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Abstract
Real-time containers are a promising solution to reduce latencies in time-sensitive cloud systems.
Recent efforts are emerging to extend their usage in industrial edge systems with mixed-criticality
constraints. In these contexts, isolation becomes a major concern: a disturbance (such as timing
faults or unexpected overloads) affecting a container must not impact the behavior of other containers
deployed on the same hardware. In this paper, we propose a novel architectural solution to achieve
isolation in real-time containers, based on real-time co-kernels, hierarchical scheduling, and time-
division networking. The architecture has been implemented on Linux patched with the Xenomai
co-kernel, extended with a new hierarchical scheduling policy, named SCHED_DS, and integrating the
RTNet stack. Experimental results are promising in terms of overhead and latency compared to
other Linux-based solutions. More importantly, the isolation of containers is guaranteed even in
presence of severe co-located disturbances, such as faulty tasks (elapsing more time than declared)
or high CPU, network, or I/O stress on the same machine.
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1 Introduction

Nowadays, we are witnessing the spread of cloud (including fog and edge) technologies in
industrial domain and cyber-physical systems, such as Industrial Internet of Things (IIoT) [31],
Industry 4.0, automotive [2], enabling the remote housing of critical software components
on the edge of infrastructure, according to the software defined everything trend [51]. In
these scenarios, edge computing systems can be seen as mixed-criticality systems (MCSs) [5],
consolidating real-time tasks with different levels of criticality along non–real-time tasks, all
of them on a reduced number of computing nodes in order to reduce the size, weight, power,
and cost of hardware. An example is represented by the predictive maintenance of a wind
turbine based on artificial intelligence, where the real-time data acquisition/prepossessing
is run on the same edge node of a deep neural network [41]. Another example is real-time
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control in Industry 4.0 applications, where control activities are designed as tasks with
different levels of criticality that perform the control functions, visualization, and interaction
with other devices on the same node [47].

Given this scenario, timeliness and isolation become major concerns, since a deadline
miss could result in a severe failure or hazard. For example, if a critical virtualized ECU on
a car is late at handling a brake pedal command, due to a co-located disturbance caused by
a non-critical component, this could result in a crash [44]. Similarly, late sensor feedback in
a smart factory could bring to the blocking of a production line or even cause injuries.

Recently, container-based virtualization has been gaining the limelight in cloud envir-
onments for several reasons: low overhead, simplified migration/orchestration of software
appliances, and increased scalability if compared to traditional hypervisor-based approach.
Containers are thus considered today a key technology to achieve high workload consolidation
and to better exploit hardware resources. For the same reasons, they are starting to attract
interest for the realization of real-time systems [7, 48]. However, the adoption of containers
in industrial edge systems requires facing compelling challenges due to isolation guarantees
needed between different co-located workloads. First, strict resource reservation (such as
CPU and network bandwidth) must be guaranteed with acceptable overheads (e.g., low
scheduling latency), to grant predictable timing behavior to networked tasks running within
critical containers. Second, disturbances must not affect the correct execution of such tasks,
other containers (e.g., timing faults in tasks elapsing longer than declared), or the system in
general (e.g., unexpected high CPU, I/O, or network load on the same machine).

Several approaches implementing real-time containers have been proposed in literature.
Among these, we focus on Linux co-kernel–based solutions due to their wide use in industrial
settings, e.g., for robot control [18,58] and industrial networking support [30], and to their
known benefits in terms of latency [13,26] and isolation, as they make Linux fully preemptable
in favor of real-time tasks. Nevertheless, co-kernel–based container solutions available to date
enforce isolation through active monitoring, which introduces overhead and represents a single
point of failure. In addition, existing real-time containers solutions focus on CPU reservation,
neglecting network isolation issues, which are fundamental for networked real-time tasks in
industrial edge systems.

We aim to overcome existing issues, proposing a novel architectural solution to achieve
container isolation in mixed-criticality edge systems. Specifically, our contributions are:

a hierarchical scheduling solution, named SCHED_DS, for real-time containers managed by
a real-time co-kernel, which results in promising scheduling runtimes (about hundreds of
ns on our setting) with no need of active monitoring but proactively isolating CPU;
a schedulability test, adapted from early results [16], to verify the feasibility of deployment
of a newly created container on existing infrastructure, useful for orchestration purposes;
a POSIX-compliant API to foster the transparent adoption of the solution by practitioners;
the integration of the solution with a real-time networking stack (specifically, RTnet [33]),
to achieve network bandwidth guarantees with time-division medium access.

The proposed architecture has been implemented on the Xenomai co-kernel [32], by modifying
its SCHED_QUOTA to fit a hierarchical deferrable server model (allowing theoretical treatment
for schedulability analysis). The resulting policy, SCHED_DS, is transparently adopted by
real-time tasks running within containers through our API, which also enables containers to
use the real-time network. Experimental results show the benefits of the proposed solution
in our settings, which exhibit a scheduling runtime in the order of hundreds of nanoseconds,
and an overhead lower than 0.1%. More importantly, they highlight the isolation properties
of our solution, as tasks run within critical containers are not impacted by faulty tasks
running in other containers or by the presence of high CPU, network, or I/O load on the
same hardware. Finally, the proposed solution outperforms, in terms of task activation
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latency, recent state-of-the-art implementations based on low-latency Linux containers and
hierarchical scheduling, in respect to which our solution can be seen as complementary. For
instance, compared to PREEMPT_RT, we assessed a relative improvement of at least 30%.

The rest of the paper is organized as follows. Section 2 discusses related work. Section 3
describes the proposed architecture (see Subsection 3.1), the system model and schedulability
analysis (see Subsection 3.2), and the proposed hierarchical scheduling solution (see Subsec-
tion 3.3). Section 4 gives implementation details of the architecture on top of the Xenomai
co-kernel. Section 5 provides a thorough experimental analysis for proving the applicability
of the proposed architecture. Section 6 concludes the paper.

2 Related Work

Currently, mixed-criticality systems development, particularly in edge computing scenarios,
brings several stringent requirements like tiny memory footprints (a few MBs or even KBs),
fast instantiation times (tens of milliseconds or less), high network throughput (10-40 Gb/s),
high consolidation (e.g., being able to run thousands of instances on a single commodity
server), and a reduced attack surface for certification purposes. For this reason, lightweight
virtualization approaches, like containers, are becoming attractive and starting to be explored
in industrial domains.

PREEMPT_RT. Recent studies have started to explore the possibility to use containers
to run real-time tasks. For example, [36] presents an empirical study on the problem of
minimizing computational and networking latencies for Radio Access Networks through
lightweight containers. The study analyzes the performance of Docker containers running on
the top of a Linux kernel patched with the well-known PREEMPT_RT [17,45]. This modifies
the Linux kernel in order to provide real-time guarantees (e.g., predictability, low latencies)
still using a single-kernel approach. The results highlight that using PREEMPT_RT improves
latencies on Docker containers when compared to a generic kernel. Similarly, authors in [38]
propose a sandboxed environment, still based on Docker containers on a PREEMPT_RT-based
Linux kernel, in the context of an automotive scenario. In [29] a container-based architecture
for real-time automation controllers is proposed, using Docker and LXC containers on top
of a Linux patched with the PREEMPT_RT real-time kernel patch. Experiments have been
done using both Docker and LXC containers running on top of a Linux OS patched with the
PREEMPT_RT real-time kernel patch. Tests emphasize that the use of containers for control
applications can meet the requirements of the target systems.

