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Abstract
Leakage-resilient cryptography aims to protect cryptographic primitives from so-called “side channel
attacks” that exploit their physical implementation to learn their input or secret state. Starting
from the works of Ishai, Sahai and Wagner (CRYPTO‘03) and Micali and Reyzin (TCC‘04), most
works on leakage-resilient cryptography either focus on protecting general computations, such as
circuits or multiparty computation protocols, or on specific non-interactive primitives such as storage,
encryption and signatures. This work focuses on leakage-resilience for the middle ground, namely
for distributed and interactive cryptographic primitives.

Our main technical contribution is designing the first secret-sharing scheme that is equivocal,
resists adaptive probing of a constant fraction of bits from each share, while incurring only a constant
blowup in share size. Equivocation is a strong leakage-resilience guarantee, recently introduced by
Hazay et al. (ITC‘21). Our construction is obtained via a general compiler which we introduce,
that transforms any secret-sharing scheme into an equivocal scheme against adaptive leakage. An
attractive feature of our compiler is that it respects additive reconstruction, namely, if the original
scheme has additive reconstruction, then the transformed scheme has linear reconstruction.

We extend our compiler to a general paradigm for protecting distributed primitives against leakage,
and show its applicability to various primitives, including secret sharing, verifiable secret sharing,
function secret sharing, distributed encryption and signatures, and distributed zero-knowledge proofs.
For each of these primitives, our paradigm transforms any construction of the primitive into a scheme
that resists adaptive party corruptions, as well as adaptive probing leakage of a constant fraction of
bits in each share when the share is stored in memory (but not when it is used in computations).
Moreover, the transformation incurs only a constant blowup in the share size, and respects additive
reconstruction – an important feature for several of these primitives, such as function secret sharing
and distributed encryption.
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3:2 Protecting Distributed Primitives Against Leakage

1 Introduction

Starting with the works of Kocher et al. [65, 66], and more recently in works on Meltdown
and Spectre attacks [71, 64]), it has been demonstrated time and again that cryptographic
primitives are susceptible to side-channel attacks.

The goal of leakage-resilient cryptography is to protect against such attacks. The focus
of this work is on constructing lightweight leakage-resilient variants of central distributed
and interactive cryptographic primitives. We first survey the main results in the field.

There has been a long and successful line of works on protecting either general computations
(initiated by Ishai, Sahai and Wagner [60], and Micali and Reyzin [74]), or specific non-
interactive primitives such as storage (e.g., in [42, 32, 2]), signatures [20], and encryption
schemes [41, 2, 77, 39, 22, 24]. (We refer the interested reader to the excellent survey by
Kalai and Reyzin [62] for a discussion of works in the field.)

1.0.1 Previous works on leakage-resilience
Works protecting general computations from leakage constrain the permissible leakage in
various ways, either restricting the complexity class from which leakage functions can be
chosen [60, 46, 79, 76, 75, 3], or assuming leakage functions operate on disjoint sets of
wires of the circuit [50, 61, 51, 43, 33, 34, 52] (the so called “Only Computation Leaks”
– or OCL – model). Due to their generality, these works are usually complex, rely on
additional computational assumptions (such as public-key cryptography [50, 61, 52] or even
indistinguishability obfuscation [52]), or incur high (polynomial) overheads. There are also
works on leakage-resilient Multi-Party Computation (MPC) protocols [18], as well as works
on interactive protocols (such as MPC [10, 16, 11] and zero-knowledge proofs [49, 10]) that
achieve a weaker leakage-resilience guarantee known as leakage tolerance, which allows the
ideal-world adversary to obtain leakage on the inputs of the honest parties.

On the other extreme, there are leakage-resilient constructions of storage [42, 32, 2, 41,
23, 40]), signatures [20], and encryption schemes [41, 2, 77, 39, 22, 24]. While focusing on
these primitives admits simpler and more efficient constructions than in the general case,
these constructions are naturally more limited since they offer solutions for specific (and
non-interactive) tasks only, and do not readily extend to the distributed setting in which
multiple parties wish to jointly compute on their inputs in a leakage-resilient manner.

There are only a handful of works on the middle ground, namely on protecting distributed
(and interactive) primitives from leakage, despite the centrality of such primitives in designing
cryptographic protocols.1 Specifically, Boyle et al. [19] use randomness extractors to construct
coin-tossing and verifiable secret sharing secure against a single leakage query (i.e., non-
adaptive leakage), and [49, 10] design leakage-tolerant zero-knowledge proofs (as noted above,
leakage tolerance is a weaker notion than leakage-resilience).

1.0.2 Leakage-resilient secret sharing
Unlike other distributed primitives, the leakage-resilient notion of secret sharing – an im-
portant cryptographic primitive with various applications in different areas of cryptography –
has received extensive attention from the community in recent years [44, 35, 53, 54, 8, 81, 4,

1 We note that one could protect such primitives from leakage using works protecting general computations,
or by employing generic leakage-resilient MPC protocols. However, as discussed above these are complex,
and either incur high costs or require additional computational assumptions.
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67, 1, 29, 69, 72, 73, 82, 28]. Focusing on secret sharing, which only protects information (as
opposed to protecting computation, as in the works on general leakage-resilient computation
discussed above) allows to obtain simpler and more efficient constructions.

Works on Leakage-Resilient Secret Sharing Schemes (LR-SSSs) can be roughly divided
into two categories. The first category, initiated by [8] (though some results appeared already
in earlier works, e.g., [12]), analyzes the leakage-resilience properties of existing secret-sharing
schemes. They show that linear secret sharing schemes2 resist non-adaptive local leakage,
namely the adversary can make a single leakage query, which returns few leakage bits
computed on each share independently.

Proving leakage-resilience of existing primitives has several advantages. First, applications
can still exploit specific design features or additional properties, such as additivity or linearity
of reconstruction (which are very useful, as discussed in Section 2 below). Moreover, classic
cryptographic primitives are usually more efficient than special-purpose leakage-resilient
schemes. However, restricting oneself to existing primitives has a major disadvantage: we are
restricted by the leakage-resilience properties of a scheme, which was not designed with the
goal of protecting against leakage. In some cases, it is unknown whether leakage resilience
can be enhanced (e.g., to allow adaptive leakage in which the adversary makes several
leakage queries, each depending on the answers to previous queries). There are also inherent
limitations to the leakage-resilience of some schemes, in terms of the leakage bound and
reconstruction threshold (see Section A). For example, Shamir’s secret sharing scheme over
fields of characteristic 2 does not resist leakage of even a single bit from each share [55].

These limitations of existing secret sharing schemes have motivated the second category of
LR-SSSs which focuses on designing new schemes – thus offering the possibility to overcome
the inherent limitations of existing schemes. The goal of this line of works is to resist
leakage from a wide range of leakage functions and arbitrary thresholds [1, 81, 67, 29, 69, 28].
The advantage of designing new schemes is clear: we can (potentially) protect against a
wide range of leakage classes, and in particular ones against which classic secret sharing
schemes are insecure, such as adaptive leakage queries [67, 29, 69, 28], or global leakage
(for restricted classes of permissible leakage functions) [12, 69]. Unfortunately, the stronger
leakage-resilience guarantee does not come without a price: these constructions are typically
complex [67, 29, 69, 28]; some works are considerably less efficient than standard (non-LR)
schemes [53, 54, 29]; and most (if not all) works do not maintain the design benefits of classic
constructions (such as linear reconstruction) and thus cannot be used in many applications
of standard secret sharing [44, 35, 53, 54, 1, 81, 4, 67, 29, 69, 28]. Some of these works
describe a general compiler that transforms any secret sharing schem into a leakage-resilient
one [81, 1, 29], while others describe specially-tailored constructions [53, 67, 69, 28].

