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—— Abstract

Multiparty computation protocols (MPC) are said to be secure against covert adversaries if the
honest parties are guaranteed to detect any misbehavior by the malicious parties with a constant
probability. Protocols that, upon detecting a cheating attempt, additionally allow the honest parties
to compute certificates, which enable third parties to be convinced of the malicious behavior of the
accused parties, are called publicly verifiable. In this work, we make several contributions to the
domain of MPC with security against covert adversaries.

We identify a subtle flaw in a protocol of Goyal, Mohassel, and Smith (Eurocrypt 2008), meaning
that their protocol does not allow to identify a cheating party, and show how to fix their original
construction to obtain security against covert adversaries.

We present generic compilers that transform arbitrary passively secure preprocessing protocols,
i.e. protocols where the parties have no private inputs, into protocols that are secure against covert
adversaries and publicly verifiable. Using our compiler, we construct the first efficient variants of the
BMR and the SPDZ protocols that are secure and publicly verifiable against a covert adversary that
corrupts all but one party, and also construct variants with covert security and identifiable abort.

We observe that an existing impossibility result by Ishai, Ostrovsky, and Seyalioglu (TCC 2012)
can be used to show that there exist certain functionalities that cannot be realized by parties, that
have oracle-access to broadcast and arbitrary two-party functionalities, with information-theoretic
security against a covert adversary.
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1 Introduction

Secure multiparty computation (MPC) protocols allow collections of parties, where each
party holds some private input, to compute arbitrary functions of those inputs in a way that
reveals the result of the computation, but nothing else beyond that. Ideally, we would like
our MPC protocols to be as fast and as secure as possible, but in reality we often have to
choose one over the other. Protocols that are secure against passive adversaries who follow
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the protocol specification honestly, but try to learn more about the other parties’ inputs from
what they see, are typically quite fast, whereas protocols that are secure against actively
misbehaving adversaries tend to be significantly slower.

To overcome the dilemma of needing to choose between good efficiency and good security,
Aumann and Lindell [2] introduced an intermediate security notion which they call security
against covert adversaries'. In a covertly secure protocol, corrupt parties may try to cheat
and learn information about the honest parties’ inputs, however, it is guaranteed that any
such misbehavior will be detected with some constant probability €, known as the deterrence
factor. If cheating is detected then the honest parties will agree on at least one misbehaving
party. The authors motivate covert security by arguing that, in certain scenarios, the
repercussions of being caught misbehaving outweigh the gains that come from successfully
cheating, so an adversary should be incentivized to behave honestly.

Subsequently, Asharov and Orlandi [1] proposed a strengthening of covert security, which
requires the honest parties to not only detect misbehavior with a constant probability, but
also prove it to third parties in a publicly verifiable manner. That is, the honest parties, upon
detecting misbehavior during a protocol execution, should be able to compute a certificate
that provably shows that at least one of the corrupted parties attempted to cheat.

Goyal, Mohassel and Smith [17] showed how to construct efficient two- and multiparty
computation protocols with security against covert adversaries based on Yao’s Garbled
Circuits and its multiparty equivalent, the BMR protocol [6]. Damgard et al. [11] present
a protocol in the preprocessing model, i.e. where the overall execution is split into an
input-independent preprocessing and a input-dependent online phase, with a weaker notion of
security against covert adversaries, where the misbehaving party is not necessarily identified,
based on the SPDZ framework [14]. Damgérd, Geisler, and Nielsen [10] present a compiler
that transforms certain passively secure protocols based on secret sharing into protocols with
security against covert adversaries. Their compiler only applies to protocols that assume an
honest majority among the parties. None of the works above provide public verifiability.

The first two-party protocol with public verifiability was presented in the work of Asharov
and Orlandi [1]. More efficient publicly verifiable two-party protocols with the same security
guarantees have subsequently been proposed by Kolesnikov and Malozemoff [22] and Hong
et al. [19]. In a recent work by Damgard, Orlandi, Simkin [13], the authors propose a generic
compiler that transforms arbitrary two-party protocols with passive security into protocols
with security against covert adversaries and public verifiability. The authors also sketch
how to extend their compiler to the multiparty setting in the presence of an adversary that
corrupts a constant fraction of the parties. Their multiparty protocols, however, have a
deterrence factor that is inversely proportional to the fraction of corrupted parties and the
resulting protocols are unlikely to be faster, in terms of concrete efficiency, than existing
multiparty computation protocols with active security.

