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Abstract
Fully homomorphic encryption (FHE) allows arbitrary computations on encrypted data. The
standard security requirement, IND-CPA security, ensures that the encrypted data remain private.
However, it does not guarantee privacy for the computation performed on the encrypted data.
Statistical circuit privacy offers a strong privacy guarantee for the computation process, namely
that a homomorphically evaluated ciphertext does not leak any information on how the result
of the computation was obtained. Malicious statistical circuit privacy requires this to hold even
for maliciously generated keys and ciphertexts. Ostrovsky, Paskin and Paskin (CRYPTO 2014)
constructed an FHE scheme achieving malicious statistical circuit privacy.

Their construction, however, makes non-black-box use of a specific underlying FHE scheme,
resulting in a circuit-private scheme with inherently high overhead.

This work presents a conceptually different construction of maliciously circuit-private FHE from
simple information-theoretical principles. Furthermore, our construction only makes black-box use
of the underlying FHE scheme, opening the possibility of achieving practically efficient schemes.
Finally, in contrast to the OPP scheme in our scheme, pre- and post-homomorphic ciphertexts are
syntactically the same, enabling new applications in multi-hop settings.
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1 Introduction

Fully Homomorphic Encryption

Fully homomorphic encryption (FHE) [18] has caused a paradigm shift in achieving round
and communication efficient secure computation. FHE allows an untrusted server to publicly
evaluate any function over encrypted data without the help of a secret key. FHE has become
a tremendous success story in the last ten years, with constructions from increasingly weaker
assumptions and achieving better efficiency [29, 11, 10, 21, 12, 2]. By now (levelled) FHE is
even considered a standard cryptographic primitive, which can be based on the standard
Learning with Errors (LWE) problem [27] with polynomial modulus-to-noise ratio. An
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4:2 Maliciously Circuit-Private FHE from Information-Theoretic Principles

important feature of FHE is ciphertext compactness, which means that homomorphically
evaluated ciphertexts do not grow with the size of the evaluated circuit. Furthermore, a
recent line of work [16, 9, 19] has succeeded in achieving FHE with essentially optimal
rate, i.e. for sufficiently long messages, the size of ciphertexts is only an additive amount
larger than the encrypted plaintext. Thus, we say that these schemes achieve (or approach)
plaintext-size to ciphertext-size ratio 1; we call this a rate-1 scheme for short.

Circuit-Private FHE

The standard security notion of FHE, IND-CPA security, guarantees the privacy of encrypted
data. But it does not guarantee any concrete security for the evaluator beyond the guarantee
that a ciphertext can convey only a limited amount of information about the computation from
which it resulted due to compactness. In a circuit-private FHE scheme, an evaluator holding
a circuit C has the following security guarantee. Assume that c is a ciphertext encrypting
a message x, and assume the evaluator homomorphically evaluates C on c, resulting in
a ciphertext d. The evaluator has the guarantee that d encrypts the output C(x) of the
homomorphic computation but does not convey any further information about the circuit
C. We say that an FHE scheme satisfies semi-honest circuit privacy if this property holds
for honestly generated keys and ciphertexts. Gentry [18] describes a simple drowning-based
mechanism to achieve semi-honest circuit privacy (which typically leads to poor parameters
for the underlying hardness assumption). Later works [17, 8] provided transformations adding
semi-honest circuit privacy with very little overhead and without parameter deterioration.

In essence, circuit privacy can be seen as a property of a specific homomorphic evaluation
algorithm. A circuit-private evaluation algorithm must be randomized, while non-circuit
private evaluation algorithms can be deterministic.

Ostrovsky, Paskin and Paskin [26] provided the first maliciously circuit-private FHE
scheme. This scheme was later generalized to the multi-key setting by Chongchitmate and
Ostrovsky [13]. Malicious circuit privacy requires that the above property holds even for
maliciously generated keys and ciphertexts. On a technical level, the notion of malicious
statistical circuit privacy requires the existence of an (unbounded) ciphertext extractor,
which extracts a plaintext from a given pair of public key and ciphertext, and a simulator
which, given an output C(x) simulates a homomorphically evaluated ciphertext encrypting
C(x). In the presence of a common reference string (CRS), the well-formedness of both keys
and ciphertexts can be enforced by requiring keys and ciphertexts to include non-interactive
zero-knowledge proofs of knowledge (NIZKPoK) of their well-formedness, such that plaintexts
can be extracted using the knowledge extractor for the NIZKPoK.

However, [26] provide a maliciously circuit-private FHE scheme in the plain model (i.e.
without CRS) and guarantee statistical circuit privacy. The main idea of their construction
is to leverage a conditional disclosure of secrets protocol [1] instead of NIZK proofs. That is,
an input ciphertext c contains additional encrypted well-formedness information γ, which
they use in the maliciously circuit-private evaluation algorithm to enforce that the output
ciphertext d is independent of the circuit C if c was not well-formed. This well-formedness
information γ is consumed by the maliciously circuit-private evaluation algorithm, and the
output ciphertext d contains no such well-formedness information. Hence, d cannot be used
as input for the maliciously circuit-private evaluation algorithm but can still serve as input
for standard (non-maliciously-circuit-private) homomorphic evaluation.

We outline the main ideas of [26] in the appendix of this paper’s full version.
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Multi-Hop FHE

We say that an FHE scheme is single-hop if ciphertexts resulting from a homomorphic
evaluation cannot be used as input ciphertexts for further homomorphic evaluations. We
refer to FHE schemes where homomorphically computed ciphertexts can again be used as
input ciphertexts for further homomorphic computation as multi-hop (a notion introduced
by [20]).

The basic scheme of [26] is only single-hop, but they show how to modify it to support
multi-hop (non-maliciously-circuit-private) homomorphic evaluation. By the discussion in the
last paragraph, this means that in the multi-hop setting, circuit privacy is only guaranteed if
all evaluators are honest. Furthermore, it seems hard to establish that their techniques could
yield a scheme that satisfies malicious circuit privacy even if some evaluators are malicious.
That is, consider a scenario in the 2-hop setting, where we have a malicious key-generator
and encryptor as well as a malicious first evaluator E1 and an honest second evaluator E2.
The basic issue is that while the techniques of [26] enforce that both keys and ciphertexts
produced by the encryptor are well-formed, they cannot provide a similar guarantee for
ciphertexts produced by the first evaluator E1. Consequently, E1 may pass an arbitrarily
malformed ciphertext to E2. Then all circuit privacy guarantees for E2 are lost.

