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Abstract
For k = ω(log n), we prove a Ω(k2n/ log(kn)) lower bound on private simultaneous messages (PSM)
with k parties who receive n-bit inputs.

This extends the Ω(n) lower bound due to Appelbaum, Holenstein, Mishra and Shayevitz [Journal
of Cryptology, 2019] to the many-party (k = ω(log n)) setting. It is the first PSM lower bound that
increases quadratically with the number of parties, and moreover the first unconditional, explicit
bound that grows with both k and n. This note extends the work of Ball, Holmgren, Ishai, Liu,
and Malkin [ITCS 2020], who prove communication complexity lower bounds on decomposable
randomized encodings (DREs), which correspond to the special case of k-party PSMs with n = 1.
To give a concise and readable introduction to the method, we focus our presentation on perfect
PSM schemes.

2012 ACM Subject Classification Theory of computation → Cryptographic protocols; Theory of
computation → Communication complexity; Security and privacy → Information-theoretic techniques

Keywords and phrases Secure computation, Private Simultaneous Messages

Digital Object Identifier 10.4230/LIPIcs.ITC.2022.7

Funding Marshall Ball: Part of this work was performed while the author was a student at Columbia
University and a postdoc at University of Washington. This material is based upon work supported
by the National Science Foundation under Grant #2030859 to the Computing Research Association
for the CIFellows Project. Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation nor the Computing Research Association.
Tim Randolph: This material is based upon work supported by the following grants: NSF CCF-
1563155, NSF IIS-1838154, NSF CCF-1814873, NSF CCF-1703925, NSF CCF-2106429, and NSF
CCF-2107187.

Acknowledgements The authors thank Tal Malkin for helpful discussion, and several anonymous
reviewers for helpful comments on an earlier draft.

1 Introduction

In this note, we consider private simultaneous message (PSM) protocols. In this setting,
we are given as public input a function f : [N ]k → {0, 1}.1 There are k parties, each with
private inputs x1, x2, . . . , xk and access to a shared random string. Each party sends a single
message to a referee in such a way that the referee can reconstruct f(x1, x2, ..., xk) but learns
no other information about the private inputs. The communication complexity, or size, of a
PSM protocol is the total number of bits sent by all parties.

1 We write f : {{0, 1}n}k → {0, 1}, where n = log2(N), interchangeably.
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7:2 A Note on the Complexity of Private Simultaneous Messages with Many Parties

The (2-party) PSM model was introduced as an elegant variant of secure computation
by Feige, Kilian, and Naor in 1994 [8], and readily extended to the k-party case by Ishai
and Kushilevitz [11]. The simple protocol structure makes the model an attractive proving
ground for understanding the “cost of privacy” (i.e., communication complexity) in secure
computation over distributed protocols with no privacy or security guarantees.

In addition to their theoretical importance, PSM protocols have practical import because
they readily decompose into an expensive offline phase and an efficient single-message online
phase.2

Significant progress on upper and lower bounds on the communication complexity of
PSM has occurred since its introduction. In 2019, Assouline and Liu, building on the work of
Beimel, Kushilevitz, and Nissim [5, 6], demonstrated a general PSM protocol with complexity
Ok(N (k−1)/2) for infinitely many k [2]. Also in 2019, Applebaum, Holenstein, Mishra, and
Shayevitz [1] patched up a hole in the original PSM paper to establish a 3n − O(log(n))
lower bound for the two party case. This bound can be trivially extended to the k-party
case by dividing the input of a boolean function on kn bits between k parties, in which case
the bound becomes 3kn−O(log(n)).

The PSM setting can also be viewed as the addition of a security requirement to simul-
taneous multi-party communication complexity. Although the number-on-forehead model,
in which players can see every input but their own, is more common in this setting, perfect
multi-party PSM corresponds well to the deterministic number-in-hand model, in which
k parties receive inputs x1, x2, · · · , xk and send messages that allow a referee to compute
f(x1, x2, · · · , xk). Ω(kn) lower bounds exist in this setting (see, for example, [9]). Every
multi-party PSM protocol with perfect correctness can be converted to a deterministic
simultaneous number-in-hand communication protocol by fixing a shared random string, so
these lower bounds apply to our setting.

