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Abstract
Two equal length strings are a parameterized match (p-match) iff there exists a one-to-one function
that renames the symbols in one string to those in the other. The Parameterized Suffix Tree (PST)
[Baker, STOC’ 93] is a fundamental data structure that handles various string matching problems
under this setting. The PST of a text T [1, n] over an alphabet Σ of size σ takes O(n log n) bits of
space. It can report any entry in (parameterized) (i) suffix array, (ii) inverse suffix array, and (iii)
longest common prefix (LCP) array in O(1) time. Given any pattern P as a query, a position i in
T is an occurrence iff T [i, i + |P | − 1] and P are a p-match. The PST can count the number of
occurrences of P in T in time O(|P | log σ) and then report each occurrence in time proportional
to that of accessing a suffix array entry. An important question is, can we obtain a compressed
version of PST that takes space close to the text’s size of n log σ bits and still support all three
functionalities mentioned earlier? In SODA’ 17, Ganguly et al. answered this question partially by
presenting an O(n log σ) bit index that can support (parameterized) suffix array and inverse suffix
array operations in O(log n) time. However, the compression of the (parameterized) LCP array
and the possibility of faster suffix array and inverse suffix array queries in compact space were left
open. In this work, we obtain a compact representation of the (parameterized) LCP array. With
this result, in conjunction with three new (parameterized) suffix array representations, we obtain
the first set of PST representations in o(n log n) bits (when log σ = o(log n)) as follows. Here ε > 0
is an arbitrarily small constant.

Space O(n log σ) bits and query time O(logε
σ n);

Space O(n log σ log logσ n) bits and query time O(log logσ n); and
Space O(n log σ logε

σ n) bits and query time O(1).
The first trade-off is an improvement over Ganguly et al.’s result, whereas our third trade-off matches
the optimal time performance of Baker’s PST while squeezing the space by a factor roughly logσ n.
We highlight that our trade-offs match the space-and-time bounds of the best-known compressed
text indexes for exact pattern matching and further improvement is highly unlikely.
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1 Introduction

Text Indexing is a classical problem in Computer Science with numerous applications. The
objective is to pre-process a text T [1, n] over an alphabet Σ of size σ to create a data structure,
such that for any pattern P given as a query, we can count/report all the positions in T where
P appear as a substring. The suffix trees and suffix arrays (along with Longest Common
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65:2 Fully Functional Parameterized Suffix Trees in Compact Space

Prefix array, LCP array in short) are the most widely-known text indexes [21, 37, 28]. They
occupy Θ(n) words of space (equivalently, Θ(n log n) bits) and can count the number of
occurrences in time Õ(|P |). The time for per occurrence reporting is a constant for both
structures. Although the space is linear in the number of words, there is an O(logσ n) factor
blowup when we consider the actual text size, which is n⌈log σ⌉ bits. This factor is not
negligible when σ ≪ n. For example, the space occupied by the suffix tree of the human
genome, even with very efficient implementation, such as in [27], requires about 40 GB of
space, whereas the genome occupies less than 1GB.

To address the above issue, Grossi and Vitter [20] and Ferragina and Manzini [7] introduced
succinct/compressed space alternatives, respectively known as Compressed Suffix Array (CSA)
and FM Index. They can answer counting queries in Õ(|P |) time and reporting in Õ(1) time
per occurrence. In some sense, both structures exploit the so-called rank-preserving property
of suffixes/leaves. Specifically, consider two leaves/suffixes in the sub-tree of a non-root
node in the classical suffix tree. If one were to chop off the first character of the suffixes
corresponding to these leaves, thus leading to two different suffixes, the relative ordering of
the first two suffixes within the suffix tree would be the same as their chopped counterparts.
This crucial property leads to an efficient implementation of Last-to-Front (LF) mapping,
which is defined as follows: given the leaf i corresponding to a suffix starting at position t

in the text, LF(i) is the leaf corresponding to the suffix starting at position (t− 1). The LF
mapping (or its inverse Ψ function) plays a pivotal role in the working of FM-Index and CSA
and their subsequent improvements. Later, Sadakane [35] showed that by storing O(n) extra
bits, we could also compute the LCP of any two suffixes in Õ(1) time, leading to the first
fully functional suffix tree representation in O(n log σ) bits – i.e., it can report suffix array,
inverse suffix array and LCP values. See [30] for further reading.

For numerous variants of the text indexing problem [1, 3, 18, 23, 32, 36] (such as
parameterized matching, order-preserving matching, two-dimensional matching, cartesian
tree matching, etc.), although linear space indexes are known, designing succinct/compressed
indexes has been challenging [4, 5, 10, 13, 15, 11, 17, 12, 14, 25, 26, 24, 33]. We focus on
the parameterized matching problem [1] defined as follows: two equal-length strings X and
Y are a parameterized match (p-match) if and only if there exists a one-to-one function
f : Σ→ Σ such that Y [i] = f(X[i]) for every i ∈ [1, |Y |]. For example, xyxz and yzyx are
p-match, but xyxz and xywz are not p-match. The indexing version is to count/report all
substrings of T [1, n] that p-match with a query pattern P . An index of size Θ(n log n) bits,
namely parameterized suffix tree (PST), has been known due to Baker [1]. However, the
problem of designing a space-efficient avatar of PST turns out to be challenging because the
above described rank-preserving property is no longer valid here. To that end, Ganguly et
al. [16] proposed the Parameterized Burrows-Wheeler Transform (pBWT) that can support
(parameterized) LF mapping in O(log σ) time using space close to n log σ bits. This led to
the first sub-linear space index

(
when log σ = o(log n)

)
that can support (parameterized)

suffix array and inverse suffix array operations in Õ(1) time. Although this index is a
significant achievement, it does not support LCP queries. In this paper, we augment this
missing functionality, leading to the first fully functional PST representation in compact
space. Besides this, we present three new space-time trade-offs (for suffix array access and
its inverse operation) that are clear improvements over the previous results.

1.1 Baker’s Parameterized Suffix Tree
We will use the following terminologies: for a string S, |S| is its length, S[i], 1 ≤ i ≤ |S|, is
its ith character and S[i, j] = S[i] ◦ S[i + 1] ◦ · · · ◦ S[j], where ◦ denotes concatenation. If
i > j, S[i, j] denotes an empty string. Also, Si denotes the circular suffix starting at position
i. Specifically, Si is S if i = 1 and is S[i, |S|] ◦ S[1, i− 1] otherwise.



