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Abstract
We design fair sponsored search auctions that achieve a near-optimal tradeoff between fairness and
quality. Our work builds upon the model and auction design of Chawla and Jagadeesan [5], who
considered the special case of a single slot. We consider sponsored search settings with multiple slots
and the standard model of click through rates that are multiplicatively separable into an advertiser-
specific component and a slot-specific component. When similar users have similar advertiser-specific
click through rates, our auctions achieve the same near-optimal tradeoff between fairness and quality
as in [5]. When similar users can have different advertiser-specific preferences, we show that a
preference-based fairness guarantee holds. Finally, we provide a computationally efficient algorithm
for computing payments for our auctions as well as those in previous work, resolving another open
direction from [5].
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1 Introduction

We study the design of ad auctions under a fairness constraint. Fairness in the context of
sponsored content has received considerable attention in recent years. It has been observed, for
example, that ads on platforms such as Facebook and Google disproportionately target certain
demographics, discriminating across users on the basis of race and gender. Furthermore,
standard auction formats such as highest-bids-win can lead to discrimination even when
the input to these algorithms, namely bids, CTRs, and relevance scores are themselves
non-discriminatory.

[4] initiated the study of optimal auction design under the constraint that the auction
does not add any unfairness beyond what is already present in bids, and proposed a class of
proportional allocation algorithms as a solution that achieves fairness while also providing
an approximation to the optimal social welfare. In a followup work, [5] designed a class of
inverse proportional allocation algorithms and showed that this class of mechanisms achieves
an optimal tradeoff between social welfare and fairness. Both of these works focused on the
simple case of a single item auction and left open the problem of designing a fair and efficient
multi-slot position auction.

In this paper we extend the design of fair auctions from the single item setting to
arbitrary position auction settings. We show that both the proportional allocation and
inverse proportional allocation algorithms can be adapted to the setting of a position auction
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4:2 Individually-Fair Auctions for Multi-Slot Sponsored Search

while inheriting their single-unit fairness properties as well as their approximation to social
welfare. As in [4, 5] our auctions provide fair solutions when the advertisers’ bids are
themselves non-discriminatory. Auctions for multi-slot settings must take into account both
the advertisers’ preferences over users as captured by per-click values, as well as the users’
preferences over advertisers as captured by click through rates. We consider two different
models for formalizing fairness in these settings. In the first, we consider differences of
allocation across users that are close both in terms of the values advertisers assign to them
as well as in terms of their own click through rates; we require that such users receive similar
allocations. In the second setting, we consider pairs of users that are similarly qualified as
per advertisers’ values, but have different preferences (i.e. CTRs). In this case, while the
users may receive different allocations, we require that allocations are suitably aligned with
users’ preferences. We elaborate on the details of these models below. Finally, we address
another open question in [4, 5] and show how to efficiently compute supporting prices for
both proportional and inverse proportional allocation.

Formalizing fairness across users

Consider two users Alice and Bob who are similar in most respects but differ in a sensitive
demographic such as gender or race. Individual fairness then posits that Alice and Bob
should see similar ad allocations. For example, it would be unfair to show more employment
ads to Bob and more online retail ads to Alice. One potential source of unfairness in ad
allocations is the use of discriminatory targeting by advertisers. However, empirical studies
as well as theoretical analysis shows that unfairness in allocations can persist even in the
absence of discriminatory targeting. The culprit is allocation algorithms that turn minor
differences in advertisers’ bids into large swings in allocation. Suppose, for example, that an
employment agency places a slightly higher value on Bob than on Alice whereas an online
retail store places a slightly higher value on Alice because of minor differences in the users’
profiles. Then the highest-bid-wins auction would show entirely different ads to the two
users.

To combat this problem, [5] formalize the notion of fairness in auctions as a “value
stability” constraint. Informally speaking, value stability requires that whenever two users
receive multiplicatively similar values from all advertisers (such as Alice and Bob in the
example above) they must receive close allocations (as measured in terms of the ℓ∞ distance
between the respective probability distributions over the ad displayed). Previous work shows
that while optimal auctions do not satisfy value stability, there are simple auction formats
that do. In the Proportional Allocation (PA) mechanism, allocations are proportional to
(some increasing function of) the advertisers’ reported values. In the Inverse Proportional
Allocation (IPA) mechanism, the unallocated amounts, i.e., one minus the probability of
allocation, are inversely proportional to (some increasing function of) the advertisers’ reported
values. In both mechanisms, the allocation is a sufficiently smooth function of the advertisers’
values and therefore satisfies some form of value stability. We mostly focus on the IPA
mechanism in this paper as it provides better tradeoffs between fairness and welfare.

