
Functions and References in the Pi-Calculus:
Full Abstraction and Proof Techniques
Enguerrand Prebet
Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRIA, LIP

Abstract
We present a fully abstract encoding of λref, the call-by-value λ-calculus with references, in the π-
calculus. By contrast with previous full abstraction results for sequential languages in the π-calculus,
the characterisation of contextual equivalence in the source language uses a labelled bisimilarity. To
define the latter equivalence, we refine existing notions of typed bisimulation in the π-calculus, and
introduce in particular a specific component to handle divergences.

We obtain a proof technique that allows us to prove equivalences between λref programs via the
encoding. The resulting proofs correspond closely to normal form bisimulations in the λ-calculus,
making proofs in the π-calculus expressible as if reasoning in λref.

We study how standard and new up-to techniques can be used to reason about diverging terms
and simplify proofs of equivalence using the bisimulation we introduce. This shows how the π-calculus
theory can be used to prove interesting equivalences between λref programs, using algebraic reasoning
and up-to techniques.

2012 ACM Subject Classification Theory of computation → Semantics and reasoning

Keywords and phrases Call-by-value λ-calculus, imperative Programming, π-calculus, Bisimulation,
Type System

Digital Object Identifier 10.4230/LIPIcs.ICALP.2022.130

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding This work has been supported by the Université Franco-Italienne under the programme
Vinci 2020.

Acknowledgements Many thanks to Daniel Hirschkoff and Davide Sangiorgi for fruitful discussions
and helpful comments on earlier versions of this article.

1 Introduction

Milner [11] described the first encodings from the λ-calculus to the π-calculus for both
call-by-name and call-by-value. These encodings are shown to be sound with respect to
contextual equivalence, enabling the use of the π-calculus as a model to prove equivalence
between λ-terms. In sequential languages like the λ-calculus or extensions thereof, contextual
equivalence is often considered as the canonical equivalence. The π-calculus offers a rich
theory of behavioural equivalences and preorders to reason coinductively and algebraically
about processes. In the π-calculus, several powerful up-to techniques can be used and
combined in a modular way to make bisimulation proofs shorter and more readable [10, 16].
Labelled bisimulations can also be refined by means of type systems.

Nevertheless, for sequential languages, while such equivalences in the π-calculus lead to
sound encodings with respect to contextual equivalence, completeness does not hold, due to
the parallel nature of the π-calculus. Full abstraction is obtained for stronger equivalences
in the source language, generally based on trees: Lévy-Longo Trees for the call-by-name
λ-calculus [18], and η-eager normal form bisimilarity for call-by-value [3]. More generally,
we are not aware of full abstraction results relating a contextual equivalence in a sequential

EA
T
C
S

© Enguerrand Prebet;
licensed under Creative Commons License CC-BY 4.0

49th International Colloquium on Automata, Languages, and Programming (ICALP 2022).
Editors: Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff;
Article No. 130; pp. 130:1–130:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2022.130
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

130:2 Functions and References in the Pi-Calculus:Full Abstraction and Proof Techniques

language and a labelled bisimilarity between process terms in the encoding. Existing results
either use a finer relation than contextual equivalence in the source language, or obtain full
abstraction for a contextually-defined equivalence in the π-calculus [1, 21].

In this work, we study λref, the call-by-value λ-calculus with references. Our first main
contribution is to characterise contextual equivalence in λref using a labelled bisimilarity in
the π-calculus. The encoding of functions is extended with references as described in [4]. To
define our labelled bisimulation, we rely on well-bracketed bisimulation [5], wb-bisimulation
for short. Wb-bisimulations enforce a well-bracketing discipline between function calls and
returns, and is formalised by a type system. Using a type system limits the interactions
a process can have with its environment, and thus makes the corresponding bisimulation
coarser than an untyped one.

This study allows us to understand the expressiveness of wb-bisimulation and to improve
it. As mentioned in [2], to capture contextual equivalence in λref, deferred divergent terms
need to be taken into account. Intuitively such terms hide a divergence behind stuck terms,
like e.g. in (λy. Ω)(xV), where Ω is an always diverging term and V is a value: the stuck
term xV prevents the β-reduction yielding Ω to be applied. Still, this term is contextually
equivalent to Ω. We define an equivalent notion for typeable π-terms, called π-divergence,
which is used to refine wb-bisimulation yielding a notion of bisimulation with divergence in
the π-calculus.

Another main contribution of this work is to define this new bisimulation with divergence
and to study how up-to techniques, existing and new, can be used to simplify bisimulation
proofs for this new equivalence. As π-divergence is defined coinductively, up-to techniques
can also be defined to enhance the proofs of divergence. We also introduce a new up-to
technique, to which we return below; this technique is compatible, meaning that it fits in the
existing theory of up-to techniques for the π-calculus.

We do not prove full abstraction with respect to contextual equivalence in λref directly,
but rather exploit its characterisation using normal form bisimilarity [2]. Normal form
bisimulations in [2], which we call nfb in the sequel, and bisimulations with divergence in the
π-calculus are strongly connected, and we can establish the following result:

If R is a nfb, then the encoding of R is a bisimulation with
divergence up to expansion in the π-calculus. (1)

This property allows us to prove that bisimilarity with divergence is complete w.r.t.
nfb. Thanks to (1), when proving equivalences of λref-terms, the π-calculus machinery
running under the hood is almost invisible: the bisimulations we manipulate are mainly built
using (the encoding of) λref-terms. This makes π-calculus a powerful environment to prove
equivalences between λref programs. We illustrate this power via several examples throughout
the paper. In some cases, we are able to compare λref programs using equivalences which
are finer, and simpler to use, than bisimulation with divergence.

We now give more details about the encoding from λref to the π-calculus. Milner’s
original encoding of the untyped call-by-value λ-calculus does not handle equivalences
between terms with free variables well. This issue is amended in [3] by moving to the internal
π-calculus [19], where only fresh names can be transmitted. For instance, the resulting
encodings of (λz. z)(xV) and xV are equivalent, which is not the case for Milner’s original
encoding.

Our results are based on the optimised version of the encoding of [3], where administrative
reductions introduced in the encoding of the application are removed. In the optimised
encoding, a stuck term like xV is translated into a process that cannot reduce. Additionally,

E. Prebet 130:3

the translation of an evaluation context always yields an evaluation context, which is not the
case in the encoding of [3]. These two properties lead to a tight statement of operational
correspondence: the encoding of a λref-term can perform an internal communication only if
the source term has a reduction.

When considering non-internal transitions, the picture becomes more complicated because
residual processes appear. We write JMKp for the encoding of M at p – as usual, the π-calculus
encoding of a term is parametric over some name p. To illustrate operational correspondence
for non-internal transitions, we have for instance JE[xV]Kp

x(y,q)−−−−→≳ JV Ky | q(z). JE[z]Kp, where
E is an evaluation context and ≳ stands for the expansion preorder. The encoding of the stuck
term E[xV] sends two links at x, one to its argument V (via y) and one to its continuation
E (via q). Both processes are then accessible by the context, and can be executed (possibly
in parallel). Intuitively, the value and continuation belong to some environment. This is
close to what happens in a nfb, whereby terms are related in the presence of an environment,
containing both values and contexts. Thus, it is natural to encode a nfb as a binary relation
on π-calculus processes.

To prevent the context from performing unwanted transitions (like parallel calls), we use
the type system for well-bracketing from [5]. Typing constraints give rise to type-allowed
transitions. With this restriction, we obtain a typed version of operational correspondence
which is in one-to-one correspondence with the clauses defining nfb. In particular, in the
transition of JE[xV]Kp above, the resulting process is the encoding of the corresponding state
in the nfb. Soundness and completeness of the encoding, as well as property (1), are obtained
as consequences of such operational correspondence.

We explain briefly the new up-to technique we introduce. Intuitively, transitions in λref

may generate several copies of the same value, which are stored in the environment. In [2],
the environment is a set, and thus duplicates are removed for free. In the standard π-calculus,
these copies would be the same replicated process, and duplicates could be removed using the
standard law !P | !P ∼ !P . In the internal π-calculus, each copy is accessible via a distinct
name. However, when these copies are only accessible by the context, it is sound to remove
duplicates. The new up-to technique we introduce, called up-to body, formalises this idea.
Together with standard up-to techniques for the pi-calculus, we use the up-to body technique
to prove several examples of equivalences between λref programs.

