
Controlling Privacy Loss in Sampling Schemes:
An Analysis of Stratified and Cluster Sampling
Mark Bun #

Department of Computer Science, Boston University, MA, USA

Jörg Drechsler #

Institute for Employment Research, Nürnberg, Germany
Joint Program in Survey Methodology, University of Maryland, College Park, MD, USA

Marco Gaboardi #

Department of Computer Science, Boston University, MA, USA

Audra McMillan #

Apple, Cupertino, CA, USA

Jayshree Sarathy1 #

Harvard John A. Paulson School of Engineering and Applied Sciences, Boston, MA, USA

Abstract
Sampling schemes are fundamental tools in statistics, survey design, and algorithm design. A
fundamental result in differential privacy is that a differentially private mechanism run on a simple
random sample of a population provides stronger privacy guarantees than the same algorithm run
on the entire population. However, in practice, sampling designs are often more complex than the
simple, data-independent sampling schemes that are addressed in prior work. In this work, we
extend the study of privacy amplification results to more complex, data-dependent sampling schemes.
We find that not only do these sampling schemes often fail to amplify privacy, they can actually
result in privacy degradation. We analyze the privacy implications of the pervasive cluster sampling
and stratified sampling paradigms, as well as provide some insight into the study of more general
sampling designs.
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1 Introduction

Sampling schemes are fundamental tools in statistics, survey design, and algorithm design.
For example, they are used in social science research to conduct surveys on a random sample
of a target population. They are also used in machine learning to improve the efficiency and
accuracy of algorithms on large datasets. In many of these applications, however, the datasets
are sensitive and privacy is a concern. Intuition suggests that (sub)sampling a dataset before
analysing it provides additional privacy, since it gives individuals plausible deniability about
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1:2 Controlling Privacy Loss in Sampling Schemes
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Figure 1 The structure of using a data-dependent sampling scheme.

whether their data was included or not. This intuition has been formalized for some types
of sampling schemes (such as simple random sampling with and without replacement and
Poisson sampling) in a series of papers in the differential privacy literature [23, 33, 11, 31].
Such privacy amplification by subsampling results can provide tight privacy accounting
when analysing algorithms that incorporate subsampling, e.g. [32, 1, 21, 28, 19]. However,
in practice, sampling designs are often more complex than the simple, data independent
sampling schemes that are addressed in prior work. In this work, we extend the study of
privacy amplification results to more complex and data dependent sampling schemes.

We consider the setting described in Figure 1. We have a population P and a historic
or auxiliary data set H which is used to inform the sampling design. We think about the
sampling scheme as a function C(H) of the historic or auxiliary data H. Using this sampling
scheme, we draw a sample S from the population P , on which we run the differentially
private mechanism M. We can think about these multiple steps as comprising a mechanism
MC(H, P ) working directly on the population P and the historic data H whose privacy
depends on the privacy of the mechanism M and on the properties of the sampling scheme
C(H). While this is the general framework for the problem we study, we state the technical
results in this paper for the simplified case where H = P ; see Section 2.1 for further discussion.

1.1 Our contributions
We primarily focus on two classes of sampling schemes that are common in practice: cluster
sampling and stratified sampling. In (single-stage) cluster sampling, the population arrives
partitioned into disjoint clusters. A sample is obtained by selecting a small number of
clusters at random, and then including all of the individuals from those chosen clusters. In
stratified sampling, the population is partitioned into “strata.” Individuals are then sampled
at different rates according to which stratum they belong to.

For these more complex schemes, we find that privacy amplification can be negligible even
when only a small fraction of the population is included in the final sample. Moreover, in
settings where the sampling design is data dependent, privacy degradation can occur – some
sampling designs can actually make privacy guarantees worse. Intuitively, this is because the
sample design itself can reveal sensitive information. Our goal in this paper is to explain
how and why these phenomena occur and introduce technical tools for understanding the
privacy implications of concrete sampling designs.

Understanding randomised and data-dependent sampling. It is simple to show that
deterministic, data-dependent sampling designs do not achieve privacy amplification, and
can suffer privacy degradation. Motivated by this observation, we start by studying the
privacy implications of randomised and data-dependent sampling, attempting to isolate their
effects in the simplest possible setting.
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Specifically, we aim to understand sampling schemes of the following form: For a possibly
randomised function f (an “allocation rule”), sample f(P ) individuals uniformly from P

without replacement. In Section 3, we study the case where f is randomised but data-
independent, i.e., the number of individuals samples is drawn from a distribution that
does not depend on P . We give an essentially complete characterization of what level of
amplification is possible in terms of this distribution.

In Section 4, we turn our attention to data-dependent sampling. We identify necessary
conditions for allocation rules f to enable privacy amplification by way of a hypothesis testing
perspective; intuitively, for f to be a good amplifier, every differentially private algorithm
must fail to distinguish the distributions of f(P ) and f(P ′) for neighboring P, P ′. We also
study a specific natural allocation rule called proportional allocation that is commonly applied
in stratified sampling. We design a simple randomised rounding method that offers a minor
change to the way proportional allocation is generally implemented in practice, but that
offers substantially better privacy amplification.

Cluster sampling. In Section 5, we study cluster sampling where a population partitioned
into k clusters is sampled by selecting m clusters uniformly at random without replacement.
Our results give tradeoffs between the privacy amplification achievable and the sizes of the
clusters. In particular, privacy amplification is possible when all of the clusters are small.
As the cluster sizes grow, the best achievable privacy loss rapidly approaches the baseline
of the privacy guarantee of M. We provide some insight into these results by connecting
the privacy loss to the ability of a hypothesis test to determine from a differentially private
output which clusters were included in the sample.

Stratified sampling. Building on our randomised rounding method for the “single-stratum”
case, we show that stratified sampling with the proportional allocation rule amplifies privacy.
Unfortunately, as in the single stratum case, there are natural lower bounds which limit
extending this approach to other common allocation rules.

A common goal when choosing an allocation function f (a function which decides how
many samples to draw from each stratum) is to minimise the variance of a particular statistic.
For example, the popular Neyman allocation is the optimal allocation for computing the
population mean. A natural question then is how to define and compute the optimal
allocation when privacy is a concern? In this work, we will formulate the notion of an optimal
allocation under privacy constraints. This formulation is somewhat subtle since the privacy
implications of different allocation methods need to be properly accounted for. Our goal is
to initiate the study of alternative allocation functions that may prove useful when privacy
is a concern.

1.2 Related work
Several works have studied the privacy amplification of simple sampling schemes. Kas-
iviswanathan et al. [23] and Beimel et al. [9] showed that applying Poisson sampling before
running a differentially private mechanism improves its end-to-end privacy guarantee. Sub-
sequently, Bun et al. [11] analyzed simple random sampling with replacement in a similar
way. Beimel et al. [10], Bassily et al. [7], and Wang et al. [34] analyzed simple random
sampling without replacement. Imola and Chaudhuri [20] provide lower and upper bounds on
privacy amplification when sampling from a multidimensional Bernoulli family, a task which
has direct applications to Bayesian inference. Balle et al. [5] unified the analyses of privacy
amplification of these mechanisms using the lenses of probabilistic couplings, an approach
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1:4 Controlling Privacy Loss in Sampling Schemes

that we also use in this paper. The effects that sampling can have on differentially private
mechanisms is also studied from a different perspective in [13]. However, none of the prior
works consider the privacy amplification of more complex, data-dependent sampling schemes
commonly used in practice. To the best of our knowledge, this paper is the first to do so.

2 Background

2.1 Data-dependent sampling schemes
In the data-driven sciences, data is often obtained by sampling a fraction of the population
of interest. This sample can be created in a wide variety of ways, referred to as the sample
design. Sample designs can vary from simple designs such as taking a uniformly random
subset of a fixed size, to more complex data-dependent sampling designs like cluster or
stratified sampling. Data-dependent sampling designs achieve accuracy and meet budgeting
goals by using historic or auxiliary data to exploit structure in the population. The privacy
implications of simple random sampling are quite well understood from prior work. In this
work, we will move beyond simple random sampling to analyse the privacy implications of
more complex sampling designs, including data-dependent sampling.

An outline of the schema for data dependent sampling designs is given in Figure 1.
There are ostensibly two datasets: H, the historic or auxiliary data that is used to design
the sampling scheme C(H), and P , the current population that is sampled from. For the
remainder of this paper, we make the simplifying assumption that H = P . That is, we will
not distinguish between the historic or auxiliary data and the “current” data. Even if we only
care about maintaining the privacy of the individuals in population P , this assumption is
required if we have no information about the relationship between H and P . Thus, we view
the function MC(P, H) as simply a function of P . We will refer to the size of the sample S

as the sample size, and the fraction |S|/|P | as the sampling rate.
More refined models can be obtained by imposing specific assumptions on the relationship

between H and P , for example, by modeling the temporal correlation between historic and
current data. We leave this for future work.

