
Foundational Response-Time Analysis as
Explainable Evidence of Timeliness
Marco Maida !

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Sergey Bozhko !

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany
Saarbrücken Graduate School of Computer Science, Universität des Saarlandes, Germany

Björn B. Brandenburg !

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract
The paper introduces foundational response-time analysis (RTA) as a means to produce strong and
independently checkable evidence of temporal correctness. In a foundational RTA, each response-time
bound calculated comes with an auto-generated certificate of correctness – a short and human-
inspectable sequence of machine-checked proofs that formally show the claimed bound to hold. In
other words, a foundational RTA yields explainable results that can be independently verified (e.g.,
by a certification authority) in a rigorous manner (with an automated proof checker). Consequently,
the analysis tool itself does not need to be verified nor trusted. As a proof of concept, the paper
presents POET, the first foundational RTA tool. POET generates certificates based on Prosa,
the to-date largest verified framework for schedulability analysis, which is based on Coq. The
trusted computing base is hence reduced to the Coq proof checker and its dependencies. POET
currently supports two scheduling policies (earliest-deadline-first, fixed-priority), two preemption
models (fully preemptive, fully non-preemptive), arbitrary deadlines, periodic and sporadic tasks, and
tasks characterized by arbitrary arrival curves. The paper describes the challenges inherent in the
development of a foundational RTA tool, discusses key design choices, and reports on its scalability.

2012 ACM Subject Classification Computer systems organization → Real-time systems; Software
and its engineering → Formal software verification

Keywords and phrases hard real-time systems, response-time analysis, uniprocessor, Coq, Prosa,
fixed priority, EDF, preemptive, non-preemptive, verification

Digital Object Identifier 10.4230/LIPIcs.ECRTS.2022.19

Supplementary Material Software (ECRTS 2022 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.8.1.7

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No 803111),
and from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 391919384.

Acknowledgements We thank Pierre Roux for introducing us to CoqEAL and the members of the
joint ANR-DFG project RT-PROOFS for fruitful discussions.

1 Introduction

The purpose of a response-time analysis (RTA) is to obtain safe bounds on the worst-
case response times of all critical tasks in a real-time system. To this end, the system is
described with a mathematical model, which typically comprises a workload model, a resource
model, and a scheduling policy. The model is then analyzed to derive response-time bounds,
which requires (i) a theory that rigorously justifies that the RTA correctly characterizes the
worst-case scenario, and (ii) an RTA tool that executes the concrete calculations.

C
o
n
si
st

en
t *
Complete * W

ell D
o
cu
m
ented * Easy t

o R

eu
se
 *

 *
 Evaluated

 *
 E
C
R
T
S
 *

 Ar
tifact *

 A
E

© Marco Maida, Sergey Bozhko, and Björn B. Brandenburg;
licensed under Creative Commons License CC-BY 4.0

34th Euromicro Conference on Real-Time Systems (ECRTS 2022).
Editor: Martina Maggio; Article No. 19; pp. 19:1–19:25

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mmaida@mpi-sws.org
mailto:sbozhko@mpi-sws.org
mailto:bbb@mpi-sws.org
https://doi.org/10.4230/LIPIcs.ECRTS.2022.19
https://doi.org/10.4230/DARTS.8.1.7
https://doi.org/10.4230/DARTS.8.1.7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

Both aspects are equally critical. An error in (i), such as an invalid over-generalization or
a missed corner case, leads to a flawed theory. An error in (ii), which can be any significant
bug in the tool, leads to a flawed implementation. Given the number of documented analysis
mistakes in the real-time literature (e.g., [13, 18, 28, 34]), and the reality that complex tools
are rarely bug-free, both the research community and industry have shown a growing interest
in the application of computer-assisted formal verification (e.g., [11, 21, 23]), with safety
standards also advising its use (e.g., ISO 26262, DO-178C).

However, applying the currently available proof assistants and verification tools to
mechanize RTAs and formally verify RTA tools is neither an easy nor a cheap task. Once a
theory – or the behavior of a program – is encoded in a proof assistant’s specification language,
it usually needs to be augmented with additional information (e.g., step-by-step proofs,
program invariants) before the verification procedure can succeed. This process requires
human intervention and usually takes a considerable amount of time. Moreover, developing
and maintaining a verified tool requires advanced programming skills and specialized expertise.
As a consequence of such cost and knowledge barriers, RTA tools in use today are typically
not verified, and this is unlikely to change in the foreseeable future.

In this paper, we therefore explore the challenge of obtaining trustworthy response-time
bounds without having to verify the RTA tool that produces them. To this end, we propose
foundational RTA as means to produce evidence of timeliness that can be independently
checked in a rigorous manner by an untrusting third party. As elaborated in Section 2, a
foundational RTA tool must produce proof-carrying response-time bounds, that is, bounds
that come with certificates of correctness that can be automatically checked by a proof
assistant such as Coq. The key advantage of a foundational RTA is that the trusted computing
base (TCB) is reduced to only the proof checker and its dependencies: the analysis tool
itself does not need to be trusted because the correctness of its claims can be easily and
independently verified. Therefore, the RTA tool’s source code can be updated, modified,
ported, and optimized like any other non-critical software.

The advantages of foundational RTA are obvious; its practical realizability and scalability,
however, much less so. As a proof of concept, we present the design and implementation of
the first foundational RTA tool. Our RTA tool, called POET (Prosa Obsigned Evidence of
Timeliness), works in conjunction with the formally verified Prosa framework for real-time
schedulability analysis [11], and in particular with its abstract RTA library [8]. When a
problem instance (i.e., a concrete task set, scheduling policy, and preemption model) is given
as input, POET generates, along with the usual response-time bounds, a set of formal proofs
of correctness that can be automatically machine-checked by the Coq proof assistant [42].
The process is completely automated (i.e., users do not need to write definitions nor to prove
theorems) and does not require any expertise with formal verification on behalf of the user.
Consequently, POET is the first RTA tool that can assert the correctness of its results in a
trustworthy manner without any need for the tool itself to be verified.

To summarize, this paper makes the following contributions:
We introduce the notions of foundational RTA and proof-carrying response-time bounds
(Section 2), along with the first foundational RTA tool, POET, and discuss key design
and implementation challenges (Section 4);
describe how mechanisms in POET and the overall workflow ensure the trustworthiness
of the certificates (Section 5),
discuss how POET computes the search space for each task’s response-time bound in a
manner that is both computationally efficient and verifiable (Section 6);
explain how we enabled POET to scale to numerically large task parameters, despite
Prosa’s proof-oriented (but computationally inefficient) number representation (Sec-
tion 7); and finally

M. Maida, S. Bozhko, and B. B. Brandenburg 19:3

report on an empirical evaluation of POET on synthetic task sets of realistic complexity
in terms of task count, utilization, and numerical magnitude of the parameters (Section 8).

Last but not least, POET makes it possible for users unfamiliar with Coq to benefit from
the power of formal verification. POET will be released as an open-source project.

2 Design Space of Verified RTAs

To motivate the advantages of foundational RTA and to provide context, we begin with
a brief survey of the space of possible alternatives. Given that the literature on real-time
systems in general, and on RTAs in particular, targets mission- and safety-critical systems
– such as cars, trains, aircraft, and spacecraft – RTA tools are an obvious candidate for
verification. However, while the ultimate goal is clear – the computed bounds must never be
optimistic – it is less obvious what it means to actually “verify an RTA tool” in practice. In
fact, there are many ways in which formal verification could improve the trustworthiness of
RTA tools, with differing trade-offs in terms of required effort and verification coverage.

Common flaws. To better understand the space of possible solutions, first consider the
following (non-exhaustive) list of flaws threatening the validity of response-time bounds. The
most obvious issue is that the underlying RTA theory may be incorrect (F1). Sadly, the
published record shows that this is far from just a theoretical concern: many cases of flawed
reasoning have been documented [12, 18, 28, 34, 49], Chen et al. [13] and Cerqueira et al. [11]
give more examples of incorrect analyses of processor scheduling, Indrusiak et al. [31] list
eight refuted RTAs for on-chip networks (NoCs), and new corrections still continue to appear
on a regular basis (e.g., [29, 52]). At this point in time, it has become painfully clear that
engineers would be foolish to trust an analysis to be correct just because it was peer-reviewed
and published at a well-reputed venue. Formal verification is arguably the best, and perhaps
the only way, to overcome this trustworthiness gap, especially in critical systems.

Moving on, even if the underlying analysis is not at fault, then a particular implementor
may still misinterpret the published analysis (F2), or simply overlook logic errors in the
implementation (F3) such as incorrect loop conditions or incomplete search-space traversals.
From first-hand experience, such issues do not appear to be uncommon. In a similar vein,
easy-to-overlook programming mistakes resulting in silent errors (F4), such as over- or
underflow during unchecked integer arithmetic or floating-point precision issues, plague RTA
tools just like they do applications in virtually all other domains.

Likely somewhat less common, but a real concern nonetheless, is the possibility that
software defects in other parts of the tool (F5) corrupt the state of the analysis implementation,
such as a dangling pointer in an XML or JSON parsing library, or a concurrency issue. This
can also affect tools programmed in otherwise memory-safe languages (such as OCaml or
Java) that link with native C libraries for common functionality.

Another concern related to I/O is that the parsing of the workload and system descrip-
tion (F6), especially if it is presented in a difficult-to-process format, may silently alter the
input such that an otherwise correct analysis is run on a slightly, but critically different
problem instance than intended. This is a particular concern for tools that do not produce
explainable results, that is, for tools that produce output from which it is not possible for a
human to understand how, or based on exactly which model, the result was obtained.

Last, and also decidedly least, is the concern that transient errors, such as bit flips due to
cosmic background radiation or thermal noise, could affect the RTA tool during its execution
(or the verifier, for that matter). While not unheard of, the likelihood of occurrence on an

ECRTS 2022

19:4 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

engineer’s workstation or laptop is extremely low. Furthermore, it can be safely assumed
that any critical system is analyzed not just once, and not only on just one machine, at
which point the risk of repeated transient errors at design time becomes negligible.

