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Abstract
Most existing work on secure multi-party computation (MPC) ignores a key idiosyncrasy of modern
communication networks, that there are a limited number of communication paths between any two
nodes, many of which might even be corrupted. The problem becomes particularly acute in the
information-theoretic setting, where the lack of trusted setups (and the cryptographic primitives
they enable) makes communication over sparse networks more challenging. The work by Garay and
Ostrovsky [EUROCRYPT’08] on almost-everywhere MPC (AE-MPC), introduced “best-possible
security” properties for MPC over such incomplete networks, where necessarily some of the honest
parties may be excluded from the computation.

In this work, we provide a universally composable definition of almost-everywhere security,
which allows us to automatically and accurately capture the guarantees of AE-MPC (as well as
AE-communication, the analogous “best-possible security” version of secure communication) in the
Universal Composability (UC) framework of Canetti. Our results offer the first simulation-based
treatment of this important but under-investigated problem, along with the first simulation-based
proof of AE-MPC. To achieve that goal, we state and prove a general composition theorem, which
makes precise the level or “quality” of AE-security that is obtained when a protocol’s hybrids are
replaced with almost-everywhere components.
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1 Introduction

Secure multi-party computation (MPC) allows n parties communicating over a network to
compute a function on their private inputs so that an adversary corrupting some of the
parties can neither disrupt the computation (correctness) nor learn more than (what can be
inferred from) the output of the function being computed (privacy).

Despite great progress on the problem since it was first introduced and proven feasible [44,
27, 8, 18] involving hundreds, if not thousands, of publications in cryptography and security,
and, more recently, even implemented systems, the overwhelming majority of the solutions
assume a complete communication network of either authenticated (aka reliable) or secure
(both authenticated and private) point-to-point channels. In fact, with only a few exceptions,
this is the case for both practical and theoretical works on MPC, and in particular for works
on composable security of MPC – indeed, the latter almost exclusively assume a network
that cannot be disconnected by the adversary. This creates a disconnect between the vast
MPC literature and modern ad-hoc networks, such as the Internet, where the communication
might be occurring over an incomplete graph, with some nodes even being routing nodes.

At first approximation, there are two situations that might present themselves in such an
incomplete network: Either the adversary is able to disconnect the communication graph –
by corrupting nodes whose edges are in cuts of the graph – or not. In the former case, it is
known that if the parties do not share an authentication-enabling setup, such as a PKI, then
the best that can be achieved is the so-called secure computation without authentication [6]:
The adversary is able to break down the player set into connected components, so that parties
in different connected components compute different instances of the function with inputs
from the component – and all other inputs chosen by the adversary, and potentially different
for each component. Even this weak form of security is only achievable for computationally
bounded adversaries; if one is after information-theoretic (aka unconditional) security, where
the adversary is unbounded, then the above guarantee is too much to ask for.

Notwithstanding, even in the latter case, where the adversary cannot disconnect the
network, the situation is trickier than one might expect. Indeed, if a PKI-like setup is not
assumed1 then it is known that secure communication between any two parties requires the
existence of O(n) paths among them (known to or discoverable by the receiver), the majority
of which must remain uncorrupted. This is the well-known secure message transmission
(SMT) problem [20]. The result holds even for the reliable message transmission (RMT)
problem, in which only correctness is required.

That leads to the following natural question: What is the “best-possible” MPC security
we can obtain in such a situation where SMT cannot be in general guaranteed? Towards
answering this question, Garay and Ostrovsky [25] introduced the properties of almost-
everywhere MPC (AE-MPC), which extended the concept of AE reliable communication
previously studied by Dwork et al. [21]. In a nutshell, the paradigm of almost-everywhere

1 A PKI trivializes this case as a complete graph can be built by gossip (i.e., flooding) of signed messages.
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security (AE-security) recognizes that when even all-to-all SMT is not possible (and only
AE-SMT is available), then inevitably there will be uncorrupted parties for which we are
unable to offer the security guarantees that honest parties enjoy in MPC (privacy, correctness,
etc). The core mission is then to minimize the number of such left-out (aka doomed) parties
in an AE-secure construction, while tolerating the maximum number of corruptions.

However, despite a number of elegant combinatorial arguments to achieve the above
goal, the security definition used by these constructions has not caught up with the state
of the art in MPC security. In particular, to the best of our knowledge, there exists no
simulation-based treatment of AE-security. This means that one cannot directly compose
the elegant constructions of AE-secure primitives into a higher level protocol. For example,
one would hope to be able to prove that running a standard MPC protocol over an AE-SMT
network yields an AE-MPC protocol which does not leave more doomed parties than the
underlying AE-SMT construction. Given the state of the art, such a modular statement
would be impossible, and one would need to prove AE-MPC security from scratch. Instead,
a simulation-based treatment in one of the composable security frameworks would inherit a
modular composition theorem making such statements tractable and simpler.

This work’s main goal is to derive such a treatment in the Universal Composability
(UC) framework of Canetti [13]. A major challenge, which we tackle, is to obtain a generic
definition of AE-security which can be applied to any type of functionality and captures
both AE-communication and AE-computation, two primitives whose treatment has been
very different. In fact, we achieve this goal by introducing a generic, composition-preserving
transformation from a secure variant of a functionality to its AE-secure counterpart. We
show that the derived AE-secure functionalities for secure communication (AE-RMT and
AE-SMT) and for secure MPC (AE-MPC): (1) preserve all the desired properties of the
previous definitions, and (2) are realized by (straightforward UC adaptations of) classical
AE-secure protocols. Since our treatment preserves composability of the (AE-)security
statements, we obtain, as a simple corollary, the first simulation-based proof of AE-MPC.

In passing, we note that although we adopt the language of UC, our definitional framework
is generic and can be applied to any of the main-stream composable security frameworks for
cryptographic protocols [3, 15, 37, 31, 11, 4]. Before providing more details on our results,
we first provide some necessary literature background.

1.1 Related Work
The origins of the “almost-everywhere” (AE) notion can be traced back to the work of Dwork
et al. [21], who considered the task of Byzantine agreement [39, 36] over sparse communication
networks. In such networks, correctness cannot be guaranteed for all honest parties, since
for example the adversary can isolate a node by corrupting all its neighbors. Thus, some
honest parties must be given up, and correctness is guaranteed only almost-everywhere, i.e.,
only for the remaining honest parties. The AE notion can be applied to other distributing
computing tasks as well: Given a set of parties P and an adversary who corrupts T ⊆ P ,
the parties in some set D ⊆ P − T (D for “doomed”) are considered abandoned and the
correctness conditions of the task are only guaranteed for the parties in W = P − T −D

(called “privileged”). Note that both D and W are functions of T as well as of the underlying
protocol and graph. The number of doomed parties thus becomes another parameter to
the problem, and the goal is to construct a low-degree network (ideally of constant degree)
admitting a protocol that tolerates a large number t of corruptions (ideally, a constant
fraction) while dooming as few nodes as possible (ideally O(t) for constant-degree networks).

Returning to the problem of Byzantine agreement, Dolev [19] showed that it requires
connectivity at least 2t + 1 to solve, which implies that every node in the network must have
degree Ω(t). Given this high connectivity requirement, Dwork et al. [21] proposed the notion

ITC 2022
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of AE agreement, in which the agreement and validity properties are guaranteed only for the
privileged parties. They showed how to simulate, over an incomplete network, an agreement
protocol designed for a complete network by replacing the point-to-point communication with
a transmission scheme that works over multiple paths between any two nodes. Thus, they
reduced AE agreement to AE reliable message transmission (AE-RMT), which guarantees
that any two privileged nodes can communicate perfectly reliably.

Dwork et al. gave a number of constructions achieving AE-RMT with various combinations
of parameters; the most important is a constant-degree graph admitting an AE-RMT scheme
tolerating t = O(n/ log n) corruptions while dooming O(t) nodes. Several follow-up works
have obtained improved parameters for AE-RMT (and thus also for AE agreement). Upfal [43]
gave a transmission scheme tolerating t = O(n) corruptions and dooming O(t) nodes in
a network of constant degree, which is the optimal set of parameters, but the protocol is
inefficient. Chandran et al. [17] proposed a scheme tolerating t = O(n) corruptions and
dooming O(t/ log n) nodes in a network of polylogarithmic degree. Most recently, Jayanti
et al. [32] used the probabilistic method to show the existence of a logarithmic-degree graph
admitting an AE-RMT scheme with the same parameters, strictly improving the [17] result.

Due to the results in [19, 20], standard MPC (guaranteeing correctness and privacy for all
honest parties) is possible only in networks with connectivity at least 2t + 1. To circumvent
this high-connectivity requirement and still obtain a meaningful notion of (property-based)
MPC over sparse networks, Garay and Ostrovsky [25] introduced the notion of AE-MPC,
which guarantees correctness and privacy only for the privileged parties2.