Multi-slot extensions

As a simple extension of the single slot setting, consider a setting with k slots, where each ad
and each slot are equally likely to be clicked by the user, so the relative placement of ads
in slots does not matter. In this case, one straightforward way to to extend the single-slot
allocations is to simply multiply them by k; if this provides a valid allocation, the fairness and
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welfare guarantees follow immediately from the single-slot case. The problem is that some
ads may receive a total allocation greater than 1 and simply capping allocations at 1 breaks
the fairness guarantee. We propose a different extension of the IPA. As in the single slot case,
we ensure that the unallocated amounts to advertisers are inversely proportional to (some
function of) the reported values, subject to the total allocation equaling k. The fairness a.k.a.
value stability of this extension follows easily from the single-slot special case. We further
show that the social welfare approximation of multi-slot IPA matches its approximation for
the single-item case by characterizing worst case instances for the approximation factor.

While the above discussion provides a complete story for the case of a multi-unit auction,
in the case of online advertising, we also need to take click through rates into account.
Throughout this paper, we assume that click through rates are multiplicatively separable
into ad-specific and slot-specific components. In other words, the click through rate of an
ad i placed in slot j is given by αi × βj for some parameters α and β specific to each user
that are known to the platform/auctioneer. We further assume that all users weakly prefer
earlier slots to later slots. Under these assumptions, we present an extension of the IPA to
the ad auction setting that exactly maintains the social welfare guarantees of their single-
and multi-unit counterparts. In particular, the social welfare approximation is independent
of the number of slots.

Fairness in the context of click through rates

is tricky to define, however. As before, we may assume that if two users are similarly qualified
for all ads but differ in their sensitive attributes, then the two users receive multiplicatively
similar per-click values from all advertisers. However, click through rates capture the users’
own preferences and similar users may not have similar click through rates. What sort of
fairness guarantees can we then provide?

We first show that differences in slot-specific CTRs do not impact fairness guarantees.1
In particular, two users with similar values and similar ad-specific CTRs α receive allocations
that are close in ℓ∞ distance. In particular, the probability of assigning any particular slot
to any particular ad is additively close for the two users. In fact, this additive closeness holds
also for the probability that any particular ad is assigned to slot j or better for any j.

We then consider settings with similarly qualified users that have arbitrarily different ad-
specific and slot-specific CTRs. Observe that in order to achieve any reasonable guarantee for
social welfare, our allocation algorithms must take ad-specific CTRs into account. As a result,
it is impossible to provide a value-stability guarantee in this setting while also providing an
approximation to social welfare. Nevertheless, we show that a form of preference-aligned
fairness holds. Specifically, let Alice and Bob be two users with multiplicatively similar values
and let α and α′ denote their ad-specific CTR vectors. Then we show that although the two
users’ allocations can be quite far from each other, Alice receives a higher allocation than
Bob for precisely the ads that she is more likely to click on, and vice versa. Formally, if we
sort the advertisers in decreasing order of the ratio αi/α′

i, then for every i, the probability
that Alice gets to see an ad with index ≤ i is at least as large as Bob’s probability of seeing
the same set of ads.

1 In fact, the allocations produced by our algorithms do not depend on the slot-specific CTRs, although
the payments made by advertisers necessarily must.
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Computing payments

We conclude our study with a discussion of payments. It is easy to observe that both
generalized IPA and generalized PA have monotone allocation rules in the advertisers’
reported values. However, computing the supporting prices is not straightforward and was
left open in previous work. Let xi(vi) denote the net allocation (expected probability of click)
to advertiser i for a particular user, when the advertiser reports a per-click value of vi. We
show that xi(vi) is a piecewise rational function with polynomially many pieces and that
it is possible to compute the functional form of each piece in polynomial time. Computing
payments using Myerson’s lemma then boils down to computing polynomially many integrals
over rational functions.

Organization of the paper

We present our extension of the IPA in Section 3 and prove its social welfare and fairness
guarantees for the setting of similarly qualified users with similar preferences. In Section 4 we
discuss fairness for users that are similarly qualified but have different preferences. Section 5
presents our algorithm for computing payments. We extend our results to the PA in Section 6.
Most proofs are deferred to the appendix or removed due to space limitations. 2

Related Work
Journalism and empirical work have revealed the myriad ways in which existing ad auction
systems lead to unfairness and discrimination [2, 10, 11, 12, 14]. One approach to addressing
these issues develops advertiser strategies for bidding in existing auction formats while
ensuring statistical parity between groups [9, 15].

