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Abstract
Given n points in ℓd

p, we consider the problem of partitioning points into k clusters with associated
centers. The cost of a clustering is the sum of pth powers of distances of points to their cluster
centers. For p ∈ [1, 2], we design sketches of size poly(log(nd), k, 1/ϵ) such that the cost of the
optimal clustering can be estimated to within factor 1 + ϵ, despite the fact that the compressed
representation does not contain enough information to recover the cluster centers or the partition
into clusters. This leads to a streaming algorithm for estimating the clustering cost with space
poly(log(nd), k, 1/ϵ). We also obtain a distributed memory algorithm, where the n points are
arbitrarily partitioned amongst m machines, each of which sends information to a central party who
then computes an approximation of the clustering cost. Prior to this work, no such streaming or
distributed-memory algorithm was known with sublinear dependence on d for p ∈ [1, 2).
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1 Introduction

Given a large number of high-dimensional points, is it possible to compress the raw represent-
ation into a very compact sketch so that we can understand how clusterable the data is from
just this highly compressed representation? Given n points in d dimensions, we consider
the problem of approximating the cost of clustering them into k clusters from a compressed
representation whose size is polylogarithmic in both n and d.

For n, d ∈ N, let P = {x1, . . . , xn} ∈ Rd be any set of points with polynomially bounded
entries (i.e., all coordinates may be represented with O(log(nd)) bits). The (k, z)-clustering
problem in ℓd

p, asks to partition P into at most k clusters C1, . . . , Ck so as to minimize

k∑
ℓ=1

min
cℓ∈Rd

∑
x∈Cℓ

∥x − cℓ∥z
p. (1)

The problem is a generalization of the k-means and k-median problem; in particular, in
Euclidean space (p = 2), z = 2 corresponds to k-means, and z = 1 to k-median.

We note that the raw representation of the dataset uses O(nd log(nd)) bits, and that any
algorithm which outputs optimal cluster centers c1, . . . , ck ∈ Rd, or the optimal clustering
C1, . . . , Ck must utilize Ω(kd), or Ω(n log k) bits of space, respectively. Hence, such algorithms
cannot decrease the dependency on both n and d simultaneously. However, this does not rule
out an exponential compression, from O(nd log(nd)) bits to polylog(nd) bits (for constant
k and z), for algorithms which approximate the optimal clustering cost, which only needs
O(log(nd)) bits. In this work, we show that it is indeed possible to design sketches of size
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38:2 Polylogarithmic Sketches for Clustering

poly(log(nd), 1/ϵ) bits which ϵ-approximate the optimal clustering cost, despite the fact that
we do not have enough information to compute the clusters nor the cluster centers which
achieve such cost.

Our results fit into a line of prior work on approximating the cost of optimization problems
without necessarily computing an optimal solution. These have been investigated before
for various problems and in various contexts, including estimating minimum spanning tree
[40, 31, 33], minimum cost matchings and Earth Mover’s Distance [40, 5, 3, 13], minimum
vertex cover and maximum matching [59, 56, 62, 57, 26, 47, 15] and model-fit [49, 48, 17].
Specifically for clustering problems, the value of the clustering cost is an important statistic;
used, for example, in the “elbow method” for determining the number of clusters needed. We
will show these sketches may be efficiently maintained on a stream as well as for distributed-
memory models, implying polylog(nd)-bit algorithms for these models of computation.

We start by reviewing a set of techniques in the literature to either reduce the dependence
on the data set size or the dependence on the dimension.

Coresets

The coreset technique is a “dataset compression” mechanism, aiming to reduce the dependency
on n. From the n points P ⊂ Rd, an algorithm computes a much smaller (weighted) set
of points S ⊂ Rd, w : S → R≥0, such that the cost of clustering the weighted points S, w

approximates that of P . Following a long line of work [11, 36, 1, 24, 52, 34, 35, 20, 61, 39, 29],
the best coreset constructions for (k, z)-clustering in ℓp achieve sizes Õ(k/ϵ4) ·min{1/ϵz−2, k}
for a (1 ± ϵ)-approximation. The ensuing streaming and distributed-memory algorithms
maintain a coreset of the input; these algorithms find (approximately) optimal centers
c1, . . . , ck ∈ Rd and use space complexity d · Õ(k/ϵ4) · min{1/ϵz−2, k} · polylog(n).1

Dimension Reduction and Sketching

In addition to constructing coresets, an algorithm may seek to optimize the dependence
on d. There is a large body of work studying (oblivious) dimensionality reduction and
sketching, where strong compression results are known for computing distances [2, 51, 60,
12, 23, 30, 42, 41, 44, 46, 7, 8, 18]. For example, for p ∈ [1, 2] there exists a (randomized)
sketch sk : Rd → R

t with t much smaller than d such that, for any two vectors x, y ∈ Rd,
an algorithm can approximate ∥x − y∥p from sk(x) and sk(y) with high probability. While
these results are encouraging, leveraging such sketches for distance computation in order to
compress entire optimization problems like (1) is highly nontrivial. The challenge is that (1)
implicitly considers distances among infinitely many vectors, and we need to rule out the
possibility of spurious low cost solutions in the “sketched” space which do not have an analog
in the original space. In particular, prior to this work, no streaming or distributed-memory
algorithm was known which could reduce the dependence on d for p ∈ [1, 2).

There is one setting, of Euclidean space (p = 2), where one can sketch vectors while
preserving (1). A sequence of works [19, 27, 14, 55] show that applying a Johnson-
Lindenstrauss [45] map Π : Rd → R

t with t = O(z4 log(k/ϵ)/ϵ2), sketches Euclidean vectors
to O(t log(nd)) bits and preserves (1) up to 1±ϵ. We emphasize that Euclidean space p = 2 is
special in this regard, because the Johnson-Lindenstrauss map achieves dimension reduction,
a property known not to hold in ℓ1 [22, 54, 4]. In particular, d-dimensional vectors x ∈ Rd

in Euclidean space are sketched to vectors Π(x) ∈ Rt in Euclidean space, i.e., one estimates

1 The log n-factors arise from utilizing the “merge-and-reduce” framework for maintaining coresets on a
stream [16, 1], and the fact the coreset constructions are randomized.
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∥x−y∥2 by ∥Π(x) −Π(y)∥2. Thus the optimization problem (1) for d-dimensional Euclidean
space reduces to the same optimization problem for a much smaller dimensional Euclidean
space. This can therefore be composed with known coreset constructions. Importantly, the
“sketched” space inherits all geometric properties of Euclidean spaces, a key aspect of prior
works, and the reason they do not extend beyond Euclidean space. The technical challenge
in applying sketches for ℓp when p ̸= 2 is that the “sketched” space is non-geometric.2

1.1 Our results
We give a streaming and distributed-memory algorithm for (k, p)-clustering in ℓp with space
complexity poly(log(nd), k, 1/ϵ) bits.

