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—— Abstract

A distributed point function (DPF) (Gilboa-Ishai, Eurocrypt 2014) is a cryptographic primitive that
enables compressed additive secret-sharing of a secret weight-1 vector across two or more servers.
DPFs support a wide range of cryptographic applications, including efficient private information
retrieval, secure aggregation, and more. Up to now, the study of DPFs was restricted to the
computational security setting, relying on one-way functions. This assumption is necessary in the
case of a dishonest majority.

We present the first statistically private 3-server DPF for domain size N with subpolynomial
key size N°V). We also present a similar perfectly private 4-server DPF. Our constructions offer
benefits over their computationally secure counterparts, beyond the superior security guarantee,
including better computational complexity and better protocols for distributed key generation, all
while having comparable communication complexity for moderate-sized parameters.
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1 Introduction

A Distributed Point Function (DPF) [28, 13] enables splitting any secret point function
fap (e, for which f, g(x) = 8 if £ = «a, and 0 otherwise) into m succinctly described
function shares f;, that individually hide f, g, and which support a simple additive per-
input reconstruction f, g(x) = Y, fi(x) over some fixed Abelian group. More concretely,
each function share f; is described by a key k; such that with an appropriate evaluation
algorithm Eval it holds that Eval(k;, z) = fi(z). In effect, this provides a compressed additive
secret-sharing of a secret weight-1 vector across servers.

DPFs have a wide range of cryptographic applications, including Private Information
Retrieval (PIR) [17, 16, 28], anonymous messaging systems [18, 35], secure aggregation
and statistical analysis [13, 7], private set intersection [39, 22], secure computation for
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RAM programs [23, 15] and programs with mixed-mode operations [14, 8], and recently
pseudorandom correlation generators [9, 10, 11], with applications to secure computation
and beyond.

As with many cryptographic notions, the security property of DPFs can be either
computational (based on computational hardness assumptions), or information theoretic.
The vast majority of attention to date has been placed in the two-server regime, where it
is known that nontrivial DPFs require the existence of one-way functions [28, 12]. In turn,
from one-way functions, efficient two-server DPF constructions have been demonstrated with
small key size, which grows logarithmically with the domain size of f, g [28, 13].

However, as soon as one steps beyond two servers to an honest majority, the impossibility
no longer holds, and the question of minimizing the key size of information-theoretic DPFs
becomes wide open. Despite its neglect up to now, the regime of information-theoretically
secure DPFs offers potential for application scenarios where information-theoretic security is
desired (or required), as well as appealing potential for simplicity of constructions. Another
important motivation for information-theoretic constructions is the possibility to avoid the
limitations of current techniques for distributed key generation of computationally secure
DPF [23].

1.1 Qur Contribution

We initiate an investigation of information-theoretically secure DPFs (IT DPFs for short),
focusing on the case of non-colluding servers (i.e., security threshold ¢ = 1). While simple
constructions based on Reed-Muller codes are implicit in the PIR literature [17], these have
polynomial key size of O(Nl/(mfl)), where N is the domain size and m is the number
of servers. In contrast, the new generation of PIR schemes [40, 25, 24, 4], which achieve
sub-polynomial communication, do not directly give rise to standard DPFs. Instead, they
imply a relaxed form of DPF in which the output is not shared additively. While this suffices
for the PIR application, it does not suffice for most other applications of DPFs. Even in the
PIR context, an additive representation is helpful for maximizing the download rate [26].

Our primary technical contribution is in bridging this gap. We obtain the first statistically
private 3-server DPF for domain size N with subpolynomial key size N°(). We also
present a similar perfectly private 4-server DPF. Our constructions offer benefits over their
computationally secure counterparts, beyond the superior security guarantee, including
better computational complexity and potential for “MPC friendliness” in the sense of
efficient distributed key generation, all while having comparable key size' for moderate-sized
parameters.

We obtain the following main results:

» Theorem 1 (4-server perfectly secure IT DPF, informal). Let p > 3 be a prime and s > 1 an
integer. There exists a perfectly secure 4-server DPF, for point functions with output group

Zyps and key size O (s log(p) - 22PV1ee Nlog IOgN).

