An Approach to Formally Specifying the Behaviour
of Mixed-Ciriticality Systems

Alan Burns &
University of York, UK

CIiff B. Jones &

Newcastle University, Newcastle upon Tyne, UK

—— Abstract

This paper proposes a formal framework for describing the relationship between a criticality-aware
scheduler and a set of application tasks that are assigned different criticality levels. The exposition
employs a series of examples starting with scheduling simple jobs and then moving on to mixed-
criticality robust and resilient tasks. The proposed formalism extends the rely-guarantee approach,
which facilitates formal reasoning about the functional behaviour of concurrent systems, to address
real-time properties.

2012 ACM Subject Classification Computer systems organization — Embedded and cyber-physical
systems; Software and its engineering — Real-time schedulability

Keywords and phrases real-time, scheduling, mixed criticality, rely /guaranteed conditions
Digital Object Identifier 10.4230/LIPIcs. ECRTS.2022.14

Funding This research has been supported in part by EPSRC (UK) grants, STRATA and MCCps
and by Leverhulme Trust grant RPG-2019-020.

Acknowledgements The authors acknowledge useful suggestions made by lain Bate, Sanjoy Baruah

and Tan Hayes.

1 Introduction

Since Vestal published his seminal paper in 2007 [61], there have been a wealth of models
and protocols published [16, 17] on the topic of Mixed Criticality Systems (MCS). One of
the aims of this wide ranging set of techniques is to improve the survivability of systems by
providing a variety of degraded behaviours that can take effect if the system experiences
overrunning execution times.

Inevitably these techniques require significant support from the underlying operating
system. Unfortunately commercially-available, general-purpose, RTOSs do not provide this
support. Hence, in order to utilise many of the more advanced scheduling ideas that are to
be found in the MCS literature, it is necessary to develop the code for a bespoke scheduler as
part of the application. Programming languages such as Ada [11] do provide the primitives
necessary for this software to be developed but to deliver a reliable MCS scheduler the
MCS protocols and models must be precisely specified. Research papers that focus on the
algorithmic properties of protocols tend to give, at best, informal descriptions of the actual
required run-time behaviour of the required scheduler.

The objective of the research described in this paper is to develop a framework for formally
specifying and reasoning about timing correctness properties of mized-criticality systems. The
following paragraphs explain this objective in greater detail. In general, correctness in safety-
critical systems can be considered from two perspectives: (i) (pre-run-time) verification, and
(ii) (run-time) survivability.

© Alan Burns and CIliff B. Jones;

37 licensed under Creative Commons License CC-BY 4.0
34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 14; pp. 14:1-14:23

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:alan.burns@york.ac.uk
mailto:cliff.jones@ncl.ac.uk
https://doi.org/10.4230/LIPIcs.ECRTS.2022.14
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

Pre-run-time verification of a safety-critical system involves verifying, prior to deployment,
that the run-time behaviour of the system will be consistent with expectations. Verification
assumptions are made regarding the kinds of circumstances that will be encountered by the
system during run-time and guarantees are used to specify the required runtime behaviour
of the system (provided that the assumptions hold).

In contrast, survivability addresses expectations of system behaviour in the event that the
assumptions fail to hold fully (in which case a fault or error is said to have occurred during
run-time). Survivability may further be considered to comprise two notions: robustness and
resilience [14]. Informally, the robustness of a system is a measure of the degree of fault it
can tolerate without compromising the quality of service it offers; resilience refers to the
degree of fault for which it can provide a degraded, yet acceptable, criticality-aware quality
of service.

The contribution of this paper is to develop a framework for the formal specification of
MCS; we define a formal approach that:

Demonstrates that the Rely/Guarantee approach (see Section 2) can be extended to

cover temporal properties (see Section 3) of concurrent systems (in addition to their

functionality).

Precisely specifies the required behaviour of a run-time scheduler (in normal and degraded

modes of operation).

Enables proofs to be developed and discharged that employ the contract(s) between the

jobs and tasks comprising an application, and the scheduler.

Enables, with additional specifications of the functional elements of the scheduler, the

code of the scheduler to be produced as a refinement of these specifications.

Enables the scheduler to be replaced or modified by verifying that a new version satisfies

the original specification.

Identifies the assumptions that the analysis (scheduling and execution time) makes such

that the result of the analysis confirms that the system will meet its timing requirements.

Enables the many approaches to resilience and robustness to be compared — this requires

the formal framework to be sufficiently expressive to capture the semantics of the various

schemes that have been proposed.
This initial description of our approach focusses on the specification aspects; future work will
address verification. We do however demonstrate where proof can be used to ensure that,
whenever a degraded mode must be entered, its prerequisites are ensured by the guaranteed
conditions of the mode that has just been abandoned. We also make explicit the proof
obligations on the offline scheduling analysis that must be applied to the application prior to
deployment.

We explain the elements of the framework via a series of related, increasingly challenging,
examples. The initial examples are sufficiently straightforward that, arguably, a full formal
specification is not required; however the later examples do show the value of precise
specifications. The examples illustrate the approach with at most two criticality levels, this
helps to explain the framework, but again the full value of a formal approach comes when the
system has increased complexity as happens when there are three or more criticality levels.

In this paper an MCS is assumed to consist of a finite set of jobs/tasks and a single specific
Scheduler. Rely and guarantee conditions capture the run-time relationship between the
Scheduler and the jobs/tasks, yielding a specification of the necessary behaviours/properties
of the Scheduler. Note that this process does not delve into the internal structure of the
Scheduler: the scheduling-theoretic issues of how it meets its specification (if indeed it can)
is not the focus of this work. Rather, in this paper we are only seeking to provide a clear and

A. Burns and C. B. Jones

intuitive explanation of the formalism. The history of formal methods (such as Hoare Logic)
leads us to believe that methods can be developed for showing that specific MC-scheduling
algorithms can satisfy (or not) the proof obligations that arise from the Rely/Guarantee
(R/G) specifications. Related work in this area includes PROSA which addresses mechanised
verification of results from scheduling analysis [21, 10]. (Mechanisation of R/G reasoning is
on-going [29, 22]).

Organisation. The paper is organised as follows. After an introduction to R/G conditions
(Section 2), the basic properties of the proposed framework are developed in Section 3 via a
focus on jobs — this allows the approach to be motivated and explained. Mixed-criticality
jobs are then covered in Section 4 including the introduction of fault-tolerance via modes of
operation each with their own R/G conditions. Extensions of the same ideas to tasks are
then given in Sections 5 and 6. Conclusions are in Section 7.

2 Introduction to Rely/Guarantee conditions

Hoare’s “Axiomatic Approach” provides the basis of a development method for sequential
programs. Although [32] employed post conditions of single states, subsequent development
methods such as VDM [39], B [1] and Event-B [2] use relational post conditions that define
acceptable final states with respect to their initial values. Crucially, there is a relatively
obvious notion of compositionality for sequential programs where a specification can be
replaced by anything that satisfies its pre/post condition specification.

Finding compositional development methods for the development of concurrent programs
proved to be difficult precisely because of the “interference” that comes with (shared-variable)
concurrency. One approach is to record and reason about interference using rely and guarantee
conditions [37, 38] (a more algebraic presentation of the ideas is covered in [31]). The details
and proof obligations of the R/G approach are not the main issue in the current paper. The
basic idea is straightforward: just as pre conditions define a subset of possible starting states
on which a component is expected to operate, rely conditions record interference that the
specified component must tolerate; and, just as post conditions abstract from algorithms
to achieve the transition from initial to final state, guarantee conditions are relations that
define the maximum interference that the component may inflict on its environment. It is
important to remember that pre and rely conditions are assumptions that a developer is
invited to make; in contrast, guarantee and post conditions are obligations on the code to be
created. A guarantee condition needs to be satisfied (only) as long as the corresponding rely
condition is respected. Stating this negatively, if the environment makes a transition that
does not satisfy the rely condition, the developed code is free from further obligations.

The R/G idea targeted the design of concurrent programs where the R/G conditions
provide a way of decomposing designs. Papers such as [30, 42, 19] show that the R/G idea
can be used to tackle the design of fault-tolerant CPS by using rely conditions to describe
assumptions about physical system components. Where the physical components exhibit

continuous change, the rely conditions record assumptions about the rate of such changes.

This work also showed how layered R/G conditions can assist in addressing fault tolerance;
resilience is represented by hierarchically related R/Gs — strong rely conditions address
full functionality, weaker rely conditions are matched with lesser guarantees (perhaps only
the safety-critical aspects), even weaker rely conditions might only guarantee safe fail-stop
behaviour. These properties of related R/G conditions are central to the framework developed
in this paper.