Paper outline

We start by presenting the necessary background: we describe λref and normal form bisimu-
lations from [2] in Section 2; in Section 3, we introduce the Asynchronous Internal π-calculus,
AIπ, and the type system for well-bracketing. We continue with the contributions of this
work, describing the encoding for λref terms in Section 4. We also show an operational
correspondence and examples that can be proved with untyped equivalences, using algebraic
reasoning and standard algebraic laws. The extension of the encoding to bisimulation states,
together with the definition of bisimulation with divergence, are given in Section 5, where we
establish full abstraction. We present up-to techniques for wb-bisimulation in Section 6, and
show how they can be used on some examples.

2 Normal Form Bisimulation for a λ-Calculus with References

We define the syntax of the λ-calculus with references, noted λref:

Terms: M, N ::= V
∣∣ M N

∣∣ ℓ := M ; N
∣∣ !ℓ

∣∣ new ℓ := V in M

Values: V, W ::= x
∣∣ λx. M

Evaluation contexts: E, F ::= [·]
∣∣ E M

∣∣ V E
∣∣ ℓ := E; M

ICALP 2022

130:4 Functions and References in the Pi-Calculus:Full Abstraction and Proof Techniques

Free variables for terms and contexts are defined as usual with λx. M as binder. We write
M{V/x} for the usual capture-avoiding substitution of x by V in M . And we let

∫
range

over simultaneous substitutions {V1/x1} . . . {Vn/xn} where x1, . . . , xn are pairwise different
variables.

Free references for terms and contexts, noted fr(M) and fr(E), are defined similarly,
with new ℓ := V in M binding ℓ in M . Notice that ℓ is not a value, meaning that in
new ℓ := V in M , ℓ is local to the term M . To give access to a local reference, M may pass
functions λx. !ℓ and λx. ℓ := x instead of ℓ.

A store, noted h, g, . . . , is a partial fonction with finite domain from references to values.
We write ∅ for the empty store and dom(h) for the set of references on which h is defined.
For any ℓ, V , we write h ⊎ ℓ = V for the store h extended with a reference ℓ containing V

and h[ℓ := V] for the store h with the content of ℓ updated to the value V .
The semantics are defined on configurations ⟨h | M⟩ where h is a store.
We assume that for all configurations ⟨h | M⟩, we have fr(M) ⊆ dom(h) and for all

ℓ ∈ dom(h), fr(h(ℓ)) ⊆ dom(h). This assumption ensures that any free reference used in
terms is defined in h.

Reductions between configurations are defined as follows:

⟨h | (λx. M)V ⟩ → ⟨h | M{V/x}⟩ (β)
⟨h | !ℓ⟩ → ⟨h | h(ℓ)⟩ (Read)

⟨h | ℓ := v; M⟩ → ⟨h[ℓ := v] | M⟩ (Write)
⟨h | new ℓ := v in M⟩ → ⟨h ⊎ ℓ = v | M⟩ (Alloc)

⟨h | E[M]⟩ → ⟨g | E[N]⟩ if ⟨h | M⟩ → ⟨g | N⟩ (Eval)

A term M in a configuration ⟨h | M⟩ which cannot reduce is called a normal form. It
can either be a value, or a stuck term of the form E[yV].

▶ Lemma 1. For any ⟨h | M⟩ we have:
1. either ⟨h | M⟩ → ⟨h′ | M ′⟩ for some ⟨h′ | M ′⟩
2. or M is a value
3. or M is of the form E[yV].

We write ⇒ for →∗ and we say that ⟨h | M⟩ and ⟨g | N⟩ co-terminate when ⟨h | M⟩ ⇒
⟨h′ | M ′⟩ with M ′ being a normal form iff ⟨g | N⟩ ⇒ ⟨g′ | N ′⟩ with N ′ being a normal form.
A term (resp. context) is closed (resp. reference-closed) if its set of free variables (resp. free
references) is empty. A substitution

∫
is closing terms M, N, . . . if M

∫
, N

∫
, . . . are closed.

▶ Definition 2. Two reference-closed terms are contextually equivalent, written M ≍ N , if
for all closing substitutions

∫
and reference-closed contexts E, ⟨∅ | E[M

∫
]⟩ and ⟨∅ | E[N

∫
]⟩

co-terminate.

To define normal form bisimulations, we need to introduce the notion of triples, used
in [2].

We use a tilde, like in Ṽi, to denote a (possibly empty) tuple. Triples are of the form
(Ṽi, σ, c) and (Ṽi, σ, h) where: Ṽi is a tuple of values, σ is a stack of evaluation contexts, c is
a configuration and h is a store. These are the elements being compared in a normal form
bisimulation. We provide some comments about the role of triples.

The tuple Ṽi stores the values accumulated by the environment, and we write (Ṽi, V)
for the tuple Ṽi extended with the additional value V . A stack of evaluation contexts σ

corresponds to interrupted contexts that must be executed to complete the computation. ⊙

E. Prebet 130:5

stands for the empty stack and E :: σ for the stack obtained by adding E on top of σ. The
store is accessible by all the other objects of the triple, values or contexts – in (Ṽi, σ, c), the
store is part of c.

Intuitively, a triple of the form (Ṽi, σ, c) is active, meaning it is computing up until a
normal form term is obtained, at which point the computation proceeds to triples of the
form (Ṽi, σ, h) where the environment is carrying on the computation, deciding to call one of
the accumulated functions or to resume the computation by evaluating the context at the
top of the stack.

For instance, in the triple (Ṽi, σ, ⟨h | E[yV]⟩), the environment is about to get access to
V and the function corresponding to y will run before eventually (in absence of divergence)
returning the result that will be used by E. Thus, the “next” triple is ((Ṽi, V), E :: σ, h):
value V and context E are added to the corresponding tuple and stack, and h is kept
identical while the environment is deciding for the next move. This evolution can be seen in
Definitions 4 and 5.

Following [8], we first need to introduce an auxiliary relation which performs an immediate
beta reduction in a term of the form V W whenever possible.

▶ Definition 3 (Relation ≻). We write V W ≻ N when V = λy. N ′ and N = N ′{W/y} or
when V = z and N = V W .

We say that a term is deferred diverging if it hides a diverging behaviour behind a
stuck term, e.g (λx. Ω)(yV). This notion can be extended to triples to capture all diverging
behaviours, including deferred ones, as defined below. Intuitively, a triple is diverging if it
contains a diverging, possibly deferred, context or configuration.

Formally, the set of diverging triples is defined coinductively using a diverging set.

▶ Definition 4 (Diverging set). A set S of triples is diverging if the two following conditions
hold:
1. (Ṽi, σ, c) ∈ S implies

a. if c → c′, then (Ṽi, σ, c′) ∈ S

b. if c = ⟨h | V ⟩, then σ ̸= ∅ and ((Ṽi, V), σ, h) ∈ S

c. if c = ⟨h | E[yV]⟩, then ((Ṽi, V), E :: σ, h) ∈ S

2. (Ṽi, σ, h) ∈ S implies
a. for every j and fresh x, (Ṽi, σ, ⟨h | M⟩) ∈ S with Vjx ≻ M

b. if σ = E :: σ′, then (Ṽi, σ′, ⟨h | E[x]⟩) ∈ S for x fresh
We note λdiv the largest diverging set.

We say that a relation R is a triples relation if the two elements of any pair of triples
in R both contain a tuple of values and stack of the same size, and either both contain a
configuration or both contain a store.

We can now define the normal form bisimulation:

▶ Definition 5 (nfb). A symmetric triples relation R is a normal form bisimulation when
there exists a diverging set S such that:
1. (Ṽi, σ1, c) R (W̃i, σ2, d) implies

a. if c → c′, then d ⇒ d′ and (Ṽi, σ1, c′) R (W̃i, σ2, d′)
b. if c = ⟨h | V ⟩, then either

i. d ⇒ ⟨g | W ⟩ and ((Ṽi, V), σ1, h) R ((W̃i, W), σ2, g), or
ii. σ1 ̸= ∅ and ((Ṽi, V), σ1, h) ∈ S

c. if c = ⟨h | E[yV]⟩, then either
i. d ⇒ ⟨g | F [yW]⟩ and ((Ṽi, V), E :: σ1, h) R ((W̃i, W), F :: σ2, g), or
ii. ((Ṽi, V), E :: σ1, h) ∈ S

ICALP 2022

130:6 Functions and References in the Pi-Calculus:Full Abstraction and Proof Techniques

2. (Ṽi, σ1, h) R (W̃i, σ2, g) implies
a. for every j and fresh x, (Ṽi, σ1, ⟨h | M⟩) R (W̃i, σ2, ⟨g | N⟩) with Vjx ≻ M and

Wjx ≻ N

b. if σ1=E :: σ′
1 and σ2=F :: σ′

2, then (Ṽi, σ′
1, ⟨h | E[x]⟩) R (W̃i, σ′

2, ⟨g | F [x]⟩) for x fresh

Normal form bisimilarity, ≈λ, is the largest normal form bisimulation.

