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Abstract
The Dyck language, which consists of well-balanced sequences of parentheses, is one of the most
fundamental context-free languages. The Dyck edit distance quantifies the number of edits (character
insertions, deletions, and substitutions) required to make a given length-n parenthesis sequence
well-balanced. RNA Folding involves a similar problem, where a closing parenthesis can match an
opening parenthesis of the same type irrespective of their ordering. For example, in RNA Folding,
both () and )( are valid matches, whereas the Dyck language only allows () as a match. Both of
these problems have been studied extensively in the literature. Using fast matrix multiplication, it
is possible to compute their exact solutions in time O(n2.687) (Chi, Duan, Xie, Zhang, STOC’22),
and a (1 + ϵ)-multiplicative approximation is known with a running time of Ω(n2.372).

The impracticality of fast matrix multiplication often makes combinatorial algorithms much
more desirable. Unfortunately, it is known that the problems of (exactly) computing the Dyck edit
distance and the folding distance are at least as hard as Boolean matrix multiplication. Thereby, they
are unlikely to admit truly subcubic-time combinatorial algorithms. In terms of fast approximation
algorithms that are combinatorial in nature, the state of the art for Dyck edit distance is an
O(log n)-factor approximation algorithm that runs in near-linear time (Saha, FOCS’14), whereas for
RNA Folding only an ϵn-additive approximation in Õ( n2

ϵ
) time (Saha, FOCS’17) is known.

In this paper, we make substantial improvements to the state of the art for Dyck edit distance
(with any number of parenthesis types). We design a constant-factor approximation algorithm that
runs in Õ(n1.971) time (the first constant-factor approximation in subquadratic time). Moreover, we
develop a (1 + ϵ)-factor approximation algorithm running in Õ( n2

ϵ
) time, which improves upon the

earlier additive approximation. Finally, we design a (3 + ϵ)-approximation that takes Õ( nd
ϵ

) time,
where d ≥ 1 is an upper bound on the sought distance.

As for RNA folding, for any s ≥ 1, we design a factor-s approximation algorithm that runs in
O(n + ( n

s
)3) time. To the best of our knowledge, this is the first nontrivial approximation algorithm

for RNA Folding that can go below the n2 barrier. All our algorithms are combinatorial in nature.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Dyck Edit Distance, RNA Folding, String Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.49

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2112.05866 [18]

Funding Tomasz Kociumaka: Work done while at University of California, Berkeley, supported by
NSF 1652303, 1909046, and HDR TRIPODS 1934846 grants, and an Alfred P. Sloan Fellowship.
Barna Saha: Partly supported by NSF 1652303, 1909046, and HDR TRIPODS 1934846 grants, and
an Alfred P. Sloan Fellowship.

EA
T

C
S

© Debarati Das, Tomasz Kociumaka, and Barna Saha;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 49; pp. 49:1–49:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:debaratix710@gmail.com
mailto:tomasz.kociumaka@mpi-inf.mpg.de
https://orcid.org/0000-0002-2477-1702
mailto:barnas@ucsd.edu
https://doi.org/10.4230/LIPIcs.ICALP.2022.49
https://arxiv.org/abs/2112.05866
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


49:2 Improved Approximation Algorithms for Dyck Edit Distance and RNA Folding

1 Introduction

The Dyck language is a well-known context-free language consisting of well-balanced sequences
of parentheses. Ranging from programming syntaxes to arithmetic and algebraic expressions,
environments in LaTeX, and tags in HTML/XML documents – we observe instances of
the Dyck language everywhere. For a comprehensive discussion on the Dyck language and
context-free grammars; see [23, 26]. Given a sequence x of n parentheses (which may be
unbalanced), the Dyck edit distance problem asks for the minimum number of edits (character
insertions, deletions, and substitutions) needed to make x well-balanced. Interestingly, string
edit distance, which is one of the fundamental string similarity measures, can be interpreted
as a special case of Dyck edit distance.1

A simple dynamic programming computes Dyck edit distance in O(n3) time. In 2016,
after nearly four decades, Bringmann, Grandoni, Saha, and Vassilevska Williams [13] gave
the first truly subcubic-time exact algorithm for a more general problem of language edit
distance [2]. Very recently, Chi, Duan, Xie, and Zhang [17] provided a faster implementation
of the same algorithm. The algorithm uses not-so-practical fast Boolean matrix multiplication,
arguably so because computing Dyck edit distance is at least as hard as Boolean matrix
multiplication [1], and hence combinatorial truly subcubic-time algorithms are unlikely to
exist.

A problem closely related to Dyck edit distance is RNA Folding [31]. Both in RNA
Folding and Dyck edit distance, parentheses must match in an uncrossing way. However, in
an RNA folding instance, a closing parenthesis can match an opening parenthesis of the same
type irrespective of the order of their occurrences. For example, under the RNA Folding
distance, both () and )( are valid matches, whereas the Dyck language only allows () as a
match. In terms of exact computation, they exhibit the same time complexity [1, 13].2

( ( { ( ( ) } ( { } } { ( ( ) ) } ) ) { { ) ( } }
x dyck(x) = 4

delete substitute delete delete

( ( { ( ( ) } ( { } } { ( ( ) ) } ) ) { { ) ( } }
x fold(x) = 2

delete substitute

Figure 1 Example of Dyck and folding edit distance.

Can we design fast approximation algorithms for Dyck edit distance and RNA Folding?
The first progress on this question for Dyck edit distance was made by Saha [34], who
proposed a polylogarithmic-factor approximation algorithm that runs in near-linear time. It
is also possible to provide an ϵn-additive approximation for any ϵ > 0 in Õ(n2

ϵ ) time [36].
However, unless the distance is O(n) and we allow quadratic time, the above algorithm does
not provide a constant-factor approximation to Dyck edit distance. This latter result on
additive approximation applies to RNA Folding as well. Backurs and Onak [7] showed an
exact algorithm for Dyck edit distance that runs in O(n + d16) time, which was recently
improved by Fried, Golan, Kociumaka, Kopelowitz, Porat, and Starikovskaya [21] to run
in O(n + d5) time (and Õ(n + d4.783) using fast matrix multiplication). Therefore, prior

1 Given two strings s and t, form a sequence of parentheses by concatenating s, interpreted as a sequence
of opening parentheses, and the reverse complement of t, obtained by reversing t and replacing each
symbol with the corresponding closing parenthesis, not present in the original alphabet.

2 In these problems, we are aiming to minimize the number of non-matched parentheses as opposed to
maximizing the matched parentheses.
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to this work, (i) there was no nontrivial multiplicative approximation for RNA Folding in
subquadratic time, and (ii) there was no subquadratic-time constant-factor approximation
for Dyck edit distance that would work for the entire distance regime.

Let us contrast this state of affairs with the progress on string edit distance approximation.
As mentioned earlier, string edit distance is a special case of Dyck edit distance. Early
work [6, 8, 9, 28] on approximating string edit distance resulted in the first near-linear-time
polylogarithmic-factor approximation in 2010 by Andoni, Krauthgamer, and Onak [4]. It
took another eight years to obtain the first constant-factor approximation of edit distance
in subquadratic time [15] (see [11] for a quantum analog). Finally, Andoni and Nosatzki
improved the running time to near-linear while maintaining a constant approximation ratio [5].
Using the best result in string edit distance approximation [5], it is possible to improve the
approximation factor of [34] to O(log n). However, designing a constant-factor approximation
for Dyck edit distance in subquadratic time remains wide open. RNA Folding, even though
conceptually very similar to Dyck edit distance, is incompatible with the algorithm of [34].

Saha’s work on Dyck edit distance approximation [34] developed a random walk technique
which has later been used for edit distance embedding and document exchange [10, 16]. This
random walk allows decomposing a parenthesis sequence into many instances of string edit
distance problem. However, this decomposition loses a logarithmic factor in the approximation,
raising the question of whether there exists an efficiently computable decomposition with a
significantly smaller loss.

Contributions for Dyck Edit Distance.
Constant-factor approximation in subquadratic time. The main contribution
of this paper is the first constant-factor approximation algorithm for Dyck edit distance
that runs in truly subquadratic time, namely Õ(n1.971). (In the interest of simplicity,
we did not optimize the exponent in the running time.) We employ and significantly
extend the tools previously developed in connection with string edit distance, such
as the windowing strategy, window-to-window computation, sparse and dense window
decomposition, etc. [11, 15, 22]. These methods are tied to problems involving two or more
strings (unlike the Dyck edit distance, which is a single-sequence problem). Given the
universality of Dyck edit distance, the tools we developed may lead to further advancements
for more generic problems like the language edit distance problem, etc. [13, 35, 36].
Our main algorithm handles the cases of large and small Dyck edit distance separately.
Small Dyck edit distance. When the Dyck edit distance d is small, we give a (3 + ϵ)-
approximation algorithm that runs in Õ(nd

ϵ ) time. We can contrast this result with
the time complexity of computing the Dyck edit distance exactly, which is O(n + d5)
(combinatorially) and Õ(n + d4.783) (using fast matrix multiplication), obtained in [21].
Nevertheless, even in a hypothetical bast-case scenario that a combinatorial O(n+d3)-time
algorithm exists, an Õ(nd)-time algorithm is still faster for all d ≫

√
n.

