
Distributed Controller Synthesis for Deadlock
Avoidance
Hugo Gimbert
Université de Bordeaux, CNRS, France

Corto Mascle
Université de Bordeaux, France

Anca Muscholl
Université de Bordeaux, France

Igor Walukiewicz
Université de Bordeaux, CNRS, France

Abstract
We consider the distributed control synthesis problem for systems with locks. The goal is to find
local controllers so that the global system does not deadlock. With no restriction this problem is
undecidable even for three processes each using a fixed number of locks. We propose two restrictions
that make distributed control decidable. The first one is to allow each process to use at most two
locks. The problem then becomes complete for the second level of the polynomial time hierarchy,
and even in Ptime under some additional assumptions. The dining philosophers problem satisfies
these assumptions. The second restriction is a nested usage of locks. In this case the synthesis
problem is Nexptime-complete. The drinking philosophers problem falls in this case.

2012 ACM Subject Classification Theory of computation → Distributed computing models

Keywords and phrases Distributed Synthesis, Concurrency, Lock Synchronisation, Deadlock Avoid-
ance

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.125

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2204.12409

Funding Work partially funded by ANR project FREDDA (ANR-17-CE40-0013).

1 Introduction

Synthesis of distributed systems has a big potential since such systems are difficult to write,
test, or verify. The state space and the number of different behaviors grow exponentially
with the number of processes. This is where distributed synthesis can be more useful than
centralized synthesis, because an equivalent, sequential system may be very big. The other
important point is that distributed synthesis produces by definition a distributed system,
while a synthesized sequential system may not be implementable on a given distributed
architecture. Unfortunately, very few settings are known for which distributed synthesis is
decidable, and those that we know require at least exponential time.

The problem was first formulated by Pnueli and Rosner [27]. Subsequent research showed
that, essentially, the only decidable architectures are pipelines, where each process can send
messages only to the next process in the pipeline [20, 23, 11]. In addition, the complexity
is non-elementary in the size of the pipeline. These negative results motivated the study
of distributed synthesis for asynchronous automata, and in particular synthesis with so
called causal information. In this setting the problem becomes decidable for co-graph
action alphabets [12], and for tree architectures of processes [14, 25]. Yet the complexity

EA
T
C
S

© Hugo Gimbert, Corto Mascle, Anca Muscholl, and Igor Walukiewicz;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 125; pp. 125:1–125:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2022.125
https://arxiv.org/abs/2204.12409
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


125:2 Distributed Controller Synthesis for Deadlock Avoidance

is again non-elementary, this time w.r.t. the depth of the tree. Worse, it has been recently
established that distributed synthesis with causal information is undecidable for unconstrained
architectures [17]. Distributed synthesis for (safe) Petri nets [10] has encountered a similar
line of limited advances, and due to [17], is also undecidable in the general case, since it
is inter-reducible to distributed synthesis for asynchronous automata [3]. This situation
raised the question if there is any setting for distributed synthesis that covers some standard
examples of distributed systems, and is manageable algorithmically.

In this work we consider distributed systems with locks; each process can take or release a
lock from a pool of locks. Locks are one of the most classical concepts in distributed systems.
They are also probably the most frequently used synchronization mechanism in concurrent
programs. We formulate our results in a control setting rather than synthesis – this avoids
the need for a specification formalism. The objective is to find a local strategy for each
process so that the global system does not get stuck. For unrestricted systems with locks we
hit again an undecidability barrier, as for the models discussed above. Yet, we find quite
interesting restrictions making distributed control synthesis for systems with locks decidable,
and even algorithmically manageable.

The first restriction we consider is to limit the number of locks available to each process.
The classical example are dining philosophers, where each philosopher has two locks cor-
responding to the left and the right fork. Observe that we do not limit the total number
of processes, or the total number of locks in the system. We show that the complexity of
this synthesis problem is at the second level of the polynomial hierarchy. The problem gets
even simpler when we restrict it to strategies that cannot block a process when all locks are
available. We call them locally live strategies. We obtain an NP-algorithm for locally live
strategies, and even a Ptime algorithm when the access to locks is exclusive. This means
that once a process tries to acquire a lock it cannot switch to some other action before getting
the lock.

The second restriction is nested lock usage. This is a very common restriction in the
literature [19], simply saying that acquiring and releasing locks should follow a stack discipline.
Drinking philosophers [4] are an example of a system of this kind. We show that in this case
distributed synthesis is Nexptime-complete, where the exponent in the algorithm depends
only on the number of locks.

We formalize the distributed synthesis problem as a control problem [28]. A process is
given as a transition graph where transitions can be local actions, or acquire/release of a
lock. Some transitions are controllable, and some are not. A controller for a process decides
which controllable transitions to allow, depending on the local history. In particular, the
controller of a process does not see the states of other processes. Our techniques are based
on analyzing patterns of taking and releasing locks. In decidable cases there are finite sets of
patterns characterizing potential deadlocks.

The notion of patterns resembles locking disciplines [7], a tool frequently used to prevent
deadlocks. An example of a locking discipline is “take the left fork before the right one” in
the dining philosophers problem. Our results allow to check if a given locking discipline may
result in a deadlock, and in some cases even list all deadlock-avoiding locking disciplines.

In summary, the main results of this work are:
ΣP

2 -completeness of the deadlock avoidance control problem for systems where each
process has access to at most 2 locks.
An NP algorithm when additionally strategies need to be locally live.
A Ptime algorithm when moreover lock access is exclusive.
A Nexptime algorithm and the matching lower bound for the nested lock usage case.
Undecidability of the deadlock avoidance control problem for systems with unrestricted
access to locks.



H. Gimbert, C. Mascle, A. Muscholl, and I. Walukiewicz 125:3

Related work

Distributed synthesis is an old idea motivated by the Church synthesis problem [5]. Actually,
the logic CTL has been proposed with distributive synthesis in mind [6]. Given this long
history, there are relatively few results on distributed synthesis. Three main frameworks have
been considered: synchronous networks of input/output automata, asynchronous automata,
Petri games.

The synchronous network model has been proposed by Pnueli and Rosner [27]. They
established that controller synthesis is decidable for pipeline architectures and undecidable in
general. The undecidability result holds for very simple architectures with only two processes.
Subsequent work has shown that in terms of network shape pipelines are essentially the only
decidable case [20, 23, 11]. Several ways to circumvent undecidability have been considered.
One was to restrict to local specifications, specifying the desired behavior of each automaton
in the network separately. Unfortunately, this does not extend the class of decidable
architectures substantially [23]. A further-going proposal was to consider only input-output
specifications. A characterization, still very restrictive, of decidable architectures for this
case is given in [13].

The asynchronous (Zielonka automata) model was proposed as a reaction to these negative
results [12]. The main hope was that causal memory helps to prevent undecidability arising
from partial information, since the synchronization of processes in this model makes them
share information. Causal memory indeed allowed to get new decidable cases: co-graph
action alphabets [12], connectedly communicating systems [24], and tree architectures [14, 25].
There is also a weaker condition covering these three cases [16]. This line of research suffered
however from a very recent result showing undecidability in the general case [17].

Distributed synthesis in the Petri net model, Petri games, has been proposed recently
in [10]. The idea is that some tokens are controlled by the system and some by the environment.
Once again causal memory is used. Without restrictions this model is inter-reducible with the
asynchronous automata model [3], hence the undecidability result [17] applies. The problem
is Exptime-complete for one environment token and arbitrary many system tokens [10]. This
case stays decidable even for global safety specifications, such as deadlock, but undecidable in
general [9]. As a way to circumvent the undecidability, bounded synthesis has been considered
in [8, 18], where the bound on the size of the resulting controller is fixed in advance. The
approach is implemented in the tool AdamSYNT [15].

The control formulation of the synthesis problem comes from the control theory com-
munity [28]. It does not require to talk about a specification formalism, while retaining
most useful aspects of the problem. A frequently considered control objective is avoidance
of undesirable states. In the distributed context, deadlock avoidance looks like an obvious
candidate, since it is one of the most basic desirable properties. The survey [32] discusses the
relation between the distributed control problem and Church synthesis. Some distributed
versions of the control problem have been considered, also hitting the undecidability barrier
very quickly [29, 31, 30, 1].

