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Abstract
The main problem in the area of graph property testing is to understand which graph properties
are testable, which means that with constantly many queries to any input graph G, a tester can
decide with good probability whether G satisfies the property, or is far from satisfying the property.
Testable properties are well understood in the dense model and in the bounded degree model, but
little is known in sparse graph classes when graphs are allowed to have unbounded degree. This is
the setting of the sparse model.

We prove that for any proper minor-closed class G, any monotone property (i.e., any property
that is closed under taking subgraphs) is testable for graphs from G in the sparse model. This
extends a result of Czumaj and Sohler (FOCS’19), who proved it for monotone properties with
finitely many forbidden subgraphs. Our result implies for instance that for any integers k and t,
k-colorability of Kt-minor free graphs is testable in the sparse model.

Elek recently proved that monotone properties of bounded degree graphs from minor-closed
classes that are closed under disjoint union can be verified by an approximate proof labeling scheme
in constant time. We show again that the assumption of bounded degree can be omitted in his
result.
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1 Introduction

1.1 Property testing
We say that a graph G is ε-far from some property P if one needs to modify at least ε|E(G)|
of its adjacencies (replacing edges by non-edges and vice-versa) in order to obtain a graph
satisfying P. A property is testable if for any graph G, a tester can decide with good
probability whether G satisfies P or is ε-far from P, by only making a constant number of
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58:2 Testability and Local Certification of Monotone Properties in Minor-Closed Classes

queries to a given representation of G (i.e., the number of queries depends only on ε and P,
but is independent of the input graph G). The tester has one-sided error if it always gives
the correct answer when G ∈ P, and two-sided error otherwise.

In the dense graph model [28], there is a good understanding of which properties are
testable with two-sided error [3] and one-sided error [5, 4]. In the bounded degree model [29],
a sequence of papers [8, 15, 32] culminated in a proof that every property is testable with
two-sided error within any hyperfinite graph family (this includes for instance any proper
minor-closed class) [37]. The bounded degree assumption is crucial for obtaining this result
and it has since then been an important open problem to obtain testability results in the
weaker sparse model, which does not assume that the maximum degree is bounded [14, 16].
In this more general model there are two types of queries: given a vertex v, we can query
the degree d(v) of v in G; we can also query the i-th neighbor of v, for 1 ≤ i ≤ d(v) (all
these queries are assumed to take constant time). In this model, much less is known: it was
proved that bipartiteness is testable within any minor-closed class in [14], while already in the
bounded degree model many simple properties are not testable in general graph classes [29],
so the restriction to a sparse structured class such as a proper minor-closed class is very
natural in this context. The interested reader is referred to the book of Goldreich [27] for
more results and references on property testing, and especially Chapter 10 in the book, which
focuses on the general graph model.

Instead of working in the sparse model as defined above, it will be enough to restrict
ourselves to a single type of query: given a vertex v, we query a random neighbor of v,
uniformly among the neighbors of v. Following [16], we say we make queries to the random
neighbor oracle. Note that this type of queries can clearly be implemented is the sparse
model, so this is a restriction of the model (see [16] for a comparison between these two
models, and a third one were we are allowed to query a constant number of distinct random
neighbors of a given vertex). The following was recently proved by Czumaj and Sohler [16].

▶ Theorem 1 ([16]). For every proper minor-closed class G, and any finite family H, the
property of being H-free for graphs from G is testable with one-sided error in the sparse model,
where only queries to the random neighbor oracle are allowed.

Here we say that a graph is H-free if it does not contain H as a subgraph, and H-free if
it is H-free for every H ∈ H. Our main result is an extension of Theorem 1 to any monotone
property, that is any property closed under taking subgraphs.

▶ Theorem 2. For every proper minor-closed class G, and any monotone property P, the
property of satisfying P for graphs from G is testable with one-sided error in the sparse model,
where only queries to the random neighbor oracle are allowed.

Note that for any monotone property P there is a (possibly infinite) family of graphs H
such that P is precisely the property of being H-free. This family H can be simply defined
as the class of all the graphs that do not satisfy P, or as the class of all the graphs that do
not satisfy P and are minimal with this property (with respect to the subgraph relation). It
follows that Theorem 2 is the natural generalization of Theorem 1, where we remove the
assumption that H is finite. This can be seen as an analogue of the situation in the dense
graph model: it was first proved that the property of being H-free (or H-free for finite H)
was testable in this model [2], and then only much later was this extended to all monotone
classes by Alon and Shapira [5]. Note that many natural monotone properties, such as being
planar or k-colorable for some k ≥ 2, do not have a finite set of minimal forbidden subgraphs.
So there is a fundamental gap between being H-free and being H-free for infinite H.
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1.2 Local certification
We now describe our second main result, which is obtained by extending the methods used
in the proof of Theorem 2. We start by introducing the setting of this result: The problem
of local certification.