Definition 5 reformulates the bisimulation from [2]. This gives the same equivalence while
being more suitable to establish the operational correspondence of the encoding (Theorem 17).
We can thus rely on the following result.

▶ Theorem 6 (Full abstraction [2, Theorems 3,4]). For all λref-terms M, N , we have
(∅, ⊙, ⟨∅ | M⟩) ≈λ (∅, ⊙, ⟨∅ | N⟩) iff M ≍ N .

This means that to prove that two reference-closed terms are contextually equivalent,
we can provide a normal form bisimulation R relating the two terms and its corresponding
diverging set S.

3 AIπ, the Asynchronous Internal π-Calculus

We present the Asynchronous Internal π-calculus, AIπ, and the type system for well-bracketing
from [5]. The syntax is given by the following grammar:

Processes P, Q ::= 0
∣∣ a(̃b) P

∣∣ a(̃b). P
∣∣ !a(̃b). P

∣∣ P | Q
∣∣ (νa)P

∣∣ K⌊ã⌋
Recursive definitions K ≜ (ã) P

As for λref values, b̃ denotes a tuple of names. We also write a(_). P for a(z). P when
z /∈ fn(P). Here, a(̃b) P is a bound asynchronous output, introduced in [1]. This corresponds
to (ν b̃)(a⟨̃b⟩. 0 | P) in the standard π-calculus, that is, a non-blocking output which carries
bound names used in P . Constants are defined as an abstraction (K ≜ (ã) P), where ã are
distinct names, bound in P . Given an abstraction (ã) P , we note ((ã) P)⌊b̃⌋ the process
P {̃b/̃a}. Thus K⌊ã⌋ represents the process in the definition of K substituted with the names
ã (as expressed by the rule Cst in the operational semantics).

The full set of rules defining the Labelled Transition System (LTS) is given in Figure 1.
Symmetric rules for Par and Comm have been omitted. It is similar to that of Iπ with the
additional rules:

Async
P

µ−→ P ′

a(̃b) P
µ−→ a(̃b) P

b̃ ∩ (fn(µ) ∪ bn(µ)) = ∅
a /∈ bn(µ)

AComm

P
a(̃b)−−→ P ′

a(̃b) P
τ−→ (ν b̃)P ′

AComm allows P to communicate with the bound output, and Async allows P to perform
any action that does not involve the names bound by the output.

Our type system is based on Milner’s sorting. Names are split into sorts. In our case, we
will use 3 sorts: F,R,C. The sorting function Σ is defined by Σ(F) = (F, C) and Σ(R) = Σ(C) = F.
We call function names, ranged over with w, x, y, z, . . . , names in F, reference names, ranged
over with ℓ, ℓ′, . . . , names in R, and continuation names, ranged over with p, q, r, . . . , names
in C.

On top of the sorting, we adapt the type system for well-bracketing from [5] to AIπ. The
type system imposes that continuation names are receptive linear, meaning that they can
be used only once in output and once in input (hence linear) and the input is immediately

E. Prebet 130:7

Inp

a(̃b). P
a(̃b)−−→ P

Out

a(̃b) P
a(̃b)−−→ P

Async
P

µ−→ P ′

a(̃b) P
µ−→ a(̃b) P

b̃ ∩ (fn(µ) ∪ bn(µ)) = ∅
a /∈ bn(µ)

AComm

P
a(̃b)−−→ P ′

a(̃b) P
τ−→ (ν b̃)P ′

Rep
a(̃b). P

µ−→ P ′

!a(̃b). P
µ−→ P ′ | !a(̃b). P

Res
P

µ−→ P ′

(νa)P µ−→ (νa)P ′
a /∈ fn(µ) ∪ bn(µ)

Par
P

µ−→ P ′

P | Q
µ−→ P ′ | Q

bn(µ)∩ fn(Q) = ∅

Comm

P
a(̃b)−−→ P ′ Q

a(̃b)−−→ Q′

P | Q
τ−→ (ν b̃)(P ′ | Q′)

Cst
P {̃b/̃a} µ−→ P ′

K⌊b̃⌋ µ−→ P ′
K ≜ (ã) P

Figure 1 Labelled Transition Semantics for AIπ.

available as soon as it is created (hence receptive). Additionally, creations and communications
at continuation names behave in a well-bracketed manner, meaning that the communication
will first occur at the name created last.

We use two constants, noted ▷F and ▷C, defined as follows:

▷C≜ (p, q) p(x). q(y) y ▷F x with p, q being continuation names
▷F≜ (x, y) !x(z, p). y(w, q) (q ▷C p | w ▷F z) with x, y being function names

These constants represent a link, also called forwarder or dynamic wire [17], which
transforms outputs at the first name into outputs at the second. As their usage only differs
in the linearity of continuation names and the arity, we often use the same symbol ▷ to
denote both ▷F and ▷C.

wb-Nil

∅ ⊢wb 0

wb-AOutC
ρ ⊢wb P

p : o, ρ ⊢wb p(y) P

wb-AOutF
p : i, ρ ⊢wb P

ρ ⊢wb x(y, p) P

wb-AOutR
ρ ⊢wb P

ρ ⊢wb ℓ(y) P

wb-InpC
p : o ⊢wb P p ̸= q

q : i, p : o ⊢wb q(y). P

wb-InpF
p : o ⊢wb P

∅ ⊢wb x(y, p). P, !x(y, p). P

wb-InpR
p : o ⊢wb P

p : o ⊢wb ℓ(y). P

wb-ResC1
ρ, p : ⋆, ρ′ ⊢wb P

ρ, ρ′ ⊢wb (νp)P

wb-ResC2
ρ ⊢wb P

ρ ⊢wb (νp)P
p /∈ ρ

wb-ResFR
ρ ⊢wb P

ρ ⊢wb (νy)P , (νℓ)P

wb-Par
ρ ⊢wb P ρ′ ⊢wb Q

ρ′′ ⊢wb P | Q
ρ′′ ∈ inter(ρ; ρ′)

wb-FwC

p : i, q : o ⊢wb p ▷C q

wb-FwF

∅ ⊢wb x ▷F y

Figure 2 Type system for well-bracketing.

ICALP 2022

130:8 Functions and References in the Pi-Calculus:Full Abstraction and Proof Techniques

We present the typing rules for well-bracketing in Figure 2. Judgements are of the form
ρ ⊢wb P with ρ being a stack. In rules wb-InpF and wb-ResFR, the conclusion is of the
form ρ ⊢wb P, Q to indicate that both ρ ⊢wb P and ρ ⊢wb Q can be inferred from the
premise.

A stack is a sequence of tagged names, the tag being either i, o or ⋆ denoting respectively
input, output and both capabilities. Upon creation, a continuation comes with both capab-
ilities (wb-ResC1), that are used once as input and output (wb-InpC and wb-AOutC).
In wb-AOutF, a continuation is created and its input capability is passed to P , while its
output capability is sent by the communication. This capability can then be used after the
input in wb-InpF. As continuation names are receptive, inputs cannot appear after another
input (wb-InpF and wb-InpC).

Intuitively, a stack expresses the expected usage of the free continuation names in a
process. Stacks are given by the following grammars:

ρ ::= ρo
∣∣ ρi ρo ::= p : o, ρi

∣∣ p : ⋆, ρo
∣∣ ∅ ρi ::= p : i, ρo

∣∣ ∅

Moreover, a name may appear at most once in a stack, so we will say that a name is o-tagged
in ρ when the name appears with tag o in ρ and similarly for i and ⋆.