14:3

ECRTS 2022

14:4

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

3 Job-based system model

This section focuses on a system comprising a set of jobs, J, that are managed by a Scheduler
(denoted by the symbol S). A representative job, j € J, has a relative deadline of Dj,
arrives (and is released for execution) at time a; and thus has an absolute deadline at time
dj = a; + D;. Let f; denote the time at which it completes (finishes) its execution.! The set
act(J,t) is the subset of J containing the jobs that are active at time ¢, i.e.

jeact(T,t) e je T A(a; <t <f))

A job that is immediately terminated on arrival (as required in specific circumstances by
some MCS protocols) has f; = a;; it is deemed never to be active and to have missed its
deadline.

We assume a discrete time model in which all job parameters are given as non-negative
rational numbers with arbitrary precision. Time is an external physical phenomenon: the
Scheduler has no control over the passage of time.

The specification of each job, j, consists of its pre-condition, P;, post-condition @Q;, rely
condition R; and guarantee condition G;. In this paper each of these conditions is expressed
as a predicate over the system state. For an actual system these conditions will capture
both the functional and timing behaviour of the job; here we focus only on the temporal
properties. This requires that system states are indexed by time? and that the rely and
guarantee conditions directly reference time. We write Rg(t)/Ggs(t) for the Scheduler and
R;(t)/G,(t) for jobs.

Properties that should remain true as time progresses are normally classed as invariants
but here are represented as rely or guarantee conditions. This is because the jobs (and
Scheduler) must take action in order to maintain correct behaviour — a job will miss its
deadline if it is not scheduled appropriately.

The primary concern for each job is its execution time; and hence we define, for each job
J, €j(t) which is the amount of execution time the job has consumed up to time ¢. There are
obvious properties (axioms) for e:

Vie J,teei(t) < WCET, (1)
where WCET is the worst-case execution time of the job;

Vje J, t1,ta, 1 <t206j(t2)—ej(t1)§t2—t1 (2)
no job can execute faster than “real time”;

Vi e T, ti,ta, t1 <taee;(ty) <ej(ta) (3)
a job cannot “lose” execution time; and

Vjej.(\ﬁgaj.ej(t)zoA\ﬁzfj.ej(t)zej(f)) (4)

a job cannot execute before it arrives or after it has finished.

L A job that is yet to finish has f=o0; a job that is permanently suspended but never terminated retains
this value.

2 A slightly different approach to handling the progress of time was taken in [40]. In that paper a
distinction is made between an abstract notion of Time and the ClockV alues stored in a computer.

A. Burns and C. B. Jones

In this section the scheduler is deemed to exist for the entire life-time of the system, it is
therefore specified by a single rely condition Rg(t) and a single guarantee condition Gg(t).

The following derivations first illustrate the basic approach with a set of single criticality
jobs. Note that the role of the formal framework is to represent precisely the relationship
between the Scheduler and the client jobs in a range of degraded and partial behaviours. It
is not a model of a particular scheduler’s run-time behaviour; rather it is a specification of
the required properties of any scheduler (and its schedulability test) that is being proposed
for the particular problem under investigation.

A key feature of mixed-criticality models is that they allow a system to degrade gracefully
when faults occur. This leads to the Scheduler’s run-time behaviour having different modes
of operation. In each mode, different R and G conditions for the jobs and scheduler are
defined, as is the transition between R/G contracts.

We start by considering a finite set of jobs that each have the same criticality; there is no
degraded behaviour and hence only a single mode of operation. A job j is characterised by its
Worst-Case Execution Time, WCET) (this is a value that will not be known with certainty)
and C; an estimate of WCET;. The timely execution of a job relies on this estimate of
WCET being valid, and the Scheduler can only meet its obligations with a reliance of each
job executing for no more than C}. If these rely conditions hold, a valid Scheduler guarantees
to manage the processing capacity so as to ensure that all jobs complete by their deadlines
regardless of when the jobs arrive; each job guarantees to execute, when active, for no more
than Cj.

Note that the value C; plays a number of roles: the job relies on its environment behaving
according to whatever model or measuring process was used to derive Cj, but the job also
has a contract with the scheduler not to execute for more than C;. The scheduler is assumed
to have used some form of analysis to verify (offline usually) that, if all jobs respect their

guarantee conditions, then it will be able to provide the necessary capacity to each job.

Hence the job can rely upon being allowed to execute for up to C; before its deadline.
With all four axioms ((1)-(4) above) in force, the rely and guarantee conditions of any
valid Scheduler are as follows:

Rs(t) % Vj € act(T,t) e e;(t) < C;

Gs(t) L Vjeact(T,t)ot+(C;—e;(t) < d

The Scheduler relies on all jobs executing within their estimated WCET and guarantees
to provide sufficient resource, following a defined policy, to ensure that each job always
has sufficient space to complete before its deadline (i.e. that t 4+ (C; —e;(t)) < d;). ® The
Scheduler’s guarantee is an obligation that must be achieved by its code — i.e. the Scheduler’s
offline schedulability test must ensure this property. The conditions Rg(t) and Gg(t) are
defined to refer only to jobs that are active at time ¢.

In order to satisfy G'g, the Scheduler must manage the dispatching of jobs in an appropriate
manner. If necessary it will allocate to each job up to C; execution time. It follows that if
WCET; < Cj; then each job will terminate by its deadline (i.e. f; < d;).

The R and G conditions of each active job are therefore:

Rj(t) dZEf WCETJ S Cj Nt + (C] — ej(t)) S dj
Gi(t) = o) <G

3 An alternative formulation [12] to the one presented here is for the Scheduler to guarantee a budget (of
at least C for each job), and for each job to rely on this budget. Example specifications and further
investigations indicated that the method defined in the current paper is the more realistic and effective.

14:5

ECRTS 2022

14:6

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

At run-time, the job does not need to be aware of its deadline or current execution time;
although more expressive and flexible behaviours may require this. Once a job (j) terminates
the R; and G conditions no longer apply.

The constraints imposed upon execution time are represented as guarantees and not
post-conditions for a number of reasons:

1. post-conditions are, by definition, required to hold upon termination, but a failure may
lead to the job not terminating;

2. to add fault tolerance (i.e. to cope with jobs whose estimated execution times are not
respected) we will need to know the point in time at which a rely condition fails to hold
(and hence a guarantee condition no longer has to hold); and

3. deadlines may change (or be removed) during the execution of the job (see later examples).

The semantics of rely/guarantee conditions is that guarantees are required to be met
as long as the rely conditions are satisfied. If a job overruns and breaks its guarantee that
e;(t) < C; there must be a rely condition “at fault”. For this reason, we explicitly include
WCET; < Cj in the rely condition: in an environment where this assumption does not hold,
a job is not obliged to guarantee its temporal properties.

If the environment (hardware platform including the influence of concurrently executing
jobs, preemption effects on cache etc.) behaves such that the WCET estimate of some job
k is exceeded, then this job may execute for more than Cj, thus breaking its guarantee
condition. As a consequence the rely condition for the Scheduler would not be satisfied and
hence it would be under no obligation to provide the necessary capacity to every job — some
jobs may still be active at their deadlines. This takes us to the topic of survivability and
how MCS supports graceful degradation.

4 Mixed-criticality jobs

To illustrate how a level of resilience can be added, two criticality levels are considered: HI-
crit and LO-crit; with J, a set of LO-crit jobs, Jx a set of HI-crit jobs, and J = J; U Jx.
Job h is a representative H I-crit job; [is a representative LO-crit job; j continues to represent
any job. So, for example, Ry (¢) is the rely condition for any H I-crit job, h € J5. With Mixed-
Criticality jobs there are two estimates of C;: C;(L) and C;(H); with C;(L) < C;(H) [61].

It is initially assumed that the system is either in the Normal mode, in which case all
jobs should meet their deadlines, or in the HI-crit mode in which only the HI-crit jobs are
guaranteed to meet their deadlines. For the Normal (V) mode the (R, G) conditions are as
above except that C;(L) replaces C; in R;, G, Rg and Gg:

RY(t) % V)€ act(T,1) e e;(t) < Cj(L)

GY(t) = Vj € act(T,t) ot + (C4(L) — e;(t)) < d;

def

RY(t) = WCET; < Cj(L) A t+(Cj(L) —e;(t)) < d;

def
GY(t) = ¢(t) < Cy(L)
The rely and guarantee conditions for the N mode are therefore:
RN(t) = RY() A [\ RY(2)
JjET

ayn N\ G
JjeT

GN(1)

A. Burns and C. B. Jones

Most of these rely and guarantee conditions are mutually supportive in the sense that they
“cancel out” when looking at the whole system. The only rely condition that depends on
external compliance is:

4.1 Adding resilience to H I-crit jobs
Considering HI-crit jobs (h € J3) and their rely condition:

LIWCET), < Ch(L) A t+ (Cu(L) — en(t)) < dy

R (1)
We want to give a higher (safer) bound on WCET, so we consider a more conservative value
(Ch(H)), where Cp(H) > Cp(L). Now for all HI-crit jobs (h) we have a new HI-crit mode
(H) and:

def

RH(t) = WCET), < C,(H) A t+ (Ch(H) —en(t) < dy

GE(t) < en(t) < Cu(H)

The Scheduler’s definition for mode H is

def

RE(t) = Vh € act(Ty,t) een(t) < CL(H) A VI € act(Tg,t) e et) < Ci(L)

def

GH(t) £ Vh € act(Tn,t) o t + (Ch(H) — en(t)) < dp

In this HI-crit mode there is no obligation to provide any level of service to the lower
criticality jobs or indeed to prevent these jobs from using resources (perhaps at a background
priority in a priority-based scheduler). Hence:

def

Rf!(t) = WCET, < Cy(L)

Gl (1) = a(t) < QL)

The above specification is, however, not sufficient for many of the protocols advocated
for mixed-criticality scheduling. The standard “mixed-criticality” mechanism for being able
to add more capacity to the HI-crit jobs is to take computation time away from the LO-crit
jobs. Or, more precisely, to no longer execute these jobs. This further adds to the guarantees
of the Scheduler.