2.2 Differential privacy
Differential privacy (DP) is a measure of stability for randomised algorithms. It bounds the
change in the distribution of the outputs of a randomised algorithm when provided with two
datasets differing on the data of a single individual. We will call such datasets neighboring.
In order to formalise what a “bounded change” means, we define (ε, δ)-indistinguishability.
Two random variables P and Q over the same probability space are (ε, δ)-indistinguishable if
for all sets of outcomes E over that probability space,

e−ε(Pr(Q ∈ E) − δ) ≤ Pr(P ∈ E) ≤ eε Pr(Q ∈ E) + δ.

If δ = 0 then we will say that P and Q are ε-indistinguishable. For any n ∈ N, let Un be the
set of all datasets of size n over elements of the data universe U . Let U∗ = ∪n∈NUn be the
set of all possible datasets. We discuss two privacy definitions in this work corresponding to
two different neighboring relations: unbounded differential privacy and bounded differential
privacy. We will say two datasets are unbounded neighbors if one can be obtained from the
other by adding or removing a single data point, and bounded neighbors if they have the same
size, and one can be obtained from the other by changing the data of a single individual.
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▶ Definition 1. A mechanism M : U∗ → O is (ε, δ)-unbounded (resp. bounded) differentially
private (DP) if for all pairs of unbounded (resp. bounded) neighboring datasets P and P ′,
M(P ) and M(P ′) are (ε, δ)-indistinguishable.

We will use both bounded and unbounded DP throughout the paper as they are appropri-
ate in different settings. When considering which notion to choose, it is important to consider
which guarantees are meaningful in context. For example, it will be common in the sample
designs we cover for the size of the sample S (see Figure 1) to be data-dependent. When
considering these sampling designs, we will focus on mechanisms M that satisfy unbounded
DP since bounded DP does not protect the sample size. However, bounded DP may be more
appropriate for the privacy guarantee on MC in applications where it is unrealistic to assume
that an individual can choose not to be part of the auxiliary dataset or the population. For
example, the auxiliary data may be administrative data, data from a mandatory census, or
data from a monopolistic service provider. Results and intuition are often similar between
unbounded and bounded DP, although care should be taken when translating between the
two notions. We note in particular that any ε-unbounded DP mechanism is 2ε-bounded DP.

2.3 Privacy amplification with uniform random sampling
Sampling does not provide strong differential privacy guarantees on its own. But when
employed as a pre-processing step in a differentially private algorithm, it can amplify existing
privacy guarantees. Intuitively, this is because if the choice of individuals is kept secret,
sampling provides data subjects the plausible deniability to claim that their data was or
was not in the final data set. This effect was first explicitly articulated in [29], and a formal
treatment of the phenomenon was given in [5]. Three types of sampling are analysed in [5]:
simple random sampling with replacement, simple random sampling without replacement,
and Poisson sampling. In all three settings the privacy amplification is proportional to the
probability of an individual not being included in the final computation. To gain some
intuition before we move into the more complicated sampling schemes that are the focus on
this paper, let us state and discuss the results from [5].

▶ Theorem 2 ([5]). Let C be a sampling scheme that samples m values out of n possible
values without replacement. Given an (ε, δ)-bounded differentially private mechanism M,
we have that MC is (ε′, δ′)-bounded differentially private for ε′ = log(1 + m

n (eε − 1)) and
δ′ = m

n δ.

To consider the implications of this result, notice that ε′ ≤ ε for all values of m ≤ n

so the sampled mechanism MC is strictly more private than the original mechanism M.
Further, taking into account the following two approximations which hold for small x,

ex − 1 ≈ x (1)
log(1 + x) ≈ x, (2)

we have that for small ε, ε′ ≈ m
n ε. So the degree of amplification in both parameters is

roughly proportional to the sampling rate m/n.

2.4 How do people use subsampling amplification results?
Suppose we have a dataset that contains n records, and we want to estimate the proportion
of individuals that satisfy some attribute in an ε-DP manner. Let us set our target privacy
guarantee to be ε = 1. To do this, we can simply compute the proportion non-privately and
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1:6 Controlling Privacy Loss in Sampling Schemes

add Laplace noise with scale 1/n. But, if we know that the dataset is a secret and simple
random sample from a population of 100n individuals, then adding Laplace noise with scale
1/n as before will actually yield a stronger privacy guarantee of ε′ = 0.01 for the underlying
population. To get ε′ = 1, we will need to add noise with scale only 1/(100n). In other
words, the secrecy of the sample means that the computation has more privacy inherently,
and therefore, we can add less noise in order to achieve the desired privacy guarantee.

Existing DP data analysis tools such as DP Creator [18, 17] employ privacy amplification
results to provide better statistical utility. For example, the DP Creator interface prompts
the user to input the population size if the data is a secret and random sample from a larger
population of known size and take advantage of the resulting boost in accuracy without
changing the privacy guarantee.

As we discussed before, privacy amplification results are also used to analyse algorithms
that incorporate subsampling as one of their components. Privacy amplification results
permit a tighter analysis of the privacy that these algorithm can guarantee. In particular,
these algorithms are quite common in learning tasks, e.g. [32, 1, 21, 28, 19].

3 Randomised data-independent sampling rates

While we are ultimately interested in data-dependent sampling designs, we begin with an
extension of Theorem 2 to non-constant but data-independent sampling rates. Prior results on
privacy amplification by subsampling [23, 33, 11, 31, 6] all focus on constant sampling rates
where the sampling rate (the fraction of the data set sampled) is fixed in advance. However,
we will eventually see that randomising the sample rate is essential to privacy amplification
when the target rate is data dependent. To work toward this eventual discussion, we first
study the data-independent case to gain intuition for what properties of the distribution on
sampling rates characterize how much privacy amplification is possible.

Suppose that there is a random variable t on [n] and the sampling scheme is as follows:
given a dataset P , a sample m is drawn from t, and then m subjects are drawn without
replacement from P to form the sample S. In this section we consider unbounded differential
privacy2 for M and bounded differential privacy for MC , where the total number of cases,
n, is known and fixed. A simple generalisation of Theorem 2 immediately implies that the
privacy loss of this randomised scheme is no worse than if t was concentrated on the maximum
value in its support. However, prior work does not give insight into what happens when t

is concentrated below its maximum or is evenly spread. What property of the distribution
characterises its potential for privacy amplification? The following theorem characterizes the
privacy amplification of sampling without replacement with data-independent randomised
sampling rates.
▶ Theorem 3. Let P be a dataset of size n, let t be a distribution over {0, 1, . . . , n}, and let
C : X → U∗ be the randomised, dataset-independent sampling scheme that randomly draws
m ∼ t and samples m records from P without replacement. Define the distribution t̃ on [n]
where t̃(m) ∝ eεm · t(m) for all m ∈ [n].
Upper bound: Let M : U∗ → O be an ε-unbounded DP algorithm. Then, MC is ε′-bounded
DP, where

ε′ = log
(

1 + 1
n

· Em∼t̃[m] · (eε − 1)
)

.

2 Note that we must use the unbounded differential privacy definition for M in this setting; otherwise,
the sample size m would be fixed.
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Lower bound: There exists neighboring datasets P and P ′ of size n, and an ε-unbounded
DP mechanism M such that if MC(P ) and MC(P ′) are ε′-indistinguishable then

ε′ ≥ − log
(

1 − 1
n

· Em∼t̃[m] · (1 − e−ε)
)

First notice that Theorem 3 comports with the generalization of Theorem 2; as expected,
if the support of t is contained within [0, m′] then Em∼t̃[m] ≤ m′, so the randomised scheme
is at least as private as if t was concentrated on m′. It also determines that the property of
t that determines the privacy amplification is Em∼t̃[m], the expectation of an exponential
re-weighting of the distribution that gives more weight to larger sample sizes. When ε is
small, the simple approximations ex − 1 ≈ x, 1 − e−x ≈ x, and log(1 + x) ≈ x mean that
both the upper and lower bounds amount to

ε′ ≈ Em∼t̃[m]
n

· ε.

Due to the exponential re-weighting,

Em∼t̃[m] =
∑n

m=0 eεm Pr(t = m)m∑n
m=0 eεm Pr(t = m)

rapidly approaches n as the weight of t on values close to n increases. Intuitively, this means
that even a small probability of sampling the entire dataset can be enough to ensure that
there is no privacy amplification, even if the mode of t is much smaller than n. Conversely, if
t is a light tailed distribution (say, subgaussian) concentrated on a value much smaller than
n, then privacy amplification is possible.