Given this state of the art, it is natural to ask whether we can construct MPC protocols,
which provide security and public verifiability against an adversary that can corrupt all but
one party, and are concretely more efficient than the fastest actively secure protocols.

! In the remainder of this paper, we will use “security against covert adversaries” and “covertly secure
protocols” interchangeably.
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1.1 OQur Contribution

In this work, we make several contributions to the domain of MPC with security against
covert adversaries with and without public verifiability.

1.1.1 On the Relation Between Covert and Active Adversaries

Firstly, we observe that in the multi-party setting (in contrast to two parties) there is a
subtle but important difference between the standard definitions of covert security and active
security used in the literature. The standard definition of covert security [2] explicitly requires
that the honest parties agree upon the identity of a party who is caught cheating, a property
we call identifiable cheating. Moreover, they require identifiable abort, meaning that a corrupt
party who aborts the computation (without trying to learn additional information) is also
identified. On the other hand, in the setting of dishonest majority, where more than half of
the parties may be corrupted, actively secure protocols typically settle for security with abort,
without identifiability (which is more expensive to realize). Hence, a covert secure protocol
with identifiable abort is not strictly weaker than a standard actively secure protocol, but
rather the two notions are incomparable. A more appropriate point of comparison is with an
actively secure protocol with identifiable abort, which typically has a much higher cost [21].
Note that one can also consider a weaker notion of covert security with abort, where aborting
parties are not identified, as has been done, for instance, in a covertly secure variant of the
SPDZ protocol [11].

1.1.2 MPC with Security Against Covert Adversaries and ldentifiable
Abort

We identify a subtle flaw in the work of Goyal, Mohassel and Smith [17], which renders their
multiparty protocol potentially insecure. More concretely, we show that while their solution
correctly detects misbehavior with a constant probability, it does not necessarily allow the
honest parties to unanimously agree on one of the misbehaving parties, so it does not satisfy
the basic requirement of identifiable cheating. To fix their construction, we present a generic
compiler for upgrading any passively secure preprocessing protocol, i.e. where the parties
have no private inputs, into one with covert security and identifiable abort. This suffices to
obtain a modified version of their construction with the desired security guarantees, namely,
both identifiable cheating and identifiable abort. Furthermore, our compiler can be used to
obtain a covertly secure variant of the SPDZ protocol with identifiable abort, improving
upon the security of the covert protocol from [11], which does not have identifiable abort.

1.1.3 Preprocessing with Security and Public Verifiability Against
Covert Adversaries

Our second compiler transforms any passively secure preprocessing protocol into a protocol
with publicly verifiable covert (PVC) security (with the same corruption threshold). In
the PVC setting, here we settle for security-with-abort and not identifiable abort. This is
because publicly verifying that a party aborted may require proving to a third party that
some corrupt party did not send a message; achieving this seems to require publishing the
entire protocol transcript, which is a large extra cost.
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Our compiler for PVC security leverages time-lock puzzles [23] in a novel fashion, to force
a corrupt party to “commit” to opening some protocol executions before it learns whether or
not a cheating attempt was successful. Importantly, the parties generate the puzzles locally,
rather than inside MPC, and furthermore, the puzzles only have to be solved in case of a
dispute, which allows us to construct concretely efficient protocols.

1.1.4 Applications

Our compilers for preprocessing apply to a large, general class of preprocessing functionalities
for producing correlated randomness. To obtain a complete MPC protocol, we can apply
one of our covert compilers to generate the preprocessing for an actively secure online
phase. Even though we are then running an actively secure protocol, these are typically
cheap and information-theoretic, with a much smaller overhead to achieve active security
compared with the preprocessing phase. If the preprocessing has publicly verifiable covert
security, then so does the combined protocol with the online phase, since any cheating in the
online phase simply leads to abort. Similarly, if the preprocessing has covert security with
identifiable abort, then so does the combined protocol as long as the online phase is secure
with identifiable abort.