A. Ganguly, R. Shah, and S. V. Thankachan 65:3

Baker [1] introduced the following encoding scheme for matching strings over Σ. Let $
be a special character in Σ. A string S is encoded into a string prev(S) of length |S| by
replacing the first occurrence of every character (other than $) in S by 0 and any other
occurrence by the difference in text position from its previous occurrence. Specifically, for
any i ∈ [1, |S|], prev(S)[i] = S[i] if S[i] = $; otherwise, prev(S)[i] = (i − j), where j < i is
the last occurrence of S[i] before i. If j does not exist, then prev(S)[i] = 0. For example,
prev(xy$x) = 00$3. Note that prev(S) is a string over Σ′ = {$, 0, 1, . . . , |S| − 1}, and can be
computed in time O(|S| log σ).

▶ Convention 1. In Σ′, the integer characters are lexicographically smaller than $. An
integer character i comes before another integer character j iff i < j.

▶ Fact 2 ([1]). Two (equal length) strings S and S′ are a p-match iff prev(S) = prev(S′).
Also a string P and a prefix of S are a p-match iff prev(P ) is a prefix of prev(S).

The parameterized Suffix Tree (PST) of T [1, n] is a compacted trie of all strings in
P = {prev(T [k, n]) | 1 ≤ k ≤ n}. For convenience, we assume that T [n] = $ and T [i] ̸= $ for
all i ̸= n. Each edge is labeled with a string over Σ′. We use str(u) to denote the concatenation
of edge labels on the path from the root to node u and strLen(u) = |str(u)|. Clearly, PST
consists of n leaves (one per each encoded suffix) and at most n − 1 internal nodes. We
use ℓi to denote the ith leftmost leaf and str(ℓi) to denote the ith lexicographically smallest
string in P. Also, PSA[1, n] is an associated array called the parameterized suffix array,
where PSA[i] = j and PSA−1[j] = i iff prev(T [j, n]) = str(ℓi). Let plcp(i, j) be strLen(u),
where u is the lowest common ancestor (LCA) of ℓi and ℓj ; equivalently the length of the
LCP of prev(TPSA[i]) and prev(TPSA[j]). The parameterized LCP array PLCP[1, n) is defined
as follows: PLCP[i] = plcp(i, i + 1). See Figure 1 for an illustration. Since plcp(i, j) is the
smallest element in PLCP[i, j − 1], by maintaining an O(n)-bit range minimum query data
structure [8] over PLCP, we can compute plcp(i, j) for any i, j in O(1) time.

To answer a pattern matching query P (which is a string over Σ − {$}), traverse the
PST from the root and find the highest node uP (if it exists) such that str(uP ) is prefixed
by prev(P ). This step takes O(|P | log σ) time. Then, find the range [sp, ep] of leaves (called
the suffix range of P ) under uP (this can be found in constant time by pre-processing the
tree). Output ep− sp + 1 as the answer to counting and output {PSA[i] | sp ≤ i ≤ ep} as the
answer to reporting. If uP does not exist, we conclude that P does not have any p-match
within T .

We refer to [6, 9, 29] for several other (linear space) data structures for parameterized
pattern matching.

1.2 Compact Encoding of Parameterized Suffix Array
The parameterized LF mapping is defined as PLF(i) = PSA−1[PSA[i]−1]. In [16], Ganguly et
al. showed that one can implement PLF in O(log σ) time using an n log σ + o(n log σ) + O(n)
bit index. Their index constitutes the parameterized Burrows-Wheeler Transform (PWBT),
which is an array of length n, such that PBWT[i] stores the number of distinct characters in
(the prefix of) TPSA[i] until the first occurrence T [PSA[i]− 1]. See Figure 1 for an illustration.

By maintaining a Wavelet Tree [19] over PBWT, coupled with a succinct encoding [31]
of the structure of the PST, they showed that PSA can be represented in n log σ + O

(
n +

(n/∆) log n
)

bits to support PSA[·]/PSA−1[·] queries in tPSA = O(∆ · log σ) time for any

ICALP 2022
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i Ti prev(Ti) prev(TPSA[i]) TPSA[i] PSA[i] fi PBWT[i] W[i] PLF(i) Ψ(i)
1 xyzxzwz$ 0003202$ 000202$5 yzxzwz$x 2 8 3 4 3 4
2 yzxzwz$x 000202$5 0002$504 xzwz$xyz 4 5 2 3 4 5
3 zxzwz$xy 00202$50 0003202$ xyzxzwz$ 1 3 $ 3 8 1
4 xzwz$xyz 0002$504 00202$50 zxzwz$xy 3 2 4 2 1 2
5 zwz$xyzx 002$0043 002$0043 zwz$xyzx 5 2 3 2 2 6
6 wz$xyzxz 00$00432 00$00432 wz$xyzxz 6 8 2 4 5 7
7 z$xyzxzw 0$004320 0$004320 z$xyzxzw 7 4 4 3 6 8
8 $xyzxzwz $0003202 $0003202 $xyzxzwz 8 ∅ 3 $ 7 3

Figure 1 The text is T [1, 8] = xyzxzwz$, where Σ = {w, x, y, z, $}.

∆ = O(logσ n) fixed in advance. For example, O(n log σ) bits of space and O(log n) query
time by fixing ∆ = logσ n. This is the first succinct/compact space representation of PSA.1
However, it does not support plcp(·, ·) queries.

1.2.1 Challenges in Making PLF Computation Faster
Note that the product of space (in bits) and query time of Ganguly et al.’s PSA is always
Θ(n log n log σ). A natural question is: can we obtain better trade-offs?

The current index is limited primarily because its main component for com-
puting parameterized LF mapping needs to support queries of the following type:
RangeCountPBWT(i, j, x, y) = |{k | k ∈ [i, j], PBWT[k] ∈ [x, y]}|. From the 4-sided range
counting lower bound [34], any O(n logO(1) σ)-bit data structure needs Ω(1 + log σ/ log log n)
time. This time becomes a bottleneck when it comes to some of the advanced suffix sampling
techniques that are used for speeding up (classical) suffix array queries using additional
space (as listed in Theorem 3); in fact, to adapt these techniques, LF mapping needs to be
implemented in O(1) time. Therefore, to prove Theorem 3, we need a new set of techniques.