L This assumes that 3 is taken from a small output group, such as Za, which suffices for many applications
of DPF. While in this work we focus on asymptotic efficiency and do not attempt to optimize concrete
efficiency, our techniques can be applied to concretely efficient variants of the “matching vector” based
PIR schemes on which we rely (see Table 2 in the full version of [31]). Unlike the Reed-Muller based
3-server PIR, these variants can be practical even for (sparse, virtual) database of size ~ 290 which
arise in private keyword search applications.
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» Theorem 2 (3-server statistically-secure IT DPF, informal). Let p > 2 be a prime. There
exists a 27 *-statistically secure 3-server DPF, for point functions with output group Zy and

key size O ()\ log(p) - 2F®)v IOgNloglogN) where k(2) = 6, k(3) = 10, and k(p) =2p if p > 5.

Due to the prime p appearing in the exponent in the key size, Theorem 1 permits only
groups of the form Z,s for small prime p (or products of such groups via CRT). The same is
true for Theorem 2, except that there we further have the restriction of s = 1. However, for
many applications of DPF (including both “reading” and “writing”) an output group of Zs
suffices, in which case Theorem 2 gives an efficient construction. Moreover, in applications of
DPF that require a group of a large characteristic (e.g., for aggregation [7] or weighted private
set intersection [22]), Theorem 1 gives an efficient construction over Zgs for a sufficiently
large s.

We further explore advantages of our IT DPF constructions over existing computationally
secure constructions, beyond their stronger security guarantees. We explicitly demonstrate
one such benefit: simplicity of distributed key generation. This relates to the procedure of
two or more clients jointly executing the DPF key generation algorithm for an input point
function that is secret shared across servers (i.e., where no client individually knows the
secret fo 3). This “Distributed Gen” procedure is a crucial and costly part of important
DPF-based applications. Distributed Gen protocols in the computational setting currently
fall into one of two categories. They use either generic MPC machinery, which requires
non-black box secure computation of cryptographic primitives such as PRGs, or tailored
protocols [23] requiring computation that is proportional to the size of the input domain
and a number of communication rounds that is logarithmic in that size. Moreover, there
is no known approach for distributing the key generation of 2-server DPF in the malicious
security setting that makes black-box use of a PRG, regardless of round complexity.

In contrast, the simpler structure of keys in IT DPFs implies the following:

» Theorem 3 (Distributed key generation, informal). There exist protocols for distributed
generation of the keys required in Theorems 1 and 2 that are information-theoretically secure
for m > 3 servers with one malicious corruption, or for 2PC in the OT-hybrid model, have
computation and communication cost O(h) for required key size h, and O(logh) rounds.
Alternatively, settling for computational security, there are such constant-round protocols
that only make a black-box use of a PRG.

1.2 Overview of Techniques

Our information-theoretic (IT) DPF constructions are based on a related primitive, IT private
information retrieval (PIR) [17]. A PIR scheme allows a client to retrieve a single bit from
a database D of N bits, by communicating with m > 2 servers, such that no server learns
the client’s bit index. Multi-server PIR served as an original driving motivation behind the
introduction of DPFs, as an m-server DPF directly yields an m-server PIR protocol. In this
work, however, we study this connection in the other direction: building DPF from PIR.

Assuming the m-server IT PIR scheme satisfies that each server responds with a single bit
to the client query, and that the client’s reconstruction is additive, then in fact we obtain an
IT DPF for the point function f,,1, by having the client query for index o, and the servers
considering the database D, which has the value 1 at index z, and 0 at all other indices. As
we will see, some existing classes of I'T PIR schemes fit into this framework, and thus yield
IT DPF with similar communication. However, other categories of IT PIR constructions will
require more work.
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Known IT PIR schemes can be roughly classified into three generations. The first-
generation schemes, originating in the work of [17], are based on Reed-Muller codes, and
achieve communication complexity N/©(™)  As it turns out, for m > 3 these schemes imply
IT DPF schemes with similar communication complexity. Hence, these constructions serve
as our baseline.