As a ⋆-tagged name represents both output and input capabilities, a stack can be seen as
an alternation of input- and output-tagged names. For instance, if we have

p1 : o, p2 : i, p3 : ⋆, p4 : o ⊢wb P

then p1, . . . , p4 are the free continuation names in P ; among these, p1 will be used first, as an
output at p1; then p2 will be used, in an input interaction with the environment. P possesses
both the output and the input capability on p3, and will use both capabilities by performing
a reduction at p3; the computation for P terminates with an output at p4.

Thus, to compose two processes P and Q in parallel, the usage of continuations of P | Q

is an interleaving of the ones of P and Q (wb-Par). Names with capabilities shared between
P and Q can be used as synchronisation point. Formally, the interleaving of two stacks is
described by the following definition:

▶ Definition 7. The interleaving relation is defined as a ternary relation between stacks,
written ρ ∈ inter(ρ1 ; ρ2), and defined as follows:

∅ ∈ inter(∅; ∅)
ρ ∈ inter(ρ1 ; ρ2) implies ρ ∈ inter(ρ2 ; ρ1).
ρ ∈ inter(ρ1 ; ρ2) implies p : η, ρ ∈ inter(p : η, ρ1 ; ρ2), where η ∈ {o, i, ⋆} and p : η, ρ1
is a stack.
Whenever ρ ∈ inter(ρi; ρo), we have p : ⋆, ρ ∈ inter(p : o, ρi ; p : i, ρo).

Even though the grammar allows it, it is not possible to type a process ρ ⊢ P with ρ

ending with p : i or p : ⋆.
As continuation names are used linearly, when both input and output are present in the

process, i.e., when the name is ⋆-tagged in the stack, this name should not be observable.
We call clean a stack where no name is ⋆-tagged. We note c(ρ) the clean stack obtained by
removing all ⋆-tagged names from ρ, and ρ ⊨wb P when there exists ρ′ with ρ′ ⊢wb P and
c(ρ′) = ρ. Using clean stacks, we can define typed transitions.

E. Prebet 130:9

▶ Definition 8. When ρ ⊨wb P , we write [ρ; P] µ−→ [ρ′; P ′] if P
µ−→ P ′ and one of the following

holds:
1. µ = p(x) and ρ = p : o, ρ′

2. µ = p(x) and ρ = p : i, ρ′

3. µ = x(y, p) and ρ′ = p : i, ρ

4. µ = x(y, p) and ρ′ = p : o, ρ

5. µ ∈ {ℓ(x), ℓ(x), τ} and ρ′ = ρ.

▶ Lemma 9 (Subject reduction). If [ρ; P] µ−→ [ρ′; P ′], then for any Q with ρ ⊨wb Q and
Q

µ−→ Q′, we have ρ′ ⊨wb Q′.

A relation R is wb-typed if for any (ρ, P, Q) ∈ R, we have ρ ⊨wb P and ρ ⊨wb Q. We
define the typed version of the expansion preorder, written ≳wb, by restricting to typed

transitions. As usual, we write τ̂−→ for τ−→ ∪ id and µ̂−→ for µ−→ otherwise. The weak variants of
the transitions are defined by chaining with ⇒def= τ−→

∗
: for instance, µ=⇒def= ⇒ µ−→⇒.

▶ Definition 10 (Wb-expansion). A wb-typed relation R is a wb-expansion when (ρ, P, Q) ∈ R
implies:

If we have [ρ; P] µ−→ [ρ′; P ′], then there exists Q′ such that Q
µ̂−→ Q′ and (ρ′, P ′, Q′) ∈ R.

If we have [ρ; Q] µ−→ [ρ′; Q′], then there exists P ′ such that P
µ=⇒ P ′ and (ρ′, P ′, Q′) ∈ R.

We note ≳wb the largest wb-expansion.

We omit ρ, writing P ≳wb Q when ρ is obvious from the context. This typed expansion is
coarser than its untyped variant, which is written ≳ [19].

Wb-bisimulation, and wb-bisimilarity noted ≈wb, are defined as wb-expansion by replacing

Q
µ̂−→ Q′ with Q

µ̂=⇒ Q′ in Definition 10. The untyped version is written ≈.

4 Encoding Terms and Values in AIπ

In this section, we describe the encoding of λref-terms into AIπ processes. This leads to
a clean operational correspondence where the encoding of a term may perform a unique
transition according to the case distinction of Lemma 1.

We define the encoding in Figure 3. The encoding JMK of a term M is defined as
an abstraction (p) P , and we use the notation JMKq (resp. JV Kv

y) to note JMK⌊q⌋ (resp.
JV Kv⌊y⌋). Intuitively, JMKp is a computation that returns a value at p while JV Kv

y is a value
that can be accessed at y.

This encoding extends the one from [3] with the additional constructs for handling
references. A reference is represented by an output transmitting the stored value. Access to
a reference is performed by receiving that output and emitting it back (possibly updated).

To remove any ambiguity in the rules, we consider that M (appearing in JMNK,
Jℓ := M ; NK and JV MK) cannot be a value. This distinction enables optimisations that
intuitively remove some communications signaling the end of a subcomputation. This is
reminiscent of the colon translation from [15], in the setting of continuation-passing style
translations. For any reference-closed configurations ⟨h | M⟩, we have p : o ⊢wb J⟨h | M⟩Kp.

We extend the encoding to evaluation contexts as shown in Figure 4. When an evaluation
context is applied to a non-value term, its encoding correspond to encode the context first
and then apply it to the encoding of the term:

▶ Lemma 11. For any E M such that M is not a value, we have JE[M]Kp = JEK[JMK]p.

ICALP 2022

130:10 Functions and References in the Pi-Calculus:Full Abstraction and Proof Techniques

Functions

JV K def= (p) p(y) JV Kv
y JxV K def= (p) x(z, q) (JV Kv

z | q ▷ p)

J(λx. N)V K def= (p) (νy, w)(Jλx. NKv
y | JV Kv

w | y(w′, r′) (w′ ▷ w | r′ ▷ p))

JV MK def= (p) (νy)(JV Kv
y | (νr)(JMKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)))

JMNK def= (p) (νq)(JMKq | q(y). (νr)(JNKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)))

Imperative constructs

J!ℓK def= (p) ℓ(w). (ℓ(y) y ▷ w | p(z) z ▷ w) Jℓ := V ; NK def= (p) ℓ(_). (ℓ(y) JV Kv
y | JNKp)

Jℓ := M ; NK def= (p) (νq)(JMKq | q(w). ℓ(_). (ℓ(y) y ▷ w | JNKp))

Jnew ℓ := V in NK def= (p) (νq)(JV Kq | q(z). (νℓ)(ℓ(y) y ▷ z | JNKp))

Configurations

JhK def=
∏
ℓ0∈ℓ̃

(ℓ0(y) Jh(ℓ0)Kv
y) with ℓ̃ = dom(h) J⟨h | N⟩K def= (p) (ν ℓ̃)(JhK | JNKp)

where JV Kv is defined as:

Jλx. NKv def= (y) !y(x, q). JNKq JxKv def= (y) y ▷ x

Figure 3 Encoding of terms and configurations into AIπ.

J[·]K def= [·] JFNK def= (p) (νq)(JF Kq | q(y). (νr)(JNKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)))

Jℓ := F ; NK def= (p) (νq)(JF Kq | q(w). ℓ(_). (ℓ(y) y ▷ w | JNKp))

JV F K def= (p) (νy)(JV Kv
y | (νr)(JF Kr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)))

Figure 4 Encoding of evaluation contexts.

Proof. We proceed by induction on E:
1. when E = [·], the result is immediate.
2. when E = FN , we have

JE[M]Kp = (νq)(JF [M]Kq | q(y). (νr)(JNKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p))).

By induction, we have that JF [M]Kq = JF K[JMK]q and thus:

JE[M]Kp = (νq)(JF K[JMK]q | q(y). (νr)(JNKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)))
= JEK[JMK]p

E. Prebet 130:11

3. when E = V F , we have

JE[M]Kp = (νy, r)(JV Kv
y | JF [M]Kr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)).

By induction, we have that JF [M]Kr = JF K[JMK]r.
So JE[M]Kp = (νy, r)(JV Kv

y | JF K[JMK]r | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)) = JEK[JMK]p.
4. when E = ℓ := F ; N , then JE[M]Kp = (νq)(JF [M]Kq | q(w). ℓ(_). (ℓ(y) y ▷ w | JNKp)).