1.2.2 Challenges in Compressing Parameterized LCP Array
Sadakane’s LCP compression framework [35] for traditional text indexing relies on the
following: if two suffixes begin with the same character, their LCP after chopping the
first character will be one less than their original LCP, and these two suffixes will retain

1 A succinct index for a data of size Z bits is a data structure having Z + o(z) bits. On the other hand, a
compact index needs O(Z) bits.
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their relative lexicographic rank after chopping. This allows one to compactly encode the
LCP information. Unfortunately, this is not true for parameterized strings. For e.g., let
X = wxywabcdwx$ and Y = abcdwx$ be two suffixes of T , then their respective prev
encodings are prev(X) = 0003000058$ and prev(Y ) = 000000$; hence, their p-LCP is 3. After
chopping the first characters, the respective prev encodings are 000000058$ and 00000$,
resulting in a p-LCP value of 5. Thus, chopping the first character can increase LCP; in fact,
it can also decrease or even remain the same! Moreover, the order of the suffix may switch
(as seen in this example), which adds to the difficulty. In short, the previous techniques are
not adequate for compressing parameterized LCP array.

1.3 Our Results: Fully Functional PST in Compact Space
The suffix range [sp, ep] of a pattern P can be computed in O(|P | log σ) time using Ganguly
et al.’s index [16]; so we focus on speeding up suffix array queries and reporting LCP. We
overcome the O(log σ) bottleneck of parameterized LF mapping by using its inverse, the
Ψ-function, defined as Ψ(i) = j iff PLF(j) = i. This allows us to remove the dependence on
4-sided range-queries, instead of using simpler partialRank and select queries, which can be
supported in O(1) time using succinct space. With this, we implement Ψ-function in O(1)
time and thereby obtain three trade-offs, with space-time product near n log σ. For our LCP
framework, we essentially reduce a parameterized LCP query to a traditional LCP query;
this allows us to leverage Sadakane’s framework [35].

In summary, we have the following theorem.

▶ Theorem 3. For the parameterized suffix tree of a text T [1, n] over an alphabet of size σ,
the following space-time trade-offs are possible in the word RAM model of computation with
word-size Ω(log n), where ε > 0 is an arbitrarily small constant.

Index Size (in bits) Query Time (tPSA)
O(n log σ) O(logε

σ n)
O(n log σ log logσ n) O(log logσ n)
O(n log σ logε

σ n) O(1)

All three basic queries (i.e., PSA[·], PSA−1[·] and plcp(·, ·)) are supported in O(tPSA) time.

Note that Baker’s original definition also includes “static characters” for which the match
has to be done in the traditional way. For the simplicity of exposition, we assume that all
characters in Σ, except $ are parameterized characters. We remark that our index can be
extended to incorporate static characters without any sacrifice in time or space.

Outline. We start in Section 2 with a weaker version of Theorem 3 without the LCP claims.
Specifically, we show that using an O(n log σ) bit index, we can support PSA and PSA−1

queries in O(logσ n) time. Note that this is already a factor (log σ) faster than what is
achievable using Ganguly et al.’s index [16]. Using more intricate techniques, we obtain the
PSA[·]/PSA−1[·] trade-offs in Sections 3 and 4. Finally, the technique for encoding the LCP
array is in Section 5.

2 Our Framework: A Compact Space Index

Let’s start with a few definitions that we are going to use throughout this paper.

ICALP 2022
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▶ Definition 4. Define the following (see Figure 1 for an illustration):

Notation Definition
Ψ(i) PSA−1[1] if PSA[i] = n, else PSA−1[PSA[i] + 1]
PLF(i) PSA−1[n] if PSA[i] = 1, else PSA−1[PSA[i] − 1]
fi ∅ if i = n, else the first occurrence of T [PSA[i]] in T1+PSA[i]

W[i] $ if i = n, else number of zeroes in prev(T1+PSA[i])[1, fi]
PBWT[i] W[PLF(i)]

Our goal is to prove the following theorem in this section.

▶ Theorem 5. By using an O(n log σ)-bit index, we can compute Ψ(i) in O(1) time.

Before we prove this, we will see how we can use it to achieve an O(n log σ)-bit index that
supports PSA and PSA−1 queries in O(logσ n) time. We explicitly store PSA[i] iff it equals
n or is a multiple of ∆ = ⌈logσ n⌉. Additionally, we store a bit-vector B[1, n] as follows: set
B[i] = 1 iff PSA[i] has been explicitly stored. For reporting, a PSA[j] can be retrieved in
O(1) time if B[j] = 1. Otherwise, we repeatedly apply Ψ starting from j until we reach an
index j′ = Ψ

(
. . . Ψ

(
Ψ

(
j
))

. . .
)

such that B[j′] = 1 (i.e., PSA[j′] is explicitly stored). If the
Ψ operation was applied k times, we get PSA[j] = PSA[j′]− k. The time complexity is O(k).
For PSA−1 queries, we store PSA−1[i] if i equals n or if i is a multiple of ∆. To compute
PSA−1[j], we first find the largest number j′ ≤ j, such that j′ is a multiple of ∆. Compute
j′′ = PSA−1[j′] from the sampled-PSA−1 in O(1) time. Let k = j − j′ < ∆. Starting from
j′′ carry out k successive Ψ operations and report the final index as PSA−1[j] in O(k) time.
Finally, k < ∆ = ⌈logσ n⌉. The (extra) space needed is (n/∆) log n = O(n log σ) bits. Other
trade-offs may be obtained by tuning ∆, which is what we will do using a more sophisticated
sampling technique along with a modified version of Theorem 5; details are in Section 4.

2.1 Succinct Data-Structure Toolkit
▶ Fact 6 ([31]). A tree having m nodes can be stored in 2m + o(m) bits, such that if each
node is labeled by its pre-order rank, the following operations can be supported in O(1) time:

pre-order(u)/post-order(u) = pre-order/post-order rank of node u.
parent(u) = parent of node u.
nodeDepth(u) = number of edges on the path from the root to u.
lca(u, v) = lowest common ancestor (LCA) of two nodes u and v.
lmostLeaf(u)/rmostLeaf(u) = leftmost/rightmost leaf in the subtree rooted at u.
levelAncestor(u, D) = ancestor of u such that nodeDepth(u) = D.

Also, we can find the pre-order rank of the ith leftmost leaf in O(1) time.

▶ Fact 7 ([2]). Given an array A[1, t] over Σ = {1, 2, . . . , σ}, by storing an O(t log σ)-bit
structure, we can support the following operation in O(1 + log log σ

log t ) time:

rankA(i, c) = number of occurrences of c in A[1, i]

Additionally, the following operations can be supported in O(1) time:

access A[i]
partialRankA(i) = rank(i, A[i]), i.e., the number of occurrences of A[i] is the range [1, i]
selectA(i, c) = the ith occurrence of c in A
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2.2 Proof of Theorem 5
From their definitions, we observe: Ψ(i) = j ⇐⇒ PLF(j) = i, and W[i] = PBWT[Ψ(i)].
Additionally, we use χ(i) to denote the number of suffixes k such that Ψ(k) ≤ Ψ(i) and W[k] =
W[i]. Based on these, it is easy to see that if j = Ψ(i), then j is the χ(i)th occurrence of
W[i] in PBWT. Given χ(i), we can compute Ψ(i) as:

Ψ(i) = selectPBWT

(
χ(i), W[i]

)
Note that arrays PBWT[1, n] and W[1, n] take O(log σ) bits per entry. Therefore, we

preprocess them into compact data structures that support access/select queries in O(1)
time (see Fact 7). Therefore, given χ(i), we can compute Ψ(i) in constant time. To this end,
we present the following lemma, which completes the proof of Theorem 5.