RT-cgroups. Other solutions in literature are based on the control groups (cgroups) [40].
Currently, the Linux kernel offers the real-time group scheduling (rt-cgroups) to host real-
time containers [54]. However, the implemented algorithm is somehow unclear [1] and even
worse the PREEMPT_RT patch has been in conflict with this kind of group scheduling, allowing
only a low latency configuration (until v5.15.34) [25] and preventing the fully preemptable
one. In [1], the authors propose to modify the rt-cgroups implementation by using a
real-time deadline-based scheduling policy. The offered solution extends the SCHED_DEADLINE
policy to schedule Linux control groups. It implements a two-level hierarchical scheduling
framework [19] [42] in Linux, allowing user threads to be scheduled with fixed priorities inside
the control group scheduled by SCHED_DEADLINE.

ECRTS 2022
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Co-kernel approach. Besides cgroups, alternative approaches include using real-time Linux
co-kernels, such as RTAI [20] and Xenomai [32]. The main idea behind the co-kernel approach
is to have a small real-time core running at higher priority, which can intercept interrupts and
defer them if needed. This choice allows keeping the benefits of the Linux ecosystem (e.g., fully
re-using container engines and control group features), while making Linux fully-preemptable
in favor of real-time tasks and including the support for real-time networking in the co-kernel,
making them a good fit for industrial settings [18,30, 58]. Generally, RTOS and co-kernel
approaches outperform PREEMPT_RT in terms of latencies and task-switch times, while Linux
is better on average performance, as expected by its GPOS nature [6, 13,14,26,27,45]. On
this line, Tasci et al. [50] leveraged both real-time patch and co-kernel approaches to run
real-time control applications within Docker containers. In our past work ( [8] and [9])
we adopted RTAI to schedule hard real-time tasks within containers, using either fixed
priorities in the former or Earliest Deadline First (EDF) [35] in the latter. The idea is to fully
inherit the advantages of the co-kernel, in terms of real-time performance and functionalities,
while letting tasks within containers keep using the same application programming interface.
However, both solutions require active monitoring of tasks run within containers, to tolerate
timing failures, which introduces overhead and a single point of failure to the architecture.
Further, our solution in [8] requires a global fixed-priority assignment that may limit the
adoption of built-in orchestrators, as priorities might be re-assigned if a container needs to
be moved from a host to another during its lifespan.

Container orchestration. Container-based virtualization is an attractive choice for time-
sensitive edge systems also for the orchestration capabilities provided, such as migration,
balancing, and high-availability mechanisms. For example, in [28] and [4] the need for a
Kubernetes-compatible [53] edge container orchestrator is highlighted since edge devices are
gaining enough power to run containerized services while remaining small and low-powered.
Different comparisons and analyses to understand the advantages and disadvantages of the
existing orchestrators for edge cloud are made in the two studies. In [24,49] containers based
on rt-cgroups are integrated into Kubernetes in order to orchestrate real-time containers
for low latency applications, while in [12] the same containers have been integrated into
OpenStack in order to build a framework for NFV for next generation networks. In [59] a
latency-aware edge computing platform based on Storm is introduced to run computer vision
applications with a real-time response time exploiting edge resources. In the context of the
LF Edge foundation [52], Xilinx is currently developing a Xen-based lightweight orchestration
solution called RunX [57]. RunX allows running containers as VMs, either with the provided
custom-built Linux-based kernel with a Busybox-based ramdisk, or with a container-specific
kernel/ramdisk. Despite some efforts from both industry and academia, there is the need for
further analysis in the context of mixed-criticality edge computing systems.

Hypervisor-based solutions. A consolidated trend for time and space partitioning in mixed-
criticality systems is to use hypervisor-based solutions, with the aim to completely separate
real-time kernels from non–real-time ones. RT-Xen [56] is a real-time hypervisor scheduling
framework, which extends Xen to support VMs with real-time performance requirements
as well as to enable both global and partitioned VM schedulers. XTRATUM [39] is a type
1 hypervisor designed for real-time embedded system. XTRATUM can be used to build
partitioned systems, and provides both temporal and spatial separation. The Wind River
VxWorks RTOS [55] features a Virtualization Profile that integrates a real-time embedded,
type-1 hypervisor into VxWorks. The hypervisor is able to slow down general-purpose
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operating systems to ensure that real-time ones can execute without performance impact.
Jailhouse [46] is a Linux-based partitioning hypervisor for mixed-critical applications; it
enables asymmetric multiprocessing to run both bare-metal applications or guest operating
systems (including RTOS). Jailhouse splits physical resources into isolated compartments
named cells, with a root cell dedicated to run the Linux kernel and the hypervisor itself, and
non-root cells assigned to one guest OS. Bao [37] is an open-source lightweight embedded
hypervisor for mixed-criticality systems. Bao aims at providing isolation for fault-containment
and real-time guarantees, through a static partitioning hypervisor architecture: resources are
statically partitioned and assigned at VM instantiation time.

Our proposal advances the state-of-the-art in terms of readiness for industrial settings,
since we propose a complementary solution to Linux real-time containers that fully exploits
the advantages of co-kernels, while overcoming the current limitations of co-kernel–based
container solutions. In particular, we avoid global fixed-priority assignment and active
monitoring, using hierarchical scheduling and enabling proactive temporal protection at
the co-kernel level, to provide guaranteed CPU bandwidths (i.e., utilization) to different
tasks grouped in different containers. Further, the proposed architecture is designed to
easily support container orchestration tools in the context of edge computing scenarios, and
it integrates a real-time networking stack accessible from containers, an aspect of crucial
importance for mixed-criticality edge and neglected by the current literature on real-time
containers. Finally, concerning hypervisor-based solutions, our container-based approach
allows running multiple isolated Linux systems on a single host with minimal space and
performance overhead, avoiding the need of running full VMs (each one replicating the
entire OS stack). Other tiny hypervisor-based solutions are based on the concept of static
partitioning [37, 39, 46]. This makes the environment less prone to changes since this kind of
hypervisor includes a one-to-one mapping between virtual CPUs and physical CPUs, and
devices are mapped directly into the guest memory areas. Despite the lightness of these
approaches, in our context, the use of container-based solutions paves the way to service
orchestration and migration, automatic and easy deployment of tasks, which is fundamental
with changing environments at the edge level.

3 Proposal

3.1 Architecture
Figure 1 depicts our proposed architecture for achieving isolation in real-time containers.
Similarly to earlier proposals [8, 9], we envision the concept of real-time containers (rt-
containers) hosting real-time tasks (rt-tasks) and run on the top of an operating system with
real-time scheduling capabilities. The idea is letting rt-containers run along with traditional
containers (running non–real-time tasks) on the same machine, with temporal isolation
guarantees for rt-tasks. This enables a container-based mixed-criticality environment.