By induction, we have that JF [M]Kq = JF K[JMK]q.
So JE[M]Kp = (νq)(JF K[JMK]q | q(w). ℓ(_). (ℓ(y) y ▷ w | JNKp)) = JEK[JMK]p. ◀

Because we distinguish between values and non-values in the encoding, the previous lemma
does not hold when M is a value. In that case, the encoding performs some “optimisations”.
To relate the two processes, we need that on the encoding, forwarders act like substitutions.

▶ Lemma 12. We have
1. (νx)(JMKp | x ▷ y) ≳ JM{y/x}Kp

2. (νx)(JV Kv
z | x ▷ y) ≳ JV {y/x}Kv

z

3. (νp)(JMKp | p ▷ q) ≳ JMKq

4. (νy)(JV Kv
y | x ▷ y) ≳ JV Kv

x

Lemma 12 is proved by induction on the encoding of M or V to prove the four properties
in conjonction. Indeed, there are dependencies between these properties which prevent us
from treating them separately. This result is proved for the optimised encoding of the plain
call-by-value λ-calculus [3] and it extends to the additional constructs of λref. As a result of
the optimisation, we have the following lemma when applying a context to a value:

▶ Lemma 13. For any value V and context E, JEK[JV K]p ≳ JE[V]Kp.

Proof. We proceed by induction on E:
when E = [·], this is trivial.
When E = (λx. M) [·], we have

JEK[JV K]p = (νy, r)(Jλx. MKv
y | JV Kr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p))

→ (νy, w)(Jλx. MKv
y | JV Kv

w | y(w′, r′) (w′ ▷ w | r′ ▷ p)) = JE[V]Kp

As this transition is deterministic by construction, we obtain that JEK[JV K]p ≳ JE[V]Kp.
This also holds for the three following cases.
When E = x [·], we have

JEK[JV K]p = (νy, r)(JxKv
y | JV Kr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p))

→2 (νy, w, w′, r′)(JxKv
y | x(w′′, r′′) (w′′ ▷ w′ | r′′ ▷ r′) | JV Kv

w | w′ ▷ w | r′ ▷ p)
≳ (νy)JxKv

y | x(w′′, r′′) (νw, w′, r′)(w′′ ▷ w′ | w′ ▷ w | JV Kv
w | r′′ ▷ r′ | r′ ▷ p)

≳ (νw)(x(w′′, r′′) (JV Kv
w′′ | r′′ ▷ p)) = JxV Kp

When E = [·] M , we have

JEK[JV K]p = (νq)(JV Kq | q(y). (νr)(JNKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p)))
→ (νy)(JV Kv

y | (νr)(JNKr | r(w). y(w′, r′) (w′ ▷ w | r′ ▷ p))) = JxV Kp

When E = ℓ := [·]; M , we have

JEK[JV K]p = (νq)(JV Kq | q(w). ℓ(_). (ℓ(y) y ▷ w | JNKp))
→ (νw)(JV Kv

w | ℓ(_). (ℓ(y) y ▷ w | JNKp))
≳ ℓ(_). (ℓ(y) (νw)(JV Kv

w | y ▷ w) | JNKp)
≳ ℓ(_). (ℓ(y) JV Kv

y | JNKp) = JE[V]Kp

ICALP 2022

130:12 Functions and References in the Pi-Calculus:Full Abstraction and Proof Techniques

when E = F M or V F or ℓ := F ; M with F ̸= [·], then F [V] is not a value, so
JE[V]Kp = JE′K[JF [M]K]p for some E′ and the result follows by induction as ≳ is a
congruence. ◀

We can now establish operational correspondence.

▶ Proposition 14 (Untyped Operational Correspondence). For any M, h with dom(h) = ℓ̃ and
fresh q0, J⟨h | M⟩Kq0 has exactly one immediate transition, and exactly one of the following
clauses holds:
1. ⟨h | M⟩ → ⟨h′ | N⟩ and J⟨h | M⟩Kq0

τ−→ P with P ≳ J⟨h′ | N⟩Kq0

2. M is a value, J⟨h | M⟩Kq0

q0(x0)−−−−→ P and P = (ν ℓ̃)(JhK | JMKv
x0

).

3. M is of the form E0[yV0] for some E0, y and V0, and we have J⟨h | M⟩Kq0

y(x0,p0)−−−−−→ P

with P ≳ (ν ℓ̃)(JhK | JV0Kv
x0

| p0(z). JE0[z]Kq0).
In the first case, the τ transition is deterministic, so we can prove that the following

holds: J⟨h | M⟩Kq0 ≳ J⟨h′ | N⟩Kq0 .

Using the existing equivalences in AIπ from Section 3, we can prove that the encodings
of two λref-terms are equivalent. The equivalence and preorder used here are finer than
bisimilarity with divergence which is sound as stated in Section 5. These examples show how
the standard theory of the π-calculus is enough to prove interesting properties of λref-terms.
These properties do not require us to use the triples defined in Section 5 nor to take into
account the possibility of deferred divergence.

▶ Example 15 (Unused reference). For any reference ℓ, value V and any term M with
ℓ /∈ fr(M), we have Jnew ℓ := V in MKp ≳ JMKp.

Proof. We write

Jnew ℓ := V in MKp ≳ J⟨∅ | new ℓ := V in M⟩Kp

≳ J⟨ℓ = V | M⟩Kp by Proposition 14
≳ (νℓ)(ℓ(y) JV Kv

y) | JMKp ≳ JMKp

We use ≳ to perform a deterministic reduction and then to use simple laws and remove
inaccessible processes. This result can be extended in presence of store by congruence, giving
J⟨h | new ℓ := V in M⟩Kp ≳ J⟨h | M⟩Kp. ◀

▶ Example 16 (One-use context). Let f1
def= λx. if !ℓ = tt then ℓ := ff ; tt else ff and

f2
def= λx. tt and E = [·] (xλy. y). Then Jnew ℓ := tt in E[f1]Kp ≈ JE[f2]Kp

Proof. By Proposition 14 and congruence of ≳ we have:

JE[f2]Kp ≳ x(z, q) (Jλy. yKv
z | q(w). Jf2wKp)

≳ x(z, q) (Jλy. yKv
z | q(w). JttKp)

Using standard laws for ≳, we relate the encoding of the first program to the same process:

Jnew ℓ := tt in E[f1]Kp ≳ (νℓ)(Jℓ = ttK | x(z, q) (Jλy. yKv
z | q(w). Jf1wKp))

≳ x(z, q) (Jλy. yKv
z | q(w). J⟨ℓ = tt | f1w⟩Kp)

≳ x(z, q) (Jλy. yKv
z | q(w). J⟨ℓ = ff | tt⟩Kp)

≳ x(z, q) (Jλy. yKv
z | q(w). JttKp)

Note that we are outside AIπ because we are using constants (tt, ff). Adapting our setting
to simple types can be done by having sorts F, R, C and forwarders ▷C,▷F for each type T ,
the forwarders being defined inductively on T instead of being constants. ◀

E. Prebet 130:13

JṼiKx̃

def=
∏

i

JViKv
xi

with x̃ = x̃i

JE1 :: · · · :: EnK
p̃q

def=
∏
i≤n

pi(z). JEi[z]Kqi with p̃q = p1, q1, . . . , pn, qn

J(Ṽi, σ, h)K
x̃;p̃q

def= (ν ℓ̃)(JṼiKx̃
| JσK

p̃q
| JhK) with ℓ̃ = dom(h)

J(Ṽi, σ, ⟨h | M⟩)K
x̃;q0,p̃q

def= (ν ℓ̃)(JṼiKx̃
| JσK

p̃q
| JhK | JMKq0) with ℓ̃ = dom(h)

Figure 5 Encoding for triples.

5 A π-Calculus Characterisation of Contextual Equivalence in λref

We can now move on to show our full abstraction result. To do so, we first extend the
encoding to the triples defined in Section 2. This leads to an operational correspondence
similar to Proposition 14 but for triples (Theorem 17). However, thanks to triples, it is
possible to state Theorem 17 without using explicit AIπ constructs, so that each transition
relates the encoding of triples. The bisimulation with divergence can then be defined and
shown fully abstractly using mainly the operational correspondence theorem.