▶ Theorem 1 (Streaming (k, p)-Clustering in ℓp). For p ∈ [1, 2], there exists an insertion-only
streaming algorithm which processes a set of n points x1, . . . , xn ∈ Rd utilizing
poly(log(nd), k, 1/ϵ) bits which outputs a parameter η ∈ R satisfying

(1 − ϵ) min
C1,...,Ck

partition [n]

k∑
ℓ=1

min
cℓ∈Rd

∑
i∈Cℓ

∥xi − cℓ∥p
p ≤ η ≤ (1 + ϵ) min

C1,...,Ck

partition [n]

k∑
ℓ=1

min
cℓ∈Rd

∑
i∈Cℓ

∥xi − cℓ∥p
p

with probability at least 0.9.

▶ Theorem 2 (Distributed-Memory (k, p)-Clustering in ℓp). For p ∈ [1, 2], there exists a public-
coin protocol where m machines receive an arbitrary partition of n points x1, . . . , xn ∈ Rd,
each communicates poly(log(md), k, 1/ϵ) bits to a central authority who outputs a parameter
η ∈ R satisfying

(1 − ϵ) min
C1,...,Ck

partition [n]

k∑
ℓ=1

min
cℓ∈Rd

∑
i∈Cℓ

∥xi − cℓ∥p
p ≤ η ≤ (1 + ϵ) min

C1,...,Ck

partition [n]

k∑
ℓ=1

min
cℓ∈Rd

∑
i∈Cℓ

∥xi − cℓ∥p
p

with probability at least 0.9.

Both algorithms will follow from applying a coreset and compressing the representation
of the coreset points into sketches to recover single-cluster cost. Specifically, the bottleneck
for our algorithm will be estimating the cost of (k, p)-clustering in ℓp for k = 1. We give
a linear sketch such that given a set of points x1, . . . , xn ∈ Rd, one may approximate the
ℓp

p-median cost:

min
y∈Rd

n∑
i=1

∥xi − y∥p
p.

Most of the technical work will be devoted to sketching this “ℓp
p-median cost” objective.

Then, the streaming and distributed-memory algorithm will evaluate the sum of ℓp
p-median

costs for all possible partitions of the coreset points into k parts. The following theorem
gives a linear sketch for approximating the ℓp

p-median cost.3

2 For example, the sketched space for ℓp with p ̸= 2 does not satisfy the triangle inequality: it is not
the case that for any x, y, z ∈ Rd, the estimate of (sk(x), sk(y)) plus the estimate of (sk(y), sk(z)) is
less than the estimate of (sk(x), sk(z)). On the other hand, for p = 2, the estimates of (sk(x), sk(y)),
(sk(y), sk(z)), and (sk(x), sk(z)) are ∥sk(x) − sk(y)∥2, ∥sk(y) − sk(z)∥2, and ∥sk(x) − sk(z)∥2, so the
triangle inequality does hold in the sketched space.

3 A related although different work is that of approximating the ℓp
p-median (for instance, see Appendix F

of [10]). An ℓp
p-median is a vector in Rd which means the sketch outputs d numbers; however, we will

sketch the ℓp
p-median cost, which is a real number. Hence, our sketch will use poly(log(nd), 1/ϵ) space,

as opposed to Ω(d) space needed to describe an ℓp
p-median.

ICALP 2022



38:4 Polylogarithmic Sketches for Clustering

▶ Theorem 3 (ℓp
p-Median Sketch). For p ∈ [1, 2], there exists a linear sketch which processes

a set of n points x1, . . . , xn ∈ Rd into a vector Rt with t = poly(log(nd), 1/ϵ) and outputs a
parameter η ∈ R satsifying

(1 − ϵ) min
y∈Rd

n∑
i=1

∥xi − y∥p
p ≤ η ≤ (1 + ϵ) min

y∈Rd

n∑
i=1

∥xi − y∥p
p

with probability at least 0.9.

There are a few important remarks to make:
The requirement that p ≤ 2 is necessary for the exponential compression we desire. For
p > 2, there are strong lower bounds for sketching distances which show that such sketches
require Ω(d1−2/p) space [12]. For p < 1, we are not aware of small coresets.
The focus of this work is on optimizing the space complexity of the sketch, and while we do
not explicitly specify the running time of the sketching and streaming algorithms, a naive
implementation runs in time (k log(nd)/ϵ)(k log n/ϵ)O(1) . The exponential factor is due to
the fact that we evaluate the cost of all possible partitions of the (k log(n)/ϵ)O(1)-coreset
points into k clusters. One could alleviate the exponential dependence to (k/ϵ)O(1) (as
opposed to (k log n/ϵ)O(1)) by running more sophisticated approximation algorithms
[11, 50] on the sketched representation of the coreset.4 We note that a super-polynomial
dependence on k should is unavoidable, because (1±ϵ)-approximations for (k, z)-clustering
problems, for non-constant k, are NP-hard [9, 53, 28].
It would be interesting to generalize Theorem 1 to dynamic streams. The reason our
algorithm works in the insertion-only model is that we utilize the coreset of [39] with the
merge-and-reduce framework [16, 1] which do not support deletions. While there exist
dynamic coreset constructions for the streaming model [21, 38], our use of coresets is
not entirely black-box. Other dynamic coresets, like [37], focus on update time and do
not optimize the space complexity. We must ensure that the algorithm for constructing
the coreset does not utilize the d-dimensional representation of the dataset points. The
coreset construction of [39] only consider distances between the dataset points, so it
suffices for us to only maintain a sketch of the dataset points.
The fact that z = p in our theorems above is a consequence of our techniques. It is
unclear to us whether this assumption is necessary, although our approach hinges on the
fact ℓp

p is additive over the d coordinates. We leave this as a problem for future work.

A similar, yet importantly different notion of (k, z)-clustering considers medoid cost,
where the centers of the k clusters c1, . . . , ck are restricted to be dataset points. While
seemingly similar to the (k, z)-clustering objective where centers are unrestricted, these two
are qualitatively very different from a sketching perspective. In the full version, we show that
while a two-pass sketching algorithm may ϵ-approximate the medoid cost, ϵ-approximations
for one-pass sketching algorithm require polynomial space.

1.2 Technical Overview
We give an overview of Theorem 3. Once that is established, combining the ℓp

p-median sketch
with coresets, thereby establishing Theorems 1 and 2 is (relatively) straight-forward (for
more details, we refer the reader to the full version). Recall that for p ∈ [1, 2], we will process
n points x1, . . . , xn ∈ Rd, and aim to return an approximation to the ℓp

p-median cost:

4 The one subtlety is that the algorithm should be implemented without explicitly considering the
d-dimensional representation of the points. Instead, it should only use the sketches of Theorem 3.