For example, suppose that t is a truncated Gaussian on [0, n] with mean n/2 and standard
deviation σ. If t is highly concentrated then we expect the privacy guarantee of MC to be
≈ ε/2. As σ grows we expect the privacy guarantee to tend towards ε as more weight is
placed near n. In Figure 2, we illustrate the bounds of Theorem 3 numerically with this
Gaussian example. We can see that when n = 10, 000 and σ ≈ 800, the privacy guarantee of
MC is already close to ε = 0.01, the privacy guarantee of M.

4 Data-dependent sampling rates

We now turn our attention to sampling schemes where sampling rates may depend on the
data. The results in this section are motivated by stratified sampling, where the population is
stratified into k disjoint sub-populations called strata, and an allocation function is used to
determine how many samples to draw from each stratum. We will discuss stratified sampling
with k > 1 in Section 6, but for simplicity and clarity, we first focus on the “single stratum”
case. In this section, we develop tools and statements that we expect to be more broadly
useful in understanding complex sampling designs.

Specifically, we consider the sampling design where one selects a number of cases according
to a data-dependent function, and then samples that many cases via simple random sampling.
That is, let f̃ : U∗ → N be a possibly randomised function and let Cf be the sampling
function that on input P samples f(P ) data points uniformly without replacement from P .
If M is an ε-DP algorithm, then how private is MCf

?
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1:8 Controlling Privacy Loss in Sampling Schemes

Figure 2 Numerical computation of the upper and lower bounds from Theorem 3 when t is
truncated Gaussian supported on [0, n] with mean n/2, where n = 104 and standard deviation σ

varies from 1 to 103. The privacy parameter of the mechanism M is 0.01.

4.1 Sensitivity and privacy degradation

We first observe that if the function f used to determine sample size is highly sensitive,
then privacy degradation may occur. That is, if the number of cases sampled may change
dramatically on neighboring populations, then the output of a DP mechanism can immediately
be used to distinguish between those populations. For example, suppose P and P ′ are
neighboring populations, and f is a function where f(P ) = m and f(P ′) = m + ∆. (That
is, the local sensitivity of f at P is at least ∆.) Consider the ε-DP algorithm Mcount that,
on input a sample S, outputs the noisy count |S| + Lap(1/ε) of the number of cases in the
sample. Then Mcount

Cf
(P ) is distributed as m+Lap(1/ε) whereas Mcount

Cf
(P ′) is distributed

as m + ∆ + Lap(1/ε). When ∆ ≫ 1, these distributions are far apart; the privacy loss
between these two populations is ∆ · ε ≫ ε.

Thus, a necessary condition for achieving privacy amplification (rather than degradation)
is that the function f has low sensitivity. In the following sections, we explore other conditions
on low sensitivity functions that are necessary and sufficient for amplification.

4.2 Data dependent sampling and hypothesis testing

We established in the previous section that using a deterministic function to determine
sample size results in privacy degradation. This raises the question: how much randomness is
necessary to ensure privacy control? That is, what can we say about a randomised function
f̃ : U∗ → N with the property that MCf

is ε′-DP for every ε-DP mechanism M? In this
section we establish a connection between the amplification properties of a function f̃ and
hypothesis testing.

A simple hypothesis testing problem is specified by two distributions X and Y . A
hypothesis test H for this problem attempts to determine whether the samples given as input
are drawn i.i.d from X or from Y . If a hypothesis test is only given a single sample then we
define the advantage of H to be

adv(H; X, Y ) = Pr
m∼X

[H(m) = X] − Pr
m∼Y

[H(m) = X].
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That is, the advantage is a measure of how likely the hypothesis test H is to correctly guess
which distribution the sample was drawn from. The closer the advantage is to 1, the better
the test is at distinguishing X from Y .

One common explanation of differential privacy is that an algorithm is differentially
private if it is impossible to confidently guess from the output which of two neighbouring
datasets was the input dataset. This interpretation can be formalised, following [35], by
noting that if M is ε-DP and P and P ′ are neighbouring populations then for every hypothesis
test H,

adv(H; M(P ), M(P ′)) ≤ eε − 1 ≈ ε.

We can establish a similar bound and interpretation of what it means for f̃ to amplify
or preserve privacy. Suppose that f̃ is such that MCf̃

is ε′-DP for every ε-DP mechanism
M. Then in particular, for every ε-DP hypothesis test H, we have that H(MCf̃

(P )) and
H(MCf̃

(P ′)) are ε′-indistinguishable. Now, if we consider only hypothesis tests H : N →
{f̃(P ), f̃(P ′)} that simply look at the size of the sample Cf̃ (·), then we can formalise this
statement in the following way.

▶ Proposition 4. Suppose f̃ : U∗ → N is such that for all ε-DP mechanisms M, we have
that MCf̃

is ε′-DP. Then for all neighboring datasets P, P ′, we have

max adv(H; f̃(P ), f̃(P ′)) ≤ eε′
− 1,

where the optimisation is over all hypothesis tests H such that for all x ∈ N, and b ∈ {0, 1},
e−ε Pr(H(x) = b) ≤ Pr(H(x + 1) = b) ≤ eε Pr(H(x) = b).

This result helps us build intuition for what type of survey designs could possibly amplify
privacy. If f̃ results in privacy amplification then for any pair of neighbouring populations
P and P ′, the distributions f̃(P ) and f̃(P ′) must be close enough that they can not be
distinguished between by any hypothesis test H such that log H is ε-Lipschitz. From this
perspective the result in Section 4.1 follows from the fact that if f̃ is deterministic with high
sensitivity then we can define an appropriate hypothesis test with large advantage based on
Mcount. This is a useful perspective to keep in mind throughout the remainder of the paper.

One consequence of this perspective is a lower bound on how well we can emulate a
desired deterministic function f while controlling or amplifying privacy. Suppose that absent
privacy concerns, an analyst has determined that they want to use a function f to determine
the sample size. However, to avoid privacy degradation they replace f with a randomised
function f̃ . How close can f̃ get to f while maintaining or amplifying the original privacy
level? We can obtain a lower bound on expected closeness of f(P ) and f̃(P ) by relating it
to the well studied problem of estimation lower bounds in differential privacy.

▶ Proposition 5. Let f : U∗ → R and ε, ε′ > 0. Suppose f̃ : U∗ → N is a randomised
function such that for all ε-unbounded DP mechanisms M, it holds that MCf̃

is ε′-bounded
DP. If α ≥ 0 is such that for every ε′-unbounded DP mechanism A, there exists a dataset P

such that E[|A(P ) − f(P )|2] ≥ α, then there exists a dataset P such that

E[|f̃(P ) − f(P )|2] ≥ α −
(

1
ε

)2
.

Proof. Define MSS : U∗ → N as follows. For all P ∈ U∗, M(P ) = |P | + Lap(1/ε). Then
M is ε-unbounded DP. Suppose that f̃ : U∗ → N is such that for all ε-unbounded DP
mechanisms A, ACf̃

is ε′-bounded DP. This implies that MCf̃
(P )) = f̃(P ) + Lap(1/ε) is
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1:10 Controlling Privacy Loss in Sampling Schemes

ε′-bounded DP. Therefore, by the definition of α, there exists a population P such that
supP ∈Un E[|MCf̃

(P )) − f(P )|2] ≥ α. Also

α ≤ E[|MCf̃
(P )) − f(P )|2] = E[|f̃(P ) + Lap(1/ε) − f(P )|2] = E[]|f̃(P ) − f(P )|2] + (1/ε)2.

After a small amount of rearranging we arrive at the result. ◀

The problem of lower bounding differentially private function estimation is well-studied [30,
4] in the privacy literature. The lower bounds essentially arise from the fact that A(P ) and
A(P ′) must be similar distributions for neighbouring databases, even if f(P ) and f(P ′) are
far apart. Since we know from Proposition 4 that f̃(P ) and f̃(P ′) must also be close, we
obtain the related lower bound. The slackness of (1/ε)2 is a result of the fact that while
A(P ) and A(P ′) must be indistinguishable with respect to any hypothesis test, f̃(P ) and
f̃(P ′) need only be indistinguishable with respect to any ε-DP hypothesis test.

4.3 Privacy amplification from randomised rounding
Many functions used to determine data-dependent sampling rates have high sensitivity,
but at least one common sampling method has low sensitivity: proportional sampling. In
proportional sampling, a constant, data-independent fraction of the population is sampled
independently from each stratum. This method is similar to simple random sampling, but
a small amount of data dependence is introduced by the fact that the total number of
samples across all strata must be an integer. In this section, we will show that while naïve
implementations of proportional sampling can result in privacy degradation, a minor change
in the sampling size function results in privacy amplification comparable to that afforded by
simple random sampling.