In this part, all graphs are assumed to be connected. The vertices of any n-vertex graph
G are assumed to be assigned distinct (but otherwise arbitrary) identifiers (id(v))v∈V (G)
from {1, . . . , poly(n)}. In the remainder of this section, all graphs are implicitly labelled by
these distinct identifiers (for instance, whenever we talk about a subgraph H of a graph G,
we implicitly refer to the corresponding labelled subgraph of G). We follow the terminology
introduced by Göös and Suomela [30].

Proofs
A proof for a graph G is a function P : V (G) → {0, 1}∗ (G is considered as a labelled graph,
so the proof P is allowed to depend on the identifiers of the vertices of G). The binary words
P (v) are called certificates. The size of P is the maximum size of a certificate P (v), for
v ∈ V (G).

Local verifiers
A verifier A is a function that takes a graph G, a proof P for G, and a vertex v ∈ V (G) in
input, and outputs an element of {0, 1}. We say that v accepts the instance if A(G, P, v) = 1
and that v rejects the instance if A(G, P, v) = 0.

Consider an integer r ≥ 0, a graph G, a proof P for G, and a vertex v ∈ V (G). Let
Br(v) denote the set of vertices at distance at most r from v in G. We denote by G[v, r] the
subgraph of G induced by Br(v), and similarly we denote by P [v, r] the restriction of P to
Br(v).

A verifier A is local if there is a constant r ≥ 0, such that for any v ∈ G, A(G, P, v) =
A(G[v, r], P [v, r], v). In other words, the output of v only depends on the ball of radius r

centered in v, for any vertex v of G. The constant r is called the local horizon of the verifier.

Proof labelling schemes
For an integer r ≥ 0, an r-round proof labelling scheme for a graph class G is a prover-verifier
pair (P, A), with the following properties.
r-round: A is a local verifier with local horizon at most r.
Completeness: If G ∈ G, then P = P(G) is a proof for G such that for any vertex v ∈ V (G),

A(G, P, v) = 1.
Soundness: If G ̸∈ G, then for every proof P ′ for G, there exists a vertex v ∈ V (G) such

that A(G, P ′, v) = 0.

In other words, upon looking at its ball of radius r (labelled by the identifiers and
certificates), the local verifier of each vertex of a graph G ∈ G accepts the instance, while if
G ̸∈ G, for every possible choice of certificates, the local verifier of at least one vertex rejects
the instance.

The complexity of the labelling scheme is the maximum size of a proof P = P(G) for an
n-vertex graph G ∈ F . If we say that the complexity is O(f(n)), for some function f , the
O(·) notation refers to n → ∞. See [23, 30] for more details on proof labelling schemes and
local certification in general.

ICALP 2022
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It was proved in [25] that planar graphs have a 1-round proof labelling scheme of
complexity O(log n), and that this complexity is optimal. The authors of [25] asked whether
this can be extended to any proper minor-closed class. This was indeed extended in [24] to
graphs embeddable in a fixed surface (see also [22] for a short proof), to graphs avoiding some
small minors in [10], and more generally to any minor-closed class of bounded tree-width
in [26] (in the last result, the complexity is O(log2 n) instead of O(log n) in the other results
mentioned here).

For ε > 0, define an r-round ε-approximate proof labelling scheme for some class G exactly
as in the definition of r-round proof labelling scheme above, except that in the soundness
part, the condition “If G ̸∈ G” is replaced by “If G is ε-far from G” [13]. A graph class G is
summable if for any G1, G2 ∈ G, the disjoint union of G1 and G2 is also in G. Elek recently
proved the following result [21].

▶ Theorem 3 ([21]). For any ε > 0 and integer D ≥ 0, and any monotone summable
property P of a proper minor-closed class G, there are constants r ≥ 0 and K ≥ 0 such that
the class of graphs from P with maximum degree at most D has an r-round ε-approximate
proof labelling scheme of complexity at most K.

A natural problem is whether the bounded degree assumption in Elek’s result can be
omitted (Elek’s proof crucially relies on this assumption). We prove that the bounded degree
assumption can indeed be omitted.

▶ Theorem 4. For any ε > 0 and any monotone summable property P of a proper minor-
closed class G, there are constants r ≥ 0 and K ≥ 0 such that P has an r-round ε-approximate
proof labelling scheme of complexity at most K.

We indeed prove a far-reaching generalization of this result (whose statement was suggested
by Elek to the authors), concerning graph classes with bounded asymptotic dimension.