We describe in Figure 5 the encoding of triples (Section 2). It builds on the encoding in
Figure 3, with values being encoded as expected. To encode σ, every evaluation context E

in σ is encoded as the process p(z). JE[z]Kq so that, intutively, E[z] can be executed as soon
as the input at p is triggered. Both J(Ṽi, σ, c)K

x̃;q0,p̃q
and J(Ṽi, σ, h)K

x̃;p̃q
are typeable with

stacks that we write ρ
q0,p̃q

and ρ
p̃q

respectively.

▶ Theorem 17 (Operational Correspondence).
We relate transitions for the encoding of both kind of triples:
When [ρ; J(Ṽi, σ, c)K

x̃;q0,p̃q
] µ−→ [ρ′; P] with x̃ = x̃i and p̃q = p1, q1, . . . , pn, qn then:

1. either c → c′, µ = τ and P ≳ J(Ṽi, σ, c′)K
x̃;q0,p̃q

2. or c = ⟨h | V0⟩, µ = q0(x0) and P ≳ J((Ṽi, V0), σ, h)K
x0,x̃;p̃q

3. or c = ⟨h | E0[y V0]⟩, µ = y(x0, p0) and P ≳ J((Ṽi, V0), E0 :: σ, h)K
x0,x̃;p0,q0,p̃q

When [ρ; J(Ṽi, σ, h)K
x̃;p̃q

] µ−→ [ρ′; P] with x̃ = x̃i and p̃q = p1, q1, . . . , pn, qn then:
1. either µ = xj(z, q0) and P ≳ J(Ṽi, σ, ⟨h | N⟩)K

x̃;q0,p̃q
with Vjz ≻ N .

2. or σ = E1 :: σ′ and µ = p1(z) and P ≳ J(Ṽi, σ′, ⟨h | E1[z]⟩)K
x̃;q1,p2,q2,...,pn,qn

The following result is useful for the full abstraction proof.

▶ Corollary 18. If J(Ṽi, σ, c)K
x̃;q0,p̃q

⇒ P ′, then there exists a configuration c′ with c ⇒ c′

and P ′ ≳ J(Ṽi, σ, c′)K
x̃;q0,p̃q

.

Note that we rely on untyped expansion, which does not make any assumption about
sequentiality of processes, in Theorem 17 and Corollary 18. This shows the robustness of the
encoding.

The following example shows that by contrast with the encoding of configurations, the τ

transition in the first case of Theorem 17 is not deterministic.

▶ Example 19. J({λz. ℓ := z}, ⊙, ⟨ℓ = y | !ℓ⟩)Kx1;q0 ̸≳ J({λz. ℓ := z}, ⊙, ⟨ℓ = y | y⟩)Kx1;q0 .

ICALP 2022

130:14 Functions and References in the Pi-Calculus:Full Abstraction and Proof Techniques

Indeed, as the π-calculus is concurrent, the encoding of λz. ℓ := z may be executed to
change the content of ℓ before the read is executed. However, we can recover this result
by using ≳wb which forbids the concurrent transitions. This makes ≳wb useful to handle
reductions for triples.

We now introduce the notion of divergence for π-terms. This leads to the definition
of bisimulation with divergence which coarsens ≈wb to account for divergent terms. The
induced equivalence for λref-terms corresponds to nfb.

A wb-typed set is a set of pairs (ρ, P) with ρ clean and ρ ⊨wb P .

▶ Definition 20 (πdiv). A wb-typed set S is π-divergent if whenever we have (ρ, P) ∈ S, then
ρ ̸= ∅ and for all µ, ρ′, P ′ with [ρ; P] µ−→ [ρ′; P ′], we have (ρ′, P ′) ∈ S.

We write πdiv for the largest π-divergent set.

Intuitively, the computation ends when the stack gets empty, meaning there is no pending
continuation. Processes in πdiv thus correspond to processes which cannot terminate, hence
the name of π-divergence.

The following example shows that the divergence of a process depends on the stack used
to type it.

▶ Example 21. Let us consider

P
def= (νx)(p1(z). x(y, r1) r1 ▷ q1 | p2(z). q2(y) x(y′, r). r(z′) 0),

ρ1 = p1 : i, q1 : o, p2 : i, q2 : o, ρ2 = p2 : i, q2 : o, p1 : i, q1 : o.

We have both ρ1 ⊨wb P and ρ2 ⊨wb P .
[ρ1; P] p1(z)−−−→ [ρ′; P ′] is the only typed-allowed transition and P ′ has no typed-allowed

transition. Thus, (ρ1, P) ∈ πdiv.
On the other hand, [ρ2; P] p2(z)−−−→ q2(y)−−−→ p1(z0)−−−−→ τ−→ τ−→ q1(z′)−−−−→ [∅; P ′]. So (ρ2, P) /∈ πdiv.

▶ Definition 22. A wb-typed symmetric relation R is a bisimulation with divergence if there
exists a π-divergent set S such that whenever we have (σ, P, Q) ∈ R and [σ; P] µ−→ [σ′; P ′],
then one of the following holds:

1. there exists Q′ with Q
µ̂=⇒ Q′ and (σ′, P ′, Q′) ∈ R;

2. µ is an output and (σ′, P ′) ∈ S.
We write ≈div for the largest bisimulation with divergence. We write P ≈ρ

div Q when
(ρ, P, Q)∈ ≈div.

Bisimilarity with divergence is coarser than wb-bisimilarity and thus also coarser than
the untyped bisimilarity.

To establish soundness, we rely on Theorem 17 (operational correspondence). The set of
triples whose encoding is π-diverging is itself diverging, so we can prove that the relation
induced by ≈div is a nfb.

▶ Theorem 23 (Soundness). If JMKp ≈p:o
div JNKp, then M ≍ N .

The completeness is proved by showing that the encoding of a divergent set is π-divergent
up to ≳ and then Property (1) from the introduction, namely that the encoding of a nfb is a
bisimulation with divergence up to ≳.

▶ Theorem 24 (Completeness). If M ≍ N , then JMKp ≈p:o
div JNKp.

E. Prebet 130:15

6 Up-to Techniques for ≈div in AIπ, and Applications

Up-to techniques are defined as functions from relations to relations. The idea of up-to
techniques is to weaken the requirement by applying the up-to technique to the relation R
in clause 1 of Definition 22. Standard up-to techniques like up-to expansion or up-to context
can be adapted to our typed setting as in [5].

Similar up-to techniques for sets can also be defined and exploited for π-divergent sets.
In order for up-to context to be sound, we must forbid contexts where the hole is guarded by
a replicated input. Indeed, replicated input may only be typed with an empty set so they
cannot be diverging. This is similar to λref, where Ω is divergent but λx. Ω is not.

Thanks to up-to techniques, to prove that two processes are equivalent, we can give R,
a bismulation with divergence up to using S, a π-divergent set up to. This is used in the
equivalences proven in Section 6.2.

6.1 A new up-to technique for AIπ: up-to body

In AIπ, functions are encoded as a replicated process of the form !x(y, p). T , which we denote
T x. When identical calls result in the same value being sent, it creates copies of that value,
leading to processes of the form T x | T y | . . . | T z, with x, y, . . . , z being all different names.
This behaviour makes bisimulations infinite, as they would need to contain processes with an
arbitrary number of processes in parallel, despite all of them sharing the same body. We
introduce a new technique, up-to body, which allows us to remove these duplicated copies.
Indeed, it is sound to keep only one copy when comparing processes: any discriminating
interaction with the environment involving multiple copies can be mimicked by a similar
interaction with only one copy. The up-to body technique is defined by the following rule:

(ρ, E[T x
1], F [T x

2]) ∈ R
(ρ, E[T z

1 | T x
1], F [T z

2 | T x
2]) ∈ body(R)

x, z /∈ n(E) ∪ n(F) ∪ fn(T1) ∪ fn(T2)

Up-to body differs from up-to context because we keep the possibly different evaluation
contexts, E and F . These contexts correspond to private resources shared among the copies.
In our case, the private resource is the local store, but this technique can be exported to the
plain π-calculus. The technique for sets is defined similarly, with (ρ, E[T z | T x]) ∈ body(S)
whenever (ρ, E[T x]) ∈ S and x, z /∈ n(E) ∪ fn(T).

Using up-to body, it is possible to prove the analog of (1) from Section 1 but using normal
form bisimulations from [2] instead of the formulation we have given in Definition 5.

We now present a simple example that demonstrates the use of up-to body.