The proposal encompasses an engine layer based on the Docker container engine (although
other container engines should work too) and includes a feasibility checker, which executes a
schedulability test to verify (in terms of both CPU and network) if a new rt-container can
be created on the computing node, without affecting the containers already hosted. This is
particularly useful for orchestration purposes. Moreover, compared to solutions in [1,54], our
proposal is based on Linux kernel coupled with a real-time co-kernel.

Differently from existing co-kernel-based solutions [8,9], which enforce temporal protection
of rt-tasks through a dedicated real-time monitoring component, our proposal leverages a
hierarchical group scheduling approach, called SCHED_DS. The idea is to map the rt-tasks

ECRTS 2022
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running within an rt-container in a task group at OS co-kernel level, where each group has
its own bandwidth (i.e., slices of CPU time) limitation. In this way, the CPU consumption
of rt-tasks is limited, by design, over a globally defined period. The rt-tasks with common
requirements are pooled in groups; each group receives a share of the global period. Therefore,
our proposal does not require active monitoring for temporal protection of rt-tasks, which
represents a single point of failure as well as a source of overhead [8,9]. Moreover, differently
from the solution in [8], the priority assignment is not globally fixed: within an rt-container,
the developer is free to choose task priority levels, as the group CPU bandwidth will be
independently guaranteed by the hierarchical scheduler.

Figure 1 The proposed rt-container architecture.

Our proposal includes also the rt-lib layer, which provides a transparent mapping of
rt-tasks onto the underlying real-time core. rt-lib exposes a POSIX compliant API towards
rt-tasks by hiding the information exchanged between the container level and the OS layer,
including the one to leverage the co-kernel scheduling policies. It is worth noting that, once
a task within a rt-container is mapped to a real-time group (through the rt-lib API) and
starts to run, it is scheduled directly by the real-time co-kernel. Hence, it fully preempts
Linux and all indirection levels above have no impact on real-time path of the tasks and
their scheduling latency.

Finally, we want to remark that our solution integrates also a real-time networking
stack for real-time containers, in contrast with past studies. This could be useful in a
container-based cloud/edge environment, where several containers, with both non–real-time
and real-time requirements, can communicate over the network [11,43]. We rely on the RTnet
stack [33] usually shipped with real-time co-kernels (such as Xenomai and RTAI) to provide
a real-time networking stack. RTnet works with a pluggable real-time medium access control
(MAC) policy on standard Ethernet hardware. It offers, by default, a MAC TDMA (Time
Division Multiple Access) policy, which consists in allocating a time slot to each physical
node of the network for sending/receiving traffic.

Real-time networking guarantees for rt-containers are enforced by assigning a slot to each
rt-container, as if they were physical nodes on the network, taking advantage of the RTnet
multi-slot configuration. Therefore, the rt-lib is in charge of mapping a socket opened by an
rt-container with a RTnet socket that has its own slot for transmitting packets. Figure 2
shows an example of TDMA scheduling in the context of rt-containers, in which each slot is
identified on the node by an ID, and each node has a default slot for sending traffic (ID 0).

The network relies on a master node providing sync frames, which delimit the TDMA
cycles. Since slots cannot overlap, an entity such as an orchestration system should store
all the information needed (e.g. slot times and offsets) to assign slots to containers and to
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Figure 2 Example of TDMA scheduling.

change dynamically the network configuration. Indeed, RTnet allows adding, removing, or
modifying time slots dynamically. For these reasons, the container admission request should
contain the network requirements (time slot needed) as well, other than CPU bandwidth. For
non–real-time networking instead, well-known methods can be used such as non–real-time
buddy tasks, which use the standard Linux networking stack. We highlight that non–real-time
traffic is allowed in RTnet in a tunneled way, if necessary.

Figure 3 depicts a typical industrial edge networking scenario in which our proposal can
be successfully adopted. The scenario includes a real-time RTnet network interconnecting two
edge RT-Servers (acting as slaves), a master node, sensors, and actuators. The RT-Servers
run several containers and carry out part of the workload with critical timing requirements;
however, they can also run non–real-time workloads. The master node represents a high
precision clock node supporting RTnet TDMA, which is kept separated from RT-Servers to
improve reliability and security. The RT-Servers are connected to both the industrial RTnet
and the Internet with two distinct Network Interface Controllers (NICs). In this scenario the
rt-containers architecture in Figure 1 can be deployed on RT-Servers in order to manage the
scheduling and orchestration of both real-time and non–real-time workloads while ensuring
isolation of rt-containers, which may contain critical tasks to retrieve data from sensors and
send commands to actuators through the industrial network.

Figure 3 Potential scenario: deployment of rt-containers on real-time edge servers.

3.2 System Model
We assume a system composed of M rt-containers, each of them with an assigned CPU
bandwidth (i.e., utilization) UC

j , a priority level Pj , possibly a network timeslot TSj and a
criticality level CLj , where j ∈ [0, M ]. The criticality represents the severity of consequences
in case of failure and it is a notion different from priority, that could be assigned by the
schedulability algorithm.

Each rt-container hosts Nj sporadic hard real-time tasks τ j
i : i = 0...Nj −1, characterized

by a WCET Cj
i , a minimum inter-arrival separation (or period) T j

i and a priority level
P j

i : i = 0...Nj − 1. We assume T j
i to be coincident with the relative deadline Dj

i of the
task. Priorities within a container can be freely assigned by the application designer. We
assume that tasks can suffer from timing failures, i.e., they can run for a time greater than
their declared WCET, because of a wrong timing analysis or a bug inside the code, like an

ECRTS 2022
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endless loop. Overall, the system is composed of a set Γ of N tasks, each of them assigned
to an rt-container with a given bandwidth. With Γ(j) we indicate the subset of tasks within
the j-th rt-container. Thus: Γ = Γ(0) ∪ ... ∪ Γ(M − 1) and Γ(k) ∩ Γ(h) = ∅, where k ̸= h.
The minimum CPU bandwidth of each rt-container is defined as the sum of its task CPU
utilization, defined as U j

i = Cj
i /T j

i . We define the overall system bandwidth as: UT OT =∑M−1
j=0

∑Nj−1
i=0 U j

i .
We assume non–real-time tasks, internal or external to containers, running with a best-

effort policy, receiving the bandwidth unused by the real-time tasks. The model must provide
isolation from potential timing failures due to both excessive non–real-time workload on the
same machine and faulty tasks, exceeding their declared WCET, run within rt-containers. In
order to provide isolation, we rely on bandwidth reservation, assuming a two-level scheduler
with a deferrable server1 at the root level: each rt-container is thus mapped on a server.
At the leaf level, the policy is a fixed priority preemptive scheduler, serving tasks within
containers. The admission check is performed by the RT-container engine via the feasibility
checker (implementation details in Section 4), or by an orchestrator. We can take advantage
of the schedulability analysis presented in [15, 16], where an exact response time analysis
improving the already existing analyzes for hierarchical fixed priority schedulers is presented.
We recap briefly the test. The response time analysis is described by equations (1) and (2).

