
Decremental Matching in General Graphs
Sepehr Assadi #

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Aaron Bernstein #

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Aditi Dudeja #

Department of Computer Science, Rutgers University, Piscataway, NJ, USA

Abstract
We consider the problem of maintaining an approximate maximum integral matching in a dynamic
graph G, while the adversary makes changes to the edges of the graph. The goal is to maintain a
(1 + ε)-approximate maximum matching for constant ε > 0, while minimizing the update time. In
the fully dynamic setting, where both edge insertion and deletions are allowed, Gupta and Peng
(see [29]) gave an algorithm for this problem with an update time of O(

√
m/ε2).

Motivated by the fact that the Oε(
√

m) barrier is hard to overcome (see Henzinger, Krinninger,
Nanongkai, and Saranurak [30]; Kopelowitz, Pettie, and Porat [34]), we study this problem in the
decremental model, where the adversary is only allowed to delete edges. Recently, Bernstein, Probst-
Gutenberg, and Saranurak (see [9]) gave an O(poly(log n/ε)) update time decremental algorithm for
this problem in bipartite graphs. However, beating O(

√
m) update time remained an open problem

for general graphs.
In this paper, we bridge the gap between bipartite and general graphs, by giving an Oε(poly(log n))

update time algorithm that maintains a (1 + ε)-approximate maximum integral matching under
adversarial deletions. Our algorithm is randomized, but works against an adaptive adversary.
Together with the work of Grandoni, Leonardi, Sankowski, Schwiegelshohn, and Solomon [26] who
give an Oε(1) update time algorithm for general graphs in the incremental (insertion-only) model,
our result essentially completes the picture for partially dynamic matching.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases Dynamic algorithms, matching, primal-dual algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.11

Category Track A: Algorithms, Complexity and Games

Funding Sepehr Assadi: Supported in part by an NSF CAREER Grant CCF-2047061, and a gift
from Google Research.
Aaron Bernstein: Funded by NSF CAREER Grant 1942010.

1 Introduction

In dynamic graph algorithms, the main goal is to maintain a key property of the graph while
an adversary makes changes to the edges of the graph. An algorithm is called incremental if
it handles only insertions, decremental if it handles only deletions and fully dynamic if it
handles both insertions as well as deletions. The goal is to minimize the update time of the
algorithm, which is the time taken by the algorithm to adapt to a single adversarial edge
insertion or deletion and output accordingly. For incremental/decremental algorithms, one
typically seeks to minimize the total update time, which is the aggregate sum of update times
over the entire sequence of edge insertions/deletions.

We consider the problem of maintaining a (1+ε)-approximation to the maximum matching
in a dynamic graph. In the fully dynamic setting, the best known update time for this problem
is O(

√
m/ε2) (see Gupta and Peng [29]), and the conditional lower bounds proved in the works

EA
T

C
S

© Sepehr Assadi, Aaron Bernstein, and Aditi Dudeja;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 11; pp. 11:1–11:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sepehr.assadi@rutgers.edu
mailto:bernstei@gmail.com
mailto:aditi.dudeja@rutgers.edu
https://doi.org/10.4230/LIPIcs.ICALP.2022.11
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 Decremental Matching in General Graphs

of Henzinger, Krinninger, Nanongkai, and Saranurak (see [30]) and Kopelowitz, Pettie, and
Porat (see [34]) suggest that O(

√
m) is a hard barrier to break through. For this reason,

several relaxations of this problem have been studied. For example, one line of research has
shown that we can get considerably faster update times if we settle for large approximation
factors (see for example [13, 14, 16, 11, 41, 37, 6, 33, 27, 5, 39, 15, 8, 12, 10, 11, 7]). Another
research direction has been to consider the more relaxed incremental or decremental models.
In the incremental (insertion-only) setting, there have been a series of upper and lower
bound results (see [17, 19, 28]), culminating in the result of Grandoni, Leonardi, Sankowski,
Schwiegelshohn, and Solomon (see [26]), who gave an optimal Oε(m) total update time
(amortized Oε(1)) for (1 + ε)-approximate maximum matching.

The decremental (deletion-only) setting requires an entirely different set of techniques. In
fact, even for the special case of bipartite graphs, Oε(m

√
m) total time (Oε(

√
m) update time)

remained the best known until recently, when Bernstein, Probst-Gutenberg, and Saranurak
(see [9]) gave an poly(log n/ε) amortized update time algorithm for the case of bipartite graphs.
However, achieving a similar result for general graphs remained an open problem. Our main
theorem essentially closes the gap between bipartite and general graphs.

▶ Theorem 1. Let G be an unweighted graph and ε ∈ (0, 1). There is a decremental algorithm
with total update time Oε(m · poly(log n)) (amortized Oε(poly(log n))) that maintains a
matching M of size at least (1− ε) · µ(G) with high probability. Here G refers to the current
version of the graph and µ(G) is the size of the maximum matching of G. The algorithm is
randomized but works against an adaptive adversary. The dependence on ε is 2O(1/ε2).

The guarantees of our algorithm hold against an adaptive adversary: which is allowed to
choose an update sequence adaptively. This is in contrast to an oblivious adversary which
cannot decide its updates based on the algorithm’s output. Deterministic algorithms are
more desirable because they are robust against such updates, which allows them to be used
as a black-box in other static/dynamic algorithms. This property doesn’t hold when we have
the weaker oblivious adversary assumption. Thus, even though our algorithm is randomized
(Monte Carlo), it has has the same power as a deterministic algorithm. We refer the reader
to Section 1 of [41] and the references therein for a detailed discussion on this.

Our result largely completes the picture for partially dynamic matching by showing that in
general graphs one can achieve poly(log n) update time in both incremental and decremental
settings. But there are a few secondary considerations that remain. Firstly, our update time
is Oε(poly(log n)), rather than the Oε(1) for the incremental setting (see [26]). Secondly,
both the incremental result of [26] and our decremental result for general graphs have an
exponential dependence on 1/ε, whereas incremental/decremental algorithms for bipartite
graphs have a polynomial dependence on 1/ε (see [26, 28]). Optimizing the dependence on ε

and poly(log(n)) factors thus remains an interesting open question for future work.
In algorithms literature, it has been the case that efficient matching algorithms for

bipartite graphs do not easily extend to general graphs. Existence of blossoms (among
other things), poses a technical challenge to obtaining analogous results for the general
case. Consider the polynomial time algorithms for maximum matching for bipartite graphs,
the most efficient algorithm, using alternating BFS, was discovered by Hopcroft and Karp;
Karzanov (see [31, 32]) in 1973. However, several new structural facts and algorithmic insights
were used by Micali and Vazirani to get the same runtime for general graphs (see [36]). This
is also a feature of recent work in different models, such as the streaming (see [1, 22] and [24]),
fully dynamic (see [10, 11] and [14, 7]), and parallel models (see [23, 40] and [35, 3]). We
refer the reader to Section 1.3 of [2] for a detailed discussion of this phenomenon.

S. Assadi, A. Bernstein, and A. Dudeja 11:3

2 High-Level Overview

Our algorithm for Theorem 1 follows the high-level framework of congestion balancing
introduced in [9]. They used it to solve approximate decremental matching in bipartite
graphs, and also to solve more general flow problems. But the framework as they used it
was entirely limited to cut/flow problems. As we discuss below, extending this framework to
general graphs introduces significant technical challenges. Moreover, our result shows how the
key subroutine of congestion balancing is naturally amenable to a primal-dual analysis, which
we hope can pave the way for this technique to be applied to other decremental problems.
Throughout this paper, we will use Õ(·) to hide poly(log n) factors in big-oh notations.

2.1 Previous Techniques
A fractional matching is a non-negative vector x⃗ ∈ R⩾0 satisfying fractional matching
constraints: for all v ∈ V ,

∑
e∋v x(e) ⩽ 1. The starting point of [9] is that it is sufficient to

develop an Õε(m) algorithm that does the following: it either maintains a fractional matching
of size at least (1− 2ε) · µ(G) or certifies that µ(G) has dropped by a (1− ε) factor because
of adversarial deletions. Since a result of [41] enables us to round any bipartite fractional
matching to an integral matching of almost the same value, such a fractional algorithm
yields an algorithm to maintain an integral matching of size at least (1− 3ε) · µ(G) in Õε(m)
total time under adversarial deletions. To motivate why [9] consider computing a fractional
matching, consider the following “lazy” algorithm that works with an integral matching:
compute an (1 + ε) approximate integral matching M of G using a static O(m/ε) algorithm,
wait for ε · µ(G) edges of M to be deleted and then recompute the matching. Since we
assume an adaptive adversary, the update time could be as large as Ω(m2

/ε·n); this is because
the adversary could proceed by only deleting edges of M . As a result, the goal should be
to maintain a robust matching that can survive many deletions. Thus, the algorithm in [9]
maintains a “balanced” fractional matching x⃗ that attempts to put a low value on every
edge. In order to reduce the value of x⃗ by ε · µ(G), the adversary will have to delete a lot of
edges from every large matching.