Let r ∈ [0, 1] and f(P ) = r|P | for some constant r ∈ (0, 1). Since the output
space of f is not N, in practice, this is typically replaced with the deterministic function
f̃det,r(P ) = round(r|P |), where round(·) rounds its input to the nearest integer. Unfortu-
nately, deterministic rounding can be problematic for privacy, as we can see through a simple
example. Suppose P and P ′ are neighbouring populations such that |P | = 14, |P ′| = 15, and
r = 1/10. Then, deterministic rounding always results in one case being sampled from P

and two cases being sampled from P ′. As discussed in Section 4.1, such a data-dependent
deterministic function can never result in privacy amplification.

We propose a simple and practical change to the rounding process that does guarantee
roughly the expected level of privacy amplification. We replace the ideal function f with a
randomised rounding function f̃rand,r. That is, let p = r|P | − ⌊r|P |⌋ so f̃rand,r(P ) = ⌈r|P |⌉
with probability p, and f̃rand,r(P ) = ⌊r|P |⌋ with probability 1 − p. The following proposition
shows that, up to a constant factor, randomised rounding recovers the expected factor of r

in privacy amplification.

▶ Theorem 6 (Privacy Amplification from Randomised Rounding). Let r ∈ (0, 1). Then for
every ε-unbounded DP mechanism M, the mechanism MCf̃rand,r

is ε′-unbounded DP when
restricted to datasets of size at least 1/r, where ε′ = log

(
1 + 2r(e2ε − 1)

)
+log(1+r(e2ε−1)) ≈

6rε.

The approximation at the end of the proposition follows from applying (1) and (2), which
give that log(1 + 2r(exp(2ε) − 1)) ≈ 2r · 2ε and log(1 + r(exp(2ε) − 1)) ≈ r · 2ε. The
constant 6 can perhaps be optimized through a more careful analysis. Randomised rounding
is a practical modification since it does not change the size of the sample very much; if
traditional proportional allocation would typically assign m samples, then the modified
algorithm allocates at most m + 1.
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5 Cluster sampling

In cluster sampling, the population is partitioned into disjoint subsets, called clusters. A
subset of the clusters is sampled and data subjects are selected from within the chosen
clusters. If the sampling scheme uses a single stage design, all data subjects contained in the
selected clusters will be included in the sample. Otherwise, a random sample of data subjects
might be selected from each of the selected clusters (multi-stage design). Cluster sampling
produces accurate results when the clusters are mutually homogeneous; that is, when the
distributions within each cluster are similar to the distribution over the entire population.

In the survey context, cluster sampling is often performed due to time or budgetary
constraints which make sampling many units from a few clusters cheaper and/or faster
than sampling a few units from each cluster. A typical example in the survey context is
when clusters are chosen to be geographic regions. Sampling a few geographic clusters and
interviewing everybody in those clusters saves traveling costs compared to interviewing the
same number of people based on a simple random sample from the population. In algorithm
design, cluster sampling is often performed to improve the performance and accuracy of
classifiers. In this setting, sampling often involves a two-step approach where the data is first
clustered, using some clustering classifier, and then a subset of the clusters is selected. Forms
of cluster samplings have been applied in several learning areas, for example in federated
learning [16] and active learning [27].

5.1 Privacy implications of single-stage cluster sampling with simple
random sampling

We focus here on a simple cluster sampling design that is commonly used in survey sampling
and which naïvely appears to be a good candidate for privacy amplification: simple random
sampling without replacement of clusters. That is, suppose the dataset P is divided into k

clusters,

P = C1 ⊔ · · · ⊔ Ck

and the sampling mechanism Cℓ : U∗ → U∗ chooses a random subset I ⊂ [k] of size ℓ < k,
then maps P to ⊔i∈ICi.

Since simple random sampling at the individual level provides good privacy amplification,
one might expect the same to happen when the clusters are sampled in a similar way. In
fact, this is true when the size of each cluster is small. However, if the clusters are large this
sampling design achieves less amplification than might be expected. This is characterized by
the following theorem showing a lower bound in this setting.

▶ Theorem 7 (Lower Bound on Privacy Amplification for Cluster Sampling). For any sequence
ni > 0 and privacy parameter ε > 0, there exist neighboring populations P = C1 ⊔· · · Ci ⊔· · ·⊔
Ck and P ′ = C1 ⊔· · · C ′

i ⊔· · ·⊔Ck (with |Ci| = ni and C ′
i = Ci ∪{x} for some x ∈ U) and an

ε-unbounded DP mechanism M such that if MCℓ
(P ) and MCℓ

(P ′) are ε′-indistinguishable
then

ε′ ≥ ln
(

1 +
ℓ
k(

ℓ
k +

(
1 − ℓ

k

)
e−(ni+nmin)ε

) (eε − 1)
)

,

where ni = |Ci| and nmin = minj∈{1,··· ,i−1}∪{i+1,··· ,k} nj.
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We can compare the expression in the theorem above with the one we have for simple
random sampling without replacement (cf. Theorem 14 from [6]):

ε′ = ln
(

1 + m

n
(eε − 1)

)
,

where m samples are drawn from a population of size n. We see that the two expressions
coincide if ni + nmin = 0, which is an unrealistic corner case. Let us instead consider the case
in which all the clusters are small. In this case, the quantity ni + nmin will also be small,
and if ε < 1, we can still expect some privacy amplification. However, as the clusters grow in
size, the quantity ni + nmin will also increase, and the lower bound converges very quickly to
ε, giving essentially no amplification.

Next, we present a corresponding upper bound.

▶ Theorem 8 (Upper Bound on Privacy Amplification for Cluster Sampling). For any sequence
ni > 0, privacy parameter ε > 0, ε-unbounded DP mechanism M : U∗ → O, and pair of
neighboring populations P and P ′ such that P = C1 ⊔ · · · Ci ⊔ · · · ⊔ Ck and P ′ = C1 ⊔ · · · C ′

i ⊔
· · · ⊔ Ck (with |Ci| = ni and C ′

i = Ci ∪ {x} for some x ∈ U), the mechanisms MCℓ
(P ) and

MCℓ
(P ′) are ε′-indistinguishable where

ε′ ≤ ln
(

1 +
ℓ
k(

ℓ
k +

(
1 − ℓ

k

)
e−(ni+nmax)ε

) (eε − 1)
)

,

and nmax = maxj∈{1,··· ,i−1}∪{i+1,··· ,k} nj,

Once again it is worth comparing the expression in the theorem above with the one we have
for simple random sampling without replacement:

ε′ = ln
(

1 + m

n
(eε − 1)

)
.

Similar to the lower bound, the upper bound will quickly approach ε if the quantity ni +nmax
is large. If each cluster contains a single data point, the two bounds are close. This is not
surprising since in this case the type of cluster sampling we considered is just simple random
sampling without replacement. Note that while ℓ/k is the fraction of clusters included in the
final sample and m/n is the fraction of data points, these are approximately the same when
the clusters are small. If all the clusters are the same size, then nmax = nmin and the upper
and lower bounds we gave above match. The proofs of these results are contained in the
Appendix.

5.2 Discussion and hypothesis testing
Privacy amplification by subsampling is often referred to as secrecy of the sample due to the
intuition that the additional privacy arises from the fact that there is uncertainty regarding
which user’s data is in the sample. The key intuition then for Theorem 7 is that the larger
the clusters are, the easier it is for a differentially private algorithm M to reverse engineer
which clusters were sampled, breaking secrecy of the sample. Intuitively, if the clusters are
different enough that a private algorithm can guess which clusters were chosen as part of the
sample, then any amplification due to secrecy of the sample is negligible. We can formalize
this intuition using once again using the lens of hypothesis testing. Note the framing in this
section differs slightly from the framing in Section 4, although the underlying idea in both
settings is that if a particular hypothesis test is effective, then there is a lower bound on the
privacy parameter. In addition, note that privacy is also conserved in this setting, as MCℓ

is
at least as private as M. The question is: when is MCℓ

more private than M?
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▶ Theorem 9. Let ε > 0, ℓ ∈ [0, k], M : U∗ → O be ε-DP and the sampling mechanism Cℓ

be as defined in Section 5.1. Suppose there exists a hypothesis test H : O → {0, 1} such that

Pr(H(MCℓ
(P )) = 0 | Ci ∈ Cℓ(P )) ≥ eε′

Pr(H(MCℓ
(P )) = 0 | Ci /∈ Cℓ(P )).

Then there exists an event E in the output space of M such that for any neighboring population
P ′ that differs from P in Ci, if

ε′′ = log Pr(MCℓ
(P ) ∈ E|Ci ∈ Cℓ(P ))

Pr(M(Cℓ(P ′)) ∈ E|Ci ∈ Cℓ(P ′)) ∈ [0, ε],

and MCℓ
(P ) and MCℓ

(P ′) are ε̃-indistinguishable, then

ε̃ ≥ log
(

1 + (eε′′
− 1) ℓ/k

ℓ/k + e−ε′(1 − ℓ/k)

)
.

