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Abstract
The compression of highly repetitive strings (i.e., strings with many repetitions) has been a central
research topic in string processing, and quite a few compression methods for these strings have been
proposed thus far. Among them, an efficient compression format gathering increasing attention is
the run-length Burrows–Wheeler transform (RLBWT), which is a run-length encoded BWT as a
reversible permutation of an input string on the lexicographical order of suffixes. State-of-the-art
construction algorithms of RLBWT have a serious issue with respect to (i) non-optimal computation
time or (ii) a working space that is linearly proportional to the length of an input string. In this
paper, we present r-comp, the first optimal-time construction algorithm of RLBWT in BWT-runs
bounded space. That is, the computational complexity of r-comp is O(n+r log r) time and O(r log n)
bits of working space for the length n of an input string and the number r of equal-letter runs in
BWT. The computation time is optimal (i.e., O(n)) for strings with the property r = O(n/ log n),
which holds for most highly repetitive strings. Experiments using a real-world dataset of highly
repetitive strings show the effectiveness of r-comp with respect to computation time and space.
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1 Introduction

Highly repetitive strings (i.e., strings including many repetitions) have become common in
research and industry. For instance, the 1000 Genomes Project [32] was established for the
purpose of building a detailed catalogue of human genetic variation, and it has sequenced a
large number of human genomes. Nowadays, approximately 60 billion pages are said to exist
on the Internet, and large sections of those pages (e.g., version-controlled documents) are
highly repetitive. There is therefore a growing demand to develop scalable data compression
for efficiently storing, processing, and analyzing a gigantic number of highly repetitive strings.

To fulfill this demand, quite a few data compression methods for highly repetitive strings
have been developed. Examples are LZ77 [34], grammar compression [19, 12, 31, 14], block
trees [2], and many others [25, 22, 10]. Among them, an efficient compression format
gathering increased attention is the run-length Burrows–Wheeler transform (RLBWT), which
is a run-length encoded BWT [6] as a reversible permutation of an input string on the
lexicographical order of suffixes. Recently, researchers have focused on developing string
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99:2 An Optimal-Time RLBWT Construction in BWT-Runs Bounded Space

Table 1 Summary of state-of-the-art RLBWT construction algorithms. The update time in the
rightmost column is the time needed to construct a new RLBWT from the current RLBWT for a
character newly added to the string. The update time of r-comp is amortized. T is an input string
of alphabet size σ and length n; |PFP| is the size of the dictionary and factorization created by the
prefix-free parsing of T [5].

Method Type Running time Working space (bits) Update time
D. Belazzougui+ [4] indirect O(n) O(n log σ) Unsupported

J. Munro+ [20] indirect O(n) O(n log σ) Unsupported
D.Kempa [15] indirect O(n/ logσ n + r log7 n) O(n log σ + r log6 n) Unsupported

D.Kempa+[16] indirect O(n log σ/
√

log n) O(n log σ) Unsupported
Big-BWT [5] indirect O(n) O(|PFP| log n) Unsupported

KK method [17, 23] direct O(n(log log n)2 + r log8 n) O(r polylog n) Unsupported
PP method [30] direct O(n log r) O(r log n) O(log r)

Faster-PP method [28] direct O(n log r) O(r log n) O(log r)
r-comp (this study) direct O(n + r log r) O(r log n) O(1 + (r log r)/n)

processing methods such as locate query [13, 1, 3, 26], document listing [7], and substring
enumeration [27] on RLBWT. Although several algorithms for constructing the RLBWT
from an input string have been proposed thus far, there is no prior work that achieves the
computational complexity of optimal time (i.e., time linearly proportional to the length of
the input string) and BWT-runs bounded space (i.e., a working space linearly proportional to
the number of equal-letter runs in the BWT and logarithmically proportional to the length
of the input string).

Contribution. We present r-comp, the first construction algorithm of RLBWT that achieves
optimal time and BWT-runs bounded space. R-comp directly constructs the RLBWT of an
input string. It reads one character of an input string at a time from the reversed string and
gradually builds the RLBWT corresponding to the suffixes read so far. The state-of-the-art
online construction methods [30, 28] use inefficient data structures such as dynamic wavelet
trees and B-trees for inserting each character into the current RLBWT at an insertion
position, which is the most time-consuming part in an RLBWT construction. We present a
new divided BWT (DBWT) representation of BWT and a new bipartite graph representation
on DBWT called LF-interval graph to speed up the construction of RLBWT. The DBWT
and LF-interval graph are efficiently built while reading each character one by one, and they
enable us to quickly compute an appropriate position for inserting each character into the
current RLBWT of the string. Another remarkable property of r-comp is the ability to
extend the RLBWT for a newly added character without rebuilding the data structures used
in r-comp from the beginning.

As a result, the computational complexity of r-comp is O(n + r log r) time and O(r log n)
bits of working space for the length n of an input string and the number r of equal-letter
runs in BWT. In particular, the computational complexity is optimal (i.e., O(n)) for strings
with the property r = O(n/ log n), which holds for most highly repetitive strings. We
experimentally tested the ability of r-comp to compress various highly repetitive strings, and
we show that r-comp performs better than other methods with respect to computation time
and space.

2 Related work

There are two types of methods for indirectly or directly constructing the RLBWT of a
string (see Table 1 for a summary of state-of-the-art construction algorithms of RLBWT). In
the indirect constructions of RLBWT, the BWT of an input string is first built and then the



T. Nishimoto, S. Kanda, and Y. Tabei 99:3

BWT is encoded into the RLBWT by run-length encoding. Several efficient algorithms for
constructing the BWT of a given string have been proposed [4, 16, 21, 8, 16, 20]. Let T be
a string of length n with an alphabet of size σ, and let r be the number of equal-letter runs
in its BWT. Kempa [15] proposed a RAM-optimal time construction of the BWT of string
T with compression ratio n/r = Ω(polylog n). The algorithm runs in O(n/ logσ n) time with
O(n log σ) bits of working space. Kempa and Kociumaka also proposed a BWT construction
in O(n log σ) bits of working space [16]. This algorithm runs in O(n log σ/

√
log n) time,

which is bounded by o(n) time for a string with log σ = o(
√

log n). These algorithms are not
space efficient for highly repetitive strings in that their working space is linearly proportional
to the length of the input string.

Big-BWT [5] is a practical algorithm for constructing the BWT of a huge string using
prefix-free parsing, which constructs a dictionary of strings and a factorization from string T .
Although Big-BWT runs in optimal time (i.e., O(n)) with O(|PFP| log n) bits of working space
for the sum |PFP| of (i) the lengths of all the strings in the dictionary and (ii) the number of
strings in the factorization, Big-BWT is not space efficient for highly repetitive strings in
the worst case, because |PFP| can be

√
n times larger than r, resulting in Ω(r

√
n log n) bits

of working space (see the full version of the paper [24] for the proof). Even worse, several
data structures used in these indirect constructions cannot be updated. Thus, one needs
to rebuild the data structures from scratch for a newly added character, which reduces the
usability of indirect constructions of RLBWT.

In the direct constructions of RLBWT, Policriti and Prezza [30] proposed an algorithm
for the construction of RLBWT, which we call PP method. The PP method reads an input
string in reverse by one character, and it gradually builds the RLBWT corresponding to the
suffix that was just read, where an inefficient dynamic wavelet tree is used for inserting a
character into the RLBWT at an appropriate position, limiting the scalability of the PP
method in practice. Ohno et al. [28] proposed a faster method, which we call Faster-PP
method, by replacing the dynamic wavelet tree used in the PP method by a B-tree. Whereas
both the PP method and Faster-PP method run with the same time and space complexities –
O(n log r) time and O(r log n) bits of working space – the time complexity is not the optimal
time for most highly repetitive strings.

Kempa and Kociumaka [17] proposed a conversion algorithm, which is referred to as
KK method, from the LZ77 parsing [34] of T to the RLBWT in O(z log7 n) time with
O(z polylog n) bits of space, where z is the number of phrases in the parsing. Theoretically,
we can compute the RLBWT of an input string by combining the KK method with an
algorithm for computing the LZ77 parsing (e.g., [23]), and the working space of their
conversion is bounded by O(r polylog n) bits because z = O(r log n) [22]. Kempa and
Langmead [18] proposed a practical algorithm for constructing a compressed grammar from
an input string in Ω(n) time using an approximate LZ77 parsing. Because these methods use
several static data structures that cannot be updated, the data structures must be rebuilt
from scratch when a new character is added.