▶ Lemma 8. By using an O(n log σ)-bit data structure, we can compute χ(i) in O(1) time.

The rest of the section is dedicated to proving Lemma 8. For brevity, throughout we use
“suffix i” to denote the suffix corresponding to leaf ℓi in the PST.

▶ Lemma 9. Let i < n. Suppose u is the highest node on the path from the root to ℓi such
that fi ≤ strLen(u)− 1. Then, for any leaf ℓj in the subtree of u, we have fj = fi

Proof. Let d = plcp(i, j). Since d ≥ strLen(u) ≥ fi + 1, we have prev
(
TPSA[i][1, d]

)
=

prev
(
TPSA[j][1, d]

)
, i.e., the suffixes starting at PSA[i] and PSA[j] p-match until their first d

characters. Clearly, the first occurrence of T [PSA[i]] in T1+PSA[i] must be the same as the
first occurrence of T [PSA[j]] in T1+PSA[j], i.e., fi = fj . ◀

▶ Lemma 10. If W[i] = W[j], then Ψ(j) < Ψ(i) iff
Case A: either fj = plcp(i, j)
Case B: or, fj ̸= plcp(i, j), j < i, and fi ̸= plcp(i, j)

Proof. Recall Convention 1. Let d = plcp(i, j). If fi = ∅ or fj = ∅, then W[i] ̸= W[j]. So,
fi, fj < n. Also, prev(TPSA[i])[d + 1] ̸= prev(TPSA[j])[d + 1], by the definition of LCP. We now
prove both cases (see Figure 2 for an illustration).

i

fi

Case B Case B Case A

fj

Blue suffixes are those suffixes j such that Ψ(j) < Ψ(i)

u

We assume strLen(u) ≥ 1 + fi and fi >
strLen(parent(u)). The case when fi = strLen(w)
for another node w can be analyzed similarly.

Case A: fj = plcp(i, j)
Case B: j < i and fi 6= plcp(i, j)

Any suffix j from this region
that belongs in Case A will
also satisfy Ψ(j) < Ψ(i)

Figure 2 Illustration of Lemma 10.

ICALP 2022



65:8 Fully Functional Parameterized Suffix Trees in Compact Space

If fj = d, then prev(TPSA[j])[d + 1] = d and prev(TPSA[Ψ(j)])[d] = 0. From Lemma 9, we
conclude fi ≥ d. Moreover, fi ̸= d because prev(TPSA[i])[d + 1] ̸= d (by the definition of
LCP). Therefore, fi > d. This implies prev(TPSA[i])[d + 1] ̸= 0; otherwise, W[i] ̸= W[j],
a contradiction. Consequently, either prev(TPSA[Ψ(i)])[d] > 0 or prev(TPSA[Ψ(i)])[d] = $.
Finally, note that plcp

(
Ψ(i), Ψ(j)

)
≥ d − 1. So after removing the first character of

the two suffixes, their first (d − 1) characters will p-match. Hence, Ψ(j) < Ψ(i) when
fj = plcp(i, j).
Now, assume fj ̸= d. If fj < d, then fi = fj (from Lemma 9) and plcp

(
Ψ(i), Ψ(j)

)
=

d − 1. Then, Ψ(j) < Ψ(i) iff j < i because prev(TPSA[Ψ(i)])[d] = prev(TPSA[i])[d + 1]
and prev(TPSA[Ψ(j)])[d] = prev(TPSA[j])[d + 1]. If fj > d, then prev(TPSA[j])[d + 1] =
prev(TPSA[Ψ(j)])[d]. Also, fi ≥ d (from Lemma 9), implying either prev(TPSA[Ψ(i)])[d] =
prev(TPSA[i])[d + 1] or prev(TPSA[Ψ(i)])[d] = 0. The latter happens only when fi = plcp(i, j).
Hence, we have Ψ(j) < Ψ(i) when j < i and fi ̸= plcp(i, j).

This concludes the proof. ◀

To compute χ(i), we count the number nA and nB of Case A and B suffixes respectively;
note that the cases are disjoint. Then, χ(i) = 1 + nA + nB . We provide an overview first.

First, we locate the edge on which fi lies, i.e., locate the edge (parent(u), u), such that
strLen(parent(u)) < 1 + fi ≤ strLen(u). This is facilitated by associating a bit with each
node and set it to 1 iff strLen(parent(·)) < 1 + fj ≤ strLen(·) for some suffix j in its sub-tree.
Therefore, u is the lowest ancestor of ℓi that is associated with 1. By maintaining an O(n)
bit structure, we can answer this query in O(1) time (see Lemma 11).

For counting nA, we walk the path from root to parent(u), and for each node x on this
path find out the number of suffixes j satisfying Case A: fj = strLen(x). Note that we afford
to store fj explicitly, instead store if fj lies on an edge from node x to its child node y. Luckily,
that’s enough for us – for any suffix j, if fj = strLen(x) lies on the edge (x, y), then for all
suffixes j′ in the subtree of y, we have fj′ = strLen(x) (by Lemma 9). So, the count can be
obtained via a simple unary encoding of suffixes of this kind. For counting Case B: j < i and
fi ̸= plcp(i, j), walk from root to a node v; here, v = u if fi > strLen(u), and v = parent(u) if
fi = strLen(u). Initialize nB to the number of leaves that lie to the left of this path. Then,
add the number of leaves lying to the left of ℓi within the sub-tree of v to nB . Note that for
Cases A and B, we must consider only the suffixes j satisfying W[j] = W[i]; this is achieved
by collecting suffixes based on their W[·] values into different trees. Finally, we cannot afford
to walk the path; therefore, we rely on the result in Lemma 12.

▶ Lemma 11. Consider a compacted tree τ having L leaves, where each node is associated
with a 0 or 1. By using an O(L)-bit data structure, given a query leaf ℓ, we can find the
lowest ancestor v (if it exists) of ℓ associated with a 1 in O(1) time.