1.1 Our Results
This work provides a conceptually simple construction of a fully homomorphic encryption
scheme with malicious circuit privacy. As a bonus, ciphertexts generated by the encryp-
tion algorithm and ciphertexts produced by the homomorphic evaluation procedure are
syntactically the same. This means our scheme supports malicious circuit privacy even if
the input ciphertexts themselves are potentially the result of a homomorphic evaluation.
Our construction significantly departs from the blueprint of [26]. On a technical level, our
constructions build on and leverage rate-1 FHE schemes [19, 9], but also inherit the rate-1
property. As we will explain below, our construction equips a rate-1 FHE scheme with
a novel evaluation algorithm but otherwise leave the underlying construction unmodified
and is black-box in the underlying rate-1 FHE scheme. This means, in particular, that
our maliciously circuit-private evaluation algorithm also supports input-ciphertexts which
themselves are the result of homomorphic evaluations. We call such a scheme a multi-hop-
secure maliciously circuit-private FHE scheme. Note that this property solely comes down
to the type of input-ciphertext supported by the maliciously circuit-private homomorphic
evaluation algorithm but otherwise leaves the definition of malicious statistical circuit-privacy
unchanged.

Compared to the construction of [26], our construction can be considered a more direct
way of achieving malicious circuit privacy.

1.2 Applications
We will briefly discuss two related applications we envision as use-cases for our multi-hop-
secure MCP-FHE scheme.

Encrypted Databases with privacy for Write-Queries: Consider a scenario where
a cloud server holds a database encrypted under an FHE scheme. The owner of the
database, who generated the FHE keys goes offline, but several mutually mistrusting
workers perform homomorphic computations on the database, and these computations
involve sensitive data held by the workers. While the IND-CPA security of the FHE
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scheme protects the privacy of the database, the privacy of the workers’ operations is
ensured by the circuit privacy of the FHE scheme. However, if a malicious database
owner and several malicious workers collude against a worker, then single-hop circuit
privacy does not offer any guarantee to this worker. Consequently, to protect the privacy
of this worker’s operation, we need a multi-hop-secure MCP-FHE scheme.
Federated Learning with Model-Privacy: In the machine-learing subfield of federated
learning [25], the training data is distributed among several (physically) separated servers.
A central server, coordinating a learning process sends partially-trained models to the
training servers, who compute model-updates using their local training data and send the
updates back to the central server. The purpose of this separation of the training data
is two-fold. First, by ware-housing the training-data locally with the servers and only
communicating (relatively small) model updates, an enormous amount of bandwidth can
be saved which would otherwise be needed to transfer vast quantities of training data.
Second, and maybe more importantly, each server is in control of the amount of outgoing
data and therefore has the guarantee that his local data cannot be retrieved entirely by
the central server.
Now consider a scenario where a model-owner, in possession of a partially trained model,
wants the training servers to compute updates on his model. However, the model may
contain sensitive data which should not be leaked to the training servers. Consequently,
encrypting the model under an FHE scheme protects the privacy of this model. To
protect the privacy of the training servers’ training data, we need to require circuit
privacy. However, if the model owner colludes with some of the training servers, standard
malicious circuit privacy is insufficient to protect the privacy of any of the training servers
training-data. By using a multi-hop-secure MCP-FHE scheme, the training servers have
the guarantee that even if the model owner colludes with other users, they will not learn
more about this users data than they would have in a plain federated learning protocol
(i.e. without the additional layer of homomorphic encryption).

1.3 Technical Outline of our Approach
Our construction significantly departs from the OPP approach [26]. On a very high level, our
approach is to augment a given FHE scheme to natively support malicious function privacy
for a very basic class of functions, namely affine functions, without resorting to tools which
enforce the well-formedness of input ciphertexts. We will then be able to amplify this to the
class of all functions by relying on the machinery of affine randomized encodings [22, 5], aka
information-theoretically secure garbled circuits.

Statistically Sender-Private OT from High-Rate OT

We will first describe how a high-rate FHE scheme can be augmented to support malicious
function privacy for affine functions. As described above, such high-rate FHE schemes were
recently constructed by Gentry and Halevi [19] and Brakerski et al. [9].

Our starting point is a recent work of Badrinarayanan et al [6], who observed that high
rate (sender-input to sender-message ratio) can be leveraged to achieve statistical sender
privacy. This is similar in spirit to the work of [14], who build an OT protocol in the
bounded-quantum-storage model. In more detail, [6] observed that any string-OT with high
rate (i.e. greater than 1/2) yields a statistically sender private OT protocol (called weak
OT in [6]) via a simple information-theoretic transformation. Specifically, the high-rate
OT is used to transfer two random strings r0 and r1. But since the OT has high rate,
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the OT-sender message ot2 is shorter than the concatenation of the two random strings.
Consequently, one can argue that one of the two strings r0 and r1 must have high conditional
min-entropy given ot2. Thus, using a suitable randomness extractor Ext, one can derive two
masks k0 = Ext(r0, s0) and k1 = Ext(r1, s1) (for two seeds s0 and s1) and argue that either
k0 or k1 must be statistically close to uniform conditioned on ot2. The sender then also
sends (m0 ⊕ k0, m1 ⊕ k1), i.e. the actual messages blinded with the corresponding mask. An
honest receiver will then be able to recover the mb corresponding to his choice-bit b.

Note that this argument did not assume the well-formedness of the OT-sender message
ot1

1. So consequently, no matter how malformed ot1 is, the message ot2 must lose information
about either r0 or r1, and consequently one of the masks k0, k1 is uniformly random from
the view of the receiver.

While the high-level idea of the proof and the statement of the corresponding the-
orem in [6] is true, there is a subtle loophole in their proof, which we will briefly explain
here. To establish malicious statistical sender privacy, one needs to show the existence
of an (unbounded) extractor which extracts the receiver’s choice bit from the ot1 mes-
sage. In [6], this is achieved via the following argument: For a fixed ot2 it holds that
H∞(r0, r1|OT2(ot1, r0, r1) = ot2) ≥ n, thus it must either hold that H∞(r0|OT2(ot1, r0, r1) =
ot2) > n/2 or H∞(r1|OT2(ot1, r0, r1) = ot2) > n/2. The unbounded extractor then computes
both hb = H∞(rb|OT2(ot1, r0, r1) = ot2) for b ∈ {0, 1}, and sets the extracted bit b∗ to 0 if
h0 < h1, otherwise to 1.