To facilitate this functionality it is necessary to know the time at which ngv became false
(i.e. when an active HI-crit job has first executed for C(L) without terminating). We refer
to this as mode N’s deviation time, n"; defined by the following property:

IV, b€ act(Tu,n™) o en(n™N) > Cr(L) A Vit <™ g € act(Tu,t) o ey(t) < Cy(L)

At the deviation time RY becomes false, mode N is left and, simultaneously*, mode H
is entered. The rely and guarantee conditions R (t) and G () apply for t > n™.

4 The notion of simultaneous is taken from the Timebands [18] framework that allows instantaneous
actions to be defined at one time band (granularity) but implemented by an activity at a finer time
band.

14:7

ECRTS 2022

14:8

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

We assume here the extreme Vestal behaviour of not executing LO-crit jobs again after
n™V. This leads to a full specification for the guarantee condition for the Scheduler:

GH(t) ©h € act(Tp,t) ot + (Ch(H) — en(t)) < d, A V1€ act(Tz,t) o et) =e;(n™)

with a simplified rely condition as the Scheduler no longer relies on the behaviour of LO-crit
jobs as it guarantees that they do not execute:

def

RE(t) = Vh € act(Tu,t) e en(t) < Cn(H)

and therefore:

Rty = REMA N BRIt N\ RE®)

leJr heTxn
Gy = cgimn N\ G N\ Gi
leJr heJTn

This strategy of pausing all LO-crit jobs is not an option that the Scheduler could choose,
but a requirement that is part of the specification of the job’s behaviour — and hence must
be explicitly contained in GE.

With this specification the LO-crit jobs are suspended; but they may execute later in
another mode (perhaps after their deadlines). To abort these and future LO-crit jobs, rather
than preempt them indefinitely, the Scheduler could (if specified to do so) enforce termination:

Vi, t >nN e act(Je,t) =10

4.2 Transitioning from mode IN to mode H

The specification above requires a movement from mode N to mode H. To provide useful
fault tolerance, it must be true that, whenever the rely condition for N fails to be satisfied,
the corresponding rely condition for H is satisfied (and remains so) i.e. at time " when
RY(n™) no longer pertains: R (n") is satisfied. If R¥(n") is true then the guarantee
condition, G (t), is delivered for all t > ¥, and as a consequence R (¢) must hold.

In general a mode change could involve modes with unrelated functionality and hence
the truth of the rely condition in the new mode would need to be asserted independently of
the rely condition in the old mode. This is identical to what is required at system startup
where the rely condition of the initial mode must be established. In this work, however, we
require a more constrained relationship between the modes:

» Definition 1. Mode B is a weakened form of mode A if
1. for all times (t) before n* when RA(t) is true then RB(t) is true (i.e. RA(t) = RE(t));
and
2. at time 77A when some aspect of RA(nA) is no longer true RB(nA) remasins true.
As RB(n?) is true, it followed that GB(t) is true for all ¢ > n*.
Counter Fxample. We require that mode H is a weakening of mode N. Consider the
first element of the definition of weakening: in two of the three rely conditions, this is indeed
the case as:

R§(t) = R{(t); R (t) = R (t)

but RJ (t) does not have a simple relationship to Rf(¢). The first conjunct is a weakening
of the “external” rely condition as WCET), < Cy(L) = WCET), < C,(H). The second
conjunct is, however, a strengthening; hence modes N and H do not have the required
hierarchical relationship — H is not a weakened form of N.

A. Burns and C. B. Jones

A Modified Definition of Mode N (N*). In order to assert that mode H is a weakened
form of the initial mode it is necessary to constrain the behaviour of the Scheduler further
in the Normal mode. It must do more than simply guarantee to provide for all jobs C(L)
before the deadline d, it must also reserve sufficient slack so that, at any time a switch can
be made, it is possible to guarantee C(H) before d.

It follows that, for a HI-crit jobs, h, to be schedulable in both N* and H modes, there
exists a virtual deadline vy, with

vp < dp — (Cp(H) — Cr(L))

that is defined (and confirmed) by the applicable scheduling analysis, such that: if the
Scheduler in mode N* guarantees C'(L) by v, then the Scheduler in mode H will be able
to guarantee C(H) by d.> To accommodate this constraint the guarantee condition of the
Scheduler in mode N* must be modified to:

GY' (1) X V) € act(T,t) ot + (Cj(L) — e;(t)) < v;

and the Rely conditions of HI-crit jobs becomes

def

RN () € WCET), < Ch(L) A t+ (Ch(L) —en(t)) < vn

For LO-crit jobs (I) v; = d; and hence G has not changed for these jobs. For HI-crit jobs
(h) there is a proof obligation on the scheduling analysis to demonstrate:

Vi, h € act(Tu,t) GY (t) =t + (Ch(H) —en(t)) < dy (5)
Such an obligation could be verified using mechanised proof tools such as PROSA [21, 10].

» Lemma 2. Mode H is a weakening of mode N*.

Proof. As noted above V¢ : RY(t) = RZ(t) and RN(t) = R (t). The modification to
N* does not effect these rely conditions. Also WCET,, < C(L) = WCET), < C)(H)
(as Ch(H) > Cp(L)). Finally t + (Ch(L) — en(t)) < vy = t+ (Ch(H) — exn(t)) < dp, as
Vh S dh - (Ch(H) - Ch(L))

The second step is to show that, at time n™¥" (when RN" (n™") fails), R (n™") remains
true. Condition RN (n™V") is false because the WCOET, for some HI-crit job k, is not
bounded by Cy,(L). Moreover V" is the first time instant at which RV is false. Hence at
time n™N", RY (nN") is false, but R (n™V") is true as Cy(H) > Cy(L).° <

This weakening property and the proof obligation represented by eqn (5) are therefore
sufficient to ensure that, whenever the Normal mode must be abandoned, the HI-crit mode
can be entered and will deliver its guaranteed behaviour. The final point to note about the
transition from N* to H is that the Guarantee conditions are also weakened. The system
moves from guaranteeing all job deadlines to just guaranteeing the H I-crit ones. Hence
GN" (t) = GH(t).

5 This virtual deadline is used directly in the EDF-based scheduling scheme EDF-VD [5] and in fixed-
priority scheduling is equivalent to the worst-case (maximum) computed response time of the HI-crit
job in the Normal mode [6]. Note whatever scheduling protocol is employed at run-time there is an
implicit (if not explicit) virtual deadline in the Normal mode. If this were not the case then there would
be insufficient spare capacity in the Normal mode to satisfy the extra demand of the H I-crit mode.
Strictly, we require Cy(H) > Ci(L)+ ¢ where § is the minimum time step that the system can undertake
in its discrete model of time.

14:9

ECRTS 2022

14:10

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

4.3 Postponing the deviation time

As noted in the introduction, the main focus of this paper is to motivate and define a formal
framework for the specification of mixed criticality systems. In this section we are able to
give an example of how this framework can be utilised.

A system is considered to degrade at deviation time n"V~ which is defined, above, as the
first time that a HI-crit job executes beyond its C(L) constraint. But if this deviation time
could be postponed then the dynamics of the system may alleviate the need to make the
mode change — the LO-crit jobs could continue to meet their deadlines. Possible favourable
dynamic behaviours include sporadic jobs not arriving at their maximum rate, and other jobs
executing for less than their maximum C(L) bound. To explore the possibility of delaying
the deviation time consider again the specification of the N* mode:

RY'(t) = Vj € act(T,1) e ¢;(t) < Cy(L)
GY (1) % Wi € act(T,t) et + (C5(L) — e;(t)) < v
RY'(t) € WCET, < Cj(L) A t+ (C5(L) — (1)) < v;

* def
G (t) = e(t) < Cy(L)
where v; = d; for LO-crit jobs and v; < d; — (Cy(H) — Ci(L)) for HI-crit jobs.
If all jobs behave according to this R/G specification then all virtual deadlines will be
met. This implies there is a weakened form of behaviour (which we denote as mode N *):

def

RSN*(t) = Vjeact(J,t)et <vj

with G = GY" and R = R)".
From the definition of the virtual deadline we have RY™ = RY" and GI" = GIV".