The literature on LR-SSSs can be viewed as studying two extremes: either focusing on
existing schemes and analyzing their leakage-resilience guarantees, or alternatively pushing
leakage-resilience “to the limit”, mostly by designing new specialized (and often also complex
and significantly less efficient) schemes.3 But what can we obtain by only slightly modifying
existing schemes? In particular,

Can we obtain LR-SSSs that surpass the leakage-resilience of classic schemes while
maintaining their structural features?

2 Roughly, in a linear secret sharing over a finite field each share is a linear combination of the secret and
random field elements.

3 As noted above, the works of [81, 1, 29] construct general compilers. However, [81, 1] resists only
non-adaptive leakage and the construction of [29] has low rate.
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More generally, we study the leakage-resilience of distributed cryptographic primitives such
as Verifiable Secret Sharing (VSS), Function Secret Sharing (FSS), Threshold Encryption
(TES), threshold signatures, and distributed Zero-Knowledge (dZK) proofs, asking the
following:

Do there exist simple leakage-resilient variants of distributed cryptographic primitives such
as VSS, FSS, TES, threshold signatures, and dZK?

We focus on a setting in which the adversary can maliciously and adaptively corrupt parties
(i.e., the adversary does not need to commit ahead of time to the set of corrupted parties).
Similar to the case of secret sharing, our goal is to devise simple schemes that preserve the
main design features of existing (non-LR) schemes. To the best of our knowledge, there are
no leakage-resilient constructions of FSS, TES, distributed signatures, and dZK proofs, even
disregarding the desiderata of simple schemes. Existing leakage-resilient VSS schemes [19] are
only secure against static corruptions (i.e., when the set of corrupted parties is determined
at the onset of the computation), and employ randomness extractors that do not preserve
linearity, which – as explained below – is one of our main goals in this work. (See Section A
for a detailed discussion of the VSS scheme of [19], and a comparison with our results.)

Considering leakage-resilience in the more general context of distributed primitives also
helps in identifying the important structural features of existing schemes which we should
strive to preserve. For example, applications of FSS require linear sharing (namely, that the
reconstruction procedure is linear), and applications of TES in MPC require that parties
hold additive shares of a secret key.4 Thus, in this work we focus on designing leakage-
resilient secret sharing schemes – and more generally, distributed primitives – with linear
reconstruction.

1.0.3 Our leakage model: adaptive probing-resilience for data at rest
We focus on protecting cryptographic primitives against local probing leakage. We provide
information-theoretic security against adversaries that can adaptively probe the shares, as
well as corrupt any unauthorized set (i.e., a subset of parties such that their collective shares
reveal nothing about the shared secret).5 Our focus on probing resilience stems from our
goal of preserving linear reconstruction, which implies we cannot hope to protect against
leakage classes that are significantly more general than probing.

For distributed primitives beyond secret sharing, we focus on protecting data at rest.
That is, we protect the shares from leakage throughout the lifetime of the process, except
when they are directly computed on. Our leakage model is related to several leakage models
(in particular, that of [8]), and can be seen as a combination of the leakage model of [60]
that restricts the function class from which leakage functions can be chosen, and the “Only
Computation Leaks” (OCL) model of [74] which assumes that different memory components
leak separately. (As noted in Section 1.1 below, our constructions actually achieve a stronger
notion known as OCL+ [9].)

4 For example, in the TES based on Diffie-Helman, parties hold public-key shares of the form gsk1 , . . . , gskm ,
where g is a public group generator, and sk1, . . . , skm are the secret-key shares. In this case, the public
key is g

∑
i

ski and the secret key sk =
∑

i
ski is unknown to any party. See the full version [58] for

further details.
5 For primitives with computational security (such as FSS and TES), we provide the best possible security,

namely computational security for party corruptions, and information-theoretic for leakage. See the full
version [58] for further details on the security definition.
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Our focus on protecting data at rest is motivated by many application scenarios in which
following a short sharing phase – in which one party locally generates and distributes shares
to the other parties – the shares are stored in memory for extended time periods, during
which the adversary can adaptively leak on them. Since leakage may accumulate over time,
and the adversary might be able to infiltrate the devices of certain parties (in effect making
them – passively or actively – corrupted), it is important to incorporate party corruptions
into the security model. We expect the periods of time during which shares are computed
on – which involve fast local computations, or fast interactive protocols requiring all parties
to be online simultaneously – to be much shorter than the lifetime of the system (indeed,
state-of-the-art practical secure multi-party computation protocols last milliseconds [83]).
Therefore, an adversary would not be able to launch a meaningful leakage attack during
these short computation phases.

Example: Function Secret Sharing (FSS). We demonstrate our leakage model and its
motivation through the example of FSS. FSS consists of a generation phase in which a function
f is shared between multiple parties by generating function keys; and a local evaluation
phase – whose duration we expect to typically be marginal compared to the lifetime of the
system – in which each party can locally compute from its function key a share of the output
f (x), for any input x. These output shares form an additive (or, more generally, linear)
secret sharing of f (x). During this process, we protect the function keys and output shares
from leakage, except during the evaluation phase in which the output shares are (locally)
computed from the function keys. (We stress that once the evaluation phase terminates,
function keys and output shares are again protected from leakage.)

In FSS applications, the function and output shares are often stored in memory for
extended time periods, thus naturally necessitating leakage-resilience for data at rest. Indeed,
in one FSS application, statistics (such as website traffic statistics [17]) – in the form of
output shares – are accumulated over time. In particular, output shares are stored in memory
for long periods of time. Another application is “FSS as a service”, namely when the function
keys are distributed between multiple servers (each server holds a single function key), and
users can ask the servers to evaluate the function on inputs of their choice. More specifically,
a data-owner generates function keys k1, . . . , km for a secret function f , and stores ki on
server i. Users can then ask the servers for the value f (x) by sending x to each server i, who
locally evaluates its function key ki on x (using the FSS-evaluation procedure), and sends
the output share yi back to the user, who can then recover f (x) from the output shares
y1 . . . , ym. Thus, the user learns f (x) but does not learn f , and none of the servers learn f

or f (x). In this scenario, function keys may be stored on the servers indefinitely, and output
shares yi might likewise be stored for extended time periods, e.g., for backup purposes, so it
is important to protect both from leakage.

Our leakage model is further motivated by other situations in which shares are stored in
memory for a long time, e.g., when using Beaver triples [7] that are generated in an offline
phase and later consumed during the execution of an MPC protocol. We describe further
applications (e.g., for TES) in the full version [58], and note that in some cases (e.g., for
certain TES constructions) we are able to protect the entire process – including computation
– from leakage.

1.0.4 Beyond leakage-resilience
In the context of secret sharing, we also explore a stronger leakage-resilience guarantee
known as equivocation, recently introduced by [57] and employed towards constructing zero-
knowledge proof systems. Roughly, equivocation guarantees that there exists an efficient
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3:6 Protecting Distributed Primitives Against Leakage

simulator that can answer adaptive leakage queries, as well as adaptively simulate the views
of corrupted parties. Moreover, at some point during the simulation, the simulator is given
an arbitrary secret, and is then able to generate an entire secret sharing of this secret which
is consistent with the leakage and the views of corrupted parties. That is, the leakage can be
efficiently “explained” as leakage on the shares of any arbitrary secret. More specifically, we
consider semi-honest adversaries that can adaptively obtain the shares of any unauthorized
set, as well as adaptively probe a constant fraction of bits from the shares of every other
party.