» Theorem 4 (Reed-Muller IT DPF - Informal, implicit in [17, 3]). Let p > 2 be a prime and
m > 2 an integer. There exists a perfectly secure m-server DPF, for point functions with
output group Z, and key size O,,(log(p) - N1/ (m=1),

Note that the above theorem is stated for prime sized cyclic groups, as the usual Reed-
Muller code based constructions are based on extension fields. However, by employing a
similar construction over extension rings, which are used in the MPC literature on secure
computation over rings [20, 19], it is possible to extend the above result to any prime power
sized cyclic groups, and hence to any Abelian group.

In the second-generation PIR scheme of [5] the exponent of N vanishes super-linearly
with m (but is still a constant for any fixed m), and corresponding IT DPF constructions
can be derived as well.

Finally, third-generation PIR schemes [40, 25, 24, 4] achieve N°() communication com-
plexity with as low as 3 servers, or even 2 servers if we allow the servers to respond with
N°(MW_bit messages. These schemes are based on a nontrivial combinatorial object called
a matching vectors (MV) family, based on the work of [30]. In addition to their superior
asymptotic communication complexity, as was discussed in [4, 31], for moderate size para-
meters, these schemes can achieve superior concrete complexity as well, by employing an
MV family based on the work of Frankl [27].

Unfortunately, unlike the first and second generation PIR schemes, MV-based PIR
schemes do not readily imply a DPF. Indeed, for some specific output ring R, the schemes
imply a form of “quasi-additive” DPF, where 3 can either be chosen to be zero or some
invertible element ¢ of R (which depends on the choice of a and the randomness of the key
generation). Note that given such a quasi-additive DPF for m servers, it can be converted
to a true DPF with 2m servers by replicating each quasi-additive DPF share among two
servers, as well as secret sharing ( = (1 + (o among them. Indeed, this principle can also
be applied to balanced PIR schemes, where the output message of each server is a vector
instead of a single element. By applying this to the 2-server “quasi-additive” DPF implicit
in the 2-server PIR work of Dvir and Gopi [24] we obtain Theorem 1.

The above discussion leaves open the question of obtaining a 3-server IT DPF with
communication complexity N°(!). We are able to construct such a DPF with statistical
security. One subtle difficulty is that even though the nonzero payload 3 generated by
the quasi-additive DPF depends on the randomness of the key generation, this entropy
is eliminated when we condition on the view of a server. Our strategy is to repeat the
quasi-additive DPF o times, for point functions fy g,,..., fa,3,, such that with probability
1/2 we take 5; = 0 and take a nonzero (; otherwise. This ensures that even when fixing
«a and conditioning on the view of a single server, the payload § has some entropy. Then,
we provide each server with its respective o keys. In addition, denoting by B the vector
of payloads, such that each coordinate i takes the value (;, we provide the servers with a
random vector r satisfying (r, B) = 8 for the desired output value §.

By the perfect security of the PIR, the o keys alone do not reveal any information.
However, since r is correlated with them and with 3, some information on the relation
between v and S is revealed. To argue that the amount of information is a negligible function
of o, we first invoke the leftover hash lemma to argue that for a uniformly random 7/, the
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distribution of (v, (r’, B)) is statistically close to uniform. We then argue that if we condition

this joint distribution on different values of (r’, B), the distribution of ' cannot change much.

By applying this principle to the PIR scheme of [4], we obtain Theorem 2.

2 Preliminaries

Notation. For N € N we let [N] ={1,..., N}. We denote the inner product of two vectors
u and v of the same length by (u,v) = >, uv;.

Probability. For two distributions Dy, Dy we denote by d(Di,Ds) = 33 |Prp,[w] —
Prp,[w]| their total variation distance. We denote by Uy uniformly distributed random
strings of length /.

Groups. We represent an Abelian group G of the form G = Z,, x --- x Zg,, for prime
powers q1,...,q¢ by G = (q1,...,qe) and represent a group element of G by a sequence of ¢
non-negative integers.