This reasoning assumes that conditional min-entropy obeys a chain-rule, i.e. the con-
ditional min-entropy of (r0, r1) must split into the conditional min-entropies of r0 and r1.
However, in general this is not the case. There are (contrived) choices of the ”leakage function”
OT2(ot1, ·, ·), for which even though H∞(r0, r1|OT2(ot1, r0, r1) = ot2) > n, it holds that

H∞(r0|OT2(ot1, r0, r1) = ot2) = H∞(r1|OT2(ot1, r0, r1) = ot2) ≈ 1,

i.e. even (r0, r1) have n bits of min-entropy, each of them individually only has a single bit
of min-entropy2.

Essentially, the problem is that it might depend on (r0, r1) which one of r0 or r1 is
leaked by OT2(ot1, r0, r1), i.e. the choice of the bit b is not necessarily fixed by the function
OT2(ot1, ·, ·) as implicitly assumed in the above argument. In other words, the function
OT2(ot1, ·, ·) does not fix a choice bit b, but rather a distribution of choice-bits b(r0, r1) which
may depend on r0, r1 in arbitrary ways.

Consequently, a more involved extraction strategy is required to make the proof rigorous.
This can indeed be achieved by resorting to the min-entropy splitting lemma of [14]. In essence,
translated to our context, this lemma states that for every leakage function OT2(ot1, ·, ·)
there does exist an explicit random variable b = b(r0, r1) such that H∞(rb|OT2(ot1, r0, r1) =
ot2, b) > n/2− 13.

Thus, we can adapt the extractor of [6] to extract based on the conditional min-entropies
H∞(r0|OT2(ot1, r0, r1) = ot2, b = 0) and
H∞(r1|OT2(ot1, r0, r1) = ot2, b = 1) and make the proof strategy of [6] work.

1 Indeed, we haven’t even mentioned it yet.
2 Example: If first bit of r0 is 0, leak last n − 1 bits of r0, otherwise leak last n − 1 bits of r1. See

also [24, 28].
3 The actual statement holds for smooth min-entropy, but we omit this somewhat technical detail for the

sake of this outline.
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FHE with Statistical Function Privacy for Affine Functions

Our core-observation is that this very same approach also works if we replace the high-rate OT
by a high-rate FHE scheme. As explained above, such FHE schemes with a rate approaching
1 were recently constructed in [19] and [9].

We remark that these schemes have two different ciphertext types. Type 1 ciphertexts
are decompressed and allow for homomorphic operations, but these ciphertexts have a poor
rate, as each ciphertext encrypts (say) just a single bit4. Type 2 ciphertexts are in a
compressed format, and each ciphertext encrypts say ℓ bits, and these ciphertexts have a
rate approaching 1, but do not support homomorphic computations. These have a public
compression procedure, which takes a vector of ℓ type 1 ciphertexts and produces a single type
2 ciphertext. Likewise, there is a public decompression procedure which takes a single type 2
ciphertext and returns a vector of ℓ type 1 ciphertexts. We remark that compressing type 1
into type 2 ciphertexts is fairly efficient, but decompressing type 2 into type 1 ciphertexts
involves a rather expensive bootstrapping operation in current schemes [19, 9].

In essence, we will harness the compress operation to lose information about strings which
should remain private. Specifically, assume we have such a compressible FHE scheme Π. Now
let c = Enc(pk, b) be a ciphertext encrypting a bit b under Π. We obtain malicious statistical
function privacy for affine functions via the following evaluation procedure, which mimics an
oblivious transfer in Π. The evaluator chooses two uniformly random strings r0, r1 ∈ {0, 1}ℓ

and evaluates the affine function f(x) = x · r1 + (1− x) · r0 on c, obtaining an encryption
of c′ = Enc(f(b)). The ciphertext c′ is of type 1 and has thus low rate. The evaluator now
compresses c′ into a high-rate type 2 ciphertext and immediately decompresses it into a type 1
ciphertext d, which is an encryption of rb. As above, the evaluator now chooses two extractor
seeds s0 and s1 and computes v0 = m0 ⊕ Ext(k0, s0) and v1 = m1 ⊕ Ext(k1, s1). Finally, It
homomorphically evaluates the function g(x, y) = (Ext(y, s1)⊕v1) ·x+(Ext(y, s0)⊕v0) ·(1−x)
on the ciphertexts c and d, obtaining an encryption e of

g(b, rb) = (Ext(rb, s1)⊕ Ext(r1, s1)⊕m1) · b
+ (Ext(rb, s0)⊕ Ext(r0, s0)⊕m0)(1− b)

= mb,

and the ciphertext e is the output of the homomorphic evaluation.
Thus, correctness follows from the derivation above. To argue statistical function privacy,

we argue analogously as in the last paragraph. Namely, even if both the public key and
the ciphertext c are arbitrarily malformed, we observe that when we compress c′ into a
type 2 ciphertext, call it ĉ, then since ĉ is high-rate, it cannot fully determine both r0 and
r1. Consequently, as in the argument above, either r0 or r1 must have high conditional
min-entropy given ĉ5. Since d is computed from ĉ, the same holds for d, i.e. conditioned
on d either r0 or r1 has high min-entropy. Consequently, by the extraction property of Ext
either v0 or v1 is statistically close to uniform conditioned on d. Thus, e does not depend on
both m0 and m1. To make the argument formal, we can argue as above that a bit b can be
extracted from the ciphertext c (via an unbounded extractor) and that the output ciphertext
e can be simulated given only mb.

4 In both [19] and [9] the ciphertexts in this mode are essentially GSW ciphertexts [21]
5 Where the same caveat as above applies, i.e. we need to condition on an additional spoiling bit b.
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Note that our construction makes no additional non-black-box of underlying cryptographic
primitives beyond whatever the underlying FHE scheme does. That is, given the current
high-rate FHE constructions [19, 9] the only operation in the above construction which needs
to do any heavy lifting is the decompression step, which in these constructions involves a
bootstrapping operation.

We remark, however, that even though bootstrapping involves making non-black-box use of
the decryption circuit of the underlying FHE scheme. This non-black-box use typically comes
to just performing a rounding operation homomorphically. Furthermore, it is conceivable that
there might exist construction of high-rate FHE schemes which deviate from the blueprint
of [19, 9] and do not rely on bootstrapping to achieve high rate.

Malicious Statistical Circuit Privacy for NC1 Circuits

We will now outline how malicious statistical circuit privacy for affine functions can be
amplified to malicious statistical circuit privacy for NC1 circuits. The go-to tool to achieve
this are decomposable affine randomized encodings (DARE), also known as garbled circuits.
A garbling scheme allows us to encode a computation into an affine and a non-affine part. For
any input it holds that the output of the affine part together with the non-affine part does not
leak more than the result of this computation on this input. Information-theoretically DAREs
are known for NC1 circuits (i.e. circuits of logarithmic depth) [23, 22, 5]. Randomized
encodings have, e.g. been used to bootstrap KDM security for affine functions to KDM
security for bounded-size circuits [3].

