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Preface

The Symposium on Foundations of Responsible Computing (FORC), now in its third year,
is a forum for mathematically rigorous research in computation and society writ large. The
Symposium aims to catalyze the formation of a community supportive of the application of
theoretical computer science, statistics, economics, and other relevant analytical fields to
problems of pressing and anticipated societal concern.

Topics include, but are not restricted to theoretical approaches to fairness in machine
learning, including the investigation of definitions, algorithms, lower bounds, and tradeoffs;
formal approaches to privacy, including differential privacy; computational and mathematical
social choice, including apportionment and redistricting; economic incentives, including
mechanism design for social good; metrics and implications of robustness, including formal
methods for explainability; bias in the formation of, and diffusion in, social networks; and
mathematical approaches bridging computer science, law, and ethics; mathematically rigorous
work on societal problems that have not traditionally received attention in the theoretical
computer science literature.

Twenty-four papers were selected to appear at FORC 2022, held on June 6-8, 2022 at
the Harvard University Center for Mathematical Sciences and Applications in Cambridge,
MA, USA. The twenty-four papers were selected by the program committee, with the
help of additional expert reviewers, out of fifty-three submissions. FORC 2022 offered two
submission tracks: archival-option (giving authors of selected papers the option to appear in
this proceedings volume) and non-archival (in order to accommodate a variety of publication
cultures, and to offer a venue to showcase FORC-relevant work that will appear or has
recently appeared in another venue). Seven archival-option and seventeen non-archival
submissions were selected for the program.

Thank you to the entire program committee and to the external reviewers for their hard
work during the review process amid the continued challenging conditions of the pandemic.
It has been an honor and a pleasure to work together with you to shape the program of this
young conference. Finally, we would like to thank our generous sponsors at the Harvard
Center of Mathematical Sciences and Applications (CSMA) for partial conference support.

Elisa Celis
New Haven, CT
April 30, 2022
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Controlling Privacy Loss in Sampling Schemes:
An Analysis of Stratified and Cluster Sampling
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Abstract
Sampling schemes are fundamental tools in statistics, survey design, and algorithm design. A
fundamental result in differential privacy is that a differentially private mechanism run on a simple
random sample of a population provides stronger privacy guarantees than the same algorithm run
on the entire population. However, in practice, sampling designs are often more complex than the
simple, data-independent sampling schemes that are addressed in prior work. In this work, we
extend the study of privacy amplification results to more complex, data-dependent sampling schemes.
We find that not only do these sampling schemes often fail to amplify privacy, they can actually
result in privacy degradation. We analyze the privacy implications of the pervasive cluster sampling
and stratified sampling paradigms, as well as provide some insight into the study of more general
sampling designs.

2012 ACM Subject Classification Security and privacy → Privacy protections

Keywords and phrases privacy, differential privacy, survey design, survey sampling
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1 Introduction

Sampling schemes are fundamental tools in statistics, survey design, and algorithm design.
For example, they are used in social science research to conduct surveys on a random sample
of a target population. They are also used in machine learning to improve the efficiency and
accuracy of algorithms on large datasets. In many of these applications, however, the datasets
are sensitive and privacy is a concern. Intuition suggests that (sub)sampling a dataset before
analysing it provides additional privacy, since it gives individuals plausible deniability about
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1:2 Controlling Privacy Loss in Sampling Schemes

P, H P, C(H) S M(S) = MC(H, P )

Historic or auxiliary data
is used to design

the sampling scheme

End-to-end process
described by MC

Sampling scheme C(H) is
used to sample dataset S

from population P

ε-differentially private
mechanism M

is run on input S

Figure 1 The structure of using a data-dependent sampling scheme.

whether their data was included or not. This intuition has been formalized for some types
of sampling schemes (such as simple random sampling with and without replacement and
Poisson sampling) in a series of papers in the differential privacy literature [23, 33, 11, 31].
Such privacy amplification by subsampling results can provide tight privacy accounting
when analysing algorithms that incorporate subsampling, e.g. [32, 1, 21, 28, 19]. However,
in practice, sampling designs are often more complex than the simple, data independent
sampling schemes that are addressed in prior work. In this work, we extend the study of
privacy amplification results to more complex and data dependent sampling schemes.

We consider the setting described in Figure 1. We have a population P and a historic
or auxiliary data set H which is used to inform the sampling design. We think about the
sampling scheme as a function C(H) of the historic or auxiliary data H . Using this sampling
scheme, we draw a sample S from the population P , on which we run the differentially
private mechanism M. We can think about these multiple steps as comprising a mechanism
MC(H, P ) working directly on the population P and the historic data H whose privacy
depends on the privacy of the mechanism M and on the properties of the sampling scheme
C(H). While this is the general framework for the problem we study, we state the technical
results in this paper for the simplified case where H = P ; see Section 2.1 for further discussion.

1.1 Our contributions
We primarily focus on two classes of sampling schemes that are common in practice: cluster
sampling and stratified sampling. In (single-stage) cluster sampling, the population arrives
partitioned into disjoint clusters. A sample is obtained by selecting a small number of
clusters at random, and then including all of the individuals from those chosen clusters. In
stratified sampling, the population is partitioned into “strata.” Individuals are then sampled
at different rates according to which stratum they belong to.

For these more complex schemes, we find that privacy amplification can be negligible even
when only a small fraction of the population is included in the final sample. Moreover, in
settings where the sampling design is data dependent, privacy degradation can occur – some
sampling designs can actually make privacy guarantees worse. Intuitively, this is because the
sample design itself can reveal sensitive information. Our goal in this paper is to explain
how and why these phenomena occur and introduce technical tools for understanding the
privacy implications of concrete sampling designs.

Understanding randomised and data-dependent sampling. It is simple to show that
deterministic, data-dependent sampling designs do not achieve privacy amplification, and
can suffer privacy degradation. Motivated by this observation, we start by studying the
privacy implications of randomised and data-dependent sampling, attempting to isolate their
effects in the simplest possible setting.
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Specifically, we aim to understand sampling schemes of the following form: For a possibly
randomised function f (an “allocation rule”), sample f(P ) individuals uniformly from P

without replacement. In Section 3, we study the case where f is randomised but data-
independent, i.e., the number of individuals samples is drawn from a distribution that
does not depend on P . We give an essentially complete characterization of what level of
amplification is possible in terms of this distribution.

In Section 4, we turn our attention to data-dependent sampling. We identify necessary
conditions for allocation rules f to enable privacy amplification by way of a hypothesis testing
perspective; intuitively, for f to be a good amplifier, every differentially private algorithm
must fail to distinguish the distributions of f(P ) and f(P ′) for neighboring P, P ′. We also
study a specific natural allocation rule called proportional allocation that is commonly applied
in stratified sampling. We design a simple randomised rounding method that offers a minor
change to the way proportional allocation is generally implemented in practice, but that
offers substantially better privacy amplification.

Cluster sampling. In Section 5, we study cluster sampling where a population partitioned
into k clusters is sampled by selecting m clusters uniformly at random without replacement.
Our results give tradeoffs between the privacy amplification achievable and the sizes of the
clusters. In particular, privacy amplification is possible when all of the clusters are small.
As the cluster sizes grow, the best achievable privacy loss rapidly approaches the baseline
of the privacy guarantee of M. We provide some insight into these results by connecting
the privacy loss to the ability of a hypothesis test to determine from a differentially private
output which clusters were included in the sample.

Stratified sampling. Building on our randomised rounding method for the “single-stratum”
case, we show that stratified sampling with the proportional allocation rule amplifies privacy.
Unfortunately, as in the single stratum case, there are natural lower bounds which limit
extending this approach to other common allocation rules.

A common goal when choosing an allocation function f (a function which decides how
many samples to draw from each stratum) is to minimise the variance of a particular statistic.
For example, the popular Neyman allocation is the optimal allocation for computing the
population mean. A natural question then is how to define and compute the optimal
allocation when privacy is a concern? In this work, we will formulate the notion of an optimal
allocation under privacy constraints. This formulation is somewhat subtle since the privacy
implications of different allocation methods need to be properly accounted for. Our goal is
to initiate the study of alternative allocation functions that may prove useful when privacy
is a concern.

1.2 Related work
Several works have studied the privacy amplification of simple sampling schemes. Kas-
iviswanathan et al. [23] and Beimel et al. [9] showed that applying Poisson sampling before
running a differentially private mechanism improves its end-to-end privacy guarantee. Sub-
sequently, Bun et al. [11] analyzed simple random sampling with replacement in a similar
way. Beimel et al. [10], Bassily et al. [7], and Wang et al. [34] analyzed simple random
sampling without replacement. Imola and Chaudhuri [20] provide lower and upper bounds on
privacy amplification when sampling from a multidimensional Bernoulli family, a task which
has direct applications to Bayesian inference. Balle et al. [5] unified the analyses of privacy
amplification of these mechanisms using the lenses of probabilistic couplings, an approach

FORC 2022



1:4 Controlling Privacy Loss in Sampling Schemes

that we also use in this paper. The effects that sampling can have on differentially private
mechanisms is also studied from a different perspective in [13]. However, none of the prior
works consider the privacy amplification of more complex, data-dependent sampling schemes
commonly used in practice. To the best of our knowledge, this paper is the first to do so.

2 Background

2.1 Data-dependent sampling schemes
In the data-driven sciences, data is often obtained by sampling a fraction of the population
of interest. This sample can be created in a wide variety of ways, referred to as the sample
design. Sample designs can vary from simple designs such as taking a uniformly random
subset of a fixed size, to more complex data-dependent sampling designs like cluster or
stratified sampling. Data-dependent sampling designs achieve accuracy and meet budgeting
goals by using historic or auxiliary data to exploit structure in the population. The privacy
implications of simple random sampling are quite well understood from prior work. In this
work, we will move beyond simple random sampling to analyse the privacy implications of
more complex sampling designs, including data-dependent sampling.

An outline of the schema for data dependent sampling designs is given in Figure 1.
There are ostensibly two datasets: H, the historic or auxiliary data that is used to design
the sampling scheme C(H), and P , the current population that is sampled from. For the
remainder of this paper, we make the simplifying assumption that H = P . That is, we will
not distinguish between the historic or auxiliary data and the “current” data. Even if we only
care about maintaining the privacy of the individuals in population P , this assumption is
required if we have no information about the relationship between H and P . Thus, we view
the function MC(P, H) as simply a function of P . We will refer to the size of the sample S

as the sample size, and the fraction |S|/|P | as the sampling rate.
More refined models can be obtained by imposing specific assumptions on the relationship

between H and P , for example, by modeling the temporal correlation between historic and
current data. We leave this for future work.

2.2 Differential privacy
Differential privacy (DP) is a measure of stability for randomised algorithms. It bounds the
change in the distribution of the outputs of a randomised algorithm when provided with two
datasets differing on the data of a single individual. We will call such datasets neighboring.
In order to formalise what a “bounded change” means, we define (ε, δ)-indistinguishability.
Two random variables P and Q over the same probability space are (ε, δ)-indistinguishable if
for all sets of outcomes E over that probability space,

e−ε(Pr(Q ∈ E) − δ) ≤ Pr(P ∈ E) ≤ eε Pr(Q ∈ E) + δ.

If δ = 0 then we will say that P and Q are ε-indistinguishable. For any n ∈ N, let Un be the
set of all datasets of size n over elements of the data universe U . Let U∗ = ∪n∈NUn be the
set of all possible datasets. We discuss two privacy definitions in this work corresponding to
two different neighboring relations: unbounded differential privacy and bounded differential
privacy. We will say two datasets are unbounded neighbors if one can be obtained from the
other by adding or removing a single data point, and bounded neighbors if they have the same
size, and one can be obtained from the other by changing the data of a single individual.
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▶ Definition 1. A mechanism M : U∗ → O is (ε, δ)-unbounded (resp. bounded) differentially
private (DP) if for all pairs of unbounded (resp. bounded) neighboring datasets P and P ′,
M(P ) and M(P ′) are (ε, δ)-indistinguishable.

We will use both bounded and unbounded DP throughout the paper as they are appropri-
ate in different settings. When considering which notion to choose, it is important to consider
which guarantees are meaningful in context. For example, it will be common in the sample
designs we cover for the size of the sample S (see Figure 1) to be data-dependent. When
considering these sampling designs, we will focus on mechanisms M that satisfy unbounded
DP since bounded DP does not protect the sample size. However, bounded DP may be more
appropriate for the privacy guarantee on MC in applications where it is unrealistic to assume
that an individual can choose not to be part of the auxiliary dataset or the population. For
example, the auxiliary data may be administrative data, data from a mandatory census, or
data from a monopolistic service provider. Results and intuition are often similar between
unbounded and bounded DP, although care should be taken when translating between the
two notions. We note in particular that any ε-unbounded DP mechanism is 2ε-bounded DP.

2.3 Privacy amplification with uniform random sampling
Sampling does not provide strong differential privacy guarantees on its own. But when
employed as a pre-processing step in a differentially private algorithm, it can amplify existing
privacy guarantees. Intuitively, this is because if the choice of individuals is kept secret,
sampling provides data subjects the plausible deniability to claim that their data was or
was not in the final data set. This effect was first explicitly articulated in [29], and a formal
treatment of the phenomenon was given in [5]. Three types of sampling are analysed in [5]:
simple random sampling with replacement, simple random sampling without replacement,
and Poisson sampling. In all three settings the privacy amplification is proportional to the
probability of an individual not being included in the final computation. To gain some
intuition before we move into the more complicated sampling schemes that are the focus on
this paper, let us state and discuss the results from [5].

▶ Theorem 2 ([5]). Let C be a sampling scheme that samples m values out of n possible
values without replacement. Given an (ε, δ)-bounded differentially private mechanism M,
we have that MC is (ε′, δ′)-bounded differentially private for ε′ = log(1 + m

n (eε − 1)) and
δ′ = m

n δ.

To consider the implications of this result, notice that ε′ ≤ ε for all values of m ≤ n

so the sampled mechanism MC is strictly more private than the original mechanism M.
Further, taking into account the following two approximations which hold for small x,

ex − 1 ≈ x (1)
log(1 + x) ≈ x, (2)

we have that for small ε, ε′ ≈ m
n ε. So the degree of amplification in both parameters is

roughly proportional to the sampling rate m/n.

2.4 How do people use subsampling amplification results?
Suppose we have a dataset that contains n records, and we want to estimate the proportion
of individuals that satisfy some attribute in an ε-DP manner. Let us set our target privacy
guarantee to be ε = 1. To do this, we can simply compute the proportion non-privately and

FORC 2022



1:6 Controlling Privacy Loss in Sampling Schemes

add Laplace noise with scale 1/n. But, if we know that the dataset is a secret and simple
random sample from a population of 100n individuals, then adding Laplace noise with scale
1/n as before will actually yield a stronger privacy guarantee of ε′ = 0.01 for the underlying
population. To get ε′ = 1, we will need to add noise with scale only 1/(100n). In other
words, the secrecy of the sample means that the computation has more privacy inherently,
and therefore, we can add less noise in order to achieve the desired privacy guarantee.

Existing DP data analysis tools such as DP Creator [18, 17] employ privacy amplification
results to provide better statistical utility. For example, the DP Creator interface prompts
the user to input the population size if the data is a secret and random sample from a larger
population of known size and take advantage of the resulting boost in accuracy without
changing the privacy guarantee.

As we discussed before, privacy amplification results are also used to analyse algorithms
that incorporate subsampling as one of their components. Privacy amplification results
permit a tighter analysis of the privacy that these algorithm can guarantee. In particular,
these algorithms are quite common in learning tasks, e.g. [32, 1, 21, 28, 19].

3 Randomised data-independent sampling rates

While we are ultimately interested in data-dependent sampling designs, we begin with an
extension of Theorem 2 to non-constant but data-independent sampling rates. Prior results on
privacy amplification by subsampling [23, 33, 11, 31, 6] all focus on constant sampling rates
where the sampling rate (the fraction of the data set sampled) is fixed in advance. However,
we will eventually see that randomising the sample rate is essential to privacy amplification
when the target rate is data dependent. To work toward this eventual discussion, we first
study the data-independent case to gain intuition for what properties of the distribution on
sampling rates characterize how much privacy amplification is possible.

Suppose that there is a random variable t on [n] and the sampling scheme is as follows:
given a dataset P , a sample m is drawn from t, and then m subjects are drawn without
replacement from P to form the sample S. In this section we consider unbounded differential
privacy2 for M and bounded differential privacy for MC , where the total number of cases,
n, is known and fixed. A simple generalisation of Theorem 2 immediately implies that the
privacy loss of this randomised scheme is no worse than if t was concentrated on the maximum
value in its support. However, prior work does not give insight into what happens when t

is concentrated below its maximum or is evenly spread. What property of the distribution
characterises its potential for privacy amplification? The following theorem characterizes the
privacy amplification of sampling without replacement with data-independent randomised
sampling rates.
▶ Theorem 3. Let P be a dataset of size n, let t be a distribution over {0, 1, . . . , n}, and let
C : X → U∗ be the randomised, dataset-independent sampling scheme that randomly draws
m ∼ t and samples m records from P without replacement. Define the distribution t̃ on [n]
where t̃(m) ∝ eεm · t(m) for all m ∈ [n].
Upper bound: Let M : U∗ → O be an ε-unbounded DP algorithm. Then, MC is ε′-bounded
DP, where

ε′ = log
(

1 + 1
n

· Em∼t̃[m] · (eε − 1)
)

.

2 Note that we must use the unbounded differential privacy definition for M in this setting; otherwise,
the sample size m would be fixed.
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Lower bound: There exists neighboring datasets P and P ′ of size n, and an ε-unbounded
DP mechanism M such that if MC(P ) and MC(P ′) are ε′-indistinguishable then

ε′ ≥ − log
(

1 − 1
n

· Em∼t̃[m] · (1 − e−ε)
)

First notice that Theorem 3 comports with the generalization of Theorem 2; as expected,
if the support of t is contained within [0, m′] then Em∼t̃[m] ≤ m′, so the randomised scheme
is at least as private as if t was concentrated on m′. It also determines that the property of
t that determines the privacy amplification is Em∼t̃[m], the expectation of an exponential
re-weighting of the distribution that gives more weight to larger sample sizes. When ε is
small, the simple approximations ex − 1 ≈ x, 1 − e−x ≈ x, and log(1 + x) ≈ x mean that
both the upper and lower bounds amount to

ε′ ≈ Em∼t̃[m]
n

· ε.

Due to the exponential re-weighting,

Em∼t̃[m] =
∑n

m=0 eεm Pr(t = m)m∑n
m=0 eεm Pr(t = m)

rapidly approaches n as the weight of t on values close to n increases. Intuitively, this means
that even a small probability of sampling the entire dataset can be enough to ensure that
there is no privacy amplification, even if the mode of t is much smaller than n. Conversely, if
t is a light tailed distribution (say, subgaussian) concentrated on a value much smaller than
n, then privacy amplification is possible.

For example, suppose that t is a truncated Gaussian on [0, n] with mean n/2 and standard
deviation σ. If t is highly concentrated then we expect the privacy guarantee of MC to be
≈ ε/2. As σ grows we expect the privacy guarantee to tend towards ε as more weight is
placed near n. In Figure 2, we illustrate the bounds of Theorem 3 numerically with this
Gaussian example. We can see that when n = 10, 000 and σ ≈ 800, the privacy guarantee of
MC is already close to ε = 0.01, the privacy guarantee of M.

4 Data-dependent sampling rates

We now turn our attention to sampling schemes where sampling rates may depend on the
data. The results in this section are motivated by stratified sampling, where the population is
stratified into k disjoint sub-populations called strata, and an allocation function is used to
determine how many samples to draw from each stratum. We will discuss stratified sampling
with k > 1 in Section 6, but for simplicity and clarity, we first focus on the “single stratum”
case. In this section, we develop tools and statements that we expect to be more broadly
useful in understanding complex sampling designs.

Specifically, we consider the sampling design where one selects a number of cases according
to a data-dependent function, and then samples that many cases via simple random sampling.
That is, let f̃ : U∗ → N be a possibly randomised function and let Cf be the sampling
function that on input P samples f(P ) data points uniformly without replacement from P .
If M is an ε-DP algorithm, then how private is MCf

?
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Figure 2 Numerical computation of the upper and lower bounds from Theorem 3 when t is
truncated Gaussian supported on [0, n] with mean n/2, where n = 104 and standard deviation σ

varies from 1 to 103. The privacy parameter of the mechanism M is 0.01.

4.1 Sensitivity and privacy degradation

We first observe that if the function f used to determine sample size is highly sensitive,
then privacy degradation may occur. That is, if the number of cases sampled may change
dramatically on neighboring populations, then the output of a DP mechanism can immediately
be used to distinguish between those populations. For example, suppose P and P ′ are
neighboring populations, and f is a function where f(P ) = m and f(P ′) = m + ∆. (That
is, the local sensitivity of f at P is at least ∆.) Consider the ε-DP algorithm Mcount that,
on input a sample S, outputs the noisy count |S| + Lap(1/ε) of the number of cases in the
sample. Then Mcount

Cf
(P ) is distributed as m+Lap(1/ε) whereas Mcount

Cf
(P ′) is distributed

as m + ∆ + Lap(1/ε). When ∆ ≫ 1, these distributions are far apart; the privacy loss
between these two populations is ∆ · ε ≫ ε.

Thus, a necessary condition for achieving privacy amplification (rather than degradation)
is that the function f has low sensitivity. In the following sections, we explore other conditions
on low sensitivity functions that are necessary and sufficient for amplification.

4.2 Data dependent sampling and hypothesis testing

We established in the previous section that using a deterministic function to determine
sample size results in privacy degradation. This raises the question: how much randomness is
necessary to ensure privacy control? That is, what can we say about a randomised function
f̃ : U∗ → N with the property that MCf

is ε′-DP for every ε-DP mechanism M? In this
section we establish a connection between the amplification properties of a function f̃ and
hypothesis testing.

A simple hypothesis testing problem is specified by two distributions X and Y . A
hypothesis test H for this problem attempts to determine whether the samples given as input
are drawn i.i.d from X or from Y . If a hypothesis test is only given a single sample then we
define the advantage of H to be

adv(H; X, Y ) = Pr
m∼X

[H(m) = X] − Pr
m∼Y

[H(m) = X].
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That is, the advantage is a measure of how likely the hypothesis test H is to correctly guess
which distribution the sample was drawn from. The closer the advantage is to 1, the better
the test is at distinguishing X from Y .

One common explanation of differential privacy is that an algorithm is differentially
private if it is impossible to confidently guess from the output which of two neighbouring
datasets was the input dataset. This interpretation can be formalised, following [35], by
noting that if M is ε-DP and P and P ′ are neighbouring populations then for every hypothesis
test H,

adv(H; M(P ), M(P ′)) ≤ eε − 1 ≈ ε.

We can establish a similar bound and interpretation of what it means for f̃ to amplify
or preserve privacy. Suppose that f̃ is such that MCf̃

is ε′-DP for every ε-DP mechanism
M. Then in particular, for every ε-DP hypothesis test H, we have that H(MCf̃

(P )) and
H(MCf̃

(P ′)) are ε′-indistinguishable. Now, if we consider only hypothesis tests H : N →
{f̃(P ), f̃(P ′)} that simply look at the size of the sample Cf̃ (·), then we can formalise this
statement in the following way.

▶ Proposition 4. Suppose f̃ : U∗ → N is such that for all ε-DP mechanisms M, we have
that MCf̃

is ε′-DP. Then for all neighboring datasets P, P ′, we have

max adv(H; f̃(P ), f̃(P ′)) ≤ eε′
− 1,

where the optimisation is over all hypothesis tests H such that for all x ∈ N, and b ∈ {0, 1},
e−ε Pr(H(x) = b) ≤ Pr(H(x + 1) = b) ≤ eε Pr(H(x) = b).

This result helps us build intuition for what type of survey designs could possibly amplify
privacy. If f̃ results in privacy amplification then for any pair of neighbouring populations
P and P ′, the distributions f̃(P ) and f̃(P ′) must be close enough that they can not be
distinguished between by any hypothesis test H such that log H is ε-Lipschitz. From this
perspective the result in Section 4.1 follows from the fact that if f̃ is deterministic with high
sensitivity then we can define an appropriate hypothesis test with large advantage based on
Mcount. This is a useful perspective to keep in mind throughout the remainder of the paper.

One consequence of this perspective is a lower bound on how well we can emulate a
desired deterministic function f while controlling or amplifying privacy. Suppose that absent
privacy concerns, an analyst has determined that they want to use a function f to determine
the sample size. However, to avoid privacy degradation they replace f with a randomised
function f̃ . How close can f̃ get to f while maintaining or amplifying the original privacy
level? We can obtain a lower bound on expected closeness of f(P ) and f̃(P ) by relating it
to the well studied problem of estimation lower bounds in differential privacy.

▶ Proposition 5. Let f : U∗ → R and ε, ε′ > 0. Suppose f̃ : U∗ → N is a randomised
function such that for all ε-unbounded DP mechanisms M, it holds that MCf̃

is ε′-bounded
DP. If α ≥ 0 is such that for every ε′-unbounded DP mechanism A, there exists a dataset P

such that E[|A(P ) − f(P )|2] ≥ α, then there exists a dataset P such that

E[|f̃(P ) − f(P )|2] ≥ α −
(

1
ε

)2
.

Proof. Define MSS : U∗ → N as follows. For all P ∈ U∗, M(P ) = |P | + Lap(1/ε). Then
M is ε-unbounded DP. Suppose that f̃ : U∗ → N is such that for all ε-unbounded DP
mechanisms A, ACf̃

is ε′-bounded DP. This implies that MCf̃
(P )) = f̃(P ) + Lap(1/ε) is
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ε′-bounded DP. Therefore, by the definition of α, there exists a population P such that
supP ∈Un E[|MCf̃

(P )) − f(P )|2] ≥ α. Also

α ≤ E[|MCf̃
(P )) − f(P )|2] = E[|f̃(P ) + Lap(1/ε) − f(P )|2] = E[]|f̃(P ) − f(P )|2] + (1/ε)2.

After a small amount of rearranging we arrive at the result. ◀

The problem of lower bounding differentially private function estimation is well-studied [30,
4] in the privacy literature. The lower bounds essentially arise from the fact that A(P ) and
A(P ′) must be similar distributions for neighbouring databases, even if f(P ) and f(P ′) are
far apart. Since we know from Proposition 4 that f̃(P ) and f̃(P ′) must also be close, we
obtain the related lower bound. The slackness of (1/ε)2 is a result of the fact that while
A(P ) and A(P ′) must be indistinguishable with respect to any hypothesis test, f̃(P ) and
f̃(P ′) need only be indistinguishable with respect to any ε-DP hypothesis test.

4.3 Privacy amplification from randomised rounding
Many functions used to determine data-dependent sampling rates have high sensitivity,
but at least one common sampling method has low sensitivity: proportional sampling. In
proportional sampling, a constant, data-independent fraction of the population is sampled
independently from each stratum. This method is similar to simple random sampling, but
a small amount of data dependence is introduced by the fact that the total number of
samples across all strata must be an integer. In this section, we will show that while naïve
implementations of proportional sampling can result in privacy degradation, a minor change
in the sampling size function results in privacy amplification comparable to that afforded by
simple random sampling.

Let r ∈ [0, 1] and f(P ) = r|P | for some constant r ∈ (0, 1). Since the output
space of f is not N, in practice, this is typically replaced with the deterministic function
f̃det,r(P ) = round(r|P |), where round(·) rounds its input to the nearest integer. Unfortu-
nately, deterministic rounding can be problematic for privacy, as we can see through a simple
example. Suppose P and P ′ are neighbouring populations such that |P | = 14, |P ′| = 15, and
r = 1/10. Then, deterministic rounding always results in one case being sampled from P

and two cases being sampled from P ′. As discussed in Section 4.1, such a data-dependent
deterministic function can never result in privacy amplification.

We propose a simple and practical change to the rounding process that does guarantee
roughly the expected level of privacy amplification. We replace the ideal function f with a
randomised rounding function f̃rand,r. That is, let p = r|P | − ⌊r|P |⌋ so f̃rand,r(P ) = ⌈r|P |⌉
with probability p, and f̃rand,r(P ) = ⌊r|P |⌋ with probability 1 − p. The following proposition
shows that, up to a constant factor, randomised rounding recovers the expected factor of r

in privacy amplification.

▶ Theorem 6 (Privacy Amplification from Randomised Rounding). Let r ∈ (0, 1). Then for
every ε-unbounded DP mechanism M, the mechanism MCf̃rand,r

is ε′-unbounded DP when
restricted to datasets of size at least 1/r, where ε′ = log

(
1 + 2r(e2ε − 1)

)
+log(1+r(e2ε−1)) ≈

6rε.

The approximation at the end of the proposition follows from applying (1) and (2), which
give that log(1 + 2r(exp(2ε) − 1)) ≈ 2r · 2ε and log(1 + r(exp(2ε) − 1)) ≈ r · 2ε. The
constant 6 can perhaps be optimized through a more careful analysis. Randomised rounding
is a practical modification since it does not change the size of the sample very much; if
traditional proportional allocation would typically assign m samples, then the modified
algorithm allocates at most m + 1.
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5 Cluster sampling

In cluster sampling, the population is partitioned into disjoint subsets, called clusters. A
subset of the clusters is sampled and data subjects are selected from within the chosen
clusters. If the sampling scheme uses a single stage design, all data subjects contained in the
selected clusters will be included in the sample. Otherwise, a random sample of data subjects
might be selected from each of the selected clusters (multi-stage design). Cluster sampling
produces accurate results when the clusters are mutually homogeneous; that is, when the
distributions within each cluster are similar to the distribution over the entire population.

In the survey context, cluster sampling is often performed due to time or budgetary
constraints which make sampling many units from a few clusters cheaper and/or faster
than sampling a few units from each cluster. A typical example in the survey context is
when clusters are chosen to be geographic regions. Sampling a few geographic clusters and
interviewing everybody in those clusters saves traveling costs compared to interviewing the
same number of people based on a simple random sample from the population. In algorithm
design, cluster sampling is often performed to improve the performance and accuracy of
classifiers. In this setting, sampling often involves a two-step approach where the data is first
clustered, using some clustering classifier, and then a subset of the clusters is selected. Forms
of cluster samplings have been applied in several learning areas, for example in federated
learning [16] and active learning [27].

5.1 Privacy implications of single-stage cluster sampling with simple
random sampling

We focus here on a simple cluster sampling design that is commonly used in survey sampling
and which naïvely appears to be a good candidate for privacy amplification: simple random
sampling without replacement of clusters. That is, suppose the dataset P is divided into k

clusters,

P = C1 ⊔ · · · ⊔ Ck

and the sampling mechanism Cℓ : U∗ → U∗ chooses a random subset I ⊂ [k] of size ℓ < k,
then maps P to ⊔i∈ICi.

Since simple random sampling at the individual level provides good privacy amplification,
one might expect the same to happen when the clusters are sampled in a similar way. In
fact, this is true when the size of each cluster is small. However, if the clusters are large this
sampling design achieves less amplification than might be expected. This is characterized by
the following theorem showing a lower bound in this setting.

▶ Theorem 7 (Lower Bound on Privacy Amplification for Cluster Sampling). For any sequence
ni > 0 and privacy parameter ε > 0, there exist neighboring populations P = C1 ⊔· · · Ci ⊔· · ·⊔
Ck and P ′ = C1 ⊔· · · C ′

i ⊔· · ·⊔ Ck (with |Ci| = ni and C ′
i = Ci ∪{x} for some x ∈ U) and an

ε-unbounded DP mechanism M such that if MCℓ
(P ) and MCℓ

(P ′) are ε′-indistinguishable
then

ε′ ≥ ln
(

1 +
ℓ
k(

ℓ
k +

(
1 − ℓ

k

)
e−(ni+nmin)ε

) (eε − 1)
)

,

where ni = |Ci| and nmin = minj∈{1,··· ,i−1}∪{i+1,··· ,k} nj.
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We can compare the expression in the theorem above with the one we have for simple
random sampling without replacement (cf. Theorem 14 from [6]):

ε′ = ln
(

1 + m

n
(eε − 1)

)
,

where m samples are drawn from a population of size n. We see that the two expressions
coincide if ni + nmin = 0, which is an unrealistic corner case. Let us instead consider the case
in which all the clusters are small. In this case, the quantity ni + nmin will also be small,
and if ε < 1, we can still expect some privacy amplification. However, as the clusters grow in
size, the quantity ni + nmin will also increase, and the lower bound converges very quickly to
ε, giving essentially no amplification.

Next, we present a corresponding upper bound.

▶ Theorem 8 (Upper Bound on Privacy Amplification for Cluster Sampling). For any sequence
ni > 0, privacy parameter ε > 0, ε-unbounded DP mechanism M : U∗ → O, and pair of
neighboring populations P and P ′ such that P = C1 ⊔ · · · Ci ⊔ · · · ⊔ Ck and P ′ = C1 ⊔ · · · C ′

i ⊔
· · · ⊔ Ck (with |Ci| = ni and C ′

i = Ci ∪ {x} for some x ∈ U), the mechanisms MCℓ
(P ) and

MCℓ
(P ′) are ε′-indistinguishable where

ε′ ≤ ln
(

1 +
ℓ
k(

ℓ
k +

(
1 − ℓ

k

)
e−(ni+nmax)ε

) (eε − 1)
)

,

and nmax = maxj∈{1,··· ,i−1}∪{i+1,··· ,k} nj,

Once again it is worth comparing the expression in the theorem above with the one we have
for simple random sampling without replacement:

ε′ = ln
(

1 + m

n
(eε − 1)

)
.

Similar to the lower bound, the upper bound will quickly approach ε if the quantity ni +nmax
is large. If each cluster contains a single data point, the two bounds are close. This is not
surprising since in this case the type of cluster sampling we considered is just simple random
sampling without replacement. Note that while ℓ/k is the fraction of clusters included in the
final sample and m/n is the fraction of data points, these are approximately the same when
the clusters are small. If all the clusters are the same size, then nmax = nmin and the upper
and lower bounds we gave above match. The proofs of these results are contained in the
Appendix.

5.2 Discussion and hypothesis testing
Privacy amplification by subsampling is often referred to as secrecy of the sample due to the
intuition that the additional privacy arises from the fact that there is uncertainty regarding
which user’s data is in the sample. The key intuition then for Theorem 7 is that the larger
the clusters are, the easier it is for a differentially private algorithm M to reverse engineer
which clusters were sampled, breaking secrecy of the sample. Intuitively, if the clusters are
different enough that a private algorithm can guess which clusters were chosen as part of the
sample, then any amplification due to secrecy of the sample is negligible. We can formalize
this intuition using once again using the lens of hypothesis testing. Note the framing in this
section differs slightly from the framing in Section 4, although the underlying idea in both
settings is that if a particular hypothesis test is effective, then there is a lower bound on the
privacy parameter. In addition, note that privacy is also conserved in this setting, as MCℓ

is
at least as private as M. The question is: when is MCℓ

more private than M?
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▶ Theorem 9. Let ε > 0, ℓ ∈ [0, k], M : U∗ → O be ε-DP and the sampling mechanism Cℓ

be as defined in Section 5.1. Suppose there exists a hypothesis test H : O → {0, 1} such that

Pr(H(MCℓ
(P )) = 0 | Ci ∈ Cℓ(P )) ≥ eε′

Pr(H(MCℓ
(P )) = 0 | Ci /∈ Cℓ(P )).

Then there exists an event E in the output space of M such that for any neighboring population
P ′ that differs from P in Ci, if

ε′′ = log Pr(MCℓ
(P ) ∈ E|Ci ∈ Cℓ(P ))

Pr(M(Cℓ(P ′)) ∈ E|Ci ∈ Cℓ(P ′)) ∈ [0, ε],

and MCℓ
(P ) and MCℓ

(P ′) are ε̃-indistinguishable, then

ε̃ ≥ log
(

1 + (eε′′
− 1) ℓ/k

ℓ/k + e−ε′(1 − ℓ/k)

)
.

The key take-away of this theorem is that for any ε-DP mechanism M, if there exists
a hypothesis test that, when given the output of MCℓ

(P ), can confidently decide whether
cluster Ci was chosen as part of the final sample, then the privacy guarantee of MCℓ

is no
better than the privacy guarantee would be if we knew for certain that Ci was chosen as part
of the sample. That is, in this setting, we gain no additional privacy as a result of secrecy of
the sample. The parameter ε′ controls how well the hypothesis test can determine whether
Ci ∈ Cℓ. As ε′ increases, ε̃ approaches ε′′, the privacy parameter if Ci is known to be part of
the sample, so privacy amplification is negligible.

This view is consistent with Theorem 7. Consider a population where only data points
in cluster i have a particular property and let M is an ε-DP mechanism that attempts to
count how many data points with the property are in the final sample. If cluster i is large,
then it is easy to determine from the output of the mechanism whether Ci is in the final
sample. This example required cluster i to be distinguishable from the remaining clusters
using a private algorithm. While examples as extreme as the one above may be uncommon
in practice, clusters being different enough for a private algorithm to distinguish between
them is not an unrealistic assumption.

In Section 5.1, we analysed a single stage design. All subjects contained in the selected
clusters were included in the sample. In practice, multi-stage designs are common, where
a random sample of subjects are selected from within each chosen cluster. If the sampling
within each cluster is sufficiently simple then the privacy amplification from this stage can be
immediately incorporated into the upper bound in Theorem 8. For example, if each subject
within the chosen clusters is sampled with probability r and M is ε-DP, i.e., we perform
Poisson sampling with probability r, then we immediately obtain an upper bound that is
approximately rε. One can also imagine more complicated schemes for selecting the chosen
clusters. If these designs depend on properties of the data, then they are likely to result in
privacy degradation. We leave this study for future work.

6 Stratified sampling

Finally, we turn our attention to another common sampling design: stratified sampling. In
stratified sampling, the data is partitioned into disjoint subsets, called strata. A subset of
data points is then sampled from each stratum to ensure the final sample contains data
points from every stratum. Stratified sampling is common in survey sampling where it is used
to improve accuracy and to ensure sufficient representation of sub-populations of interest.
A classic use case of stratified sampling is business surveys, where businesses are typically
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stratified by industry and number of employees, or by similar measures of establishment
size. Stratification by establishment size results in substantial gains in accuracy compared
to simple random sampling, while stratification by industry ensures that reliable estimates
can be obtained at the industry level. Stratified sampling has several other applications; for
example it is used in algorithm design to improve performance [2, 24], in private query design
and optimization to improve accuracy [8], and to improve search and optimizations [25].

We focus here on one-stage stratified sampling using simple random sampling without
replacement within each stratum to select samples. We also assume that the stratum
boundaries have been fixed in advance. Given a target sample size m, the only design choice
in this model is the allocation function, which determines how many samples to take from
each stratum. Different allocation functions are used in practice. Which method is selected
depends on the goals to be achieved (for example, ensuring constant sampling rates across
strata or minimizing the variance for a statistic of interest).

Before we describe allocation functions in detail, let us establish some notation for
stratified sampling. Suppose there are k strata in the population, and that each data point
is a pair (s, x) where s ∈ [k] denotes which stratum the data subject belongs to, and x ∈ U
denotes their data. Let f = (f1, . . . , fk) : ([k] × U)∗ → Nk denote the allocation rule, so
fi(P ) samples are drawn uniformly at random without replacement from the ith stratum,
Pi = {(s, x) ∈ P | s = i}. The final sample S is the union of the samples from all the strata.

An important feature of stratified sampling is that the sampling rates can vary between
the strata. This means that data subjects in strata with low sampling rates may expect a
higher level of privacy than data subjects in strata with high sampling rates. This leads us
to define a variant of differential privacy that allows the privacy guarantee to vary between
the strata. This generalisation of differential privacy is tailored to stratified datasets and
allows us to state more refined privacy guarantees than the standard definition is capable of.

▶ Definition 10. Let k ∈ N and suppose there are k strata. A mechanism A satisfies
(ε1, · · · , εk)-stratified bounded differential privacy if for all datasets P , data points (s, x)
and (s′, x′), A(P ∪ {(s, x)}) and A(P ∪ {(s′, x′)}) are max{εs, εs′}-indistinguishable. The
mechanism A satisfies (ε1, · · · , εk)-stratified unbounded differential privacy if for all datasets
P , data points (s, x), A(P ) and A(P ∪ {(s, x)}) are εs-indistinguishable.

This definition is an adaptation of personalized differential privacy [22, 14, 3]. Note that
it protects not only the value of an individual’s data point, but also which stratum they
belong to.

6.1 Optimal allocation with privacy constraints
In this section, we will discuss how to think about choosing an allocation function when
privacy is a concern. A common goal when choosing an allocation f is to minimise the
variance of a particular statistic. That is, suppose that Cf represents one-stage stratified
sampling with allocation function f . Then, given a population P and desired sample size m,
the optimal allocation function f∗(P ) with respect to a statistic θ is defined as

f∗(P ) = arg min
f

var(θCf
(P )), (3)

where the randomness may come from both the allocation function and the sampling itself,
and the minimum is over all allocation functions such that ∥f(P )∥1 ≤ m for all P . 3

3 As an aside, we note that the notion of optimal allocations implicitly assumes that the historic or
auxiliary data, H, used to inform the sampling design and the population data P are the same, or at
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A natural question then is: what is the optimal allocation when one wants to compute the
statistic of interest differentially privately? This is a simple yet subtle question. Our results
in the previous sections indicate that the landscapes of optimal allocations in the non-private
and private settings may be very different. This is a result of the fact that allocation functions
that do not amplify well typically need to add more noise to achieve privacy (see discussion
in Section 2.4). The additional noise needed to achieve privacy may overwhelm any gains in
accuracy for the non-private statistic. Additionally, it is not immediately obvious how to
define the optimal allocation in the private setting.

In this section, we formulate the notion of an optimal allocation under privacy constraints.
Our goal is to initiate the study of alternative allocation functions that may prove useful
when privacy is a concern. A full investigation of this question is outside the scope of this
paper, but we provide some intuition for why this may be an interesting and important
question for future work.

Given a statistic θ, we wish to define the optimal allocation for estimating θ privately.
Let θ̃λ be an λ-DP algorithm for estimating θ, so θ̃λ(P ) is an approximation of θ(P ). The
smaller λ is, the noisier θ̃λ is. The scale of λ needed to ensure that θ̃λ

Cf
is ε-DP depends

on the allocation function f . Allocation functions that are very sensitive to changes in the
input dataset will require more noise (smaller λ) to mask changes in the allocation. For any
allocation f , we will define the optimal parameter λ as that which minimises the maximum
variance of θ̃λ

Cf
over all datasets P , while maintaining privacy:

λf =arg min
λ>0

sup
P

var(θ̃λ
Cf

(P ))
var(θCf

(P )) (4)

s.t. θ̃λ
Cf

is (ε1, · · · , εk)-stratified DP.

Now, by definition, θ̃
λf

Cf
is (ε1, · · · , εk)-stratified DP for any allocation function f . We

minimise the multiplicative increase in variance so that the supremum is not dominated by
populations P for which var(θCf

(P )) is large. Given privacy parameters ε1, · · · , εk ≥ 0, we
now define the optimal allocation as the allocation function that minimises the maximum
variance over all populations P :

f∗
ε = arg min

f
sup

P
var(θ̃λf

Cf
(P )). (5)

where the minimum again is over all allocations f such that ∥f(P )∥1 ≤ m for all P , and
the supremum is over all populations of interest. This optimisation function has a different
form to Eqn 3, which performs the optimisation independently for each population P . This
difference is necessary in the private setting as we need to ensure that the choice of allocation
function f∗

ε is not data dependent, since this would introduce additional privacy concerns.
We can view the optimal allocation as the optimal balancing between the variance of the
non-private statistic, and the scale of the noise needed to maintain privacy.

We believe that examining the difference between the optimal allocation in the non-private
setting (Eqn (3)) and in the private setting (Eqn (5)) is an important question for future
work. The main challenge is computing the parameter λf for every allocation f . Analysing
the privacy implications of f in the style of the previous sections gives us an upper bound
on λf , although this bound may be loose for specific statistics θ̃λ. So, while the previous
sections developed our intuition for λf , we believe new techniques are required to understand
this parameter enough to solve Eqn (5).

least similar enough that f∗(H) is a good proxy for f∗(P ). This provides further justification for the
assumption that H = P in our statements.
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6.2 Challenges with optimal allocation
Optimal allocations are defined to perform well for a specific statistic of interest. However,
in practice, a wide variety of analyses will be performed on the final sample. The chosen
allocation function may be far from optimal for these other analyses. While this problem
exists in the non-private setting, it becomes more acute in the private setting. An allocation
function that is optimal for one statistic may result in privacy degradation (and hence low
accuracy estimates) for another.

We illustrate this challenge using Neyman allocation, which is often employed for business
surveys. Neyman allocation is the optimal allocation method for the weighted mean [26]:

θµ(S) = 1
|P |

k∑
i=1

|Pi|
|Si|

∑
x∈Si

x,

where |Pi| is the size of stratum i, and Si = S ∩ Pi. The estimator θµ(S) is an unbiased
estimate of the population mean for any stratified sampling design. Given a desired sample
size m, let fNeyman be the allocation function corresponding to Neyman allocation. Provided
each stratum is sufficiently large, fNeyman(P ) = (m1, · · · , mk), where

mi = |Pi|σ(Pi)∑k
j=1 |Pj |σ(Pj)

· m,

σ2(Pi) is the empirical variance in stratum i and sufficiently large means that mi ≤ |Pi|.
Neyman allocation is deterministic and can be very sensitive to changes in the data due to
its dependence on the variance within each stratum. So, while it can provide accurate results
for some statistics, it provides very noisy results for other statistics of potential interest (e.g.
privately computing strata sizes).

