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Abstract
We study problems connected to first-order logic in graphs of bounded twin-width. Inspired by
the approach of Bonnet et al. [FOCS 2020], we introduce a robust methodology of local types and
describe their behavior in contraction sequences – the decomposition notion underlying twin-width.
We showcase the applicability of the methodology by proving the following two algorithmic results.
In both statements, we fix a first-order formula φ(x1, . . . , xk) and a constant d, and we assume that
on input we are given a graph G together with a contraction sequence of width at most d.

One can in time O(n) construct a data structure that can answer the following queries in time
O(log log n): given w1, . . . , wk, decide whether φ(w1, . . . , wk) holds in G.
After O(n)-time preprocessing, one can enumerate all tuples w1, . . . , wk that satisfy φ(x1, . . . , xk)
in G with O(1) delay.

In the first case, the query time can be reduced to O(1/ε) at the expense of increasing the construction
time to O(n1+ε), for any fixed ε > 0. Finally, we also apply our tools to prove the following statement,
which shows optimal bounds on the VC density of set systems that are first-order definable in graphs
of bounded twin-width.

Let G be a graph of twin-width d, A be a subset of vertices of G, and φ(x1, . . . , xk, y1, . . . , yl) be
a first-order formula. Then the number of different subsets of Ak definable by φ using l-tuples
of vertices from G as parameters, is bounded by O(|A|l).

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases twin-width, FO logic, model checking, query answering, enumeration

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.123

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2206.08248

Funding This work is a part of project BOBR that has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant
agreement No 948057).

Acknowledgements The authors thank Rose McCarty and Felix Reidl for many initial discussions
on the type approach to first-order logic on graphs of bounded twin-width.

1 Introduction

Twin-width is a graph parameter recently introduced by Bonnet et al. [7]. Its definition is
based on the concept of a contraction sequence: a sequence of partitions of the vertex set of
the graph that starts with the partition into singletons, where every subsequent partition is
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obtained from the previous one by merging two parts ending with the partition with one part.
The main idea lies in measuring the width of a contraction sequence: it is the smallest integer
d such that at every step, every part of the current partition is impure – neither completely
adjacent nor completely non-adjacent – towards at most d other parts of that partition. The
twin-width of a graph G is the smallest possible width of a contraction sequence of G. Thus,
one may thinkthat a graph of bounded twin-width can be gradually “folded” into a single
part so that at every point, every part has a non-trivial interaction with only a bounded
number of other parts.

We remark that while twin-width was originally defined for graphs, the idea can be, and
has been, generalized to any classes of binary relational structures, for instance ordered
graphs [4] or permutations [8]. In this work we focus on the graph setting for simplicity.
However, all our results lift to arbitrary structures over a fixed relational signature in which
all relation symbols have arities at most two.

Since its recent introduction, multiple works have investigated combinatorial, algorithmic,
and model-theoretic aspects of twin-width. In this work we are mostly interested in the
two last ones. As proved by Bonnet et al. [7], provided a graph G is given together with a
contraction sequence of width bounded by a constant, every property expressible in first-order
logic can be verified in linear time on G; in other words, the model-checking problem for
first-order logic can be solved in linear fixed-parameter tractable time. Further, bounded
twin-width is preserved under transductions: if a class of graphs C has bounded twin-width,
then any class that can be obtained from C by a fixed (first-order) transduction also has
bounded twin-width [7]. Finally, as proved by Bonnet et al. [4], classes of ordered graphs that
have bounded twin-width exactly coincide with those that are monadically NIP, that is, do
not transduce all graphs. All these results witness that twin-width is a model-theoretically
important notion and a vital element of the emerging structural theory for graphs based
around the notion of a (first-order) transduction. See [8, 13] for further discussion.

In this work we take a closer look at the model-checking algorithm for graphs of bounded
twin-width, proposed in [7]. The basic technical notion used there is that of a morphism tree.
While this is not explicit in [7], it is clear that morphism trees are combinatorial objects
representing strategies in a form of an Ehrenfeucht-Fraïsse game, and basic operations on
morphism trees correspond to manipulations on strategies. Mirroring the standard approach
taken in finite model theory, one should be able to define a notion of a type suited for the
setting of contraction sequences, as well as a corresponding model of an Ehrenfeucht-Fraïsse
game that can be used to argue about properties of types such as compositionality. Providing
robust foundations for such a type-based methodology for contraction sequences is the main
goal of this work.

We remark that the type/game based perspective of the approach of [7], which we
explained above, was recently briefly outlined in [5, Section 5].

Our contribution. We introduce the notion of a local type that is suited for describing first-
order properties of tuples of vertices in vertex-partitioned graphs. Intuitively speaking, the
rank-k local type of a tuple w in a graph G with vertex partition P is the set of all quantifier
rank k formulas satisfied by w, where we restrict quantification as follows. Whenever a new
vertex, say z, is quantified, one has to specify the part P ∈ P which contains z, but at depth
i of quantification one can quantify only over parts that are at distance at most 2k−i from
parts containing already quantified vertices (including vertices of w). Here, we mean the
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distance in the impurity graph: the graph on parts of P where two parts of P are adjacent if
and only if they are neither completely adjacent nor completely non-adjacent. This definition
mirrors, in logical terms, the morphism trees of Bonnet et al. [7]. In particular, it applies the
same idea that the radius of quantification decreases exponentially with the depth.

We prove a set of fundamental lemmas for manipulation of local types upon consecutive
steps in a contraction sequence. These reflect the mechanics of morphism trees of [7], but by
basing the argumentation essentially on Ehrenfeucht-Fraïssé games, the obtained explanation
is arguably simpler and more insightful. Also, contrary to [5, 7], the introduced toolbox
applies to tuples of vertices, and not only to single parts in the contraction sequence. This is
important in our applications, which we discuss next.

We use the toolbox of local types to give the following algorithmic results on first-
order expressible problems in graphs of bounded twin-width. The first one concerns the
problem of query answering, and the second concerns the problem of query enumeration. In
both theorems we assume that the graph is specified through a contraction sequence; this
is explained in Section 2. For a tuple of parameters p, the notation Op(·) hides factors
depending on p.

▶ Theorem 1. Suppose we are given an n-vertex graph G specified through a contraction
sequence P1, . . . , Pn of width d, and a first-order formula φ(x), where x is a set of variables.
Then one can construct in time Od,φ(n) a data structure that can answer the following queries
in time Od,φ(log log n): given w ∈ V (G)x, decide whether G |= φ(w).

▶ Theorem 2. Suppose we are given an n-vertex graph G specified through a contraction
sequence P1, . . . , Pn of width d, and a first-order formula φ(x), where x is a set of variables.
Then after preprocessing in time Od,φ(n), one can enumerate all tuples w ∈ V (G)x such that
G |= φ(w) with Od,φ(1) delay.

Note that in Theorem 1 there is a factor of the form Od,φ(log log n) appearing in the
query time. This is a consequence of using a data structure for orthogonal range queries
of Chan [9] that supports queries in time O(log log n). As explained in [19], there is also a
simple data structure for orthogonal range queries that, for any fixed ε > 0, offers query
time O(1/ε) at the expense of increasing the construction time and the space complexity
to O(n1+ε). By replacing the usage of the data structure of Chan with this simple data
structure, we may obtain the same tradeoff in Theorem 1: The query time is reduced to
O(1/ε), while the construction time and the space complexity is increased to O(n1+ε); this
holds for any fixed ε > 0.

Theorems 1 and 2 mirror classic results on evaluation and enumeration of monadic
second-order queries on trees [2, 10, 14] (which imply analogous results for graphs of bounded
treewidth and of bounded cliquewidth), and of first-order queries on classes of bounded
expansion [11, 15] and nowhere dense classes [22]. Therefore, we believe that the applications
discussed above witness the robustness of the developed methodology.

As another application, we prove optimal bounds on VC density of set systems definable
in graphs of bounded twin-width. Suppose φ(x, y) is a first-order formula with free variables
partitioned into x and y. For a graph G and a subset of vertices A, we define the Stone space

Sφ(A) := { { a ∈ Ax | G |= φ(a, b) } : b ∈ V (G)y } .