We make use of DAREs/GCs as follows, starting with an FHE scheme with malicious
function privacy for affine functions as described in the previous paragraph. Assume that the
evaluator wants to homomorphically evaluate an NC1 circuit C on a potentially maliciously
generated input ciphertext c. First, the evaluator computes a randomized encoding of C
consisting of an affine part T and a non-affine part C̃. Then, it evaluates the affine function
T on the ciphertext c using the maliciously function private evaluation procedure for affine
functions, resulting in a ciphertext d. Finally, it evaluates the non-affine part C̃ on d, resulting
in an output ciphertext e. Correctness follows immediately from the correctness of the FHE
scheme and the DARE. To argue malicious circuit privacy, first note that by the malicious
function privacy for affine functions, the ciphertext d does not leak more than T (x) (where x

is the value which can be extracted from c) about T . Consequently, it holds that e does not
leak more than T (x) and C̃ about C, which by the security of the DARE scheme does not
leak more than C(x).

We remark that in our construction the output ciphertext e potentially leaks the same
information about the circuit C that T (x) and C̃, i.e. essentially the size of C. This is
somewhat in contrast to the construction of [26], which ensures that no information about
the evaluator’s circuit is leaked. Whether leaking the size of the evaluator’s circuit is inherent
in multi-hop-secure MCP-FHE remains an (in our opinion interesting) open problem.

Malicious Statistical Circuit Privacy for all Circuits

We will briefly outline how the above techniques can be leveraged to handle arbitrary
polynomial depth circuits. To achieve this, we will resort to an idea of Kilian [23]. Specifically,
given a polynomial-depth circuit C, we will slice C into layers C1, . . . , Ck such that each Ci is
an NC1 circuit and C = Ck ◦ · · · ◦ C1 (i.e. we can evaluate C by sequentially evaluating the
Ci). The circuits Ci can now be evaluated using the techniques described in the previous
section. However, this basic idea has an issue as the intermediate outputs of the Ci are not
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4:8 Maliciously Circuit-Private FHE from Information-Theoretic Principles

protected and may therefore leak information about the Ci and therefore C. To deal with this
issue, we will replace the circuits Ci by circuits Di which encrypt their output wires using a
one-time pad. Specifically, the circuit D1 first computes C1, but xors a one-time pad K1 on
the output, i.e. D1(x) = C1(x)⊕K1. The circuit D2 first decrypts its input using the key K1
and encrypts its output using a key K2, i.e. D2(x) = C2(x⊕K1)⊕K2. We continue in the
same fashion, until we reach Dk which computes Dk(x) = Ck(x⊕Kk−1). By the security of
the one-time pad, the outputs of the Di leak no information about the outputs of the Ci.

We will further show that if one is willing to settle for computational rather than
statistical circuit privacy, then the transformation described in the previous paragraph can
be implemented using computational garbled circuits, which means that the most expensive
step, the function private evaluation of the affine function, only needs to be performed once.
In this setting, some care has to be taking in the security proof as our input-extractor is
unbounded but security of the garbled circuits only holds computationally. However, this
issue can be dealt with using a standard trick which moves the information obtained by
the unbounded extractor into non-uniform advice, which is provided to the non-uniform
reduction against the garbling scheme.

This concludes the overview.

Roadmap

In Section 2 we show how to turn any high-rate FHE into one, which allows for circuit private
evaluation of affine functions. We use this in Section 3 to build a circuit private scheme
for NC1, which we extend to arbitrary circuits in Section 4. We cover the preliminaries in
Appendix A.

For more information see the full version of the paper.

2 OT from High-Rate LHE

Here we reiterate the statistical sender private OT of [6] with slight modifications in notation
and sender-privacy proof. It transforms a high-rate linearly homomorphic encryption scheme
(LHE) into a statistically sender private OT.

2.1 Construction of [6]
Let (KeyGen, Enc, Dec, Eval) be a high-rate LHE scheme where the messages are vectors over
{0, 1}. We will use the following circuit C where strings r0 and r1 are hard-wired into the
circuit, and one of them is selected according to input bit b. Notice, this circuit is a linear
function over {0, 1}.

Circuit C[r0, r1](b):
output rb

Now follows the construction. In this construction n is the size of the messages m0, m1
and the parameter m is dependent on λ but can be chosen arbitrarily large.

OT1(1λ, b):
Generate keys (pk, sk)← KeyGen(1λ)
Let c← Enc(pk, b)
return (pk, c)
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OT2(1λ, ot1 = (pk, c), m0, m1):
Choose s0, s1 ←$ {0, 1}m uniformly at random
Choose r0, r1 ←$ {0, 1}m uniformly at random
Hardwire r0, r1 into C[r0, r1] to get circuit C′
return s0, s1, Ext(s0, r0)⊕m0, Ext(s1, r1)⊕m1, e, and Eval(C′, c)

In the output, c is an encryption of b and Eval(C′, c) an encryption of rb.

OT3(sk, ot2):
Let s0, s1, x0, x1, c, and e be the content of the message ot2
Let b← Dec(sk, c)
Let rb ← Dec(sk, e)
return xb ⊕ Ext(sb, rb)

2.2 Correctness
Since (KeyGen, Enc, Dec, Eval) is correct c is a correct encryption of b in that scheme. OT2
then outputs s0, s1, Ext(s0, r0)⊕m0, and Ext(s1, r1)⊕m1 together with correct encryptions
of b and rb. In OT3 we then decrypt b and rb. Because Ext is deterministic (with a fixed
seed sb) we can reconstruct mb = mb ⊕ Ext(sb, rb)⊕ Ext(sb, rb).

2.3 Computational Receiver’s Security
The sender only ever sees encryptions of the receivers input b and the public key of the LHE.
Therefore, if the sender can learn anything about b he can also break the CPA security of
the LHE.

2.4 Statistical Sender’s Security
▶ Theorem 1. Let (KeyGen, Enc, Eval, Dec) be an LHE with high rate, then (OT1, OT2,
OT3) as detailed in Subsection 2.1 is a statistically sender private OT protocol.

Proof. In the following, we show an unbounded simulator Sim that does not know m0 or m1
but has one-time access to an oracle for the function f(b) = mb. With this oracle access, she
produces an output which is statistically close to the output of OT2, which has full access to
r0 and r1.

