time Analysis for Non-Preemptive Periodic Moldable Gang Tasks

13 Joël Goossens and Vandy Berten. Gang FTP scheduling of periodic and parallel rigid real-
time tasks. In International Conference on Real-Time Networks and Systems (RTNS), pages
189–196, 2010.

14 Joël Goossens, Emmanuel Grolleau, and Liliana Cucu-Grosjean. Periodicity of real-time
schedules for dependent periodic tasks on identical multiprocessor platforms. Real-Time
Systems, 52(6):808–832, 2016.

15 Joël Goossens and Pascal Richard. Optimal scheduling of periodic gang tasks. Leibniz
transactions on embedded systems, 3(1):4:1–4:18, 2016.

16 Shinpei Kato and Yutaka Ishikawa. Gang EDF scheduling of parallel task systems. In IEEE
Real-Time Systems Symposium (RTSS), pages 459–468, 2009.

17 Konstantinos Koiliaris and Chao Xu. Faster Pseudopolynomial Time Algorithms for Subset
Sum. ACM Transactions on Algorithms, 15(3):1062–1072, 2019.

18 Mitra Nasri and Björn B. Brandenburg. An exact and sustainable analysis of non-preemptive
scheduling. In IEEE Real-Time Systems Symposium (RTSS), pages 1–12, 2017.

19 Mitra Nasri, Nelissen Geoffrey, and Björn B. Brandenburg. Response-Time Analysis of
Limited-Preemptive Parallel DAG Tasks Under Global Scheduling. In Euromicro Conference
on Real-Time Systems (ECRTS), volume 133, pages 21:1–21:23, 2019.

20 Mitra Nasri, Geoffrey Nelissen, and Björn B. Brandenburg. A Response-Time Analysis for
Non-Preemptive Job Sets under Global Scheduling. In Euromicro Conference on Real-Time
Systems (ECRTS), volume 106, pages 9:1–9:23, 2018.

21 Saranya Natarajan, Mitra Nasri, David Broman, Björn B. Brandenburg, and Geoffrey Nelissen.
From code to weakly hard constraints: A pragmatic end-to-end toolchain for timed C. In
IEEE Real-Time Systems Symposium (RTSS), pages 167–180, 2019.

22 Suhail Nogd, Geoffrey Nelissen, Mitra Nasri, and Björn B. Brandenburg. Response-Time
Analysis for Non-Preemptive Global Scheduling with FIFO Spin Locks. In IEEE Real-Time
Systems Symposium (RTSS), pages 115–127, 2020.

23 John K. Ousterhout. Scheduling Techniques for Concurrent Systems. In International
Conference on Distributed Computing Systems (ICDCS), pages 22–30, 1982.

24 Sayra Ranjha, Mitra Nasri, and Geoffrey Nelissen. Work-in-progress: Partial-order reduction
in reachability-based response-time analyses. In 2021 IEEE Real-Time Systems Symposium
(RTSS), pages 544–547, 2021.

25 Sayra Ranjha, Geoffrey Nelissen, and Mitra Nasri. Partial-order reduction for schedule-
abstraction-based response-time analyses of non-preemptive tasks. In IEEE 28th Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages 121–132, 2022.

26 Pascal Richard, Joël Goossens, and Shinpei Kato. Comments on “Gang EDF Schedulability
Analysis”, 2017. arXiv:1705.05798.

27 Maria A. Serrano, Alessandra Melani, Sebastian Kehr, Marko Bertogna, and Eduardo Quiñones.
An analysis of lazy and eager limited preemption approaches under DAG-based global fixed
priority scheduling. In IEEE International Symposium on Real-Time Distributed Computing
(ISORC), pages 193–202, 2017.

28 Srinidhi Srinivasan, Geoffrey Nelissen, and Reinder J. Bril. Work-in-progress: Analysis of
tsn time-aware shapers using schedule abstraction graphs. In Real-Time Systems Symposium
(RTSS), pages 508–511, 2021.

29 Roger Stafford. Random vectors with fixed sum. Technical report, University of Oxford, 2006.
URL: http://www.mathworks.com/matlabcentral/fileexchange/9700.

30 Saud Wasly and Rodolfo Pellizzoni. Bundled scheduling of parallel real-time tasks. In IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), pages 130–142,
2019.

31 Beyazit Yalcinkaya, Mitra Nasri, and Björn B. Brandenburg. An exact schedulability test for
non-preemptive self-suspending real-time tasks. In IEEE/ACM Design, Automation and Test
in Europe (DATE), pages 1222–1227, 2019.

32 Yanyong Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam. An integrated approach to
parallel scheduling using gang-scheduling, backfilling, and migration. IEEE Transactions on
Parallel and Distributed Systems, 14(3):236–247, 2003.

http://arxiv.org/abs/1705.05798
http://www.mathworks.com/matlabcentral/fileexchange/9700

	1 Introduction
	2 System Model
	2.1 Platform and Task Model
	2.2 Scheduler Model

	3 Worst-Case Response-Time Analysis
	3.1 Preliminaries on Schedule-Abstraction Technique
	3.2 Challenges in Analyzing Gang Tasks using Schedule Abstraction
	3.3 System-State Representation
	3.4 Constructing the Schedule Abstraction Graph

	4 Expansion Phase
	4.1 Dispatch Condition
	4.1.1 Earliest Start Time
	4.1.2 Computing A*_p(v)
	4.1.3 Latest Start Time
	4.1.4 Dispatch Condition

	4.2 Job Finish Times
	4.3 Building New System States
	4.3.1 New Set of Earliest Simultaneous Core Releases F
	4.3.2 New Availability Intervals

	5 Merge Phase
	6 Proof of Correctness
	7 Empirical Evaluation
	7.1 Experiments on Synthetic Task Sets
	7.2 Schedulability Results

	8 Summary and Conclusion