To illustrate this, we consider a few examples, namely the BMR [6], SPDZ [14] and
TinyTable [12] families of protocols. These all perform MPC with up to n — 1 out of n
corruptions and security with abort, for the settings of binary circuits, arithmetic circuits,
and circuits augmented with “truth-table” gates, respectively. By applying our compiler, we
can obtain the first preprocessing protocols for these, which achieve publicly verifiable covert
security and improved performance. For example, to obtain a deterrence factor of € = 2/3,
i.e. any misbehavior will be detected with probability 2/3, our compiled covert protocol
will, roughly, be only three times slower than its passively secure counterpart. Our compiler
particularly shines for the TinyTable protocol [12], where we can improve performance by an
order of magnitude or more when relaxing to covert security. This is because we are able to
replace its costly, actively secure preprocessing with a much cheaper passive protocol. Also,
as a contribution of independent interest, we present an optimized preprocessing phase for
the passively secure BMR protocol, which reduces bandwidth in the preprocessing phase by
around 20%, compared with previous methods [7, 9].

As mentioned earlier, a particularly interesting use-case is the setting of identifiable abort.
Here, existing actively secure protocols based on SPDZ [4] and BMR [5] have a lot more
overhead compared with the non-identifiable case, in particular because they require a secure
broadcast channel. Our compiler is much simpler, and only needs broadcast in case some
dishonest behaviour occurs, so we expect them to be much more efficient in typical usage.

1.1.5 Information-Theoretic Impossibility

Finally, we also show that there exist certain functionalities that cannot be realized with
information-theoretic security against a covert adversary by parties that have oracle-access
to a broadcast and arbitrary two-party functionalities. Our proof strategy for proving this
impossibility is essentially identical to a previous proof by Ishai, Ostrovsky, and Seyalioglu [20],
which shows that the same result holds if one aims for active security with identifiable abort.
Similary to the actively secure identifiable abort compiler of [21], this motivates our approach
of our covert security compilers, which make black-box access to the next-message function of
a passively secure protocol, instead of general two-party functionalities like oblivious transfer.
We do not claim any particular technical novelty here, but we provide the full proof in the
full version for the sake of completeness.
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1.1.6 Concurrent and Subsequent Work

Concurrently to our work,? Faust et al. [16] presented a compiler for publicly verifiable
covert security. Their work does not consider identifiable abort, but is similar to our second
compiler for public verifiability using time-lock puzzles. We mention here a few differences.
Firstly, our protocol is more lightweight in its use of generic actively secure MPC, since
we do not need to generate a time-lock puzzle inside MPC. This means we only invoke an
actively secure protocol on a circuit with O(nkX) AND gates, for n parties, covert repetition
factor k and security parameter A, compared with O(nkX + log® N ) gates, where N is an
RSA modulus, for the optimized variant of [16]. Secondly, in our protocol, less data is
sent over a broadcast channel, since our compiler only broadcasts hashes of the underlying
semi-honest protocol instead of the entire transcript. On the other hand, while our compiler
requires the parties and judge to solve n time-lock puzzles, [16] only requires solving a single
time-lock puzzle, and also uses the notion of a verifiable TLP, which leads to a more efficient
judge, with a fast way of verifying puzzle solutions. Also, the security notions are slightly
different, since [16] realizes a relaxed form of covert security, where the adversary may choose
to cheat after learning its output, while we use the standard definition, but only consider
relaxed preprocessing functionalities where corrupt parties may choose their own outputs
(for preprocessing functionalities, this notion is implied by that of [16]). Finally, we give
concretely efficient instantiations of our protocols, while [16] mainly analyzes asymptotic
efficiency.

Subsequently to our work, the recent work of [15] introduces a new notion of financially
backed covert security (FBC) which extends the notion of publicly verifiable covert security,
where the corrupted party gets financially punished (rather than only being publicly detected).
They generically transform different types of PVC protocols into FBC protocols, and their
work can also be applied to our PVC protocols.

1.2 Technical Overview
1.2.1 Covert Security via Cut-and-Choose

Most existing protocols [2, 17, 10, 1, 11, 22, 19, 13] (with the exception of [13]) for secure
computation with covert security follow the same general blueprint. They all start by
considering some passively secure protocol that is run k times in parallel, where k£ — 1
randomly chosen executions will eventually be opened and used for checking the behaviour of
the involved parties and the last remaining execution will be used for computing the desired
output. From a technical point of view, the main challenge is to find the right moment for
revealing which executions are checked and opening them. If the executions are opened too
early, then cheating may be possible in subsequent phases of these protocols. If they are
opened too late, then there is a risk of revealing information about the private inputs of the
honest parties.