The key take-away of this theorem is that for any ε-DP mechanism M, if there exists
a hypothesis test that, when given the output of MCℓ

(P ), can confidently decide whether
cluster Ci was chosen as part of the final sample, then the privacy guarantee of MCℓ

is no
better than the privacy guarantee would be if we knew for certain that Ci was chosen as part
of the sample. That is, in this setting, we gain no additional privacy as a result of secrecy of
the sample. The parameter ε′ controls how well the hypothesis test can determine whether
Ci ∈ Cℓ. As ε′ increases, ε̃ approaches ε′′, the privacy parameter if Ci is known to be part of
the sample, so privacy amplification is negligible.

This view is consistent with Theorem 7. Consider a population where only data points
in cluster i have a particular property and let M is an ε-DP mechanism that attempts to
count how many data points with the property are in the final sample. If cluster i is large,
then it is easy to determine from the output of the mechanism whether Ci is in the final
sample. This example required cluster i to be distinguishable from the remaining clusters
using a private algorithm. While examples as extreme as the one above may be uncommon
in practice, clusters being different enough for a private algorithm to distinguish between
them is not an unrealistic assumption.

In Section 5.1, we analysed a single stage design. All subjects contained in the selected
clusters were included in the sample. In practice, multi-stage designs are common, where
a random sample of subjects are selected from within each chosen cluster. If the sampling
within each cluster is sufficiently simple then the privacy amplification from this stage can be
immediately incorporated into the upper bound in Theorem 8. For example, if each subject
within the chosen clusters is sampled with probability r and M is ε-DP, i.e., we perform
Poisson sampling with probability r, then we immediately obtain an upper bound that is
approximately rε. One can also imagine more complicated schemes for selecting the chosen
clusters. If these designs depend on properties of the data, then they are likely to result in
privacy degradation. We leave this study for future work.

6 Stratified sampling

Finally, we turn our attention to another common sampling design: stratified sampling. In
stratified sampling, the data is partitioned into disjoint subsets, called strata. A subset of
data points is then sampled from each stratum to ensure the final sample contains data
points from every stratum. Stratified sampling is common in survey sampling where it is used
to improve accuracy and to ensure sufficient representation of sub-populations of interest.
A classic use case of stratified sampling is business surveys, where businesses are typically
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stratified by industry and number of employees, or by similar measures of establishment
size. Stratification by establishment size results in substantial gains in accuracy compared
to simple random sampling, while stratification by industry ensures that reliable estimates
can be obtained at the industry level. Stratified sampling has several other applications; for
example it is used in algorithm design to improve performance [2, 24], in private query design
and optimization to improve accuracy [8], and to improve search and optimizations [25].

We focus here on one-stage stratified sampling using simple random sampling without
replacement within each stratum to select samples. We also assume that the stratum
boundaries have been fixed in advance. Given a target sample size m, the only design choice
in this model is the allocation function, which determines how many samples to take from
each stratum. Different allocation functions are used in practice. Which method is selected
depends on the goals to be achieved (for example, ensuring constant sampling rates across
strata or minimizing the variance for a statistic of interest).

Before we describe allocation functions in detail, let us establish some notation for
stratified sampling. Suppose there are k strata in the population, and that each data point
is a pair (s, x) where s ∈ [k] denotes which stratum the data subject belongs to, and x ∈ U
denotes their data. Let f = (f1, . . . , fk) : ([k] × U)∗ → Nk denote the allocation rule, so
fi(P ) samples are drawn uniformly at random without replacement from the ith stratum,
Pi = {(s, x) ∈ P | s = i}. The final sample S is the union of the samples from all the strata.

An important feature of stratified sampling is that the sampling rates can vary between
the strata. This means that data subjects in strata with low sampling rates may expect a
higher level of privacy than data subjects in strata with high sampling rates. This leads us
to define a variant of differential privacy that allows the privacy guarantee to vary between
the strata. This generalisation of differential privacy is tailored to stratified datasets and
allows us to state more refined privacy guarantees than the standard definition is capable of.

▶ Definition 10. Let k ∈ N and suppose there are k strata. A mechanism A satisfies
(ε1, · · · , εk)-stratified bounded differential privacy if for all datasets P , data points (s, x)
and (s′, x′), A(P ∪ {(s, x)}) and A(P ∪ {(s′, x′)}) are max{εs, εs′}-indistinguishable. The
mechanism A satisfies (ε1, · · · , εk)-stratified unbounded differential privacy if for all datasets
P , data points (s, x), A(P ) and A(P ∪ {(s, x)}) are εs-indistinguishable.

This definition is an adaptation of personalized differential privacy [22, 14, 3]. Note that
it protects not only the value of an individual’s data point, but also which stratum they
belong to.

6.1 Optimal allocation with privacy constraints
In this section, we will discuss how to think about choosing an allocation function when
privacy is a concern. A common goal when choosing an allocation f is to minimise the
variance of a particular statistic. That is, suppose that Cf represents one-stage stratified
sampling with allocation function f . Then, given a population P and desired sample size m,
the optimal allocation function f∗(P ) with respect to a statistic θ is defined as

f∗(P ) = arg min
f

var(θCf
(P )), (3)

where the randomness may come from both the allocation function and the sampling itself,
and the minimum is over all allocation functions such that ∥f(P )∥1 ≤ m for all P . 3

3 As an aside, we note that the notion of optimal allocations implicitly assumes that the historic or
auxiliary data, H, used to inform the sampling design and the population data P are the same, or at
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A natural question then is: what is the optimal allocation when one wants to compute the
statistic of interest differentially privately? This is a simple yet subtle question. Our results
in the previous sections indicate that the landscapes of optimal allocations in the non-private
and private settings may be very different. This is a result of the fact that allocation functions
that do not amplify well typically need to add more noise to achieve privacy (see discussion
in Section 2.4). The additional noise needed to achieve privacy may overwhelm any gains in
accuracy for the non-private statistic. Additionally, it is not immediately obvious how to
define the optimal allocation in the private setting.

In this section, we formulate the notion of an optimal allocation under privacy constraints.
Our goal is to initiate the study of alternative allocation functions that may prove useful
when privacy is a concern. A full investigation of this question is outside the scope of this
paper, but we provide some intuition for why this may be an interesting and important
question for future work.

Given a statistic θ, we wish to define the optimal allocation for estimating θ privately.
Let θ̃λ be an λ-DP algorithm for estimating θ, so θ̃λ(P ) is an approximation of θ(P ). The
smaller λ is, the noisier θ̃λ is. The scale of λ needed to ensure that θ̃λ

Cf
is ε-DP depends

on the allocation function f . Allocation functions that are very sensitive to changes in the
input dataset will require more noise (smaller λ) to mask changes in the allocation. For any
allocation f , we will define the optimal parameter λ as that which minimises the maximum
variance of θ̃λ

Cf
over all datasets P , while maintaining privacy:

λf =arg min
λ>0

sup
P

var(θ̃λ
Cf

(P ))
var(θCf

(P )) (4)

s.t. θ̃λ
Cf

is (ε1, · · · , εk)-stratified DP.

Now, by definition, θ̃
λf

Cf
is (ε1, · · · , εk)-stratified DP for any allocation function f . We

minimise the multiplicative increase in variance so that the supremum is not dominated by
populations P for which var(θCf

(P )) is large. Given privacy parameters ε1, · · · , εk ≥ 0, we
now define the optimal allocation as the allocation function that minimises the maximum
variance over all populations P :

f∗
ε = arg min

f
sup

P
var(θ̃λf

Cf
(P )). (5)

where the minimum again is over all allocations f such that ∥f(P )∥1 ≤ m for all P , and
the supremum is over all populations of interest. This optimisation function has a different
form to Eqn 3, which performs the optimisation independently for each population P . This
difference is necessary in the private setting as we need to ensure that the choice of allocation
function f∗

ε is not data dependent, since this would introduce additional privacy concerns.
We can view the optimal allocation as the optimal balancing between the variance of the
non-private statistic, and the scale of the noise needed to maintain privacy.

We believe that examining the difference between the optimal allocation in the non-private
setting (Eqn (3)) and in the private setting (Eqn (5)) is an important question for future
work. The main challenge is computing the parameter λf for every allocation f . Analysing
the privacy implications of f in the style of the previous sections gives us an upper bound
on λf , although this bound may be loose for specific statistics θ̃λ. So, while the previous
sections developed our intuition for λf , we believe new techniques are required to understand
this parameter enough to solve Eqn (5).

least similar enough that f∗(H) is a good proxy for f∗(P ). This provides further justification for the
assumption that H = P in our statements.