More related to our approach is theoretical work on designing auctions and, more generally,
algorithms that guarantee fairness properties. These fairness properties typically differ in two
dimensions: 1) whether they apply to individuals or only to groups as a whole, and 2) whether
they enforce fairness by similarity of treatment or outcome, satisfaction of preferences (e.g.,
in the form of envy-freeness), or something bridging the two.

These notions of fairness grew out of the fair classification literature, where Dwork et
al. [6] were the first to propose an individual fairness notion requiring agents who are
similar under some task-specific metric to receive similar classifications. Dwork and Ilvento
investigate in [7] whether compositions of such classification algorithms that are fair in
isolation maintain their fairness properties.

Kim et al. [13] introduce individual preference-informed fairness by augmenting this
notion of individual fairness with envy-freeness, allowing the allocations of similar users to
differ in accordance with their preferences. Similarly, Zafar et al. in [18] develop notions
of preference-informed group fairness by allowing deviations from parity in treatment and
impact if the deviations are envy-free.

Our work employs and expands upon a model of individual fairness in sponsored search
first developed by [4] and based on the multi-category fairness work of [7]. An alternate
model, also based on [7], was presented by [16], albeit in a Bayesian setting. A main difference
between our work and [16] is that we study the design of auctions that achieve an optimal
tradeoff between fairness and welfare, whereas [16] analyzes the fairness and welfare of two
specific mechanisms. Another relevant work is that of [8] who study the fairness-welfare

2 For the full version, visit https://arxiv.org/abs/2204.04136.

https://arxiv.org/abs/2204.04136


S. Chawla, R. Rezvan, and N. Sauerberg 4:5

tradeoff in a Bayesian setting. [8] draws a connection between individual fairness in this
context and multi-item auctions with an item symmetry constraint, giving simple mechanisms
that achieve a constant-approximation to the revenue-optimal fair mechanism.

There is also some recent work on group-fair ad auctions, such as [17], which shows
that constraints on advertiser behavior which enforce group fairness notations can actually
increase the profit of the platform. In a Bayesian setting, [3] augments generalized second
price auctions with fair division schemes to achieve good social welfare guarantees while
satisfying envy-freeness properties among advertiser groups.

As far as we know, ours is the first work addressing fairness specifically in the positional
auctions setting where different users have different click through rates.

2 Models and Definitions

We consider the following stylized model for online advertising auctions. Let U be the set of
users, n the number of advertisers, and k the number of slots. We use index u for users, i
for advertisers and j for slots. At each point in time, a user u ∈ U arrives. Each advertiser
i ∈ [n] bids a per-click value vu

i on that user. This is the value the advertiser receives if the
user clicks on their ad. Let CTRu

i,j denote the click through rate of advertiser i in slot j, that
is, the probability that the user u will click on the ad i if it is placed in slot j.

A truthful auction decides which ads to display in each of the k slots. The auction receives
the vector v = (vu

1 , . . . , vu
n) as well as the click through rates CTRu

. and returns an allocation
matrix a(v) = [aij]i∈[n],j∈[k] where aij denotes the probability that ad i is displayed in slot
j.3 We omit the superscript u whenever it is clear from the context that we are discussing a
certain user.

Truthfulness

Given an allocation a(v) (where the user u is implicit), advertiser i receives a net allocation
(expected number of clicks) of

∑
j CTRu

i,jaij and a net expected value of vi ·
∑

j CTRu
i,jaij from

the allocation. To ensure truthfulness, there should exist a supporting pricing function pi(v)
for every advertiser i such that bidding truthfully maximizes the advertiser’s net expected
utility. For such a payment function to exist, it is sufficient and necessary that the allocation
probability

∑
j CTRu

i,jaij is monotone non-decreasing in the per-click value vi. All of the
mechanisms we discuss in this paper satisfy monotonicity. In Section 5 we discuss how to
compute supporting payments efficiently.

Separable click through rates

Throughout this paper we assume that the click through rates CTRu
i,j are multiplicatively

separable into an advertiser-specific component and a slot-specific component. This is a
standard model (see, for example, [1]).

▶ Definition 1 (Separable Click Through Rates). Click through rates are separable if, for every
user u, there exists a advertiser dependent vector αu = (α1, . . . , αn) and a slot dependent
vector βu = (β1, . . . , βk) in which α1, . . . , αn > 0 and 1 ≥ β1 ≥ β2 ≥ . . . ≥ βk ≥ 0 such that
CTRu

i,j = αiβj for all i ∈ [n] and j ∈ [k].