To demonstrate the sensitivity of Neyman allocation, we analysed the sensitivity on a real
data set. The population is based on the County Business Patterns (CBP) data published by
the U.S. Census Bureau [15].4 Each data point is an establishment and the establishments
are stratified by establishment size into k = 12 strata. With a target final sample size of
m = 10, 000, and using the weighted mean of the establishment size as the target statistic,
the Neyman allocation for this population is [1261, 621, 517, 1969, 833, 1947, 1058, 762, 257,
248, 306, 225]. We can find a neighbouring population with Neyman allocation [1259, 620,
516, 1965, 831, 1943, 1056, 761, 257, 247, 306, 244]. While these allocations are not wildly
different, they do differ by 19 samples in the top stratum, which might not have a large
impact on the weighted mean, but could lead to more substantial changes for other statistics.
As an illustrative example, we can consider the goal of privately estimating the stratum sizes
in the sample, for which this allocation would lead to significant privacy degradation.

6.3 Privacy amplification from proportional sampling
Proportional sampling is an alternative allocation function that is used to provide equitable
representation of each sub-population, or stratum. Given a desired sample size m ∈ [n],
proportional sampling samples an r = m

n fraction of the data points (rounded to an integer)

4 The data released by the U.S. Census Bureau is a tabulated version of the true micro data from the
Business Register (BR), a database of all known single and multi-establishment employer companies.
The data set we use is micro data generated to be consistent with the tabulated version. Each data
point in this population is the size of an establishment in the US. In order to compute the sensitivity,
we need to top code the data, we top code the data at 10,000.
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from each stratum. Proportional sampling is not an optimal allocation in the non-private
setting but, when implemented with randomised rounding, it has good privacy amplification.
Now that we consider stratified sampling with number of stratums k ≥ 1, we can state the
following generalisation of Theorem 6.

▶ Theorem 11 (Privacy Amplification for Proportional Sampling). Let r ∈ [0, 1], ε > 0, M be
an ε-DP mechanism, and P = S1 ⊔ · · · ⊔ Sk and P ′ = S′

1 ⊔ · · · ⊔ S′
k be stratified neighboring

datasets that differ on stratum i. If for all j ∈ [k], r|Sj | ≥ 1 and r|S′
j | ≥ 1, then MCfr,prop

is
ε′-DP where

ε′ ≤ log
(
1 + 2r(e2ε − 1)

)
+ log(1 + r(e2ε − 1)).

Note that given a private statistic θ̃λ as defined as above, this allows us to set λfr,prop ≈ ε
6r ,

which is considerably larger than ε for small sampling rates. Thus, while proportional sampling
may not minimise the variance of any single statistic, it may be a good choice since it performs
reasonably well for all statistics.

7 Conclusion

In this paper, we have considered the privacy guarantees of sampling schemes, extending
previous results to more complex and data-dependent sampling designs that are commonly
used in practice. We find that considering these sampling schemes requires developing more
nuanced analytical tools. In this work, we characterize the privacy impacts of randomized
and data-dependent sampling schemes. Then, we apply our insights to analyze cluster and
stratified sampling and to consider the question of optimal allocations under privacy. To the
best of our knowledge, this work is the first to initiate study into these designs. As such, we
hope to see future work in three areas. First, future work should tighten and optimize the
constants in our theorems. Second, our results should be extended from pure to approximate
(and other variants) of differential privacy. Finally, we hope to see further investigation into
near-optimal allocations under privacy constraints.
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A Basic facts about indistinguishability

▶ Definition 12. Let the LCS distance between two data sets P and P ′, denoted dLCS(P, P ′),
be the minimal k such that if we let P = P0 and P ′ = Pk, there exist data sets P1, P2, · · · , Pk−1
where for all i = 0, · · · , k − 1, Pi and Pi+1 are unbounded neighbors.

▶ Lemma 13 ([12]). Let X, Y and Z be random variables. For any ε, ε′ > 0, if X and
Y are ε-indistinguishable, and Y and Z are ε′-indistinguishable, then X and Z are ε + ε′-
indistinguishable.

Many of our proofs use couplings so let us briefly describe on the main method we will use
to construct a coupling of two random variables. Let X be a random variable taking values
in ΩX and Y be a random variable taking values in ΩY . Suppose there exists a (possibly
randomised) transformation f : ΩX → ΩY such that Y = f(X). That is, for all y ∈ ΩY ,
Pr(Y = y) =

∑
x∈ΩX

Pr(X = x) Pr(f(x) = y). Then we can construct a coupling of X and
Y by µ(x, y) = Pr(X = x) Pr(f(x) = y). A short calculation confirms that this defines a
coupling. Further, notice that µ(x, y) ̸= 0 if and only Pr(f(x) = y) ̸= 0.

▶ Lemma 14. Let X and Y be random variables taking values in U∗ such that there exists
a coupling µ such that if µ(x, y) ̸= 0 then the LCS distance between x and y is at most A.
Then if M is ε-unbounded DP then M(X) and M(Y ) are Aε-indistinguishable.

▶ Lemma 15 (Advanced joint convexity, [6]). Let X and Y be random variables satisfying
X = (1 − q)X0 + qX1 and Y = (1 − q)Y0 + qY1 for some q ∈ [0, 1] and random variables
X0, X1, Y0 and Y1. If X0 and Y0 are ε-indistinguishable, X1 and Y1 are ε+ε′-indistinguishable,
X1 and Y0 are ε + ε′-indistinguishable, and X0 and Y1 are ε + ε′-indistinguishable, then X

and Y are ε + log(1 + q(eε′ − 1))-indistinguishable.

B Randomized data-independent sampling

▶ Lemma 16. Given m ∈ N, define Cm : U∗ → Um be defined as follows: given a dataset
P , form a sample S by sampling m data points randomly without replacement from P , then
Cm(P ) = S. Let P and P ′ be unbounded neighboring datasets and m, m′ ∈ N, then MCm

(P )
and MCm′ (P ′) are(

log
(

1 + m

|P | + 1(e2ε − 1)
)

+ |m − m′|ε
)

- indistinguishable.

Proof. Let P ′ = P ∪ {x}. First, let us focus on the case where m′ = m. Now,

MCm
(P ′) =

(|P |
m

)(|P |+1
m

)MCm
(P ) +

(
1 −

(|P |
m

)(|P |+1
m

))M(Cm(P ′)|x∈S)

=
(

1 − m

|P | + 1

)
MCm(P ) + m

|P | + 1M(Cm(P ′)|x∈S),

where Cm(P ′)|x∈S denotes the random variable Cm(P ′) conditioned on the event that x ∈ S.
Now, we can define a coupling of Cm(P ) and Cm(P ′)|x∈S by first sampling S from Cm(P ),
then replacing a random element of S by x. This coupling has LCS distance at most 2, so by
Lemma 14, MCm

(P ) and M(Cm(P ′)|x∈S)) are 2ε-indistinguishable. Thus, by Lemma 15,
MCm

(P ) and MCm
(P ′) are log

(
1 + m

|P |+1 (e2ε − 1)
)

-indistinguishable.
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Next, let us consider the case |m − m′| = 1 and P = P ′. We can define a coupling
of Cm(P ) and Cm′(P ) as follows: first sample S from Cm(P ), then add a random element
of P\S to S. This coupling has LCS distance at most 1, so by Lemma 14, MCm

(P ) and
MCm′ (P ) are ε-indistinguishable.

Finally, we’ll use Lemma 13 to complete the proof. Note that MCm
(P ) and MCm

(P ′)
are log

(
1 + m

|P |+1 (e2ε − 1)
)

-indistinguishable. Then there exist m1, · · · , mℓ−1 such that if
we set m0 = m and m|m−m′| = m′ then for all i, |mi − mi−1| ≤ 1 and so M(Cmi−1(P ′)) and
M(Cmi(P ′)) are ε-indistinguishable. Therefore, by Lemma 13, MCm(P ) and MCm′ (P ′) are(

log
(

1 + m
|P |+1 (e2ε − 1)

)
+ |m − m′|ε

)
- indistinguishable. ◀

▶ Definition 17 (log-Lipschitz functions). A function q : [n] → R≥0 is ε-log-Lipschitz if for
all m ∈ {0, 1, . . . , n − 1}, |log q(m) − log q(m + 1)| ≤ ε.

▶ Lemma 18. Let w : [n] → R≥0 be nondecreasing, and let p : [n] → R≥0 be any function.
Then,

max
q:[n]→R≥0 is ε-log-Lipschitz

∑n
m=0 q(m)w(m)p(m)∑n

m=0 q(m)p(m)
≤
∑n

m=0 eεmw(m)p(m)∑n
m=0 eεmp(m)

The proof of Lemma 18 is omitted due to space constraints.

Proof of Theorem 3. Let Cm : U∗ → Um be the sampling scheme that given a dataset P ,
returns S where S is a uniformly random subset of P of size m (drawn without replacement).
Let y ∈ O be any outcome, and let P ∼ P ′ be neighboring datasets. Then, we have that

Pr[MC(P ) = y] =
n∑

m=0
Pr[MCm

(P ) = y] · Pr[|C(P )| = m]

≤
n∑

m=0

(
1 + m

n
(eε − 1)

)
· Pr[MCm

(P ′) = y] · t(m)

≤
∑n

m=0
(
1 + m

n (eε − 1)
)

· eεm · t(m)∑n
m=0 eεmt(m)

·
n∑

m=0
Pr[MCm

(P ′) = y] · t(m)

=
(

1 + Em∼t̃[m]
n

(eε − 1)
)

· Pr[MC(P ′) = y]

where the first inequality follows from Lemma 16. Then, note that (1 + (m/n)(eε − 1)) is
non-decreasing, and that Pr[MCm

(P ′)) = y] is ε-log-Lipschitz by definition, so the second
inequality follows by Lemma 18. After rearranging and simplifying, we obtain the desired
result.

Finally, for the lower bound, suppose the data universe U = [0, 1]. Let P = {1, · · · , 1}
consist of n 1s and P ′ be the neighboring dataset P ′ = P\{1} ∪ {0}. Let M : U∗ → R be
defined by M(S) =

∑
x∈S 1{x = 1} + Lap (1/ε) so M is ε-unbounded DP. Then

Pr(MC(P ′) = n)
Pr(MC(P ) = n) =

∑n
m=0 Pr(t = m)

(
m
n e−(n−m+1)ε +

(
1 − m

n

)
e−(n−m)ε

)∑n
m=0 Pr(t = m)e−(n−m)ε

= 1 − 1
n

(1 − e−ε)
∑n

m=0 Pr(t = m)emεm∑n
m=0 Pr(t = m)emε

.

Thus, taking the reciprocal,

log Pr(MC(P ) = n)
Pr(MC(P ′) = n) = − log

(
1 − 1

n
(1 − e−ε)

∑n
m=0 Pr(t = m)emεm∑n

m=0 Pr(t = m)emε

)
. ◀
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C Data-dependent sampling

Proof of Proposition 4: hypothesis testing perspective. Let H : N → {0, 1} be the hypo-
thesis test such that for all x ∈ N, and b ∈ {0, 1}, e−ε Pr(H(x) = b) ≤ Pr(H(x + 1) = b) ≤
eε Pr(H(x) = b). Then H ′ : U∗ → {0, 1} defined by H ′(S) = H(|S|) is ε-unbounded DP. By
assumption, H ′

Cf̃
is ε′-DP. This implies that H(f̃(P )) and H(f̃(P ′)) are ε′-indistinguishable.

Therefore,

adv(H) = Pr[H(f̃(P )) = 0] − Pr[H(f̃(P ′)) = 0] ≤ Pr[H(f̃(P ′)) = 0](eε′
− 1) ≤ eε′

− 1.

The result follows from taking the supremum over all ε-DP H. ◀

Proof of Proposition 5. Define MSS : U∗ → N as follows. For all P ∈ U∗, M(P ) =
|P | + Lap(1/ε). Then M is ε-unbounded DP. Suppose that f̃ : U∗ → N is such that for
all ε-unbounded DP mechanisms A, ACf̃

is ε′-bounded DP. This implies that MCf̃
(P )) =

f̃(P )+Lap(1/ε) is ε′-bounded DP. Therefore, by the definition of α, there exists a population
P such that supP ∈Un E[|MCf̃

(P )) − f(P )|2] ≥ α. Also

α ≤ E[|MCf̃
(P )) − f(P )|2] = E[|f̃(P ) + Lap(1/ε) − f(P )|2] = E[]|f̃(P ) − f(P )|2] + (1/ε)2.

After a small amount of rearranging we arrive at the result. ◀

Proof of Theorem 6: proportional allocation with randomized rounding. Let P be a
dataset, x be a data point and P ′ = P ∪ {x}. Let m = r|P |, m′ = r|P ′|, mL = ⌊m⌋,
m′L = ⌊m′⌋, p = m − mL and p′ = m′ − m′L. Now, m′ − m = r < 1 so we have two cases,
mL = m′L or mL = m′L − 1.

As in Lemma 16, let Cm : U∗ → Um be the sampling scheme that given a dataset P ,
returns S where S is a uniformly random subset of P of size m (drawn without replacement).
Note that by Theorem 2, for m, m′ ∈ N, Mm(P ) and Mm′(P ) are |m−m′|ε-indistinguishable,
and MCm

(P ) and MCm′ (P ′) are log
(

1 + m
|P |+1 (e2ε − 1)

)
+ |m − m′|ε-indistinguishable.

Firstly, suppose mL = m′L. Let µ0 = 1
1−r ((1 − p − r)MCmL

(P ) + pMCmL+1
(P )),

µ′
0 = 1

1−r ((1 − p − r)MCmL
(P ′) + pMCmL+1

(P ′)), µ1 = MCmL
(P ), and µ′

1 = MCmL+1
(P ′).

Notice that MCr (P ) = (1 − r)µ0 + rµ1 and MCr (P ′) = (1 − r)µ′
0 + rµ′

1. Now,
by Lemma 15 and Lemma 14, µ0 and µ′

0 are log(1 + mL+1
|P |+1 (e2ε − 1))-indistinguishable.

Further, all the pairs (µ′
0, µ1), (µ1, µ′

1) and (µ0, µ′
1) are

(
log(1 + mL+1

|P |+1 (e2ε − 1)) + ε
)

-
indistinguishable. Therefore, by Lemma 15, MCr

(P ) and MCr
(P ′) are ε′-indistinguishable

where ε′ ≤ log
(

1 + mL+1
|P |+1 (e2ε − 1)

)
+ log(1 + r(eε − 1)) ≤ log

(
1 +

(
r + 1

|P |+1

)
(e2ε − 1)

)
+

log(1 + r(eε − 1)).
Next, suppose m′L = mL + 1. Let 1 − q = min{p, 1 − p′} and µ0 = MCmL+1

(P ),
µ′

0 = MCmL+1
(P ′), µ1 = 1

q ((p−1+q)MCmL+1
(P )+(1−p)MCmL

(P ), ), and µ′
1 = 1

q ((1−p′−1+
q)MCmL+1

(P ′)+p′MCmL+2
(P ′)). Notice that MCr

(P ) = (1−q)µ0+qµ1 and MCr
(P ′) = (1−

q)µ′
0 + qµ′

1. Now, by Lemma 2, µ0 and µ′
0 are log

(
1 + mL+1

|P |+1

)
-indistinguishable. Further, all

the pairs (µ′
0, µ1), (µ1, µ′

1) and (µ0, µ′
1) are

(
log(1 + mL+1

|P |+1 (e2ε − 1)) + 2ε
)

-indistinguishable.
Also, note that q ≤ r. Then by Lemma 15, MCr (P ) and MCr (P ′) are ε′-indistinguishable
where ε′ ≤ log

(
1 + mL+1

|P |+1 (e2ε − 1)
)

+ log(1 + p(e2ε − 1)) ≤ log
(

1 +
(

r + 1
|P |+1

)
(e2ε − 1)

)
+

log(1 + r(e2ε − 1)). ◀



M. Bun, J. Drechsler, M. Gaboardi, A. McMillan, and J. Sarathy 1:23

D Cluster sampling

Proof of Theorem 8. Without loss of generality, let i = 1. Notice that conditioned on
cluster 1 /∈ I, the distribution of outputs of MC(P ) and MC(P ′) are identical. Let E be a
set of outcomes. Then

Pr(MC(P ) ∈ E) = ℓ

k
Pr(MC(P ) ∈ E | 1 ∈ I) +

(
1 − ℓ

k

)
Pr(MC(P ) ∈ E | 1 /∈ I)

= ℓ

k
Pr(MC(P ) ∈ E | 1 ∈ I) +

(
1 − ℓ

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I).

Now, we have that ℓ
k Pr(MC(P ) ∈ E | 1 ∈ I) = ℓ

k

∑
|I|=ℓ,1∈I

1
(k

ℓ)
Pr(M(PI) ∈ E) ≤

ℓ
k

∑
|I|=ℓ,1∈I

1
(k

ℓ)
eε Pr(M(P ′

I) ∈ E) = ℓ
k eε Pr(MC(P ′) ∈ E | 1 ∈ I), where the inequality

follows from the fact that the LCS distance between PI and P ′
I is 1. Thus,

Pr(MC(P ) ∈ E) ≤ ℓ

k
eε Pr(MC(P ′) ∈ E | 1 ∈ I) +

(
1 − ℓ

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I)

= Pr(MC(P ′) ∈ E) + ℓ

k
(eε − 1) Pr(MC(P ′) ∈ E | 1 ∈ I).

Now, we need to relate Pr(MC(P ′) ∈ E | 1 ∈ I) to Pr(MC(P ) ∈ E). For a set I such that
1 /∈ I and index i ∈ I, let I ∪ {1}\{i} be the set where index i has been replaced with 1.
Then,(

1 − ℓ

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I) =

∑
|I|=ℓ,1/∈I

1(
k
ℓ

) Pr(M(PI) ∈ E)

=
∑

|I|=ℓ,1/∈I

∑
i∈I

1
ℓ

1(
k
ℓ

) Pr(M(PI) ∈ E)

≥
∑

|I|=ℓ,1/∈I

∑
i∈I

1
ℓ

1(
k
ℓ

)e−(n1+ni)ε Pr(M(PI∪{1}\{i}) ∈ E)

≥ e−(n1+nmax)ε 1
ℓ

∑
|I|=ℓ,1/∈I

∑
i∈I

1(
k
ℓ

) Pr(M(PI∪{1}\{i}) ∈ E),

where the first inequality follows from the fact that the LCS distance between PI and
PI∪{1}\{i} is at most n1 + ni. Now, notice that the sets I ∪ {1}\{i} in the above sum all
contain 1, and each index I ′ such that |I ′| = ℓ and 1 ∈ I ′ appears in the sum k − ℓ times
(corresponding to the k − ℓ possible choices for the swapped index i). Therefore, we can
rewrite the sum as(

1 − ℓ

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I) ≥ e−(n1+nmax)ε k − ℓ

ℓ

∑
|I|=ℓ,1∈I

1(
k
ℓ

) Pr(M(PI) ∈ E)

= e−(n1+nmax)ε

(
1 − ℓ

k

)
Pr(MC(P ′) ∈ E | 1 ∈ I).

Thus, we can complete the proof with the following steps.

Pr(MC(P ′) ∈ E) = ℓ

k
Pr(MC(P ′) ∈ E | 1 ∈ I) +

(
1 − ℓ

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I)

≥ ℓ

k
Pr(MC(P ′) ∈ E | 1 ∈ I) +

(
1 − ℓ

k

)
e−(n1+nmax)ε Pr(MC(P ′) ∈ E | 1 ∈ I)

=
(
ℓ

k
+
(

1 − ℓ

k

)
e−(n1+nmax)ε

)
Pr(MC(P ′) ∈ E | 1 ∈ I).
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Pr(MC(P ) ∈ E) ≤ Pr(MC(P ′) ∈ E) + ℓ

k
(eε − 1) Pr(MC(P ′) ∈ E | 1 ∈ I)

≤ Pr(MC(P ′) ∈ E) + ℓ

k
(eε − 1) 1(

ℓ
k

+
(
1 − ℓ

k

)
e−(n1+nmax)ε

) Pr(MC(P ′) ∈ E)

≤

(
1 + ℓ

k
(eε − 1) 1(

ℓ
k

+
(
1 − ℓ

k

)
e−(n1+nmax)ε

))Pr(MC(P ′) ∈ E)

◀

Proof of Theorem 7. Let C1 = {1, · · · , 1} and Cj = {−1, · · · , −1} for all j ∈ {2, · · · , k}.
Let C ′

1 = C1\{1} ∪ {−1} be the same as C1 except with one 1 switched to a -1. Let
M(S) =

∑
x∈S x + Lap(1/ε), so M is ε-unbounded DP. Notice that M has the property

that if
∑

x∈S′ x =
∑

x∈S x+a, for some a ∈ R then Pr(M(S) =
∑

x∈S x) = e|a|ε Pr(M(S′) =∑
x∈S x). This equality allows us to tighten many of the inequalities that appeared in the

proof of Theorem 8 and give a lower bound. We omit the rest of the proof due to space
constraints. ◀

Proof of Theorem 9. Let D = Cℓ(P ) and D′ = Cℓ(P ′). For an event E ∈ O, define the
probabilities p, q, p′ and q′ as follows.

p = Pr(M(D) ∈ E|C1 ∈ D) q = Pr(M(D) ∈ E|C1 /∈ D)
p′ = Pr(M(D′) ∈ E|C1 ∈ D′) q′ = Pr(M(D′) ∈ E|C1 /∈ D′)

By the existence of H described in the lemma statement, there must exist an event E such
that q ≤ e−ε′

p. Since P and P ′ only differ on C1, the distributions of M(D)|C1 /∈D and
M(D′)|C1 /∈D′ are identical, which means that q = q′. Then, we can compute a lower bound
on the indistinguishability of M(D) and M(D′) as follows. Without loss of generality,
assume p′ > p, and proceed as follows.

Pr(M(D′) ∈ E)
Pr(M(D) ∈ E) = p′ · Pr(C1 ∈ D′) + q · Pr(C1 /∈ D′)

p · Pr(C1 ∈ D) + q · Pr(C1 /∈ D) =
p′ · ℓ

k + q · (1 − ℓ
k )

p · ℓ
k + q · (1 − ℓ

k )

≥ 1 +
(p′ − p) ℓ

k

p · ( ℓ
k + e−ε′(1 − ℓ

k ))
= 1 +

(
p′

p
− 1
) ℓ

k
ℓ
k + e−ε′(1 − ℓ

k )

where the final inequality follows from the fact that M is ϵ-DP, so p′/p ≥ eϵ′′ by definition. ◀

E Stratified sampling

Proof of Theorem 11: proportional allocation for stratified sampling. Given M : ([k] ×
U)∗ → Y, for all datasets T2, · · · , Tk ∈ U∗, define MT2,··· ,Tk : U∗ → Y by MT2,··· ,Tk (S) =
M(S ⊔ T2 ⊔ · · · ⊔ Tk). Then since M was (ε, · · · , ε)-stratified unbounded DP, MT2,··· ,Tk

is ε-unbounded DP. Let Cr be as in Lemma 6 so for all S, S′ unbounded neighbours such
that r|S| ≥ 1 and r|S′| ≥ 1, MT2,··· ,Tk

Cr
(S) and MT2,··· ,Tk

Cr
(S′) are ε′-indistinguishable where

ε′ ≤ log
(
1 + 2r(e2ε − 1)

)
+ log(1 + r(e2ε − 1)). Now, let P = S1 ⊔ S2 ⊔ · · · ⊔ Sk and

P = S′
1 ⊔ S2 ⊔ · · · ⊔ Sk be unbounded stratified neighboring datasets that differ in the first

stratum. Since S2 ⊔· · ·⊔Sk are shared between P and P ′, and the datasets Ti only dependent
on strata Si, the distribution of T2, · · · , Tk are identical given inputs P and P ′. Let q be
the distribution of T2, · · · , Tk so q(T2, · · · , Tk) = Pr(Cr(S2) = T2, · · · , Cr(Sk) = Tk). Then
given an event E, Pr(MCfprop,r

(P ) ∈ E) =
∫

T2,··· ,Tk
q(T2, · · · , Tk) Pr(MT2,··· ,Tk

Cr
(S1) ∈ E) ≤∫

T2,··· ,Tk
q(T2, · · · , Tk)eε′ Pr(MT2,··· ,Tk

Cr
(S′

1) ∈ E) = eε′ Pr(MCfprop,r
(P ′) ∈ E). ◀
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2:2 Leximax Approximations and Representative Cohort Selection

1 Introduction

In many fairness-related settings, we seek to select an outcome that does not disproportionately
harm any key subgroup. Speaking in terms of group utilities, a fair solution would ideally
provide every key subgroup with high utility. Unfortunately, such a goal may be impossible
to achieve if the utilities derived by subgroups from any potential solutions are in opposition.
Moreover, other goals such as seeking to equalize utilities across groups may artificially
constrain the utility of certain groups in order to match some group with uniformly low utility.

The classic maximin objective, which seeks to output solutions that maximize the utility
of the worst-off group, has been widely studied as a goal that can circumvent these potential
pitfalls by seeking to achieve the best possible outcome for the worst-off group. This results in
a set of solutions that optimize the outcome for the worst-off group, but may still vary quite
a bit with respect to the second-worst-off group, third-worst-off group, etc. Lexicographically
maximal solutions strengthen the maximin objective by requiring that the utility of the
second-worst-off group be maximized subject to the worst-off-group achieving its maximin
value, the third-worst-off group be maximized subject to the worst-off and second-worst-off
values, and so on. This goal intuitively tells us that a lexicographically maximal solution
gives the best-possible utility guarantee we can give for each group without harming another
group.

Lexicographic maximality (which we refer to as leximax, but is sometimes referred to in
the literature as leximin) has been widely studied in the context of allocations [14, 16, 19].
Recently, Diana, Gill, Globus-Harris, Kearns, Roth, and Sharifi-Malvajerdi [10] explored
applying the objective to the contemporary fairness context of loss minimization. In this paper,
motivated by the goal of selecting a representative cohort from a group of candidates, we
generalize the approach of [10] to the goal of selecting a solution that achieves lexicographically
maximal utilities for a set of key subgroups.

Our contributions fall into two main categories: definitional, where we explore useful
variants of the leximax objective and their relations in the general setting of selecting a
leximax solution from a set of potential solutions, and algorithmic, in which we investigate how
to efficiently find exact leximax solutions as well as different variants in the specific context
of selecting representative cohorts. We provide an overview of definitional contributions in
Section 1.1, followed by an overview of the cohort selection context and resulting algorithms
in Section 1.2.

1.1 Approximations of Lexicographically Maximal Solutions
Diana et al. [10] define an approximate notion of lexicographic maximality for which they
construct oracle-efficient algorithms. Their notion is influenced by an algorithmic approach
to calculating leximax solutions in that it assumes the maximal values of the worst-off group,
second-worst-off group, etc. are calculated recursively based on whatever estimates came
before. The definition assumes some small amount of error when calculating the maximin
utility value, and then considers how this error would propagate to the second-worst-off-
group’s maximum value, then considers how additional errors around the second-worst-off-
group’s maximum value together with errors from the worst-off group maximum value might
propagate to the third-worst-off group, and so on.

One of the appealing aspects of leximax solutions is that they offer a simple semantic
interpretation that explains the sort of fairness guarantees such solutions provide: given
a leximax solution, any alternative solution that improves the utility of some group must
also decrease the utility of some worse-off group (Proposition 4). While the approximation
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notion presented by [10] is very natural, they also show that such approximate solutions may
greatly diverge from exact solutions (see Example 5 for details), meaning that they may also
diverge from this appealing semantic interpretation.

Ideally, we’d like a well-defined notion of approximation that extends the semantic
interpretation of leximax and relates to the algorithmically achievable notion presented
by [10]. However, we find that such a definition is somewhat difficult to pin down. Many
natural relaxations of the semantic definition result in notions of approximations where
either no solutions are guaranteed to satisfy the notion or the notions themselves may not
imply a meaningful fairness guarantee that is analogue to that offered by leximax solutions.
Developing a meaningful notion of approximation is exactly the challenge that this paper
addresses.

We provide a relaxation of the semantic definition that we term ϵ-tradeoff leximax
(Definition 7) that is always guaranteed to exist, and while it is not equivalent to the notion
presented in [10], in Theorem 11, we show that it is equivalent to a stronger variant of their
definition that we call ϵ-recursive leximax (Definition 10). The algorithms of [10] have the
potential to slightly mis-estimate the maxmin values for different groups, and therefore are
only guaranteed to output approximate leximax solutions. The type of mis-estimations that
may arise are actually more constrained than the full class of errors their weaker notion of
approximation allows for. In particular, solutions outputted by their algorithms actually
satisfy our stronger notion of ϵ-recursive leximax.

Past explorations of lexicographic maximality have mostly concentrated on finding
exact leximax solutions. In the design of algorithms, approximations are usually viewed as
alternative solutions that are “almost as good” as the exact solution and that are computed
in settings where it is difficult to efficiently find exact solutions. In this paper we suggest that
in some cases, we may prefer to consider an approximate notion of lexicographic maximality
rather than its exact counterpart. In particular, exact leximax solutions may be highly
dependent on small variations in the utility of less-well-off groups. For example, a solution
where all groups receive 0.01 utility would be preferred by the exact leximax objective
over a solution where one group receives 0 utility and all others receive a utility of 1, even
though this second solution gets much higher utility for the majority of groups while only
decreasing the utility of a single group by a tiny amount. We explore well-defined ways
where approximation can benefit stakeholders and suggest a notion of approximation that
is stronger than the ϵ-recursive leximax notion mentioned above that we term ϵ-significant
recursive leximax approximation (Definition 12) that identifies solutions that ignore tiny
variations in utility and identifies only solutions that are leximax due to significant increases
in utility. In Theorem 14, we give a more formal characterization of the benefits drawn from
considering ϵ-significant recursive leximax solutions rather than just any ϵ-recursive leximax
solution.

A third motivator for our study of leximax approximations is how robust leximax
solutions may be to small amounts of noise in the estimates of group utility. We show that
when calculated in a noisy setting, our relaxed semantic notion (ϵ-tradeoff leximax) is not
guaranteed to still be ϵ-tradeoff leximax, however it is guaranteed to satisfy the weaker notion
of approximation defined in [10]. On the other hand, in Lemma 18 we show that we can
define a stronger variant of the semantic notion that guarantees a solution will be ϵ-tradeoff
leximax in the noisy setting, but it has the disadvantage that such solutions may not always
exist. We also examine noise in the context of ϵ-significant recursive leximax solutions, and
show that when such solutions are calculated in the presence of noise, they are somewhat
robust to noise as they imply a slightly weakened variant of ϵ-significance (Lemma 19).

FORC 2022
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“Approximate Lexicographic Fairness” [10]

ϵ-significant recursive leximax (Definition 12)

ϵ-tradeoff leximax (Definition 7) ⇔ ϵ-recursive leximax (Definition 10)

ϵ-significant recursive leximax (Definition 12)

Figure 1 Relations between the different notions of leximax approximation discussed here and
in [10].

Figure 1 summarizes the various notions of approximate lexicographical maximality and
how they relate to one another. All of our approximate notions are defined with respect to
an arbitrary class of solutions from which we’d like to pick a leximax solution. This allows
our new definitions to be applied in the deterministic setting, where each solution would
represent a particular cohort, or a randomized setting, where each solution corresponds to a
distribution over cohorts and utilities are given in expectation.

1.2 Algorithms for Leximax Cohort Selection
In data selection, recruiting, and civic participation settings where a representative cohort
is desired, the goal of representation is juxtaposed with the constraint of selecting a small
representative set. There can be tension between selecting a cohort small enough for the
resources available but large enough to represent as much of the population as possible. A
lexicographically maximal solution is particularly salient in a representative cohort problem
because it guarantees inclusion for the worst-off-groups while optimizing for the utility of
all groups. We consider a model where how well each group or individual in the population
is represented by a cohort candidate is given by a utility function. While there are many
different ways a cohort or committee in power might make decisions or influence outcomes,
we consider a linear setting where the utility a group derives from a cohort is the sum of
utilities derived from each member of the cohort. Approximate notions of lexicographical
maximality are of particular interest in this setting since estimating utilities that describe
representativeness is difficult and might be noisy in practice.

Diana et al. [10] give a convex formulation of approximate lexicographical fairness and an
oracle-efficient algorithm to solve general leximax convex programs. For our cohort selection
setting specifically, we leverage the linearity across decision variables to find a polynomial
time algorithm (Algorithm 1) that can calculate both exact leximax solutions as well as the
two approximate variants we consider, ϵ-tradeoff leximax and ϵ-significant recursive leximax
(with no external oracle needed for the calculation).

The linearity of utilities across cohort members and the recursive definition of leximax
gives us a sequence of linear programs where the number of variables is linear in the size of
the candidate pool and the number of constraints is exponential in the number of groups.
In each m-th linear program, we maximize the sum of utilities of all sized-m groups which
gives us an exponential number of constraints; rendering the linear program too big to
solve via generic LP solvers. We circumvent this difficulty by creating a separation oracle
(Algorithm 2) which tests the sum of utilities of the m worst off groups efficiently, giving us a
polynomial time algorithm overall (Lemma 16). We can use the same approach to efficiently
find ϵ-tradeoff leximax or ϵ-significant recursive leximax solutions by modifying the lower
bound constraints on the sum of group utilities.
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The output of our algorithm allows a randomized approach for selecting a cohort of
expected size k that guarantees leximax utilities in expectation. We can also round our
algorithm output to a solution of size exactly k where the expected utility across groups is
leximax1. We focus on this distributional setting for our algorithms for a few key reasons:

Tractability. If we wanted to instead find a deterministic cohort of exactly size k by
finding a lexicographically maximal integer solution, the problem becomes hard. By
showing that the problem of finding the exact integer lexicographically maximal cohort
solves the NP-hard problem of Minimum Hitting Set, we show that finding a solution as
well as approximating the number of groups with non-minimum utility within a factor of
(1− 1/e) + o(1) is NP-Hard (Lemma 20).

Fair Arbitration between Solutions. It is very possible that two lexicographically
maximal deterministic solutions may provide wildly different utility values for a particular
group. As an example, consider choosing between a cohort that provides maximum utility
to Group A, but zero utility to Group B, and another cohort that provides zero utility to
Group A but maximum utility to Group B. Both cohorts are a lexicographic maximum,
however selecting a deterministic solution requires us to decide whether the solution
should favor Group A or B. A distributional approach gets rid of this difficult decision
because the randomized approach itself guarantees that we are providing both A and B a
fair chance at high utility.

There are many different potential approaches to randomly selecting a cohort in the
distributional setting. We choose to use a randomized approach to selection that includes
or excludes each potential cohort member independently with probability outputted by the
algorithm. Such an approach offers the following benefits:

Simple Sampling Procedure. Rather than outputting an arbitrary and potentially
complicated distribution over cohorts that is difficult to sample from, the output of our
algorithm is a single vector of marginal selection probabilities for each potential candidate.
Our approach still results in a cohort with expected size k, but provides an easy way to
sample cohorts, and as discussed in the final bullet point, gives better guarantees about
the utility groups can expect to receive in practice. We also describe a rounding approach
that results in cohorts of size exactly k that are still leximax in expectation.

Better Concentration Guarantees for Some Natural Settings. While a distri-
butional leximin solution may give groups better utility guarantees in expectation, it
comes with the caveat that individual runs of the randomized solution may still result in
cohorts where groups receive utility that is far below their expected utility. In an extreme
case, a distributional solution that guarantees all groups 0.5 utility might be achieved by
choosing uniformly between solutions that provide maximum and zero utility. When the
size of the cohort is large enough, our approach to randomized choice guarantees that
groups receive utility near their expectation with high probability because we consider
each cohort member independently, rather than outputting an arbitrary joint distribution
over potential cohort members (Lemma 15).

1 For further rounding details, see discussion in Section C.
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1.3 Our Contributions
To summarize, we provide the following contributions:

1. Define a new semantic notion of leximax approximation that is always guaranteed to exist
and show that it is equivalent to an algorithmically-inspired notion of approximation that
is stronger but related to the one defined in [10].

2. Investigate stricter notions of approximation that identify significantly leximax solutions
that can be achieved by ignoring small variations in utility.

3. Explore how our new notions of approximation behave in settings where the group utilities
may be reported with some small amount of additive noise.

4. Provide polynomial time algorithms for computing exact and approximate leximax
distributions over cohorts with linear utility functions.

5. Show that the alternative goal of computing deterministic cohorts in our setting is NP-
hard, and moreover approximating the number of groups with non-minimum utility is
also NP-hard.

▶ Note 1. Due to space constraints, all proofs except the proof of Lemma 16 (Appendix A)
have been omitted, but can be found in the full version of this paper.

1.4 Related Work
Fair and diverse selection has become a prominent area of interest in algorithmic and
machine learning fairness communities. In the setting of selecting representative data, prior
works define metrics for diversity [24], and give algorithms for diverse data selection and
summarization [7, 18]. For selecting individuals from a larger pool, prior works on cohort
selection and multi-winner elections have studied individual guarantees of fairness [2] as
well as group parity goals of diversity [5, 8, 27]. Other works have examined how bias
and variance may affect different groups differently during a selection process and fairness
amounts to remedying implicit bias and variance in the selection process for different groups
of individuals [12, 17]. Parity or proportional diversity approaches to cohort selection assume
the correct amount of representation for each subgroup is known and thus fairness can be
achieving a predefined level of diversity.

When there is no “merit” function to guide a selection process, cohort selection can
also been seen as a representation problem. Diversity is the goal of a central decision
maker while representation is the objective of each group in the population when selecting
a cohort. Instead of modeling overall welfare based on the number of representatives from
each group, our work considers the welfare of each group based on how representative each
cohort member is for that group. Since how well a cohort serves each group in a population
cannot be summarized by a single value, a natural direction is to examine the utilities of all
groups of a given cohort that has been selected from a general population. Lexicographical
fairness emerges as a reasonable notion of fairness that guarantees Pareto optimality in this
setting of multiple objectives or losses. Flanigan et al. [13] give an algorithm for recruiting
“citizen’s assemblies” based on sampling from a distribution over representative panels that
are generated from leximax selection probabilities over citizens in the population. Our work
looks at selecting a representative cohort from a pool of candidates rather than the underlying
population which allows a more general model where each member or group in the population
has a utility vector describing its utility for each candidate that is being considered for the
cohort. Furthermore, we optimize for leximax utilities for each group of interest rather than
leximax sample probabilities for each individual in the population.
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In telecommunication network design, min-max fairness (MMF) is an important solution
concept to lexicographically maximize fractional flow for all parties [1, 25, 26]. An adjacent
problem of lexigraphically maximal flows where there are multiple sinks has also been studied
and a polynomial time algorithm exists for finding fractional flow [22, 23]. The problem
of finding a leximax routing for an unsplittable flow along a network is NP-Complete but
finding a 2-approximation is possible [16]. An approximate solution here means that it is
not possible to improve a group without decreasing the utility of another group that is more
than a factor of 2 worse.

Lexicographically maximal solutions have also been studied in other domains including
bottleneck combinatorial optimization problems [6, 9], sampling actions for repeated games [3],
allocation of classrooms [19] as well as indivisible goods more generally [14]. It is important
to note that unlike the leximax allocation problem, there is no limit on the number of
groups gaining utility from the same candidate being included in a cohort or allocated
set. Most recently, leximax empirical risk minimization for classification has also been
studied [15, 20, 21].

2 The Leximax Objective

In this paper, we focus on approaches to selecting lexicographically maximal (or leximax)
representative cohort solutions. We consider a setting in which we’d like to select a solution
S from a set of potential solutions S such that S is a good representation of some set of key
(potentially overlapping) subgroups G = {G1, ..., Gm}. We measure degree of representation
via a utility function u : S × G → [0, 1]. Ideally, we’d like to select a cohort such that every
subgroup is guaranteed to have high utility. However, this may be impossible to achieve in
certain settings, such as when the utility functions of two groups are in opposition. Unlike
maximizing total welfare, which may result in solutions that neglect the welfare of certain
groups or seeking to equalize utilities across groups, which may artificially cap the utility
some groups can achieve, lexicographically maximal solutions extend the goal of the classic
maxmin objective by seeking to maximize the utility of the worst-off group, and then seeking
to maximize the utility of the second-worst-off group subject to this worst-off group’s value,
etc. This results in a solution concept that seeks to give the best guarantee possible for every
key group, rather than just the worst-off.

We now formally define the leximax objective.

▶ Definition 2. Given two vectors u and v in Rm, we say that u is lexicographically greater
than v, or v ⪯ u, if and only if there exists some i such that for all j ≤ i we have vj = uj,
and either i = m or ui+1 > vi+1.

Applying this definition to the set of sorted group utility vectors obtained from every
possible solution gives us a total ordering on these vectors. A leximax solution is any vector
that is maximal according to this ordering. In many portions of this paper, in order to
reason about the contents of these sorted vectors, we will care about the utility that the ith
worst-off group receives from a particular solution S. We denote this with the bracketed
notation u(S, G[i]).

▶ Definition 3. Given a set of potential solutions S and groups G, we say that a solution S ∈ S
is lexicographically maximal (leximax) if for any other solution S′, we have ⟨u(S′, G[i])⟩mi=1 ⪯
⟨u(S, G[i])⟩mi=1.

Intuitively, when we seek to find a lexicographically maximal solution, we try to do the
best we can for the worst-off group, and then within these potential solutions try to do the
best we can for the second-worst-off group, etc. Note that under this definition, groups may
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2:8 Leximax Approximations and Representative Cohort Selection

achieve varying utilities for different lexicographically maximal solutions, however the vector
of sorted group utilities will be unique for any leximax solution. When the solution class
is convex and compact and the utility function is continuous with respect to this class, a
particular group receives the same utility under any leximax solution.

An attractive feature of lexicographically maximal solutions is that they have an equivalent
definition that gives a semantic understanding of the solutions identified by the goal in
Definition 3. We call this notion tradeoff leximax.

▶ Proposition 4. Given a set of solutions S and groups G, S ∈ S is lexicographically maximal
if and only if for any S′ and i ∈ [m] such that u(S′, G[i]) > u(S, G[i]), there exists some j < i

such that u(S, G[j]) > u(S′, G[j]).

This equivalent definition of lexicographic maximality offers an appealing re-interpretation
of this objective: a solution is optimal if increasing the utility of any particular group would
result in decreasing the utility of a worse-off group.

3 Approximations of Leximax-Optimal Solutions

While the leximax objective’s goal of doing the best we can for every group is attractive, one
potential downside is that the set of leximax-optimal solutions can be incredibly sensitive to
small variations in the utility received by certain groups. We consider the following example
that illustrates this phenomenon:

▶ Example 5 (Sensitivity of leximax-optimal solutions). Consider a simple setting as in
Figure 2 in which we have two groups, G = {G1, G2}, and would like to decide between two
potential solutions S = {S1, S2}. The utilities for each group and each solution are defined
as u(Si, Gj) = Uij where U ∈ [0, 1]S×G is defined as follows:

U =
[

0 1
0.01 0.01

]
.

Clearly the only leximax solution is S2 (with sorted utility vector (0.01, 0.01)), because
the worst-off group has value 0.01 rather than receiving 0 utility as it does in S1 (which has
a sorted utility vector of (0, 1).

However, if we allow for the possibility that the utility estimates are off by even a tiny
amount such as 0.01, suddenly S1 is also a plausibly leximax solution despite having a
completely different value for the second-worst-off group.

Example 5 is notable in that it demonstrates how small variations in the utilities of
groups can lead to drastic changes with respect to the types of leximax solutions that are
considered optimal. In settings where utilities may be reported with some estimation error,
it is therefore incredibly important to consider how these errors might affect how the output
optimal solution compares to the true leximax solution that would have been produced given
completely accurate utilities.

Moreover, even when the utilities are believed to be accurate, it may be useful to consider
solutions that are not exactly leximax, but are leximax when small variations in the utility
are ignored. Example 5 is a situation where the exact leximax offers a tiny improvement
in the worst-off group at the cost of a huge decrease in the utility of the second-worst-off
group. A practitioner who views utility differences of less than 0.05 as insignificant might
prefer S1 as the only significantly lexicographically maximal solution because the worst-off
groups between S2 and S1 receive comparable utility while the second-worst-off group is
significantly better off under S1.
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The search for plausibly exact lexicographic solutions given the potential for some amount
of estimation error as well as the need for significantly maximal lexicographic solutions even
when working with exact utility values motivates our study of new approximate leximax
notions. In this section, we introduce two such notions: first, we introduce a semantic notion
of approximate leximax that relaxes the standard leximax definition to consider additional
solutions that may be plausibly leximax. The second notion we introduce here seeks solutions
that are leximax if only “significant” improvements are considered (as in the discussion
above). Unlike the first notion, the notion of significantly leximax solutions is not a strict
relaxation of leximax and may not include the exact leximax solution in some cases.

3.1 Relaxations of the Leximax Objective

3.1.1 Elementwise Approximation
The most naive approach to approximation would be to require that the element-wise distance
between the sorted utility vectors of the true lexicographically maximal solution and the
approximate solution be small:

▶ Definition 6 (Element-wise leximax approximation). Given a set of m groups G and a
set of potential solutions S, let ℓ be the sorted vector of utilities attained by any leximax
solution. We say that a solution S ∈ S is an α-element-wise leximax approximation iff
maxi∈[m]{ℓi − u(S, G[i])} ≤ α.