M. Charikar and E. Waingarten 38:5

min
c∈Rd

n∑
i=1

∥xi − c∥p
p. (2)

It will be useful to assume that the points are centered, i.e.,
∑n

i=1 xi = 0 ∈ Rd (we can
enforce this because our sketches will be linear). The approach will come from the fact that
the above optimization problem decomposes into a sum of d independent optimizations, one
for each coordinate, and (2) seeks to evaluate the sum. Specifically, we may write

min
c∈Rd

n∑
i=1

∥xi − c∥p
p =

d∑
j=1

min
cj∈R

n∑
i=1

|xij − cj |p.

Furthermore, for any fixed j ∈ [d], estimating

min
cj∈R

n∑
i=1

|xij − cj |p (3)

is much more amenable to ℓp-sketching. Specifically, we let x·,j ∈ Rn be the vector containing
the j-th coordinates of all n points, and 1 ∈ Rn be the all-1’s vector. Then, the quantity∑n

i=1 |xij − cj |p = ∥x·,j − cj1∥p
p, and since the ℓp-sketches are linear, an algorithm may

maintain sk(x·,j) ∈ Rt (for t = poly(log(nd))) and after processing, could iterate through
various values of cj ∈ R to evaluate(

n∑
i=1

|xij − cj |p
)1/p

= ∥x·,j − cj1∥p ≈1±ϵ estimate of (sk(x·,j), sk(cj1)),

and output the smallest value of cj ∈ R found. In order to guarantee an (1±ϵ)-approximation
of (3), only poly(1/ϵ) values of cj need to be tried (since first evaluating cj = 0 will specify
the range where the optimal cj may lie). A simple union bound implies that for any fixed
j ∈ [d], we can prepare a small sketch sk(x·,j) from which we can approximate (3).

In summary, we want to estimate the sum of d minimization problems. Even though
each of the d problems could be solved independently with a linear sketch, we do not want
to process d linear sketches (as this increases space). In addition, we do not know which of
the d minimizations will significantly affect the sum; hence, if we only (uniformly) sampled
few j1, . . . , jt ∼ [d] and only processed t ≪ d sketches along the sampled dimensions, the
variance of the estimator may be too large, making it completely useless. The technique
we will use was recently developed in [25], building on [6, 43], under the name “ℓp-sampling
with meta-data.” In this paper, we further develop the ideas, and apply them to sketches for
clustering in a simple and modular way. We refer the reader to Remark 4 (following this
technical overview), where we expand on the comparison to [25].

The goal is to approximate the sum of the d minimization problems by importance
sampling (see Chapter 9 of [58]). While importance sampling is a well-known technique, it’s
use in (one-pass) linear sketching algorithms is counter-intuitive, and we are not aware of
any linear sketches which use importance sampling in the literature, expect for this and
the recent work of [25, 32]. Importance sampling will aim to estimate (2) by sampling with
respect to an alternate distribution D. In particular, (2) may be re-written as

d · E
j∼[d]

[
min
cj∈R

n∑
i=1

|xij − cj |p
]

= d E
j∼D

[Yj ] where

Yj
def= min

cj∈R

n∑
i=1

|xij − cj |p · 1
PrD[j] , (4)

ICALP 2022



38:6 Polylogarithmic Sketches for Clustering

where D is a distribution chosen so the variance of the random variable Yj for j ∼ D is
bounded. Once the variance of the random variable is bounded, only a few samples are
needed to estimate its expectation in (4). In general, the alternate distribution D depends
on the data in order to decrease the variance; for instance, coordinates j ∈ [d] whose value of
(3) is higher should be sampled more often. Hence, importance sampling inherently interacts
with the data in a two-stage process: 1) first, it samples j ∼ D (where the distribution is
data-dependent), and 2) second, it evaluates Yj by using (3) and PrD[j] for the value j ∈ [d]
specified in the first step.

In a two-pass algorithm, the two steps may be implemented sequentially. A sampling
sketch, like that of [43], is used to sample j ∼ D in the first pass. In the second pass, the
algorithm knows the value of the sampled j, so it maintains a sketch sk(x·,j) of size t and a
sketch sk′(PrD[j]) of size t′ (to estimate PrD[j]) from which it can evaluate the random
variable Yj . The counter-intuitive aspect is that, in this case, we will perform both steps in
one-pass:

We will use an ℓp-sampling sketch of [43] to sample from an importance sampling
distribution D, and
Concurrently, we prepare 2d linear sketches: d sketches sk(x·,j) to evaluate (3), one for
each j ∈ [d], and d sketches sk′(PrD[j]) to evaluate PrD[j], one for each j ∈ [d]. The
non-trivial part is to sketch the sketches. by compressing the 2d linear sketches into a
O(polylog(nd))-bit Count-Min data structure [30].

The guarantee will be that the ℓp-sampling sketch of [43] generates a sample j ∼ D, and the
Count-Min data structure can recover an approximation

ŝk1 ≈ sk(x·,j) and ŝk2 ≈ sk′(PrD[j]).

Furthermore, the sketch evaluation algorithm, which executes on the approximation ŝk1 and
ŝk2, should be able to recover (1 ± ϵ)-approximations to (3) and PrD[j], so that the ratio of
the two is a (1 ± 2ϵ)-approximation to Yj .

While the above plan provides a general recipe for importance sampling, the idea of
“sketching the sketches” may not be applied in a black-box manner. First, the alternate
distribution D should admit a sampling sketch. Second, the sketch evaluation algorithm
for sk(x·,j) and sk′(PrD[j]) should be robust to the errors introduced by the Count-Min
compression. Bounding the errors introduced by the Count-Min data structure, and ensuring
that the approximate sketches ŝk1 and ŝk2 constitutes the bulk of the technical work.
Specifically for us, the plan is executed as follows: when

∑n
i=1 xi = 0 ∈ Rd, every j satisfies

(we refer the reader to the full version for a thorough justification)

mincj∈R
∑n

i=1 |xij − cj |p

∥x·,j∥p
p

∈ [2−p, 1]. (5)

Hence, we will let D be the distribution supported on [d] given by setting, for each j ∈ [d],

Pr
j∼D

[j = j] =
∥x·,j∥p

p

Z
where Z =

d∑
j=1

∥x·,j∥p
p =

n∑
i=1

d∑
j=1

|xij |p.

Note that (5) implies the variance of Yj for j ∼ D is appropriately bounded. Furthermore,
since D is an ℓp-sampling distribution, the ℓp-sampling sketches of [43] are useful for sampling
j ∼ D. Finally, the approach of [43] is particularly suited for bounding the errors incurred
by Count-Min on ŝk1 and ŝk2, which we overview below.
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At a high level, the ℓp-sampling sketch of [43] generates a sample j from [d] by identifying
a heavy hitter in a random scaling of the vector specifying the sampling probabilities. In
particular, the algorithm generates u1, . . . , ud ∼ Exp(1) and identifies an entry j ∈ [d] in
the vector(

∥x·,1∥p

u
1/p
1

,
∥x·,2∥p

u
1/p
2

, . . . ,
∥x·,d−1∥p

u
1/p
d−1

,
∥x·,d∥p

u
1/p
d

)
∈ Rd,

whose value satisfies

∥x·,j∥p

u
1/p
j

≳

 d∑
j′=1

∥x·,j′∥p
p

uj′

1/p

, (6)

and is the largest among those heavy hitters. For the coordinate j ∈ [d] recovered by the
ℓp-sampling sketch [43], the inequality (6) gives a lower bound on how large 1/u

1/p
j will be.