Point functions. Given a domain size N and Abelian group G, a point function fq g :

[N] = G for @ € [N] and 8 € G evaluates to 8 on input « and to 0 € G on all other inputs.

We denote by fayg = (N, G, a, B) the representation of such a point function.

2.1 Distributed Point Functions

We begin with a formal definition of the cryptographic primitive of distributed point functions
(DPFs).

» Definition 5 (DPF [28, 13]). A (1-private) m-server distributed point function, or m-DPF
for short, is a tuple of algorithms II = (Gen, Evaly, ..., Eval,,_1) with the following syntax:
Gen(1*, fa,g) — (ko,- .-, km—1): On input security parameter X\ € N and point function
description fa,g = (N,@,a,ﬁ), the (randomized) key generation algorithm Gen returns
an m-tuple of keys ko, ..., km—1 € {0,1}*. We assume that N and G are determined by
each key.
Evali(ki,z) — yi: On input key k; € {0,1}* and input x € [N] the (deterministic)
evaluation algorithm of server i, Eval;, returns a group element y; € G.
We require 11 to satisfy the following requirements:
Correctness: For every A, fa’g = (N,@,a,ﬁ) and x € [N], if (koy...,km-1)
Gen(l’\faﬁ), then Pr {Zi;ol Eval;(k;,x) = fa’ﬁ(x)} =1.
Security: Consider the following semantic security challenge experiment for a corrupted
server T € {0,...,m —1}:
1. The adversary gives challenge point function descriptions (fl = (N, G, a1, P1), 2=
(N27G2, 02752)) — A(IA) with N1 = N2 and @1 = GQ.
2. The challenger samples b & {0,1} and (ko, ..., km_1) < Gen(1*, f?).
3. The adversary outputs a guess b’ + A(kr).
Denote by Adv(1*, A, T) := Pr[b = b'] — 1/2 the advantage of A in guessing b in the
above experiment. For circuit size bound S = S(\) and advantage bound e(\), we say that
IT is (S, €)-secure if for all T, and all non-uniform adversaries A of size S(\), we have
Adv(1*, A, T) < €(N). We say that 11 is:

17:5

ITC 2022



17:6

Information-Theoretic Distributed Point Functions

Computationally e-secure if it is (S, €)-secure for all polynomials S.
Computationally secure if it is (S,1/.5)-secure for all polynomials S.

Statistically e-secure if it is (.S, €)-secure for all S. When € is omitted it is understood
to be negligible in \.

Perfectly secure if it is statistically 0-secure.

3 Constructions

In this section we give two main constructions of information-theoretic DPF. The first is
perfectly secure but requires 4 servers. The second requires just 3 servers but only offers
statistical security.

3.1 4-server MV-based DPF

Our first result is the following, based on 2-server “quasi-additive” DPF, implicit in [24].
In that quasi-additive DPF the response of each server is a vector, such that the result is
constructed by taking an inner product of the sum of the servers’ vectors with a reconstruction
vector that is a function of the point o and therefore must not be part of the DPF key.
However, the reconstruction vector can be readily secret-shared between two keys. Using
four servers such that each pair of servers receives one of the original keys of the two-server
DPF of [24] and secret shares of the reconstruction vector, results in a scheme in which each
server returns a single element.

» Theorem 6. Let p > 3 be a prime and s > 1 an integer. There exists a perfectly secure
4-DPF, for point functions with output group Zy-, B € {0,1}, domain size N, and key size

kil = O (slog(p) - 22VENIEREN ) i e {0,1,2,3).

We prove the theorem in several steps. The following theorem is a generalization of the
construction implicit in [24] to the case of matching vector families over moduli m = 2p*, for
a prime p > 3 and an integer s. Here, Share is a randomized algorithm that shares an input
a € [N] between two servers, Conv is a share conversion algorithm employed by the servers
that maps the shares of a to shares of f, ¢(x), for some nonzero ¢, and Rec is an algorithm
that allows, given «, to recover fq ¢(x).

