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—— Abstract

We study the classical and quantum bit-probe versions of the static set membership problem : Given
a subset, S (|S] < n) of a universe, U (|| = m > n), represent it as a binary string in memory so
that the query “Is x in S?” (z € U) can be answered by making at most ¢ probes into the string. Let
sa(m,n,t) denote the minimum length of the bit string in any scheme that solves this static set
membership problem. We show that for n > 4

O(m!'=Y"=1y ifn=0 (mod 3);
sa(m,n,t=2)=<¢ O@m'~/") ifn=1,2 (mod 3);
O(m®7) if n=38,9.

These bounds are shown using a common scheme that is based on a graph-theoretic observation on
orienting the edges of a graph of high girth. For all n > 4, these bounds substantially improve on
the previous best bounds known for this problem, some of which required elaborate constructions [4].

1——1
(n/4]) was known for

Our schemes are explicit. A lower bound of the form s4(m,n,2) = Q(m
this problem. We show an improved lower bound of sa(m,n,2) = Q(ml_%ﬁ); this bound was
previously known only for n = 3,5 [5, 6, 2, 7, 4].

We consider the quantum version of the problem, where access to the bit-string b € {0,1}° is
provided in the form of a quantum oracle that performs the transformation O : |i) = (—1)% |4).
Let sg(m,n,2) denote the minimum length of the bit string that solves the above set membership
problem in the quantum model (with adaptive queries but no error). We show that for all n < mt/ 8
we have sg 4 (m,n,2) = O(m"/®). This upper bound makes crucial use of Nash-William’s theorem [10]
for decomposing a graph into forests. This result is significant because, prior to this work, it was not
known if quantum schemes yield any advantage over classical schemes. We also consider schemes
that make a small number of quantum non-adaptive probes. In particular, we show that the space
required in this case, son(m,n = 2,t = 2) = O(y/m) and son(m,n = 2,t = 3) = O(m'/?); in
contrast, it is known that two non-adaptive classical probes yield no savings. Our quantum schemes
are simple and use only the fact that the XOR, of two bits of memory can be computed using just
one quantum query to the oracle.
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Set Membership with Two Probes

1 Introduction

We consider the problem of representing small subsets S of a universe [m] = {1,2,...,m} in
memory as a bit string so that membership queries of the form “Is x € S?7” can be answered
with a small number of bit probes to the memory [9]. This is a fundamental question that
asks how much a very sparse string can be compressed if we want to extract the bits of the
original string efficiently from its compressed version. One natural way of representing sets in
memory is the characteristic vector, which uses m bits of memory and answers membership
queries using a single bit probe. Since there are only O((")) sets of size at most n (assume
n < m) one might hope to represent them using O(log, (7::)) ~ O(nlogm) bits of memory.
However, compression to near the information-theoretic limits comes with a cost: membership
can no longer be determined by reading just a small number of bits. To describe the trade-offs
between efficiency of compression and the effort for extraction (measured as the number of
bit probes), we will use the following notation [11]. Let sy(m,n,t) denote the minimum
number of bits in a scheme that can represent sets of size at most n and answer membership
queries by probing at most ¢ bits of the memory non-adaptively (that is, the probes are made
in parallel). We write s4(m,n,t) if the scheme is adaptive; we use the subscript @ if the
scheme makes quantum queries (zero-error), which can be adaptive or non-adaptive [18], and
write sga(m,n,t) and son(m,n,t). Clearly,

sa(m,n,t)

t) >
SN(TI’L,TL, ) = { SQN(m,n, t)

} > sga(m,n,t)
Radhakrishnan, Sen and Venkatesh [18] obtained lower bounds, which for the range of
parameters of interest to us (n < y/m, t constant) implies the following,.

soa(m,n,t) = Q(m/tpl =1/t

(A similar lower bound in the classical setting was shown by Buhrman et al. [9].) Note that this
bound shows that if the space is compressed to O(nlogm), then ¢t = Q(logm). Furthermore,
if ¢ = 1 no compression is possible even for n = 1; it also shows that sg(m, 1,2) = Q(y/m), for
which there is a matching upper bound sy (m,n = 1,2) = O(y/m). The first, non-trivial case is
n = 2 and t = 2, where the above bound implies that sga(m,2,2) = Q(y/m). It is known that
this bound is not tight for classical schemes; better lower bound are known: sy(m,2,2) =m
and s4(m,2,2) = Qm*7) [9, 19]. Remarkably, it is known that s4(m, 3,2) = ©(m?/3) [13, 5].
Two-probe classical schemes have been constructed for representing small sets in several
works starting with Alon and Feige [1] (see, e.g., [4, 2, 7, 12, 13, 15, 17], where sets of specific
sizes are considered); the following upper and lower bounds was obtained by Garg and
Radhakrishnan [12].

Qm' " TT) < sa(m,n,t =2) < O(m!~w5), (1)

which roughly characterizes the space requirement for the problem, and, in particular,
establishes that no savings over the standard characteristic vector representation can be
expected if n > logm. We show the following.

» Theorem 1 (Result 1). Forn >4,
O(m!=Y@=1) ifn=0 (mod 3);

sa(m,n,t =2)=¢ O(m' /") ifn=1,2 (mod 3);
O(m®/7) ifn=238,9.
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The above bounds improve the bounds for all other values of n (see Figure 1) for a
comparison. Unlike the previous works, where different constructions (some of which quite
intricate) were invented for different set sizes, our result is obtained using a unified approach
based on graphs of high girth. (For n = 2,3, the construction matches the currently best
bounds.) To obtain a scheme for a set of a given size, one just plugs in the best available
result for high-girth graph and obtains the bound claimed above. More importantly for us,
the method used here inspires a quantum scheme that yields Result 3 below. We also obtain
improved lower bounds.

» Theorem 2 (Result 2). For all odd n (3 <n <logm), sa(m,n,t =2) = Q(m!=2/(n+3)),

This bound matches the best bound known earlier for n = 3 (see [13]) and n =5 (see [3]),

and improves the current best lower bound (see Equation (1) above) for all larger values of n.

We follow the approach of [12], who consider the graph underlying a two-probe scheme, and
show that if it is dense then it must contain a forbidden configuration. We make better use
of the structure of the underlying graph to force the existence of forbidden configurations.