Balanced Fractional Matching in Bipartite Graphs. In order to ensure that the fractional
matching is spread out and robust, the algorithm in [9] imposes a capacity function κ on
the edges of the graph (initially, all edges have low capacity) and compute a fractional
matching obeying these capacities. The main ingredient of the algorithm is the subroutine
M-or-E*(G, ε, κ) which returns one of the following in Õε(m) time:
1. A fractional matching x⃗ with

∑
e∈E x(e) ⩾ (1− ε) · µ(G), x(e) ⩽ κ(e) for all e ∈ E, or,

2. A set of edges E∗ with the following two properties.
a. The total capacity through E∗ must be small: κ(E∗) = O(µ(G) log n) and,
b. For all |M | ⩾ (1− 3ε) · µ(G), |M ∩ E∗| ⩾ ε · µ(G).

Property 2a ensures that the total capacity increase is small, while Property 2b ensures
that we only increase capacity on important edges that are actually needed to form a large
matching. The authors of [9] show that M-or-E*() can be used as a black-box to solve
decremental matching: at each step, M-or-E*() is used to find a large fractional matching x⃗

(this matching is then rounded using [41] to get an integral matching), or to output the set
E∗ along which we increase capacities. They are able to show that because of Properties 2a
and 2b, the edge capacities remain small on average.

The congestion balancing framework of [9] consists of an outer algorithm that uses M-
or-E*() as a subroutine. The outer algorithm for bipartite graphs, with some challenges,
carries over to general graphs as well. But, M-or-E*() is significantly more challenging to

ICALP 2022

11:4 Decremental Matching in General Graphs

implement for general graphs, so this subroutine will be our focus for the rest of the high
level review. For bipartite graphs the algorithm M-or-E*() is easier to implement because
maximum fractional matchings correspond to max flows in bipartite graphs. Hence, existing
algorithms for approximate maximum flows can be used to find the approximate maximum
fractional matching obeying capacity κ. Moreover, if such a fractional matching is not large,
then in bipartite graphs, the set of bottleneck edges E∗ is exactly a minimum cut of the
graph. For general graphs, due to the odd set constraints, max flow, which was the key
analytic and algorithmic tool in [9], no longer corresponds to a maximum fractional matching
that avoids the integrality gap.

2.2 Our Contribution: Implementing M-or-E*() in General Graphs
At a high-level, there are several structural and computational challenges to implementing
M-or-E*() in the case of general graphs. We explain what the potential impediments are,
and detail how our techniques circumvent these.

Fractional Matchings in General Graphs. In general graphs, not all fractional matchings
have a large integral matching in their support and therefore, cannot be rounded to give
a large matching. While fractional matchings that obey odd set constraints do avoid the
integrality gap, it seems hard to compute such a matching that also obeys capacity function
κ. In order to get past this, we define a candidate fractional matching that is both easy
to compute as well as contains a large integral matching in its support. More concretely,
our fractional matching either puts flow one through an edge, or a flow of value at most ε

(technically, we put flow much smaller than ε, but for this discussion, ε is sufficient). It is
known that such a fractional matching has an integrality gap of at most 1 + ε, since it obeys
all small odd set constraints. Our main contributions are two structural lemmas which show
that we can find our candidate matching efficiently.
1. First, given a graph G with capacity κ, we want to determine if the value of the maximum

fractional matching obeying κ and odd set constraints (denoted µ(G, κ)) is at least
(1 − ε) · µ(G). In general graphs, we do this by giving a sampling theorem: let Gs

be the graph created by sampling edge e with probability proportional to κ(e), then
µ(Gs) ⩾ µ(G, κ)− ε · n with high probability. Thus, µ(Gs) is a good proxy for µ(G, κ)
and it can be estimated efficiently by running any integral matching algorithm on Gs.

2. Suppose we have determined at some point that µ(G, κ) is large, we are still left with
the task of finding a fractional matching. Our next contribution is a structural theorem
that enables us to deploy existing flow algorithms to find such a matching. Let M

be an approximate maximum matching of Gs. Let ML = {e ∈M | κ(e) ⩽ β} and
MH = {e ∈M | κ(e) > β}, where L and H are for low and high respectively and β =
O(1/poly log n). Let VL = V (ML) and VH = V (MH). Intuitively, M breaks up our
vertex set into two parts: vertices matched by low capacity edges (denoted VL) and
those that are matched by high capacity edges (denoted VH). By adding some slack to
our capacity constraints (we show that some slack can be incorporated in congestion
balancing framework), we are able to treat the high-capacity edges as integral and
compute a matching on G[VH] using a black box for integral matching in general graphs.
Additionally, we show that the maximum fractional matching on low capacity edges of
G[VL] has value at least as much as |ML| up to an additive error of ε · n. To compute
this fractional matching f⃗ , we show that since we are only considering edges of small
capacity, small odd set constraints are automatically satisfied, so we can transform G[VL]
into a bipartite graph and then use an existing flow algorithm. We then output MH + f⃗ ,
which has the property that either the flow through an edge is 1 or at most ε.

S. Assadi, A. Bernstein, and A. Dudeja 11:5

The second obstacle is finding the set E∗. Recall, for bipartite graphs, the max flow-min
cut theorem gives us an easy characterization of the bottleneck edges. However, for general
graphs, this characterization is unclear. To overcome this, we consider the dual of the
matching LP of Gs, and show that the bottleneck edges can be identified by considering the
dual constraints associated with the edges. This generalizes the cut-or-matching approach of
[9]. We compute an integral matching in Gs, and since the algorithm of [20] is primal-dual,
we are also able to compute approximate duals for Gs.

Additionally, there are some secondary technical challenges as well. As mentioned before,
our structural theorems only guarantee preservation of matching sizes up to an additive error
of ε · n. When µ(G) = o(n), then the results, applied directly are insufficient for us. To
get around this, we use a vertex sparsification technique to get Oε(log n) multigraphs which
preserve all large matchings of G, but contain only O(µ(G)/ε) vertices (this reduction was first
used in [4, 18]). However, we now have to show that all of our ideas work for multigraphs
as well. In proving the second structural result, we need to introduce some slack in the
capacities (see Definition 19). We show that congestion balancing extends to multigraphs,
and is flexible enough to handle slack in capacities. Finally, the rounding scheme of [41]
cannot be applied as a black-box to any fractional matching in a general graph. Thus, unlike
in the bipartite case, we instead have to embed its techniques into the congestion balancing
framework.
▶ Note 2. All our structural theorems (see Lemma 15 and Lemma 26) apply to graphs G

with µ(G) ⩾ Ω(ε · n). A reduction used by the authors of [18, 4] allows us to construct
Oε(log n) multigraphs H1, · · · , Hλ with O(µ(G)/ε) vertices, such that for every M of G with
|M | ⩾ (1− ε) ·µ(G) at least (1− ε) · |M | edges of M are present in some Hi. Thus, at a high
level, we have reduced our problem to the problem of decremental matching on multigraphs
with large matchings. So, it is enough to prove our structural theorems for multigraphs with
large matchings. We justify this assumption formally in the full version.

3 Preliminaries

We consider the problem of maintaining an approximate maximum integral matching in a
graph G in the decremental setting. Throughout the paper, we will use G to refer to the
current version of the graph, and let V and E be the vertex and edge sets of G respectively.
Additionally, µ(G) denotes the size of the maximum integral matching of G. During the
course of the algorithm, we will maintain a fractional matching x⃗. For a set S ⊆ E, we let
x(S) =

∑
e∈S x(e). Given a capacity function κ(e), we say that x obeys κ if x(e) ⩽ κ(e)

for all e ∈ E. For a vector x⃗, we use supp(x⃗) to be set of edges that are in the support
of x⃗. For a fractional matching x⃗, we say that x⃗ satisfies odd set constraints if for every
odd-sized B ⊆ V ,

∑
e∈G[B] x(e) ⩽ |B|−1

2 . Given a capacity function κ on the edges of G, we
use µ(G, κ) to denote the value of the maximum fractional matching of G that obeys the
capacity function κ and the odd set constraints. Throughout this paper, for any ε ∈ (0, 1),
we will let αε = log n · 260/ε2 and ρε = log n · 240/ε2 . We also need the following algorithm
computing (1 + ε)-approximate matching in general graphs.