A final related notion is that of randomized encodings, which originate from Yao’s garbled
circuits [15] and were elaborated by Ishai and Kushilevitz [12]. A randomized encoding
of a function f : {0, 1}k → {0, 1} is a function f̂ that takes as input x ∈ {0, 1}k and a
random string r. For any r, given f̂(x, r) it must be possible to recover f(x) but no other
information about x. A randomized encoding is decomposable if f̂(x, r) can be written
(f̂1(x1, r), f̂2(x2, r), ..., f̂n(xk, r)); that is, if every bit of the output depends only on a single
bit of x. Thus a DRE immediately implies a PSM protocol: parties compute the relevant
portions of f̂ using their shared randomness and send them to the referee. Moreover, a
k-party PSM scheme in which every party receives exactly one bit is a DRE. A recent
paper by Ball, Holmgren, Ishai, Liu, and Malkin establishes Ω(k2/log(k)) lower bounds on
the communication complexity of DREs, implying corresponding lower bounds on PSM
protocols [3]. Their result relies on a measure of function complexity first introduced by
Nečiporuk in 1966 [13] and subsequently used to prove lower bounds on the sizes of formulas,
branching programs and span programs [4, 7].

In this note, we introduce a new variant of Nečiporuk’s measure of function complexity
(as defined in [3]) and show it suffices to extend the approach of [3]: demonstrating that PSM
complexity is lower-bounded by our modified Nečiporuk measure. We give two natural exam-
ples of explicit functions with modified Nečiporuk measure Ω(k2n/ log(kn)) and additionally
show that nearly all functions have such measure. Our main result is the following theorem:

2 This paradigm has gained significant traction in recent years. However, typical use cases require stronger
security requirements than that provided by PSM, such as resilience to the referee colluding with senders
(Non-Interactive Secure Multiparty Computation). Note that lower bounds on the communication
complexity of PSM protocols immediately extend to lower bounds on its stronger cousins.
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▶ Theorem 1. As long as k = ω(log(n)), there exist (explicit) functions f : [N ]k → {0, 1}
such that any perfect PSM X for f has size

|X | ≥ k2n

2 log2(kn) −O(kn).

To the best of our knowledge, this is the first unconditional, explicit3 lower bound on the
communication of PSM that increases with k and n, the first to grow quadratically with k,
as well as the best in the many-party (k = ω(log(n))) setting.

In Appendix B, we argue that significantly better bounds (i.e., ω(k2n)) will likely require
very different techniques due a certain kind of natural proof barrier [14] which may be of
independent interest.

2 Preliminaries

▶ Definition 2 (PSM Protocol). A PSM protocol (M, R, (Π)i∈[k], Ref) for a function f :
[N ]k → {0, 1} specifies a message space M , a randomness space R, a tuple of functions,
Πi : [N ] × R → M for i ∈ [k], and a referee Ref : [M ]k → {0, 1}. It must satisfy that for
every input x ∈ [N ]k and every r ∈ R,

Ref
(
(Πi(xi, r))i∈[k]

)
= f(x)

(perfect correctness), and that for all x, y ∈ [N ]k such that f(x) = f(y), when r is sampled
uniformly from R,

{(Πi(xi, r))i∈[k]}r∼R ≡ {(Πi(yi, r))i∈[k]}r∼R

(perfect security).

Informally, each function Πi captures the behavior of one of the k agents. Given an input
in [N ] and a shared random string drawn from R, each agent produces a private message
m ∈M that is sent to the referee. The referee evaluates f based on the messages she receives.
Correctness and security requirements ensure that the referee always evaluates f correctly
but never learns any other information about the input.

For this note, we consider perfect correctness and security. This choice keeps our
presentation tidy while focusing on our contribution, which is a modification of Nečiporuk’s
measure and the extension of [3] to the multiparty PSM setting. The perfect security case
highlights the core conceptual techniques of [3]. The result extends to multiparty PSMs with
statistical or even (nonuniform) computational security, following the presentation of [3].

The traditional definition of the PSM setting is provided for completeness and comparison.
For our investigation, it will be convenient to use the following equivalent definition of a
PSM.

▶ Definition 3 (Random Family Definition of PSM). A PSM protocol for a function f : [N ]k →
{0, 1} is a family of random variables

X = (X i
j )i∈[k]

j∈[N ]

3 Applebaum et al. [1] show a random function requires high communication unconditionally. They
only construct an explicit function with high communication under a hardness assumption on co-
nondeterministic circuits. In contrast, we give an unconditional explicit lower bound.