FORC 2022



1:16 Controlling Privacy Loss in Sampling Schemes

6.2 Challenges with optimal allocation
Optimal allocations are defined to perform well for a specific statistic of interest. However,
in practice, a wide variety of analyses will be performed on the final sample. The chosen
allocation function may be far from optimal for these other analyses. While this problem
exists in the non-private setting, it becomes more acute in the private setting. An allocation
function that is optimal for one statistic may result in privacy degradation (and hence low
accuracy estimates) for another.

We illustrate this challenge using Neyman allocation, which is often employed for business
surveys. Neyman allocation is the optimal allocation method for the weighted mean [26]:

θµ(S) = 1
|P |

k∑
i=1

|Pi|
|Si|

∑
x∈Si

x,

where |Pi| is the size of stratum i, and Si = S ∩ Pi. The estimator θµ(S) is an unbiased
estimate of the population mean for any stratified sampling design. Given a desired sample
size m, let fNeyman be the allocation function corresponding to Neyman allocation. Provided
each stratum is sufficiently large, fNeyman(P ) = (m1, · · · , mk), where

mi = |Pi|σ(Pi)∑k
j=1 |Pj |σ(Pj)

· m,

σ2(Pi) is the empirical variance in stratum i and sufficiently large means that mi ≤ |Pi|.
Neyman allocation is deterministic and can be very sensitive to changes in the data due to
its dependence on the variance within each stratum. So, while it can provide accurate results
for some statistics, it provides very noisy results for other statistics of potential interest (e.g.
privately computing strata sizes).

To demonstrate the sensitivity of Neyman allocation, we analysed the sensitivity on a real
data set. The population is based on the County Business Patterns (CBP) data published by
the U.S. Census Bureau [15].4 Each data point is an establishment and the establishments
are stratified by establishment size into k = 12 strata. With a target final sample size of
m = 10, 000, and using the weighted mean of the establishment size as the target statistic,
the Neyman allocation for this population is [1261, 621, 517, 1969, 833, 1947, 1058, 762, 257,
248, 306, 225]. We can find a neighbouring population with Neyman allocation [1259, 620,
516, 1965, 831, 1943, 1056, 761, 257, 247, 306, 244]. While these allocations are not wildly
different, they do differ by 19 samples in the top stratum, which might not have a large
impact on the weighted mean, but could lead to more substantial changes for other statistics.
As an illustrative example, we can consider the goal of privately estimating the stratum sizes
in the sample, for which this allocation would lead to significant privacy degradation.

6.3 Privacy amplification from proportional sampling
Proportional sampling is an alternative allocation function that is used to provide equitable
representation of each sub-population, or stratum. Given a desired sample size m ∈ [n],
proportional sampling samples an r = m

n fraction of the data points (rounded to an integer)

4 The data released by the U.S. Census Bureau is a tabulated version of the true micro data from the
Business Register (BR), a database of all known single and multi-establishment employer companies.
The data set we use is micro data generated to be consistent with the tabulated version. Each data
point in this population is the size of an establishment in the US. In order to compute the sensitivity,
we need to top code the data, we top code the data at 10,000.
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from each stratum. Proportional sampling is not an optimal allocation in the non-private
setting but, when implemented with randomised rounding, it has good privacy amplification.
Now that we consider stratified sampling with number of stratums k ≥ 1, we can state the
following generalisation of Theorem 6.

▶ Theorem 11 (Privacy Amplification for Proportional Sampling). Let r ∈ [0, 1], ε > 0, M be
an ε-DP mechanism, and P = S1 ⊔ · · · ⊔ Sk and P ′ = S′

1 ⊔ · · · ⊔ S′
k be stratified neighboring

datasets that differ on stratum i. If for all j ∈ [k], r|Sj | ≥ 1 and r|S′
j | ≥ 1, then MCfr,prop

is
ε′-DP where

ε′ ≤ log
(
1 + 2r(e2ε − 1)

)
+ log(1 + r(e2ε − 1)).

Note that given a private statistic θ̃λ as defined as above, this allows us to set λfr,prop ≈ ε
6r ,

which is considerably larger than ε for small sampling rates. Thus, while proportional sampling
may not minimise the variance of any single statistic, it may be a good choice since it performs
reasonably well for all statistics.

7 Conclusion

In this paper, we have considered the privacy guarantees of sampling schemes, extending
previous results to more complex and data-dependent sampling designs that are commonly
used in practice. We find that considering these sampling schemes requires developing more
nuanced analytical tools. In this work, we characterize the privacy impacts of randomized
and data-dependent sampling schemes. Then, we apply our insights to analyze cluster and
stratified sampling and to consider the question of optimal allocations under privacy. To the
best of our knowledge, this work is the first to initiate study into these designs. As such, we
hope to see future work in three areas. First, future work should tighten and optimize the
constants in our theorems. Second, our results should be extended from pure to approximate
(and other variants) of differential privacy. Finally, we hope to see further investigation into
near-optimal allocations under privacy constraints.
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A Basic facts about indistinguishability

▶ Definition 12. Let the LCS distance between two data sets P and P ′, denoted dLCS(P, P ′),
be the minimal k such that if we let P = P0 and P ′ = Pk, there exist data sets P1, P2, · · · , Pk−1
where for all i = 0, · · · , k − 1, Pi and Pi+1 are unbounded neighbors.

▶ Lemma 13 ([12]). Let X, Y and Z be random variables. For any ε, ε′ > 0, if X and
Y are ε-indistinguishable, and Y and Z are ε′-indistinguishable, then X and Z are ε + ε′-
indistinguishable.

Many of our proofs use couplings so let us briefly describe on the main method we will use
to construct a coupling of two random variables. Let X be a random variable taking values
in ΩX and Y be a random variable taking values in ΩY . Suppose there exists a (possibly
randomised) transformation f : ΩX → ΩY such that Y = f(X). That is, for all y ∈ ΩY ,
Pr(Y = y) =

∑
x∈ΩX

Pr(X = x) Pr(f(x) = y). Then we can construct a coupling of X and
Y by µ(x, y) = Pr(X = x) Pr(f(x) = y). A short calculation confirms that this defines a
coupling. Further, notice that µ(x, y) ̸= 0 if and only Pr(f(x) = y) ̸= 0.

▶ Lemma 14. Let X and Y be random variables taking values in U∗ such that there exists
a coupling µ such that if µ(x, y) ̸= 0 then the LCS distance between x and y is at most A.
Then if M is ε-unbounded DP then M(X) and M(Y ) are Aε-indistinguishable.

▶ Lemma 15 (Advanced joint convexity, [6]). Let X and Y be random variables satisfying
X = (1 − q)X0 + qX1 and Y = (1 − q)Y0 + qY1 for some q ∈ [0, 1] and random variables
X0, X1, Y0 and Y1. If X0 and Y0 are ε-indistinguishable, X1 and Y1 are ε+ε′-indistinguishable,
X1 and Y0 are ε + ε′-indistinguishable, and X0 and Y1 are ε + ε′-indistinguishable, then X

and Y are ε + log(1 + q(eε′ − 1))-indistinguishable.

B Randomized data-independent sampling

▶ Lemma 16. Given m ∈ N, define Cm : U∗ → Um be defined as follows: given a dataset
P , form a sample S by sampling m data points randomly without replacement from P , then
Cm(P ) = S. Let P and P ′ be unbounded neighboring datasets and m, m′ ∈ N, then MCm

(P )
and MCm′ (P ′) are(

log
(

1 + m

|P | + 1(e2ε − 1)
)

+ |m − m′|ε
)

- indistinguishable.

Proof. Let P ′ = P ∪ {x}. First, let us focus on the case where m′ = m. Now,

MCm
(P ′) =

(|P |
m

)(|P |+1
m

)MCm
(P ) +

(
1 −

(|P |
m

)(|P |+1
m

))M(Cm(P ′)|x∈S)

=
(

1 − m

|P | + 1

)
MCm(P ) + m

|P | + 1M(Cm(P ′)|x∈S),

where Cm(P ′)|x∈S denotes the random variable Cm(P ′) conditioned on the event that x ∈ S.
Now, we can define a coupling of Cm(P ) and Cm(P ′)|x∈S by first sampling S from Cm(P ),
then replacing a random element of S by x. This coupling has LCS distance at most 2, so by
Lemma 14, MCm

(P ) and M(Cm(P ′)|x∈S)) are 2ε-indistinguishable. Thus, by Lemma 15,
MCm

(P ) and MCm
(P ′) are log

(
1 + m

|P |+1 (e2ε − 1)
)

-indistinguishable.
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Next, let us consider the case |m − m′| = 1 and P = P ′. We can define a coupling
of Cm(P ) and Cm′(P ) as follows: first sample S from Cm(P ), then add a random element
of P\S to S. This coupling has LCS distance at most 1, so by Lemma 14, MCm

(P ) and
MCm′ (P ) are ε-indistinguishable.