ICALP 2022
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In other words, every tuple b ∈ V (G)y gives rise to the subset φ(A, b) ⊆ Ax consisting of
those tuples a that together with b satisfy φ. Then the Stone space Sφ(A) consists of all
sets φ(A, b) that can be defined in this way. See for example [18] for a discussion of this
notion and its applications.

In general graphs, Sφ(A) can be as large as the whole powerset of Ax. However, under
various structural assumptions, it will be typically much smaller. For instance, suppose that
the twin-width of G is bounded by a constant d. Then by combining the results of Bonnet et
al. [7] with that of Baldwin and Shelah [3], one can argue that the VC dimension of Sφ(A),
regarded as a set system over universe Ax, is bounded by a constant depending only on d and
φ. Consequently, by the Sauer-Shelah Lemma [21, 23], the cardinality of Sφ(A) is bounded
polynomially in |A|. However, the degree of this polynomial bound, which is known as the
VC density (studied for example in [1]), still depends on d and φ, and in a quite non-explicit
way. We prove that in fact, there is a much sharper upper bound: the VC density is bounded
by just the number of variables in y.

▶ Theorem 3. Let G be a graph of twin-width at most d, A be a subset of vertices of G, and
φ(x, y) be a first-order formula. Then

|Sφ(A)| ⩽ Od,φ

(
|A||y|

)
.

It is easy to see (see e.g. [18]) that even in edgeless graphs one cannot hope for a bound
better than |A||y|, and therefore the bound of Theorem 3 is asymptotically optimum.

Theorem 3 mirrors analogous results for monadic second-order formulas on classes of
bounded treewidth or cliquewidth [16], and for first-order formulas on classes of bounded
expansion and nowhere dense classes [18]. We remark that the case |x| = |y| = 1 follows
from the fact that classes of bounded twin-width are closed under first-order transductions,
combined with known linear upper bounds on the neighborhood complexity1 in classes of
bounded twin-width [6, 20]. Tackling multiple free variables requires a better understanding
of types for tuples of vertices, which is exactly where our methodology of local types comes
into play.

Organization. After preliminaries in Section 2, we present the framework of local types
in Section 3. Then we prove Theorem 1 in Sections 4. Theorems 2 is proved in Section 5.
Theorem 3 is deferred to the full version, due to space constraints. Easy proofs of statements
marked with ♠ are also deferred to the full version.

2 Preliminaries

Graphs. In this paper we work with finite, undirected graphs and we use standard graph
notation. By |G| we denote the number of vertices of a graph G.

A pair of disjoint vertex subsets A, B ⊆ V (G) is complete if every vertex of A is adjacent
to every vertex of B, and anti-complete if there is no edge with one endpoint in A and the
other one in B. The pair A, B is pure if it is complete or anti-complete, and impure otherwise.

1 In our notation, bounds on neighborhood complexity exactly correspond to the case when x = {x},
y = {y}, and φ(x, y) just checks that x and y are adjacent.



J. Gajarský, M. Pilipczuk, W. Przybyszewski, and S. Toruńczyk 123:5

A trigraph is a structure in which there is a vertex set and every pair of distinct vertices
is bound by exactly one of the following three symmetric relations: adjacency, non-adjacency,
and impurity. Thus, graphs are trigraphs without impurities. Given a partition of P of the
vertex set of a graph G, we define the quotient trigraph G/P as the trigraph on vertex set P
where distinct A, B ∈ P are adjacent if the pair A, B is complete in G, non-adjacent if the
pair is anti-complete, and impure towards each other if A, B is impure. For a trigraph H,
its impurity graph Imp(H) is the graph on vertex set H where two vertices u, v ∈ V (H) are
considered adjacent if they are impure towards each other in H.

Contraction sequences. Let G be a graph on n vertices. A contraction sequence for G is a
sequence P1, . . . , Pn of partitions of the vertex set of G such that:

P1 is the partition into singletons;
Pn is the partition with one part;
for each t ∈ [n], t > 1, Pt is obtained from Pt−1 by taking some two parts A, B ∈ Pt−1

and contracting them: replacing them with a single part A ∪ B ∈ Pt.
Indices t ∈ [n] will be called times. The width of the contraction sequence P1, . . . , Pn is
the maximum degree in graphs Imp(G/Pt), at all times t ∈ [n]. The twin-width of G is the
minimum possible width of a contraction sequence of G.

If G is supplied with a total order ⩽ on V (G), then a subset of vertices A is convex if it
forms an interval in ⩽, that is, if a, b ∈ A then also c ∈ A whenever a ⩽ c ⩽ b. A partition is
convex if all its parts are convex, and a contraction sequence is convex if all its partitions
are convex.

Additional notation for partitions and contraction sequences. Fix a graph G with a
partition P of its vertices. We will use the following notation.

Denote GP := G/P and Gimp
P := Imp(GP). By distP(·, ·) we denote the distance function

in Gimp
P : for A, B ∈ P, distP(A, B) is the minimum length of a path in Gimp

P connecting A

and B, and +∞ if there is no such path. We extend this notation to subsets, or tuples of
elements of P : distP(X, Y ) denotes the minimum, over all A occurring in X and B occurring
in B, of distP(A, B).

For a set of parts F ⊆ P and a radius parameter r ∈ N, the r-vicinity of F , denoted
Vicinityr

P(F), is the trigraph induced in GP by all parts at distance at most r from any part
belonging to F , that is

Vicinityr
P(F) := GP [{A ∈ P | distP(A, F) ⩽ r}].

We may use notation Vicinityr
P(·) for single parts or tuples of parts with the obvious meaning.

For brevity, whenever a graph G and its contraction sequence P1, . . . , Pn are clear from
the context, we fix the following notation. First, in all the notation defined above, concerning
partitions, we write s in the subscript instead of Ps. So for instance we write Gs to denote
GPs

, and Gimp
s to denote Gimp

Ps
, and dists(·, ·) to denote distPs

(·, ·), etc.
Fix a finite set of variables x. For a pair of times s, t ∈ [n], s ⩽ t, and a tuple of parts

u ∈ Px
s , we define the tuple u⟨s → t⟩ ∈ Px

t as follows: for each y ∈ x, u⟨s → t⟩(y) is the
unique part of Pt that contains u(y). For a tuple u ∈ V (G)x of vertices and s ∈ [n], by
u⟨s⟩ ∈ Px

s we denote the unique tuple whose y-component, for y ∈ x, is the part of Ps

containing u(y).

ICALP 2022
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For s ∈ [n − 1], by Bs+1 we denote the unique part of Ps+1 that is the union of two parts
in Ps. For a parameter r ∈ N, we define the r-relevant region in Gs as follows:

Relevantr
s := Gs[{C ∈ Ps | C ⊆ Bs+1, or C ∈ Ps+1 and dists+1(C, Bs+1) ⩽ r}].

In other words, Relevantr
s is the trigraph induced in Gs by the two parts of Ps that get

contracted into Bs+1 and all parts of Ps that stay intact in Ps+1 and are at distance at most
r from Bs+1 in Gimp

s+1.
Note that we have |Relevantp

s | ⩽ Od,p(1) for all s ∈ [n − 1]. The next lemma shows that
the p-relevant regions can be computed efficiently.

▶ Lemma 4 (♠). Suppose a graph G on vertex set [n] is provided through a convex contraction
sequence P of width d. Then for a given p ∈ N, one can in time Od,p(n) compute the trigraphs
Relevantp

s for all s ∈ [n − 1].

Specifying a graph through its contraction sequence. In all algorithmic statements we
will assume that a graph is given by specifying its contraction sequence together with some
auxiliary information encoding the edge relation. We now make this precise.