▶ Lemma 3 ([20, 25]). There is an O(m/ε) time algorithm Static-Match() that takes as
input a graph G, and returns an integral matching M of G with |M | ⩾ (1− ε) · µ(G).

Roadmap for Extended Abstract. As mentioned in the overview, the main technical
contribution of our paper is an algorithm for M-or-E*() in general graphs. The rest of the
extended abstract focuses exclusively on this algorithm; the details of how M-or-E*() can
be used a black box to attain Theorem 1 are left for the full version.

ICALP 2022

11:6 Decremental Matching in General Graphs

4 Main Contribution: M-or-E*() In General Graphs

As mentioned in the overview, we need our congestion balancing framework to act on
multigraphs. This motivates our next few definitions.

▶ Definition 4. Given a multigraph G, for a pair of vertices u and v, define D(u, v) to be the
set of edges between u and v. Similarly, if e is an edge between u, v, then D(e) := D(u, v).

▶ Definition 5. Let G be a multigraph with n vertices and m edges. Let κ be a capacity
function on the edges. Suppose x⃗ is a fractional matching of G (x⃗ is a vector of length m).
Then, we define x⃗C to be a vector of support size at most min

{
m,
(

n
2
)}

, where for a pair of
vertices, u and v, xC(u, v) :=

∑
e∈D(u,v) x(e). Essentially, if x⃗ is a fractional matching on

a multigraph, then x⃗C is a fractional matching obtained by “collapsing” all edges together.
Similarly, if y⃗ is a vector of support at most

(
n
2
)
, then we define y⃗D to be an m length vector

such that for every e ∈ E between a pair of vertices u and v, yD(e) := y(u,v)·κ(e)
κ(D(e)) (D is for

distributed, and we distribute the flow among the edges in proportion to their capacity).

▶ Remark 6. Note that in doing the transformations in Definition 5, the support size of the
transformed vector is always at most m. Thus, it doesn’t negatively affect our runtime.

We now state our core ingredient, which either finds a balanced fractional matching of
the multigraph G, or gives a set of edges E∗ along which we can increase capacity.

▶ Lemma 7. Let G be a multi-graph with µ(G) ⩾ ε·n/16. Let κ be a capacity function on
the edges of G. There is an algorithm M-or-E*(), that takes as input G, κ, ε ∈ (0, 1/2) and
µ ⩾ (1− ε) · µ(G) and in time O(m·log n/ε) returns one of the following.
(a) A fractional matching x⃗ of value at least (1− 20ε) · µ with the following properties.

(i) For any e ∈ supp(x⃗) with κ(D(e)) > 1/α2
ε, x(e) = κ(e)

κ(D(e)) , and x(D(e)) = 1.
(ii) For any e ∈ supp(x⃗) with κ(D(e)) ⩽ 1/α2

ε, x(e) ⩽ κ(e) ·αε and x(D(e)) ⩽ κ(D(e)) ·
αε.

(b) A set E∗ of edges such that κ(E∗) = O(µ log n) such that for any integral matching M

with |M | ⩾ (1 − 3ε) · µ, we have |M ∩ E∗| ⩾ εµ. Moreover, κ(e) < 1 for all e ∈ E∗.
Additionally, for every pair of vertices u, v ∈ V , either D(u, v)∩E∗ = ∅ or D(u, v) ⊆ E∗.

We give some intuition for Lemma 7. Recall that we need a balanced fractional matching
that contains a large integral matching in its support. However, as mentioned before, in the
case of general graphs, finding such a balanced fractional matching is not straightforward. In
order to get past this obstacle, we define a balanced fractional matching that is easy to find
and also avoids the integrality gap. We will explain how to find it in the subsequent sections.
For now, we explain at a high-level, why the fractional matching x⃗ found by Lemma 7 avoids
the integrality gap. Consider x⃗C . Observe from Lemma 7(a), that for any pair of vertices
u, v ∈ G, either xC((u, v)) = 1 or xC((u, v)) ⩽ 1/αε ⩽ ε. Thus, x⃗ satisfies odd-set constraints
for all odd sets of size at most 1/ε. By a folklore lemma, we can then argue that x⃗ contains
an integral matching of size at least (1 + ε)−1 ·

∑
u ̸=v xC((u, v)).

As mentioned before M-or-E*() will be used as a subroutine in our decremental
algorithm. The fractional matching output by M-or-E*() will have certain properties, we
state these properties now, since they will be helpful in visualizing the fractional matching.
We give a proof of these in the full version.

▶ Property 8. In our decremental algorithm, M-or-E*(G, µ, κ, ε) outputs a fractional
matching x⃗ with the following property: consider any u, v ∈ V and let e, e′ be edges between
u, v (recall that G is a multigraph). Then, κ(e′) = κ(e) at all times during the algorithm.

S. Assadi, A. Bernstein, and A. Dudeja 11:7

▶ Definition 9. Let G be a multigraph, let ε ∈ (0, 1), let κ be a capacity function on the
edges of G and let x⃗ be a fractional matching obeying κ. Then, we split x⃗ into two parts,
x⃗f and x⃗i, where x⃗ = x⃗f + x⃗i, and supp(x⃗f) = {e ∈ E | κ(D(e)) ⩽ 1/α2

ε} and supp(x⃗i) =
{e ∈ E | κ(D(e)) > 1/α2

ε} (x⃗f stands for fractional and x⃗i stands for integral. Though the
edges in x⃗i do not have integral capacity, they are large enough to round them to 1).

We briefly give the implications of this definition, since it is instructive to state them.

▶ Property 10. Let G be any multigraph and x⃗ be the matching output by M-or-E*(G, µ, κ, ε),
(a) For x⃗, we have x(e) ⩽ κ(e) ·α2

ε for all e ∈ E. This follows immediately from Lemma 7(a).
(b) For any pair of vertices u, v, either D(u, v) ⊆ supp(x⃗i) and D(u, v) ∩ supp(x⃗f) = ∅ or,

D(u, v) ⊆ supp(x⃗f) and D(u, v) ∩ supp(x⃗i) = ∅.
(c) Consider z⃗ = x⃗i. Then supp(z⃗C) is a matching. This is implied by Lemma 7(ai).

5 Ingredients for Algorithm M-or-E*()

Recall we use µ(G, κ) to denote the value of the maximum fractional matching of G obeying
capacity function κ and the odd set constraints. As in the congestion balancing set up
of [9], we want to check if µ(G, κ) ⩾ (1 − ε) · µ(G). But, unlike in bipartite graphs,
where we can use flows to find fractional matching, there is no simple way to check if
µ(G, κ) ⩾ (1− ε)µ(G) in general graphs. Our first structural result circumvents this. Let Gs

be obtained by sampling every edge e with probability p(e) = min {1, κ(e) · ρε}. We show
that µ(Gs) ⩾ µ(G, κ)− εµ(G). Thus, Static-Match(Gs, ε) is used to estimate µ(G, κ).

At a high level, M-or-E*() proceeds in three phases. In Phase 1, it creates Gs and
computes µ(Gs). If µ(Gs) is large, then by the above µ(G, κ) must also be large, so the
algorithm proceeds to Phase 2, where it finds a fractional matching satisfying Lemma 7(a).
On the other hand, if µ(Gs) is small, then it proceeds to Phase 3, where it finds the set
of edges E∗ satisfying Lemma 7(b), along which it increases capacity. In the subsequent
sections, we will state the main structural properties we use in each of the phases. Finally,
in Section 6, we put together these ingredients to give M-or-E*(), and prove Lemma 7.

5.1 Phase 1 of M-or-E*()
Before we formally state the main guarantees of Phase 1, we will state some standard results
in matching theory, that we will use in our main result for Phase 1.

5.1.1 Some Standard Ingredients For Phase 1
The first ingredient we use is the Tutte-Berge formula.

▶ Definition 11. For any multigraph G and U ⊆ V , oddG(V \U) denotes the number of odd
components in G[V \ U].

▶ Lemma 12 (Tutte-Berge Formula). [38] The size of a maximum matching in a graph
G = (V, E) is equal to 1

2 min
U⊆V

(|U |+ |V | − oddG(V \ U)).

Additionally, we will use some properties of the matching polytope.

▶ Lemma 13 ([38]). Let G be any multigraph, let x⃗ be a fractional matching that in addition
to the fractional matching constraints, also satisfies the following for all odd-sized U ⊆ V :∑
e∈G[U]

x(e) ⩽ |U |−1
2 . Then, there is an integral matching M ⊆ supp(x) with |M | =

∑
e∈E x(e).