Clearly, an ideal “verified RTA” should mitigate all of these flaws (and more). Additional
desiderata include that it should be reasonably fast and scale to workloads of industrially
relevant size and parameter magnitudes (e.g., expressed in processor cycles or nanoseconds).
Furthermore, an ideal RTA tool should be explainable in the sense that it justifies its results
in a way that can independently checked by a third party (e.g., government regulators) for
use in (non-formal) certification processes (e.g., as commonly encountered in the avionics and
medical domains, and increasingly also in the automotive domain). How can these goals be
achieved? While a full survey of the verification literature is beyond the scope of this paper,
we can generally identify three fundamental approaches: verify the tool itself, augment an
unverified tool with a verified results validator, and the proposed foundational approach.

Verified implementation. In principle, one could verify the entire RTA tool, in particular if
it is implemented in a verification-friendly language such as OCaml or Haskell. To our
knowledge, this has not been done to-date, and whether it is even worthwhile in the context
of RTA tools is a point open for debate. Nonetheless, it is interesting to consider different
levels of specifications that such an effort could target.

The weakest specification would be that the tool computes a particular mathematical
expression, or finds a fixed-point of a certain structure, without any formal claims about
the semantical implications of this. In other words, the tool would be verified to correctly
compute a number, but no formal claim is made about the meaning of this number (i.e.,
that it is a bound). The advantage of this is that the underlying RTA does not have to be
verified, i.e., this approach could be used with any RTA in the literature. While this requires
proving the absence of F3- and F4-type flaws, it fails to mitigate F1- and F2-type flaws.

A step up would be to use the same specification for the implementation (of just the
computation, without semantics), while also verifying the employed RTA theory in a separate
effort (or using an already-verified one, e.g., [8, 11]). The resulting assurance is much
improved, as this approach prevents the historically very problematic F1-type flaws. However,
without an end-to-end verification, F2-type flaws still cannot be ruled out.

Ideally, the tool’s specification should include semantic guarantees: if the tool claims a
computed number to be a response-time bound, then there does not exist a schedule (i.e., a
trace of the analyzed model) in which the bound is exceeded. Clearly, this would be the most
desirable level to target as it completely eliminates the risk of any flaws in categories F1–F4.

The limiting factor is the implied amount of work: not only would such a semantically
rich specification require a complete verification of the underlying theory (e.g., as done in
Prosa [11]), but to also categorically avoid F5- and F6-type issues, a deep specification
and verification of all “plumbing” code (such as the input format parser) would have to be
carried out. With the contemporary software ecosystem and verification tools, this would be
a daunting task of questionable feasibility. On top of this, a verified RTA tool would not
inherently produce any additional evidence of correctness besides the computed bounds (i.e.,
its output is still not explainable). On the plus side, there is no reason to doubt that such
a tool could be fast. However, to the best of our knowledge, there have been no attempts
to-date to verify an entire RTA tool, likely due to the enormous effort that would be required.

Results validator. A different approach that side-steps the issue of having to verify the
entire RTA tool with all its real-world complexities is to instead check only the analysis
results [23, 36]. The high-level idea is to leave the actual RTA implementation unverified

M. Maida, S. Bozhko, and B. B. Brandenburg 19:5

(with all the software-engineering flexibility this brings), and to develop a second, verified
tool that independently validates the results of the RTA tool. If it is fundamentally easier to
check a solution than to find one, then this approach is beneficial in principle.

While much more attainable than a fully verified RTA implementation – as successfully
demonstrated on industrially relevant network analyses [23, 36] – it comes at the price of
having to develop the formally verified results validator, which is subject to all the afore-
mentioned challenges related to verified code. Case in point, Fradet et al.’s CertiCAN [23]
checking procedure is first verified with Coq and then automatically extracted from Coq as
an OCaml file. However, to actually obtain a useful, runnable tool, the extracted OCaml
code must still be combined with non-verified support code to handle “plumbing” tasks such
as I/O and parsing. As a result, F5- and F6-type issues remain plausible concerns.

Proof-carrying bounds. In this paper, we seek to develop a way of obtaining trustworthy
response-time bounds that avoids verifying or trusting the RTA tool altogether. To this
end, inspired by Appel’s seminal work on foundational proof-carrying code [3], we transfer
the foundational approach to the RTA setting. To elaborate on the original concept, proof-
carrying code is a (usually) low-level program, such as a sequence of instructions emitted by
a compiler, that comes with an independently checkable proof establishing its properties [38].
A foundational proof-carrying code [3] has a proof that relies only on the foundations of
mathematical logic, hence minimizing the number of additional components (ad-hoc type
systems, verification condition generators, one-off output checkers, etc.) to be trusted.

Likewise, we require a foundational RTA to produce response-time bounds that come with
a proof of correctness relying only on the mathematical logic implemented by the underlying
proof assistant, i.e., a foundational RTA yields proof-carrying response-time bounds.

To demonstrate the practicality of this idea, we present the first such tool, POET, as
a proof of concept. By analogy, POET behaves like a successful student during an exam:
when faced with a tricky computational problem (i.e., finding the response-time bound of
a task), POET not only yields the final solution (i.e., a number), but also justifies with a
sequence of proof steps why the solution is correct. In other words, the solution is explainable
in the sense that its derivation can be understood without interviewing the student about
their thought processes (i.e., knowing POET’s source code). POET thus does not have to
be trusted at all, since its answer can be independently verified.

As a foundational proof, by definition, depends only on the foundations of mathematical
logic, it necessarily includes a complete justification of both the underlying RTA and how it
applies to the specific workload. POET hence categorically avoids all flaws of types F1–F5,
and with light supervision (Section 5) sidesteps F6-type issues altogether, while inherently
producing independently checkable evidence of timeliness.

The Achilles’ heel of the foundational approach, however, is that its runtime is closely
tied to that of the underlying proof assistant that checks the generated certificates, which, as
we discuss in Sections 6–8, was a serious challenge in the realization of POET.

3 Background

POET relies on abstract RTA [8], which has been integrated into Prosa [40], a Coq [42]
framework. We briefly review each of these building blocks in turn.

Coq [42] is a widely-used, mature interactive theorem prover based on the calculus of
inductive constructions [15, 16, 39] that provides rich support for the mechanization (i.e.,
the formalization and machine-checked verification) of both nontrivial mathematical theories
(e.g., [25, 26]) and large software systems (e.g., [35]). Coq provides primarily two languages:

ECRTS 2022

19:6 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

Gallina, a formal, dependently typed specification language used to write mathematical
definitions, state theorems, and implement functional programs, and Ltac, an untyped macro
language used to steer the proof engine.

Coq is not a fully automatic theorem prover: while proof checking is automatic, proof
authoring typically requires human intervention. Once a theorem is stated, it is necessary to
provide a sequence of Ltac tactic applications (each of which can be seen as a single step of
the proof) that, starting from the stated hypotheses, allows the proof engine to reach the
claimed conclusion. As Coq allows the user to create new tactics via the Ltac language, it
is possible to introduce domain-specific automation. POET heavily relies on this feature to
completely automate the proof generation process.

Once a Coq source file (. v) has been written, it can be compiled into a lower-level
representation (generating a . vo file) and finally verified by the standalone proof checker
coqchk. The Coq compiler, coqchk, and their dependencies, form POET’s entire TCB.

Prosa [40], the schedulability analysis framework underlying POET’s certificates, uses
Coq and its popular extension ssreflect [37]. Starting from classic real-time systems
concepts, such as job, task, processor, and arrival curve, the contributors of Prosa both
mechanized classical results (e.g., the optimality of the earliest-deadline-first scheduling
policy) and developed new theories (e.g., [10, 22, 24]).

For our purposes, the most relevant theory in Prosa is abstract RTA (aRTA) [8],
which formalizes the well-known busy-window principle to derive a generic RTA applicable
to different types of workloads, scheduling policies, and preemption models. aRTA has
been instantiated for two scheduling policies (earliest-deadline-first, fixed-priority) and four
preemption models (preemptive, non-preemptive, limited-preemptive, floating non-preemptive)
in every possible combination, yielding eight different fully verified RTAs [8].

Given that all proofs have been mechanized in Prosa, a high degree of trust may be
placed upon the correctness of aRTA and its instantiations. However, a mechanized RTA
theory, much like its traditional pen-and-paper counterpart, only describes and justifies under
which conditions a claimed response-time bound is valid, but it is not, per se, an executable
program that can yield numerical results given a concrete task set. Rather, the main aRTA
proof follows an axiomatic approach by treating the scheduler, the tasks, and the claimed
response-time bounds as abstract variables on which a number of assumptions are made.
The abstract result is then derived from these assumptions.

The key idea at the heart of POET is that, by providing instantiations for all variables
(i.e., by assigning concrete values), along with a proof that all of aRTA’s assumptions are
satisfied, aRTA can be put to practical use to verify precomputed response-time bounds.
POET thus inherits the system model from aRTA, which we summarize next.

System model. aRTA assumes a discrete time model, where ε
∆= 1 represents the smallest,

indivisible unit of time (e.g., a processor cycle). The system is comprised of a set of n

independent tasks τ = {τ1, . . . , τn} scheduled on a uniprocessor. Each task τi is characterized
by its worst-case execution time Ci, its relative deadline Di, and an arrival bound αi(∆)
that upper-bounds the number of new jobs (i.e., task activations) that arrive in any interval
of length ∆. The two considered preemption models are expressed through each task’s
run-to-completion threshold RCT i, where RCT i = ε in the case of fully non-preemptive tasks,
and RCT i = Ci in the case of fully preemptive tasks. In the case of fixed-priority scheduling,
each task also has a fixed priority πi. As usual in schedulability analysis, any scheduling
overheads are presumed to be negligible or already integrated into each task’s cost Ci.

M. Maida, S. Bozhko, and B. B. Brandenburg 19:7

Over time, each task τi produces an infinite sequence of jobs {Ji,0, Ji,1, . . .}. We let J
denote the set of all jobs of all tasks. Each job Ji,j ∈ J has an arrival time ai,j , an execution
time ci,j ≤ Ci, and an absolute deadline di,j = ai,j + Di. The number of job arrivals in any
interval is constrained by the arrival bound: ∀τi, ∀t, ∀∆, |{Ji,j | t ≤ ai,j < t + ∆}| ≤ αi(∆).

Finally, for ease of reference, the arrival sequence a(t) ∆= {Ji,j | ∀i, j : ai,j = t} is a
function that maps each instant t to the (possibly empty) set of jobs released at t. The
arrival sequence and the jobs it contains are the only non-instantiated variables in POET’s
certificates, meaning that the response-time bounds are proven for all possible arrival
sequences respecting the arrival curve and worst-case execution time (WCET) of each task.