Quadratic-time PTAS. We also give a (1 + ϵ)-approximation algorithm for Dyck edit
distance that runs in Õ(n2

ϵ ) time. This improves upon the previous result of [36] that
gets such a result only when d = Θ(n). The prior (1 + ϵ)-approximation algorithm uses
fast Boolean matrix multiplication and has super-quadratic running time [35].

Contribution for RNA Folding. For RNA Folding, we are aiming to minimize the number
of non-matched characters; we henceforth call this value the folding distance. For any s > 1,
we give a factor-s approximation of the folding distance in time O(n + ( n

s )3). This is the first
result to our knowledge that goes below the quadratic running time (for s = ω(n1/3)). We

ICALP 2022
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remark here that the triangle inequality we proved for Dyck distance (Lemma 2.3) as well as
the machinery developed in Section 5 apply to the RNA folding problem equally well. This
yields a constant-factor approximation for RNA folding in Õ(n1.971) time when the distance
is larger than n0.971.

Discussion and Open Problems. The resemblance between Dyck and string edit distance
has already been studied in the literature. As mentioned earlier, the decomposition obtained
by the random walk technique ensures only an O(log n) approximation [34]. In this work,
instead of reducing the Dyck edit distance to string edit distance, we try to find a direct
decomposition of the sequence x into different substrings, where for each substring there is a
peer such that they are matched by some optimal alignment (with some error leading to a
constant-factor approximation). However, unlike the string counterpart, Dyck edit distance
does not have the structural property that if an optimal alignment matches the characters
of a substring s1 with the characters of a substring s2, then the lengths of s1 and s2 are
roughly the same (see Figure 2). Thus, in our decomposition, the substrings can have varied
lengths. In fact, it turns out that if the Dyck edit distance is truly sublinear (i.e., n1−ϵ), then
we need to consider roughly nϵ different lengths to ensure a constant-factor approximation.
We remark that this is one of the barriers in further pushing down the running time from
subquadratic to O(n1.6+o(1)) (as in [22]) or near-linear. We also note that if an analog
of our Õ(nd)-time algorithm can be provided for RNA Folding, then we would also get a
constant-factor subquadratic algorithm for RNA folding for all distance regimes.

The Dyck recognition problem has been studied extensively in different models, including
the streaming [14, 27, 30] and property testing [3, 19, 32] frameworks. However, neither
Dyck edit distance nor RNA Folding admits sublinear-time approximation algorithms. Our
algorithm for RNA Folding (which also applies to Dyck edit distance after straightforward
adaptations) runs in O(n + (n

s )3) time and requires a linear-time preprocessing step that
eliminates pairs of matching adjacent characters, which leaves strongly structured instances.
This preprocessing step is currently the main barrier to going in the sublinear-time setting.

1.1 Technical Overview
As input to the Dyck edit distance problem, we are given a string x of length n over an alphabet
Σ that consists of two disjoint sets T and T of opening and closing parentheses respectively.
The task is to compute the Dyck edit distance dyck(x), defined as the minimum number of
parentheses insertions, deletions, and substitutions required to make x well-parenthesized.

Quadratic-time PTAS. The standard O(n3)-time algorithm for Dyck edit distance is a
dynamic-programming procedure that computes the distance of each substring of the input
string. The bottleneck of this approach is that, to compute the distance of each substring
x(i . . j], starting at index i+1 and ending at index j, one needs to iterate over decompositions
of x(i . . j] into a prefix x(i . . k] and a suffix x(k . . j] for every possible intermediate index
k ∈ (i . . j) (this corresponds to the fact that the concatenation of two well-parenthesized
expression is a well-parenthesized expression).3 We call the index k a pivot corresponding
to a decomposition. The Õ( n2

ϵ )-time ϵn additive approximation of [36] reduces the number
of considered pivots to Õ( 1

ϵ ); thus, Õ( n
ϵd ) (where d = dyck(x)) different pivots would be

3 For i, j ∈ Z, we denote [i . . j] = {k ∈ Z : i ≤ k ≤ j}, [i . . j) = {k ∈ Z : i ≤ k < j}, (i . . j] = {k ∈ Z : i <
k ≤ j}, and (i . . j) = {k ∈ Z : i < k < j}.
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necessary for a (1 + ϵ)-factor approximation (which is same as an ϵd-additive approximation).
On the other hand, a simple O(n2d)-time algorithm recently developed in [21] is based on a
combinatorial observation that O(d) pivots are sufficient after the O(n)-time preprocessing
from [7, 34]. We start with a brief overview of this algorithm. For any index i ∈ [0 . . n], we
define the height of i to be h(i) = |{j ∈ [1 . . i] : x[j] ∈ T}| − |{j ∈ [1 . . i] : x[j] ∈ T}|, i.e., the
difference between the number of opening and closing parentheses in prefix x[1 . . i]. An index
v is called a valley if h(v − 1) > h(v) < h(v + 1), i.e., x[v] is a closing parenthesis whereas
x[v + 1] is an opening parenthesis. Backurs and Onak [7] showed a linear-time preprocessing
of x that generates another string x′ such that dyck(x) = dyck(x′) and x′ has at most 2d

valleys. Fried, Golan, Kociumaka, Kopelowitz, Porat, and Starikovskaya [21] proved that,
without loss of generality, it is enough to consider pivots that are at distance 0 or 1 from
a valley (we henceforth denote the set of such pivots by K) plus O(1) pivots next to the
boundary of the considered range (i . . j); this observation yields a O(n2d)-time algorithm.

In Section 3, we provide an algorithm that further restricts the set of pivots K consid-
ered for each range (i . . j) and provides a (1 + ϵ)-approximation of dyck(x) in Õ(n2

ϵ ) time
(Theorem 3.2). This is inspired by how Saha [36] considered only Õ( 1

ϵ ) pivots out of each
range (i . . j). The original argument relies on two observations: that using pivot k′ instead
of k incurs at most O(|k − k′|) extra edit operations, and that, for an ϵn-additive approxima-
tion, we can afford O( ϵ min(k−i, j−k)

log n ) extra operations when using pivot k ∈ (i . . j). In our
multiplicative approximation, we refine the second observation by replacing min(k − i, j − k)
with min(|K ∩ (i . . k)|, |K ∩ (k . . j)|). On the other hand, the first observation is not useful
because the set K ∩ (i . . j) is already relatively sparse. Thus, instead of restricting each range
(i . . j) to use few pivots k, we restrict each pivot k to be used within few ranges (i . . j). This
is feasible with respect to the approximation ratio because the costs for x(i . . j] and x(i′ . . j′]
may only differ by O(|i − i′| + |j − j′|), and because the O(n2d)-time algorithm still considers
each pivot k ∈ K for all ranges (i . . j) containing k (which leaves room for sparsification).

Constant-factor approximation in Õ(nd) time. Overcoming the O(n2) barrier with a
dynamic-programming approach poses significant challenges: there are Θ(n2) substrings to
consider and, for d ≥

√
n, this quantity does not decrease (in the worst case) even if we

run the preprocessing of [7, 34] and exclude substrings with costs exceeding d. Thus, we
artificially restrict the DP states to substrings whose all prefixes have at least as many opening
parentheses as closing ones and whose all suffixes have at least as many closing parentheses
as opening ones. Surprisingly, as shown in Section 4, this yields a 3-approximation of the
original cost. Furthermore, if we additionally require that the number of opening parentheses
and the number of closing parentheses across the entire substring are within 2d from each
other (otherwise, the Dyck edit distance trivially exceeds the threshold), we end up with
O(nd) substrings. Reusing the pivot sparsification of Section 3, one can process them in
Õ( nd

ϵ ) total time at the cost of increasing the approximation ratio from 3 to 3 + ϵ.

Constant-factor approximation in Õ(n1.971) time. In Section 5, we exhibit an Õ(n1.971)-
time algorithm that provides a constant-factor approximation of Dyck edit distance. At
a high level, the framework of our algorithm is similar to the three-step procedure of [15]
that provides a constant-factor approximation of string edit distance in subquadratic time.
Thus, we start with a brief recap of [15], pointing out the major bottlenecks for applying
this framework directly to our problem. Given two strings x, y of length n, the algorithm
of [15] starts by constructing a set of windows Wx for x and Wy for y, where each window is
a length-s subinterval of [1 . . n], representing a substring of x or y. The motivation behind

ICALP 2022



49:6 Improved Approximation Algorithms for Dyck Edit Distance and RNA Folding

this construction is the following: given the edit distances between all pairs of windows from
Wx and Wy, one can compute a constant-factor approximation of the edit distance ED(x, y)
using an O(n2

s2 )-time dynamic-programming procedure. The challenge here is that if the
edit distances are computed using a trivial dynamic-programming algorithm for all pair of
windows from Wx and Wy, then the total running time becomes quadratic. The key insight
of [15] is that, in some favorable situation, one can use random sampling to select a subset of
window pairs from Wx × Wy such that evaluating the edit distances of the window pairs in
the subset is enough to construct a nearly-optimal alignment of x, y. On the other extreme,
instead of computing edit distance for each window pairs explicitly, one can use triangle
inequality to get constant-factor approximation of the optimal costs.4 Several other works
have subsequently used this framework to solve related problems [12, 22, 33, 37].