▶ Example 25. new ℓ := z in λx. λy. !ℓ ≍ λx. λy. z

Proof. We reason using the soundness of the encoding, and define

R = {(ρq, Jnew ℓ := z in λx. λy. !ℓKq, Jλx. λy. zKq),
(∅, J(λx. λy. !ℓ,), ⊙, ℓ = zKx0 , J(λx. λy. z,), ⊙, ∅Kx0)
(∅, J(λx. λy. !ℓ, λy. !ℓ), ⊙, ℓ = zKx0,x1 , J(λx. λy. z, λy. z), ⊙, ∅Kx0,x1)}.

We can show that R is a bisimulation with divergence up to ≳wb, context and body. The
up-to body technique makes it possible to stop the relation after the third pair. ◀

ICALP 2022

130:16 Functions and References in the Pi-Calculus:Full Abstraction and Proof Techniques

6.2 Examples
We now present an example that involves the encoding of triples, but does not require us
to take into account deferred divergences. To validate the laws below, we thus rely on ≈wb
which is included in ≈div (Definition 22).

▶ Example 26 (Optimised access). Two consecutive read and/or write operations can be
transformed into an equivalent single operation.

For any pair (f1, f2) from the following (() is the unique inhabitant of the unit type):(
f1 = λ(). ℓ := !ℓ, f2 = λ(). ()

)(
f1 = λn. λm. ℓ := n; ℓ := m, f2 = λn. λm. ℓ := m

)(
f1 = λn. ℓ := n; !ℓ, f2 = λn. ℓ := n; n

)(
f1 = λ(). let x = !ℓ in let y = !ℓ in M, f2 = λ(). let x = !ℓ in M{x/y}

)
we have for any E, y, V0, we have Jnew ℓ := V0 in E[y f1]Kq1 ≈wb Jnew ℓ := V0 in E[y f2]Kq1 .

Proof. First, we have that J((f1,), E :: ⊙, ℓ := V0)Kx;p1,q1 ≈wb J((f2,), E :: ⊙, ℓ := V0)Kx;p1,q1

using (fi,) to denote the singleton containing fi. Indeed, we define a relation R as follows:

R = {(ρ
p̃q

, J((Ṽi, f1), σ, h⊎ℓ = V)K
x̃;p̃q

, J((Ṽi, f2), σ, h⊎ℓ = V)K
x̃;p̃q

)
∣∣ for all Ṽi, σ, h, V, x̃, p̃q}

and we show that R is a wb-bisimulation up to ≳wb and evaluation context.
Then we use Theorem 17 to show

Jnew ℓ := V0 in E[x fi]Kq1 ≳ J(∅, ⊙, ⟨ℓ = V0 | E[y fi]⟩Kq1

y(x,p1)−−−−→≳ J(fi,), E :: ⊙, ℓ = V0)Kx;p1,q1

with the output being the only transition that the intermediate process can perform. ◀

The proof of this law could become even simpler by adopting the type system of [4]: we
could prove prove directly that Jf1Kp and Jf2Kp are equivalent.

Relation R above would have the same base if we were to reason in the source language.
If we were to show new ℓ := V in E[y f1] ≍ new ℓ := V in E[y f2] using nfb, we would need
to add triples with the same normal form term on both sides.

We present some examples involving deferred divergence from the literature.

▶ Example 27. ⟨∅ | x V Ω⟩ ≍ ⟨∅ | Ω⟩, where V is a value and Ω is an always diverging term.

Proof. Take R = {(ρq, J⟨∅ | x V Ω⟩Kq, J⟨∅ | Ω⟩Kq)} and S = {(ρr, JΩKr)}.
S is π-divergent, so ≳wbctxt(S) is too, where ctxt stands for the up-to context technique.

Then we show that R is a bisimulation with divergence up to context with ≳wbctxt(S) as
the π-divergent set.

[ρq; J⟨∅ | x V Ω⟩Kq] x(y,p)−−−−→ [ρp,q; P] is the only type-allowed transition.
By Theorem 17, we know that P ≳ J({V }, [·] Ω :: ⊙, ∅)Ky;pq.
As (ρp,q, J({V }, [·] Ω :: ⊙, ∅)Ky;pq) ∈ ctxt(S), we indeed have (ρp,q, P) ∈ ≳wbctxt(S). ◀

▶ Example 28 (Example 9 from [2]).

V1 = λx. if !ℓ then Ω else k := tt W1 = λx. Ω

V2 = λf . f V1; if !k then Ω else ℓ := tt W2 = λf . f W1

We have new ℓ := ff in new k := ff in V2 ≍ W2.

E. Prebet 130:17

Proof. Given a context E, we write En for E :: E :: · · · :: E :: ⊙ with n occurences of E.
Let E

def= (λ(). if !k then Ω else ℓ := tt)[·], and F
def= (λ(). ())[·]. We define R as

{(ρq, Jnew ℓ := ff in new k := ff in V2Kq, JW2Kq),
(∅, J(V2,), ⊙, ℓ = ff ⊎ k = ffKx2 , J(W2,), ⊙, ∅Kx2)}

⋃
{(ρ

p̃q
, J(V1, V2), En, ℓ = ff ⊎ k = ffK

x̃i;p̃q
, J(W1, W2), F n, ∅K

x̃i;p̃q
),

(ρ
q0,p̃q

, J(V1, V2), En, ⟨ℓ = ff ⊎ k = tt | ()⟩K
x̃i;q0,p̃q

, J(W1, W2), F n, ⟨∅ | Ω⟩K
x̃i;q0,p̃q

),
(ρ

p̃q
, J(V1, V2), En, ℓ = tt ⊎ k = ffK

x̃i;p̃q
, J(W1, W2), F n, ∅K

x̃i;p̃q
)∣∣ for all p̃q, n with |p̃q| = 2n }

and S as {(ρq, JΩKq), (ρ
p̃q

, J(V1, V2), En, ℓ = ff ⊎ k = ttK
x̃i;p̃q

) for all p̃q, n with |p̃q| = 2n}.
R is a bisimulation up to ≳wb, context and body. Multiple calls to V1, W1 create multiples

continuations, but thanks to up-to body, multiples calls to V2, W2 do not create multiples
copies of V1, W1. All in all, we have the same number of pairs in the candidate bisimulation
relation as in the relation in [2]. ◀

By modifying this example so as to allocate the references inside V2, we get Example 15
from [8]. In that case, V2 does not have free reference names. This makes it possible to use
up-to parallel composition between the encoding of V2 and V1 preventing multiples calls to
V2. This usage of up-to parallel composition is similar to the up-to separation technique
introduced in [8].

7 Related and Future Works

7.1 Related works

The equivalence in [8] is similar to nfb, for an extension of λref. It is also fully abstract
w.r.t. contextual equivalence. Up-to techniques for nfb are defined in [2], and used to prove
several equivalences between λref programs. We can redo essentially the same proofs in our
setting. Both works use techniques that are specific to nfb or its variant, and are arguably
less standard than the up-to techniques we exploit in the π-calculus. In particular, the up-to
separation from [8] is expressible using up-to context in the π-calculus.

A full abstraction result for PCF programs in AIπ is presented in [1], using a contextual
equivalence in a typed setting. The type system captures closely the behaviour of the
encoding of PCF terms, in the sense that any process whose type is the translation of a PCF
type is behaviourally equivalent to the encoding of a source term, and in particular cannot
be stateful. It seems difficult to find a labelled bisimilarity for this equivalence, and thus to
use proof techniques as in our paper.

Our encoding is based on the one of [3], which has been used to show a close connection
between operational game semantics and the π-calculus for call-by-value in [7]. Both works
focus on this stateless calculus to show the correspondence with Lassen trees.

The type system of Section 3 is inspired by evaluation stacks used to ensure the bracketed
condition in game semantics [9]. Game semantics can also be used to provide a fully abstract
model for RefML, which is a language similar to λref [12, 13]. By being more operational,
our approach is usable more directly to reason about λref programs. This is similar to
operational game semantics which are complete for recursion-free programs with integer
references [6].

ICALP 2022

130:18 Functions and References in the Pi-Calculus:Full Abstraction and Proof Techniques

7.2 Future works
The type system of [4] makes it possible to reason about references in a parallel setting. We
believe that its addition to our type system would allow us to extend our full abstraction
result to open references, i.e., references that can be returned by functions.