Response-time bound. By design, aRTA is independent of specific scheduling policies and
preemption models. This is achieved by formulating the RTA problem in an abstract way
that captures the essential relationships between the task set, the scheduling policy, the
preemption model, and the worst-case response time of a task under analysis [8]. We omit
these general technical details here and instead focus on the specific cases relevant to POET.

Intuitively speaking, aRTA analyzes points in the schedule at which the system is quiet,
which means that no potentially interfering workload is pending (w.r.t. the task under
analysis τi). A job’s busy window is the interval between the two closest quiet times enclosing
both the job’s arrival and completion (by definition, no quiet time occurs while the job is
pending). The core of aRTA revolves around a worst-case analysis of the busy window of an
arbitrary job Ji,j of the task under analysis τi. As Ji,j ’s busy window ends only when Ji,j

completes, a finite busy window implies a response-time bound.
To this end, an aRTA instantiation must provide (and prove correct) two essential inputs.

First, there must exist a finite bound L on the maximum busy-window length of any job
of τi, as otherwise the busy-window principle is not applicable. Second, aRTA requires
a policy-specific interference bound function IBF i(A, ∆) to be defined, with the following
semantics [8]: if a job Ji,j is released A time units after the beginning of its busy window
(where A ≥ 0, i.e., A is Ji,j ’s relative release offset), then IBF i(A, ∆) is an upper bound on
the maximum amount of potentially interfering workload arriving in any interval of length ∆.

Given a task under analysis τi with a maximum busy-window length L and a policy-
specific IBF i(A, ∆), aRTA proceeds by considering every possible arrival offset A ∈ [0, L).
For each such offset A, a solution F to the fixed-point equation

A + F = RCT i + IBF i(A, A + F) (1)

is required to exist. Intuitively, F is the maximum time it takes for a job with arrival
offset A to receive sufficient service to certainly reach the run-to-completion threshold RCT i,
at which time, by definition, it cannot be preempted anymore. Therefore, the response
time of a job with arrival offset A can be bounded by F + (Ci − RCT i). Task τi’s overall
response-time bound R is given by the maximum F encountered solving Equation (1) for
each offset A ∈ [0, L).

Search space. Practically speaking, it is impossible to check every possible arrival offset
A ∈ [0, L) since, for task sets specified with nanosecond resolution, L easily reaches magnitudes
in the order of trillions. Fortunately, it is not necessary to check every single point in the
interval, since the only varying term in Equation (1) is IBF i(A, A+F). Hence, aRTA defines
the search space of the task under analysis τi as

Ai
∆= {0} ∪ {A ∈ (0, L) | ∃∆, IBF i(A − ε, ∆) ̸= IBF i(A, ∆)} (2)

ECRTS 2022

19:8 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

Listing 1 An example POET input file (in YAML format) specifying two tasks scheduled under
the fully-preemptive fixed-priority policy. The lower-priority task (with ID 2) is periodic (Line 10)
and has a deadline exceeding the period (Line 11). The higher-priority task (with ID 1) is a sporadic
task characterized by an arrival-curve prefix (Line 5), which is specified by the length of the prefix
(220) and the list of steps of the curve in the prefix: α1(∆) = 1 for ∆ ∈ [1, 105) and α1(∆) = 2 for
∆ ∈ [105, 220). The initial value α1(0) = 0 can be omitted by convention.

1 scheduling policy: fixed-priority
2 preemption model: fully-preemptive
3 - id: 1
4 worst-case execution time: 50
5 arrival curve: [220,[[1,1],[105,2]]]
6 deadline: 100
7 priority: 2
8 - id: 2
9 worst-case execution time: 10

10 period: 30
11 deadline: 100
12 priority: 1

The search space Ai restricts the analysis to such offsets A at which the interference bound
function IBF i changes in value, hence excluding all the plateaus of the function. In practice,
this restriction results in a sparse search space, which is key to obtaining a practical runtime.

4 POET: Design and Workflow

POET is the first foundational RTA tool: it generates formal Coq proofs, i.e., certificates,
establishing the correctness of its computed response-time bounds. As a proof of concept, it
supports four concrete aRTA instantiations. Specifically, it supports real-time workloads
comprised of recurrent, independent, arbitrary-deadline tasks under fixed-priority (FP) and
earliest-deadline-first (EDF) scheduling with both the fully-preemptive (FP) and fully non-
preemptive (NP) preemption models. Task activations may be periodic or sporadic, or defined
by an arbitrary arrival curve. Due to POET’s novel and unique combination of objectives
and features, its design and implementation posed some unusual challenges. We begin with
an overview of these challenges, key design decisions, and the resulting workflow, and then
discuss central issues in more detail in the subsequent sections.

The first major requirement is usability. For foundational RTA to be successful it
must have a low barrier to adoption, which means that POET must remain accessible to
a general audience without any expertise in formal verification. In particular, users must
not be expected to be proficient in authoring Coq proofs. We therefore designed POET to
require only a human-readable YAML file specifying the task set, the scheduling policy, and
the preemption model. Listing 1 shows an example. From this simple input, which does not
differ significantly from that of other, unverified RTA tools, POET generates verified RTA
results fully automatically, without any human interaction or need for verification expertise.

The second major requirement is transparency. Since the process of calculating the
response-time bounds, generating formal proofs of their correctness, and then machine-
checking the proofs is entirely automated, it is essential to prevent silent failures. It is
thus necessary to ensure explainability of the results, that is, it must be readily possible

M. Maida, S. Bozhko, and B. B. Brandenburg 19:9

Figure 1 The POET workflow: (a) the YAML input file is used by POET to instantiate one
certificate per task; (b) each certificate is compiled and verified using Coq. The procedure is fully
automated, but open to human inspection at each step.

for a human to scrutinize in detail and fully understand the certificates. The certificates
hence must be optimized for readability and any generated artifacts must be limited to a
comprehensible size and scope. Moreover, there are ways in which machine-checked proofs
might still not justify the intended conclusions. This issue is further discussed in Section 5.

A major challenge arises from POET’s support of arbitrary arrival curves. By
supporting not only the classic periodic and sporadic task models, but also any workload
that can be characterized with arbitrary arrival curves, POET gains broad applicability to
real-world workloads (e.g., bursty workloads, workloads with jitter, irregular arrival processes,
trace-based empirical arrival bounds, etc.). However, as defined in Section 3, an arrival
curve is a function on an infinite time domain. In the input to POET, such an arrival curve
necessarily needs to be truncated to a finite arrival-curve prefix (e.g., Line 5 in Listing 1).
Unfortunately, in the context of a Coq proof, representing and computing with arrival-curve
prefixes is far more tricky than one might initially suspect. In Section 6, we discuss the
strategies adopted in POET and the resulting accuracy vs. efficiency trade-offs.

Last but not least, as already mentioned in Section 2, the computational efficiency
of the certification process proved to be a major hurdle in the implementation of POET,
ultimately affecting its design. Specifically, numerically large computations are infeasible
with the unary representation of numbers employed in ssreflect, and hence by extension
also Prosa and aRTA. However, to be practical, POET’s certificates need to support
large-magnitude parameters because in real-world task sets periods, costs, and deadlines
are often expressed in nanoseconds or processor cycles. We discuss the strategies that we
adopted in POET to realize nonetheless acceptably fast calculations in Section 7.

4.1 Implementation and Workflow

The usability and transparency considerations lead to the workflow illustrated in Figure 1.
The entire procedure comprises two phases, namely (a) the generation of certificates starting
from an input file provided by the user, and (b) the Coq compilation and proof-checking.

The input file contains all necessary information about the task set, the scheduling policy,
and the preemption model (recall Listing 1). Given an input file, POET produces one
certificate (. v file) per task by instantiating a template specific to the given scheduling policy
and preemption model. During this phase, Coq itself is not involved in any way.

ECRTS 2022

19:10 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

POET is implemented as a simple Python tool and acts for the most part as a
straightforward template engine. Certificate generation begins with a template similar to
Listing 2 (discussed in Section 4.2 below) that, instead of containing specific data (e.g., task
declarations, the value of L and R, etc.), has a uniquely named placeholder at each relevant
position. POET simply replaces each placeholder with concrete data taken either from the
YAML input file (e.g., task parameters) or computed on the fly (e.g., the value of R), and
for each task stores the result as a new . v file containing the final proof script.

Using the same principle, POET also generates data-dependent proof scripts. For instance,
each certificate needs a proof script showing that each point of the input-dependent search
space can be paired with a fixed-point solution of Equation (1). However, the generation
of data-dependent proof scripts is kept as simple as possible by implementing as much
case-analysis logic as possible as generic Ltac tactics that automate the proof. Overall,
the lion’s share of the development effort has gone into the certificate templates and the
supporting Coq libraries, whereas the Python component is relatively small and mundane
in comparison.

Once the certificates are in place, POET triggers first the Coq compiler, which will
produce compiled files (. vo) containing low-level proof terms, and finally coqchk, which
verifies the proof terms. By design, phases (a) and (b) are independent and performed
by different tools (POET and Coq). In particular, the second phase – compilation and
verification of the certificates – may be performed repeatedly and on different machines.

The generated certificates establish the soundness of the bounds computed by POET,
but do not make any tightness claims. A bug in POET could thus lead to the rejection of
feasible task sets, or might cause pessimism in the claimed bounds, but it cannot result in
incorrect bounds, as coqchk will reject any flawed certificates claiming unsafe bounds.

We chose to implement POET in Python because of our familiarity with the language
and its convenient facilities for basic file handling and text manipulation. By design, a
foundational RTA does not have to be verified itself, so the fact that Python is notoriously
difficult to verify (being a dynamically typed scripting language) did not hinder us.

4.2 The Structure of a Certificate
Listing 2 shows the certificate generated by POET for the second task of the input file of
Listing 1. The certificate starts by importing the correct support library in Line 1, which
here is the fully-preemptive FP instantiation of aRTA in the Prosa open-source framework.

The actual task-specific content starts in Line 8, which opens a scope for the subsequent
declarations. The certificate continues with straightforward declarations of the tasks in the
task set (Lines 12–23), the task set (Line 25), the identity of the task under analysis (line
26), and the analysis results (Lines 28 and 29). Recall that L is a bound on the maximum
busy-window length and R is the claimed response-time bound. Both L and R are computed
by POET; the goal of the certificate is to prove that R is indeed an upper bound on the
actual response time of any job of the task under analysis.