We now describe our results in the quantum model. As stated above, our classical
approach helps develop a new quantum schemes.

» Theorem 3 (Result 3). sga(m,n =m'/%t=2)=0(m"/3).

This result is especially significant because it shows that, unlike in the classical case, two probes
give substantial savings over the characteristic vector representation for sets substantially
larger than log m (see the remark above following Equation (1)). Before this work, quantum
schemes were not known to provide significant savings over classical schemes. Our quantum
scheme is also based on dense graphs that are locally sparse, this time we do not make use
of high girth. Instead, we invoke a result of Nash-Williams [10] on covering the edges of a
graph with two forests. After this, our construction uses only the following basic fact from
quantum computation (Deutsch’s algorithm [16]): the parity of two bits of memory can be
computed using just one quantum probe. In fact, only the second probe in our scheme is
truly quantum. This result opens the possibility that the lower bounds of \/mn cited above
is perhaps achievable for quantum schemes. We show in fact that for n = 2, the lower bound
can be matched using non-adaptive constructions.

» Theorem 4 (Result4).

son(m,n =2t =2) = 0(v/m);
son(m,n =2t =3) = O(m'/?).

The query scheme is simple. The query scheme for (n = 2,¢t = 2) on input = computes for
locations 1 (z), l2(x), €3(x), 4(2), and returns “Yes” iff the bits at the first two locations are
different and the bits at the last two locations are different, that is, we use an AND of two
inequality computations, each of which requires just one quantum probe. A similar query
scheme that uses an AND of three inequality computations gives the three-probe non-adaptive
quantum scheme. We also obtain non-adaptive two-probe schemes with sublinear space for
storing sets with more elements (see Appendix D). These bounds are interesting because no
non-adaptive two-probe classical scheme exists with sublinear space [9].

2 Classical two-probe adaptive schemes

In this section we establish Theorem 1. Our two-probe adaptive schemes are based on dense
graphs of high girth. We first specify the storage scheme and the query schemes based on
an underlying graph. Then, to complete the proof, we will show the following: (i) if the

52:3

ICALP 2022



52:4

Set Membership with Two Probes

underlying graph has high girth, then there is an assignment of values to the memory such
that all queries are answered correctly; (ii) the available explicit constructions of dense graphs
of high girth in the literature yield the claimed bounds.

» Definition 5 (Classical (G, K)-scheme). Let G be a directed graph with N wvertices and M
edges; let K be a positive integer. We refer to the following as a (G, K)-scheme. The storage
consists of two bit arrays, A and B. To answer a membership query the decision tree will
make the first probe to array A and the second probe to array B.

Edge array: An array A : E(G) — {0,1}, indexed by edges of G.

Vertex array: A two dimensional array B :'V x [K] — {0,1}.

Elements: We identify our universe of elements [m] with a subset of E(G) x [K] (so we must
ensure that the graph has at least m/K edges); thus, each element x € [m] will be referred
to as (e,1).

Query: We represent an edge of G as an ordered pair of the form e = (vo,v1) with the
convention that vg < vy. To process the query for the element © = (e, i), we read Ale]
(first probe); then we return the value Blvape, 1] (by making the second probe into B).
In other words, we may think of Ale] as a bit that orients the edge e towards either its
smaller vertex or the larger vertex; depending on this bit, the second probe is made into
the array B corresponding to the vertex towards which the edge points. Note that this
scheme is adaptive: the second probe depends on the first.

Space: We will ensure that MK > m. The space used by this scheme is then NK + M bits
(NK for the N vertex array and K for the edge array). By choosing the graph G and the
parameter K appropriately we will show that our schemes use small space.

The following lemma provides the connection between dense graphs of high girth and
efficient two-probe adaptive schemes.

» Lemma 6. Let G be a graph with N vertices M edges and girth g such that n < L%gj and
M <m. Then, sa(m,n,2) < M + N[m/M].

Before we present the proof of this lemma formally, let us derive from it the bounds claimed
in Theorem 1. Since every graph has a bipartite subgraph that includes at least half the
edges, it is sufficient to restrict attention to bipartite graphs, and hence to graphs whose
girth is even. The smallest even number g such that n < L%gj is given by

(2)

(n) = 4[n/3] n=-1,0 (mod 3);
T =V4m/31-=2 n=1 (mod 3).

Now, suppose that for a girth g, there are constant ¢(g) d(g) and 7(g), such that for all large
L, there is a graph with at most ¢(g)L vertices, girth g and d(g)L'*7(9) edges. Then, taking
a graph with N = Q(m!/(1+27(9(m))) vertices and M = ©(m(1+7)/(1+27)) edges in Lemma 6,
we obtain the following.

» Corollary 7. s,(m,n,2) = O(m+7@()/(1+27(g(n)))),

In particular, by using the current best constructions of dense graphs with large girth we
obtain the following bounds for s4(m,n,2). For example, we may take 7(6) = 1/2, 7(8) =1/3
and 7(12) = 1/5 based on graphs described Wenger [20]. (In Appendix A, we explain in
what sense these constructions, and hence the resulting schemes, are explicit.)

Proof of Lemma 6. Fix a graph G with N vertices and M edges as in the statement of the
theorem. Consider the (G, K)-scheme with K = [m/M]. Clearly the space used by the
scheme is N + KM = N + M [m/M]. It remains to show that there is an assignment to the
edge and vertex arrays of this scheme so that every query is answered correctly. Fix a set S
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n girth g(n) T(g(n)) Our bound (m(+7)/(1+27) Previous best bound

2,3 4 1 O(m?/3) O(m?’?) [13]

4 6 1/2 O(m?/*) (using [20]) O(m5/%) [6, 4]

5,6 8 1/3 O(m*/®) (using [20]) O(m®/%) (for n =5 [4])

7 10 1/5 O(m8/7) (using [8]) J,

8,9 12 1/5 O(m8/") (using [8]) I

n=3r—2 dr — 2 1/(3r — 4) O(m'~ =) (using [14]) O(mr=/Gn+ly 1)

n=3r—1,3r 4r 1/(3r —3) (O(Tnl*%)7 O(m' ™= T —1) (using [14]) O(mr=/Gn+ly 1)

Figure 1 Our upper bounds use explicit constructions of graphs of large girth available in the
literature (see Appendix A).

of at most n elements; recall that the elements of the universe have the form (e, i), where e

is an edge of the graph and i € [K]. We will assign values to the two arrays in two steps.