Li(wi) = Ci +
∑

∀j∈hp(i)

⌈
wi + Jj

Tj

⌉
Cj with w

0
i = Ci +

(⌈
Ci

CS

⌉
− 1

)
(TS − CS) (1)

w
n+1
i = L(w

n
i ) +

(⌈
L(wn

i )
Cs

⌉
− 1

)
(Ts − Cs) +

∑
∀X∈hp(S)

servers


max

(
0, wn

i −
(⌈

L(wn
i

)
Cs

⌉
− 1

)
Ts

)
+ JX

TX

 CX (2)

Equation (1) represents the task load at priority level i and higher, ready to be executed
in the busy period wi. hp(i) is the set of tasks that have priorities higher than task τi (the
task under analysis) within the same server (i.e., a container in our study), and Jj is the
release jitter of the task, which is 0 for a bound task and TS − CS for unbound tasks, due to
the functioning of the server. Equation (2) is a recursive relation for wi, namely the interval
between the time a task is released and its completion time, where hp(S) are the higher
priority servers (i.e., containers) for the server S of the task under analysis, JX is the release
jitter of the higher priority server X, which is TX − CX for a deferrable server.

The equations model the critical instant for a task scheduled belonging to the server.
The recurrence starts with the value in Equation (1) and ends either when wn+1

i = wn
i , in

this case wn
i + Ji indicates the task response time, or when wn+1

i > Di − Ji, thus the task is
not schedulable. It is worth nothing that for the schedulability of a task only the budget
of higher priority servers is needed. Therefore, even if tasks belonging to other servers (i.e.,
other rt-containers) are faulty, the schedulability analysis does not need to be modified.

In order to ease the implementation, we hypothesize that the refill timer, i.e., the timer
driving the replenishment of the deferrable server budget, is shared between every task group,
thus server periods elapse in a lockstep fashion and there is no chance to suffer from back to
back hits, which is typical in deferrable servers. This simplifies the third term in Equation (2),
which can be rewritten as:

1 A deferrable server [35] is the simplest of bandwidth-preserving servers, and it provides a good tradeoff
between implementation complexity and low response times. It has an execution budget Cs that is
replenished each period Ts. A deferrable server preserves its budget until the end of the period.
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∑
∀X∈hp(S)

servers

CX (3)

This is possible since having common periods for all servers, a server can run for no more than
its runtime budget in each period. This simplification can be demonstrated analytically and
we provided the demonstration in an appendix 2. This also simplifies the server schedulability
analysis, since we just have to keep the sum of budgets beneath the period value. Therefore,
the server scheduling test becomes:

∑
∀S

CS ≤ T , where S represents a server, and CS

represents its budget in a period, which is obtained as CS = US ∗ T , where US is the server
bandwidth and T is the common period.

Since the period is fixed, we can use algorithms presented in [16] for optimal schedulability,
i.e., the optimal priority assignment or the optimal server capacity allocation. Even if
theoretically both algorithms could be used, the optimal priority assignment one requires to
assign in advance a bandwidth to containers, which makes it hard to obtain a schedulable
set. It is more practical to know container criticality that can be associated with a suitable
priority and then compute the needed bandwidth. Therefore, we decide to use the optimal
server capacity allocation algorithm described in [16].

Similarly to server scheduling, the test for the network is:
∑

∀N

∑
∀Snet∈N TSS ≤ Tcycle ,

where N is an RTnet node, Snet is a container requiring RTnet, Tcycle is the length of the
TDMA cycle and TSS are timeslots not overlapping in time. It is important to notice that
despite the network timeslot being independent of the CPU time, it must be taken into
account for task dependencies.

3.3 The SCHED_DS policy
In this section, we describe the proposed hierarchical scheduling solution, named SCHED_DS,
for real-time containers managed by a real-time co-kernel. We assume two levels of runqueues:
one for the groups and one for tasks belonging to each group. The policy works as follows.
It picks the highest priority group with a ready thread, checks its budget and if expired
it is moved to an expired list and another group is picked. If the group has budget, the
policy picks the highest priority ready thread within the group. The thread is removed
from the runqueue, and if the group becomes empty, it is removed from the group runnable
queue. The thread starts running and a timer is armed to expire at the end of the budget.
Periodically, a refill timer moves all expired groups back to the runqueue and replenishes
budgets. When a thread becomes ready it is enqueued in the runnable queue of its group
and if it is the only thread in the queue the group is enqueued in the group runnable queue.
Algorithm 1 presents the pick function of SCHED_DS.

4 Implementation

4.1 A Xenomai-based implementation
For implementing the SCHED_DS policy, we chose Xenomai as a co-kernel due to its flexibility,
maintainability, and extensibility, and its POSIX-compliant library. Above all, Xenomai
recently introduced SCHED_QUOTA and SCHED_TP policies as partitioned hierarchical schedul-
ing solutions, useful to overcome SCHED_FIFO limits. The SCHED_QUOTA policy enforces a

2 Appendix is available at http://www.fedoa.unina.it/13352/
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Algorithm 1 sched_ds_pick pseudocode.
tg = thread group, rq = runqueue, Told is the scheduled out thread, otg = group of Told.

1: procedure sched_ds_pick
2: now ← current time
3: if tg of Told is null then
4: goto pick (6)
5: subtract (now - start_time) from otg budget
6: pick highest priority ready tg from rq
7: if tg is null then
8: stop limit timer
9: return null

10: if tg is empty then
11: dequeue tg
12: goto pick (6)

13: if tg runtime budget is 0 then
14: enqueue tg in expired queue
15: goto pick (6)
16: start_time of tg ← now
17: pick highest prio ready thread from tg rq
18: if otg == tg AND limit timer is running

AND budget_refilled == false then
19: goto out (22)
20: budget_refilled ← false
21: arm limit timer to go off at now+tg budget
22: decrease active threads in tg
23: return selected thread

limitation on the CPU consumption of threads over a globally defined period, known as the
quota interval. This is done by pooling threads with common requirements into groups, and
giving each group a share of the global period. On the other hand, the SCHED_TP policy
is a temporal partition scheduler that allows installing a schedule made up of consecutive
time windows in a fixed-cyclic style, leaving slots for non–real-time tasks. Even though a
prototype based on SCHED_TP was built and tested, we preferred leveraging on SCHED_QUOTA
because of its flexibility (e.g., it allows adding and removing single groups at runtime), which
is required in cloud/edge contexts. We remark that Xenomai maintainers have partially
already addressed the lack of the PID namespace support, which anyway does not undermine
the contribution of this study.