Simf (ot1 = (pk, c)):
Choose s0, s1 ←$ {0, 1}m uniformly at random
Choose r0, r1 ←$ {0, 1}m uniformly at random
Hardwire r0, r1 into C[r0, r1] to get circuit C′
Let e← Eval(C′, c)
Let C be the value such that H∞(R1−C |C, E) is minimal with C being chosen as in
corollary 31.
Query the oracle f for mC

Choose S1−C ←$ {0, 1}n uniformly at random
If C = 0:

return s0, s1, Ext(s0, r0)⊕m0, S1−C , c, and e

Else:
return s0, s1, S1−C , Ext(s1, r1)⊕m1, c, and e
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We now use a hybrid argument to show that the above construction is statistically sender
private. H0 is the honest execution of the protocol.
H0(pk, c, m0, m1):

Choose s0, s1 ←$ {0, 1}m uniformly at random
Choose r0, r1 ←$ {0, 1}m uniformly at random
Hardwire r0, r1 into C[r0, r1] to get circuit C′
return s0, s1, Ext(s0, r0)⊕m0, Ext(s1, r1)⊕m1, c, and Eval(C′, c)

In hybrid H1 we replace Ext(s1−C , r1−C) by a uniformly random S0 of same size.

H1(pk, c, m0, m1):
Choose s0, s1 ←$ {0, 1}m uniformly at random
Choose r0, r1 ←$ {0, 1}m uniformly at random
Hardwire r0, r1 into C[r0, r1] to get circuit C′
Let e← Eval(C′, c)
Let C be the value such that H∞(R1−C |C, E) is minimal
with C being chosen as in corollary 31.
Choose S1−C ←$ {0, 1}n uniformly at random
If C = 0:

return s0, s1, Ext(s0, r0)⊕m0, S1−C ⊕m1 , c, and e

Else:
return s0, s1, S1−C ⊕m0 , Ext(s1, r1)⊕m1, c, and e

In H2 we remove the real sender inputs.
Hf

2 (pk, c):
Choose s0, s1 ←$ {0, 1}m uniformly at random
Choose r0, r1 ←$ {0, 1}m uniformly at random
Hardwire r0, r1 into C[r0, r1] to get circuit C′
Let e← Eval(C′, c)
Let C be the value such that H∞(R1−C |C, E) is minimal with C being chosen as in
corollary 31.
Query the oracle f for mC

Choose S1−C ←$ {0, 1}n uniformly at random
If C = 0:

return s0, s1, Ext(s0, r0)⊕m0, S1−C , c, and e

Else:
return s0, s1, S1−C , Ext(s1, r1)⊕m1, c, and e

Now we argue why the hybrids are statistically close.
H0 ≈ H1:

In H1 we replace Ext(s1−C , r1−C) by a uniformly random chosen S1−C . Here we argue
that the statistical distance between the two hybrids is negligible using 31.
Lemma 30 gives that

H∞(R0, R1|E = e) > H∞(R0, R1)− log(1/Pr [E = e])
≥ 2m− |e|
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Then corollary 31 gives that

Hε
∞(R1−C |C, E = e) > (2m− |e|)/2− 1− log(1/ε)

for any ε. Then the smooth min-entropy conversion lemma 32 gives that

H∞(R1−C |C, E = e) ≥ −log(2−(2m−|e|)/2−1−log(1/ε) + ε)

In the following, this number will be called α. Notice that α can only be positive if
2m− |e| is positive and e encrypts a message of size m. Therefore, the rate ρ need to be
bigger than 1/2 (i.e. 1/2 < ρ = m/|e|).
Then we use the property of the extractor to ensure that Ext(s1−C , r1−C) is statistically
close to uniform (i.e. SD(Ext(s1−C , r1−C), S1−C) ≤ ε′). Clearly, this can be reached if
the rate ρ > 1/2. Therefore, the statistical distance between H0 and H1 is at most ε′.

H1 ≈ H2:
In this hybrid, we altogether remove m1−C which we can do because it is being XORed
with a uniformly random string and therefore is perfectly hidden. Thus, H1 and H2 are
identically distributed in this case. ◀

2.5 FHE with Circuit-Private OT Evaluation
Here, we show how to add a evaluation procedure EvalOT to a high-rate FHE, which can
evaluate choice functions in a circuit private manner.

The construction is the same as for the OT above but the message reconstruction of OT3
is done on the sender’s side. Again, we use circuit C
Circuit C[r0, r1](b):

output rb

But we also use circuit C̃ which except for decrypting takes the role of OT3
Circuit C̃[s0, s1, x0, x1](b, rb):

output xb ⊕ Ext(sb, rb)

EvalOT(1λ, pk, m0, m1, c):
Choose s0, s1 ←$ {0, 1}m uniformly at random
Choose r0, r1 ←$ {0, 1}m uniformly at random
Hardwire r0, r1 into C[r0, r1] to get circuit C′
Let e← Eval(1λ, pk, C′, c)
Hardwire s0, s1, x0 = Ext(s0, r0)⊕m0, and x1 = Ext(s0, r0)⊕m1 into C̃[s0, s1, x0, x1]
to get circuit C̃′
return Eval(1λ, pk, C̃′, (c, e))

Correctness and receiver’s security (in this case CPA security) stay the same as before. For
circuit privacy (previously sender privacy) we now need to argue over the compression in e.
The last step in EvalOT can be thought of as post-processing and does not change anything
about the circuit privacy.

3 Circuit-Private NC1-HE from FHE with OT

An OT is similar to a circuit private HE for affine functions. We use Decomposeable Affine
Randomized Encodings (DARE) to increase the set of function that we can evaluate with
circuit privacy to all functions in NC1. We achieve this by letting the OT do the affine
operations and then evaluate the DARE inside another layer of FHE.
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3.1 Construction
Let (KeyGen′, Enc′, Eval′, Dec′) be an FHE with circuit private choice function evaluation
procedure Eval′OT and (Garble, GarbleInput, Ev) be a ϕ-private DARE. In this construction
we use a circuit C with hardcoded garbled function F which simply evaluates the garbled
function on the input.
C [F ](d = (di)i∈[n]):

return Ev(F, (di)i∈[n])
The construction then is:
KeyGen(1λ):

return KeyGen′(1λ)
Enc(pk, m):

return Enc′(pk, m)
Eval(1λ, pk, f, c = (ci)i∈[n]):

(F, (ri,j)i∈[n],j∈{0,1})← Garble(f, 1λ)
For each i ∈ [n] let zi ← Eval′OT(1λ, pk, ri,0, ri,1, ci)
Hardwire F into C[F ] to get the circuit C′
return Eval′(1λ, pk, C′, z = (zi)i∈[n])

Dec(sk, c):
return Dec′(sk, c)

First Eval garbles f and then emulates the encoding mechanism GarbleInput inside of the
FHE with the help of EvalOT. This works because the GarbleInput is a choice function which
is exactly what an OT calculates. With the encoded input and the garbled circuit F we run
the Ev function inside the FHE and will only be able to leak as much information about the
function as (F, GarbleInput(r, m)) would have.