“Regular” information-theoretic MPC (i.e., MPC over a complete network) requires
t < n/3 [8, 18]. In the AE setting, the effect of dooming nodes is equivalent to letting the
adversary corrupt some additional t′ nodes (which are doomed) by requesting the corruption
of t nodes (which are actually corrupted). As shown by Garay and Ostrovsky, AE-MPC
in the information-theoretic setting can be achieved when t + t′ < n/3. Their approach
resembles that of Dwork et al. [21] for simulating a protocol meant for a complete network,
but to replace point-to-point secure channels, they introduced a new model for the existing
(perfectly) SMT problem termed secure message transmission by public discussion (SMT-PD).

The original SMT problem [20] considers two honest parties, a sender S and a receiver R,
connected by n disjoint “wires”. The task is for S to send a message to R in the presence
of a computationally unbounded adversary A who can adaptively corrupt up to t of the
wires. SMT requires that the message be conveyed perfectly reliably to R, and also that no
information about the message leaks to A. While the simpler task of RMT (with no secrecy
requirement) can be achieved for t < n/2 by simply duplicating the message over all wires,
Dolev et al. [20] showed that SMT is also possible if and only if t < n/2. Since their initial
feasibility result, much more efficient protocols have been introduced [40, 42, 1, 35, 28, 41].

The SMT-PD model overcomes the necessity of 2t + 1 wires in SMT by allowing access
to an authentic and reliable public channel. Given such a channel (which can be constructed
using, e.g., a broadcast protocol), Garay and Ostrovsky [25] gave a protocol that is secure as
long as one wire remains honest, at the cost of a small error. To use their SMT-PD protocol
over sparse networks (in effect achieving AE-SMT), the wires are replaced by multiple paths
between a pair of nodes and the public channel is replaced by AE broadcast. Garay and
Ostrovsky showed how to construct graphs that admit SMT-PD from any of the networks in

2 Technically, they considered the related task of secure function evaluation (SFE). We do the same,
although for consistency we still refer to the functionality that we realize as AE-MPC.
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the AE agreement literature, with asymptotically preserved parameters. Finally, they showed
how to “compile” a standard information-theoretic MPC protocol into an AE-MPC protocol
over any such graph, dooming the same number of parties as the underlying network.

To reiterate, all the above constructions are shown secure in a property-based manner.
Other related notions include hybrid failure models (e.g., [26, 23]) and the model of Alon
et al. [2]. In the AE setting, adversarial corruptions also have the effect of indirectly
influencing the behavior of some of the honest parties (those who are doomed), but in our
model this other type of failure is defined structurally, based on the graph and the set of
corruptions. Also related is the work by King and Saia [34] and follow-ups (e.g., [9, 10]), who
considered full (not AE) Byzantine agreement over complete networks, but without all-to-all
communication.

1.2 Overview of Our Results
In this work we put forth the first composable (simulation-based) definition and treatment of
AE-security. In particular, we devise a definition in Canetti’s UC framework [13] and prove
that the (UC adaptation of) existing AE-secure communication/computation protocols achieve
this definition. We emphasize that all of our constructions tolerate adaptive corruptions.

There are several challenges associated with such a task. First, as should be evident from
the above discussion, the related literature – from RMT/SMT, to Byzantine agreement, to
MPC, and even their AE counterparts – treats the underlying network in different ways:
e.g., in MPC, the network is typically a complete graph of point-to-point channels, whereas
the literature on (AE-)RMT assumes multiple paths (wires or indirect paths) between two
parties. Thus, to derive a formulation general enough to capture the security of the above
constructions, one first needs to develop a unified approach. Towards this goal, we adopt
the graph model as a basis for all these protocols, and express the wires in the RMT/SMT
literature as a simple graph which for each wire includes a path going through a unique
“wire-party.” We can then model corrupted wires as standard (party) corruptions in UC.

The second, and more thorny challenge is regarding the (simulation of) doomed parties.
Recall that those are parties that due to their poor connectivity (which might be the result
of the sparsity of the graph and the corruption choices of the adversary) cannot enjoy the
security guarantees that the protocol is designed to offer to honest parties (e.g., correctness
and privacy for an MPC protocol). A strawman approach would be to capture those parties
plainly as corrupted. This, however, is problematic in several ways: First, corrupted parties
lose their security guarantees as soon as they become corrupted, unlike doomed parties who
might, at the adversary’s discretion, still be allowed some level of security. In particular, the
real-world adversary might allow those parties to receive their outputs, which would mean
that in the ideal world, the simulator would also need to allow them to produce an output
on their output tape, which is not allowed by the UC corruption mechanism.

An attempt to fix the above issue would be to define weaker corruption types corresponding
to the flexible guarantees offered to the doomed parties. This, however, is also problematic,
as corruptions in UC are by default known to (and declared by) the adversary/environment,
whereas the actual identities of doomed parties are not, and depend on the behavior of the
adversary (not just the identities of malicious parties). In particular, an adversary following,
e.g., a random strategy might not even be aware who is becoming doomed by this strategy.

A third attempt would be to completely change the corruption mechanism of UC so that
certain corruptions are not to be declared by the environment. But this would immediately
invalidate the composition theorem, which defeats the purpose of using UC in the first place.

It might seem like we are in a deadlock, but the second attempt above is the one that
breaks through. In particular, we observe that although the adversary might not include in

ITC 2022
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its view the identities of the doomed parties, its behavior still defines these identities and the
corresponding guarantees they receive. This is similar to how inputs of corrupted parties
are treated in standard UC security: It is the job of the simulator to extract them from the
adversary and hand them over to the functionality.

Accordingly, instead of modifying the foundations of UC, we define a class of functionalities
which take requests from their adversary (simulator) to mark parties as doomed, and allow
the simulator to use these parties as if they were corrupted, but without declaring them
as corrupted to the framework and without grounding their input/output tapes (e.g., the
simulator might still instruct this new functionality to deliver output for doomed parties). In
fact, this is done in a black-box manner, by wrapping an underlying (non-AE) functionality.

In more detail, our AE wrapper builds the entire infrastructure of UC around it (including
a fake corruption directory), and whenever a doom request comes in, the wrapper pretends
towards its wrapped functionality to be an adversary that corrupts this party. This way, the
party remains honest as far as the UC experiment is concerned, but the wrapper now has
the ability to give full control over this party to the simulator it interacts with.

The final piece of the puzzle is capturing different ratios of corrupted vs doomed parties
while making a composable statement. Here we use an idea inspired by [5]: We parameterize
the wrapper by the set of all allowable corruption/doom patterns, and make sure that any
request outside this set is ignored. For example, to prove security of AE-MPC with t < αn

corruptions and d < βn doomed parties, we can parameterize the wrapper with the pair
(α, β) and ignore requests of simulators that do not respect the above requirements.

In fact, to allow for the tightest possible results that accurately translate non-threshold
corruption/doom patterns (the types of results we get by using structural properties of the
underlying graph), we draw inspiration from the mixed general adversary literature [29, 7].
That is, we parameterize the wrapper with a corruption/doom structure (“doom structure” for
short), consisting of all allowed pairs (C, D) where parties in D can be doomed simultaneously
to parties in C being corrupted. As is common in the general adversary literature, such a
structure might be exponentially large. Although this is not an issue in our definition, we note
that all our concrete instantiations consider structures that have a polynomial representation.

We then apply our definitional framework to capture known AE-secure constructions, as
well as (simulation-based) AE-MPC. Next, we describe our results in greater detail.

Almost-Everywhere RMT and SMT. We start in Section 3 by modeling the tasks of RMT
and SMT (with a dedicated sender and receiver connected by a number of corruptible wires).
As part of this, we show how these primitives, which have classically only been considered for
an honest majority of wires, can be captured so that their security is defined independently
of the number of corrupted wires. To apply a unified treatment, we cast the problem by
modeling each wire with a (corruptible) dummy party called a “wire-party,” which simply
relays messages between S and R. In Section 3.1, we confirm that classical RMT/SMT
protocols [20] are UC-secure (in the ordinary, non-AE sense) in our model against corrupted
minorities of wire-parties. To handle corrupted majorities (and more generally to capture
AE-security), in Section 3.2 we introduce an AE wrapper functionality that is parameterized
by a doom structure as defined above. We can then state the AE-security of RMT/SMT
protocols, by using a simple doom structure like the one that allows dooming S or R when a
majority of the wire-parties are corrupted. We finish up in Section 3.3 with a universally
composable treatment of the SMT-PD problem [25]. We model the public channel using
access to the same functionality that we use to capture RMT security. Looking ahead, we
will need SMT-PD when we want to elevate RMT to SMT over some classes of sparse graphs.
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Almost-Everywhere Remote RMT and SMT. In Section 4, we consider the more compli-
cated case where an incomplete graph connects several parties and yet all-to-all communication
is desired. Interestingly, we show that the same wrapper from Section 3.2, which allowed for
the simulation-based treatment of tasks like RMT and SMT even against corrupted majorities
of wires, can also be used to model AE-security of the all-to-all versions of those tasks. In
particular, in Section 4.1 we use the same ideal functionalities and wrapper (with more com-
plex doom structures) from Section 3 to provide the first universally composable treatment
of (AE) reliable communication over the sparse graphs constructed in [21, 43, 17, 32], which
we refer to as AE remote RMT. In Section 4.2, we extend our treatment to AE remote SMT
for all of these graphs. First, we show that a perfect SMT protocol from [20] can be adapted
to realize perfectly secure AE-SMT over a class of sparse graphs constructed in [21]. In
general, the same approach cannot be directly extended to achieve privacy for other graphs.
To overcome this, we adapt an SMT-PD protocol from [25] to realize AE-SMT over the
graphs in [43, 17, 32], at the cost of obtaining only statistical UC security.