A well-suited class of protocols, that implement some function f, to consider in this
setting, are those that can be split into two phases: (1) a passively secure, but input-
independent, preprocessing phase which realizes a correlated randomness functionality; (2)
an actively secure online phase which takes as input the correlated randomness from the
preprocessing phase in order to implement f. For technical reasons, we focus on passively
secure preprocessing protocols which realize a mildly relaxed form of functionality called a

2 Both papers were submitted to Eurocrypt 2021.
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corruptible correlated randomness functionality [8]. Here, the functionality is parameterized
by some distribution D, and gives the adversary the power to choose the outputs from D
that are given to the malicious parties; the functionality then reverse samples the output for
the honest parties based on the malicious parties’ output and the distribution D. This class
of functionalities encompasses those in popular MPC protocols like the BMR protocol [6]
or the SPDZ framework [14]. Given such a protocol, we can run the preprocessing phase
k times in parallel and check k — 1 executions at the very end of that phase. If the check
passes, the protocol proceeds to the actively secure online phase, where misbehavior is no
longer a concern. Looking ahead, we would like to stress that our final protocols all satisfy
the standard notion of covert security, despite using a relaxed preprocessing functionality.

Given this high-level blueprint, the remaining task is to design an appropriate check
protocol that enables the honest parties to agree on a misbehaving party. To see whether
some party P; has sent the correct message in round r during the protocol execution, one
needs to know P;’s private random tape and all messages P; has received so far.

Based on these observations, a first attempt towards designing a check protocol could
be as follows: Initially all parties commit to k random tapes each, i.e. each P; for i € [n]
commits to random tapes 7(; 1), ..., 7(,k)- The parties run the preprocessing protocol k times,
where P; uses random tape r(; ;) in execution j. Once all k executions terminate, the parties
jointly flip a coin ¢ € [k] and open all commitments via broadcast belonging to executions
J € [k] with j # c. If any party aborts at this stage, we accuse it of cheating. If none of the
parties abort, then everybody will know the vectors (r(1 ;),...,7(n,)) of random tapes used
in executions j # c¢. Each party P; can use the vectors of random tapes to generate a full
honest transcript for each execution and use it to check whether it received messages that
were consistent with the honest transcript during the protocol execution. Unfortunately, this
approach has several problems.

The first one is that two honest parties, who may receive malformed messages from
different adversarially corrupt parties during the protocol executions, have no obvious way of
agreeing on which party to accuse unanimously. Even worse, a malicious party could falsely
accuse some honest party to further make everyone’s life more difficult.

Figure 1 Illustration of inconsistent cheater identification.

The second, problem is that P; receiving a message from P; that is inconsistent with the
honest transcript does not mean that P; misbehaved. Consider the example in Figure 1,
where all parties behave honestly (indicated by solid black lines) except for some corrupt
party A, which sends a malformed messages to P» (red dashed line).

Given that P»’s messages to P; may be a function of the messages it receives from A, we
potentially end up in a situation, where P, subsequently sends an incorrect, but honestly
generated, message to P; (dashed black line). The takeaway from this discussion is that P;
cannot simply compare the messages it received from other parties with the messages in
an honest transcript to deduce who misbehaved in the protocol execution. This is exactly
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what goes wrong in the compiler of Goyal et al. [17], which tries to recover from cheating by
opening the randomness for the underlying semi-honest protocol 7. When 7 is instantiated
using the GMW protocol based on pairwise OT channels, as suggested in [17], although
cheating may be detected, it is not possible to identify the cheating party.

If the semi-honest protocol in their approach was adjusted to send every message over a
broadcast channel (using public-key encryption), then their approach would be sound. This,
however, would introduce an overhead of O(n) broadcasts; even when all parties behave
honestly. Looking ahead, our protocol will only make use of broadcasts when malicious
parties actively misbehave. Even in the presence of an adversary who tries to trigger as many
broadcasts as possible, our protocol is still more efficient than the approach of Goyal et al.,
since for the specific case of BMR, we use various optimizations which means that only one
instead of k garbled circuits needs to be broadcast. Additionally, it is worth noting that in
the case of public verifiability covert security, we only need broadcast with abort, which can
be instantiated much more efficiently.