▶ Lemma 12. Consider a compacted tree τ having L leaves, where each node w is associated
with an integer g(w) ≥ 0. For any node v, we have

∑
u∈Sv

g(u) ≤ Lv, where Sv is the set of
nodes in the subtree of v and Lv is the number of leaves in the subtree of v. By using an
O(L)-bit data structure, given a query leaf ℓ, we can compute G(ℓ) =

∑
v g(v) in O(1) time,

where v is an ancestor of ℓ.

The proofs of Lemmas 11 and 12 (deferred to Section 2.3) relies on mostly standard
techniques from succinct data structures. Next we present the implementation details of χ(i)
computation.
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The Data Structure. To compute χ(i), we only need to consider those suffixes k, such
that W[k] = W[i]. To this end, we create (at most) σ compacted tries PST1, PST2, . . . , PSTσ,
where PSTα is the compacted trie of the strings in {prev(T [PSA[k], n]) |W[k] = α}. We do
not store these trees explicitly; rather, we store their topology with succinct functionalities
using Fact 6.

We pre-process each PSTα using Lemma 11 as follows: associate each node w in PSTα

with 1 if strLen(parent(w)) ≤ fi < strLen(w) for some leaf ℓi under w with W[i] = α. We
also pre-process PSTα using Lemma 12 as follows: associate a node w with the number βw,
where βw is the number of suffixes i in the subtree of w in PSTα such that fi = strLen(w).
Note that

∑
w βw over all nodes w in all the trees is O(nα), where nα is the number of leaves

in PSTα. The space needed for all such PSTα trees combined is O(n) bits. Finally, we store
a partial-rank data structure (Fact 7) on W. The total space needed is O(n log σ) bits.

Query Processing. Given i, in O(1) time, we first jump to the corresponding leaf ℓi′ in
PSTW[i] by using the partialRankW(i) query. Now locate the highest node u in PSTW[i] such
that 1+ fi ≤ strLen(u) in O(1) time using Lemma 11. We consider the following two scenarios
separately. To determine which case a suffix falls in, we store a bit-vector F [1, n], such that
F [i] = 1 iff the suffix i belongs to the first case. In each of the following cases, we can
compute χ(i) in O(1) time, which completes the proof of Lemma 8.

Case 1: strLen(parent(u)) < fi < strLen(u) for an ancestor node u of ℓi.
Let j be such that W[j] = W[i]. Applying Lemma 10, Ψ(j) < Ψ(i) if either j < i or
fj = plcp(i, j). Thus, χ(i) = i′ +

∑
v βv, where v is an ancestor of ℓi′ . The last term can

be computed in O(1) time using Lemma 12.

Case 2: fi = strLen(u) for an ancestor node u of ℓi.
Let j be such that W[j] = W[i]. Applying Lemma 10, Ψ(j) < Ψ(i) if either (1) j < i and
plcp(i, j) ̸= fi, or (2) fj = plcp(i, j). Let w be the child of u on the path to ℓi′ . Using
Fact 6, in O(1) time, we compute lmostLeaf(u) and lmostLeaf(w), which are respectively
the leftmost leaf in the subtree of u and the subtree of w. Thus,

χ(i) = i′ − (lmostLeaf(w)− lmostLeaf(u)) +
∑

v

βv

where v is an ancestor of ℓi′ . The last term can be computed in O(1) time using Lemma 12.
This completes the proof of Lemma 8.

2.3 Proofs of Lemma 11 and Lemma 12
We rely on standard techniques from succinct data structures. For both lemmas, we employ
the following marking scheme. Starting from the leftmost leaf, every C = c⌈log L⌉ leaves
form a group, where c is a constant to be decided later. (The last group may have fewer than
C leaves.) Mark the LCA of the first and last leaf of each group. The number of marked
nodes is O(L/C) [22].

We prove Lemma 11 first. At each marked node, we store the depth of its nearest ancestor
(including itself) which is associated with a 1. Traverse the subtree τu∗ of a marked node
u∗ in pre-order, and create a bit-string Bu∗ as follows: when entering the subtree of a node
w, append 1 if w is associated with a 1, followed by a 0 to Bu∗ . Additionally, for every
i ∈ [1, Lu∗ ], store Au∗ [i] = node depth of the nearest ancestor of ℓu∗,i associated with a 1 if
the ancestor is in τu∗ , else Au∗ [i] = −1. For each marked node u∗, maintain a pointer to
the corresponding Au∗ and Bu∗ pair. Pre-process τu∗ with Fact 6. Lastly, we maintain a
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bit-vector to detect in O(1) time whether a leaf has an ancestor associated with 1, or not.
The total space as before can be bounded by O(L) bits. Given a query leaf ℓk, we check
whether ℓk has an ancestor associated with 1 or not. Assume that it does. Then, we first
locate the lowest marked node v∗ as described earlier. Let d∗ be the node depth stored at v∗.
Let k′ = k − C⌊k/C⌋. Check the k′th entry of the satellite array of v∗, and let it be d′. If
d′ >= 0, then the desired node is given by levelAncestor(ℓ, d′), else the desired node is given
by levelAncestor(ℓ, d∗).

Now, we prove Lemma 12. At each marked node u∗, store G(u∗). Since the number of
marked nodes is at most ⌈L/C⌉, the space needed is O( L

C log L) = O(L) bits. Let τu∗ be the
subtree rooted at a marked node u∗. Note that τu∗ has at most 2C nodes. Traverse tree
τu∗ in pre-order, and create a bit-string Bu∗ as follows: when entering the subtree of a node
w, append g(w) in unaryto Bu∗ . Additionally, for every i ∈ [1, Lu∗ ], store Au∗ [i] = G(ℓu∗,i),
where Lu∗ is the number of leaves in the subtree of u∗, and ℓu∗,i is the ith-leftmost leaf in τu∗ .
The space needed to store the array Au∗ is O(C log C) bits. Note that |Bu∗ | ≤ 2C; hence,
the number of possible such bit-strings is at most 22C . We store all possible combinations of
Au∗ and Bu∗ , which requires O(22CC log C) bits, which is o(L) bits for c = 1/4. For each
marked node u∗, maintain a pointer to the corresponding Au∗ and Bu∗ pair, which requires
L
C log(22C) = O(L) bits. Finally, pre-process τu∗ with Fact 6. The total space needed is O(L)
bits. Given a query leaf ℓk, we first locate the lowest marked node v∗ = lca(ℓx, ℓy) of ℓk,
where x = 1 + C⌊k/C⌋, y = min{L, C(1 + ⌊k/C⌋)}. Let d∗ be the value stored at v∗. Let
k′ = k − C⌊k/C⌋. Check the k′th entry of the satellite array of v∗, and let it be d′. Then,
G(ℓk) = d∗ + d′ is computed in O(1) time.