As discussed above, much of the previous work on Dyck edit distance relies on similarities
with edit distance, either via black-box reductions (such as the random walk of Saha [34]) or
by transferring techniques (e.g., [7, 21] build on top of the O(n + d2)-time algorithm [29] for
edit distance). Hence, we try to adapt the framework of [15] to the Dyck setting.

The first challenge is that the Dyck edit distance is defined for a single string, so it is
not immediately clear how to formulate the triangle inequality in this setting. However,
the embedding of string edit distance into the Dyck edit distance hints a candidate for a
metric: a function mapping strings x, y ∈ Σ∗ to dyck(xy), where y is the reverse complement
of y (obtained by reversing y and flipping the direction of each parenthesis). This choice
turns out to be a valid one: we show (in Lemma 2.3) that any three strings x, y, z satisfy
dyck(xz) ≤ dyck(xy) + dyck(yz), which we dub the triangle inequality for Dyck edit distance.
Our proof is based on a subtle inductive argument that reduces the general case to that of
|y| ≤ 1 and |xz| ≤ 2. This base case, in turn, requires some case analysis.

A more serious issue is that the very first step of the algorithms of [11, 15], window
decomposition, fails for our purposes, and, as discussed below, a workaround poses significant
difficulties. To conclude the high-level discussion, we list our two main technical contributions
leading to the subquadratic-time constant-factor approximation for Dyck edit distance:
1. We propose a new window decomposition strategy and show that any optimal alignment

of x can be approximated by matching the window pairs generated by our strategy.
2. We establish the triangle inequality for Dyck edit distance.

Next, we discuss the limitations of the windowing strategy of [15] and explain how
to overcome them. The algorithm of [15] partitions the input strings into fixed-length
(overlapping) substrings, estimates the distances between relevant pairs of substrings, and
then runs a dynamic-programming procedure to derive a global alignment. Regardless,
following the strategy of dimension reduction, one idea could be to partition the input
string x into windows w1, . . . , wℓ ⊆ [1 . . n] of length s (where s = nΘ(1)) with the hope,
that given the Dyck edit distances for all strings x[wi] ◦ x[wj ] (here, x[wi] represents the
substring of x restricted to the indices in wi and ◦ denotes concatenation), one can use the
cubic-time dynamic-programming algorithm to estimate dyck(x) in time Õ(n3

s3 ). However,
this straightforward decomposition fails for the following reasons:

In case of string edit distance, if an optimal alignment (with cost d) matches x[i] with
y[j], then x[i + 1] can be matched only with a character of y[j + 1 . . j + d + 1]. Thus,
if we consider a window w1 in x and a window w2 in y such that ED(x[w1], y[w2]) is

4 The use of triangle inequality was first proposed in [11], where Grover search was used instead of random
sampling, resulting in a quantum constant-factor approximation of edit distance in subquadratic time.
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Figure 2 An example showing two very different length substrings can be matched with cost 0.

small, then we can assume |w1| ≈ |w2|. This structural property completely breaks
down for Dyck edit distance. For example, the two windows w1, w2 in Figure 2 satisfy
dyck(x[w1] ◦ x[w2]) = 0 even though their lengths are very different. This indicates that
partitioning x into single-length windows does not suffice.
To overcome the aforementioned issue, let us assume that we allow variable-length windows.
Note that an optimal alignment may match a window w1 of length s with a window w2 of
length ≫ s (|w2| can be as large as Ω(n)). However, if we allow windows of lengths ≫ s,
then estimating the costs of such large window pairs may be inefficient. One way out could
be to subdivide both w1 and w2 into smaller windows w1

1, w2
1, . . . , wk

1 and w1
2, w2

2, . . . , wk
2 ,

respectively, and separately compute the cost of each substring x[wi
1] ◦ x[wj

2]. Here,
as |wi

1| and |wj
2| are not too large, any individual cost can be approximated efficiently.

However, since |wi
1| can be very small (as small as no(1)), the total number of subproblems

(window pairs whose cost we evaluate) can explode, and hence the dynamic-programming
procedure combining these subproblems may become inefficient.

Thus, for Dyck edit distance, the main challenge is to partition the input string x into
variable-length windows which are neither too short (this ensures that the total number of
subproblems, i.e., window pairs we evaluate, is not too large, and hence the DP combining
them is efficient) nor too long (so that computing the costs of window pairs is efficient as
well), and any optimal alignment of x can be approximated by matching these window pairs.
Formally, we need to construct a set of windows J , where each window has length at most s

(we set this s to be a polynomial in n), |J | ≈ n
s , and there exists a subset S ⊆ J × J such

that S is a consistent window decomposition of [1 . . n] (i.e., the windows involved in S form a
decomposition of [1 . . n] and the window pairs in S do not cross) and there is a nearly-optimal
alignment that aligns w with w′ for each (w, w′) ∈ S. The latter condition is formalized as
follows (the construction of J is parameterized by θ, chosen so that θn ≤ dyck(x)):

▶ Lemma 1.1. There exists a consistent window decomposition S ⊆ J × J of [1 . . n] such
that

∑
(w,w′)∈S dyck(x[w] ◦ x[w′]) ≤ dyck(x) + 8θn.

The construction of an appropriate family J and the proof of Lemma 1.1 are among the
novelties of our algorithm; this is where our approach significantly differs from [15].

Window Decomposition. Our proof of Lemma 1.1 (given in Section 5.1) follows a two-step
strategy. In the first step, independent of the choice of J , the decomposition S may contain
arbitrary window pairs (w, w′) with |w|, |w′| ≤ s, but we require

∑
(w,w′)∈S dyck(x[w] ◦

x[w′]) = dyck(x) (no approximation allowed) and |S| = O( n
s ). In the second step, we locally

perturb the endpoints of all windows in S so that the resulting windows belong to J ; this
incurs an additive overhead of O(θn) on the cost of the consistent window decomposition S.

Our proof for the first step inductively constructs a consistent window decomposition of
any window (i1 . . i2] ⊆ [1 . . n]. In the base case of |(i1 . . i2]| ≤ 2s, we build a single window
pair composed of the two halves of (i1 . . i2]. In the main case, we identify an outermost
window pair ((i1 . . j1], (j2 . . i2]), with j1 ∈ [i1 . . i1 + s] and j2 ∈ [i2 − s . . i2], and a pivot
p ∈ [i1 + s . . i2 − s] so that

dyck(x(i1 . . i2]) = dyck(x(j1 . . p]) + dyck(x(p . . j2]) + dyck(x(i1 . . j1] ◦ x(j2 . . i2]).

ICALP 2022
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The appropriate positions j1, j2, p can be derived from an optimal alignment of x(i1 . . i2]:
(i1 . . j1] can be defined as the shortest (possibly empty) prefix of (i1 . . i1 + s] containing
all positions in (i1 . . i1 + s] matched with (i2 − s . . i2];
(j2 . . i2] can be defined as the shortest (possibly empty) suffix of (i2 − s . . i2] containing
all positions in (i2 − s . . i2] matched with (i1 . . i1 + s];
(i1 + s . . p] can be defined as the shortest (possibly empty) prefix of (i1 + s . . i2 − s]
containing all positions in (i1 + s . . i2 − s] matched with (i1 . . i1 + s].

The sought decomposition of (i1 . . i2] is obtained by inserting ((i1 . . j1], (j2 . . i2]) to the union
of decompositions of (j1 . . p] and (p . . j2] (constructed recursively). It is not hard to prove that
this construction satisfies the claims made above. The most subtle argument involves the size
of the decomposition. This is because the bound |S| = O( n

s ) requires windows of average size
Θ(s), but (i1 . . j1] and (j2 . . i2] can be arbitrarily short (even empty). Even worse, (j1 . . p]
and (p . . j2] may also be arbitrarily short. However, we still have |(i1 . . p]|, |(p . . i2]| ≥ s, and
this suffices to inductively prove an upper bound of max(1, 2(i2−i1)

s − 1).
As for the second step of the proof of Lemma 1.1, we need to specify the choice of J ,

which is parameterized by θ and s. We simply include in J all windows w = (i1 . . i2] of
length at most s whose endpoints i1, i2 are both integer multiples of θs (in this overview,
we assume for simplicity that n

s , θs, and 1
θ are all integers). This way, |J | = O( n

θ2s ) (there
are O( n

θs ) choices for the starting position and O( s
θs ) choices for the length of a window in

J ). Moreover, each window of length at most s can be transformed to a window in J by
rounding both endpoints up to the nearest multiple of θs. When performed simultaneously
on all windows in S, this perturbation preserves the relative order of the windows, and thus
S remains a consistent window decomposition of [1 . . n]. Furthermore, for each window pair
(w, w′), the value dyck(x[w] ◦ x[w′]) changes by at most 4θs. Given that |S| ≤ 2n

s , the overall
additive overhead does not exceed 8θn.