Let P1, . . . , Pn be a contraction sequence of a graph G. We assume that every part
participating in the partitions P1, . . . , Pn (that is, every element of the union P1 ∪ · · · ∪ Pn,
where each Pi is viewed as a set of sets of vertices) is specified through a unique identifier taking
a single machine word. For P1, the identifiers of (singleton) parts coincide with identifiers
of the corresponding vertices. Then sequence P1, . . . , Pn is represented by providing the
following information for every time s ∈ [n], s > 1:

The identifiers of the two parts A, A′ ∈ Ps−1 that get contracted at time s, and the
identifier of the obtained part B = A ∪ A′ ∈ Ps.
A list of identifiers of parts C ∈ Ps such that the pair B, C is impure in G (that is, the
impurities incident to B in Imp(G/Ps)).
For each part C on the list above, the relation (completeness, anti-completeness, or
impurity) between C and A and between C and B in G/Ps−1.

It is easy to see that this representation uniquely defines the graph G. Since the representation
takes Od(1) machine words at any time s, we can thus represent an n-vertex graph of twin-
width d using Od(n) machine words.

We now show that, for a graph given through a contraction sequence, one can reindex
the vertex set using integers from [n] so that the contraction sequence becomes convex.

▶ Lemma 5 (♠). Suppose a graph G is given by specifying a contraction sequence P1, . . . , Pn

of width d. Then one can in time Od(n) compute a bijection η : V (G) → [n] such that
mapping G and P1, . . . , Pn through η yields an isomorphic graph G′ on vertex set [n] and
its contraction sequence P ′

1, . . . , P ′
n such that P ′

1, . . . , P ′
n is convex in the natural order on

integers in [n].

Note that if a graph is reindexed using Lemma 5, then every part participating in the
resulting contraction sequence is an interval in [n]. Hence, as the identifier of a part we can
simply use a pair of vertices – the left endpoint and the right endpoint – and such identifiers
can be computed in time Od(n) by scanning the contraction sequence. We will therefore
assume that contraction sequences are convex with respect to a fixed ordering of the vertices,
and the (convex) parts are identified by their endpoints.
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First-order logic. We fix a countable set of variables, together with its enumeration. If Ω is
a set and x is a finite set of variables, then an x-tuple with entries in Ω is a function from x
to Ω. Tuples are by convention denoted with boldface small letters, e.g. u or v. The set of
all x-tuples with entries in Ω is denoted by Ωx. When a ∈ Ωx is an x-tuple and b ∈ Ω, then
by ab we denote the (x ∪ {y})-tuple that extends a and maps the first variable (according to
the fixed enumeration of all variables) y not in x, to b.

We consider standard first-order logic on graphs by modeling them as relational structures
where the universe is the vertex set and there is a single binary predicate signifying adjacency.
For a graph G, a formula φ(x), where x is the set of free variables of φ, and a tuple of
vertices w ∈ V (G)x, we write G |= φ(w), or G, w |= φ(x), to denote that w satisfies φ(x) in
G. We sometimes consider formulas with an explicitly partitioned set of free variables, e.g.,
φ(x, y). Sentences are formulas with no free variables.

Logical types. While the usual definition of a logical type of quantifier rank k of a tuple a
of vertices of G is the set of all formulas φ(x) such that G |= φ(a), we will rely on a definition
which is more suitable for our purposes and is well known to be equivalent, by the result of
Ehrenfeucht and Fraïssé (see for example [12]).

Let x be a finite set of variables. An atomic type with variables x is a maximal consistent
set S of formulas of the form x = y, x ̸= y, E(x, y), ¬E(x, y), where x, y ∈ x. Here by
consistent we mean that there is some graph G and a tuple w ∈ V (G)x that satisfies all
formulas occurring in the atomic type (this is decidable, as it is sufficient to consider graphs
G with |G| ⩽ |x|).

For a ∈ V (G)x, the atomic type of a in G is the atomic type with variables x which
consists of all formulas of the form E(x, y) or x = y, where x, y ∈ x, such that G, a |= x = y

or G, a |= E(x, y).

▶ Definition 6. Let G be a graph x a finite set of variables and k ∈ N. For every a ∈ V (G)x

we define its type of quantifier rank k, denoted tpk(a), as follows.
If k = 0, then tp0(a) is the atomic type of a in G.
If k > 0, then tpk(a) = {tpk−1(ab) | b ∈ V (G)}.

For k ⩾ 1 we also set tpk(G) = {tpk−1(a) | a ∈ V (G)}.

This definition is usually intuitively explained in terms of Ehrenfeucht-Fraïssé games. Namely,
two x-tuples a and b of vertices of two graphs G and H, respectively, have equal types
of quantifier rank k if and only if Duplicator wins the k-round game on the graphs G and
H, where the initial pebbles in G and H are placed on the vertices occurring in a and in
b, respectively. Indeed, suppose tpk(a) = tpk(b), where k > 0, and that Spoiler places a
pebble on a vertex c of G. Then, since tpk−1(ac) ∈ tpk(a) by definition and tpk(a) = tpk(b),
we have that there is some d ∈ tpk(b) such that tpk−1(bd) ∈ tpk(b). Then Duplicator
responds by placing the pebble on the vertex d, and we have that tpk−1(ac) = tpk−1(bd)
so, by inductive assumption, Duplicator wins in the k − 1 round game from the current
configuration, which shows that Duplicator has a winning strategy in the k round game
starting from a and b. The implication in the other direction proceeds similarly.

As is well known, the set of types of x-tuples of quantifier rank k that are realized by
some tuple a, in some graph, is non-computable, even though this set has size bounded in
terms of x and k. To overcome this problem, the usual solution is to define the set of abstract
types (that may not be realized as actual types), which is computable from x and k, has
bounded size, and contains all types that may arise. This is done as follows.

ICALP 2022
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Define Types0
x as the set of all atomic types over x and Typesk

x := {M | M ⊆ Typesk−1
xy }.

Note that for any G and any a ∈ V (G)x it holds that tpk(a) ∈ Typesk
x, but Typesk

x can also
contain objects which are not realized by any tuple of vertices a of any graph.

For a graph G we set Typesk
x(G) := {tpk(a) | a ∈ V (G)x}. Note that we have tpk(G) =

Typesk−1
x (G).

The following is well known and follows from the fact that our definition of types is
equivalent to the usual definition of types using formulas.

▶ Proposition 7. Let G be a graph, x a set of variables and k ∈ N.
|Typesk

x(G)| = Ok,x(1),
For any a ∈ V (G)x and any first-order formula φ(x) of quantifier rank at most k one
can determine whether G |= φ(a) from tpk(a) in time Ok,x(1).
For any first-order sentence φ of quantifier rank at most k one can determine whether
G |= φ from tpk(G) in time Ok(1).

3 Local types

In this section we define local types of quantifier rank k for partitioned graphs, or local k-types
for short. They provide a framework for the results proved in the rest of the paper. The key
lemmas are Lemma 14 and Lemma 16 and their corollaries Lemma 15 and Lemma 17.

3.1 Local types for partitioned graphs
Let G be a graph and P be a partition of its vertex set, and let x be a set of variables. For
an x-tuple a ∈ V (G) write a⟨P⟩ for the x-tuple u ∈ Px such that u(x) is the part containing
a(x), for all x ∈ x.

▶ Definition 8. Let G be a graph, P be a partition of its vertex set, x a nonempty set of
variables, and k ∈ N. For any a ∈ V (G)x we define the local k-type of a, denoted ltpk

P(a),
as follows:

ltp0
P(a) is the atomic type of a together with the x-tuple a⟨P⟩ ∈ Px of parts of P

corresponding to a,
for k > 0, let ltpk

P(a) = {ltpk−1
P (ab) | b ∈ w for some w ∈ P with distP(a⟨P⟩, w) ⩽ 2k−1}.