Unfortunately, the existing equivocal SSS [57] is a degenerate one-party scheme,6 so the
adversary cannot obtain the share in full. Therefore, we ask:

Can we construct multiparty equivocal SSSs secure against probing leakage?

1.1 Our Results
We construct the first multiparty equivocal secret sharing scheme. Our scheme can withstand
any number of corrupted parties, as well as leakage of a constant fraction of bits from each of
the other shares. Our scheme is also tamper-resilient against arbitrary tampering of every
share that modifies a constant fraction of bits (below the error-correction bound) in the
share. We then extend our technique to obtain leakage-resilience and tampering-resilience for
other distributed primitives.

1.1.1 Equivocal secret-sharing
We design a compiler that transforms standard (possibly non-leakage-resilient) SSSs into
LR-SSSs with the following features. First, it obtains the stronger guarantee of equivocation.
Second, it respects additive reconstruction, namely if the underlying SSS has additive
reconstruction, then the resultant LR-SSS will have linear reconstruction. Third, our
compiler guarantees leakage-resilience against any access structure, in the following sense.
Given any SSS for an access structure Acc, the resultant LR-SSS is leakage-resilient against
an adversary obtaining the shares of an unauthorized set T /∈ Acc, as well as the answers to
adaptive probing queries that can leak a constant fraction of bits from each share. Finally,
the resultant scheme is also tampering-resilient in the following sense: the correct secret will
be reconstructed, even if an external adversary can arbitrarily modify a constant fraction
of bits in each share. In fact, we obtain the stronger guarantee that the original share can
be efficiently recovered from the modified share. (Thus, necessarily, we can only handle
tampering of a fraction of bits which is below the error-correction bound. See Section A
for a comparison with other tampering-resilient notions.) Our compiler is also conceptually
simple: roughly, it protects the shares by encoding them using a linear code with equivocation
properties (known as an RPE [30, 6, 31, 5], see Section 2).

Our construction is summarized in the following theorem, where (Acc, ℓ)-equivocation
means the adversary can adaptively obtain the shares of any unauthorized set T /∈ Acc, as
well as adaptively probe ℓ bits from every other share, and τ -tampering-resilience guarantees
that the correct secret will be reconstructed even if an external adversary can arbitrarily
modify τ bits in every share. (See the full version [58] for the formal statement.)

6 In such schemes there is a single party and only one share. Secrecy holds under the supported leakage
class, but not if the share is revealed in full. This is a degenerate scheme since it is not useful as a
secret-sharing mechanism, but has application to, e.g., construction of zero-knowledge probabilistic
proof systems.
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▶ Theorem 1 (Equivocal SSS from standard SSS – informal). Let SSS be an m-party secret
sharing scheme for secrets in S and an access structure Acc, with shares of length N .
Then there exists an ℓ = Ω (N) for which there exists an m-party secret sharing scheme
SSS′ for secrets in S and access structure Acc, with ℓ-tampering-resilience, and (Acc, ℓ)-
equivocation. Moreover, the secret shares have length O (N). Furthermore, if SSS has additive
reconstruction, then SSS′ has linear reconstruction.

In Table 1 (Page 12) we compare our equivocal SSS with existing LR-SSSs. Applying
Theorem 1 to Shamir’s secret sharing, we obtain the following (see the full version [58] for
the formal statement).

▶ Corollary 2 (Equivocal SSS – informal). There exists an ℓ ∈ N such that for any t < m ∈ N
there exists an m-party (Acc, ℓ)-equivocal and ℓ-tampering-resilient secret sharing scheme,
where Acc consists of all subsets of [m] of size more than t. Moreover, ℓ = Ω (N), where N

is the share length.

Corollary 2 demonstrates that by applying our transformation to Shamir’s secret sharing
scheme, we can circumvent the impossibility result of [55] on the leakage-insecurity of Shamir’s
scheme over fields of characteristic 2, as well as the lower bounds of [8] and [78] (which are
discussed in Section A), while still preserving the main features of Shamir’s scheme.

1.1.2 Leakage-resilient distributed primitives
We extend our compiler to a general paradigm for securing cryptographic primitives against
adaptive probing leakage, and show its applicability to a wide range of primitives in which a
secret is distributed between multiple parties. Specifically, we obtain leakage-resilient variants
of verifiable secret sharing, function secret sharing, threshold encryption and signatures, and
distributed zero-knowledge proofs. In all our constructions, the blowup in the share size is
constant (compared to the original, non-leakage-resilient scheme), and the resultant scheme
is secure against adaptive probing of a constant fraction of bits from each share separately
even if the adversary adaptively corrupts parties. (We note that in certain primitives – such
as TES and FSS – each party may store several shares of different secrets, in which case we
assume that each share leaks separately. As discussed above, this is similar to the restriction
on leakage in the OCL model. However, our constructions satisfy a stronger guarantee known
as OCL+ [9] which allows to alternately leak from the shares, where each leakage query
might depend on the responses to previous queries. In particular, the leakage on different
shares is not necessarily independent.) All our constructions are also tamper-resilient against
tampering of a constant fraction of bits in each share. (See the full version [58] for the
constructions and formal theorem statements.)

We note that defining leakage-resilience for these primitives is highly non-trivial. This
is especially true for computational primitives such as TES and FSS, in which we need to
combine the computational security guarantee for fully-revealed shares, with an information-
theoretic guarantee for leakage on the other shares.7 Even for information-theoretic objects
such as dZK proofs, we encounter subtleties since standard definitions are only statically-
secure. As an additional contribution, we generalize these definitions to the adaptive setting,

7 We note that similar security models – with information-theoretic security against leakage, and com-
putational security for the underlying primitive itself – have been considered in the leakage resilience
literature, e.g., for public-key primitives in the bounded retrieval model [42, 32]. However, due to the
distributed nature of the primitives we consider, our security definitions are more intricate than in these
aforementioned works.

ITC 2022



3:8 Protecting Distributed Primitives Against Leakage

and prove that existing protocols (e.g., a protocol of [13]) are adaptively-secure, a result
which may be of independent interest. See Section 2, and the formal definitions in the full
version [58], for a discussion of the subtleties of the definitions.

1.2 Applications
In this section we describe several applications of equivocal SSSs.

1.2.1 Deniable Secret Sharing Schemes
Deniability in the context of encryption. The notion of deniable encryption, introduced by
Canetti et al. [26], ensures private communication in the presence of attackers that are also
provided with all the private information: the plaintext, the random bits used for encryption,
and any secret keys the parties have. Specifically, deniable encryption introduces an additional
efficient “faking” algorithm that is not part of the standard secure communication definitions.
This new algorithm generates “fake” internal states for the participating parties, that are
indistinguishable from the real states, and are consistent with the (public) communication
transcript and any plaintext of the parties’ choice. In addition to being an interesting object,
deniable encryption has important applications, the most immediate one being preventing
vote-buying in electronic voting schemes. Deniability is a very strong security guarantee.
Specifically, deniable encryption schemes require stronger hardness assumptions than classic
encryption schemes [80, 27].8

Deniable secret-sharing. The notion of deniability can be highly useful in applications
using secret sharing, where a dealer distributes the shares of a sensitive database – e.g., a
clinic sharing a database containing the medical records of its patients – amongst a set of
parties or servers.9 Clearly, if the attacker obtains sufficiently many shares (specifically, of an
authorized set), it can fully recover the secret. On the other hand, obtaining only the shares
of an unauthorized set implies deniability since the secret is information-theoretically hidden.
(We stress, however, that even in this case the “faking” algorithm may not be efficient.)
Deniable secret sharing explores an intermediate scenario where the adversary holds the
shares of some unauthorized set, and additionally obtains partial knowledge of the honest
parties’ shares. This model is motivated by the fact that an attacker may attack servers in
various ways, in some cases succeeding in extracting the entire share, while in other cases it
may only be able to gather (through physical observations) some leakage on the share.