» Theorem 7 (Dvir Gopi share conversion [24], generalized). Let p > 3 be a prime, s > 1 an
integer, and denote q = 2p°. For every integer N > 1 there exist a randomized mapping
Share : [N] — ZZ X ZZ, h =0 <log(q) . 22pV1°gN1°glogN), and deterministic mappings
Conv: {0,1} x Z x [N] = Z}. and Rec: [N] — Z., such that

For every a,x € [N],

Pr | (co, c1) < Share(a) : <Rec(a),z Conv(z‘,ci,:v)> {E 2,22} o= a} =1
i=0

=0, T #
For every a,o’ € [N] and i € {0,1},
[(co,c1) < Share(a); Output ¢;] = [(co, c1) < Share(a); Output c;]
Share, Conv, Rec are computable in time polynomial in their input and output size.

We will first need the following result from [30].
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Notation: Let Share, Conv, Rec be as in Theorem 7.

Gen(fop = (N.G = Zpe, 0, f € {0,1))):
Compute (co, ¢1) < Share(a).
Compute r = [<Rec(a), 23:0 Conv(i, ¢;, a)>] - Rec(a)B, and share it additively r = ro+7r1.
Output ko = (co,70), k1 = (co,71), k2 = (c1,70), ks = (c1,71).

Evali(ki = (¢ji,72), 7):
Compute and output (r;,, Conv(ji, ¢;y, z)).

Figure 1 4-server MV-based DPF.

» Theorem 8 (Matching Vectors [30]). For every integers N,s and prime p, there is h =
0 <log(q)22pv log Vlog logN) and a collection of vectors (u;, v;)icn) in Z (called matching
vectors), ¢ = 2p®, such that

For every i € [N], (u;,v;) =0.

For every i # j, (u;,v;) € {1,p%,p* + 1}.

We are now ready to prove Theorem 7.
Proof of Theorem 7. Let h and (u;,v;) be as in Theorem 8. Share(a) draws a random
vector w & Zf} and outputs (w,w + uy). Conv(i,w’, z) outputs

((_1)<w/7vx>’ (_1)<w’7vm>vm) mod ps.

Rec(a) outputs (1, —u,) mod p®. Efficiency and security are obvious. Correctness follows
because the expression

<(17 *ua)a ((71)(111,1)1)7 (71)<w,vx>vr) + ((71)<w+ua,vm), (71)(w+ua,vz>vz)> mod ps
equals (—1)(¥e) (1 — (uq,vy)) - (1 + (—=1){*=)) mod p* which is in {—2,2} if z = o and
equals 0 if z # «, because then (uq,v,) € {1,p%,p° + 1}. <

Using the above result, we can construct a 4-server I'T DPF. Below is a construction
for the output group Z,- and § € {0,1}. An extension to general finite Abelian group G
and any 8 € G can be done by bit decomposition, which will incur a multiplicative factor of
log |Z,4| = log g in privacy loss, computational cost, and key length. However, some groups
might have large key size, due to p appearing as an exponent in the key size in Theorem 6.

Proof of Theorem 6. The construction is given in Figure 1.
Security and efficiency are obvious. Correctness follows because

1 1 1
Z Z (rj,,Conv(ji,cjy, ) = <Z Tjys Z COnV(j1,Cj1,m)>

J1=0j2=0 Jj2=0 Jj1=0

1 -1 1
= l<Rec(a),ZConv(i,ci,a)>] Rec(a)3, Z Conv(jl,cjl,:c)>
i=0

Jj1=0

1 -1 1
=4 l<Rec(a), Z Conv(i,ci7a)>1 <Rec(a), Z Conv(z, cz-,x)> ,
i=0 i=0

which is either 5 or 0 depending on whether z = a or x # «, respectively. |

<

ITC 2022
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3.2 3-server statistically-secure MV-based DPF

To construct a 3-server statistically-secure DPF, we need the following result from [4].