ITC 2022
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supported on M and a referee function Ref such that for all x ∈ [N ]k,

Pr[Ref((X i
xi

)i∈[k]) = f(x)] = 1

(correctness) and for all x, y such that f(x) = f(y), we have

(X i
xi

)i∈[k] ≡ (X i
yi

)i∈[k]

(security).

▶ Definition 4 (PSM size [3]). The size of a PSM X is

|X | = max
x∈[N ]k

∑
i∈[k]

⌈log2(|Supp(X i
xi

)|)⌉,

where Supp(Y) indicates the support of Y.

This coincides with the multiparty extension of Applebaum et al.’s definition of size as
log |A|+ log |B|, where A and B are the message spaces of the two parties, in the two party
case. This notion of size corresponds to the sum of the channel widths required by the
sending parties.

3 A Measure of the Complexity of a Function

To lower bound PSM size, we use Nečiporuk’s measure of function complexity, which counts
the maximum number of distinct nonzero restrictions of a boolean function over any partition
of the input. For any subset S ⊆ [k], we write S to denote [k] \ S, and fS|z to indicate the
restriction of f to S in which the coordinates corresponding to S are fixed to the vector
z ∈ {0, 1}S .

▶ Definition 5 (Nečiporuk’s Measure [13, 3]). Let f : {0, 1}k → {0, 1} be any boolean function.
For any subset S ⊆ [k], define

gS(f) := log2(|{fS|z : z ∈ {0, 1}S , fS|z ̸≡ 0}|).

For any positive integer m ≤ k, let V = (V1, V2, ..., Vm) denote an m-partition of [k]. The
measure is G(f) := maxV

∑
Vi∈V gVi

(f).

We are interested in functions that take boolean input in {{0, 1}n}k. Unlike in the DRE
setting, each message sent to the referee depends collectively on n bits of the input. Thus,
when we restrict functions, we will need to carefully distinguish between inputs in {0, 1}n

in which all bits are restricted and inputs in {0, 1}n in which only some bits are restricted.
This requires a corresponding modification of Nečiporuk’s measure.

▶ Definition 6 (First-Bit Restriction). For any function f : {{0, 1}n}k → {0, 1} and any set
S ⊆ [k], the first-bit restriction of f to S using (α, β) is the function

fS|(α,β) : {0, 1}S → {0, 1}

defined by restricting the inputs as follows:
1. Fix the n-bit inputs corresponding to S to α ∈ {{0, 1}n}S.
2. Fix the last n− 1 bits of each n-bit input corresponding to S to the values described by

β ∈ {{0, 1}n−1}S.



M. Ball and T. Randolph 7:5

Thus a first-bit restriction of f to the set S is a boolean function on |S| bits.4

▶ Definition 7 (Modified Nečiporuk’s Measure). Let f : {{0, 1}n}k → {0, 1} be a function.
For any subset S ⊆ [k], define

g∗
S(f) := max

β∈{{0,1}n−1}S
log2(|{fS|(α,β) : α ∈ {{0, 1}n}S , fS|(α,β) ̸≡ 0}|).

For any positive integer m ≤ k, let V = (V1, V2, ..., Vm) denote an m-partition of [k]. The
measure is G∗(f) := maxV

∑
Vi∈V g∗

Vi
(f).

We can easily bound the largest possible Modified Nečiporuk Measure for any boolean
function.

▶ Proposition 8. For any boolean function f : {{0, 1}n}k → {0, 1},

G∗(f) ≤ k2n

log2(kn) .

Proof. For any S ⊆ [k], g∗
S(f) ≤ (k − |S|)n as α can take no more than 2(k−|S|)n different

values. Moreover, g∗
S(f) ≤ 2|S|, the log of the number of distinct |S|-bit boolean functions.

Balancing these two restrictions gives the upper bound. ◀

In Section 4, we show examples of functions with large modified Nečiporuk measure.
Then, in Section 5, we show that modified Nečiporuk measure is a lower bound on PSM
complexity. Together, these results imply Theorem 1.

4 Functions with Large Modified Nečiporuk Measure

For k = ω(log(n)), many functions have modified Nečiporuk measure that is asymptotically
optimal. For instance:

▶ Proposition 9 (Modified Nečiporuk Measure of Random Functions). As long as k = ω(log(n)),
a random function f : {{0, 1}n}k → {0, 1} has

G∗(f) ≥ k2n

log2(kn) − kn− 1

with probability at least 1− exp(−N log2(kn)).