1.2.2 Achieving ldentifiable Abort

To get around the issue described above, we define a new property for MPC protocols that
we call identifiable cheating from random tapes (IDC). We say that a protocol has the given
property, if there exist two protocols Certify and Identify associated with the given protocol.
Certify takes the random tapes of all parties in an execution and the local view of some party
P; as input and outputs a partial certificate cert;. The algorithm ldentify takes n partial
certificates as input and either outputs the index of a malicious party that misbehaved in the
protocol execution or outputs L to indicate that nobody misbehaved. Importantly, we require
Identify to function correctly, even if the corrupted parties output false partial certificates or
do not send anything. We show how to transform any passively secure protocol into one that
supports IDC. The formal details and results regarding this property can be found in the
full version. We remark that the notion of P-verifiability from [21] achieves a similar goal,
but this transformation (and the variant from [5]) uses broadcast so is less efficient.

Now, we can follow the blueprint for constructing covertly secure protocols outlined
before, but instead of each party comparing its view to the messages in an honest execution,
we use Certify and ldentify to check whether any party misbehaved and if so which index to
output. The details of this construction can be found in Section 3.

1.2.3 Public Verifiability

To obtain not only covert security, but also public verifiability, we have to overcome several
additional challenges. The first problem is that the IDC property sketched above is not
sufficient for producing publicly verifiable certificates. More concretely, the IDC property does
not provide any guarantees about the output of ldentify, when the adversary is additionally
allowed to replace some of the honest parties’ partial certificates with some maliciously chosen
values. This could potentially enable the adversary to produce a collection of false partial
certificates, which accuse an honest party of misbehaving. Hence, we need a stronger flavor
of this building block, which we call publicly verifiable identifiable cheating from random
tapes (PVIDC), where ldentify correctly identifies a malicious party or outputs L, even if the
adversary is allowed to tamper with the honest parties’ partial certificates. Here again, we
show how to transform arbitrary passively secure protocols into ones that support PVIDC.
Our transformation for obtaining PVIDC is slightly less efficient than the transformation for
just IDC, but still significantly more efficient than running a fully actively secure protocol.
The formal definition of this property can be found in the full version.
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The second problem is, that upon revealing which executions should be checked, the
adversary can simply stop responding and thereby prevent the honest parties from checking
the executions and obtaining a certificate of the adversary’s misbehavior. In contrast to
covert security without public verifiability, here we cannot simply accuse the aborting party
of cheating, because the honest parties have no corresponding publicly verifiable evidence.
At first glance, our goals at this step may even seem contradictory. On one hand, during
the checking phase, we would like to ensure that the adversary cannot tell whether the
information it is about to reveal is useful for incriminating it. On the other hand, we would
like to ensure that any other party can use the revealed information for determining whether
cheating has happened or not and who the cheating party was.

To get out of this predicament, we make use of a tool called time-lock puzzles [23]. Such
puzzles allow a sender to publish a message that cannot be read before a certain time has
passed, e.g. in our case before at least some number of rounds in a synchronized network
have passed. Crucially, the message becomes visible eventually, without any interaction from
the sender. Time-lock puzzles can be built from RSA-based timing assumptions, without
any trusted setup and generating a puzzle requires just a single exponentiation. Recently,
time-lock puzzles have also been used to build 2-PC with output-independent abort [3], with
a construction using similar ideas to ours (except that we are in the multi-party setting, and
also achieve public verifiablity).

On an intuitive level, we use time-lock puzzles as follows:®> At the beginning of the
checking phase, all parties jointly execute an actively secure MPC protocol, where each party
P; inputs all k& commitment openings that belong to the random tapes the party used. The
MPC protocol picks k — 1 executions at random and outputs time-lock puzzles of all random
tapes belonging to those. Additionally, the parties obtain a secret sharing of the index ¢ of the
execution that is not being checked. All parties sign the time-lock puzzles, the commitments
and broadcast the computed signatures. Because the puzzles cannot be solved fast enough,
the adversary needs to decide whether to abort this phase of the execution without seeing
the contents of the puzzles and thus without knowing which executions are being checked.
Once the honest parties have signatures of the corrupted parties on the time-lock puzzles,
they are, roughly speaking, guaranteed to have some useful information that can be shown
to an external party in case cheating will be detected. Once all parties signed the time-lock
puzzles, they all publish their share of ¢ and then publish the openings of the random tapes
used in the executions j # c¢. Now if the adversary decides to abort, because it doesn’t like
which executions are being checked, then the honest parties can obtain its necessary random
tapes from the signed time-lock puzzles.