Formally defining deniable secret sharing requires some care, in particular in deciding
what information is available to the faking algorithm. In the context of public-key deniable
encryption, the faking algorithm knows the ciphertext it is trying to “explain”, so a natural
adaptation to secret sharing is to give the faking algorithm the secret shares it is trying to
equivocate. This, however, is useless – it should be intuitively clear that the faking algorithm
cannot successfully explain the leakage without knowing which parts of the secret shares had
leaked. Therefore, we define deniability by giving the faking algorithm the leakage, rather than
the entire secret sharing. Specifically, the faking algorithm is given the leakage queries and
responses (but not the secret shares in their entirety), and using them “explains” the sharing

8 We note that information-theoretic symmetric-key encryption schemes are easily deniable as every
ciphertext can be explained with respect to every plaintext. However, symmetric-key encryption requires
the parties to agree on the secret key, i.e., a-priori agree on common randomness, and it is unclear how
to do so in a deniable way.

9 We assume no a-priori common randomness between the dealer and the parties.
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as a sharing of an arbitrary (possibly different) secret, by providing “fake” randomness for the
sharing algorithm. This notion of “public leakage” arises naturally in many settings, since
oftentimes leaked data becomes public (e.g., via social or other forms of media). For example,
in the application scenario described above where a clinic A shares its database of patient
medical records, this database might contain medical records of celebrities. A competing
clinic B might be able to obtain leakage on the shares, allowing it to learn the identity and
medical history of some celebrity patients. Clinic B might publish this information with the
hopes of ruining the reputation of clinic A. Deniability allows clinic A to give an alternative
explanation for the shares – in particular, replacing the identities of all celebrity patients –
and publish it to dismiss the leaked information.

Our deniable secret-sharing scheme. We design deniable secret sharing schemes based
on equivocal SSSs, where the faking algorithm emulates the equivocal SSS simulator. We
note that to equivocate the shares, the equivocal SSS simulator needs to know the leakage
queries and responses, and these are indeed available to the faking algorithm. Using the
equivocated secret shares, the dealer can convincingly renounce the original secret, where
the equivocated shares serve as a “proof” that validates an arbitrary secret, even given the
adversary’s view. Denying the secret provides a strong guarantee against coercing the dealer,
especially since our focus is on efficient deniability. We further elaborate on this application
in the full version [58].

1.2.2 MPC Resilient to Leakage of “Data at Rest”
Equivocal SSSs are useful towards designing Multiparty Computation (MPC) protocols
which guarantee leakage-resilience of private inputs (alternatively, secret local states) when
they are stored in memory. That is, MPC with leakage-resilience in the same “data at rest”
leakage model described above. More specifically, we consider protocols in which following a
leak-free Sharing phase, in which each party locally secret-shares its input (either sending
them to other parties, or storing them locally until they will be communicated at a later
point), the shares are stored in memory until a later leak-free Computation phase, in which
parties run an MPC protocol on the secret shares to compute the outcome. We stress that
the sharing phase is function oblivious, namely it can be executed before parties even know
which function they wish to jointly compute on their inputs.

Similar to the other primitives considered in this work, this model is motivated by realistic
application scenarios in which the (short) computation phase might be executed well after the
(short) sharing phase. In particular, the leak-free assumption for the sharing phase is justified
by situations in which parties obtain their secret inputs (e.g., bank account balance when the
input is for the Millionaire’s problem) while in their own homes, i.e., in locations which are
less vulnerable to side-channel attacks; or because once they are given their private inputs,
parties are likely to quickly “protect” them by performing a fast local computation (i.e.,
sharing, similar to how one would protect a sensitive word document by adding a password).
The leak-free assumption for the computation phase is likewise justified because interactive
protocols that require all parties to be online at the same time, and for the duration of the
execution, are expected to be fast.

However, between the sharing and computation phases, the secret shares are stored in the
internal state of the parties, e.g., on their laptops. Thus, the shares might be subjected to
various side channel attacks (as laptop would most likely be carried around by their owners),
especially since the computation phase might be executed long after the sharing phase had
ended. Moreover, during this time leakage on one party’s state might accumulate, up to the
point that its internal state might leak entirely. Alternatively, an adversary might be able to
infiltrate the party’s laptop, thus obtaining its entire internal state.

ITC 2022



3:10 Protecting Distributed Primitives Against Leakage

Equivocal SSSs naturally give a leakage-resilient solution for MPC protocols in this
leakage model, against adaptive leakage, by having parties share their inputs using an
equivocal SSS. Specifically, leakage on the shares can be adaptively simulated, where if the
actual amount of leakage on a party passes some a-priori bound then we consider the party
as being (semi-honestly) “corrupted”, which is supported by the equivocal SSS (that allows
for adaptively leaking full shares). If, at the onset of the computation phase, a party is
corrupted, we can equivocate the shares consistently with its actual input. (We note that
if the MPC protocol run during the computation phase is adaptively-secure, then we can
also handle adaptive corruptions during the computation phase.) Thus, equivocal SSSs can
be used to protect MPC protocols from adaptive leakage and adaptive semi-honest party
corruptions. We note that LR-SSSs which are not equivocal provides no guarantees against
adaptive party corruptions (and sometimes not even against adaptive leakage queries).

1.3 Future Directions and Open Questions
We initiate the study of designing leakage-resilient cryptographic primitives by applying a
light-weight procedure which respects additive reconstruction. We demonstrate the usefulness
of our paradigm by applying it to various cryptographic primitives.

Our work still leaves several interesting research directions to explore. First, it would be
interesting to explore which other primitives could be protected from probing leakage using
our paradigm. Second, our constructions “respect” additive reconstruction, in the sense that
applications relying on additive reconstruction can use our leakage-resilient primitives. As
discussed above, this is helpful in the context of FSS and TES. Extending our paradigm
to respect general linear reconstruction procedures will allow using our leakage-resilient
constructions in an even wider array of applications. Moreover, devising an equivocal SSS
with a multiplicity property (which enables multiplying shared secrets by operating locally
on the shares, and then executing some simple “correction” protocol), would yield leakage-
resilient MPC which resists leakage even during computation, thus extending our results
beyond the “data at rest” model. Finally, it is natural to ask whether our results extend to
more general leakage classes.

2 Techniques

In this section we describe our paradigm and the resultant constructions in more detail. We
start by describing our compiler for SSSs.

Recall from Section 1.1 that our goal is to obtain simple SSSs with linear reconstruction
and probing resilience against an adaptive adversary that can probe a constant fraction
of bits from each share. More generally, we wish to design a general compiler from SSSs
to LR-SSSs which preserves efficiency and respects additive reconstruction (namely, if the
original scheme has additive reconstruction then the resultant LR scheme will have linear
reconstruction). A natural starting point would be to use some sort of encoding, similar
to how leakage-resilient compilers for general computations first encode the input for the
computation. This encoding can either apply to the vector of secret shares, or to each share
separately. To obtain leakage-resilience, it should posses some leakage-resilience guarantees.
Moreover, to achieve linear reconstruction, this encoding should have linear reconstruction
(i.e., be a linear code). However, to obtain equivocation, as needed by our main application
of equivocal SSSs, the linear code should posses an additional equivocation property which,
roughly, guarantees that given the leakage on the encoding of any message msg, and given
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any arbitrary message msg′, the leakage can be “explained” in retrospect as the leakage
on an encoding of msg′. We note that such leakage-resilience and equivocation properties
necessitate randomized encoding. Fortunately, such encodings exist.