» Theorem 9 ([4, Theorem 3.5]). For every domain size N > 1 there exist a randomized
mapping Share : [N] — Zt x ZE x Zk, h = O (26\/ log N log 10gN> , and a deterministic mapping
Conv: Z! x Z! x [N] — Z2, such that

1. For every o, x € [N],

2
#07 Tr =
Pr |(co, c1,ca) < Share(a) : Conv(¢;, Clit1)mod 35 T =1.
(co,c1,¢2) () ;:0 (Ciy C(it1)mod 3 ){207 v

2. For every a,a’ € [N] and 4,5 € {0,1,2},
[(co,c1, c2) + Share(a); Output (c;, ;)] = [(co, c1,c2) < Share(a’); Output (c;, ¢;)]
3. Share, Conv are computable in time polynomial in their input and output size.

Below is the our main theorem for this section. Using the results of [37, 36], we also show
how to extend this theorem to bigger payloads.

» Theorem 10. Fiz an integer A > 0. The construction in Figure 2 is a statistically
(41 . 2?) -secure 3-DPF, for point functions with output group G = Z2, domain size N,

and key size |k;| = O </\ : 26\/1°gN1°g1°gN), i€{0,1,2}.
Next, we will need an additional result.

» Definition 11. Let X be a random variable. Then the min-entropy of X is

» Lemma 12 (Leftover Hash Lemma). Let F be a finite field. If X is a random wvari-
able over F™ with Hyo(X) > R and Y & F is drawn independently, then it holds that

log [F|— R

d((YAY, X)), Unt1yiog|e) <27 2
Proof of Theorem 10.

Efficiency. Follows by construction and Theorem 9.

Correctness. In fact, the Gen algorithm may not be defined if y = 0, as there might not be r
such that (r, y) = 8. In that case we can just let Gen reveal « and S for a negligible privacy loss.
When this does not happen, we need to show that E?Zl Eval;(k;, x) = (r, Zg’zl Yi) = fa,p(x).
Indeed, when x # o we have that Z?:1 y; = 0 because every (cf, c{,c5) was produced by
computing either Share(«) or Share(N + 1). When 2 = « we have that E?Zl yt = y*, which

implies that (r, Z?:l yi) = (r,y) = B.
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Notation: Let Share, Conv be as in Theorem 9 with domain size N + 1.

Gen(1*, fa,s = (N, G = Z3, 0, B)):
For £=1,...,\ draw o} & {a, N + 1} and compute (cf, c{,cs) + Share(aj).
For £=1,...,)\ set

‘ Conv(ct, ¢k, o) + Conv(ch, c§, @) + Conv(ch, cf, ), o) =«
y =
0, =N+1

Denote by y € F} the vector of all y¢ values concatenated, where we naturally associate
elements of Z3 with these of F4 (mapping zero to zero).

Choose r € F} at random under the constraint that (r,y

)=
Output ko = ((6{765)2 1,7 ) ki = ((C27c€)2 1,7 ) ke = ((cé,c‘f)?:l,r).
Eval (k - ((C(ucé)g\ 1,7‘),1‘)1
For £ =1,..., ) set
yf = COI’\V(C(‘;7C£,$)7

and denote by y; € F} the vector of all y values concatenated.

Compute and output (r,y;).

Figure 2 3-server statistically secure MV-based DPF.

Security. Denote by D, g the distribution of ky as outputted by Gen on input A and faﬁ.

We will show that for a; # ap and Bi, B2 the distributions Dy = Dy, g, and Dy = D, g,
have statistical distance negligible in A\. The claim for k; and ks follows without loss of
generality. It holds by part 2 of Theorem 9 that

d(Dy, Ds) = *ZZ
= % : gf[ko = C/] Z

r’

Prko—c r=r]— gr[ko—c r=r]

o _n_ _ _
Ellf[T*TUCO*C} Eg[r ko = (]

1
5 o

IN

P :/ :/—P :/ :/
Df[r ko = '] Dg[r ko = ']

< max d(D1|ro=c'> D2|ro=c’)-

Therefore, it is sufficient to upper bound the distance between the distributions D; and Do
conditioned on ko = ¢'.

Let y be the vector depending on ¢’ in the distribution D; conditioned on kg = ¢/, which
is a distribution over the set {(c/,7’) : v’ € F;}. Then, by part 1 of Theorem 9, in this
distribution, every 3 attains two possible values with equal probability, either some nonzero
value (depending on ¢’ and «) if af = a or zero if a; = N + 1. Therefore, Ho(y) = A.