In our final protocol, the time-lock puzzles are generated locally by the parties, outside
of MPC, and incur an overhead that is independent of the size of the circuit to be evaluated.
Considering the evaluation of larger circuits, these additional costs from using time-lock
puzzles become minor and in executions, where all parties behave honestly, no time-lock
puzzles need to be solved by any party. The details of this protocol can be found in full
version.

3 We are omitting several important details here that can be found in the technical parts, e.g. in the full
version of the paper.
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1.2.4 Instantiating the Compilers

Our compilers can be instantiated with any MPC protocol in the preprocessing model, as
long as its preprocessing functionality implements the corruptible correlated randomness
functionality explained above. For most MPC protocols based on secret-sharing, this
requirement is already satisfied out-of-the-box. This includes protocols such as SPDZ [14, 11],
TinyTable [12] and a version of SPDZ with identifiable abort [4]. We therefore easily obtain
covertly secure variants of these protocols (with public verifiability or identifiable abort) by
plugging in a semi-honest version of the preprocessing, which improves efficiency by avoiding
e.g. expensive zero-knowledge proofs typically used in SPDZ.

The case of constant-round MPC, based on garbled circuits, is slightly more challenging.
Here, if we want public verifiability, we can again directly apply our compiler to a semi-honest
version of the BMR protocol similar to [7, 18], since we observe this works with a corruptible
preprocessing functionality (we in fact give an optimized semi-honest preprocessing protocol,
which reduces the number of OTs by 25%).

For identifiable abort, however, we need to modify the BMR, functionality so that (1) we
get a secure online phase with identifiable abort, and (2) the BMR functionality should be a
corruptible preprocessing functionality. We observe that (1) is straightforward to achieve, by
having each party send a commitment to its share of the garbled circuit in the preprocessing
protocol; this ensures that any party who sends an incorrect share in the online phase can
by identified, and is also cheap to implement, since our compiler only needs this to be done
with passive security.

However, this is not compatible with the definition of a corruptible preprocessing function-
ality, indeed we would have to reverse-sample an honest party’s message and decommitment
information, after the corresponding commitment is provided by the adversary. This strong
form of equivocation is not possible with standard commitments. Instead, we use unanimously
identifiable commitments [20], which can be built information-theoretically in such a way that
allows this. Setting up these commitments involves a little more work in the preprocessing,
but this overhead is independent of the circuit size, since the parties only commit to a hash
of their garbled circuit shares.

2 Preliminaries

Notation

Let A be the computational and ¢ be the statistical security parameter. We write [n] to
denote the set {1,...,n}. For all algorithms that follow, we will regularly omit the security
parameter input and it is understood that this input is provided implicitly. We define the
view of a party in the execution of the protocol II as the messages she received during an
execution of II along with her input and random tapes. For a functionality F, we write [F ]ida
to denote the corresponding ideal functionality with identifiable abort.

Secure Broadcast

We assume a broadcast channel, as well as a public-key infrastructure (PKI) which is implied
by broadcast. In our protocols with public verifiability, it is enough to have broadcast with
abort, which can be implemented with a cheap, 2-round echo protocol. For our protocols
with identifiable abort, however the broadcast must be identifiable, which involves a more
expensive protocol with O(n) rounds and digital signatures.

8:9
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Secure Multiparty Computation

All of our security definitions follow the ideal/real simulation paradigm in the standalone
model. Throughout this paper we will consider protocols that are executed over a synchronous
network with static, rushing adversaries and we assume the existence of secure authenticated
point-to-point channels between the parties. The MPC definitions can be found in the
full version, in particular the standard notion of covert security and covert security with
publicly verifiability are defined; we remark that in the notion of covert security, we explicitly
require identifiable abort, meaning that the honest parties agree upon the identity of the
party who caused an abort. On the other hand, covert security with public verifiability is
not identifiable; the adversary just sends the abort command without an index.

The other useful definitions, for instance time-lock puzzle, can be found in the full version.

2.1 Corruptible Correlated Randomness Functionality

For our work we will consider a mild relaxation of correlated randomness functionality F2,,
called a corruptible correlated randomness functionality [8]. 2, allows the parties in the
corrupted set C' to choose their correlated randomness {R.};cc and then FZ, has to reverse
sample based on {R.};cc the correlated randomness for the honest parties consistently
with the distribution D. We model this equipping the functionality 72 with an efficient
reverse sample algorithm RS. We note that FL, is nonetheless sufficient for all major overall

protocols in the preprocessing model.