3 We require
∑

i aij = 1 for all j and
∑

j aij ≤ 1 for all i. Every matrix a(·) satisfying these matching
constraints can be expressed as a distribution over deterministic assignments of ads to slots.
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Observe that in the separable model the value an advertiser i obtains from slot j is αiβjvi.
Since the slot specific components βj are common to all advertisers, the relative values of
advertisers are given by αivi. These relative values are important in the mechanisms we
design. We call them the “effective values” of the advertisers:

▶ Definition 2 (Effective Value). The effective value of advertiser i is given by v̂i = viαi.

We call the above model of online advertising auctions with separable CTRs the Position
Auction Setting.

Prior-free design

As in previous works, the mechanisms we design and analyze in this paper are prior-free,
meaning that the allocation to a user does not depend on the distribution of users or
advertisers’ value vectors or the history of users already served. Besides the well-documented
benefits of prior-free mechanism design, in the context of fairness we get the added benefit
that fairness guarantees hold for all users that are served by the mechanism regardless of
whether or not the auctioneer’s model accounts for them.

▶ Definition 3 (Scale-Free). A mechanism is scale-free if it has the property that multiplying
the input values by a uniform constant does not change the resulting allocation.

2.1 Social Welfare

The goal of this work, as in [5, 4], is to achieve a tradeoff between fairness and social welfare
for the mechanisms we design. The social welfare of an allocation a(v) is defined to be the
sum of all of the advertisers’ net expected values:

SW(a(v)) =
∑

i∈[n],j∈[k]
viCTRu

i,jai,j.

We compare this social welfare to the maximum achievable by any feasible allocation.
When click through rates are separable, the maximum social welfare is achieved by the
allocation that assigns advertisers to slots in decreasing order of v̂i, the effective values. We
call the allocation sorted by effective values the Unfair-Opt and also use the same term to
denote the social welfare of this allocation.

Formally, if π is the order of advertisers where v̂π1 ≥ v̂π2 ≥ . . . ≥ v̂πn , then the (unfair)
optimal social welfare is given by:

Unfair-Opt(v, α, β) =
k∑

j=1
απjvπjβj.

Since it is generally impossible to achieve optimal social welfare and fairness simultaneously,
we look for mechanisms that guarantee our fairness notions while giving a good approximation
to the optimal social welfare.

▶ Definition 4 (Social Welfare Approximation). We say mechanism A(·) achieves an
η-approximation to social welfare for η ≤ 1, if for all instances (v, α, β), we have
SW(A(v, α, β)) ≥ η ·Unfair-Opt(v, α, β).
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2.2 Fairness
[5] formalized fairness in ad auctions as a value stability condition based on the notion of
individual fairness. Individual fairness requires that the auction assign similar allocations to
similar users. [5] defined similarity between two users on the basis of closeness between the
value vectors assigned to them by the advertisers. Informally speaking, if two users receive
similar values from all advertisers, then they should also receive similar allocations. In order
for the definition to be scale-free with respect to values, similarity between values is defined
in multiplicative terms.

In the context of a single item auction, allocations are probability vectors. Similarity in
allocations is therefore defined based on some notion of distance between probability vectors.
[5] formalized similarity in terms of the ℓ∞ distance between the probability vectors whereas
[4] used total variation or ℓ1 distance. We state the value stability definition from [5] below.

▶ Definition 5 (Definition 2.1 from [5], Value Stability). An allocation mechanism a(·) is
value stable with respect to function f : [1,∞]→ [0, 1] if the following condition is satisfied
for every pair of value vectors v and v′:

|ai(v) – ai(v′)| ≤ f(λ) for all i ∈ [n], where λ = max
i∈[n]

(
max

{
vi
v′

i
,

v′
i

vi

})
.

In this definition, the function f, called the value stability constraint, governs the strength
of the value stability condition. We assume f to be non-decreasing, with f(0) = 0 and
f(∞) = 1. Following [5], we focus on the family of constraints fℓ(λ) = 1 – λ–2ℓ. [5] argue that
this family of stability constraints captures the entire spectrum of possible fairness conditions
in the context of allocation algorithms.

In order to extend these fairness definitions to the position auctions setting, we need to
extend the notion of closeness in allocations to multi-dimensional allocation matrices M as
well as extend the notion of closeness in values to click through rates.