Asymptotic dimension
Given a graph G and an integer r ≥ 1, we denote by Gr the graph obtained from G by
adding edges between any pair of vertices at distance at most r in G. The weak diameter of
a set S of vertices of G is the maximum distance in G between two vertices of S.

For an integer d ≥ 0, a class of graphs G has asymptotic dimension at most d if there is a
function D : N → N such that for any integer r ≥ 1, any graph G ∈ G has a (d + 1)-coloring
of its vertex set such that any monochromatic1 component of Gr has weak diameter at most
D(r) in G.

This notion was introduced by Gromov [31] in the more general context of metric spaces.
In the specific case of graphs, it was proved that classes of bounded tree-width have asymptotic
dimension at most 1, and proper minor-closed classes have asymptotic dimension at most
2 [9]. It was also proved that d-dimensional grids and families of graphs defined by the
intersection of certain objects (such as unit balls) in Rd have asymptotic dimension d [9].
On the other hand, it is known that any class of bounded degree expanders has infinite
asymptotic dimension (see [33]).

We will prove the following generalization of Theorem 4.

1 A monochromatic component in a colored graph G is a connected component of a subgraph of G induced
by one of the color classes.
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▶ Theorem 5. For any ε > 0 and any monotone summable property P of a class G of
bounded asymptotic dimension, there are constants r ≥ 0 and K ≥ 0 such that P has an
r-round ε-approximate proof labelling scheme of complexity at most K.

Note that a monotone property P is summable if and only if all minimal forbidden
subgraphs for P are connected. This includes for instance minor-closed classes whose minimal
forbidden minors are connected, such as planar graphs, Kt-minor free graphs for any t ≥ 2,
graphs of bounded tree-width, graphs of bounded tree-depth, and graphs of bounded Colin
de Verdière parameter.

Natural examples of non summable properties include toroidal graphs (or more generally
graphs embeddable on any fixed surface other than the sphere). For monotone properties
that are not necessarily summable, we prove the following.

▶ Theorem 6. For any ε > 0 and any monotone property P of a proper minor-closed class
G, P has a 1-round ε-approximate proof labelling scheme of complexity O(log n).

While the complexity of the scheme guaranteed by Theorem 6 is not constant as in
Elek’s result [21] and Theorem 4, we do not require any bounded degree assumption (as in
Theorem 4), and a local horizon of 1 is sufficient. More importantly, the fact that P is not
necessarily summable requires a completely different set of techniques, much closer from the
tools used to prove Theorem 2. Theorem 6 can be thought of as an approximate answer to
the question of [25] on the local certification of minor-closed classes.

Organization of the paper
We start with some preliminary results in Section 2. In Section 3, we prove the main technical
contribution of this paper, a result showing that if a graph from some minor-closed class
is far from a monotone property P, then it contains linearly many edge-disjoint subgraphs
of bounded size that are not in P. In Section 4 we deduce Theorem 2 from this result and
Theorem 1. Theorems 4 and 6 are proved in Section 5. We conclude in Section 6 with some
remarks.

2 Preliminaries

Minor-closed classes
We denote the number of vertices of a graph G by v(G), and its number of edges by e(G).
A class of graphs G is minor-closed if any minor of a graph from G is also in G. A class is
proper if it does not contain all graphs. The following was proved by Mader [35].

▶ Theorem 7 ([35]). For any proper minor-closed class G, there is a constant C such that
for any graph G ∈ G, e(G) ≤ C v(G).

Tree-depth
Given a rooted tree T , the closure of T is the graph obtained from T by adding edges between
each vertex and its ancestors in the tree. The height of a rooted tree is the maximum number
of vertices on a root-to-leaf path in the tree. The tree-depth of a connected graph G is the
maximum height of a rooted tree T such that G is a subgraph of the closure of T , and the
tree-depth of a graph G, denoted by td(G), is the maximum tree-depth of its connected
components (equivalently, it is equal to the maximum height of a rooted forest F such that
G is a subgraph of the closure of F ).

ICALP 2022
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The following was implicitly proved by Dvořák and Sereni [20] (in the proof below the
actual definition of tree-width is not needed, so we omit it).

▶ Theorem 8 ([20]). For every proper minor-closed class G and every δ > 0 there exists
d = d8(G, δ) ∈ N and s = s8(G, δ) ∈ N satisfying the following. For every G ∈ G there exist
X1, X2, . . . , Xs ⊆ V (G) such that

for any 1 ≤ i ≤ s, td(G[Xi]) ≤ d, and
every v ∈ V (G) belongs to at least (1 − δ)s of the sets Xi.