Functionality F2

corr

The functionality interacts with parties Pi,..., P,. Let C C [n] be the set of parties
corrupted by the ideal world adversary S.

Upon receiving message (CorrRand, {R}},cc) from S, the functionality samples
{Ri}iempc < RS({R}}icc, D) and sends R; to each P; with i € [n] \ C.

Figure 2 Functionality for corruptible correlated randomness.

» Remark 1. We note that our ideal functionality implicitly requires the adversary S to provide
adversarial correlated randomness that can be part of a valid output of the functionality.
This is not a restriction, since we will later on prove that any real-world adversarial attack
can be translated into such a restricted ideal-world adversary.

3 Preprocessing with Identifiable Abort

In this section we are presenting a protocol [l which implements F2  with security
against covert adversaries, who corrupts n — 1 parties, and deterrence factor e =1 — %
[Teorr]«°Y makes use of a preprocessing protocol Il that has identifiable cheating from
random tapes (IDC), and consistent identifiable abort. Roughly speaking, [TI.o|“Y proceeds
as follow. Initially each party commits to k random tapes that are a result of a coin-flip, i.e.
each P; for ¢ € [n] commits to random tapes r; 1, ...,7; . The parties run the preprocessing
protocol e k times, where P; uses random tape 7; ¢ in execution £. Once all £ executions
terminate, the parties jointly flip a coin ¢ € [k] and open all commitments via broadcast
belonging to executions ¢ € [k] with ¢ # c. If any party aborts at this stage, we accuse it of
cheating. If none of the parties abort, then everybody will know the vectors (r1,¢,...,7n,¢)
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of random tapes used in executions £ # c¢. Once each party P; received vectors of random
tapes she runs algorithms Certify and Ver of I, in order to identify if a malicious party
misbehaved. If no cheating is detected P; outputs the output of the c-th execution of Ilcyy-

The formal description of the protocol can be found in Figure 3. In the formal description
to not overburden the notation we avoid to specify that when a party, say P;, does not
broadcast a message (or the parties receive an (abort, ) from the functionality) the parties
terminates the computation sending (corrupted, 7).

Protocol [IIc | covprot

Let I be a protocol that computes FE. with passive security and has identifiable
cheating from random tapes and consistent identifiability abort.

1. Each party P; receives a signing key sk; and verification keys vk, ..., vk, from the
PKI.

. For i,j € [n], each P; sends (comFlip, (i,1)),. .., (comFlip, (i, k)) to [FrLp].

. For i,j € [n], each P; sends (openOne, (i,1),i),..., (openOne, (i, k), i) to [Feup]@.

. For i,j € [n], each P; receives r;1,...,7; ; from the ideal functionality.

(S0~ SN )

. All parties jointly execute Il in parallel k times, where party P; uses random
tape 7; ¢ in the ¢-th execution of the protocol. Let R;, be the output of party F; in
execution /.

6. All parties send (coinFlip,0) to [Frup]¥? and obtain a uniformly random value

€ [k].
7. For ¢ € [k] \ {¢*} each party P,
a. sends (openAll, (4,€)) to [FrLp]'.

b. receives back 7 := (r1¢,...,7n) corresponding to the random tapes used in
execution ¢ from [Fg p)92.
c. computes cert; ¢ < Certify(vky, ..., vky, 77, view; ¢), where view; ¢ is P;’s view in
the /-th execution of Il.q.
d. send cert(; ¢) to [Fac]®.
8. Each party P; receives certificates (certy s, ..., cert, ¢) for each execution ¢ # ¢* and
computes vy < Ver(vky, ..., vky, 7o, certy g, ..., cert, o). Let J be the set of indices

with v # L. If J # (), then P; broadcast (corrupted,v;) with the smallest j from J.
9. Each party P; outputs R; ¢-.

Figure 3 Preprocessing protocol for MPC with covert security and identifiable abort.

» Theorem 2. Suppose protocol Uy, securely implements FL. with passive security, has
identifiable cheating from random tapes, and consistent identifiability abort. Let [FrLp]'9® be
the ideal committed coin flip functionality with identifiable abort. Let [Fgc|? be the broadcast
functionality. Then [[eo ] implements FE.. with security against covert adversaries, who
corrupts n — 1 parties, and deterrence factor e =1 — %

The ideal functionality used in the theorem statement, the proof of Theorem 2 and the
definition of the property of cheating identifiability from random tapes can be also find in
the full version of the paper.
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