Although there are several algorithms for indirectly or directly constructing the RLBWT,
no previous work has been able to achieve optimal time (i.e., O(n) time) with BWT-runs
bounded space (i.e., O(r log n) bits). We present r-comp, the first direct construction of
RLBWT that achieves optimal time with BWT-runs bounded space for most highly repetitive
strings. Details of r-comp are presented in the following sections.

This paper is organized as follows. Section 3 introduces basic notions used in this paper,
and a DBWT representation of BWT is presented in Section 4. Section 5 presents an
LF-interval graph representation of DBWT and a fast update operation on LF-interval
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$ a
a $ b
a bba$ b
a bbabba$ b
a bbabbabba$ $
b a$ b
b abba$ b
b abbabba$ b
b ba$ a
b babba$ a
b babbabba$ a

$ a
a $ b
a abbabbabba$ $
a bba$ b
a bbabba$ b
a bbabbabba$ a
b a$ b
b abba$ b
b abbabba$ b
b ba$ a
b babba$ a
b babbabba$ a

L11F11 L12F12

Sorted suffixes of T11

x1 = 11
x2 = 10
x3 = 7
x4 = 4
x5 = 1
x6 = 9
x7 = 6
x8 = 3
x9 = 8
x10 = 5
x11 = 2

Figure 1 (Left) Sorted suffixes of T11 = abbabbabba$, F11, and L11. (Right) Sorted suffixes of
T12 = aabbabbabba$, F12, and L12.

graphs. The r-comp algorithm is presented in Section 6. Section 7 presents the experimental
results using the r-comp algorithm on benchmark and real-world datasets of highly repetitive
strings.

3 Preliminaries

Basic notation. An interval [b, e] for two integers b and e (b ≤ e) represents the set
{b, b + 1, . . . , e}. Let T be a string of length n over an alphabet Σ = {1, 2, . . . , nO(1)} of
size σ, and |T | be the length of T (i.e., |T | = n). Let T [i] be the i-th character of T (i.e.,
T = T [1], T [2], . . . , T [n]) and T [i..j] be the substring of T that begins at position i and ends
at position j. Let Tδ be the suffix of T of length δ (1 ≤ δ ≤ n), i.e., Tδ = T [(n− δ + 1)..n].
A rank query rank(T, c, i) on a string T returns the number of occurrences of character c in
T [1..i], i.e., rank(T, c, i) = |{j | T [j] = c, 1 ≤ j ≤ i}|.

For a string P , P [i] < P [j] means that the i-th character of P is smaller than the j-th
character of P . Moreover, T ≺ P means that T is lexicographically smaller than P . Formally,
T ≺ P if and only if either of the following two conditions holds: (i) there exists an integer i

such that T [1..i− 1] = P [1..i− 1] and T [i] < P [i]; (ii) T is a prefix of P (i.e., T = P [1..|T |])
and |T | < |P |. Here, occ<(T, c) denotes the number of characters smaller than character c

in string T (i.e., occ<(T, c) = |{j | j ∈ {1, 2, . . . , n} s.t. T [j] < c}|). Special character $ is
the smallest character in Σ. Throughout this paper, we assume that special character $ only
appears at the end of T (i.e., T [n] = $ and T [i] ̸= $ for all {1, 2, . . . , n− 1}).

A run is defined as the maximal repetition of the same character. Formally, a substring
T [i..j] of T is a run of the same character c if it satisfies the following three conditions: (i)
T [i..j] is a repetition of the same character c (i.e., T [i] = T [i + 1] = · · · = T [j] = c); (ii) i = 1
or T [i− 1] ̸= c; (iii) j = n or T [j + 1] ̸= c.

We use base-2 logarithm throughout this paper. Our computation model is a unit-cost
word RAM with a machine word size of Θ(log n) bits. We evaluate the space complexity
in terms of the number of machine words. A bitwise evaluation of space complexity can be
obtained with a log n multiplicative factor.

BWT, LF function, and RLBWT. The BWT [6] of a suffix Tδ is a permuted string Lδ of
Tδ, and it is constructed as follows: all the suffixes of Tδ are sorted in the lexicographical
order and the character preceding each suffix is taken. Formally, let x1, x2, . . . , xδ be
the starting positions of the sorted suffixes of Tδ (i.e., x1, x2, . . . , xδ are a permutation
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Figure 2 DBWT-repetitions and their corresponding F-intervals on F11 for a DBWT D11 =
a, bb, b, $, bbb, aa, a of BWT L11 in Figure 1. Each rectangle on L11 represents a DBWT-repetition,
and each rectangle on F11 represents an F-interval on F11. Each directed arrow indicates the
F-interval corresponding to the DBWT-repetition on L11.

of sequence 1, 2, . . . , δ such that Tδ[x1..δ] ≺ Tδ[x2..δ] ≺ · · · ≺ Tδ[xn..δ]). Then, Lδ =
Tδ[x1 − 1], Tδ[x2 − 1], . . . , Tδ[xδ − 1]), where Tδ[0] is defined as the last character of Tδ (i.e.,
Tδ[0] = Tδ[δ] = $). Similarly, the permuted string Fδ of suffix Tδ consists of the first
characters of the sorted suffixes of Tδ, i.e., Fδ = Tδ[x1], Tδ[x2], . . . , Tδ[xδ].

Figure 1 illustrates the sorted suffixes of T11 and T12 for T = aabbabbabba$. Here,
x1, x2, . . . , x11 are the starting positions of the sorted suffixes of T11. Moreover, L11 =
abbb$bbbaaa and F11 = $aaaabbbbbb. The BWT of T is L12 = ab$bbabbbaaa.

There is a one-to-one correspondence between Lδ and Fδ because the two strings are
permutations of Tδ. Formally, for two integers i, j ∈ {1, 2, . . . , δ}, Lδ[i] corresponds to Fδ[j]
if and only if either of the following two conditions holds: (i) xi − 1 = xj or (ii) xi = 1 and
xj = δ. LF function LFδ is a bijective function from Lδ to Fδ [11]. Function LFδ(i) = j for
two integers i, j ∈ {1, 2, . . . , δ} if and only if Lδ[i] corresponds to Fδ[j]. LF formula [11] is a
well-known property of LF function, and it enables us to compute the corresponding position
in Fδ from a position in Lδ. Namely, LFδ(i) is equal to the summation of (i) the number
of characters in Lδ smaller than Lδ[i] and (ii) the number of Lδ[i] in the prefix Lδ[1..i], i.e.,
LFδ(i) = occ<(Lδ, Lδ[i]) + rank(Lδ, i, Lδ[i]).

BWT can be separated into all the runs of the same character. We call each run BWT-run.
For BWT Lδ, r BWT-runs P1, P2, . . . , Pr satisfy (i) Lδ = P1, P2, . . . , Pr and (ii) each Pi

(i = 1, 2, . . . , r) is a run of the same character in Lδ. The RLBWT of a suffix Tδ is defined as
a sequence of r pairs (P1[1], |P1|), (P2[1], |P2|), . . ., (Pr[1], |Pr|). The RLBWT can be stored
in r(log n + log σ) bits, and we can recover Tδ from the RLBWT using LF function (e.g.,
[26]). Throughout this paper, r denotes the number of BWT-runs in the BWT of T .

In Figure 1, the BWT-runs in the BWT L11 of T11 are a, bbb, $, bbb, and aaa. The
RLBWT of T11 is (a, 1), (b, 3), ($, 1), (b, 3), and (a, 3).

4 DBWT

The divided BWT (DBWT) is a general concept in the RLBWT and is the foundation
of the LF-interval graph. Formally, the DBWT Dδ of BWT Lδ is defined as a sequence
Lδ[p1..(p2 − 1)], Lδ[p2..(p3 − 1)], . . . , Lδ[pk..(pk+1 − 1)] for p1 = 1 < p2 < · · · < pk < pk+1 =
n + 1, where Lδ[pi..(pi+1 − 1)] for each i = 1, 2, . . . , k is a repetition of the same character.
We call each repetition of the same character in the DBWT DBWT-repetition. A DBWT-
repetition is not necessarily a run. DBWT Dδ is equal to the RLBWT of Tδ if and only if
Lδ[pi..(pi − 1)] for each i ∈ {1, 2, . . . , k} is a run.