We prove Proposition 9 in Appendix A. In addition to most randomly sampled functions,
we describe two explicit functions with optimal modified Nečiporuk measure. The first is a
straightforward generalization of the distinct elements function.

4 One can consider a generalization of first bit restrictions by allowing α to specify a sequence of pairs
from some partitioning of the input domains {0, 1}n into pairs, and allowing “free variables” in the
restricted function to correspond to evaluating f on either the first or second string in the pair. Suitably
modifying G∗ with such restrictions should yield identical bounds on PSM complexity. However, the
present definition is more intelligible and sufficient for our purposes.

ITC 2022
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▶ Definition 10 (Set Disjointness). The (k, n) set disjointness function is defined for k such
that k = ω(log n) as follows:
1. DISJk,n takes as input kn bits, parsed as bit strings of length n. We fix m such that

2m log2(mn) = k,5 and divide the k input strings into m “blocks”, each containing
2 log2(mn) n-bit strings.

2. We interpret each block i ∈ [m] as a multiset Si ⊂ [(mn)2] as follows. Let x1
i , · · · , x

2 log(mn)
i

denote the n-bit strings in block i. We consider x1
i , . . . , x

2 log(mn)
i as the columns of an

n× 2 log(mn)-matrix, and read the 2 log(mn) elements of Si off the rows. (That is, we
concatenate the first bits of each n-bit string to get the first element of Si, the second bits
to get the second element, etc.)

3. DISJk,n outputs 1 if all sets are pairwise disjoint (Si ∩ Sj = ∅ for all i ̸= j).

▶ Proposition 11. G∗(DISJk,n) = Ω(k2n/ log(kn)).

Proof. For i ∈ [m], let Vi denote the ith block of bit strings, which corresponds to the subset
Si ⊂ [(mn)2]. We will show g∗

Vi
(DISJ) = Ω(mn log(mn)) = Ω(kn). As k = 2m log2(mn)

implies m > k
2 log2(kn) , this implies the result by symmetry on the m other choices for Vi.

Consider building first-bit restrictions as follows. Set β ∈ {{0, 1}n−1}Vi so that all but
the first element of Si take the value (mn)2. (By the definition of first-bit restrictions, the
first element of Si is unrestricted.)

Then consider values for α, which specifies each Sj , j ̸= i, that select disjoint subsets of
[(mn)2 − 1]. Each such α yields a restriction with respect to β: namely, the function that
evaluates to 1 whenever the free element of Si is not a member of

⋃
Sj ,j ̸=i Sj . Thus, every

choice of α that specifies a distinct set
⋃

Sj ,j ̸=i Sj composed of disjoint members corresponds
to a distinct restriction.

Finally, we can bound the choices of α via

#α =
(

(mn)2 − 1
n(m− 1)

)
≥

(
(mn)2 − 1
n(m− 1)

)n(m−1)

≥ (mn)n(m−1)
.

Thus, g∗
Vi

(DISJ) ≥ n(m− 1) log2(mn) = Ω(kn). ◀

We additionally show a variation on the Indirect Storage Access function has maximal
modified Nečiporuk measure.

▶ Definition 12 (First-bit Indirect Storage Access). The (k, n) first-bit indirect storage access
(FISA) function is defined for k such that k = ω(log n) as follows:
1. FISAk,n takes as input log2(k) + kn bits. The first log2(k) bits are parsed as an integer

y ∈ [k] and the remainder as the matrix A ∈ {0, 1}k×n.
2. FISAk,n first identifies the n-bit string Ay (i.e., the yth row of A), and then identifies

an index in [kn] corresponding to the bit string x = Ay
0Ay+1

0 ...A
y+log(kn)−1
0 . (If we

overflow the boundaries of A, we continue from A0.) It then returns the xth bit of A (i.e.,
A

⌊x/n⌋
x (mod n)).

▶ Proposition 13. G∗(FISAk,n) = Ω(k2n/ log(kn)).

5 Strictly speaking, this limits us to pairs (k, n) such that some integer m satisfies our condition. In order
to define the function for arbitrary k, we might choose the largest m such that 2m log2(mn) ≤ k, set
k′ := 2m log2(mn), and compute the (k′, n) set disjointness function on the first k′ input strings.
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Proof. For simplicity, we treat FISAk,n as a kn-bit boolean function when calculating
G∗(FISAk,n), as the additional log2(k) bits of input are absorbed by Ω. Consider a partition
V = (y, V1, V2, ..., Vk/ log2(kn)), in which each Vi contains log2(kn) contiguous n-bit strings
in A.