2.0.1 Main building block: Reconstructible Probabilistic Encodings
(RPEs)

RPEs [30, 6, 31, 5] are, roughly, linear codes with an equivocation property. More specifically,
an RPE consists of a randomized encoding procedure Encode, a deterministic linear decoder
Decode, and a randomized resampler algorithm Rec, where Encode (msg) outputs a random
codeword from a set of possible codewords for msg. (For example, this set can consist of all
codewords obtained by applying the generator matrix of a linear code to msg◦s, namely to the
string obtained by concatenating an arbitrary suffix s to msg.) An RPE satisfies the following
properties. First, it has error correction from a constant fraction of errors. Second, it has
probing resilience for a constant fraction of probed bits, in the sense that for every msg, msg′,
the leakage on random encodings of msg, msg′ are statistically close. Finally, it is equivocal
in the sense that for any message msg, any subset I of probed bits leak from a random
encoding c ← Encode (msg) of msg, and any message msg′, Rec (I, leak, msg′) outputs an
encoding c′ of msg′ which is statistically close to an encoding of msg′ that is random subject
to being consistent with the leakage.10 We note that RPEs resist non-adaptive leakage (also
in the equivocation property), but since all properties are statistical, this naturally extends
to resisting adaptive leakage, as we show in the full version [58].

2.1 Equivocation from RPEs and Standard Secret Sharing
There is a natural connection between RPEs and equivocal secret sharing, since both offer
a method of encoding a message in a way that can later be equivocated. This connection
was recently used in [57], who used the equivocation of RPEs to construct zero-knowledge
probabilistic proof systems. More specifically, Hazay et al. [57] interpreted RPEs as a
degenerate form of equivocal secret sharing, in which there is a single share, which the
adversary can probe. This, of course, does not provide any meaningful way of distributing
(i.e., sharing) the data, which is the main purpose of a SSS (but it does give a meaningful
notion of equivocal encoding of the data). Moreover, equivocal SSSs can provide a much
stronger LR guarantee – the secret remains protected even if an (unauthorized) subset of
shares are leaked in full. In particular, equivocal SSSs can potentially obtain a much larger
leakage rate than RPEs.

Our main observation in this work is that instead of interpreting RPEs as equivocal SSSs,
one can use them to transform essentially any standard SSS into an equivocal one. The
transformation is conceptually simple: to share a secret, first share it using the underlying
SSS, then encode each share separately using the RPE. To reconstruct the secret, first
decode each RPE encoding, then recover the secret using the reconstruction procedure of the
underlying SSS. The resultant scheme resists adaptive probing leakage, since leakage can be
simulated by answering queries using encodings of 0 (or any arbitrary message). Moreover, a

10We note that RPEs are usually defined with perfect security, in the sense that leakage-resilience
guarantees that the bits leaked from a random encoding of any message msg are uniformly distributed,
and the output of Rec is distributed identically to a random encoding of msg′ subject to being consistent
with the leakage. We chose to present a relaxed version of RPEs because it suffices for our needs, and
allows us to quantify exactly how errors in the RPE carry over to the resultant constructions.
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combination of the equivocation of the RPE and the secrecy of the underlying SSS guarantees
that the resultant SSS is equivocal. Indeed, a simulator can initially answer leakage queries
according to an honestly-generated sharing of 0. At some point, the simulator is given an
arbitrary secret msg′. At this point, secrecy of the underlying SSS guarantees the simulator
can generate a secret sharing of msg′ which is consistent with the subset of shares that were
revealed in full to the adversary. Then, the resampler algorithm of the RPE can be used to
equivocate encodings for the remaining shares, consistently with the leakage already provided
on them. (We note that the actual analysis is more complex; see the full version [58] for
details.) Finally, tampering-resilience follows from the error-correction of the RPE.

The equivocal SSS described in Corollary 2 is obtained by applying our compiler to
Shamir’s secret sharing and the RPE of [36, 37]. More specifically, Decatur et al. [36, 37]
construct a linear code with constant rate, and leakage resilience against a constant fraction
of leaked bits. Linearity of the code implies it is also equivocal due to its large dual distance
(see [5, Lemma 2]).

Table 1 compares our equivocal SSS construction to known LR-SSSs. We elaborate on
these schemes further in Section A.

Table 1 Comparison of Existing Leakage-Resilient Secret Sharing Schemes.
Here, “Equiv.” denotes whether the scheme is equivocal, “adaptive queries” states whether the scheme
is secure against adaptive leakage queries, “linear recon.” describes whether the reconstruction
procedure of the SSS is linear, m is the number of parties, and the “restricted joint” leakage model
refers to the joint leakage model in which each share can be queried by a single leakage query. The
first four rows construct specific LR-SS schemes while the last three rows give a general compiler
that transforms any SS to a LR one.

Scheme Equiv. Adaptive Linear Rate Leakage Leakage
Queries Recon. Rate Model

Sp
ec

ia
liz

ed

[53, 54] No No No O( 1
m

) O( 1
m

) Local
[8] No No Yes O(1) O(1) Local
[67] No Yes No O( 1

poly(m) ) O( 1
poly(m) ) Joint

[28] No Yes No O(1) O(1) Restricted
Joint

G
en

er
al

[81] No No No O(1) O(1) Local
[29] No Yes No O( 1

poly(m) ) O( 1
poly(m) ) Joint

This work Yes Yes Yes O(1) O(1) Probing

2.2 Share-then-Encode: A General Paradigm for Leakage- and
Tampering-Resilience

We show that our technique is applicable to a wide range of distributed cryptographic
primitives, constructing leakage-resilient primitives against probing leakage of data at rest,
that are also tampering-resilient. For the primitives discussed below, we identify distinct
sharing and reconstruction procedures, and protect the shares by RPE-encoding each share
separately. These primitives include protocols and procedures during which the shares are
computed on. To execute these protocols/procedures, parties first RPE-decode their share,
perform the computation on it, RPE-encode the result, and finally erase the intermediate
values of the computation. We note that several of the applications described below crucially
rely on the linear reconstruction property of the underlying primitive.
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In all our constructions, the blowup in share size (compared to the underlying non-
leakage-resilient scheme) is constant, and the resultant scheme resists adaptive probing and
tampering of a constant fraction of bits from each share separately. We stress that security
is maintained even if the adversary simultaneously corrupts parties and obtains leakage on
the shares of the honest parties. By default, we allow for adaptive corruptions as well as
adaptive leakage queries. With the exception of verifiable secret sharing, the primitives we
study below are usually defined with static security. Thus, to obtain security in the presence
of leakage with adaptive party corruptions, we need to first define adaptive security for these
primitives (without leakage), which we then extend to adaptive security in the presence of
leakage. As we explain below, defining adaptive leakage-resilience is quite subtle, especially
for primitives (such as threshold encryption and function secret sharing) with computational
security. We note that if one is willing to settle for security against adaptive leakage queries
but with static party corruptions, then we can simplify our definitions to only handle static
corruptions (and rely on the standard static-security of the underlying primitives), however
defining security in the presence of leakage remains quite intricate also in this case.

2.2.0.1 Verifiable Secret Sharing (VSS)

A VSS scheme strengthens standard SSSs to protect against a scenario in which the entity
generating the shares (called the “dealer”) is corrupted. More specifically, a VSS scheme
consists of sharing and reconstruction procedures as in standard SSSs, but is also associated
with a Verification protocol in which parties verify their shares are consistent.11 VSS
has secrecy and correctness as in standard secret sharing, and guarantees an additional
commitment property, stating that even if a small subset of corrupted parties collude with
a corrupted dealer, then following the verification phase the dealer is committed to some
secret which will be reconstructed, regardless of the behavior of the corrupted parties during
reconstruction.