ICALP 2022
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In Figure 2, sequence D11 = a, bb, b, $, bbb, aa, a of equal-letter repetitions is a DBWT
for BWT L11 of string T11. The DBWT-repetitions in D11 are the strings enclosed by the
rectangles on L11.

The DBWT of a BWT is not unique because a BWT can be divided by various criteria.
We present a criterion for DBWT in the following in order to efficiently build RLBWT. The
LF function maps each DBWT-repetition Lδ[pi..(pi+1 − 1)] into the consecutive characters
on interval [LFδ(pi), LFδ(pi+1 − 1)], which is called an F-interval on Fδ. The LF formula
enables us to compute LFδ(j) for each position j ∈ [pi, (pi+1 − 1)] on the i-th DBWT-
repetition in O(1) time using the starting position pi of the DBWT-repetition and the F-
interval [LFδ(pi), LFδ(pi+1 − 1)] corresponding to the DBWT-repetition as follows: LFδ(j) =
LFδ(pi) + j − pi.

In Figure 2, each F-interval on F11 corresponding to a DBWT-repetition on L11 is enclosed
by a rectangle. The F-intervals on F11 are [1, 1], [2, 2], [3, 4], [5, 5], [6, 7], [8, 8], and [9, 11].
The F-interval corresponding to the second DBWT-repetition bb is [6, 7].

Let α be a user-defined parameter no less than 2 (i.e., α ≥ 2). DBWT-
repetition Lδ[pi..(pi+1 − 1)] is said to cover the starting position LFδ(pj) of an F-interval
[LFδ(pj), LFδ(pj+1)] on Fδ if interval [pi, (pi+1 − 1)] on Fδ contains the position LFδ(pj) (i.e.,
LFδ(pj) ∈ [pi, (pi+1 − 1)]). The DBWT-repetition is said to be α-heavy if it covers at least
α starting positions of the F-intervals on Fδ for parameter α ≥ 2. Similarly, F-interval
[LFδ(pi), LFδ(pi+1 − 1)] on Fδ is said to cover the starting position pj of a DBWT-repetition
Lδ[pj ..(pj+1 − 1)] if interval [LFδ(pi), LFδ(pi+1 − 1)] on Lδ contains the position pj (i.e.,
pj ∈ [LFδ(pi), LFδ(pi+1 − 1)]). An F-interval is said to be α-heavy if it covers at least
α starting positions of DBWT-repetitions for parameter α ≥ 2. A DBWT is said to be
α-balanced if the DBWT includes neither α-heavy DBWT-repetitions nor F-intervals, and
Dα

δ denotes an α-balanced DBWT of BWT Lδ.
In Figure 2 with α = 3, the fifth DBWT-repetition bbb of D11 covers two starting positions

of F-intervals [6, 7] and [8, 8] on F11, and the DBWT-repetition is not 3-heavy. The F-interval
[9, 11] of the fifth DBWT-repetition covers the starting positions of two DBWT-repetitions
aa and a. Moreover, the F-interval of the fifth DBWT-repetition is not 3-heavy. Thus, D11
is 3-balanced because D11 includes neither 3-heavy DBWT-repetitions nor F-intervals.

In the next section, the α-balanced DBWT is used to derive the time needed to update
an LF-interval graph.

5 LF-interval graph

An LF-interval graph is a bipartite graph that represents both (i) the correspondence between
each pair of elements in Lδ and Fδ according to the LF function and (ii) a covering relationship
between DBWT-repetitions and F-intervals on a DBWT. The LF-interval graph Grp(Dδ) for
DBWT Dδ of k DBWT-repetitions Lδ[p1..(p2 − 1)], Lδ[p2..(p3 − 1)], . . . , Lδ[pk..(pk+1 − 1)] is
defined as 4-tuple (U ∪ V , ELF ∪EL ∪EF , BU ∪BV , BL ∪BF ), as detailed in the following.

Set U = {u1, u2, . . . , uk} is a set of nodes, and ui for each i ∈ {1, 2, . . . , k} represents the i-
th DBWT-repetition Lδ[pi..(pi+1−1)] on DBWT Dδ. Moreover, set V = {v1, v2, . . . , vk} is a
set of nodes, and vi for each i ∈ {1, 2, . . . , k} represents the F-interval [LFδ(pi), LFδ(pi+1−1)]
mapped from the i-th DBWT-repetition represented as ui on DBWT Dδ by the LF function.

The set ELF of undirected edges in LF-interval graph Grp(Dδ) represents the correspond-
ence between DBWT-repetitions on DBWT Dδ and F-intervals on Fδ according to the LF
function. Formally, ELF ⊆ (U × V ) is a set of undirected edges between U and V , and
(ui, vj) ∈ ELF holds if and only if the i-th DBWT-repetition Lδ[pi..(pi+1 − 1)] represented
as ui is mapped to the j-th F-interval [LFδ(pj), LFδ(pj+1 − 1)] represented as vj . Namely,
ELF = {(u1, v1), (u2, v2), . . . , (uk, vk)}.
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BU (u1) = BV (v1) = (a, 1)
BU (u2) = BV (v2) = (b, 2)
BU (u3) = BV (v3) = (b, 1)
BU (u4) = BV (v4) = ($, 1)
BU (u5) = BV (v5) = (b, 3)
BU (u6) = BV (v6) = (a, 2)
BU (u7) = BV (v7) = (a, 1)

BL(u1, v4) = 0
BL(u2, v1) = 0
BL(u3, v6) = 1
BL(u4, v7) = 0
BL(u5, v2) = 0
BL(u6, v5) = 0
BL(u7, v5) = 2
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b
b
b
$
b
b
b
a
a
a

$
a
a
a
a
b
b
b
b
b
b

L11F11
u1

u2

u3
u4

u5

u6

u7

v1

v2

v3

v4

v5

v6

v7

BF(v1, u2) = 0
BF(v2, u5) = 0
BF(v3, u5) = 2
BF(v4, u1) = 0
BF(v5, u6) = 0
BF(v6, u2) = 1
BF(v7, u4) = 0

Figure 3 LF-interval graph Grp(D11) for DBWT D11 in Figure 2.

Two sets EL and EF of directed edges represent the covering relationship between DBWT-
repetitions and F-intervals on DBWT Dδ. Set EL ⊆ (U × V ) is a set of directed edges
from U to V , and (ui, vj) ∈ EL holds if and only if F-interval [LFδ(pj), LFδ(pj+1 − 1)],
represented as vj , covers the starting position pi of DBWT-repetition Lδ[pi..(pi+1 − 1)],
represented as ui. Formally, EL = {(ui, vj) | 1 ≤ i, j ≤ k s.t. pi ∈ [LFδ(pj), LFδ(pj+1 − 1)]}.
Similarly, EF ⊆ (V × U) is a set of directed edges from V to U , and (vj , ui) ∈ EF

holds if and only if DBWT-repetition Lδ[pi..(pi+1 − 1)], represented as ui, covers the
starting position LFδ(pj) of F-interval [LFδ(pj), LFδ(pj+1 − 1)], represented as vj . Formally,
EF = {(vj , ui) | 1 ≤ i, j ≤ k s.t. LFδ(pj) ∈ [pi, (pi+1 − 1)]}.

Function BU : U → (Σ,N) is a label function for the set U of nodes, and it maps each
node ui ∈ U to a pair consisting of the character in Σ and the length in N = {1, 2, . . .}
for the i-th DBWT-repetition represented by ui. Namely, BU (ui) = (Lδ[pi], pi+1 − pi).
Similarly, BV : V → (Σ,N) is a label function for the set V of nodes, and it maps each
node vi ∈ V to a pair consisting of the character in Σ and the length in N for the repetition
Fδ[LFδ(pi)..LFδ(pi+1− 1)] of the same character on the F-interval represented by vi. Namely,
BV (vi) = (Fδ[LFδ(pi)], LFδ(pi+1−1)−LFδ(pi)+1). For all i ∈ {1, 2, . . . , k}, BU (ui) = BV (vi)
holds by the LF formula.