4.2 The SCHED_QUOTA Limitations
The SCHED_QUOTA policy acts in this way: it picks the highest priority ready thread, and the
budget of its group is checked. If it is expired, the thread is moved to an expired list and
another thread is picked, otherwise, it starts running with a timer armed to expire at the end
of the budget. Periodically, the refill timer moves all expired threads back to the runqueue
and replenishes budgets. This implementation revealed three major limitations: (L1) the
vanilla policy is not actually hierarchical since scheduling is at thread-level; further, the notion
of quota group only regards the budget evaluation, which is done for each picked thread,
causing an O(N) complexity; (L2) there is no notion of group priority, since SCHED_QUOTA
relies on the unique fixed-priority runqueue, thus giving no assurance about isolation between
threads of different groups; (L3) the scheduler entails a credit mechanism, along with other
subtle problems, that prevent from modeling a quota group as a deferrable server.

Starting from (L3), we highlight a devious problem: as soon as the refill timer expires, the
budgets are refilled, a rescheduling is forced, and the consumed CPU time is subtracted from
the budget of the outgoing quota group. This could result in a group starting the new period
with a reduced budget if it kept the highest priority before and after the refill. A related
problem is that when a group starts executing, the limit timer is armed to expire when the
budget is exhausted, without taking care if this moment in time precedes or follows a budget
refill. Figure 4 shows an example of the described problem. We consider two groups, Group
0 (G0) and Group 1 (G1), where G0 has a capacity equals to 3 over a quota period equal to
5, and a priority higher than G1. A G1 thread (τ0 in G1) starts a request and will be served
according to remaining budget for G1 . Further, at the end of the first quota period (i.e., at
t5), a Group 0 thread (τ1 in G0) starts to execute, with the limit timer armed to expire at
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time tA (i.e., current time, t5, plus the remaining capacity). After t5, a refill occurs. Due to
the implementation, and assuming that the thread τ1 in G0 consumed 1 unit of capacity, the
budget of Group 0 passes from 3 to 2, but the limit timer is left untouched. At tA, the timer
expires and Group 0 is scheduled out. Thus, in the second quota period, Group 0 runs for a
total of 2 units of time, even if its capacity is 3. We expect the Group 0 to run for 3 units
every 5 to resemble a deferrable server, and the timer armed to expire at tB .

Figure 4 SCHED_QUOTA problem. Dashed lines for group budget rensemble the ideal behavior of a
deferrable server, while solid lines are the real behavior as implemented in the proposed policy.

Moreover, according to limitation (L2) (see above), two threads belonging to different
groups or other scheduling classes share the same range of priority levels within the shared
queue. This would mix in time the execution of SCHED_QUOTA threads and other threads,
nonetheless mixing up threads belonging to different groups with no clue of group priority,
with no assurance about temporal isolation of different groups. This behavior of SCHED_QUOTA
is inadequate to achieve a proper hierarchical scheduler. A solution that uses a user-level
priority remapping would result in a restricted priority range, along with another problem
(see limitation (L1) above): when a budget expires, the scheduler tries to pick every ready
thread of that group in priority order, evaluating exhausted budget for each thread; since
the number of threads in a group is not bounded, this operation has an O(N) complexity,
where N is the number of consecutive exhausted threads. Similar analysis keeps for refill
function that moves expired threads to runqueue.

4.3 Implementation details
We implemented the proposed SCHED_DS policy by modifying the existing SCHED_QUOTA
policy in Xenomai in order to obtain a truly hierarchical scheduler that solves the limita-
tions described above. The Xenomai-based implementation is provided in [3]. The main
modifications regard the functions refill_handler, which replenishes budgets every quota
period, xnsched_quota_enqueue/requeue/dequeue, which handle the queue moving, and
xnsched_quota_pick, which selects the thread to be executed. We created an additional
level of scheduling with a runqueue for each group, in order to avoid the single common
runqueue, and extending the group structure to encompass a priority level needed to create
an order relation between groups to be queued. Furthermore, we created a fixed-priority
FIFO runqueue that hosts runnable groups along with a list holding expired groups. We
addressed the limitations mentioned in Subsection 4.2 as described in the following:

L1. In the pathological situation formerly considered, the SCHED_DS policy will evaluate
the budget of the whole group instead of evaluating for every single thread, moving only
group structures if needed. These operations are O(1) because the number of groups is
upper-bounded by a kernel parameter (by default 32).
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L2. SCHED_DS policy isolates threads of different groups within the queue, since we do
not use anymore the shared FIFO runqueue, allowing usage of the entire priority range
without mixing threads of different groups.
L3. SCHED_DS policy adds a boolean that is set when the refill timer expires and evaluated
during xnsched_quota_pick execution, when a true value prevents the reduction o the
budget of the formerly running quota group.

Compared to the xnsched_quota_pick implementation, we removed some unnecessary checks
by improving performance and reducing overhead. Indeed, we allowed empty groups in
the group runqueue, dynamically checking for this condition and removing them. This
modification has the aim to relieve the following recurring pattern: a group with only one
thread is scheduled, next the thread is removed from the group and after that, the group is
removed from the queue. When rescheduling is triggered, the currently running thread is
requeued as well as its group, causing a heavily ordered insertion, that could be potentially
useless if the currently running thread is still the highest priority thread. According to the
example shown in Figure 4, the boolean check of budget_refilled implies no budget reduction
at the scheduling after the refill, the group then starts the new quota period with a full
budget. Indeed, the check at line 18 of Algorithm 1 will fail, and the scheduler is obliged to
arm once again the limit timer, which will now expire in tB , in fulfillment of our requirement
about the deferrable server behavior.

4.4 Feasibility Checker and rt-lib

We implemented a feasibility checker that parses the input and computes the tests introduced
in Subsection 3.2. This consists of 600 LOC of Python code, which calls two C programs
that use Xenomai services to bring up and tear down groups.

The rt-lib layer is implemented as a header file that relies on the –wrap linker flag to
override the POSIX wrapper functions defined by Xenomai. Overridden functions belong to
two distinct groups: one for hiding the complexity of thread management and one for the
RTnet socket management. The first group of functions uses the original data structures to
find and operate on the related extended ones. This exposes to the user a standard POSIX
API that under the hood replaces real-time scheduling policies with SCHED_DS. On the other
hand, networking functions ensure that a newly created socket calls an ioctl to bind to the
allotted RTnet timeslot.

5 Experimental Results

In this section, we report the experimentation we performed on the implemented architecture.
The experimentation aims to: i) measure scheduling policy runtimes; ii) estimate the overall
throughput overhead as seen by the tasks to understand if the proposed algorithm can be
practically used with negligible risk and to derive a suitable server period; iii) assess temporal
isolation under several disturbances conditions, evaluating the solution in terms of number
of failures, specifically, the deadline misses of the real-time tasks under non–real-time stress
and faulty real-time container; iv) estimate the RTnet error deviation for sending packets
through measurements achieved on a real network deployment; v) estimate the activation
latency of the scheduler, comparing results with state-of-art solutions for real-time containers.
In Table 1, there is a summary of experimental parameters used in the following tests.