We would like to mention two further results that do not fit into the main threads outlined
above. In [33] the authors consider a different synthesis problem for distributed systems: they
construct a centralized controller for a scheduler that would guarantee absence of deadlocks.
This is a very different approach to deadlock avoidance. Another recent work [2] adds a new
dimension to distributed synthesis by considering communication errors in a model with
synchronous processes that can exchange their causal memory. The authors show decidability
of the synthesis problem for 2 processes.

ICALP 2022



125:4 Distributed Controller Synthesis for Deadlock Avoidance

Outline of the paper

In the next section we define systems with locks, strategies, and the control problem.
We introduce locally live strategies as well as the 2-lock, exclusive, and nested locking
restrictions. This permits to state the main results of the paper. The following three
sections consider systems with the 2-lock restriction. First, we briefly give intuitions behind
the Σp

2-completeness in the general case. Section 4 presents an NP algorithm for the
distributed synthesis problem for locally live strategies. Section 5 gives a Ptime algorithm
under the exclusive restriction. Next, we consider the nested locking case, and show that
the problem is Nexptime-complete. Finally, we prove that without any restrictions the
synthesis problem for systems with locks is undecidable. The full version can be found at
https://arxiv.org/4272787.

2 Main definitions and results

A lock-sharing system is a distributed system with components (processes) synchronizing
over locks. Processes do not communicate, but they synchronize using locks from a global
pool. Some transitions of processes are uncontrollable, intuitively the environment decides
if such a transition is taken. The goal is to find a local strategy for each process so that
the entire system never deadlocks. The strategy can observe only local transitions – it does
not see transitions performed by other processes, nor states other processes are in. While
the system is finite state, the challenge comes from the locality of strategies. Indeed, the
unrestricted problem is undecidable. The main contribution of this work are restrictions that
make the problem decidable, and even solvable in Ptime.

In this section we define lock-sharing systems, strategies, and the deadlock avoidance
control problem, that is the topic of this paper. We then introduce restrictions on the general
problem and state the main decidability and complexity results.

A finite-state process p is an automaton Ap = (Sp, Σp, Tp, δp, initp) with a set of locks Tp

that it can acquire or release. The transition function δp : Sp ×Σp
·→ Op(Tp)× Sp associates

with a state from Sp and an action from Σp an operation on some lock and a new state; it is
a partial function. The lock operations are acquire (acqt) or release (relt) some lock t from
Tp, or do nothing: Op(Tp) = {acqt, relt | t ∈ Tp} ∪ {nop}. Figure 1 gives an example.

A local configuration of process p is a state from Sp together with the locks p currently
owns: (s, B) ∈ Sp × 2Tp . The initial configuration of p is (initp, ∅), namely the initial
state with no locks. A transition between configurations (s, B) a,op−−−→ (s′, B′) exists when
δp(s, a) = (op, s′) and one of the following holds:

op = nop and B = B′;
op = acqt, t /∈ B and B′ = B ∪ {t};
op = relt, t ∈ B, and B′ = B \ {t}.

A local run (a1, op1)(a2, op2) · · · ofAp is a finite or infinite sequence over Σp×Op(Tp) such that
there exists a sequence of configurations (initp, ∅) = (s0, B0) (a1,op1)−−−−−→p (s1, B1) (a2,op2)−−−−−→p · · ·
While the run is determined by the sequence of actions, we prefer to make lock operations
explicit. We write Runsp for the set of runs of Ap.

A lock-sharing system S = ((Ap)p∈Proc, Σs, Σe, T ) is a set of processes together with a
partition of actions between controllable and uncontrollable actions, and a set T of locks. We
have T =

⋃
p∈Proc Tp, for the set of all locks. Controllable and uncontrollable actions belong

to the system and to the environment, respectively. We write Σ =
⋃

p∈Proc Σp for the set of
actions of all processes and require that (Σs, Σe) partitions Σ. The sets of states and action
alphabets of processes should be disjoint: Sp ∩ Sq = ∅ and Σp ∩ Σq = ∅ for p ̸= q. The sets
of locks are not disjoint, in general, since processes may share locks.

https://arxiv.org/4272787


H. Gimbert, C. Mascle, A. Muscholl, and I. Walukiewicz 125:5

hungry

think
left

right

acqtp+1

acqtp

acqtp

acqtp+1

reltp , reltp+1

Figure 1 A dining philosopher p. Dashed transitions are controllable.

▶ Example 1. The dining philosophers problem can be formulated as control problem
for a lock-sharing system S = ((Ap)p∈Proc, Σs, Σe, T ). We set Proc = {1, . . . , n} and
T = {t1, . . . , tn} as the set of locks. For every process p ∈ Proc, process Ap is as in Figure 1,
with the convention that tn+1 = t1. Actions in Σs are marked by dashed arrows. These
are controllable actions. The remaining actions are in Σe. Once the environment makes a
philosopher p hungry, she has to get both the left (tp) and the right (tp+1) fork to eat. She
may however choose the order in which she takes them; actions left and right are controllable.

A global configuration of S is a tuple of local configurations C = (sp, Bp)p∈Proc provided
the sets Bp are pairwise disjoint: Bp ∩ Bq = ∅ for p ̸= q. This is because a lock can be
taken by at most one process at a time. The initial configuration is the tuple of initial
configurations of all processes.

Such systems are asynchronous, with transitions between two configurations done by a
single process: C

(p,a,op)−−−−−→ C ′ if (sp, Bp) (a,op)−−−−→p (s′
p, B′

p) and (sq, Bq) = (s′
q, B′

q) for every
q ̸= p. A global run is a sequence of transitions between global configurations. Since our
systems are deterministic we usually identify a global run by the sequence of transition labels.
A global run w determines a local run of each process: w|p is the subsequence of p’s actions
in w.

A control strategy for a lock-sharing system is a tuple of local strategies, one for each
process: σ = (σp)p∈Proc. A local strategy σp says which actions p can take depending on a
local run so far: σp : Runsp → 2Σp , provided Σe ∩ Σp ⊆ σp(u), for every u ∈ Runsp. This
requirement says that a strategy cannot block environment actions.

A local run u of a system respects σp if for every non-empty prefix v(a, op) of u, we have
a ∈ σp(v). Observe that local runs are affected only by the local strategy. A global run w

respects σ if for every process p, the local run w|p respects σp. We often say just σ-run,
instead of “run respecting σ”.

As an example consider the system for two philosophers from Example 1. Suppose that
both local strategies always say to take the left transition. So hungry1, left1, acq1

t1
, acq1

t2

is a local run of process 1 respecting the strategy; similarly hungry2, left2, acq2
t2

, acq2
t1

for
process 2. (We use superscripts to indicate the process doing an action.) The global
run hungry1, hungry2, left1, left2, acq1

t1
, acq2

t2
respects the strategy and blocks, since each

philosopher needs a lock the other one owns.

▶ Definition 2 (Deadlock avoidance control problem). A σ-run w leads to a deadlock in σ if
w cannot be prolonged to a σ-run. A control strategy σ is winning if no σ-run leads to a
deadlock in σ. The deadlock avoidance control problem is to decide if for a given system
there is some winning control strategy.

ICALP 2022



125:6 Distributed Controller Synthesis for Deadlock Avoidance

In this work we consider several variants of the deadlock avoidance control problem.
Maybe surprisingly, in order to get more efficient algorithms we need to exclude strategies
that can block a process by itself:

▶ Definition 3 (Locally live strategy). A local strategy σp for process p is locally live if every
local σp-run u can be prolonged to a σp-run: there is some b ∈ Σp such that ub is a local run
respecting σp. A strategy σ is locally live if every local strategy is so.

In other words, a locally live strategy guarantees that a process does not block if it runs
alone. Coming back to Example 1: a strategy always offering one of the left or right actions
is locally live. A strategy that offers none of the two is not. Observe that blocking one
process after the hungry action is a very efficient strategy to avoid a deadlock, but it is not
the intended one. This is why we consider locally live to be a desirable property rather than
a restriction.

Note that being locally live is not exactly equivalent to a strategy always proposing at
least one outgoing transition. In our semantics, a process blocks if it tries to acquire a lock
that it already owns, or to release a lock it does not own. But it becomes equivalent thanks
to the following remark:

▶ Remark 4. We can assume that each process keeps track in its state which locks it owns.
Note that this assumption does not compromise the complexity results when the number of
locks a process can access is fixed. We will not use this assumption in Section 6, where a
process can access arbitrarily many locks (in nested fashion).

Without any restrictions our synthesis problem is undecidable.