The deviation time (when RY™ becomes false for the first time) is now when a HI-crit
job is still executing at its virtual deadline. And this time is likely to be significantly later
than that provided by the earlier definition. Note also that this alternative definition of the
deviation time for the normal mode changes what needs to be monitored — from execution
time to elapsed time. This is likely to reduce the runtime overheads of the MCS scheduler.

Again it is straightforward to prove that mode H is a weakening of (the modified) mode
N*, and the proof obligation on the offline scheduling analysis (eqn (5)) must again be used
to validate the v values assigned to each HI-crit job. Recent scheduling results [8] have
demonstrated that for fixed priority-based scheduling and AMC-rtb analysis the same v
values are valid for the original definition of deviation time and the one derived in this section.
That paper also demonstrated the benefits in terms of run-time performance that is gained
from postponing the mode change.

The proposed framework allowed this new protocol to be easily defined and verified.
Further properties can be proven (such as the above definition of deviation time being the
latest possible). In this introductory paper, however, priority is given to extending the
framework to task-based systems.

A. Burns and C. B. Jones

5 Task-based system model

The above treatment of mixed-criticality jobs has demonstrated that the proposed specification
framework has sufficient expressive power to capture the properties commonly required of
job-based systems. The scheduling literature typically describes jobs as being organised
within tasks — in this section we extend the study to cope with tasks.

A real-time system is deemed to consist of a set of tasks. A single execution of the code
of a task is a job. So a task gives rise to a sequence of jobs. The scheduler determines the
order in which jobs from different tasks are executed. With a task-based model there is an
assumption that the duration of the system is unbounded. This means that any specification
framework must cater for the return of the system from any degraded mode back to the
initial mode for the system (and to allow these mode changes to occur numerous times). We
assume that each task k delivers a potentially unbounded sequence of jobs, k', k2 etc, with
job k™ having arrival time a}* and completion time f;"*. This sequence is not “reset” as new
modes are entered; it continues to extend indefinitely.

This treatment focuses on issues related to execution time and mixed criticality. It does
not directly address the rely and guarantee conditions related to when and how a task is
released for execution. For example, time-triggered tasks require their job releases to be
guaranteed by some Dispatcher; and event-triggered tasks rely on their releasing events
obeying some minimum separation requirement. These issues are covered here by each task
guaranteeing that its jobs do not arrive too early — a rely condition for the Scheduler.

The system is again assumed to be defined over two criticality levels, LO-crit and H I-crit,
and to have two modes of behaviour: N* and H. We however drop, for ease of presentation,
the superscript from N in the following. To define a general model, each of the defining
temporal parameters of each task (D,T,C, V) has an L and a H value.

We again make use of sets: 7T is the set of all tasks, T, the set of LO-crit tasks, and Ty
the set of HI-crit tasks, and 7 = T, U Tx. The axioms defined in Section 3 still apply.

At any time t, each task k has a single current job. We let ¢(t) be the index of this job
(for ease of presentation, we just use ¢ for this index as the ¢ value is always implied). Hence
the current job of task k is denoted by k¢. This job may have finished, but the next job
of this task has not yet arrived (ff < ¢ < af™'). In task models that allow a job to arrive
before the previous job of the same task has finished (i.e. tasks with D > T'), the “current”
job is the one that arrived first.

We modify the definition of “active” to cater for tasks; a task is active if its current job
has not yet terminated:

ke€act(T,t) & keTA(af <t<f)

In each of the criticality modes the relative parameters (V;, and Dy) are added to the arrival
time a§ to give the absolute values: v, d(L) and df(H).

5.1 Vestal-inspired example

This section specifies the required behaviour of the system (Scheduler and tasks) for a typical
model inspired by the Vestal approach [61]. The properties of this model are, briefly:
System starts in the mode N in which all jobs of all tasks execute for no more than C'(L)
and all job deadlines are met.
All LO-crit tasks are assumed (or constrained) to execute for no more than C(L).
All HI-crit tasks are assumed (or constrained) to execute for no more than C(H).
If any, or indeed all, HI-crit tasks execute for more than C(L) then:

14:11

ECRTS 2022

14:12

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

all HI-crit tasks must still meet their deadlines;
all LO-crit tasks have their periods and deadlines increased, but must still meet their
deadlines.

If there is an idle instant then the system must return to the Normal mode of operation.

This extension of the Vestal model is often referred to as the elastic task model [20] in which
the periods and deadlines of LO-crit tasks are extended from T;(L) (and D;(L)) to T;(H)
(and D;(H)), but are still guaranteed.

The major difference when moving from jobs to tasks is that each task, like the Scheduler,
exists for the full duration of the time spent in each mode. Although individual jobs terminate,
the task does not (in the model being utilised here). So Ry(t) and G(t) are the rely and
guarantee conditions of task k, but they refer to the job that is current (and possibly active)
at time .

For the Vestal-inspired model outlined above we have, for all LO-crit tasks, I € Tz, C;(L) =
Ci(H), T)(H) > T;(L), D;(H) > Dy(L) and V; = D;(L) and for all HI-crit tasks, h € Ty,
C}L(L) < C}L(H), Th(L) = T}L(H), Dh(L) = Dh(H) and Vj, < D;L(L) — (Ch(H) — OH(L))

The conditions for the normal mode N are:

RY(t) € Wk €act(T,t) o ei(t) < Cu(L) A(c>1=af —af™' > Ty(L))
GN (1) % Vi € act(T,t) o t+ (Cu(L) — €5(t)) < 08
RY(t) ¥ WCET), < (L) A k€ act(T,t) = t + (Cu(L) — €5(t)) < vi(L)

GN(t) € ec(t) <Cu(D) A (e>1= af —al™ > Ti(L))
R]SV contains the separation condition: if the current job is not the first instantiation of the
task then it must arrive at least Ty (L) after the previous job.
In the HI-crit mode, H, we have a similar formulation but with different parameters:

RE(t) € Wk €act(T,t) o ei(t) < Cu(H) Afc>1= af —al ' > Th(H))
GH(t) Y Yk € act(T,t) o t+ (CW(H) — eS(t) < dS(H)
RE(t) YWCET), < CW(H) A k€ act(T,t) = t + (Cp(H) — €5(t)) < dS.(H)

GH(t) € ef(t) < Ch(H) A (¢>1= af —ai™" > Tp(H))
These two formulations can easily be combined into a single specification that is a function
of the mode (N or H) but are separated here to improve readability.

5.2 Transitioning from N to H

In this and the following section we consider the movement between modes; from Normal,
N, to the HI-crit mode, H, and then the return to the Normal mode. In a long-lived
task-based system there may be many such transitions between N and H. Each time a mode
is entered, we consider this to be a new occurrence of the mode and therefore there is a new
occurrence of the Scheduler for that mode. A move from N to H involves one occurrence of
the N-mode Scheduler terminating and, instantaneously, a new occurrence of the H-mode

A. Burns and C. B. Jones

Scheduler starting its execution”. A natural linkage between Scheduler occurrences is for the
post-condition of one mode, say A (Q§)7 to ensure the pre-condition of the follow-on mode,
B (P%), with Q4 = P5.

We note that the two mode changes contained within this task-based two-level mixed
criticality system are of a quite different nature. The movement from N to H is forced, as
N must be left. But the transition from H back to IV is one of preference — both modes are
acceptable, but the functional behaviour of the system is enhanced by being in the N mode.

In Section 4.2 we noted that as mode N is left at time ', due to R™ (n"V) being false,
we must prove that R¥ (n) is true. This involves two steps. First, at any time t < 5™,
RN (t) = RH(t). Second, at time ", when R™ (p) is broken, R (n"V) remains true.

Following the approach in Section 4.2, the task model has again made use of a virtual
deadline for H I-crit jobs; from this we derive the proof obligation:

Vt, h € act(Tw,t) @ GN (t) = t + (Ch(H) — e5.(t)) < dS(H) (6)

Counter Example. With this Vestal-inspired example, the periods of the LO-crit tasks
are expanded when the H mode is entered. It is therefore not true that af —aj~' > Tj(L) =
af —ai~' > Ty(H) as Ty(H) > Ti(L). Hence RY does not imply RY.

A Modified Definition of Mode H (H*). We must again modify the specification. However
on this occasion rather than strengthen the rely condition in mode N we weaken the definition
of the rely condition for the Scheduler in the H I-crit mode:

def

RE () = Vk € act(T,t) o e5(t) < Cu(H) A (¢> LAt >N = af —a{' > T(H))

Note the addition of ¢ > 7", the constraint on the arrival times of jobs in the new
mode only applies strictly after n”V. The Guarantee condition of mode H* is unchanged
(GH"(t) = GH (1)) and for the tasks: R (t) = R (t), and GI" (t) = GH (¢).