The correctness of (KeyGen, Enc, Dec, Eval) follows routinely from the correctness of
(Garble, GarbleInput, Ev), and (KeyGen′, Enc′, Eval′, Eval′OT, Dec′). Likewise, CPA security
of (KeyGen, Enc, Dec, Eval) follows routinely from the CPA security of (KeyGen′, Enc′, Eval′,
Eval′OT, Dec′).

3.2 Malicious Statistical Circuit Privacy
▶ Theorem 2. Let (KeyGen′, Enc′, Eval′) be an FHE with circuit private choice function
evaluation procedure Eval′OT and (Garble, GarbleInput, Ev) be a ϕ-private DARE (for some
function ϕ) then the NC1-HE as detailed in Subsection 3.1 is ϕ-circuit-private.

The proof of the theorem is in the full version of the paper.

3.3 Computational Circuit Privacy
If we use a computationally ϕ-private garbled circuit in this transformation instead of its
information theoretical counterpart we instantly get an FHE which is ϕ-circuit-private against
computational adversaries. Nothing about the construction needs to change; we only need to
adjust the proof as detailed in the full version.

3.4 Multi-Hop-Security
Since evaluating does not change the structure of the ciphertexts the NC1-HE inherits the
multi-hop-security property from the FHE (if the FHE is multi-hop then the NC1-HE is as
well).
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4 Circuit-Private FHE from Circuit-Private NC1-HE

To build a circuit-private FHE from a Circuit-Private NC1-HE, we go back to techniques
from Kilian’s classic paper [23]. On a high level, we split up the circuit into NC1 circuits
and encrypt the connecting wires with the one-time pad.

Assume we want to evaluate a circuit C of polynomial depth. We show an example of
this in Figure 1.

C

Figure 1 Circuit C.

C1

C2

C3

Figure 2 Circuit C split into subcircuits C1, C2, and C3.
We chose three subcircuits for illustrative reasons. The
amount of subcircuits depends on the depth of circuit C.

We split up that circuit into subcircuits of depth log(λ) such that they are NC1 circuit
(as in Figure 2). If the circuit-private NC1-HE scheme is multi-hop, we can then evaluate
each of these subcircuits sequentially in a circuit-private manner. This construction is an
FHE scheme which leaks the depth of the circuit and the intermediate values.

We can, however, encrypt these intermediate values with a one-time pad and then decrypt
it in the next subcircuit. We demonstrate this modification of the circuit in Figure 3.

C1
C′1

C2 C′2

C3
C′3

k1

k1

k2

k2

Figure 3 Subcircuits of C together with OTP encryption and decryption. Each thick wire
represents a collection of wires. We use the circuits C′

1, C′
2, and C′

3.
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This is possible because encrypting and decrypting the one-time pad is incredibly (com-
putationally) cheap. Therefore, the subcircuits combined with encryption and decryption
are still in NC1. This way the intermediate values are statistically hidden.

The result is an FHE scheme, which is Φdepth,width circuit private. Φdepth,width leaks the
depth of the circuit and the size of the intermediate values.
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A Appendix: Preliminaries

In this appendix, we define the concepts and notation that we use in the paper.

A.1 Notation
Assignments

Assignment of a value to a variable is denoted by ← and ←$ is used for choosing a value
from a set uniformly at random.

Negligible Functions

A function f : N → R is negligible in λ if there exists no positive polynomial p such that
f(λ) < 1

p(λ) for all but finitely many λ.
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Logarithms

The base of every logarithm in this document is 2.

Circuits

Typical implementations of FHE evaluate using circuit representation for functions. Therefore,
we create circuits and then evaluate them. If C[a] is a circuit, a is a value which we hardwire
into the circuit. The input size of a circuit C is called in(C).

A.2 Public-Key Encryption Schemes
A public-key encryption scheme uses two keys, a public key pk and a secret key sk. We use the
public key to encrypt messages, the result of which is called ciphertext. Without knowledge
of the secret key, it is virtually impossible to recover the message from the ciphertext. The
secret key, however, enables the holder to reliably retrieve the message from the ciphertext.

▶ Definition 3 (Public-Key Encryption). The following PPT algorithms describe a public-key
encryption scheme:
KeyGen(1λ): The key-generation algorithm takes the security parameter λ as input and

outputs a key pair (pk, sk).
Enc(pk, m): The encryption algorithm takes a public key pk and a message m as input and

outputs a ciphertext c.
Dec(sk, c): The decryption algorithm takes a secret key sk and a ciphertext c as input and

outputs a message m. It rarely requires randomness.
In the rest of the document, every encryption scheme will be public key.

▶ Definition 4 (Correctness). An encryption scheme (KeyGen, Enc, Dec) is correct if for
all message m and security parameters λ and (pk, sk) in the range of KeyGen(1λ) we have
m = Dec(sk, Enc(pk, m))

The most popular notion of security for encryption schemes is CPA security (also known
as IND-CPA security or semantic security).

▶ Definition 5 (CPA Security). An encryption scheme (KeyGen, Enc, Dec) is cpa secure if for
all PPT adversary pairs (A1,A2)∣∣∣∣∣∣∣∣Pr

b = b′

∣∣∣∣∣∣∣∣
(pk, sk)← KeyGen(1λ)
(m0, m1, σ)← A1(1λ, pk)
b←$ {0, 1}
b′ ← A2(Enc(pk, mb), σ)

− 1
2

∣∣∣∣∣∣∣∣
is negligible in λ.

A.3 Homomorphic Encryption
Certain changes on a ciphertext change the underlying plaintext in a structured way.