ICALP 2022

11:8 Decremental Matching in General Graphs

▶ Definition 14. Let G be any multigraph, and let S, T ⊆ V , then δG(S, T) is defined as the
set of edges that have one endpoint in S and the other in T . Additionally, for S ⊆ V , we
define δG(S) to be the set of edges that have one end point in S, and the other in V \ S.

Figure 1 The figure shows the graph G, and a partition P = {U, E1, · · · , Eq, O1, · · · , Ot}
satisfying properties (a) and (b) mentioned in proof of Lemma 15. The thick edges (in red and
purple), are the edges in supp(x⃗), where x⃗ is the fractional matching realizing µ(G, κ). The purple
edges (edges between the odd components, or between odd and even components) correspond to
EP

miss, and
∑

e∈EP
miss

x(e) ⩾ 2 · ε · µ(G).

5.1.2 Main Lemma for Phase 1
As mentioned earlier, in Phase 1 of M-or-E*(), we first create a sampled graph Gs. In the
following lemma, we show that µ(Gs) is a good estimate for µ(G, κ) with high probability.

▶ Lemma 15. Let G be a multigraph with µ(G) ⩾ ε·n/16 where ε ∈ (0, 1/2). Let κ be a
capacity function on the edges of G, and let Gs be obtained by sampling every edge e ∈ G

with probability p(e) = min {1, κ(e) · ρε}. Let µ(G, κ) be the value of the maximum fractional
matching of G obeying the capacities κ, and the odd set constraints. Then, with high
probability, µ(Gs) ⩾ µ(G, κ)− ε · µ(G).

Proof. We want to show that with high probability, µ(Gs) ⩾ µ(G, κ) − ε · µ(G). In or-
der to do this, by Lemma 12, it is sufficient to show that with high probability, 1 − 1/n2,
1
2 min

U⊆V
(|U |+ |V | − oddGs

(V − U)) ⩾ µ(G, κ)− ε · µ(G). Towards this, we consider a fixed

partition P of V into sets U, O1, · · · , Ot, E1, · · · , Eq with the following properties (see Fig-
ure 1).
(a) We have, q ⩾ 0 and t > n− 2 · µ(G, κ) + 2ε · µ(G) + |U |.
(b) Sets Oi for i ∈ [t] are odd-sized sets and sets El for l ∈ [q] are even-sized sets.
If µ(Gs) < µ(G, κ)− ε · µ(G), then there is a partition P = {U, O1, · · · , Ot, E1, · · · , Eq} of
Gs (from Lemma 12), satisfying (a) and (b) such that Gs[V \U] is the union of disconnected
components O1, · · · , Ot, E1, · · · , Eq. If Gs[V \ U] is the union of disconnected components
O1, · · · , Ot, E1, · · · , Eq then δGs

(Oi, Ol) = ∅ for all i ̸= l and δGs
(Oi, El) = ∅ for all i ∈ [t],

S. Assadi, A. Bernstein, and A. Dudeja 11:9

l ∈ [q]. Thus, to upper bound the probability that µ(Gs) < µ(G, κ)− ε · µ(G), it is sufficient
to upper bound the probability that there exists a partition P = {U, O1, · · · , Ot, E1, · · · , Eq}
satisfying (a) and (b), such that none of the edges EP

miss = {e | e ∈ δG(Oi, Ol) for i ̸= l} ∪
{e | e ∈ δG(Oi, El) for i ∈ [t], l ∈ [q]} are sampled in Gs. In order to bound this probability,
we make the following claim.

▷ Claim 16. For a partition P satisfying (a) and (b), κ(EP
miss) ⩾ 2 · ε · µ(G).

Proof. Let x⃗ be a fractional matching obeying odd set constraints and capacity function κ such
that

∑
e∈E x(e) = µ(G, κ). We show that if κ(EP

miss) < 2 · ε · µ(G), then, x(EP
miss) > κ(EP

miss),
which will contradict the fact that x⃗ is a fractional matching obeying κ.

With this proof strategy in mind, for contradiction assume that κ(EP
miss) < 2 · ε · µ(G) ⩽

n−2 ·µ(G, κ) + 2 · ε ·µ(G). The last inequality follows from the fact that µ(G, κ) corresponds
to the value of the maximum fractional matching, so, µ(G, κ) ⩽ n

2 . Since x⃗ obeys odd set
constraints,

∑
l⩽t x(δG(Ol)) ⩾ t. Note that

∑
l⩽t x(δG(Ol, U)) ⩽ |U |, otherwise for some

v ∈ U ,
∑

e∋v x(e) > 1, violating the fact that x⃗ is a fractional matching. Next, we observe
that

∑
l⩽t x(δG(Ol)) = x(EP

miss) +
∑

l⩽t x(δG(Ol, U)). This follows from the fact that all
edges emanating out of Oi in G, are incident on Oj for j ̸= i, or Ek for some k ∈ [q], or U .
We have the following set of inequalities.

x(EP
miss) =

∑
l⩽t

x(δG(Ol))−
∑
l⩽t

x(δG(Ol, U)) ⩾ t− |U | > n− 2 · µ(G, κ) + 2 · ε · µ(G)

The last inequality is because P satisfies (a) and (b). Thus, x(EP
miss) > κ(EP

miss). ◁

We also have a claim which allows us to only focus on P for which all e ∈ EP
miss have

κ(e) < 1/ρε. Let HP
miss denote the event that none of the edges of EP

miss are sampled.

▶ Observation 17. Suppose κ(e) ⩾ 1/ρε for any e ∈ EP
miss, then, Pr

(
HP

miss
)

= 0.

The above observation follows from the fact that an edge e is sampled with probability
min {1, κ(e) · ρε}. From the above claim, it is sufficient to focus on EP

miss where all edges e

have κ(e) < 1/ρε, since these are the only P that contribute non-zero probability.

Pr
(
HP

miss
)
⩽

∏
e∈EP

miss

(1− p(e)) ⩽ exp

− ∑
e∈EP

miss

p(e)

 = exp

− ∑
e∈EP

miss

κ(e) · ρε

= exp

(
−ε · 240/ε2 · µ(G) · log n

)
⩽ exp

(
−239/ε2 · µ(G) · log n

)
.

Note that number of partitions P satisfying (a) and (b) are upper bounded by the number
of ways of partitioning V , and it is known that a set of size n has 2n·log n partitions. Since
n ⩽ 16·µ(G)/ε, the bound on the number of partitions is at most 216µ(G)/ε·log n (by assumption
of Lemma 15).

Thus, applying the equation above and taking a union bound over all the partitions,
we know that the with probability 1 − exp (−µ(G)·log n/ε), in Gs, we have no partition
P = {U, O1, · · · , Ot, E1, · · · , Eq} satisfying (a) and (b) such that Gs[V \ U] is a union of
disconnected components O1, · · · , Ot, E1, · · · , Eq. Thus, by Lemma 12, with high probability,
µ(Gs) ⩾ µ(G, κ)− ε · µ(G). ◀

ICALP 2022

11:10 Decremental Matching in General Graphs

5.2 Phase 2 of M-or-E*()
The algorithm proceeds to Phase 2 only if the integral matching Ms found in Gs is close
to µ(G, κ). But note that although Phase 1 gives us a way to estimate the value of µ(G, κ)
via µ(Gs) (by Lemma 15), it is unclear how to actually compute a corresponding fractional
matching x⃗ that obeys capacities and odd set constraints. That is the goal of Phase 2: we
show how to compute x⃗ and show that it is close in value to µ(Gs) with high probability,
and therefore it is close to µ(G, κ) as well (by Lemma 15).

5.2.1 Preliminaries for Phase 2
Phase 2 starts by computing Ms = Static-Match(Gs, ε) and then uses Ms to compute the
desired fractional matching. We will split Ms into low capacity edges and high capacity edges,
and as a result split V into vertices matched using high capacity edges, and low capacity
edges. We begin by giving a formal definition of low capacity edges.

▶ Definition 18. Let G be any multigraph, and let κ be a capacity function on the edges of G.
Let ε ∈ (0, 1/2). Define EL(G, κ) = {e ∈ E | e ∈ D(u, v) and κ(D(u, v)) ⩽ 1/α2

ε}. Intuitively,
EL(G, κ) is the set of low total capacity edges.

As mentioned in the high-level overview, in order to prove our probabilistic claims, we
will give some slack to the capacities. This motivates our next definition.