By applylng Lemma 12 we deduce that when 7 < [}, the joint distribution (7, (7,y)) is
¢ := 277 ~close to Uz(x+1)- In particular, [Pr[(7,y) = ﬁl i <e

17:9
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Conditioned on ko = ¢, the distribution of 7 is exactly 7| ,—p,. Hence, for a value
w :=Pr[(f,y) = B;] — 1, —e < w < ¢, we arrive at

Pr[(?,(7,y)) € E] |E]|
i+w ey

d(P](7,4)=p;» U2n) = sup
EC{(r B,):r/ €}

i wp |PCCNEE ]
EQF2+1 1+ 4w 4
L E|
<4 sup Pr[(7, (f,y)) € E] — JREs] + 16]w| + O(|w|?)
ECF,*!
= 4d((7, (*,y)), Uzr11)) + 16€ + O(€?)
= 20e + O(€?),

which concludes the proof, because if d(#|(; ,)=g,, U2x) < 20€ + O(€®) in both distributions,
then also d(D1|ky=c/, Dalky=er) < 40€ + O(€?) < 4le by the triangle inequality, and by
choosing A > 10. <

The construction from Theorem 10 can be generalized to any prime characteristic, due to
the results of [37, 36], from which we get the following.

» Theorem 13 ([37, 36]). Let p and p1 < py be primes such that either

p1,p2 # 2 and p € {p1,p2};

2 € {p1,p2} and p = 2.

Then, for ¢ = p1p2, there exists a randomized mapping Share : [N] — ZZ X ZZ X ZZ,
h=0 (1og(q)22p2 Vlog Nlog logN), and a deterministic mapping Conv : ng X ZZ X [N] — Zf),
for some constant ¢ = O(q?), such that
1. For every a,x € [N],

2
Pr |(co, 1, c2) < Share(a Conv(¢;,y C(i+1)mod 3
[(0 1,C2) Z (i+1)mod 3 ){:07 v

=0

#0, x—a]

2. For every a, o’ € [N] and i,j € {0,1,2}, the distributions of (c;, c;), produced by either
(co, c1,¢2) <= Share(a) or (co, c1,c2) <— Share(a), are identical.
3. Share, Conv are computable in time polynomial in their input and output length.

Utilizing Theorem 13 in similar fashion to how Theorem 9 is used in the proof of Theorem
10, we deduce the following. Note that we require the group size p to be rather small, due to
p2 appearing in the exponent in the expression for h.

» Theorem 14. Fiz an integer X > 0. There exists a statistically 2~ -secure 3-DPF,
for point functions with output group G = Z,, where p is a prime, domain size N, and key
size |k;| = O (Alog(p) . Qk(p)vlogNloglogN>, i € {0,1,2}, where k(2) = 6, k(3) = 10, and
k(p) =2p ifp > 5.

4 Distributed Key Generation

In the standard model for DPF, a client accepts a point («, §) as input and generates appro-
priate DPF keys. However, in certain applications of DPF| such as distributed computation
of RAM program or MPC with preprocessing for mixed-mode computations, one needs to
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accommodate an input («, 3) that is secret-shared among parties that jointly act as client
to generate DPF keys, which can then be either locally evaluated or provided to external
servers.

We discuss two different settings for distributed key generation: either two clients sharing
an input and then jointly generating keys for m > 3 servers, or all m parties together
secret-sharing the input with threshold ¢ = 1 and then generating the keys. In either setting
it is natural to consider both semi-honest and malicious adversaries.

The point « can be shared in the input in different ways, e.g. secret-sharing each bit
separately, or sharing « as an integer value modulo a N’ > N for domain size N. Generic
MPC protocols can be used to switch between these representations with security against
malicious adversaries and in time and communication that is linear in the size of the input
(for a constant number of servers). Since the input size is negligible in the key length and in
the overall communication and computation for distributed key generation we ignore this
cost in the rest of the section.