Almost-Everywhere Secure Computation. Lastly, we study the composability of AE-
security guarantees, with the ultimate goal of realizing AE-MPC. In Section 5.1, we prove
a general composition theorem, which makes precise the level or “quality” of AE-security
(as captured in a doom structure) that is obtained when a protocol’s hybrids are replaced
with AE counterparts. We emphasize that this AE compiler need not replace all of the
hybrids with AE-wrapped versions using the same doom structure; thus, we are able to
explain, for example, what happens when a protocol uses subprotocols that provide differing
levels of AE-security. Our composition theorem applies even to protocols that already carry
some level of AE-security, and therefore the compiled protocol can easily be composed with
higher-level protocols. As a simple corollary, we show that a protocol achieving standard
(non-AE) security using a single hybrid can be compiled into an AE-secure protocol while
preserving the doom structure associated with the wrapped hybrid. In Section 5.2, we apply
this corollary to obtain the first simulation-based proof of AE-MPC, over any of the classes
of sparse graphs considered in the AE agreement literature [21, 43, 17, 32]. Depending on
which class of sparse graphs is used, we obtain either perfect or statistical UC security.

Next, we review some preliminaries. Due to space limitations, some of the functionalities,
protocols, and proofs are presented in the appendix or in the full version of the paper [16].

2 Preliminaries

2.1 UC Basics
We briefly summarize the UC framework [13] here. Protocol machines, ideal functionalities,
the adversary, and the environment are all modeled as interactive Turing machine (ITM)
instances, or ITIs. An execution of protocol π consists of a series of activations of ITIs,
starting with the environment Z who provides inputs to and collects outputs from the parties
and the adversary A; parties can also give input to and collect output from sub-parties,
and A can communicate with parties via messages. Corruption of parties is modeled by a
special corrupt message sent from A to the party; upon receipt of this message, the party
sends its entire local state to A, and in all future activations follows the instructions of A.
Note that a party pi can only be corrupted once A receives a special (corrupt pi) input
from Z. Denote by execπ,A,Z the probability distribution ensemble corresponding to the
output of Z at the end of an execution of π with adversary A. The ideal-world process for
functionality F is simply defined as an execution of the ideal protocol idealF , in which the
so-called “dummy” parties just forward inputs from Z to F and forward outputs from F to
Z. The corresponding ensemble is denoted by idealF,S,Z .

ITC 2022
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We are interested in unconditional security. Thus, we say that a protocol π UC-realizes
an ideal functionality F if for any computationally unbounded adversary A, there exists
a simulator S (polynomial in the complexity of A) such that for any computationally
unbounded environment Z, we have idealF,S,Z ≡ execπ,A,Z . Statistical UC-realization
requires only that the two ensembles be indistinguishable. When π is a (G1, . . . ,Gn)-hybrid
protocol (i.e., making subroutine calls to idealG1 , . . . , idealGn), we say that π UC-realizes
F in the (G1, . . . ,Gn)-hybrid model. It turns out that (regular) UC-realization is equivalent
to UC-realization with respect to the “dummy” adversary D, which simply follows the
instructions of Z on which messages to send, and reports all received messages to Z.

We will assume synchronous computation (i.e., our protocols proceed in rounds), and the
adversary is assumed to be rushing. Although our treatment is in the (G)UC setting, to avoid
over-complicating the exposition we use the standard round-based language of, e.g., [12, 38].
Notwithstanding, such specifications can be translated to the synchronous UC model of Katz
et al. [33] by assuming a clock functionality and bounded (zero) delay channels.

2.2 Building Blocks
Here we present some building blocks that we will use in our constructions, as well as
(somewhat informal) property-based definitions to contrast with our UC formulations.

▶ Definition 1 (SMT). A protocol Π achieves (t-)SMT if it allows S to send a message
m ∈M to R such that the following hold for any adversary A corrupting up to t of the wires:

Reliability: R correctly outputs m′ = m.
Secrecy: A learns no information about m.

We define RMT by omitting the secrecy property, and AE-RMT and AE-SMT are defined
by only requiring the properties to hold for privileged S and R (over some sparse graph).

For simplicity, we will use the 3-phase SMT protocol Πddwy(γ⃗, τ, m) presented in Figure 3
(Appendix A), which is essentially the FastSMT protocol from [20]. The n wires are denoted
by γ⃗ = (γ1, . . . , γn), and τ = ⌈n

2 ⌉ − 1 specifies how many corrupted wires can be tolerated.
Although the protocol assumes access to an authenticated channel between S and R, this can
be implemented by simply sending the message over all wires and having R take majority.

We will sometimes need the SMT-PD protocol Πpub-smt(γ⃗, Pub, m, l) presented in Figure 4
(Appendix A), which was given in [25] and tolerates n− 1 wire corruptions, assuming access
to a public channel Pub and allowing a small probability of error (determined by l).

Finally, we present the security definition for (property-based) AE-MPC that was given
in [25]. Recall that W is the set of privileged nodes, as a function of the set of corruptions.

▶ Definition 2 (AE-MPC, [25]). An n-player two-phase protocol Π achieves AE-MPC if for
any initial value xi for party Pi for each i ∈ [n], any probabilistic polynomial-time computable
function f , and any adversary A corrupting a set T of parties, there exists a subset W of
honest parties such that the following properties hold at the end of the respective phases:
Commitment phase: During this phase, all players commit to their inputs.

Binding: For all Pi there is a uniquely defined value x∗
i ; if Pi ∈W , then x∗

i = xi.
Privacy: For all Pi ∈W , x∗

i is information-theoretically hidden.
Computation phase:

Correctness: All Pi ∈W output f(x∗
1, . . . , x∗

n).
Privacy: For all Pi ∈W , no information about x∗

i beyond what can be inferred from
the output of the corrupted parties leaks to A by this phase.
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3 Almost-Everywhere RMT and SMT

In this section, we use the UC framework to capture classical RMT and SMT protocols,
which work in a model where the sender S and receiver R are connected by n disjoint wires,
as in the abstract formulation of [20]. Although this is a simple model, here we give a novel
treatment of these tasks that also serves as a warm-up to our later results, which look at
these tasks over sparse graphs. Since the classical protocols may not provide security when
enough of the wires are corrupted, we also introduce an AE wrapper that allows parties
interacting with the underlying functionality to be marked as “doomed” in such cases. In
Section 4, where we consider remote RMT and SMT, we will realize the same functionalities
for RMT and SMT defined in this section, just in a wrapped form with different parameters.

We begin by modeling the disjoint wires from the classical setting as virtual wires that
are represented by UC parties, which we call wire-parties and denote by W1, . . . , Wn (W⃗
for short). The idea is that a wire-party can securely forward a message from S to R or
vice versa as long as it is not corrupted, just as a wire in the classical model can securely
transmit a message between S and R as long as it is free of corruptions. Since the basic
communication model in UC is completely unprotected, we assume access to the ideal secure
channel functionality FS,R,W⃗

sc (see the full version [16] for a formal specification), which
provides secure communication between an honest S or R and an honest wire-party over a
single round. Looking ahead, this functionality is very similar to the functionality we use to
capture secure channels between every pair of nodes connected by an edge in a sparse graph.3

For convenience, we use FS,R,W⃗
sc to realize the wire channel functionality FS,R,W⃗

wc presented
in Figure 5 (Appendix A), which abstracts the process of sending a message to a wire-party,
who then forwards it to S or R. The functionality actually allows sending a potentially
different message through each wire-party in parallel, and it provides security for a given
message as long as S, R, and the wire-party in question are all honest. Since we are
considering virtual wires that consist of just one intermediate node, the functionality requires
two rounds to generate output. In FS,R,W⃗

wc (and all of our functionalities), l(·) refers to length
and Infl is short for “influence” (see, e.g., [24]).

We can use the protocol Πwc(S, R, W⃗ ), which simply routes each message mi from S to
R (or R to S) via Wi using two instances of FS,R,W⃗

sc , to realize FS,R,W⃗
wc . The proof, as well

as a formal specification of Πwc(S, R, W⃗ ), can be found in the full version [16].

▶ Proposition 3. Protocol Πwc(S, R, W⃗ ) UC-realizes FS,R,W⃗
wc in the FS,R,W⃗

sc -hybrid model.