In particular, by applying the same transformation to the vector of sketches,(
sk(x·,1)

u
1/p
1

, . . . ,
sk(x·,d)

u
1/p
d

)
∈ (Rt)d and(

sk′(PrD[1])
u

1/p
1

, . . . ,
sk′(PrD[d])

u
1/p
d

)
∈ (Rt′

)d, (7)

the t and t′ coordinates corresponding to the sketches sk(x·,j) ∈ Rt and sk′(PrD[j]) ∈ Rt′

will be heavy hitters of those vectors as well. Namely, with only poly(log(nd), 1/ϵ)-bits, the
Count-Min data structure will recover the entries of sk(x·,j) and sk′(PrD[j]) up to a small
additive error, proportional to the ℓ1-norm of (7). We know the distribution of sketched
vectors (7) (since these are simply ℓp-sketches [41]), so we will be able to bound the additive
error and show that the sketch evaluation algorithms of ŝk1 and ŝk2 return the desired
(1 ± ϵ)-approximations.
▶ Remark 4 (Comparison to [25]). The technique, “ℓp-sampling with meta-data”, arises
in [25] in the following context. They seek a linear sketch sk : Rd → R

t which can process
a vector y ∈ Rd and evaluate a weighted ℓ1-norm,

∑d
i=1 wi(y) · |yi|, where the weights

w1(y), . . . , wd(y) ∈ R≥0 are themselves dependent on the vector y. This arises as an
algorithmic step in streaming algorithms for geometric minimum spanning tree and the
earth-mover’s distance. Mapping the above formulation to our setting, we want to evaluate
a weighted ℓ1-norm as well, where the i-th weight corresponds to Prj∼D[j = i], and the
i-th value seek to sum is Yi (as in (4)). The perspective of this technique as importance
sampling (as presented in this work) is new. Indeed, the appropriate setting of weights is
only apparent once one multiplies and divides the contribution of the j-th coordinate by
∥x·,j∥p

p to define D.

2 Sketching Median Costs

2.1 Statement of Main Lemma
▶ Theorem 5. Fix n, d ∈ N, as well as p ∈ [1, 2] and ϵ, δ ∈ (0, 1). There exists a linear
sketch using poly(log d, 1/ϵ, log(1/δ)) space which processes a set of n points x1, . . . , xn ∈ Rd,
and outputs a parameter η ∈ R which satisfies

min
y∈Rd

n∑
i=1

∥y − xi∥p
p ≤ η ≤ (1 + ϵ) min

y∈Rd

n∑
i=1

∥y − xi∥p
p

with probability at least 1 − δ.

ICALP 2022
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We work with the following representation of a linear sketch. The processed set of n points
in Rd are stacked to form a vector x ∈ Rnd. A linear sketch using space s is a distribution
M supported on s × (nd) matrices. The theorem states that for any fixed x1, . . . , xn ∈ Rd,
with probability 1 − δ over the draw of S ∼ M, an algorithm with access to the vector
Sx ∈ Rs and S can output η satisfying the above guarantees.

Linear sketches of the above form imply efficient streaming algorithms, albeit with some
subtleties. It is useful to first assume that the streaming algorithm can store its randomness
for free (we will address this in the full version) so that it knows the matrix S. In particular,
since S ∈ Rs×nd acts on the vector x ∈ Rnd which vertically stacks x1, . . . , xn ∈ Rd, the
columns of S may be broken up into n groups of size d, so

S =
[

S1 S2 . . . Sn

]
, and Sx =

n∑
i=1

Sixi.

In the insertion-only model, an algorithm would process the points one-at-a-time, and at
time-step j, maintain

∑j
i=1 Sixi ∈ Rs. In the turnstile model of streaming, there is a subtlety

in the implementation; namely, as the algorithm receives insertions and deletions of points
in Rd, it must know which index i ∈ [n] it is considering. The reason is that the algorithm
should know which of the sub-matrix Si to update the point with.

For our application of the ℓp
p-median sketch to (k, p)-clustering in ℓp, we consider a

weighted ℓp
p-median. Namely, for points x1, . . . , xn ∈ Rd and weights λ1, . . . , λn ∈ [0, 1] with∑n

i=1 λi = 1, the ℓp
p-median cost with respect to weights λ1, . . . , λn is

min
y∈Rd

n∑
i=1

λi∥y − xi∥p
p.

It is useful to first consider of λ1 = · · · = λn = 1/n. For general weights, the sketch will
receive as input S = [S1, . . . , Sn] ∈ Rs×(nd), the vector

∑n
i=1 λ

1/p
i Sixi ∈ Rs, and the weights

λ1, . . . , λn.

Centering Points

There is a straight-forward way to process the points so as to assume they are centered.
Specifically, the average point may be subtracted from every point by applying a linear map,
and since our sketch is linear, subtracting the average point may be incorporated into the
sketch. For weights λ1, . . . , λn ∈ [0, 1] satisfying

∑n
i=1 λi = 1, we consider the linear map

(x1, . . . , xn) 7→

(
x1 −

n∑
i=1

λixi, . . . , xn −
n∑

i=1
λixi

)
∈ Rnd.

Hence, we assume, without loss of generality, that the points x1, . . . , xn ∈ Rd satisfy
n∑

i=1
λixi = 0 ∈ Rd. (8)

The centering is useful for deriving the following set of inequalities, which will be useful
for our sketching procedures. Suppose we denote y ∈ Rd as the point which minimizes∑n

i=1 λi∥y − xi∥p
p. Then, for every j ∈ [d],

n∑
i=1

λi|yj − xij |p ≤
n∑

i=1
λi|xij |p ≤ 2p

n∑
i=1

λi|yj − xij |p.
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Importantly for us, every j ∈ [d] satisfies

2−p ≤
minyj∈R

∑n
i=1 λi|yj − xij |p∑n

i=1 λi|xij |p
≤ 1. (9)

We let D be the distribution supported on [d] given by setting, for each j ∈ [d],

Pr
j∼D

[j = j] = 1
Z

n∑
i=1

λi|xij |p where Z =
d∑

j′=1

n∑
i=1

λi|xij′ |p =
n∑

i=1
λi∥xi∥p

p.