Function BL : EL → N is a label function for the set EL of directed edges, and it maps each
edge (ui, vj) ∈ EL to an integer value representing the difference between the starting position
pi of DBWT-repetition Lδ[pi..(pi+1− 1)], represented as ui, and the starting position LFδ(pj)
of F-interval [LFδ(pj), LFδ(pj+1 − 1)], represented as vj . Namely, BL(ui, vj) = pi − LFδ(pj).

Similarly, BF : EF → N is a label function for the set EF of directed edges, and it
maps each edge (vj , ui) ∈ EF to an integer value representing the difference between the
starting position LFδ(pj) of F-interval [LFδ(pj), LFδ(pj+1 − 1)], represented as vj , and the
starting position pi of DBWT-repetition Lδ[pi..(pi+1 − 1)], represented as ui. Namely,
BF (vj , ui) = LFδ(pj)− pi.

Figure 3 illustrates LF-interval graph Grp(D11) for DBWT D11 in Figure 2. For U =
{u1, u2, . . . , u7} and V = {v1, v2, . . . , v7}, each node ui ∈ U (respectively, vj ∈ V ) is enclosed
by a rectangle on L11 (respectively, F11). We have ELF = {(u1, v1), (u2, v2), (u3, v3),
(u4, v4), (u5, v5), (u6, v6), (u7, v7)}. We depict each undirected edge in set ELF by solid
lines. Moreover, EL = {(u1, v4), (u2, v1), (u3, v6), (u4, v7), (u5, v2), (u6, v5), (u7, v5)}, and
EF = {(v1, u2), (v2, u5), (v3, u5), (v4, u1), (v5, u6), (v6, u2), (v7, u4)}. Each directed edge in
the two sets EL and EF is depicted by a dotted arrow. The four label functions BU , BV ,
BL, and BF are listed in Figure 3.
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5.1 Dynamic data structures for the LF-interval graph
Several dynamic data structures are used for efficiently updating LF-interval graph Grp(Dδ).
Two doubly linked lists are used for supporting the insertions and deletions of nodes in U

and V . The nodes in U should be totally ordered with respect to the starting position of
the DBWT-repetition, which is represented as a node in U . Namely, u1 < u2 < · · · < uk.
The nodes in set U are stored in a doubly linked list, where each node ui ∈ U has previous
and next pointers connecting to the previous and next nodes, respectively, in the total
order of nodes in U . Similarly, the nodes in V should be totally ordered with respect
to the starting position of the F-interval, which is represented as a node in V . Namely,
vπ1 < vπ2 < . . . < vπk

holds for permutation π1, π2, . . . , πk of sequence 1, 2, . . . , k such that
LFδ(pπ1) < LFδ(pπ2) < . . . < LFδ(pπk

). The nodes in V are stored in another doubly linked
list, where each node vi ∈ V has previous and next pointers connecting to the previous and
next nodes in the increasing order of nodes in V , respectively. The space of two doubly
linked lists storing nodes in U and V is O(k log n) bits.

All the nodes corresponding to α-heavy DBWT-repetitions in U are stored in an array
data structure in any order. Similarly, all the nodes corresponding to α-heavy F-intervals in
V are stored in another array data structure in any order. The two arrays take O(k log n)
bits of space. Each array stores nothing if Dδ is α-balanced.

An order maintenance data structure [9] is used for comparing two nodes in U with the
total order of U , and the data structure supports the following three operations: (i) the
order operation determines whether or not node ui ∈ U precedes node uj ∈ U in the total
order of U ; (ii) the insertion operation inserts node ui ∈ U right after node uj ∈ U in the
total order of U ; (iii) the deletion operation deletes node ui ∈ U from U . The data structure
supports these three operations in O(1) time with O(k log n) bits of space, and it is used
with a B-tree that stores the nodes in V , as explained below.

A B-tree (a type of self-balancing search tree) is built on the set V of nodes using the
combination of the order maintenance data structure, where each node vi in V is totally
ordered with respect to (i) the total order of the node ui in U that is connected to vi by an
edge in ELF (i.e., (ui, vi) ∈ ELF ) and (ii) the first character Lδ[pi] of the DBWT-repetition
is represented as ui. For a node vi ∈ V , the B-tree stores a pair (ui, Lδ[pi]) as the key of the
node vi. Nodes in V are totally ordered using the key, and vi ∈ V precedes vj ∈ V if and
only if either of the following conditions holds: (i) Lδ[pi] < Lδ[pj ] or (ii) Lδ[pi] = Lδ[pj ] and
ui precedes uj in the total order of U (i.e., i < j). Condition (ii) is efficiently computed in
O(1) time by the order maintenance data structure of U . According to the following lemma,
the order of keys in the B-tree is the same as that of the nodes stored in the doubly linked
list of V (i.e., the order of the nodes in the B-tree is vπ1 < vπ2 < . . . < vπk

).

▶ Lemma 1. For two distinct nodes vi, vj ∈ V , the key of vi precedes that of vj in the B-tree
of V if and only if vi precedes vj in the doubly linked list of V (i.e., LFδ(pi) < LFδ(pj)).

Proof. See the full version of the paper [24]. ◀

The B-tree with the order maintenance data structure supports the three operations of
search, insertion, and deletion for any node in V in O(log k) time with O(k log n) bits of
space.

5.2 Extension of BWT ([30, 28])
The BWT of a suffix can be extended from the BWT of a shorter suffix [30, 28]. In this
section, we review the extension of BWT, which is used for updating the LF-interval graph.
The BWT Lδ+1 of a suffix Tδ+1 of length δ + 1 can be computed from the BWT Lδ of the
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Figure 4 Each step in the update operation for the LF-interval graph in Figure 3. New nodes
and edges created in each step are colored in red.

suffix Tδ of length δ using the following two steps: (i) special character $ in Lδ is replaced
with the first character c of Tδ+1 (i.e., c = T [n− δ]); (ii) special character $ is inserted into
Lδ at a position ins. Here, ins is computed by the LF formula as follows: for the position rep
of special character $ in Lδ (i.e., Lδ[rep] = $), ins = occ<(Lδ, c) + rank(Lδ, rep, c) + 1.

In Figure 1, BWT L12 of suffix T12 can be extended from L11 of suffix T11. The first
character c of T12 is a, and special character $ is replaced with a at rep = 5 on L11. The
insertion position ins for L11 is 3 because occ<(L11, a) + rank(L11, rep, a) + 1 = 3.

5.3 Foundation of updates of the LF-interval graph
Given the first character c in suffix Tδ+1 of length δ + 1, an update operation of LF-
interval graph Grp(Dα

δ ) for an α-balanced DBWT Dα
δ = Lδ[p1..(p2 − 1)], Lδ[p2..(p3 −

1)], . . . , Lδ[pk..(pk+1 − 1)] of Tδ updates Grp(Dα
δ ) to Grp(D2α+1

δ+1 ) for a (2α + 1)-balanced
DBWT D2α+1

δ+1 of Tδ+1. The update operation updates the given LF-interval graph according
to the extension of BWT. This operation consists of four main steps: (I) replace node, (II)
split node, (III) insert node, and (IV) update edge. Note that the update operation presented
in this section is a foundation for the ones presented in the following two subsections, where
several modifications are made to the foundation for faster operation.

(I) Replace node. This step replaces the node ui ∈ U labeled ($, 1) with a new one ui′

labeled (c, 1), and it updates V according to the replacement of the node in U . Node ui can
be found in O(1) time by keeping track of it on U . The doubly linked list of U is updated
according to the replacement. The node vi ∈ V connected to ui by edge (ui, vi) ∈ ELF is
removed from V , and a new node vi′ labeled (c, 1) is inserted into V at the position next to
the most backward node vg of the nodes whose keys are smaller than key (ui, c). Node vg

can be found in O(log k) time using the B-tree of V . This step takes O(log k) time in total.
Figure 4-(I) shows an example of the replace-node step for the LF-interval graph Grp(D11)

in Figure 3. Node u4 ∈ U labeled ($, 1) on Grp(D11) is replaced with node u8 labeled (a, 1).
Node v4 ∈ V , which is connected to u4 by edge (v4, u4) ∈ ELF , is removed from V , and edge
(v4, u4) is removed from ELF . A new node v8 with label (a, 1) is inserted into V . This node
is inserted into the doubly linked list of V at the position next to v1 (i.e., vg = v1).