The first four lemmas proven by POET are auxiliary facts documenting that the user-
provided parameters are valid (e.g., periods and task costs are positive, arrival curves are
monotonic, etc.). Listing 2 shows one such example lemma in Lines 36–37. The next lemma
in Lines 87 and 88 establishes that the bound on the maximum-busy interval calculated
by POET is correct. Specifically, aRTA [8] requires L to be the solution to a fixed-point
equation that depends on the scheduling policy and preemption model.

Next, in lines 96-101, the arrival sequence is introduced. Note that no concrete definition
is given: the certificate treats the arrival sequence as a variable, i.e., the result is proven for
all possible arrival sequences respecting the hypotheses H1, . . . , H5 stated in lines 97-101. The

M. Maida, S. Bozhko, and B. B. Brandenburg 19:11

Listing 2 A simplified version of the certificate generated by POET for the second task of the
workload given in Listing 1. All proofs and comments, and some intermediate lemmas and auxiliary
definitions, have been omitted for brevity, and some details (e.g., lemma names) have been simplified.
The notation [::a;b;c] is ssreflect syntax for a list comprised of three elements a, b, and c.

1 Require prosa.results.fixed_priority.rta.fully_preemptive.
[. . .]

8 Section Certificate.
[. . .]

12 Let tsk01 := {|
13 task_id := 1;
14 task_cost := 50;
15 task_deadline := 100;
16 task_arrival := Curve_Prefix (220, [::(1, 1);(105, 2)]);
17 task_priority := 2 |}.
18 Let tsk02 := {|
19 task_id := 2;
20 task_cost := 10;
21 task_deadline := 100;
22 task_arrival := Periodic 30;
23 task_priority := 1 |}.
24

25 Let ts := [::tsk01;tsk02].
26 Let tsk := tsk02.
27

28 Let L := 80.
29 Let R := 60.

[. . .]

36 Lemma valid_arrival_curve :
37 ∀ task, task ∈ ts → max_arrivals tsk 0 = 0 ∧ monotone leq (max_arrivals tsk).

[. . .]

87 Lemma L_fixed_point :
88 total_hep_rbf ts tsk L = L.

[. . .]

96 Variable arr_seq : arrival_sequence Job.
97 Hypothesis H1 : arrival_sequence_uniq arr_seq.
98 Hypothesis H2 : all_jobs_from_taskset arr_seq ts.
99 Hypothesis H3 : arrivals_valid_job_costs arr_seq.

100 Hypothesis H4 : consistent_arrival_times arr_seq.
101 Hypothesis H5 : respects_max_arrivals arr_seq ts.

[. . .]

106 Definition sched := uni_schedule arr_seq.
[. . .]

126 Definition F_solutions := [::60;40;20].
127

128 Lemma R_is_maximum :
129 ∀ A, is_in_search_space tsk L A →
130 ∃ F, task_rbf tsk (A + 1) + total_ohep_rbf ts tsk (A + F) ≤ A + F ∧ F ≤ R.

[. . .]

143 Theorem R_bounds_response_time :
144 task_response_time_bound arr_seq sched tsk R.
145 Proof.

[. . .]

148 apply arta_response_time_bound_fp_fp.
[. . .]

167 Qed.
[. . .]

172 Corollary R_respects_deadlines :
173 task_response_time_bound arr_seq sched tsk R ∧ R ≤ task_deadline tsk.

[. . .]

181 End Certificate.
182

183 Section AssumptionLessExample.
184 Definition concrete_arr_seq := concrete_arrival_sequence ts generate_jobs_at.

[. . .]

186 Theorem R_bounds_response_time_concrete:
187 task_response_time_bound concrete_arr_seq (sched concrete_arr_seq) tsk R.

[. . .]

200 End AssumptionLessExample.

ECRTS 2022

19:12 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

hypotheses state that the arrival sequence contains each job only once (H1) and only contains
jobs of tasks in the task set (H2). Further, each job present in the sequence has a positive
cost that does not exceed its task’s WCET (H3) and its position in the arrival sequence is
consistent with its arrival time (H4). Finally, for each task in the task set, the cumulative
number of job arrivals is bounded by the arrival curve of the task (H5). Importantly, the
definitions of H1, . . . , H5 reside in Prosa, from which the certificate derives its semantics.

In Lines 126–130, the certificate shows that Equation (1) for fully-preemptive FP schedul-
ing, as specified by the user in Listing 1, holds for every A in the search space. To this end,
a sequence of solutions – for each A, the corresponding F in Equation (1) – is provided by
POET in Line 126. The data-dependent proof script (here omitted) performs a case analysis
for each A in the search space and presents the corresponding solution to the proof engine.

The overall correctness claim is stated in Lines 143–167, which states that R is indeed a
response-time bound for the task under analysis. Crucially, to prove this fact, POET applies
the main aRTA theorem for fully-preemptive FP scheduling [8] in Line 148.

Again, the definition of the predicate task_response_time_bound used in Line 144
resides in Prosa and is not specific to (nor in any way influenced by) POET. This is an
important point: any formally verified result is useful only as far as the specification that
is shown to hold is semantically meaningful. POET therefore does not provide its own
semantic specification. Instead, it delegates the semantic modeling of real-time scheduling
entirely to prior work and reuses an established specification, namely Prosa [11].

Finally, the corollary in Lines 172–173 explicitly confirms the desired result: the deadline
of the task under analysis is always respected. As a safeguard against accidental omission
of the main proof, the corollary repeats the claim from Line 144, which ensures that the
corollary cannot be proven without first completing the main proof.

The main certificate ends in Line 181, which closes the scope of the non-instantiated
variable declared in Line 96, namely the arrival sequence arr_seq. The remaining section in
Lines 183–200 is another safeguard: it repeats the main theorem of the certificate (Line 144)
in an assumption-less context (i.e., without arr_seq in scope), for a concretely defined arrival
sequence. The purpose of this section is to demonstrate that the hypotheses H1, . . . , H5
stated in lines 97-101 are free of contradictions, as we explain in more detail in Section 5.

Overall, the generated certificate resembles the flow of traditional pen-and-paper reasoning
and is sufficiently short to be inspected manually (200 lines in total). In particular, all proofs,
which are responsible for the bulk of the total line count, can be safely skipped since they
are verified by coqchk. Importantly, the certificate is intentionally readable and simple, in
the sense that only very little experience with Gallina is required to make sense of it.

5 Trustworthiness of the Procedure

By design, POET itself is not part of the TCB. In particular, any critical bugs in the tool
that result in incorrect response-time bounds will not go unnoticed by Coq (which is the
TCB) – any attempt to compile and check such corrupted certificates will result in obvious
and unmistakable errors. In this section, we thus focus on issues that could lead to silent
failures: how could auto-generated certificates still be misleading even if they are accepted
as valid by the proof checker?

Incomplete proofs. Since POET is not assumed to be correct, it might conceivably generate
an incomplete (or, in the extreme case, even completely empty) certificate that Coq would
then successfully check: a cleanly truncated (or empty) file does not contain any incorrect
proofs and hence does not give the proof checker any reason to reject it. Coq further lets the
user admit theorems, i.e., to accept them as valid without proof, treating them as axioms.

M. Maida, S. Bozhko, and B. B. Brandenburg 19:13

Though these edge cases could easily be programmatically detected by POET itself,
doing so would implicitly turn the tool into a trusted component. For the same reason,
POET cannot be in charge of reporting the results of the verification attempt to the user.
After the certificates have been generated, POET must not intervene in any way. Therefore,
any action that needs to be executed after the creation of the certificates is handled entirely
in the Coq environment. This includes printing of the results, which is done directly in Coq,
and checking that no theorems have been admitted (using coqchk).

To entirely eliminate any need to trust POET, the certificates and the output they
generate are designed to be human-readable. Although POET is fully automated, the
process is transparent and open to human supervision. In particular, a user may (i) observe
the outputs of the Coq compiler and coqchk to assess whether they succeeded, (ii) ensure
that the input and the generated certificates match in terms of task set, task parameters,
scheduling policy, and preemption model (e.g., the file in Listing 1 with Lines 1–25 of
Listing 2), and (iii) to ensure that the response-time claim is included in the verified
certificate (e.g., check whether the corollary in line 172 of Listing 2 is present).

Finally, the certificates themselves are completely transparent, too: it is easy for a user
with Coq expertise to scrutinize (i.e., interactively step through) the complete list of proof
steps that lead to the response-time bound. While we do not expect the typical user to
inspect certificates that closely, striving for readability and making the certificates generally
inviting increases their quality and ensures explainability of the results. Furthermore, it
renders them suitable as evidence of temporal correctness since a third-party auditor or
certification authority can independently study and dissect POET’s certificates down to
their fundamental definitions (as provided by Prosa) and the axioms of Coq’s logic.

Although human supervision is always welcome, only step (i) – carefully reading the
analysis outputs, a degree of supervision that any RTA tool requires – is essential. The
rather hypothetical errors caught by steps (ii) and (iii) are unlikely to manifest accidentally,
and are thus less relevant in practice. In any case, none of the steps is onerous, and each can
be easily completed without in-depth verification expertise.

Contradictions. A second, more subtle type of error is related to the possibility of con-
tradictory hypotheses in axiomatic theories such as aRTA: conclusions reached in a sound
manner from contradictory premises may still be incorrect. This potential pitfall has been
previously described in-depth by Cerqueira et al. [11]. As it is generally not possible for Coq
to detect contradictory hypotheses automatically, it is necessary to establish the absence
of contradictions on a case-by-case basis. Concretely, this requires demonstrating that it is
possible to instantiate all variables such that all hypotheses are respected simultaneously.

POET’s certificates generalize over only one variable, namely the arrival sequence arr_seq

(Lines 96–101 of Listing 2). Recall from Section 3 that the arrival sequence yields, for any
given time t, the sequence of jobs (each with a specific cost) that arrive at time t. The arrival
sequence is intentionally left uninstantiated in the certificate’s main section (Lines 8–181)
as the response-time bound must hold for any possible pattern of arrivals that respects the
workload constraints (e.g., that jobs arrive periodically).