Fix i ∈ [k/ log2(kn)] and consider g∗
Vi

(FISAk,n). In particular, consider the first-bit
restrictions of FISAk,n to Vi in which y is set so that the bit string x is read from the first
bit of each n-bit string in Vi. Fixing the remaining bits of A to every possible string results
in 2kn−n log(kn) − 1 distinct non-zero restrictions. Summing over each set in the partition of
A gives G∗(fk,n) = Ω(k2n/ log(kn)). ◀

5 A New Lower Bound for Many-Party PSM

We conclude by showing that the modified Nečiporuk measure provides a lower bound on
PSM size. To prove this fact, we use an “information squeezing” argument enabled by the
following observation that follows from the perfect security requirement in Definition 3 and
is further elaborated in the proof of Lemma 15 below.

▶ Observation 14. Let f : {{0, 1}n}k → {0, 1} be a kn-bit boolean function and S ⊆ [k]
denote a subset of parties. If there exist two first-bit restrictions fS|(α,β) and fS|(α′,β) to S

such that for some x ∈ {0, 1}S, fS|(α,β)(x) = fS|(α′,β)(x), the distribution over messages sent
by S must be identical on α and α′ in any PSM with perfect security.

In other words, if two first-bit restrictions agree on at least one input, the perfect security
requirement implies that the distribution over messages sent by S must be identical. Thus,
in order to ensure correctness, the messages sent by a subset of parties S must contain
enough information to distinguish between the distinct first-bit restrictions of f to S created
by setting the inputs S to different values. The precise amount of information required is
captured by the modified Nečiporuk measure.

▶ Lemma 15 (Nečiporuk Lower Bounds PSM Size). Let X be a PSM for any function
f : {{0, 1}n}k → {0, 1}. Then

|X | ≥ G∗(f)/2.

Combining Lemma 15 with Proposition 9 yields Theorem 1 as an immediate consequence.
In Appendix B, we argue that stronger lower bounds are beyond a certain kind of natural
proof barrier.

5.1 Proof of Lemma 15: Nečiporuk Lower Bounds PSM Size
Proof. Fix f : {{0, 1}n}k → {0, 1}, and let V be a partition of [k] that maximizes our
modified Nečiporuk measure for f ; that is,

V ∈ arg max
U

∑
Ui∈U

g∗
Ui

(f)

Consider an arbitrary set S ∈ V . Select β ∈ {{0, 1}n−1}S to fix all but the first bits of S and
maximize |{fS|(α,β) : α ∈ {{0, 1}n}S , fS|(α,β) ̸≡ 0}|. Let D denote the uniform distribution
over a minimal set T such that

{fS|(α,β)|α ∈ T} = {fS|(α,β) : α ∈ {{0, 1}n}S , fS|(α,β) ̸≡ 0}.

ITC 2022
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We observe that H(D) = g∗
S(f), where H denotes the entropy function. Given a PSM

X for f , we proceed to define two subfamilies of random variables that will capture the
information in D.

A := (X i
{0}×βi

,X i
{1}×βi

)i∈S

B := (X i
di

)i∈S,d∼D.

Consider drawing (a, b) ∼ A × B, conditioned on a particular d ∈ Supp(D). Given any
y ∈ {0, 1}|S|, the referee can use the appropriate members of a and b to compute fS|(d,β)(y).
Computing fS|(d,β)(y) for each y ∈ {0, 1}|S| uniquely identifies d because each member of T

corresponds to a unique restriction; thus H(D|A,B) = 0.
Furthermore, for any distinct d, d′ ∈ Supp(D), there exist y and y′ such that fS|(d,β)(y) =

fS|(d′,β)(y′) = 1. (This follows by definition, as every d ∈ Supp(D) corresponds to a restriction
that is not the zero function.) Thus, by the security property of PSM, we know that
(X i

di
)i∈S ≡ (X i

d′
i
)i∈S . In other words, B contains no information about D: H(D|B) = H(D).