▶ Definition 6 (Homomorphic Encryption). These four PPT algorithms describe a homo-
morphic encryption scheme: KeyGen,Enc, and Dec as in pubilc-key encryption and
Eval(1λ, pk, f, c1, ..., cn): The evaluation algorithm takes a security parameter λ, a public

key pk, a string representation of a function f and n where n is the input size of f

ciphertexts c1, . . . , cn as inputs and outputs a new ciphertext c.
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▶ Definition 7 (Homomorphic Correctness). Let F be a set of functions, f be an arbitrary
element of F , and n = in(f). An F-homomorphic encryption scheme (KeyGen, Enc, Eval,
Dec) is correct if (KeyGen, Enc, Dec) is a correct encryption scheme, and for all messages
m1, . . . , mn, security parameters λ, and (pk, sk) from the support of KeyGen(1λ) we have
f(m1, . . . , mn) = Dec(sk, Eval(1λ, pk, f, Enc(pk, m1), . . . , Enc(pk, mn)))

▶ Definition 8 (Linearly-Homomorphic Encryption). A linearly-homomorphic encryption
scheme (LHE) is an F-homomorphic encryption scheme where F is the set of all multivariate
linear functions.

▶ Definition 9 (Fully-Homomorphic Encryption). A fully-homomorphic encryption scheme
(FHE) is an F-homomorphic encryption scheme where F is the set of all computable functions.

CPA security is unchanged from public key encryption.
The ability to use a homomorphic evaluation on a ciphertext which has already gone

through evaluation is called multi-hop. To define the correctness of a multi-hop HE we need
to define a set Cpk correctly generated ciphertexts. Each ciphertext comes from encryption
or homomorphic evaluation on a correct plaintext.

▶ Definition 10 (Multi-Hop Homomorphic Encryption). Just like a F−HE scheme, a multi-hop
F−HE scheme is a quadruple of PPT algorithms (KeyGen,Enc,Eval,Dec). Let λ be a security
parameter, (pk, sk) be the output of KeyGen(1λ) then

Cpk =
{

c

∣∣∣∣ m ∈M∧ c = Enc(pk, m)∨
f ∈ F ∧ n = in(f) ∧ c1, . . . , cn ∈ Cpk ∧ c = Eval(1λ, pk, f, c1, . . . , cn)

}
is a set of correctly generated ciphertexts under public key pk. Such a quadruple of algorithms
is a multi-hop F−HE scheme if it is a F−HE and for all security parameters λ, outputs of
the KeyGen(1λ) (pk, sk), functions f ∈ F , n = in(f), and ciphertexts c1, . . . cn ∈ Cpk we have
f(Dec(sk, c1), . . . , Dec(sk, cn)) = Dec(sk, Eval(1λ, pk, f, c1, . . . , cn))

The rate captures how big a ciphertext is in comparison to its plaintext content.

▶ Definition 11 (Rate). An F−HE scheme (KeyGen, Enc, Eval, Dec) has rate ρ if there exists
a polynomial µ such that for all security parameters λ, possible outputs of KeyGen(1λ) (pk, sk),
correctly generated ciphertexts c ∈ Cpk of size ≥ µ(λ) we have |Dec(sk, c)|/|c| ≥ ρ(λ)

We call an encryption scheme high rate if it has a rate greater than 1/2.
Typically a HE is also defined with compactness. For compactness, we require the

ciphertext to be independent in size from the functions evaluated to arrive at the ciphertext.

▶ Definition 12 (Compactness). An F−HE scheme (KeyGen, Enc, Eval, Dec) is compact if
there exists a rate ρ that only depends on λ.

There is also a notion of malicious circuit privacy that guarantees that the ciphertext
does not leak information about the function which was homomorphically evaluated on it
beyond the result even if the public key and the ciphertexts are maliciously generated [26].

▶ Definition 13 ((Malicious) Circuit Privacy). We say an F−HE scheme is maliciously,
statistically circuit private if there exists an unbounded simulator Sim with one-time oracle
access to f such that for all λ, and for all public keys pk, functions f ∈ F , and ciphertexts
c = (c1, . . . , cn) for n = in(f) we have SD(Simf (1λ, pk, c), Eval(1λ, pk, f, c)) is negligible in λ.

Our constructions do not quite achieve the malicious, statistically circuit privacy guarantee
of [26]. However, we achieve a slightly weaker notion defined in the following.
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▶ Definition 14 (Φ-Circuit Privacy). Let Φ : F → {0, 1}∗ be a (leakage) function. We say
an F−HE scheme is Φ (maliciously) circuit private if there exists an unbounded simulator
Sim with one-time oracle access to f such that for all λ, public keys pk, ciphertexts c =
c1, . . . , cn, functions f ∈ F , and PPT adversaries A we have |Pr[A(Simf (1λ, pk, c, Φ(f)))]−
Pr[A(Eval(1λ, pk, f, c))]| is negligible in λ.

The only difference to the above notion of circuit privacy is that the simulator gets
some leaked information Φ about the circuit. In most cases, Φ would leak some structural
information such as the size of the circuit or its topology. This notion is adapted to expose
some properties of the circuit from privacy definitions for garbled circuits.

A.4 Garbling Schemes
Garbling schemes were famously introduced by Yao in an oral presentation [30] about
techniques for secure function evaluation. Our notation is adapted from [7] and also influenced
the definition of Φ circuit privacy for HE. It allows to split up the evaluation of a function
such that different parties can do parts of the computation. One party knows the input x to
the function f and encodes it such that the other party can evaluate the function on the
encoding (i.e. learn f(x)) without being able to compute the input.

▶ Definition 15 (Garbling Schemes). A garbling scheme is described by the following PPT
algorithms:
Garble(1λ, f): The circuit garbling algorithm takes a security parameter and the circuit

representation of a function f as inputs and outputs a garbled circuit F and 2n bitstrings
X0

1 , X1
1 , . . . , X0

n, X1
n where n is the input size of f .

GarbleInput((X0
1 , X1

1 , . . . , X0
n, X1

n), m): The input garbling mechanism takes 2n bitstrings
X0

1 , X1
1 , . . . , X0

n, X1
n and a message x as inputs and outputs the n bitstrings Xx1

1 , . . . , Xxn
n .

Ev(F, (X1, . . . , Xn)): The evaluation algorithm takes a garbled function F and n bitstrings
X1, . . . Xn as inputs and outputs f(x).

▶ Definition 16 (Correctness). A garbling scheme (Garble, GarbleInput, Ev) is correct if f

is a function, x is an input to that function, λ is the security parameter, (F, e) is from the
range of Garble(1λ, f) then Ev(F, GarbleInput(e, x)) = f(x).