While attractive in its simplicity, [10] observe that in certain contexts, such a definition
may be stricter than we can hope for. In particular, if the leximax solution is being computed
recursively, small estimation errors in the values of the worst-off group’s utility can greatly
effect the difference between the utility of better-off groups in a lexicographically maximal
solution compared to a solution that maximizes group utilities based off of this incorrect
value. Thus, we turn our attention to weaker notions of approximation.

3.1.2 Tradeoff Approximation
We introduce a new notion of approximation that is a natural relaxation of the semantic
interpretation of leximax solutions provided by the tradeoff leximax objective discussed in
Proposition 4.

▶ Definition 7 (ϵ-tradeoff leximax). Given a set of m groups, G, and a set of potential solutions,
S, a solution S ∈ S is ϵ-tradeoff leximax if for any S′ and i such that u(S, G[i]) < u(S′, G[i])−ϵ,
there exists a j < i such that u(S, G[j]) > u(S′, G[j]).

Intuitively, this definition guarantees that if we can find some other solution that does a
lot better on some particular group, then this new solution must also decrease the utility of
some worse-off group.

ϵ-tradeoff leximax provides an appealingly simple relaxation of the semantic interpretation
of exact leximax solutions. However, slight variations of this definition, also natural relaxations
of leximax, will result in definitions where solutions are not guaranteed to exist. We explore
this in the following example:

▶ Example 8 (Altered versions of ϵ-tradeoff leximax may not have any solutions.). We define a
class of alternative tradeoff definitions that we term (ϵ1, ϵ2)-significant tradeoff leximax for
reasons that will become clear in Section 3.2 as follows:
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2:10 Leximax Approximations and Representative Cohort Selection

▶ Definition 9 ((ϵ1, ϵ2)-significant tradeoff leximax). Given a set of m groups, G, and a set
of potential solutions, S, a solution S ∈ S is (ϵ1, ϵ2)-significant tradeoff leximax for any
ϵ1, ϵ2 ≥ 0 if for any S′ and i such that u(S, G[i]) < u(S′, G[i])− ϵ1, there exists a j < i such
that u(S, G[j]) > u(S′, G[j]) + ϵ2.

When ϵ1 = ϵ and ϵ2 = 0, this notion is equivalent to ϵ-tradeoff leximax. When ϵ2 > 0,
the definition requires that any increase by more than ϵ1 result in a decrease of more than ϵ2
in a worse-off group.

However, we demonstrate that for ϵ1, ϵ2 > 0, no solution may exist. Consider ϵ1 = ϵ2 = ϵ

for the setting depicted in Figure 3 where we have two groups and four potential solutions
with utilities defined as u(Si, Gj) = Uij , for

U =


0 0.5 + 6ϵ

ϵ/2 0.5 + 4ϵ

ϵ 0.5 + 2ϵ

3ϵ/2 0.5

 .

Where we assume ϵ is sufficiently smaller than 0.5. Under these utilities, S4 cannot
be (ϵ, ϵ)-significant tradeoff leximax because S3 improves by more than ϵ in G2 while only
decreasing G1 by ϵ/2. Similarly, S3 and S2 cannot be (ϵ, ϵ)-significant tradeoff leximax
due to the existence of S2 and S1, respectively. This means that S2, S3, S4 all cannot be
(ϵ, ϵ)-significant tradeoff leximax. However, we see that S4 improves by more than ϵ over S1
in G1, so S1 also cannot be (ϵ, ϵ)-significant tradeoff leximax. We conclude that no potential
solution satisfies this definition2.

Computing tradeoff approximations recursively

The definition of ϵ-tradeoff leximax is only useful if we can compute ϵ-tradeoff leximax
solutions efficiently. To show that this is possible, we relate ϵ-tradeoff leximax to a different
notion of leximax approximation that arises from a natural algorithmic approach and is
closely related to the notion of leximax approximations introduced in [10].

Consider the following approach to computing an exact leximax solution, which follows
its definition: Compute the maximum value that can be guaranteed to the worst-off group,
then calculate the maximum value that can be guaranteed to the second worst-off group
subject to this value, and then recurse on the third, fourth, fifth, etc. until the values for all
m groups are fixed and a solution is found.

However, what if our algorithm is not completely accurate at each step? Introducing some
amount of estimation error at each step of the recursion may result in selecting a solution
that isn’t exact leximax, but can considered approximately leximax because it arose from
small estimation errors in our algorithm. We call such solutions ϵ-recursive leximax, and
define them as follows:

▶ Definition 10 (ϵ-recursive leximax). Given a set of m groups, G, a set of potential solutions
S, and a choice of allowable “slack” α⃗ = (α1, ..., αm) with αi ∈ R≥0, recursively define the
sets of solutions Sα

0 , ...,Sα
m ⊆ S such that Sα

0 := S and for each i = 1, ..., m,

Sα
i = {S ∈ Sα

i−1 : u(S, G[i]) ≥ max
S′∈Sα

i−1

u(S′, G[i])− αi}.

We say that S ∈ S is an ϵ-recursively approximate leximax solution if there exists an α⃗

with maxi∈[m] αi ≤ ϵ such that S ∈ Sα
m.

2 This example was not tied to the specific choice of ϵ1 = ϵ2 = ϵ. Similar examples exist for other choices.
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Our definition of ϵ-recursive leximax is a stronger variant of the definition of approximation
used in [10]. Most importantly, the definition presented in [10] is less strict because it allows
for the choice of allowable slack to depend on each solution. However, the solutions outputted
by their algorithms actually achieve the stronger notion presented here. Unlike the weaker
version, which is only implied by ϵ-tradeoff leximax, we can show that ϵ-recursive leximax
and ϵ-tradeoff leximax are equivalent.

In this definition, the choice of slack, α⃗ ∈ [0, ϵ]m, determines the amount of estimation
error at each step. We use this α⃗ to recursively construct the sets Sα

i in the same way they
would be calculated had we applied a recursive approach to calculating a leximax solution
but under-estimated the maximum value by αi at the ith step for each i = 1, ..., m.

Unlike our ϵ-tradeoff leximax notion of approximation, ϵ-recursive leximax provides a
natural algorithmic interpretation of approximate solutions which allows efficient approaches
to computing ϵ-recursive leximax solutions with respect to a particular choice of slack, as we
do in Section 43. Fortunately, we can actually show that these two notions of approximation
are equivalent, which means that we can also efficiently compute ϵ-tradeoff leximax solutions.

▶ Theorem 11. For any set of groups, G, and solutions, S, the set of ϵ-tradeoff leximax
solutions is equivalent to the set of ϵ-recursive leximax solutions.

3.2 Significantly Leximax Solutions
ϵ-tradeoff leximax solutions are strict relaxations of the exact leximax objective. Any leximax-
optimal solution will also be ϵ-tradeoff leximax and will also be ϵ-recursive leximax for any
ϵ ≥ 0 (by simply selecting the allowable slack to be αi = 0 for all i ∈ [m]). Similarly,
any ϵ-tradeoff (resp. recursively) approximate solution will also be ϵ′-tradeoff (recursively)
approximate for any ϵ′ ≥ ϵ.

In this section, we introduce a modified notion of ϵ-recursive leximax that is not a
relaxation of the exact leximax objective but rather tries to get significant improvements in
the quality of solutions, using the allowed slack. This notion constrains the choices of slack
so that solutions considered leximax due to only insignificant improvements in the utility
of worse-off groups are ignored. Here, the only slack considered is where all allowable slack
values are set to exactly ϵ, rather than some value that is at most ϵ.

▶ Definition 12 (ϵ-significant recursive leximax). Given a set of groups G with |G| = m and a
set of potential solutions S, recursively define the sets of solutions Sϵ

0, ...,Sϵ
m ⊆ S such that

Sϵ
0 := S and for each i = 1, ..., m,

Sϵ
i = {S ∈ Sϵ

i−1 : u(S, G[i]) ≥ max
S′∈Sϵ

i−1

u(S′, G[i])− ϵ}.

We say that S ∈ S is ϵ-significant recursive leximax if S ∈ Sϵ
m.

Why does this make sense as a way to identify significant solutions? Intuitively, setting
every slack value to the maximum possible ϵ requires that the valid solutions be leximax
with respect to the larger set of potential solutions when some error term is allowed, rather
than putting a lot of weight on small differences in earlier groups. We present the following
example to see this in practice:

3 [10] give algorithms that calculate ϵ-recursive leximax solutions because their approach estimates each
sequential maxmin value to within ϵ of its true value, though the notion of efficiency that they achieve
does not exactly correspond to polynomial-time algorithms. We provide an alternative polynomial-time
algorithm for the cohort selection setting that leverages linear group utilities to offer a more efficient
approach.
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▶ Example 13 (Significantly recursive approximations). Consider two groups and two solutions
as in Figure 4 with utilities

u(S1, G1) = ϵ, u(S2, G1) = 0, u(S1, G2) = 0.5, u(S2, G2) = 1.

Both S1 and S2 are ϵ-recursive leximax approximations. If we set α1 < ϵ, then S1
because the only acceptable solution and thus an ϵ-recursive leximax-approximate solution.
If we set α1 = ϵ, S2 becomes an ϵ-recursive leximax-approximate solution. We would
expect a satisfying significant approximation notion to identify S2 as the only ϵ-significant
approximation because it’s not too far below S1 on the worst-off group, but does much better
on the second-worst-off group. An ϵ-significant recursive leximax approximation does give
us this separation between S1 and S2, because while both S1 and S2 are included in the
first-level of recursion, Sϵ

1, S1 is too far below the maximum to be included in Sϵ
2, so S2 is

the only ϵ-significant recursive leximax approximation in this example.

So far, we have been rather loose in arguing about why the solutions identified as ϵ-
significant recursive leximax might be preferred over exact leximax or the more general
class of ϵ-recursive leximax solutions. We offer a more formal characterization here, but
begin by taking a step back to reframe what the contents of the recursively defined sets
from Definition 10, Sα

1 , ...,Sα
m for some choice of slack α⃗, can tell us about potential leximax

solutions.
Intuitively, Sα

i contains all solutions that, with respect to the first i groups, could feasibly
be solutions that are ϵ-recursive leximax allowing for a slack of α⃗, and are guaranteed to be
within ϵ of the first i coordinates of any final ϵ-recursive leximax solution with respect to α⃗,
i.e. any S ∈ Sα

m.
This means that looking at the maximum utility achieved by any solution in each recursive

group, ⟨maxS∈Sα
i

u(S, G[i])⟩mi=1 gives us a sense of the type of solution that results from
allowing α⃗ as slack. While there may not exist a S′ ∈ Sα

m such that ⟨u(S′, G[i])⟩mi=1 =
⟨maxS∈Sα

i
u(S, G[i])⟩mi=1, we are guaranteed that any S′ ∈ Sα

m will be elementwise within ϵ

of this vector of maximums.
We can show that out of all possible choices of slack, the one used by the definition of

ϵ-significant recursive leximax, α⃗ = (ϵ, ..., ϵ) results in the best-possible sequence of maximum
set values (i.e. it will be lexicographically greater than the maximums attained via any
other choice of slack). In other words, this backs up the motivation behind our definition of
ϵ-significant recursive leximax in that it promises us that any ϵ-significant recursive leximax
solution will be elementwise within ϵ of the lexicographically best solution we could possibly
hope for under an optimal choice of slack.

▶ Theorem 14 (Leximax properties of ϵ-significant recursive leximax). Given a set of groups,
G, and solutions, S, let Sϵ

1, ...,Sϵ
m be the recursively defined sets constructed with a slack of ϵ

at each step, as used in the definition of ϵ-significant recursive leximax, and for any α⃗ ∈ Rm
≥0,

let Sα
1 , ...,Sα

m be the sets that arise when the amount of allowable slack at each level is set
according to α⃗. Then, for any α⃗ ∈ Rm

≥0, we have

⟨max
S∈Sϵ

i

u(S, G[i])⟩mi=1 ⪰ ⟨max
S∈Sα

i

u(S, G[i])⟩mi=1.

In other words, the vector of maximums attained in each Sϵ
i is lexicographically maximal

compared to any other choice of slack of size at most ϵ.

Theorem 14 tells us that out of all the ways we could identify approximate leximax
solutions that ignore variations of less than ϵ, an ϵ-significant solution is guaranteed to be
element-wise within ϵ on the lexicographically maximal best-possible guarantee we can give
for each group at each level of recursion.
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Ideally, we could obtain a similar notion to ϵ-significant recursive leximax with a satisfying
semantic meaning as for ϵ-recursive leximax by modifying our definition of ϵ-tradeoff leximax
so that any solution that improves the ith group by more than ϵ must also decrease some
worse-off group by more than ϵ. However, as we saw in Example 8, modifying the original
tradeoff definition in this way surprisingly results in an overly strict notion due to some
instability arising from the pairwise comparisons that tradeoff approximations rely on. In
particular, solutions that satisfy this notion may not exist. Note that in Example 8, no
solution satisfied (ϵ, ϵ)-significant tradeoff leximax, which is equivalent to the modified
definition suggested here, but S2 is an ϵ-significant recursive leximax approximation and
S2, S3, S4 are all valid ϵ-recursive leximax solutions.

4 Solutions via Linear Programming

As discussed in Section 1.2, we provide efficient algorithms for a particular natural choice of
cohort selection setting. In particular, we consider modeling utility as the sum of the utilities
that a subgroup draws from each individual member of the selected cohort, and rather than
outputting a lexicographically maximal cohort, we output a lexicographically maximal vector
of marginal selection probabilities that provides leximax utility in expectation.

4.1 Problem Setting

We begin by discussing our choice of utility function and randomized selection approach in
more detail.

4.1.1 Linear Utility Function

Let C be a set of potential committee members of size n. We assume that each subgroup
Gj ∈ G has a value for each individual committee member ci ∈ C, denoted by vij ∈ [0, 1].

When we choose our set of solutions to be C(k), the set of all cohorts of size k, these
values can now be combined to give a group’s utility for any particular cohort as the sum
of its values for the cohort members. Given a cohort C = {c1, ..., ck} ∈ C(k) and subgroup
Gj ∈ G, this utility function can be written formally as

u(C, Gj) =
k∑

i=1
vij

This linear utility can easily be extended to the randomized case. Assuming C has size
n, any vector of individual assignment probabilities D = {x1, . . . , xn} ∈ D := [0, 1]n, called
marginal (selection) probabilities, provides an approach to randomly selecting a cohort of
candidates from C where each ci is included in the cohort with probability xi, independent
of the other candidates. The expected utility of a particular group Gj over a distribution
D ∈ [0, 1]n is then

u(D, Gj) =
n∑

i=1
xivij .

We will restrict our search to marginal distributions that output a cohort with expected size
k (

∑n
i=1 xi = k).
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4.1.2 Randomized Selection Approach
Our algorithms output a vector of marginal selection probabilities D = {x1, ..., xn} ∈ D :=
[0, 1]n, such that when each cohort member ci is independently included in the cohort with
probability xi, we get a cohort of size k in expectation such that the vector of expected
utilities is lexicographically maximal. This independent sampling procedure provides a simple
way to randomly select a cohort.

This distributional approach to selection renders the problem tractable, while we show in
Appendix D that finding deterministic leximax solutions is NP-hard. Moreover, it provides
a fair way to get around the issue that in a deterministic setting, there may be multiple
leximax cohorts that each favor a different subgroup.

It’s worth noting that this approach to cohort selection only gives a cohort with expected
size k. While such a selection procedure may be fine in situations where the desired size of
the final cohort is somewhat flexible, sometimes it may be critical to get a cohort of size
exactly k. In Appendix C, we discuss a dependent rounding scheme that can be used to
sample a cohort of size exactly k with utilities that are still leximax in expectation.

In general, cohorts sampled from arbitrary leximax distributions are not guaranteed
to provide groups with utility near their expected value. However, our choice of selection
procedure guarantees that groups receive near-expected utility with high probability when
the size of the selected cohort is large enough.

▶ Lemma 15. Consider an arbitrary group Gj and a lexicographically maximal vector of
marginal selection probabilities D ∈ D (with respect to the linear utility function defined above
and with expected size k).

Then, for any δ > 0, we have

Pr
C∼D

[U(C, Gj) < U(D, Gj)− δ] < e−2δ2/n.

(Where n := |C| is the number of potential cohort members.)

To contextualize this result, if we consider some group Gj that is expected to get about
half of their maximum possible utility for a leximax solution when k = 50 and n = 100 (so
Gj is expected to get 25 utility), then they are guaranteed to get at least half their expected
utility more than 95% of the time. In comparison, an arbitrary leximax distribution can
potentially only guarantee that Gj gets more than half their expected utility with probability
1/3. These concentration guarantees also hold for cohorts of size exactly k outputted by our
suggested rounding approach. More details can be found in Section C.

Having explained and justified our choice of utility function as well as randomized selection
approach, we now present our algorithms that calculate exact and approximate leximax
solutions in this setting.

4.2 Leximax distribution over committee members
To find a marginal distribution over each potential committee member in C, we break up the
problem into multiple, recursively-defined subproblems to uncover the ranking of subgroup
utilities in the leximax optimal solution as well as their optimal values.

Balan et. al [3] approach this problem by reducing the domain of solutions in each level of
optimization. They choose the (i + 1)-th subgroup to be the subgroup that least-constrains
the domain of potential leximax solutions. Overall, their approach finds a leximax-optimal
marginal distribution over potential committee members that requires O(|G|) calls to a linear
program at each of the |G| iterations, giving us O(|G|2) total calls. However, this approach
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of limiting the domain of the possible solutions requires fixing an order of worst off groups in
every iteration. When approximate notions of leximax are introduced, there can be multiple
possible orderings of groups to consider.

We suggest finding the leximax distribution over individuals as a series of linear programs
with a linear number of variables and a number of constraints that increases from linear to
exponential as the series progresses. In the first LP, we are finding the maxmin utility γ1
using the values vij that each group has for individual cohort candidates:

maximizex,γ1 γ1
subject to

∑n
i=1 xi = k

0 ≤ xi ≤ 1∑n
i=1 xivij ≥ γ1 j = 1, . . . , m.

Once the optimal lower bound for the worst off group, γ∗
1 , is found, we can then maximize

the utility of the second-worse-off-group. Ogryczak et al. [26] observed that maximizing
the γ = (γ1, . . . , γm) vector is equivalent to maximizing for the cumulative sum of γi’s from
i = 1, . . . , m. Thus, to find the leximax distribution of individuals, we optimize a series of m

linear programs using the cumulative leximax values as a constraint. The m-th last LP will
be as follows:

maximizex,γm
γm

subject to
∑n

i=1 xi = k

0 ≤ xi ≤ 1∑n
i=1

∑
Gj∈S vijxi ≥

∑l
s=1 γ∗

s ∀l = 1, . . . , m, ∀S ⊆ G s.t. |S| = l.

Since we must ensure that the sum of utilities is above the minimum utility for all subgroups,
the last constraint requires that the sum of utilities over all sized-l subsets of groups be
greater than the sum of the l optimal γ∗-s (i.e.

∑l
i=1 γ∗

i ) from previous iterations. This
creates

(
m
l

)
constraints for the l-th LP. Algorithm 1 describes the iterative process of finding

a leximax distribution where in each successive problem we add additional constraints on
the minimum value of the sum of utilities. In our setting of linear utilities, we can solve
each linear program in polynomial time with the ellipsoid method using a polynomial-time
separation oracle.

Algorithm 1 leximaxCandidates. Finding the leximax distribution over candidates.

Input: v ∈ Rn×m
≥0 values of each group for each candidate.

Output: {x1, . . . , xn} leximax distribution over candidates.
Constraints = {

∑n
i=1 xivij ≥ γ1 j = 1, . . . , m; 0 ≤ xi ≤ 1;

∑n
i=1 xi = k};

γ∗
1 ← maxx,γ1 γ1 s.t. Constraints ;

for l ∈ 2, . . . , m do
Constraints = Constraints ∪{

∑n
i=1

∑
Gj∈S vijxi ≥

∑l
s=1 γ∗

s ∀S ⊆ G s.t. |S| = l };
γ∗

i ← maxx,γi
γi s.t. Constraints given γ∗

1 , . . . , γ∗
i−1(previously computed);

▶ Lemma 16. For n candidates and m groups, the running time of Algorithm 1 is polynomial
in n and m.

FORC 2022
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Approximate Leximax distribution over candidates
When finding approximate leximax distributions over candidates, the approach of Balan et
al. [3] can no longer be applied since choosing the subgroup that least constrains the domain of
potential solutions may yield multiple subgroups when the leximax objective is approximate.
Thus, there is no single ordering of worst-off-groups to rely on when considering group utility.
However, we can easily modify our recursive linear program (Algorithm 1) to find an an
ϵ-recursive leximax solution (Definition 10) for a given “slack” vector α⃗ = (α1, . . . , αm).
While the first LP is the same as the exact case, we can loosen the constraints in the m-th
LP as follows:

maximizex,γm γm

subject to
∑n

i=1 xi = k

0 ≤ xi ≤ 1∑n

i=1

∑
Gj ∈S

vijxi >
∑l

s=1(γ∗
s − αs) ∀S ⊆ G s.t. |S| = l, l = 1, . . . , m − 1∑n

i=1

∑
Gj ∈G vijxi >

∑m−1
s=1 (γ∗

s − αs) + γm.

For a ϵ-significant recursive leximax approximate solution, we can set all the αi’s equal
to ϵ and apply algorithm 1 with modified constraints as described above.

5 Discussion and Future Work

Motivated by the problem of selecting representative cohorts, we turned to a lexicographically
maximal definition of optimal representation. We investigated existing approximations of
leximax fairness and introduced new definitions which consider semantic notions of noise and
tradeoffs. In settings where utilities or objectives are roughly estimated and leximax fairness
is desirable, the approximate notions of leximax in this paper may be useful as alternatives
to exact leximax.

While we gave a polynomial time algorithm which computes a leximax distribution over
a pool of candidates that is effective for both exact and approximate notions of leximax,
finding an algorithm for approximation notions of leximax that is more efficient than exact
algorithms remains an open problem. Furthermore, our setting of linear utilities is a natural
assumption but can be extended to sub-modular or other classes of utility functions.

In another direction, our approximation notions all reason about allowing for additive
amounts of error. However, considering what notions, especially those in line with ϵ-significant
recursive leximax, might arise from multiplicative error could be a useful direction to explore.

Finally, we only considered how the presence of additive noise might affect our definitions,
but other models of noise specific to different domains may also be considered. Noise can
appear not just based on entire cohorts or distributions but also for candidates individually.
Modeling how noise from individual candidates accumulate over over cohorts and distributions
of candidates will vary depending on the utility function but is a promising direction to
explore.
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A Proof of Lemma 16

Proof. We run m LPs in total. For each LP, the running time is the number of steps the
ellipsoid algorithm takes multiplied by the time per iteration. For an efficient implementation,
the ellipsoid algorithm needs (1) a feasible initial solution and (2) a polynomial-time separation
oracle.

(1) For an initially feasible solution, set γ1 = 0 and all xi = k/n for the first LP. It is easy
to check that this gives a feasible solution. In the m-th LP use the x values of the solution
to the previous LP and γm = 0 as the initial solution. This solution is feasible as all but
the last constraint are identical to the previous LP and, thus, the x-values of the previous
solution fulfill them. For the last constraint, note that the right side of the inequality equals
the next-to-last constraint. As all utility values are non-negative, summing over a larger set
G on the left side only increases the value of the left side in comparison to the value of the
next-to-last constraint. Thus, the last constraint is fulfilled as well for γm = 0.

(2) Given a vector of x-values and a vector of minimum utilities γi the goal of a separation
oracle is to decide whether these values fulfill the LP and, if they do not, find a constraint
that is violated by them. The time of the separation oracle dominates the running time per
iteration of the ellipsoid algorithm. Thus, it suffices to give a polynomial-time separation
oracle. We present our separation oracle in Algorithm 2. It first checks whether all x-values
fall into the correct range and add up to k. Then it computes the utility yj of each subgroup
Gj and sorts them in non-decreasing order of y-value. Instead of checking all

(
m
l

)
constraints

for each set of l subgroups, it uses the following observation: it suffices to check that, for
each l, the sum of the utilities of the l groups with smallest utilities is at least

∑l
s=1 γs. The

reason is that every other set of l subgroups must have cumulative utility at least as large. If,
however, the set of l subgroups with minimum utility does not have high enough cumulative
utility, then a violating constraint has been found.

Summing up utilities across n candidates takes O(n) time, sorting the resulting utility
vector y takes O(m log m) time. In total, this separation oracle checks if all the constraints
are satisfied in O(m log m + n) time.

https://doi.org/10.1007/BF01585506
http://arxiv.org/abs/1709.03441
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Algorithm 2 Separation Oracle. Checking if a constraint has been violated by a given
solution x and γ.

Input: v ∈ Rn×m
≥0 , values of each group for each candidate, {x1, . . . , xn} candidate

solution, {γ1, . . . , γl} minimum utilities for the l-th LP
Output: {TRUE or a violated constraint}
S ← 0;
for i = 1, . . . , n do

if xi > 1 or xi < 0 then
return {0 ≤ xi ≤ 1}

S ← S + xi ;
if S ̸= k then

return {
∑n

i=1 xi ≤ k}
yj ←

∑n
i=1 vijxi ∀j = 1, . . . , m;

ỹ ← SORT(y);
Umin ← 0;
for l = 1, . . . , m do

Umin ← Umin + ỹl;
if Umin <

∑l
s=1 γs then

return FALSE as this constraint does not hold:
{
∑n

i=1
∑

Gj∈S vijxi ≥
∑l

s=1 γs ∀S ⊆ G s.t. |S| = l}

return TRUE

For the ellipsoid method, we are guaranteed convergence in k steps where k ≤ 2n2 log( R
r )

where R is the initial radius and r is the final radius of the feasible region [4]. For our
feasibility region, R is exponential with respect to the input size (i.e. O(2n)) which means
log( R

r ) is linear with respect to n. Since the separation oracle and centroid method at each
step runs in polynomial time and there are at most Õ(n2) steps, Algorithm 1 also runs in
polynomial time. ◀

B Approximations in the Presence of Noise

So far, we have considered approximate leximax solutions with the assumption that the
utilities used to calculate these solutions are known to be correct. However, a natural question
is how such approximations behave if the reported utilities contain some small amount of
noise.

In the case of ϵ-tradeoff leximax solutions, assuming a small amount of additive noise for
each utility has the potential for resulting in solutions that do not satisfy tradeoff guarantees.
In particular, noise that is solution-specific can cause individual solutions to be “kicked
out” of the recursively defined sets, even though all solutions near them are included. We
demonstrate this behavior in the following example:

▶ Example 17 (ϵ-tradeoff leximax solutions are not robust to noise.). We consider a setting
in which we have two groups, G = {G1, G2} and three potential solutions S = {S1, S2, S3}.
The utilities each group derives are defined as u(Si, Gj) = Uij where U is defined as follows
(assume ϵ << 0.1):

U =

 0.1 0.2
0.1 + ϵ/100 0.8

0.1 + ϵ 0.2

 .

FORC 2022
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Furthermore, assume we have a slightly noisy version of utilities in which u(S2, G1)
changes from 0.1 + ϵ/100 to 0.1− ϵ/100. Figure 5 provides a visual representation of this
instance, where the noisy verison of S2 is shown in red.

In the non-noisy version, S1 can never be considered ϵ-tradeoff leximax because S2 does
much better than S1 on G2, and is still above S1 on G1.

However, in the noisy version, which introduces only a tiny amount of noise (ϵ/50), much
smaller than the allowed approximation threshold (ϵ), results in a setting where S1 can be
considered ϵ-tradeoff leximax.

By making the distance between S2 and S1 arbitrarily small, we can construct examples
where even when the amount of noise is negligible compared to the allowed approximation
factor, S1 can still potentially be incorrectly classified as ϵ-tradeoff leximax.

We note that we can define a stricter notion of tradeoff approximation that guarantees a
solution will be ϵ-tradeoff leximax even if calculated with noisy utilities, but for the same
reasons as demonstrated in Example 8, such solutions may not always exist, making it
difficult to find solutions that are guaranteed to be ϵ-tradeoff leximax in a noisy setting.

▶ Lemma 18. Recall the notion of (ϵ1, ϵ2)-significant tradeoff leximax as presented in
Definition 9. Any (ϵ− 2δ, 2δ)-significant tradeoff leximax solution when calculated using noisy
utilities within an additive δ of their true values is guaranteed to be ϵ-tradeoff leximax with
respect to the true utilities.

Having considered how noise may affect ϵ-tradeoff leximax approximations, we now turn
to ϵ-significant recursive leximax approximations. Here, we find that ϵ-significant recursive
leximax solutions are somewhat robust to noise, in that they satisfy a slightly relaxed
definition of significance.

First, we note that in Example 17, S1 is also ϵ-significant recursive leximax in the noisy
setting, but not in the non-noisy setting, and so this example also demonstrates how the
standard definition of ϵ-significant recursive leximax may not be robust to noise. However,
we can offer the following guarantee with respect to a modified notion:

▶ Lemma 19. Say that a solution S is (α1, α2)-significant recursive leximax if there exists
some choice of slack β⃗ = (β1, ..., βm) with βi : S → [α1, α2] such that S ∈ Sβ

m, where Sβ
0 = S

and

Sβ
i = {S ∈ Sβ

i−1 : u(S, G[i]) ≥ max
S′∈Sβ

i−1

u(S′, G[i])− βi(S)}.

Then, any ϵ-tradeoff leximax solution calculated in the presence of δ additive noise is
guaranteed to be (ϵ− 2d, ϵ + 2d)-significant recursive leximax.

Thus, we conclude that while noisy ϵ-significant recursive leximax solutions are not
guaranteed to be ϵ-significant recursive leximax with respect to the true utilities, they will
still satisfy a slightly relaxed notion of significance that allows for slack to vary within an
interval of size 4δ around the constant ϵ slack used in standard significance. When δ is tiny
compared to ϵ, this is only a tiny change in the allowed slack values.

C Rounding Distributions Over Candidates

Once we obtain a distribution over cohort candidates from Algorithm 1, we can sample
each individual i with probability xi independently. The total size of the committee follows
a Poisson Binomial distribution which will be size-k in expectation where k =

∑n
i=1 xi

according to our constraints.
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If a committee of size k is a hard constraint, we can instead take a rounding approach
similar to previous work in cohort selection [2]. For finite samples in our cohort selection
setting, we can employ a dependent rounding scheme that guarantees that the utilities for
each subgroup is leximax in expectation while the size of the cohort is exactly k [28].

The rounding scheme described in [28] results in a distribution over cohorts of size exactly
k such that the marginal inclusion probability for each potential cohort member is still
satisfied, giving us the leximin utility values in expectation when the utility function is linear
over cohort members. The scheme has the added benefit that the events corresponding to
the inclusion/exclusion of each cohort member are negatively correlated. Because Chernoff
bounds such as the one used in our proof of Lemma 15 have been shown to also hold in
settings where random variables are not independent but are negatively correlated (See [11],
Theorem 1.10.24), our concentration guarantees also apply to solutions outputted by the
rounding scheme.

D Hardness of Integer Solutions

Although the focus of this work is providing distributions over candidates and cohorts,
we also touch briefly on the problem of finding integer leximax cohorts. An exact integer
leximax solution removes the randomness inherent in rounding from a distributional solution.
However, we show such an integer solution is NP-hard to find. Moreover, the weaker maxmin
version of the problem (see below) is NP-hard to compute.

Given a set of candidates C = {c1, . . . , cn}, a set of groups G = {G1, . . . , Gm}, and the
values v ∈ Rn×m

≥0 of each group for each candidate such that the utility of a group for a
cohort is its average value over the cohort’s candidates, the integer leximax cohort selection
problem is:

maximize γ1, . . . , γm

subject to
∑n

i=1 xi = k

xi ∈ {0, 1}∑n
i=1

∑
Gj∈G vijxi ≥

∑l
s=1 γs ∀G ⊆ G s.t. |G| = l, l = 1, . . . , m.

The simpler integer maxmin cohort selection problem with cardinality k determines a set of
candidates defined by xi’s such that the minimum utility of any group is maximized:

maximize γ

subject to
∑n

i=1 xi = k

xi ∈ {0, 1}∑n
i=1 xivij ≥ γ ∀j = 1, . . . , m.

Next we show the hardness of the maximin cohort selection problem and even of the
following integer ϵ-approximate maxmin cohort selection problem with cardinality k, where
0 ≤ ϵ is a constant: Determine a set of candidates defined by xi’s such that the minimum
utility of any group is within an additive error of ϵ of γ, the maximum minimum utility
possible.

▶ Lemma 20. For ϵ < 0.5 the integer ϵ-approximate maxmin cohort selection problem is
NP-hard. It is also NP-hard to determine the number of groups with non-minimum utility to
within a factor of (e− 1)/e + o(1).

FORC 2022



2:22 Leximax Approximations and Representative Cohort Selection

E Figures and Diagrams
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Figure 2 Visual representation of the
setting in Example 5 showing how exact
leximax solutions are very sensitive to
small changes in utility for less-well-off
groups.
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Figure 3 Visual representation of the
setting in Example 8 demonstrating how
no solutions may exist under small al-
terations to the definition of ϵ-tradeoff
leximax.
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Figure 4 Visual representation of the
setting in Example 13 demonstrating
how Definition 12 identifies significantly
leximax solutions.
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Figure 5 Visual representation of the setting
in Example 17 showing that when computed in
the presence of noise, ϵ-tradeoff leximax solutions
may break down. The noisy version consists of
updating S2 to the location highlighted in red.
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Abstract
In this work, we consider classification of agents who can both game and improve. For example,
people wishing to get a loan may be able to take some actions that increase their perceived credit-
worthiness and others that also increase their true credit-worthiness. A decision-maker would like to
define a classification rule with few false-positives (does not give out many bad loans) while yielding
many true positives (giving out many good loans), which includes encouraging agents to improve to
become true positives if possible. We consider two models for this problem, a general discrete model
and a linear model, and prove algorithmic, learning, and hardness results for each.

For the general discrete model, we give an efficient algorithm for the problem of maximizing
the number of true positives subject to no false positives, and show how to extend this to a partial-
information learning setting. We also show hardness for the problem of maximizing the number of
true positives subject to a nonzero bound on the number of false positives, and that this hardness
holds even for a finite-point version of our linear model. We also show that maximizing the number
of true positives subject to no false positive is NP-hard in our full linear model. We additionally
provide an algorithm that determines whether there exists a linear classifier that classifies all agents
accurately and causes all improvable agents to become qualified, and give additional results for
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1 Introduction

Consider a bank offering loans. Based on observable information about applicants, it must
decide which of them are loan-worthy and which are not. For example, it might compute
a credit score based on some (perhaps linear) function of observable features and then
compare the result to a cutoff value. So far, this looks like a standard binary classification
problem. However, there is an additional wrinkle: individuals have agency and may be able
to modify their observable features somewhat if it will help them get approved for a loan.
This wrinkle brings both challenges and opportunities. A challenge is that some of these
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actions may involve “gaming” the system: performing activities that do not affect their true
loan-worthiness such as changing how they spend on different credit cards. An opportunity is
that other actions, such as taking a money-management course, may truly help them become
more loan-worthy, increasing the number of good loans the bank can give out. How can the
bank best set its loan criteria in such settings to maximize the number of loans given out
subject to not giving loans to unqualified applicants?

Or, consider a school that would like to prepare students for the workforce. There are
many different career paths a student might take, so the school would like to have multiple
different criteria for graduation (multiple tracks or majors) such that satisfying any one of
them will earn the student a diploma. Imagine there is a limited set of options the school
can choose from, and once the school chooses some subset of them as criteria, every student
selects the easiest of those criteria to fulfill (or none, if all are too hard) and then may or
may not become truly qualified for the workforce, depending perhaps on the extent to which
satisfying that criterion involved gaming versus true improvement. How can the school
best select criteria to maximize the number of students who become truly qualified for the
workforce while minimizing the number of diplomas given to unqualified students?

In this work we consider algorithmic and learning-theoretic formulations of such scenarios,
where a binary classification must be made in the presence of both gaming and improvement
actions with a goal of maximizing true-positive predictions while keeping false-positives to a
minimum. Specifically, we consider the following two formulations (given in more detail in
Section 2).

General Discrete Model: In this formulation, we are given a weighted, colored bipartite
graph with n nodes on the left representing agents, and m nodes on the right representing
distinct possible ways agents could be considered qualified for the prize at hand (the
loan, the diploma, etc.). For example, the nodes on the right could represent different
possible definitions of “credit-worthy” or could represent different bundles of activities
sufficient to receive a diploma. Each edge has both a weight representing the amount
of effort the agent would need to achieve the given qualification and a color blue or red
indicating whether the agent would indeed be truly qualified or not (respectively) if it
did so. The goal of the classifier is to select a subset Pfinal of points on the right such
that if each agent in the neighborhood of Pfinal takes its least-cost edge into Pfinal, then
a large number of blue edges and very few red edges are taken (many good loans and few
bad loans are given out); more specific objectives will be detailed in Section 3.
In the learning-theoretic version of this problem, the left-hand-side of the graph is replaced
with a probability distribution D over nodes (where a node is given by its neighborhood
and the weights and colors of its edges). We have sampling access to D and our goal is to
find a subset Pfinal of points on the right-hand-side with good performance under D. In
a partial-information version, when we sample a point from D we do not get to observe
its edges, only where the agent goes to and whether it was qualified. That is, learning
proceeds in rounds, where in each round we choose a subset P ′ of points on the right,
and then for a random draw x ∼ D we observe what point p ∈ P ′ (if any) was selected
and the color of the edge taken.

Linear Model: In this formulation, we assume agents are points x ∈ Rd (they have d real-
valued features) and there is a linear separator f∗ : a∗x ≥ b∗ with non-negative weights
that separates the truly qualified individuals from the unqualified ones. Agents have the
ability to increase their jth feature at cost c[j] (decreasing is free) and receive value 1 for
being classified as positive. However, only some features correspond to true improvement
and others involve just gaming. That is, if an agent begins at xinit and moves to a
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point xperc, their true qualification is not f∗(xperc) but rather f∗(xtrue), where xtrue

agrees with xinit in the gaming directions and with xperc in the improvement directions.
Movement costs and which features are improvement versus gaming are assumed to be
the same for all agents. The goal is to find a classifier that produces a large number of
true positives and few false positives. Note that using f∗ itself will be optimal if the
coordinate j maximizing a∗[j]/c[j] (having the most “bang per buck”) is an improvement
direction, so the interesting case is when this is a gaming direction. Also note that shifting
f∗ in this direction (adding a∗[j]/c[j] to b∗) will be a perfect classifier but may not be
optimal because it does not take advantage of the ability to encourage agents to improve.
We consider settings where (a) the mechanism designer must use a linear classifier, (b)
arbitrary classifiers are allowed, and (c) a polynomial-sized set P of “target points” is
given and the mechanism designer must select some subset Pfinal ⊆ P as its classifier –
this is a special case of our General Discrete Model.

In this work, we consider both models. We give an efficient algorithm for the general
discrete model for the problem of maximizing the number of blue edges taken subject to
no red edges taken (maximizing the number of good loans given out subject to no bad
loans) and show how to extend this to the partial-information learning setting. We also
show hardness for the problem of maximizing the number of blue edges subject to a nonzero
bound on the number of red edges, and show that this hardness holds even for the simplest
finite-point linear model. Furthermore, we show the problem of maximizing the number of
true positives subject to no false positives is NP-hard in the linear model when we are not
given a polynomial-sized set of target points. We additionally give algorithms for the linear
model. We provide an algorithm that determines whether there exists a linear classifier
which classifies all agents accurately and causes all improvable agents to become qualified.
In the special two-dimensional case, we design a linear classifier maximizing the number
of true positives minus false positives; and a general (not necessarily linear) classifier that
maximizes true positives subject to no false positives.

1.1 Related Work
There is an exciting and growing literature on decision-making in the presence of strategic
agents. Much of this work considers agents whose actions are only gaming and do not change
their true label (see [11, 7, 13, 16, 1, 6, 9, 5] among others) but researchers have also been
investigating mechanism design in the presence of agents who can both game and improve
[14, 12, 3, 18, 15, 10, 4, 17].

Kleinberg and Raghavan [14] consider a single agent with a variety of gaming and
improvement actions available, that are then converted into observable features through an
effort-conversion matrix. They then examine mechanisms for incentivizing desired action
vectors, showing among other things that any vector that can be incentivized by a monotone
mechanism can also be incentivized by a linear mechanism. Harris et al. [12] consider a
multi-round version of the Kleinberg and Raghavan [14] model in which true improvements
carry over to future rounds whereas gaming effort do not; they show that in this model,
the principal (the decision-maker) can incentivize the agent to produce a greater range of
desirable behaviors.

Alon et al. [3] consider a multi-agent extension of the Kleinberg and Raghavan [14] model,
where agents all begin at the same place (the origin) but each have their own effort-conversion
matrix. The goal of the designer is to choose an evaluation mechanism – mapping observable
features to payoffs – that encourages all agents to take admissible actions, assuming that
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agents will maximize payoff subject to budget constraints. They specifically consider the
case (1) that there is a single admissible action vector, and (2) that individual actions are
either improvement or gaming actions and no agent should take a gaming action. Among
other results they show that unlike in [14], nonlinear evaluation mechanisms can now be
more powerful than linear ones; they also analyze the complexity of a variety of associated
optimization problems. We can think of our setting to some extent in this language by
viewing any action that makes an agent truly qualified as “admissible” (and specifically the
blue edges in our general discrete model). However, two key distinctions are (1) in our setting
we can only give the loan/diploma or not – we do not have the flexibility to choose arbitrary
payoffs, and (2) we assume agents may begin at different starting locations (but have the
same costs for movement in our linear model).

Xiao et al. [18] define a problem they call the Multiple Agents Contract Problem which
is very similar to our General Discrete Model, except instead of binary (red/blue) colors,
the edges have different values to the principal, and instead of producing a classification,
the principal can assign an arbitrary payment profile to the right-hand-side nodes. They
prove that maximizing payoff to the principal is NP-hard, and give an algorithm for a case
of related agents in which there is a certain strict ordering among agents and costs.

Shavit et al. [17], building on Miller et al. [15], consider the goal of getting agents to
improve without loss of predictive accuracy. As in our setting, they assume agents begin a
different starting locations, and then modify their profiles from there, and they also consider
a learning formulation. However, their focus is on a regression model in which agents’ payoffs
are an inner product of their observable features with a decision vector; this means that
the incentives are basically the same no matter what the initial location of an agent is. In
contrast, in our binary classification setting, even in the linear model the effect of a proposed
classifier on an agent may depend greatly (and in a non-convex manner) on the initial location
of the agent. Bechavod et al. [4] also consider a linear regression learning setting: agents
arrive one at a time iid from a fixed distribution and then modify their state by changing a
single variable based on the current regression vector. As in our linear model, some directions
are improvement and some are gaming. They consider a limited feedback setting where
the learner sees only the dot-product of the agent’s true position with the true regression
function, plus noise, and the learner’s goal is to recover the true regression function.

Haghtalab et al. [10] consider a similar setting to ours in which there are improvement and
gaming actions, and the designer is limited to binary classification, where agents receive value
1 for being classified as positive. Among other results, they give approximation algorithms for
the goal of maximizing the total amount of true improvement that occurs when the allowed
mechanisms are linear separators and agents have ℓ2 movement costs. In contrast, our goal
is to maximize true positive classifications while minimizing false positives, and in the linear
case our movement cost assumptions are somewhat different.

Organization of the Paper

Section 2 introduces the general discrete model and linear model more formally. In Section 3,
we give an efficient algorithm for the problem of maximizing the number of true positives
subject to no false positives in the general discrete model, and provide hardness results for
the problem of maximizing the number of true positives subject to a nonzero bound on false
positives (in either the general discrete model or the linear model when arbitrary classifiers
are allowed) and hardness for the problem of maximizing the number of true positives subject
to no false positives in the linear model when arbitrary classifiers are allowed. In Section 4,
we consider a learning-theoretic version of the problem of maximizing true positives subject
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to no false positives, and provide efficient learning algorithms as well as upper and lower
bounds on the number of samples needed. In Section 5, we focus on the linear model and
provide algorithms specific to this setting. We provide an algorithm that determines whether
there exists a linear classifier which classifies all agents accurately and causes all improvable
agents to become qualified. In the special two-dimensional case, we design a general (not
necessarily linear) classifier that maximizes true positives subject to no false positives. In the
full version of this work, we show how to provide a linear classifier maximizing the number
of true positives minus false positives in the two-dimensional case.

2 Model

We study a binary classification problem. As the mechanism designer or classifier, we would
like to maximize the number of agents we correctly classify as positive (true positives), and
minimize the number of unqualified agents we misclassify as positive (false positives).

Agents are assumed to be utility maximizers and wish to be classified as positive. Each
agent i ∈ {1, . . . , n} has a set of actions it can perform, and it will choose the cheapest of
these that causes it to be classified as positive if that cost is less than its value on receiving a
positive classification. We use Q to denote the set of truly qualified agents. If an agent is
initially not qualified (not in Q), some of its actions may cause it to become truly qualified,
whereas others may not. However, the classifier cannot see which action was taken, only
the observable result of that action. Therefore, the challenge of the mechanism designer is
to determine which observable results to classify as positive to maximize correct positive
classifications while minimizing false positives.