Proof. Let t = ⌈ 2
δ ⌉. It was proved in [17] that there is a constant k = k(t, G) such that any

graph G ∈ G has a partition of its vertex set into t classes Y1, . . . , Yt, such that the union
of any t − 1 classes Yi induces a graph of tree-width at most k. In particular, if we define
Zi := V (G) \ Yi for any 1 ≤ i ≤ t, then each graph G[Zi] has tree-width at most k and each
vertex v lies in t − 1 = (1 − 1

t )t sets Zi. Dvořák and Sereni [20, Theorem 31] proved2 that
for every integer k and real δ > 0, there are integers r = r(k, δ) and d = d(k, δ) such that for
any graph H of tree-width at most k, H has a cover of its vertex set by r sets X1, . . . , Xr,
such that each H[Xi] has tree-depth at most d and each vertex lies in at least (1 − δ

2 )r sets
Xi. Applying this result to H = G[Zi] for any 1 ≤ i ≤ t, we obtain rt sets X ′

1, . . . , X ′
rt of

vertices of G, such that the subgraph G[X ′
i] induced by each of them has tree-depth at most

d and each vertex of G lies in at least (1 − δ
2 )r · (1 − 1

t )t ≥ (1 − δ)rt sets X ′
i. Thus d and

s = rt satisfy the conditions of the theorem. ◀

We deduce the following useful result.

▶ Corollary 9. For every proper minor-closed class G and every ε > 0 there exists d =
d9(G, ε) ∈ N satisfying the following. For every G ∈ G there exist F ⊆ E(G) such that
|F | ≤ ε e(G) and td(G \ F ) ≤ d.

Proof. Let δ = ε
2 . We show that d = d8(G, δ) satisfies the corollary. Indeed, for G ∈ G let

X1, X2, . . . , Xs ⊆ V (G) be as in Theorem 8. Let Fi = E(G) \ E(G[Xi]) for i ∈ [s], then
td(G \ Fi) ≤ d. Moreover, every edge belongs to at most 2δs sets Fi, so

1
s

s∑
i=1

|Fi| ≤ 1
s

· 2δs · e(G) = ε e(G).

Thus, by averaging, |Fi| ≤ ε e(G) for some i, and F = Fi satisfies the corollary. ◀

Note that the conclusion of Corollary 9 can be shown to hold in greater generality than in
the context of minor-closed classes. For instance, any class in which all graphs can be made of
bounded tree-width by removing an arbitrarily small fraction of edges also have this property
(see [20]). This includes all graphs of bounded layered tree-width (see [18, 39]). Typical non
minor-closed examples of such classes are families of graphs that can be embedded on a
fixed surface, with a bounded number of crossings per edge [19]. However, since the proof of
Theorem 1 itself strongly relies on edge-contractions (and thus on the graph class G being
minor-closed), Theorem 2 does not seem to be easily extendable beyond minor-closed classes.

2 The property that s is bounded independently of G does not appear explicitly in the statement of their
theorem, but readily follows from their proof. This will only be needed in Section 5.
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3 Bounded size obstructions

3.1 General properties
A graph property P is a graph class that is closed under isomorphism. It will be convenient
to write that G ∈ P instead of “G satisfies P” in the remainder of the paper. A graph H is
minimally not in P if H ̸∈ P and any proper subgraph of H is in P.

We will use the following result of Nešetřil and Ossona de Mendez (Lemma 6.13 in [36]) 3.

▶ Lemma 10 ([36]). For every integer d ≥ 1 and every property P, there exists N = N10(d, P)
such that if H is minimally not in P and td(H) ≤ d then v(H) ≤ N .

3.2 Colorability
The conclusion of Lemma 10 is quite strong but it does not give explicit bounds on N10(d, P).
For completeness, we give such an explicit bound when P is the property of being k-colorable.
The specific question of whether 3-colorability of planar graphs was testable in the sparse
model was raised by Christian Sohler at the Workshop on Local Algorithms (WOLA) in
2021. A positive answer to this question directly follows from Theorem 2, but the lemma
below allows us to give an explicit bound on the query complexity of testing k-colorability in
minor-closed classes (see Section 6).

Given a graph H and two vertex subsets A, B ⊆ V (H), we say that (A, B) is a proper
separation of H if A ∪ B = V (H), A \ B and B \ A are both non-empty, and there are no
edges between A \ B and B \ A in H. We say that a graph H is split if there exists a proper
separation (A, B) of H and an isomorphism ϕ : A → B between H[A] and H[B] such that
ϕ(v) = v for every v ∈ A ∩ B (see Figure 1 for an example). Equivalently, a split graph can
be obtained by taking two copies of some smaller graph and, for a proper subset of vertices,
identifying the two copies of the vertex subset with each other.

A connected graph H is unsplit if it is not split. Note that minimally non-k-colorable
graphs are unsplit.

A B

Figure 1 A split graph H and the corresponding proper separation (A, B) of H. The isomorphism
ϕ : A → B is the reflection symmetry with respect to the vertical axis.