As with usual types of quantifier-rank k defined in the previous section, it is often
convenient to think about equality of local types in terms of games. We now briefly describe
the corresponding variant of Ehrenfeucht-Fraïssé games game. This game will be played on a
single graph G with a fixed partition P of its vertex set (one can also imagine it being played
on two copies of the same graph with the same partition). The starting position of the game
is determined by two x-tuples a and b of vertices of G (where x is nonempty) such that for
every y ∈ x we have that a(y) is in the same part of P as b(y). The game is played for k

rounds as the usual Ehrenfeucht-Fraïssé game with the following extra restrictions on the
moves of the players: (1) In the ith round, Spoiler picks one of the tuples a and b, and he
will then proceed to extending it. Suppose that he picks a, the other case being symmetric.
Spoiler then picks a vertex a in any part P ∈ P such that distP(P, Q) ⩽ 2k−1, where Q

is some part containing a vertex of a. He then appends a to a to form the tuple aa. (2)
Duplicator replies by picking a vertex b in the same part P and extending the other tuple b
to bb. The game then continues to the next round, with aa and bb forming the new position.
Duplicator wins after k rounds if the two tuples have equal atomic types.
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It is not difficult to see that Duplicator wins the k-round game described above, starting
from the configuration a and b, if and only if ltpk

P(a) = ltpk
P(b). This is made formal in the

following proposition, whose proof is an immediate consequence of Definition 8.

▶ Proposition 9. Let G be a graph and P be a partition of the vertices of G, and let x a
tuple of variables and k ∈ N. Then the following holds for any a, b ∈ V (G)x:

ltp0
P(a) = ltp0

P(b) if and only if the atomic types of a and b are the same, and a⟨P⟩ =
b⟨P⟩;
If k > 0 then ltpk

P(a) = ltpk
P(b) if and only if for any P ∈ P with distP(a⟨P⟩, P ) ⩽ 2k−1

the following holds: for any c ∈ P there exists c′ ∈ P such that ltpk−1
P (ac) = ltpk−1

P (bc′),
and conversely, for any c′ ∈ P there exists c ∈ P such that ltpk−1

P (ac) = ltpk−1
P (bc′).

We will also need to have an abstract set containing all types which could potentially
occur for any k ∈ N and u ∈ Px. Note that this includes also types which are not realized in
G (or even in any graph).

▶ Definition 10. Let x be a nonempty set of variables and k ∈ N. Fix a graph
G together with a vertex-partition P. For u ∈ Px we define Types0

u,P := {(α, u) |
α is an atomic type with variables x}. For k > 0 let M be the set of all parts w of P
with distP(u, w) ⩽ 2k−1 and let M ′ :=

⋃
w∈M Typesk−1

uw,P . We then define

Typesk
u,P := {S | S ⊆ M ′}.

Define also Typesk
u,P(G) := {ltpk(a) | a ∈ V (G)x, u = a⟨P⟩}.

Then Typesu,P(G) is the set of all local k-types realized in u, and is a subset of Typesk
u,P .

3.2 Properties of local types
In this section we establish the properties of local k-types used in the rest of the paper.

In the rest of this paper, we assume that we have fixed a graph G and a contraction se-
quence P1, . . . , Pn of G. We write ltpk

s (·) to denote ltpk
Ps

(·), Typesu,s(·) to denote Typesu,P(·),
and dists(·, ·) to denote distPs

(·, ·).
The following two lemmas establish some basic properties of local k-types. The proof of

Lemma 11 follows immediately from the definition.

▶ Lemma 11. The following holds at any time s ∈ [n] and k ⩾ 1.
If ltpk

s(a) = ltpk
s(b), then ltpk−1

s (a) = ltpk−1
s (b).

If ltpk
s(a) = ltpk

s(b), then a⟨s⟩ = b⟨s⟩.

▶ Lemma 12 (♠). Let s ∈ [n] be a time and x a tuple of variables, and k ⩾ 0. Then
|Typesk

u,s| ⩽ Od,k,x(1), for all u ∈ Px
s . Moreover, given vicinity Vicinity2k

s (u), one can
compute Typesk

u,s in time Od,k,x(1).

The following lemma relates local types for partitioned graphs to usual first-order types,
as defined in the preliminaries.

▶ Lemma 13 (♠). Let x be a tuple of variables and a ∈ V (G)x. One can compute tpk(a)
from ltpk

n(a) in time Ok,d,x(1).

The next lemma is a version of compositionality of local types and plays a key role in
computing local types.
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▶ Lemma 14. Fix two disjoint sets of variables x and y. Let a, a′ ∈ V x and b, b′ ∈ V y be
such that ltpk

s(a) = ltpk
s(a′) and ltpk

s(b) = ltpk
s(b′). Let u = a⟨s⟩ and v = b⟨s⟩ and assume

that dists(u, v) > 2k. Then ltpk
s(ab) = ltpk

s(a′b′).

Proof. We prove the statement by induction on k. For k = 0, to prove that ltp0
s(ab) =

ltp0
s(a′b′), we have to show that the atomic types of ab and a′b′ are the same. Fix an

atomic formula φ(x, y), with x, y ∈ x ∪ y. We show that G, ab |= φ(x, y) if and only if
G, a′b′ |= φ(x, y). If x and y both belong to x then the conclusion follows by assumption
that ltp0

s(a) = ltp0
s(a′). The same holds if x and y both belong to y.

So, by symmetry, it is enough to consider the case when x ∈ x and y ∈ y. Since by our
assumption dists(u, v) > 20 = 1, any part of u is pure to any part v, and so in particular the
part a(x)⟨s⟩ is pure towards b(y)⟨s⟩. Because a(x), a′(x) ∈ a(x)⟨s⟩ and b(y), b′(y) ∈ b(y)⟨s⟩,
this implies that G, ab |= φ(x, y) if and only if G, a′b′ |= φ(x, y), as required.

For k > 0, let c be a vertex in a part w = c⟨s⟩ such that dists(uv, w) ⩽ 2k−1. Our
task is to show that there exists c′ ∈ w such that ltpk−1

s (abc) = ltpk−1
s (a′b′c′). Since

dists(u, v) > 2k, exactly one of dists(u, w) ⩽ 2k−1 and dists(v, w) ⩽ 2k−1 has to hold;
without loss of generality assume that dists(u, w) ⩽ 2k−1 holds. Since ltpk

s(a) = ltpk
s(a′),

there exists c′ ∈ w such that ltpk−1
s (ac) = ltpk−1

s (a′c′). Because dists(u, v) > 2k and
dists(u, w) ⩽ 2k−1, we have dists(uw, v) > 2k−1, so we can apply the induction hypothesis
to ac, a′c′ and b, b′, which yields that ltpk−1

s (abc) = ltpk−1
s (a′b′c′), as desired. ◀

The following lemma follows directly from Lemma 14, except for the part about efficient
computation.

▶ Lemma 15. Let s ∈ [n] be a time and x and y are disjoint sets of variables. Suppose
u ∈ Px

s and v ∈ Py
s are tuples of parts such that dists(u, v) > 2k. Then there is a function

f : Typesk
u,s × Typesk

v,s → Typesk
uv,s such that for every pair of tuples a ∈ V x and b ∈ V y

satisfying u = a⟨s⟩ and v = b⟨s⟩, we have

ltpk
s(ab) = f(ltpk

s(a), ltpk
s(b)).

Moreover, given k, u, v, and the vicinity Vicinity2k

s (uv), one can compute f in time
Od,k,x,y(1).

Regarding the computation of function f in the above lemma, by “computing f in time
Od,k,x,y(1)” we do not mean just evaluating f on any given input in desired time, but
constructing the whole input-output table for f . The reason why this can be computed from
k, u, v and Vicinity2k

s (uv) in time Od,k,x,y(1) is that the input and output sets have size
bounded by Od,k,x,y(1) and the proof in Lemma 14 uses only information from Vicinity2k

s (uv).
A concrete approach to implementing this computation similar to that of [7] can be found in
the full version.

The next lemma will allow us to determine how the k-type of a tuple a develops over
time.

▶ Lemma 16. Let s ∈ [n] be a time and let a ∈ V x, a′ ∈ V x be two tuples of vertices such
that ltpk

s(a) = ltpk
s(a′). Then ltpk

s+1(a) = ltpk
s+1(a′).