▶ Definition 17 (Statistical Privacy). A garbling scheme is Φ statistically private if there
exists a unbounded algorithm Sim(1λ, y, Φ) such that,

SD(Sim(1λ, y, Φ(f)))|y = f(x)],
[
D(F, X)

∣∣∣∣ (F, e)← Garble(1λ, f)
X ← GarbleInput(e, x)

]
)

is negligible in λ.

Garbled circuits with statistical privacy are usually researched under the guise of Decom-
posable Affine Randmized Encodings (DARE) [22, 5, 4].

An example for this is [23]’s construction for branching programs.

A.5 Oblivious Transfer
String oblivious transfer (OT) is a protocol which allows two parties (sender and receiver) to
interact in the following way: The sender has two strings m0, m1 and the receiver has a bit b.
The goal is that the receiver learns mb but the sender does not learn anything about b.
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▶ Definition 18 (Oblivious Transfer). A (two-message) OT is described by the following PPT
algorithms:
OT1(1λ, b): With the input of a security parameter λ and a bit b, the algorithm returns ot1

and state.
OT2(1λ, ot1, m0, m1): With the input of a security parameter λ, request ot1, and two

strings of same length m0, m1, the algorithm returns a response ot2
OT3(ot2, state): With the input of a response ot2 and a state state, the algorithm returns

a string m

▶ Definition 19 (Correctness). An OT (OT1, OT2, OT3) is correct if for all security parameters
λ, bits b, messages m0, m1, (ot1, state) from the range of OT1(1λ, b) and ot2 from the range
of OT2(1λ, ot1, m0, m1) we have mb = OT3(ot2, state)

▶ Definition 20 (Receiver’s Security). An OT (OT1, OT2, OT3) has (computational) receiver’s
security if for every PPT adversary A, and security parameters λ we have∣∣Pr[A(OT1(1λ, 0)]− Pr[A(OT1(1λ, 1)]

∣∣ is negligible in λ.

▶ Definition 21 (Statistical Sender’s Security). An OT (OT1, OT2, OT3) has statistical sender’s
security if there exists a deterministic unbounded simulator Sim such that for all security
parameters λ, strings ot1, strings m0, m1 of length k we have
SD(OT2(1λ, ot1, m0, m1), Simm(·)(1λ, ot1, k)) is negligible in λ with Sim having one time
access to a m(·) oracle.

▶ Definition 22 (Rate). An OT (OT1, OT2, OT3) has rate ρ if there exists a polynomial µ

such that for all security parameters λ, possible outputs ot1 of OT1(1λ, b), and messages
m0, m1 with |m0| = |m1| ≥ µ(λ) we have |m0|/|OT(1λ, ot1, m0, m1)| ≥ ρ(λ)

For the purposes of this document every OT has computational receiver’s security, and
statistical sender’s security.

A.6 Information Theory
The statistical distance is a metric on probability distributions. It is often used in cryptography
because it is at the core of the definition of statistical indistinguishability. Statistical
indistinguishability is a strictly stronger notion than computational indistinguishability,
which is the most popular tool to define security notions in cryptography.

▶ Definition 23 (Statistical Distance). Let X and Y be two distributions with support in
{0, 1}k. The statistical difference between X and Y , SD(X, Y ) is given by,

SD(X, Y ) = 1
2

∑
x∈{0,1}k

|Pr [X = x]− Pr [Y = x] |

▶ Lemma 24. The statistical distance has an equivalent definition

SD(X, Y ) = maxf :{0,1}k→{0,1}|Pr [f(X) = 1]− Pr [f(Y ) = 1] |

Entropy measures a lack of knowledge about a system. The most famous entropy is
the Shannon entropy H, which measures the lack of knowledge in a system that behaves
randomly. Min-entropy, on the other hand, assumes a system which behaves maliciously.

▶ Definition 25 (Min-Entropy). Let X be a distribution. The min-entropy of X is

H∞(X) = −log(maxx Pr[X = x])
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▶ Definition 26 (Conditional (Smooth) Min-Entropy [14]). The conditional smooth min-entropy
Hε
∞(X|Y ) is defined as Hε

∞(X|Y ) = maxEminyH∞(XE|Y = y), where the maximum is
over all events E with Pr(E) ≥ 1− ε.

▶ Corollary 27 (Corollary of Lemma 1 from [14]). Let X, Y be distributions then Hε
∞(X|Y ) >

H∞(X, Y )−H0(Y )− log(1/ε) for all ε.

Strong extractors make it possible to use one source of uniform randomness to convert a
non-uniform distribution with some min-entropy into a uniform distribution.

▶ Definition 28 (Strong Extractor). A function Ext : {0, 1}m × {0, 1}d → {0, 1}n is a (k, ϵ)-
strong extractor if for every distribution X with support in {0, 1}m and H∞(X) = k, we have
SD((Ext(X, Ud), Ud), (Un, Ud)) ≤ ϵ where Ud is a uniform distribution over {0, 1}d and Un

is one over {0, 1}n.

Many of the useful rules like the chain rule for conditional Shannon entropy H(X|Y ) =
H(X, Y )−H(Y ) do not hold for min-entropy. Therefore we have to do hard work to handle
claims about min-entropy.

The next lemma allows to lower bound the min-entropy using the average conditional
min-entropy.

▶ Lemma 29 (Weakened Lemma 2.2 of [15]). For all random variables X, Y , δ > 0 the
conditional min-entropy we have H∞(X|Y = y) ≥ H̃∞(X|Y )− log(1/δ) with probability 1− δ

over the choice of y

The leakage lemma for min-entropy helps with bounding the min-entropy of distributions
that are conditioned on events.

▶ Lemma 30 (Leakage Lemma for Min-Entropy of [28]). For all random variables X and
events A, B we have H∞(X|B, A) > H∞(X|B)− log(1/Pr(A|B))

▶ Corollary 31 (Corollary 4.3 of [14]). Let ε ≥ 0, and let X0,X1 and Z be random variables
such that Hε

∞(X0, X1|Z) ≥ α. Then, there exists a binary random variable C over {0, 1}
such that Hε+ε′

∞ (X1−C |Z, C) ≥ α/2− 1− log(1/ε′) for any ε′ > 0.

▶ Lemma 32 (Smooth Min-Entropy Conversion). If Hε
∞(X) ≥ α then H∞(X) ≥ −log(2−α+ε)

Proof. Since Hε
∞(X) ≥ α there exists a distribution Y such that H∞(Y ) ≥ α and SD(X, Y ).

This means, for all y′, Pry←Y [y′ = y] ≤ 2−α. Therefore, the biggest probability of X can
only be bigger by ε. Then, for all x′, Prx←X [x′ = x] ≤ 2−α + ε. ◀
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