Then, the quantity we want to estimate may be equivalently re-written as:

d∑
j=1

min
yj∈R

n∑
i=1

λi|yj − xij |p = Z · E
j∼D

[minyj∈R
∑n

i=1 λi|yj − xij |p∑n
i=1 λi|xij |p

]
, (10)

where the value within the expectation is bounded between 2−p and 1. Furthermore, the
quantity Z will be sketched with an ℓp-sketch, and a sample j ∼ D will be drawn with an
ℓp-sampling sketch. Hence, the plan is to produce t = O(1/ϵ2) samples of j1, . . . , jt ∼ D, and
produce a sketch to evaluate the numerator inside the expectation, and the denominator inside
the expectation. Taking an empirical average of the samples to estimate the expectation,
and multiplying it by the estimate of Z will give the desired estimator.

▶ Lemma 6 (Main Lemma). For any n, d ∈ N, p ∈ [1, 2] and ϵ, δ ∈ (0, 1), let s =
poly(log d, 1/ϵ, 1/δ).5 There exists a distribution S over s × (nd) matrices, and an algorithm
such that for any n vectors x1, . . . , xn ∈ Rd and any λ1, . . . , λn ∈ [0, 1] with

∑n
i=1 λi = 1

and
∑n

i=1 λixi = 0, the following occurs:
We sample S = [S1, . . . , Sn] ∼ S, and we give the algorithm as input S,

∑n
i=1 Si(λ1/p

i xi),
and λ1, . . . , λn.
The algorithm outputs a tuple of three numbers (j, α, β) ∈ [d] × R≥0 × R≥0. With
probability at least 1 − δ over the draw of S ∼ S, we have the following two inequalities:

(1 − ϵ)
(

n∑
i=1

λi|xij |p
)1/p

≤ α ≤ (1 + ϵ)
(

n∑
i=1

λi|xij |p
)1/p

,

(1 − ϵ) min
z∈R

(
n∑

i=1
λi|xij − z|p

)1/p

≤ β ≤ (1 + ϵ) min
z∈R

(
n∑

i=1
λi|xij − z|p

)1/p

.

Furthermore, the distribution of the random variable j is ϵ2−p-close in total variation
distance to D.

Proof of Theorem 5 assuming Lemma 6. Given Lemma 6, the proof of Theorem 5 is
straight-forward. We fix λ1 = · · · = λn = 1/n, and we first handle the centering. We
will utilize Lemma 6 which requires vectors x1, . . . , xn to satisfy

∑n
i=1 λixi = 0; hence, we

sketch the vectors x′
1, . . . , x′

n given by x′
i = xi −

∑n
h=1 λhxh, which are now centered. By

linearity, this is equivalent to maintaining the vector

n∑
i=1

λ
1/p
i Si(xi −

n∑
h=1

λhxh) =
n∑

i=1

(
λ

1/p
i Si − λi

n∑
h=1

λ
1/p
h Sh

)
xi ∈ Rs.

5 See the full version for the specific polynomial bounds.
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We take t = ω(1/ϵ2) independent sketches from Lemma 6 with accuracy parameter ϵ/2 and
error probability δ = o(1/t). This, in turn, gives us t independent samples (j1, α1, β1),
. . . , (jt, α1, βt). By taking a union bound over the t executions of Lemma 6, with high
probability, every α1, . . . , αt and β1, . . . , βt satisfy

αp
ℓ ≈(1+ϵp/2)

n∑
i=1

λi|xik|p and βp
ℓ ≈(1+ϵp/2) min

z∈R

n∑
i=1

λi|xik − z|p,

and j1, . . . , jt are independent draws from a distribution D′ which is ϵ2−p-close to D. For
estimating Z, we use an ℓp-sketch to accuracy ϵ/2 and failure probability δ = o(1). For
example, the sketch for Z may proceed by applying an ℓp-sketch [41] to the stacked vector
x′ ∈ Rnd where

x′
ij = λ

1/p
i · xij ,

so that the ℓp norm of x′ is exactly Z1/p. Let Ẑ be the estimate for the Z. For our estimate
η that we will output, we set

η = Ẑ · 1
t

t∑
ℓ=1

minmax
{

2−p,

(
βℓ

αℓ

)p

, 1
}

,

where minmax(l, x, u) is l if x ≤ l, u if u ≥ x, and x otherwise. To see why our estimator
approximates (10), we have Ẑ is a (1 ± ϵ/2)-approximation of Z. The latter quantity is the
empirical average of t i.i.d random variables, each of which is bounded by 2−p and 1. In
particular, we have that with probability at least 1 − o(1), Chebyshev’s inequality, and the
conditions of βℓ and αℓ,

E
j∼D′

[
minz∈R

∑n
i=1 λi|xij − z|p∑n

i=1 λi|xij |p

]
≈(1+2ϵp)

1
t

t∑
ℓ=1

minmax
{

2−p,

(
βℓ

αℓ

)p

, 1
}

.

It remains to show that

E
j∼D′

[
minz∈R

∑n
i=1 λi|xij − z|p∑n

i=1 λi|xij |p

]
≈(1±ϵ) E

j∼D

[
minz∈R

∑n
i=1 λi|xij − z|p∑n

i=1 λi|xij |p

]
.

This follows from two facts: (1) D′ and D are ϵ2−p close, since the random variable is at
most 1, the expectations are off by at most an additive ϵ2−p-factor, and (2) both quantities
above are the average of random variables which are at least 2−p, so an additive ϵ2−p error
is less than a multiplicative (1 ± ϵ)-error.

The above gives an estimate which is a 1 ± ϵ-approximation with probability 1 − o(1), in
order to boost the probability of success to 1 − δ, we simply repeat O(log(1/δ)) times and
output the median estimate. ◀

The remainder of the section is organized as follows. We give in the (next) Subsection 2.2,
the necessary sketches for obtaining α and β for a fixed coordinate j. Then, in the following
Subsection 2.3, we show how we combine various sketches from Subsection 2.2 for different
j ∈ [d] to obtain α and β up to some additive error. Finally, the proof of Lemma 6 appears
in the full version, where we apply a randomized transformation to the input so that the
additive error from Subsection 2.3 is a multiplicative error for the specific sampled j.
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2.2 Sketch for Optimizing a Single Coordinate
In this subsection, we give linear sketches which are useful for optimizing over a single
coordinate. Specifically, given the n vectors x1, . . . , xn ∈ Rd and j ∈ [d], we consider the
k-th coordinate of the n vectors x1j , x2j , . . . , xnj ∈ R. Hence, the linear sketches in this
section will act on vectors in Rn, corresponding to the j-th coordinates of the points, and
will give approximations to

n∑
i=1

λj |xij |p (Corollary 8) and min
yj∈R

n∑
i=1

λj |yj − xij |p. (Lemma 9)

The lemma statements also consider an additive error term, err ∈ R≥0, which will be
necessary when combining these sketches in Subsection 2.3; however, it may be helpful to
consider err = 0 on first reading.