Nonetheless, to formally prove the absence of contradictions, POET generates for each
task, in addition to the general response-time bound (Lines 143–167), a second version of
the theorem in a separate section devoid of any variables or hypotheses (Lines 183–200 in
Listing 2). In this assumption-less example, the response-time bound is proven once more to
hold by applying the general result to a concrete arrival sequence with fixed job costs, which
establishes that the general result does not make any contradictory assumptions. Technically,

ECRTS 2022

19:14 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

in Coq terminology, the type of the main result is shown to be inhabited. At this point, as
no variable or hypothesis is in scope, only a soundness flaw in coqchk (which is part of the
TCB) could allow an incorrect result to be proved.

To establish that the main result’s hypotheses are contradiction-free, it actually suffices to
instantiate any valid arrival sequence, including pathological ones in which no job ever arrives.
However, from a user’s perspective, it is more confidence-inspiring to use a nontrivial workload.
POET therefore generates an arrival sequence that, at any time, greedily maximizes the
number of arrivals of each task and their costs while respecting all workload constraints.

To summarize, neither POET nor the underlying RTA are part of the TCB, and hence do
not have to be trusted, because (1) the results of the analysis are communicated from within
the Coq environment (and not by POET itself), (2) any program defects in POET or flaws
in the underlying RTA that lead to incorrect response-time bounds will be caught by Coq (the
proof checker would fail), (3) the remote chance of mismatching assumptions in the certificate
(e.g., wrong task parameters or a change in scheduling policy) or certificate truncation are
immediately obvious to lightweight human supervision since POET’s certificates are short
and designed for readability, and (4) the risk of contradictory hypotheses is mitigated by the
inclusion of an assumption-less example that exercises the general bound in a verified manner.

6 Supporting Arbitrary Arrival Curves

A major challenge affecting POET is the representation and extrapolation of arbitrary arrival-
curve prefixes, and the fast computation of the aRTA search space Ai (recall Equation (2)),
which is closely linked to it. To reiterate, support for arbitrary arrival curves in POET is
desirable due to the flexibility it affords, enabling support for a wide range of real-world arrival
processes that are neither perfectly periodic nor described well with a single, scalar minimum
inter-arrival time. Fortunately, aRTA already supports arbitrary arrival curves [8], but only
at an ideal mathematical, non-instantiated level (i.e., aRTA’s arrival curves are functions on
an infinite domain, and not some finite representation thereof). In contrast, POET needs to
compactly represent and efficiently compute with concretely defined arrival-curve prefixes.

As sketched in Listing 1, POET expects each arrival-curve prefix to be compactly
expressed with a horizon h and a sparse sequence of m steps s1, . . . , sm. The horizon h

defines the length of the prefix (i.e., the maximum ∆ covered). A step sk = (∆k, ck) indicates
that the arrival curve αi “takes a step” at ∆k: αi(∆k − ε) < ck and αi(∆k) = ck.

Given an arrival-curve prefix with h < L, it becomes necessary to extrapolate during
analysis. Let α∗ denote the arrival curve extrapolated from the finite prefix, and let
s(t) ≜ max ({0} ∪ {ck | 1 ≤ k ≤ m ∧ ∆k ≤ t}) denote the result of looking up the number
of arrivals in an interval of length t ≤ h in the given sequence of steps. Then:

α∗(∆) ≜ ⌊∆/h⌋ · s(h) + s(∆ mod h) (3)

This choice represents a trade-off between the speed of extrapolation and analysis precision.
Equation (3) does not guarantee an optimal extrapolation – depending on the given prefix,
an extrapolation exploiting the arrival curve function’s sub-additivity may be less pessimistic.
Nonetheless, it provides the key advantages of being simple and fast to compute. In fact,
each time the proof engine has to evaluate Equation (1), several arrival curves are evaluated.
Since traversing the aRTA search space is one of the most expensive steps of certificate
checking (as we show in Section 8), it is desirable to keep Equation (3) as simple as possible.

As shown in Listing 1, POET has built-in support for periodic and sporadic tasks.
However, as a task τi with period or minimum inter-arrival time Ti can be easily described
with an arrival curve αi(∆) ≜ ⌈∆/Ti⌉, POET’s certificates work exclusively with arrival-
curve prefixes. Specifically, a task with period or minimum inter-arrival time Ti is internally

M. Maida, S. Bozhko, and B. B. Brandenburg 19:15

represented with an arrival-curve prefix with horizon h = Ti and a single step s1 = (1, 1).
This conversion is lossless: in this important special case, Equation (3) does not introduce
any pessimism since α∗(∆) = ⌊∆/h⌋ · s(h) + s(∆ mod h) = ⌊∆/Ti⌋ · 1 + s(∆ mod Ti), which
is equal to ∆

Ti
+ 0 = αi(∆) if Ti divides ∆ and equal to ⌊∆/Ti⌋ + 1 = ⌈∆/Ti⌉ = αi(∆)

otherwise.
Critically, the automatic conversion to arrival-curve prefixes is performed in POET’s

Coq libraries, and not in the Python part, hence introducing no verification gap whatsoever
while still freeing the user from having to think about this detail.

As already mentioned, the computation of the search space is the primary bottleneck
of POET. Recall from Equation (2) that aRTA defines the search space Ai for each task τi

as the set of points at which the interference bound function IBF i changes in value. Although
aRTA correctly anticipates that a sparse search space will be necessary for practical use [8],
it does not provide a way to compute it. However, the search space must be computed by the
proof engine to validate POET’s fixed-point solutions (e.g., in Line 126 of Listing 2).

To this end, we exploit the structure of Equation (3). Since the function IBF i depends
on the concrete scheduling policy, we discuss FP and EDF scheduling in sequence.

In the case of FP scheduling, Equation (2) reduces to the set of points at which the
extrapolated arrival curve of the task under analysis τi changes in value in the interval [0, L):
AFP

i = {A | A < L ∧ α∗
i (A) ̸= α∗

i (A + ε)} [8]. As shown in POET’s support libraries (which
are checked as part of every certificate), AFP

i can be easily over-approximated by repeatedly
concatenating task τi’s list of steps s1, . . . , sm.

AFP
i ⊆ {lh + s1, . . . , lh + sm | 0 ≤ l ≤ ⌊L/h⌋} (4)

Equation (4) defines a superset of the actual search space because some of the included points
may exceed L (e.g., if ⌊L/h⌋ · h + sm > L). This does not affect the analysis’s correctness as
there is no harm in evaluating superfluous offsets [8].

In the case of EDF, the search space is far more complex since it involves every task in the
task set: AEDF

i = {A | A < L ∧ ∃ τj ∈ τ, α∗
i (A + Di − Dj) ̸= α∗

i (A + ε + Di − Dj)} [8]. For
ease of computation, we decompose AEDF

i on a per-task basis such that AEDF
i =

⋃
τj∈τ AEDF

i,j ,
where AEDF

i,j = {A | A < L ∧ α∗
i (A + Di − Dj) ̸= α∗

i (A + ε + Di − Dj)}. Note that Di−Dj

is a constant on both sides of the defining inequality. If removed from both sides, we
obtain exactly AFP

i ; that is, AEDF
i,j can be thought of as AFP

i shifted by Dj −Di time units.
Analogously to Equation (4), POET thus computes AEDF

i,j as

AEDF
i,j ⊆ {lh + s1 + Dj −Di, . . . , lh + sm + Dj −Di} (5)

for 0 ≤ l ≤ ⌊L/h⌋. Again, this is an over-approximation; in particular, any negative points
are simply ignored. Finally, Equations (4) and (5) demonstrate the key benefit of the fast
extrapolation rule in Equation (3): the search space can be over-approximated easily and
relatively quickly.

7 Scalability of the Certification Procedure

One of the major challenges we encountered during the development of POET is the poor
computational performance of ssreflect’s standard number representation. Without a
working solution, this seemingly small detail can jeopardize the entire idea of foundational
RTA – for which computation in the proof engine is essential.

POET’s certificates depend on Prosa, and therefore implicitly on ssreflect, which
uses a unary representation of natural numbers. The use of a unary number representation
has clear advantages when writing proofs, as it simplifies inductive reasoning and case

ECRTS 2022

19:16 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

Listing 3 Two working scripts that prove the same lemma. However, (a) is impacted by a large
unary number, whereas in (b) no expensive computation is triggered in the proof.

(a)

1 Let x := 1000000000000000000000.
2

3 Lemma Ex1 :
4 forall y,
5 1 + x − x + y = 1 + y.
6 Proof.
7 by move⇒ y; vm_compute.
8 Qed.

(b)

1 Let x := 1000000000000000000000.
2

3 Lemma cancel_n : forall n, 1 + n − n = 1.
4 Proof. by induction n. Qed.
5

6 Lemma Ex2 : forall y, 1 + x − x + y = 1 + y.
7 Proof. by move⇒ y; rewrite cancel_n.
8 Qed.

analyses. However, even a moderately large number (like one billion), when encoded in unary,
takes considerable time to instantiate and can easily trigger stack overflows in the Coq
compiler. Roughly, on our test machine (described in Section 8), the certification process
stays somewhat feasible despite the unary representation (i.e., it takes “only” several hours)
as long as costs, periods, and deadlines remain in the order of 106 (e.g., microseconds scale).

For instance, consider the task set in Listing 1, which uses milliseconds as its unit of
measure. If we instead express all parameters in microseconds (i.e., multiply worst-case
execution times, periods, and deadlines by 103), we do not, in principle, change the RTA’s
complexity. However, when using ssreflect’s number representation, this has an enormous
impact on performance, pushing the certification time from less than three seconds to around
15 minutes. A unary representation hence renders it impossible to express task parameters in
nanoseconds or as processor cycle counts (and would thus severely limit POET’s practicality).

To illustrate the challenge posed by unary calculations, consider the trivial example in
Listing 3a. Despite its simplicity, and despite the fact that the given proof is correct, lemma
Ex1 cannot be compiled by Coq in practice (doing so would require an unreasonable amount
of time and memory). More precisely, to reduce 1 + x − x by computation, Coq needs to
build a unary representation of x, which is prohibitively expensive due to the magnitude of x.

Fortunately, it is also possible to proceed in another way that avoids the cost of unary
computation, as shown in Listing 3b, where the magnitude of x does not impact the
compilation time. In the proof of lemma Ex2, the auxiliary lemma cancel_n is used to
rewrite 1 + x − x + y into 1 + y. Since cancel_n is valid for any number n, 1 + x − x is never
evaluated, and the lemma is compiled by Coq virtually instantaneously.