It would be interesting to see whether ≈div characterises a contextually-defined equivalence
in AIπ. In comparison, such a result holds for ≈wb [5]: this equivalence corresponds to a
typed barbed equivalence with a notion of typed barb to restrict the visibility of observables.
One lead would be limiting barbs to be only outputs on continuation names. This may work
only for the image of the encoding, but not for all typeable processes.

We would like to see whether the techniques we have developed can be exploited in other
languages. Idealized ALGOL has both functional and imperative aspects, so our techniques
may adapt to it. When extending λref with control operators [20], well-bracketing is not
required, so we can weaken the type system to simply ensure sequentiality. Because of the
links with game semantics, object-oriented languages [14] can be interesting too.

References
1 Martin Berger, Kohei Honda, and Nobuko Yoshida. Sequentiality and the pi-calculus. In Samson

Abramsky, editor, Typed Lambda Calculi and Applications, 5th International Conference, TLCA
2001, Proceedings, volume 2044 of Lecture Notes in Computer Science, pages 29–45. Springer,
2001. doi:10.1007/3-540-45413-6_7.

2 Dariusz Biernacki, Sergueï Lenglet, and Piotr Polesiuk. A complete normal-form bisimilarity
for state. In Mikolaj Bojanczyk and Alex Simpson, editors, Foundations of Software Science
and Computation Structures - 22nd International Conference, FOSSACS 2019, Held as Part
of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague,
Czech Republic, April 6-11, 2019, Proceedings, volume 11425 of Lecture Notes in Computer
Science, pages 98–114. Springer, 2019. doi:10.1007/978-3-030-17127-8_6.

3 Adrien Durier, Daniel Hirschkoff, and Davide Sangiorgi. Eager Functions as Processes (long
version). working paper or preprint, December 2021. URL: https://hal.archives-ouvertes.
fr/hal-03466150.

4 Daniel Hirschkoff, Enguerrand Prebet, and Davide Sangiorgi. On the representation of
references in the pi-calculus. In Igor Konnov and Laura Kovács, editors, 31st International
Conference on Concurrency Theory, CONCUR 2020, volume 171 of LIPIcs, pages 34:1–34:20.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.
34.

5 Daniel Hirschkoff, Enguerrand Prebet, and Davide Sangiorgi. On sequentiality and well-
bracketing in the π-calculus. In 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 - July 2, 2021, pages 1–13. IEEE, 2021. doi:
10.1109/LICS52264.2021.9470559.

6 Guilhem Jaber. Syteci: automating contextual equivalence for higher-order programs with
references. Proc. ACM Program. Lang., 4(POPL):59:1–59:28, 2020. doi:10.1145/3371127.

7 Guilhem Jaber and Davide Sangiorgi. Games, mobile processes, and functions. In 30th EACSL
Annual Conference on Computer Science Logic (CSL 2022)., Göttingen, Germany, February
2022. URL: https://hal.archives-ouvertes.fr/hal-03407123.

8 Vasileios Koutavas, Yu-Yang Lin, and Nikos Tzevelekos. From bounded checking to verification
of equivalence via symbolic up-to techniques. In Dana Fisman and Grigore Rosu, editors,
Tools and Algorithms for the Construction and Analysis of Systems - 28th International
Conference, TACAS 2022, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings, Part
II, volume 13244 of Lecture Notes in Computer Science, pages 178–195. Springer, 2022.
doi:10.1007/978-3-030-99527-0_10.

https://doi.org/10.1007/3-540-45413-6_7
https://doi.org/10.1007/978-3-030-17127-8_6
https://hal.archives-ouvertes.fr/hal-03466150
https://hal.archives-ouvertes.fr/hal-03466150
https://doi.org/10.4230/LIPIcs.CONCUR.2020.34
https://doi.org/10.4230/LIPIcs.CONCUR.2020.34
https://doi.org/10.1109/LICS52264.2021.9470559
https://doi.org/10.1109/LICS52264.2021.9470559
https://doi.org/10.1145/3371127
https://hal.archives-ouvertes.fr/hal-03407123
https://doi.org/10.1007/978-3-030-99527-0_10

E. Prebet 130:19

9 James Laird. A fully abstract trace semantics for general references. In Lars Arge, Christian
Cachin, Tomasz Jurdzinski, and Andrzej Tarlecki, editors, Automata, Languages and Pro-
gramming, 34th International Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007,
Proceedings, volume 4596 of Lecture Notes in Computer Science, pages 667–679. Springer,
2007. doi:10.1007/978-3-540-73420-8_58.

10 Jean-Marie Madiot, Damien Pous, and Davide Sangiorgi. Bisimulations up-to: Beyond first-
order transition systems. In Paolo Baldan and Daniele Gorla, editors, CONCUR 2014 -
Concurrency Theory - 25th International Conference, CONCUR 2014. Proceedings, volume
8704 of Lecture Notes in Computer Science, pages 93–108. Springer, 2014. doi:10.1007/
978-3-662-44584-6_8.

11 Robin Milner. Functions as processes. Math. Struct. Comput. Sci., 2(2):119–141, 1992.
doi:10.1017/S0960129500001407.

12 Andrzej S. Murawski and Nikos Tzevelekos. Game semantics for good general references. In
Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011,
June 21-24, 2011, Toronto, Ontario, Canada, pages 75–84. IEEE Computer Society, 2011.
doi:10.1109/LICS.2011.31.

13 Andrzej S. Murawski and Nikos Tzevelekos. Algorithmic games for full ground references.
Formal Methods Syst. Des., 52(3):277–314, 2018. doi:10.1007/s10703-017-0292-9.

14 Andrzej S. Murawski and Nikos Tzevelekos. Game Semantics for Interface Middleweight Java.
J. ACM, 68(1):4:1–4:51, 2021. doi:10.1145/3428676.

15 Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput.
Sci., 1(2):125–159, 1975. doi:10.1016/0304-3975(75)90017-1.

16 Damien Pous. Coinduction all the way up. In Martin Grohe, Eric Koskinen, and Natarajan
Shankar, editors, Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 307–316. ACM, 2016. doi:
10.1145/2933575.2934564.

17 Davide Sangiorgi. Locality and interleaving semantics in calculi for mobile processes. Theor.
Comput. Sci., 155(1):39–83, 1996. doi:10.1016/0304-3975(95)00020-8.

18 Davide Sangiorgi. Lazy functions and mobile processes. In Gordon D. Plotkin, Colin Stirling,
and Mads Tofte, editors, Proof, Language, and Interaction, Essays in Honour of Robin Milner,
pages 691–720. The MIT Press, 2000.

19 Davide Sangiorgi and David Walker. The Pi-Calculus - a theory of mobile processes. Cambridge
University Press, 2001.

20 Kristian Støvring and Søren B. Lassen. A complete, co-inductive syntactic theory of sequential
control and state. In Martin Hofmann and Matthias Felleisen, editors, Proceedings of the
34th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2007, Nice, France, January 17-19, 2007, pages 161–172. ACM, 2007. doi:10.1145/1190216.
1190244.

21 Bernardo Toninho and Nobuko Yoshida. On polymorphic sessions and functions: A tale
of two (fully abstract) encodings. ACM Trans. Program. Lang. Syst., 43(2):7:1–7:55, 2021.
doi:10.1145/3457884.

ICALP 2022

https://doi.org/10.1007/978-3-540-73420-8_58
https://doi.org/10.1007/978-3-662-44584-6_8
https://doi.org/10.1007/978-3-662-44584-6_8
https://doi.org/10.1017/S0960129500001407
https://doi.org/10.1109/LICS.2011.31
https://doi.org/10.1007/s10703-017-0292-9
https://doi.org/10.1145/3428676
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1145/2933575.2934564
https://doi.org/10.1016/0304-3975(95)00020-8
https://doi.org/10.1145/1190216.1190244
https://doi.org/10.1145/1190216.1190244
https://doi.org/10.1145/3457884

	1 Introduction
	2 Normal Form Bisimulation for a lambda-Calculus with References
	3 AIpi, the Asynchronous Internal pi-Calculus
	4 Encoding Terms and Values in AIpi
	5 A pi-Calculus Characterisation of Contextual Equivalence in {lambda^{{ref}}}
	6 Up-to Techniques for {~~_{div}^{#1}} in AIpi, and Applications
	6.1 A new up-to technique for AIpi: up-to body
	6.2 Examples

	7 Related and Future Works
	7.1 Related works
	7.2 Future works