3.1 Universally Composable RMT and SMT
We model the task of RMT in UC with the authenticated channel functionality FP,rnd

auth (see
the full version [16] for a formal specification), which is essentially Canetti’s Fauth [14]
with synchrony (the rnd parameter). There is also a parameter P representing the set of
possible senders and receivers (the functionality itself is single-use). This parameter allows
the functionality to verify that the actual sender and receiver can be identified as specific
nodes in the network topology over which it is being realized, which is necessary because the
realizing protocol will need to perform the same verification.

3 Our RMT protocols only require reliable edges. However, we eventually need secure channels to achieve
SMT and MPC, so for simplicity we present everything in the secure channels hybrid model.
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To realize FP,rnd
auth in the wire-party model (P = {S, R}) assuming only a minority of the

wire-parties get corrupted, we can simply duplicate the message through all wire-parties using
a single instance of FS,R,W⃗

wc , and have the receiver (who may actually be S) take majority.
We formally define protocol Πauth(S, R, W⃗ ) and give a proof in the full version [16].

▶ Theorem 4. Protocol Πauth(S, R, W⃗ ) UC-realizes F{S,R},rnd
auth for rnd = 2 in the FS,R,W⃗

wc -
hybrid model, against an adversary corrupting up to a minority of the wire-parties.

Next, we capture SMT in UC with the secure channel functionality FP,rnd
smt (see the full

version [16] for a formal specification), which is essentially Canetti’s Fsmt [14] with synchrony.
To realize FP,rnd

smt in the wire-party model assuming only a minority of the wire-parties
get corrupted, we can use protocol Πsmt(S, R, W⃗ ) (outlined in the full version [16]), which
is essentially the FastSMT protocol from [20] adapted for our UC treatment. That is, the
sender (who may actually be R) runs protocol Πddwy(γ⃗, τ, m) (Figure 3) with the receiver,
using FS,R,W⃗

wc in phase 1 as a substitute for sending messages through the wires in γ⃗, and
separate instances of F{S,R},2

auth in phases 2 and 3 as a substitute for the authenticated channel.

▶ Theorem 5. Protocol Πsmt(S, R, W⃗ ) UC-realizes F{S,R},rnd
smt for rnd = 6 in the (FS,R,W⃗

wc ,

F{S,R},2
auth )-hybrid model, against an adversary corrupting up to a minority of the wire-parties.

3.2 Corrupted Majorities of Wire-Parties
In the wire-party model, Fauth and Fsmt can only be realized when the adversary is restricted
to corrupting only a minority of wire-parties. When corrupted majorities are allowed, the
sender and receiver may essentially become doomed. To allow the simulator to handle such
cases, we introduce an AE wrapper functionality (Figure 1) that allows parties to be marked
as doomed according to the current set of corruptions. The wrapper accepts “doom” requests
according to an adversary structure, and it processes them by simply having the underlying
functionality treat doomed parties as fully corrupted. Recall that an adversary structure is a
set of c-vectors of subsets of a participant set P , where each component of a vector represents
corruptions of a certain type. We consider adversary structures that consist of doubles of
subsets, corresponding to a corrupted set and a doomed set, respectively, although the two
may intersect4. We call such structures doom structures.

In the wire-party model, we can realize wrapped F{S,R},rnd
auth and F{S,R},rnd

smt with doom
structure Dpsmt, defined as follows using participant set P = {S, R, W1, . . . , Wn}:

(Ti, Di) ∈ Dpsmt if and only if either |Ti − {S, R}| < n
2 and Di = ∅ or |Ti − {S, R}| ≥ n

2
and Di ⊆ {S, R}

▶ Theorem 6. Protocol Πauth(S, R, W⃗ ) UC-realizes WDpsmt
ae (F{S,R},rnd

auth ) for rnd = 2 in the
FS,R,W⃗

wc -hybrid model, even against corrupted majorities of wire-parties.

To realize wrapped F{S,R},rnd
smt , define protocol Π′

smt(S, R, W⃗ ) by replacing invocations of
F{S,R},2

auth in protocol Πsmt(S, R, W⃗ ) with invocations of WDpsmt
ae (F{S,R},2

auth ).

▶ Theorem 7. Protocol Π′
smt(S, R, W⃗ ) UC-realizes WDpsmt

ae (F{S,R},rnd
smt ) for rnd = 6 in the

(FS,R,W⃗
wc ,WDpsmt

ae (F{S,R},2
auth ))-hybrid model, even against corrupted majorities of wire-parties.

Next we turn to SMT-PD, which offers an alternative way to achieve SMT against a
corrupted majority of wires, in the presence of a public channel.

4 This is a technicality, which simplifies some of our definitions and results. For example, the definition of
AE-monotonicity (Section 5.1) would not be quite as short and intuitive otherwise.
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Wrapper Functionality WD
ae(F) The wrapper is parameterized by a doom structure

D = {(T1, D1), . . . , (Tm, Dm)}, where each (Ti, Di) ∈ 2P × 2P . The underlying
functionality is F . Let T be the set of currently corrupted parties and let D be the set

of currently doomed parties, both initialized to ∅.
Upon receiving (Corrupt, sid, Pi) from the adversary for Pi ∈ P : If (T ∪{Pi}, D) ∈
D , then set T ← T ∪ {Pi}, relay the message to F , and send back F ’s response.
Upon receiving (Doom, sid, Pi) from the adversary for Pi ∈ P : If (T, D ∪ {Pi}) ∈ D ,
then set D ← D ∪ {Pi}, send (Corrupt, sid, Pi) to F , and send back F ’s response.
Any other request from any party or the adversary is simply relayed to F without
any further action and the output is relayed to the destination specified by F .

Figure 1 AE wrapper functionality.

3.3 Universally Composable SMT-PD
To capture SMT-PD in UC, we use our wire-party model from before, with the public channel
modeled by assuming access to F{S,R},rnd′

auth for some rnd′. Protocol Πsmt-pd(S, R, W⃗ , l) (see
the full version [16] for a formal specification) is essentially the Pub-SMT protocol from [25]
adapted for our UC treatment. In particular, the sender transmits a message v to the receiver
by essentially executing protocol Πpub-smt(γ⃗, Pub, v, l) (Figure 4), where FS,R,W⃗

wc is used in
the first phase as a substitute for sending messages through the wires in γ⃗, and separate
instances of F{S,R},rnd′

auth are used in the remaining three phases as a substitute for Pub.

▶ Theorem 8. Protocol Πsmt-pd(S, R, W⃗ , l) statistically UC-realizes F{S,R},rnd
smt for rnd =

2 + 3 · rnd′ in the (FS,R,W⃗
wc ,F{S,R},rnd′

auth )-hybrid model, against an adversary corrupting all but
one of the wire-parties.

4 Almost-Everywhere Remote RMT and SMT

In this section, we consider remote – i.e. over a sparse graph Gn – RMT and SMT. As in
Section 3, we model the network topology using the parameterized secure channel functionality
FGn

sc presented in Figure 6 (Appendix A), which provides secure channels only between
parties that are connected in Gn. Instead of always working directly with FGn

sc , we also use it
to realize the remote secure channel functionality FGn

r-sc (see the full version [16] for a formal
specification), the counterpart to FS,R,W⃗

wc from Section 3. This functionality provides secure
communication over a single path, as long as no node on the path is corrupted. Using protocol
Πr-sc(Gn) (see the full version [16] for details), we can realize FGn

r-sc by simply forwarding
the message along the path, which leads to the following statement (proof omitted).

▶ Proposition 9. Protocol Πr-sc(Gn) UC-realizes FGn
r-sc in the FGn

sc -hybrid model.

4.1 AE Remote RMT
We first show how classical AE-RMT protocols from the AE agreement literature can be
adapted to UC-realize our wrapped FP,rnd

auth functionality, using doom structures that are
derived from the protocol and the underlying sparse graph.

Graphs of Constant Degree. We first describe a scheme due to Dwork et al. [21], which
guarantees AE reliable communication in classes of constant-degree graphs (such as their
“butterfly” network) that admit a certain three-phase transmission scheme. At a high-level,
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the scheme associates with every node v a fan-in set Γin(v) and a fan-out set Γout(v) of a
fixed size s. In addition, (not necessarily vertex-disjoint) paths from a node to its sets are
specified, as well as (vertex-disjoint) paths from one node’s fan-out set to another node’s
fan-in set. Node u transmits a message to node v by first sending it to all members of Γout(u);
each member then forwards the message to its connected (via a path) node in Γin(v); and
finally each member of Γin(v) forwards the message to v, who simply takes majority.

Let Gdppu = (Vdppu, Edppu) be a graph that admits such a scheme. To realize wrapped
FVdppu,rnd

auth , we use protocol Πdppu
r-auth (outlined in the full version [16]), which is a straightforward

adaptation of the scheme in the FGdppu
r-sc -hybrid model, and the doom structure Ddppu:

For any corruption set Ti, let Ddppu(Ti) be a subset of participants P such that at least 1
8

of the paths from P to Γout(P ) or at least 1
8 of the paths from Γin(P ) to P are corrupted.

Now, let (Ti, Di) ∈ Ddppu if and only if |Ti| < s/4 and Di ⊆ Ddppu(Ti).