We define leakage-resilient VSS as VSS schemes with a stronger secrecy guarantee that
holds even in the presence of leakage on the shares. This is formalized through a distinguishing
game between the adversary and a challenger, in which the adversary can adaptively corrupt
parties throughout the sharing and verification phases (as in standard VSS), but once
verification ends, it can additionally adaptively probe a constant fraction of bits from the
share of every honest party. (Our construction also generalizes to protect against leakage
between the sharing and verification phases.) We require that the adversary obtains only a
negligible advantage in distinguishing between any two secrets shared by the dealer.

We obtain LR-VSS similarly to our equivocal SSS described above. Roughly, we transform
a standard VSS scheme VSS into a Leakage-Resilient VSS (LR-VSS) VSS′ by having the
dealer generate the shares as in VSS, and then the parties verify the shares by running the
verification protocol of VSS. Once verification ends, each party RPE-encodes its updated
share and erases all information except for this (encoded) updated share.

Given that VSS is oftentimes used as a building block in constructing general multiparty
computation protocols, as well as specific distributed tasks (e.g., coin tossing), we believe
that our LR-VSS could be useful towards constructing future leakage-resilient protocols.

11 We note that standard VSS schemes consider only a sharing protocol (which includes the verification
protocol) and a reconstruction procedure. We chose to separate the sharing algorithm and the verification
protocol, since this enables us to more clearly capture the leakage-resilience guarantees of our VSS
protocols.
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2.2.0.2 Distributed Zero-Knowledge (dZK) Proofs

Distributed ZK proofs [14] generalize the notion of standard ZK proofs to a setting in
which the prover interacts with a set of verifiers, where the input statement to be verified
is distributed between the verifiers, and the prover holds the input statement and the
corresponding witness (in cases when such a witness exists). throughout the protocol
execution, the prover distributes proof shares between the verifiers, which the verifiers then
use to determine their output (either accept or reject). Our paradigm can be used to protect
the proof shares, except when they are directly computed on. We note that in existing dZK
proofs (e.g., [14]) there are extended time periods during which parties perform computations
that are independent of the proof shares (e.g., running a coin-tossing sub-protocol). During
such times, our paradigm protects the proof shares from leakage.

More specifically, we define leakage-resilient dZK by comparing a real-world execution,
in which the adversary A interacts with a challenger C, to an ideal execution in which A
interacts with a simulator Sim. The adversary is allowed to adaptively corrupt verifiers, as
well as adaptively probe proof shares of honest verifiers. In both executions, the challenger
and simulator emulate the honest parties, whereas A assumes full control of the corrupted
parties. We note that the standard security notion for dZK proofs is for static corruptions.
Our constructions can be instantiated with such statically-secure dZK proofs, in which case
LR holds for static party corruptions and adaptive leakage queries. To obtain fully-adaptive
LR-dZK proofs – in which the adversary can also adaptively corrupted verifiers – in the full
version [58] we extend the ZK definition of dZK to adaptive corruptions, and prove that a
protocol of [13] is adaptively-secure. This could be of independent interest.

The high-level idea of our dZK proofs is similar to the VSS scheme described above: we
employ a standard dZK proof Π as follows. The prover in our LR-dZK proof emulates the
prover of Π, and RPE-encodes the proof shares before sending them to the verifiers. The
verifiers store these encoded proof shares, except when Π requires that they compute on
them. In this case each verifier locally decodes the proof shares needed for the computation,
performs the computation, RPE-encodes the proof shares and the outcome (if needed) and
erases all intermediate values generated during the computation.

2.2.0.3 Function Secret Sharing (FSS)

Function Secret Sharing (FFS) [17, 15] is a cryptographic building block that enables
evaluation of a function f in a distributed manner. An FSS consists of two algorithms Gen
and Eval. The former algorithm outputs secret function keys (k0, . . . , km), one for each party
. The latter algorithm is run locally by each party. Given a public input x, and the party’s
secret key ki, it computes an output share fi(x) such that f(x) =

∑
i∈[m] fi(x). The security

requirement ensures that the individual keys do not disclose (to a computationally-bounded
adversary) any information about the function description.

Current FSS constructions are motivated by applications that involve private and dis-
tributive access to a large database, and crucially rely on the fact that FSS has linear
reconstruction. (In fact, existing FSS schemes have additive reconstruction.) Two notable
applications of FSS are Private Information Retrieval (PIR) or keyword search, and statistics
collection. (See [17] for further discussion of these applications.) In both cases (a set of)
clients generate the keys, and upload them to corresponding servers, where the keys are
then used to repeatedly execute the desired operation (e.g., keyword search). Since multiple
executions are performed, this also requires aggregating the output shares fi (x) which
strongly relies on the linearity of the FSS reconstruction algorithm.
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Defining leakage-resilience for FSS is subtle. This is because on the one hand, our goal is
to obtain leakage-resilience against the strongest type of adversarial attacks – namely against
computationally unbounded adversaries, while on the other hand, FSS is a computational
primitive which only guarantees computational indistinguishability in the real/ideal paradigm.
Thus, a main challenge which one faces when modeling security of leakage-resilient FSS is
to decouple FSS-secrecy from leakage-resilience. We capture this separation by splitting
the adversary into two algorithmic entities, one that attacks the scheme via queries to a
leakage oracle, and another that receives the state of the former adversarial entity and
attacks the secrecy of the underlying FSS. We stress that the former adversarial entity may
be computationally unbounded. Another obstacle is that we need to maintain consistent
answers (e.g., to repeated leakage queries on output shares generated for the same input x).
That is, we need to ensure all responses are consistent with prior responses. This is achieved
by maintaining a list which, for every input queried to the function, specifies the randomness
used to generate the corresponding output shares in Eval. This randomness is used to answer
all leakage queries related to this input. (We note that when an input is queried for the first
time, a new entry is added to the list.)

At a high level, our construction modifies the key generation algorithm, where function
keys are generated using the FSS generation algorithm, and then RPE-encoded. Similarly, to
compute the output shares from the function key shares, each party locally RPE-decodes the
key share, generates the output share using the evaluation algorithm Eval of the underlying
FSS, and then RPE-encodes it. Since the original FSS has additive reconstruction, and
the RPE has linear decoding, the resultant scheme has linear reconstruction. Thus, clients
can remotely operate on the encoded output shares as in the original FSS scheme, and can
decode the outcome f(x) after it was reconstructed from the output shares. Thus, function
and output shares can still be aggregated as required by FSS applications.

2.2.0.4 Threshold Encryption Schemes (TES) and Threshold Signatures

Lastly, we study the usefulness of our paradigm in the context of threshold cryptography [38,
70, 47, 56] where the secret key underlying some cryptographic task (e.g., encryption or
signing), is used in a distributed manner. Namely, a set of parties mutually choose the
secret key, where each party picks a random share and neither party (or a strict subset)
can reconstruct the secret. Furthermore, each secret key share has a corresponding public
key share. The latter shares are combined into the public key of the underlying object.
Consequently, each party can encrypt or verify a signature as these operations are public,
but decrypting (or, alternatively, signing) a message can be performed in a distributed
manner by running a secure computation protocol. A notable example is an extension of the
Diffie-Hellman key exchange protocol to the multiparty setting [38] that serves as a threshold
public key encryption scheme for El Gamal [48].