2.1 General Discrete Model
In this model, we assume that as a mechanism designer we are given a polynomial-sized set
P of criteria we may select from (e.g., graduation criteria or criteria for being approved for a
loan), and are limited to choosing some subset Pfinal ⊆ P as the criteria we will use. We
then will classify as positive any agent that meets any one of these criteria, and as negative
any agent who does not. Specifically, we are given a weighted, colored bipartite graph with
the n agents on the left and the set P of criteria on the right. Edge (i, j) corresponds to
agent i taking an action to satisfy criteria j and is colored blue or red depending on whether
that action would make the agent truly qualified or not, respectively. Each edge also has a
weight representing its cost to that agent, and only actions whose costs are less than the
value to the agent of being classified as positive are shown. Given a set Pfinal ⊆ P chosen by
the mechanism designer, each agent in the neighborhood of Pfinal will choose its cheapest
edge into Pfinal as the action it will take, and will be classified as positive by the mechanism;
agents not in the neighborhood of Pfinal will be classified as negative.

We also consider a learning-theoretic version of this problem, where the left-hand-side
of the graph is replaced with a probability distribution D over nodes. We have sampling
access to D and our goal is to find a subset Pfinal of points on the right-hand-side with good
performance under D. In a partial-information (bandit-style) version, when we sample a
point from D we do not get to observe its edges, only where it goes to and whether it was
qualified. That is, learning proceeds in rounds, where in each round we choose a subset P ′ of
points on the right, and then for a random draw x ∼ D we observe what point p ∈ P ′ (if
any) was selected and the color of the edge taken.
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Figure 1 Points on the left are the agents, and those on the right are the set P of possible criteria;
wi is the cost of satisfying the criterion. A red edge means the agent taking that action would not
truly be qualified. A blue edge means that the agent taking that action would be qualified.

2.2 Linear Model
In the linear model, agents have d real-valued features. Each agent i begins at an initial
point xinit

i ∈ Rd, and there is assumed to be a linear threshold function f∗ : a∗x ≥ b∗ with
non-negative weights that separates the truly qualified individuals from the unqualified ones.
Agents have the ability to increase their jth feature at cost c[j] (decreasing is free) and
receive value 1 for being classified as positive. However, only some features correspond to true
improvement and others involve just gaming. That is, if an agent begins at xinit and moves
to a point xperc, their true qualification is not f∗(xperc) but rather f∗(xtrue), where xtrue

agrees with xinit in the gaming directions and with xperc in the improvement directions. On
the other hand, the classification rule can only be based only on xperc and not xtrue (or xinit).
Movement costs and which features are improvement versus gaming are assumed to be the
same for all agents. So, for any agent i, cost(xinit

i , xperc
i ) =

∑d
j=1 c[j] (xperc

i [j]− xinit
i [j])+,

where x+ = max{x, 0} and c[j] is the cost per unit of movement in the positive direction of
dimension j. An example is given in Figure 2.

We consider settings where (a) the mechanism designer must use a linear classifier (a
linear threshold function), (b) arbitrary classifiers are allowed, and (c) a polynomial-sized set
P of “target points” is given and the mechanism designer must select some subset Pfinal ⊆ P
as its classifier. Notice that this last case is a special case of the general discrete model
because given each initial state xinit

i , we can compute the costs to move to each p ∈ P and
whether doing so will make the agent truly qualified, to produce the desired weighted, colored
bipartite graph.

3 Algorithmic and Hardness Results

In this section we first provide an algorithm for the problem of maximizing the number of
true positives subject to no false positives in the general discrete model. Then, we provide
hardness results for the problem of maximizing the number of true positives subject to a
nonzero bound on false positives (in either the general discrete model or the linear model
when arbitrary classifiers are allowed) and hardness for the problem of maximizing the
number of true positives subject to no false positives in the linear model when arbitrary
classifiers are allowed. Later in Section 4 we extend our algorithmic results to the learning
model and in Section 5 we give algorithms for learning linear classifiers in the linear model.
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Figure 2 An example of the linear model (the horizontal axis is an improvement direction and the
vertical axis is a gaming direction) with a mechanism using a non-linear classifier. There are three
agents, two of whom are initially not qualified. All three become qualified and are correctly classified
as positive by the mechanism.

3.1 Maximize True Positives Subject to No False Positives
The main result of this section is an algorithm that given a weighted, colored bipartite graph
G with agents, X , on the left and potential criteria, P, on the right, finds Pfinal ⊆ P such
that using Pfinal as the criteria maximizes the number of agents taking a blue edge (true
positive) subject to no agent taking a red edge (false positive). We call the agents that
take a blue edge improving agents and the agents taking a red edge gaming agents. The
algorithm, although simple in structure, satisfies strong properties noted afterwards; and
serves as the building block of the learning algorithms in Section 4. Furthermore, as shown in
the following subsection, natural generalizations of the objective function make the problem
computationally hard. Therefore, the algorithm together with the hardness results tightly
characterize the settings for which there is an efficient algorithm, or the problem is NP-hard.

Overview of Algorithm 1. The algorithm takes in a weighted, colored bipartite graph
G = (X ∪ P , E) and outputs Pfinal, a subset of P that specifies the final criteria. Initially,
Pfinal is set to P. The algorithm proceeds in rounds. In each round, it visits all the nodes
(agents) in X to determine whether there is an agent who takes a red edge to its lowest cost
neighbor p ∈ Pfinal. If there is such a gaming agent, its corresponding criteria, p, is removed
from Pfinal. These rounds continue until there is no gaming agent and therefore no removal
of criteria in a single round, or the current set of criteria is empty.

▶ Proposition 1. Algorithm 1 has running time of O(|P|n).

Proof. Proof in Appendix A. ◀

▶ Theorem 2. Algorithm 1 finds the set of criteria, Pfinal, that maximizes the number of
true positives subject to no false positive.

Proof. Proof in Appendix A. ◀

Algorithm 1 satisfies the following strong properties.
(a) point-wise optimality: For any agent i, if there exists a solution in which i takes a blue

edge and no agent takes a red edge, then the algorithm finds such a solution.
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3:8 On Classification of Strategic Agents Who Can Both Game and Improve

Algorithm 1 Maximize true positives subject to no false positives.

Input : A bipartite graph G = (X ∪ P , E) with edge weights we. Outgoing edges
assumed sorted by weight. Red edges ER ⊆ E. Blue edges EB ⊆ E.

Output :Pfinal

1 Pfinal ← P // Initialization of the set
2 while Pfinal ̸= ∅ do
3 flag = 0

/* Loop through all xi ∈ X */
4 for i = 1, 2, · · · do
5 Let e = (xi, p ∈ Pfinal) be the outgoing edge from xi with lowest weight
6 if e ∈ ER then
7 flag = 1 // at least one agent is gaming
8 Pfinal ← Pfinal \ {p}
9 if flag is 0 then

10 return Pfinal

11 return ∅ // When 0 false positive is not possible

(b) general for weighted setting: The algorithm works optimally in the more general setting
that each agent has a weight and the objective is to maximize the sum of weights of
improving agents subject to the constraint of no gaming agent. This is a direct implication
of property a.

(c) max-min fairness: Suppose the agents are from different populations and the objective
is to maximize the minimum number of agents improving from each population subject
to no gaming. By property a, the algorithm satisfies this max-min fairness notion.

(d) heterogeneous utilities: The algorithm works optimally in the more general setting that
agents have different values for being classified positive.

(e) minimizing the total cost of improvement: Since the algorithm only removes p ∈ P that
causes an agent to game, with Pfinal each agent incurs the minimal cost subject to no
agent gaming.

▶ Remark 3. The sets of criteria satisfying the no false positive constraint is not downward
closed. In other words, a subset of a set of criteria that satisfies the no false positives property
does not necessarily satisfy this property.

3.2 Hardness Results
In this part, we prove hardness results for maximizing the number of true positives when
the constraints in the previous subsection are relaxed. First, we show that if we relax the
no false positives constraint to a bounded number of false positives, the problem becomes
NP-hard; moreover, this holds even for the simpler linear model. Then, for the linear model,
we show if we are not given a finite set of potential criteria P , it is NP-hard to find criteria
that maximize true positives subject to no false positives.

▶ Theorem 4. Given the initial feature vectors of agents xinit
1 , xinit

2 , . . . , xinit
n ∈ Rd and a set

P of potential criteria, the problem of finding a subset Pfinal ⊆ P that maximizes the number
of true positives subject to at most k false positives is NP-hard.

Proof sketch. The proof is done by a reduction from the Max-k-Cover problem with n

elements where the goal is to choose k sets covering the most elements. For every element ei

in the Max-k-Cover, we consider agent i, and for every set Sj in the Max-k-Cover problem
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we consider agent n + j and a target point pj . The coordinates of the initial points and the
target points are set such that agent i corresponding to element ei can only move to target
point pj such that ei ∈ Sj and become a true positive; moreover, agent n + j corresponding
to set Sj can only move to target point pj and become a false positive. On the one hand,
since including each pj in the final set of criteria, Pfinal, causes exactly one agent to be a
false positive, Pfinal must contain at most k target points. On the other hand, to maximize
the number of true positives a set of k target points that the maximum number of agents
can reach to it must be selected. This is equivalent to the Max-k-Cover solution. A formal
proof is included in Appendix A. ◀

▶ Theorem 5. Suppose we are given a set of n agents where xinit
1 , xinit

2 , . . . , xinit
n denote

their initial feature vectors. Deciding whether there exists a set of target points Pfinal ⊆ Rd

for which all the agents become true positives is NP-hard.

Proof sketch. The proof is done by a reduction from the approximate version of the hitting
set problem where given a set of elements, E = {e1, . . . , en} and a family of sets of elements,
F = {S1, S2, . . . , Sm}, the goal is to find a minimum size set S∗ that intersects all Si.
We construct an n + 1-dimensional space, where the first n dimensions are improvement
dimensions and correspond to the n elements, and the last dimension is gaming. We consider
two sets of agents. For each Si, we consider a corresponding agent i; these are the usual
agents. We also consider agent m + 1, a special agent that does not correspond to any
particular set. The construction is such that each agent needs to move 2k units along the
improvement dimensions to become truly qualified. Further details of the construction can
be found in the full proof. The proof includes two directions. (1) If all the agents can become
true positives by reaching to a set of target points Pfinal ⊆ Rd, then we can construct a
hitting set of size at most 2k; and (2) if it is not possible, then there does not exist a hitting
set of size k.

We briefly cover the key ideas in each direction. To show the first direction, suppose all
the agents can become true positives when presented with target points Pfinal ⊆ Rd. Consider
the target point that each agent selects. Using our construction, we show the special agent
does not afford to reach to the target points of the usual agents. Also, for each usual agent i,
there exists element ej in their corresponding set such that the target point of the special
agent has value more than 1 in coordinate j. In order for the special agent to afford to reach
to its target point, the number of improvement coordinates with value at least 1 must be at
most 2k. The elements corresponding to these coordinates constitute a hitting set of size at
most 2k. To prove the reverse direction we argue: if there exists a hitting set S∗ of size k,
there is a set of target points that encourages all the agents to become true positives. To do
so, we construct a set of target points Pfinal = {p1, . . . , pm+1}, using the elements in the
hitting set, that when the size of the hitting set is k makes every agent become true positive.
A formal proof is included in Appendix A. ◀

The following is a direct corollary of Theorem 5.

▶ Corollary 6. Given the initial feature vectors of agents, xinit
1 , xinit

2 , . . . , xinit
n ∈ Rd, finding

a set of target points Pfinal ⊆ Rd that maximizes the number of true positives subject to no
false positives is NP-hard.

4 Learning Results

In this section we consider a learning-theoretic version of our problem, where the left-hand-
side of the graph is replaced with a probability distribution D over nodes. We have sampling
access to D and our goal is to find a subset Pfinal of points on the right-hand-side with good
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performance under D. We provide two different algorithmic results and upper bounds on
the number of samples for producing a good solution, depending on the information each
sample reveals. The first upper bound works for the case where by sampling an agent, its
neighborhood (neighboring edges, their colors and weights) is revealed. The second upper
bound works in a partial-information (bandit-style) setting, where when we sample a point
from D we do not get to observe its edges, only where it goes to and whether it was qualified.
Finally, we provide a lower bound on the necessary number of samples for any algorithm.
The lower bound holds even for the simpler linear model.

The following definition is crucial in this section.

▶ Definition 7 (OPT, performance, and error). Let OPT be the maximum probability mass
of true positives achievable subject to zero false positives. We denote the probability mass of
true positives of an algorithm as its performance and the probability mass of false positives as
its error. A hypothesis is desired if it has comparable performance to OPT and small error.

4.1 Sufficient Number of Samples in the Full Information Setting
The main result of this section is that a number of samples linear in |P| and 1/ε is sufficient
for Algorithm 1 to learn a desired hypothesis with high probability. Specifically, suppose
the learner has access to a weighted, colored bipartite graph G = (X ∪ P , E), where X are
sampled from D, and P is the set of the potential criteria. The learner runs Algorithm 1
with the graph as the input and uses the algorithm output, Pfinal ⊆ P, as its hypothesis,
i.e., after the training phase it classifies any agent with an edge to Pfinal as positive and any
other agent as negative. We show that a linear number of samples is sufficient so that with
high probability, the probability mass of true positives classified by Pfinal is close to OPT
and the probability mass of false positives is small.

▶ Theorem 8. Consider Pfinal as the outcome of Algorithm 1 on G = (X ∪ P , E), where X
contains samples from D. For any 0 < ε, δ ≤ 1, if |X | ≥ ε−1(ln(2)|P|+ ln(1/δ)) then with
probability at least 1− δ the set Pfinal achieves performance at least OPT− ε (i.e., at least
OPT− ε probability mass of true positives) subject to at most ε error (ε probability mass of
false positives).

4.2 Sufficient Number of Samples in the Partial Information Setting
In this section we consider a partial information (bandit-style) setting. Similar to before,
the learner has access to a sample set X drawn from D and a set of potential criteria P.
However, observing a sample in X does not reveal its edges, and the learner can only observe
the criterion that the sample selects and whether it becomes truly qualified. The main result
of this section is an algorithm, Algorithm 2, for this setting and a guarantee on the number
of samples sufficient for it to achieve performance at least OPT− ε and error at most ε with
high probability.

Overview of Algorithm 2. In each iteration, a set of examples of size ε−1 ln(|P|/δ) is
sampled. After agents select points in P (if any), we observe the points selected and whether
they became truly qualified (in a real-world application, one can think of performing a test
to check if each agent is truly qualified). If some agent does not become truly qualified
(fails the test), the algorithm deletes the point they have selected. If a set Pfinal, survives
for ε−1 ln(|P|/δ) subsequent examples, the algorithm terminates and returns Pfinal as the
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Algorithm 2 Learning a high performance low error Pfinal in partial-information setting.

Input :P
Output :Pfinal

1 Pfinal ← P;
2 while Pfinal ̸= ∅ do
3 Sample X ∼ D of size 1

ε ln |P|
δ ;

4 if ∃x ∈ X such that x takes a red edge to p ∈ Pfinal then
5 Pfinal ← Pfinal \ {p};
6 continue;

/* if no one from X takes a red edge: */
7 return Pfinal;
8 return ∅;

the final set of criteria of the algorithm. Since the number of false positives (agents taking
red edges) is bounded by |P|, the algorithm will terminate after at most ε−1|P| ln(|P|/δ)
samples.

The following theorem proves that with a high probability, Algorithm 2 outputs Pfinal

with a high performance and a low error.

▶ Theorem 9. For any 0 < ε, δ ≤ 1, Algorithm 2 by using at most ε−1|P| ln(|P|/δ) total
samples outputs a set of criteria Pfinal that with probability at least 1−δ achieves performance
at least OPT− ε (i.e., at least OPT− ε probability mass of true positives) subject to at most
ε error (ε probability mass of false positives).

4.3 Necessary Number of Samples
The main result of this section is a lower bound on the necessary number of samples for
learning a desired hypothesis. The lower bound provided holds even for the simpler linear
model. To restate the setup, suppose the learner has access to a set of initial positions of
agents X and a set of potential criteria (also called target points in the linear model) P
where X are sampled from distribution D. We lower-bound the required number of samples
for any learning algorithm that with probability at least 1/2 achieves high performance and
low error.

▶ Theorem 10. Any algorithm for PAC learning a set Pfinal that with probability at least
1/2 achieves performance at least (3/4) ·OPT (i.e., at least (3/4) ·OPT probability mass
of true positives) subject to at most ε error (ε probability mass of false positives) must use
Ω(|P|/ε) examples in the worst case.

5 Algorithmic Results Specific to the Linear Model

The algorithmic results provided so far work in both the general discrete and the linear
discrete models. In this section we focus on the linear model and provide algorithmic results
for various problems. These algorithms do not follow the greedy structure of the previous
algorithms, and use novel technical ideas. First, we consider the problem of designing
linear classifiers. Section 5.1 provides introductory observations and definitions about linear
classifiers. Section 5.2 presents the main result of this section which determines whether
there exists a linear classifier that classifies all agents accurately and causes all improvable
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agents to become qualified. Then, we shift focus to general (not necessarily linear) classifiers
in a two-dimensional space and in Section 5.3 provide an algorithm for maximizing true
positives subject to no false positives. In the full version of this work, we provide results for
finding a linear classifier that maximizes the number of true positives minus false positives in
the two-dimensional case.

5.1 Properties of Linear Classifiers
Before diving into discussion of the algorithmic results, we provide observations about linear
classifiers to set the context. We also provide optimal classifiers in special cases.

For the following discussion, consider linear classifier f∗ : a∗x ≥ b∗ that separates the
truly qualified agents from unqualified agents.

▶ Observation 11. With linear classifier f : ax ≥ b, any utility maximizing agent that
achieves non-negative utility by changing their features moves in dimension arg maxj a[j]/c[j].

▶ Definition 12 (movement dimension). The movement dimension of linear classifier f :
ax ≥ b is the utility maximizing dimension arg maxj a[j]/c[j] discussed in Observation 11.
If there are multiple such dimensions the ties are broken in favor of improvement dimensions
and then lexicographically.

▶ Definition 13 (encourage improvement/gaming). A classifier encourages improvement if its
movement dimension is an improvement dimension. It encourages gaming otherwise.

▶ Definition 14 (dim-j improving). A linear classifier is dim-j improving if it encourages
improvement and its movement dimension is along dimension j.

The following definition captures the set of agents that potentially can improve to become
truly qualified.

▶ Definition 15 (improvement margin, improvable agents). The improvement margin includes
all the agents that can afford (do not have to incur a cost of more than 1) to move in an
improvement dimension and become truly qualified. Formally, any initially unqualified agent
i, i.e., a∗xinit

i < b∗, that has distance ≤ 1/c[j] along an improvement dimension j to f∗ is
in the improvement margin.

▶ Lemma 16. If f∗ : a∗x ≥ b∗ encourages improvement, the optimal classifier is f∗ – among
all linear or nonlinear classifiers.

Proof. f∗ classifies initially qualified agents and unqualified unimprovable agents accurately.
Also, all the agents in the improvement margin improve, become qualified, and are accurately
classified as positive. ◀

▶ Lemma 17. Let j be the movement dimension of classifier f∗. The classifier g : a∗x ≥
b∗ + a∗[j]/c[j] classifies all the initially qualified agents as positive and the rest as negative.

Proof. Initially unqualified agents, a∗xinit
i < b∗, can move at most 1/c[j] in dimension j

which is not enough to reach to g. Therefore, these agents are classified as negative by g.
On the other hand, initially qualified agents, a∗xinit

i ≥ b∗, afford to reach to g and receive
nonnegative utility. Therefore, they will be classified as positive. ◀

▶ Corollary 18. If all the dimensions are gaming dimensions, g : a∗x ≥ b∗ + a∗[j]/c[j] is
the optimal classifier, where j is the movement dimension of f∗.
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Proof. If all dimensions are gaming dimensions, there are no improvable agents. Therefore,
all agents are either initially qualified or unimprovable and unqualified. By Lemma 17, g

classifies all such agents accurately. ◀

By Lemma 17, g : a∗x ≥ b∗ +a∗[j]/c[j] may be a “reasonable” solution because it classifies
all the initially qualified as positive and does not result in any false positive classifications.
However, it misses out on any new true positives resulting from encouraging agents to become
qualified. From this point on, we aim to study other classifiers (not necessarily parallel to
f∗) with the hope of encouraging other agents to become qualified.

5.2 Linear Classifier for Improvable Agents
In this subsection, we study a problem that takes as input three disjoint subsets of the agents,
Syes, Sno, and S imp, and outputs a linear classifier (if one exists) that satisfies the following
properties.

i) Classifies agent i such that xinit
i ∈ Syes as positive.

ii) Classifies agent i such that xinit
i ∈ Sno as negative.

iii) Encourages agent i such that xinit
i ∈ S imp to improve and become truly qualified, i.e.,

xtrue
i ∈ Q, and classifies i as positive.

The main result of the section is solving this problem in polynomial time. When Syes is
the set of initially qualified agents, Sno is the set of unqualified and unimprovable, and S imp

is the set of improvable agents, this problem determines whether there exists a linear classifier
that classifies Syes and Sno accurately and makes all the improvable agents qualified.

To solve this problem, we divide it into subproblems as following: Does there exist a
linear classifier with movement direction in dimension j that satisfies properties i, ii, and iii?
If the answer is “yes” for some dimension j, then the answer to the main problem is “yes”. If
the answer is “no” for all 1 ≤ j ≤ d, no linear classifier satisfying the three properties exists.

Note that if S imp is nonempty, in order to satisfy property iii, dimension j must be an
improvement dimension. Therefore, we study the following problem.

▶ Problem 1. Does there exist a dim-j improving classifier (a linear classifier encouraging
improvement in dimension j) that satisfies properties i, ii, and iii?

We propose a linear program that solves Problem 1. The following definition and observations
illustrate the conditions under which a dim-j improving classifier satisfies each property for
agent i.

▶ Definition 19. For a fixed improvement dimension j and classifiers f∗ : a∗x ≥ b∗ and
f : ax ≥ b, the points xi,f∗ , xi,f , xi,max are defined as follows (depicted in Figure 3.):

xi,f∗ is the projection of xinit
i on the separating hyperplane of classifier f∗ along dimension

j.
xi,f is the projection of xinit

i on the separating hyperplane of classifier f along dimension
j.
xi,max is the shifted xinit

i along dimension j by 1/c[j].
More formally, for all coordinates k ̸= j, we have xi,f∗ [k] = xi,f [k] = xi,max[k] = xinit

i [k].
Also, since a∗xi,f∗ = b∗, we have xi,f∗ [j] =

(
b∗ −

∑
k ̸=j a∗[k]xinit

i [k]
)

/a∗[j]. Similarly,

since axi,f = b, we have xi,f [j] =
(

b−
∑

k ̸=j a∗[k]xinit
i [k]

)
/a[j]. Finally, xi,max[j] =

xinit
i [j] + 1/c[j].
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▶ Observation 20. A dim-j improving classifier f : ax ≥ b classifies agent i as positive
(property i) if axi,max ≥ b. It classifies agent i as negative (property ii) if axi,max < b.

▶ Observation 21. Using a dim-j improving classifier f , agent i becomes qualified and is
classified as positive (property iii) if and only if xi,f∗ [j] ≤ xi,f [j] ≤ xi,max[j]. See Figure 3.

𝒇∗
𝒇

𝒙𝒊,𝒇𝒙𝒊,𝒇∗ 𝒙𝒊,𝒎𝒂𝒙𝒙𝒊𝒊𝒏𝒊𝒕

Figure 3 Depicting xinit
i , xi,f∗ , xi,f , xi,max in Definition 19 and Observation 21. The horizontal

axis shows dimension j in the definition.

▶ Proposition 22. The following LP captures Problem 1, where the variables are a and b.
a[k]
c[k] ≤

a[j]
c[j] ∀k ̸= j (1)

b ≤ axi,max ∀xinit
i ∈ Syes (2)

axi,max < b ∀xinit
i ∈ Sno (3)

xi,f∗ [j] ≤ xi,f [j] ∀xinit
i ∈ Simp (4)

xi,f [j] ≤ xi,max[j] ∀xinit
i ∈ Simp (5)

Constraint 1 asserts that the movement direction of the classifier is along dimension j.
Constraint 2 asserts property i. Constraint 3 asserts property ii. Finally, constraints 4 and 5
assert property iii.

▶ Theorem 23. Given the sets Syes, Sno, and Simp, there is a polynomial-time algorithm
that outputs a linear classifier (if one exists) that satisfies Properties i, ii,iii, or declares
non-existence of such a classifier.

Proof. If S imp ̸= ∅, run LP 1-5 for all improvement dimensions j. If S imp = ∅, run the LP
for 1 ≤ j ≤ n. By Proposition 22, if there exist feasible solution a and b for one of these LPs,
f : ax ≥ b is a classifier satisfying properties i, ii, and iii. ◀

▶ Corollary 24. There is a polynomial-time algorithm that determines whether there exists
a linear classifier that classifies the initially qualified as positive, unqualified unimprovable
agents as negative, encourages the agents in the improvement margin to improve to become
qualified, and classifies them as positive. If such a classifier exists, it maximizes true positives
subject to no false positives.

▶ Remark 25. Theorem 5 asserts that given the initial feature vectors of agents,
xinit

1 , xinit
2 , . . . , xinit

n ∈ Rd, deciding whether there exists a classifier for which all the agents
become true positives is NP-hard. However, when limiting to linear classifiers this problem
is no longer NP-Hard. Using Theorem 23, by setting Syes to the set of initially qualified
agents, and S imp to the rest of the agents, this problem is solvable in polynomial time.
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5.3 Optimal General Classifier in Two-Dimensional Space
In this subsection, we consider the problem of maximizing true positives subject to no false
positives in a 2-dimensional space, where the horizontal dimension is improvement, and the
vertical dimension is gaming. We provide an algorithm in the linear model that given a set
of agents, returns a set of target points Pfinal ⊂ R2 that maximizes true positives subject to
no false positives. Note that unlike Algorithm 1, our algorithm in this subsection does not
take a finite set of target points P as input. For simplicity, by scaling we may assume wlog
that c = c[1] = c[2].

Overview of Algorithm 3. First, all the points xinit
i for 1 ≤ i ≤ m are sorted along the

gaming dimension in a descending order, such that xinit
n has the smallest value in the gaming

dimension. Our goal is to find designated points, x′
i, for each xinit

i . Starting with xinit
n , for

each point xinit
i , move xinit

i along the improvement dimension until it crosses the line a∗x = b∗

at xi,min (See Figure 4). Let x′
i, the designated point of xinit

i , be initially x′
i = xi,min. If

given the current set of designated points for agents n, n− 1, . . . , i, another point xinit
j for

j > i maximizes utility by moving to x′
i and becomes false positive, push x′

i upward along
the gaming dimension, until xinit

j no longer picks x′
i. When pushing x′

i along the gaming
dimension, let xi,max denote the furthest point that xinit

i can afford to reach to it. If the
final point x′

i is such that xinit
i cannot afford to move to it, i.e. x′

i[2] > xi,max[2], discard
x′

i. Otherwise, x′
i is added to Pfinal.

Note that we assume that if a point xinit
j can improve to x′

j and game to x′
i with the

same cost, it would pick the improvement option.

6∗

"",4"#

"7,4"#

"",456

Gaming	(↑) Improvement	(→)

""8

"""#"$

"7"#"$

Figure 4 In Algorithm 3, x′
i is pushed along the gaming dimension so xinit

j no longer moves to it.

▶ Theorem 26. Given initial feature vectors of agents, xinit
1 , xinit

2 , . . . , xinit
n ∈ R2, Algorithm 3

maximizes the number of true positives subject to no false positives.

Proof. Proof is deferred to Appendix B. ◀

▶ Remark 27. By Corollary 6, this problem is NP-hard when X ⊂ Rd for general (not
constant) d.
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Algorithm 3 Maximizing the number of true positives in 2-dimensions.

Input :X , f∗ : a∗x ≥ b∗

Output :Pfinal

1 Sort xi ∈ X in a descending order of xi[2];
2 for i = n, · · · , 1 do

/* Let xi,min be the projection of xi on a∗x = b∗ along the
improvement dimension */

3 xi,min =
(

b∗−a∗[2]xi[2]
a∗[1] , xi[2]

)
;

4 if xi,min[1]− xi[1] > 1/c then
/* xi cannot become true positive. */

5 continue;
6 x′

i ← xi,min;
7 for j = n, · · · , i + 1 do
8 if cost(xj , x′

j) > cost(xj , x′
i) then

9 x′
i ← (x′

i[1], x′
i[2] + cost(xj , x′

j)− cost(xj , x′
i));

10 if x′
i[2] > xi,max[2] then

/* xi cannot become true positive without another point becoming
false positive. */

11 x′
i = (x′

i[1],∞);
12 Pfinal ← Pfinal ∪ x′

i;
13 return Pfinal;
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A Missing Proofs of Section 3

Proof of Proposition 1. The size of X is n, and within the for loop each computation takes
O(1) time since the edges for each xi are already sorted. When the flag is set to 1, at least
one point in P is removed, and when the flag is 0 at the end of the inner loop, the algorithm
returns. Therefore, the outer loop is run at most |P| times while the inner loop is run n

times; resulting in a running time of O(|P|n). ◀

Proof of Theorem 2. Let A be the improving agents (agents taking blue edges) associated
with the set of criteria Pfinal. We show that having any other set Q ⊆ P as the criteria,
either causes an agent to take a red edge, or no more than |A| agents to take blue edges.
To do so, consider partitioning Q into two subsets QF and QF̄ , where QF ⊆ Pfinal and
QF̄ ⊆ P \ Pfinal.

First, we show that if QF̄ ≠ ∅, an agent takes a red edge. To prove this claim, suppose
by contradiction that QF̄ is nonempty and consider the first time the algorithm deletes
an element p ∈ QF̄ . At this stage, the set of criteria in the algorithm P ′ is a superset of
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QF̄ ∪ Pfinal. By definition, p is the lowest-weight neighbor of a gaming agent, a, in P ′. This
implies that p is also the lowest-weight neighbor of a in Q ⊆ QF̄ ∪ Pfinal ⊆ P ′, and a is a
gaming agent given the criteria set Q. This implies the claim.

Secondly, we show that among the sets of criteria with no gaming agent, Pfinal has the
highest number of improving agents. The previous claim implies that any set of criteria with
no gaming agent is a subset of Pfinal. Now, we need to show that among Q ⊆ Pfinal, Pfinal

has the largest set of improving agents. This is trivial, since by considering a subset we may
only lose on agents in A that do not have a neighbor in Q or their lowest-weight edge is red.
Therefore, any Q ⊆ Pfinal has at most |A| improving agents. ◀

Proof of Theorem 4. We show the following problem is NP-hard.

▶ Problem 2. Suppose we are given a set of n agents where xinit
1 , xinit

2 , . . . , xinit
n denote their

initial feature vectors, and a set P of potential criteria also called target points in the linear
model. Find a subset Pfinal ⊆ P that maximizes the number of true positives subject to at
most k false positives.

We prove the NP-hardness by reducing the Max-k-Cover problem with equal-sized sets of
size 3 to this problem. In the Max-k-Cover problem, we are given a set E of elements ei, and
sets Sj ⊆ E , and the goal is to select at most k sets out of Sj that maximize the number of
elements they cover.

First, we show how to construct an instance of Problem 2 from an instance of the Max-k-
Cover problem. To do so, we determine the number of dimensions, initial positions of the
agents, the target points, and the movement costs. Let n be the number of elements of the
Max-k-Cover instance, we construct an n + 1-dimensional space where the first n dimensions
are improvement and the last dimension is gaming. Consider elements e1, e2, . . . , en in the
Max-k-Cover instance. For every element, we consider an agent; and for every set, we consider
an agent and a target point. For ei, the corresponding agent is at initial point xinit

i , an
n + 1-dimensional vector whose ith and n + 1st coordinates are 1 and the other coordinates
are 0. For every set Sj , we consider a target point pj and an agent with initial point xinit

n+j .
In pj , the coordinates corresponding to the elements in Sj and the n + 1st coordinate are set
to 1 and the rest of the coordinates are 0. In xinit

n+j , the coordinates corresponding to the
elements in Sj are set to 1, the n + 1st coordinate is set to −1, and the rest of the coordinates
are 0. Finally, let the movement cost in any dimension be 1/2. Note that this construction
fits into the framework of a linear model and f∗ :

∑n+1
j=1 x[j] ≥ 4 is the linear threshold

function for the truly qualified agents. All the target points pj satisfy the threshold and all
the agents are initially unqualified and do not meet the threshold.

Next, we discuss what target point each agent selects and whether they become truly
qualified (true positive) or not (false positive). Because the cost per unit of movement equals
1/2, each agent can only afford to reach to target points with distance at most 2. Agents xinit

i

for i ∈ {1, . . . , n} can only afford to reach a target point whose ith coordinate is 1 since they
are at distance 2. They are at distance 3 to any other target points. Since all dimensions
1, . . . , n are improving dimensions these agents become truly qualified when they reach such
target points. Agents xinit

i for i > n can only afford to reach pi since they have distance 2.
They have distance more than 2 to any other target points. Agents xinit

i for i > n can only
reach to pi. To do so, these agents move in a gaming dimension and do not become truly
qualified.

Finally, we show how the solutions of these two problems coincide. Consider the problem
of maximizing the true positives subject to including at most k false positives. Including
each pj in the final set of target points, Pfinal, causes exactly one agent, xinit

j , to be a false
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positive. Therefore, having at most k false positive is equivalent to including at most k

target points. Maximizing the true positives subject to at most k target points is exactly
equivalent to selecting at most k sets that maximize the elements they cover. This completes
the reduction. ◀

Proof of Theorem 5. We show the following problem is NP-hard.

▶ Problem 3. Suppose we are given a set of n agents where xinit
1 , xinit

2 , . . . , xinit
n denote their

initial feature vectors. Does there exist a set of target points Pfinal ⊆ Rd for which all the
agents become truly qualified?

We prove the NP-hardness by a reduction from the approximate version of the hitting set
with equal-sized sets problem. As an instance of the hitting set problem we are given, (F , E)
where F = {S1, · · · , Sm} is a collection of the subsets of E = {e1, e2, · · · , en}, and each set
Si has a size of 0 < s < n, and our goal is to find a minimum size set S∗ ⊆ E that intersects
every set in F . In order to show NP-hardness, we construct an instance of Problem 3 and
prove: (1) If all the agents can become true positives by reaching to a set of target points
Pfinal ⊆ Rd that the mechanism designer selects, then there exists a hitting set of size at
most 2k. (2) If there exists a hitting set of size k then the mechanism designer can select a
set of target points that encourages all the agents to become true positives. Since hitting set
and set cover problems are equivalent and approximating set cover within a constant factor
is NP-hard [8], this implies that Problem 3 is NP-hard.

First, we show how to construct an instance of Problem 3 from an instance of the Hitting
Set problem. To do so, we determine the number of dimensions, initial positions of the
agents, the movement costs, and a linear threshold function for the truly qualified. Let n

be the number of elements of the Hitting Set instance, we construct an n + 1-dimensional
space where the first n dimensions are improvement and the last dimension is gaming.
Consider sets S1, S2, . . . , Sm in the Hitting Set instance. For every set Si, we consider agent
i at initial point xinit

i . In xinit
i , the jth coordinates such that ej ∈ Si is set to 1. The

rest of the first n coordinates are set to 2k and the last coordinate is 0. Also consider an
extra agent m + 1 at initial point xinit

m+1 where all the first n coordinates are 0 and the last
coordinate is 2k(n− s) + s. Note that for all the agents

∑n+1
j=1 xinit

i [j] = 2k(n− s) + s. Let
the movement cost in all the dimensions 1 ≤ j ≤ n be 1

2k and in dimension n + 1 be c such
that 1

2k(n−s)+s+1 < c < 1
2k(n−s)+s . Let f∗ :

∑n+1
j=1 x[j] ≥ 2k(n− s) + s + 2k. Therefore, all

the agents are initially unqualified and at ℓ1 distance of 2k from f∗.
Now we prove the first direction, i.e., if all the agents can become true positives by

reaching to a set of target points Pfinal ⊆ Rd that the mechanism designer selects, then there
exists a hitting set of size at most 2k. For all 1 ≤ i ≤ m + 1, let pi ∈ Pfinal denote the target
point that xinit

i moves to and becomes true positive.
It consists of the following arguments: (i) For all 1 ≤ i ≤ m + 1, agent i receives utility 0

by reaching to pi. (ii) For all 1 ≤ i ≤ m, agent m + 1 does not afford to reach to pi. (iii) If
pm+1[j] ≤ 1 for all ej ∈ Si, agent i moves to pm+1 and becomes a false positive. Therefore
if all agents improve, for each 1 ≤ i ≤ m, there exists ej ∈ Si such that pm+1[j] > 1. (iv) In
order for agent m + 1 to afford to reach to target point pm+1, the number of coordinates
1 ≤ j ≤ m with value at least 1 must be at most 2k. (v) These elements constitute a hitting
set of size at most 2k.

First, we prove argument (i). Each agent 1 ≤ i ≤ m + 1, is at ℓ1 distance of 2k to f∗. To
become qualified it needs to move 2k in the improvement dimensions. Since moving for a
distance of 2k along the improvement dimensions costs a value of (2k)× ( 1

2k ) = 1, agent i

makes a utility of 0.
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Now, we move to argument (ii). Following up on the previous claim, to reach pi, agent
1 ≤ i ≤ m spends all of their movement budget in the improvement dimensions and cannot
move a positive amount in the gaming dimension n + 1. Therefore, pi[n + 1] = 0 and∑n

j=1 pi[j] = 2k(n− s) + s + 2k. In order for agent m + 1 to reach such a target point, it
needs to move a total of 2k(n− s) + s + 2k > 2k in the improvement dimensions, which costs
more than 1 and it cannot afford.

Next, we prove argument (iii). Since xinit
m+1 has an ℓ1 distance of 2k from f∗ and

costs exactly a value of 1 to reach there, it can only afford to move along the improvement
dimensions. Therefore, pm+1[n+1] ≤ 2k(n−s)+s. Additionally, for 1 ≤ j ≤ n, pm+1[j] ≤ 2k;
otherwise, agent m + 1 cannot afford to reach to pm+1. Suppose pm+1[j] ≤ 1 for all ej ∈ Si.
Using this assumption, for agent i to reach pm+1 it only needs to pay cost of movement
in dimension n + 1, moving 2k(n− s) + s units and paying c per unit of movement. Since
(2k(n− s) + s)× c < 1, agent i makes a strictly positive utility. Therefore agent i prefers
pm+1 over any other target point that makes it true positive which by argument (i) achieves
utility 0.

Argument (iv) is straight-forward. To achieve non-negative utility each agent can afford
to move at most 2k units along the improvement dimensions. Therefore, for the target point
pm+1, the number of coordinates 1 ≤ j ≤ n with value at least 1 must be at most 2k.

Argument (v) is a direct implication of the two previous arguments. By argument (iii),
for each 1 ≤ i ≤ m there is an element ej ∈ Si such that pm+1[j] > 1. By argument (iv), the
number of coordinates j ≤ n such that pm+1[j] > 1 is at most 2k since otherwise agent m + 1
cannot afford to reach to pm+1. Therefore, elements ej such that pm+1[j] > 1 constitute a
hitting set of size at most 2k.

Now, we prove the reverse direction: if there exists a hitting set S∗ of size k, the mechanism
designer can select a set of target points that encourages all the agents to become true
positives. To do so, we construct a set of target points Pfinal = {p1, . . . , pm+1} that makes
every agent to become true positive. For each agent i, 1 ≤ i ≤ m, put a target point pi

whose first coordinate is 2k more than xinit
i . For agent m + 1, put a target point pm+1 whose

coordinates j where ej ∈ S∗ are set to 2 and the remaining agree with xinit
m+1. Each target

point xinit
i is set such that

∑n+1
j=1 xinit

i [j] = 2k(n− s) + s + 2k. In order to show that every
agent is able to improve, we argue that: (i) For all 1 ≤ i ≤ m, agent i can afford to move to
pi. Additionally, if agent i moves to any of the target points pj where 1 ≤ j ≤ m, it becomes
true positive. (ii) For all 1 ≤ i ≤ m, agent i cannot reach to pm+1. (iii) Agent m + 1 moves
to pm+1 and becomes true positive.

First, we prove argument (i): Agent i is at a distance of 2k from pi. It can afford to
reach to pi by paying a cost of (2k)× ( 1

2k ) = 1 and become true positive. In addition, if it
moves to any of the other target points pj where 1 ≤ j ≤ m, since it has only moved along
the improvement dimensions, it would become true positive.

Next, we prove argument (ii): We know that for each Si, there exists an element
ej ∈ Si such that pm+1[j] = 2. As a result, the ℓ1 distance of xinit

i and pm+1 is at least
(2k(n− s) + s + 1)× c > 1. Therefore, for each 1 ≤ i ≤ m, xinit

i cannot afford to reach to
pm+1.

Finally, we prove argument (iii): First, we argue that agent m + 1 cannot afford to reach
to any of the target points pi where 1 ≤ i ≤ m. For each target point pi where 1 ≤ i ≤ m,
pi[n + 1] = 0 and

∑n
j=1 pi[j] = 2k(n− s) + s + 2k. In order for agent m + 1 to reach such a

target point, it needs to move a total of 2k(n− s) + s + 2k > 2k units in the improvement
dimensions, which costs more than 1 and it cannot afford. In addition, agent m + 1 can
afford to move to pm+1, and by reaching there it becomes true positive.
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As a result of the above arguments, given a hitting set of size k, the mechanism designer
can select a set of target points that encourages all the agents to become true positives.

Combining the above two directions, shows that the problem of selecting a set of target
points for which all the agents become truly qualified is NP-hard. ◀

B Proof of Theorem 26

In order to prove Theorem 26, we need to first show that the following observation and
lemma hold.

▶ Observation 28. Line a∗x = b∗ has a negative slope, i.e., each feature is defined so that
larger is better. Therefore, after the points in X are sorted, if an agent xinit

j where j < i

reaches to any point x′
i ∈ [xi,min, xi,max], then xinit

j becomes true positive. On the other
hand, for j > i, if xinit

j moves to any point x′
i ∈ [xi,min, xi,max], then xj becomes false

positive.

▶ Lemma 29. Consider a point p such that p[1] ≥ xi,min[1], and another point q ∈
[xi,min, xi,max]. Suppose cost(xinit

i , p) = cost(xinit
i , q). Then, for any j > i, it is the case

that cost(xinit
j , p) ≤ cost(xinit

j , q).

Proof. Initially, if p[2] < xinit
i [2], p is replaced with (p[1], xinit

i [2]). By doing so, cost(xinit
j , p)

would not decrease. Hence, without loss of generality, we can assume p[2] ≥ xinit
i [2].

First, we show that cost(xinit
j , p) ≤ cost(xinit

j , xi,min) + cost(xi,min, p), where the inequal-
ity holds when xi,min[1] < xinit

j [1] ≤ p[1].
cost(xinit

j , xi,min) + cost(xi,min, p)

= max

{
xi,min[1] − xinit

j [1], 0
}

+
(

xi,min[2] − xinit
j [2]

)
+

(
p[1] − xi,min[1]

)
+

(
p[2] − xi,min[2]

)
= max

{
xi,min[1] − xinit

j [1], 0
}

+
(

p[1] − xi,min[1]
)

+
(

p[2] − xinit
j [2]

)
If xinit

j [1] ≤ xi,min[1], the last equation above gets equal to
(

p[1]−xinit
j [1]

)
+

(
p[2]−xinit

j [2]
)

=
cost(xinit

j , p). Otherwise, xinit
j [1] > xi,min[1] and the last equation above gets equal to(

p[1]− xi,min[1]
)

+
(

p[2]− xinit
j [2]

)
>

(
p[1]− xinit

j [1]
)

+
(

p[2]− xinit
j [2]

)
= cost(xinit

j , p).
In any case, cost(xinit

j , p) ≤ cost(xinit
j , xi,min) + cost(xi,min, p).

Next we argue that cost(xi,min, p) = cost(xi,min, q). First, since p[1] ≥ xi,min[1]
and p[2] ≥ xi,min[2], then cost(xi, p) = cost(xi, xi,min) + cost(xi,min, p). Similarly,
cost(xi, q) = cost(xi, xi,min) + cost(xi,min, q). Since cost(xi, p) = cost(xi, q), it is the
case that cost(xi,min, p) = cost(xi,min, q).

Therefore,

cost(xinit
j , p) ≤ cost(xinit

j , xi,min) + cost(xi,min, p)
≤ cost(xinit

j , xi,min) + cost(xi,min, q)

= max
{

xi,min[1]− xinit
j [1], 0

}
+ max

{
xi,min[2]− xinit

j [2], 0
}

+

max
{

q[1]− xi,min[1], 0
}

+ max
{

q[2]− xi,min[2], 0
}

= max
{

xi,min[1]− xinit
j [1], 0

}
+

(
xi,min[2]− xinit

j [2]
)

+
(

q[2]− xi,min[2]
)

= max
{

xi,min[1]− xinit
j [1], 0

}
+

(
q[2]− xinit

j [2]
)

= max
{

q[1]− xinit
j [1], 0

}
+

(
q[2]− xinit

j [2]
)

= cost(xinit
j , q) ◀
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Proof of Theorem 26. Suppose not. Let xOPT
1 , . . . , xOPT

n be an optimal solution that agrees
with x′

1, . . . , x′
n on as large a suffix as possible, and let i be the largest index such that

xOPT
i ̸= x′

i (so xOPT
j = x′

j for all j > i).
First, note that i ̸= n. This is because x′

n = xn,min, which is the cheapest point that
agent n can reach to become a true positive; moreover, any other point moving to x′

n is a
true improvement. So, replacing xOPT

n with x′
n only helps.