The host system is equipped with an Intel Core I5-6500, 16 GB DDR4 RAM, Samsung
970EVO SSD, running Linux Mint 20.1, kernel v5.4.77 patched with Xenomai v3.1, and Docker
v20.10.7. To reduce hardware sources of non-determinism, we disabled power optimizations,
frequency scaling, Intel SpeedStep, TurboBoost, and C-States.
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Table 1 Values and rationale behind parameters used in the experimentation.

Parameter Ref. Sec. Value Rationale

Groups/Threads 5.1 2*3 up to 6*9 Understand how execution times vary with numbers of threads
spread along an order of magnitude.

Runs 5.1 5 Sufficient to average out transient behaviors.
Repetitions 5.2 50 Computed by the sample size formula, to have 90% confidence.
Quota period 5.2 1 ms to 10 ms Reasonable for the hardware used and DS runtimes obtained.
Target quota 5.2 40% Sufficient runtime to show overhead effects.

Yielding period 5.2 0.1, 1, 10 ms Different orders of magnitude, in the range below the quota
period.

Duration 5.2 10 s Enough to verify the overhead, on the base of the period.
UT OT limit 5.3 85% From [9], utilization > 90 % brings system to instability.

WCET buffer 5.3 30 µs
Max activation latency measured through the Xenomai official
guide plus hardware unpredictability measured.

Additional band 5.3 1 % Compensate scheduling overhead under stress.
Repetitions 5.3 30 Tradeoff between statistical significance and time needed.

Containers/tasks 5.3 2*2 up to 2*6 Reasonable numbers to find schedulable tasksets with small
periods.

Task periods 5.3 1 ms up to 2 s Reasonable real-time periods for a general purpose hardware.
Duration 5.3 60 s Reasonable with regard to task periods.
TDMA cycle 5.4 6 ms Reasonable time based on the roundtrip time measured.
Repetitions 5.5 60 Sample size formula for 90% confidence.
Sampling period 5.5 100 µs Default period of the test.

Duration 5.5 60 s Enough to experiment outliers due to kernels. Several orders
of magnitude above the period.

Task WCET 5.6 1.8 ms Avoid budget limitation of the policies to simplify analysis.
Task Period 5.6 10 ms Reasonable for the WCET to have as many sampling as possible.

(a) CDF of runtimes of xnsched_pick_next. (b) CDF of runtimes of refill_handler.

Figure 5 CDF runtimes of SCHED_DS (TG = Thread Group).

5.1 SCHED_DS Runtimes
We estimate the runtime of the main functions of the scheduler for a first quality evalu-
ation. Both the xnsched_pick_next and the refill_handler runtimes were plotted, in
order to understand which quota period could have been suitable for the system. The
xnsched_pick_next checks the current thread status and, if needed, calls a requeue and
a sched_pick for each scheduling policy in priority order, until a thread is found. The
refill_handler was described previously in Section 3.3 and represents a periodic fixed
overhead. Therefore, we can have an upper bound of enqueue, dequeue, and requeue functions,
and an upper bound of the xnsched_ds_pick function, i.e., the one described in Algorithm 1.
Runtimes are taken with a couple of clock monotonic timestamps, at the beginning and end
of the functions under exam, under different workloads: 2 thread groups with 3 threads
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each; 4 groups with 6 threads each; 6 groups with 9 threads; a mixed workload created as
described in Section 5.3, with a random group number between 2 and 6, and a random thread
number between 2 and 7 for each group. For the first three loads, two tasks for the group are
permanently running in order to exhaust the budget at every period. The selected number of
groups/threads have the only aim to understand how execution times vary with an increasing
number of threads during nominal execution. Results in terms of CDF (averaged over 5
runs) are shown in Figures 5a and 5b. The workloads run on a single CPU and thread/group
numbers have the only purpose to exercise the system with an increasing stress, to have an
estimation of the overhead. A replenishment takes in the worst case 630 ns (Figure 5b), with
a much lower average time, while the pick function has a worst case of 1,343 ns (Figure 5a),
but it generally presents much lower runtimes: around 450 ns the CDF value is almost one.

5.2 SCHED_DS Overhead
In order to estimate the overhead induced by the proposed scheduler, we adapted the test
for SCHED_QUOTA of the Xenomai suite. The test is an application that creates FIFO threads,
which increment a counter and then yield in favor of another thread after a specified amount
of time, called yielding period hereinafter. The obtained counter will be then used as a
reference value. Next, a number of SCHED_DS threads, in the same amount as the FIFO
threads, are created. The SCHED_DS threads belong to a group created with a determined
quota, and have the same body as the FIFO ones. At the end of the application (after a
timeout of 10 seconds), the SCHED_DS counters are compared to the FIFO reference. In this
way, the effective percentage of the runtime of SCHED_DS threads can be computed. It should
be noted that the results depend on the length of the quota period. The smaller period is
used, the more overhead is induced and the smaller effective runtime percentage is computed
at the end of the test. The SCHED_DS threads within the test are run with 1ms, 2.5ms, 5ms,
7.5ms, 10ms quota periods, assigning a target quota equal to 40%. Moreover, we experiment
100 µs, 1ms, and 10ms as yielding periods for both SCHED_FIFO and SCHED_DS threads. For
each test, we run 12 threads (FIFO threads to compute the reference values and SCHED_DS
threads to compute the overhead), with a random activation phase with regard to the server
period to reduce anomalies that depend the first and last period execution. Each test is
repeated 50 times for statistical significance purposes. Afterward, the average of the runtimes
percentage, fixing the same quota period and yielding period, are computed and plotted with
90% of confidence.

(a) Varying quota and yielding periods. (b) Under stress scenarios.

Figure 6 Runtime percentages of running SCHED_DS threads.
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Figure 6a shows the obtained runtime results by varying both quota and yielding periods,
along with the quota target percentage, i.e., 40% indicated by the dotted red line. It can be
noted that when the quota period is 1ms the induced overhead is approximately 0.05 − 0.1%,
while with a quota period of 2.5 ms the estimated overhead is lower, i.e., between 0.02 and
0.05%. Differently, with a quota period equal to 10 ms the results show a runtime percentage
greater than 40%. This is probably due to both the thread phasing with regard to the
beginning of the first period and the deferrable server behavior: indeed, threads can benefit
from the entire runtime budget over a reduced quota period because of late arrival. For lower
yielding periods, the overhead is greater, as expected. Furthermore, we highlight that the
runtime percentage difference between the yielding period of 100 µs compared to both 1ms

and 10ms is clear since at 1ms and 10ms the scheduling policy preemption dominates the
number of yielding preemptions. According to the results obtained for the overhead, we set
the quota period for the subsequent test equal to 2.5ms since it represents a good choice for
the schedulability compared to the other periods tested.