3 Generalized Ψ Function

We start with a definition that we are going to use throughout this section, as well as a
couple of lemmas that will form the backbone of the indexes to achieve the three trade-offs.

▶ Definition 13. Define Ψk(i) = PSA−1[PSA[i] + k].

Our main arsenal to obtain the three trade-offs is the following version of Theorem 5,
which enables the computation of “some” Ψk(·) in time faster than O(k).

▶ Lemma 14. For any predefined integer ∆, we can construct an O(n log σ)-bit structure
DS(∆) that computes Ψ∆(i) for any i with PSA[i] being a multiple of ∆ in O(1) time.

We prove this lemma in this section. Let’s start with the intuition. Note that in Lemma 14,
if one is willing to relax the time to O(∆), we can simply apply Theorem 5 ∆ times. Here,
we will chop off the first ∆ characters of a suffix, where the characters are from Σ. To
reduce the time to O(1), the main idea is to consider a character from the alphabet Σ∆;
clearly, chopping off one character from Σ∆ is equivalent to chopping off ∆ characters from
Σ. Note that each character from Σ∆ requires ∆ log σ bits for representation; however, since
we sample ≈ n/∆ suffixes, the total space will still be O((n/∆) ·∆ log σ) = O(n log σ) bits.
The proof techniques are similar to that of Theorem 5.

▶ Definition 15. A suffix is ∆-sampled if its starting position is a multiple of ∆. Let S∆
be the collection of all ∆-sampled suffixes of T , i.e., S∆ = {T∆, T2∆, . . . }. Let n∆ = |S∆|
be the number of ∆-sampled suffixes. A ∆-sampled parameterized suffix array, denoted
as PSA∆[1, n∆], stores the starting position of the suffixes in lexicographic order of their
prev-encoding.
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▶ Definition 16. Let B∆[1, n] be a bitmap, such that B∆[i] = 1 iff PSA[i] is a multiple of ∆.

▶ Lemma 17. Given i ∈ [1, n∆], we can find a j ∈ [1, n], such that PSA[j] = PSA∆[i] in
O(1) time by maintaining an O(n)-bit space structure.

Proof. We maintain a bit-vector B∆[1, n] using Fact 7, where B∆[i] = 1 iff TPSA[i] is ∆-
sampled. The total space needed is O(n) bits. Observe that TPSA∆[i] is exactly the ith

∆-sampled suffix in lexicographic order; thus, j = selectB∆(i, 1). ◀

▶ Definition 18. Let TPSA[i] be a ∆-sampled suffix. Define the following:

Notation Definition (◦ denotes concatenation)
Ψ∆(i) PSA−1[PSA[i] + ∆]
PLF∆(i) PSA−1[PSA[i] − ∆]
W∆[i] W[i] ◦ W[Ψ(i)] ◦ · · · ◦ W[Ψ∆−1(i)]
PBWT∆[i] PBWT[PLF∆−1(i)] ◦ PBWT[PLF∆−2(i)] ◦ · · · ◦ PBWT[i]

▶ Observation 19. Let TPSA[i] be a ∆-sampled suffix. The following observations can be
deduced from the above definitions:

Ψ∆(i) = j iff PLF∆(j) = i

If Ψ∆(i) = j, then PBWT∆[i] = W∆[j]

▶ Definition 20. Let TPSA[i] be a ∆-sampled suffix. Define

χ∆(i) = |{k, where TPSA[k] is ∆−sampled, Ψ∆(k) ≤ Ψ∆(i) and W∆[k] = W∆[i]}|

Reduction from function Ψ∆ to χ∆. Using Observation 19, it is easy to see that if
j = Ψ∆(i), then j is the χ∆(i)th occurrence of W∆[i] in PBWT∆. Given χ∆(i), we can
compute Ψ∆(i) as: Ψ∆(i) = selectB∆

(
selectPBWT∆

(
χ∆(i), W∆[i]

)
, 1

)
Note that the arrays PBWT∆[1, n∆] and W∆[1, n∆] take O(∆ log σ) bit per entry. We

preprocess them into compact data structures that support access/select queries in O(1)
time (see Fact 7). The space needed is O(n∆ ·∆ log σ) = O(n log σ) bits. Thus, given χ∆(i),
we can compute Ψ∆(i) in constant time. To this end, we present the following lemma,which
completes the proof of Lemma 14.

▶ Lemma 21. Let TPSA[i] be a ∆-sampled suffix. By using an O(n log σ)-bit data structure,
we can compute χ∆(i) in O(1) time.

3.1 Proof of Lemma 21
For the ease of notation, let id = Ψd(i), jd = Ψd(j), and Ld = plcp(id, jd), where d ∈ [1, ∆].
Let i0 = i, j0 = j, and L0 = plcp(i, j). Our proof hinges on Lemma 22, which says, for
any two suffixes TPSA[i] and TPSA[j] such that i < j and W∆[i] = W∆[j], the relative order
between i and j can change at most once while applying the Ψ-operation ∆ number of times.

▶ Lemma 22. Consider two ∆-sampled suffixes TPSA[i] and TPSA[j] such that i < j, and
W∆[i] = W∆[j].

If there exists a γ ∈ [1, ∆− 1] such that iγ > jγ , then ∀γ′ ∈ [γ + 1, ∆], iγ′ > jγ′ .
Consider the minimum γ ∈ [1, ∆] such that iγ > jγ , then fjγ−1 = Lγ−1.
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Proof. We prove the first part of the lemma; the second part follows directly. Consider
the smallest γ ∈ [1, ∆ − 1] such that Ψγ(i) > Ψγ(j). Since Ψγ−1(i) < Ψγ−1(j), we have
str(ℓjγ−1)[1 + Lγ−1] > str(ℓiγ−1)[1 + Lγ−1]. Then, str(ℓjγ

)[1 + Lγ ] = 0 < str(ℓiγ
)[1 + Lγ ];

otherwise, applying Lemma 9, it is easy to show that W∆[i] ̸= W∆[j]. For the purpose
of contradiction, consider the smallest γ′ > γ such that Ψγ′(i) < Ψγ′(j). Note that
Lγ′−1 = Lγ − (γ′ − γ − 1). Hence, str(ℓjγ′−1)[1 + Lγ′−1] = 0 < str(ℓiγ′−1)[1 + Lγ′−1]. Since
Ψγ′(i) < Ψγ′(j), applying Lemma 9, str(ℓiγ′ )[1 + Lγ′ ] = 0 and fiγ′ = Lγ′ , which contradicts
W∆[i] = W∆[j]. This completes the proof. ◀

Using Lemmas 9, 10, and 22, we get the following.