Two-Level Window Decomposition. If we could estimate the cost of each window pair
in J × J , this would provide a cost estimation for all window pairs in the unknown set
S ⊆ J × J of Lemma 1.1. Thus, using a dynamic-programming procedure to optimize the
cost over consistent decompositions S̃ ⊆ J × J of [1 . . n], we could approximate dyck(x).

However, similarly to [15], in order to estimate the cost of each window pair in J × J ,
we further partition each large window into smaller windows and estimate the cost of
these smaller window pairs. Thus, given another (smaller) window size parameter, we
analogously construct a family K of variable-sized windows. Adapting the argument behind
Lemma 1.1, we can show that, for each window pair (w, w′) ∈ J × J , the set w ∪ w′ admits a
consistent window decomposition S(w,w′) ⊆ K×K such that

∑
(q,q′)∈S(w,w′)

dyck(x[q]◦x[q′]) ≤
dyck(x[w] ◦ x[w′]) + O(θs) (Lemma 5.6 is formulated analogously to Lemma 1.1).

Certifying Window Pairs. With the two-level window decomposition at hand, adapt-
ing the remaining two phases of [15] is relatively easy. For this, we design a procedure
CertifyWindowPairs that finds a cost estimation for selected window pairs in J × J and
K × K. The procedure shares a similar flavor with the Covering algorithm of [15] and relies
on the triangle inequality (Lemma 2.3) discussed above. Its implementation and analysis
is provided in the full version [18] only. The main guarantee of CertifyWindowPairs is
that (with high probability) some of the certified window pairs can be combined to form a
consistent window decomposition of [1 . . n] whose cost is O(dyck(x) + θn). Thus, a simple
dynamic-programming algorithm (also provided in the full version [18] only) can be used to
retrieve a constant-factor approximation of dyck(x) (recall that θn ≤ dyck(x)).
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Folding Distance. The key difference between the folding distance (originating from the
RNA folding problem) compared to the Dyck edit distance is that the alphabet is no longer
partitioned into the set T of opening parentheses and the set T of closing parentheses. In
other words, every character c can be matched with its complement c regardless of their
order in the text. In particular, this means that the notions of heights and valleys are
not meaningful anymore. Nevertheless, for any fixed alignment, one can distinguish the
unmatched, opening (matched with a character to the right), and closing (matched with
a character to the left) characters. Moreover, one can still greedily eliminate substrings of
the form cc (similarly to the preprocessing of [7]). In any optimal alignment of an instance
preprocessed this way, there must be an unmatched character between any two characters
matched with each other. Although this reduction does not seem helpful in sparsifying the
set of pivots to be considered, it does bring a strong structural property: there is a subset
[1 . . n] of size n − O(d) (containing all characters matched without edits) which admits a
consistent window decomposition into O(d) window pairs (w, w′) such that x[w′] = x[w]
(and thus fold(x[w] ◦ x[w′]) = 0). The strategy behind our O(s)-factor approximation is to
sacrifice O(s) boundary characters out of each window pair and, in exchange, make sure
that the “closing windows” w′ have both endpoints at positions divisible by s. We then use
Internal Pattern Matching [24, 25] to efficiently search for “opening windows” w that
could match our closing windows. Doing so, we cannot guarantee that the opening windows
have their endpoints divisible by s, but we can sparsify the set of candidates so that they
start at least s positions apart. This results in O(( n

s )3) window pairs to be considered and
leads to the overall running time of O(n + ( n

s )3). The details are given in the full version [18].

2 Preliminaries

The alphabet Σ consists of two disjoint sets T and T of opening and closing parentheses,
respectively, with a bijection · : T → T mapping each opening parenthesis to the corresponding
closing parenthesis. We extend this mapping to an involution · : T ∪ T → T ∪ T and then
to an involution · : Σ∗ → Σ∗ mapping each string x[1]x[2] · · · x[n] to its reverse complement
x[n] · · · x[2] x[1]. Given two strings x, y, we denote their concatenation by xy or x ◦ y.

The Dyck language Dyck(Σ) ⊆ Σ∗ consists of all well-parenthesized expression over Σ;
formally, it can be defined using a context-free grammar whose only non-terminal S admits
productions S → SS, S → ∅ (empty string), and S → aSa for all a ∈ T .

▶ Definition 2.1. The Dyck edit distance dyck(x) of a string x ∈ Σ∗ is the minimum number
of character insertions, deletions, and substitutions required to transform x to a string in
Dyck(Σ).

We say that M ⊆ {(i, j) ⊆ Z2 : i < j} is a non-crossing matching if any two distinct
pairs (i, j), (i′, j′) ∈ M satisfy i < j < i′ < j′ or i < i′ < j′ < j. Such a matching can also
be interpreted as a function M : Z → Z ∪ {⊥} with M(i) = j if (i, j) ∈ M or (j, i) ∈ M for
some j ∈ Z, and M(i) = ⊥ otherwise.

For a string x ∈ Σn, the cost of a non-crossing matching M ⊆ [n]2 on x (henceforth M is
called an alignment of x) is defined as costM (x) = n − 2|M | +

∑
(i,j)∈M dyck(x[i]x[j]).

The following folklore fact (proved for completeness in the full version [18]), relates the
Dyck edit distance with the optimum alignment cost.

▶ Fact 2.2. For every string x ∈ Σ∗, the Dyck edit distance dyck(x) is the minimum cost
costM (x) of an alignment M of x.
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Figure 3 A plot of the height function h for x = ([)[(]](])). The blue dotted lines represent
an alignment M = {(1, 11), (2, 9), (4, 7), (5, 6)} of cost 4. The valleys {3, 7} are marked as black
circles. The set K = {2, 3, 4, 6, 7, 8} of Fact 2.6 also includes points marked as white circles.

We show that a function mapping x, y ∈ Σ∗ to dyck(xy) satisfies the triangle inequality.

▶ Lemma 2.3. All strings x, y, z ∈ Σ∗ satisfy dyck(xz) ≤ dyck(xyyz) ≤ dyck(xy) + dyck(yz).

Proof. The second inequality follows from the fact that the Dyck language is closed under
concatenations. As for the first inequality, we observe that it suffices to consider |y| = 1:
the case of |y| = 0 is trivial, and the case of |y| > 1 can be derived from that of |y| = 1 by
processing y letter by letter. Now, we proceed by induction on 2dyck(xyyz) + |x| + |z|. If any
optimum alignment of xyyz modifies a character in x or z, we apply the inductive assumption
for an instance (x′, y, z′) obtained from this modification: dyck(xz) ≤ dyck(x′z′) + 1 ≤
dyck(x′yyz′) + 1 = dyck(xyyz). If any optimum alignment of xyyz matches any two adjacent
characters of x, any two adjacent characters of z, or the first character of x with the last
character of z, we apply the inductive assumption for an instance (x′, y, z′) obtained by
removing these two characters: dyck(xz) ≤ dyck(x′z′) ≤ dyck(x′yyz′) = dyck(xyyz). In
the remaining case, all characters of x and z must be matched to y or y, so |xz| ≤ 2.
If |xz| ≤ dyck(xyyz), then trivially dyck(xz) ≤ |xz| ≤ dyck(xyyz), so we may assume
dyck(xyyz) < |xz|. The case of dyck(xyyz) = 0 and |xz| = 1 is impossible because only
strings of even length belong to the Dyck language. Thus, we may assume that |xz| = 2 and
dyck(xyyz) ≤ 1. If |x| = 2, then the optimum matching of xyyz must be {(1, 4), (2, 3)}, and
the sequence transforming dyck(xyyz) to a word in Dyck(Σ) must include substituting y or y

(whichever is an opening parenthesis). In particular, x[1] must be an opening parenthesis, so
dyck(xz) = dyck(x) ≤ 1 = dyck(xyyz). If |z| = 2, then the optimum matching of xyyz must
be {(1, 4), (2, 3)}, and the sequence transforming dyck(xyyz) to a word in Dyck(Σ) must
include substituting y or y (whichever is a closing parenthesis). In particular, z[1] must be
an opening parenthesis, so dyck(xz) = dyck(z) ≤ 1 = dyck(xyyz). Finally, if |x| = |z| = 1,
then the optimum matching of xyyz must be {(1, 2), (3, 4)}. If dyck(xyyz) = 0, then we
must have x = y = z ∈ T , so dyck(xz) = 0 ≤ dyck(xyyz). Otherwise, x ∈ T or z ∈ T , so
dyck(xz) ≤ 1 = dyck(xyyz). ◀

In the remainder of this section, we recall several results from [7, 21] that we then use in
our Õϵ(n2)-time PTAS (Section 3) and Õϵ(nd)-time (3 + ϵ)-approximation (Section 4).