▶ Lemma 7. For any n ∈ N, p ∈ [1, 2] and ϵ, δ ∈ (0, 1), let s = O(log(1/δ)/ϵ2). There
exists a distribution M over s × n matrices, and an algorithm such that for any x ∈ Rn,
λ1, . . . , λn ∈ [0, 1], and y ∈ R, the following occurs:

We sample S ∼ M as well as a random vector χ = (χ1, . . . , χs) ∈ Rs where each is an
i.i.d p-stable random variable. For any err ∈ R≥0, we give the algorithm as input S,
S(λ1/p ◦ x) + err · χ, the parameters λ1, . . . , λn, and y.6

The algorithm outputs a parameter η̂ ∈ R≥0, which depends on S, S(λ1/p ◦ x) + err · χ, the
parameters λ1, . . . , λn, and y which satisfies with probability at least 1 − δ over S and χ,

(1 − ϵ)
(

n∑
i=1

λi|xi − y|p + errp

)1/p

≤ η̂ ≤ (1 + ϵ)
(

n∑
i=1

λi|xi − y|p + errp

)1/p

. (11)

Furthermore, for every j ∈ [s], the random variables (S(λ1/p ◦ x))j ∈ R are distributed as
∥λ1/p ◦ x∥p · χj, where χj are independent, p-stable random variables.

Proof. We notice that this simply corresponds to an ℓp-sketch of the vector z ∈ Rn, which
is given by letting each zi = λ1/p ◦ (xi − y), so that the ℓp-sketch of [41] would accomplish
this task. Since the algorithm receives S, S(λ1/p ◦ x) + err · χ and y ∈ R, the algorithm may
compute S(λ1/p ◦ y · 1), where 1 ∈ Rn is an all-1’s vector, and evaluate the sketch

S(λ1/p ◦ x) + err · χ − S(λ1/p ◦ y · 1) = S(λ1/p ◦ (x − y · 1)) + err · χ

by linearity. Furthermore, note that the error simply corresponds to an ℓp-sketch of the
vector z′ ∈ Rn+1 which sets z′

i = zi for i ̸= n + 1 and z′
n+1 = err. ◀

▶ Corollary 8. For any n ∈ N, p ∈ [1, 2] and ϵ, δ ∈ (0, 1), let s = O(log(1/δ)/ϵ2). There
exists a distribution M over s × n matrices, and an algorithm such that for any x ∈ Rn, and
any λ1, . . . , λn ∈ [0, 1], the following occurs:

We sample S ∼ M and a random vector χ = (χ1, . . . , χs) ∈ Rs of i.i.d p-stable random
variables. For any err ∈ R≥0. We give the algorithm as input S and S(λ1/p ◦ x) + err · χ.

6 The notation λ1/p ◦ x ∈ Rn denotes the Hadamard product, where (λ1/p ◦ x)i = λ
1/p
i · xi.
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With probability at least 1 − δ over S and χ, the algorithm outputs a parameter γ̂ ∈ R≥0,
which depends on S, and S(λ1/p ◦ x) which satisfies

(1 − ϵ)
(

n∑
i=1

λi|xi|p + errp

)1/p

≤ γ̂ ≤ (1 + ϵ)
(

n∑
i=1

λi|xi|p + errp

)1/p

.

Furthermore, for every j ∈ [s], the random variables (S(λ1/p ◦ x))j ∈ R are independent and
distributed as ∥λ1/p ◦ x∥p · χj, where χj are independent, p-stable random variables.

Proof. We apply Lemma 7 to the vector x ∈ Rn with y = 0. ◀

▶ Lemma 9. For any n ∈ N, p ∈ [1, 2] and ϵ, δ ∈ (0, 1), let s = O(log(1/(ϵδ))/ϵ2). There
exists a distribution M over s × n matrices, and an algorithm such that for any x ∈ Rn and
any λ1, . . . , λn ∈ [0, 1] with

∑n
i=1 λi = 1, whenever

∑n
i=1 λixi = 0, the following occurs:

We sample S ∼ M and a random vector χ = (χ1, . . . , χs) of i.i.d p-stable random
variables. For any err ∈ R≥0. We give the algorithm as input S, S(λ1/p ◦ x) + err · χ, the
parameters λ1, . . . , λn, and a parameter γ ∈ R≥0 satisfying

(1 − ϵ)
(

n∑
i=1

λi|xi|p
)1/p

≤ γ ≤ (1 + ϵ)
(

n∑
i=1

λi|xi|p
)1/p

.

The algorithm outputs a parameter β̂ ∈ R≥0 which satisfies

(1 − ϵ) min
z∈R

(
n∑

i=1
λi|xi − z|p + errp

)1/p

≤ β̂

≤ (1 + ϵ) min
z∈R

(
n∑

i=1
λi|xi − z|p + errp

)1/p

.

(12)

Furthermore, for every j ∈ [s], the random variables (S(λ1/p ◦ x))j are independent and
distributed as ∥λ1/p ◦ x∥p · χj, where χj are independent, p-stable random variables.

Proof. We will utilize the sketch from Lemma 7, while varying the y’s to find the minimum.
Specifically, let t = 16 · 2p/ϵ, and let the distribution M be the same as that of Lemma 7
instantiated with error probability 1 − tδ and accuracy parameter ϵ/2. We discretize
the interval [−4γ, 4γ] into t, evenly-spaced out points y1, . . . , yt ⊂ [−4γ, 4γ] such that
yℓ+1 − yℓ = 8γ/t. We utilize the algorithm in Lemma 7 to obtain estimates η̂1, . . . , η̂t

satisfying (11) with y1, . . . , yt, respectively. Then, we output

β̂ = min
ℓ∈[t]

η̂ℓ.

Since we amplified the error probability to less than tδ, we may assume, by a union bound,
that all estimates {ηℓ}ℓ∈[t] satisfy (11) with yℓ with probability at least 1 − δ. First, for any
ℓ ∈ [t],

min
z∈R

(
n∑

i=1
λi|xi − z|p

)1/p

≤

(
n∑

i=1
λi|xi − yℓ|p

)1/p

,
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and therefore, the lower bound in (12) is implied by (11). To prove the upper bound in (12),
denote z ∈ R as the true minimizer of (

∑n
i=1 λi|xi − z|p)1/p. By the fact

∑n
i=1 λi = 1 and

the triangle inequality, we have

|z| =
(

n∑
i=1

λi|z|p
)1/p

≤

(
n∑

i=1
λi|xi − z|p

)1/p

+
(

n∑
i=1

λi|xi|p
)1/p

≤ 2
(

n∑
i=1

λi|xi|p
)1/p

,

so |z| ≤ 2(1 + ϵ)γ ≤ 4γ, and thus z ∈ [−4γ, 4γ]. Let ℓ ∈ [t] be such that |yt − z| ≤ 4γ/t.
Then, again by the triangle inequality and the fact

∑n
i=1 λixi = 0,

(
n∑

i=1
λi|xi − yt|p

)1/p

≤

(
n∑

i=1
λi|xi − z|p

)1/p

+ 4γ/t

≤ (1 + 4(1 + ϵ)2p/t)
(

n∑
i=1

λi|xi − z|p
)1/p

.