Proof. By induction on k. For k = 0 note that ltp0
s(a) = ltpk

s(a′) implies that atomic types
of a and a′ are the same and a⟨s⟩ = a′⟨s⟩. It is easily seen that then also a⟨s + 1⟩ = a′⟨s + 1⟩,
as desired.
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For k > 0, let u = a⟨s + 1⟩ = a′⟨s + 1⟩. We need to show that for any w ∈ Ps+1 with
dists+1(u, w) ⩽ 2k−1 and any b ∈ w there is b′ ∈ w such that ltpk−1

s+1 (ab) = ltpk−1
s+1 (a′b′),

and symmetrically, that for any b′ ∈ w there is b ∈ w such that ltpk−1
s+1 (ab) = ltpk−1

s+1 (a′b′).
We focus on the first option; the proof of the second one is analogous. Let v = b⟨s⟩. We
distinguish two possibilities:

dists(u, v) ⩽ 2k−1: In this case, since ltpk
s(a) = ltpk

s(a′), there exists b′ ∈ v such that
ltpk−1

s (ab) = ltpk−1
s (a′b′). Then by induction hypothesis it follows that ltpk−1

s+1 (ab) =
ltpk−1

s+1 (a′b′), as desired.
dists(u, v) > 2k−1: In this case we note that ltpk

s(a) = ltpk
s(a′) implies that ltpk−1

s (a) =
ltpk−1

s (a′), and we set b′ := b. We can now apply Lemma 14 to a, a′ and b, b′ to see
that ltpk−1

s (ab) = ltpk−1
s (a′b′), and by induction hypothesis it follows that ltpk−1

s (ab) =
ltpk−1

s (a′b′), as desired. ◀

Lemma 16 implies that there exists a function which maps ltpk
s(a) to ltpk

s+1(a), and by
induction we get the following lemma.

▶ Lemma 17. Let s, t ∈ [n] be times with s ⩽ t. Suppose u ∈ Px
s and let v = u⟨s → t⟩. Then

there exists a function f : Typesk
u,s → Typesk

v,t such that for every tuple a ∈ V x satisfying
u = a⟨s⟩, we have

ltpk
t (a) = f(ltpk

s(a)).

Moreover, if t = s + 1, then given k, u, v and the relevant region Relevant2k(|x|+1)
s , one can

compute f in time Od,k,x(1), provided that for every y ∈ x we have that v(y) ∈ Relevant2k|x|
s .

As in the case of Lemma 15, the whole input-output table of function f can be com-
puted in time Od,k,x,y(1) from k, u, v and Relevant2k

s , since the proof of Lemma 16 uses
only information from Relevant2k(|x|+1)

s . Again, a concrete approach to implementing this
computation similar to that of [7] can be found in the full version.

We will also use the fact that when going from time s to s + 1 the local k-types of tuples
in parts which are not in the trigraph Relevant2k

s are not affected.

▶ Lemma 18 (♠). Let x be a finite set of variables, s ∈ [n] a time, k ∈ N and let u ∈ Px
s

be such for every y ∈ x it holds that u(y) ̸∈ V (Relevant2k

s ). Then u⟨s → s + 1⟩ = u, and
for every a with u = a⟨s⟩ we have that ltpk

s(a) = ltpk
s+1(a). In particular, Typesk

u,s+1(G) =
Typesk

u,s(G).

Model checking on graphs of bounded twin-width. With the machinery from the previous
subsection we can now reprove the result of [7] that the first-order model checking problem
on any class C of graphs of twin-width at most d is solvable in time Od,φ(n), provided that
the contraction sequence of the input graph G is provided together with G.

▶ Theorem 19. Let G be a graph on n vertices represented through its contraction sequence
P1, . . . , Pn of width d. Then for any sentence φ of quantifier rank q one can decide whether
G |= φ in time Od,φ(n).

Proof. Let q be the quantifier rank of φ and set k := q − 1 and r := 2k. We will show how
to compute the set Typesk

x(G) in desired time, and since tpq(G) = Typesq−1
x (G), the result

will follow by Proposition 7.
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As a preprocessing step, the algorithm computes in time Od,k(n) the trigraphs Relevantr
s

for all s ∈ [n − 1]; this can be done due to Lemma 4. For the rest of the proof, let
us for any time s ∈ [n] denote by Ts the set of all sets of realized types at time s, i.e.
Ts := {Typesk

w,s(G) | w ∈ Ps}.
The algorithm first computes T1 by computing Typesk

w,1(G) for each w ∈ P1; since each
such part w contains exactly one vertex, this can be done in time Ok(1) for any w, and
so this takes time Ok(n) in total. From this point on the algorithm will proceed through
times 2 to n and for every time s it will compute Ts from Ts−1. By Lemma 18, any
part w of Ps−1 which is not in Relevant2k

s−1 is the same in Ps as in Ps−1 and we have that
Typesk

w,s−1(G) = Typesk
w,s(G), which means that the computation only needs to be performed

on parts from Relevant2k

s−1. We distinguish the following two possibilities:
If v, w are the two parts of Ps−1 which get contracted into a part u ∈ Ps, then the
algorithm applies the function from Lemma 17 to all members of Typesk

v,s−1(G) and
Typesk

w,s−1(G) and collects the results into Typesk
u,s(G).

If w is any other part in Relevantr
s−1, then the algorithm applies the function from

Lemma 17 to all members of Typesk
w,s−1 and collects the results into Typesk

w,s(G).
In each of the above cases the computation can be done in time Od,k(1), since each application
of the function from Lemma 17 can be done in time Od,k,1(1) and by Lemma 12 we have
that |Typesk

w,s−1(G)| ⩽ Od,k(1). Moreover, since |Relevantr
s−1| ⩽ Od,k(1), the computation

of Ts from Ts−1 can be done in time Od,k(1). There are n − 1 steps to obtain Tn and so the
whole computation takes time Od,k(n). Now Tn contains only Typesk

w,n(G) where w is the
only part of Pn. By Lemma 13, from each local k-type in Typesk

w,n(G) one can compute the
corresponding k-type from Typesk

x(G) in time Ok(1). This finishes the proof. ◀

4 Query answering

In this section we prove Theorem 1. For the remainder of this section let us fix a graph G

and a contraction sequence P1, . . . , Pn of G of width d, where n = |V (G)|. In all algorithmic
statements that follow, we assume that G and P are given on input.

Throughout this section our data structures work with the standard word RAM model.

4.1 Proximity oracle
For vertices u, v ∈ V (G) and r ∈ N, we define

firstCloser(u, v) = min{t | distt(u⟨t⟩, v⟨t⟩) ⩽ r}.

In other words, firstCloser(u, v) is the first time t such that the parts of Pt containing u and
v are at distance at most r in the impurity graph Gimp

t . Note that whenever u ̸= v, we have
1 < firstCloser(u, v) ⩽ n. The main goal of this section is to construct an auxiliary data
structure for answering queries about the values of firstCloser(·, ·). This is described in the
lemma below.

▶ Lemma 20. For a given r ∈ N, one can in time Od,r(n) compute a data structure
that can answer the following queries in time Od,r(log log n): given u, v ∈ V (G), output
firstCloser(u, v).

By Lemma 5, we may assume that the vertex set V (G) is equal to [n], and P is a convex
contraction sequence for the usual order on [n]. In particular, pairs of vertices can be
identified with points in a plane, and intuitively, every pair of sets A, B ⊆ V (G) corresponds
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to a rectangle A × B ⊆ [n] × [n]. This correspondence will be important in the proof of
Lemma 20, whose key technical component is the data structure for orthogonal range queries
due to Chan [9], for manipulating rectangles in a plane. (We remark that the applicability of
this data structure in the context of twin-width has already been observed in [19].) Let us
recall the setting.

A rectangle is a set of pairs of integers of the form {(x, y) : a ⩽ x ⩽ a′, b ⩽ y ⩽ b′}
for some integers a, a′, b, b′. In all algorithmic statements that follow, every rectangle is
represented by such a quadruple (a, a′, b, b′). In the problem of orthogonal range queries, we
are given a list of pairwise disjoint rectangles R = {R1, . . . , Rm}, all contained in [n] × [n],
and the task is to set up a data structure that can efficiently answer the following queries:
given (x, y) ∈ [n] × [n], output the index of the rectangle in R that contains (x, y), or output
⊥ if there is no such rectangle. Chan proposed the following data structure for this problem.