Next, we claim that even if i < n, replacing xOPT
i with x′

i can only improve the optimal
solution. First, if cost(xinit

i , xOPT
i ) ≥ cost(xinit

i , x′
i) then replacing xOPT

i with x′
i only helps

by the same argument as above and the fact that x′
i was chosen so that no agent j > i

manipulates to it; here we are using the fact that the suffixes of the two solutions agree. On
the other hand, suppose that cost(xinit

i , xOPT
i ) < cost(xinit

i , x′
i) and cost(xinit

i , xOPT
i ) ≤ 1/c.

Since xinit
i cannot become a false positive by moving to xOPT

i , this means that xOPT
i [1] ≥

xi,min[1]. There exists a point q ∈ [xi,min, xi,max] such that cost(xinit
i , xOPT

i ) = cost(xinit
i , q),

which implies that cost(xinit
i , q) < cost(xinit

i , x′
i). The reason that q was not selected as

x′
i is that there exists an agent xinit

j where xinit
j moves to q and becomes false positive.

By Observation 28, j > i. Hence, cost(xinit
j , q) < cost(xinit

j , x′
j) and cost(xinit

j , q) ≤ 1/c.
By Lemma 29, cost(xinit

j , xOPT
i ) ≤ cost(xinit

j , q), so cost(xinit
j , xOPT

i ) < cost(xinit
j , x′

j) and
cost(xinit

j , xOPT
i ) ≤ 1/c. Hence, xinit

j is closer to xOPT
i compared to x′

j = xOPT
j and so agent

j would become a false positive under OPT, which contradicts the definition of OPT. So,
this second case cannot occur.

Therefore, Algorithm 3 maximizes the number of true positives subject to having no false
positives. ◀
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Abstract
We design fair sponsored search auctions that achieve a near-optimal tradeoff between fairness and
quality. Our work builds upon the model and auction design of Chawla and Jagadeesan [5], who
considered the special case of a single slot. We consider sponsored search settings with multiple slots
and the standard model of click through rates that are multiplicatively separable into an advertiser-
specific component and a slot-specific component. When similar users have similar advertiser-specific
click through rates, our auctions achieve the same near-optimal tradeoff between fairness and quality
as in [5]. When similar users can have different advertiser-specific preferences, we show that a
preference-based fairness guarantee holds. Finally, we provide a computationally efficient algorithm
for computing payments for our auctions as well as those in previous work, resolving another open
direction from [5].
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1 Introduction

We study the design of ad auctions under a fairness constraint. Fairness in the context of
sponsored content has received considerable attention in recent years. It has been observed, for
example, that ads on platforms such as Facebook and Google disproportionately target certain
demographics, discriminating across users on the basis of race and gender. Furthermore,
standard auction formats such as highest-bids-win can lead to discrimination even when
the input to these algorithms, namely bids, CTRs, and relevance scores are themselves
non-discriminatory.

[4] initiated the study of optimal auction design under the constraint that the auction
does not add any unfairness beyond what is already present in bids, and proposed a class of
proportional allocation algorithms as a solution that achieves fairness while also providing
an approximation to the optimal social welfare. In a followup work, [5] designed a class of
inverse proportional allocation algorithms and showed that this class of mechanisms achieves
an optimal tradeoff between social welfare and fairness. Both of these works focused on the
simple case of a single item auction and left open the problem of designing a fair and efficient
multi-slot position auction.

In this paper we extend the design of fair auctions from the single item setting to
arbitrary position auction settings. We show that both the proportional allocation and
inverse proportional allocation algorithms can be adapted to the setting of a position auction
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while inheriting their single-unit fairness properties as well as their approximation to social
welfare. As in [4, 5] our auctions provide fair solutions when the advertisers’ bids are
themselves non-discriminatory. Auctions for multi-slot settings must take into account both
the advertisers’ preferences over users as captured by per-click values, as well as the users’
preferences over advertisers as captured by click through rates. We consider two different
models for formalizing fairness in these settings. In the first, we consider differences of
allocation across users that are close both in terms of the values advertisers assign to them
as well as in terms of their own click through rates; we require that such users receive similar
allocations. In the second setting, we consider pairs of users that are similarly qualified as
per advertisers’ values, but have different preferences (i.e. CTRs). In this case, while the
users may receive different allocations, we require that allocations are suitably aligned with
users’ preferences. We elaborate on the details of these models below. Finally, we address
another open question in [4, 5] and show how to efficiently compute supporting prices for
both proportional and inverse proportional allocation.

Formalizing fairness across users

Consider two users Alice and Bob who are similar in most respects but differ in a sensitive
demographic such as gender or race. Individual fairness then posits that Alice and Bob
should see similar ad allocations. For example, it would be unfair to show more employment
ads to Bob and more online retail ads to Alice. One potential source of unfairness in ad
allocations is the use of discriminatory targeting by advertisers. However, empirical studies
as well as theoretical analysis shows that unfairness in allocations can persist even in the
absence of discriminatory targeting. The culprit is allocation algorithms that turn minor
differences in advertisers’ bids into large swings in allocation. Suppose, for example, that an
employment agency places a slightly higher value on Bob than on Alice whereas an online
retail store places a slightly higher value on Alice because of minor differences in the users’
profiles. Then the highest-bid-wins auction would show entirely different ads to the two
users.

To combat this problem, [5] formalize the notion of fairness in auctions as a “value
stability” constraint. Informally speaking, value stability requires that whenever two users
receive multiplicatively similar values from all advertisers (such as Alice and Bob in the
example above) they must receive close allocations (as measured in terms of the ℓ∞ distance
between the respective probability distributions over the ad displayed). Previous work shows
that while optimal auctions do not satisfy value stability, there are simple auction formats
that do. In the Proportional Allocation (PA) mechanism, allocations are proportional to
(some increasing function of) the advertisers’ reported values. In the Inverse Proportional
Allocation (IPA) mechanism, the unallocated amounts, i.e., one minus the probability of
allocation, are inversely proportional to (some increasing function of) the advertisers’ reported
values. In both mechanisms, the allocation is a sufficiently smooth function of the advertisers’
values and therefore satisfies some form of value stability. We mostly focus on the IPA
mechanism in this paper as it provides better tradeoffs between fairness and welfare.

Multi-slot extensions

As a simple extension of the single slot setting, consider a setting with k slots, where each ad
and each slot are equally likely to be clicked by the user, so the relative placement of ads
in slots does not matter. In this case, one straightforward way to to extend the single-slot
allocations is to simply multiply them by k; if this provides a valid allocation, the fairness and
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welfare guarantees follow immediately from the single-slot case. The problem is that some
ads may receive a total allocation greater than 1 and simply capping allocations at 1 breaks
the fairness guarantee. We propose a different extension of the IPA. As in the single slot case,
we ensure that the unallocated amounts to advertisers are inversely proportional to (some
function of) the reported values, subject to the total allocation equaling k. The fairness a.k.a.
value stability of this extension follows easily from the single-slot special case. We further
show that the social welfare approximation of multi-slot IPA matches its approximation for
the single-item case by characterizing worst case instances for the approximation factor.

While the above discussion provides a complete story for the case of a multi-unit auction,
in the case of online advertising, we also need to take click through rates into account.
Throughout this paper, we assume that click through rates are multiplicatively separable
into ad-specific and slot-specific components. In other words, the click through rate of an
ad i placed in slot j is given by αi × βj for some parameters α and β specific to each user
that are known to the platform/auctioneer. We further assume that all users weakly prefer
earlier slots to later slots. Under these assumptions, we present an extension of the IPA to
the ad auction setting that exactly maintains the social welfare guarantees of their single-
and multi-unit counterparts. In particular, the social welfare approximation is independent
of the number of slots.

Fairness in the context of click through rates

is tricky to define, however. As before, we may assume that if two users are similarly qualified
for all ads but differ in their sensitive attributes, then the two users receive multiplicatively
similar per-click values from all advertisers. However, click through rates capture the users’
own preferences and similar users may not have similar click through rates. What sort of
fairness guarantees can we then provide?

We first show that differences in slot-specific CTRs do not impact fairness guarantees.1
In particular, two users with similar values and similar ad-specific CTRs α receive allocations
that are close in ℓ∞ distance. In particular, the probability of assigning any particular slot
to any particular ad is additively close for the two users. In fact, this additive closeness holds
also for the probability that any particular ad is assigned to slot j or better for any j.

We then consider settings with similarly qualified users that have arbitrarily different ad-
specific and slot-specific CTRs. Observe that in order to achieve any reasonable guarantee for
social welfare, our allocation algorithms must take ad-specific CTRs into account. As a result,
it is impossible to provide a value-stability guarantee in this setting while also providing an
approximation to social welfare. Nevertheless, we show that a form of preference-aligned
fairness holds. Specifically, let Alice and Bob be two users with multiplicatively similar values
and let α and α′ denote their ad-specific CTR vectors. Then we show that although the two
users’ allocations can be quite far from each other, Alice receives a higher allocation than
Bob for precisely the ads that she is more likely to click on, and vice versa. Formally, if we
sort the advertisers in decreasing order of the ratio αi/α′

i, then for every i, the probability
that Alice gets to see an ad with index ≤ i is at least as large as Bob’s probability of seeing
the same set of ads.

1 In fact, the allocations produced by our algorithms do not depend on the slot-specific CTRs, although
the payments made by advertisers necessarily must.
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Computing payments

We conclude our study with a discussion of payments. It is easy to observe that both
generalized IPA and generalized PA have monotone allocation rules in the advertisers’
reported values. However, computing the supporting prices is not straightforward and was
left open in previous work. Let xi(vi) denote the net allocation (expected probability of click)
to advertiser i for a particular user, when the advertiser reports a per-click value of vi. We
show that xi(vi) is a piecewise rational function with polynomially many pieces and that
it is possible to compute the functional form of each piece in polynomial time. Computing
payments using Myerson’s lemma then boils down to computing polynomially many integrals
over rational functions.

Organization of the paper

We present our extension of the IPA in Section 3 and prove its social welfare and fairness
guarantees for the setting of similarly qualified users with similar preferences. In Section 4 we
discuss fairness for users that are similarly qualified but have different preferences. Section 5
presents our algorithm for computing payments. We extend our results to the PA in Section 6.
Most proofs are deferred to the appendix or removed due to space limitations. 2

Related Work
Journalism and empirical work have revealed the myriad ways in which existing ad auction
systems lead to unfairness and discrimination [2, 10, 11, 12, 14]. One approach to addressing
these issues develops advertiser strategies for bidding in existing auction formats while
ensuring statistical parity between groups [9, 15].

More related to our approach is theoretical work on designing auctions and, more generally,
algorithms that guarantee fairness properties. These fairness properties typically differ in two
dimensions: 1) whether they apply to individuals or only to groups as a whole, and 2) whether
they enforce fairness by similarity of treatment or outcome, satisfaction of preferences (e.g.,
in the form of envy-freeness), or something bridging the two.

These notions of fairness grew out of the fair classification literature, where Dwork et
al. [6] were the first to propose an individual fairness notion requiring agents who are
similar under some task-specific metric to receive similar classifications. Dwork and Ilvento
investigate in [7] whether compositions of such classification algorithms that are fair in
isolation maintain their fairness properties.

Kim et al. [13] introduce individual preference-informed fairness by augmenting this
notion of individual fairness with envy-freeness, allowing the allocations of similar users to
differ in accordance with their preferences. Similarly, Zafar et al. in [18] develop notions
of preference-informed group fairness by allowing deviations from parity in treatment and
impact if the deviations are envy-free.

Our work employs and expands upon a model of individual fairness in sponsored search
first developed by [4] and based on the multi-category fairness work of [7]. An alternate
model, also based on [7], was presented by [16], albeit in a Bayesian setting. A main difference
between our work and [16] is that we study the design of auctions that achieve an optimal
tradeoff between fairness and welfare, whereas [16] analyzes the fairness and welfare of two
specific mechanisms. Another relevant work is that of [8] who study the fairness-welfare

2 For the full version, visit https://arxiv.org/abs/2204.04136.
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tradeoff in a Bayesian setting. [8] draws a connection between individual fairness in this
context and multi-item auctions with an item symmetry constraint, giving simple mechanisms
that achieve a constant-approximation to the revenue-optimal fair mechanism.

There is also some recent work on group-fair ad auctions, such as [17], which shows
that constraints on advertiser behavior which enforce group fairness notations can actually
increase the profit of the platform. In a Bayesian setting, [3] augments generalized second
price auctions with fair division schemes to achieve good social welfare guarantees while
satisfying envy-freeness properties among advertiser groups.

As far as we know, ours is the first work addressing fairness specifically in the positional
auctions setting where different users have different click through rates.

2 Models and Definitions

We consider the following stylized model for online advertising auctions. Let U be the set of
users, n the number of advertisers, and k the number of slots. We use index u for users, i
for advertisers and j for slots. At each point in time, a user u ∈ U arrives. Each advertiser
i ∈ [n] bids a per-click value vu

i on that user. This is the value the advertiser receives if the
user clicks on their ad. Let CTRu

i,j denote the click through rate of advertiser i in slot j, that
is, the probability that the user u will click on the ad i if it is placed in slot j.

A truthful auction decides which ads to display in each of the k slots. The auction receives
the vector v = (vu

1 , . . . , vu
n) as well as the click through rates CTRu

. and returns an allocation
matrix a(v) = [aij]i∈[n],j∈[k] where aij denotes the probability that ad i is displayed in slot
j.3 We omit the superscript u whenever it is clear from the context that we are discussing a
certain user.

Truthfulness

Given an allocation a(v) (where the user u is implicit), advertiser i receives a net allocation
(expected number of clicks) of

∑
j CTRu

i,jaij and a net expected value of vi ·
∑

j CTRu
i,jaij from

the allocation. To ensure truthfulness, there should exist a supporting pricing function pi(v)
for every advertiser i such that bidding truthfully maximizes the advertiser’s net expected
utility. For such a payment function to exist, it is sufficient and necessary that the allocation
probability

∑
j CTRu

i,jaij is monotone non-decreasing in the per-click value vi. All of the
mechanisms we discuss in this paper satisfy monotonicity. In Section 5 we discuss how to
compute supporting payments efficiently.

Separable click through rates

Throughout this paper we assume that the click through rates CTRu
i,j are multiplicatively

separable into an advertiser-specific component and a slot-specific component. This is a
standard model (see, for example, [1]).

▶ Definition 1 (Separable Click Through Rates). Click through rates are separable if, for every
user u, there exists a advertiser dependent vector αu = (α1, . . . , αn) and a slot dependent
vector βu = (β1, . . . , βk) in which α1, . . . , αn > 0 and 1 ≥ β1 ≥ β2 ≥ . . . ≥ βk ≥ 0 such that
CTRu

i,j = αiβj for all i ∈ [n] and j ∈ [k].

3 We require
∑

i aij = 1 for all j and
∑

j aij ≤ 1 for all i. Every matrix a(·) satisfying these matching
constraints can be expressed as a distribution over deterministic assignments of ads to slots.
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Observe that in the separable model the value an advertiser i obtains from slot j is αiβjvi.
Since the slot specific components βj are common to all advertisers, the relative values of
advertisers are given by αivi. These relative values are important in the mechanisms we
design. We call them the “effective values” of the advertisers:

▶ Definition 2 (Effective Value). The effective value of advertiser i is given by v̂i = viαi.

We call the above model of online advertising auctions with separable CTRs the Position
Auction Setting.

Prior-free design

As in previous works, the mechanisms we design and analyze in this paper are prior-free,
meaning that the allocation to a user does not depend on the distribution of users or
advertisers’ value vectors or the history of users already served. Besides the well-documented
benefits of prior-free mechanism design, in the context of fairness we get the added benefit
that fairness guarantees hold for all users that are served by the mechanism regardless of
whether or not the auctioneer’s model accounts for them.

▶ Definition 3 (Scale-Free). A mechanism is scale-free if it has the property that multiplying
the input values by a uniform constant does not change the resulting allocation.

2.1 Social Welfare

The goal of this work, as in [5, 4], is to achieve a tradeoff between fairness and social welfare
for the mechanisms we design. The social welfare of an allocation a(v) is defined to be the
sum of all of the advertisers’ net expected values:

SW(a(v)) =
∑

i∈[n],j∈[k]
viCTRu

i,jai,j.

We compare this social welfare to the maximum achievable by any feasible allocation.
When click through rates are separable, the maximum social welfare is achieved by the
allocation that assigns advertisers to slots in decreasing order of v̂i, the effective values. We
call the allocation sorted by effective values the Unfair-Opt and also use the same term to
denote the social welfare of this allocation.

Formally, if π is the order of advertisers where v̂π1 ≥ v̂π2 ≥ . . . ≥ v̂πn , then the (unfair)
optimal social welfare is given by:

Unfair-Opt(v, α, β) =
k∑

j=1
απjvπjβj.

Since it is generally impossible to achieve optimal social welfare and fairness simultaneously,
we look for mechanisms that guarantee our fairness notions while giving a good approximation
to the optimal social welfare.

▶ Definition 4 (Social Welfare Approximation). We say mechanism A(·) achieves an
η-approximation to social welfare for η ≤ 1, if for all instances (v, α, β), we have
SW(A(v, α, β)) ≥ η ·Unfair-Opt(v, α, β).
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2.2 Fairness
[5] formalized fairness in ad auctions as a value stability condition based on the notion of
individual fairness. Individual fairness requires that the auction assign similar allocations to
similar users. [5] defined similarity between two users on the basis of closeness between the
value vectors assigned to them by the advertisers. Informally speaking, if two users receive
similar values from all advertisers, then they should also receive similar allocations. In order
for the definition to be scale-free with respect to values, similarity between values is defined
in multiplicative terms.

In the context of a single item auction, allocations are probability vectors. Similarity in
allocations is therefore defined based on some notion of distance between probability vectors.
[5] formalized similarity in terms of the ℓ∞ distance between the probability vectors whereas
[4] used total variation or ℓ1 distance. We state the value stability definition from [5] below.

▶ Definition 5 (Definition 2.1 from [5], Value Stability). An allocation mechanism a(·) is
value stable with respect to function f : [1,∞]→ [0, 1] if the following condition is satisfied
for every pair of value vectors v and v′:

|ai(v) – ai(v′)| ≤ f(λ) for all i ∈ [n], where λ = max
i∈[n]

(
max

{
vi
v′

i
,

v′
i

vi

})
.

In this definition, the function f, called the value stability constraint, governs the strength
of the value stability condition. We assume f to be non-decreasing, with f(0) = 0 and
f(∞) = 1. Following [5], we focus on the family of constraints fℓ(λ) = 1 – λ–2ℓ. [5] argue that
this family of stability constraints captures the entire spectrum of possible fairness conditions
in the context of allocation algorithms.

In order to extend these fairness definitions to the position auctions setting, we need to
extend the notion of closeness in allocations to multi-dimensional allocation matrices M as
well as extend the notion of closeness in values to click through rates.

Let us consider the latter issue first. A straightforward manner of extending closeness
over value vectors to the separable setting is to require that two similar users are assigned
similar values, as well as have similar click through rates. But this notion of closeness is too
restrictive. Values capture how advertisers perceive users as potential customers; whereas
click through rates capture how users perceive the relevance of ads to their needs and how
users behave in perusing ads on a search page. Two users that are similarly qualified for a
set of ads may nevertheless exhibit very different behavior in responding to ads on a search
page. Ideally the fairness guarantees an allocation algorithm provides should hinge only on
the closeness between values vi and not on the closeness between click through rates CTRi,j.
However, in order to obtain good social welfare, allocations necessarily need to depend on
the advertiser specific click through rates αi. We accordingly define closeness between users
in terms of their effective values αivi (while ignoring dissimilarity in slot specific CTRs, β).
In Section 4 we extend our fairness definitions and guarantees to settings where closeness is
defined only in terms of the values vi, ignoring dissimilarity in α and β.

Let us now consider closeness over probability matrices. We consider three notions. The
first is ℓ∞ distance, the maximum difference of allocations in any one entry (i, j) of the
corresponding matrices.

▶ Definition 6 (Value Stability for Position Auctions). An allocation mechanism A(·) is
value stable with respect to function f : [1,∞]→ [0, 1] if the following condition is satisfied
for every set of value and CTR vectors v, v′, α, α′ and β:

|Mi,j –M′
i,j| ≤ 2fℓ(λ) for all i ∈ [n], j ∈ [k] where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})
and M = A(v, α, β) and M′ = A(v′, α′, β).
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Suppose, as an example, for a particular advertiser i, user u has an allocation of
a = (.1, .1, .1, .1). Consider two possible allocation vectors for some v close to u:
a′ = (.15, .15, .15, .15) and a′′ = (.15, .05, .15, .05). In some sense, allocation a′ is much
more unfair than a′′ because in a′ the entry-wise differences from a compound while in a′′

they offset each other. Weak value stability cannot distinguish these two cases because it is
concerned only with the absolute differences. Our next definition, ordered value stability is
intended to allow a′′ but not a′.

To do this, we bound the absolute differences in the total allocation of an advertiser
across all columns, weighted by a vector hi,j. This vector represents the utility the first user
receives from seeing advertisement i in slot j. Since we assume the slots are in decreasing
order of salience, this should be weakly decreasing in j.

▶ Definition 7 (Ordered Value Stability for Position Auctions). An allocation mechanism A(·)
is ordered value stable with respect to function f : [1,∞]→ [0, 1] if the following condition
is satisfied for every set of value and CTR vectors v, v′, α, α′ and β, as well as for any
advertiser i and any decreasing vector hi with 1 ≥ hi,1 ≥ . . . ≥ hi,k ≥ 0:

|
k∑

j=1
hi,j
(

Mi,j – M′
i,j
)
| ≤ fℓ(λ) where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})
where M = A(v, α, β) and M′ = A(v′, α′, β).

The previous two definitions are concerned only with a single advertiser. In some instances,
however, there are meaningful subsets of advertisers and bounding the differences of the
allocations each advertiser individually may not be sufficient to ensure fairness overall. For
example, if there are several different ads giving information about registering to vote, the
total volume of voter registration ads a user sees is more important from a fairness perspective
than the amount they see any particular voter registration ad. Therefore, the last notion we
consider is a combination of ℓ1 and ℓ∞ distance: we consider, for any subset of advertisers,
the total variation distance between the allocations of these advertisers to one slot, and
bound the maximum over all slots of this distance.

▶ Definition 8 (Total Variation Value Stability for Position Auctions). A mechanism A(·) with
satisfies total variation value stability with respect to a function f : [1,∞] → [0, 1] if the
following condition is satisfied for every set of value and CTR vectors v, v′, α, α′ and β, as
well as every subset of advertisers S ⊆ [n] and for every column j:

|
∑
s∈S
A(v̂)s,j –

∑
s∈S
A(v̂)s,j| ≤ f(λ) where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})
and where M = A(v, α, β) and M′ = A(v′, α′, β).

3 Inverse Proportional Allocation

In this section, we present a generalization of the mechanism first introduced in [5] as
IPA to the position auction setting. We show that the generalization retains a constant
approximation to the optimal social welfare and an appropriate generalization of the value
stability condition. In Section 3.1 we describe the generalization of the mechanism from
k = 1 to general k. In Section 3.2 we show that two different value stability conditions hold
and in Section 3.3 we show that the exact same guarantee in [5] holds for the generalization
as well. Some of the proofs in this section are deferred to Appendix A.
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3.1 Generalized IPA
In [5], IPA was presented as a mechanism for the single item auction. An interpretation of this
mechanism is as follows: start with an infeasible allocation of 1 unit to each advertiser (for a
total allocation of n) and then gradually decrease the allocations until the total allocation
reaches 1. The rate of this decrease is determined by a function g of the reported values.
The IPA with parameter ℓ uses g(x) = x–ℓ. [5] also presents an algorithmic interpretation
of the mechanism. The following is the generalization of this mechanism to the position
auctionsetting.

First, as a warm-up, we generalize IPA to a special case of the position auctionsetting
where β = −→1 . Our algorithm allocates a total of k units to the advertisers, with each
advertiser receiving an allocation ai ∈ [0, 1] such that

∑
i ai = k.

We follow the same intuition as for the case of k = 1. The mechanism first allocates 1 to
each advertiser, then decreases the allocations until the total allocation reaches k rather than
1. See Appendix A for an algorithmic interpretation of this mechanism. Note that setting
k = 1 gives the exact same mechanism as in [5]. Algorithm 3 is scale free and produces
allocations that are non-decreasing in k. Furthermore, the allocation to advertiser i, namely
ai, is non-decreasing in v̂i and non-increasing in v̂–i.

We now extend the k-unit setting to the position auction setting. The resulting allocation
algorithm is called Generalized IPA. The algorithm assigns to every slot j a distribution
over advertisers given by the difference in the j-unit and j – 1-unit allocations produced by
k-unit IPA.

Feasibility

We observe that the allocation produced by the generalized IPA algorithm is feasible. That
is, there exists a distribution over matchings from advertisers to slots, for which the total
probability that advertiser i is allocated a slot is equal to M.

Algorithm 1 Generalized IPA.
Input: Vector v of non-negative advertiser bids for user u; CTRs α1, · · · , αn and
β1, · · · , βk; number of slots k; function g : R≥0 → (0,∞] with g(0) =∞ and
limx→∞ g(x) = 0;

for h ∈ [k] do
Set a(h) ← the output of the IPA k-unit algorithm on input (v, α, h, g)

end
for j ∈ [k] do

Set M·,j = a(j) – a(j–1)

end
return M

Note that the generalized IPA algorithm is scale-free and independent of β.

3.2 Fairness
We now prove the value stability of the Generalized IPA mechanism.

▶ Theorem 9. The Generalized IPA mechanism with parameter ℓ > 0 and for any number of
advertisers n is value stable with respect to any function f satisfying f(λ) ≥ fℓ(λ) = 1 – λ–2ℓ

for all λ ∈ [1,∞), as in Definition 6.
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Our proof has two parts. First, give a bound on the deviation between allocations given by
the k-unit IPA mechanism to similar users. Then, we use the bound to show that Generalized
IPA achieves value stability.

▶ Lemma 10. For the k-unit IPA mechanism with parameter ℓ run on any k and any bid
vectors v and v′ with λ = maxi∈[n]{v̂i/v̂′

i, v̂′
i/v̂i}, for all indices i, |ai(v) – ai(v′)| ≤ fℓ(λ).

Next, we show that Generalized IPA satisfies ordered value stability.

▶ Theorem 11. Generalized IPA with parameter ℓ satisfies ordered value stability with respect
to fℓ(λ). That is, for every set of value and CTR vectors v, v′, α, α′ and β, as well as for
any advertiser i and any decreasing vector h with 1 ≥ h1 ≥ . . . ≥ hk ≥ 0:

|
k∑

j=1
hj
(

Mi,j – M′
i,j
)
| ≤ fℓ(λ) where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})
where M = A(v, α, β) and M′ = A(v′, α′, β).

3.3 Social Welfare
We now show that Generalized IPA achieves a good approximation to the optimal social
welfare Unfair-Opt.

▶ Theorem 12. The IPA algorithm for the separable case, Algorithm 1, run with parameter
ℓ > 0 and any number of advertisers n achieves a

(
1 – ℓℓ

(1+ℓ)ℓ+1

)
-approximation the social

welfare of the unfair optimum.

To do so, we first show an approximation result for the special case of β⃗ = 1, the k–unit
algorithm.

▶ Lemma 13. The IPA algorithm for the k–unit case, Algorithm 3, run with parameter
ℓ and any number of advertisers n achieves a

(
1 – ℓℓ

(1+ℓ)ℓ+1

)
-approximation to the social

welfare of the unfair optimum.

We use Lemma 13 and extend definition of Generalized IPA allocation vector based on
k–unit vectors to show Theorem 12. The proof is deferred to Appendix A. The approximation
factor is 3

4 at ℓ = 1 and as ℓ→∞, the approximation factor goes to 1.
▶ Remark 14. The approximation factor in Lemma 13 is tight for IPA mechanism.

Proof. Consider the following example. Fix a user u and let the bidding vector of the
advertisers be:

(1, . . . , 1︸ ︷︷ ︸
k

,
n–k︷ ︸︸ ︷

ϵ, . . . , ϵ)

where 1 > ϵ =
–5k+

√
25k2–16(n–k) k2

n–k –4–4(n–k)
8(n–k > 0. Let ℓ = 1 and n > 2k. We get:

SW(Alg) = k(1 – n – k
(n – k)ϵ–1 + k

) +(n – k)ϵ(1 – (n – k) ϵ–1

(n – k)ϵ–1 + k
), Unfair-Opt = k.

For the aforementioned value of ϵ, we will have SW(Alg)
Unfair-Opt = 3

4 . Note that this example fits
the maxima point we found in the proof of Lemma 13. ◀
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4 Fairness for users with different preferences

So far we have assumed that similar users are similar in all aspects – the values advertisers
assign to them as well as the rates at which the users click on different ads. However, these
two sets of parameters are asymmetric. Values capture advertisers’ preferences over users
whereas CTRs capture users’ preferences over advertisers. We will now distinguish between
similarity in qualification (i.e. values) from similarity in user preferences (i.e. CTR).

A myopic viewpoint might suggest that two users that are similarly qualified should be
treated similarly by the auction no matter their preferences. However, this is fundamentally
at odds with the objective of maximizing the social welfare4 a.k.a. the collective value of
the advertisers, as the latter are contingent upon clicks. Consequently, the outcome of the
auction cannot be completely independent of user preferences and we look towards a notion
of fairness that is appropriately preference aligned.

To motivate our definitions, consider the following example. We have two users Alice and
Bob, two advertisers A and B, and a single slot to display an ad. The users look identical to
the advertisers: A places a value of $1 on a click from either user and B places a value of
$10 from either click. However the users behave differently when they view ads. Bob clicks
both ads with certainty. Alice clicks A’s ad with certainty but B’s ad with probability only
1%. The platform should clearly display ad A for Alice and ad B for Bob. Although these
outcomes are different, both users are happy: Bob is essentially indifferent between A and B,
while Alice greatly prefers A. In this case, any differences in allocation are aligned with user
preferences.

Can we always expect this to be the case? Formally, consider a single slot auction with
n advertisers, and two users with identical value vectors v = v′. Let a and a′ denote their
respective allocation vectors. Can we ensure that any allocation mass that is moved between
advertisers in a′ relative to a is moved from low CTR advertisers to high CTR advertisers?

Unfortunately, we cannot ensure this property while also maintaining a reasonable
approximation for social welfare. To see this, consider the above example with Alice and Bob
once again and suppose that Bob’s CTR for advertiser B changes to 20%. In order to obtain
a good social welfare, the auction must continue to display ad B for Bob. However, now Bob
gets to see much more of ad B and much less of ad A than Alice even though he greatly
prefers ad A to ad B. The key observation here is that the allocation mass in B’s allocation
shifts to an advertiser with high relative CTR, when measured relative to the CTRs of Alice.

Motivated by this example, we propose the following new preference-aligned definition
of fairness for identically valued users. Underlying this definition is a relative ordering of
advertisers for two users u and v with advertiser specific CTR vectors αu = (αu

1 , · · · , αu
n) and

αv = (αv
1 , · · · , αv

n). We will assume that advertisers are ordered in (weakly) decreasing order
of the ratio αv

i /αu
i , and require that allocation mass for user v is shifted from advertisers

that appear later in the ordering to those that appear earlier in the ordering.

▶ Definition 15 (Value Stability for Identically-Valued Users with Heterogeneous Preferences).
An allocation mechanism A(·) is value-stable for identical users with heterogeneous preferences
if for every pair of users with identical value vectors v; CTR vectors α, α′, β, and β ′; any
ordering over advertisers that is weakly decreasing in α/α′; and for every advertiser i ∈ [n]
and slot j ∈ [k]:

i∑
t=1

j∑
s=1

Mt,s ≥
i∑

t=1

j∑
s=1

M′
t,s, where M = A(v, α, β) and M′ = A(v, α′, β ′).

4 Social welfare is a misnomer in this context, as it does not take into account the benefit or value users
derive from viewing the ad.
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Similar users

The above definition extends in a straightforward manner to pairs of users that are similarly
rather than identically qualified, and again have different preferences over advertisers as
expressed through CTRs. Once again we require that allocation mass shifts from advertisers
with low relative CTR to those with higher relative CTR, but we allow for additive errors in
allocation that grow with the dissimilarity in the users’ values.

▶ Definition 16 (Value Stability for Similarly-Valued Users with Heterogeneous Preferences).
An allocation mechanism A(·) is value-stable for users with heterogeneous preferences with
respect to function fℓ : [1,∞]→ [0, 1] if for every pair of users with value vectors v and v′;
CTR vectors α, α′, β, and β ′; any ordering over advertisers that is weakly decreasing in
α/α′; and for every advertiser i ∈ [n] and slot j ∈ [k]:

i∑
t=1

j∑
s=1

Mt,s ≥
i∑

t=1

j∑
s=1

M′
t,s – ifℓ(λ)

where M = A(v, α, β), M′ = A(v′, α′, β ′) and λ = max
i∈[n]

{
max

{
vi
v′

i
, v′

i
vi

}}
.

Comparing Definition 15 and Definition 16, note that if v = v′ then λ = 1 and, as discussed
in [5], a proper f function has the property of f(1) = 0. Therefore, Definition 15 is exactly
Definition 16 in the special case of v = v′.

4.1 Fairness of IPA and PA for heterogeneous users
We show that both the Generalized IPA and Generalized PA mechanisms satisfy Definition 15
and more generally Definition 16.

To begin, we show that any mechanism for the k-unit case satisfying certain mild
conditions also satisfies Definition 15. Both k-unit IPA and k-unit PA satisfy these conditions
and hence are value-stable for identically qualified users with heterogeneous preferences.

▶ Lemma 17. Let a(v) be a scale-free k-unit allocation algorithm such that ai(v) is weakly
increasing in vi. Suppose further that for all t ̸= i, ai(v) is weakly decreasing in vt. Then
a(v) satisfies Definition 15.

Proof. Fix i and scale α′ so that αi = α′
i. Since the advertisers are sorted, we now know

that for all t < i, αt ≥ α′
t and for all t > i, αt ≤ α′

t.
We proceed by two cases and then use a transitivity argument to show the theorem holds

in general.

Consider the case where for all t ≤ i, αt = α′
t. Then αv

{
= α′v for all t ≤ i
≤ α′v for all t > i

.

Therefore, since the allocation at is weakly decreasing in vs for all s ̸= t, we have that for
all t ≤ i, a(αv) ≥ a(α′v). Hence,

∑i
t=1 at(αv) ≥

∑i
t=1 at(α′v), as desired.

Now, consider the case where for all t ≥ i, αt = α′
t. Then αv

{
≥ α′v for all t < i
= α′v for all t ≥ i

.

Therefore, since the allocation at is weakly decreasing in vs for all s ̸= t, we have
that for all t > i, a(αv) ≤ a(α′v) and hence

∑n
t=i+1 at(αv) ≤

∑n
t=i+1 at(α′v). But∑i

t=1 at(αv) = k–
∑n

t=i+1 at(αv) and likewise
∑i

t=1 at(α′v) = k–
∑n

t=i+1 at(α′v). Therefore,∑n
t=i+1 at(αv) ≤

∑n
t=i+1 at(α′v) implies

∑i
t=1 at(αv) ≥

∑i
t=1 at(α′v), as desired.
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We now argue that the theorem holds in general. Let α′′
t :=

{
αt if t ≤ i
α′

t if t > i
. By the first

case,
∑i

t=1 at(αv) ≥
∑i

t=1 at(α′′v), and by the second case
∑i

t=1 at(α′′v) ≥
∑i

t=1 at(α′v).
Hence,

∑i
t=1 at(αv) ≥

∑i
t=1 at(α′v), as desired. ◀

▶ Corollary 18. The k-unit IPA and k-unit PA mechanisms satisfy Definition 15.

Because our generalized mechanisms are defined in terms of telescoping differences of the
k-unit allocations, Theorem 19 follows directly from Corollary 18.

▶ Theorem 19. The Generalized IPA and Generalized PA mechanisms satisfy Definition 15.

Next, we show Generalized IPA and Generalized PA are value-stable for similarly-valued
users with heterogeneous preferences. The only thing changing from Definition 15 to
Definition 16 is that we need to keep track of small changes between the two allocations,
which leads to the following theorem. The proof is deferred to Appendix B.

▶ Theorem 20. The Generalized IPA and Generalized PA mechanisms A(·) with parameter
ℓ are value-stable for similarly-valued users with heterogeneous preferences.

5 Computing payments

In this section we develop an algorithm for computing supporting payments for the generalized
IPA and generalized PA allocation rules. Our main observation is that the allocation functions
of IPA and PA are piecewise rational functions with polynomially many pieces where each
piece can be computed in polynomial time. With these pieces in hand, and using Myerson’s
lemma, computing payments amounts to computing polynomially many integrals of rational
functions.

We focus on the generalized IPA; the argument for generalized PA is similar. Formally,
for a fixed and implicit user u, and a fixed and implicit advertiser i, let xi(v) denote the net
allocation to the advertiser, a.k.a. the expected number of clicks the advertiser receives from
the user. If the user is assigned allocation M = A(v, α, β) then we have xi(v) =

∑
j Mi,jαiβj.

Let a(j) denote the cumulative allocation to the user in the first j slots as in the description
of Algorithm 2 and recall that Mi,j = a(j)

i – a(j–1)
i . Accordingly we get:

xi(v) = αi
∑

j
a(j)

i (βj – βj+1). (1)

In other words, xi(v) is a linear combination of the functions a(j)
i (v).

We will now argue that for all i, j, the function a(j)
i (v), as defined in Algorithm 1, is

piecewise rational in vi. Consider the following equivalent formulation of Algorithm 1. Given
the values v1, · · · , vn, ad-specific CTRs α1, α2, · · · , αn, and decreasing function g, we find a
parameter t such that∑

i′
min(1, t · g(αi′vi′)) = n – j. (2)

The allocation a(j)
i is then given by 1 – min(1, t · g(αivi)).

Suppose without loss of generality that i receives a non-zero allocation at value vi (other-
wise a(j)

i is trivially piecewise rational at values ≤ vi). We can then rewrite Equation (2) as:

t · g(αivi) +
∑
i′ ̸=i

min(1, t · g(αi′vi′)) = n – j. (3)

FORC 2022



4:14 Individually-Fair Auctions for Multi-Slot Sponsored Search

Now, the expression
∑

i′ ̸=i min(1, tg(αi′vi′)) is independent of vi and piecewise linear in
t with at most n pieces. Given the values v–i and CTRs α–i, we can efficiently compute the
linear pieces in this function. Substituting any particular linear piece with t in the range
[t1, t2] in Equation (3) then gives us an equation of the following form with appropriate
parameters x and y:

t · g(αivi) + xt = y

leading to the solution

a(j)
i (vi) = 1 – g(αivi) ·

y
g(αivi) + x for vi ∈

[
1
αi

g–1
(

y – xt2
t2

)
, 1

αi
g–1
(

y – xt1
t1

)]
.

Observe that the RHS in the above equation is a rational function as the function g in the
definition of IPA is also rational.

Summarizing, we first compute the piecewise rational form of the function a(j)
i (vi) for all

slots j. Each of these functions has at most n pieces. We then use Equation (1) to express
xi(vi) as a piecewise rational function with at most nk pieces. Finally, we use Myerson’s
lemma and compute per-impression payments as

pi(vi) = vixi(vi) –
∫ vi

z=0
xi(z) dz.

6 Proportional Allocation

In this section, we present a generalization of the mechanism first introduced in [4] as
Proportional Allocation (PA) to the position auction setting. We show that the generalization
retains the same approximation ratio to the optimal social welfare and an appropriate
generalization of the total variation value stability condition. This is a stronger fairness
guarantee than that of Generalized IPA, but comes at the cost of a weaker approximation to
the optimal social welfare. For a detailed discussion of the trade-offs between the single-unit
versions these methods, see [5]. Some of the proofs in this section are deferred to Appendix C.

6.1 Generalized PA
In contrast to IPA, PA can be thought of as initially assigning each advertiser an allocation
of 0 and then increasing the allocations in proportion to (some function of) the bid amounts
until the total allocation reaches 1. [4] analyzes this mechanism for the single unit case.
In particular, they prove value stability with respect to the total variation distance on the
allocations, rather than with respect to the ℓ∞ distance as with IPA. However, in exchange,
the social welfare approximation achieved by PA degrades as the number of advertisers
increases.

Just like the previous section, we start with a warm-up case in which we consider a
special case of position auctionwhere β = −→1 . For this case, we will attempt to allocate
proportionally, assigning k · g(vi)∑

t g(vt) to each bidder i. If this allocation is more than 1 for any
advertiser, we cap their allocation at 1 and divide the additional mass proportionally among
the remaining advertisers. See Algorithm 4 in Appendix C for an algorithmic interpretation
of this mechanism. Note that the function g in this mechanism is different than the one in
Section 3, as it is a continuous, super-additive and increasing function.

The extension of this algorithm to the position auctioncase is similar to the extension we
saw in Section 3 for IPA, and works as follows:
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Algorithm 2 Generalized PA.
Input: Vector v of non-negative advertiser bids for user u; CTRs α1, · · · , αn and
β1, · · · , βk; number of slots k; function g : R≥0 → [0,∞] with g a continuous,
super-additive, increasing function and g(0) = 0;

for h ∈ [k] do
Set p(h) ← the output of the PA k-unit algorithm on input (v, α, h, g)

end
for j ∈ [k] do

Set P·,j = p(j) – p(j–1)

end
return P

Observe that Generalized PA is scale-free, independent of β, and produces feasible
allocations.

6.2 Fairness
First, we prove the fairness guarantees of our mechanism. We begin by showing the total
variation value stability of PA, which as we’ve discussed is the main advantage of PA over IPA.

▶ Theorem 21. The Generalized PA mechanism with parameter g(x) = xℓ satisfies Defini-
tion 8 Total Variation Value Stability for Position Auctions with respect to fℓ(λ). That is,
for all pairs of effective value vectors v̂, v̂′, subsets of advertisers S ⊆ [n], and slots j,

|
∑
s∈S

Ps,j(v̂) –
∑
s∈S

Ps,j(v̂′)| ≤ 2fℓ(λ).

The proof of Theorem 21 uses the following key lemma, which shows a similar property
holds for k-unit PA mechanism.

▶ Lemma 22. The k-unit PA mechanism with parameter g(x) = xℓ satisfies the property
that, for all pairs of effective value vectors v̂, v̂′ and subsets of advertisers S ⊆ [n],

|
∑
s∈S

as(v̂) –
∑
s∈S

as(v̂′)| ≤ λℓ – 1
λℓ + 1

≤ fℓ(λ).

We now show that Generalized PA also satisfies the same ordered value stability property
as IPA. The proof is essentially identical as the proof of Theorem 11 except in that it uses
the total variation value stability of PA instead the value stability of IPA. For the full proof,
see Appendix C.

▶ Theorem 23. Generalized PA with parameter ℓ satisfies ordered value stability with respect
to fℓ(λ). That is, for every set of value and CTR vectors v, v′, α, α′ and β, as well as for
any advertiser i and any decreasing vector h with 1 ≥ h1 ≥ . . . ≥ hk ≥ 0:

|
k∑

j=1
hj
(

Pi,j – P′
i,j
)
| ≤ fℓ(λ) where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})

where P = A(v, α, β) and P′ = A(v′, α′, β).
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6.3 Social Welfare
Finally, we give our guarantee on the social welfare approximation ratio achieved by Gen-
eralized PA relative to Unfair-Opt. The proof relies on a lemma showing the same
approximation result for the special case of β⃗ = 1, k-unit PA.

▶ Theorem 24. The Generalized PA mechanism with parameter ℓ achieves a(
n–k

n (n – k)–1/ℓ + 1/n
)

-approximation to the optimal social welfare for any instance with n
advertisers and k slots.

▶ Lemma 25. The k-unit PA subroutine with parameter ℓ achieves a
(

n–k
n (n – k)–1/ℓ + 1/n

)
-

approximation to the optimal social welfare for any instance with n advertisers and k slots.

References
1 Gagan Aggarwal, Ashish Goel, and Rajeev Motwani. Truthful auctions for pricing

search keywords. In Proceedings of the 7th ACM Conference on Electronic Commerce,
EC ’06, pages 1–7, New York, NY, USA, 2006. Association for Computing Machinery.
doi:10.1145/1134707.1134708.

2 Muhammad Ali, Piotr Sapiezynski, Miranda Bogen, Aleksandra Korolova, Alan Mislove,
and Aaron Rieke. Discrimination through optimization: How facebook’s ad delivery can
lead to biased outcomes. Proc. ACM Hum.-Comput. Interact., 3(CSCW), November 2019.
doi:10.1145/3359301.

3 Andrea Celli, Riccardo Colini-Baldeschi, and Stefano Leonardi. Learning fair equilibria in
sponsored search auctions. arXiv preprint, 2021. arXiv:2107.08271.

4 Shuchi Chawla, Christina Ilvento, and Meena Jagadeesan. Multi-category fairness in sponsored
search auctions. In Proceedings of the 2020 Conference on Fairness, Accountability, and
Transparency, FAT* ’20, pages 348–358, New York, NY, USA, 2020. Association for Computing
Machinery.

5 Shuchi Chawla and Meena Jagadeesan. Individual fairness in advertising auctions through
inverse proportionality. In 13th Innovations in Theoretical Computer Science Conference
(ITCS 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

6 Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness
through awareness. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, ITCS ’12, pages 214–226, New York, NY, USA, 2012. Association for Computing
Machinery. doi:10.1145/2090236.2090255.

7 Cynthia Dwork and Christina Ilvento. Fairness under composition. In 10th Innovations
in Theoretical Computer Science Conference, ITCS 2019, January 10-12, 2019, San Diego,
California, USA, pages 33:1–33:20, 2019.