By the setting of t, (
∑n

i=1 λi|xi − yt|p)1/p ≤ (1 + ϵ/2)(
∑n

i=1 λi|xi − z|p)1/p, and by (11), we
obtain the desired upper bound. ◀

2.3 Grouping Single Coordinate Sketches

In this subsection, we show how to compress d linear sketches (one for each coordinate) from
Subsection 2.2. In the lemma that follows, the parameter m ∈ N should be considered the
sketch size of the sketches in Subsection 2.2, and the linear sketch will take the d sketches
from Subsection 2.2 (represented as a vector Rdm). Each of the d linear sketches have
each coordinate of Rm distributed as an i.i.d scaled p-stable random variable (specified
by the last sentence in Corollary 8 and Lemma 9). Thus, we write the d sketches as
Ψ1v1, . . . , Ψdvd ∈ Rm, where vj ∈ R is a scaling, and Ψ1, . . . , Ψd ∈ Rm×n are i.i.d p-stable
matrices.

▶ Lemma 10 (p-stable Sketch Compression via Count-Min). Let d, m ∈ N, ϵ, δ ∈ (0, 1), and
let t = O(log(d/δ)). There exists a distribution C over (10tm/ϵp) × (dm) matrices, and an
algorithm such that for any v ∈ Rd, the following occurs:

We sample C ∼ C and a (dm) × d matrix Ψ, where Ψ = diag(Ψ1, . . . , Ψd), and each
Ψj = (χj1, . . . , χjm) ∈ Rm are independent p-stable random vectors.7 The algorithm
receives as input C and CΨv.
The algorithm outputs, for each j ∈ [d], a sequence of t vectors ẑ

(1)
j , . . . , ẑ

(t)
j ∈ Rm which

satisfy, for each t′ ∈ [t],

ẑ
(t′)
j = vjΨj + err(t′)

j · χ
(t′)
j . (13)

where χ
(t′)
j ∈ Rm is a vector of independent p-stable random variables, and err(t′)

j ∈ R≥0
only depends on C. With probability at least 1 − δ over C, for every j ∈ [d]∣∣∣{t′ ∈ [t] : err(t′)

j ≤ ϵ∥v∥p

}∣∣∣ ≥ t/2. (14)

7 Hence, the vector Ψv ∈ Rdm is given by vertically stacking d vectors of the form vjΨj ∈ Rm.
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Proof. The matrix C is a Count-Min matrix which given a vector u ∈ Rdm given by vertically
stacking d vectors u1, . . . , ud ∈ Rm repeats the following process: for each t′ ∈ [t], we sample
a hash function ht′ : [d] → [10/ϵp], and for each ℓ ∈ [10/ϵp] store the vector

bt′,ℓ
def=
∑
j∈[d]

1{ht′(j) = ℓ} · uj ∈ Rm.

In particular, the output Cu consists of stacking t · 10/ϵp vectors (bt′,ℓ ∈ Rm : t′ ∈ [t], ℓ ∈
[10/ϵp]), which gives the desired bound of 10mt/ϵp on the output dimension of C. For each
j ∈ [d] and t′ ∈ [t], the algorithm lets ℓ = ht′(j) and sets

ẑ
(t′)
j = bt′,ℓ = vjΨj +

∑
j′∈[d]\{j}

1{ht′(j′) = ℓ} · vj′ · Ψj′ .

We now apply the p-stability property to the right-most summand, to notice that

err(t′)
j =

 ∑
j′∈[d]\{j}

1{ht′(j′) = ℓ} · vp
j′

1/p

,

which only depends on C. Furthermore, the inner most summand is at most
ϵp/10

∑
j′∈[d]\{j} vp

j′ in expectation. By Markov’s inequality, each err(t′)
j ≤ ϵ∥v∥p with

probability at least 9/10. Since t = O(log(d/δ)), the probability that (14) is not satisfied for
each j ∈ [d] is at most δ/d by a Chernoff bound, so that a union bound gives the desired
guarantees. ◀

The above lemma allows us to compress d many p-stable sketches into O(log(d/δ)/ϵp)
many p-stable sketches, albeit with some error. Since the p-stable sketches that we will use
(from Corollary 8 and Lemma 9) are exactly of the form Ψv for some vector v, Lemma 10
will allow us to compress them. Namely, we will consider d sketches from Corollary 8 and
Lemma 9 and utilize Lemma 10; for each j ∈ [d], we will be able to recover t noisy versions
of the sketch of Corollary 8 and Lemma 9 for coordinate j. Importantly, the noise is of
the form an error times a p-stable random variable, and these are the kinds of errors that
Corollary 8 and Lemma 9 can easily handle.

▶ Lemma 11 (p-stable Sketch Recovery for Sample). For n, d ∈ N, p ∈ [1, 2] and ϵ, δ ∈ (0, 1),
let s = O(log2(d/δ)/ϵ2+p). There exists a distribution R over s × (nd) matrices, and an
algorithm such that for any vectors y1, . . . , yn ∈ Rd and weights λ1, . . . , λn ∈ [0, 1] with∑n

i=1 λi = 1, the following occurs with probability at least 1 − δ:
We sample S = [S1, . . . , Sn] ∼ R and we give the algorithm as input S, and the vector∑n

i=1 Si(λ1/p
i yi) ∈ Rs.

The algorithm outputs d numbers α1, . . . , αd ∈ R≥0 such that each j ∈ [d] satisfies

(1 − ϵ)
(

n∑
i=1

λi|yij |p
)1/p

− err ≤ αj ≤ (1 + ϵ)
(

n∑
i=1

λi|yij |p
)1/p

+ err,

where err ∈ R≥0 is an additive error satisfying

err ≤ ϵ

 d∑
j=1

n∑
i=1

λi|yij |p
1/p

.
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Proof. We combine Corollary 8 and Lemma 10. We describe the distribution R over s × (nd)
matrices by giving a procedure for sampling S ∼ R. S can be naturally expressed as a
concatenation of matrices S = [S1, . . . , Sn].

We let M be the distribution over s0 × n matrices of Corollary 8 with error probability
at most δ/(2dt) and accuracy ϵ (so that we may union bound over d sketches later) so
that s0 = O(log(dt/δ)/ϵ2). We take d independent samples S′

1, . . . , S′
d ∼ M.

For each j ∈ [d], we let Pj be the n × (nd) matrix where given the vector y′ ∈ Rnd

given by vertically stacking λ
1/p
1 y1, . . . , λ

1/p
n yn ∈ R

d, sets y′
·,j = Pkj′, where y′

·,j =
λ1/p ◦ (yi,j)i∈[n] ∈ Rn. Let P be the (nd) × (nd) matrix which stacks these matrices
vertically.
We sample C ∼ C as in Lemma 10 with m = s0, where we set the accuracy parameter
ϵ/2 and the failure probability δ/2. We let

S = C · diag(S′
1, . . . , S′

d) · P.