Finally, we’ll use Lemma 13 to complete the proof. Note that MCm
(P ) and MCm

(P ′)
are log

(
1 + m

|P |+1 (e2ε − 1)
)

-indistinguishable. Then there exist m1, · · · , mℓ−1 such that if
we set m0 = m and m|m−m′| = m′ then for all i, |mi − mi−1| ≤ 1 and so M(Cmi−1(P ′)) and
M(Cmi(P ′)) are ε-indistinguishable. Therefore, by Lemma 13, MCm(P ) and MCm′ (P ′) are(

log
(

1 + m
|P |+1 (e2ε − 1)

)
+ |m − m′|ε

)
- indistinguishable. ◀

▶ Definition 17 (log-Lipschitz functions). A function q : [n] → R≥0 is ε-log-Lipschitz if for
all m ∈ {0, 1, . . . , n − 1}, |log q(m) − log q(m + 1)| ≤ ε.

▶ Lemma 18. Let w : [n] → R≥0 be nondecreasing, and let p : [n] → R≥0 be any function.
Then,

max
q:[n]→R≥0 is ε-log-Lipschitz

∑n
m=0 q(m)w(m)p(m)∑n

m=0 q(m)p(m)
≤
∑n

m=0 eεmw(m)p(m)∑n
m=0 eεmp(m)

The proof of Lemma 18 is omitted due to space constraints.

Proof of Theorem 3. Let Cm : U∗ → Um be the sampling scheme that given a dataset P ,
returns S where S is a uniformly random subset of P of size m (drawn without replacement).
Let y ∈ O be any outcome, and let P ∼ P ′ be neighboring datasets. Then, we have that

Pr[MC(P ) = y] =
n∑

m=0
Pr[MCm

(P ) = y] · Pr[|C(P )| = m]

≤
n∑

m=0

(
1 + m

n
(eε − 1)

)
· Pr[MCm

(P ′) = y] · t(m)

≤
∑n

m=0
(
1 + m

n (eε − 1)
)

· eεm · t(m)∑n
m=0 eεmt(m)

·
n∑

m=0
Pr[MCm

(P ′) = y] · t(m)

=
(

1 + Em∼t̃[m]
n

(eε − 1)
)

· Pr[MC(P ′) = y]

where the first inequality follows from Lemma 16. Then, note that (1 + (m/n)(eε − 1)) is
non-decreasing, and that Pr[MCm

(P ′)) = y] is ε-log-Lipschitz by definition, so the second
inequality follows by Lemma 18. After rearranging and simplifying, we obtain the desired
result.

Finally, for the lower bound, suppose the data universe U = [0, 1]. Let P = {1, · · · , 1}
consist of n 1s and P ′ be the neighboring dataset P ′ = P\{1} ∪ {0}. Let M : U∗ → R be
defined by M(S) =

∑
x∈S 1{x = 1} + Lap (1/ε) so M is ε-unbounded DP. Then

Pr(MC(P ′) = n)
Pr(MC(P ) = n) =

∑n
m=0 Pr(t = m)

(
m
n e−(n−m+1)ε +

(
1 − m

n

)
e−(n−m)ε

)∑n
m=0 Pr(t = m)e−(n−m)ε

= 1 − 1
n

(1 − e−ε)
∑n

m=0 Pr(t = m)emεm∑n
m=0 Pr(t = m)emε

.

Thus, taking the reciprocal,

log Pr(MC(P ) = n)
Pr(MC(P ′) = n) = − log

(
1 − 1

n
(1 − e−ε)

∑n
m=0 Pr(t = m)emεm∑n

m=0 Pr(t = m)emε

)
. ◀
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C Data-dependent sampling

Proof of Proposition 4: hypothesis testing perspective. Let H : N → {0, 1} be the hypo-
thesis test such that for all x ∈ N, and b ∈ {0, 1}, e−ε Pr(H(x) = b) ≤ Pr(H(x + 1) = b) ≤
eε Pr(H(x) = b). Then H ′ : U∗ → {0, 1} defined by H ′(S) = H(|S|) is ε-unbounded DP. By
assumption, H ′

Cf̃
is ε′-DP. This implies that H(f̃(P )) and H(f̃(P ′)) are ε′-indistinguishable.

Therefore,

adv(H) = Pr[H(f̃(P )) = 0] − Pr[H(f̃(P ′)) = 0] ≤ Pr[H(f̃(P ′)) = 0](eε′
− 1) ≤ eε′

− 1.

The result follows from taking the supremum over all ε-DP H. ◀

Proof of Proposition 5. Define MSS : U∗ → N as follows. For all P ∈ U∗, M(P ) =
|P | + Lap(1/ε). Then M is ε-unbounded DP. Suppose that f̃ : U∗ → N is such that for
all ε-unbounded DP mechanisms A, ACf̃

is ε′-bounded DP. This implies that MCf̃
(P )) =

f̃(P )+Lap(1/ε) is ε′-bounded DP. Therefore, by the definition of α, there exists a population
P such that supP ∈Un E[|MCf̃

(P )) − f(P )|2] ≥ α. Also

α ≤ E[|MCf̃
(P )) − f(P )|2] = E[|f̃(P ) + Lap(1/ε) − f(P )|2] = E[]|f̃(P ) − f(P )|2] + (1/ε)2.

After a small amount of rearranging we arrive at the result. ◀

Proof of Theorem 6: proportional allocation with randomized rounding. Let P be a
dataset, x be a data point and P ′ = P ∪ {x}. Let m = r|P |, m′ = r|P ′|, mL = ⌊m⌋,
m′L = ⌊m′⌋, p = m − mL and p′ = m′ − m′L. Now, m′ − m = r < 1 so we have two cases,
mL = m′L or mL = m′L − 1.

As in Lemma 16, let Cm : U∗ → Um be the sampling scheme that given a dataset P ,
returns S where S is a uniformly random subset of P of size m (drawn without replacement).
Note that by Theorem 2, for m, m′ ∈ N, Mm(P ) and Mm′(P ) are |m−m′|ε-indistinguishable,
and MCm

(P ) and MCm′ (P ′) are log
(

1 + m
|P |+1 (e2ε − 1)

)
+ |m − m′|ε-indistinguishable.

Firstly, suppose mL = m′L. Let µ0 = 1
1−r ((1 − p − r)MCmL

(P ) + pMCmL+1
(P )),

µ′
0 = 1

1−r ((1 − p − r)MCmL
(P ′) + pMCmL+1

(P ′)), µ1 = MCmL
(P ), and µ′

1 = MCmL+1
(P ′).

Notice that MCr (P ) = (1 − r)µ0 + rµ1 and MCr (P ′) = (1 − r)µ′
0 + rµ′

1. Now,
by Lemma 15 and Lemma 14, µ0 and µ′

0 are log(1 + mL+1
|P |+1 (e2ε − 1))-indistinguishable.

Further, all the pairs (µ′
0, µ1), (µ1, µ′

1) and (µ0, µ′
1) are

(
log(1 + mL+1

|P |+1 (e2ε − 1)) + ε
)

-
indistinguishable. Therefore, by Lemma 15, MCr

(P ) and MCr
(P ′) are ε′-indistinguishable

where ε′ ≤ log
(

1 + mL+1
|P |+1 (e2ε − 1)

)
+ log(1 + r(eε − 1)) ≤ log

(
1 +

(
r + 1

|P |+1

)
(e2ε − 1)

)
+

log(1 + r(eε − 1)).
Next, suppose m′L = mL + 1. Let 1 − q = min{p, 1 − p′} and µ0 = MCmL+1

(P ),
µ′

0 = MCmL+1
(P ′), µ1 = 1

q ((p−1+q)MCmL+1
(P )+(1−p)MCmL

(P ), ), and µ′
1 = 1

q ((1−p′−1+
q)MCmL+1

(P ′)+p′MCmL+2
(P ′)). Notice that MCr

(P ) = (1−q)µ0+qµ1 and MCr
(P ′) = (1−

q)µ′
0 + qµ′

1. Now, by Lemma 2, µ0 and µ′
0 are log

(
1 + mL+1

|P |+1

)
-indistinguishable. Further, all

the pairs (µ′
0, µ1), (µ1, µ′

1) and (µ0, µ′
1) are

(
log(1 + mL+1

|P |+1 (e2ε − 1)) + 2ε
)

-indistinguishable.
Also, note that q ≤ r. Then by Lemma 15, MCr (P ) and MCr (P ′) are ε′-indistinguishable
where ε′ ≤ log

(
1 + mL+1

|P |+1 (e2ε − 1)
)

+log(1 +p(e2ε −1)) ≤ log
(

1 +
(

r + 1
|P |+1

)
(e2ε − 1)

)
+

log(1 + r(e2ε − 1)). ◀
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D Cluster sampling

Proof of Theorem 8. Without loss of generality, let i = 1. Notice that conditioned on
cluster 1 /∈ I, the distribution of outputs of MC(P ) and MC(P ′) are identical. Let E be a
set of outcomes. Then

Pr(MC(P ) ∈ E) = ℓ

k
Pr(MC(P ) ∈ E | 1 ∈ I) +

(
1 − ℓ

k

)
Pr(MC(P ) ∈ E | 1 /∈ I)

= ℓ

k
Pr(MC(P ) ∈ E | 1 ∈ I) +

(
1 − ℓ

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I).