▶ Definition 2.4 (Heights). For a fixed string x ∈ Σn, the height function h : [0 . . n] →
[−n . . n] is defined so that h(i) = |{j ∈ [1 . . i] : x[j] ∈ T}| − |{j ∈ [1 . . i] : x[j] ∈ T}| for
i ∈ [0 . . n].

▶ Fact 2.5 ([7]). There is a linear-time algorithm that, given a string x ∈ Σn, produces
a string x′ ∈ Σ≤n such that dyck(x) = dyck(x′) and x′ has at most 2dyck(x) valleys, i.e.,
positions v ∈ [1 . . n) such that h(v − 1) > h(v) < h(v + 1).
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For a fixed string x ∈ Σn, let us define a function D such that D(i, j) = dyck(x(i . . j]) for
i, j ∈ [0 . . n] with i ≤ j. Note that D(i, i) = 0 for i ∈ [0 . . n], D(i, i + 1) = 1 for i ∈ [0 . . n),
and D(i, j) satisfies the following recursion for i, j ∈ [0 . . n] with j − i ≥ 2:

D(i, j) = min
{

D(i, k) + D(k, j) for k ∈ (i . . j),
D(i + 1, j − 1) + dyck(x[i + 1]x[j]).

(1)

This yields the classic O(n3)-time algorithm computing D(0, n) = dyck(x). The following
result, combined with Fact 2.5, improves this time complexity to O(n + n2dyck(x)).

▶ Fact 2.6 ([21, Lemma 2.1]). For a string x ∈ Σn, let K ⊆ [0 . . n] consist of all positions
at distance 0 or 1 from a valley. For all i, j ∈ [0 . . n] with j − i ≥ 2, we have

D(i, j) = min
{

D(i, k) + D(k, j) for k ∈ (i . . j) ∩ (K ∪ {i + 1, i + 2, j − 1, j − 2}),
D(i + 1, j − 1) + dyck(x[i + 1]x[j]).

(2)

▶ Observation 2.7 ([21, Fact 3.1]). For all strings x ∈ Σn and integers 0 ≤ i ≤ k ≤ j ≤ n,
we have h(k) ≥ max(h(i), h(j)) − 2D(i, j). In particular, |h(i) − h(j)| ≤ 2D(i, j).

3 Quadratic-Time PTAS

In this section, we develop an Õ(ϵ−1n2)-time algorithm that approximates dyck(x) within
a (1 + ϵ) factor. The starting point of our solution is the dynamic program derived from
Fact 2.6. Instead of computing the exact value D(i, j) = dyck(x(i . . j]), that depends on
D(i, k) + D(k, j) for all pivots k ∈ (i . . j) ∩ (K ∪ {i + 1, i + 2, j − 1, j − 2}), we compute an
approximation AD(i, j) ≈ dyck(x(i . . j]) in Algorithm 1 that depends only on D(i, k) + D(k, j)
for pivots k ∈ (i . . j) ∩ (Ki,j ∪ {i + 1, i + 2, j − 1, j − 2}), where Ki,j consists of τi,j leftmost
and rightmost elements of K ∩ (i . . j). Here, τi,j is proportional to the largest power of
two dividing both i and j. Formally, we set τi,j := τ · 2min(ν(i),ν(j)), where τ ≥ 2 is a
parameter to be set later and ν : Z → Z≥0 ∪ {∞} is a function that maps an integer r ∈ Z
to ν(r) := max{k ∈ Z : 2k divides r}, with the convention that ν(0) = ∞.

In the following lemma, we inductively bound the quality of AD(i, j) as an additive
approximation of D(i, j). In particular, we show that D(i, j) ≤ AD(i, j) ≤ D(i, j)+ 8

τ |K| log |K|.

▶ Lemma 3.1. If τ ≥ 2, then, for each i, j ∈ [0 . . n] with i ≤ j, we have D(i, j) ≤ AD(i, j) ≤
D(i, j) + 8

τ ci,j log ci,j, where ci,j := |K ∩ (i . . j)|, and we assume 0 log 0 = 0.

Algorithm 1 Recursive implementation of AD(i, j).

1 AD(i, j)
2 if j = i then return 0;
3 if j = i + 1 then return 1;
4 c := AD(i + 1, j − 1) + dyck(x[i + 1]x[j]);
5 τi,j := τ · 2min(ν(i),ν(j));
6 Ki,j := the set of τi,j smallest and τi,j largest elements of K ∩ (i . . j);
7 foreach k ∈ Ki,j ∪ ({i + 1, i + 2, j − 2, j − 1} \ {i, j}) do
8 c := min(c, AD(i, k) + AD(k, j));
9 return c;
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Proof. We proceed by induction on j − i. For j − i ≤ 1, we have AD(i, j) = D(i, j). For
j − i ≥ 2, the lower bound D(i, j) ≤ AD(i, j) follows directly from Fact 2.6. Unless D(i, j) =
D(i, k) + D(k, j) for some k ∈ (i . . j) ∩ K, the upper bound also follows from Fact 2.6 since
ci,j log ci,j ≥ max(ci+1,j−1 log ci+1,j−1, ci,k log ci,k + ck,j log ck,j). Let r = min(ci,k, ck,j) and
let i′, j′ be the smallest and the largest multiples of 2⌈log((r+1)/τ)⌉ within [i . . j].

Let us first prove that k ∈ Ki′,j′ . Note that τ(i′−i) < τ2⌈log((r+1)/τ)⌉ < τ ·2· r+1
τ = 2(r+1),

so τ(i′ − i) ≤ 2r (because both strict inequalities are between integers). A symmetric
argument yields τ(j − j′) ≤ 2r. Due to τ ≥ 2, we thus have i′ − i ≤ r ≤ ci,k < k − i and
j − j′ ≤ r ≤ cj,k < j − k, so k ∈ (i′ . . j′). Moreover, τi′,j′ ≥ τ · 2⌈log((r+1)/τ)⌉ ≥ r + 1 =
min(ci,k, ck,j) + 1 ≥ min(ci′,k, ck,j′) + 1, so k ∈ Ki′,j′ holds as claimed.

Thus, due to 2r = 2 min(ci,k, ck,j) ≤ ci,k + ck,j ≤ ci,j , we have

AD(i, j) ≤ (i′ − i) + AD(i′, j′) + (j − j′)
≤ 2r

τ + AD(i′, k) + AD(k, j′) + 2r
τ

≤ D(i′, k) + 8
τ ci′,k log ci′,k + D(k, j′) + 8

τ ck,j′ log ck,j′ + 4r
τ

≤ (i′ − i) + D(i, k) + 8
τ ci,k log ci,k + D(k, j) + (j − j′) + 8

τ ck,j log ck,j + 4r
τ

≤ D(i, j) + 8
τ (ci,k log ci,k + ck,j log ck,j + r)

= D(i, j) + 8
τ (max(ci,k, ck,j) log max(ci,k, ck,j) + r log(2r))

≤ D(i, j) + 8
τ (max(ci,k, ck,j) log ci,j + min(ci,k, ck,j) log ci,j)

≤ D(i, j) + 8
τ ci,j log ci,j . ◀

Our final solution simply uses Algorithm 1 with an appropriate choice of the parameter τ

and the input string preprocessed using Fact 2.5 so that |K| = O(dyck(x)).

▶ Theorem 3.2. There is an algorithm Dyck-Approx that, given a string x ∈ Σn and
a parameter ϵ ∈ (0, 1), in Õ(ϵ−1n2) time computes a value v such that dyck(x) ≤ v ≤
(1 + ϵ)dyck(x).

Proof. In the preprocessing, we use Fact 2.5 to guarantee that there are at most 2dyck(x)
valleys and thus |K| ≤ 6dyck(x). Next, we call AD(0, n) with τ = ⌈48ϵ−1 log |K|⌉ and an array
of size (n+1)× (n+1) memorizing the outputs of recursive calls. The resulting value satisfies
dyck(x) ≤ AD(0, n) ≤ dyck(x) + 8

τ |K| log |K| ≤ dyck(x) + 8
48ϵ−1 log |K| · 6dyck(x) · log |K| =

(1 + ϵ)dyck(x) by Lemma 3.1. The running time is proportional to

n2
n∑

i=0

n∑
j=i+2

τi,j ≤ n2 +
n∑

i=0

n∑
j=i+2

τ2ν(j) ≤ n2 + nτ

n∑
j=2

2ν(j) ≤ n2 + nτ

⌊log n⌋∑
ν=0

⌊ n

2ν

⌋
2ν

= O(n2τ log n) = O(ϵ−1n2 log2 n) = Õ(ϵ−1n2). ◀

4 Constant-Factor Approximation for Small Distances

In this section, we speed up the algorithm of Section 3 at the cost of increasing the ap-
proximation ratio from 1 + ϵ to 3 + ϵ. The key idea behind our solution is to re-use the
DP of Fact 2.6 and Algorithm 1 with an extra constraint that the transition from (i, j) to
(i+1, j −1) (which corresponds to adding (i+1, j) to the alignment M , i.e., matching x[i+1]
with x[j]) is forbidden if there is a deep valley within (i . . j). This condition is expressed in
terms of the following function:

▶ Definition 4.1. For a fixed string x ∈ Σn and i, j ∈ [0 . . n] with i ≤ j, let h(i, j) =
minj

k=i h(k).
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Namely, we require that h(i + 1, j − 1) > h(i, j) holds for all (i + 1, j) ∈ M . For example,
in the alignment M of Figure 3, (2, 9) ∈ M violates this condition due to h(1, 9) = 1 = h(2, 8),
whereas the remaining pairs satisfy this condition. Formally, we transform the recursion
of Fact 2.6 into the following one, specified through a function GD : [0 . . n]2 → [0 . . n] such
that GD(i, i) = 0 for i ∈ [0 . . n], GD(i, i + 1) = 1 for i ∈ [0 . . n), and, for all i, j ∈ [0 . . n] with
j − i ≥ 2:

GD(i, j) = min
{

GD(i, k) + GD(k, j) for k ∈ (i . . j) ∩ (K ∪ {i + 1, i + 2, j − 2, j − 1}),
GD(i + 1, j − 1) + dyck(x[i + 1]x[j]) if h(i + 1, j − 1) > h(i, j).