▶ Lemma 23. Consider two ∆-sampled suffixes TPSA[i] and TPSA[j] such that i < j, and
W∆[i] = W∆[j]. If there exists a γ ∈ [1, ∆] such that iγ > jγ , then

i∆ > j∆, and
for any k such that TPSA[k] is ∆-sampled, W∆[i] = W∆[k], and plcp(k, j) > plcp(i, j), we
have i∆ > k∆ .

To compute χ∆(i), note that we only need to consider those suffixes k, such that
W∆[k] = W∆[i]. To this end, we create (at most) σ∆ compact tries PST∆

1 , PST∆
2 , . . . , PST∆

σ∆ ,
where PSTα is the compacted trie of the strings in

{prev(T [PSA[k], n]) |W∆[k] = α and TPSA[k] is ∆ sampled}

We do not store these trees explicitly; rather, we maintain the data-structure of Fact 6 for
each tree topology. Note that given a leaf k in PST, where TPSA[k] is ∆ sampled, we can
jump to its corresponding leaf k′ in PSTW∆ in O(1) time using an O(n log σ) structure (the
bit-array B∆, and Fact 7 over W∆).

Consider a tree PST∆
x . Let the number of suffixes lying in this tree be mx. For any leaf

j′ in PST∆
x , let map(j′) be the equivalent leaf in PST. Consider a node u in PST∆

x . For each
γ ∈ [1, ∆] we write two numbers Gγ(u) and Hγ(u) defined as:

Gγ(u) = the number of leaves j′ in the subtree of u such that fjγ
= strLen(u), where

j = map(j′)
If fjγ

̸= strLen(parent(u)), where j′ is a leaf in the subtree of u and j = map(j′), then
Hγ(u) = 0. Else, Hγ(u) = the number of leaves k′ in the subtree of parent(u) such that
fkγ
̸= strLen(parent(u)) and pre-order(ℓk′) < pre-order(u), where k = map(k′)

Note that
∑

u Gγ(u) ≤ mx and
∑

u Hγ(u) ≤ mx (using Lemmas 22 and 23). Hence,∑
u Gγ(u) and

∑
u Hγ(u) over γ ∈ [1, ∆] can be stored in O(mx∆) bits using unary encoding.

To compute χ∆(i), we first jump to the corresponding leaf i′ in PST∆
W∆[i] in O(1) time. Let

U be the set of ancestors of ℓi′ Now, χ(i) = i′ +
∑∆

γ=1
∑

u∈U Gu(ℓi′)−
∑∆

γ=1
∑

u∈U Hu(ℓi′),
which can be computed in O(1) time using (slightly adapted versions of) Lemmas 11 and 12.
Since

∑σ∆

x=1 mx = n∆, the total space is O(n log σ) bits; recall that mx is the number of
suffixes in PST∆

x . This concludes the proof.

4 Achieving the Three Trade-offs of PSA

We prove the trade-offs using the result in Lemma 14 as a black box. Additionally, we
will use the sampled PSA and sampled PSA−1 in Lemma 24 for all the three cases. Let
λ = 2⌈log logσ n⌉, the next highest power of 2 greater than or equal to logσ n. The strategy
for computing PSA[i] is the same as before (refer to Section 2), i.e., find the smallest k < λ,
such that PSA[i] = PSA[j]− k, where j = Ψk(i) and Bλ[j] = 1, but in fewer number of steps.
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▶ Lemma 24 (Sampled PSA and PSA−1). A sampled-PSA is a structure that supports the
following query: for any i, it reports PSA[i] if PSA[i] is a multiple of λ, and ∞ otherwise.
Similarly, a sampled-PSA−1 is a structure that computes PSA−1[i] for any i which is a
multiple of λ. We can maintain them in O(n log σ) bits and answer queries in O(1) time.

Proof. Note that the sampled-PSA−1 is an array of size O(n/λ) in which each entry can be
recorded using ⌈log n⌉ bits and accessed in O(1) time. For the sampled-PSA, we maintain
the bitmap Bλ[1, n] in Definition 16 by choosing ∆ = λ. Additionally, we associate PSA[i]
with those i’s where Bλ[i] = 1. The space required is (n + (n/λ) log n) = O(n log σ) bits, and
the query can be easily handled in O(1) time. ◀

4.1 Achieving tPSA = O(logε
σ n) using O(n log σ) bits

Let ∆t be (logε
σ n)t rounded to the next highest power of 2. We maintain DS(∆t) and

B∆t
[1, n] for t = 0, 1, 2, 3, . . . , 1/ε. (Recall Lemma 14 and Definition 16 for definitions of this

data structures.) The space is 1/ε×O(n log σ) bits, as desired.
To compute PSA[i], we initialize k = 0, j = i, t = 0 and follow the steps below.

1. If Bλ[j] = 1, access PSA[j] in O(1) time from the sampled-PSA and report PSA[j]− k.
2. Else if B∆t+1 [j] = 1, update t← t + 1 and go to Step 1.
3. Else we compute j′ = Ψ∆t(j) using DS(∆t) in O(1) time, update j ← j′, k ← k + ∆t,

and then we repeat from Step 2.

Then, the number of times we perform (constant time) Ψ∆t(·) operations on DS(∆t) is at
most ∆t+1/∆t = logε

σ n. Therefore, the overall time complexity is O( 1
ε logε

σ n).
Note that the algorithm for PSA[i] computes several j’s, starting with j = i, such that

the j computed after tth “step 1” guarantees that PSA[j] ≥ PSA[i] is the smallest number
divisible by ∆t. Therefore, the correctness follows from that fact that PSA[i] is PSA[j]− k.

The computation of PSA−1[·] is analogous, but in the reverse order, as desired. Specifically,
we perform queries on DS(∆t)’s, in descending order of t.

4.2 Achieving tPSA = O(log logσ n) using O(n log σ log logσ n) bits
We maintain DS(∆t) structure of Lemma 14 and B∆t

[1, n], where ∆t = 2t, for
t = 0, 1, 2, 3, . . . , log λ, where λ = 2⌈log logσ n⌉ as defined in Lemma 24. The space is
O(n log σ)× log λ bits, as desired.
To compute PSA[i], we initialize k = 0, j = i, t = 0 and follow the steps below.

1. If Bλ[j] = 1, access PSA[j] in O(1) time from the sampled-PSA and report PSA[j]− k.
2. Else if B∆t+1 [j] = 1, update t← t + 1 and go to Step 1.
3. Else compute j′ = Ψ∆t(j) using DS(∆t) in O(1) time, update j ← j′ and k ← k + ∆t.