▶ Definition 19. Let G be a multigraph, and let κ be a capacity function on the edges of
G. Let ε ∈ (0, 1/2). We define the capacity function κ+ as follows: for all e ∈ EL(G, κ),
κ+(e) = κ(e) · αε and for all e ∈ E \ EL(G, κ), κ+(e) = κ(e).

To make our analysis easier to follow, we need the following definition of a bipartite
double cover of G.

▶ Definition 20 (Bipartite Double Cover). Let G be a multigraph and κ be a capacity function
on the edges of G. We define the bc(G) to be the following bipartite graph with capacity
function κbc.
(a) For every vertex v ∈ V (G), make two copies v and v′ in V (bc(G)).
(b) If e is an edge between u, v ∈ V (G), then for each such e we add two edges e′ and e′′,

one between u and v′ and the other between v and u′. We let κbc(e′) = κbc(e′′) = κ(e).
We defer the proof of the following claim, relating µ(G) and µ(bc(G)) to the full version.

▷ Claim 21. For any multigraph G, µ(bc(G)) ⩾ 2 · µ(G).

Next, we state the following lemma, which follows from standard techniques, and we give a
formal proof of it in the full version. The lemma essentially states that a fractional matching
which has low flow on all edges has a very small integrality gap.

▶ Lemma 22. Let G be a multigraph, and let ε ∈ (0, 1). Let κ be a capacity function on the
edges of G, with κ(D(e)) ⩽ 1/αε for all e ∈ E(G). Then, µ(bc(G), κbc) ⩽ 2 · (1 + ε) ·µ(G, κ),
where µ(G, κ) is the maximum fractional matching of G obeying κ and the odd set constraints,
and µ(bc(G), κbc) is the maximum fractional matching of bc(G) obeying κbc.

Additionally, we will need the following lemma, which follows as a corollary of Lemma 12.

▶ Proposition 23 (Extended Hall’s Theorem). Let G = (L ∪ R, E) be a bipartite graph
with n = |L| = |R|, then µ(G) = n − maxS⊆L (|S| − |NG(S)|), where NG(S) refers to the
neighbourhood of S in G.

S. Assadi, A. Bernstein, and A. Dudeja 11:11

In order to prove Lemma 26, we will use the following version of Chernoff bound.

▶ Lemma 24 (Chernoff Bound). [21] Let X1, · · · , Xk be negatively correlated random variables,
and let X denote their sum, and let µ = E [X]. Suppose µmin ⩽ µ ⩽ µmax, then for all δ > 0,
Pr (X ⩾ (1 + δ)µmax) ⩽

(
eδ

(1+δ)δ

)µmax
.

Additionally, we state the following observation. The proof follows from an application of
the max-flow min-cut theorem (see [9]).

▶ Observation 25. Let G be any bipartite multigraph, with vertex bipartitions S and T and
capacity κ on the edges. Then, for any C ⊆ S, and D ⊆ T , we have, |S|− |C|+ |D|+κ(C, T \
D) ⩾ µ(G, κ). Moreover, there are sets C ⊆ S and D ⊆ T such that equality holds.

5.2.2 Main Result for Phase 2
We briefly give some intuition about the statement of next lemma. Recall in the high level
review, we mentioned that M , the integral matching of Gs has two parts MH , which is
the high capacity part, and ML, the low capacity part, and we defined VH = V (MH) and
VL = V (ML). We said that congestion balancing allows us to give slack to capacities (κ+ in
Definition 19), and therefore, we can round up the capacities of MH to 1. However, we still
want to compute a fractional matching of G[VL]. In order to do this, we observe that if the
fractional matching in G[VL] is only on low capacity edges, then we can use flow algorithm
on the low capacity edges of the bipartite graph bc(G[VL]) to compute such a matching.
Therefore, our main structural result for Phase 2 states that if y⃗ is a maximum fractional
matching with support on the low capacity edges of G[VL], then with high probability∑

e∈E y(e) ⩾ |ML| − ε · µ(G). We now state this result formally.

▶ Lemma 26. Let G be a multigraph and let ε ∈ (0, 1/2) and suppose µ(G) ⩾ ε·n/16. Let κ be
a capacity function on the edges, and let Gs be the graph obtained from G by sampling each
edge e with probability p(e) = κ(e) · ρε. Let EL := EL(G, κ). Then, with high probability, for
all W ⊆ V , we have µ(bc (Gs[W] ∩ EL)) ⩽ µ(bc (G[W] ∩ EL) , κ+

bc) + 8 · εµ(G).

▶ Remark 27. Note that by definition of EL, all edges e ∈ G[W]∩EL have κ(e) ⩽ 1/α2
ε. Thus,

κ+
bc(e) = κbc(e) · αε for all e ∈ bc(G[W] ∩ EL) (recall Definition 19 and Definition 18).

Before we prove it, we have the following statement as a corollary of Lemma 26.

▶ Corollary 28. Let G be a multi-graph, and let ε ∈ (0, 1). Let κ be a capacity function
on the edges of G with κ(e) ⩽ 1/αε for all e ∈ E(G). Then, with high probability, for all
W ⊆ V , µ(Gs[W] ∩ EL) ⩽ µ(G[W] ∩ EL, κ+) + 5 · εµ(G).

Proof. The inequality in the statement follows due to the following line of reasoning.

2 · µ(Gs[W] ∩ EL) ⩽ µ(bc (Gs[W] ∩ EL))
(since 2 · µ(H) ⩽ µ(bc(H)), see Claim 21)
⩽ µ(bc(G[W] ∩ EL), κ+

bc) + 8 · εµ(G)
(by Lemma 26)
⩽ 2 · (1 + ε) · µ(G[W] ∩ EL, κ+) + 8εµ(G)
(by Lemma 22)
⩽ 2 · µ(G[W] ∩ EL, κ+) + 10 · εµ(G).

The second to last inequality follows from the fact that any fractional matching in G obeying
κ+ and odd set constraints is upper bounded by µ(G) (by Lemma 13). ◀

ICALP 2022

11:12 Decremental Matching in General Graphs

Figure 2 In the left panel, we consider the graph G, and W = {a, b, c, d, e}. The red edges
correspond to the low capacity edges of G[W], denoted G[W] ∩ EL. On the right panel, we have the
bipartite graph bc(G[W] ∩ EL), which has bipartitions W1 and W2. The solid red edges are the
edges going between C and W2 \ D, and these edges have capacity κ(C, W2 \ D).

Proof of Lemma 26. Throughout this proof we refer the reader to Figure 2. Consider a fixed
W ⊆ V . From now, we will use H to denote bc(G[W]∩EL) and let Hs denote bc(Gs[W]∩EL).
For the bipartite graph H, we will use W1 and W2 to denote the two bipartitions of H

corresponding to W . We now want to prove that µ(Hs) ⩽ µ(H, κ+
bc) + 8εµ(G). To prove this,

it is sufficient to show a set C ⊆W1 such that |C| − |NHs
(C)| ⩾ |W1| − µ(H, κ+

bc)− 8εµ(G)
with high probability. Then, by Proposition 23, we have the following inequality: |W1| −
µ(H, κ+

bc)− 8εµ(G) ⩽ |C| − |NHs
(C)| ⩽ |W1| −µ(Hs). This would prove our claim. Towards

this, we consider the set C ⊆W satisfying the following equation (applying Observation 25
to H and κ+

bc), and show that this is the required set.

|W1| − |C|+ |D|+ κ+
bc(C, W2 \D) = µ(H, κ+

bc). (1)

We want to show that |C|− |NHs
(C)| ⩾ |W1|−µ(H, κ+

bc)−8εµ(G) with high probability. Let
L be the set of vertices in NHs(C)∩W2 \D. We know that |NHs(C)| ⩽ |D|+ |L|. If we show
that |L| ⩽ κ+

bc(C, W2 \D) + 8 · εµ(G), then, |NHs
(C)| − 8ε · µ(G) ⩽ |D|+ κ+

bc(C, W2 \D).
Substituting in Equation (1), we have |W1| − |C|+ |NHs(C)| − 8ε · µ(G) ⩽ µ(H, κ+

bc), which
implies that |C| − |NHs

(C)| ⩾ |W1| − 8 · εµ(G)− µ(H, κ+
bc). We now focus on bounding |L|.

Let EH(C, W2 \D) be the set of edges in H between C and W2 \D. Let X be the random
variable that denotes the number of edges in EH(C, W2 \D) that are sampled in Hs. Note
that X is not a sum of independent random variables. Recall that H is a subgraph of bc(G),
and suppose e ∈ G[W]∩EL is included in Gs, then e′ and e′′ (recall e′ and e′′ are copies of e

in bc(G), Definition 20) are both included in Hs else both are excluded. Thus, the random
variables associated with e′ and e′′ are correlated with each other. We instead consider an
arbitrary subset of E∗

H(C, W2 \D) of EH(C, W2 \D) that satisfies the following properties.
(a) For e ∈ G[W], if {e′, e′′} ⊂ EH(C, W2 \D), then exactly one of e′ or e′′ is included in

E∗
H(C, W2 \D).