(II) Split node. The insert-node step (as the next step) inserts a new node representing
special character $ into U . However, before the insert-node step, the split-node step splits
a node uj ∈ U into two new nodes at an appropriate position on the doubly linked list of
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U . This step is executed for inserting the new node representing special character $ into
U at a appropriate position in the insert-node step. Following the extension of BWT in
Section 5.2, node uj ∈ U has label (Lδ[pj ], pj+1 − pj) for the two starting positions pj and
pj+1 satisfying pj < ins < pj+1 for the insertion position ins of special character $. Such a
node uj exists if and only if (i) the BWT Lδ+1 of Tδ+1 does not have special character $ as
the last character (i.e., ins ̸= δ + 1) and (ii) pi ̸= ins for all i ∈ {1, 2, . . . , k}. This is because
p1 < p2 < . . . < pk+1 and pk+1 = δ + 1 hold.

If node uj does not exist in U , this step does not split nodes. Otherwise, uj is replaced
with two new nodes uj′ and uj′+1 in the doubly linked list of U , where uj′ is previous to
uj′+1. The new nodes uj′ and uj′+1 are labeled as (Lδ[pj ], ins− pj) and (Lδ[pj ], pj+1 − ins)
using insertion position ins, respectively.

Although we do not know position ins in the split-node step, we can find node uj . This
is because (i) set V contains node vgnext representing the F-interval starting at position ins
unless ins = δ + 1, and (ii) vgnext is next to vg in the doubly linked list of V for the node vg

searched for in the replace-node step. The following lemma ensures that we can find uj and
compute the labels of the new nodes in O(1) time.

▶ Lemma 2. The following two statements hold after executing the replace-node step: (i) we
can check whether uj exists or not in O(1) time; (ii) we can find uj and compute the labels
of two nodes uj′ and uj′+1 in O(1) time.

Proof. See the full version of the paper [24]. ◀

Next, set V is updated according to the replacement of nodes in U , i.e., for undirected
edge (uj , vj) ∈ ELF , node vj is replaced with two new nodes vj′ and vj′+1 in the doubly
linked list of V , where vj′ is previous to vj′+1. Nodes vj′ and vj′+1 have the same labels of
uj′ and uj′+1, respectively. Therefore, this step takes O(1) time.

Figure 4-(II) illustrates an example of the split-node step. In this example, ins = 3,
vgnext = v6, vj = v2, vj′ = v9, and vj′+1 = v10 hold. In Figure 3, the directed edge starting
at node v6 is labeled as integer 1 by function BF (v6, u2), and the directed edge points to
node u2 with label (b, 2). Hence, node u2 is replaced with two nodes u9 and u10. Two nodes
u9 and u10 are labeled with pairs (b, 1) and (b, 1), respectively. Node v2 is connected to u2
by edge (v2, u2) ∈ ELF , and v2 is replaced with two nodes v9 and v10. Here, v9 and v10 are
labeled with pairs (b, 1) and (b, 1), respectively.

(III) Insert node. This step inserts a new node ux′ labeled ($, 1) into U , and it updates V

according to the insertion of U . Analogous to the extension of BWT described in Section 5.2,
the position for inserting the new node in the doubly linked list of U is determined according
to the following three cases: (i) Node uj ∈ U was found and it was split into two nodes
uj′ and uj′+1 in the split-node step. In this case, node ux′ is inserted at the position next
to uj′ ∈ U on the doubly linked list of U . (ii) Node uj was not found, and new node vi′

is inserted at the position next to the last element on the doubly linked list of V in the
replace-node step. In this case, ux′ is inserted at the position next to the last element on
the doubly linked list of U . (iii) Node uj was not found, and vi′ is inserted at the position
previous to a node vgnext ∈ V on the doubly linked list of V . In this case, vgnext is connected
to a node ux ∈ U by a directed edge in EF , and ux′ is inserted into the doubly linked list of
U at the position previous to ux.

Next, this step creates a new node vx′ labeled ($, 1), and it is inserted into the doubly
linked list of V . The new node is inserted at the top of the list, because the new label
includes special character $. This step takes O(1) time.
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Figure 4-(III) illustrates an example of the insert-node step. Because the split-node step
replaced node u2 with two nodes u9 and u10, the insert-node step inserts node u11 labeled
($, 1) at the position next to u9 on the doubly linked list of U . On the other hand, the
step inserts node v11 labeled ($, 1) in the doubly linked list of V at the position previous to
node v1.

(IV) Update edge. This step updates the set ELF of undirected edges and two sets EL and
EF of directed edges according to the two sets U and V , which were updated in the previous
steps. This step consists of two phases: (i) for the nodes of ui, vi, uj , and vj removed in
the replace-node and split-node steps, the edges connected to these nodes are removed from
ELF , EL, and EF ; (ii) new edges connecting new nodes (i.e., uj′ , uj′+1, vi′ , and vj′+1) are
added to ELF , EL, and EF . The labels of new directed edges are computed at the second
phase. The number of removed edges and new edges can be bounded by O(α) because (i)
every node in the LF-interval graph for an O(α)-balanced DBWT is connected to O(α)
edges, (ii) the DBWT represented by the given LF-interval graph Grp(Dα

δ ) is α-balanced,
and (iii) the LF-interval graph Grp(D2α+1

δ+1 ) outputted by this update operation represents
a (2α + 1)-balanced DBWT. Because the number of updated edges is small, this step can
be performed in O(α) time. See the full version of the paper [24] for the details of the
update-edge step. Formally, we obtain the following lemma.

▶ Lemma 3. The update-edge step takes O(α) time.

Proof. See the full version of the paper [24]. ◀

In Figure 4-(IV), four edges (u8, v8), (u9, v9), (u10, v10), and (u11, v11) connecting new
nodes are added to ELF . Six directed edges (u1, v11), (u9, v1), (u11, v8), (u10, v6), (u8, v7),
and (u5, v9) are added to EL. Similarly, seven directed edges (v11, u1), (v1, u9), (v8, u11),
(v6, u10), (v7, u8), (v9, u5), and (v10, u5) are added to EF .

Update of the data structures. Similar to the update-edge step, the four data structures
in the LF-interval graph (i.e., the order maintenance data structure, the B-tree of set V , and
two arrays that store nodes representing α-heavy DBWT-repetitions and F-intervals) are
updated according to the removed nodes and new nodes.

See the full version of the paper [24] for the details of the algorithm updating the four
data structures. The following lemma concerning the update time of the four data structures.

▶ Lemma 4. Updating the four data structures takes O(α + log k) time.

Proof. See the full version of the paper [24]. ◀

The update operation takes O(α + log k) time in total. The following lemma concerning
the theoretical results on this update operation holds.

▶ Theorem 5. The following two statements hold: (i) the update operation takes O(α+log k)
time; (ii) the update operation takes as input the LF-interval graph for an α-balanced DBWT
Dα

δ of BWT Lδ, and it outputs the LF-interval graph for a (2α+1)-balanced DBWT D2α+1
δ+1 of

BWT Lδ+1 with at most two α-heavy DBWT-repetitions and at most two α-heavy F-intervals.

Proof. See the full version of the paper [24]. ◀
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From Theorem 5, the update operation outputs the LF-interval graph for a (2α + 1)-
balanced DBWT D2α+1

δ+1 of BWT Lδ+1, which is not α-balanced. The output DBWT D2α+1
δ+1 is

balanced into an α-balanced DBWT Dα
δ+1 by the balancing operation presented in Section 5.6.

The update of the LF-interval graph presented in this section takes O(α + log k) time, which
results in an O(αn + n log k)-time construction of the RLBWT from an input string of length
n. The following two sections (Section 5.4 and Section 5.5) present two modified updates of
the LF-interval graph in O(α + log k)-time and O(α)-time, respectively, in order to achieve
the O(αn + r log r)-time construction of an RLBWT with O(r log n) bits of working space.