▶ Theorem 21 ([9]). Assuming |R| = O(n), there is a data structure for the orthogonal
range queries that takes O(n) space, can be initialized in time O(n), and can answer every
query in time O(log log n).

We remark that there is also a simple data structure for orthogonal range queries that
for any fixed ε > 0, achieves query time O(1/ε) at the expense of space complexity and
initialization time O(n1+ε). See the appendix of [19] for details. As we mentioned in Section 1,
replacing the usage of the data structure of Chan with this simple data structure results in
an analogous tradeoff in Theorem 1.

We reduce the statement of Lemma 20 to the result of Chan using the following lemma.

▶ Lemma 22 (♠). One can in time Od,r(n) compute a list Q of pairs of the form (R, t),
where R ⊆ [n] × [n] is a rectangle and t ∈ [n], such that the following holds:

the rectangles in pairs from Q form a partition of [n] × [n], and
for each (u, v) ∈ [n] × [n], if (R, t) ∈ Q is the unique pair satisfying (u, v) ∈ R, then we
have firstCloser(u, v) = t.

Lemma 20 follows from Lemma 22 as follows. Let Q be the list provided by Lemma 22;
note that |Q| ⩽ Od,r(n), because this is an upper bound on the running time of the algorithm
computing Q. Let R be the list of rectangles appearing in the pairs from Q. Set up a data
structure of Theorem 21 for R and, additionally, for each R ∈ R remember the unique t ∈ [n]
such that (R, t) ∈ Q. Then upon query (u, v) ∈ [n] × [n], it suffices to use the data structure
of Theorem 21 to find the unique R ∈ R containing (u, v) and return the associated integer t.

4.2 The tree of r-close x-tuples
In this section we are going to construct an auxiliary data structure for handling local types.
Fix a number k ∈ N; this is the quantifier rank of the types we would like to tackle. Denote
r := 2k. Also fix a finite set x of variables, an n-vertex graph G, together with a contraction
sequence P1, . . . , Pn.

For s ∈ [n] and a tuple u ∈ Px
s , we call u r-close at the time s if one cannot partition u

into two nonempty tuples u′, u′′ such that dists(u′, u′′) > r. Equivalently, if one considers
an auxiliary graph on vertex set u where two parts are connected iff they are at distance at
most r in Gimp

s , then u is r-close iff this auxiliary graph is connected. Note that if u ∈ Px
s is

r-close at the time s, then for every t with s ⩽ t ⩽ n, the tuple u⟨s → t⟩ is also r-close at
the time t.
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For s ∈ [n] with s > 1, by Bs denote the part of Ps that is the union of two parts in
Ps−1. Let Tr,x be the set consisting of all pairs of the form (u, s) such that s ∈ [n], u ∈ Px

s

is r-close at the time s, and at least one of the following conditions is satisfied:
s = 1; or
s > 1 and dists(Bs, u) ⩽ r; or
s < n and dists+1(Bs+1, u⟨s → s + 1⟩) ⩽ r.

Note that as u is assumed to be r-close, if the second condition holds then u ⊆
Vicinityr|x|

s (Bs), and if the third condition holds then u⟨s → s + 1⟩ ⊆ Vicinityr|x|
s+1(Bs+1).

Since the trigraphs Vicinityr|x|
s (Bs) and Vicinityr|x|

s+1(Bs+1) are of size Od,k,x(1), it follows that
Tr,x contains Od,k,x(n) elements in total: n elements for s = 1 and Od,k,x(1) elements for
each 1 < s ⩽ n.

We consider an ancestor relation ≼ on Tr,x defined as follows:

(v, t) ≼ (u, s) if and only if s ⩽ t and u⟨s → t⟩ = v.

It is easy to see Tr,x together with ≼ defines a rooted tree whose tree order is ≼. The root is
(r, n), where r is the unique tuple of Px

n , the one that maps all variables of x to the unique
part of Pn. From now on we identify the set Tr,x with the tree it induces. Therefore, we call
the elements of Tr,x nodes and the child-parent pairs in Tr,x the edges of Tr,x.

▶ Definition 23. We call Tr,x the tree of r-close x-tuples associated with G and the contraction
sequence P1, . . . , Pn.

Recall that r = 2k, and k ∈ N is fixed. For every node (u, s) ∈ Tr,x, let Typesk
u,s be the set

of all possible k-local types of tuples w ∈ V (G)x satisfying u = w⟨s⟩. By Lemma 12, there
is a constant M = Od,k,x(1) such that |Typesk

u,s| ⩽ M for every node (u, s), and Typesk
u,s

can be computed in time Od,k,x(1) given access to Gs and u.
Consider nodes (u, s), (v, t) ∈ Tr,x such that (v, t) is the parent of (u, s). Let e =

((u, s), (v, t)) be the corresponding edge of Tr,x. By Lemma 17, there exists a function
fe : Typesk

u,s → Typesk
v,t such that for every tuple w ∈ V (G)x with u = w⟨s⟩, we have

ltpk
t (w) = fe(ltpk

s(w)). (1)

We now verify that all the objects introduced above can be computed efficiently.

▶ Lemma 24 (♠). One can in time Od,k,x(n) compute the nodes and the edges of Tr,x (where
r = 2k) as well as, for every edge e of Tr,x, the function fe.

We can finally state and prove the main result of this section.

▶ Lemma 25. One can in time Od,k,x(n) construct a data structure that can answer the
following queries in time Od,k,x(1): given w ∈ V (G)x, two nodes (v, t) ≼ (u, s) of Tr,x such
that u = w⟨s⟩ and v = w⟨t⟩, and the type ltpk

s(w), output the type ltpk
t (w).

Proof. Using Lemma 24 construct the tree Tr,x and functions fe for the edges of Tr,x. By
Lemma 12, there is a constant M = Od,k,x(1) such that |Typesk

u,s| ⩽ M for every node (u, s).
Let I := [M ] be an indexing set of size M . Since for every node (u, s) we have |Typesk

u,s| ⩽ M ,
we can set an arbitrary injection ιu,s : Typesk

u,s → I. For an edge e = ((u, s), (v, t)), we set

ge := ι−1
u,s ; fe ; ιv,t.

Thus, ge is a function from I to I that, intuitively, is just fe reindexed using the index set I.
Clearly, functions ιu,s and ge defined above can be computed in total time Od,k,x(n).

We will use the following result proved in [17].
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▶ Theorem 26 (Theorem 5.1 of [17]). Let S be a semigroup and T be a rooted tree with edges
labelled with elements of S. Then one can in time |S|O(1) · |T | construct a data structure
that can answer the following queries in time |S|O(1): given nodes u, v ∈ T such that v is an
ancestor of u, output the (top-down) product of elements of S associated with the edges on
the path from v to u. The data structure uses |S|O(1) · |T | space.

Let S be the semigroup of functions from I to I with the product defined as f · g = g; f .
Thus, the functions ge form a labelling of edges of Tr,x with elements of S. Apply Theorem 26
to this S-labelled tree, and let S be the obtained data structure. Now, to answer a query
about nodes (u, s), (v, t), and type α = ltpk

s(w) as in the lemma statement, it suffices to
apply the following procedure:

Compute α̃ := ιu,s(α).
Query S to compute the compositions of functions ge along the path from (u, s) to (v, t)
in Tr,x. Call the resulting function h.
Compute β̃ := h(α̃).
Output β := ι−1

v,t(β̃).
The correctness of the procedure follows from a repeated use of (1), and it is clear that the
running time is Od,k,x(1). ◀

4.3 Data structure

With all the tools prepared, we can prove Theorem 1.
Let k be the quantifier rank of φ. We set up two auxiliary data structures:
The data structure of Lemma 20 for radius parameter r = 2k. Call this data structure P.
For every z ⊆ x, the data structure of Lemma 25 for parameter k and the set of variables z.
Call this data structure Wz.