(b) For e ∈ G[W], if {e′, e′′}∩EH(C, W2\D) = {e′}, then only e′ is included in E∗
H(C, W2\D)

and if {e′, e′′} ∩ EH(C, W2 \D) = {e′′}, then only e′′ is included in E∗
H(C, W2 \D).

We consider the random variable Y that denotes the number of edges in E∗
H(C, W2 \D) that

are included in Hs. Observe that Y is a sum of independent random variables satisfying the
condition of Lemma 24. Moreover, X ⩽ 2Y . Thus, it is sufficient to upper bound the value

S. Assadi, A. Bernstein, and A. Dudeja 11:13

Y can take with high probability. Note that for any e ∈ EH(C, W2 \D), using the definition
of H, κbc(e) < 1/α2

ε. Since ρε < αε, p(e) = ρε · κbc(e) < 1. So, we have,

E [Y] ⩽
∑

e∈E∗
H

(C,W2\D)

p(e) ⩽ ρε · κbc(C, W2 \D) ⩽ κ+
bc(C, W2 \D)

220/ε2 .

The last inequality follows from the fact that in H, κ+
bc(e) = κbc(e) · αε for all e ∈ H

(see Definition 19). This is because by definition of H and Definition 19, for all edges
e ∈ H, the corresponding original edge in G is in EL(G, κ). We want to bound the
Pr
(

Y ⩾ κ+
bc(C,W2\D)

220/ε2 + 4 · εµ(G)
)

. Applying Lemma 24 with δ = 4·εµ(G)·220/ε2

κ+
bc(C,W2\D) , we have,

Pr
(

Y ⩾
κ+

bc(C, W2 \ D)
220/ε2 + 4 · εµ(G)

)
= exp

(
εµ(G) − εµ(G) log

(
1 + 4 · εµ(G) · 220/ε2

κ+
bc(C, W2 \ D)

))
⩽ exp

(
εµ(G) − εµ(G) log

(
1 + ε · 220/ε2

))
(Since κ+

bc(C, W2 \ D) ⩽ 4 · µ(G) as proved below.)

⩽ exp
(

εµ(G) − εµ(G) log
(

1 + 219/ε2
))

(Using the fact that 21/ε2
⩾ 1/ε)

= exp (εµ(G) − 19µ(G)/ε)

(Using the fact that 219/ε2
⩽ 219/ε2

+ 1).

To see why κ+
bc(C, W2 \D) ⩽ 4 · µ(G), consider Equation (1), κ+

bc(C, W2 \D) is equal to

µ(H, κ+
bc)− |W1|+ |C| − |D| ⩽ 2 · (1 + ε) · µ(G[W] ∩ EL(G, κ), κ+)− |W1|+ |W1|

⩽ 4 · µ(G).

The first inequality is due to Lemma 22, and the fact that H = bc(G[W] ∩ EL(G, κ)), and
κ+ satisfies the hypothesis. Finally, observe that |L| ⩽ X ⩽ 2Y ⩽ κ+

bc(C, W2 \D) + 8 · εµ(G)
with probability at least exp (−19µ(G)/ε). Taking a union bound over all W , which are at most
216·µ(G)/ε many (since by statement of the lemma, µ(G) ⩾ ε·n/16), we have our bound. ◀

5.3 Phase 3: Finding set E∗

The algorithm M-or-E*() proceeds to Phase 3 if the matching found in Gs in Phase 1 is
small, and hence µ(G, κ) is too small. In this case, we need to find a set E∗ satisfying the
properties of Lemma 7(b). In particular, we need to find a set E∗ with κ(E∗) = O(µ(G) log n)
such that for every large matching M , there are a lot of edges going through E∗. In order to
do this, we rely on the properties of the dual variables associated with the matching problem.
The algorithm Static-Match(), luckily for us, solves both the primal as well as the dual
solution. We first begin by stating the properties of the dual program, and then we state the
properties of dual variables guaranteed by Static-Match().

▶ Definition 29 ([38]). We consider the dual of the matching linear program:
1. Every edge e = (u, v) has a dual constraint yz((u, v)) := y(u) + y(v) +

∑
B∈Vodd,
e∈G[B]

z(B).

2. We use f(y, z) :=
∑

v∈V y(u) +
∑

B⊆Vodd

|B|−1
2 z(B) to denote the dual objective function.

We now describe some properties of the Static-Match(). All of the properties except
Lemma 30(c) are given by the algorithm in [20]. We then show how to ensure property (c)
as well by modifying the dual; see full version for details.

ICALP 2022

11:14 Decremental Matching in General Graphs

▶ Lemma 30. There is an O(m/ε) time algorithm Static-Match() that takes as input a
graph G with m edges and a parameter ε > 0, and returns a matching M , and dual vectors y⃗

and z⃗ that have the following properties.
(a) It returns an integral matching M such that |M | ⩾ (1− ε) · µ(G).
(b) A set Ω of laminar odd-sized sets, such that {B | z(B) > 0} ⊆ Ω.
(c) For all odd-sized B with |B| ⩾ 1/ε + 1, z(B) = 0.
(d) Each y(v) is a multiple of ε and z(B) is a multiple of ε.
(e) For every edge e ∈ E, yz(e) ⩾ 1− ε. We say that e is approximately covered by y⃗ and z⃗.
(f) The value of the dual objective, f(y, z) is at most (1 + ε) · µ(G).

5.3.1 Main Guarantees of Phase 3
We now state the following helper lemma is instrumental in proving one of the two main
properties of E∗, namely, that every large matching has a lot of edges passing through E∗.

▶ Lemma 31. Suppose G is a graph, and let H ⊂ G be a subgraph of G. Let y⃗, z⃗ be the dual
variables returned on execution of Static-Match(H, ε). Let EH = {e ∈ G | yz(e) ⩾ 1− ε}.
For any matching M of G, then |M ∩ E \ EH | ⩾ |M | − (1 + ε)2 · µ(H).

Proof. Suppose we scale up the dual variables y⃗ and z⃗ by a factor of 1 + ε. Then, y⃗ and z⃗

is a feasible solution for the dual matching program for the graph EH . Thus, using weak
duality, we have that µ(EH) ⩽ (1 + ε)f(y, z) ⩽ (1 + ε)2 · µ(H) (this inequality follows from
Lemma 30(f)). Suppose M is a matching of G with |M ∩E \EH | < |M |− (1+ε)2 ·µ(H) then,
this implies that |M ∩ E \ EH | < |M | − µ(EH). Thus, |M | = |M ∩ EH |+ |M ∩ E \ EH | <
µ(EH) + |M | − µ(EH) = |M |, which is a contradiction. ◀

We now define set E∗, and show that it has the property that κ(E∗) = O(µ(G) log n).

▶ Lemma 32. Let G be a graph multi-graph such that µ(G) ⩾ ε·n/16, and let κ be a capacity
function on the edges of the graph. Suppose Gs is the graph obtained by sampling every
edge e ∈ E with probability p(e) = min {1, κ(e) · ρε}. Let y⃗, z⃗ be the output of Static-
Match(Gs, ε). Let E∗ = {e ∈ E | yz(e) < 1− ε}. Then, for all e ∈ E∗, κ(e) < 1 and with
high probability, κ(E∗) = O(µ(G) log n).

Proof. We consider the set D of assignments y⃗, z⃗ to the vertices and odd components that
satisfy the following properties.
(a) For all v ∈ V , y(v) is a multiple of ε, and for all B ⊂ V , z(B) is a multiple of ε.
(b) Let Ω = {B ⊂ V | z(B) > 0}, then Ω is laminar.
(c) If z(B) > 0 for some B ⊆ V , then |B| ⩽ 1/ε.
Observe that,

|D| ⩽
2n∑

i=0

(
n1/ε

i

)
·
(

1
ε

)n

·
(

1
ε

)2n

⩽ n ·
(

n1/ε

2n

)
·
(

1
ε

)n

·
(

1
ε

)2n

⩽ 2(4/ε)·n log n.