First the edge array A will be assigned values. Recall that this assignment corresponds to
assigning directions to the edges. We will show below how this is to be done. Assuming this
we show how the array B is initialized. To start with, we initialize array B with zeros. Now
for each element (e,i) € S (say e = (v, v1) where vy < v1), if Ale] = 0 we set Blvg,i] =1,
otherwise we set B[vy,i] = 1. This assignment ensures that the query scheme described
above will answer correctly for each element in S, so there are no false negatives, no matter
what initial orientation of the edges is chosen. The key idea is to choose an orientation that
avoids false positives; we must ensure that the value in the array A are set in such a way that
an element not in S and an element in S do not make second probes to the same location in
array B. Definition 8 below formally describes such a safe orientation. Here edges e such
that (e,i) € S for some i are colored GREEN and the other edges are colored RED. Thus,
there are at most n GREEN edges. Our choice of colors RED and GREEN are based on the
following consideration. Some edges support elements in the set, some others do not support
any such element. We chose to regard edges with elements in the set as GREEN, because
the eventual answer to the query in that case is "Yes’ In our definition of safe orientation,
RED edges and GREEN edges are not allowed to point to a common vertex. Two GREEN

edges are not allowed to point to the same vertex either but two RED edges are allowed to.

We warn the reader that our choice of colors might be confusing, because GREEN edges are
more restrictive/dangerous than RED edges! Then, Lemma 9 below shows that the graph
G above has a safe orientation. It follows that our query scheme answers all the queries
correctly. |

» Definition 8 (Safe orientation).  Suppose H is a graph whose edges are colored RED
and GREEN. We say that an orientation of edges is safe if every vertex with an incoming
GREEN edge has only one edge coming into it.

» Lemma 9. Suppose H is a graph with even girth g > 4 and n < |3g/4] GREEN edges.
Then, G has a safe orientation. (This claim should have a simple proof, but we have not been
able to find one that covers all cases succinctly.)

Preliminaries: In the following, suppose H is a graph with even girth g and n < [3¢/4]
GREEN edges. To find the necessary orientation, we will proceed by induction on the size of
H (its total number of edges plus vertices). For the base case, note that a graph with no
edges clearly has a safe orientation. For the induction step, we will identify an initial set of
vertices V'’ such that all edges that have at least one end point in V' can be safely oriented
towards a vertex in V’. We then delete V'’ and the edges incident on it, and use induction to
extend this orientation to the rest of H. To identify the set V'  we will use a breadth first
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search procedure formally described below. This procedure produces a breadth first search
tree or a breadth first search forest as usual, but we need to impose the following condition
on it.

If a vertex w in the tree is connected to its parent by a RED edge, then all of w’s
children are connected to w using GREEN edges; thus, in any root to leaf path in the
tree, RED edges do not appear consecutively.

To enforce this, when a RED edge is added to the tree, we will mark the vertex it leads to
RED; then when we visit this vertex, we only explore vertices connected to it by GREEN
edges. If a GREEN edge is added to the tree, we mark the new vertex GREEN; then when
we visit this vertex, we explore all its edges, whether GREEN or RED. The formal code is
presented in Algorithm 1. (This is reminiscent of the breadth first search procedure employed
by certain matching algorithms to discover augmenting paths; there one alternately explores
either only the matched edge or all edges). As a first attempt we might want to orient the

Algorithm 1 Breadth-First Search (BFS).

Input :A non-empty subset Z C V(H)
Output : A BFS forest rooted at the vertices in Z

1 Q = empty queue ;
2 push all elements of Z into @ and mark them GREEN;
3 while Q is non-empty do
4 | v=pop(Q);
5 if v is marked GREEN then
6 push all unmarked neighbors w of v into Q);
// now assign them colors as follows
7 if {v,w} is GREEN then
8 ‘ add {v,w} to the forest, and mark w GREEN
9 end
10 else
11 ‘ mark w RED
12 end
13 end
14 if v is marked RED then
15 push all unmarked neighbors w of v with {v,w} GREEN into Q;
16 add {v,w} to the forest and mark w GREEN;
17 end
18 end

edges of the forest away from the roots and hope to extend this orientation to the other
edges that have at least one end point in the forest. If this gives a valid orientation for these
edges, we let V' be the vertex set of the forest, and proceed as above. Unfortunately, this
straightforward method may run into problems; this motivates the following definition.

» Definition 10 (Blocking edge, see Figure 2). In the forest constructed by BFS, we say
that a non-tree edge is a blocking edge if (i) it is a non-tree GREEN edge both of whose end
points are visited during BFS, or (i) it is a non-tree RED edge with both end points marked
GREEN.
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Figure 2 The BFS tree: (v1,v2) is not a blocking edge, (v2,v4) and (vs, v7) are blocking edges.

We will see that if there are no blocking edges, then the above strategy will work; otherwise,
H has a cycle with many GREEN edges, and we will be able to exploit that.

» Definition 11 (GREEN-dominated cycle, see Figure 3). We say that a cycle in H is

GREEN-dominated if all but (perhaps) one of its RED edges are followed by a GREEN edge.

We will establish the following two lemmas below.

» Lemma 12. Suppose H has no GREEN-dominated cycle. Suppose V' is the set of vertices
of H wisited by BFS starting at a vertex vg. Then there is a safe orientation of edges of H
incident on V.

» Lemma 13. Suppose H has a GREEN-dominated cycle C. Let H' be the graph obtained
by deleting from H all edges of C. Let V' be the vertices visited by BFS in H' starting with
the vetex set V(C) of the cycle C. Then, there is a safe orientation of edges of H incident
on V',

Let us use these lemmas to complete the proof of Lemma 9.

Proof of the Lemma 9. If H has no GREEN-dominated cycle, then by Lemma 12, we
obtain an initial set of vertices V/ and an orientation of all edges incident on it. If H has a
GREEN-dominated cycle, then by Lemma 13 we obtain an initial set of vertices V' and an
orientation of all edges incident on it. We extend this orientation to the remaining edges of
the graph by deleting V/ and all edges incident on it, and applying induction to the resulting
subgraph induced by the vertex set V' \ V’. |

We now return to the unproved lemmas.