Somewhat surprisingly, this significant limitation on the allowed alignments M incurs no
more that a factor-3 loss in optimum alignment cost. Specifically, if we take an arbitrary
alignment M of x and remove all pairs (i + 1, j) with h(i + 1, j − 1) = h(i, j), the resulting
alignment M ′ satisfies costM ′(x) ≤ 3costM (x). This can be proved by induction on the
structure of M using a potential function h(i) + h(j) − 2h(i, j) as a “budget” for future
deletions of matched pairs. Nevertheless, the proof of the following lemma operates directly
on D and GD.

▶ Lemma 4.2. Let x ∈ Σn. For all i, j ∈ [0 . . n] with i ≤ j, we have D(i, j) ≤ GD(i, j) ≤
3D(i, j) − h(i) − h(j) + 2h(i, j).

Proof. We proceed by induction on j − i. The lower bound holds trivially. As for the upper
bound, we consider several cases:

j = i. In this case, GD(i, j) = 0 = 3 · 0 − h(i) − h(i) + 2h(i) = D(i, j) − h(i) − h(j) + 2h(i, j).
j = i + 1. In this case, GD(i, j) = 1 < 2 = 3 · 1 − h(i) − h(i + 1) + 2 min(h(i), h(i + 1)) =
D(i, j) − h(i) − h(j) + 2h(i, j).
D(i, j) = D(i, k) + D(k, j) for some k ∈ (i . . j) ∩ (K ∪ {i + 1, i + 2, j − 2, j − 1}). Then,

GD(i, j) ≤ GD(i, k) + GD(k, j)
≤ 3D(i, k) − h(i) − h(k) + 2h(i, k) + 3D(k, j) − h(k) − h(j) + 2h(k, j)
= 3D(i, j) − h(i) − h(j) − 2h(k) + 2 min(h(i, k), h(k, j)) + 2 max(h(i, k), h(k, j))
≤ 3D(i, j) − h(i) − h(j) − 2h(k) + 2h(i, j) + 2h(k)
= 3D(i, j) − h(i) − h(j) + 2h(i, j).

D(i, j) = D(i + 1, j − 1) + dyck(x[i + 1]x[j]) and h(i + 1, j − 1) = h(i, j) + 1. Then,

GD(i, j) ≤ GD(i + 1, j − 1) + dyck(x[i + 1]x[j])
≤ 3D(i + 1, j − 1) − h(i + 1) − h(j − 1) + 2h(i + 1, j − 1) + dyck(x[i + 1]x[j])
= 3D(i, j) − h(i + 1) − h(j − 1) + 2h(i, j) + 2 − 2dyck(x[i + 1]x[j])
≤ 3D(i, j) − h(i) − h(j) + 2h(i, j)

because 2dyck(x[i + 1]x[j]) ≥ 2 + h(i) − h(i + 1) + h(j) − h(j − 1).
D(i, j) = D(i + 1, j − 1) + dyck(x[i + 1]x[j]) and h(i + 1, j − 1) = h(i, j). Then,

GD(i, j) ≤ GD(i, i + 1) + GD(i + 1, j − 1) + GD(j − 1, j)
= GD(i + 1, j − 1) + 2
≤ 3D(i + 1, j − 1) − h(i + 1) − h(j − 1) + 2h(i + 1, j − 1) + 2
= 3D(i, j) − h(i + 1) − h(j + 1) + 2h(i, j) − 3dyck(x[i + 1]x[j]) + 2
≤ 3D(i, j) − h(i) − h(j) + 2h(i, j)

because 3dyck(x[i+1]x[j]) ≥ 2dyck(x[i+1]x[j]) ≥ 2+h(i)−h(i+1)+h(j)−h(j −1). ◀
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Next, we derive a property of GD that allows for a speedup compared to D. Recall that
GD forbids the transition from (i, j) to (i + 1, j − 1) if h(i + 1, j − 1) = h(i, j). We further
show that, in this case, it suffices to consider one specific pivot while computing GD(i, j)
(specifically, the pivot of minimum height, with ties resolved arbitrarily; see Fact 4.3). Later
on (in the proof of Theorem 4.6), we argue that, after the preprocessing of Fact 2.5, there
are only O(nd) pairs (i, j) for which h(i + 1, j − 1) > h(i, j) yet D(i, j) ≤ d.

▶ Fact 4.3. Let x ∈ Σn and let i, j ∈ [0 . . n] with j − i ≥ 2 and h(i + 1, j − 1) = h(i, j).
Then, every k∗ ∈ (i . . j) with h(k∗) = h(i, j) satisfies GD(i, j) = GD(i, k∗) + GD(k∗, j).

Proof. We proceed by induction on j − i. Fix k ∈ (i . . j)∩ (K ∪{i+1, i+2, j −2, j −1}) such
that GD(i, j) = GD(i, k) + GD(k, j). If k = k∗, then the claim is trivial. Thus, by symmetry,
we assume without loss of generality that k∗ ∈ (i . . k). In particular, this means that
k − i ≥ 2 and h(i + 1, k − 1) = h(k∗) = h(i, k), Consequently, by the inductive assumption,
GD(i, j) = GD(i, k)+GD(k, j) = GD(i, k∗)+GD(k∗, k)+GD(k, j) ≥ GD(i, k∗)+GD(k∗, j) ≥ GD(i, j),
i.e., GD(i, j) = GD(i, k∗) + GD(k∗, j) holds as claimed. Here, the first inequality holds because
k ∈ (k∗ . . j) ∩ (K ∪ {k∗ + 1, k∗ + 2, j − 2, j − 1}), whereas the second one is due to k∗ ∈ K

(because k∗ is a valley). ◀

Our approximation algorithm (implemented as Algorithm 2) computes AGD that approxi-
mates GD in the same way AD approximates D in Algorithm 1. The only difference is that we
use Observation 2.7 and Fact 4.3 (and the definition of GD) to prune some states and transi-
tions. For each of the remaining states, the algorithm computes a value AGD(i, j) ≈ GD(i, j).
If h(i, j) = h(i+1, j −1), then Algorithm 2 relies on Fact 4.3 and considers the smallest index
k ∈ (i . . j) with h(k) = h(i, j) as the sole potential pivot, i.e, it returns AGD(i, k) + AGD(k, j).
If h(i, j) < h(i + 1, j − 1), then Algorithm 2 mimics Algorithm 1.

The analysis of the approximation ratio of Algorithm 2 resembles that of Algorithm 1.

▶ Lemma 4.4. If τ ≥ 2, then, for each i, j ∈ [0 . . n] with i ≤ j, we have GD(i, j) ≤
AGD(i, j) and, if GD(i, j) ≤ d, we further have AGD(i, j) ≤ GD(i, j) + 8

τ ci,j log ci,j, where
ci,j := |K ∩ (i . . j)|, and we assume 0 log 0 = 0.

Proof. As for the upper bound, we proceed by induction on j − i. For j − i ≤ 1, we have
AGD(i, j) = GD(i, j). For j − i ≥ 2, the lower bound GD(i, j) ≤ AGD(i, j) follows directly form
the definitions of AGD and GD. If h(i, j) < max(h(i), h(j)) − 2d, then the upper bound follows

Algorithm 2 Recursive implementation of AGD(i, j).