» Lemma 3. Mode H* is a weakening of mode N .

Proof. First, Vt < n™: For LO-crit tasks: C;(H) = C;(L) and vf = d§ hence R = RF (so
RN = RH). For HI-crit tasks: WCET), < Cj,(L) = WCET}, < C,(H) (as Ci(H) > Cy(L));
and t+(Cp(L)—€ (1) < v = t+(Ch(H)—e5(t) < d§ asv§ < dS—(Cr(H)—Ch(L)). Hence
RY = RI". For the Scheduler, the first conjunct is appropriate as ef.(t) < Cj(L) = ef(t) <
Ci(H), the second conjunct does not apply as t < n™.

The second step (showing RY ™ is true at time ™) follows the proof of Lemma 2; noting

~ —

again that the second conjunct of RY "(t) does not apply when t = n™. |

As R""(nN) is true, it follows that G (t) is true for all t > n™ and hence R (t) is
true for all t > 7" as long as all task execution times are bounded by Cy(H).

The proof obligations on the necessary scheduling analysis must allow for all LO-crit
generated jobs to arrive at the time of the mode change. One of the advantages of this
more formal specification of the Scheduler’s behaviour is that it helps identify this constraint
explicitly. We note that many examples of published scheduling algorithms for mixed-
criticality systems (for example [15]) do allow LO-crit jobs to arrive (and subsequently
execute) at the time of the mode change even if that would not be allowed in the new mode.

7 An implementation may utilise a single Scheduler that modifies its behaviour depending upon which
mode is current. Nevertheless, from a modelling point of view we consider each occurrence of the
Scheduler to be a distinct execution.

14:13

ECRTS 2022

14:14

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

M

However this property is often hidden within the analysis (by the use of a “floor plus one’
rather than a “ceiling” representation of job arrivals). Within our formal framework the
property is explicit.
To summarise, in order to prove that R is true whenever a forced mode change can
occur, we note three distinct situations:
1. Conjuncts within R are weakened forms of those in R and remain true.
2. Conjuncts in RY must be strengthened so that they then imply the corresponding
conjunctions in R¥.
3. Conjuncts in R” must be weakened so that they are implied by the corresponding
conjunctions in R.
The above example makes use of all three strategies.

5.3 Transitioning from H to N

As long as the execution times of the HI-crit tasks are bounded by their C(H) estimates,
the system will stay in the H mode. All the rely conditions will remain true. However it is
desirable to return to the Normal mode if possible as this mode provides a better level of
service — i.e. LO-crit tasks will be able to occur more often and have shorter deadlines.

Once the over-running H I-crit job that caused the transition to mode H has terminated,
there is the possibility that all new jobs can be released with their LO-crit parameters
and, if they all execute for no more than C(L), all deadlines can be met. But we know
that any scheduling scheme can only guarantee deadlines if there is bounded (indeed often
zero) residual work in the system at the time the Normal mode is (re-)activated [7]. It is
therefore scheduler specific as to when the system is “safe” to return to the Normal N mode
of operation.

May/must constraints [19] are useful here. If the system is idle (there are no jobs to
execute), it is usual to state that the scheduler must return the system to the Normal mode,
but it may make this change earlier if a proof obligation has shown that such a transition is
safe.

In terms of the framework presented in this paper a switch back to N mode is allowed
only when the scheduling obligations (as represented by G%') of that mode can be satisfied
by the current Scheduler. If these obligations are satisfied, the move from H to N can be
sanctioned by an appropriate pre-condition on the Normal mode. An example of one such
pre-condition is the commonly used protocol that the Normal mode can only be (re-)entered
at time ¢ if there are no active jobs at time ¢ (other than ones that arrive at time t):

PY(#) ¥ kecact(T,t) =at=t

The Scheduler for the Normal mode can therefore assume this property and it is the
responsibility of the Scheduler in the HI-crit mode to enforce it whenever it invokes a mode
change back to Normal. In other words this is a post-condition for the Scheduler in mode H:

Q) ¥ keact(T.t) =al =t

6 Robustness and resilience

Here we extend the treatment for tasks to show how we can more systematically specify
levels of robustness and resilience for mixed-criticality systems, the motivation here being to
develop a means of quantifying robustness and resilience. The first step in this process is to
specify the various schemes being proposed.

A. Burns and C. B. Jones

Informal definitions of robustness and resilience are provided in [14] — i.e. the robustness
of a system is a measure of the level of faults it can tolerate without compromising the
quality of service it offers; resilience, by contrast, refers to the level of faults for which it can
provide degraded yet acceptable (e.g. safe) quality of service. It is noted in [14] that there
are a number of standard responses in the fault tolerance literature for systems that suffer
transient faults (equating to one or more concurrent job failures in this work):

1. Fail (Fully) Operational — all tasks/jobs execute correctly (i.e. meet their deadlines).

2. Fail Robust — some tasks are allowed to skip a job but all non-skipped jobs execute
correctly and complete by their deadlines; the quality of service at all criticality levels is
unaffected by job skipping. Many periodic control tasks have this property [62]; there
is sufficient inertia in the physical system to allow the occasional control signal to be
missed.

3. Fail Resilient — some lower criticality tasks are given reduced service such as having their
periods/deadlines extended, priorities dropped and/or their execution budgets reduced; if
the budget is reduced to zero then this is equivalent to subsequent jobs of the task being
abandoned.

4. Fail Safe/Restart — where the level of failure exceeds what Fail Resilient bounds can
accommodate, more extreme responses are required including rebooting or system shut-
down (if the application has a fail-safe state). If a fail-safe state cannot be achieved then
the system may need to rely on best-effort tactics that have no guarantees. This is, of
course, the last resort to achieving survivability.

6.1 Failure modes

The framework developed above has been extended to include a number of more complex
behaviours that arise from supporting robust and resilient behaviour. In this section we
briefly outline a set of possible failure modes.

Fail operational — FO. A HI-crit job experiences a fault if it executes for more than C(L).
One measure of Fail Operational is therefore the number of such job failures that can be
accommodated while still meeting all task deadlines. However, if a job from a HI-crit task
executes for more than C(L), we still assume that the C'(H) bound remains operational.

One criticism of those models derived from Vestal [61] is that they usually assume that
any overrun of C'(L) results in an execution time of C(H). In practice this is very unlikely
to occur, a minor overrun is more likely. We therefore introduce a parameter, Cp, that
represents a unit of overrun (for all jobs). Fail Operational is a measure of how many such
overruns can be accommodated. Let O denote this number over all the tasks. A HI-crit
job that executes for more than Cj (L) but less than Cp,(L) + Co has an O value of 1. In
general, a task has an O value of n if its overrun is between (n — 1) * Co and n x Co.

The metric for Fail Operational is therefore the maximum O value allowed (Fp) in a
defined interval, Io. This interval could be of a fixed length (and would usually be much
greater than the maximum task period). Alternatively it could be the interval from the
current time back to when there was an idle moment, m, defined by:

Im,m <t O(Vkeact(T,m) e a,=m) A
Yn,m<n<te(dk e keact(’T,n)/\ai<n))

so the only active tasks at time m are those that released a job at that time, and there are
active tasks that have not just been released for all times between m and ¢. Note m must
exist as system startup (time 0) matches the definition of m as the only active tasks are
those released at time 0. We note that m is a function of ¢, hence m(t) in the following.

14:15

ECRTS 2022

14:16

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

To compute O at time t, we need to know how many overruns each job has experienced.
This can be computed as follows:

0 = 3 [ei(t) ;’OCh(L)-‘ 0

VheT3,5 ® t>a5>m(t)

where [], constrains the ceiling function to return a value no less than 0.

If this value is greater than 1 but no greater than Fp then the system mode should be
Fail Operational (FO) with all tasks meeting their deadlines. It follows that the rely and
guarantee conditions for the Scheduler are as follows. Remember that for LO-crit tasks
C(H)=C(L):

L vk e act(T,t) o €f(t) < Cr(H) A (af =tANe>1)=af —ai ' > Tp(L) A

5 [ei(t)—@(L)L -

C
VheETz,5 o t>aj >m(t) o

RE(t)

GEO() X k€ act(T,t) o t+ Ci(L) — eS(t) < v A

VhE Tu o af > mlt) A (t) > Cu(L) = t + Ch(H) — (1) < di(H)

As there are no overruns in the normal mode we can deduce that Rg = RE 0,

Note this formulation is structurally different from that given earlier for a pure Vestal-like
model. What the Scheduler must rely on is a property of the whole set of HI-crit tasks, not
a specific property of each individual task. The Scheduler can therefore guarantee Cy(H)
(by the task’s deadline) to any HI-crit tasks that overrun. But this guarantee is subject to
the rely condition remaining true (i.e. there is a bound on the number and extent of these
overruns).