We compute also the overhead of SCHED_DS under various stress conditions. The dis-
turbances are generated via the stress-ng tool [22]. We impose hard pinning for the CPU
core that executes the stress load by using the –taskset flag. We test different stress load
scenarios, i.e., no load (tests executed with no load), cpu (a heavy arithmetic computation
to fully use one CPU core), io (an IO load using one worker spinning on sync() command
to force writes data buffered in memory out to disk), hdd (a disk load that starts one worker
generating various operations towards the disk), netdev (a network load where a worker
exercises various netdevice ioctl commands for all available network interface controllers)
and udp (a network load starting a pair of client and server workers that transmits data
using UDP on localhost). Regarding stress tests, we still perform 50 repetitions for statistical
significance purposes. The quota period is set equal to 2.5ms and the yielding period equal
to 1ms. Figure 6b shows the obtained results, which highlight that scheduling efficiency
slightly decreases under stress conditions. The results under stress conditions compared to
the no load ones are approximately 0.03 − 0.04% lower, with udp and hdd as worst loads
because of the high volume of interrupts generated.

5.3 Failure Isolation Test
In this section, we perform tests for the proposed scheduling policy for revealing potential
temporal isolation issues. The tests include, first, the scheduler correctness (whether it behaves
as expected). Further, we want to obtain real performances in the field of SCHED_DS under
synthetic workloads, against several stress conditions. We demonstrate that the provided
proactive temporal isolation successfully prevents failures (deadline misses) propagation
within the system, crossing criticality levels. Specifically, the test assumes two criticality
levels, thus including two real-time containers: one container with a high priority and the
other one with a low priority.

The total bandwidth UT OT is spread over the two containers using the RandFixedSum
algorithm [21] (we used the Python implementation [23]), such that UT OT = ULOW + UHI ,
where ULOW and UHI are the bandwidths of low-priority and high-priority rt-containers,
respectively. For both containers a group of tasks is created through the RandFixedSum
algorithm as well, such that the tasks bandwidth for each container is Uj =

∑Nj−1
i=0 U j

i ,
where j ∈ {LOW, HI} and Nj is the number of tasks of the container j. The periods used
as input for the algorithm range in likely times for real-time tasks (ms up to s). Priorities
are assigned to the two task groups according to the order of creation, while the algorithm
in [16] and Equations 1, 2, 3 are used to determine the minimum bandwidth needed for the
containers to have a schedulable task set.
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Tasks within a task group are ordered following Rate Monotonic (RM) rules [34]. If the
sum of required bandwidth needed to have a schedulable task set is greater than 85%, the
current task set is discarded, and a new one is generated. The required bandwidth of each
container is increased by 1% to compensate for the scheduling overhead. In the algorithm,
a little margin of 30 µs is added to WCET of each task to consider maximum Xenomai
scheduling latency plus a margin due to hardware unpredictability. Moreover, for each task,
there is a lower threshold WCET of 30 µs that allows avoiding borderline situations, e.g.,
workloads too short to be properly emulated on x86 architectures. For the same reason, each
group must have a total utilization greater than 0.1% quota.

Once created a task set with the given constraints and computed the needed bandwidth
for each container, quota groups are created, and synthetic load is created through the
rt-app [10], exploiting the CPU property to pin tasks on a CPU core, the run property to
create a workload of a determined time, the scheduler policy and absolute timer properties to
select the SCHED_DS policy and generate a periodic timer. The rt-app has been modified and
recompiled for our purposes, linking real-time libraries. Each thread logs some information
for each iteration in a pre-allocated memory area. The slack time, defined as next activation
time minus current finish time, can be used to compute deadline miss occurrences; indeed, a
negative slack means that the task has finished after the start of the next period.

Tests are run with varying total bandwidth UT OT : 50, 55, 60, 65, 70 percent of the
CPU usage. In each container, there is a random number of threads, chosen between 2 and
6 (excluded). 30 repetitions are done for each combination of total bandwidth and stress
condition. Stress conditions considered in this test include a scenario, namely low-hi, in
which the low-priority container behaves as declared, while the high-priority container is
faulty, i.e., it executes tasks with a runtime of 1.8 times than declared. This scenario aims to
detect if quota groups are correctly isolated in time: the high-priority container is faulty since
has an actual load almost twice the declared. The desired behavior is that the lower priority
container will be isolated from the faulty container. Thus, we expect deadline misses in the
high-priority container but no deadline miss in the low-priority container, which could be
potentially more critical than the high-priority one. The other tested stress scenarios are the
same as the ones described in Section 5.2. These scenarios aim to understand the behavior of
the system under various non–real-time workloads. We expect to have no deadline miss at all.
Each experiment lasts 60 seconds. Task periods are sampled with a loguniform distribution,
with a granularity of 1 ms, with a minimum period of 1 ms, and a maximum period of 2 s.
As expected, no failures came out from experiments under non–real-time stress-ng load. It is
worth mentioning that, although the server period is 2, 500 µs, the schedulability test can
guarantee shorter period tasks as well the time to execute, and despite the needed bandwidth
is quite high, several tasks with a period of 1 ms have been scheduled in the low-priority
container. We tested the 1 ms quota period and their schedulability is a lot easier. The results
meet our expectations under the low-hi scenario as well. The high-priority container presents
a high number of failures (in terms of deadline misses), while the low-priority container
achieves the correct execution.

Figure 7 shows the boxplots of the deadline misses in the low-hi scenario. Each point
represents the sum of the number of deadlines misses from all tasks in a container, while
on the x-axis there is the total bandwidth used to generate the task set. It is worth noting
that some tests run with no deadline miss: this is likely due to the extra bandwidth, or the
pessimistic behavior of the schedulability test. The test seems to have quite encouraging
results, as SCHED_DS can resist several high-stress conditions and temporal isolation is assured.
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Figure 7 Boxplots of deadline misses for the low-hi scenario across different usage percentage of
total bandwidth UTOT.

5.4 RTnet
In this section, we perform tests to show the real-time capabilities of the proposed RTnet
wrapper used within containers and in presence of non-real-time traffic disturbances. The
aim is to highlight that the RTnet stack is characterized by a low average and standard
deviation of the sending delay (defined as the difference between the expected sending time
and the actual one) even under non–real-time tunneled traffic. Tests were run on two HP
z230 workstations, equipped with an Intel Core i7-4790, 16 GB RAM, and an i217-LM
network controller with rt_e1000e driver. NICs were linked to a 100 MBit/s switch through
cat6 Ethernet cables. The machines hosted Ubuntu Server 21.04, with Linux kernel v5.4.77
patched with Xenomai v3.1.1.

The TDMA cycle was set to 6 ms, with slots of 1 ms. The transmission delay of the sync
frame from the setup was estimated at around 112 µs (computed as described in [33]). We
start a couple of containers on the slave node, i.e., the RT-Server1 in Figure 3, in which
they spawn one periodic thread each, with coprime periods to force coincidence for network
transmission within the same TDMA cycle. These tasks send a UDP packet towards the
master, i.e., the Master node in Figure 3, for each period. Further, at the host level on
the RT-Server1 , we used the socat tool to send, continuously, a file in UDP broadcast, in
order to generate non–real-time traffic. These UDP packets are automatically divided into
fragments by the RTnet stack to fit the slot reserved for non–real-time traffic. We recorded
the actual sending timestamp and scheduled sending timestamp for the sync frames, and
sending timestamps for slave packets. The slave properly used the estimated transmission
delay to adjust the slot starting times [33]: the sending offset of the outgoing packets with
regard to the arrival time of sync frames were not integer multiples of slot durations, and 112
µs was the offset that minimized the sum of squared errors, defined as the difference of time
to the nearest multiple of slot duration from sync frame. The mean, minimum, maximum,
and standard deviation of the difference between scheduled sending timestamp and actual
sending timestamp for sync frames were respectively 385.8, 257, 1, 499, and 103.2 ns. On the
other hand, keeping into account the correction of 112 µs, the slave errors for sending frames
were characterized by an average of 211.8 ns and a standard deviation of 1, 006.7 ns, showing
good predictability with regard to a non–real-time RTnet stack.