8 Meryem Essaidi and S Matthew Weinberg. On symmetries in multi-dimensional mechanism
design. In International Conference on Web and Internet Economics, pages 59–75. Springer,
2021.

9 Lodewijk Gelauff, Ashish Goel, Kamesh Munagala, and Sravya Yandamuri. Advertising for
demographically fair outcomes. arXiv preprint, 2020. arXiv:2006.03983.

10 Julia Angwin and Terry Perris. Facebook lets advertisers exclude users by race, 2016. URL:
https://www.propublica.org/article/facebook-lets-advertisers-exclude-users-by-
race.

11 Julia Angwin, Noam Scheiber, and Ariana Tobin. Facebook job ads raise concerns
about age discrimination, 2017. URL: https://www.nytimes.com/2017/12/20/business/
facebook-job-ads.html.

12 Katie Benner, Glenn Thrush, and Mike Isaac. Facebook engages in housing discrimination with
its ad practices, u.s. says, 2019. URL: https://www.nytimes.com/2019/03/28/us/politics/
facebook-housing-discrimination.html.

https://doi.org/10.1145/1134707.1134708
https://doi.org/10.1145/3359301
http://arxiv.org/abs/2107.08271
https://doi.org/10.1145/2090236.2090255
http://arxiv.org/abs/2006.03983
https://www.propublica.org/article/facebook-lets-advertisers-exclude-users-by-race
https://www.propublica.org/article/facebook-lets-advertisers-exclude-users-by-race
https://www.nytimes.com/2017/12/20/business/facebook-job-ads.html
https://www.nytimes.com/2017/12/20/business/facebook-job-ads.html
https://www.nytimes.com/2019/03/28/us/politics/facebook-housing-discrimination.html
https://www.nytimes.com/2019/03/28/us/politics/facebook-housing-discrimination.html


S. Chawla, R. Rezvan, and N. Sauerberg 4:17

13 Michael P. Kim, Aleksandra Korolova, Guy N. Rothblum, and Gal Yona. Preference-informed
fairness. In Proceedings of the 11th Innovations in Theoretical Computer Science, ITCS 2020,
Seattle, Washington, USA, January 12-14, 2020, page to appear, 2020.

14 A Lambrecht and C E Tucker. Algorithmic bias? an empirical study of apparent gender-
based discrimination in the display of stem career ads. Management Science, 65(7):2966–
2981, July 2019. © 2019 INFORMS This manuscript has been accepted for publication in
Management Science. The version of record can be found at doi:10.1287/mnsc.2018.3093.
URL: https://lbsresearch.london.edu/id/eprint/967/.

15 Milad Nasr and Michael Carl Tschantz. Bidding strategies with gender nondiscrimination
constraints for online ad auctions. In Proceedings of the 2020 Conference on Fairness,
Accountability, and Transparency, FAT* ’20, pages 337–347, New York, NY, USA, 2020.
Association for Computing Machinery. doi:10.1145/3351095.3375783.

16 Alison Watts. Fairness and efficiency in online advertising mechanisms. Games, 12(2):36, 2021.
17 Di Yuan, Manmohan Aseri, and Tridas Mukhopadhyay. Is fair advertising good for platforms?

Available at SSRN 3913739, 2021.
18 Muhammad Bilal Zafar, Isabel Valera, Manuel Rodriguez, Krishna Gummadi, and Adrian

Weller. From parity to preference-based notions of fairness in classification. Advances in
Neural Information Processing Systems, 30, 2017.

A Deferred Proofs from Section 3

Below is the algorithmic description of position auctionin the case of β⃗ = 1:

Algorithm 3 k-unit IPA.
Input: Vector v of non-negative advertiser bids for user u; ad-specific CTRs
α1, · · · , αn; number of slots k; function g : R≥0 → (0,∞] with g(0) =∞ and
limx→∞ g(x) = 0;

Initialization: Determine effective values, v̂i = viαi for all i;
WLOG assume v̂1 ≥ . . . ≥ v̂n;
if k = 0 then

return a(v) = −→0
end
if v̂1 ≤ 0 then

Set ai = k
n for all i ∈ [n], return a(v);

end
Set s← max{i ∈ [n] : v̂i > 0};
while (s – k)g(v̂s) ≥

∑s
i=1 g(v̂i) do

s← s – 1;
end
For i > s: set ai = 0;
For i ≤ s set ai = 1 – (s – k) g(v̂i)∑s

t=1 g(v̂t) ;
return a(v)

▶ Theorem 11. Generalized IPA with parameter ℓ satisfies ordered value stability with
respect to fℓ(λ). That is, for every set of value and CTR vectors v, v′, α, α′ and β, as well
as for any advertiser i and any decreasing vector h with 1 ≥ h1 ≥ . . . ≥ hk ≥ 0:

|
k∑
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hj
(

Mi,j – M′
i,j
)
| ≤ fℓ(λ) where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})
where M = A(v, α, β) and M′ = A(v′, α′, β).
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Proof. Fix some vectors v, v′, α, α′, and β, and the corresponding allocation matrices M and
M′. Consider some advertiser i. We begin by using the definition Generalized IPA and then
rearranging terms. Note that we define hk+1 := 0 for notational simplicity.

|
k∑

j=1
hj
(

Mi,j – M′
i,j
)
| = |

k∑
j=1

hj
(

(a(j)
i – a(j–1)

i ) – (a(j)
i′ – a(j–1)

i′ )
)
|

= |
k∑

j=1

(
hj(a

(j)
i – a(j–1)

i ) – hj(a
(j)
i′ – a(j–1)

i′ )
)
|

= |
k∑

j=1

(
a(j)

i – a(j–1)
i′

) (
hj – hj+1

)
|.

Now, observe that because h1 ≤ 1 and the coefficients (hj – hj+1) telescope, the sum of
these coefficients is at most 1. Since the expression is a weighted sum over columns of the
differences in allocation at that column, the expression is bounded by the maximum difference
in any column. But because Generalized IPA satisfies value stability (by Lemma 10), this is
bounded by fℓ(λ), as desired.

|
k∑

j=1
hj
(

Mi,j – M′
i,j
)
| = |

k∑
j=1

(
a(j)

i – a(j–1)
i′

) (
hj – hj+1

)
| = |max

j

(
a(j)

i – a(j–1)
i′

)
| ≤ fℓ(λ) ◀

▶ Theorem 12. The IPA algorithm for the separable case, Algorithm 1, run with parameter
ℓ > 0 and any number of advertisers n achieves a

(
1 – ℓℓ

(1+ℓ)ℓ+1

)
-approximation the social

welfare of the unfair optimum.

Proof. Suppose the k-unit IPA mechanism attains an η approximation to the optimal
social welfare in the k-unit setting. Then the Generalized IPA mechanism attains the same
approximation factor η in the position auctionwhen run with the k-unit IPAmechanism as a
subroutine. In order to prove this, we consider the social welfare attained by the Generalized
IPA mechanism. Since βk+1 = 0 and a(0)

i = 0⃗,

SW(Alg) =
n∑

i=1

k∑
j=1

αiviβjMij =
n∑

i=1

k∑
j=1

v̂iβj
[
a(j)

i – a(j–1)
i

]
=

n∑
i=1

k∑
j=1

v̂i(βj – βj+1)a(j)
i .

Since for all j ∈ [k],
∑

i v̂ia
(j)
i ≥ η(v̂1 + · · ·+ v̂j), then:

SW(Alg) =
k∑

j=1
(βj – βj+1)

( n∑
i=1

v̂ia
(j)
i

)
≥ η

k∑
j=1

(βj – βj+1)
(
v̂1 + · · ·+ v̂j

)
= η

k∑
j=1

v̂jβj = η Unfair-Opt.

Finally, we know by Lemma 13 that the k-unit IPA mechanism is an η =
(

1 – ℓℓ

(1+ℓ)ℓ+1

)
-

approx -imation to the optimal k-unit social welfare. Replacing η by
(

1 – ℓℓ

(1+ℓ)ℓ+1

)
concludes

the proof. ◀
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B Deferred Proofs from Section 4

▶ Theorem 20. The Generalized IPA and Generalized PA mechanisms A(·) with parameter
ℓ are value-stable for similar users with heterogeneous preferences.

Proof. Fix users with user-dependent CTR vectors α and α′ and value vectors v and v′.
Also fix slot-dependent CTR vector β, advertiser i, and column j. Let M = A(v, α, β) and
M′ = A(v, α′, β), where at =

∑j
s=1 Mt,s, and a′

t =
∑j

s=1 M′
t,s. Finally, fix a permutation π

on advertisers for which απ1
α′

π1
≥ . . . ≥ απn

α′
πn

.

Since A(·) is envy-free, we know that
∑i

s=1
∑j

t=1 Mst(αv) ≥
∑i

s=1
∑j

t=1 Mst(α′v).
Therefore, it suffices to show

∑i
s=1

∑j
t=1 Mst(α′v) ≥

∑i
s=1

∑j
t=1 Mst(α′v′) – if(λ). Consider

the difference
∑i

s=1
∑j

t=1 Mst(α′v′) –
∑i

s=1
∑j

t=1 Mst(α′v). Since
∑j

t=1 Mst(αv) = aj
s(αv),

we can simplify this to:

i∑
s=1

aj
s(α′v′) –

i∑
s=1

aj
s(α′v) ≤ |

i∑
s=1

aj
s(α′v′) –

i∑
s=1

aj
s(α′v)| = |

i∑
s=1

aj
s(α′v′) – aj

s(α′v)|

≤
i∑

s=1
|aj

s(α′v′) – aj
s(α′v)| ≤

i∑
s=1

f(λ) = i ∗ f(λ).

Simply combining this with the previous inequality gives the desired result. ◀

C Deferred Proofs from Section 6

Below is the algorithmic description of position auctionin the case of β⃗ = 1:

Algorithm 4 k-unit PA.
Input: Vector v of non-negative advertiser bids for user u; ad-specific CTRs
α1, · · · , αn; number of slots k; function g : R≥0 → [0,∞] with g a continuous,
super-additive, increasing function and g(0) = 0;

Initialization: Determine effective values, WLOG assume v̂1 ≥ . . . ≥ v̂n;
if k = 0 then

return p(v) = −→0
end
if v̂1 ≤ 0 then

Set pi = k
n for all i ∈ [n], return p(v);

end
Set s← max{i ∈ [n] : v̂i > 0};
Set r = 1;
while k.g(v̂r)

s∑
t=r

g(v̂t)
≥ 1 do

pr = 1;
r← r + 1;

end
For i ≥ r: set pi = (k–r).g(v̂i)

s∑
t=r

g(v̂t)
;

return p(v);

FORC 2022
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▶ Theorem 23. Generalized PA with parameter ℓ satisfies ordered value stability with
respect to fℓ(λ). That is, for every set of value and CTR vectors v, v′, α, α′ and β, as well
as for any advertiser i and any decreasing vector h with 1 ≥ h1 ≥ . . . ≥ hk ≥ 0:

|
k∑

j=1
hj
(

Pi,j – P′
i,j
)
| ≤ fℓ(λ) where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})

where P = A(v, α, β) and P′ = A(v′, α′, β).

Proof. Fix some vectors v, v′, α, α′, and β, and the corresponding allocation matrices P and
P′. Consider some advertiser i. We begin by using the definition of Generalized PA and then
rearranging terms. Note that we define hk+1 := 0 for notational simplicity.

|
k∑

j=1
hj
(
Pi,j – Pi,j

)
| = |

k∑
j=1

hj
(

(p(j)
i (v̂) – p(j–1)

i (v̂)) – (p(j)
i (v̂′) – p(j–1)

i (v̂′))
)
|

= |
k∑

j=1

(
hj(p

(j)
i (v̂) – p(j–1)

i (v̂)) – hj(p
(j)
i (v̂′) – p(j–1)

i (v̂′))
)
|

= |
k∑

j=1

(
p(j)

i (v̂) – p(j–1)
i (v̂′)

) (
hj – hj+1

)
|.

Now, observe that because h1 ≤ 1 and the coefficients (hj – hj+1) telescope, the sum of
these coefficients is at most 1. Since the expression is a weighted sum over columns of
the differences in allocation at that column, the expression is bounded by the maximum
difference in any column. But because Generalized PA satisfies total variation value stability
(by Lemma 22), this is bounded by fℓ(λ) for all subsets of advertisers, including the singleton
i, as desired.

|
k∑

j=1
hj
(

Pi,j – P′
i,j
)
| = |

k∑
j=1

(
p(j)

i (v̂) – p(j–1)
i (v̂′)

) (
hj – hj+1

)
|

= |max
j

(
p(j)

i (v̂) – p(j–1)
i (v̂′)

)
| ≤ fℓ(λ) ◀

▶ Lemma 22. The k-unit PA mechanism with parameter g(x) = xℓ satisfies the property
that, for all pairs of effective value vectors v̂, v̂′ and subsets of advertisers S ⊆ [n],

|
∑
s∈S

as(v̂) –
∑
s∈S

as(v̂′)| ≤ λℓ – 1
λℓ + 1

≤ fℓ(λ).

Proof. Fix some pairs of effective value vectors v̂, v̂′ and a subset of advertisers S ⊆ [n].
Define E to be

∑
s∈S as(v̂) –

∑
s∈S as(v̂′) and assume without loss of generality that E ≥ 0.

We want to upper bound E by fℓ(λ).
First, we reduce the general case to that where the while loop never executes. That is,

we modify the given instance so that the while loop never executes while only increasing E
and decreasing λ. First, we can assume that i ∈ S if ai(v̂) > ai(v̂′) and i ̸∈ S if ai(v̂) < ai(v̂′),
since that those choices maximize E (and do not effect λ). We also assume that for all i,
v̂i ≥ v̂′

i and therefore λ = maxi{v̂i/v̂′
i}. If this is violated for i ∈ S, then raising v̂i to v̂′

i
cannot decrease E (it can only increase

∑
s∈S as(v̂)) and cannot increase λ. Similarly, if the

assumption violated for i ̸∈ S, then lowering v̂′
i to v̂i cannot decrease E (it can only decrease∑

s∈S as(v̂′)) and cannot increase λ.



S. Chawla, R. Rezvan, and N. Sauerberg 4:21

Now, suppose there exists some i ∈ S such that k·g(v̂i)∑n
t=s g(v̂t) > 1. Then we can reduce

v̂i so that k·g(v̂i)∑n
t=s g(v̂t) = 1 since this doesn’t change E but potentially decreases λ. Finally,

suppose there exists some i ∈ S such that k·g(v̂′
i)∑n

t=s g(v̂′
t) > 1. Then consider lowering v̂′

i so that
k·g(v̂′

i)∑n
t=s g(v̂′

t) = 1 and then scaling v̂′′ so that v̂′
i has its original value. This does not change E

and potentially decreases λ. Therefore, we’ve successfully reduced to an instance in which
the while loop never executes.

We now assume without loss of generality that the while loop never executes. The
remaining argument follows closely from [4].

Define α :=
∑

s∈S g(v̂s) and β :=
∑

s̸∈S g(v̂s), and define α′ and β ′ analogously. Note
now that the while loop never executes, we have that for all i, ai(v̂) = g(v̂i)/

∑n
i=1 g(v̂s), and

similarly for ai(v̂′). Therefore we can write

E = α

α + β
– α′

α′ + β ′ = 1 – β

α + β
– α′

α′ + β ′ .

Let Rα := α/α′ and Rβ := β ′/β. Note that Rα ≤ g(λ) because for any s ∈ S, v̂s/v̂′
s ≤ λ

so g(v̂s)/g(v̂′
s) ≤ g(λ). Similarly, Rβ ≤ g(λ). Observe also that our expression for E can be

upper bounded by the case that these inequalities for Rα and Rβ are tight.

E ≤ 1 – α · g(λ)
α · g(λ) + β ′ – α

α + β · g(λ) = αβ ′(g(λ)2 – 1)
(α + β ′g(λ))(g(λ)α + β ′)

= αβ ′(g(λ)2 – 1)
g(λ)α2 + g(λ)β ′2 + αβ ′(g(λ)2 + 1)

≤ αβ ′(g(λ)2 – 1)
2g(λ)αβ ′ + αβ ′(g(λ)2 + 1)

= g(λ)2 – 1
2g(λ) + g(λ)2 + 1

= g(λ) – 1
g(λ) + 1.

Finally, we observe that g(λ)–1
g(λ)+1 ≤ fℓ(λ), as desired:

E ≤ λℓ – 1
λℓ + 1

= 1 – 2(λℓ + 1)–1 ≤ 1 – 2(λℓ + λℓ)–1 = 1 – λ–ℓ ≤ 1 – λ–2ℓ = fℓ(λ). ◀

▶ Theorem 24. The Generalized PA mechanism with parameter ℓ achieves a(
n–k

n (n – k)–1/ℓ + 1/n
)

-approximation to the optimal social welfare for any instance with n
advertisers and k slots.

Proof. First, we consider the social welfare attained by the Generalized PA mechanism.
Since βk+1 = 0 and p(0)

i = 0⃗,

SW(Alg) =
n∑

i=1

k∑
j=1

αiviβjMij =
n∑

i=1

k∑
j=1

v̂iβj
[
p(j)

i – p(j–1)
i

]

=
n∑

i=1

k∑
j=1

v̂i(βj – βj+1)p(j)
i =

k∑
j=1

(βj – βj+1)
( n∑

i=1
v̂ip

(j)
i

)
.

FORC 2022



4:22 Individually-Fair Auctions for Multi-Slot Sponsored Search

Lemma 25 proves the approximation ratio of the k-unit PA mechanism. Observe
that this ratio is decreasing in k. Therefore, for any j,

(∑n
i=1 v̂ip

(j)
i

)
is at least an

η =
(

n–k
n (n – k)–1/ℓ + 1/n

)
fraction of Unfair-Opt. Therefore, we have

SW(Alg) =
k∑

j=1
(βj – βj+1)

( n∑
i=1

v̂ia
(j)
i

)
≥ η

k∑
j=1

(βj – βj+1)
(
v̂1 + · · ·+ v̂j

)
= η

k∑
j=1

v̂jβj = η Unfair-Opt. ◀
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Abstract
The phenomenon of adversarial examples in deep learning models has caused substantial concern over
their reliability and trustworthiness: in many instances an imperceptible perturbation can falsely flip
a neural network’s prediction. Applied research in this area has mostly focused on developing novel
adversarial attack strategies or building better defenses against such. It has repeatedly been pointed
out that adversarial robustness may be in conflict with requirements for high accuracy. In this work,
we take a more principled look at modeling the phenomenon of adversarial examples. We argue that
deciding whether a model’s label change under a small perturbation is justified, should be done in
compliance with the underlying data-generating process. Through a series of formal constructions,
systematically analyzing the relation between standard Bayes classifiers and robust-Bayes classifiers,
we make the case for adversarial robustness as a locally adaptive measure. We propose a novel
way defining such a locally adaptive robust loss, show that it has a natural empirical counterpart,
and develop resulting algorithmic guidance in form of data-informed adaptive robustness radius.
We prove that our adaptive robust data-augmentation maintains consistency of 1-nearest neighbor
classification under deterministic labels and thereby argue that robustness should not be at odds
with accuracy.
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1 Introduction

Deep learning methods have enjoyed phenomenal successes on a wide range of applications
of predictive tasks in the past decade. However, it has been demonstrated that, while
these networks are often highly accurate at making predictions on natural data inputs, the
performance can degrade drastically when inputs are slightly manipulated [32]. Flipping
a few pixels in an image, a perturbation that is not perceivable by humans, can lead to
misclassification by the trained network. These unexpected, and seemingly erratic behaviors of
deep learning models have caused substantial concern over their reliability and trustworthiness.
Particularly so, if these models are to be employed in applications where vulnerability to
manipulations may have fatal consequences (for example if learning based vision technologies
are to be employed in self-driving cars).
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Recent years have thus seen a surge in studies aiming to enhance robustness of deep
learning [10, 18, 1]. Practical approaches often either smooth out a trained predictor [12, 28],
or augment the training data with perturbations of natural inputs as a way to promote
robustness [36, 41]. In adversarial training this is done as part of the optimization [20, 24].
On the other hand, studies on the theory of adversarial robustness have often focused on
exploring unexpected gaps in statistical and computational complexity when learning under
an adversarial loss as opposed to the standard binary classification loss [26, 40, 25]. Numerous
studies, both theoretical and practical, have pointed out that increasing robustness often
comes at a cost of lower predictive accuracy [15, 19, 27, 5].

Naturally, an important component of analyzing and exploring a real world phenomenon,
such as adversarial perturbations, is formalizing it appropriately. In supervised machine
learning, the learning objective is typically encoded in form of a loss function. In this work, we
take a principled look at the common definition of adversarial loss. Both theoretical studies
and practical heuristics developed in the context of promoting robustness to adversarial
attacks are mostly aimed at a fixed notion of smoothness with a fixed degree of perturbations
that the model should be made robust to. In contrast, we formally argue how the notion
of what is an admissible adversarial perturbation should be informed by the data. That is,
robustness requirements should be aligned with the underlying data-generating process. We
show how such an alignment inherently requires a locally adaptive notion of robustness, that
is, a locally adaptive robust loss.

More specifically, we start by analyzing carefully how the previously established trade-offs
between accuracy and robustness depend on a chosen (fixed) robustness parameter and the
probability mass close to the decision boundary of the true underlying data-generating process.
We introduce a new notion to quantify this trade-off, the margin rate of the distribution. We
prove that, given the margin rate of a distribution, a robustness parameter can be chosen so
that the two predictors that are optimal with respect to accuracy and optimal with respect
to robustness loss respectively, have similar loss values (in terms of both classification and
robust loss). However, we also show that choosing the robustness parameter slightly too
large, can result in those two optimal predictors be very different functions. They may assign
different labels on half of the space (with probability 0.5 over the data-generating process).
This means that, if the robustness parameter is chosen even slightly too large, any learning
method that converges to the best possible robust loss as training data set size increases, may
converge to a predictor with classification error 0.5 !

This motivates our proposition of redefining the robustness requirement. We argue that
robustness is inherently a local property and that learned predictors should thus satisfy a local
notion of robustness that is in line with the underlying data-generating process. While such a
requirement can not readily be phrased as a loss function (that operates on a pair of predictor
and input/output data instance), we derive a natural empirical version of this requirement.
This allows for evaluating the novel adaptive robustness requirement on datasets. Further, we
show how our notion of locally adaptive robustness yields a natural way of determining the
robustness radius for data-augmentation. This could be used either for data-augmentation
as a preprocessig step or for advesarial training.

Finally, we prove that using this form of data-augmentation as a pre-processing step
maintains consistency of 1-nearest neighbor classification on tasks without stochasticity
in the labels. That is, a nearest neighbor classifier on an adaptively augmented dataset
converges to the optimal classification accuracy, while also satisfying the requirements of the
adaptive robust loss. This formally shows how our novel framework resolves the conflicts
with accuracy that are inherent in any non-adaptive notions of robustness.
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1.1 Overview and summary of main contributions
We introduce our formal setup, notation for loss functions, optimal predictors and notions of
statistical consistency in Section 3. In Section 4, we start with a few simple constructions,
exploring how robustness (and potential divergence of 0/1-optimal and robust-optimal
classifiers) relates to margins and separability of the underlying data-generating distribution.
Our main contributions are presented in Sections 5 and 6 and can be summarized as follows:

Margin rate and margin canonical Bayes predictor. In Section 5.1, we introduce the notion
of a margin canonical Bayes predictor and the margin-rate (Definition 4). The margin
canonical Bayes predictor is a classifier that is optimal both in terms of accuracy and in
terms of margins (in a precise sense that we define in this section). The margin rate can be
viewed as a relaxed measure of distributional class separateness. It is relaxed in the sense
that is does not enforce a hard margin between different classes (which is an unrealistic
requirement) and instead even allows for overlap between the two class-conditional marginals
(resulting in stochastic labels). We then relate the margin rate to suitable choices of r. We
prove that, given the margin rate, we can choose the robustness parameter so that optimal
predictors for the binary loss are also close to optimal with respect to the robust loss and
vice versa (Theorem 5). Further, we show that if the labels are deterministic (no overlap
between the two class-conditional marginals), then these are also close as functions. However,
we also show that the non-stochasticity of the labels is necessary for the functions to be
guaranteed to be close and that choosing r slightly too large can lead to large differences in
the optimal predictors (Observations 6 and 7). Subsequently, in Subsection 5.2 we argue
that, if the distribution has inherently different scales of robustness in different parts of the
space, then even under deterministic labels choosing r suitable according to Theorem 5 does
not lead to what is intuitively desired of a robust predictor.

Redefining robustness and resolving the conflicts with accuracy. The analysis outlined
above leads to our proposition to re-define robustness as a locally adaptive requirement. This
is presented in Section 6. There, we introduce the adaptive robust loss, define its empirical
version, and develop guidance for adaptive robust data augmentation. Our proposed definition
implies that the optimal predictors with respect to the binary loss and the adaptive robust
loss coincide. Further, we prove that our adaptive robust data-augmentation maintains
consistency of 1-nearest neighbor classification (NN) under deterministic labels. This shows
that the undesirable effect of robustness being “at odds” with accuracy is an artifact of a
specific, though common, way of defining robustness. It can be avoided be letting robustness
requirements be informed by the underlying data-generating process.

Illustrative visualizations. Finally, in Appendix Section A we present a set of illustrative
experiments for the proposed data-augmentation method and adaptive robust loss in combin-
ation with training a ReLU neural network. The synthetic datasets were designed so as to
highlight the occurrence of adversarial examples when the data sits on a lower dimensional
manifold, a scenario that is considered one of the sources adversarial vulnerability [22]. Our
experiments visually make the case for the adaptive robust loss in situations where the label
classes have different degrees of separation in different parts of the space.

A note on generalizations. For concreteness, we focus our presentation in this work on
binary classification and work with the Euclidian metric. However, our definitions and result
straightforwardly generalize to multi-class classification and to other metrics (with suitably
chosen covering numbers replacing the Euclidian dimension in our result on consistency
under adaptive robust data-augmentation).
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2 Related Work

Enhancing robustness to adversarial attacks has received an enormous amount of research
attention in recent years, in particular in terms of practical advancements [10, 18, 1, 9, 21].
We will focus our discussion of prior work on studies relating to theoretical aspects of learning
under a robust loss.

Numerous recent theoretical studies focus on the parametric setup and analyze how
introducing a robustness requirement may affect statistical convergence of the induced loss
classes [13, 29, 26, 40, 2], whereas others have focused on computational implications [4, 25].
In particular, that there can be arbitrarily large gaps between the sample complexity of
learning a hypothesis with respect to classification versus roust loss [13, 26]. Several studies
have derived convergence bounds for classification under adversarial manipulations for fixed
hypothesis classes [16, 3, 8].

Most related to our work are recent studies that also discuss possible options (and their
implications) for phrasing a robust loss [15, 19], and in particular studies that pointed out
and analyzes the trade-off between accuracy and robustness [17, 33, 39]. In particular, a
recent study systematically explored the relationship between (a notion of local) Lipschitzness
of a nearest neighbor predictor and its robustness. Further closely related to our work are
recent studies that analyze and derive properties of optimal predictors under the robust
loss and their relation to nearest neighbor predictors [35, 6, 38]. The latter work studies
non-parametric learning for robust classification and proposes a method of data-preprocessing,
and, similar to our result for 1-Nearest Neighbor prediction, proves implied consistency.
However, the pre-processing in that study consists of pruning rather than augmenting the
data. However, robustness in these prior works is considered with respect to a fixed robustness
parameter. In this work, we carefully argue that adversarial robustness should instead be
phrased as a locally adaptive requirement. Recently, a similar argument has independently
been made [7]. Ideas of a locally adaptive robustness parameter have also appeared in some
practical developments on refining adversarial training [5, 14]. Our work can be viewed
as providing a formal foundation to those ideas, cleanly relating the concept of adaptive
robustness to the distribution that models the data-generating process, as well as formally
showing how a fixed robustness parameter easily yields inconsistencies between the robust
and the standard classification loss.

Finally, we note that relationship between non-parametric methods and local adaptivity
is well established and our work builds on this. In particular, it has been shown shown that
nearest neighbor methods’ convergence can be understood and quantified in terms of local
smoothness properties of the underlying data-generating process for regression [23] as well as
for classification tasks [11].

3 Formal Setup

3.1 Basic notions of statistical learning
We employ a standard setup of statistical learning theory for classification. We let X ⊆ Rd

denote the domain and Y (mostly Y = {0, 1}) a (binary) label space. We assume that
data is generated by some distribution P over X × Y and let PX denote the marginal of P

over X . We let supp(PX ) denote the support of this marginal. Further, we use notation
ηP (x) = P(x,y)∼P [y = 1 | x] to denote the regression function of P . We say that the
distribution has deterministic labels if ηP (x) ∈ {0, 1} for all x ∈ X . A classifier or hypothesis
is a function h : X → Y. We let F denote the set of all Borel measurable functions from X
to Y (or all functions in case of a countable domain). A hypothesis class is a subset of F ,
often denoted by H ⊆ F .
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The quality of prediction of a hypothesis on an input/output pair (x, y) is measured by a
loss function ℓ : (F × X × Y) → R. For classification problems, the quality of prediction is
typically measured with the binary or classification loss: ℓ0/1(h, x, y) = 1 [h(x) ̸= y], where
1 [α] denotes the indicator function for predicate α.

We denote the expected loss (or true loss) of a hypothesis h with respect to the distribution
P and loss function ℓ by LP (h) = E(x,y)∼P [ℓ(h, x, y)]. In particular, we will denote the true
binary loss by L0/1

P (h). The Bayes classifier is a (in general not unique) classifier which has
the minimal true loss with regard to P . We denote the Bayes classifier with respect to the
binary loss as hB

P and it’s loss, the Bayes risk by LB
P = L0/1

P (hB
P )

The empirical loss of a hypothesis h with respect to loss function ℓ and a sample
S = ((x1, y1), . . . , (xn, yn)) is defined as LS(h) = 1

n

∑n
i=1 ℓ(h, xi, yi).

Further, we use the following notation to denote the set of domain points on which two
classifiers differ: h∆h′ := {x ∈ X | h(x) ̸= h′(x)}.

A learner A is a function that maps a finite sequence of labeled instances S = ((x1, y1), . . .

. . . , (xn, yn)) to a hypothesis h = A(S). The following notion of a consistent learner captures
a basic desirable property: as the learner sees larger and larger samples from the data-
generating distribution, the loss of the learner’s output should converge to the Bayes risk.

▶ Definition 1 (Consistency). We say that a learner A is consistent with respect to a set of
distributions P if, for every P ∈ P, every ϵ, δ > 0 we have there is a sample-size n(P, ϵ, δ)
such that, for all n ≥ n(P, ϵ, δ), we have PS∼P n

[
LP (A(S)) ≤ LB

P + ϵ
]

≥ 1 − δ.

3.2 (Adversarially) robust loss
We consider the most commonly used notion of an (adversarial) robust loss [26, 37]. For a
point x ∈ X , we let Br(x) denote the (open) ball of radius r around x. We then define the
robust loss as: ℓr(h, x, y) = 1 [∃z ∈ Br : h(z) ̸= y] and we let Lr

P (h) denote the expected
robust loss of h.

As has been done in prior work, we decompose the robust loss into its error and margin
components [42, 2]: We have ℓr(h, x, y) = 1 if and only if h makes a mistake on x with
respect to label y, or, there is an r-close instance z ∈ Br(x) that h labels different than x,
that is, x is r-close to h’s decision boundary.

The first condition holds when (x, y) falls into the error region, err[h] = {(x, y) ∈
X × Y ) | h(x) ̸= y}. The second condition holds when x lies in the margin area of h. We
define the margin area of h, as the subset mar[h, r] ⊆ X defined by

mar[h, r] = {x ∈ X | ∃z ∈ Br(x) : h(x) ̸= h(z)}

We can define notions of a Bayes classifier, and consistency of a learner A with respect
to the robust loss analogously to these notions for the binary loss. We will denote the
robust-Bayes classifier by hrB

P and the robust-Bayes risk by LrB
P = Lr

P (hrB
P ). We will often

simply refer to the Bayes predictors as the 0/1-optimal or the r-robust optimal predictors.
We note that these optimal predictors are not unique, in particular in the case that the
support of the marginal PX does not cover the full space. For example, if the data-generating
distribution is supported on a lower dimensional manifold, then a 0/1-optimal predictor is
only uniquely determined on that manifold (and even there only with exception of 0-mass
subsets and not in areas with ηP (x) = 0.5). Similarly, r-robust optimality can be fulfilled by
various predictors if the data-generating distribution is strongly separable (see Definition 4).
Explicit forms (analogous to the 0/1-Bayes being a threshold of the regression function) of
the r-robust optimal predictor have been derived in the literature ([38]).
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4 Robustness and Margins

In this section, as a warm-up, we investigate implications of the existence of a low robust-loss
classifier and differences between low binary and low robust loss. We show that the optimal
classifiers with respect to these losses can differ significantly, implying that optimizing for one
can strongly hurt performance with respect to the other. We then analyze the relationship
between the existence of robust classifiers and margin (or separability) properties of the
underlying data-generating process. We argue that, while separability implies the existence
of robust classifiers with respect to some robustness parameter r, using a fixed robustness
parameter can contravene the intention of deriving predictors that are both accurate and as
robust as possible.

4.1 Binary optimal versus robust optimal
It has been shown before that the definition of the r-robust loss implies that, even in situations
where the 0/1-Bayes risk is 0, that is where the labels are deterministic, no classifier may
have 0 robust loss [15, 33, 42, 19]: The existence of a classifier h with Lr

P (h) = 0 implies
that the distribution is separable, that is, PX is supported on r-separated regions of X and
these regions are label-homogeneous. Namely, Lr

P (h) = 0 implies L0/1
P (h) = 0, which means

that the labeling of P is deterministic. In addition, we must have P (mar[h, r]) = 0, which
implies that any point x in the support of PX with h(x) = 1 has distance at least 2r from
any point in that support with h(x) = 0. In this case, this function h = hB

P = hrB
P is optimal

with respect to both losses.
In this subsection we inspect the potential tension between robustness and accuracy with

an emphasis on the role that stochasticity of the labels play in this phenomenon. We start
by observing that even if the labels are not necessarily deterministic, the optimal robust loss
is strictly larger than the optimal 0/1-loss if and only if a Bayes classifier does not have a
strict margin.

▶ Theorem 2. We have LrB
P = LB

P if and only if there exists a 0/1-optimal classifier hB
P

with PX (mar[hB
P , r]) = 0.

Proof. We first assume that PX (mar[h, r]) > 0 for all classifiers h that are 0/1-optimal.
We fix one of them and denote it by hB

P . Then Lr
P (hB

P ) > LP (hB
P ) = LB

P , since on every
point in its margin area, hB

P suffers binary loss at most 0.5, while it suffers robust loss
1. Outside the margin area the loss contributions are identical for both loss functions.
Furthermore, for any classifier h that is not 0/1-optimal, we have Lr

P (h) ≥ L0/1
P (h) > LB

P .
Thus, independently of whether an optimal robust classifier hrB

P is also 0/1-optimal or not,
we have LrB

P = Lr
P (hrB

P ) > LB
P .

As for the other direction, if there is a 0/1-optimal classifier hB
P with PX (mar[hB

P , r]) = 0,
then it follows immediately, that this classifier is also optimal with respect to the robust loss
and its robust loss is identical to its binary loss. Thus LrB

P = LB
P . ◀

Moreover, we will now see, that if the data-generating distribution does not have a margin
in the above strong sense, then the optimal classifiers with respect to 0/1-loss and r-robust
loss can differ significantly as functions. The construction for the below result has (in very
similar form) appeared in earlier work [42].

▶ Theorem 3. Let r > 0 be a robustness parameter. There exist distributions P such that any
predictors hB

P and hrB
P that are optimal with respect to 0/1-loss and r-robust loss respectively,

satisfy PX [hB
P ∆ hrB

P ] = 1
2 , where hB

P ∆ hrB
P = {x ∈ X | hB

P (x) ̸= hrB
P (x)} is the set of

domain points on which the two optimal classifiers differ.
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Proof. We consider a distribution P , where PX is supported (uniformly) on just two points
x0 and x1 at distance less than r from each other. x0 is always generated with label 0 and
x1 is always generated with label 1. Clearly, the 0/1-optimal classifier hB

P labels accordingly:
hB

P (x0) = 0 and hB
P (x1) = 1, resulting in L0/1

P (hB
P ) = 0. However, this classifier has largest

possible r-robust loss: Lr
P (hB

P ) = 1, since both points are at distance less than r from a
point that hB

P labels differently. On the other hand, any constant function hc has robust loss
Lr

P (hc) = 1/2, since it’s margin has weight 0 and it mislabels with probability 1/2. This is
optimal with respect to the r-robust loss. Thus, we showed that PX [hB

P ∆ hrB
P ] = 1

2 . ◀

The example in the above proof shows that binary and robust optimal predictors can differ in
half the area of the space. In particular, when the robustness radius r is not chosen suitably,
optimizing for one can be strongly sub-optimal (incurring regret of 1/2) for the other. This
means that any learning method, will be inconsistent with respect to at least one of the two
losses in question.

Of course, in the above example, the robustness parameter and distribution are constructed
to not match suitably.

5 Relaxations of separability and the margin canonical Bayes

Strict separability between the label classes, as considered in the previous section, is a very
strong assumption. We extend and refine the arguments in the previous section by relaxing
this requirement and showing that, one can choose the robustness parameter r in dependence
on “how separable” (in a precise sense that we introduce next) the distribution P is and on
how close we would like the optimal predictors to be.

5.1 Choosing a robustness parameter
Note that, for a fixed predictor h, we have PX (mar[h, r]) ≥ PX (mar[h, r′]) if r ≥ r′. Thus,
we can define a function

ϕh
P (r) = PX (mar[h, r])

which will monotonically decrease to 0 as r goes to 0 for any predictor h. If h is a Bayes
predictor, then the rate at which ϕh

P (r) converges to 0 as r → 0, can be viewed as a measure of
“how separable” the data- generating process is, that is, how fast the density of the marginal
PX vanishes towards the boundary between the two label classes. However, since the Bayes
predictor is generally not uniquely defined, we need to specify which Bayes predictor should
be employed to serve as a measure of the separability of the distribution. For simplicity,
we will assume here that we have ηP (x) ̸= 0.5 for the regression function with probability
1. Then we define a margin-canonical Bayes predictor as follows: We let X 0 ⊆ supp(PX )
denote the closure of the part of the space, where ηP (x) < 0.5 and let X 1 ⊆ supp(PX ) the
closure of the part of the space where ηP (x) > 0.5. That is, under the above assumption,
the support of the marginal PX is X 0 ∪ X 1.

We can now define a margin-canonical Bayes classifier hB
P by nearest neighbor labeling

with respect to the sets X 0 and X 1. We only need to specify hB
P (x) for points x that are

outside the support of PX . By definition, there exists a ball of some radius r around such
a point x that has has no probability mass: PX (Br(x)) = 0. Thus, x has positive distance
to both X 0 and X 1 and we will set hB

P (x) = i if X i is the closer set to x, breaking ties
arbitrarily. We note that our definitions and results in subsequent sections also hold for the
margin rate of any other Bayes classifier.
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▶ Definition 4 (Margin rate). Let P be a distribution over X ×{0, 1} and let hB
P be the margin-

canonical Bayes classifier. Then we define margin-rate of P as the function ΦP (r) = ϕ
hB

P

P (r).
If there exists an r > 0 such that ΦP (r) = 0, we call the distribution P strongly separable.

The margin rate is related the notion of Probabilistic Lipschitzness [34] and the geometric
noise exponent [31]. We now show how the margin rate can be used for the suitable choice of
robustness parameter r. We show below how to choose a robustness parameter for which the
optimal robust predictor has close to optimal classification loss and vice versa. If the labels
of the distribution are deterministic, then we also get closeness as functions of the optimal
predictors.

▶ Theorem 5. Let P be a data-generating distribution over X × {0, 1}, let ΦP : R+ → [0, 1]
denote its margin rate, and let hB

P denote the 0/1-optimal classifier defining the margin rate.
For every ϵ > 0, if we let r ∈ Φ−1

P ([0, ϵ]), then for any r-robust optimal classifier hrB
P we

have Lr
P (hB

P ) ≤ LrB
P + ϵ and L0/1

P (hrB
P ) ≤ LB

P + ϵ.

In addition, if the labeling of P is deterministic, we have PX [hB
P ∆ hrB

P ] ≤ ϵ.

Proof of Theorem 5. Due to the way we chose the robustness parameter r here, we imme-
diately get

Lr
P (hB

P ) ≤ L0/1
P (hB

P ) + ϵ = LB
P + ϵ

since P (mar[hB
P , r]) ≤ ϵ. We need to argue, that no other classifier h can have significantly

smaller robust loss. As in the proof of Theorem 2, we observe that, we have Lr
P (h) ≥

L0/1
P (h) ≥ LB

P for any classifier h. Thus, in particular Lr
P (hrB

P ) = LrB
P ≥ LB

P , which yields
the first claim.

For the second inequality observe that hB
P has r-robust loss at most LB

P + ϵ by choice of
r. Any robust-optimal classifier hrB

P therefore has robust loss at most LB
P + ϵ, which implies

that its binary loss is bounded by the same quantity.
Now we assume that the labeling of P is deterministic. This implies that L0/1

P (hB
P ) = 0,

thus Lr
P (hB

P ) = PX (mar[hB
P , r]). Let hrB

P be a robust-optimal classifier. By definition of being
robust-optimal, we have Lr

P (hrB
P ) ≤ Lr

P (hB
P ) = PX (mar[hB

P , r]) ≤ ϵ. Thus, in particular
L0/1

P (hrB
P ) ≤ ϵ, which, in the case of deterministic labels implies PX [hB

P ∆ hrB
P ] ≤ ϵ. ◀

We next argue that, while a separability assumption can yield closeness in loss values of the
optimal predictors, it implies closeness of the actual functions only if the labeling is also
deterministic. That is, the assumption of deterministic labels is necessary for the second part
of the above Theorem (Observation 6). More specifically, the result in the observation below
shows that, a non-adaptive robustness parameter that will guarantee closeness of functions
as in the first part of the above theorem, can not be determined as a function of the marginal
distribution, but depends on a combination of the marginal and the “noise rate”.

▶ Observation 6. Let ϵ > 0 be given. Then, for any γ with 0 < γ < ϵ, there exists a
data-generating distribution P over R2 × {0, 1} with linear margin rate ΦP : R+ → [0, 1],
ΦP (r) = min{r, 1} such that, for any r ∈ Φ−1

P ((γ, ϵ)), we get PX [hB
P ∆ hrB

P ] = 1
2

Proof. We consider a uniform marginal over two rectangles in R2: We set R1 = [−2, −1] ×
[−1, 1] and R2 = [1, 2] × [−1, 1]. Further, we set the regression function

η(x1, x2) =
{ 1

2 + γ if x2 ≥ 0
1
2 − γ if x2 ≤ 0.

Now it follows that a 0/1-optima predictor is hB
P = 1 [x2 ≥ 0] while, for any r > γ, we have

hrB
P = 1 [x1 ≥ 0], thus PX [hB

P ∆ hrB
P ] = 1

2 . ◀
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Next, we argue that, even under deterministic labels, choosing a robustness parameter
slightly larger than implied by Theorem 5, can yield largely differing optimal predictors. The
same construction as in the proof of Theorem 3 shows the following statement:

▶ Observation 7. Let ϵ > 0 be given. There exists a distribution P over R × {0, 1} that is
strongly separable, such that, for any r > sup Φ−1

P ([0, ϵ]), we have PX [hB
P ∆ hrB

P ] = 1
2 .

5.2 Towards local robustness
We now argue that, even if the distribution is strongly separable and the labels are de-
terministic, then choosing a uniform robustness parameter may not result in the desired
outcomes in the following sense (see Figure 5.2): a classifier may be optimal with respect
to the largest possible fixed robustness parameter (the orange classifier), but have a de-
cision boundary that is unnecessarily close in some parts of the space where a larger local
robustness would have been possible. To argue more formally, we consider a distribu-
tion over domain R2 × {0, 1}, where the support is distributed uniformly on four points,
((−1, 0.9), 0), ((−1, 1.1), 1), ((1, 0.9), 0), ((1, 2), 1). Then predictor h(x1, x2) = 1 [x2 ≥ 1] is
0/1-optimal and also r-robust optimal for any r ≤ 0.1. However, we may prefer a predictor
h∗ that keeps a larger distance from the point (1, .9), and is equally optimal with respect to
the 0.1-robust loss.

h0.1B
P

h∗

Figure 1 A robustness requirement with a uniform robustness radius is unsuitable here.

6 Redefining the Robustness Requirement

We have argued (Sections 4.1 and 5.1) that using a fixed robustness parameter r can lead to
inconsistencies (in the sense that the optimal predictors with respect to binary and robust
loss differ vastly) and that even under conditions where the optimal predictors can coincide
(strong separability or suitably chosen robustness parameter), optimizing for the robust loss
can lead to classifiers that do not reflect our intuition about an optimally robust predictor
(Section 5.2). Ideally we would like a learned predictor to be everywhere as robust as possible
(in the sense of the illustration in Figure 5.2). We will next formalize this intuition using
the notions of the margin canonical Bayes and the margin rate, that we developed in the
previous section.