The tower function is defined as twr(0) = 0 and twr(i + 1) = 2twr(i) for any integer i ≥ 0.

▶ Lemma 11. For every integer d ≥ 1, there exists N = N11(d) = twr(O(d)) such that if H

is an unsplit graph with td(H) ≤ d then v(H) ≤ N .

3 The version we use here only needs Q to be a singleton in the statement of Lemma 6.13 in [36].

ICALP 2022
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Proof. Define kd := 1 and for any 0 ≤ i ≤ d − 1, let ki := (2(ki+1
2 )+d·ki+1)ki+1 + 1.

Choose a rooted tree T of height at most d + 1 rooted at some vertex r, such that H is
a subgraph of the closure of T . For each v ∈ V (H), let Tv be the subtree of T rooted at v

(consisting of v and all its descendants), and let Hv be the subgraph of H induced by V (Tv).
Define the level ℓ(v) := distT (r, v) ∈ [0, d].

We prove by induction on d − i that v(Hv) ≤ ki for every v with ℓ(v) = i. The base case
i = d trivially holds, as kd = 1.

For the induction step, let u1, . . . , um be all the children of a vertex v with ℓ(v) = i, and
let Av be the set consisting of v and its ancestors. Then |Av| = i + 1. For each j ∈ [m], let
H+

j = H[Av ∪ V (Huj )]. Note that there are at most 2(ki+1
2 )+d·ki+1 distinct (labelled) graphs

G on at most |Av| + ki+1 ≤ d + ki+1 vertices such that the subgraph of G induced by the
first |Av| vertices is isomorphic to H[Av]. As v(Huj

) ≤ ki+1, if m > 2(ki+1
2 )+d·ki+1 there exist

j ≠ j′ and an isomorphism ϕ : V (H+
j ) → V (H+

j′ ) such that ϕ(w) = w for every w ∈ Av.
Such an isomorphism would imply that H is split, and so m ≤ 2(ki+1

2 )+d·ki+1 . It follows that
v(Hv) ≤ mki+1 + 1 ≤ (2(ki+1

2 )+d·ki+1)ki+1 + 1 = ki, as desired.
By taking N := k0 we obtain that v(H) ≤ N . It can be checked from the definition of

(ki)0≤i≤d that N = k0 is at most a tower function of O(d). ◀

3.3 A linear Erdős-Posá property

We use Corollary 9 and Lemma 10 to deduce the following result, which is the main technical
contribution of this paper.

▶ Theorem 12. For every proper minor-closed class G, every ε > 0, and every property P,
there exists δ > 0 and an integer N such that for every G ∈ G either

there exists F ⊆ E(G) with |F | ≤ ε e(G) such that G \ F is in P, or
there exist edge-disjoint subgraphs G1, . . . , Gm of G that are not in P, such that m ≥ δ e(G)
and for every 1 ≤ i ≤ m, v(Gi) ≤ N .

Proof. By Theorem 7, there exists C such that e(G) ≤ Cv(G) for every G ∈ G. Let
d := d9(G, ε/2) and let N := N10(d, P). We show that δ := ε

2NC satisfies the theorem.
Let G1, . . . , Gm be a maximal collection of edge-disjoint subgraphs of G that are not in P ,

and such that v(Gi) ≤ N . If m ≥ δe(G) the theorem holds, so we assume that m < δe(G).
Let F ′ =

⋃m
i=1 E(Gi). Then

|F ′| ≤ C

m∑
i=1

v(Gi) ≤ CmN < cNδe(G) ≤ ε

2 e(G).

Let G′ = G \ F ′. By the choice of d, it follows from Corollary 9 that there exists F ′′ ⊆ E(G′)
such that |F ′′| ≤ ε

2 e(G) and td(G′ \ F ′′) ≤ d.
Let G′′ = G′ \ F ′′. Suppose first that G′′ is not in P , and let H be a minimal subgraph of

G′′ that is not in P . As H is minimally not in P , it follows from Lemma 10 that v(H) ≤ N .
Thus adding H to the collection G1, . . . , Gm contradicts its maximality.

It follows that G′′ is in P , but G′′ = G \ F , where F = F ′ ∪ F ′′ and |F | ≤ ε e(G), and so
the theorem holds. ◀
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4 Property testing in the sparse model

The model
As alluded to in the introduction, we work in the sparse model, only using queries to the
random neighbor oracle. That is, given an input graph G, the tester only does a constant
number of queries to the input, all of the following type: given a vertex v, return a random
neighbor of v (uniformly at random among all the neighbors of v in G). The vertex v itself
can be taken to be a random vertex of G, but does not need to. The computation of a
random vertex of G and a random neighbor of a given vertex of G are assumed to take
constant time in this model.