5.5 Task Activation Latencies
In this section, we aim to estimate the tasks activation latencies provided by our solution
and use them to compare the proposal with the following alternative solutions for real-time
containers based on hierarchical scheduling: i) Linux low-latency vanilla rt-cgroups (LL
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hereinafter) and ii) rt-cgroups patched as described in [1] (HCBS hereinafter). Kernels in LL
and HCBS are in low-latency configuration due to reasons explained in Section 2. Despite
we set our solution as complementary (i.e., designed for usage in different use cases), we
compare our implementation with LL and HCBS since they are the only ones to date based
on group scheduling. The vanilla rt-cgroups allow dividing CPU time, specifying how much
time can be spent running in a given period. The runtime is allocated to each real-time
group (rt-group), and other groups will not be allowed to use it. The time not allocated
to a rt-group is used to run SCHED_OTHER tasks. Currently, this feature still lacks an EDF
scheduler to use non-uniform periods. The low-latency kernel version is the same as Xenomai
(v5.4.77), while HCBS supports an older kernel version (i.e., v5.2.8). Kernel settings are
almost the same, the only differences between the configurations are constrained by patches.
The latency test provided by Xenomai test suite is modified to run with SCHED_FIFO for
Linux, making a lift and shift of data structures used, creating an independent program. We
further adapted this latency test to support SCHED_DS threads.

Figure 8 Boxplots of task activation latencies. In no load scenario, for HCBS, we removed two
outliers at 114 and 118 µs for readability. P is the proposed solution.

We run the latency test for 60 seconds for each targeted solutions (i.e., the proposed
one, LL, and HCBS) according to stress load scenarios described in Section 5.2. For each
test, we saved the maximum latency and the overruns. We repeated each test 60 times for
statistical significance purposes. The task period is left as the default value used in the
original Xenomai latency test, i.e., 100 µs.

Figure 8 shows boxplots of the latency experienced by the analyzed solutions under
different disturbances, while Table 2 provides the mean and standard deviation of the
obtained maximum latencies. It can be noted that No stress, cpu, io, and netdev loads
provide similar results. The proposal seems to be robust against all the disturbances, giving
persistently lower latencies (∼ 10 µs). Under udp and hdd loads, both the LL and HCBS
provide higher latencies, with a mean of the maximum latencies about 60 times worse than
the proposed solution and a non-negligible standard deviation. We expected this behavior
since both udp and hdd loads raise a high volume of interrupts, which heavily affect kernel
performance despite the low-latency configuration of the Linux kernel. Our co-kernel–based
implementation is not affected significantly by such high interrupts load, making it a good
fit for critical high-frequency tasks for industrial control. Finally, we tried to switch the SSD
disk with HDD one. We noticed a non-negligible difference under the hdd load, concluding
that latencies are mostly caused by drivers, which probably present non-preemptible sections.
For the sake of brevity, we do not report this experiment. The difference between LL and
HCBS is not significant, thus the main reason behind high latencies is not the hierarchical
scheduler itself, but the preemption model of Linux. On the other hand, Xenomai makes
Linux fully preemptible, thus Xenomai outperforms other kernels.
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Table 2 Maximum task activation latency.

Proposed LL HCBS
Load Mean [µs] Std Mean [µs] Std Mean [µs] Std

no load 5.332 0.509 22.334 12.075 28.396 18.464
cpu 5.367 0.665 18.477 10.743 25.795 11.813
io 5.695 0.726 25.016 13.083 30.771 14.328

hdd 5.983 1.061 572.969 50.047 599.308 19.923
netdev 5.231 0.600 17.718 10.643 25.082 14.313

udp 5.879 0.253 369.252 58.109 368.706 73.646

5.6 Comparison with PREEMPT_RT

Since the low-latency configuration is not able to always guarantee timeliness, in this section
we directly compare Xenomai against PREEMPT_RT. The PREEMPT_RT patch has recently solved
the conflict with rt-cgroups, from kernel v5.15.34. However, we highlight that without the
HCBS patch, the rt-cgroup scheduler does not fit any theoretical model for schedulability.
We ran rt-app in a container for 60 seconds, sampling the worst task activation latency and
slack time along the minute for each of the stress loads considered in the previous test. The
slack time is defined as d − a − C, where d is the task deadline, a is the arrival time, and C

its WCET. We repeated each test 60 times for statistical significance purposes. The rt-app
generates a single thread with a period of 10 ms and a runtime of 1.8 ms, to avoid budget
limitation of the scheduling policies. Obtained results are shown in Figure 9.

Figure 9 Boxplots of both worst task activation latencies (lower is better) and slack times (higher
is better) under different stress loads.

Activation latencies, although comparable, are always lower for Xenomai under each
stress, with an average improvement of at least 30% in the case of the udp load, and above
50% for the hdd load, which is still particularly troublesome for Linux. The lower latencies
with regard the low-latency configuration confirm our statement that high latencies in the
previous experiments are due to non-preemptible sections. Even the slack time for the
proposed system is closer to the expected (i.e., 8200µs). Moreover, the slack time of our
solution presents a lower standard deviation with regard to PREEMPT_RT, probably due
to a lower predictability and higher the complexity of Linux, along its difficulty to handle
workloads. Once again, under hdd load, Linux presents the worst outlier.

6 Conclusion

In this work, we introduced a novel architecture for real-time containers by leveraging a
hierarchical deferrable server scheduler in a real-time co-kernel. We integrated the solution
with a real-time networking stack (i.e., RTnet) for communication purposes, and provided
the schedulability test and a user-level APIs to deploy the containers. The proposed
architecture has been implemented extending the Xenomai co-kernel; the source code has

ECRTS 2022



15:20 Achieving Industrial Edge MCS Isolation with RT-Containers

been made publicly available. Extensive experimental tests have been performed, showing
that the proposed solution is promising in terms of latency, overhead, and, most importantly,
isolation against disturbances. Specifically, a low-priority container can resist against severe
misbehavior of a high-priority container, with no impact in terms of timing failures (i.e., no
deadline miss). Further, comparing the proposed architecture with solutions in the state
of the art, we obtain benefits in terms of task activation latencies. Future works aim at
supporting rt-containers in the context of container orchestration platforms (e.g., Kubernetes),
in order to create a fully-automated mixed-criticality industrial edge/cloud solution.
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