▶ Theorem 10. Protocol Πdppu
r-auth UC-realizes WDdppu

ae (FVdppu,rnd
auth ) for some rnd ∈ O(log n) in

the FGdppu
r-sc -hybrid model, against an adversary corrupting less than s/4 nodes.

Upfal [43] proposed an alternative transmission scheme for constant-degree graphs, which
actually works over any graph; however, his optimal result is achieved only on constant-degree
expander graphs with specific parameters. The main limitation of the scheme is that it is
computationally expensive. Node u transmits a message to node v by sending it through
all the simple paths connecting them. As the message travels along a path to v, each node
on the path appends the ID of the previous node to the message. This way each message
received from a corrupted path will contain at least one ID of a corrupted node, and the
receiver can enumerate over all the possible corruption sets to recover the message.

Let Gupfal
n = (Vupfal, Eupfal) be a d-regular expander graph. To realize wrapped FVupfal,rnd

auth ,
we use protocol Πupfal

r-auth (outlined in the full version [16]), which is a straightforward adaptation
of Upfal’s scheme in the FGupfal

n
sc -hybrid model, and the following doom structure Dupfal:

First, define Dupfal(Ti) by the following iterative process: Starting with the set S = Ti,
repeatedly add all participants Q /∈ S such that at least 1

5 of Q’s neighbors are in S.
Now, let (Ti, Di) ∈ Dupfal if and only if |Ti| < t < 1/72n and Di ⊆ Dupfal(Ti).

▶ Theorem 11. Protocol Πupfal
r-auth UC-realizes WDupfal

ae (FVupfal,rnd
auth ) for some rnd ∈ O(log n) in

the FGupfal
n

sc -hybrid model, against an adversary corrupting less than 1/72n nodes.

Although the simulator we construct is inefficient, that seems reasonable since the protocol
itself runs in exponential time.

Graphs of Poly-Logarithmic Degree. Chandran et al. [17] proposed an AE-RMT scheme
over a randomly constructed graph of poly-logarithmic degree. A very high-level idea of their
construction is to transmit a message via multiple paths, while also performing some sort
of error correction along the way. Their graph is comprised of some randomly generated,
overlapping, fully connected committees that are themselves connected via the butterfly
network. They also assign and connect to each node a number of those committees as helpers.
Node u transmits a message to node v by sending it to all of u’s helper committees, who then
transmit it to v’s helper committees using the transmission scheme of Dwork et al. [21] at the
committee level. Finally, v takes majority over the values received from its helpers. As the
message travels from one committee to another, error correction occurs using a differential
agreement protocol [22] run by the nodes in the destination committee.

Let Gcgo
n = (Vcgo, Ecgo) be a graph constructed as above. To realize wrapped FVcgo,rnd

auth , we
use protocol Πcgo

r-auth (outlined in the full version [16]), which is a straightforward adaptation
of the above scheme in the FGcgo

n
sc -hybrid model, and the following doom structure Dcgo:
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First, for any set of corruptions Ti, let Dcgo(Ti) be the set of all participants P such
that P ∈ Ti or at least 1

6 of P ’s helper committees are unprivileged. A committee is
considered corrupted if more than 1

4 of its members are corrupted, and committees are
categorized as unprivileged according to the Ddppu(·) function defined above.
Now, let (Ti, Di) ∈ Dcgo if and only if corrupting the nodes in Ti causes at most

n logk n
4 log(n logk n) committees to become corrupted, and Di ⊆ Dcgo(Ti).

Chandran et al. [17] proved that there exist constants αcgo, βcgo such that for any Ti with
|Ti| < αcgon, it holds that |Dcgo(Ti)| < βcgo

|Ti|
log n . For those constants we have:

▶ Theorem 12. Protocol Πcgo
r-auth UC-realizes WDcgo

ae (FVcgo,rnd
auth ) for rnd ∈ O(log n · log log n)

in the FGcgo
n

sc -hybrid model, against an adversary corrupting less than αcgon nodes.

Graphs of Logarithmic Degree. Jayanti et al. [32] recently proposed a transmission scheme
over logarithmic-degree graphs. Their graphs consist of multiple layers that are all constructed
using the same method but over randomly permuted sets of nodes. In each layer, nodes are
partitioned into committees of size s that are connected via the butterfly network and have
Upfal’s [43] expander graph instantiated inside them. We call this family of graphs Gjrv.
To transmit a message from node u to node v, in each layer u sends the message to all its
committee members using Upfal’s transmission scheme, and then the committee transmits it
to v’s committee using the transmission scheme of Dwork et al. [21] at the committee level.
Finally, all of v’s committee members send the value to v so that it can take majority over
what is received from all the layers combined. There is also some type of error correction
when messages travel from one committee to another.

Let Gjrv
n = (Vjrv, Ejrv) ∈ Gjrv with |Vjrv| = n. To realize wrapped FVjrv,rnd

auth , we use
protocol Πjrv

r-auth (outlined in the full version [16]), which is a straightforward adaptation of
the above scheme in the FGjrv

n
sc -hybrid model, and the following doom structure Djrv:

First, in each layer of Gjrv
n , if a committee contains more than 1

72 s corruptions, call it
bad. If the total number of bad committees in a layer exceeds n/s

4 log(n/s) , call the layer bad.
Next, for any set of corruptions Ti, let Djrv(Ti) be the set of all participants P such that
P ∈ Ti or P is doomed in more than 1

10 z layers among all the good layers. A node is
considered doomed in a layer if it is located in a doomed committee (with respect to
Ddppu(·)) or is doomed itself within its committee (with respect to Dupfal(·)).
Now, let (Ti, Di) ∈ Djrv if and only if corrupting the nodes in Ti causes at most 1

5 of the
layers to become bad, and Di ⊆ Djrv(Ti).

Jayanti et al. [32] proved there exists a graph Gjrv
n ∈ Gjrv and constants αjrv, βjrv such that

for Ti with |Ti| < αjrvn, it holds that |Djrv(Ti)| < βjrv
|Ti|

log n . For such a graph we have:

▶ Theorem 13. Protocol Πjrv
r-auth UC-realizes WDjrv

ae (FVjrv,rnd
auth ) for some rnd ∈ O(log n ·

log log log n) in the FGjrv
n

sc -hybrid model, against adversaries corrupting less than αjrvn nodes.

4.2 AE Remote SMT
To achieve AE secure communication over the constant-degree graphs studied by Dwork
et al. [21], we can apply the approach that we used in Section 3.2 to obtain AE-SMT in
the wire-party model. That is, we can adapt protocol Π′

smt(S, R, W⃗ ) to work over the
three-phase paths in Gdppu, and the resulting protocol Πdppu

r-smt (formally outlined in the full
version [16]) realizes wrapped FVdppu,rnd′

smt for some rnd′ with the same doom structure Ddppu
from Section 4.1. Let ℓ denote the maximum length of any of the three-phase paths.
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▶ Theorem 14. Protocol Πdppu
r-smt UC-realizes WDdppu

ae (FVdppu,2·rnd+ℓ
smt ) in the (WDdppu

ae (FVdppu,rnd
auth ),

FGdppu
r-sc )-hybrid model for rnd ∈ O(log n), against an adversary corrupting less than s/4 nodes.

The above technique cannot in general be extended to other AE-RMT schemes, because
it requires a majority of honest paths between any pair of privileged nodes to realize a secure
link between them. Many transmission schemes, such as Upfal’s [43], do not guarantee such
a property for privileged nodes. To realize AE-SMT using other transmission schemes, one
approach is to use SMT-PD, which only requires a single honest path between sender and
receiver to establish a secure channel, assuming access to a public channel. This approach can
be used to make any AE-RMT scheme secure, since these schemes realize an authenticated
channel (between privileged nodes) and guarantee at least one honest path between any pair
of privileged nodes. The downside is that only statistical security is obtained.

We first introduce some notation. Given a doom structure D (with participant set P),
denote by dom(D) the set of values that appear as a first component in D (in other words,
the set of all corruption sets allowed by D). Say that D is t-complete if max(Ti,Di)∈D |Ti| = t,
and T ∈ dom(D) for all T ⊆ P with |T | ≤ t (in other words, if all possible sets of corruptions
of size at most t are allowed by D). Moreover, say that a doom structure D is D-monotone
if whenever (Tj , Dj) ∈ D and Di ⊆ Dj , it holds that (Tj , Di) ∈ D . We note that all of our
doom structures are t-complete and D-monotone.

Now, let Gn = (V, E) be a graph with polynomially many paths of length at most ℓ

specified between every pair of nodes. Suppose we already know how to realize wrapped FV,rnd
auth

for some rnd, with respect to a doom structure Dsmt-pd (with P = V ) that is t-complete and D-
monotone and moreover satisfies the following condition: For all T ⊆ V with |T | ≤ t, at least
one of the specified paths between any pair of nodes in V −T −∪(T,Di)∈Dsmt-pdDi is completely
contained in V − T . Then, we can realize wrapped FV,rnd′

smt using protocol Πr-smt-pd(Gn)
(formally outlined in the full version [16]), which is essentially protocol Πsmt-pd(S, R, W⃗ , l)
from Section 3.3 adapted to work over the specified paths in Gn, and the same doom structure
Dsmt-pd. For such a doom structure we obtain the following statement:

▶ Theorem 15. Protocol Πr-smt-pd(Gn) statistically UC-realizes WDsmt-pd
ae (FV,ℓ+3·rnd

smt ) in the
(FGn

r-sc,WDsmt-pd
ae (FV,rnd

auth ))-hybrid model against a t-adversary.