▶ Theorem 5. The deadlock avoidance control problem for lock-sharing systems is undecidable.
It remains so when restricted to locally live strategies.

We propose two cases when the control problem becomes decidable. The two are defined
by restricting the usage of locks.

▶ Definition 6 (2LSS). A process Ap = (Sp, Σp, Tp, δp, initp) uses two locks if |Tp| = 2. A
system S = ((Ap)p∈Proc, Σs, Σe, T ) is 2LSS if every process uses two locks.

Note that in the above definition we do not bound the total number of locks in the system,
just the number of locks per process. The process from Figure 1 is 2LSS. Our first main
result says that the control problem is decidable for 2LSS.

▶ Theorem 7. The deadlock avoidance control problem for 2LSS is Σp
2-complete.

For the lower bound we use strategies that take a lock and then block. This does not
look like a very desired behavior, and this is the reason for introducing the concept of locally
live strategies. The second main result says that restricting to locally live strategies helps.

▶ Theorem 8. The deadlock avoidance control problem for 2LSS is in NP when strategies
are required to be locally live.

We do not know if the above problem is in Ptime. We can get a Ptime algorithm under
one more assumption.

▶ Definition 9 (Exclusive systems). A process p is exclusive if for every state s ∈ Sp: if s

has an outgoing transition with some acqt operation then all outgoing transitions of s have
the same acqt operation. A system is exclusive if all its processes are.



H. Gimbert, C. Mascle, A. Muscholl, and I. Walukiewicz 125:7

hungry

think
left

right

acqtp+1

acqtp

acqtp

acqtp+1

reltp
, reltp+1

reltp

reltp+1

Figure 2 A flexible philosopher p. She can release a fork if the other fork is not available.

▶ Example 10. The process from Figure 1 is exclusive, while the one from Figure 2 is not.
The latter has a state with one acqtp+1

and one reltp
outgoing transition. Observe that in

this state the process cannot block, and has the possibility to take a lock at the same time.
Exclusive systems do not have such a possibility, so their analysis is much easier.

▶ Theorem 11. The deadlock avoidance control problem for exclusive 2LSS is in Ptime,
when strategies are required to be locally live.

Without local liveness, the problem stays Σp
2-hard for exclusive 2LSS. Our last result uses a

classical restriction on the usage of locks:

▶ Definition 12 (Nested-locking). A local run is nested-locking if the order of acquiring and
releasing locks in the run respects a stack discipline, i.e., the only lock a process can release
is the last one it acquired. A local strategy is nested-locking if all local runs respecting the
strategy are nested-locking. A strategy is nested-locking if all local strategies are nested-locking.

The process from Figure 1 is nested-locking, while the one from Figure 2 is not.

▶ Theorem 13. The deadlock avoidance control problem is Nexptime-complete when
strategies are required to be nested-locking.

3 Two locks per process

We give some intuitions as to why the deadlock avoidance problem for 2LSS is Σp
2-complete

(Theorem 7).
When every process uses only two locks there are only few patterns of local lock usage

that are relevant for deadlocks. A finite local run u of process p using locks t1, t2 can be of
one of the following four types:

p owns both locks at the end of u;
p owns no lock at the end of u;
p owns only one lock, say t1, at the end of u, and the last lock operation of u is acqt1

;
p owns only one lock, say t1, at the end of u, and the last lock operation of u is relt2 .

A pattern of a run is its type, and the set of available actions at the end. If a run reaches a
deadlock then the only available actions are to acquire locks owned by other processes.

We fix a 2LSS ({Ap}p∈Proc, Σs, Σe, T ) over the set of processes Proc. We assume that it
satisfies Remark 4.

ICALP 2022



125:8 Distributed Controller Synthesis for Deadlock Avoidance

Given a strategy σ = (σp)p∈Proc, we call a local σ-run risky if it ends in a state from
which every outgoing action allowed by σ acquires some lock (this includes states with no
outgoing transition). A local σ-run is neutral if it ends in a configuration (s, B) with B = ∅.

▶ Definition 14. We define the pattern of a risky σp-run up as follows. Let Towns be the set
of locks that p owns after executing up and Tblocks the set of locks that outgoing transitions
allowed by σp after up need to acquire.

The pattern of up is the tuple (Towns, Tblocks, ord) with:
If up is of the form u1(a, acqt1

)u2(b, relt2)u3 with no action on t1 in u2 and no action
on either t1 or t2 in u3 then ord = (t1, t2).
Otherwise ord = ⊥.

Note that in light of Remark 4, Towns and Tblocks are necessarily disjoint. Furthermore
if ord is of the form (t1, t2) then Towns = {t1}, and either Tblocks = ∅ or Tblocks = {t2}.

A strategy σ = (σp)p∈Proc respects a family of sets of patterns (Pattp)p∈Proc if for all
p ∈ Proc, the patterns of all risky σp-runs belong to Pattp.

In this definition, Towns and Tblocks serve as witnesses of deadlock configurations, in which
all required locks are owned by another process, and no lock is owned by two different processes.
Further, the ord component indicates the fourth case described before the definition.

Our key result in this part is Lemma 15. It gives simple, necessary and sufficient,
conditions on the family of patterns of local σ-runs (up)p∈Proc that lead to a deadlock under
a suitable scheduling. The difficulty is to verify if there exists a global run which is a
combination of those local runs. For that, all processes must own disjoint sets of locks at the
end. The rest can be inferred from the types of runs listed above.

We describe how to schedule local runs into a global one depending on the four types
listed before Definition 14.

In the first case we can assume that p’s run is scheduled at the end of the global run, as
it ends up keeping both locks anyway, so no other process will use them after p.
In the second case, we can assume that p’s run is scheduled at the beginning of the global
run, as it is neutral.
In the third case, we can split p’s run in two parts: a first, neutral part which can be
scheduled at the beginning, and a second part in which p acquires t1 and there is no lock
operation afterwards. The second part can be scheduled at the end, because no other
process will use t1 after p.
In the final case, p acquires t1, never releases it but later uses t2. This can be a problem
if for instance another process does the same with t1 and t2 reversed. The first process
that takes its first lock would prevent the other from finishing its local run. We express
these constraints by requiring the existence of a global order in which process take locks
without releasing them.

▶ Lemma 15. Let σ = (σp)p∈Proc be a control strategy. For all p let Pattp be the set of
patterns of local risky σp-runs of p. The control strategy σ is not winning if and only if there
exists for each p a pattern (Tp

owns, Tp
blocks, ordp) ∈ Pattp such that:⋃

p∈Proc Tp
blocks ⊆

⋃
p∈Proc Tp

owns,
the sets Tp

owns are pairwise disjoint,
there exists a total order ≤ on T such that for all p, if ordp = (t, t′) then t ≤ t′.

Proof. Suppose σ is not winning, let u be a run ending in a deadlock. For each process p let
up be the corresponding local run. The local run up is risky, as otherwise up could be extended
in a longer run consistent with σ. Thus up has a pattern (Tp

owns, Tp
blocks, ordp) ∈ Pattp.



H. Gimbert, C. Mascle, A. Muscholl, and I. Walukiewicz 125:9

We check that those patterns (up)p∈Proc meet the requirements of the lemma. Clearly as
we are in a deadlock, all locks that some process wants are taken, hence the first condition
is satisfied. Furthermore, no two processes can own the same lock, implying the second
condition. Finally, let ≤ be a total order on locks given by the order of the last operations
on each lock in u: we set t ≤ t′ iff the last operation on t in u is before the last one on t′. Let
p be a process, and suppose ordp is (t, t′). Then up has the form u1(a, acqt)u2(b, relt′)u3
with no action on t in u2 or u3. Hence, t ≤ t′.

The other direction is a bit more complicated. Suppose that for each p there is a pattern
(Tp

owns, Tp
blocks, ordp) ∈ Pattp such that those patterns satisfy all three conditions of the

lemma. Let ≤ be a suitable total order on locks for the third condition, and let < be its
strict part. For every p there exists a risky local run up yielding the chosen pattern for p.

We start by executing all neutral runs up one by one in some order. All locks are free
after these executions.

For all p such that Tp
owns = {t} and ordp = ⊥, we can decompose up as u1(a, acqt)u2

with no action on locks in u2. We execute all runs u1, which are neutral and thus leave all
locks free after execution.