The specification of the HI- and LO-crit tasks in the normal mode, and for most tasks
in the FO mode, is simply

def

REC(t) = WCETy, < C(L) A k € act(T,t) = t + Cy(L) — €f(t) < v

def

GEOt) = ef(t) < Cu(L) A (af =tAc>1)=af —af ' > Ti(L)

But for the tasks that overrun, they experience a mode change that moves the system to a
variant of FO:

def

RFO™(t) = WCET, < Ch(H) A h € act(Tu,t) =t + Ch(H) — €5(t) < dS.(H)

GFO"(t) < e (t) < Cu(H) A (af, =t Ac>1) = af —a§~" > Ty(H)
For the non overrunning tasks and the Scheduler R = RFO and GFO" = GFO.

A small number of tasks experiencing this change will not cause the Scheduler to change
mode, unless its rely condition is invalidated. The proof obligation (6) will again ensure that
RFO" is a weakening of RY and R©.

In summary, a system stays in the normal mode until a single HI-crit task executes for
more than C(L). The system then moves to mode FO with the overrunning task behaving
according to mode FO*. Further HI-crit tasks may overrun and move to mode FO*.
Eventually either an idle instant occurs and the system will return to the normal mode N,
or the Fp count is breached and RE© is invalidated. The system will now fail unless there is
a further degraded mode it can transition to; such a mode is considered next.

A. Burns and C. B. Jones

Fail robust — FR. A robust task is one that can safely drop one non-started job in a defined
time interval. Each task (be it HI-crit or LO-crit), as part of its definition, has a robustness
parameter, w. If a task has successfully completed the execution of w consecutive jobs then
the Scheduler can drop the next job (before it has been given any execution time). As such

jobs should only be dropped if they have to be, this requires a new mode: F'R (Fail Robust).

This mode will only be entered if the rely condition of the Scheduler in mode FO becomes
false (i.e there are more than Fp overruns). Within F'R F overruns will be tolerated (with
Fr > FO); i.e.

s [a0-0m] <p,

‘ Co
VheETs,s o t>aj >m(t

We introduce a predicate, reqx(t) (short for required) that returns true if the current
job of task k at time t must be executed. Tasks that require all their jobs to execute are
assigned, for ease of presentation, w = 0. The conditions for the current job (k¢) of task k to
be required are: (1) wy = 0, or (2) the task has not yet executed wy, jobs, i.e. ¢ < w, or (3)
one of the previous wy, jobs (before ¢) had a zero execution time — this is an indication that
the job was dropped. This leads to the following definition:

reqy(t) Lo =0V e<wp Vv ds,s€c—wi..c—1 @ ep(f7) =0

In other words, reg;(t) is false only when the last w; jobs of 7; (i.e. jjc-fl,jffz, . ‘;_wj)
have completed successfully. A non robust task is always “required” (in that its current job
must always complete). The R/G conditions can again be easily derived for the Fail Robust

mode:

C k€ act(T,t) o ef(t) < Cp(H) Al =tAe>1)=af —al ' > Ty(L) A

3 Fi(t) —Ch(L)-‘O < Fp

Co
VheT3,5 ® t>a5>m(t)

Rg"(t)

Note this is a weakening of the rely condition as REY = RER which follows from Fr > Fo
i.e. more overruns can be tolerated in the Fail Robust mode.

We can now complete the full specification. The Scheduler only guarantees execution
time to those jobs that are required; moreover, if a job is not required the Scheduler ensures
it does not execute.

L vk e act(T,t) e reqr(t) =t + Cx(L) — el (t) < vi A

GSM()
VEeT o aj =tA-req(t) = fi =t A
Vhe T o af > m(t) Aek(t) > Cu(L) = t + Cu(H) — cf(t) < di (B

The tasks only need execution time if they are required; their guarantee conditions remain
true even if the current job does not execute.

RER(t) € WCET), < Cu(L) A k € act(T,t) Areqi(t) = t + Cr(L) — €5(t) < vf

GER@) € eS(t) < Cu(L) A (af =tAc>1)=af —aS " > T(L)

As with mode FO, an individual HI-crit task can fail (rely condition becomes invalid, false)
leading to a weakened specification:

14:17

ECRTS 2022

14:18

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

REE (4) LWCET, < Cu(H) A h € act(To,t) = t + Ch(H) — €5.(t) < dS(H)

GER (1) € es(t) < Cu(H) A (0§ =t Ae>1)=af —aS~ " > T,(H)

Note the req, condition has been removed from the rely condition as the current job must
be required to execute as it has a non-zero execution time (i.e. a value that exceeded C(L));
also this is another weakening of the rely condition.

Again with this specification the Scheduler must rely on a property of the whole set of
H I-crit tasks, not a specific property of each individual task.

Fail resilient (graceful degradation) — GD. Once the count of job failures becomes greater
than Fr, the FR mode must be abandoned as the rely condition of the Scheduler becomes
false. To add resilience, a number of different general strategies for graceful degradation have
been discussed in the literature [55, 45, 54]. Some strategies are hierarchical, in that they
form a natural progression of increasingly severe forms of degradation that are invoked by
increasingly severe forms of failure. Others take the form of alternative approaches.

All strategies are defined by their level of fault tolerance (the maximum O count they
can deal with) and their impact on LO-crit tasks. Example strategies include:

1. Increasing the periods and deadlines of LO-crit tasks [60, 59, 36, 58, 57, 53, 25], called

task stretching, the elastic task model or multi-rate (also see Section 5.1)

2. Imposing only a weakly-hard constraint on the LO-crit tasks [24, 51]
3. Decreasing the computation times of the LO-crit tasks [13, 4], perhaps by utilising an

imprecise mixed-criticality (IMC) model [50, 52, 49, 33] or budget control [26, 27]

4. Moving some LO-crit tasks to a different processor that has not experienced a criticality

mode change [63, 64, 35, 3].

5. Abandoning LO-crit work in a disciplined sequence [23, 34, 28, 56, 46, 47].

Some example strategies have already been described in the paper. Of course the specific
set of schemes that may be applicable will depend on the details of the application. Never-
theless, any collection of approaches can be (partially) ordered using preferences and the
strengths/weaknesses of the rely conditions of the Scheduler.

In general, the full set of modes forms a lattice with the Normal N mode at the top, and
the Fail Safe (F'S) mode at the bottom (see below). Preferences are assigned to reflect the
structure of this lattice (IV is the most preferred mode, F'S the least). The least preferred
resilient mode is the one that represents the total abandonment of all LO-crit jobs. We define
this to be the backstop mode (BM). In the following BM is entered after the failure of GD:

def

REM(t) = Vh € act(Tu,t) o ei(t) <Ch(H) A(af,=tAc>1)=af —aj ' >T,(H)

GBM (1) L' Wh € act(Tr,t) ® t+ Cp(H) — €5(t) < dS AV € act(Tz, 1) o €5 (t) = ef (n%P)

where again 7P is the time this mode is entered (i.e. when some graceful degradation mode,
GD must be abandoned). Now no active LO-crit jobs execute.

RBM () ¥'WCET), < Ch(H) A h € act(To,t) = t + Cp(H) — €5.(t) < dS.(H)
GPM(t) € eh(t) < Cu(H) A (af, =t Ae>1) = af —a§ ' > Ti(H)
RPM (1) L true

GPM(t) € (af=1) = (ff = 1)

hence any newly arrived LO-crit job is immediately finished (aborted).

A. Burns and C. B. Jones

Fail safe/restarts — FS. The final “strategy” is fail safe, perhaps via fail stop, followed by
a subsequent restart (which may use a cold, warm or hot standby). It is not the purpose of
this paper to review these approaches to fault tolerance. But for completeness we note that
wherever possible there should be a mode (F'S) which guarantees a fail safe outcome.

def
PIS = true

RES (1) L true

G551 < 1< ("M + DEY)
Qs”
where DE9 is the (relative) deadline of the scheduler in this mode — there is a bound on how
far t can reach.
This mode must be the lowest preference mode (i.e. be at the base of the lattice). It can
always be entered, but must only be entered when all Schedulers in other modes have rely
conditions that are false. Note we give the Scheduler a deadline in this mode to instigate the

shut-down activity, but no further functional information can be given as the Scheduler is no
longer operational.

def safe_shut_down

6.2 Robust and resilient mode changes

In the above discussion a number of Scheduler modes have been introduced. They naturally
form a sequence based on preference; the inverse of this sequence describes the behaviour of
the system as it experiences graceful degradation:

N —-FO—FR—GD — BM — FS

An application could have a number of intermediate modes between F'R and BM . In addition
there could be a number of “best-effort” (not guaranteed) behaviours/modes between BM
and F'S.