Proof of Lemma 12. Let vy be an arbitrary vertex. Consider the tree produced by BFS
starting with Z = {vp}. We claim that there is no blocking edge for the resulting tree.
For suppose e = {a,b} is a blocking edge. Let v be the least common ancestor of a and
b, and recall that in the paths that connect v to a and v to b, no RED edge is followed
by a RED edge. Let C be the cycle formed by taking the path from v to a followed by e
and then the path from b back to v. If e is GREEN, then this cycle is GREEN-dominated,
contradicting our assumption. If e is RED, then by the definition of blocking edge, both
a and b are marked GREEN, that is, the tree edges connecting them to their parents are
GREEN (note that e is not a back edge because both its vertices are GREEN). Again the
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Figure 3 The edge is (vs, vg) is a blocking edge and (vo,v1,vs, vs, V2, Vo) is the resulting GREEN-
dominated cycle, even though it has more RED edges than GREEN edges.

cycle C' is GREEN-dominated, contradicting our assumption. Thus, the tree has no blocking
edges. Let V’ be the vertices visited by BFS. Orient all tree edges away from the root vy.
The remaining edges incident on V' (which cannot be GREEN) have at least one vertex
marked RED, because they are not blocking. Orient them towards that RED vertex. It
can be verified that the GREEN edges that received an orientation are all tree edges, and
are oriented towards distinct GREEN vertices. The RED edges are oriented towards RED
vertices. So all edges incident on V' can be oriented safely. |

Proof of Lemma 13. Fix a GREEN-dominated cycle C' in H. Suppose it has ¢; edges (for
some ¢1 > g) of which say n; are GREEN. Then,

ny 2 [(6—1)/2] =2 g/2, 3)

because ¢ is even. First, suppose the resulting BFS forest has no blocking edges, then let V’
be the vertices of this BF'S forest. We orient the edges in C' so that it becomes a directed
cycle (we may choose either of the two ways to do this). Then, we orient all tree edges away
from the roots in the BFS forest. Note that all other edges incident on V'’ must necessarily be
RED; each such edge has at least one RED vertex in V’. We orient each such edge towards
a RED vertex, and obtain the desired safe orientation.

Next, suppose there is a blocking edge e = {a,b}. If a and b belong to the same tree
of the forest, then e and the paths from a and b to their least common ancestor form a
GREEN-dominated cycle, consisting of say ¢5 > g edges of which ny, are GREEN. Then,

ny 2 [(l2 —1)/2] = g/2. (4)

From Equation (3) and Equation (4), we obtain, n > n; + ny > g, contradicting our
assumption that n < 3¢g/4. So, we may assume that a and b belong to different trees of the
forest. Then, travelling from the root r; of a’s tree to a, crossing over along e to b, and
then travelling to the root ry of the tree of b, we obtain a path P*, where no RED edge is
followed by a RED edge; in particular, every RED edge except perhaps the last, is followed
by a GREEN edge. Suppose this path has f3 edges of which ng are GREEN. We have the
following.

by > g — [61/2]; (G has girth g) (5)
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From Equation (3), Equation (5) and Equation (6), we obtain

2(n1+mn3) > g+2[(61 —1)/2] — [61/2] — 1 (7)
=g+ [(t1—-1)/2] -1 (8)
>3g/2 — 1. 9)

If n > ny + ng (that is, there is some GREEN edge outside C' U P*), then we obtain
n>ny +n3+12>3g/4+1/2, contradicting our assumption n < 3g/4. So, we may assume
that all GREEN edges in the graph are contained in C'U P*. We think of C'U P* as a set
of three edge disjoint paths, Py, P> and Ps, connecting r1 to ro, where P, U P, = C' and
P; = P*. Let V* be the set of vertices in P, U P, U P*. We will show that the graph induced
by V* can be safely oriented. Then, we will orient all other (necessarily RED) edges of G
towards a vertex not in V* to obtain a safe orientation of the entire graph H, and conclude
that the lemma holds with V' = V(H).

First, we show that we may assume that each of the three cycles C = P, U Py, P U P3
and P, U P5 is chordless. Since C' is GREEN-dominated, it has at most 2n + 1 edges. If it
had a chord, we would get a cycle with at most n < 3g/4 < g edges, a contradiction. Thus,
the cycle C = P; U P, has no chord. Next, using a similar argument we show that the other
two cycles are chordless. We first observe that both P; and P, have GREEN edges. If P;
has no GREEN edges, then it can have at most two edges, and the at least g/2 GREEN
edges of C all lie in P». Also, Ps has at least g — 2 edges. Then, the number of GREEN
edges in Ps is at least max{|Pz|,g}/2 (because C is GREEN-dominated), and similarly the
number of GREEN edges in P is at least [(|Ps| —1)/2] > g/2 — 1. Thus,

3/4g = n = max{|P,|, g}/2 + [(| P3| = 1)/2] = g — 1; (10)

that is, g = 4, |P2| <4 and | P3| < 3. Thus, P, U P; is a cycle with at most 7 vertices and it
cannot have a chord because g = 4. Thus, we may assume that P; has at least one GREEN
edge, that is, P, U P53 has at most n — 1 GREEN edges. Let ks be the number of GREEN
edges in P, and k3 the number of GREEN edges in P;. Since every RED edge in P3, except
perhaps one is followed by a GREEN edges, the number of edges in Pj3 is at most 2ky + 2.
Then, the total number of edges in Py U P3 < (2kg + 2) + (2k3 + 1) (the second term comes
from Equation (6)), that is, at most 2n + 1 edges in all. If P, U P; has a chord, then we have
a cycle of length at most n, which, as we saw earlier, is not possible. Similarly, P, U P3 has
not chord.