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let G be a proper-minor class and P be a monotone property. Let ε

be given. Let δ > 0 and N be obtained by applying Theorem 12 to G, P and ε, and let H be
the (finite) set of all graphs of at most N vertices that are not in P. We now run the tester
of Theorem 1 for testing whether a graph G ∈ G is H-free or δ-far from being H-free.

Assume first that G ∈ P. If G contains a graph H ∈ H as a subgraph, then since P is
monotone, we have H ∈ P, which is a contradiction. Hence, G is H-free, and it follows that
the one-sided tester of Theorem 1 accepts G with probability 1. Assume now that G is ε-far
from P . By Theorem 12, there exist at least δe(G) edge-disjoint subgraphs of G that are all
in H, and thus one needs to remove at least one edge in each of these δe(G) edge-disjoint
subgraphs to obtain an H-free graph. As P is monotone, G is δ-far from being H-free, and
it follows that the tester of Theorem 1 rejects G with probability at least 2

3 , as desired. This
concludes the proof of Theorem 2. ◀

5 Local Certification

We recall that in this part, all graphs are assumed to be connected.

5.1 Summable properties
Before we prove Theorem 5, we will need the following consequence of a result of Brodskiy,
Dydak, Levin and Mitra [12] (obtained by taking r = 2 in Theorem 2.4 in their paper). This
can be seen as an analogue of Theorem 8 where tree-depth is replaced by the weaker notion
of weak diameter, while proper minor-closed classes are replaced by the more general classes
of bounded asymptotic dimension.

▶ Theorem 13 ([12]). Let G be a class of graphs of bounded asymptotic dimension and let δ > 0
be a real number. Then there exist two constants D = D13(G, δ) ∈ N and s = s13(G, δ) ∈ N
satisfying the following. For every G ∈ G there exist X1, X2, . . . , Xs ⊆ V (G) such that

for any 1 ≤ i ≤ s, each connected component of G[Xi] has weak diameter at most D in
G, and
every v ∈ V (G) belongs to at least (1 − δ)s of the sets Xi.

It can be noted that if a subset S of vertices of a graph G is such that G[S] has bounded
tree-depth, then G[S] has bounded diameter [36], and thus S has bounded weak diameter
in G. It follows that in the special case of proper minor-closed classes, Theorem 8 implies
Theorem 13 in a strong form.
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Proof of Theorem 5. Fix any real number ε > 0 and an integer d ≥ 0. Let G be a class
of bounded asymptotic dimension, and let P be a monotone summable property of G. Let
δ = ε

2 . By Theorem 13, there exist two constants D = D13(G, δ) ∈ N and s = s13(G, δ) ∈ N
satisfying the following. For every G ∈ G there exist X1, X2, . . . , Xs ⊆ V (G) such that

for any 1 ≤ i ≤ s, each component of G[Xi] has weak diameter at most D in G, and
every v ∈ V (G) belongs to at least (1 − δ)s of the sets Xi.

For any v ∈ V (G), we define the proof P (v) as (a binary representation of) the set of
indices I(v) ⊆ {1, 2, . . . , s} such that v ∈ Xi. This proof has constant size (depending only
of P and ε).

For every vertex v, the local verifier A(G, P, v) first checks that I(v) contains at least
(1 − δ)s integers from {1, 2, . . . , s}. If this is not the case, then v rejects the instance. In
the remainder, we call a monochromatic component of color i a maximal connected subset
of vertices v of G such that i ∈ I(v). We omit the color if it is irrelevant in the discussion.
Note that each vertex v belongs to |I(v)| monochromatic components. For each vertex v,
A(G, P, v) checks that the subgraph of G induced by the vertices u ∈ Br(v) is in P, for
r = 2D + 1, and that all monochromatic components of G containing v have weak diameter
at most D (this can be clearly done as v has access to the subgraph of G induced by its ball
of radius r = 2D + 1). If this is the case, then v accepts the instance, and otherwise v rejects
the instance.

It follows from the definition of our scheme and the monotonicity of P that for any
G ∈ P, the local verifier A(G, P, v) of each vertex v of G accepts the instance. Consider
now a graph G and a proof P ′ such that for each vertex v, A(G, P ′, v) = 1. The proof P ′

assigns a subset I(v) of indices of {1, . . . , s} to each vertex v of G, such that |I(v)| ≥ (1 − δ)s.
For each 1 ≤ i ≤ s, let Xi be the subset of vertices v of G such that i ∈ I(v). Let C be a
connected component of some G[Xi] (that is, C is a monochromatic component of color i),
for some 1 ≤ i ≤ s. Since all vertices of C accept the instance, C has weak diameter at most
D in G. It follows that C is contained in some ball of radius D in G, and thus (since P is
monotone, and each ball of radius r = 2D + 1 ≥ D induces a graph of P), C lies in P . As P
is summable, G[Xi] also lies in P.