Now, we have that ℓ
k Pr(MC(P ) ∈ E | 1 ∈ I) = ℓ

k

∑
|I|=ℓ,1∈I

1
(k

ℓ)
Pr(M(PI) ∈ E) ≤

ℓ
k

∑
|I|=ℓ,1∈I

1
(k

ℓ)
eε Pr(M(P ′

I) ∈ E) = ℓ
k eε Pr(MC(P ′) ∈ E | 1 ∈ I), where the inequality

follows from the fact that the LCS distance between PI and P ′
I is 1. Thus,

Pr(MC(P ) ∈ E) ≤ ℓ

k
eε Pr(MC(P ′) ∈ E | 1 ∈ I) +

(
1 − ℓ

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I)

= Pr(MC(P ′) ∈ E) + ℓ

k
(eε − 1) Pr(MC(P ′) ∈ E | 1 ∈ I).

Now, we need to relate Pr(MC(P ′) ∈ E | 1 ∈ I) to Pr(MC(P ) ∈ E). For a set I such that
1 /∈ I and index i ∈ I, let I ∪ {1}\{i} be the set where index i has been replaced with 1.
Then,(

1 − ℓ

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I) =

∑
|I|=ℓ,1/∈I

1(
k
ℓ

) Pr(M(PI) ∈ E)

=
∑

|I|=ℓ,1/∈I

∑
i∈I

1
ℓ

1(
k
ℓ

) Pr(M(PI) ∈ E)

≥
∑

|I|=ℓ,1/∈I

∑
i∈I

1
ℓ

1(
k
ℓ

)e−(n1+ni)ε Pr(M(PI∪{1}\{i}) ∈ E)

≥ e−(n1+nmax)ε 1
ℓ

∑
|I|=ℓ,1/∈I

∑
i∈I

1(
k
ℓ

) Pr(M(PI∪{1}\{i}) ∈ E),

where the first inequality follows from the fact that the LCS distance between PI and
PI∪{1}\{i} is at most n1 + ni. Now, notice that the sets I ∪ {1}\{i} in the above sum all
contain 1, and each index I ′ such that |I ′| = ℓ and 1 ∈ I ′ appears in the sum k − ℓ times
(corresponding to the k − ℓ possible choices for the swapped index i). Therefore, we can
rewrite the sum as(

1 − ℓ

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I) ≥ e−(n1+nmax)ε k − ℓ

ℓ

∑
|I|=ℓ,1∈I

1(
k
ℓ

) Pr(M(PI) ∈ E)

= e−(n1+nmax)ε

(
1 − ℓ

k

)
Pr(MC(P ′) ∈ E | 1 ∈ I).

Thus, we can complete the proof with the following steps.

Pr(MC(P ′) ∈ E) = ℓ

k
Pr(MC(P ′) ∈ E | 1 ∈ I) +

(
1 − ℓ

k

)
Pr(MC(P ′) ∈ E | 1 /∈ I)

≥ ℓ

k
Pr(MC(P ′) ∈ E | 1 ∈ I) +

(
1 − ℓ

k

)
e−(n1+nmax)ε Pr(MC(P ′) ∈ E | 1 ∈ I)

=
(
ℓ

k
+
(

1 − ℓ

k

)
e−(n1+nmax)ε

)
Pr(MC(P ′) ∈ E | 1 ∈ I).
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Pr(MC(P ) ∈ E) ≤ Pr(MC(P ′) ∈ E) + ℓ

k
(eε − 1) Pr(MC(P ′) ∈ E | 1 ∈ I)

≤ Pr(MC(P ′) ∈ E) + ℓ

k
(eε − 1) 1(

ℓ
k

+
(
1 − ℓ

k

)
e−(n1+nmax)ε

) Pr(MC(P ′) ∈ E)

≤

(
1 + ℓ

k
(eε − 1) 1(

ℓ
k

+
(
1 − ℓ

k

)
e−(n1+nmax)ε

))Pr(MC(P ′) ∈ E)

◀

Proof of Theorem 7. Let C1 = {1, · · · , 1} and Cj = {−1, · · · , −1} for all j ∈ {2, · · · , k}.
Let C ′

1 = C1\{1} ∪ {−1} be the same as C1 except with one 1 switched to a -1. Let
M(S) =

∑
x∈S x + Lap(1/ε), so M is ε-unbounded DP. Notice that M has the property

that if
∑

x∈S′ x =
∑

x∈S x+a, for some a ∈ R then Pr(M(S) =
∑

x∈S x) = e|a|ε Pr(M(S′) =∑
x∈S x). This equality allows us to tighten many of the inequalities that appeared in the

proof of Theorem 8 and give a lower bound. We omit the rest of the proof due to space
constraints. ◀

Proof of Theorem 9. Let D = Cℓ(P ) and D′ = Cℓ(P ′). For an event E ∈ O, define the
probabilities p, q, p′ and q′ as follows.

p = Pr(M(D) ∈ E|C1 ∈ D) q = Pr(M(D) ∈ E|C1 /∈ D)
p′ = Pr(M(D′) ∈ E|C1 ∈ D′) q′ = Pr(M(D′) ∈ E|C1 /∈ D′)

By the existence of H described in the lemma statement, there must exist an event E such
that q ≤ e−ε′

p. Since P and P ′ only differ on C1, the distributions of M(D)|C1 /∈D and
M(D′)|C1 /∈D′ are identical, which means that q = q′. Then, we can compute a lower bound
on the indistinguishability of M(D) and M(D′) as follows. Without loss of generality,
assume p′ > p, and proceed as follows.

Pr(M(D′) ∈ E)
Pr(M(D) ∈ E) = p′ · Pr(C1 ∈ D′) + q · Pr(C1 /∈ D′)

p · Pr(C1 ∈ D) + q · Pr(C1 /∈ D) =
p′ · ℓ

k + q · (1 − ℓ
k )

p · ℓ
k + q · (1 − ℓ

k )

≥ 1 +
(p′ − p) ℓ

k

p · ( ℓ
k + e−ε′(1 − ℓ

k ))
= 1 +

(
p′

p
− 1
) ℓ

k
ℓ
k + e−ε′(1 − ℓ

k )

where the final inequality follows from the fact that M is ϵ-DP, so p′/p ≥ eϵ′′ by definition. ◀

E Stratified sampling

Proof of Theorem 11: proportional allocation for stratified sampling. Given M : ([k] ×
U)∗ → Y, for all datasets T2, · · · , Tk ∈ U∗, define MT2,··· ,Tk : U∗ → Y by MT2,··· ,Tk (S) =
M(S ⊔ T2 ⊔ · · · ⊔ Tk). Then since M was (ε, · · · , ε)-stratified unbounded DP, MT2,··· ,Tk

is ε-unbounded DP. Let Cr be as in Lemma 6 so for all S, S′ unbounded neighbours such
that r|S| ≥ 1 and r|S′| ≥ 1, MT2,··· ,Tk

Cr
(S) and MT2,··· ,Tk

Cr
(S′) are ε′-indistinguishable where

ε′ ≤ log
(
1 + 2r(e2ε − 1)

)
+ log(1 + r(e2ε − 1)). Now, let P = S1 ⊔ S2 ⊔ · · · ⊔ Sk and

P = S′
1 ⊔ S2 ⊔ · · · ⊔ Sk be unbounded stratified neighboring datasets that differ in the first

stratum. Since S2 ⊔· · ·⊔Sk are shared between P and P ′, and the datasets Ti only dependent
on strata Si, the distribution of T2, · · · , Tk are identical given inputs P and P ′. Let q be
the distribution of T2, · · · , Tk so q(T2, · · · , Tk) = Pr(Cr(S2) = T2, · · · , Cr(Sk) = Tk). Then
given an event E, Pr(MCfprop,r

(P ) ∈ E) =
∫

T2,··· ,Tk
q(T2, · · · , Tk) Pr(MT2,··· ,Tk

Cr
(S1) ∈ E) ≤∫

T2,··· ,Tk
q(T2, · · · , Tk)eε′ Pr(MT2,··· ,Tk

Cr
(S′

1) ∈ E) = eε′ Pr(MCfprop,r
(P ′) ∈ E). ◀
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