Then update t← t + 1 and go to Step 1.

We perform at most log λ constant-time operations on DS(·), hence tPSA = O(log logσ n).
The computation of PSA−1[·] (and correctness proof) is analogous as in the previous section.

4.3 Achieving tPSA = O(1) using O(n log σ logε
σ n) bits

Here we use Lemma 25, which is a slight modification of Lemma 14. We remark that the
proof is rather straightforward given the proof of Lemma 14; so, we omit it.
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▶ Lemma 25. For any predefined integers ∆ and δ < ∆ (both are powers of 2), we can
construct an O(n log σ)-bit structure that computes Ψδ(i) for any i with (PSA[i] + δ) being a
multiple of δ in O(1) time. We call this data structure DS(∆, δ).

We define an array Eδ
∆[1, n] such that Eδ

∆[i] is
−∞ if PSA[i] is not a multiple of ∆
an integer f ∈ [0, ∆/δ), such that (PSA[i] + f · δ) is a multiple of ∆.

Let ∆t be (logε
σ n)t rounded to the next highest power of 2. We store DS(∆t+1, f ·∆t) for

all t ∈ [0, 1/ε] and f ∈ [0, ∆t+1/∆t). Additionally, we store E∆t

∆t+1
[1, n] for all t ∈ [0, 1/ε].

Therefore, the total space is n/ε×O
(

log σ logε
σ n + log(logε

σ n)
)

bits.
To compute PSA[i], we initialize k = 0, j = i, t = 0 and follow the steps below.

1. If Bλ[j] = 1, access PSA[j] in O(1) time from the sampled-PSA and report PSA[j]− k.
2. Else if B∆t+1 [j] = 1, update t← t + 1 and go to Step 1.
3. Else find f from E∆t

∆t+1
[1, n], such that (PSA[i] + f ·∆t) is a multiple of ∆t+1. Compute

j′ = Ψf ·∆t(j) using DS(∆t+1, f ·∆t) in O(1) time, update j ← j′ and k ← k + f ·∆t.
Then go to Step 2.

We issue at most one (constant time) query on DS(∆t, ·) per t. Therefore, tPSA = O(1/ε).
The computation of PSA−1[·] (and correctness proof) is analogous to the discussion in the
previous two sections.

5 Encoding Parameterized Longest Common Prefix (pLCP) Array

Recall that PLCP[i] = plcp(i, i + 1) for 1 ≤ i < n. We introduce a new encoding scheme,
which converts a string S to a string encode(S) over an alphabet Σ′′ = {0, 1, . . . , σ} as
follows. We replace each character S[i] with 0 if i is the first occurrence of S[i], else
replace it with the number of distinct characters in S[j, i], where j < i is the rightmost
occurrence of S[i] before i. For example, encode(xyxxzyx) = 0021033. For any two strings
S and S′, encode(S) = encode(S′) iff prev(S) = prev(S′); the proof is straightforward using
mathematical induction.

Let T ′ = encode(T ). Let SAT ′ [1, n] be the suffix array of T ′, i.e., SAT ′ [i] = j and
SA−1

T ′ [j] = i iff the ith lexicographically smallest suffix of T ′ starts at position j. Also, let
lcpT ′(i, j) be the length of the longest common prefix of the suffixes of T ′ starting at SAT ′ [i]
and SAT ′ [j]. The following is immediate from known results on encoding suffix trees.

▶ Fact 26 ([20, 35]). We can answer SAT ′ [·] and SA−1
T ′ [·] queries as follows:

in tSA = O(logε
σ n) time using an O(n log σ)-bit index

in tSA = O(log logσ n) time using an O(n log σ log logσ n)-bit index
in tSA = O(1) time using an O(n log σ logε

σ n)-bit index
Moreover, we can answer lcpT ′(·, ·) queries in O(ttSA) time using O(n) extra bits.

We have the following crucial lemma.

▶ Lemma 27. Let xi be the smallest number such that the number of distinct characters in
TPSA[i][1, PLCP[i]] and TPSA[i][1, xi] are the same. Then,

PLCP[i] = xi + lcpT ′

(
SA−1

T ′

[
PSA[i] + xi

]
, SA−1

T ′

[
PSA[i + 1] + xi

])



A. Ganguly, R. Shah, and S. V. Thankachan 65:15

Proof. Since PLCP[i] ≥ xi, yi = PLCP[i]− xi is the length of the longest common prefix of
the strings obtained by deleting the first xi characters of prev(TPSA[i]) and prev(TPSA[i+1])
respectively. Equivalently, yi is the longest common prefix of the suffixes of encode(T )
starting at positions PSA[i] + xi and PSA[i + 1] + xi respectively. The proof follows from the
definition of xi. ◀

▶ Theorem 28. Suppose PSA[·] and SA−1
T ′ [·] values are accessible in times tPSA and tSA

respectively, we can compute PLCP[i] = xi + yi for any i in time O(tSA + tPSA) using an
O(n log σ)-bit structure. We can also support plcp(·, ·) queries in the same time.

Proof. We first describe the structure for computing xi. If σ > log n, we store xi explicitly
in log n bits if xi > σ log n and in O(log(σ log n)) bits otherwise. All xi’s that are larger
than σ log n can be stored in O(n) bits as they are no more than n/ log n. The space needed
for the rest is n log(σ log n) = O(n log σ) bits. If σ ≤ log n, maintain an array C, where
C[i] = TPSA[i][xi] and a rank-select data structure (Fact 7) over T . The space is O(n log σ) bits.
Since xi is the first occurrence of C[i] in T [PSA[i], n], we compute xi = selectT

(
rankT

(
PSA[i]−

1, C[i]
)

+ 1, C[i]
)
− PSA[i] + 1 in time tPSA + O(log(log σ/ log log n)) = O(tPSA).

We now focus on computing yi. Find j = SA−1
T ′ [PSA[i]+xi] and k = SA−1

T ′ [PSA[i+1]+xi]
in time O(tSA + tPSA). From Lemma 27, we have yi = lcpT ′(j, k). We handle lcpT ′(·, ·) queries
in time O(tSA) using O(n) extra bits [35].

Finally, to answer plcp(·, ·) queries, we maintain a Range Minimum Query (RMQ)
structure [8] of size 2n + o(n) over the PLCP array with O(1) query time. Then, given any i

and j > i, compute k = arg min{PLCP[k] | k ∈ [i, j)} and report plcp(i, j) = PLCP[k]. ◀

Theorem 3 follows from Theorem 28, Fact 26, and the trade-offs in Section 4.
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