5.4 O(α + log k)-time update of LF-interval graph
This section presents the update operation update(Grp(Dα

δ ), c) taking an LF-interval graph
Grp(Dα

δ ) and the first character c of suffix Tδ+1 as input and running in O(α + log k) time
by modifying the foundation of the update operation presented in Section 5.3. For the node
ui−1 previous to the node ui representing special character $ in the doubly linked list of U

and the node ui+1 next to ui, update operation update(Grp(Dα
δ ), c) is applied if neither ui−1

nor ui+1 has labels including character c.
We first present a modified update of the B-tree of V in O(log k) time. This update

replaces the original update of the B-tree. The following lemma holds with respect to nodes
searched for using the B-tree of V in the replace-node step of this update operation.

▶ Lemma 6. For the node vg ∈ V searched for using the B-tree of V in the replace-node
step of the update operation update(Grp(Dα

δ ), c), vg satisfies any one of the following three
properties: (i) for undirected edge (ug, vg) ∈ ELF and node ug+1 ∈ U next to ug in the
doubly linked list of U , the two consecutive nodes ug and ug+1 have labels including different
characters, and the label of ug+1 does not include special character $; (ii) for the node
ug+2 ∈ U next to ug+1 in the doubly linked list of U , the two nodes ug and ug+2 have labels
including different characters, and the label of ug+1 includes special character $; (iii) the
label of ug includes special character $.

Proof. See the full version of the paper [24]. ◀

Thus, the B-tree of V stores only the nodes in V satisfying one of the three conditions of
Lemma 6, because Lemma 6 ensures only such nodes are searched for in the replace-node
step of this update operation.

The target nodes inserted into the B-tree of V (respectively, the target nodes deleted
from the B-tree of V ) are limited to four (respectively, three) according to the following
lemma.

▶ Lemma 7. Nodes ui ∈ U and vi ∈ V are the nodes removed from U and V by the replace-
node steps, respectively. Node ui−1 ∈ U is the node previous to node ui in the doubly linked
list of U , and vi−1 ∈ V is the node connected to ui−1 by undirected edge (ui−1, vi−1) ∈ ELF .
Node vj ∈ V is the node removed from V by the split-node step, and vj′ , vj′+1 ∈ V are the
nodes newly created by the same step. Similarly, vi′ ∈ V and vx′ ∈ V are the nodes created
by the replace-node and insert-node steps, respectively. Then, the following two statements
hold for the update operation update(Grp(Dα

δ ), c): (i) targets inserted into the B-tree of V

can be limited to only four nodes vi−1, vi′ , vx′ , and vj′+1; (ii) the targets deleted from the
B-tree of V can be limited to only three nodes, vi−1, vi, and vj.

Proof. See the full version of the paper [24]. ◀
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Thus, all the nodes inserted into the B-tree of V can be found by searching for only
four nodes vi−1, vi′ , vx′ , and vj′+1 and checking whether or not each one, vi−1, vi′ , vx′ , and
vj′+1, satisfies one of the three conditions presented in Lemma 6. Similarly, all the nodes
deleted from the B-tree of V can be found by searching for only three nodes vi−1, vi, and vj

and checking whether or not each of these nodes satisfies one of the three conditions. This
modified update of the B-tree takes O(log k) time in total.

The algorithm of update operation update(Grp(Dα
δ ), c) is the same as that of the original

update operation presented in Section 5.3 except for the algorithm updating the B-tree of V .
Hence, update operation update(Grp(Dα

δ ), c) takes O(α + log k) time in total. The following
lemma concerning the theoretical results on this update operation holds.

▶ Lemma 8. Assume that the B-tree of V in LF-interval graph Grp(Dα
δ ) contains only nodes

satisfying one of the three conditions of Lemma 6: (i) update operation update(Grp(Dα
δ ), c)

runs in O(α+log k) time; (ii) the update operation outputs the LF-interval graph Grp(D2α+1
δ+1 )

for a (2α + 1)-balanced DBWT D2α+1
δ+1 of BWT Lδ+1 with at most two α-heavy DBWT-

repetitions and at most two α-heavy F-intervals; (iii) the B-tree of V in the outputted
LF-interval graph contains only nodes satisfying one of the three conditions of Lemma 6.

In the next subsection, the second modified update operation of LF-interval graph achieves
O(α) time using the B-tree of V containing only nodes satisfying one of the three conditions
of Lemma 6.

5.5 O(α)-time update of LF-interval graph
This section presents fast update operation fastUpdate(Grp(Dα

δ ), c), which takes an LF-
interval graph Grp(Dα

δ ) and the first character c of suffix Tδ+1 as input and runs in O(α)
time. This time is achieved by modifying the foundation of the update operation presented
in Section 5.3, and the B-tree of V needs to contain only nodes of satisfying one of the three
conditions of Lemma 6 in the input and output LF-interval graphs, similar to the update
operation in Section 5.4 (Lemma 8).

For node ui−1 ∈ U previous to node ui ∈ U that represents special character $ in the
doubly linked list of U and node ui+1 ∈ U next to ui, the fast update operation is applied
if either or both ui−1 and ui+1 have a label including character c; the update operation in
Section 5.4 is applied otherwise. The large computational demand of the update operation
on LF-interval graphs presented in Section 5.3 derives from the access and update of the
B-tree of V in O(log k) time, resulting in an O(α + log k) time update of LF-interval graphs.
We present two improvements to the foundation of the update operation: (i) deletion and
insertion operations of the B-tree of V in O(1) time and (ii) the replace-node step in O(1)
time without using the B-tree of V . The details of the fast operation are presented in the
full version of the paper [24].

Deletion and insertion operations of B-tree in constant time. Generally, inserting/deleting
a key into/from the B-tree of V takes O(log k) time. We present O(1)-time deletion and
insertion operations of a specific node in the B-tree of V without the need for heavyweight
operations to maintain the balance of the B-tree.

Recall that (i) ui′ ∈ U and vi′ ∈ V are the nodes created by the replace-node step, (ii)
vj ∈ V is the node removed from V by the split-node step, and (iii) ux′ ∈ U and vx′ ∈ V are
the nodes created by the insert-node step. Let ui′−1 ∈ U (respectively, ui′+1 ∈ U) be the
node previous to node ui′ (respectively, the node next to node ui′) in the doubly linked list
of U after the insert-node step has been executed. Then, there exist two nodes vi′−1 and
vi′+1 ∈ V such that (ui′−1, vi′−1), (ui′+1, vi′+1) ∈ ELF .
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Figure 5 Three cases A, B, and C for preprocessing deletions/insertions in the B-tree. Gray
nodes are stored in the B-tree.

In the fast update operation, the target nodes deleted from the B-tree are limited to
at most four nodes vi, vj , vi′−1, and vi′+1, which is similar to Lemma 7-(ii). In the doubly
linked list of V , node vi is replaced with the new node vx′ created in the insert-node step of
the update operation. Because the two nodes vi and vx′ represent special character $, both
satisfy the third condition of Lemma 6. Thus, both nodes vi and vx′ are placed on the root
of the B-tree. Hence, vi can be deleted and vx′ can be inserted into the B-tree in O(1) time
without balancing the B-tree.

Next, in the doubly linked list of V , node vj is replaced with the two nodes vj′ and
vj′+1 ∈ V that were created in the split-node step of the update operation. Node vj′ satisfies
none of the three conditions of Lemma 6. Thus, vj is deleted from the B-tree of V , and vj′+1
(that is, not vj′) is only inserted into the B-tree of V if vj is contained in the B-tree of V

because of the next lemma.

▶ Lemma 9. The following two statements hold: (i) vj′ satisfies none of the three conditions
of Lemma 6; (ii) for the node uj (̸= ui−1) connected to vj by undirected edge (uj , vj) ∈ ELF ,
vj′+1 satisfies any one of the three conditions of Lemma 6 if and only if vj satisfies any one
of the three conditions.

Proof. See the full version of the paper [24]. ◀

Because vj is replaced with vj′+1 in the doubly linked list of V , the element representing
vj can be replaced with the element representing vj′+1 in the B-tree from Lemma 1. Hence,
vj is deleted from the B-tree of V and vj′+1 is inserted into the B-tree of V in O(1) time
without balancing the B-tree. Illustrations of the replacement of two nodes vi and vj in the
doubly linked list of V can be found in the full version of the paper [24].