Threshold encryption is a more involved computational object than FSS since it needs
to preserve the secrecy of the secret key as well as the semantic security of the underlying
encryption scheme. The scheme consists of a key generation protocol which generates the
secret key shares in a distributed manner, an encryption algorithm which is similar to the
encryption algorithm in standard encryption schemes, and a decryption protocol in which the
parties use their secret key shares (from the key generation phase) to decrypt a ciphertext.
Existing security definitions come in different flavours depending of whether security is
game-based or simulation-based, and are typically specially-tailored to the specific underlying
encryption scheme. We thus first provide a unified security definition that captures the
security properties of any threshold encryption scheme. This definition – which might
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be of independent interest – will later be used as the starting point for our definition of
leakage-resilience for threshold encryption. Our security definition for threshold encryption is
simulation-based against adaptive corruptions, but can be easily adapt to the static setting.
It additionally captures the fact that the adversary can observe the decryption results of the
honest parties – which is needed, for instance, to guarantee that security is preserved even
when all parties learn the decryption for some plaintext – by giving the adversary access
to a reveal oracle that discloses the decryption shares of a specific (valid) cipherext of the
adversary’s choice.12

Next, we extend this definition to obtain leakage-resilience by equipping the adversary
with an additional leakage oracle. This oracle takes as input a leakage function, and returns
its output on the key and decryption shares of the honest parties. Our leakage model
protects the secret key shares of the honest parties (and of corrupted parties prior to their
corruption), as well as the plaintext shares of honest parties prior to their decryption. This
raises a similar challenge to the one described above in the context of FSS – we wish to
protect the shares from leakage against computationally unbounded adversaries, while TES
is computationally-secure. The assumption of separate leakage on ciphertext and key shares
is motivated by the fact that these are physically separated in natural application scenarios.
Indeed, different secret key shares are stored on different parties, and in many cases are also
physically separated from ciphertexts. For example, a remote server (that does not know
any secret key share) may generate a ciphertext c (this is possible because TES is a public
key object). An adversary that is able to leak on the internal states of the parties will then
obtain separate leakage on the ciphertext c, as well as on the key shares, and might also
obtain several key shares in full. In this case, our definition guarantees that the plaintext, as
well as the secret key shares that were not fully revealed, remain information-theoretically
hidden.

To achieve information-theoretic security against leakage queries, we separate the secrecy
of TES from the leakage-resilience property by splitting the adversary into three entities.
The first entity is computationally-bounded and has access to an encryption oracle. The
second entity is computationally-unbounded, and has access to a leakage oracle. We stress
that these two entities must be kept separated, since the unbounded adversary can break the
computational security of TES. Therefore, these adversarial entities do not share a state.
Finally, the third adversarial entity takes the states of the former adversaries as input, and
has access to corruption and reveal oracles. (The reveal oracle provides decryption shares
of the honest parties on valid ciphertexts.) We note that the need to handle reveal queries
makes the definition of leakage-resilient TES even more involved than that of leakage-resilient
FSS.

Our definition captures both semi-honest and malicious adversaries, and can be adapted
to signature schemes as well, where the property of indistinguishability of ciphertexts is
replaced with unforgeability.

At a high-level, our TES construction works as follows. Key shares are generated by
first generating TES key shares (by running the key generation protocol of the underlying
TES), and then RPE-encoding each key share separately. Encryption is identical to the
underlying TES. Finally, the decryption algorithm, given a key share and ciphertext, first
RPE-decodes the key, then computes the decryption share using the decryption algorithm of
the underlying TES, and then RPE-encodes the decryption share.

12 We note that the actual formulation is more involved as it needs to eliminate chosen ciphertext attacks.
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A Related Work

There is a vast body of works on leakage-resilient cryptography. In this section we review
the works which are most relevant to our model and results, in most cases only citing the
first papers introducing the leakage model or LR construction. (See [62], and references
therein, for a more detailed discussion of these models and various works in the field.) In the
following, m denotes the number of parties, and t denotes the reconstruction threshold (in
secret sharing schemes).
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A.1 Leakage-Resilience for Data at Rest
Our leakage model is related to several leakage models considered in the past. In the
context of secret sharing, the model most relevant to ours is that of [8], who also consider a
computationally-unbounded adversary that can obtain the shares of an unauthorized set,
as well as leakage computed separately on every other share. However, there are several
notable differences. Specifically, in their model leakage is non-adaptive (whereas we protect
against adaptive leakage), but can compute any function that is (1) sufficiently shrinking (i.e.,
the output is sufficiently shorter than the input) and (2) operates on each share separately,
whereas our focus is on probing-resilience.

More generally, our model can be seen as a combination of the leakage model of [60]
(that restricts the function class from which leakage functions can be chosen), and the “Only
Computation Leaks” (OCL) model of [74] (which assumes that different memory components
leak separately), though, as noted above, our constructions achieve the stronger OCL+
property [9]. We note that similar to standard OCL, our model is likewise motivated by
scenarios in which physical separation of the shares, which are stored in different locations –
e.g., on different remote servers – guarantees that leakage will indeed apply to each share
separately. We note that the notion of protecting data at rest was studied in the past in the
context of the bounded retrieval model [42, 32], bounded memory leakage [2], and several
other models (see [62] and references therein). We elaborate more on these works, and their
connection to our model, in Section A.3 below.

A.2 Leakage-resilient Secret Sharing
Most relevant to our work is the notion of Leakage-Resilient Secret-Sharing Schemes (LR-
SSSs), which were first implicitly studied by Dziembowski and Pietrzak [44] (under the name
“intrusion-resilient secret-sharing”), and explicitly (and independently) defined by [53, 8].
Following [53, 8], there has been a long line of works exploring various aspects of leakage-
resilient secret-sharing [44, 35, 53, 54, 8, 81, 4, 67, 1, 81, 29, 69, 72, 73, 28]. These works
consider different leakage models, as we now explain.

Local Leakage Model. The intrusion-resilient secret-sharing of [44] designed an n-out-of-n
secret sharing scheme that resists adaptive leakage queries applied separately on each share,
where each query is defined by an arbitrary polynomial-time computable function, and there
are a-priori bounds on the total number of queries and leakage bits. Their scheme required
interactive reconstruction. A subsequent work by Davi et al. [35] designed a 2-out-of-2
secret-sharing scheme with non-interactive reconstruction. (We note that [42] allowed leakage
of full shares, but [35] do not.)

More recently, the works of [53, 8] independently (formally) introduced the notion of
LR-SSSs, and studied leakage-resilience in the presence of non-adaptive local leakage, namely
when the adversary can make a single leakage query that leaks from each share independently
of the other shares. These works were motivated by different goals, and focus on different
aspects of LR-SSSs. Specifically, Goyal and Kumar [53] used LR-SSSs as a stepping stone
toward constructing non-malleable secret sharing, and designed m-party 2-out-of-m LR-SSSs.
LR-SSSs for arbitrary thresholds were later constructed by Srinivasan and Vasudevan [81],
who achieve constant rate and leakage rate, through a general compiler that employs an
extractor and Shamir’s secret sharing scheme as building blocks. In particular, their scheme
does not have linear reconstruction. On the other hand, Benhamouda et al. [8] focused on
analyzing leakage resilience of standard schemes – such as additive secret sharing, and Shamir
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secret-sharing over large prime fields. Their motivation was the attacks of Guruswami and
Wooters [55] on secret sharing over fields of characteristic 2.13 Specifically, [8] proved that
Shamir’s scheme has constant leakage rate for thresholds t = m− o(m). This was recently
improved by Maji et al. [73] who extended the analysis of [8] to arbitrary thresholds (by
analyzing random linear codes), with the caveat that they instantiate Shamir’s scheme over
random (as opposed to fixed) evaluation points.