Finally, we execute all up such that ordp ̸= ⊥ in increasing order on the first component
of ordp according to ≤. For all such p, let (t, t′) = ordp, so we have Tp

owns = {t} and t < t′.
As all Tp

owns are disjoint, before executing up all locks greater or equal to t according to ≤
are free. In particular, t and t′ are free, thus we can execute up. In the end all locks are free
except the ones belonging to Tp

owns for those processes p.
Now we execute the remaining part of the up with Tp

owns = {t} and ordp = ⊥ (referred
to as (a, acqt)u2 before). Those runs do not contain any action on locks besides the first
acquire. As all Tp

owns are disjoint, the locks they acquire are free, hence all those runs can
be executed.

The remaining runs are the ones such that Tp
owns = {t, t′}. As all Tp

owns are disjoint,
both these locks are free, hence up can be executed as p can only use these two locks.

We have combined all local runs into one global run reaching a configuration where
all processes have to acquire a lock from

⋃
p∈Proc Tp

blocks to keep running, and all locks in⋃
p∈Proc Tp

owns are taken. As
⋃

p∈Proc Tp
blocks ⊆

⋃
p∈Proc Tp

owns, we have reached a deadlock.
◀

The algorithm for Theorem 7 proceeds in four phases:
guess a set of patterns Pattp, one for each process p,
check that there are local strategies σp such that the patterns of all runs belong to Pattp,
let the adversary guess a pattern in each Pattp,
check whether those patterns satisfy the conditions of Lemma 15.

The alternation between guessing and adversarial guessing yields a Σp
2 algorithm.

The lower bound is obtained by a reduction from ∃∀-SAT. The system controls existential
variables, the environment controls universal ones. There are two locks for each variable,
acquiring one of them is interpreted as choosing the value of the variable. Note that this
construction relies on processes that take a lock and then block on their own in states with
no outgoing transitions. In the following section we will forbid such unnatural behavior by
considering only locally live strategies.

We use some extra processes to enforce that the system wins if and only if the valuation
given by the choices of the two players satisfies the SAT formula. The interesting part is
that even though it looks like the guessing values of variables is done concurrently by the
system and the environment, the whole setting enforces a ∃∀ dependency.

ICALP 2022



125:10 Distributed Controller Synthesis for Deadlock Avoidance

4 Two locks per process with locally live strategies

We describe how to solve the control problem for 2LSS and locally live strategies in NP, as
stated in Theorem 8.

We fix a 2LSS satisfying the assumption discussed in Remark 4. We will show that the
relevant information about a strategy σ can be formalized as a finite lock graph Gσ and a
lockset family Locksσ; the latter is a family of sets of sets of locks (see definitions below).
This information is very similar to the one described by patterns in the previous section.
As we work with locally live strategies, the set of possible patterns of local runs is more
restricted and we can view this more conveniently as a graph.

Our algorithm first guesses an abstract lock graph G and lockset family Locks. Then it
performs two checks:
Step 1 check if there is some strategy σ with G = Gσ and Locks = Locksσ, and
Step 2 check if there is no deadlock scheme for G and Locks (see Definition 21 below).
A deadlock scheme is some kind of forbidden situation. It is easy to get a co-NP algorithm for
the second step: just guess the scheme and check that it has the right shape. The challenge
is to do this in Ptime. This is necessary if we want to get an NP algorithm.

We introduce now some notions in order to define Gσ and Locksσ conveniently. Consider
a local run u of a process p:

(initp, ∅) = (s0, B0) (a1,op1)−−−−−→p (s1, B1) · · · (ai,opi)−−−−−→p (si, Bi) .

We say that u has set of locks B if B = Bi. A σp-run u is B-locked by the local strategy σp

if every transition in σp(u) has as operation acqt for some t ∈ B. Process p is B-lockable by
σp if it has a neutral, B-locked σp-run.

The intuition is that in order to get a deadlock, a B-lockable process can be scheduled
first. It can do a run leading to a state where it requires some of the locks in B without
holding any locks. So, the process will be blocked if we ensure that all locks in B are already
taken. For example, consider the process in Figure 1. The run hungry, left is {tp}-locked,
as the unique next action is acqtp

. The process is {tp}-lockable by σp if e.g. σp always
chooses the left action. Indeed, in this case the run hungry, left is a neutral σp-run, which
is {tp}-locked. Process p is not {tp+1}-lockable by a strategy σp choosing always the left
action, as there is no neutral σp-run leading to acqtp+1

.

▶ Definition 16 (Lockset family Locksσ). A lockset for a local strategy σp is a set Lp ⊆ 2Tp

of sets B such that p is B-lockable by σp. A lockset family for σ is Locksσ = (Lp)p∈Proc.

▶ Definition 17 (Lock graph Gσ). For a strategy σ, a lock graph Gσ = ⟨T, Eσ⟩ has an edge
t1

p−→ t2 whenever there is some σp-run u of p that has {t1} and is {t2}-locked. If there is
such a run u where the last lock operation in u is acqt1

then the edge is called green, and
otherwise it is called blue.

We will say that σ allows a blue edge t1
p

↪−→ t2 or a green edge t1
p7−→ t2. We write t1

p−→ t2
when the color of the edge is irrelevant.

For example, a strategy choosing the left action in Figure 1 yields the green edge tp
p7−→ tp+1.

Lockset families say on which sets of locks each process can block while not holding any
lock. An edge t1

p−→ t2 in the lock graph corresponds to a run of p where P owns lock t1 (the
source of the edge) and waits for the other lock t2 (the target of the edge).

A lockset represents a run of the second type in the previous section, a green edge a run
of the third type, and a blue edge a run of the fourth type with no similar run of the third
type. The first type cannot appear in a deadlock when strategies are locally live, as processes
always have an available action.



H. Gimbert, C. Mascle, A. Muscholl, and I. Walukiewicz 125:11

Since we have assumed nothing about how strategies are given, it is not clear how to
compute Gσ. Instead of restricting to, say, finite memory strategies, we will work with
arbitrary lock graphs and lockset families. This is possible thanks to Lemma 19 below, that
allows to check if a graph is the lock graph of some strategy. For this we need to define
lockset families and lock graphs abstractly. Notice that the size of both these objects is
bounded, as the set of locks per process is fixed for 2LSS.

▶ Definition 18. A lockset family is a tuple of sets of locks indexed by processes (Lp)p∈Proc,
with Lp ⊆ 2Tp . A lock graph is an edge-labeled graph G = ⟨T, E ⊆ T×Proc×{blue, green}×T ⟩
where nodes are locks from the set T and every edge is labeled by a process and a color. A
cycle in G is called proper if all its edges are labeled by different processes. It is denoted as
green if it contains at least one green edge; otherwise, so if all edges are blue, it is denoted
blue.

At this point we have enough notions to carry out the first step on page 10.

▶ Lemma 19. Given a lock graph G and a lockset family Locks, it is decidable in Ptime if
there is a locally live strategy σ such that G = Gσ and Locksσ = Locks.

The proof is by reduction to model-checking a fixed-size MSOL formula over a given
regular tree. For every process p we need to check if there is a local strategy σp satisfying
the conditions imposed by G and Locks = (Lp)p∈Proc. Consider the regular tree of all local
runs of process p. The formula says that there is a strategy tree inside this regular tree such
that Lp contains exactly those sets B such that the subtree has some neutral, B-locked path;
and for every edge in G labelled by p there is a path of the required shape in the subtree.
This can be expressed by an MSOL formula of constant size, as the process uses only 2 locks.
From the MSOL formula we get a tree automaton of constant size. The emptiness check of
its product with the tree automaton accepting the unfolding of the automaton Ap can be
done in Ptime.

In the rest of the section we discuss the second step. We first define a Z-deadlock scheme
for some set Z of locks. Intuitively, this is a situation showing that there is a run blocking
all locks in Z. Then a deadlock scheme is a Z-deadlock scheme for some Z big enough to
block all processes.

▶ Definition 20 (Z-deadlock scheme). Let G = ⟨T, E⟩ be a lock graph, Locks = (Lp)p∈Proc
a lockset family, and Z a set of locks. We define ProcZ as the set of processes whose both
accessible locks are in Z, ProcZ = {p ∈ Proc : Tp ⊆ Z}. A Z-deadlock scheme is a function
dsZ : ProcZ → E ∪ {⊥} such that:

For all p ∈ ProcZ , if dsZ(p) ̸= ⊥ then dsZ(p) is an edge of G labeled by p.
If p ∈ ProcZ and Lp = ∅ then dsZ(p) ̸= ⊥.
For all t ∈ Z there exists a unique p ∈ ProcZ such that dsZ(p) is an outgoing edge from t.
The subgraph of G, restricted to dsZ(ProcZ) does not contain any blue cycle.