1 AGD(i, j)
2 if j = i then return 0;
3 if j = i + 1 then return 1;
4 if h(i, j) < max(h(i), h(j)) − 2d then return ∞;
5 if h(i, j) = h(i + 1, j − 1) then
6 Select the smallest k ∈ (i . . j) such that h(k) = h(i, j);
7 return AGD(i, k) + AGD(k, j);
8 c := AGD(i + 1, j − 1) + dyck(x[i + 1]x[j]);
9 τi,j := τ · 2min(ν(i),ν(j));

10 Ki,j := the set of τi,j smallest and τi,j largest elements of K ∩ (i . . j);
11 foreach k ∈ Ki,j ∪ ({i + 1, i + 2, j − 2, j − 1} \ {i, j}) do
12 c := min(c, AGD(i, k) + AGD(k, j));
13 return c;
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from Observation 2.7 and Lemma 4.2. If h(i, j) = h(i + 1, j − 1), then the upper bound
follows form Fact 4.3 because ci,k log ci,k + ck,j log ck,j ≤ ci,j log ci,j . Otherwise, the upper
bound follows directly from the definitions of AGD and GD unless GD(i, j) = GD(i, k) + GD(k, j)
for some k ∈ (i . . j) ∩ K. Let r = min(ci,k, ck,j) and let i′, j′ be the smallest and the largest
multiple of 2⌈log((r+1)/τ)⌉ within [i . . j].

Let us next prove that k ∈ Ki′,j′ . Note that τ(i′−i) < τ2⌈log((r+1)/τ)⌉ < τ ·2· r+1
τ = 2(r+1),

so τ(i′ − i) ≤ 2r (because both strict inequalities are between integers). A symmetric
argument yields τ(j − j′) ≤ 2r. Due to τ ≥ 2, we thus have i′ − i ≤ r ≤ ci,k < k − i and
j − j′ ≤ r ≤ cj,k < j − k, so k ∈ (i′ . . j′). Moreover, τi′,j′ ≥ τ · 2⌈log((r+1)/τ)⌉ ≥ r + 1 =
min(ci,k, ck,j) + 1 ≥ min(ci′,k, ck,j′) + 1, so k ∈ Ki′,j′ holds as claimed.

Thus, due to 2r = 2 min(ci,k, ck,j) ≤ ci,k + ck,j ≤ ci,j , we have

AGD(i, j) ≤ (i′ − i) + AGD(i′, j′) + (j − j′)
≤ 2r

τ + AGD(i′, k) + AGD(k, j′) + 2r
τ

≤ GD(i′, k) + 8
τ ci′,k log ci′,k + GD(k, j′) + 8

τ ck,j′ log ck,j′ + 4r
τ

≤ (i′ − i) + GD(i, k) + 8
τ ci,k log ci,k + GD(k, j) + (j − j′) + 8

τ ck,j log ck,j + 4r
τ

≤ GD(i, j) + 8
τ (ci,k log ci,k + ck,j log ck,j + r)

= GD(i, j) + 8
τ (max(ci,k, ck,j) log max(ci,k, ck,j) + r log(2r))

≤ GD(i, j) + 8
τ (max(ci,k, ck,j) log ci,j + min(ci,k, ck,j) log ci,j)

≤ GD(i, j) + 8
τ ci,j log ci,j . ◀

On the other hand, the complexity analysis is not as simple as in Section 3: it involves a
charging argument bounding the number of states processed using the insight of Fact 4.3.

▶ Proposition 4.5. There is an algorithm that, given a string x ∈ Σn, a threshold d ∈ [1 . . n],
and a parameter ϵ ∈ (0, 1), in Õ(ϵ−1nd) time reports that GD(0, n) > d or outputs a value v

such that GD(0, n) ≤ v ≤ (1 + ϵ)GD(0, n).

Proof. In the preprocessing, we use Fact 2.5 to guarantee that there are at most 2dyck(x)
valleys and thus |K| ≤ 6dyck(x). Then, we construct a data structure that, given i, j ∈ [0 . . n],
reports the smallest k ∈ [i . . j] such that h(k) = h(i, j) [20]. Finally, we run AGD(0, n) with
τ = ⌈48ϵ−1 log |K|⌉ and memoization of the results of recursive calls. By Lemma 4.4, the
returned value satisfies GD(0, n) ≤ AGD(0, n) ≤ GD(0, n) + 8

τ |K| log |K| ≤ (1 + ϵ)GD(0, n).
The running time analysis is more complex than in the proof of Theorem 3.2. We say that

a call AGD(i, j) is hard if it reaches Line 8, easy if it terminates at Line 4 or Line 7, and trivial
otherwise. Observe that the total cost of trivial calls is Õ(n). Moreover, the cost of each easy
call is Õ(1) plus the cost of the two calls made in Line 7, but the call AGD(i, k) is never easy
(it can be hard or trivial). This is because the choice of k as the smallest index in (i . . j) with
h(k) = h(i, j) guarantees that either k = i + 1 or h(i + 1, k − 1) > h(k) = h(i, k) = h(i, j) ≥
max(h(i), h(j)) − 2d ≥ h(i) − 2d = max(h(i), h(k)) − 2d. Consequently, the cost of each easy
call can be charged to its parent or sibling (which is hard or trivial), and it suffices to bound
the total running time of hard calls. By symmetry, we only bound the cost of hard calls
AGD(i, j) with h(i) ≥ h(j). We then observe that if h(i) ≥ h(j) = h(j′) and i > j > j′, then
AGD(i, j′) is easy. Consequently, there are at most 4d + 1 hard calls per i. The cost of each
hard call AGD(i, j) is Õ(τi,j) = Õ(τ2ν(i)), for a total of Õ(dτ

∑n
i=0 2ν(i)) = Õ(ϵ−1nd). ◀

▶ Theorem 4.6. There is an algorithm that, given a string x ∈ Σn, a threshold d ∈ [1 . . n],
and a parameter ϵ ∈ (0, 1), in Õ(ϵ−1nd) time reports that dyck(x) > d or outputs a value v

such that dyck(x) ≤ v ≤ (3 + ϵ)dyck(x).

Proof. We apply Proposition 4.5 with adjusted d (three times larger) and ϵ (three times
smaller). The correctness follows from Lemma 4.2. ◀
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5 Constant-Factor Approximation in Subquadratic Time

In this section, we provide an algorithm that, given a string x ∈ Σ∗, computes constant-factor
approximation of dyck(x) in subquadratic time. Formally, we show the following:

▶ Theorem 5.1. There exist a randomized algorithm that, given a string x ∈ Σn, in
Õ(n67/34) = O(n1.971) time, outputs a value v such that dyck(x) ≤ v ≤ 41 · dyck(x) holds
with probability at least 1 − n−9.

Instead of directly proving the above theorem, we develop the following result:

▶ Theorem 5.2. There exist a constant C and a randomized algorithm that, given a string
x ∈ Σn, in time Õ(n67/34), outputs a value v such that dyck(x) ≤ v ≤ 40 · dyck(x) + Cn33/34

holds with probability at least 1 − n−9.

Proof of Theorem 5.1 from Theorem 5.2. First, run the algorithm of Theorem 4.6 with
ϵ = 1 and d = ⌈Cn33/34⌉, where C is the constant of Theorem 5.2, this procedure takes
Õ(n67/34) time and either outputs a 4-approximation of dyck(x) or reports that dyck(x) > d.
In the latter case, run the algorithm of Theorem 5.2 and return the resulting value v. Then,
dyck(x) ≤ v ≤ 40·dyck(x)+Cn33/34 ≤ 41·dyck(x) holds with probability at least 1−n−9. ◀

The rest of the section is devoted to prove Theorem 5.2.

5.1 Window Decomposition
Let us fix a string x ∈ Σn. For all integers 0 ≤ i1 ≤ i2 ≤ n, we define a window w := (i1 . . i2]
with endpoints b(w) := i1, e(w) := i2 and with length |w| := i2 − i1. We distinguish n + 1
distinct empty windows (i . . i] for i ∈ [0 . . n]. For w = (i1 . . i2], we denote x[w] := x(i1 . . i2].

A window pair is a pair of windows (w, w′), and a weighed window pair is a triple (w, w′, c)
such that (w, w′) is a window pair and c ∈ R≥0 is a weight. The cost of a window pair (w, w′)
is dyck(x[w]◦x[w′]), and a weighted window pair (w, w′, c) is certified if c ≥ dyck(x[w]◦x[w′]).

▶ Definition 5.3. A set {(w1, w′
1), . . . , (wℓ, w′

ℓ)} of window pairs is a consistent decomposition
of

⋃ℓ
i=1(wi ∪ w′

i) if the 2ℓ windows are disjoint and {(b(wi), b(w′
i)) : i ∈ [1 . . ℓ]} forms a

non-crossing matching. We also lift this definition to sets of weighted window pairs.

For a consistent decomposition S, we write dyck(S) :=
∑

(w,w′)∈S dyck(x[w]◦x[w′]) to denote
the total cost of windows pairs in S. Observe that if S is a consistent decomposition of
[1 . . n], then dyck(S) ≥ dyck(x).