So the graph induced by V* consists of three disjoint paths, with no chords across them.
If any path has two consecutive RED edges, then we may orient them towards each other
and be left with a graph consisting of a cycle with two dangling paths, which can be oriented
safely. Similarly, if some two paths start with RED edges or end with RED edges, then
these edges can be oriented towards each other, and the remaining edges (which form a
tree) can be oriented safely. We are left with the case where on all paths a RED edge is
followed by a GREEN edge, and at both ends (r; and 73), two of the paths start with
GREEN edges. We will show that this is impossible. For otherwise, there is path (say, Ps),
which has GREEN edges at both ends, so | P3| has at least (| P3| +1)/2 GREEN edges. For
the remaining paths, either some path has both ends GREEN, or both paths have one end
GREEN. In either case, they together have at least (|P1| + |P2|)/2 GREEN edges. Note that
2(|Py|+ | Pz| + | P5|) > 3g, because H has girth at least g. Thus, the total number of GREEN
edgesisn > (|P1| + | P2 + |Ps| +1)/2 > (3g/2 4+ 1)/2 > 3g/4, contradicting our assumption
that n < 3g/4. <

52:9

ICALP 2022



52:10

Set Membership with Two Probes

3 Quantum adaptive schemes

In this section, we establish Theorem 3. Our quantum scheme is based on a graph and is
similar in some respects to the classical scheme described above. The main difference is in
the second probe, which now computes the XOR, of two bits of memory.

» Definition 14 (Quantum (G, K)-scheme). Let G be a directed graph with N vertices and
M edges; let K be a positive integer. We refer to the following as a quantum (G, K)-scheme.
The storage consists of three bit arrays, A, By and By. To answer a membership query, the
quantum decision tree first probes array A (this probe is classical) and then computes the
XOR of two bits in either By or By, using just one quantum probe.

Edge array: An array A : E(G) — {0,1}, indezed by edges of G.

Vertex arrays: Two two-dimensional arrays Bo, By : V x [K]| — {0, 1}, indexed by elements
of the form (v,1).

Elements: As before, we identify our universe of elements [m] with a subset of E(G) x [K];
thus, each element x € [m] will be referred to as (e, 1).

Query: Let the query be “Is x in S?”, where © = (e,i); suppose e = {xg,x1}. To process
this query for we read Ale] (first probe); then, based on the value of Ale], we return either
By[(vo,1)] + Bo[(v1,1)] (mod 2) or Bi[(vo,4)] + Bi[(v1,4)] (mod 2). In other words, the
first probe directs us to either array By or Bi; we then return the XOR of the bits in the
i-th location in the rows corresponding to the two vertices of e.

Space: We will ensure that MK > m, to accommodate all elements of the universe. The
space used by this scheme is then 2NK + M bits. By choosing the graph G and the
parameter K appropriately we will show that our schemes uses small space.

The main idea is the following. To store the set S in the data structure, we partition the
edges of G using the 0-1 assignment to the array A. Let Gy be the graph induced by the
edges that are assigned 0 in A, and let Gy be the graph induced by the edges assigned 1.
Now, the bits of the arrays By and B; must be assigned in such a way that certain XORs of
two bits evaluate to 1 and others evaluate to 0. This leads to a system of linear equations
in the bits of the arrays By and B;. To ensure that this system has a solution, we ensure
that if Afe] = 0, then e is not in any cycle in Gy, and similarly, if Ale] = 1, then e is not in
any cycle in G;. It is then easy to see that the required assignment to the arrays By and
By exists. To ensure that the edges of G can be partitioned in Gy and G to satisfy the
requirements imposed by the set S, we will start with the graph G that is dense but locally
sparse in the following sense, and use a theorem of Nash-Williams.

» Definition 15 (Locally sparse graph). A graph G is (k, «)-locally sparse if for every subsets
V' CV with 4 < |V'| < k vertices, the induced subgraph on V' has at most a|V'| edges.

» Lemma 16. If G has N vertices, M edges and is (4n,5/4)-locally sparse, then

soa(m,n,t=2) < M + 2N[%1

Before we present the proof of this lemma, let us see how this leads to Theorem 3. We will
need a family of dense locally sparse graphs, whose existence we establish in Appendix C
using a routine probabilistic argument.

» Lemma 17. For all large N there is a (AN'/,5/4)-locally sparse graph with N vertices
and Q(N7/%) edges.

We set N = m?/4, and plugging in the graph promised by Lemma 17 in Lemma 16, obtain
sga(m,m'/®,2) = O(m7/®), as claimed in Theorem 3. It remains to establish Lemma 16.
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Proof of Lemma 16. Fix G with the given parameters. We now describe how the three
arrays in our quantum scheme are assigned values. Recall that we view elements of [m] as
pairs (e, i). Edges of G for which there is an element of the form (e, i) € S will be called

GREEN; the other edges of G will be called RED. Say, there are { < n GREEN edges.

We will construct a sets of vertices Dgy, D1, Do, ... by adding one vertex at a time. Let
Dy C V(G) be the union of the GREEN edges; thus D has at most 2¢ vertices. To obtain
D;4q from D;, add to D; a new vertex that has at least two edges leading into D;; if no
such vertex exists, stop. We claim that this process stops before 2n vertices are added, for
otherwise, the graph induced by Ds,,, a set of size at most 2n + 2¢ < 4n vertices, has at least
4n + ¢ edges. Since G is (4n,5/4)-locally sparse, we have (5/4)(2n + 2¢) > 4n + ¢, implying
¢ > n, a contradiction. Let D be the set of vertices when the above process stops.

> Claim 18. The subgraph induced by D can be split into two disjoint forests.

We will justify this claim below (using Nash-Williams theorem). Let us assume it and
complete the proof. Let the two forests guaranteed by this claim be F} and F,. We set
Ale] = 0 for all edges e € Fy and all edges that connect D to V' \ D. Let G be the subgraph
of G with vertex set V(G) that consist of edges e such that A[e] = 0. Let G be the subgraph
with vertex set V(@) and all edges not included in Gy. Note that the connected components

of G; are either in the forest Fy or consist of RED edges with both end points in V'\ D.

Now, we are ready to describe the assignment to arrays By and Bj. As stated above the
constraints imposed by the GREEN and RED edges give a system of equational constraints;
since G has no cycle, it is easy to see that these constraints can all be satisfied by assigning
By appropriately. In G again, the edges corresponding to F5> do not induce a cycle, so the
constraints imposed by them can be satisfied by assigning appropriate values to the rows of
Bs corresponding to vertices in D. The remaining edges share no vertex with the edges of
F5, and consist only of RED edges. So we assign zeroes to all rows of By corresponding to
vertices in V(G) \ D.