For the set of operational modes it will be necessary to show they form a hierarchy:

RN:>RFO:>RFR:>RGD:>RBIVI:>RFS

Moreover, at the time a rely condition becomes invalid and the next mode is entered (at times
N, nFO nFE pBM) it can be proven (see Lemmas 2 and 3) that the new rely condition is
true and henceforth the guarantee condition holds.

In contrast to this gradual decline in functionality, a system that is programmed to
recover will move directly from any of the degraded modes back to mode N. This move is
driven by preference; but to reenter the Normal mode there will be some prerequisites. As
noted in Section 5.3 this could be simply that at the time the Normal mode is re-entered

there are no active tasks that had been released prior to this time.

7 Conclusions and Future Work

There is extensive published work on Mixed-Criticality scheduling and implementation, but
not on their formal specification. We believe formalisation is essential since the notion of
mixed criticality has subtle semantics: often concepts such as correctness, resilience and
robustness are neither straightforward nor intuitive for such systems. The R/G approach
has proved a successful formalism for specifying non-real-time safety-critical systems and our
main contribution in this paper is to extend R/G to (i) time, and (ii) multiple criticalities.

14:19

ECRTS 2022

14:20

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

The proposed framework is based on an ordering of modes (in general, this would form
a lattice) with the normal mode (N) being at the top and a Fail Stop (FS) mode at the
base. Each mode has an R/G coupling with a move down the ordering accompanied by a
weakening of the rely and guarantee conditions. Examples were used to show that to obtain
a true hierarchical relationship between the rely conditions (e.g. R4 = RZ, for modes A
and B), it is often necessary to strengthen the R“ and/or weaken the R” conditions. A
movement of the system down the ordering (from mode A to B) occurs only when forced by
R4 no longer being true. At this time it is necessary to prove that R® remains true. The
return of the system back to mode N is sanctioned by the rely and pre conditions of N being
reestablished.

The examples presented in this paper have demonstrated that the developed approach
has the expressive power necessary to enable a wide range of possible runtime strategies to be
precisely specified and evaluated (in terms of their internal consistency). Further work will
address the application of the R/G specifications in the development of the necessary run-time
code that will be needed to support these mixed-criticality protocols. This would benefit
from mechanical proof support as undertaken by the PROSA team [21, 10]. Although this
work is not covered in the current paper there is ample evidence that R/G specifications can
form the basis for the formal development of implementations. A useful example is tackled
in [43, 41]: although not scheduling per se, Simpson’s 4-slot algorithm is a delicate piece of
intricate code for asynchronous communication mechanisms. A number of other examples of
developments based on R/G specifications are listed and/or tackled in [48, 31, 44, 9].

—— References

1 J.-R. Abrial. The B-Book: Assigning programs to meanings. Cambridge University Press,
1996.

2 J.-R. Abrial. The Event-B Book. Cambridge University Press, Cambridge, UK, 2010.
J. Baik and K. Kang. Schedulability analysis for task migration under multiple mixed-criticality
systems. In Proc Korean Society of Computer Science, page X, 2019.

4 S. K. Baruah, A. Burns, and Z. Guo. Scheduling mixed-criticality systems to guarantee some
service under all non-erroneous behaviours. In Proc. ECRTS, pages 131-140, 2016.

5 S.K. Baruah, V. Bonifaci, G. D’Angelo, A. Marchetti-Spaccamela, S. van der Ster, and
L. Stougie. Mixed-criticality scheduling of sporadic task systems. In Proc. of the 19th Annual
European Symposium on Algorithms (ESA 2011) LNCS 6942, Saarbruecken, Germany, pages
555-566, 2011.

6 S.K. Baruah, A. Burns, and R.I. Davis. Response-time analysis for mixed criticality systems.
In Proc. IEEE Real-Time Systems Symposium (RTSS), pages 34-43, 2011.

7 1. Bate, A. Burns, and R.I. Davis. An enhanced bailout protocol for mixed criticality embedded
software. IEEE Transactions on Software Engineering, 43(4):298-320, 2016.

8 I Bate, A. Burns, and R.I. Davis. Analysis-runtime co-design for adaptive mixed criti-
cality scheduling. In Proc. of forthcoming IEEE RTAS, Pre publication version privately
communicated., 2022.

9 R. Bornat and H. Amjad. Explanation of two non-blocking shared-variable communication
algorithms. Formal Aspects of Computing, 25(6):893-931, 2013.

10 S. Bozhko and B.B. Brandenburg. Abstract response-time analysis: A formal foundation for
the busy-window principle. In Marcus Voélp, editor, 32nd Euromicro Conference on Real-
Time Systems (ECRTS 2020), volume 165 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 22:1-22:24, Dagstuhl, Germany, 2020. Schloss Dagstuhl-Leibniz-Zentrum fiir
Informatik.

A. Burns and C. B. Jones

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

A. Burns. Why the expressive power of programming languages such as Ada is needed for
future cyber physical systems. In Ada-FEurope International Conference on Reliable Software
Technologies, pages 3—11. Springer, 2016.

A. Burns, S. Baruah, C.B. Jones, and 1. Bate. Reasoning about the relationship between the
scheduler and mixed-criticality jobs. In Proc. 7th Int. RTSS Workshop On Mized Criticality
Systems (WMC), pages 17-22, 2019.

A. Burns and S.K. Baruah. Towards a more practical model for mixed criticality systems. In
Proc. 1st Workshop on Mized Criticality Systems (WMC), RTSS, pages 1-6, 2013.

A. Burns, R. Davis, S. K. Baruah, and I. Bate. Robust mixed-criticality systems. IEFE
Transactions on Computers, 67(10):1478-1491, 2018.

A. Burns and R.I. Davis. Response-time analysis for mixed-criticality systems with arbitrary
deadlines. In Proc. Workshop on Mized Criticality Systems (WMC), pages 13-18, 2017.

A. Burns and R.I. Davis. A survey of research into mixed criticality systems. ACM Computer
Surveys, 50(6):1-37, 2017.

A. Burns and R.I. Davis. Mixed criticality systems: A review (13th edition). Technical
Report MCC-1(13), available at https://www-users.cs.york.ac.uk/burns/review.pdf and
the White Rose Repository, Department of Computer Science, University of York, 2022.

A. Burns and I.J. Hayes. A timeband framework for modelling real-time systems. Real-Time
Systems Journal, 45(1-2):106-142, June 2010.

A. Burns, I.J. Hayes, and C.B. Jones. Deriving specifications of control programs for cyber
physical systems. Computer Journal, 63(5):774-790, 2020.

G. Buttazzo, G. Lipari, and L. Abeni. Elastic task model for adaptive rate control. In IEEE
Real-Time Systems Symposium, pages 286—295, 1998.

F. Cerqueira, F. Stutz, and B.B. Brandenburg. PROSA: A case for readable mechanized
schedulability analysis. In Proc. 28th Euromicro Conference on Real-Time Systems (ECRTS),
Leibniz International Proceedings in Informatics (LIPIcs), pages 273-284, Dagstuhl, Germany,
2016. Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.

Diego Machado Dias. Mechanising an algebraic rely-guarantee refinement calculus. PhD thesis,
School of Computing, Newcastle University, 2017.

T. Fleming and A. Burns. Incorporating the notion of importance into mixed criticality
systems. In L. Cucu-Grosjean and R. Davis, editors, Proc. 2nd Workshop on Mixed Criticality
Systems (WMC), RTSS, pages 33-38, 2014.

O. Gettings, S. Quinton, and R.I. Davis. Mixed criticality systems with weakly-hard constraints.
In Proc. International Conference on Real-Time Networks and Systems (RTNS)), pages 237—
246, 2015.

C. Gill, J. Orr, and S. Harris. Supporting graceful degradation through elasticity in mixed-
criticality federated scheduling. In Jing Li and Zhishan Guo, editors, Proc. 6th Workshop on
Mized Criticality Systems (WMC), RTSS, pages 19-24, 2018.

X. Gu and A. Easwaran. Dynamic budget management with service guarantees for mixed-
criticality systems. In Proc. Real-Time Systems Symposium (RTSS), pages 47-56. IEEE,
2016.

X. Gu and A. Easwaran. Dynamic budget management and budget reclamation for mixed-
criticality systems. Real-Time Systems, 55:552—-597, 2019.

X. Gu, K.-M. Phan, A. Easwaran, and I. Shin. Resource efficient isolation mechanisms in
mixed-criticality scheduling. In Proc. 27th ECRTS, pages 13-24. IEEE, 2015.

I. J. Hayes. Generalised rely-guarantee concurrency: An algebraic foundation. Formal Aspects
of Computing, 28(6):1057-1078, November 2016.

1.J. Hayes, M. Jackson, and C.B. Jones. Determining the specification of a control system
from that of its environment. In Keijiro Araki, Stefani Gnesi, and Dino Mandrioli, editors,
FME 2003: Formal Methods, volume 2805 of LNCS, pages 154-169. Springer Verlag, 2003.