This number follows from the following argument. Since Ω is laminar, it can contain at most
2n sets. Moreover, from (c), we deduce that these 2n sets are chosen from among n1/ε sets.
Further, from (a), we deduce that each y(v) can be assigned at most 1/ε values, and for every
B ∈ Ω, z(B) can be assigned 1/ε values. Therefore, for a given choice of Ω, there are at
most (1/ε)n · (1/ε)2n choices for y⃗ and z⃗. Moreover, the above number also upper bounds the
number of possible duals that can be a returned by the algorithm Static-Match(), since
the duals in D satisfy a subset of the properties given in Lemma 30. Since µ(G) ⩾ ε·n/16, we
can upper bound |D| by 2(32/ε2)·µ(G) log n.

S. Assadi, A. Bernstein, and A. Dudeja 11:15

Now consider a fixed y⃗, z⃗ that satisfies the above-mentioned properties, and let E∗ be
the set of edges that are not approximately covered by y⃗, z⃗. Note that for any e ∈ E∗,
κ(e) ⩽ 1/ρε. If not, then, p(e) = 1, and then it would be sampled in Gs, and be approximately
covered by y⃗, z⃗ (by Lemma 30(e)). Thus, for any e ∈ E∗, p(e) = κ(e) · ρε. Now, suppose
κ(E∗) > µ(G) log n. Then, observe that if y⃗, z⃗ is output by Static-Match(Gs, ε) (denote
this event by Ey,z) then none of the edges in E∗ were sampled (denote this event by E2).
Thus,

Pr (Ey,z) ⩽ Pr (E2)

⩽
∏

e∈E∗

(1− p(e))

⩽ exp
(
−
∑

e∈E∗

κ(e) · ρε

)
⩽ exp

(
−240/ε2 · µ(G) log n

)
.

Our lemma follows by taking an upper bound over the set D:

Pr

 ⋃
y⃗,z⃗∈D

Ey,z

 ⩽ exp
(
−240/ε2 · µ(G) log n

)
· 2(32/ε2)·µ(G)·log n

= exp
(
−O(21/ε2 · µ(G) · log n)

)
. ◀

6 Algorithm M-or-E*()

In this section, we give the main subroutine M-or-E*() (see Lemma 7). We first define a
few terms, and then state algorithm Frac-Match(), which follows almost directly from
known results, with some very minor modifications; see full version for details.

▶ Definition 33. Recall Definition 18, and consider an integral matching M , define
EM

L (G, κ) = EL(G, κ) ∩M , and let V M
L be the endpoints of EM

L (G, κ).

▶ Lemma 34. Given a multigraph G (possibly non-bipartite), with edge capacities κ and
ε ∈ (0, 1), such that κ(D(e)) ⩽ 1/αε for all e ∈ E, then there is an algorithm Frac-
Match() that takes as input G, κ and ε, and returns a fractional matching x⃗ such that∑

e∈E x(e) ⩾ (1 − ε) · µ(G, κ), obeying the capacities κ and the odd set constraints. The
runtime of this algorithm is O(m·log n/ε).

For the purpose of the algorithm recall κ+ in Definition 19. We now formalize M-or-
E*() from Lemma 7 in Algorithm 1 below; recall that the input is a multigraph G with
µ(G) ⩾ ε·n/16.

We now show Lemma 7 holds.

Proof of Lemma 7. We first show the runtime of the algorithm. Graph Gs can be computed
in time O(m). Using Lemma 30, we conclude that we can compute E∗ in order O(m/ε) time
by running Static-Match(Gs, ε) and Lemma 34 implies that Algorithm 1 takes O(m·log n/ε)
time.

We show Lemma 7((a)). First observe that V M
L and V (MI) are disjoint, and since y⃗

and x⃗ are fractional matchings, z⃗ is also a fractional matching. Note that |M | ⩾ µ− 7εµ.
Moreover,

∑
e∈E x(e) ⩾ (1− ε) · µ(G[V M

L] ∩ EL, κ+). This follows from applying Lemma 34

ICALP 2022

11:16 Decremental Matching in General Graphs

Algorithm 1 M-or-E*(G, κ, ε, µ).

Include each e ∈ E(G) independently with probability p(e) = min {1, κ(e) · ρε} into
graph Gs.
Let M and y⃗, z⃗ be the output of Static-Match(Gs, ε). ▷ Phase 1
if |M | < µ− 7εµ then ▷ Phase 3

Return E∗ = {e ∈ E(G) | yz(e) < 1− ε}.
else ▷ Phase 2

MI ←M \ EL(G, κ)
y⃗ ←MD

I ▷ See Definition 5
x⃗← Frac-Match(G[V M

L] ∩ EL(G, κ), κ+, ε)
Return z⃗ ← y⃗ + x⃗.

to G[V M
L]∩EL(G, κ) with capacity function κ+. Recall Definition 19 and Definition 18 to see

that κ+(D(e)) ⩽ 1/αε for e ∈ G[V M
L]∩EL(G, κ), thus satisfying the requirements of Lemma 34.

Next, applying Corollary 28, we have, µ(Gs[V M
L] ∩ EL) ⩽ µ(G[V M

L] ∩ EL, κ+) + 5 · εµ(G).
Thus, we have

∑
e∈E x(e) ⩾ (1− ε) ·

(
µ(Gs[V M

L] ∩ EL)− 5εµ
)
⩾ (1− ε) · (|M \MI | − 5εµ).

This is because M \MI is a matching of Gs[V M
L] ∩ EL. So,

∑
e∈E z(e) ⩾ |MI | + (1 − ε) ·

(|M \MI | − 5εµ) ⩾ (1− ε) · (µ− 12εµ) ⩾ µ− 13εµ.
We now show Lemma 7(ai) and (aii). Consider any edge e ∈ supp(z⃗) with κ(D(e)) ⩽ 1/α2

ε,
e ∈ G[V M

L] ∩ EL(G, κ). Thus, e ∈ supp(x⃗), and therefore, from Lemma 34, z(e) = x(e) ⩽
κ+(e) ⩽ κ(e) · αε and z(D(e)) = x(D(e)) ⩽ κ(D(e)) · αε. Similarly, for any e ∈ supp(z⃗) with
κ(D(e)) > 1/α2

ε, e ∈ supp(y⃗). By definition of y⃗, z(e) = y(e) = κ(e)/κ(D(e)) (recall Definition 5)
and z(D(e)) = 1. This proves our claim.

Next, we show Lemma 7(b). First recall from the assumption of Lemma 7 that µ ⩾ (1−ε)·
µ(G). From this fact and Lemma 32, we can conclude that κ(E∗) = O(µ log n) and that for all
e ∈ E∗, κ(e) < 1. Next, observe that µ(Gs) ⩽ (1+ε) · |M | ⩽ (1−6ε) ·µ. Applying Lemma 31
with H = Gs, we have, that for any matching M ′ of G, |E∗∩M ′| ⩾ |M ′|−(1+ε)2 ·(1−6ε) ·µ.
If |M ′| ⩾ (1− 3ε) · µ, then we have |E∗ ∩M ′| ⩾ ε · µ. Finally, consider any pair of vertices
u, v and let e′, e′′ ∈ D(u, v). Then, either both e′, e′′ are both approximately covered by y⃗, z⃗

or neither of them are. This implies that either D(u, v) ⊆ E∗ or D(u, v) ∩ E∗ = ∅. ◀

References

1 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with
application to the maximum matching problem. In Proceedings of the 38th International
Conference on Automata, Languages and Programming - Volume Part II, ICALP’11, pages
526–538, Berlin, Heidelberg, 2011. Springer-Verlag.

2 Nima Anari and Vijay V. Vazirani. Matching is as easy as the decision problem, in the nc
model. In ITCS, 2020.

3 Nima Anari and Vijay V. Vazirani. Planar graph perfect matching is in nc. J. ACM, 67(4),
May 2020. doi:10.1145/3397504.

4 Sepehr Assadi, Sanjeev Khanna, and Yang Li. The stochastic matching problem with (very)
few queries. ACM Transactions on Economics and Computation (TEAC), 7(3):1–19, 2019.

5 Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in
o(log n) update time (corrected version). SIAM J. Comput., 47(3):617–650, 2018. doi:
10.1137/16M1106158.

6 Soheil Behnezhad and Sanjeev Khanna. New Trade-Offs for Fully Dynamic Matching via
Hierarchical EDCS, pages 3529–3566. SIAM, 2022. doi:10.1137/1.9781611977073.140.

https://doi.org/10.1145/3397504
https://doi.org/10.1137/16M1106158
https://doi.org/10.1137/16M1106158
https://doi.org/10.1137/1.9781611977073.140

S. Assadi, A. Bernstein, and A. Dudeja 11:17

7 Soheil Behnezhad, Jakub Łącki, and Vahab Mirrokni. Fully dynamic matching: Beating
2-approximation in δϵ update time. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2492–2508. SIAM, 2020.