The main point of this definition is that for every lock in Z there is an outgoing edge in
dsZ . Intuitively, it means that we have a run where every lock from Z is taken, and every
process in ProcZ requires a lock from Z.

▶ Definition 21 (Deadlock scheme). A deadlock scheme for G and Locks = (Lp)p∈Proc is a
Z-deadlock scheme such that for every process p ∈ Proc \ProcZ there is B ∈ Lp with B ⊆ Z.

Thus a deadlock scheme represents a situation where all processes are blocked, since every
process not in ProcZ can be brought into a state where it needs a lock from Z, but all these
locks are taken.

ICALP 2022



125:12 Distributed Controller Synthesis for Deadlock Avoidance

The next lemma says that the absence of deadlock schemes characterizes winning strategies.
We could reuse the patterns defined above to obtain a shorter proof but we prefer to give a
slightly longer but elementary one.

▶ Lemma 22. A locally live control strategy σ is winning if and only if there is no deadlock
scheme for its lock graph Gσ and its lockset family Locksσ.

Proof. Suppose σ is not winning. Then there exists a global σ-run u leading to a deadlock.
As a consequence, in the deadlock configuration all processes must be trying to acquire some
lock that is already taken.

We then construct a deadlock scheme (BT , ds) as follows. Let BT be the set of locks
taken in the deadlock configuration, and for all p ∈ Proc, define ds(p) as:
⊥ if p does not own any lock in the deadlock configuration,
t1

p−−→ t2 if p owns t1 and is trying to acquire t2 in the deadlock configuration (the color
of the edge is determined by the run, it is irrelevant for the argument).

Clearly for all p ∈ Proc the value ds(p) is either ⊥ or a p-labeled edge of the lock graph Gσ.
Suppose ds(p) = ⊥, and let t1, t2 be the two locks accessible by p. As the final configuration

is a deadlock, all actions allowed by σp are necessarily acqt1
or acqt2

. So p is {t1, t2}-lockable.
Furthermore, as we are in a deadlock, the lock(s) blocking p are in BT (if they were free, p

would be able to advance), therefore p is BT -lockable.
For every t ∈ BT , there is a process p holding t in the final configuration. As we are in

a deadlock, p is trying to acquire its other accessible lock t′ (recall that the definition of
control strategy demands that at least one action be available to each process at all times).
Thus ds(p) is an edge from t to t′. Furthermore t′ cannot be free as we are in a deadlock,
thus t′ ∈ BT . There are no other outgoing edges from t as no other process can hold t while
p does.

Finally let t1
p1−→ t2 · · ·

pk−→ tk+1 be a cycle with t1 = tk+1 in the subgraph of Gσ restricted
to BT and ds(Proc). One of the locks ti was the last lock taken in the run u (say by process
pi). We show now by contradiction that the edge ti

pi−→ ti+1 is green. If pi would have
released ti+1 after the last acqti

in u, then pi+1 would have done its last acqti+1
later, a

contradiction. The subgraph of Gσ restricted to BT and ds(Proc) has therefore no blue
cycles, therefore (BT , ds) is a deadlock scheme.

For the other direction, suppose we have a deadlock scheme (BT , ds) for the lock graph
Gσ. As (BT , ds(Proc)) does not contain a blue cycle, we can pick a total order ≤ on locks
such that for all blue edges t1

p
↪−→ t2 ∈ ds(Proc), we have t1 ≤ t2.

By definition of the lock graph, for each process p ∈ Proc we can take a local run up of
Ap respecting σ with the following properties.

If ds(p) = ⊥ then p is BT -lockable. So there exists a neutral run up leading to a state
where all outgoing transitions require locks from BT .
If ds(p) = t1

p
p−−→ t2

p then there is up of the form u1
p(a, acqt1

p
)u2

p(a′, acqt2
p
) without relt1

p

transition in u2
p. Moreover if ds(p) is green then we know that there is no relt2

p
transition

in u2
p.

We now combine these runs to get a run respecting σ ending in a deadlock configuration.
For each process p such that ds(p) = ⊥, execute the local run up. Since up is neutral, all
locks are available after executing it. The only possible actions of p after this run are to
acquire some locks from BT .

Next, for every process p such that ds(p) is a green edge, execute the local run u1
p. This

is also a neutral run. After this run p is in a state where σp allows to take lock t1
p, but p

does not own any lock.



H. Gimbert, C. Mascle, A. Muscholl, and I. Walukiewicz 125:13

Next, in increasing order according to ≤, for every lock t with an outgoing blue edge
ds(p) = t

p
↪−→ t′ execute the run up, except for the last acqt′ action. After this run lock t is

taken by p, and all actions allowed by σp are acqt′ actions. Since there is only one outgoing
edge from every lock, and since we are respecting the order ≤, both t and t′ are free before
executing that run. Hence it is possible to execute this run.

Finally, we come back to processes p such that ds(p) is a green edge. For every such
process we execute acqt1

p
followed by u2

p. This is possible because t1
p is free as there is a

unique outgoing edge from t1
p. After executing these runs every process p with ds(p) ̸= ⊥ is

in a state when the only possible action is acqt2
p
.

At this stage all locks that are sources of edges from ds(Proc) are taken. Since every lock
in BT is a source of an edge, all locks from BT are taken. Thus no process p with ds(p) = ⊥
can move as it needs some lock from BT . Similarly, no process p with ds(p) ̸= ⊥ can move,
as they need locks pointed by targets of the edges ds(p), and these are in BT too. So we
have constructed a run respecting σ and reaching a deadlock. ◀

From now on we concentrate on deciding if there is some deadlock scheme for a given
graph G along with a lockset family Locks. Our approach will be to repeatedly eliminate
edges from G or add locks to Z, and construct a deadlock scheme on Z at the same time.

As a preparatory step we observe that we can almost ignore the lockset family. Examining
the definition of Z-deadlock scheme we see that the only information about Locks it uses is
whether Lp = ∅ or not. Hence we call a process solid if Lp = ∅, and fragile otherwise. The
second condition in the definition of Z-deadlock scheme becomes: if p ∈ ProcZ is solid then
dsZ(p) ̸= ⊥.

The next lemma gives an important composition principle for deadlock schemes. Suppose
we already have a set of “kernel” locks Z on which we know how to construct a Z-deadlock
scheme. Then the lemma says that in order to get a deadlock scheme for G it is enough to
consider the remaining part G \ Z.

▶ Lemma 23. Let Z ⊆ T be such that there is no edge labeled by a solid process from a lock
of Z to a lock of T \Z in G. Suppose dsZ : ProcZ → E ∪ {⊥} is a Z-deadlock scheme. Then
there is a deadlock scheme for G if and only if there is one equal to dsZ over ProcZ .

The rest of the proof is a sequence of stages. We start with H = G and Z = ∅. At each
stage we remove some edges in H or extend Z. This process continues till some obstacle to
the existence of a deadlock scheme is found, or till Z is big enough to be a deadlock scheme.
We use three invariants:

▶ Invariant 1. G admits a deadlock scheme if and only if H does.

▶ Invariant 2. There are no edges labeled by a solid process from Z to T \ Z in H.

▶ Invariant 3. There exists a Z-deadlock scheme.

▶ Proposition 24. There is a polynomial time algorithm to decide if a lock graph G and a
lockset family Locks have a deadlock scheme.

The final argument behind Theorem 8 is as follows. We start by non-deterministically
guessing G and Locks. These are of polynomial size with respect to the size of the 2LSS. We
can check in polynomial time that there exists a strategy σ giving G and Locks (Lemma 19).
If that is not the case, we reject the input. Otherwise we check if G and Locks admit a
deadlock scheme (Proposition 24). By Lemma 22, the strategy σ is winning if and only if
the check says that there is no deadlock scheme in G and Locks.

ICALP 2022



125:14 Distributed Controller Synthesis for Deadlock Avoidance

5 Solving the exclusive case in Ptime

In this section we study exclusive 2LSS. We have shown an NP algorithm for the deadlock
avoidance control problem when restricting to locally live strategies. Here we show that the
problem is in Ptime if the 2LSS is exclusive (Definition 9). This is possible because the
exclusive assumption simplifies the structure of lock graphs, and makes the lockset family
unnecessary.