14:21

ECRTS 2022

https://www-users.cs.york.ac.uk/~burns/review.pdf

14:22

An Approach to Formally Specifying the Behaviour of Mixed-Criticality Systems

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

I.J. Hayes and C.B. Jones. A guide to rely/guarantee thinking. In Jonathan Bowen, Zhiming
Liu, and Zili Zhan, editors, Engineering Trustworthy Software Systems — Third International
School, SETSS 2017, volume 11174 of LNCS, pages 1-38. Springer, 2018.

C.A.R. Hoare. An axiomatic basis for computer programming. Communications of the ACM,
12(10):576-580, 1969.

L. Huang, I-H. Hou, S.S. Sapatnekar, and J. Hu. Graceful degradation of low-criticality tasks
in multiprocessor dual-criticality systems. In Proc. of the 26th International Conference on
Real-Time Networks and Systems, RTNS, pages 159-169. ACM, 2018.

P. Huang, P. Kumar, N. Stoimenov, and L. Thiele. Interference constraint graph: A new
specification for mixed-criticality systems. In Proc. 18th Emerging Technologies and Factory
Automation (ETFA), pages 1-8. IEEE, 2013.

S. Tacovelli, R. Kirner, and C. Menon. ATMP: An adaptive tolerance-based mixed-criticality
protocol for multi-core systems. In Proc. IEEE 13th International Symposium on Industrial
Embedded Systems (SIES), pages 1-9, 2018.

M. Jan, L. Zaourar, and M. Pitel. Maximizing the execution rate of low criticality tasks in
mixed criticality system. In Proc. 1st WMC, RTSS, pages 43-48, 2013.

C.B. Jones. Development Methods for Computer Programs including a Notion of Interference.
PhD thesis, Oxford University, June 1981. Printed as: Programming Research Group, Technical
Monograph 25.

C.B. Jones. Specification and design of (parallel) programs. In Proc. of IFIP, pages 321-332.
North-Holland, 1983.

C.B. Jones. Systematic Software Development using VDM. Prentice Hall International, second
edition, 1990. URL: http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/Jones1990.
pdf.

C.B. Jones and A. Burns. A rely-guarantee specification of mixed-criticality scheduling.
In Valentin Cassano and Nazareno Aguirre, editors, Mathematical Foundations of Software
Engineering: Essays in Honor of Tom Maibaum on the Occasion of his Retirement, Tribute
Series. College Publications, 2022.

C.B. Jones and 1.J. Hayes. Possible values: Exploring a concept for concurrency. Journal of
Logical and Algebraic Methods in Programming, 85(5):972-984, 2016.

C.B. Jones, 1.J. Hayes, and M.A. Jackson. Deriving specifications for systems that are
connected to the physical world. In Cliff B. Jones, Zhiming Liu, and Jim Woodcock, editors,
Formal Methods and Hybrid Real-Time Systems, volume 4700 of Lecture Notes in Computer
Science, pages 364-390. Springer Verlag, 2007.

C.B. Jones and K.G. Pierce. Elucidating concurrent algorithms via layers of abstraction and
reification. Formal Aspects of Computing, 23(3):289-306, 2011.

C.B. Jones and N. Yatapanage. Investigating the limits of rely/guarantee relations based on
a concurrent garbage collector example. Formal Aspects of Computing, 31(3):353-374, 2019.
on-line April 2018.

J.C. Laprie. Dependable computing and fault tolerance: Concepts and terminology. In Digest
of Papers, The Fifteenth Annual International Symposium on Fault-Tolerant Computing, pages
2-11, Michigan, USA, 1985.

J. Lee, H.S. Chwa, L.T.X. Phan, I. Shin, and I. Lee. MC-ADAPT: Adaptive task dropping in
mixed-criticality scheduling. ACM Trans. Embed. Comput. Syst., 16:163:1-163:21, 2017.

J. Lee and J. Lee. Mc-flex: Flexible mixed-criticality real-time scheduling by task-level mode
switch. IEEFE Transactions on Computers, page online, 2021. doi:10.1109/TC.2021.3111743.
Hongjin Liang, Xinyu Feng, and Ming Fu. A rely-guarantee-based simulation for verifying
concurrent program transformations. In Proc. 39th annual ACM SIGPLAN-SIGACT Sym-

posium on Principles of Programming Languages, POPL ’12, pages 455-468, New York, NY,
USA, 2012.

http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/Jones1990.pdf
http://homepages.cs.ncl.ac.uk/cliff.jones/ftp-stuff/Jones1990.pdf
https://doi.org/10.1109/TC.2021.3111743

A. Burns and C. B. Jones

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

D. Liu, N. Guan, J. Spasic, G. Chen, S. Liu, T. Stefanov, and W. Yi. Scheduling analysis of
imprecise mixed-criticality real-time tasks. IEEE Transactions on Computers, 67(7):975-991,
July 2018.

D. Liu, J. Spasic, N. Guan, G. Chen, S. Liu, T. Stefanov, and W. Yi. EDF-VD scheduling
of mixed-criticality systems with degraded quality guarantees. In Proc. IEEE RTSS, pages
35-46, 2016.

R. Medina, E. Borde, and L. Pautet. Directed acyclic graph scheduling for mixed-criticality
systems. In Johann Blieberger and Markus Bader, editors, Reliable Software Technologies —
Ada-FEurope, pages 217-232. Springer International Publishing, 2017.

R.M. Pathan. Improving the quality-of-service for scheduling mixed-criticality systems on
multiprocessors. In Marko Bertogna, editor, Proc. Euromicro Conference on Real-Time
Systems (ECRTS), volume 76 of Leibniz International Proc. in Informatics (LIPIcs), pages
19:1-19:22. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

S. Ramanathan, A. Easwaran, and H. Cho. Multi-rate fluid scheduling of mixed-criticality
systems on multiprocessors. Real-Time Systems, 54:247-277, 2018.

B. Randell, J-C. Laprie, H. Kopetz, and B. Littlewood(Eds.). Predictably Dependable Comput-
ing Systems. Springer, 1995.

B. Randell, P.A. Lee, and P.C. Treleaven. Reliability issues in computing system design. ACM
Computing Surveys, 10(2):123-165, 1978.

J. Ren and L.T.X. Phan. Mixed-criticality scheduling on multiprocessors using task grouping.
In Proc. 27th ECRTS, pages 25-36. IEEE, 2015.

H. Su, P. Deng, D. Zhu, and Q. Zhu. Fixed-priority dual-rate mixed-criticality systems:
Schedulability analysis and performance optimization. In Proc. Embedded and Real-Time
Computing Systems and Applications (RTCSA), pages 59—68. IEEE, 2016.

H. Su, N. Guan, and D. Zhu. Service guarantee exploration for mixed-criticality systems. In
Proc. Embedded and Real-Time Computing Systems and Applications (RTCSA), pages 1-10.
IEEE, 2014.

H. Su and D. Zhu. An elastic mixed-criticality task model and its scheduling algorithm. In
Proc. of the Conference on Design, Automation and Test in Europe, DATE, pages 147-152,
2013.

H. Su, D. Zhu, and D. Mosse. Scheduling algorithms for elastic mixed-criticality tasks in
multicore systems. In Proc. RTCSA, 2013.

S. Vestal. Preemptive scheduling of multi-criticality systems with varying degrees of execution
time assurance. In Proc. Real-Time Systems Symposium (RTSS), pages 239-243, 2007.

N. Vreman, A. Cervin, and M. Maggio. Stability and Performance Analysis of Control Systems
Subject to Bursts of Deadline Misses. In Bjorn B. Brandenburg, editor, Proc. Euromicro
Conference on Real-Time Systems (ECRTS), volume 196 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 15:1-15:23, Dagstuhl, Germany, 2021. Schloss Dagstuhl —
Leibniz-Zentrum fiir Informatik.

H. Xu and A. Burns. Semi-partitioned model for dual-core mixed criticality system. In 23rd
International Conference on Real-Time Networks and Systems (RTNS 2015), pages 257-266,
2015.

H. Xu and A. Burns. A semi-partitioned model for mixed criticality systems. Journal of
Systems and Software, 150:51-63, 2019.

14:23

ECRTS 2022

	1 Introduction
	2 Introduction to Rely/Guarantee conditions
	3 Job-based system model
	4 Mixed-criticality jobs
	4.1 Adding resilience to HI-crit jobs
	4.2 Transitioning from mode N to mode H
	4.3 Postponing the deviation time

	5 Task-based system model
	5.1 Vestal-inspired example
	5.2 Transitioning from N to H
	5.3 Transitioning from H to N

	6 Robustness and resilience
	6.1 Failure modes
	6.2 Robust and resilient mode changes

	7 Conclusions and Future Work