It remains to verify Claim 18. Since |D| < 4n, every subset D’ of D (with |D’| > 4)
induces at most (5/4)|D’| edges; since |D| > 4, we have (5/4)|D’| < 2(|D’| — 1). Note that
the number of edges in any graph with at most 1 < ¢ < 4 vertices is at most 2¢ — 2. So we
may invoke Theorem 19 below and justify the claim. |

» Theorem 19 (Nash-Williams (see Theorem 3.5.4 in [10]).). Let H = (V, E) be an undirected
graph such that for each non-empty subset X C V', the number of edges with both end points
in X is at most 2(|X| —1). Then E can be partitioned as E = E1 U Ey such that (V, E1) and
(V, Es) are both forests.

4 Lower bounds for classical schemes

In this section, we present our justification for Theorem 2.

Canonical query schemes. Consider an (m,n, s,t)-scheme. Let us use M to denote the
array of s-bits into which probes are made. With each element = € [m] of the universe such
a scheme associates three addresses (a(x),b(z),c(z)) € [s]?, where the first probe is made to
location a(x); if the bit there is 0, then the second probe is made to b(z), otherwise the probe

is made to ¢(z). We will assume that that the query scheme has the following canonical form.

On query “Is z in S7”, the answer is determined as follows: if M[a(x)] = 1, then return
MIb(z)], else return M[(c(x)], where 0 is treated as false/no and 1 as true/yes. We refer to
such schemes as canonical schemes. It is easy to see that by at most doubling the memory a
scheme can be made canonical.
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» Proposition 20. If there is an (m,n,s,t = 2)-scheme, then there is an (m,n,2s,t = 2)-
canonical scheme.

From now on we will assume that the scheme is canonical.

» Definition 21 (The bipartite graph associated with a scheme). With the scheme o, we
associate a directed bipartite graph G, with vertex sets B and C, whose elements we refer
to using [s]. For each x € [m] we add an edge e(x) = (b(x), c(z)) in G, with label (z,a(x)).
The value a(x) will be called the color of the edge; so e(x) and e(y) have the same color if
and only if the first probes for the two queries “Is x in S?” and “Isy in S?” are made to
the same location, namely a(x) = a(y). We will use € to refer the oriented version of the
edges of G,. We say that two distinct oriented edges, & and €5 are parallel if (i) € and &
have the same color, and (i) they are both oriented in the same direction (both from B to C
or C to B).

To store a set .S, one must find an assignment to the locations where the first probes are
made. This amounts to choosing an orientation for each color, and orienting the edges either
from B to C or from C to B; the values in the array is then essentially forced because the
protocol is assumed to be canonical. For this assignment to be valid, in the resulting directed
graph, we must have the property that if x € S and y ¢ S, then head(e(x)) # head(e(y)).
We refer to such an orientation as a safe orientation for S.

We obtain our lower bound by establishing that if the data structure uses very small
space, then there is a set S of size at most n edges, whose edges cannot be oriented safely.

Gy Gy Do 370

(a) A forbidden configuration. (b) The problem case.

Figure 4 n =1T7.

Forbidden configuration. Fix n of the form 2¢ — 1. Please refer to Figure 4a. Most edges
in the figure come in pairs of solid and dotted edges, which are placed parallel to each other.
For each edge, one vertex is a circle and the other is a square, to indicate that one of them
comes from B and the other from C' (we do not specify which is which). The elements
labelling the edges are all distinct; however, we allow the edges to have the same color even
if they are not explicitly depicted as being parallel. We say that such graph F is forbidden
configuration of order n, if there is a subset S C [m] (]S| < n) of elements appearing in the
labels on the edges of F' such that F' is not safe for S. For example, Figure 4a is a forbidden
configuration of order n = 7, where the set S is indicated by v'. Our lower bound result
Theorem 2 follows immediately from the following lemma.

» Lemma 22. Fiz an odd n (3 <n <logm) and an (m,n,s,t = 2)-scheme o. If G, does
not contain any forbidden configuration of order n, then s > em=2/("+3)  for a constant
¢ > 0 independent of n.
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Figure 5 The second forbidden configuration (n = 7).

Proof Sketch. Consider (m,n,s,t = 2)-scheme 0. In G, we have m edges. Then, (on
average) a vertex has degree about m/s and each colour has m/s edges. We start from an
edge e = (v,w), and from each of v and w, we build a tree as follows. Let us start with
vg = v. We have m/s choices for an edge; for each choice of edge e of the form (vg,v1), we
jump to an edge of the same colour (parallel to the first one), that takes us from a vertex v}
to a vertex vy. We continue this process, alternately expanding to a neighbor or jumping

to a parallel edge for k steps in all. If we set k such that (m/s)* > s, we obtain a “cycle”.

(Note that this is not a cycle in the usual graph-theoretic sense, because we jump from an
edge to a parallel edges in alternate steps.) We delete these edges from the graph, and

repeat this for the other vertex w of the starting edge e. Let us illustrate this for n = 7.

Suppose s < m'=2/(n+3) = mA/5 that is, (m/s) > m!'/®. In particular, with k& = 4, we have
(m/s)* > m*5 > s, and at some point a vertex must repeat (we have only 2s vertices). A
situation in such a case, with two cycles hanging off an edge corresponds to Figure 4a. We
allow the two cycles to share vertices, but the edges involved must be distinct. Now, to see
that this configuration has no safe orientation, first choose either orientation for the top edge
e, say towards left. Then, the directions of all edges are forced in that cycle and we soon
find edges corresponding to an element in the set and another corresponding to an element
not in the set that point to the same vertex.