6.1 A local robustness objective
We propose to phrase robustness in relation to a margin-canonical Bayes predictor. The core
idea behind our definition is the following: If a margin-canonical Bayes predictor assigns a
constant label in a ball Br(x) around point x, then a robust predictor h should do the same
(and only then!). For a predictor h and x ∈ X , we let Bh(x) denote the largest ball around x

on which h assigns a constant label (possibly Bh(x) = {x}).
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▶ Definition 8 (Adaptive robustness). Let P be a data-generating distribution hB
P denote

a margin-canonical Bayes predictor, and h an arbitrary predictor. We define the adaptive
robust loss ℓar as

ℓar(h, x, y) = 1
[
h(x) ̸= y ∨ BhB

P (x) ⊈ Bh(x)
]

.

That is, h suffers adaptive robust loss on point (x, y) if it misclassifies the point or if the point
is closer to the decision boundary of h than to the decision boundary of the margin-canonical
Bayes hB

P . This definition implies that hB
P has both minimal binary loss and optimal robust

loss. We note that the above proposed loss is not technically a valid loss function, since it
depends on hB

P rather than just on h, x and y. Thus, we next propose a substitute notion of
empirical adaptive robust loss.

6.2 Empirical adaptive robust loss

Let S = ((x1, y1), . . . , (xn, yn)) be a labeled dataset. For a labeled domain point (x, y) we
let ρS(x) denote the distance from x to its nearest neighbor with opposite (or different in
the case of more than two classes) label in S:

ρS(x, y) = min
i∈[n]

{∥xi − x∥ | (xi, yi) ∈ S, yi ̸= y}.

In the (degenerate) case that no such point in S has a label different from y (that is, all
points in S have the same label), we set ρS(x, y) to ∞ (or the diameter of the space). Note
that ρS(x, y) is well defined for points (x, y) = (xi, yi) ∈ S from the dataset S itself. We
now expand the dataset S by replacing each point with a (constant labeled) ball of radius
c · ρS(xi, yi), for some (to be chosen) constant c.

▶ Definition 9 (c-Adaptive robust expansion). Let S = ((x1, y1), . . . , (xn, yn)). We call
the collection Sc = ((Bc·ρS(x1,y1)(x1), y1), . . . , (Bc·ρS(xn,yn)(xn), yn)) the c-adaptive robust
expansion of S.

It is easy to see that, as long as c ≤ 1/2, balls in the c-adaptive robust expansion of
S overlap only if they have the same label. Thus, this expansion does not introduce any
inconsistencies in the label requirements. Depending on the geometry of the data-generating
process (eg. the curvature of the decision boundary of the regression function) we may
also employ larger expansion parameters without introducing inconsistencies. Using the
c-adaptive robust expansion of S, we can define an empirical version of the adaptive robust
risk for fixed parameter c. For this, for a predictor h : X → Y and label y, we let h−1(y) ⊆ X
denote the part of the domain that h labels with y.

▶ Definition 10 (Empirical c-adaptive robust loss). Let c be an expansion parameter,
S = ((x1, y1), . . . , (xn, yn)) and h : X → Y. We define the empirical c-adaptive robust loss
of h on S as

Lc−ar
S (h) = 1

n

n∑
i=1

1
[
Bc·ρS(xi,yi)(xi) ⊈ h−1(yi)

]
.

That is, a point (xi, yi) ∈ S is counted towards the empirical c-adaptive robust empirical
risk, if h does not label the whole ball Bc·ρS(xi,yi)(xi) in the expanded set with yi.
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Remark on connection between the population and empirical version
As is usual for an empirical loss, the empirical adaptive robust loss as defined above for
c = 0.5 corresponds to the adaptive robust loss on the empirical distribution (that is a
uniform distribution of the finite data sample).

6.3 Adaptive robust data-augmentation
While the empirical c-adaptive robust risk is well defined for any predictor h and
dataset S, it may, computationally, not be straightforward to verify the condition
1

[
Bc·ρS(x,y)(x, y) ⊈ h−1(y)

]
. A natural estimate is to use m uniform sample points z1, . . . , zm

from the ball Bc·ρS(x,y)(x) and verify whether h labels all of these with y. Similarly, for
training purposes, we may want to use a sample version of the c-adaptive robust expansion
of S. We call this the m-sample-c-adaptive robust augmentation of S. The so augmented
dataset Smc is a set of labeled domain points and can be used as a training data-set for a
standard learning algorithm.

▶ Definition 11 (Adaptive robust data augmentation). Let S = ((x1, y1), . . . , (xn, yn)) be a
labeled dataset, and m ∈ N. We call the collection
Smc = ((z1

1 , y1), . . . , (zm
1 , y1), . . . (z1

n, yn), . . . , (zm
n , yn)), where every zj

i is uniformly sampled
from the ball Bc·ρS(xi,yi)(xi), the m-sample-c-adaptive robust augmentation of S.

To visualize the adaptive robust augmentation and its effects, we generated data from a
“lower-dimensional manifold” in two dimensions, see Figure 2. It has been conjectured that
the data being supported on a lower-dimensional manifold is a source of the phenomenon of
vulnerability to small perturbations [22], which our visualization illustrates. The original
support (the data-manifold) of data generating distributions can be seen as the green and
blue lines in the first column of Figure 2, blue and green points representing points from
the two classes. We trained a ReLU Neural Network with 2-hidden layers (of 10 neurons
each) data points drawn from these shapes. The labeling behavior of the trained network is
visualized over the ambient space in red and purple. The first column depicts the original,
labeled data sets together with the networks trained on the original data. The next columns
show the effect of augmentation and training with a fixed robustness parameter while the
last column shows the adaptive robust augmentation.

The sequence of trained network illustrates how without augmentation, the network’s
decision boundary passes close to the data-manifold in several areas, yielding areas of
adversarial vulnerability. The augmentation with fixed robustness, does not change this
for small robustness radius. For larger, fixed robustness radius, the augmentation leads to
blurring the labels. The last column shows how the adaptive robust augmentation changes
the decision boundary of the trained network in the ambient space to “curve away” from the
lower dimensional data manifold. Importantly the prediction on the data manifold remains
unchanged. Thus the adaptive robust augmentation yields robustness without negatively
affecting the accuracy of the predictor on the data-generating distribution.

We conjecture that most learners, that are consistent with respect to binary loss, remain
consistent when fed a c-adaptive robust augmentation of S for c ≤ 1/2. We prove this for a
1-nearest neighbor classification under deterministic labels. This result serves as evidence
that our adaptive data augmentation does not induce any inconsistencies with the accuracy
requirements. It holds for a c-robust augmentation and any m-sample-c-robust augmentation
if c ≤ 0.5. The proof has been moved to Appendix C.
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Figure 2 ReLU networks trained on data from a one-dimensional manifold, labeled with two
classes (blue and green here). Left to right: original data, incrasing fixed augmentation parameters,
and adaptive robust robust augmentation.

▶ Theorem 12. Let P be a distribution over [0, 1]d × {0, 1} with deterministic labels and
margin rate ΦP (r). Let ϵ, δ > 0 be given. Then, with probability at least 1 − δ over an is an
i.i.d. sample S of size n ≥ 3dd0.5d

eΦ−1
P

(ϵ)dϵδ
from P , the a 1-nearest neighbor predictor h0.5

NN on a

m-sample-0.5-adaptive robust augmentation of S satisfies L0/1
P (h0.5

NN) ≤ ϵ for any m ≥ 1.

We will employ a similar proof technique as in Chapter 19 of [30]. In particular, we will
employ Lemma 19.2 therein:

▶ Lemma 13 (Lemma 19.2 in [30]). Let C1, C2, . . . Ct be a collection of subsets of some
domain set X . Let D be a distribution over X and S be an iid sample from P of size n.
Then ES∼Dn

[∑
i:Ci∩S=∅ D(Ci)

]
≤ t

n·e .

Recall that, for a labeled sample S, the collection Sc = (Bc·ρS(x1,y1)(x1, y1), . . . ,

Bc·ρS(xn,yn)(xn, yn)) denotes the c-adaptive robust expansion of S. We will prove the theorem
using this expansion for c = 0.5, but note, that the proof (and thus the Theorem) holds
equally for

Smc = ((z1
1 , y1), . . . , (zm

1 , y1), . . . (z1
n, yn), . . . , (zm

n , yn)),

any m-sample-c-adaptive robust augmentation of S (where every zj
i is uniformly sampled

from the ball Bc·ρS(xi,yi)(xi)).

Proof of Theorem 12. Let P be a distribution over [0, 1]d × {0, 1} with deterministic labels
and margin rate ΦP (·). We let hB

P be a margin optimal Bayes predictor for P . Note that,
since the labels of P are deterministic L0/1

P (hB
P ) = 0. Further, we let ϵ and δ be given and

set r = Φ−1
P (ϵ) (to mean the largest r, such that ΦP (r) ≤ ϵ). Further, we set r′ = r/3.

We can now partition the space [0, 1]d into t =
( √

d
r′

)d

many sub-cubes of side-length
r′/

√
d and thus diameter r′. We denote the cells in this partition by C1, . . . , Ct.

We now let S be a labeled sample and let hc
S = h.5

S be the nearest neighbor classifier on
the .5-adaptive robust expansion of S. We now bound the mass of points x on which hc

S

makes a false classification by noting that hc
S(x) ̸= hB

P (x) implies that one of these three
conditions hold:
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C1: x falls into a cell Ck that has empty intersection with the sample S;
C2: there is at least one sample point (xi, yi) ∈ S in the same cell Ck as x, and there exists

at least one such (xi, yi) ∈ S with yi ̸= hB
P (x);

C3: there is at least one sample point (xi, yi) ∈ S in the same cell Ck as x, and we have
yi = hB

P (x) for all (xi, yi) in the same cell, but there is another sample point (xj , yj) ∈ S

(in a different cell) with yj ̸= hB
P (x) and x is closer to the expansion Bc·ρS(xj ,yj)(xj , yj) of

xj than to the expansion Bc·ρS(xi,yi)(xi, yi) for all xi in Ck.
If S is an iid sample from P , then, by Lemma 13 the expected mass of points x cells that are
not hit by the sample S is bounded by t

n·e = 3d
√

d
d

Φ−1
P

(ϵ)d·n·e . By Markov’s inequality, this implies

PS∼P n

 ∑
i:Ci∩S=∅

PX (Ci) > ϵ

 ≤ 3d
√

d
d

ϵ · Φ−1
P (ϵ)d · n · e

.

Setting this to δ shows that, with probability at least 1 − δ over a sample S of size n ≥
3d

√
d

d

ϵ·Φ−1
P

(ϵ)d·δ·e the mass of points that fall into “error case” C1 is bounded by ϵ.
We now argue that the mass of points that fall into “error case” C2 or C3 is also bounded

by ϵ by showing that such points actually fall into the r-margin area of hB
P and, by choice of

r and by definition of ΦP , we have PX (mar[r, hB
P ]) ≤ ϵ.

Consider a point x in case C2. If there exist a point (xi, yi) ∈ S in the same cell as x

with yi ̸= hB
P (x), then by the choice of the size of the cells x ∈ mar[r′, hB

P ] ⊆ mar[r, hB
P ].

Now consider a point x in case C3: There exists at least one point (xi, yi) ∈ S in the
same cell as x and all points in the same cell as x have label hB

P (x). But there is another
sample point (xj , yj) ∈ S (in a different cell) with yj ̸= hB

P (x) and x is closer to the expansion
Bc·ρS(xj ,yj)(xj , yj) of xj than to the expansion Bc·ρS(xi,yi)(xi, yi) for any xi in the same cell
as x, where c = 0.5.

Recall that ρS(xj , yj) is the distance between xj and a closest point in S of opposite
label to yj . We now set ρ = 0.5 · ρS(xj , yj) for short, that is ρ is the radius of the expansion
of (xj , yj). Since the cell that x is in also contains (xi, yi) and yi ̸= yj in this case C3, we
know that

2ρ ≤ ∥xi − xj∥. (1)

Further, we know

∥xi − x∥ ≤ r′ (2)

since xi in in the same cell as x.
Let z ∈ Bc·ρS(xj ,yj)(xj , yj) be the point in Bc·ρS(xj ,yj)(xj , yj) closest to x. Note that,

since z in in the expansion of xj , we have

∥z − xj∥ ≤ ρ. (3)

Then, since x is closer to the expansion of xj than the expansion of xi, we can infer, using
Equation 2 that

∥x − z∥ ≤ ∥x − xi∥ ≤ r′ = r/3. (4)

This implies using the triangle inequality and Equations 4 and 2 that

∥z − xi∥ ≤ ∥z − x∥ + ∥x − xi∥ ≤ 2r′. (5)
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Now, by again using the triangle inequality and Equations 3 we get

∥xi − xj∥ ≤ ∥xi − z∥ + ∥z − xj∥ ≤ ∥xi − z∥ + ρ, (6)

Thus, using Equations 1 and then Equation 6, we get

2ρ ≤ ∥xi − xj∥ ≤ ∥xi − z∥ + ρ

which immediately implies ρ ≤ ∥xi − z∥. Together with Equation 5 the above yields: ρ ≤ 2r′.

Now, again invoking the triangle inequality and using Equations 4 and 3, we can bound the
distance between x and xj :

∥x − xj∥ ≤ ∥x − z∥ + ∥z − xj∥ ≤ r′ + 2r′ = r.

Thus, in this case, x also falls into the r-margin area of hB
P since hB

P (x) ̸= hB
P (xj). This

concludes the proof of the Theorem. ◀

7 Concluding Remarks

In this work, we provide a formal foundation for adversarial robustness as an adaptive
requirement. We argue for re-framing adversarial robustness as a requirement that should be
in line with the underlying distribution’s margin properties. We do this by introducing a novel
notion of the margin-rate that quantifies probability mass in proximity to a Bayes optimal’s
decision boundary in a more flexible way than standard notions of margin-separability do.
We employ this measure to propose a formal notion of such an adaptive loss, as well as
an accompanying empirical version and implied data-augmentation paradigm. As a first
sound justification of this proposal, we prove that this type of adaptive data-augmentation
maintains consistency of a non-parametric method (namely 1-nearest neighbor classification
under deterministic labels). We believe this to be a natural and useful take on resolving the
discrepancies with accuracy that have been reported in the context of adversarial robustness
(both in theoretical and practical studies). Further, we believe that our notion of a data-
informed, adaptive robustness radius might be useful for other methods that employ data
augmentation.
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A Visualizations

To further validate our proposed adaptive robust data augmentation method, we present
a set of illustrative experiments on various synthetic datasets. To allow for visualizations,
we generate data from a “lower-dimensional manifold” in two dimensions. It has been
conjectured that the data being supported on a lower-dimensional manifold is a source of the
phenomenon of vulnerability to small perturbations [22]. Our visualizations in in Figure 3
illustrate this phenomenon.

The original support (the data-manifold) of the data generating distributions is one-
dimensional hehre and can be seen as the green and blue lines in the first column of images
in Figure 3. Blue and green points represent points from the two classes. We term our
synthetic shapes in Figure 3 Sines, S-figure, NNN, circles, boxes. We train a ReLU
Neural Network with 2-hidden layers (of 10 neurons each) data points drawn from these
shapes. The labeling behavior of the trained network is visualized over the ambient space in
red and purple. The first image in each row depicts the original, labeled data together with
the network trained on the original data.

We see in those left-most illustrations that without any augmentation, the network’s
decision boundary is often located close to the data-manifold. Since the data is supported
only on the lower-dimensional manifold, there is no incentive for the decision boundary to
keep a distance from the data-manifold. While the network labels areas on the manifold itself
correctly, this behavior leads to the existence of points that are vulnerable to adversarial
perturbations: a small deviation away from the data-manifold can lead to a different labeling
by the network.

We then augment the training datasets with both fixed and adaptive expansion parameter
and train ReLU Neural Networks of the same size on the augmented datasets. The remaining
images in each row again illustrate the augmented datasets (green and blue) together with
the labeling behaviors of the resulting networks (red and purple). The last image in each
row corresponds to the adaptive augmented data, while the intermediate images correspond
to augmentations with increasing, but fixed expansion parameters.

For non-adaptive expansion parameter, we iteratively increase the parameter in a fixed
sequence, (0.1, 0.5, 1, 2, ...., 16). These expansion parameters were chosen based on the range
of the attribute values in the datasets. For each sample in a d-dimensional dataset, a
d-dimensional sphere is generated where the radius is the fixed-parameter and the current
sample is the center of the sphere. Four new points are then generated in this sphere for
each sample point. Hence, the training dataset is expanded to five times its original size
after fixed-parameter expansion.

Analogously we augment the data with an adaptive expansion parameter. The key
difference is in the calculation of the radius of the sphere. A fraction of the distance between
the current sample and a nearest neighbor of a different class is used as the radius for the
sphere generation. Each of the middle columns in Figure 3 corresponds to augmentation
with a fixed expansion parameter, while the last column shows the 2/3-adaptive robust
augmentation of the training data. The original training dataset contains 1000 training
points and the augmented datasets 5000 data points each.

For the various networks we evaluate binary loss and the adaptive robust loss. To estimate
the adaptive robust loss at a point x, we determine its distance ρ to a point in the dataset
with a different label and then generate 10 test points uniformly at random from a ball
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of radius ρ/2. If one of these gets a different label than x by the network (or if the point
is mislabeled itself) it suffers adaptive robust loss 1. Table 1 summarizes the binary and
adaptive robust losses of the various networks. We see that the adaptive augmentation leads
consistently to the lowest binary (always rank 1) and low adaptive robust loss (rank 1 and
once rank 2). This shows that the adaptive augmentation not only is not in conflict with
accuracy, but empirically improves accuracy of a trained network.

Finally, we also trained ReLU neural networks on several real-world data sets from the
UCI repository. For each dataset, we normalized the features to take values in [0,1]. As in
the experiments on the synthetic data, we trained the networks on the original data, as well
as various augmented datasets, including using the 2/3-adaptive augmentation. The datasets
were split into training and test data with a ratio of 80 − 20 respectively. In Tables 1 and 2,
we report the binary and robust losses of these networks. We observe, again, that the robust

Figure 3 ReLU networks trained on data from a one-dimensional manifold in two-dimensional
space, labeled using two classes (blue and green here). The various shapes by row: Sines, S-
figure, NNN, circles, boxes. Left-most: original training data; various middle images: training
data augmented using increasing expansion parameters; right-most: training data robust-adaptive
expanded. We use data generated uniformly at random from the ambient space to illustrate the
network’s labeling (red and purple). Using just original training data, or only slightly augmented
data, we observe that the network’s decision boundary is often close to the manifold.
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augmentation promotes the best performance in terms of 0/1 accuracy. Additionally, the
adaptive robust loss is close to the best adaptive robust loss achieved with a fixed expansion
parameter on each dataset. Using the adaptive augmentation can thus serve to save needing
to search for an optimal expansion parameter on different tasks.

In summary, our initial experimental explorations here showed that the adaptive aug-
mentation consistently yielded a robust predictor with best 0/1-loss. This confirms the
intended design of an adaptive robustness and data augmentation paradigm that avoids the
undesirable tradeoffs between robustness and accuracy.

Table 1 Overview on the binary and adaptive robust losses of the networks trained on trained
on the various synthetic datasets with various augmentations.

Dataset Expansion Radius
for Training

Adaptive
Robust Loss

Binary Loss

Sines Original 0.2882 0.104
0.1 0.1693 0.071
0.5 0.2443 0.147
1 0.3116 0.177
2 0.3521 0.208

Adaptive 0.1403 0.038
S-figure Original 0.3516 0.044

0.1 0.1514 0.016
0.5 0.0429 0.027
1 0.0844 0.05
2 0.2373 0.21

Adaptive 0.0393 0.017
NNN Original 0.3841 0.2124

0.1 0.2609 0.1086
0.5 0.2008 0.1048
1 0.1969 0.0952
2 0.386 0.3714

Adaptive 0.08972 0.04
circles Original 0.4483 0.0133

0.5 0.2629 0
1 0.3472 0.0108
2 0.1778 0.0242
4 0.3076 0.0783
8 0.3557 0.1733
16 0.3054 0.1633

Adaptive 0.254 0
boxes Original 0.3427 0.08

0.5 0.2623 0.0775
1 0.2229 0.0775
2 0.2252 0.1667
4 0.2839 0.2283
8 0.4274 0.3458

Adaptive 0.2077 0.075

FORC 2022



5:20 Robustness Should Not Be at Odds with Accuracy

Table 2 Overview on the binary and adaptive robust losses of the networks trained on trained
on the various UCI datasets with various augmentations.

Dataset Expansion Radius
for Training

Adaptive
Robust Loss

Binary Loss

Iris Original 0.0957 0.0435
0.1 0.0783 0
0.5 0.1304 0
1 0.3478 0.087
2 0.391 0.3478

Adaptive 0.087 0
Breast Cancer Original 0.1351 0.0263

0.1 0.0956 0.0175
0.5 0.0842 0.0351
1 0.0833 0.0439
2 0.0693 0.0175

Adaptive 0.0719 0.0175
Bank Note Original 0.0804 0

Authentication 0.1 0.0479 0
0.5 0.1593 0.0909
1 0.1153 0.0036
2 0.1058 0.0036

Adaptive 0.0167 0
Heart Disease Original 0.3465 0.1628

0.1 0.3791 0.2093
0.5 0.386 0.2093
1 0.4489 0.2791
2 0.507 0.3488

Adaptive 0.3604 0.1395
Immunotherapy Original 0.263 0.1852

0.1 0.2926 0.1111
0.5 0.3482 0.1852
1 0.2333 0.1852
2 0.437 0.2593

Adaptive 0.174 0.0741
Parkinsons Original 0.1423 0.078

0.1 0.1678 0.0847
0.5 0.1542 0.0678
1 0.2322 0.1017
2 0.2322 0.1186

Adaptive 0.1627 0.0508
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1 Introduction

It has been known for nearly a decade that interacting with data in a differentially private
fashion provides a universal approach to reducing the risk of spurious scientific discoveries
incurred by adaptive, or exploratory, data analysis [5, 6], in which new analyses or questions
posed of the data depend on the outcomes of previous analyses. Strengthenings of these initial
results, and extensions to other information-restrictive interactions, rapidly followed, for
example, [1, 4]. In these works and their sequelae, the data analyst is viewed as an accuracy
adversary whose goal is to find a query on which the dataset (or the response produced by a
mechanism that interacts with the data) is not representative of the population.

For some kinds of data and analyses, for example, in Genome-Wide Association Studies
(GWAS), which involve vast numbers of statistical queries on very high dimensional data,
differential privacy faces daunting lower bounds [3]. However, our interest in this work is
in accuracy, and not privacy per se. Inspired by two natural examples, we consider the
question of whether we can improve on the accuracy by exploiting independence properties
in the features of the data. In data streams, it is often assumed that elements far apart in
the stream are uncorrelated or only weakly correlated, with the correlation decreasing as
the distance increases. In a stream, data of different individuals are interleaved; genomic
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information has this same low-correlation property even in the DNA for a single individual:
for example, chromosomes are considered to be unrelated, and even within a chromosome
correlations decrease with distance [12].

While genomic data is our motivating example, we note that similar assumptions are
reasonable in other settings. For example, in certain kinds of image data distant pixels may
be relatively uncorrelated even within a single image. We will make this notion precise in
Section 2.

The line of work described above gave rise to a number of so-called “transfer theorems,”
and we will make use of the sharp recent addition to this literature in [10]. Transfer theorems
generally say that if a query-response mechanism satisfies some specific quantifiable constraint
on the information it imparts, then an analyst interacting with this mechanism cannot overfit
to within some related quantity. In the context of differential privacy the requirement is
that the mechanism must be (ε, δ)-differentially private and (α′, β′)-sample accurate2, and
the guarantee from the theorem is that the responses will be (α = α(ϵ, δ, α′), β = β(ϵ, δ, β′))-
distributionally accurate, meaning that with probability at least 1 − β the responses are
within α of their distributional values.

Our restriction on data models comes into play here: consider a genome-wide association
study (GWAS), in which the dataset contains, for each of n individuals, a string of potentially
millions of Single Nucleotide Polynomorphisms (SNPs). A typical study will make huge
numbers of counting queries, looking for SNPs that are associated with a disease, at a huge
cost in accuracy, as the data of each individual simultaneously affect all these counts. We
asked the following question: under the assumption that distant SNPs in the genome of any
given individual are at best very loosely correlated, is it possible to “re-use” privacy budget
when examining distant portions of the genome? We will not achieve privacy in so doing, but
can we achieve better accuracy? For example, if we examine the dataset one chromosome at a
time, meaning, we analyze the first chromosome for everyone in the dataset using (ε0, δ0)-DP
and a single application of a transfer theorem to ensure validity on the queries for this
chromosome, and then examine the second chromosome for everyone in the dataset, “re-using”
(ε0, δ0)-DP, and it really is the case that one’s first and second chromosomes are unrelated,
can we safely apply the transfer theorem a second time to conclude that the queries on the
second chromosome have not overfit, and so on? We obtain an affirmative answer to this
and other, less restrictive, data access models. The key factors in the analysis are (1) the
independence of the features (chromosomes, distant SNPs) and (2) the exclusion of queries
that simultaneously operate on distant features (sums of adjacent features permitted, sums
of distant features not supported).

Our first result considers the model in which each individual’s data is partitioned into a
sequence of m fully independent blocks. Roughly speaking, it says that the privacy budget
for a single block can be re-used, risking only a factor of m increase in failure probability.

▶ Theorem 1 (Informal). If the data consists of m independent blocks, and our mechanism
M performs an (ϵ, δ)-DP and (α, β)-sample accurate interaction on each block, then M

is (α′, mβ′)-distributionally accurate, where α′ and β′ are the parameters we get from the
transfer theorem on each block.

To build intuition for this result, suppose that, for each individual, we have a series of m > 1
mutually independent blocks of features B1, B2, ...Bm. That is, there are m distributions
D1, . . . , Dm and the data of each individual is a draw from the product distribution D1 ×
D2 × · · · × Dm. Suppose, for this intuition-building only, that the mechanism accesses the

2 That is, with probability at least 1 − β′ the responses produced are within α′ of their sample values.
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data in m epochs, first accessing block B1 of attributes for all n individuals, then accessing
block B2 of attributes for all n individuals, and so on. At epoch i ∈ [m] the analyst may
carry out any (ϵ0, δ0)-DP analysis of the data on block i. In this case, we claim we can
apply the transfer theorem m times while retaining the accuracy guarantees and paying a
factor of m in the failure probability β. To see this, note that, because of the independence
assumptions, we can assume that the data for block Bi have not even been selected before
processing of this block. In this case, an accuracy adversary – even one with all the data of
blocks B1, . . . , Bi−1 “hard-wired” in, is just an arbitrary adversary. Allowing this adversary
to interact with an independently randomly chosen block Bi is precisely what happens in
differential privacy: an adversary interacts with (apparently) freshly drawn data. We can
therefore apply the transfer theorem to conclude that, on this ith block, with probability at
least 1 − β, the responses are α-accurate. A union bound then gives the result, yielding an
upper bound of mβ on the probability of failure.

While this “thick” streaming access mode is not required for our algorithms, it remains
useful for building intuition when we depart from the full independence data models.

For our most general result, we consider models in which correlations between attributes
ai and aj in the data of a single individual falls exponentially with their “distance” |i − j|,
and we restrict the “width” of a query so that it cannot simultaneously access very distant
elements. Roughly speaking, in our model distant attributes have high probability of being
independent and vanishing probability of being arbitrarily dependent. We show that we can
again re-use the privacy budget, paying only a small additional probability of failure due to
the low-probability dependence events.

▶ Theorem 2 (Informal). Suppose the probability that two attributes at distance d are not
independent is negligible, and suppose further that queries involve only attributes with distance
at most d. Then, if our mechanism M is (ϵ, δ)-DP and (α′, β′)-sample accurate on every
sequence of 2d + 1 consecutive attributes, it’s also (α, mβ + negl)-distributionally accurate
where (α = α(ϵ, δ, α′), β = β(ϵ, δ, β′)) are the parameters we get from the transfer theorem.

2 Preliminaries

We are interested in query answering mechanisms that operate on datasets and produce
outputs. A standard view is that the mechanism interacts with an adversary whose goals are
unknown and who may be malicious. Both parties may employ randomness.

The interaction between a mechanism M and an adversary A using sample S, is a random
variable denoted by Interact(M, A; S), where the adversary generates queries qi and the mech-
anism M generates responses ai, giving rise to transcripts of the form (q1, a1, q2, a2, . . . qk, ak).
Later queries may be chosen as functions of the transcript prefix. We will sometimes use the
shorthand I(S) when M and A are clear from context. The set of transcripts that can be
generated by the interaction between M and A will be denoted Interact(M, A, ∗).

In this work, individuals are represented in the dataset as a sequence of m attributes, or
covariates. Doing so allows us to formalize the idea of distance among attributes in a dataset
as the difference in the indices of the attributes.

▶ Definition 3. Datasets X and X ′ of the same cardinality are adjacent if they differ on at
most one element.

▶ Definition 4. A mechanism M is (ϵ, δ)-differentially private if for any pair of adjacent
datasets X, X ′, any adversary A, and any set of transcripts E, we have

Pr[Interact(M, A, X) ∈ E] ≤ eϵ · Pr[Interact(M, A, X ′) ∈ E] + δ,

where the probability space is over the randomness of M and A.
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▶ Definition 5. A mechanism M satisfies (α, β)-sample accuracy if for every data analyst
A and every data distribution P,

Pr
X∼Pn,Interact(M,A,X)

[
max

j
|qj(S) − aj | ≥ α

]
≤ β.

Similarly, M satisfies (α, β)-distributional accuracy if for every data analyst A and every
data distribution P,

Pr
X∼Pn,Interact(M,A,X)

[
max

j
|qj(Pn) − aj | ≥ α

]
≤ β.

▶ Definition 6. We say that a sequence of random variables (B1, B2, . . . , Bm) is k-dependent
if for any two subsets I and J of {1, 2, . . . , m} such that max (I) < min (J) and min(J) −
max(I) > k, the families of random variables (Bi)i∈I and (Bj)j∈J are independent.

▶ Definition 7. A linear query (sometimes called statistical query) is a query q such for any
individual X ∈ X , q(x) ∈ [0, 1], and for any sample S ∈ X n, q(S) = 1

n

∑
x∈S q(x)

From time to time, we will need to focus on the queries that involve a specific collection
of attributes. For this purpose, we introduce the following definition:

▶ Definition 8. Let Q be a collection of queries, defined before the interaction happens.
Given a mechanism M, the transcript of the interaction restricted to Q is defined as follows:
1. M interacts with an adversary A, producing transcript Π
2. As a postprocessing step, we remove every query and answer (q, a) from Π such that

q /∈ Q. Let Π′ denote resulting transcript.
3. Π′ is the transcript of the interaction restricted to Q.

Intuitively, this is just “projecting” the transcript onto Q.

2.1 Transfer Theorem
The following is Theorem 3.5 from [10].

▶ Theorem 9. Suppose M is (ϵ, δ)-DP and (α, β)-sample accurate for linear queries. Then
for any data distribution P, a sample S ∼ Pn, any analyst A, and any constants c, d > 0:

Pr
S∼Pn,Π∼Interact(M,A;S)

[
max

j
|aj − qj(P)| > α + (eϵ − 1) + c + 2d

]
≤ β

c
+ δ

d

i.e. it is (α′, β′)-distributionally accurate for α′ = α + eϵ − 1 + c + 2d and β′ = β
c + δ

d .

There are two facts to note here. Firstly, the transfer theorem assumes that all queries
are linear queries (often called statistical queries in the literature). A linear query q is one in
which for each x ∈ S, q(x) ∈ [0, 1] and q(S) = 1

n

∑
x∈S q(x).

The notable features of a linear query are that q must be a function of x, so it is
deterministic and also cannot use information not captured in the features of the database,
such as index. Linear queries are powerful; it is known that we can learn nearly everything
that is PAC-learnable in the statistical queries learning model [11]. In addition, there is a
vast literature on handling very large numbers of differentially private statistical queries,
beginning with the exciting contributions in [2, 8].

Note that, were we to remove the constraint that the query must be a function only of
the covariates (and not, say the index of a row in the database), the sample accuracy of the
mechanism would become ill-defined.
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The other key fact is that, in the statement of the transfer theorem, the probability is
taken over both the sample and the randomness employed during the interaction. Thus, the
mechanism could be arbitrarily bad for some particularly unrepresentative sample. That is,
we could come up with “counterexample” samples where we do get aj − qj(P) to be very
large (imagine a sample where α + α′ is significantly greater than |q(S) − q(P)| for many
queries q).

In the following sections, we will analyze mechanisms, where, to bound their privacy
loss naïvely, we would need to take the composition of m mechanisms, requiring us to pay
an Ω(

√
m) factor in the DP guarantee. By assuming (limited) independence in our data,

we are able to instead bound the privacy loss with the composition of 1 or 2 mechanisms,
while having the same m-fold increase in the probability of failure that we would get from
composition.

3 Full Independence

In this setting, we are motivated by the structure of chromosomes. The entire sequence of
DNA is contained in many linear chromosomes, and there is no known dependence between
the sequence of one linear chromosome and the sequences of any other linear chromosomes.
As such, it is reasonable to assume that these sequences are all independent. Thus, if we
consider each linear chromosome to be a block, then we obtain the following bounds when
doing adaptive data analysis with in a simple setting:

▶ Theorem 10. Let M be a query answering mechanism M, such that when given
(X1, X2, . . . Xn) ∼ Dn for a population distribution D such that the attributes are divided
into fully independent blocks B1, B2, . . . Bm, given a data analyst A, M proceeds as follows:

M refuses to answer queries that involve attributes in different blocks.
M ensures that, for each block Bi, the interaction restricted to queries on the block Bi is
(ϵ, δ)-DP and (α, β) sample accurate.

Then, for every c, d > 0, M is (α′, β′) distributionally accurate where α′ = α+eϵ−1+c+2d

and β′ = m
(

β
c + δ

d

)
.

Proof. Let X = (X1, X2, . . . , Xn) denote the sample that M takes as input. For each i, we
conduct a thought experiment to define a query answering mechanism M′

i as follows:
M′

i takes as data the ith block of X (which we denote X(i)). Then, M′
i samples new

values for blocks B1, B2, . . . , Bi−1, Bi+1, . . . , Bm from D3. Let X ′ denote this new sample.
M′

i then interacts with an analyst A by running M with the new sample X ′. The queries
on any block other than Bi update the states of A and M′

i, but are not considered to be
queries and answers of the interaction between A and M′

i.
Now, by definition, when A interacts with M′

i, only queries on the ith block interact with
the data in any way, which means this interaction is (ϵ, δ)-DP. Furthermore, it is (α, β)-sample
accurate from the assumption that M was (α, β)-sample accurate for the queries on block
Bi. Thus, by theorem 3.5 from [10], M′

i is (α′, β′/m) distributionally accurate.
Now, since Bi is independent from all other blocks, X ′ ∼ Dn. Thus, all M′

i does is
interact with A as if it were M on sample X ′, except it only writes queries on block Bi

on the transcript. When we consider the distribution with randomness over the choice

3 The reason why this is just a thought experiment is that in reality the mechanism will not know the
distribution D. This is why we carry out data analysis in the first place.
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of sample, the mechanism, and the adversary, the distribution of transcripts produced by
Interact(M′

i, A, X(i)) is therefore exactly the same as the distribution of transcripts produced
by Interact(M, A, X), with the added postprocessing step of throwing away every query and
answer asked about some block other than Bi.

Thus, the distribution of transcripts produced by Interact(M, A, X) is identical to the
distribution of the concatenation of the transcripts of Interact(M′

i, Ai, X(i)) for every i where
all of the Ai are copies of A. Taking a union bound over the accuracy guarantees for the
latter, we get that M is (α′, β′) accurate. ◀

4 Partial Independence

This model is a generalization of the previous model, as the intuition that attributes which
are close to one another can be related produces data which do not satisfy the assumptions
necessary for the full independence model (consider items that are close, but on different
sides of a block boundary). We therefore generalize our result to the case where adjacent
blocks are allowed to be related. Additionally, we restrict access to the data to a streaming
model. This allows us to achieve stronger accuracy guarantees; specifically, we obtain a
bound with twice the privacy loss of full independence; without the streaming restriction it
would be thrice the privacy loss.

To do this, we first introduce the following lemma that we will use in the proof. Intuitively,
the lemma states that a transformation of individuals preserves privacy.

▶ Lemma 11. Let MY be an (ε, δ)-differentially private mechanism with data domain Y.
Then the mechanism MX , defined next and having data domain X , is also (ε, δ)-differentially
private.

MX takes as input a database X ∈ X n and constructs Y = f(X) ∈ Yn, where f is a
randomized mapping f : X → Y. The randomness is chosen independently every time f

is called, and we define Y = f(X) = {f(x) | x ∈ X}. Then, MX runs MY on Y : given
(oracle) access to any adversary A, MX simply acts as a channel, conveying queries from A

to MY and responses from MY to A.

Proof. Fix an adversary A, and let Π be the random variable denoting the transcript of the
interaction between A and MY ; that is, Π ∈ Interact(MY , A, ∗), the set of all transcripts
that can be produced by these two parties.

Let Q be a random variable that represents the value of the database given to MY by
MX , with randomness over X and f . Since MY is (ε, δ)-differentially private we have that,
for any event E ∈ Interact(MY , A, ∗) and any Y ′ adjacent to Y ,

Pr[Π ∈ E | Q = Y ] ≤ eϵ Pr[Π ∈ E | Q = Y ′] + δ,

where the probabilities are over the randomness of MY and A.
Fix an adjacent pair X and X ′ in X n and let i be the index in which they differ. For

R ∈ {X, X ′} we have:

Pr[Π ∈ E | Ri = Xi] =
∑
y∈Y

Pr[Π ∈ E | Qi = y] · Pr[Qi = y | Ri = Xi]

since the event Π ∈ E is independent of the original database R conditional on the transformed
database Y . Here the probabilities are over the randomness in the mapping f and the
randomness in the [MY , A] interaction, i.e., the coin flips of MY and A.
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Let y∗ denote the outcome which minimizes Pr[Π ∈ E | Qi = y∗]. Additionally, recall
that we defined Y as the input to MY , so if we fix Yi = y, then Y = (f(X−i), y).

Pr
Interact(MX ,A,X)

[Π ∈ E | R = X] (1)

=
∑
y∈Y

Pr
f(X−i),Interact(MY ,A,Y )

[Π ∈ E | Qi = y] · Pr
f(Xi)

[Qi = y | Ri = Xi] (2)

≤
∑

y

(eϵ Pr[Π ∈ E | Qi = y∗] + δ) · Pr[Qi = y | Ri = Xi] (3)

= (eϵ Pr[Π ∈ E | Qi = y∗] + δ)
∑

y

Pr[Qi = y | Ri = Xi] (4)

= (eϵ Pr[Π ∈ E | Qi = y∗] + δ)
∑

y

Pr[Qi = y | Ri = X ′
i] (5)

≤
∑

y

(eϵ Pr[Π ∈ E | Qi = y] + δ) Pr[Qi = y | Ri = X ′
i] (6)

= δ + eϵ
∑

y

Pr[Π ∈ E | Qi = y] Pr[Qi = y | Ri = X ′
i] (7)

= eϵ Pr[Π ∈ E | R = X ′] + δ (8)

Since Y−i is sampled independently from Yi and Xi, the inequality in line (3) holds when
we condition on any value of Y−i by definition of (ϵ, δ)-DP, so it must also hold when we
take the probability over Y−i as well. The equality in line (5) follows by the law of total
probability. ◀

▶ Theorem 12. Suppose we have a query answering mechanism M, such that when given
(X1, X2, . . . Xn) ∼ Dn for a population distribution D where the attributes are grouped into
1-dependent blocks {B1, B2, . . . Bm}(sequences of consecutive attributes), and a stateful data
analyst A, M procedes as follows:

At each time step t ∈ [m], M has an arbitrary (ϵ, δ)-DP interaction with A in which
A asks linear queries about block Bt and M answers the queries in such a way that the
interaction is (α, β) sample accurate. The transcript is denoted by St.

Then, for every c, d > 0, M is (α′, β′) accurate where α′ = α + e2ϵ − 1 + c + 2d and
β′ = m

(
β
c + 2δ

d

)
.

Proof. First, for each i ∈ [m], we define a query answering mechanism M′
i and adversary

A′
i as follows:

M′
i takes as input the ith block of our original sample of n individuals (X1, X2, . . . Xn) ∼

Dn, which we will denote X(i). It then resamples the first i−1 blocks from Dn conditional on
X(i). We will refer to this database of the i−1 resampled blocks and the ith block as Y . Then,
A′

i and M′
i run Interact(M, A, Y ) for t from 1 to i, and we denote the transcript generated

at time t by this interaction as S′
i. While both parties may keep track of S′

1, S′
2, . . . S′

i−1,
only Si = S′

i is considered to be the transcript of this interaction.
Now, we note that the distribution of transcripts S1, S2, . . . , Si produced by M′

i and
M are identical. This is because, analogously to the proof of theorem 10, first sampling a
block and then sampling the rest of the data conditional on that block produces the same
distribution as sampling all of the data at once.

Now, we shall analyze the accuracy of M′
i. By definition, the first i − 2 blocks are

independent of X(i), so the part of Interact(M′
i, A′

i, X(i)) that generates S′
1, S′

2, . . . S′
i−2 is

independent of X(i) and thus does not incur any privacy loss with respect to X(i).
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For Si−1, recall that (X1, X2, . . . , Xn) are drawn from the distribution iid. Thus, when
we fix X(i) and resample the i − 1st block conditional on X(i), the value of the i − 1st block
of each individual Xj is a randomized mapping of the ith block the same individual Xj ,
independent of every other individual Xj′ . Then, the interaction between M′

i and A′
i on

block Bi−1 is (ϵ, δ)-DP with respect to the resample i − 1st block. Thus, by Lemma 11, the
part of Interact(M′

i, A′
i, X(i)) that generates Si−1 is (ϵ, δ)-DP.

Finally, because M is (ϵ, δ)-DP on the interaction in each block, the part of
Interact(M′

i, A′
i, X(i)) that generates Si is (ϵ, δ)-DP. As such, M′

i is (2ϵ, 2δ)-DP and (α, β)-
sample accurate. By theorem 3.5 from [10], M′

i is (α′, β′/m) distributionally accurate.
This tells us that M′

i is (α′, β′/m) distributionally accurate for each i, and just like in
Theorem 10, we can concatenate the transcripts Si computed from M′

i for each i to get the
transcript S1, S2, . . . , Sm with the same distribution as the interaction between M and A.
taking a union bound over the probabilities of failure over these m mechanisms tells us that
M is (α′, β′) distributionally accurate. ◀

5 Exponential Decay

Our final model directly captures the idea that the strength of the relationship between two
attributes should be decreasing with the distance between them. We model this via following
definition:

▶ Definition 13. In the decaying correlation model with parameter p, we are given attributes
B1, B2, . . . Bn, such that for each i, Bi and Bi+1 are independent with probability p, and
otherwise they are arbitrarily related. The event of Bi and Bi+1 being related and Bj and
Bj+1 being related are independent for all i ̸= j, and for any i < j, Bi and Bj are related iff
Bi′−1 is related to Bi′ for every i < i′ ≤ j.

With this model, there is some dependence between all of the attributes. However, due
to the way it is defined, the dependence only exists with small probability over the sample
between distant attributes. Thus, we can utilize similar arguments as above, and simply add
this small probability to the probability of failure.

▶ Theorem 14 (General Access). Given a database X in the decaying correlation model with
parameter p and m attributes, a mechanism M which satisfies the following properties while
interacting with an adversary A is (α′, β′)-distributionally accurate where for all integers
d > 0:

α′ = α + (eϵ − 1) + c + 2f, β′ = m

(
β

c
+ δ

f

)
+ 2n(1 − p)d+1.

1. For each i, M restricted to queries that involve at least one of the attributes
{Bi−2d, Bi−2d+1, . . . Bi+2d} is (ϵ, δ)-DP.

2. For each i, M restricted to queries that involve only attributes in the set
{Bi−d, Bi−d+1, . . . Bi+d} is (α, β) sample accurate.

3. Any query can only involve attributes Bi and Bj if |i − j| ≤ d.

Proof. Let D be the population distribution. For each i, we define a query answering
mechanism M′

i as follows:
M′

i takes as data the attributes {Bi−d, . . . , Bi+d} of n individuals (X1, X2, . . . Xn) ∼ Dn,
which we shall refer to as X(i). M′

i then constructs Y by sampling the attributes
{Bi−2d, Bi−2d+1, . . . , Bi−d−1, Bi+d+1, . . . , Bi+2d} for n individuals from the population D

conditional on agreeing with X(i) on the attributes {Bi−d, . . . , Bi+d}. The rest of the
attributes for these n individuals are sampled from D independently from X(i).
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Then, M′
i interacts with an adversary A by simulating M on the dataset Y . Any query

which asks about an attribute outside of the set {Bi−d, . . . , Bi+d} still takes place in the
interaction, but it is not recorded in the transcript.

This construction guarantees that our (α, β)-sample accuracy bound on M restricted to
queries that involve at least one of the attributes {Bi−d, Bi−d+1, . . . , Bi+d} also applies to
M′

i, since {Bi−d, . . . , Bi+d} are exactly the attributes M′
i takes as data, so sample accuracy

is well-defined over these queries.
The privacy loss of M′

i can be bounded by the privacy loss when we only consider queries
that involve at least one of the attributes {Bi−2d, Bi−2d+1, . . . , Bi+2d} since all of the other
attributes are sampled independently from the data. We are given that this is (ϵ, δ) − DP .

Thus, M′
i is (ϵ, δ) − DP and (α, β)-sample accurate. By the transfer theorem, M′

i on
the set of queries involving attribute Bi is (α′, β2)-distributionally accurate for

α′ = α + (eϵ − 1) + c + 2f, β2 = β

c
+ δ

f
.