8 Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization approach for
dynamic spanner and dynamic maximal matching. ACM Trans. Algorithms, 17(4):29:1–29:51,
2021. doi:10.1145/3469833.

9 Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic
decremental reachability, scc, and shortest paths via directed expanders and congestion
balancing. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 1123–1134. IEEE, 2020.

10 Aaron Bernstein and Cliff Stein. Fully dynamic matching in bipartite graphs. In Magnús M.
Halldórsson, Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages
167–179. Springer, 2015. doi:10.1007/978-3-662-47672-7_14.

11 Aaron Bernstein and Cliff Stein. Faster fully dynamic matchings with small approximation
ratios. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016,
pages 692–711. SIAM, 2016. doi:10.1137/1.9781611974331.ch50.

12 Sayan Bhattacharya, Deeparnab Chakrabarty, and Monika Henzinger. Deterministic dy-
namic matching in O(1) update time. Algorithmica, 82(4):1057–1080, 2020. doi:10.1007/
s00453-019-00630-4.

13 Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Deterministic fully dynamic
data structures for vertex cover and matching. In Proceedings of the Twenty-Sixth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’15, pages 785–804, USA, 2015. Society
for Industrial and Applied Mathematics.

14 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New deterministic approx-
imation algorithms for fully dynamic matching. In Proceedings of the Forty-Eighth Annual
ACM Symposium on Theory of Computing, STOC ’16, pages 398–411, New York, NY, USA,
2016. Association for Computing Machinery. doi:10.1145/2897518.2897568.

15 Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dynamic approximate
maximum matching and minimum vertex cover in O(log3 n) worst case update time. In
Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages
470–489. SIAM, 2017. doi:10.1137/1.9781611974782.30.

16 Sayan Bhattacharya and Peter Kiss. Deterministic rounding of dynamic fractional matchings.
In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium
on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland
(Virtual Conference), volume 198 of LIPIcs, pages 27:1–27:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.27.

17 Bartlomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych. Online bipartite
matching in offline time. In 2014 IEEE 55th Annual Symposium on Foundations of Computer
Science, pages 384–393, 2014. doi:10.1109/FOCS.2014.48.

18 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In Pro-
ceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms, pages
1326–1344. SIAM, 2016.

19 Søren Dahlgaard. On the hardness of partially dynamic graph problems and connections to
diameter. CoRR, abs/1602.06705, 2016. arXiv:1602.06705.

20 Ran Duan and Seth Pettie. Linear-time approximation for maximum weight matching. Journal
of the ACM (JACM), 61(1):1–23, 2014.

ICALP 2022

https://doi.org/10.1145/3469833
https://doi.org/10.1007/978-3-662-47672-7_14
https://doi.org/10.1137/1.9781611974331.ch50
https://doi.org/10.1007/s00453-019-00630-4
https://doi.org/10.1007/s00453-019-00630-4
https://doi.org/10.1145/2897518.2897568
https://doi.org/10.1137/1.9781611974782.30
https://doi.org/10.4230/LIPIcs.ICALP.2021.27
https://doi.org/10.1109/FOCS.2014.48
http://arxiv.org/abs/1602.06705

11:18 Decremental Matching in General Graphs

21 Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the Analysis
of Randomized Algorithms. Cambridge University Press, 2009. URL: http://www.cambridge.
org/gb/knowledge/isbn/item2327542/.

22 Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite
matching in the semi-streaming model. Algorithmica, 63:490–508, 2011.

23 Stephen Fenner, Rohit Gurjar, and Thomas Thierauf. Bipartite perfect matching is in quasi-
nc. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing,
STOC ’16, pages 754–763, New York, NY, USA, 2016. Association for Computing Machinery.
doi:10.1145/2897518.2897564.

24 Manuela Fischer, Slobodan Mitrovic, and Jara Uitto. Deterministic (1+ϵ)-approximate
maximum matching with poly(1/ϵ) passes in the semi-streaming model. CoRR, abs/2106.04179,
2021. arXiv:2106.04179.

25 Harold N. Gabow and Robert E. Tarjan. Faster scaling algorithms for general graph matching
problems. J. ACM, 38(4):815–853, October 1991. doi:10.1145/115234.115366.

26 Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and Shay
Solomon. (1 + ϵ)-approximate incremental matching in constant deterministic amortized time.
In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
1886–1898. SIAM, 2019. doi:10.1137/1.9781611975482.114.

27 Fabrizio Grandoni, Chris Schwiegelshohn, Shay Solomon, and Amitai Uzrad. Maintaining
an EDCS in General Graphs: Simpler, Density-Sensitive and with Worst-Case Time Bounds,
pages 12–23. SIAM, 2022. doi:10.1137/1.9781611977066.2.

28 Manoj Gupta. Maintaining approximate maximum matching in an incremental bipartite graph
in polylogarithmic update time. In FSTTCS, 2014.

29 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. 2013 IEEE
54th Annual Symposium on Foundations of Computer Science, pages 548–557, 2013.

30 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing, pages 21–30, 2015.

31 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM J. Comput., 2:225–231, 1973.

32 A. Karzanov. On finding a maximum flow in a network with special structure and some
applications. Matematicheskie Voprosy Upravleniya Proizvodstvom (L.A. Lyusternik, ed.),
Moscow State Univ. Press, Moscow, 1973, Issue 5, pp. 81–94, in Russian., 1973.

33 Peter Kiss. Deterministic dynamic matching in worst-case update time. In Mark Braverman,
editor, 13th Innovations in Theoretical Computer Science Conference, ITCS 2022, January
31 - February 3, 2022, Berkeley, CA, USA, volume 215 of LIPIcs, pages 94:1–94:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.94.

34 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3sum conjecture.
In Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms,
pages 1272–1287. SIAM, 2016.

35 Meena Mahajan and Kasturi R. Varadarajan. A new nc-algorithm for finding a perfect
matching in bipartite planar and small genus graphs (extended abstract). In STOC ’00, 2000.

36 Silvio Micali and Vijay V. Vazirani. An o(sqrt(|v|) |e|) algorithm for finding maximum
matching in general graphs. In 21st Annual Symposium on Foundations of Computer Science,
Syracuse, New York, USA, 13-15 October 1980, pages 17–27. IEEE Computer Society, 1980.
doi:10.1109/SFCS.1980.12.

37 Mohammad Roghani, Amin Saberi, and David Wajc. Beating the Folklore Algorithm for
Dynamic Matching. In Mark Braverman, editor, 13th Innovations in Theoretical Computer Sci-
ence Conference (ITCS 2022), volume 215 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 111:1–111:23, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik. doi:10.4230/LIPIcs.ITCS.2022.111.

http://www.cambridge.org/gb/knowledge/isbn/item2327542/
http://www.cambridge.org/gb/knowledge/isbn/item2327542/
https://doi.org/10.1145/2897518.2897564
http://arxiv.org/abs/2106.04179
https://doi.org/10.1145/115234.115366
https://doi.org/10.1137/1.9781611975482.114
https://doi.org/10.1137/1.9781611977066.2
https://doi.org/10.4230/LIPIcs.ITCS.2022.94
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.4230/LIPIcs.ITCS.2022.111

S. Assadi, A. Bernstein, and A. Dudeja 11:19

38 Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

39 Shay Solomon. Fully dynamic maximal matching in constant update time. In Irit Dinur,
editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 325–334. IEEE
Computer Society, 2016. doi:10.1109/FOCS.2016.43.

40 Ola Svensson and Jakub Tarnawski. The matching problem in general graphs is in quasi-nc.
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
696–707, 2017.

41 David Wajc. Rounding dynamic matchings against an adaptive adversary. In Proceedings of
the 52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 194–207, 2020.

ICALP 2022

https://doi.org/10.1109/FOCS.2016.43

	1 Introduction
	2 High-Level Overview
	2.1 Previous Techniques
	2.2 Our Contribution: Implementing M-or-E*() in General Graphs

	3 Preliminaries
	4 Main Contribution: M-or-E*() In General Graphs
	5 Ingredients for Algorithm M-or-E*()
	5.1 Phase 1 of M-or-E*()
	5.1.1 Some Standard Ingredients For Phase 1
	5.1.2 Main Lemma for Phase 1

	5.2 Phase 2 of M-or-E*()
	5.2.1 Preliminaries for Phase 2
	5.2.2 Main Result for Phase 2

	5.3 Phase 3: Finding set E*
	5.3.1 Main Guarantees of Phase 3

	6 Algorithm M-or-E*()