Unfortunately, there are other cases to consider, besides the ideal case of two cycles
attached to an edge as in Figure 4a: (i) the cycles may not form right at the top, instead we
might have to allow an initial path leading to the cycle; (ii) the cycle may not end with two
tree edges pointing into it. Instead, it might be formed when two paths of a tree jump on to
the same parallel edge. The first case presents no real difficulties; in fact, in this case the
resulting configuration is not safe for even smaller sets. The second case presents genuine
difficulties. For example, we might encounter a situation depicted in Figure 4b, where the
three edges at the bottom are parallel. Note that all tree edges in this case can be forced
away from their roots to obtain a safe orientation. The idea now is the following. If we
encounter such a cycle, we put it aside and mark the middle vertex at the bottom as its
terminal vertex. We have removed only a minuscule number of edges from the graph, so we
can continue the exploration for a forbidden structure in the remaining graph. If we ever
find a configuration corresponding to Figure 4a, we are done. Otherwise, we accumulate
many edge disjoint bad cycles. Soon enough (by the time s + 1 bad cycles are encountered),
two of them must have the same terminal vertex. We put these bad cycles together (as
illustrated in Figure 5) and again obtain a forbidden configuration. The discussion above uses
k =4 and n = 7 for illustration, but the same argument applies for other k, and, in general,
yields a configuration without any safe orientation for a set of size n = 2k — 1, whenever,
s <« mi=/(k+1) = yp1=2/(n+3)  The detailed argument will appear in the full version of the
paper. <
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5 Quantum non-adaptive schemes for n =2 and t = 2,3

In this section, we show that the lower bound in 1 is tight for two cases: sgn(m,n =2t =
2) = O(v/m) and sgy(m,n = 2,t = 3) = O(m!/?); the schemes we give are non-adaptive
and only use the fact that the XOR of two bits can be computed using one quantum query.
The proofs are algebraic.

5.1 Caset =2

We identify [m] with A x B, where each of the sets has about /m elements; A and B are
disjoint. We will have two array indexed by A (we call them X; and X5) and two arrays
indexed by B (we call them Y7 and Y5).

Query: On receiving the element z = (z1,z2) € A X B, the algorithm returns

(Xi[z1] + Yi[z2]) (Xa[21] + Ya[72]) (mod 2),

which is a polynomial of degree two. Note that both X;[a] 4+ Y71 [b] and Xs[a] 4+ Y3[b] can
be computed in parallel with one quantum query each. Thus, the scheme requires only
two non-adaptive queries.

Storage: Given a pair of elements {a;,as} C [m], we need to show how values will be
assigned to the four arrays: Xi, X5, Y7,Y5. It will be easier to describe and analyse
our storage algebraically. We view X1, X» as functions from A to {0,1} and Y7,Y5 as
functions from B to {0,1}. For a € A, let 6, : A — {0,1} be defined by d,(z) = 1 iff
z = a; similarly for b € B, let §, : B — {0,1} be defined by &,(z) = 1 iff z = b. We have
three cases based on the number of components ¢ € {0, 1,2} where a; and «ay agree.

£ = 2: We have only one element (a,b). We set X1 =,, Y1 =0, Xo =0 and Y5 = ;. The
query polynomial reduces to the monomial 0, (21)dp(22), which is what we want.

£ = 1: Say the set is {(a,b),(a’,b)}. We set X1 =, + o, Y1 =0, Xo =0 and Yy = .
The query polynomial reduces to (d,(x1) + dar (22))0p(22) = da(21)0s(22) + dar (21)0(22),
which is what we want.

£ = 0: Say the set is {(a,b), (a’,b')}. We set X1 =4, Y1 = 0y, Xo = 64 and Yo = 6. The
query polynomial evaluates (04(21)+0y (22))(dar (21)+6(22)) = da(21)0p(22)+0ar (21) 01 (22)
(mod 2), which is what we want.

5.2 Caset =3

Let us identify [m] with A x B x C, where each of the sets has roughly m'/3

will assume that A, B and C are disjoint. We have six arrays, two indexed by A (we call
them X; and X5), two indexed by B (we call them Y; and Y3) and two indexed by C' (we
call them Zs and Z3); the subscripts indicate which query probes the corresponding array.
Query: On receiving the element e = (z,y, 2), the algorithm returns

elements; we

(Xi[z] + Y [y])(Xa[z] + Z2[2]) (Vs[y] + Zs[z])  (mod 2),

which is a polynomial of degree 3.

Storage: Given a pair of elements {a;, s}, we need to show how values will be assigned
to the six arrays. Let o = (a,b,¢) and 8 = (a’,b',¢’). We define functions of the form
9o : A — {0,1}, & : B — {0,1} and 6. : C — {0,1} as before. Also 0 and 1 when
denoting functions correspond to the all 0’s and the all 1’s functions. We have four cases,
depending on the number of places ¢ € {0, 1,2,3} where o and ay agree.
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£ = 3: The set has only one element (a,b,c), say. The arrays are as follows. X; = §,;

Zy = 6., Y3 = 0p, the other three arrays are 0. So, the query function becomes
(6a(z) +0)(6c(2) +0)(d6(y) + 0) = da(2)dp(y)dc(2), which yields 1 iff (z,y,2) = (a,b,c).

£ = 2: Say a3 = (a,b,c) and ay = (a,b,c/). Weset X1 =6,, Y1 =0, Xo0 =0, Zy = 6.+ b,

Y3 = 6, and Z3 = 0. Then, the query function becomes (d,(z)+0)(0.(2)+d (2))(0s(y)+0),
which reduces to d,(x)0p(y)0c(2) + da(x)ds(y)de (2), that is, the function that evaluates
to 1 precisely when the input is (a, b, ¢) or (a,b,c’). The other cases are symmetric.

£ =1: Say a1 = (a,b,c) and as = (a,b', ). We set X1 = 1404, Y1 = 6+ 0y, Xo =1+ 4,,

Zo =00+ 0, Y3 =0, Z3 = §.. Our query polynomial then evaluates to
(1484 + 0p + 6 ) (1 + 6o + e + 60 ) (0 + Ocr), (11)

where, to simplify notation, we just write d, instead of d,(x), etc. Applying the rule
gh = (g+ h+1)h twice, we obtain (0. 4 dp)(1 + dq + 0c + I ) (dp + ¢ ). Then, combining
the first and last factors, we obtain, (850, + 0p0¢r)(1 + 04 + ¢ + 60 ). Expanding this mod
2, we obtain (dp0. + dpd¢r)da, which yields 1 iff z € {(a,b, ¢), (a,b’, )}, as required.