The example shows that the proof engine is able to operate in the presence of large
numbers, provided that no computation is triggered. Unfortunately, this principle alone
is not enough for POET: any time a proof depends on the actual value of a number, a
computation is still necessary. Unfortunately, it is inherent in the nature of a response-time
bound to depend on specific, large numbers, which hence manifest in its proof.

The immediate solution to the scalable-computations problem would be to change the
employed number representation entirely to binary. This is indeed possible in principle, but
would imply rewriting most of Prosa and the parts of ssreflect it depends on (with
substantial additional complexity due to the binary representation), and hence is undesirable.

Instead, POET’s certificates employ a hybrid solution: every result is proven using
the standard, unary definitions and lemmas provided by Prosa and ssreflect, but large
computations are isolated and performed using a binary representation. This is easier said
than done: since the aRTA library [8] expects unary numbers, trying to apply its theorems
to binary-encoded inputs would result in type-checking errors.

M. Maida, S. Bozhko, and B. B. Brandenburg 19:17

Therefore, (a) a binary version of each unavoidable computation was implemented and
integrated into POET’s Coq support libraries, and (b) each such alternative implementation
was related to its unary counterpart via an additional corpus of proofs so that the computed
results can be substituted into the proof. More technically, for the proof engine to accept a
rewriting step (i.e., to perform a substitution), the two involved functions must be proven to
be extensionally equivalent. To this end, we applied CoqEAL [14], a Coq proof framework
for changes in data representation.

To compute a unary-numbers function using a binary-numbers counterpart, CoqEAL
requires proving a so-called refinement. Given the sets of unary numbers N1 and binary
numbers N2, consider a conversion function Φ(x) : N2 → N1 that, given a binary number,
yields its unary equivalent. Further, consider a unary-numbers predicate p1(x) : N1 → B and
its binary-numbers counterpart p2(x) : N2 → B. For the purposes of POET, a refinement can
be seen as a proof that, for any binary number x, p1(Φ(x)) = p2(x). Analogous arguments
can be made for predicates with multiple parameters and for predicates with higher-order
parameter types based on unary numbers, such as lists and tuples over N1. With a refinement
in place, a proof step triggering a computation of p1 can be replaced, similarly as in lemma
Ex2 in Listing 3b, with one involving a computation of p2, which can be performed quickly.

In conclusion, for each numeric function computed by Coq when compiling POET’s
certificates, (1) an equivalent function defined on binary numbers was implemented in the
support libraries, and (2) a refinement relating the two functions was proven. The total
support code related to refinements is roughly 1800 LOC of definitions, proofs, and tactics,
representing around 40% of the entire POET support code: enabling binary computations
comes with an extra development cost. However, the switch to binary representation
dramatically impacts runtime and memory needs and hence is essential.

Case in point, consider once again the task set in Listing 1 (expressed in milliseconds).
With the binary representation in place, the total certification time is around five seconds on
our testing machine (i.e., slightly slower than before), but stays roughly the same irrespective
of whether task parameters are given in microseconds or nanoseconds.

Finally, it is worth emphasizing that CoqEAL is not part of the TCB since, as a
Coq library, it is itself subject to full verification by coqchk. Therefore, speeding up the
computation by translating to a binary encoding does not introduce any verification gaps.

8 Empirical Evaluation

To assess POET’s runtime characteristics, we conducted an empirical evaluation using
synthetic workloads, which we generated as follows. For a given number of tasks n and
total utilization u, we used the Dirichlet-Rescale algorithm [27] to draw n utilizations values
u1, . . . , un summing to u. To exercise POET’s versatility, we considered five different types
of workloads: (i) sporadic workloads as commonly encountered in automotive systems,
(ii) sporadic workloads with a log-uniform distribution of minimum inter-arrival times,
(iii) sporadic workloads subject to job bursts, (iv) sporadic workloads subject to jitter, and
(v) sporadic arrivals distributed according to a Poisson distribution. This selection covers
a wide range from relatively well-structured arrival processes to less regular ones. Types
(i)–(iv) equivalently represent periodic workloads since the sporadic task model generalizes
the periodic one. We hence use the terms “inter-arrival time” and “period” interchangeably.

The different arrival bounds were generated as follows. Let τi denote the task for which
an arrival bound is being generated. In the case of (i), the period Ti was chosen uniformly
at random from P ≜ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000}ms, a set of periods commonly

ECRTS 2022

19:18 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

encountered in automotive systems [33]. For (ii), Ti was drawn log-uniformly from [1, 100]ms.
For (iii), a bursty arrival process was defined by the maximum number of jobs in a burst
bi = 4 and the randomly chosen minimum intra-burst inter-arrival time T in

i ∈ [1, 100]µs and
the minimum inter-burst inter-arrival time Ti ∈ P . In the case of (iv), τi’s period Ti was
chosen from P and the maximum jitter was drawn uniformly at random from [0.1Ti, 3Ti].
Lastly, for (v), we considered a Poisson process with a mean arrival rate ri ≜ 1

Ti
, where Ti

was drawn uniformly at random from P . For any m and ∆, a Poisson process has a non-zero
(but rapidly diminishing) probability of yielding m arrivals in an interval of length ∆. To
convert this to an arrival curve, we defined αi(∆) such that, for any ∆, the probability of
observing more than αi(∆) job releases in an interval of length ∆ is less than 10−3.

Next, the generated arrival bounds were encoded in POET’s input format. Cases (i)
and (ii) are trivial as POET natively supports periodic and sporadic tasks. Cases (iii)–(v)
require the arrival process to be expressed as a finite arrival-curve prefix, as discussed in
Section 6. Recall that task τi’s finite arrival-curve prefix consists of two parts: a horizon hi

and a sequence of mi steps. In the case of (iii), bursty arrivals, the arrival bound can be
encoded in a lossless manner by setting hi ≜ Ti and defining mi = bi equidistant steps with
a separation of T in

i . For both (iv) and (v), we simply truncated the arrival curve by choosing
the maximum hi containing at most mi = k steps, where k differed across experiments.

Finally, the relative deadline Di was drawn from [0.3Ti, 3Ti], and the task’s WCET Ci

was set to ⌈ui · pi⌉ in cases (i) and (ii), and to limt→∞ ⌈(ui · t)/α(t)⌉ in cases (iii)–(v). All
parameters were given to POET in nanosecond resolution (i.e., ε = 1ns).

For each considered n, we let the total utilization u range from 0.5 to 0.9 in steps of 0.1.
We evaluated each supported policy: fully-preemptive FP (FP-FP), fully non-preemptive FP
(NP-FP), fully-preemptive EDF (FP-EDF), and fully non-preemptive EDF (NP-EDF). Under
FP scheduling, tasks were assigned rate-monotonic priorities. We ran all experiments on a
Linux host with two 2.50 GHz Intel Xeon “Platinum 8180” processors and 394 GiB RAM.

In the first experiment, we focused on classic sporadic tasks (i.e., type-(i) tasks). We
varied the number of tasks n from 5 to 50 in steps of 5 and, for each combination of scheduling
and preemption policy, generated 10 task sets for each cardinality (×10) and utilization (×5),
resulting in 500 task sets per policy and 2000 in total. For each workload, we measured the
end-to-end runtime of the entire workflow depicted in Figure 1 (including POET, the Coq
compiler, and coqchk) while running sequentially on a single core.

As can be seen in Figure 2a, these workloads can be easily certified by POET. There
is a clear difference between EDF and FP analyses, but no major difference between the
two preemption policies. Small workloads (n ≤ 10) are typically solved in seconds for both
EDF and FP; larger workloads take significantly more time, with FP analyses being clearly
faster. For n = 50, the mean runtime per task set was 4.2 minutes under FP-FP, 4.8 minutes
under NP-FP, 119 minutes under FP-EDF, and 122 minutes under NP-EDF. Overall, across
all cardinalities, the mean runtime per task set was 2.1 minutes under FP-FP, 2.4 minutes
under NP-FP, 38 minutes under FP-EDF, and 35 minutes under NP-EDF.

The growth in certification time dependent on n evident in Figure 2a is due to two factors:
adding a task obviously increases the number of certificates that must be generated and
checked, while also increasing the complexity of the certificates of all prior tasks.

In the second experiment, we challenged POET with more demanding workloads by
randomly choosing each task’s arrival model among types (i)-(v). The resulting workloads
are hence less structured and more complex, characterized by many nontrivial arrival curves.

M. Maida, S. Bozhko, and B. B. Brandenburg 19:19

5 10 15 20 25 30 35 40 45 50
(a) Number of tasks

10
1

10
0

10
1

10
2

10
3

C
er

tif
ic

at
io

n
tim

e
(m

in
)

NP FP
FP FP
NP EDF
FP EDF

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
(b) Number of tasks

10
1

10
0

10
1

10
2

10
3

C
er

tif
ic

at
io

n
tim

e
(m

in
)

NP FP
FP FP
NP EDF
FP EDF

Figure 2 The end-to-end runtime of POET and Coq vs. the number of tasks in (a) for classic
sporadic tasks (type (i)) and (b) mixed workloads (types (i)–(v)). Boxes range from the first to the
third quartile; whiskers extend to 1.5 times the inter-quartile range (IQR).

0.5 0.6 0.7 0.8 0.9
(a) Utilization

10
1

10
0

10
1

10
2

10
3

C
er

tif
ic

at
io

n
tim

e
(m

in
)

NP FP
FP FP
NP EDF
FP EDF

0 2500 10000 22500 40000 62500 90000
(b) Search-space size (per task, quadratic scale)

1

5
10

20

40

60

80

100
C

er
tif

ic
at

io
n

tim
e

(m
in

, q
ua

dr
at

ic
 s

ca
le

)
FP EDF
NP EDF
NP FP
FP FP

Figure 3 Based on the same data set as shown in Figure 2b, (a) the total certification runtime
vs. total utilization and (b) the single-task certification runtime vs. the task’s search-space size; note
the quadratic scale of both axes in inset (b).

In this experiment, we varied the number of tasks n from 2 to 40 in steps of 2. For
each combination of scheduling and preemption policy, we generated 5 task sets for each
cardinality (×20) and utilization (×5), resulting in 500 task sets per policy and 2000 in total.
The maximum length of arrival-curve prefixes was fixed to k = 50. As in the first experiment,
we measured the end-to-end runtime of the entire workflow running sequentially on one core.