Limitations of standard secret-sharing schemes. The aforementioned works show some
limitations to the leakage-resilience properties of existing schemes. As noted above, Shamir’s
secret sharing scheme over fields of characteristic 2 does not resist leakage of even a single
bit from each share [55], and similar insecurities hold more generally for fields of small
characteristic (not necessarily 2) [8]. In terms of the reconstruction threshold t in m-party
schemes, the analysis of Benhamouda et al. [8] holds only for certain parameter regimes
(either t ≥ 0.85m when leaking a constant number of bits from each share, or t = m− 4

√
m

when leaking a quarter of the bits). There are also known lower bounds on the values of t for
which Shamir’s scheme resists leakage (even of a single bit) [78], which can be circumvented
by instantiating Shamir’s scheme using random evaluation points [73].

Joint Leakage Model. Kumar et al. [67] extend the works of [53, 54, 8] in a different
direction, focusing on a stronger leakage resilience guarantee, namely against adaptive
leakage queries that depend jointly on shares of multiple parties. Specifically, they introduce
the Bounded Collusion Protocol (BCP) leakage model, in which the adversary can adaptively
leak an a-priori bounded number of bits, where each leakage bit is computed jointly from
the shares of a subset of at most p parties, for an a-priori bound p. Roughly, BCP leakage
models the leakage as a communication protocol run by the leaking adversary, where in each
round the adversary chooses a set P of at most p parties that compute a “message” based on
their shares and the previous protocol messages. The leakage consists of the transcript of this
protocol. The schemes of [67] support any threshold, but can only withstand joint leakage of
p = O(log m) shares.14 This result was further refined recently by Chattopadhyay et al. [29],
who design LR-SSSs withstanding larger collusion bounds of up to p = t/ log t parties, They
also consider a weaker leakage model in which the (adaptive) leakage queries are restricted
to using disjoint sets of parties, namely, no share can be accessed by two leakage queries. In
this restricted leakage model, they obtain leakage-resilience for any collusion bound p ≤ t,
with O(1/m) rate and leakage rate. This was recently improved by Chandran et al. [28],
who obtain constant rate and leakage rate in this restricted leakage model.

Global Leakage Model. Another line of works [12, 69] consider global leakage which
is computed jointly on all shares, but restrict the class of permissible leakage functions.
Bogdanov et al. [12] proved that Shamir’s scheme over finite fields of characteristic 2 is
leakage-resilient against constant-depth polynomial-sized circuits (i.e., AC0 circuits), and
sign polynomials of degree 2,15 so long as the threshold t = ω (polylog (m)). The work of [69]
designed LR-SSSs that are secure against affine leakage functions over F2. These works are

13 We note that [8] extended this result by showing attacks on secret sharing over fields of small characteristic
(not necessarily 2).

14 We remark that the adversary can choose a different subset of O(log m) shares for each adaptive query,
as long as the total number of leaked bits is bounded.

15 A sign polynomial is a function f(x) = sgn(p(x)) for some polynomial p(·), where sgn is the sign function.
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somewhat orthogonal to ours since they allow for global leakage (i.e., on all shares) but
obtain a very low leakage rate, which, in particular, does not even allow leaking a single bit
(on average) from each share.

All the works mentioned above, except for [67, 29, 28, 69], only support non-adaptive
queries, and the constructions secure against adaptive leakage queries do not admit efficient
equivocation or linear reconstruction. In Table 1 we provide a curated list of works that are
closest to our work, and identify the properties satisfied by the leakage-resilient schemes they
construct.

A.3 Leakage-Resilient Memory and Storage
There is a vast body of works on protecting memory from leakage in different models, such as
the bounded-retrieval model [42, 32], bounded memory leakage [2], auxiliary-input memory
leakage [41], and continual memory leakage [23, 40]. These models can be seen as protecting
against leakage of data at rest (e.g., protecting the secret key while stored in memory), but
differ significantly from our model in the security guarantees (they permit information leakage
on the secret state as long as the security of the scheme using the key is not compromised,
whereas our goal is to hide the secret), the security quality (usually computational, whereas we
protect against computationally-unbounded leaking adversaries), and the permitted leakage
functions (usually arbitrary shrinking functions computable in polynomial time, whereas
we focus on probing leakage). The model of leakage-resilient storage [35] – which aims to
protect (properly encoded) storage – is similarly a model of leakage-resilience for data at rest.
Similar to our model, the goal is to prevent any information leakage on the stored secret.
Constructions in this model usually rely on complex primitives such as extractors, which do
not result in linear reconstruction procedures.

A.4 Leakage-Resilient Distributed Primitives
Boyle et al. [19] introduce and study the notions of leakage-resilient coin-tossing and leakage-
resilient VSS. Similar to our work, their constructions are secure against a computationally
unbounded, malicious adversary that corrupts t parties, as well as obtains adaptive “local”
leakage, namely the leakage function applies to each party separately. However, there are a
few notable differences between our leakage model and results, and those of [19], which make
them incomparable. First, their corruption model is non-adaptive, and this is inherent to
their results since they delegate certain computations to committees (a-la [21]), whereas we
allow for adaptive corruptions. Unlike our schemes, their constructions rely on (2-source and
multi-source) randomness extractors with an additional robustness guarantee,16 and therefore
do not preserve algebraic properties of the original primitives (e.g., linear reconstruction).
However, they allow for general leakage of up to ℓ information bits throughout the entire
lifetime of the system, where ℓ is a constant fraction of the view size, whereas we focus on
probing resilience for data at rest and can handle a constant fraction of leaked bits from each
share. There are also works obtaining zero-knowledge protocols [49, 10] as well as MACs,
commitment schemes, and OT [10] with a weaker leakage-resilience guarantee known as
leakage-tolerance, in which the ideal-world adversary obtains leakage on the witness/secret.
Thus, these works guarantee graceful degradation of security – instead of full security –
against leakage.

16 We note that they do have a VSS protocol that does not use extractors, but it only achieves a weaker
LR guarantee in which the secret retains some min-entropy given the leakage.
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A.5 Leakage-Resilient MPC and General Computations
Following the works of [60, 74], there has been a long line of works on protecting general
computations against leakage (see [62] and references therein). These constructions usually
consider a continuous leakage model in which the adversary observes repeated executions
of the computation on inputs of its choice. Due to their generality, these constructions are
less efficient (incurring polynomial blowups), complex, and in particular do not preserve the
structure of the original computation (e.g., linear reconstruction). There are also works on
protecting MPC protocols from leakage, either with full security against leakage [18, 8], or
allowing some leakage in the ideal world [10, 16, 11]. The latter protocols achieve only a
weaker leakage-resilience guarantee (since the ideal-world simulator also obtains leakage),
whereas the former either achieve only computational security [18], or a poor leakage rate [8].

A.6 Tampering-Resilience
The notion of tampering-resilience for secret-sharing, also known as non-malleable secret-
sharing [53], has received a lot of attention lately [53, 54, 81, 4, 45, 1, 25, 67, 68, 29, 28,
63]. Roughly speaking, non-malleable secret-sharing guarantees that even if an adversary
tampers with all the shares, reconstruction either outputs the original secret, or a completely
independent secret which is unrelated to the original secret. This should be contrasted with our
notion of tampering-resilience, which guarantees that the original secret will be reconstructed.
On the other hand, non-malleable secret-sharing can withstand higher tampering rates,
in particular ones exceeding the error-correction bound for which unique recovery of the
underlying secret is possible.

We note that another – very different – notion of tampering-resilience appeared in
the literature in the context of protecting secrecy (e.g., of the input or internal state of a
cryptographic scheme) in the presence of a tampering adversary. These works, originating
from [59], are unrelated to our notion of tampering since they aim at protecting secrecy,
whereas our goal is to maintain correctness.
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