Moreover, using Lemma 4, we compute for each time s ∈ [n − 1] the trigraph Relevantp
s,

where p := r(|x| + 1). These objects constitute our data structure, so by Lemmas 20, 25,
and 4, the construction time is Od,φ(n) as promised. It remains to show how to implement
queries.

Suppose we are given a tuple w ∈ V (G)x and we would like to decide whether G |= φ(w).
By Lemma 13, to answer this it suffices to compute ltpk

n(w). In the following, for z ⊆ x, by
wz we denote the restriction of w to the variables of z.

For each time s ∈ [n], let Hs be the graph on vertex set x such that y, y′ ∈ x are adjacent
in Hs if and only if dists(w⟨s⟩(y), w⟨s⟩(y′)) ⩽ r. The following are immediate:

For all 1 ⩽ s ⩽ t ⩽ n, Ht is a supergraph of Hs. That is, if y, y′ ∈ x are adjacent in Hs,
then they are also adjacent in Ht.
If z ⊆ x is such that Hs[z] is connected for some s ∈ [n], then wz⟨s⟩ is r-close at the
time s.

Using the data structure P, we may compute firstCloser(y, y′) for all {y, y′} ∈
(x

2
)

in total
time Od,φ(log log n). Let S ⊆ [n] be the set of all those numbers, and include 1 and n in S

in addition. Thus |S| ⩽ 2 +
(|x|

2
)
⩽ Oφ(1). We imagine S as ordered by the standard order

⩽, hence we may talk about consecutive elements of S.
Note that the knowledge of the numbers firstCloser(y, y′) for {y, y′} ∈

(x
2
)

allows us to
compute the graphs Hs for all s ∈ S. Further, observe that if t ∈ [S] is such that s ⩽ t < s′

for some s, s′ ∈ S that are consecutive in S, then Ht = Hs.
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Let L be the set of all pairs of the form (z, s) where s ∈ S, z is a connected component
of Hs, and either s = 1 or z is not connected in Hs−1. Clearly, L has size Od,φ(1) and can
be computed in time Od,φ(1). Observe the following.

▷ Claim 27. For each (z, s) ∈ L, we have (wz⟨s⟩, s) ∈ Tr,z. If moreover s > 1, then for every
y ⊆ z that is a connected component of Hs−1, we have (wy⟨s − 1⟩, s − 1) ∈ Tr,y.

Proof. If s = 1, then z being a connected component of H1 means that z is a constant tuple.
Hence wz⟨1⟩ is r-close at the time 1, implying that (wz⟨1⟩, 1) ∈ Tr,z.

Assume then that s > 1. As z is not connected in Hs−1 and is connected in Hs, it
follows that for every connected component y of Hs−1 that is contained in z, we have
dists(wy⟨s⟩, Bs) ⩽ r, and in particular dists(wz⟨s⟩, Bs) ⩽ r. The latter statement implies
that (wz⟨s⟩, s) ∈ Tr,z due to fulfilling the second condition in the definition of Tr,z. Further,
since y is a connected component of Hs−1, wy⟨s − 1⟩ is r-close at the time s − 1. So
(wy⟨s − 1⟩, s − 1) ∈ Tr,y due to fulfilling the third condition in the definition of Tr,y. ◁

We now compute the types ltpk
s (wz) for all (z, s) ∈ L. We do this in any order on L with

non-decreasing s, hence when processing (z, s) we may assume that the corresponding types
have already been computed for all (y, t) ∈ L with t < s.

Assume first that s = 1. Then (z, 1) ∈ L means that z is a connected component of H1,
which in turn means that wz is a constant tuple. In this case ltpk

1(wz) can be computed
trivially.

Assume then that s > 1. Since (z, s) ∈ L, we have that z is a connected component of
Hs, but in Hs−1, z breaks into two or more smaller connected components.

Consider any such component y; that is, y is a connected component of Hs−1 that is
contained in z. By Claim 27, we have (wy⟨s − 1⟩, s − 1) ∈ Tr,y. Let then t ⩽ s − 1 be
the smallest time such that y is a connected component of Ht; clearly we have t ∈ S and
(y, t) ∈ L. By Claim 27 again, (wy⟨t⟩, t) ∈ Tr,y. Since the type ltpk

t (wy) has been already
computed before, we may use one query to Wy to compute the type ltpk

s−1(wy).
Having performed the procedure described above for every connected component y of

Hs−1 that is contained in z, we may repeatedly use Lemma 15 to compute the type ltpk
s−1(wz).

Note that for different components y, y′ as above, we have dists−1(wy⟨s − 1⟩, wy′⟨s − 1⟩) > r

due to y and y′ being non-adjacent in Hs−1. Furthermore, all trigraphs required in the
applications of Lemma 15 can be easily deduced from the trigraph Relevantp

s−1 and the
description of the contraction performed at the time s − 1; these are stored in our data
structure.

Finally, it remains to apply Lemma 17 to compute the type ltpk
s(wz) from ltpk

s−1(wz).
Again, the trigraphs needed in this application can be easily deduced from Relevantp

s−1 and
the contraction performed at the time s − 1. This finishes the computation of types ltpk

s (wz)
for all (z, s) ∈ L; note that the running time is Od,φ(1).

Finally, let t be the smallest time such that x is connected in Ht. Such t exists since x is
connected in Hn. Clearly, t ∈ S. By definition we have (x, t) ∈ L, so the type ltpk

t (w) has
been computed. By Claim 27, (w⟨t⟩, t) ∈ Tr,x. So we can now use the data structure Wx one
last time to compute ltpk

n(w). This finishes the proof of Theorem 1.
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5 Query enumeration

In this section we prove Theorem 2, which we recall below for convenience.

▶ Theorem 2. Suppose we are given an n-vertex graph G specified through a contraction
sequence P1, . . . , Pn of width d, and a first-order formula φ(x), where x is a set of variables.
Then after preprocessing in time Od,φ(n), one can enumerate all tuples w ∈ V (G)x such that
G |= φ(w) with Od,φ(1) delay.

First, we need to define our notion of enumerators, and prepare some tools for working
with them.

Enumerators. Let x1, . . . , xn be a sequence of elements. An enumerator of the sequence
x1, . . . , xn is a data structure that implements a single method, such that at the ith invocation
of the method, it outputs the element xj of the sequence, where j = i mod n, and reports
an “end of sequence” message if j = 0. We say that the enumerator has delay t if each
invocation takes at most t computation steps, including the steps needed to output the
element xj (assuming each element has a fixed representation). An enumerator for a set X is
an enumerator for any sequence x1, . . . , xn with {x1, . . . , xn} = X and n = |X|. Enumerators
for Cartesian products and disjoint unions of sets can be obtained in an obvious way:

▶ Lemma 28. Suppose we are given an enumerator for a set X with delay t and an
enumerator for a set Y with delay t′, where t, t′ ⩾ 1. Then we can construct in time O(1) an
enumerator with delay t + t′ + O(1) for the set X × Y and – if X and Y are disjoint – for
the set X ⊎ Y .

We will also construct enumerators for disjoint unions of families of sets, as follows.

▶ Lemma 29. Suppose X1, . . . , Xn are pairwise disjoint, nonempty sets, such that Xi has
an enumerator Ei with delay t. Suppose furthermore we have an enumerator for the sequence
E1, . . . , En with delay t′. Then one can construct, in time O(1) an enumerator for the set⋃

1⩽i⩽n Xi with delay t + t′ + O(1).

Finally, we will use the following lemma, proved in [17, Lemma 7.15].

▶ Lemma 30. Fix a finite set Q of size q and a set of functions F ⊆ QQ. There is a constant
c computable from q and an algorithm that, given a rooted tree T , in which each edge vw

(v child of w) is labelled by a function fvw : Q → Q, computes in time c · |T | a collection
(Ew)w∈V (T ) of enumerators, where each Ew is an enumerator with delay c that enumerates
all descendants v of w such that the composition of the functions labeling the edges of the
path from v to w, belongs to F .

This yields the following.