Throughout this section we fix an exclusive 2LSS, call it S. The exclusive property
prohibits situations as in Figure 2 where a state has one outgoing acqtp+1

transition, and
one reltp

transition. Compared to the previous section we do not need to make a difference
between solid and fragile processes. We can even ignore colors on the arrows. This is a
consequence of the following two lemmas.

▶ Lemma 25. Let σ be a locally live control strategy and Gσ its lock graph. For all t1, t2 ∈ T ,
if Gσ has a blue edge t1

p
↪−→ t2 then it has a green edge t2

p7−→ t1.

▶ Lemma 26. Let σ be a locally live control strategy and Gσ its lock graph. For every edge
t1

p−→ t2 in G, process p is {t1, t2}-lockable.

Thanks to these simplifications there is a much more direct way of checking if a strategy
is winning. Take a locally live strategy σ. Consider a decomposition of Gσ into strongly
connected components (SCC). We say that an SCC is a direct deadlock if it contains at least
two nodes, and:

either it has an edge that is not a double edge: t1
p−−→ t2 but not t1

p←−− t2, for some p;
or all edges in the component are double edges and there is a proper cycle, i.e., all edges
are labeled by different processes.

A deadlock SCC is a direct deadlock SCC or an SCC that can reach some direct deadlock
SCC. Let BTσ be the set of all the locks appearing in some deadlock SCC. We obtain a
simple characterization of winning strategies.

▶ Proposition 27. A strategy σ is winning if and only if there exists a process that is not
BTσ-lockable.

Building on this result we can give a method to decide if there is a winning strategy in
the system S. For every process p and every set of edges between two locks of p we check
if there is a local strategy inducing exactly these edges. This can be done in a similar way
as Lemma 19. We say that an edge la belled by p is unavoidable if all the local strategies
σp induce this edge. Let GS be the graph whose nodes are locks and edges are unavoidable
edges.

We calculate a set BTS in a similar way as BTσ in the previous proposition except that
we use slightly more general basic SCCs of GS . A direct semi-deadlock SCC is either a direct
deadlock SCC or an SCC containing at least two nodes, only double edges, and two locks t1
and t2 such that for some process p not inducing a double edge between t1, t2 in GS : every
strategy for p induces at least one edge between t1 and t2. Then a semi-deadlock SCC is an
SCC that can reach some direct semi-deadlock SCC, or is itself a direct semi-deadlock SCC.

Let BTS be the set of locks appearing in semi-deadlock SCCs of GS . Theorem 11 follows
from the next proposition.

▶ Proposition 28. Let S be an exclusive 2LSS. There is a winning locally live strategy for
the system if and only if there exists a locally live strategy σp for some process p preventing
it from acquiring any lock from BTS .



H. Gimbert, C. Mascle, A. Muscholl, and I. Walukiewicz 125:15

The algorithm computes BTS , and then checks if for some process p the condition from
the proposition holds. This check amounts to solving a safety game on a finite graph – the
transition graph of process p.

6 Nested-locking strategies

We switch to another decidable case, where we require that locks are acquired and released in
stack-like manner. Our goal is Theorem 13 saying that the deadlock avoidance control problem
is Nexptime-complete when restricted to nested-locking strategies (cf. Definition 12).

In the context of this section we cannot assume that a process knows which locks it has
(cf. Remark 4). In consequence, it is not realistic to require that a strategy is locally live.
Yet, the lower bound works also for locally live strategies.

We will use some notions about local runs as defined on page 10.

▶ Definition 29. A stair decomposition of a local run u is

u = u1acqt1
u2acqt2

. . . ukacqtk
uk+1

where in the configuration reached by u1acqt1
u2acqt2

. . . ui the set of locks held by the process
is {t1, . . . , ti−1} for every i > 0, and there is no operation on ti in ui+1 . . . uk+1. (We omit
the actions associated with each operation as they are irrelevant here).

Every nested-locking run has a unique stair decomposition.
Without the locally live assumption we may have runs simply ending because there are

no outgoing actions. Recall that given a strategy σ, a risky σ-run is a local σ-run ending in a
state from which every outgoing action allowed by σ acquires some lock. We define patterns
of risky local runs that will serve as witnesses of reachable deadlocks.

▶ Definition 30. Consider a stair decomposition u1acqt1
u2acqt2

· · ·ukacqtk
uk+1 of a risky

σ-run u of a process p. Suppose the run is Tblocks-blocked, and let Towns = {t1, . . . , tk}. We
associate with u a stair pattern (Towns, Tblocks,⪯), where ⪯ is the smallest partial order on
the set Tp of locks of p satisfying: for all i, for all t ∈ Tp, if the last operation on t in the
run is after the last acqti

then ti ⪯ t. A behavior of σ is a family of sets of stair patterns
(Pp)p∈Proc, where Pp is the set of stair patterns of local risky σ-runs of p.

Similarly to Lemma 22 we can show that the family of patterns for a strategy determines
if it is winning.

▶ Lemma 31. A nested-locking control strategy σ with behavior (Pp)p∈Proc is not winning
if and only if for every p ∈ Proc there is a stair pattern (Tp

owns, Tp
blocks,⪯p) ∈ Pp such that:⋃

p∈Proc Tp
blocks ⊆

⋃
p∈Proc Tp

owns,
the sets Tp

owns are pairwise disjoint,
there exists a total order ⪯, on the set of all locks T , compatible with all ⪯p.
Similarly to Lemma 19 we can check if there is a strategy whose set of patterns has only

patterns from a given family. Observe that the depth of nesting is bounded by the number
of locks.

▶ Lemma 32. Given a lock-sharing system ((Ap)p∈Proc, Σs, Σe, T ), a process p ∈ Proc and
a set of patterns Pp, we can check in polynomial time in |Ap| and 2|T | whether there exists a
nested-locking local strategy σp with set of patterns included in Pp.

▶ Proposition 33. The deadlock avoidance control problem is decidable for lock-sharing
systems with nested-locking strategies in non-deterministic exponential time.

ICALP 2022



125:16 Distributed Controller Synthesis for Deadlock Avoidance

Proof. The decision procedure guesses a set of patterns Pp for each process p, of size at
most 22|T ||T |! ≤ 2O(|T | log(|T |). Then it checks if there exist local strategies yielding subsets
of those sets of patterns. This takes exponential time by Lemma 32. If the result is negative
then the procedure rejects. Otherwise, it checks if some condition from Lemma 31 does not
hold. It it finds one then it accepts, otherwise it rejects.

Clearly, if there is a winning nested-locking strategy then the procedure can accept by
guessing the family of patterns corresponding to this strategy. For this family the check from
Lemma 32 does not fail, and one of the conditions of Lemma 31 must be violated.

Conversely, if the decision procedure concludes that there exists a winning strategy, then
let (Pp)p∈Proc be the guessed family of sets of patterns. We know that there exists a strategy
σ with behaviors (P ′

p)p∈Proc such that P ′
p ⊆ Pp for all p ∈ Proc. Furthermore, as there are

no patterns in (Pp)p∈Proc satisfying the requirements of Lemma 31, there cannot be any in
the P ′

p either. Hence σ is a winning strategy. ◀

7 Undecidability for unrestricted lock-sharing systems

In this section we show that the deadlock avoidance control problem for lock-sharing systems
is undecidable for three processes with a fixed number of locks. Three locks used in non-nested
fashion allow to synchronize two processes in lock-step manner. This is an essential ingredient
for the undecidability proof.

We have defined lock-sharing systems so that initially all locks are free. First we show the
undecidability result supposing that we are allowed to start with a designated distribution of
locks. Later we describe how to implement initial lock distributions using extra locks.

▶ Lemma 34. The control problem for lock-sharing systems with 3 processes, fixed initial
configuration and fixed number of locks per process is undecidable.

The proof uses the usual recipe for the undecidability of distributed synthesis [26, 27].
Two processes P and P synchronize with a third process C over a stream of bits chosen
by their strategy. The process C is partially controlled by the environment, which selects
non-deterministically an interleaving of the two streams and parses the interleaving with a
finite automaton. This is enough to get undecidability by a reduction from an infinite Post
Correspondence Problem (PCP).