Observe that t-completeness allows for statements against threshold adversaries, and
D-monotonicity is required in the simulation since the simulator can only doom parties one
by one. According to [21], all the realizable doom structures for AE remote RMT satisfy the
above condition. Therefore, protocol Πr-smt-pd(Gn) can be used with any of the classes of
sparse graphs discussed in Section 4.1 to achieve AE remote SMT with statistical security.

5 Almost-Everywhere Secure Computation

In this section, we consider general UC-secure computation in the almost-everywhere setting.
We start by proving a composition theorem that shows how to compile a protocol Π realizing
some functionality F with the help of several hybrids into an almost-everywhere version of Π,
by wrapping each hybrid with a potentially different doom structure Di. These structures can
be arbitrary, subject only to a certain monotonicity property, although they must correspond
to the same participant set (indeed, composition would not make much sense otherwise); the
compiled protocol is then shown to realize a wrapped version of F , using a new doom structure
D ′. Moreover, we allow the original protocol Π to itself realize a wrapped functionality
associated with some doom structure D . This, along with the fact that the monotonicity
property carries over to the new doom structure D ′, make the compiled protocol readily
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Compiler CD1,...,Dm(Π) Apply the following modifications to protocol Π (which uses
F1, . . . ,Fm as hybrids):

1. For each i ∈ [m], instead of using Fi, parties use WDi
ae (Fi) (which has the same

input/output format to the parties).

Figure 2 The AE compiler.

amenable to further composition. We conclude by applying a special case of the composition
theorem to obtain AE-MPC over the sparse graphs that were considered in Section 4. Rather
than constructing protocols from scratch, we simply apply our generic AE compiler to replace
the secure channels that are used in standard MPC protocols with AE remote SMT.

5.1 A General Composition Theorem
Let us first introduce some notation. Say that a doom structure D is AE-monotone if
whenever (Ti, Di) ∈ D and Ti ⊆ Tj for Tj ∈ dom(D), it holds that (Tj , Di) ∈ D . Different
from the standard notion of monotonicity in the general adversary literature, AE-monotonicity
captures the intuitive property that when additional parties are corrupted, parties that were
previously doomed are still doomed (or newly corrupted). AE-monotonicity seems to be
important for simulatability; for example, the simulator may want to make a doom request
for a newly doomed party only after some additional parties are corrupted in the meantime,
and in such a case the doom structure needs to admit that request. Fortunately, all of our
doom structures are AE-monotone.

The AE compiler is shown in Figure 2. It takes as input a protocol Π realizing some
wrapped functionality WD

ae(F) in the (F1, . . . ,Fm)-hybrid model and turns it into a protocol
that works in the (WD1

ae (F1), . . . ,WDm
ae (Fm))-hybrid model. Of course, the compiled protocol

will not in general realize wrapped F with the same doom structure D . In the following
theorem, we construct a new doom structure D ′ representing the level of AE-security that
is retained. Since we consider general adversaries, the compiled protocol can tolerate a set
T ′ of corruptions only if T ′ can be tolerated by all of the assumed doom structures (i.e., D

as well as D1, . . . , Dm). Furthermore, the set of parties in the compiled protocol that are
considered doomed (relative to T ′) can consist of, roughly speaking, parties that are doomed
with respect to any of the wrapped hybrids (such parties are collected in D(T ′) below) or
that would have been doomed in the original protocol Π (the parties denoted by A). In fact,
since Π may already carry some level of AE-security, as captured by D , we must expand the
latter set to include parties that only become doomed when some or all of the parties in the
former set are actually corrupted. Thus, we require that T ′ ∪D(T ′) is also tolerated by D .

▶ Theorem 16. Let D , D1, . . . , Dm be AE-monotone doom structures over the same partici-
pant set P. Let T = dom(D) and T ′ = (

⋂m
i=1 dom(Di)) ∩ T . For any T ′ ∈ T ′, define

D(T ′) =
m⋃

i=1

 ⋃
(T ′,Dj)∈Di

Dj

 .

Suppose that for all T ′ ∈ T ′, it holds that T ′∪D(T ′) ∈ T . If protocol Π UC-realizesWD
ae(F) in

the (F1, . . . ,Fm)-hybrid model against a T -adversary, then CD1,...,Dm(Π) UC-realizes WD′

ae (F)
in the (WD1

ae (F1), . . . ,WDm
ae (Fm))-hybrid model against a T ′-adversary, where D ′ is defined

as follows: For all T ′ ∈ T ′, we have (T ′, D∪A) ∈ D ′ if D ⊆ D(T ′) and (T ′ ∪D(T ′), A) ∈ D .
Moreover, D ′ is AE-monotone.
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In the specific case that Π realizes an unwrapped functionality F (indeed, one can always
apply our AE wrapper to F with a doom structure of the form {(Ti, ∅)}i, which is trivially
AE-monotone, in order to obtain an equivalent functionality) in the G-hybrid model against
a threshold adversary, we obtain the following corollary:

▶ Corollary 17. Let D be a t′-complete, D-monotone, and AE-monotone doom structure.

Let t = max
|T ′|=t′

∣∣∣∣∣
( ⋃

(T ′,Di)∈D

Di

)
∪ T ′

∣∣∣∣∣. If protocol Π UC-realizes F in the G-hybrid model

against a t-adversary, then CD(Π) UC-realizes WD
ae(F) in the WD

ae(G)-hybrid model against
a t′-adversary.

Observe that t′-completeness allows the simulator to handle a threshold adversary that
can corrupt any t′ parties, and D-monotonicity is needed for the doom structure D used to
wrap G to be preserved when wrapping F . By construction, all of our doom structures satisfy
these two properties. We remark that t has a natural interpretation: the maximum number
of parties that can become unprivileged (with respect to D) when t′ parties are corrupted.

5.2 AE-MPC

We now present our main result: how to achieve almost-everywhere MPC over several classes
of sparse graphs in a composable manner. We assume a protocol that achieves “regular”
MPC over a complete network of point-to-point secure channels, and show how to transform
it into a protocol that achieves AE-MPC (with a lower corruption threshold) over a sparse
graph with secure channels only between connected parties, using our AE compiler. To
capture the MPC task for n-ary function f , we use the functionality Ff,P,rnd

mpc (see the full
version [16] for a formal specification), which is essentially Canetti’s Fsfe [14] with synchrony.

Although standard information-theoretic MPC protocols tolerating t < n
3 corruptions

are known [8, 18], they assume access to a broadcast channel, noting that broadcast can
be achieved when t < n

3 . However, [30] showed that classical broadcast protocols are not
adaptively secure in a simulation-based setting, and gave a VSS-based protocol that does
in fact realize adaptively secure broadcast with perfect security for t < n

3 , assuming only
secure channels. Therefore, there exists a protocol that UC-realizes Ff,P,rnd

mpc for any n-ary
function f and some rnd in the FP,1

smt -hybrid model, against an adversary corrupting less than
n
3 parties. It is clear that this holds even in the FP,ℓ

smt-hybrid model, for arbitrary ℓ. Now,
by invoking Corollary 17 (which of course also offers statistical security) and then applying
the (regular) UC composition theorem in tandem with our results in Theorems 14 and 15
showing how to achieve AE-SMT over several classes of sparse graphs with either perfect or
statistical security, we obtain the following corollaries showing how to achieve AE-MPC over
those classes of graphs, with different combinations of parameters (recall that the maximum
number of doomed nodes is encoded into each doom structure), for any n-ary function f :

▶ Corollary 18. There exists a protocol that UC-realizes WDdppu
ae (Ff,Vdppu,rnd

mpc ) in the FGdppu
n

sc -
hybrid model against a t-adversary, for some rnd and t ∈ O( n

log n ).

▶ Corollary 19. Let x ∈ {upfal, cgo, jrv}. There exists a protocol statistically UC-realizing
WDx

ae (Ff,Vx,rnd
mpc ) in the FGx

n
sc -hybrid model against a t-adversary, for some rnd and t ∈ O(n).
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A Functionalities and Protocols

Protocol Πddwy(γ⃗, τ, m)
1. (Phase 1) The sender S sends nτ + 1 strong pads SP1,SP2, . . . , SPnτ+1. To send

each strong pad, S chooses a random polynomial f(x) ∈ Zq(x) of degree τ and
sets pad = f(0). Then for each i ∈ [n] S chooses an additional random polynomial
hi(x) ∈ Zq of degree τ such that hi(0) = f(i). Finally, for each i ∈ [n], S sends hi(·)
with a vector of checking pieces Ci = (c1i, c2i, . . . , cni) to R using wire γi where for
all i, j ∈ [n], cji = hj(i).