Now, by construction, if we condition on Y ∼ X, we can get the same distribution of tran-
scripts as Interact(M′

i, A, X(i)) by computing the transcript of Interact(M, A, X) restricted
to queries that involve only attributes in the set {Bi−d, Bi−d+1, . . . , Bi+d}. Additionally,
by assumption 2, we know that the guarantee for M′

i applies to every query that involves
attribute Bi. As such, (α′, β2) bounds the distributional accuracy of all queries involving
attribute Bi in Interact(M, A, X). Thus, we can bound the distributional accuracy of M
by union bounding the probability that the distributional error of any answer in any of
{M′

1, M′
2, . . . M′

m} is greater than α′, conditional on Y ∼ X.
We get Y ∼ X iff X satisfies the property that all attributes outside of

{Bi−2d, Bi−2d+1, . . . , Bi−2d} are independent from all attributes in the set {Bi−d, . . . , Bi+d}.
This happens iff Bi−2d−1 is independent from Bi−d and Bi+2d+1 is independent from Bi+d

for every individual in X. This probability is at least 1 − 2n(1 − p)d+1 by taking a union
bound over the 2 attributes Bi−2d−1 and Bi+2d+1 for each of the n individuals.

As such we can bound the accuracy of the answers M produces to the queries involving
some attribute in the set {Bi−d, Bi−d+1, . . . Bi+d} by simply adding the probability that it
does not produce the same distribution of transcripts as M′

i to the probability of failure, so
it is (α′, β′)-distributionally accurate for

β′ = mβ2 + 2n(1 − p)d+1

or equivalently,

α′ = α + (eϵ − 1) + c + 2f, β′ = m

(
β

c
+ δ

f

)
+ 2n(1 − p)d+1

as desired. ◀

We can improve the parameters by constraining access to the sliding window model
studied in other contexts (see, for example, the tutorial [9] on sliding window aggregation
algorithms, and the references therein). Details may be found in the appendix.

6 Using the Label in the Mechanism

In this Section, we show that, at a small cost in accuracy, we can extend our results to analyses
that incorporate the labels. This is a pleasant surprise, as the labels are “morally” exposed
to high privacy loss. The key idea to note here is that even though we use the exact marginal
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distribution of the label, which cannot be done privately, the query-answering mechanisms
that we use as sub-processes take data without the label, for which no information has been
revealed to the adversary.

▶ Theorem 15. Suppose the following is true:
1. There is a binary attribute y which we refer to as the “label.”
2. We have a mechanism M0 which is (α0, β0)-distributionally accurate when y = 0 for

every individual in the distribution.
3. We have a mechanism M1 which is (α1, β1)-distributionally accurate when y = 1 for

every individual in the distribution.

Now, consider the mechanism M which on input S, runs as follows:
1. Partition S into samples S0 = {s ∈ S | s has y = 0} and S1 = {s ∈ S | s has y = 1}
2. When M receives query q from the adversary, it asks q to M0 on sample S0 and gets

answer a0. It then asks q to M1 on sample S1 and gets answer a1. M then returns the
answer

a0
|S0|
|S|

+ a1
|S1|
|S|

.

Let D be the population distribution, Dy be the marginal distribution of the label y, and
p = Pry∼Dy [y = 0]. Then, M is (α, β)-distributionally accurate for any δ > 0 and

α = pα0 + (1 − p)α1 + δp√
n

, β = β0 + β1 + 2e−2δ2
.

Proof. To approximate the population proportion, we want to take p times the output of M0
plus 1 − p times the output of M1. To see this, if we let D0 be the population distribution
when we let y = 0, and D1 be the population distribution when we let y = 1, then we have
for any query q, pq(D0) + (1 − p)q(D1) = q(D). Thus, for query qj , if we let aj be the answer
from M0 and a′

j be the answer from M1, we have

|paj + (1 − p)a′
j − qj(D)| =

∣∣p (aj − qj(D0)) + (1 − p)
(
a′

j − qj(D1)
)∣∣

≤ p|aj − qj(D0)| + (1 − p)|a′
j − qj(D1)|.

Now, if we let p̂ = |S0|
|S| , then we have by the triangle inequality

|p̂aj + (1 − p̂)a′
j − qj(D)| ≤ |p̂aj + (1 − p̂)a′

j − paj − (1 − p)a′
j | + |paj + (1 − p)a′

j − qj(D)|
≤ |(p̂ − p)(aj − a′

j)| + p|aj − qj(D0)| + (1 − p)|a′
j − qj(D1)|

≤ |(p̂ − p)| + p|aj − qj(D0)| + (1 − p)|a′
j − qj(D1)|

where the last inequality comes from the fact that the answers are bounded betweeen [0, 1].
Now, p̂ ∼ 1

n binom(n, p), so we can apply Chernoff to get that for any δ > 0,

Pr
[
|p − p̂| <

δp√
n

]
< 2e−2δ2

.

Furthermore, by assumption, we know that |aj − qj(D0)| ≤ α1 with probability 1 − β1,
and |a′

j − qj(D1)| ≤ α2 with probability 1 − β2. Thus, taking a union bound, we get that for
any δ > 0, M is (α, β)-sample accurate for

α = pα0 + (1 − p)α1 + δp√
n

, β = β0 + β1 + 2e−2δ2
. ◀
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7 Discussion

It is common practice in other fields to consider restricted classes of adversaries, where it is
often possible to obtain better bounds. For example, while Byzantine Agreement requires
n ≥ 3t + 1 processors if the number of arbitrary failures can be as large as t, it requires only
n ≥ t + 1 processors to handle t fail-stop faults. Similarly, in cryptographic protocols the
bounds for honest-but-curious adversaries are often better than for the case of processors
that diverge arbitrarily from the protocol.

This history, combined with the fact that an algorithm that only protects benign data
analysts could still be of use, naturally leads to the question of whether it is possible to get
better accuracy/adaptivity tradeoffs for more benign adaptive accuracy adversaries. Efforts
to define an appropriate class of benign failure modes were stymied, however, by Freedman’s
paradox, which states that when we have a dataset of n individuals and n attributes, all of
which are independent of a label y, we will find some attribute which is strongly correlated
with y with high probability. We feel this gives an example of a very natural error, naïve but
not malicious [7].

Our conclusion is that some restriction – e.g., on data models or access models – is
therefore required, which led to this work. It would be interesting to find other natural
restrictions that lead to improvements comparable to – or better than – those obtained in
this work.
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A Sliding Window Model for Exponential Decay

▶ Remark 16. The form of this bound looks mostly identical to the bound in Theorem 14, with
a slightly better probability of failure. However, one must note that the privacy guarantee is
now restricted to the set {Bi−2d, Bi−2d+1, . . . , Bi+d} rather than {Bi−2d, Bi−2d+1, . . . , Bi+2d}
as it was before, so this does in fact give us a multiplicative constant improvement over
Theorem 14.
▶ Theorem 17 (Sliding Window). Given a database X in the decaying correlation model with
parameter p and m attributes, a mechanism M which satisfies the following properties while
interacting with an adversary A is (α′, β′)-distributionally accurate where

α′ = α + (eϵ − 1) + c + 2f, β′ = m

(
β

c
+ δ

f

)
+ n(1 − p)d+1.

1. For each i, M restricted to queries that involve only attributes in the set
{Bi−2d, Bi−2d+1, . . . Bi+d} is (ϵ, δ)-DP.

2. For each i, M restricted to queries that involve Bi is (α, β)-sample accurate.
3. Any query can only involve attributes Bi and Bj if |i − j| ≤ d.
4. After answering a query involving attribute Bi, the mechanism can no longer answer

queries involving attributes B1, B2, . . . Bi−d.
Proof. We define X(i) and M′

i as in theorem 14, except we now stop the interaction imme-
diately after A asks the first query which involves an attribute in the set {Bi+d+1, . . . , Bm}
and before M′

i answers.
This interaction still contains every query which involves attribute Bi by assumption 4,

and these queries are all well-defined by assumption 3, so analogously to in theorem 14, M′
i

is (α, β)-sample accurate.
This time, the privacy loss of M′

i can be bounded by the privacy loss when we only
consider queries that involve the attributes {Bi−2d, Bi−2d+1, . . . , Bi+d} since there are no
queries asked about {Bi+d, Bi+d+1, . . . , Bi+2d}. We are given that this is (ϵ, δ) − DP .

Thus, M′
i is (ϵ, δ) − DP and (α, β)-sample accurate on all the queries in the transcript.

Hence, by the transfer theorem, M′
i on the set of queries involving attribute Bi is (α′, β2)-

distributionally accurate for

α′ = α + (eϵ − 1) + c + 2f, β2 = β

c
+ δ

f
.

In this setting, we cannot have any query involving {Bi+d+1, . . . , Bm} be answered by M′
i

or by M prior to any query involving Bi. Hence, this time, we note that the probability that
some attribute in {B1, B2, . . . , Bi−2d−1} is related to Bi−d is at most n(1 − p)d+1 by taking a
union bound over the n individuals, in which case Interact(M′

i, A, X(i)) restricted to queries
that involve attribute Bi produces the same distribution of transcripts as Interact(M, A, X)
restricted to queries that involve attribute Bi.

As such, similarly to in Theorem 14, we can bound the accuracy of the an-
swers in Interact(M, A, X) by adding the probability that X has some attribute in
{B1, B2, . . . , Bi−2d−1} related to Bi−d to the probability that any Interact(M′

i, A, i) has
an answer with error greater than α. Thus, it is (α′, β′)-distributionally accurate for

α′ = α + (eϵ − 1) + c + 2f, β′ = m

(
β

c
+ δ

f

)
+ n(1 − p)d+1. ◀
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Applications to Robust Differentially Secure Vector
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Abstract
Computing the noisy sum of real-valued vectors is an important primitive in differentially private
learning and statistics. In private federated learning applications, these vectors are held by client
devices, leading to a distributed summation problem. Standard Secure Multiparty Computation
protocols for this problem are susceptible to poisoning attacks, where a client may have a large
influence on the sum, without being detected.

In this work, we propose a poisoning-robust private summation protocol in the multiple-server
setting, recently studied in PRIO [14]. We present a protocol for vector summation that verifies that
the Euclidean norm of each contribution is approximately bounded. We show that by relaxing the
security constraint in SMC to a differential privacy like guarantee, one can improve over PRIO in
terms of communication requirements as well as the client-side computation. Unlike SMC algorithms
that inevitably cast integers to elements of a large finite field, our algorithms work over integers/reals,
which may allow for additional efficiencies.
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1 Introduction

We investigate the problem of distributed private summation of a set of real vectors, each
of Euclidean norm at most 1. Each client device holds one of these vectors and the goal
is to allow a server to compute the sum of these vectors. Privacy constraints require that
an adversary not learn too much about any of these vectors, and this constraint will be
expressed as a differential privacy [16] requirement.

This is a common primitive to private federated learning and statistics. In a setting of
a trusted server, the clients could send the vectors to the server, which could then output
the sum with appropriate noise added to ensure differential privacy. A natural solution
then is to use tools from secure multiparty computation to simulate this trusted server.
This approach goes back to the early days of differential privacy [15], and has been heavily
investigated [11, 8]. Practical protocols applying this approach have to deal with clients
dropping out during the protocol, and often scale poorly with the number of clients. The
security guarantee of SMC ensures that we learn nothing except the (noisy) sum. However,
a malicious client in many of these protocols can contribute a vector with arbitrarily large
norm and go completely undetected. Addressing this manipulability would require additional
modification to these protocols, making them less feasible.
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An elegant way out is possible under slightly stronger trust assumptions. Corrigan-Gibbs
and Boneh [14] show that if we have a set of S servers where at least one of them is trusted,
we can efficiently get both privacy and integrity1. In our application, this framework gives
a protocol that validates that each vector has norm at most 1, and computes the sum of
vectors. The security guarantee here says that other than the output and the fact that the
inputs have norm at most 1, any strict subset of servers learns nothing about the clients’
inputs. If the clients add a small amount of noise to their inputs, or more generally, use
a local randomizer, the final output can be shown to be differentially private. As long as
all the inputs are bounded in norm, the validity predicates are all 1 and hence have no
information. The overall security guarantee then says that the view of any strict subset of
servers is differentially private with respect to the input vectors.

Note that perfect secrecy here is impossible as the output itself leaks information about
the inputs. In the approach described above, What we compute does not leak too much
about the input since we are computing a differentially private output. How we compute it,
i.e. the computation protocol itself provides perfect secrecy subject to the output.

Our guarantee of interest is the leakage about any input from the process as well as the
output, i.e. the sum of the privacy costs from the what and the how. In this work, we relax
the secrecy guarantee of the protocol to a differential secrecy guarantee. We show that this
allows for simpler and more efficient algorithms for the robust vector summation problem.

As a warm-up, we first show a natural variant of secret sharing that satisfies differential
secrecy. We next show that one can privately verify that theof a secret-shared vector is
bounded, if one allows some slack. We present a simple protocol based on random projections.
Our protocol accepts all vectors of norm at most 1 with high probability. Additionally, a
vector with too large a norm (polylogarithmic in the parameters) will be rejected with high
probability. Thus we have some robustness: a malicious client can affect the sum by more
than norm 1, but not arbitrarily more. Our privacy proof here relies on a new result on the
privacy bounds for noisy random projections. Unusually for a differential privacy result, here
we exploit the randomness of the “query”. Compared to PRIO, our verification algorithm
requires no additional work from clients, and requires less communication between servers.

With secret-sharing and norm-verification over secret shares in place, our algorithm
for summation is simple. The clients secret-share their vectors, and the servers run the
norm-verification protocol on all the clients. For the clients that pass the norm verification,
each server adds up their secret shares. The servers now hold additive secret shares of the
summation, which can be communicated between servers to derive the vector summation.

This then eliminates the need for the client to perform any additional computation (Θ(d)
in PRIO) or communication (Θ(

√
d) [9] in PRIO). The validity check comes at zero cost to

the client. This comes at a small increase in the inter-server communication from 3 field
elements to a logarithmic number of real numbers.

Our algorithms can work over real numbers or integers, instead of finite fields. Compressing
these to reduce communication, for example by truncating or rounding does not affect the
privacy guarantee, allowing one to find a representation that provides an acceptable tradeoff
between accuracy and communication cost.

In practice, as we discuss in Section 7, this can be a significant saving, especially in settings
such as federated learning where the vectors being aggregated are high-dimensional gradients
and the client to server communication is often the bottleneck. For typical parameters, where
PRIO would need a large finite field needing 128 bits per coordinate (or at the very least 32
bits per coordinate), using real numbers can bring us down to 8 or 16 bits per coordinate.

1 We defer the precise definitions to Section 3
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Several natural questions remain. Our norm verification, and hence our robustness
guarantee for summation, is approximate. We reject vectors with large enough norm. It
would be interesting to reduce, or even eliminate this approximation, while maintaining the
efficiency advantages of our protocol. Given the practical relevance of robust summation,
it would also be compelling to improve distributed proofs of norm bound in the standard
PRIO setting.

Finally, relaxing perfect secrecy in secure multiparty computation, or more broadly in
cryptography to differential secrecy may allow for more efficient protocols in other settings.

2 Related Work

The question of simultaneously studying the differentially private function (the What) and
the cryptographic protocol for computing it (the How) was first studied by Beimel, Nissim
and Omri [5]. They showed that in the Secure Function Evaluation (SFE) setting without a
trusted server, one can provably gain in efficiency of the protocol for summing 0-1 values.
This differential privacy-based definition of security was subsequently used by Backes et
al. [2], who show that this relaxation allows one to use imperfect randomness in certain
cryptographic protocols.

Private anonymous summation protocols using mutliple servers go back to at least the
split-and-mix protocol of Ishai et al. [23]. In the context of differential privacy, these have
gained a lot of importance given recent results in the shuffle model of privacy [7, 17, 13, 4].
Recent works [3, 20, 19] have improved the efficiency of these results. These protocols however
suffer from the manipulability issue: it is easy for one malicious client to significantly poison
the sum without getting detected.

Another line of work [8] proposes practical secure summation protocol under different
trust assumptions. These protocols also suffer from the manipulability problem. Recent
works such as [29, 6] address the scaling challenges in that work.

The two-party version of some of these questions have been studied by [27, 22]. Kairouz,
Oh and Vishwanathan [25, 24] study private secure multiparty computation under a local
differential privacy constraint. In a different vein, Cheu, Smith and Ullman [12] show that
locally differentially private algorithms are fairly manipulable by small subsets of users, and
quantify their manipulability.

3 Definitions

We would like the protocol to satisfy several properties. We define appropriate notions of
these first.

▶ Definition 1 (Completeness). A protocol Π is (1 – β)-complete w.r.t. L if for all x ∈ L, the
protocol accepts x with probability at least (1 – β).

▶ Definition 2 (Soundness). A protocol Π is β-sound w.r.t. L if for x ̸∈ L, the protocol
accepts with probability at most β.

Let Lr denote the set of vectors with ∥ · ∥2 norm at most r . We will show completeness
w.r.t. L1 and soundness w.r.t. Lρ. for a parameter ρ > 1.

Additionally, we would like a mild relaxation of Zero Knowledge, inspired and motivated
by the notion of Differential Privacy. We first recall a notion of near-indistinguishability used
in Differential Privacy:
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▶ Definition 3. Two random variables P and Q are said to be (ε, δ)-close, denoted by
P ≈(ε,δ) Q if for all events S, Pr [P ∈ S ] ≤ exp(ε) · Pr[Q ∈ S ] + δ, and similarly, Pr [Q ∈
S ] ≤ exp(ε) · Pr[P ∈ S ] + δ

One can relax the secrecy requirements in cryptography to differential secrecy. Here we
define this notion for Zero Knowledge2.

▶ Definition 4. We say a protocol Π is (ε, δ)-Differentially Zero Knowledge w.r.t. L if there
is a distribution Q such that for all x ∈ L, the distribution Π(x) of the protocol’s transcript
on input x satisfies Π(x) ≈(ε,δ) Q.

Note that here we require privacy, or differential zero knowledge for x ∈ L. While one can
naturally define a computational version of this definition, along the lines of computational
differential privacy definitions [28], we restrict ourselves to the information-theoretic version
in this work.

In this work, we will be using multi-verifier protocols. Here the notion of near Zero
Knowledge is with respect to a strict subset of verifiers. The definition here is the simplest
one where the prover starts with an input x and verifiers start with no input, as this will
suffice for our purpose. It can naturally be extended to other setups, for example when the
verifiers already hold some shares of the input and a witness.

▶ Definition 5. A single-prover, multiple-verifier protocol Π is (ε, δ)-Differentially Zero
Knowledge w.r.t to a subset T of parties if there is a distribution Q dependent only on
inputs of T and the output of the protocol, such that for any input x ∈ L, the distribution of
messages from T c to T is (ε, δ)-close to Q.

Attack Models. In our work, the client will play the role of the prover, and the servers
will play the role of the verifiers. We interchangeably use client/server and prover/verifier
terminology as appropriate. We will prove completeness and privacy for honest-but-curious
prover. We will establish soundness against an arbitrary malicious provers. This implies that
a client that is behaving according to the protocol will get a strong privacy guarantee, and
will be accepted with high probability. A malicious client will still likely be caught, and may
not get a privacy assurance. Our protocols will have privacy against an a strict subset of
servers being malicious, as long as at least one of the servers is honest. The soundness and
completeness results will assume that all servers are honest. Thus some subsets of servers
behaving maliciously can hurt the utility of the protocol, but not the privacy.

For the robust aggregation problem, we argue the privacy of the process given the final
sum, and leave to a different argument the question of the privacy of the sum itself. The
protocol can easily be modified by adding noise to the sum to ensure that the sum itself is
private; this can be done by having each server add sufficient noise, or by implementing a
distributed noise-addition protocol. Our modular approach allows us to separately analyze
the privacy cost of the output of the protocol. In particular, we may apply different analyses
depending on whether we consider distributed noise addition, or apply local randomizers
and rely on privacy amplification by shuffling. We defer additional discussion to Section 7.

2 This is the local DP version of ZK which is appropriate in this setting. One can similarly define a central
DP version, where the simulator has access to all but one client’s input
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Secure Summation
The secure summation problem is defined as follows. There is a set of N clients with client i
holding a vector xi ∈ Rd with ∥xi∥ ≤ 1. Our goal is to design a protocol with S servers such
that for suitable parameters ε, δ, ρ, β, the following properties hold:
Correctness: When all parties are honest, the protocol allows a designated server to compute

a vector y ∈ Rd such that y =
∑

i xi with probability at least (1 – β).
Privacy: For any honest client i, the protocol is (ε, δ)-Differentially Zero Knowledge w.r.t.

any subset of parties that excludes at least one server.
Robustness: For any possibly malicious client i, the computed summation y differs from

the output y–i without client i in norm by at most ρ, i.e. ∥y – y–i∥2 ≤ ρ, except with
probability at most β.

In words, we would like a protocol that is private w.r.t. to any honest client as long as
at least one of the S servers is honest. Thus an honest client that trusts at least one of the
servers to be honest is assured of a differential privacy guarantee. The robustness property
gives an integrity guarantee if all servers are honest. The parameter ρ ≥ 1 controls how much
any client can impact the output of the protocol. Note that a malicious client can always
behave as if their input was x′

i for any arbitrary vector of norm 1. The robustness requirement
here puts an upper bound on how much a malicious client can distort the summation The
correctness and robustness properties will allow failure with probability β. Depending on the
application, a small constant β may be acceptable.

4 Preliminaries

We state two important properties of the differential privacy notion of closeness.

▶ Proposition 6. Suppose that P ≈(ε,δ) Q and P ′ ≈(ε′,δ′) Q′. Then
Post Processing: For any function f , f (P) ≈(ε,δ) f (Q).
Simple Composition: (P, P ′) ≈(ε+ε′,δ+δ′) (Q, Q′).
The following is a restatement of the privacy of the Gaussian mechanism [16, Thm A.1].

▶ Lemma 7. Let ε, δ > 0 and let x ∈ Rd satisfy ∥x∥2 ≤ 1. Let P ∼ N (0, σ2Id) and let
Q ∼ x + N (0, σ2Id). Then P ≈(ε,δ) Q if σ ≥ 2

√
ln 2

δ
/ε.

We next prove the following simple result on the privacy properties of noisy random projec-
tions.

▶ Lemma 8. Let G be a random matrix in Rk×d such that for a constant cδ, every x ∈
Rd , ∥x∥ ≤ 1 satisfies

Pr[∥Gx∥ ≥ cδ] ≤ δ, (1)

where the probability is taken over the distribution of G. Let σ = 2cδ

√
ln 2

δ
/ε. Then for any

x ∈ Rd with x ≤ 1,

(G, N (0, σ
2Ik)) ≈(ε,2δ) (G, Gx + N (0, σ

2Ik)).

Proof. Fix x and let E be the event that ∥Gx∥ ≥ cδ. By Lemma 7, we have that conditioned
on the event E ,

(G, N (0, σ
2Ik)) ≈(ε,δ) (G, Gx + N (0, σ

2Ik)).

By Equation (1), Pr[E ] ≥ 1–δ. The claim now follow from the definition of (ε, δ)-closeness. ◀
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We next recall a version of the Johnson-Lindenstrauss lemma on the length of random
projections.

▶ Lemma 9 (Gaussian Ensemble JL). Let G ∈ Rk×d be a random matrix where each
Gij ∼ N (0, 1

k ). Then for any x ∈ Rd with ∥x∥ ≤ 1,

Pr[∥Gx∥ ̸∈ (1 ± O(
√

(ln 1
δ
)/k))∥x∥] ≤ δ

To get more precise estimates, we recall that the sum of squares of k N (0, 1
k ) random variables

is distributed as a (scaled version of a) chi-square distribution χ2
k . We will use the following

tail bounds for χ2
k random variables from Laurent and Massart [26, Lemma 1 rephrased]:

▶ Theorem 10. Let Q be a χ2
k random variable. Then for any β > 0,

Pr[ 1k Q ≤ 1 – 2
√

x/k] ≤ exp(–x),

Pr[ 1k Q ≥ 1 + 2
√

x/k + 2x/k] ≤ exp(–x).

Combining Theorem 10 with Lemma 8, we get the following useful corollary.

▶ Corollary 11. Let G ∈ Rk×d be a random matrix where each Gij ∼ N (0, 1
k ) and let

cδ =
√

1 + 2
√

(ln 1
δ
)/k + 2(ln 1

δ
)/k. Let σ = 2cδ

√
ln 2

δ
/ε. Then for any x ∈ Rd with x ≤ 1,

(G, N (0, σ
2Ik)) ≈(ε,2δ) (G, Gx + N (0, σ

2Ik)).

5 Warm-up: Secret Sharing Real-valued Vectors

As a prelude to our result on norm verification, we first show how the standard secret sharing
protocol extends to real-valued vectors, when allowing for Differential secrecy. Consider the
protocol for secret-sharing a real-valued vector of norm at most 1 between S servers shown
in Algorithm 1.

Algorithm 1 Secret Sharing a real vector.

1 Prover(x):
Input: Vector x ∈ Rd with ∥x∥ ≤ 1.
Parameters: σSS ∈ R.

2 Generate g1, . . . , gS–1 ∼ N (0, σ
2
SSId) using private randomness.

3 Send x –
∑S–1

i=1 gi to Verifier 0.
4 for i = 1 . . . S – 1 do
5 Send gi to Verifier i.

To prove the differential secrecy for this protocol, we show a simulator for any subset of
verifiers in Algorithm 2.

We next argue that this secret sharing scheme is differentially secure.

▶ Theorem 12. Fix any T ⊊ [S ]. Then Prover(x)|T ≈(ε,δ) Simulator(T) for (S – |T |)σ2
SS ≥

4 ln 2
δ
/ε2.
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Algorithm 2 Simulator for Algorithm 1.

1 Simulator(T ⊊ [S ]):
Input: T proper subset of S
Parameters: σSS ∈ R.

2 for i ∈ T do
3 if i ̸= 0 then
4 Generate gi ∼ N (0, σ

2
SSId).

5 Send gi to Verifier i.

6 if 0 ∈ T then
7 Generate g ∼ N (0, (S – |T |)σ

2
SSId).

8 Send g –
∑

i∈T;i ̸=1 gi to Verifier 0.

Proof. If 0 ̸∈ T , the simulation is perfect: indeed each verifier in T receives an independent
Gaussian vector with variance σ2

SSId in both distributions. When 0 ∈ T , consider the
distribution of the message to Verifier 0 conditioned on T \ [0].

The simulator output to Verifier 0 is distributed as N (–
∑

i∈T;i ̸=–0 gi , (S – |T |)σ2
SSId).

The message to verifier 0 from the prover, conditioned on {gi}i∈T:i ̸=0 is distributed as
N (x –

∑
i∈T;i ̸=0 gi , (S – |T |)σ2

SSId). The claim now follows from the privacy of the Gaussian
mechanism (Lemma 7). ◀

The differential secrecy implies that an honest prover’s privacy is protected against an
arbitrary collusion of verifiers short of all of them. Note also that by making σSS larger, we
can improve the privacy cost. A larger σSS only costs us in terms of the precision to which
these messages should be communicated to ensure that the sum of secret shares is close to
x. Note that we can post-process these vectors (both in the algorithm and its simulation),
e.g. by rounding or truncation. By the post-processing property of differential privacy, the
differential secrecy is maintained.

6 Differential Zero Knowledge Proofs of bounded norm

We next describe our DZK protocol to verify a Euclidean norm bound. The first step is to
secret-share the vector between the two verifiers as in the previous section. The rest of the
protocol only involves the verifiers; the prover code therefore is identical to secret-sharing.

The second step is norm estimation and happens amongst the verifiers. As a first cut,
suppose that the servers aggregate their shares, while adding noise to each share to preserve
privacy. This would require adding d-dimensional gaussian noise to each share. This noise
being fresh and independent will contribute to the norm of the computed sum, which will
now be about

√
d, and will have variance growing polynomially with d. This will make it

impossible to estimate the norm better than some polynomial in d, and thus our gap ρ will
grow polynomially with the dimension.

To improve on this, we will use random projection into a k-dimensional space for a
parameter k independent of the dimension. Being a lower-dimensional object, a projection
can be privately estimated much more accurately. The choice of the projection dimension k
will give us a trade-off between the privacy parameters and the gap assumption. Intuitively,
we rely on the Johnson-Lindenstrauss lemma, which says that the Euclidean norm of a vector
is approximately preserved under random projections. Since projection is a linear operator,
computing the projection of a secret-shared vector is straight-forward. Verifier 0 here takes
the special role of collecting an estimate of a random projection of x, computing its norm
and sharing the Accept/Reject bit.
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Algorithm 3 Protocol for Norm Verification.

Input: Prover has a vector x ∈ Rd

Output: Verifiers must agree on Accept.
1 Prover(x):

Input: Vector x ∈ Rd with ∥x∥ ≤ 1.
Parameters: σSS ∈ R.

2 Generate g1, . . . , gS–1 ∼ N (0, σ
2
SSId) using private randomness.

3 Send x –
∑S–1

i=1 gi to Verifier 0.
4 for i = 1 . . . S – 1 do
5 Send gi to Verifier i.

1 Verifier-0 :
Parameters: Integer k. Threshold τ ∈ R.

2 Receive z0 from Prover. // Expected to be x –
∑S–1

i=1 gi

3 Generate W ∈ Rk×d with each Wij ∼ N (0, 1
k ) using private randomness.

// This version assumes honest Verifier 0. To allow malicious Verifier 0,
W is generated using randomness shared amongst verifiers.

4 Send W to Verifiers 1, . . . , S – 1.
5 for i = 1 . . . S – 1 do
6 Receive yi from Verifier i. // Expect yi = Wgi + Noise.

7 Compute v = Wz0 +
∑S–1

i=1 yi + N (0, σ
2
vIk). // Expect v = Wx + Noise.

8 if |v| ≥ τ then
9 Accept = 0

10 else
11 Accept = 1
12 Send Accept to Verifiers 1, . . . , S – 1.

1 Verifier-i (i ≥ 1):
Parameters: Integer k. Noise scale σv ∈ R.

2 Receive zi from Prover. // Expected to be gi

3 Receive W ∈ Rk×d from Verifier-0.
4 Compute yi = Wzi + N (0, σ

2
vIk).

5 Send yi to Verifier-0.
6 Receive Accept from Verifier-0.

We start with establishing compeleteness, which will determine the acceptance threshold
τ. We will then show soundness for an appropriate ρ.

▶ Theorem 13 (Completeness). Suppose that the prover and the verifiers are honest and the

∥x∥ ≤ 1. Then for τ ≥
√

( 1
k + |S |σ2

v)(k + 2 ln 1
β

+ 2
√

k ln 1
β
),

Pr[Accept = 1] ≥ 1 – β.

Proof. Under the assumptions, W x is distributed as N (0, ∥x∥2
2

k I). The noise added by each
server is distributed as N (0, σ2

vI), and all of these Gaussian random variables are independent.
Thus v computed by Verifier 0 is distributed as N (0, ( ∥x∥2

2
k + |S |σ2

v)I), and its squared norm
is distributed as ( ∥x∥2

2
k + |S |σ2

v)Q, where Q is a χ2
k random variable. Thus

Pr[∥v∥2
2 ≥ τ

2] = Pr[Q ≥ ( 1
k + |S |σ2

v)–1
τ

2].

Plugging the upper tail bounds from Theorem 10, the result follows. ◀
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▶ Theorem 14 (Soundness). Suppose that the verifiers are honest and suppose that
∥

∑S–1
i=0 zi∥ ≥ ρ, where zi is the message to verifier i. Then for ρ2 ≥ kτ

2

k–2
√

k ln 1
β

– k|S |σ2
v,

Pr[Accept = 1] ≤ β.

Proof. As in the proof of Theorem 13, now ∥v∥2
2 is distributed as ( ρ

2

k + |S |σ2
v)Q for a χ2

k
random variable Q. Using the lower tail bounds from Theorem 10, it suffices to ensure

(ρ2

k + |S |σ2
v)(k – 2

√
k ln 1

β
) ≥ τ

2.

Rearranging, the claim follows. ◀

Some discussion on k is in order. A small k ensures that we need to add less noise and
thus get better estimates. At the same time, larger k ensures stronger concentration of the
χ2

k random variable. For intuition, we next estimate the bound on ρ2 from Theorem 14,

plugging in τ from Theorem 13. Setting λ =
√

ln 1
β

k and assuming λ is small enough, we can
write

ρ
2 = kτ2

k – 2
√

k ln 1
β

– k|S |σ2
v

= (1 + k|S |σ2
v)

k + 2 ln 1
β

+ 2
√

k ln 1
β

k – 2
√

k ln 1
β

– k|S |σ2
v

= (1 + k|S |σ2
v)1 + 2λ + 2

√
λ

1 – 2
√

λ
– k|S |σ2

v

≈ (1 + k|S |σ2
v)(1 + O(

√
λ)) – k|S |σ2

v

= 1 + O(k|S |σ2
v
√

λ)

≈ 1 + O(|S |σ2
vk 1

2 (ln 1
β

) 1
4 ).

Taking k = Θ(
√

ln 1
β
) suffices to ensure λ is small enough for the approximations above to

be valid. This leads to ρ2 = Θ(|S |σ2
v

√
ln 1

β
). In practice, one may want to use the exact cdf

for the χ2
k distribution instead of the tail bounds used in the theorems.

We now prove the differential zero knowledge property of the algorithm. We assume that
verifier 0 is honest. We will then relax this assumption using shared randomness.

▶ Theorem 15 (DZK assuming honest Verifier 0). Suppose that ∥x∥2 ≤ 1. If the prover
and Verifier-0 are honest, then for any T ⊂ [S ] \ {0}, T’s view is (ε, δ)-DZK as long as
σv ≥ 2cδ

√
ln 4

δ
/ε.

Proof. The simulator is defined in Algorithm 4. The simulator sends messages to verifiers in
T in steps 4, 6, and 13. The messages in steps 4 and 6 follows exactly the same distribution
as that in the mechanism, with all gi ’s and the matrix W being independent normal. The
message in step 13 is the Accept bit, which is computed as a post-processing of the vector
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Algorithm 4 Simulator for Algorithm 3.

1 Simulator(T ⊊ [S ]; 0 ̸∈ T):
Input: T proper subset of S
Parameters: σSS , σv, τ ∈ R, integer k.

2 for i ∈ T do
3 Generate gi ∼ N (0, σ

2
SSId).

4 Send gi to Verifier i.
5 Generate W ∈ Rk×d with each Wij ∼ N (0, 1

k ).
6 Send W to each Verifier in T .
7 Receive {yi}i∈T .
8 Compute vSim =

∑
i∈T (yi – Wgi) + N (0, (S – |T |)σ

2
vIk).

9 if |vSim | ≥ τ then
10 Accept = 0
11 else
12 Accept = 1
13 Send Accept to all verifiers.

vSim computed in step 8. The corresponding Accept bit in the protocol is obtained by the
same post-processing of v computed by Verifier 0 in step 6. Since the prover is honest, we
can write:

(W, v) = (W, Wz0 +
S–1∑
i=1

yi + N (0, σ
2
vIk))

= (W, W(x –
S–1∑
i=1

gi) +
S–1∑
i=1

yi + N (0, σ
2
vIk))

= (W, W(x –
S–1∑
i=1

gi) +
∑

i∈T;i ̸=0
yi +

∑
i ̸∈T;i ̸=0

yi + N (0, σ
2
vIk))

= (W, Wx +
∑

i∈T;i ̸=0
(yi – Wgi) +

∑
i ̸∈T;i ̸=0

(yi – Wgi) + N (0, σ
2
vIk)).

Since provers outside of T follow the protocol,

(W, v) = (W, Wx +
∑

i∈T;i ̸=0
(yi – Wgi) +

∑
i ̸∈T;i ̸=0

N (0, σ
2
vIk) + N (0, σ

2
vIk))

= (W, Wx +
∑

i∈T;i ̸=0
(yi – Wgi) + N (0, (S – |T |)σ

2
vIk))

= (W, (Wx + N (0, (S – |T |)σ
2
vIk)) +

∑
i∈T;i ̸=0

(yi – Wgi))

≈(ε,δ) (W, N (0, (S – |T |)σ
2
vIk) +

∑
i∈T;i ̸=0

(yi – Wgi))

= (W, vSim).

Here we have used Corollary 11 in the second to last step. ◀

The honest prover assumption is necessary to give privacy to the prover. The assumption on
Verifier 0 being honest is necessary as well in the protocol as stated: a malicious Verifier 0
that can choose an adversarial W can violate the privacy constraint. For example, a verifier
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that knows that the true x lies in a certain k-dimensional subspace can choose the projection
matrix W to project to that subspace. This will make the projected vector to have length
much larger than 1, and invalidate the assumptions in Lemma 8. We next show that this is
the only place where we need Verifier 0 to be honest. Thus given a distributed oracle for
randomly selecting W, e.g. using shared randomness, we have privacy as long as one of the
Verifiers is honest.

▶ Theorem 16 (DZK assuming randomly chosen W). Suppose that ∥x∥2 ≤ 1. Further suppose
that the prover is honest and the matrix W shared in Step 4 by Verifier 0 is uniformly random.
Then for any T ⊊ [S ], T’s view is (ε + ε′, δ + δ′)-DZK as long as σv ≥ 2cδ

√
ln 4

δ
/ε and

σSS ≥ 2
√

ln 2
δ′ /ε′.

Proof. The proof is nearly identical to the previous proof. When 0 ̸∈ T , the theorem follows
from Theorem 15. When Verifier 0 is in the set, the secret sharing itself is (ε′, δ′)-DZK,
by Theorem 12. The rest of the protocol is (ε, δ)-DZK by repeating the proof of Theorem 15.
The result follows. ◀

7 Application to Robust Secure Aggregation

Our protocol for robust secure aggregation (Algorithm 5) builds on the additive secret shares
with norm bound verification. The prover part of the protocol is nearly identical to secret
sharing, with the only change being that the client sends its identifier j with all the shares.
We assume that each client has a unique identifier, though this assumption can be easily
relaxed by having the client send a random nonce instead of its identifier.

The verifiers execute the norm verification protocol for each client. Verifier 0 constructs
the set of indices J ∗ that pass the norm verification and shares it with all the verifiers. The
verifiers optionally check that J ∗ is large enough; this part is not needed for our summation
protocol, but can be useful to ensuring that the sum itself is differentially private. The
verifiers now add up the secret shares for the provers in J ∗ and share the sum with Verifier
0, that adds up the sums of secret shares to derive the sum.

Algorithm 5 Client Protocol for Robust Secure Aggregation.

Input: Prover j has a vector xj ∈ Rd

Output: Verifiers compute
∑

j xj

1 Proverj(xj):
Input: Vector xj ∈ Rd with ∥xj∥ ≤ 1.
Parameters: σSS ∈ R.

2 Generate g1, . . . , gS–1 ∼ N (0, σ
2
SSId) using private randomness.

3 Send xj –
∑S–1

i=1 gi to Verifier 0.
4 for i = 1 . . . S – 1 do
5 Send (j, gi) to Verifier i.

The privacy proof is nearly identical to the last section. Indeed up to the computation of
J ∗, the protocol is exactly equivalent to the norm verification protocol. Verifiers other than
verifier 0 do not receive any additional message after J ∗, so that a simulator for a subset of
verifiers excluding verifier 0 is essentially identical to that in the previous section. Verifier
0 receives a set of vectors {si}. For i ̸= T , the simulator simulates si ∼ N (0, |J ∗|σ2

SSId)
subject to the sum of all si ’s being equal to the output. It can be easily verified that this
part of the simulation is exact. Privacy follows.
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Algorithm 6 Server Protocol for Robust Secure Aggregation.

Input: Prover j has a vector xj ∈ Rd

Output: Verifiers compute
∑

j xj

1 Verifier-0 :
Parameters: Integer k. Threshold τ ∈ R.

2 Receive V0 = {(j, zj
0)} from Provers. Let J0 = {j : (j, zj

0) ∈ V0}.
3 Generate W ∈ Rk×d with each Wij ∼ N (0, 1

k ) using private randomness.
4 Send W to Verifiers 1, . . . , S – 1.
5 for i = 1, . . . , S – 1 do
6 Receive Vi = {(j, yj

i)} from Verifier i. Let Ji = {j : (j, yj
i) ∈ Vi}.

7 Let J = ∩iJi .
8 for j ∈ J do
9 Compute vj = Wzj

0 +
∑S–1

i=1 yj
i + N (0, σ

2
vIk).

10 if |vj | ≤ τ then
11 add j to J ∗; // J ∗ collects j that pass the norm verification.

12 Send J ∗ to Verifiers 1, . . . , S – 1.
13 Optional: if not Valid(J ∗) then
14 Abort; // Ensure J ∗ is large enough.

15 s0 = 0.
16 for j ∈ J ∗ do
17 s0 = s0 + zj

0.
18 for i = 1, . . . , S – 1 do
19 Receive si from Verifier i.

20 Return
∑S–1

i=0 si .

1 Verifier-i (i ≥ 1):
Parameters: Integer k. Noise scale σv ∈ R.

2 Receive Vi = {j, zj
i)} from Provers. Let Ji = {j : (j, zj

i) ∈ Vi}.
3 Receive W ∈ Rk×d from Verifier-0.
4 for j ∈ Ji do
5 Compute yj

i = Wzj
i + N (0, σ

2
vIk).

6 Send {(j, yj
i)} to Verifier-0.

7 Receive J ∗ from Verifier-0.
8 Optional: if not Valid(J ∗) then
9 Abort; // Ensure J ∗ is large enough.

10 si = 0.
11 for j ∈ J ∗ do
12 si = si + zj

i .
13 Send si to Verifier-0.

We next prove the correctness. We wish to prove that when all the parties are honest,
then the sum is correctly computed except with a small failure probability. With probability
1 – nβ, each of the n norm verification steps succeed, so that J ∗ is the set of all clients.
Conditioned on this, the correctness of the secret sharing and the commutativity of addition
immediately imply that the sum computed by Verifier 0 is the desired sum of all vectors.

We note that for many applications such as gradient accumulation, a weaker correctness
notion may suffice. If J ∗ is a random subset of [n] with each j landing in J ∗ with probability
(1 – β), we get an unbiased estimate of the sum. For this weaker definition of correctness, the
failure probability does not need to be scaled by a multiplicative factor of n which translates
to a smaller threshold τ, and thus better robustness.
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Finally we argue robustness. Consider a client j. If the client secret-shares a vector with
norm at most ρ, then their affect on the computed sum is clearly at most ρ. On the other
hand, if client j’s shares add up to a vector of norm larger than ρ, it will be rejected by
the norm verification step except with probability β. This means that j ̸∈ J ∗ and j’s secret
shares do not contribute at all to the compute sum. Additionally, if j does not send messages
to all the verifiers, their input gets rejected as well.

When the validity check on J ∗ is added, the robustness claim is weaker. Indeed suppose
that the validity check compares |J ∗| to a threshold, say n

2 . Then the ( n
2 + 1)th malicious

client can cause the computation to abort. The robustness guarantee now says that if the
computation succeeds, then the effect of any potentially malicious client is bounded. Further,
we can argue that a small number of malicious clients cannot cause the computation to abort,
except with small probability.

We have thus established correctness, robustness and privacy of our protocol. For n clients
sending vectors in Rd , the communication cost for each client is O(d|S |). The communication
cost between servers is O(dk + nk + d|S |). Recall that a k = O(

√
ln n) suffices to get

polynomially small completeness and soundness.

On the Privacy of the Sum
We established the privacy of the protocol, conditioned on the sum. How do we ensure the
privacy of the sum itself? One option is to add differential privacy noise to the sum itself
to ensure privacy. If each verifier adds noise to si , we get a differential privacy guarantee
against any strict subset of the verifiers. The eventual noise variance for the sum then scales
with the number of servers.

An appealing alternative is to distribute the noise generation itself. This approach goes
back to Dwork et al. [15]. The question of generating noise on different clients such that the
sum has a certain distribution has been studied for this reason. While Gaussian noise has
the nice property that sum of gaussians is a gaussian, Laplace noise is also “divisible” [21, 3].
These arguments however require that the summation be done over real numbers. In
particular, this means that for privacy to hold, the constituents of the sum may need to be
communicated to sufficiently high precision even if the original vectors are {0, 1}. Works
such as [1] address this question of preserving privacy while reducing the communication.

Recent results on privacy amplification by shuffling offer an elegant way out of this
cononudrum. The general results in this direction [7, 13, 17, 4, 18] say that local random-
izers, when shuffled give strong central differential privacy guarantees. In particular, since
summation is a post-processing of shuffling, these results apply to the sum. The privacy-
accuracy trade-offs of the shuffle model are very competitive with the central model for
many settings [30, 18]. Moreover, in deployments where local randomizers are used for other
reasons, this approach avoids adding additional noise.

This ability to post-process without hurting privacy offers additional benefits. The
secret-shares themselves can be rounded, truncated, or compressed without hurting privacy.
For example, when the input vectors are {0, 1}, the secret sharing algorithm can use discrete
gaussian noise [10], and truncate all secret shares to [–B, B] for a suitable constant B. This
does not affect the privacy claim, and the truncation operator is the identity except with a
small probability depending on B. The small loss in accuracy due to rare truncation can
be analytically or empirically traded-off against the communication cost. As an example
B = 127 would suffice for encoding each bit as 8 bits, and would ensure that the likelihood of
any single bit being distorted, say for σSS = 20 is at most 10–8. This may be an acceptable
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error rate in applications where randomized response is used to generate the bit vectors.
In comparison the field size in PRIO must grow with the number of clients and for typical
values, one would use at least 32 bits.
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