Consider an instance (αi, βi)i∈I of PCP on the alphabet {0, 1}. A solution is an infinite
sequence i1i2 . . . ∈ Iω such that αi1αi2 . . . = βi1βi2 . . .. The two streams sent by P and P

to C, are α = αi1i1αi2i2 . . . and β = βj1j1βj2j2 . . . , resp. With finite memory C can check
equality of the two words (αi1αi2 · · · = βj1βj2 . . . ) or equality of the two index sequences
(i1i2 . . . = j1j2 . . . ). Since P and P are not aware of what C does, the streams are fixed by
the strategies and do not depend on what C is checking.

The locks used in the proof are {c, s0, s1, p, c, s0, s1, p}. Process C and P use locks from
{c, s0, s1, p} to synchronize and similarly for C, P and {c, s0, s1, p}.

It remains to explain the synchronization mechanism. The two processes P and C

synchronize over a bit of information, say bit 0, by executing specific finite runs using the
locks {s0, c, p} in non-nested fashion. Initially, C owns {s0, c} and P owns {p}. First, C

releases lock s0 and P acquires it, which we denote as C
s0−→ P . Here, P is waiting for C

to release s0, and the two actions rels0 of C and acqs0
of P are ordered. The rest of the

run follows a similar pattern: at each step, one of the processes is waiting to take a lock
released by the other process. With the same notation, the run proceeds with P

p−−→ C, and
continues until each process owns the same locks it owned at the start: each lock is sent



H. Gimbert, C. Mascle, A. Muscholl, and I. Walukiewicz 125:17

twice, from its initial owner to the other process, and back. To sum up, the exchange of bit
0 between C and P corresponds to C

s0−→ P
p−→ C

c−→ P
s0−→ C

p−→ P
c−→ C. In other

words, processes C and P respectively perform two local runs:

C : rels0 acqp relc acqs0
relp acqc P : acqs0

relp acqc rels0acqprelc

Observe that P and C need to execute these sequences in lock-step manner, as one of the
two processes waits for a lock from the other.

In order to synchronize over bit 1, the two processes perform a similar synchronization,
using s1 instead of s0. The communication between C and P is identical, except that it uses
locks from {c, s0, s1, p}.

In each round, P and C must agree beforehand on a bit they are going to synchronize on,
either s0 or s1. Otherwise the two processes get blocked, and P will get blocked too, as it
needs locks held by C. A bit stream between C and P is encoded as a concatenation of such
runs, and similarly for C, P . The content of the two bit streams is chosen by the strategies of
P, P , C. Since the strategy has infinite memory, there is no upper bound on the complexity
of the streams. Interestingly, two locks are not enough for two processes to synchronize over
a bit stream.

▶ Lemma 35. There is a polynomial-time reduction from the control problem for lock-sharing
systems with initial configuration to the control problem where all locks are initially free. The
reduction adds |Proc| new locks.

We sketch the proof idea. Assume that we have pairwise disjoint sets (Ip)p∈Proc of locks,
and a lock-sharing system S in which each process p initially owns exactly the locks in Ip.
We build another lock-sharing systems S∅ that starts with all locks initially free, makes every
process acquire all locks in Ip, and then simulates S.

It is important that the initialization phase of S∅ does not interfere with the simulation
of S. We ensure this by using one additional lock kp per process, called the “key” of p.

For process p, the initialization sequence consists of three steps.
1. First, p takes one by one (in a fixed arbitrary order), all its initial locks in Ip.
2. Second, p takes and releases, one by one (in a fixed arbitrary order) all the keys of the

other processes (kq)q ̸=p.
3. Finally, p acquires its key kp and keeps it forever.
After acquiring kp process p reaches the initial state in S.

In order to prevent the initialization phase to create extra deadlocks, there is a local nop
loop on every state of the initialization sequence. This way, a deadlock may only occur if all
processes have finally completed their initialization sequences. Note that the initialization
phase does not interfere with the simulation of S. This is because the exchange of keys
guarantees that up to the moment where a process p has completed the initialization in S∅,
no other process has used any lock from Ip.

8 Conclusions

Motivated by a recent undecidability result for distributed control synthesis [17] we have
considered a model for which the problem has not been investigated yet. With hindsight it
is strange that the well-studied model of lock synchronization has not been considered in
the context of distributed synthesis. One reason may be the “non-monotone” nature of the
synthesis problem. It is not the case that for a less expressive class of systems the problem is
necessarily easier because the controllers get less powerful, too.

ICALP 2022



125:18 Distributed Controller Synthesis for Deadlock Avoidance

The two decidable classes of lock-sharing systems presented here are rather promising.
Especially because the low complexity results cover already non-trivial problems. All our
algorithms are based on analyzing lock patterns. While in this paper we consider only finite
state processes, the same method applies to more complex systems, as long as solving the
centralized control problem in the style of Lemma 19 is decidable. This is for example the
case for pushdown systems.

There are numerous directions that need to be investigated further. We have focused on
deadlock avoidance because this is a central property, and deadlocks are difficult to discover
by means of testing or verification. Another option is partial deadlock, where some, but not
all, processes are blocked. The concept of Z-deadlock scheme from Definition 20 should help
here, but the complexity results may be different. Reachability, and repeated reachability
properties need to be investigated, too.

We do not know if the upper bound from Theorem 8 is tight. The algorithm for verifying
if there is a deadlock in a given strategy graph, Proposition 24, is already quite complicated,
and it is not clear how to proceed when a strategy is not given.

Another research direction is to consider probabilistic controllers. It is well known that
there are no symmetric solutions to the dining philosophers problem but there is a randomized
one [21, 22]. Symmetric solutions are quite important for resilience issues as it is preferable
that every process runs the same code. The Lehmann-Rabin algorithm is essentially the
system presented in Figure 2 where the choice between left and right is made randomly. This
is one of the examples where randomized strategies are essential. Distributed synthesis has a
potential here because it is even more difficult to construct distributed randomized systems
and prove them correct.

References
1 A. Arnold and I. Walukiewicz. Nondeterministic controllers of nondeterministic processes. In

J. Flum, E. Grädel, and T. Wilke, editors, Logic and Automata, volume 2 of Texts in Logic
and Games, pages 29–52. Amsterdam University Press, 2007.

2 B. Bérard, B. Bollig, P. Bouyer, M. Függer, and N. Sznajder. Synthesis in presence of dynamic
links. In J-F. Raskin and D. Bresolin, editors, Proceedings 11th International Symposium on
Games, Automata, Logics, and Formal Verification, GandALF 2020, volume 326 of EPTCS,
pages 33–49, 2020. To appear in Information and Computation. doi:10.4204/EPTCS.326.3.

3 R. Beutner, B. Finkbeiner, and J. Hecking-Harbusch. Translating asynchronous games for
distributed synthesis. In W. J. Fokkink and R. van Glabbeek, editors, 30th International
Conference on Concurrency Theory, CONCUR 2019, volume 140 of LIPIcs, pages 26:1–26:16.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.CONCUR.2019.
26.

4 K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Trans. Program. Lang.
Syst., 6(4):632–646, October 1984. doi:10.1145/1780.1804.

5 A. Church. Applications of recursive arithmetic to the problem of cricuit synthesis. In
Summaries of the Summer Institute of Symbolic Logic, volume I, pages 3–50. Cornell Univ.,
Ithaca, N.Y., 1957.

6 E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using
branching time temporal logic. In Workshop on Logics of Programs, volume 131 of Lecture
Notes in Computer Science, pages 52–71. Springer Verlag, 1981.

7 M. D. Ernst, A. Lovato, D. Macedonio, F. Spoto, and J. Thaine. Locking discipline inference
and checking. In L. K. Dillon, W. Visser, and L. A. Williams, editors, Proceedings of the 38th
International Conference on Software Engineering, ICSE 2016, pages 1133–1144. ACM, 2016.
doi:10.1145/2884781.2884882.

https://doi.org/10.4204/EPTCS.326.3
https://doi.org/10.4230/LIPIcs.CONCUR.2019.26
https://doi.org/10.4230/LIPIcs.CONCUR.2019.26
https://doi.org/10.1145/1780.1804
https://doi.org/10.1145/2884781.2884882


H. Gimbert, C. Mascle, A. Muscholl, and I. Walukiewicz 125:19

8 B. Finkbeiner. Bounded synthesis for Petri games. In R. Meyer, A. Platzer, and H. Wehrheim,
editors, Correct System Design - Symposium in Honor of Ernst-Rüdiger Olderog on the
Occasion of His 60th Birthday. Proceedings, volume 9360 of Lecture Notes in Computer Science,
pages 223–237. Springer, 2015. doi:10.1007/978-3-319-23506-6_15.