The results of the second experiment (depicted in Figure 2b) exhibit similar trends as
in Figure 2a, but with an (expected) steeper growth in certification time. For n = 40, the
mean runtime per task set was 3.9 minutes under FP-FP, 4.2 minutes under NP-FP, 568
minutes under FP-EDF, and 466 minutes under NP-EDF. Overall, across all cardinalities,
the mean runtime per task set was 1.8 minutes under FP-FP, 2.1 minutes under NP-FP,
140 minutes under FP-EDF, and 145 minutes under NP-EDF. Clearly, POET’s scalability is
substantially reduced for such challenging workloads, but it still manages to certify workloads
of nontrivial size. Notably, the most time-consuming aspect of POET, certificate checking,
can be easily parallelized since task certificates are independent of each other. High runtimes
for large n can thus be alleviated by letting POET run coqchk in parallel on up to n cores.

Next, to better understand the primary drivers of runtime growth, we plotted the data
collected in the second experiment in two additional ways as shown in Figure 3. First, we
explored the impact of the task set’s total utilization. As can be seen in Figure 3a, in
contrast to task set cardinality, total utilization influences certification time only slightly, and

ECRTS 2022

19:20 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

2 5 10 15 25 50 100
(a) Prefix length

1

10

20

30

1.5

2

3

4
5
6
7
8

R
T

pr
ef

ix
 /

R
T

or
ig

.
NP FP
FP FP
NP EDF
FP EDF

2 5 10 15 25 50 100
(b) Prefix length

10
1

10
0

10
1

10
2

Ta
sk

 ti
m

e
(m

in
)

NP FP
FP FP
NP EDF
FP EDF

Figure 4 Number of steps in the arrival-curve prefix vs. (a) certification time of the most-
preempted task and (b) the increase in response time for arrival bounds of types (iv) and (v).

only in the case of EDF. In fact, while high utilization can impact the maximum busy-window
length in pathological cases, for the considered workloads, it did not make a significant
difference in the expected case.

The major driver of certification runtime is instead the search-space size. In fact, as can
be seen in Figure 3b, there is a clear linear correlation between the size of the search space of
a task and its certification time. Note that, in contrast to the prior figures, Figure 3b shows
the individual per-task certification time relative to the size of its search space. Certification
finished in at most 5 minutes for most of the tasks (84%), and in less than 10 minutes for
92% of the tasks regardless of the preemption model and scheduling policy, peaking at 104
minutes under FP-EDF for a task with a search space containing 104547 points.

The search space and certification time of FP-FP and NP-FP are clustered in the bottom-
left part of the plot. In contrast, FP-EDF and NP-EDF cover the entirety of the space, which
is a result of the fact that the EDF search space is inherently larger and dependent on all
tasks, as evident from Equations (4) and (5). In fact, 99% of tasks scheduled under an FP
policy had a search space containing fewer than 104 points, whereas the 99th percentile under
an EDF policy is 57470 points. Hence, task sets usually take much less time to be verified
under an FP policy, which explains the gap between the EDF and FP policies in Figure 2.

Finally, we performed a third experiment with the goal of evaluating the role of the
number of steps in arrival-curve prefixes. For this experiment, we fixed the number of tasks
to n = 25 and varied instead the prefix size of all tasks k ∈ {2, 5, 10, 15, 25, 50, 100}. For
each combination of scheduling and preemption policy, we generated 10 task sets for each
k (×7) and utilization (×5), considering task sets composed homogeneously of tasks with
either arrival model (iv) or (v) (×2), resulting in 700 task sets per policy and 2800 in total.
To arrive at a given prefix size k, we always started from an arrival curve with mi = 100
steps, and then iteratively merged steps to gradually shrink the prefix. To maximize the
effect of the loss of information that results from the shortening of the prefix, we focused
on the lowest-priority task under FP scheduling, and on the task with the largest deadline
under EDF. In both cases, we refer to this task as the most-delayed task.

First, we investigated the impact of k on RTA accuracy. Figure 4a shows the relative
increase in the response-time bound of the most-delayed task relative to its baseline response-
time bound, which was obtained using the full prefix with 100 steps. By reducing k from 100
to 2, the response-time bound for the most-delayed task reaches a staggering 20× increase,
which (as expected) drops quickly as k is increased.

The results in Figure 4a should be seen in context of the corresponding task certification
times that, as can be seen in Figure 4b, grow substantially with increasing k (note the
log scale). EDF-scheduled task sets are once again substantially more expensive to analyze.

M. Maida, S. Bozhko, and B. B. Brandenburg 19:21

Overall, Figure 4 shows that, for complex workloads with irregular arrival processes, the
number of steps of the arrival-curve prefix represents a major trade-off between certification
time and analysis accuracy. It should be noted, however, that POET always managed to
complete the certification, even for k = 100 steps. Furthermore, it is important to realize that
full certification is expected only at the final stage of development – at which point runtimes
in the order of several hours can be acceptable – and not during day-to-day development.

Overall, we consider POET to be a successful proof of concept. While the computational
efficiency of the underlying proof assistant and libraries is (as expected) a major bottleneck,
the experiments overall showed POET to cope with complex workloads and to scale to
practical workload sizes. Foundational RTA is thus not only theoretically desirable, but also
practical, and therefore worthy of further study, extension, and optimization.

9 Related Work

As already discussed in Section 2, POET draws inspiration and adopts terminology from
Appel’s classic work on foundational proof-carrying code [3], which has been highly influential.
Since its publication two decades ago, it has been widely adopted in the area of program
verification [9, 32], and continues to play a major role in state-of-the-art verification tools [41].

POET is closely linked to Prosa [11]. While Prosa is the to-date largest machine-
checked framework for real-time schedulability analysis – and presently the only one with
an implementation of aRTA [8] – it is neither the first nor the only attempt in this
direction [7, 20, 21, 46, 51]. It is worth noting that a foundational tool like POET is not
inherently related to Coq: some of the just-cited papers make use of different proof assistants,
namely Nqthm [44], PVS [45], and Isabelle/HOL [43]. Though some are more suited than
others, conceptually speaking, a foundational approach could be realized with any of these,
and each would likely pose different challenges and trade-offs. In particular, the Lean proof
assistant [19] is a modern alternative to Coq based on the same underlying logic [15, 16, 39];
Lean would likely be a viable alternative for use in foundational RTA tools.

Closest to POET in terms of objectives and approach are Mabille et al.’s results validator
for network calculus [36] (using Isabelle/HOL) and Fradet et al.’s results validator Certi-
CAN [23] (using Coq and Prosa) for the CAN RTA implemented in RTaW-Pegase [6]. In
contrast to POET, which generates proofs as explainable evidence, but is intentionally left
unverified, these tools do not generate proofs nor other evidence, but are themselves verified.

Finally, an alternative way to approach the schedulability analysis problem is to validate
the correctness of a bound with model-checking techniques. In this approach, the system under
analysis is first reduced to a model comprising a network of discrete automata with timed
semantics. Then, a model checker explores the state space of the model with the objective of
covering every possible trace, including those in which the worst-case response time of a task
is experienced. Generally speaking, model-checking has been a highly successful technique
as shown by tools like Uppaal [5] and Kronos [50] (both based on timed automata [1])
as well as HyTech [30] (based on linear hybrid automata [2]). Compared to foundational
RTA, model checking is an orthogonal technique with fundamentally different trade-offs and
challenges. As a major advantage, a model checker requires no RTA theory to be developed or
verified, since the worst case response-time is implicitly found during exploration of the state
space. However, when compared to foundational RTA, model-checking requires a significantly
larger, much more complex TCB. The reason is that practical model-checkers are typically
large, nontrivial pieces of software that, due to model checking’s well-known state-space
explosion problem and the resulting scalability challenges (e.g., [48]), have large incentives to

ECRTS 2022

19:22 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

be heavily optimized. This naturally leads to the development of advanced techniques to
prune search trees [5], speed up computations via statistical techniques [17], and hardware
acceleration [4]. Each optimization technique increases the size of the TCB and arguably
renders it more fragile. While Wimmer and Lammich [47] developed a verified unreachability
certificate checker for timed automata, they reported it to be an order of magnitude slower
and significantly more memory intensive than the state-of-the-art tool Uppaal, which limits
its practical use in the schedulability analysis of realistically sized task sets.

Regarding the explainability of results, model-checkers are capable of providing a coun-
terexample leading to a worst-case scenario (e.g., a deadline is violated), but typically do not
produce evidence that a property is not violated. Foundational RTA tools yield exactly the
opposite: they do not give counterexamples, but do provide a sequence of machine-checked
proofs that show the response-time bounds to be correct. In conclusion, both model check-
ing and proof automation are important research directions, with diverse advantages and
limitations. From a tool user’s point of view, currently neither clearly dominates the other.

10 Conclusion

We have proposed foundational RTA as a means to obtain explainable, trustworthy evidence
of temporal correctness and discussed the design and implementation of POET, the first
foundational RTA tool. A foundational RTA produces proof-carrying response-time bounds
that can be independently verified by a proof checker. Consequently, a foundational RTA
tool does not have to be trusted and can be developed like any other application, while its
results are trustworthy: fully explainable and verifiably correct.

While POET is an important first step demonstrating feasibility of the approach, for
practical use, it will be necessary to go beyond ideal uniprocessor systems. In particular, it
would be desirable t extend POET to more complex workloads (e.g., synchronization and
precedence constraints), to more realistic system models (e.g., scheduling overheads), and to
multiprocessor platforms (e.g., semi-partitioned scheduling).

References
1 Rajeev Alur and David L Dill. A theory of timed automata. Theoretical computer science,

126(2):183–235, 1994.
2 Rajeev Alur, Thomas A Henzinger, and Pei-Hsin Ho. Automatic symbolic verification of

embedded systems. IEEE Transactions on Software Engineering, 22(3):181–201, 1996.
3 Andrew W Appel. Foundational proof-carrying code. In Proceedings 16th Annual IEEE

Symposium on Logic in Computer Science, pages 247–256. IEEE, 2001.
4 Jiri Barnat, Luboš Brim, Milan Ceška, and Tomáš Lamr. CUDA accelerated LTL model

checking. In 2009 15th International Conference on Parallel and Distributed Systems, pages
34–41. IEEE, 2009.