It follows from the proof of Corollary 9, that if we set Fi = E(G) \ E(G[Xi]) for any
1 ≤ i ≤ s, then the property that every vertex v ∈ V (G) belongs to at least (1 − δ)s of sets
Xi implies that there is an index 1 ≤ i ≤ s such that |Fi| ≤ ε e(G). By the paragraph above
G \ Fi satisfies P, and thus G is ε-close from P (we say that a graph is ε-close from P if it
is not ε-far from P). In the contrapositive, we have proved that if G is ε-far from P, then
there is at least one vertex v such that A(G, P ′, v) = 0, as desired. ◀

Using the fact that proper minor-closed classes have asymptotic dimension at most 2 [9],
we immediately obtain Theorem 4 as a corollary. Note that for the same purpose we could
also use an earlier (and simpler) result of Ostrovskii and Rosenthal [38], who proved that
for every integer t, the class of Kt-minor free graphs has asymptotic dimension at most 4t.
We could also use Theorem 8 without any reference to asymptotic dimension, as Theorem 8
implies Theorem 13 for proper minor-closed classes (see the discussion before the proof of
Theorem 5).

5.2 Non necessarily summable properties
We now consider proof labelling schemes of complexity O(log n), rather than O(1). To prove
Theorem 6, we will need the following recent result of Bousquet, Feuilloley and Pierron [11].
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▶ Theorem 14 ([11]). For every integer d ≥ 1 and every first-order sentence φ, the class of
graphs of tree-depth at most d satisfying φ has a 1-round proof labelling scheme of complexity
O(log n).

Although we will not need it, it is worth noting that the complexity in their result is of
order O(d log n + f(d, φ)). Observe also that checking whether a graph is H-free for some
fixed finite family H can be expressed by a first-order formula. In particular, it follows
directly from Lemma 10 that checking whether td(G) ≤ d can be expressed by a first-order
formula (and thus certified with local horizon 1 with labels of size O(log n) per vertex).

The final ingredient that we will need is the ability to certify a rooted spanning tree,
together with the children/parent relationship in this tree, with certificates of O(log n) bits
per vertex (see [1, 6, 34] for the origins of this classical scheme). The prover gives the
identifier id(r) of the root r of T to each vertex v of G, as well as dT (v, r), its distance to r

in T , and each vertex v distinct from the root is also given the identifier of its parent p(v) in
T . The local verifier at v starts by checking that v agrees with all its neighbors in G on the
identity of the root r of T . If so, if v ≠ r, v checks that dT (v, r) = dT (p(v), r) + 1. It can be
checked that all vertices accept the instance if and only T is a rooted spanning tree of G.
Moreover, once the rooted spanning tree T has been certified, each vertex of G knows its
parent and children (if any) in T .

We are now ready to prove Theorem 6.

Proof of Theorem 6. The beginning of the proof proceeds exactly as in the proof of The-
orem 4. Fix any real number ε > 0. Let G be a proper minor-closed class, and let P be a
monotone (not necessarily summable) property of G. Let δ = ε

2 . By Theorem 8, there exist
d = d8(G, δ) ∈ N and s = s8(G, δ) ∈ N satisfying the following. For every G ∈ G there exist
X1, X2, . . . , Xs ⊆ V (G) such that

for any 1 ≤ i ≤ s, td(G[Xi]) ≤ d, and
every v ∈ V (G) belongs to at least (1 − δ)s of the sets Xi.

By Lemma 10, there exists a constant N = N10(d, P) such that if H is minimally not in P
and td(H) ≤ d then v(H) ≤ N . Let H be the (finite) set of all graphs of at most N vertices
that are not in P.

For any v ∈ V (G), the proof P (v) contains (a binary representation of) the set of indices
I(v) ⊆ {1, . . . , s} such that v ∈ Xi. This part of the proof has constant size (depending only
of P and ε). As in the proof of Theorem 4, the local verifier at each vertex v checks that
|I(v)| ≥ (1 − δ)s, and rejects the instance if this does not hold.