Using fundamental properties of the entropy function, we have that

H(A) ≥ H(A|B) = H(A,D|B)−H(D|A,B). (1)

As H(D|A,B) = 0 and H(A,D|B) ≥ H(D|B) = H(D), we have

H(A) ≥ H(D) = g∗
S(f). (2)

Partition A into A0 := (X i
βi×{0})i∈S and A1 := (X i

βi×{1})i∈S . As H(A) = H(A0,A1) ≤
H(A0) + H(A1), H(Ab) ≥ H(A)/2 for some b ∈ {0, 1}. Thus

2 · log2(|Supp(Ab)|) ≥ g∗
S(f).

Repeating this argument for each S ∈ V demonstrates the existence of x ∈ {{0, 1}n}k for
which

∑k
i=1 log2(|Supp(X i

xi
)|) ≥ G∗(f)/2. ◀
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With k = ω(log(n)), let f : [N ]k → {0, 1} be a random function. Recall that

2g∗
S(f) := max

β∈{{0,1}n−1}S
|{fS|(α,β) : α ∈ {{0, 1}n}S , fS|(α,β) ̸≡ 0}|.

For a given S, we define the convenient function

z∗
S(f, β) := |{fS|(α,β) : α ∈ {{0, 1}n}S}|.

Thus 2g∗
S(f) ≥ maxβ z∗

S(f, β) − 1, where the -1 arises because z∗
S(f, β) may also count the

zero function.
Fix b, the parameter that will specify the fixed bits of the inputs in S, arbitrarily. For

every function ϕ : {0, 1}|S| → {0, 1}, define the indicator random variable Yϕ,b as follows:

Yϕ,b =
{

1, if ∃a ∈ {{0, 1}n}S : fS|(a,b) = ϕ

0, otherwise

Thus we have

z∗
S(f, b) =

∑
ϕ

Yϕ,b.

For any fixed ϕ, we can lower bound E[Yϕ,b] as follows using the fact that (1 + x)n ≤ 1
1−nx

for x ∈ [−1, 0], n ∈ N.

E[Yϕ,b] = 1− (1− 2−2|S|
)2n|S|

≥ 1− 1
1 + 2n|S|−2|S|

= 2n|S|

22|S| + 2n|S|
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Rewriting using linearity of expectation, we get

E[z∗
S(f, b)] = E[

∑
ϕ

Yϕ,b] =
∑

ϕ

E[Yϕ,b] ≥ 22|S|
· 2n|S|

22|S| + 2n|S|
.

Furthermore, we note that we can upper bound E[z∗
S(f, b)] by 2n|S|, the number of ways to

fix values for S.
We can consider z∗

S(f, b) as a doob martingale on the independent random variables
fS|(a,b) for a ∈ {{0, 1}n}S . As z∗

S(f, b) counts the number of distinct restrictions, changing
fS|(a,b) for a single value of a changes z∗

S(f, b) by at most 1. As a result, we can apply
McDiarmid’s inequality to get

Pr
f

[E[z∗
S(f, b)]− z∗

S(f, b) ≥ t] ≤ exp( −2t2

E[z∗
S(f, b)] ).

Substituting our lower and upper bounds for E[z∗
S(f, b)] on the left and right, and using the

fact that 2g∗
S(f) ≥ z∗

S(f, b)− 1 for any choice of b by definition, we have

Pr
f

[2g∗
S(f) ≤ 22|S|+n|S|

22|S| + 2n|S|
− t− 1] ≤ exp(−2t2

2n|S|
).

Finally, setting |S| = log2(kn) and t = 2kn/2 yields

Pr
f

[2g∗
S(f) ≤ 2kn

2n log2(kn) + 1
− 2kn/2 − 1] ≤ exp(−2N log2(kn)).

Taking a union bound over k/ log2(kn) choices of S, it follows that G∗(f) > k2n
log2(kn) − kn− 1

for all but an exponentially small fraction of functions.

B On the Possibility of ω(k2n) PSM Lower Bounds

We conclude by observing that the existence of strong pseudo-random functions6 (PRFs)
with efficient PSM schemes would rule out the possibility of proving ω(k2n) lower bounds
using a natural class of arguments. Specifically, if there exists an exponentially strong PRF
that admits a PSM of size O(k2n), an argument due to Razborov and Rudich rules out the
possibility that any natural proof with sublinear-time constructivity can prove an ω(k2n)
lower bound. We conjecture that a candidate PRF presented by Ball et al. [3] meets these
requirements.

Ball et al. conjecture that taking the quadratic residue of the sum of an input with the
secret key in prime fields is exponentially secure, if the input domain is slightly restricted.