DPF schemes that are based on a family of Matching Vectors such as the schemes in
Figures 1, 2 or the scheme in [4] that is based on Frankl’s MV family [27] have Gen algorithms
that use the following template. Associate the points in the input domain with subsets of
a given size w out of a universe of k items. FEach point = in the input domain is therefore
associated with a binary vector v, of length & and Hamming weight w, and it must hold
that ( f} ) > N. The vector v, determines a second binary vector u, in which each coordinate
is a product of a fixed subset of the coordinates of v,. On input point « the Gen algorithm
returns as output u,. By adapting the discussion in Appendix C of [2] we have that:

» Proposition 15. Let f, 3 : [N] — Zs be a point function and let Share and h =
0] (26V log Nlog logN) be as in Theorem 9. Choose w to be the smallest integer such that

2
(ww) > N, and set k = w?. Then, there exists a Boolean circuit that computes Share with

O((g%) -3yw - w?) = O(h) gates and depth O(logh).

A circuit to compute the mapping Share can be readily transformed into a circuit that
computes Gen for the IT-DPF schemes that we presented. In the 3-server quasi-additive
DPF from [4], Gen is identical to Share. In the 3-server statistically secure DPF scheme from
Section 3.2, Share is repeated A times for a statistical security parameter A and each key is

of twice the size of the key from [4] due to CNF sharing of each coordinate in the vector.

Therefore, the circuit for Gen is 2\ times the size of the circuit for Share. Finally, in the
4-server scheme of Section 3.1 the circuit size is identical to the circuit size of the 3-server
quasi-additive DPF from [4].

The next theorem describes the asymptotic features of using general MPC protocols to
securely and distributively generate the keys in the presence of an adversary that corrupts at
most one of the servers.

» Theorem 16. Let f, 5 : [N] = Z2 be a point function and h = O (26\/ logNloglogN>. If
and B are secret-shared between m > 2 servers, for constant m, and the adversary controls at
most one server then there exist protocols for distributed key generation for the protocols in
Figure 1 and Figure 2 that have the following features:

If m > 3 then the protocol has information-theoretic security against a malicious adversary

using only secure point-to-point channels.

If m = 2 then the protocol has information-theoretic security against a malicious adversary

in the OT-hybrid model.

The communication and computation costs of the protocol are O(h).
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The round complexity is O(log h); alternatively, the protocols can have constant round
complexity if we settle for computational security, while making only a black-box use of a
pseudorandom generator.

Proof. General MPC protocols for m > 3 parties communicating only by point-to-point
channels that are information-theoretically secure against a semi-honest adversary that
controls at most one party have first been proposed by [6]. Protocols in the same setting
that are secure against a malicious adversary were given in [38]. Two-party protocols in the
OT-hybrid model, i.e. that are information-theoretically secure in the OT-hybrid model were
given in [29, 33, 32].

All of the above protocols have communication and computation cost O(|C|) if the
computed function can be realized by a circuit C with |C| gates and their round complexity
scales linearly with the circuit depth. Combining these results with the result of Proposition
15 on the size and depth of the circuit to compute key generation gives the information-
theoretic variant of the protocol. For the computational case, we can use constant-round
protocols based on garbled circuits that make a black-box use of a PRG [1, 21, 34]. <

5 Open Questions

We leave open the question of extending our results to general output groups. In particular:

1. Is there a perfectly secure 3-server DPF with key size N°(1)?

2. Can our results be extended to general Abelian output groups? For the case of Z, with
an s-bit prime p, we do not know how to construct a DPF with key size poly(s) - No)
even if we allow an arbitrary constant number of servers and settle for statistical security.

We briefly explain the relevant barriers. For the first question, it is not clear how
to construct a share conversion that improves upon the one in Theorem 9 by satisfying
Z?:o Conv(ci, €(i+1)mod 3, ) = 1 whenever z = a, instead of just being nonzero. For the
second question, the obstacle to obtaining a DPF over Z,, for a large prime p is that this
necessitates the underlying share conversion to operate over characteristic p. For existing share
conversion schemes, this requires matching vectors whose length grows super-polynomially
with the bit-length of p.
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