For each 1 ≤ i ≤ s, we do the following. In each connected component C of G[Xi], we
consider a rooted spanning tree TC of C, with root rC , and certify it using certificates of
O(log n) bits per vertex. It follows from Theorem 14 that any first-order property of G[C]
can be certified with certificates of size O(log n) bits per vertex (as all the components C are
vertex-disjoint, combining all these certificates and schemes still results in a scheme with
labels of O(log n) bits per vertex). In particular we can certify that td(G[C]) ≤ d (this is a
first-order property). Let H′ be the class of all (non-empty) graphs obtained from a graph
H ∈ H by deleting an arbitrary subset of connected components of H (note that if all the
graphs of H are connected, H = H′). Observe that all the graphs of H′ have size at most N

(which is a constant independent of the size of G). Then, for any H ′ ∈ H′, we certify that
G[C] is H ′-free or contains a copy of H ′ using Theorem 14, and store this information at the
vertex rC in a constant-size binary array b(rC), whose entries are indexed by all the graphs
of H′ (where the entry of b(rC) corresponding to some H ′ ∈ H′ is equal to 1 if and only if C

contains a copy of H ′ as a subgraph).
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It remains to aggregate this information along some rooted spanning tree T of G (which
can itself be certified with certificates of O(log n) bits per vertex). We do this as follows, for
every 1 ≤ i ≤ s. For a vertex v of the rooted tree T , the subtree of T rooted in v is denoted
by Tv. For each vertex v of G, let Cv be the set of components C of G[Xi] such that rC lies
in Tv. Then the proof P (v) contains a binary array c(v), whose entries are indexed by the
graphs H ′ of H′. The array c(v) is defined as follows: for any H ′ ∈ H′, the entry of c(v)
corresponding to H ′ is equal to 1 if and only if H ′ is a disjoint union of (non necessarily
connected) graphs H ′

1, H ′
2, . . . , H ′

k ∈ H′ such that each H ′
i appears in a different component

of Cv. The consistency of the binary arrays c(v) is verified locally as follows. For each vertex
v of G, the local verifier at v considers the binary arrays c(u), for all children u of v (and
the binary array b(v), if v is equal to some root rC). For any H ′ ∈ H′, the local verifier
at v checks whether H ′ can be written as a disjoint union of graphs H ′

1, H ′
2, . . . , H ′

k ∈ H′

such that each H ′
i appears in a different array among the children of v (plus in b(v), if v is a

root of some component C). The local verifier at v then checks whether this is consistent
with the entry corresponding to H ′ in c(v). Clearly, all the vertices accept if and only if the
information is consistent along the spanning tree, and it follows that the local verifier at
the root r can check for each H ∈ H ⊆ H′, whether the entry of c(r) corresponding to H is
equal to 0 or 1. It follows that the local verifier at r can check whether G[Xi] is H-free (and
accept the instance if and only if this is the case).

It follows from the definition of our scheme that for any G ∈ P, the local verifier of each
vertex of G accepts the instance.

Consider now some graph G together with some proof P ′ such that the local verifier
A(G, P ′, v) at each vertex v of G accepts the instance. For any 1 ≤ i ≤ s, let Xi be
the set of vertices v such that i ∈ I(v) (where I(v) is given by the proof P ′(v)), and let
Fi = E(G)\E(G[Xi]). As in the proof of Theorem 4, the property that every vertex v ∈ V (G)
belongs to at least (1 − δ)s of sets Xi implies that there is an index 1 ≤ i ≤ s such that
|Fi| ≤ εe(G).

By the properties of the local certificates, each component of G\Fi = G[Xi] has tree-depth
at most d, and thus G \ Fi has tree-depth at most d. Moreover, our local certificates imply
that G \ Fi is H-free. Since P is monotone, G \ Fi is in P. It follows that G is ε-close from
P. Taking the contrapositive, this shows that if a graph is ε-far from P, then at least one
local verifier will reject the instance. This concludes the proof of Theorem 6. ◀

6 Conclusion

In this paper we proved that for any proper minor-closed class G, using constantly many
queries to the random neighbor oracle, a tester can decide with good probability whether
an input graph G ∈ G satisfies some fixed monotone property P, or is ε-far from P. Given
the level of generality of the result it is to be expected that no explicit bounds on the query
complexity are given. However, we can give explicit estimates on the query complexity for
specific properties. For instance, it follows from the bounds of [20, Corollary 35], combined
with Lemma 11 and our proof of Theorem 2, that 3-colorability can be tested in planar
graphs with twr(poly(1/ε)) queries to the random neighbor oracle. This can be extended to
testing k-colorability in Kt-minor free graphs, for any k and t, at the expense of a significant
increase in the height of the tower function, by combining the results of [20] with the main
result of [17] (the bounds there are not explicit as a function of t, but can be made explicit
using results from the Graph Minor series). This is to be compared with the main result
of [14], that 2-colorability can be tested with 22poly(1/ε) queries in planar graphs. It is a
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natural problem to understand whether these properties can be tested with poly(1/ε) queries
to the random neighbor oracle, and more generally to develop techniques for proving finer
lower bounds on the query complexity of monotone properties in this model (see [7] for recent
results in this direction in the bounded degree model).
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