▶ Corollary 31 (♠). Fix a number q. There is a constant c computable from q and an
algorithm that, given a rooted tree T , in which each node v is labeled by a set Xv with
|Xv| ⩽ q and a set Yv ⊆ Xv, and each edge vw (v child of w) is labelled by a function
fwv : Xv → Xw, computes in time c · |T | a collection (Eτ

w)w∈V (T ),τ∈Xw
of enumerators, where

each Eτ
w is an enumerator with delay c that enumerates all descendants v of w such that there

is some σ ∈ Yv that is mapped to τ by the composition f : Xv → Xw of the functions labeling
the edges of the path from v to w.
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Proof of Theorem 2. We now proceed to the proof of Theorem 2.
Fix a number k, a set of variables x, an n-vertex graph G, together with its contraction

sequence P1, . . . , Pn. Denote r := 2k.
For every s ∈ [n] and x-tuple u ∈ Px

s , and local type τ ∈ Typesk
u,s, denote

Sτ
u,s := {w ∈ V (G)x | w⟨s⟩ = u and ltpk

s(w) = τ}.

Recall that the root of Tr,x is the pair (r, n), where r is the constant x-tuple with all
components equal to the unique part of Pn. Then Sτ

r,n is the set of all x-tuples w ∈ V (G)x

with ltpk
n(w) = τ . From Lemma 13 and Lemma 7 we get:

▶ Lemma 32. Fix a formula φ(x) of quantifier-rank k. Then there is a set Γ ⊆ Typesn
r,n

such that φ(G) := {w ∈ V (G)x | G |= φ(w)} is the disjoint union of the family of sets
{Sτ

r,n | τ ∈ Γ}.

Therefore, an enumerator for φ(G) can be obtained by concatenating enumerators for
the sets Sτ

r,n, for τ ∈ Γ. Note that here we are concatenating only Ok,d,x(1) enumerators, by
Lemma 12, so, by applying Lemma 28 repeatedly, the resulting enumerator can be obtained
in time Ok,d,x(1) and has delay Ok,d,x(1). So to prove Theorem 2, it suffices to prove that
we can efficiently compute an enumerator for each of the sets Sτ

r,n.
Recall that Tr,x is the tree of r-close x-tuples (see Def. 23), and can be computed in

time Od,k,x(n), by Lemma 24. In the following proposition, we will show how to compute
enumerators for all of the sets Sτ

u,s, for (u, s) ∈ Tr,x. All the enumerators jointly will be
computed in time Od,k,x(n).

▶ Proposition 33. Fix a nonempty set x of variables and k ∈ N. Assume G is a graph on n

vertices provided on input through a contraction sequence P1, . . . , Pn of width d. Then one
can in time Od,k,x(n) construct a data structure that associates, to every node (u, s) of Tr,x

and every local type τ ∈ Typesk
u,s, an enumerator for all tuples in Sτ

u,s with delay Od,k,x(1).

As noted above, Theorem 2 follows from Proposition 33, using Lemma 32. The rest of
Section 5 is devoted to proving Proposition 33.

We prove Proposition 33 by induction on |x|. So suppose the statement holds for all strict
subsets of x. Recall that we may construct the tree Tr,x, in time Od,k,x(n), using Lemma 24.

Let v, u be two nodes of Tr,x with v = (v, t) and u = (u, s) and u ≼ v. By Lemma 25,
there is a function fvu : Typesk

v,t → Typesk
u,s such that for every w ∈ V (G)x, with u = w⟨t⟩

we have fvu(ltpk
t (w)) = ltpk

s(w).

For a tuple w ∈ V (G)x, let s ∈ [n] be the first time such that w⟨s⟩ is r-close at time s,
where r = 2k. We then say that w registers at (u, s), where u = w⟨s⟩. By Claim 27, in this
case, the pair (u, s) is a node of Tr,x.

For each node (u, s) of Tr,x and type τ ∈ Typesk
u,s, denote:

Rτ
u,s = {w ∈ V (G)x | w registers at (u, s) and ltpk

s(w) = τ}.

Fix a node (u, s) ∈ Tr,x and a type τ ∈ Typesk
u,s. Clearly, every tuple w ∈ Sτ

u,s

registers at exactly one descendant v = (v, t) of u = (u, s) (possibly, v = u), and moreover,
fvu(ltpk

t (w)) = τ . This proves the following.

▶ Lemma 34. For every node u ∈ Tr,x and type τ ∈ Typesk
u, the set Sτ

u is the disjoint union
of all the sets Rσ

v , for v ∈ Tr,x with v ≽ u and σ ∈ Typesk
v such that fvu(σ) = τ .
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We prove the following two lemmas.

▶ Lemma 35 (♠). For every given node u = (u, s) ∈ Tr,x and type τ ∈ Typesk
u,s, an

enumerator for the set Rτ
u,s with delay Od,k,x(1) can be constructed in time Od,k,x(1).

▶ Lemma 36 (♠). One can construct in time Od,k,x(n) a collection of enumerators Eτ
u , one

per each node u = (u, s) ∈ Tr,x and type τ ∈ Typesk
u,s, where Eτ

u has delay Od,k,x(1) and
enumerates all descendants v = (v, t) of u in Tr,x such that there is some σ ∈ Typesk

v,t with
fvu(σ) = τ and Rσ

v,t ̸= ∅.

Combining Lemma 34, Lemma 35, Lemma 36 and Lemma 29 yields the required collection
of enumerators for each of the sets Sk

u,s, thus proving Proposition 33 and Theorem 2. The
proof of Lemma 36 uses Corollary 31, and is omitted, due to space constraints. We now
sketch the proof of Lemma 35.

Proof sketch for Lemma 35. The case when u is a leaf, that is, s = 1, is easily solved, since
in this case Rτ

u,s is either empty, or consists of a single tuple. In the case when u is an inner
node, consider the set

V := {v ∈ Px
s−1 | v⟨s − 1 → s⟩ = u}.

It is easy to see that V has size Ok,x,d(1), and can be computed in this time, given u ∈ Tr,x.
Fix v ∈ V , and consider the graph Hv with vertices x where any two distinct y, y′ ∈ x are

adjacent whenever dists(v(y), v(y′)) ⩽ r. Let Cv denote the set of connected components
of Hv, where each connected component is viewed as a set y ⊆ x of vertices of Hv. Then
each of the sets Cv, can be computed in time Ok,x,d(1), given (u, s) ∈ Tr,x and v ∈ V. Call
a tuple v ∈ V disconnected if Hv is such. Note that if v is disconnected and y ∈ Cv, then
|y| < |x|.

Fix a disconnected tuple v ∈ V and y ∈ Cv. Denote by vy the restriction of v to y. Note
that the pair (vy, s − 1) is a node of Tr,y. Indeed, by assumption, dists(Bs, u) ⩽ r holds, so
dists(Bs, v⟨s → s + 1⟩) ⩽ r, and in particular dists(Bs, vy⟨s → s + 1⟩) ⩽ r. Moreover, vy is
r-close, since y is a connected component of Hv. As |y| < |x|, by inductive assumption, we
have already computed enumerators for the sets Sσ

vy,s−1, for all adequate local types σ.
From Lemma 15 we deduce that the set Rτ

u,s is the disjoint union of sets of the form
S τ̄

v,s−1, where:
1. v ∈ V is disconnected;
2. τ̄ := (τy : y ∈ Cv) is a tuple of types with τy ∈ Typesk

vy,s−1 and which is “merged” into
the type τ , using the function from Lemma 15;

3. the set S τ̄
v,s−1 is a Cartesian product of the sets S

τy
vy,s−1.

Since for the sets S
τy
vy,s−1 we have enumerators by inductive assumption, by Lemma 28,

we can compute in time Ok,d,x(1) an enumerator for the set S τ̄
v,s−1, with delay Ok,d,x(1).

Finally, we obtain an enumerator for Rτ
u,s, by concatenating the Ok,d,x(1) enumerators for

the sets S τ̄
v,s−1. This finishes the proof sketch for Lemma 35. ◀
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