The above procedure inserts vj′+1 into the B-tree of V even if the node satisfies none of
the three conditions of Lemma 6. This is because Lemma 9-(ii) assumes that uj ̸= ui−1 holds,
but uj ̸= ui−1 is not always true. If the assumption holds, vj′+1 is appropriately inserted into
the B-tree of V . Otherwise (i.e., vj′+1 = vi′−1 holds), node vj′+1 is appropriately deleted
from the B-tree of V in O(1) time, which is explained next.

Two nodes vi′−1 and vi′+1 are appropriately deleted from the B-tree of V , and new nodes
are inserted into the B-tree of V in the update operation of the LF-interval graph. For
updating the B-tree of V in O(1) time, we merge at most three nodes vi′ , vi′−1, and vi′+1
into a new node in a prepossessing step. The merging of nodes and update of the B-tree are
performed according to the following three cases.
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Case A: vi′−1 has a label including character c and vi′+1 does not have a label including
character c (Figure 5-(i)). First, the two consecutive nodes ui′−1 with label (c, ℓ) and ui′

with label (c, 1) are merged into a new one uy′ with label (c, ℓ + 1) in the doubly linked list
of U . Then, set V is updated according to the merge of the two nodes in U , i.e., the two
consecutive nodes vi′−1 and vi′ are merged into a new one vy′ with label (c, ℓ + 1) in the
doubly linked list of V .

Node vi′+1 is kept in the B-tree of V (if the node is contained in the B-tree). Node vi′−1
is deleted from the B-tree of V and new node vy′ is inserted only if vi′−1 is contained in the
B-tree of V . Because vi′−1 is replaced by vy′ in the doubly linked list of V , vi′−1 can be
deleted from the B-tree of V and vy′ can be inserted in O(1) time from Lemma 1.

Case B: vi′−1 does not have a label including character c, and vi′+1 has a label including
character c (Figure 5-(ii)). First, the two consecutive nodes ui′ and ui′+1 with label (c, ℓ′)
are merged into a new node uy′ with label (c, ℓ′ + 1) in the doubly linked list of U . Then, set
V is updated according to the merge of the two nodes in U .

In this case, vi′−1 is contained in the B-tree of V , and the node is kept. Node vi′+1 is
deleted from the B-tree of V and new node vy′ is inserted only if vi′+1 is contained in the
B-tree of V . Because vi′+1 is replaced with vy′ in the doubly linked list of V , vi′+1 is deleted
from the B-tree of V and vy′ is inserted in O(1) time from Lemma 1.

Case C: both vi′−1 and vi′+1 have labels including the same character c (Figure 5-(iii)).
First, the three consecutive nodes ui′−1, ui′ and ui′+1 are merged into a new node uy′ with
label (c, ℓ + ℓ′ + 1) including the same character c in the doubly linked list of U . Then, set V

is updated according to the merge of the three nodes in U .
In this case, vi′−1 is not contained in the B-tree of V . Node vi′+1 is deleted from the

B-tree and the new node vy′ is inserted if vi′+1 is contained in the tree; otherwise, vy′ is not
inserted into the tree. Because vi′+1 is replaced by vy′ in the doubly linked list of V , vi′+1 is
deleted and vy′ is inserted into the B-tree of V in O(1) time from Lemma 1.

One of the three cases always holds (see the full version of the paper [24]). The pre-
processing of the B-tree of V (i.e., the merging of nodes) does not affect Lemma 9. Hence,
updating the B-tree takes O(1) time.

Replace-node step in constant time. The replace-node step is performed in O(1) time by
finding the position for inserting a new node vi′ with label (c, 1) into the doubly linked list
of V without accessing the B-tree of set V . This is made possible if either or both ui−1 and
ui+1 have labels including the same character c. The following lemma holds.

▶ Lemma 10. If either or both ui−1 and ui+1 have labels including the same character c,
the position for inserting the new node vi′ into the doubly linked list of V can be found in
O(1) time.

Proof. See the full version of the paper [24]. ◀

The following lemma concerning the conclusion of the fast update operation holds.

▶ Lemma 11. Assume that the B-tree of V in LF-interval graph Grp(Dα
δ ) contains only

the nodes that satisfy one of the three conditions of Lemma 6: (i) fast update operation
fastUpdate(Grp(Dα

δ ), c) runs in O(α) time; (ii) the fast update operation outputs the LF-
interval graph for a (2α + 1)-balanced DBWT D2α+1

δ+1 of BWT Lδ+1 with at most two α-heavy
DBWT-repetitions and at most two α-heavy F-intervals; (iii) the B-tree of V in the outputted
LF-interval graph contains only nodes satisfying one of the three conditions of Lemma 6.
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Proof. See the full version of the paper [24]. ◀

Both update operation update(Grp(Dα
δ ), c) and fast update operation

fastUpdate(Grp(Dα
δ ), c) output the LF-interval graph for a (2α + 1)-balanced DBWT

D2α+1
δ+1 of BWT Lδ+1 with at most two α-heavy DBWT-repetitions and at most two α-heavy

F-intervals. The outputs are balanced by the balancing operation presented in the next
subsection such that the LF-interval graph represents an α-balanced DBWT Dα

δ+1 of BWT
Lδ+1.

5.6 Balancing operation of the LF-interval graph
Balancing operation balance(Grp(Dδ)) takes the LF-interval graph Grp(Dδ) for a DBWT Dδ

of BWT Lδ as input, and it outputs the LF-interval graph Grp(Dα
δ ) for an α-balanced DBWT

Dα
δ of the same BWT. The basic idea behind the balancing operation is to iteratively remove

each of nodes representing α-heavy DBWT repetitions and α-heavy F-intervals from the
given LF-interval graph by splitting the chosen node into two nodes. The balancing operation
repeats this process until it obtains the LF-interval graph for an α-balanced DBWT.

We explain the algorithm of the balancing operation. At each iteration, the balancing
operation processes the LF-interval graph for an O(α)-balanced DBWT with O(α) α-heavy
DBWT-repetitions and O(α) α-heavy F-intervals. Let (ui, vi) ∈ ELF be an undirected edge
such that node ui ∈ U represents an α-heavy DBWT-repetition, or node vi ∈ V represents
an α-heavy F-interval. At the iteration, node ui is split into two nodes, and vi is split into
two nodes according to the splitting of ui. The LF-interval graph Grp(DO(α)

δ ) is updated
according to the splitting of ui and vi. One iteration of the balancing operation takes O(α)
time. See the full version of the paper [24] for the details of the balancing operation.

The following lemma concerning the theoretical results on the balancing operation holds.

▶ Lemma 12. For the LF-interval graph Grp(D2α+1
δ ) for a (2α+1)-balanced DBWT including

at most two α-heavy DBWT-repetitions and at most two α-heavy F-intervals, we assume
that the B-tree of V in the LF-interval graph contains only nodes satisfying one of the three
conditions of Lemma 6. Then, balancing operation balance(Grp(D2α+1

δ )) takes O(α) time per
iteration for all α ≥ 4, and the B-tree of V in the outputted LF-interval graph contains only
nodes satisfying one of the three conditions of Lemma 6.

Proof. See the full version of the paper [24]. ◀

6 R-comp algorithm

In this section, we present the r-comp algorithm, and we also present its space and time
complexities. The r-comp algorithm takes input string T and parameter α ≥ 2, and it
outputs the RLBWT of T . The pseudo-code of r-comp is given in Algorithm 1.

The algorithm reads T from its end to its beginning (i.e., T [n], T [n− 1], . . . , T [1]), and it
gradually builds the LF-interval graph Grp(Dα

n) for an α-balanced DBWT Dα
n of BWT Ln of

T . At each δ ∈ {1, 2, . . . , n− 1}, LF-interval graph Grp(Dα
δ ) for an α-balanced DBWT Dα

δ of
BWT Lδ of T [(n− δ + 1)..n] (i.e., suffix Tδ) is built. For the node ui ∈ U representing special
character $ in the doubly linked list of set U of nodes in LF-interval graph Grp(Dα

δ ), two
nodes ui−1 ∈ U and ui+1 ∈ U are previous and next to node ui, respectively, in the list. If
neither the label of ui−1 nor the label of ui+1 includes the (n−δ)-th character c of T (i.e., the
first character c of Tδ+1), the update operation update(Grp(Dα

δ ), c) described in Section 5.4 is
applied; otherwise the fast update operation fastUpdate(Grp(Dα

δ ), c) described in Section 5.5
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Algorithm 1 R-comp algorithm. The algorithm takes string T and parameter α ≥ 2 as input, and
it outputs the RLBWT of T . n : length of T ; Dα

δ : α-balanced DBWT of BWT Lδ of T [(n−δ +1)..n];
Grp(Dα

δ ) : the LF-interval graph of α-balanced DBWT Dα
δ .