9 B. Finkbeiner, M. Gieseking, J. Hecking-Harbusch, and E.-R. Olderog. Global winning
conditions in synthesis of distributed systems with causal memory. In F. Manea and A. Simpson,
editors, 30th EACSL Annual Conference on Computer Science Logic, CSL 2022, Virtual
Conference, volume 216 of LIPIcs, pages 20:1–20:19. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.20.

10 B. Finkbeiner and E.-R. Olderog. Petri games: Synthesis of distributed systems with causal
memory. Inf. Comput., 253:181–203, 2017.

11 B. Finkbeiner and S. Schewe. Uniform distributed synthesis. In 20th IEEE Symposium on
Logic in Computer Science (LICS) 2005, Proceedings, pages 321–330. IEEE Computer Society,
2005. doi:10.1109/LICS.2005.53.

12 P. Gastin, B. Lerman, and M. Zeitoun. Distributed games with causal memory are decidable
for series-parallel systems. In K. Lodaya and M. Mahajan, editors, FSTTCS 2004: Foundations
of Software Technology and Theoretical Computer Science, 24th International Conference,
Proceedings, volume 3328 of Lecture Notes in Computer Science, pages 275–286. Springer,
2004. doi:10.1007/978-3-540-30538-5_23.

13 P. Gastin, N. Sznajder, and M. Zeitoun. Distributed synthesis for well-connected architectures.
Formal Methods in System Design, 34(3):215–237, June 2009.

14 B. Genest, H. Gimbert, A. Muscholl, and I. Walukiewicz. Asynchronous games over tree
architectures. In F. V. Fomin, R. Freivalds, M. Z. Kwiatkowska, and D. Peleg, editors,
Automata, Languages, and Programming - 40th International Colloquium, ICALP 2013,
Proceedings, Part II, volume 7966 of Lecture Notes in Computer Science, pages 275–286.
Springer, 2013. doi:10.1007/978-3-642-39212-2_26.

15 M. Gieseking, J. Hecking-Harbusch, and A. Yanich. A web interface for Petri nets with transits
and Petri games. In J. F. Groote and K. G. Larsen, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 27th International Conference, TACAS 2021, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021,
Proceedings, Part II, volume 12652 of Lecture Notes in Computer Science, pages 381–388.
Springer, 2021. doi:10.1007/978-3-030-72013-1_22.

16 H. Gimbert. On the control of asynchronous automata. In S. V. Lokam and R. Ramanujam,
editors, 37th IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2017, volume 93 of LIPIcs, pages 30:1–30:15. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.FSTTCS.2017.30.

17 H. Gimbert. Distributed asynchronous games with causal memory are undecidable. CoRR,
abs/2110.14768, 2021. Submitted. arXiv:2110.14768.

18 J. Hecking-Harbusch and N. O. Metzger. Efficient trace encodings of bounded synthesis for
asynchronous distributed systems. In Y. F. Chen, C. H. Cheng, and J. Esparza, editors,
Automated Technology for Verification and Analysis - 17th International Symposium, ATVA
2019, Proceedings, volume 11781 of Lecture Notes in Computer Science, pages 369–386. Springer,
2019. doi:10.1007/978-3-030-31784-3_22.

19 V. Kahlon and A. Gupta. An automata-theoretic approach for model checking threads for LTL
properties. In 21th IEEE Symposium on Logic in Computer Science (LICS 2006), Proceedings,
pages 101–110. IEEE Computer Society, 2006. doi:10.1109/LICS.2006.11.

20 O. Kupferman and M. Y. Vardi. Synthesizing distributed systems. In 16th Annual IEEE
Symposium on Logic in Computer Science, Proceedings, pages 389–398. IEEE Computer
Society, 2001. doi:10.1109/LICS.2001.932514.

21 D. Lehmann and M. O. Rabin. On the advantages of free choice: A symmetric and fully
distributed solution to the dining philosophers problem. In J. White, R. J. Lipton, and P. C.
Goldberg, editors, Conference Record of the Eighth Annual ACM Symposium on Principles of
Programming Languages, pages 133–138. ACM Press, 1981. doi:10.1145/567532.567547.

22 N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

ICALP 2022

https://doi.org/10.1007/978-3-319-23506-6_15
https://doi.org/10.4230/LIPIcs.CSL.2022.20
https://doi.org/10.1109/LICS.2005.53
https://doi.org/10.1007/978-3-540-30538-5_23
https://doi.org/10.1007/978-3-642-39212-2_26
https://doi.org/10.1007/978-3-030-72013-1_22
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.30
http://arxiv.org/abs/2110.14768
https://doi.org/10.1007/978-3-030-31784-3_22
https://doi.org/10.1109/LICS.2006.11
https://doi.org/10.1109/LICS.2001.932514
https://doi.org/10.1145/567532.567547


125:20 Distributed Controller Synthesis for Deadlock Avoidance

23 P. Madhusudan and P. S. Thiagarajan. Distributed controller synthesis for local specifications.
In F. Orejas, P. G. Spirakis, and J. van Leeuwen, editors, Automata, Languages and Program-
ming, 28th International Colloquium, ICALP 2001, Proceedings, volume 2076 of Lecture Notes
in Computer Science, pages 396–407. Springer, 2001. doi:10.1007/3-540-48224-5_33.

24 P. Madhusudan, P. S. Thiagarajan, and S. Yang. The MSO theory of connectedly communicat-
ing processes. In R. Ramanujam and S. Sen, editors, FSTTCS 2005: Foundations of Software
Technology and Theoretical Computer Science, 25th International Conference, volume 3821 of
Lecture Notes in Computer Science, pages 201–212. Springer, 2005. doi:10.1007/11590156_16.

25 A. Muscholl and I. Walukiewicz. Distributed synthesis for acyclic architectures. In V. Raman
and S. P. Suresh, editors, 34th International Conference on Foundation of Software Technology
and Theoretical Computer Science, FSTTCS 2014, volume 29 of LIPIcs, pages 639–651. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.639.

26 G. L. Peterson and J. H. Reif. Multiple-person alternation. In 20th Annual Symposium
on Foundations of Computer Science, pages 348–363. IEEE Computer Society, 1979. doi:
10.1109/SFCS.1979.25.

27 A. Pnueli and R. Rosner. Distributed reactive systems are hard to synthesize. In 31st Annual
Symposium on Foundations of Computer Science, pages 746–757. IEEE Computer Society,
1990. doi:10.1109/FSCS.1990.89597.

28 P. J.G. Ramadge and W. M. Wonham. The control of discrete event systems. Proceedings of
the IEEE, 77(2):81–98, 1989.

29 K. Rudie and W. M. Wonham. Think globally, act locally: Decentralized supervisory control.
IEEE Trans. on Automat. Control, 37(11):1692–1708, 1992.

30 J. G. Thistle. Undecidability in decentralized supervision. Systems & Control Letters, 54(5):503–
509, 2005. doi:10.1016/j.sysconle.2004.10.002.

31 S. Tripakis. Undecidable problems in decentralized observation and control for regular
languages. Information Processing Letters, 90(1):21–28, 2004.

32 I. Walukiewicz. Synthesis with finite automata. In J.-É. Pin, editor, Handbook of Auto-
mata Theory, pages 1217–1260. European Mathematical Society Publishing House, Zürich,
Switzerland, 2021. doi:10.4171/Automata-2/11.

33 Y. Wang, S. Lafortune, T. Kelly, M. Kudlur, and S. A. Mahlke. The theory of deadlock
avoidance via discrete control. In Z. Shao and B. C. Pierce, editors, Proceedings of the 36th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2009,
pages 252–263. ACM, 2009. doi:10.1145/1480881.1480913.

https://doi.org/10.1007/3-540-48224-5_33
https://doi.org/10.1007/11590156_16
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.639
https://doi.org/10.1109/SFCS.1979.25
https://doi.org/10.1109/SFCS.1979.25
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1016/j.sysconle.2004.10.002
https://doi.org/10.4171/Automata-2/11
https://doi.org/10.1145/1480881.1480913

	1 Introduction
	2 Main definitions and results
	3 Two locks per process
	4 Two locks per process with locally live strategies
	5 Solving the exclusive case in Ptime
	6 Nested-locking strategies
	7 Undecidability for unrestricted lock-sharing systems
	8 Conclusions