Our first goal is to prove that, for every s ∈ [1 . . n], there exists a consistent decomposition
S of [1 . . n] such that dyck(S) = dyck(x), |S| = O( n

s ), and each window in S is of length at
most s. For this, we inductively construct a consistent window decomposition of an arbitrary
interval (i1 . . i2] ⊆ [1 . . n] specified as follows (recall that D(i1, i2) denotes dyck(x(i1 . . i2])):

▶ Lemma 5.4. Let x be a string of length n and let s ∈ [1 . . n]. For every interval
(i1 . . i2] ⊆ [1 . . n], there exists a consistent decomposition Dec(i1, i2) of (i1 . . i2] such that:
1. each window pair (w, w′) ∈ Dec(i1, i2) satisfies |w|, |w′| ≤ s,
2. dyck(Dec(i1, i2)) = D(i1, i2), and
3. |Dec(i1, i2)| ≤ max(1, 2(i2−i1)

s − 1).

Proof. If |(i1 . . i2]| ≤ 2s, we return Dec(i1, i2) := {((i1 . . ⌊ i1+i2
2 ⌋], (⌊ i1+i2

2 ⌋ . . i2])}. In this
simple base case, all the claims hold trivially.



D. Das, T. Kociumaka, and B. Saha 49:17

In the main case, we grow the outermost window pair ((i1 . . j1], (j2 . . i2]), starting with
empty windows and maintaining two invariants: |(i1 . . j1]|, |(j2 . . i2]| ≤ s and D(i1, i2) =
D(j1, j2) + dyck(x(i1 . . j1] ◦ x(j2 . . i2]). Once there exists p ∈ [i1 + s . . i2 − s] with D(j1, j2) =
D(j1, p)+D(p, j2) (in particular, this holds when |(i1 . . j1]| = s or |(j2 . . i2]| = s), we terminate
the process and return Dec(i1, i2) := {((i1 . . j1], (j2 . . i2])} ∪ Dec(j1, p) ∪ Dec(p, j2). By the
inductive hypothesis, Dec(j1, p), Dec(p, j2) satisfy all the claimed conditions. In particular,
they form consistent decompositions of (j1 . . p] and (p . . j2], respectively, and thus Dec(i1, i2)
forms a consistent decomposition of (i1 . . i2]. By the first invariant, each window in Dec(i1, i2)
is of length at most s. The second invariant and the definition of p yield

D(i1, i2) = D(j1, p) + D(p, j2) + dyck(x(i1 . . j1] ◦ x(j2 . . i2])
= dyck(Dec(j1, p)) + dyck(Dec(p, j2)) + dyck(x(i1 . . j1] ◦ x(j2 . . i2])
= dyck(Dec(i1, i2)).

The choice of p ∈ [i1 + s . . i2 − s] further gives

|Dec(i1, i2)| ≤ 1+ |Dec(j1, p)|+ |Dec(p, j2)| ≤ 1+max(1, 2(p−j1)
s −1)+max(1, 2(j2−p)

s −1)

≤ 1+max(1, 2(p−i1)
s −1)+max(1, 2(i2−p)

s −1) = 1+ 2(p−i1)
s −1+ 2(i2−p)

s −1 = 2(i2−i1)
s −1.

Otherwise, we grow the outermost window pair using one of the following three cases. If
there exists p ∈ (j1 . . i1 − s) such that D(j1, j2) = D(j1, p) + D(p, j2), we append (j1 . . p] to
the window (i1 . . j1]. Then, the choice of p guarantees the first invariant, whereas the second
invariant holds due to

D(i1, i2) = D(j1, p) + D(p, j2) + dyck(x(i1 . . j1] ◦ x(j2 . . i2])
≥ D(p, j2) + dyck(x(i1 . . p] ◦ x(j2 . . i2]) ≥ D(i1, i2).

Symmetrically, if there exists p ∈ (i2 − s . . i2) such that D(j1, j2) = D(j1, p) + D(p, j2), we
prepend (p . . j2] to the window (j2 . . i2]. By (1), the remaining case is when D(j1, j2) =
D(j1 + 1, j2 − 1) + dyck(x[j1 + 1]x[j2]), i.e., the optimum alignment matches x[j1 + 1] and
x[j2]. Then, we add both these characters to the outermost window pair. In this case, the
first invariant holds due to |(i1 . . j1]|, |(j2 . . i2]| < s. As for the second invariant, we have

D(i1, i2) = D(j1 + 1, j2 − 1) + dyck(x[j1 + 1]x[j2]) + dyck(x(i1 . . j1] ◦ x(j2 . . i2])
≥ D(j1 + 1, j2 − 1) + dyck(x(i1 . . j1 + 1] ◦ x(j2 − 1 . . i2]) ≥ D(i1, i2). ◀

Large and small windows. Let us fix an integer power of two θ ∈ [ 1
n , 1] (which will be

set to n−1/34 rounded down appropriately). For each power of two s ∈ [1 . . θ−1], define a
function ups that maps each i ∈ [0 . . n] to ups(i) := min(n, θs⌈ i

θs ⌉) and denote its image
with Ns. Note that Ns ⊆ [0 . . n] consists of n as well as all integer multiples of θs. Moreover,
for each i ∈ [0 . . n], the value ups(i) is the successor of i in Ns.

We introduce the following family of variable-size windows:

Is := {w ⊆ [1 . . n] : |w| ≤ s1 and b(w), e(w) ∈ Ns}.

The following claim is a direct consequence of the construction.

▷ Claim 5.5. |Is| = O( n
θ2s ).

We pick two scales s1 ≥ s2, denoting J := Is1 and K := Is2 . For larger windows, we
prove the following result:
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▶ Lemma 1.1. There exists a consistent window decomposition S ⊆ J × J of [1 . . n] such
that

∑
(w,w′)∈S dyck(x[w] ◦ x[w′]) ≤ dyck(x) + 8θn.

Proof. By Lemma 5.4 applied for s := s1, there exists a consistent decomposition Dec(0, n)
of [1 . . n] such that dyck(Dec(0, n)) = dyck(x), |Dec(0, n)| ≤ 2n

s1
, and each window in Dec(0, n)

is of length at most s1. In order to meet the condition S ⊆ J × J , we round the window
endpoints up using the ups1

function. Formally, for each window pair (w, w′) ∈ Dec(0, n),
we create one window pair (w̃, w̃′) ∈ S, where b(w̃) = ups1

(b(w)), e(w̃) = ups1
(e(w)),

b(w̃′) = ups1
(b(w′)), and e(w̃′) = ups1

(e(w′)). The resulting family S satisfies S ⊆ J × J
since |w|, |w′| ≤ s1 implies |w̃|, |w̃′| ≤ s1 (because s1 is an integer multiple of θs1). The
relative order of windows involved in S is the same as in Dec(0, n), and thus S remains
a consistent decomposition of (0 . . n] (this is also because ups1

(0) = 0 and ups1
(n) = n).

Moreover, a single edit may increase the Dyck edit distance by at most one, and thus

dyck(S) =
∑

(w̃,w̃′)∈S

dyck(x[w̃] ◦ x[w̃′]) ≤
∑

(w,w′)∈Dec(0,n)

(dyck(x[w] ◦ x[w′]) + 4θs1)

= dyck(Dec(0, n)) + 4θs1|Dec(0, n)| ≤ dyck(x) + 8θn. ◀

Our next objective is to estimate dyck(x[w] ◦ x[w′]) for each w, w′ ∈ J . For this, we
utilize the smaller windows via the following result. Its proof, similar to that of Lemma 1.1,
is left for the full version [18].

▶ Lemma 5.6. For every (w, w′) ∈ J ×J with e(w) ≤ b(w′), there exists a consistent window
decomposition S ⊆ K × K of w ∪ w′ such that dyck(S) ≤ dyck(x[w] ◦ x[w′]) + O(θ|w ∪ w′|).

5.2 Outline of the Proof of Theorem 5.2
We set θ, s1, s2 to be the largest integer powers of two satisfying s1 ≤ n21/34, s2 ≤ n13/34, and
θ ≤ n−1/34, respectively. We first construct the families J and K of large and small windows,
as defined in Section 5.1. Then, we run a procedure CertifyWindowPairs (described in
the full version [18]), which certifies window pairs in J × J and K × K; some pairs are
certified directly, using Theorem 3.2 with ϵ = 1 (which provides a 2-approximation), whereas
others indirectly, using the triangle inequality (Lemma 2.3). The resulting family W of
certified window pairs satisfies the following property with probability 1 − n−9: there exists
a consistent decomposition T ⊆ W of [1 . . n] such that

∑
(w,w′,c)∈T c ≤ 40 · dyck(x) + O(θn).

Next, we use a simple dynamic-programming procedure (described in the full version [18])
to minimize the total cost

∑
(w,w′,c)∈T̃ c among all consistent decompositions T̃ ⊆ W of

[1 . . n]. The resulting cost is at least dyck(x) because W contains certified window pairs only
(that is, c ≥ dyck(x[w] ◦ x[w′]) holds for each (w, w′, c) ∈ W). Moreover, the cost is at most
40 · dyck(x) + O(θn) ≤ 40 · dyck(x) + O(n33/34) by the existence of T . The running time of
the DP procedure is Õ(|Ns2 |3 + |W|), which is Õ(n67/34) by the choice of parameters. The
details of the running-time analysis are left for the full version [18].
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