2. (Phase 2) For each k ∈ [n], let Tk be received in the attempted transmission of SPk

and gi, Di be possibly corrupted information received as hi, Ci. If for any Ta all the
checking pieces cji and all polynomials hi(·) are consistent then R interpolates the
pada from Ta and sends “a, OK” to S over the authenticated channel. Otherwise, R

finds an l such that {conflicts of Tl} ⊆ ∪m ̸=l{conflicts of Tm}, where any unordered
pair (i, j) is called a conflict of Tk if dji ̸= gj(i). Then R sends l and all Tm, m ̸= l

back to S using authenticated channel.
3. (Phase 3)

If “a, OK” received over the authenticated channel in phase 2, then S sends
z = m + pada to R using the authenticated channel. Otherwise, S preforms error
detection on all Tj ’s received from R and sends detected faults and z = m + padi

to R using authenticated channel.
If R previously sent “a, OK” to S in phase 1, then s/he computes m = z − pada.
Otherwise, R corrects the faults in Ti, obtains padi and computes m = z − padi.

Figure 3 The SMT protocol from [20].

Protocol Πpub-smt(γ⃗, Pub, m, l)
1. The sender S sends n uniformly random bit strings R1, R2, . . . , Rn of length 15l to

the receiver R through wires γ1, γ2, . . . , γn, respectively. Let R′
1, R′

2, . . . , R′
n be the

strings received by R. R rejects all wires where |R′
i| ≠ 15l.

2. For i ∈ [n], S generates R∗
i by replacing 12l randomly chosen positions of Ri with

“∗.” Then S sends R∗
1, R∗

2, . . . , R∗
n to R over Pub.

3. For any i ∈ [n], if R∗
i and R′

i differ in any “opened” bits, R marks γi as “faulty.”
Then R sends an n-bit string to S over Pub that identifies faulty wires. Let γ⃗ =
{γ1, γ2, . . . , γs}, s ≤ n denote the set of non-faulty wires, and Ri, |Ri| = 12l, 1 ≤
i ≤ s, denote the corresponding string of unopened bits; let R′

i be the corresponding
string in R’s possession.

4. For 1 ≤ i ≤ s, S chooses mi such that m = m1 ⊕ m2 ⊕ · · · ⊕ ms, and sends
Si = E(mi) ⊕ Ri, 1 ≤ i ≤ s, over Pub. R computes m′

i = D(Si ⊕ R′
i) for all

1 ≤ i ≤ s. Then R outputs m′ = m′
1 ⊕m′

2 ⊕ · · · ⊕m′
s.

Figure 4 The SMT-PD protocol from [25].
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Functionality FS,R,W⃗
wc The functionality is parameterized by the identities of the

sender S, the receiver R, and the n wire-parties W⃗ = (W1, . . . , Wn). At the first
activation, verify that sid = (Ps, Pr, sid′), where {Ps, Pr} = {S, R}. Initialize variables

m1, . . . , mn to ⊥.
Upon receiving input (Send, sid, Wi, vi) from Ps in round ρ (which is the same
for all Wi), record mi ← vi. If any P ∈ {Ps, Pr, Wi} is marked as cor-
rupted, then send (SendLeak, sid, Wi, mi) to the adversary; otherwise send
(SendLeak, sid, Wi, l(mi)).
Upon receiving (InflSend, sid, Wi, m′

i) from the adversary: If any P ∈ {Ps, Pr, Wi}
is corrupted, and (Sent, sid, Wi, mi) has not yet been sent to Pr, then set mi ← m′

i.
Upon receiving (Fetch, sid, Wi) from Pr in round ρ′: If Pr is corrupted, then
send (FetchLeak, sid, Wi) to the adversary; otherwise, if ρ′ = ρ + 2, then output
(Sent, sid, Wi, mi) to Pr if it has not yet been sent.
Upon receiving (Output, sid, Wi) from the adversary: If Pr is corrupted, then
output (Sent, sid, Wi, mi) to Pr if it has not yet been sent.
Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ {Ps, Pr, W1, . . . , Wn},
mark P as corrupted. If P is some wire-party Wi, then send (SendLeak, sid, mi)
to the adversary; otherwise, send (SendLeak, sid, m1, . . . , mn). If P = Pr, then
additionally leak any previous fetch requests made by Pr.

Figure 5 The Wire Channel functionality.

B Proofs

Proof of Theorem 5. Let A be an adversary in the real world. We construct a simulator S
in the ideal world, such that no environment can distinguish whether it is interacting with
Πsmt(S, R, W⃗ ) and A, or with F{S,R},rnd

smt and S. The simulator internally runs a copy of
A, and plays the roles of F{S,R},2

auth , FS,R,W⃗
wc , and the parties in a simulated execution of the

protocol. All inputs from Z are forwarded to A, and all outputs from A are forwarded to
Z. Moreover, whenever A corrupts a party in the simulation, S corrupts the same party in
the ideal world by interacting with F{S,R},rnd

smt (except if the party is a wire-party), and if
the corruption was direct (i.e., not via one of the aiding functionalities), then S sends A the
party’s state and follows A’s instructions thereafter for that party.

The simulated execution starts upon S receiving (SendLeak, sid, m̂) from F{S,R},rnd
smt

in round ρ for sid = (Ps, Pr, sid′), where m̂ ∈ {m, l(m)} and m is the message to be sent.
Now, S executes the first two phases of the protocol honestly, by simulating sending random
strong pads (shares hi(·) and checking pieces C⃗i = (c1i, . . . , cni)) from Ps to Pr through the n

wire-parties (i.e., by simulating leakage from FS,R,W⃗
wc to A, and responding to corruption and

influence requests directed from A to FS,R,W⃗
wc ) and by simulating sending the response from

Pr to Ps over the authenticated channel (i.e., by appropriately playing the role of F{S,R},2
auth

for A). For the third phase of the protocol, S simulates honestly, except for choosing z when
Ps and Pr are both honest in which case S simulates sending a random value z from Ps to
Pr over F{S,R},2

auth instead of z = m⊕ Pad. When Ps or Pr is corrupted by A, S learns m via
leakage from F{S,R},rnd

smt and thus can send z = m⊕ Pad just like in the real protocol. Note
that the simulated Ps may need to abort, and that if the simulated Pr aborts by outputting
⊥, then S can influence F{S,R},rnd

smt , since this can only happen if A corrupts Ps or Pr.
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Functionality FGn
sc The functionality is parameterized by a graph Gn = (V, E) of

party identities and communication edges. At the first activation, verify that
sid = (Pi, Pj , sid′), where (Pi, Pj) ∈ E; else halt. Initialize variable m to ⊥.

Upon receiving input (Send, sid, v) from Pi in round ρ, record m← v. If Pi or Pj

is marked as corrupted, then send (SendLeak, sid, m) to the adversary; otherwise
send (SendLeak, sid, l(m)).
Upon receiving (InflSend, sid, m′) from the adversary: If Pi or Pj is corrupted,
and (Sent, sid, m) has not yet been sent to Pj , then set m← m′.
Upon receiving (Fetch, sid) from Pj in round ρ + 1, output (Sent, sid, m) to Pj if
it has not yet been sent.
Upon receiving (Corrupt, sid, P ) from the adversary for P ∈ {Pi, Pj}, mark P as
corrupted and send (SendLeak, sid, m) to the adversary.

Figure 6 The Secure Channel functionality for (incomplete) graph Gn.

Next, we describe how S simulates Pr’s response to a Fetch input from Z in the real
world. If Pr is corrupted by A, then S can wait to receive (FetchLeak, sid) from F{S,R},rnd

smt ,
upon which it possibly leaks the fetch to A and then sends InflSend and Output messages
to F{S,R},rnd

smt as appropriate. If Ps is corrupted by A, then S needs to constantly influence
F{S,R},rnd

smt during the second phase of the protocol, so that the dummy Pr fetches the correct
value. If neither Ps nor Pr is corrupted, then S can simply let the dummy Pr fetch from
F{S,R},rnd

smt when instructed by Z. An important case is when both Ps and Pr are honest in
the beginning of the third phase (at the time S decides the value of z) and then at least one
of them gets corrupted before the protocol ends (before the output is fetched). In this case,
A receives enough leakage from FS,R,W⃗

wc to interpolate the pad and compute the value of the
message from z. Since z is chosen randomly by S, the message learned by A deviates from
what is sent by Ps, causing Z to distinguish the real and ideal worlds. In such a situation, S
learns the actual value of m via leakage from F{S,R},rnd

smt , and hence it can cheat by calculating
a fake pad′ satisfying z = m⊕ pad′ and then simulate leaking from FS,R,W⃗

wc to result in pad′.
The simulation is perfect. Indeed, by corrupting at most τ wires, A learns nothing about

hi(0) for honest wires, because the hi(·)’s are independent random polynomials of degree τ .
Moreover, f(·) is also a random polynomial of degree τ so A learns nothing about f(0) (i.e.,
pad used by the protocol looks uniformly random to Z). Thus, choosing a random value z by
S looks perfectly indistinguishable from the real protocol execution to Z. Besides, F{S,R},2

auth
acts like an authenticated channel in the protocol, and hence in the real world Pr outputs
the sender’s input. (See the full version [16] for more details). ◀