5 Gerd Behrmann, Alexandre David, Kim G Larsen, John Hakansson, Paul Petterson, Wang Yi,
and Martijn Hendriks. UPPAAL 4.0. In Proceedings of the 3rd international conference on
the Quantitative Evaluation of Systems, pages 125–126, 2006.

6 Marc Boyer, Jorn Migge, and Marc Fumey. PEGASE-a robust and efficient tool for worst-case
network traversal time evaluation on AFDX. Technical report, SAE Technical Paper, 2011.

7 Marc Boyer, Pierre Roux, Hugo Daigmorte, and David Puechmaille. A residual service
curve of rate-latency server used by sporadic flows computable in quadratic time for network
calculus. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Schloss
Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

M. Maida, S. Bozhko, and B. B. Brandenburg 19:23

8 Sergey Bozhko and Björn B. Brandenburg. Abstract Response-Time Analysis: A Formal
Foundation for the Busy-Window Principle. In 32nd Euromicro Conference on Real-Time
Systems (ECRTS’20), July 7-10, 2020, Virtual Conference, 2020.

9 Qinxiang Cao, Lennart Beringer, Samuel Gruetter, Josiah Dodds, and Andrew W Appel.
VST-Floyd: A separation logic tool to verify correctness of C programs. Journal of Automated
Reasoning, 61(1):367–422, 2018.

10 Felipe Cerqueira, Geoffrey Nelissen, and Björn B Brandenburg. On strong and weak sustain-
ability, with an application to self-suspending real-time tasks. In 30th Euromicro Conference
on Real-Time Systems (ECRTS), pages 26–1, 2018.

11 Felipe Cerqueira, Felix Stutz, and Björn B Brandenburg. PROSA: A case for readable
mechanized schedulability analysis. In 2016 28th Euromicro Conference on Real-Time Systems
(ECRTS), pages 273–284. IEEE, 2016.

12 Jian-Jia Chen and Björn B Brandenburg. A note on the period enforcer algorithm for
self-suspending tasks. Leibniz Transactions on Embedded Systems, 4(1):01–1, 2017.

13 Jian-Jia Chen, Geoffrey Nelissen, Wen-Hung Huang, Maolin Yang, Björn Brandenburg,
Konstantinos Bletsas, Cong Liu, Pascal Richard, Frédéric Ridouard, Neil Audsley, et al. Many
suspensions, many problems: a review of self-suspending tasks in real-time systems. Real-Time
Systems, 55(1), 2019.

14 Cyril Cohen, Maxime Dénès, and Anders Mörtberg. Refinements for free! In International
Conference on Certified Programs and Proofs, pages 147–162. Springer, 2013.

15 Thierry Coquand and Gérard Huet. The calculus of constructions. Information and Computa-
tion, 76(2):95–120, 1988. doi:10.1016/0890-5401(88)90005-3.

16 Thierry Coquand and Christine Paulin. Inductively defined types. In International Conference
on Computer Logic, pages 50–66. Springer, 1988.

17 Alexandre David, Kim G Larsen, Axel Legay, Marius Mikučionis, and Zheng Wang. Time
for statistical model checking of real-time systems. In International Conference on Computer
Aided Verification, pages 349–355. Springer, 2011.

18 Robert I Davis, Alan Burns, Reinder J Bril, and Johan J Lukkien. Controller Area Network
(CAN) schedulability analysis: Refuted, revisited and revised. Real-Time Systems, 35(3), 2007.

19 Leonardo De Moura and Sebastian Ullrich. The Lean 4 theorem prover and programming
language. In International Conference on Automated Deduction, pages 625–635. Springer,
2021.

20 Daniel de Rauglaudre. Vérification formelle de conditions d’ordonnancabilité de tâches temps
réel périodiques strictes. In JFLA-Journées Francophones des Langages Applicatifs-2012, 2012.

21 Bruno Dutertre. The priority ceiling protocol: formalization and analysis using PVS. In
Proceedings of the 21st IEEE Conference on Real-Time Systems Symposium (RTSS), pages
151–160, 1999.

22 Pascal Fradet, Xiaojie Guo, Jean-François Monin, and Sophie Quinton. A generalized digraph
model for expressing dependencies. In Proceedings of the 26th International Conference on
Real-Time Networks and Systems, pages 72–82, 2018.

23 Pascal Fradet, Xiaojie Guo, Jean-François Monin, and Sophie Quinton. CertiCAN: A tool for
the Coq certification of CAN analysis results. In RTAS, 2019.

24 Pascal Fradet, Maxime Lesourd, Jean-François Monin, and Sophie Quinton. A generic coq
proof of typical worst-case analysis. In 2018 IEEE Real-Time Systems Symposium (RTSS),
pages 218–229. IEEE, 2018.

25 Georges Gonthier. Formal proof–the four-color theorem. Notices of the AMS, 55(11):1382–1393,
2008.

26 Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot,
Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence
Rideau, Alexey Solovyev, Enrico Tassi, and Laurent Théry. A machine-checked proof of the
odd order theorem. In Interactive Theorem Proving - 4th International Conference, ITP 2013,
Rennes, France, July 22-26, 2013. Proceedings, Lecture Notes in Computer Science, pages
163–179, 2013.

ECRTS 2022

https://doi.org/10.1016/0890-5401(88)90005-3

19:24 Foundational Response-Time Analysis as Explainable Evidence of Timeliness

27 David Griffin, Iain Bate, and Robert I. Davis. Generating utilization vectors for the systematic
evaluation of schedulability tests. In 41st IEEE Real-Time Systems Symposium (RTSS’20),
December 1-4, Houston, TX, USA, pages 76–88. IEEE Computer Society, 2020.

28 Arpan Gujarati, Felipe Cerqueira, Björn B Brandenburg, and Geoffrey Nelissen. Correspon-
dence article: a correction of the reduction-based schedulability analysis for apa scheduling.
Real-Time Systems, 55(1):136–143, 2019.

29 Mario Günzel and Jian-Jia Chen. A note on slack enforcement mechanisms for self-suspending
tasks. Real-Time Systems, pages 1–10, 2021.

30 Thomas A Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. HyTech: A model checker for hybrid
systems. International Journal on Software Tools for Technology Transfer, 1(1-2):110–122,
1997.

31 Leandro Soares Indrusiak, Alan Burns, and Borislav Nikolic. Analysis of buffering effects
on hard real-time priority-preemptive wormhole networks. arXiv preprint arXiv:1606.02942,
2016.

32 Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock, Philip Derrin,
Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael Norrish, et al. seL4: Formal
verification of an OS kernel. In SOSP, 2009.

33 Simon Kramer, Dirk Ziegenbein, and Arne Hamann. Real world automotive benchmarks for
free. In 6th International Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS), 2015.

34 Karthik Lakshmanan, Dionisio de Niz, and Ragunathan Rajkumar. Coordinated task schedul-
ing, allocation and synchronization on multiprocessors. In RTSS, 2009.

35 Xavier Leroy. Formal verification of a realistic compiler. Communications of the ACM,
52(7):107–115, 2009.

36 Etienne Mabille, Marc Boyer, Loïc Fejoz, and Stephan Merz. Towards certifying network
calculus. In ITP, 2013.

37 Assia Mahboubi and Enrico Tassi. Mathematical Components. Zenodo, 2021. doi:10.5281/
zenodo.4457887.

38 George C Necula. Proof-carrying code. In Proceedings of the 24th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 106–119, 1997.

39 Christine Paulin-Mohring. Introduction to the calculus of inductive constructions, 2015.
40 Prosa. http://prosa.mpi-sws.org/.
41 Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer,

and Deepak Garg. RefinedC: automating the foundational verification of C code with refined
ownership types. In PLDI, 2021.

42 The Coq Proof Assistant. https://coq.inria.fr.
43 The Isabelle Proof Assistant. https://isabelle.in.tum.de/.
44 The Nqthm Theorem Prover. https://www.cs.utexas.edu/users/moore/best-ideas/

nqthm/index.html.
45 The PVS Proof Assistant. https://pvs.csl.sri.com/.
46 Matthew Wilding. A machine-checked proof of the optimality of a real-time scheduling policy.

In International Conference on Computer Aided Verification, pages 369–378. Springer, 1998.
47 Simon Wimmer and Peter Lammich. Verified model checking of timed automata. In Inter-

national Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 61–78. Springer, 2018.

48 Beyazit Yalcinkaya, Mitra Nasri, and Björn B Brandenburg. An exact schedulability test for
non-preemptive self-suspending real-time tasks. In 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pages 1228–1233. IEEE, 2019.

49 Maolin Yang, Jian-Jia Chen, and Wen-Hung Huang. A misconception in blocking time analyses
under multiprocessor synchronization protocols. Real-Time Systems, 53(2):187–195, 2017.

50 Sergio Yovine. Kronos: A verification tool for real-time systems. International Journal on
Software Tools for Technology Transfer, 1(1-2):123–133, 1997.

https://doi.org/10.5281/zenodo.4457887
https://doi.org/10.5281/zenodo.4457887
http://prosa.mpi-sws.org/
https://coq.inria.fr
https://isabelle.in.tum.de/
https://www.cs.utexas.edu/users/moore/best-ideas/nqthm/index.html
https://www.cs.utexas.edu/users/moore/best-ideas/nqthm/index.html
https://pvs.csl.sri.com/

M. Maida, S. Bozhko, and B. B. Brandenburg 19:25

51 Xingyuan Zhang, Christian Urban, and Chunhan Wu. Priority inheritance protocol proved
correct. In International Conference on Interactive Theorem Proving, pages 217–232. Springer,
2012.

52 Quan Zhou, Jihua Huang, Jianjun Li, and Zhi Li. Response time analysis for hybrid task sets
under fixed priority scheduling. In Proceedings of the IEEE 28th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 108–120. IEEE Computer Society,
2022.

ECRTS 2022

	1 Introduction
	2 Design Space of Verified RTAs
	3 Background
	4 POET: Design and Workflow
	4.1 Implementation and Workflow
	4.2 The Structure of a Certificate

	5 Trustworthiness of the Procedure
	6 Supporting Arbitrary Arrival Curves
	7 Scalability of the Certification Procedure
	8 Empirical Evaluation
	9 Related Work
	10 Conclusion