▶ Conjecture 16 ([3]). Let p(m) be a sequence of primes such that p > 22m+1, for all m ∈ N.
Let f : {0, 1}m × {0, 1}m → {0, 1} denote the function,

f : (k, x)→ (k + x + 1)
p−1

2 (where k, x are interpreted as integers.)

Then, for some s(m) = 2Ω(m), any size-s(m) circuit can distinguish oracle access to either
fk where k is sampled uniformly from {0, 1}m or a truly random function with advantage at
most 2−s(m).

6 For definitions and further discussion on pseudo-random functions we refer the reader to [10].



M. Ball and T. Randolph 7:11

▶ Proposition 17. The DRE for f (with m = kn/2 and p(m) ∈ (22m+1, 22m+2] as defined
in Conjecture 16) outlined in [3] can be extended to give a PSM with size O(k2n).

Proof. The ith component of the DRE for f is

f̂i(xi; s, r1, . . . , rk) = s2 · (xi · 2i−1) + ri,

where s is sampled uniformly from Z∗
p and r1, . . . , rk are sampled uniformly from Zp condi-

tioned on the fact that
∑

ri = 0.
Note that

∑
f̂i(xi; s, r) = s2 ·x. Consequently, if f(x) = 1 the sum is uniformly distributed

over residues and if f(x) = −1 the sum is distributed over non-residues. Moreover, any sum
of an incomplete subset of DRE components is uniform over Zp. Thus, in the PSM setting,
k parties can consolidate the f̂i’s corresponding to their input into an O(kn)-bit message to
create a PSM with size O(k2n). ◀

We recall Razborov and Rudich’s concept of natural proofs of explicit circuit lower
bounds [14]. They observed that all known explicit circuit lower bounds proceeded by
defining a natural combinatorial property, showing a certain complexity class cannot compute
functions with such a property, and then exhibiting an explicit function that does have the
property. Their ingenious contribution was to formalize the notion of a natural property P

as a subset of all boolean functions with following properties:
1. (Largeness) A random function is in P with high probability.
2. (Constructivity) Given its truth table, it is possible to decide if a function is in P in

polynomial time.
3. (Useful) P does not contain functions from the class one wishes to prove a lower bound

against. For us, this means P does not contain functions with DREs of size ck2n for any
constant c (and large enough k, n).

The definition can be naturally extended to capture sublinear-time7 natural properties.
We note all examples of natural properties that we are aware of can be made to admit
sublinear-time constructivity, including that of Applebaum et al. [1].

▶ Definition 18. Π = (ΠY , ΠN ) is a natural property with sublinear-time constructivity,
useful against a class C if ΠY , ΠN are disjoint subsets of boolean functions such that
1. (Largeness) A random n-bit function is in ΠY with probability 2/3.
2. (Sublinear-Time Constructivity) The promise problem Π admits a randomized oracle

machine, A(·) that runs in time o(2n) such that
f ∈ ΠY =⇒ Pr[Af = 1] > 2/3.

f ∈ ΠN =⇒ Pr[Af = 0] > 2/3.

3. (C-useful) C ⊆ ΠN .

We now conjecture that the PRF candidate of Ball et al. is resilient to any uniform attack
that runs in slightly less than exponential time.

▶ Conjecture 19. Let p(m) be a sequence of primes such that p > 22m+1, for all m ∈ N. Let
f : {0, 1}m × {0, 1}m → {0, 1} denote the function,

f : (k, x)→ (k + x + 1)
p−1

2 (where k, x are interpreted as integers).

7 In this case “sublinear” refers to the size of the truth table of the function.
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Then, any randomized oracle-algorithm A that runs in time o(2m) on input parameter
1m cannot distinguish between fk where k

u← {0, 1}m and a truly random function with
non-negligible probability.

Following Razborov and Rudich’s argument in this new setting yields the following
proposition.

▶ Proposition 20. If Conjecture 19 is true, then sublinear-time-natural proofs of size ω(k2n)
PSM lower bounds do not exist.

Proof. Suppose for contradiction the existence of a natural property Π with sublinear-time
constructivity, useful against some class C containing functions that admit PSMs of size
O(k2n). As most random functions are contained in ΠY , and our candidate PRF is contained
in ΠN , we can distinguish our PRF candidate from random in time o(2n) using constructivity.
This violates Conjecture 19. ◀
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