£ = 0 (the two elements differ on all coordinates): We set X; = 6., Xo = ./, Y1 = by,
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A  Explicit construction of graphs

We say that a graph on L vertices is explicitly, if the adjacency matrix of L can be constructed

in polynomial time in L.
We will use the construction due to Wenger [20] to exhibit explicit graphs with girths
8. Wenger constructs a graph Hy(p) with 2p* vertices and 2p**! edges, and shows that
if p is prime, then H3(p) has girth at least 8. In the bipartite graph Hy(p) the vertices
are represented as k-tuples of numbers {0, ..., p} and two vertices are connected based
on a simple arithmetic check involving addition and multiplication modulo p. In our
application, given a number L, we set p to be the smallest prime that is at least L/ (k1)
Then, Hy(p) has at most 2¥*2L vertices and at least 2L t1/k edges. Thus, we obtain
graphs with the following parameters: g = 8, ¢(g = 8) = 25, 7(g = 8) = 1/3. Our
application for g = 8 (see Figure 1) uses these parameters.
For girth 12, we use a construction due to Benson [8]. Theorem 2 of the paper presents
an algebraic construction where the graph is obtained by considering point-line incidences
for points and lines of a quardic surface in the projective 6-space P(6,q). The degree of
each vertex of this graph is ¢ + 1. On page 1093, the number of vertices in this graph is
computed to be (¢ + 1)(1 + ¢ + ¢*). So, to get the graph suitable for our applications,
we take ¢ to be the smallest prime such that (¢ + 1)(1 + ¢ + ¢*) > L and use this
construction. Then, it is easy to see that the number of vertices in this graph is O(L)
and the number of edges is at least L1+1/5,
Lazebnik, Ustimenko and Woldar [14] exhibit dense graphs for various values of girth.
Their Corollary 3.3 shows graphs with girth at least 2s + 2, with v < 2¢(3¥=3)/2 vertices
if s is odd and at most 2¢(3=2)/2 vertices if s is even. The graph has %vq edges. To
construct the graphs for our application, fix L and let ¢ be the smallest prime larger than
L2/(3s=3) or [2/(35—2) (depending on whether s is odd or even) and consider the graph
obtained from the above construction. If the graph has fewer than L vertices, then we put
together disjoint copies of it, to obtain one with number of vertices between L and 2L. It
can be verified that this graph has O(L) vertices and Q(L'T2/(3s=3)) or Q(L112/(35-2))
edges (depending on whether s is odd or even). In our application (see Figure 1), we use
graphs with girth 4r and 4r — 2. Setting 2s + 2 = 4r, i.e., s = 2r — 1 (an odd number),
we obtain a graph with Q(L1+1/(37'_3))) edges; similarly setting 2s 4+ 2 = 4r — 2, i.e.,
s = 2r — 2 (an even number), we obtain a graph with Q(L*1/G7=4) edges.

B Examples that show Lemma 9 is tight

The bound shown Lemma 9 is tight in the following sense: for each positive even integer
g, there exists a bipartite graph with girth ¢ and |4¢/3] + 1 GREEN edges that cannot be
safely oriented. For example, the graph consisting of three edge-disjoint s-t paths, each of
length 2k, has girth g = 4k; but we can designate a set of n = 3k + 1 edges GREEN for
which the graph has no safe orientation. For this graph n = 3k + 1 and |3¢g/4] = 3k. A
similar example, with three edge-disjoint paths of length 2k 4 1, shows that the above lemma
is tight for g = 4k + 2. Figure 6 shows these examples for k = 2.

C Proof of Lemma 17

Consider the random graph on N vertices where each edge is picked independently with
probability p = (1/50)N /6. The probability that G is not (4N'/6, 5/4)-locally sparse is at
most (we use the union bound over the choice of subsets of size £ < 4N'/¢ and for each set
over all choice of 1.24¢ edges for simplicity we ignore floors and ceilings):
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Set Membership with Two Probes
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Figure 6 Examples of graphs with girth g = 10 and g = 8 that cannot be safely oriented.
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By considering terms corresponding to (say) £ < N'/12 and ¢ > N'/12 separately, we see
that the last sum is o(1). Thus, with high probability there is no set of size up to 4N'/6
that violates the local sparsity condition. Furthermore, with high probability the number of
edges in the graph is at least pN?2/2 = Q(N7/6). Thus, there exists an (4N'/6,5/4)-sparse
graph with Q(N7/6) edges.

D Non-adaptive quantum bounds

We give an upper bound on sg(m,n = 2k + 1,t = 2) for the non-adaptive classical scheme,
where k € N. The arrangement of the element and bits is similar to the classical adaptive
scheme we described in Section 2. The first probe is on the corresponding edge array and
the second is an equality probe on the rows corresponding to the vertices of the edge. We
AND the two probes to answer membership queries. We obtain

O 5) if 4|(n+1);

O s 7) if4f(n+1). (12)

so(m,n=2k+1,t=2) :{

» Definition 23 (Non-adaptive Quantum (G, K)-scheme). Let G be an un-directed graph with

N wertices and M edges; let K be a positive integer. We refer to the following as a (non

adaptive) quantum (G, K)-scheme. The storage consists of two bit arrays, A and B. To

answer a membership query the decision tree will make the first probe to array A and the

second probe to array B.

Edge array: An array A : E(G) — {0,1}, indezed by edges of G.

Vertex array: A two dimensional array B : V x [K] — {0,1}.

Elements: We identify our universe of elements [m] with a subset of E(G) x [K] (so we must
ensure that the graph has at least m/K edges); thus, each element x € [m] will be referred
to as (e,1).
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Query: We represent an edge of G as an ordered pair of the form e = (vo,v1). To process
the query for the element x = (e, 1), we return the value Ale] - (Blv,i] & Bluvy,1i]).

Space: We will ensure that MK > m. The space used by this scheme is then NK + M bits
(NK for the N vertex array and K for the edge array). By choosing the graph G and the
parameter K appropriately we will show that our schemes use small space.

As in the classical adaptive setting, an edges e is coloured GREEN if (e, i) € S for some i.
Values can be assigned consistently to the arrays if there is no cycle in the graph consisting
entirely of GREEN edges. This idea is formalized in the lemma below.

» Lemma 24. Let G be a graph with N vertices M edges and girth g such that n < g. Then,
sa(m,n,2) < M+ N[m/M].
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