Proof of Theorem 7 (Sketch). We construct a simulator S that is very similar to the
simulator in the proof of Theorem 5. However, S now interacts with a wrapped functionality,
and corruption messages for wire-parties are indeed sent because they can now be processed
by the wrapper. Another difference concerns the case in which Ps and Pr are not corrupted
by A. If A corrupts only a minority of the wire-parties, then S can simply use a random
value of z in the third phase of the protocol, and let the dummy Pr fetch its output as before.
Otherwise, as soon as enough wire-parties are corrupted, S sends a Doom message for Ps to
the wrapper, which will be accepted by definition of Dpsmt, and obtains m as leakage. Now,
S can use z = m⊕ pad in the third phase, and influences the wrapper every time the value
that the real-world Pr would have output changes (these influence messages will be accepted
by the wrapper). Another issue that comes up in the case that Ps and Pr remain honest is
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that A might exceed a minority of wire-party corruptions only after S has already chosen
a random z. However, S can handle this by cheating and computing a fake pad consistent
with m, like the simulator in the proof of Theorem 5 does. Finally, S may need to simulate
sender or receiver aborts when A corrupts a majority of wire-parties but not Ps or Pr. ◀

Proof of Theorem 8. Let A be an adversary in the real world. We construct a simulator S
in the ideal world, such that no environment Z can distinguish whether it is interacting with
Πsmt-pd(S, R, W⃗ , l) and A, or with F{S,R},rnd

smt and S. The simulator internally runs a copy of
A, and plays the roles of FS,R,W⃗

wc , F{S,R},rnd′

auth , and the parties in a simulated execution of
the protocol. All inputs from Z are forwarded to A, and all outputs from A are forwarded
to Z. Moreover, whenever A corrupts a party in the simulation, S corrupts the same party
in the ideal world by interacting with F{S,R},rnd

smt (except if the party is a wire-party), and if
the corruption was direct (i.e., not via either of the aiding functionalities), then S sends A
the party’s state and thereafter follows A’s instructions for that party.

The simulated execution starts upon S receiving (SendLeak, sid, m̂) from F{S,R},rnd
smt in

round ρ for sid = (Ps, Pr, sid′), where m̂ ∈ {m, l(m)} and m is the message to be sent. Now,
S simulates the first three phases of the protocol honestly, by simulating sending random
bitstrings from Ps to Pr through the n wire-parties (i.e., by simulating leakage from FS,R,W⃗

wc

to A, and responding to corruption and influence requests directed from A to FS,R,W⃗
wc ) and

by simulating sending a message from Ps to Pr or vice versa over the public channel (by
appropriately playing the role of F{S,R},rnd′

auth for A). In the fourth phase, S chooses random
mi’s to be encoded (rather than mi’s such that m = m1 ⊕ · · · ⊕ms) if Ps and Pr are still
honest; if Ps or Pr is corrupted by A, then S learns m via leakage from F{S,R},rnd

smt .
Next, we describe how S simulates Pr’s response to a Fetch input from Z in the real

world. If Pr is corrupted by A, then S can wait to receive (FetchLeak, sid) from F{S,R},rnd
smt ,

upon which it possibly leaks the fetch to A and then sends InflSend and Output messages
to F{S,R},rnd

smt as appropriate. Otherwise, if Ps is corrupted by A, then S needs to constantly
influence F{S,R},rnd

smt so that the dummy Pr fetches the correct value. Finally, if neither Ps

nor Pr is corrupted, then S simply lets the dummy Pr fetch from F{S,R},rnd
smt when instructed

by Z. In this case, the real-world Pr outputs m except with the error probability.
An important issue is that when Ps or Pr is corrupted only after S has already decided

on the random mi’s to be encoded in the fourth phase, A may be able to recover some m′

from its view of the bitstrings sent in the first phase, but m′ may not equal m and this could
allow Z to distinguish between the real and ideal worlds. However, S can handle this case by
faking what was sent in the first phase. In particular, at least one bitstring (corresponding
to an uncorrupted wire-party) sent in the first phase is not visible to A, so S can redefine it
to be consistent with m (which S learns from leakage from F{S,R},rnd

smt ).
The simulation is not perfect as there is an error probability, but Z still cannot distinguish

between the two worlds. In particular, when Ps and Pr are not corrupted byA, the assumption
that at most all but one of the wire-parties are corrupted implies that the random bitstring
sent on at least one wire in the first phase will mask the value of m from A. ◀

Proof of Theorem 16. We first prove that D ′ is AE-monotone. Suppose that (Ti, Di) ∈ D ′

and Ti ⊆ Tj for Tj ∈ T ′. This means that Di = D ∪A for some D, A such that D ⊆ D(Ti)
and (Ti ∪ D(Ti), A) ∈ D . We want to show that (Tj , Di) ∈ D ′, and it suffices to show
that D ⊆ D(Tj) and (Tj ∪ D(Tj), A) ∈ D . Since D(Ti) ⊆ D(Tj) (using the fact that
D1, . . . , Dm are all AE-monotone), it follows that D ⊆ D(Tj). On the other hand, since
Ti ∪ D(Ti) ⊆ Tj ∪ D(Tj), it follows that (Tj ∪ D(Tj), A) ∈ D (using the fact that D is
AE-monotone and that Tj ∪D(Tj) ∈ T ). We now prove the security of the compiled protocol.
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Let S be a simulator (guaranteed to exist by the security of Π) such that no environment
Z can distinguish whether it is interacting with Π and the dummy adversary D, or with
WD

ae(F) and S. We use S to construct a simulator S ′ such that no environment Z ′ can
distinguish whether it is interacting with CD1,...,Dm(Π) and D, or with WD′

ae (F) and S ′.
S ′ internally runs S and plays the role of the environment andWD

ae(F) for it. Inputs from
Z ′ are forwarded to S, with some additional processing. When Z ′ sends a corruption request
directed to a party (i.e., telling D to corrupt a party directly), this is forwarded without
modification. However, when Z ′ sends message delivery requests directed to an instance
of WDi

ae (Fi) for some i ∈ [m] (e.g., telling D to send a Corrupt or Influence message to
that functionality), S ′ sends message delivery requests directed to a corresponding instance
of Fi, with the following exception: a request to deliver a Doom message is replaced by a
request to deliver a Corrupt message if Di would accept it, and is dropped otherwise.

Similarly, outputs from S are forwarded to Z ′, with some additional processing. Assuming
that Π uses instances of F1, . . . ,Fm to handle all inter-party communication, these outputs
should take the form of reports of incoming messages directed from either a party or an
instance of an aiding functionality Fi to the dummy adversary for Π; thus, the processing
done by S ′ is that reported messages from an instance of Fi are replaced by reported messages
from an instance of WDi

ae (Fi). Finally, S ′ plays the role of WD
ae(F) by simply forwarding

messages from WD′

ae (F) to S as if coming from WD
ae(F), and forwarding messages directed

to WD
ae(F) (from S) to WD′

ae (F), except that Corrupt messages for doomed parties (i.e.,
parties that Z ′ did not request to corrupt) are replaced by Doom messages.

Suppose for a contradiction that there is an environment Z ′ such that idealWD′
ae (F),S′,Z′ ̸≡

execCD1,...,Dm (Π),D,Z′ . Then, we construct an environment Z such that idealWD
ae(F),S,Z ̸≡

execΠ,D,Z . The environment Z will simulate an interaction between Z ′ and D, and output
whatever Z ′ outputs, as well as do some additional processing. Whenever Z ′ instructs its
dummy adversary to deliver a message to an instance of WDi

ae (Fi), this is translated by Z
into a delivery request for a corresponding instance of Fi and forwarded to the external
adversary (either S or D), except that a request to deliver a Doom message is converted into
a request to deliver a Corrupt message if allowed by Di and dropped otherwise. Corruption
requests directed to parties are forwarded to the external adversary unmodified.

Next, whenever Z receives subroutine output from the external adversary, this is forwarded
to Z ′, except that reported messages from instances of WDi

ae (Fi) are translated into reported
messages from corresponding instances of Fi. Finally, Z simply relays inputs and outputs
between Z ′ and parties. We conclude by claiming that idealWD′

ae (F),S′,Z′ ≡ idealWD
ae(F),S,Z

and execCD1,...,Dm (Π),D,Z′ ≡ execΠ,D,Z . Indeed, if Z interacts with WD
ae(F) and S, then

the view of the simulated Z ′ within Z is identical to the view of Z ′ when interacting with
WD′

ae (F) and S ′, and similarly if Z interacts with Π and D, then the view of the simulated
Z ′ within Z is identical to the view of Z ′ when interacting with CD1,...,Dm(Π) and D. ◀
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