1: function r-comp(T , α)
2: Dα

1 ← $ ▷ Initialize Dα
1 as special character $

3: build Grp(Dα
1 )

4: for δ = 1, 2, . . . , n− 1 do
5: c← T [n− δ] ▷ Read character c from T [n− δ]
6: if neither the label of ui−1 nor the label of ui+1 includes character c then
7: Grp(D2α+1

δ+1 )← update(Grp(Dα
δ ), c) ▷ The update operation in Sec. 5.4

8: else
9: Grp(D2α+1

δ+1 )← fastUpdate(Grp(Dα
δ ), c) ▷ The fast update operation in Sec. 5.5

10: end if
11: Grp(Dα

δ+1)← balance(Grp(D2α+1
δ+1 )) ▷ The balancing operation in Sec. 5.6

12: end for
13: Recover Dα

n from Grp(Dα
n)

14: Convert Dα
n into the RLBWT of T

15: Return the RLBWT
16: end function

is applied. Both the update operation and the fast update operation output an LF-interval
graph Grp(D2α+1

δ+1 ) for DBWT D2α+1
δ+1 of BWT Lδ+1 that is not α-balanced. Thus, the r-comp

algorithm balances the LF-interval graph such that it represents an α-balanced DBWT Dα
δ+1

using the balancing operation in Section 5.6 as Grp(Dα
δ+1). After (n− 1) iterations of those

steps, the LF-interval graph Grp(Dα
n) for α-balanced DBWT Dα

n of BWT Ln is obtained; it
is then converted into Dα

n using the doubly linked list of U . Finally, Dα
n is converted into

the RLBWT of T .

6.1 Space and time complexities
Space complexity. The r-comp algorithm requires O(k log n) bits of space for k DBWT-
repetitions in the DBWT Dα

n because the LF-interval graph Grp(Dα
n) for the DBWT requires

O(k log n) bits of space. The value of k depends on the number of executions of update, fast
update, and balancing operations executed by the r-comp algorithm. The following lemma
ensures that k can be bounded by O(r).

▶ Lemma 13. We modify the fast update operation. Then, the following three statements
hold: (i) this modification does not affect Lemma 11; (ii) k ≤ r + ksplit; (iii) ksplit ≤ 2r

⌈α/2⌉−7
holds for any constant α ≥ 16.

Proof. See the full version of the paper [24]. ◀

Because k = O(r) by Lemma 13, the following theorem is obtained.

▶ Theorem 14. The r-comp algorithm takes O(r log n) bits of working space for α ≥ 16.

Time complexity. The bottleneck of r-comp is the update operation of LF-interval graph
with O(α + log k) time in Section 5.4. The number of executions of the update operation
can be bounded by O(r). This fact indicates that we can bound the running time of r-comp
by O(αn + r log k), i.e., O(αn + r log r). Finally, we obtain the following theorem.
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▶ Theorem 15. R-comp runs in O(αn + r log r) time for α ≥ 16.

Proof. See the full version of the paper [24]. ◀

7 Experiments

Setup. We empirically tested the performance of the r-comp algorithm on strings from four
datasets with different types of highly repetitive strings: (i) nine strings from the Pizza&Chili
repetitive corpus [29]; (ii) three strings (boost, samtools, and sdsl) of the latest revisions
of Git repositories, each of which is 1GB in size; (iii) a 37GB string (enwiki) of English
Wikipedia articles with a complete edit history [33]; and (iv) a 59GB string (chr19.1000)
obtained by concatenating chromosome 19 from 1,000 human genomes in the 1000 Genomes
Project [32]. See the full version of the paper [24] for the relevant statistics in the datasets.
The ratio n/r of string length n to the number r of BWT-runs in BWT is the compression
ratio of each string. The strings with high compression ratios are versions of Wikipedia
articles (einstein.de.txt and einstein.en.txt), revisions of Git repositories (boost, samtools, and
sdsl), and 1000 human genomes (chr19.1000).

We implemented two versions of the r-comp algorithm (i.e., r-comp and r-compsaving).
Here, r-comp is the straightforward implementation of the r-comp algorithm presented in
Section 6; r-compsaving is a space-saving implementation of the r-comp algorithm. This
version is more space efficient than r-comp because it uses a grouping technique with
parameter g = 16. We compared r-comp and r-compsaving with three state-of-the-art
algorithms, one indirect construction algorithm of RLBWT (Big-BWT) and two direct
construction algorithms of RLBWT (the PP and Faster-PP methods), which were reviewed
in Section 2 and summarized in Table 1. The comparisons were performed using a single
thread on one core of a CPU. The source code of the r-comp algorithm is available at
https://github.com/kampersanda/rcomp. See the full version of the paper [24] for the
details of the setup.

Results. A comparison of the r-comp variants (r-comp and r-compsaving) shows that the
working space of r-compsaving was 3.8–4.4 times smaller than that of r-comp, whereas the
construction time of r-compsaving was at most only 2.0 times slower and at most 2.0 times
faster on world_leaders and samtools. These results show r-compsaving has a high compression
performance when compared with r-comp. Comparisons of the experimental results of
r-compsaving and the other methods are presented below.

r-compsaving was the fastest in the comparison to the direct RLBWT constructions of
the PP and Faster-PP methods. Especially for strings with a large ratio n/r, r-compsaving
was 81–118 times faster than the PP method and 3.8–5.1 times faster than the Faster-PP
method; the working space of r-compsaving was 2.4–6.1 times larger than that of the PP
method and 2.8–2.9 times larger than that of the Faster-PP method, which shows that the
working space of r-compsaving is reasonable considering its construction time. For the large
dataset enwiki, r-compsaving finished the construction in 6.8 hours, whereas the Faster-PP
method took 15.4 hours. In addition, the PP method did not finish within 24 hours. For the
1000 human genomes chr19.1000, r-compsaving finished the construction in 11 hours, whereas
the PP and Faster-PP methods did not finish within 24 hours.

In the comparison between r-comp and Big-BWT, r-comp was more space efficient
than Big-BWT on most strings. Because r was much smaller than |PFP|, the results are
consistent with the theoretical bound O(r log n) of the working space of the r-comp algorithm
(Theorem 14). On strings with large values of |PFP|/r, whereas r-compsaving was slower

https://github.com/kampersanda/rcomp
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than Big-BWT, the difference in the construction times between r-compsaving and Big-BWT
were reasonable if one considers the space efficiency of r-compsaving. For example, for boost,
r-comp was 26 times more space efficient and only 2.7 times slower; for world_leaders, r-comp
was 3.9 times more space efficient and only 1.5 times slower.

On the large datasets (i.e., enwiki and chr19.1000), r-comp was more space-efficient
but slower than Big-BWT; r-comp was 2.3 times space-efficient but 10 times slower than
Big-BWT on enwiki; r-comp was 2.5 times space-efficient but 11 times slower than Big-BWT
on chr19.1000.

Overall, r-compsaving was the fastest RLBWT construction in O(r log n) bits of space.
Although Big-BWT was faster than r-compsaving, it was not space efficient for several strings
(e.g., boost). On most datasets, r-compsaving achieved a better tradeoff between construction
time and working space. Furthermore, r-comp has a huge advantage in that it supports the
insertion of a new character into RLBWT, while BigBWT does not support such an insertion
operation.

8 Conclusion

We presented r-comp, the first optimal-time construction algorithm of RLBWT in O(n)
time with O(r log n) bits of working space for highly repetitive strings with r = O(n/ log n).
Experimental results using benchmark and real-world datasets of highly repetitive strings
demonstrated the superior performance of the r-comp algorithm.

The idea behind the DBWT presented in this paper has a wide variety of applications,
and it is applicable to the construction of various types of data structures. Therefore, a future
task is to develop optimal-time constructions of various data structures for fast queries.
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