Intuitively, we will apply our sketch S on the vector the matrix S may be interpreted as first
applying d sketches of Corollary 8 to the vectors (λ1/p ◦ y·,1), . . . , (λ1/p ◦ y·,d) ∈ Rn, and then
applying C from Lemma 10. The algorithm for producing the estimates α1, . . . , αd proceeds
by applying the algorithm of Lemma 10 to obtain, for each j ∈ [d] a sequence of t vectors
ẑ

(1)
j , . . . , ẑ

(t)
j ∈ Rs0 . We apply the algorithm of Corollary 8 to each of the t vectors to obtain

estimates α
(1)
j , . . . , α

(t)
j ∈ R≥0, and we let αj = median{α

(t′)
j : t′ ∈ [t]}.

To see why this works, consider the collection of d vectors

zj = S′
j(λ1/p ◦ y·,j) ∈ Rs0 ,

and notice that by Corollary 8, every j ∈ [d] and ℓ ∈ [s], zj,ℓ ∼ (
∑n

i=1 λi|yi,j |p)1/p · χj,ℓ,
where χk,ℓ are independent, p-stable random variables. Indeed, if we write v ∈ Rd as the
vector which sets

vj =
(

n∑
i=1

λi|yi,j |p
)1/p

,

then vertically stacking the vectors z1, . . . , zd ∈ Rs0 gives a vector which is equivalently
distributed as Ψv, where Ψ is the matrix from Lemma 10. In particular, with probability at
least 1 − δ/2, the algorithm of Lemma 10 outputs dt vectors (ẑ(t′)

j : j ∈ [d], t′ ∈ [t]) which
satisfy

ẑ
(t′)
j = S′

k(λ1/p ◦ y·,j) + err(t′)
j · χj,t′ . (15)

Hence, with probability at least 1 − δ/(2dt), the algorithm of Corollary 8 applied to ẑ
(t′)
j

outputs an estimate α
(t′)
j satisfying (1 − ϵ)(vp

j + (err(t′)
j )p)1/p ≤ α

(t′)
j ≤ (1 + ϵ)(vp

j +
(err(t′)

j )p)1/p, and therefore, we have that each α
(t′)
j satisfies

(1 − ϵ)vj − err(t′)
j ≤ α

(t′)
j ≤ (1 + ϵ)vj + 2 · err(t′)

j .

Since at least t/2 of t′ ∈ [t] satisfies err(t′)
j ≤ ϵ/2 · ∥v∥p, the median α

(t′)
j satisfies the

desired error guarantee. Applying a union bound over all dt applications of Corollary 8 and
Lemma 10 gives the desired guarantees. ◀
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▶ Lemma 12 (p-stable Sketch Recovery for Optimizer). For n, d ∈ N, p ∈ [1, 2] and ϵ, δ ∈ (0, 1),
let s = O(log(d/δ) · log(log d/(ϵδ))/ϵ2+p). There exists a distribution O over s × (nd)
matrices, and an algorithm such that for any vectors y1, . . . , yn ∈ Rd and any set of weights
λ1, . . . , λn ∈ [0, 1] where

∑n
i=1 λi = 0, whenever

∑n
i=1 λiyi = 0, the following occurs with

probability at least 1 − δ:
We sample S = [S1, . . . , Sn] ∼ O and we give the algorithm as input S,

∑n
i=1 Si(λ1/p

i yi),
the parameters λ1, . . . , λn, an index j0 ∈ [d], and a parameter γ ∈ R≥0 satisfying

(1 − ϵ)
(

n∑
i=1

λi|yij0 |p
)1/p

≤ γ ≤ (1 + ϵ)
(

n∑
i=1

λi|yij0 |p
)1/p

.

The algorithm outputs a parameter β̂ ∈ R≥0 which satisfies

(1 − ϵ) min
z∈R

(
n∑

i=1
λi|yij0 − z|p

)1/p

− err ≤ β̂ ≤ (1 + ϵ) min
z∈R

(
n∑

i=1
λi|yij0 − z|p

)1/p

+ err,

where err ∈ R≥0 is an additive error satisfying

err ≤ ϵ

 d∑
j=1

n∑
i=1

λi|yi,j |p
1/p

.

Proof. The proof follows similarly to that of Lemma 11; the only difference is that instead of
using the sketch of Corollary 8, we use the sketch of Lemma 9. For completeness, we describe
the distribution O over s × (nd) matrices by giving a procedure for sampling S ∼ O:

We let M be the distribution over s0 × n matrices from Lemma 9 with accuracy ϵ and
failure probability δ/(2t), where s0 = O(log(t/(ϵδ))/ϵ2). We take d independent samples
S′

1, . . . , S′
d ∼ M. Note that even though we take d independent samples, we will only

require that the sketch t evaluations of the Sj0 ∼ M succeed (hence, we amplify the error
probability to δ/(2t), as opposed to δ/(2td) as in Lemma 11).
We sample C ∼ C as in Lemma 10 with m = s0, where we set the accuracy parameter
ϵ/2 and failure probability δ/2. Recalling the definition of P (see Item 2 in the proof of
Lemma 11, we let

S = C · diag(S′
1, . . . , S′

d) · P.

Similarly to the proof of Lemma 11, S may be interpreted as applying the sketch of Lemma 10
to d vectors in Rs0 , each j ∈ [d] of which is an independent sketch S′

j(λ1/p ◦ y·j) ∈ Rs0 ,
where S′

j ∼ M is the sketch of Lemma 9. Again, we consider the collection of d vectors
zj = S′

j(λ1/p ◦ y·,j) ∈ R
s0 , for all j ∈ [d], and by Lemma 9, every j ∈ [d] has zj ∼

∥λ1/p ◦ y·,j∥p · Ψj ∈ Rs0 , where Ψj is an independent, p-stable random vector. Writing
v ∈ Rd by vj = ∥λ1/p ◦ y·,j∥p, and we apply the algorithm of Lemma 10 and focus on the t

vectors ẑ
(1)
j0

, . . . , ẑ
(t)
j0

∈ Rs0 which satisfy

ẑ
(t′)
j0

= S′
j0

(λ1/p ◦ y·,j0) + err(t′)
j0

· χj,t′ .

We apply the algorithm of Lemma 9 to each of the vectors ẑj0 ∈ Rs, while giving as input the
parameter γ to obtain the estimate β̂

(1)
, . . . , β̂

(t)
. Then, we set β̂ = median{β̂

(t′)
: t′ ∈ [t]}.

Similarly to the proof of Lemma 11, β̂ provides the desired approximation guarantees. ◀
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