Let us consider the latter issue first. A straightforward manner of extending closeness
over value vectors to the separable setting is to require that two similar users are assigned
similar values, as well as have similar click through rates. But this notion of closeness is too
restrictive. Values capture how advertisers perceive users as potential customers; whereas
click through rates capture how users perceive the relevance of ads to their needs and how
users behave in perusing ads on a search page. Two users that are similarly qualified for a
set of ads may nevertheless exhibit very different behavior in responding to ads on a search
page. Ideally the fairness guarantees an allocation algorithm provides should hinge only on
the closeness between values vi and not on the closeness between click through rates CTRi,j.
However, in order to obtain good social welfare, allocations necessarily need to depend on
the advertiser specific click through rates αi. We accordingly define closeness between users
in terms of their effective values αivi (while ignoring dissimilarity in slot specific CTRs, β).
In Section 4 we extend our fairness definitions and guarantees to settings where closeness is
defined only in terms of the values vi, ignoring dissimilarity in α and β.

Let us now consider closeness over probability matrices. We consider three notions. The
first is ℓ∞ distance, the maximum difference of allocations in any one entry (i, j) of the
corresponding matrices.

▶ Definition 6 (Value Stability for Position Auctions). An allocation mechanism A(·) is
value stable with respect to function f : [1,∞]→ [0, 1] if the following condition is satisfied
for every set of value and CTR vectors v, v′, α, α′ and β:

|Mi,j –M′
i,j| ≤ 2fℓ(λ) for all i ∈ [n], j ∈ [k] where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})
and M = A(v, α, β) and M′ = A(v′, α′, β).

FORC 2022
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Suppose, as an example, for a particular advertiser i, user u has an allocation of
a = (.1, .1, .1, .1). Consider two possible allocation vectors for some v close to u:
a′ = (.15, .15, .15, .15) and a′′ = (.15, .05, .15, .05). In some sense, allocation a′ is much
more unfair than a′′ because in a′ the entry-wise differences from a compound while in a′′

they offset each other. Weak value stability cannot distinguish these two cases because it is
concerned only with the absolute differences. Our next definition, ordered value stability is
intended to allow a′′ but not a′.

To do this, we bound the absolute differences in the total allocation of an advertiser
across all columns, weighted by a vector hi,j. This vector represents the utility the first user
receives from seeing advertisement i in slot j. Since we assume the slots are in decreasing
order of salience, this should be weakly decreasing in j.

▶ Definition 7 (Ordered Value Stability for Position Auctions). An allocation mechanism A(·)
is ordered value stable with respect to function f : [1,∞]→ [0, 1] if the following condition
is satisfied for every set of value and CTR vectors v, v′, α, α′ and β, as well as for any
advertiser i and any decreasing vector hi with 1 ≥ hi,1 ≥ . . . ≥ hi,k ≥ 0:

|
k∑

j=1
hi,j
(

Mi,j – M′
i,j
)
| ≤ fℓ(λ) where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})
where M = A(v, α, β) and M′ = A(v′, α′, β).

The previous two definitions are concerned only with a single advertiser. In some instances,
however, there are meaningful subsets of advertisers and bounding the differences of the
allocations each advertiser individually may not be sufficient to ensure fairness overall. For
example, if there are several different ads giving information about registering to vote, the
total volume of voter registration ads a user sees is more important from a fairness perspective
than the amount they see any particular voter registration ad. Therefore, the last notion we
consider is a combination of ℓ1 and ℓ∞ distance: we consider, for any subset of advertisers,
the total variation distance between the allocations of these advertisers to one slot, and
bound the maximum over all slots of this distance.

▶ Definition 8 (Total Variation Value Stability for Position Auctions). A mechanism A(·) with
satisfies total variation value stability with respect to a function f : [1,∞] → [0, 1] if the
following condition is satisfied for every set of value and CTR vectors v, v′, α, α′ and β, as
well as every subset of advertisers S ⊆ [n] and for every column j:

|
∑
s∈S
A(v̂)s,j –

∑
s∈S
A(v̂)s,j| ≤ f(λ) where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})
and where M = A(v, α, β) and M′ = A(v′, α′, β).

3 Inverse Proportional Allocation

In this section, we present a generalization of the mechanism first introduced in [5] as
IPA to the position auction setting. We show that the generalization retains a constant
approximation to the optimal social welfare and an appropriate generalization of the value
stability condition. In Section 3.1 we describe the generalization of the mechanism from
k = 1 to general k. In Section 3.2 we show that two different value stability conditions hold
and in Section 3.3 we show that the exact same guarantee in [5] holds for the generalization
as well. Some of the proofs in this section are deferred to Appendix A.
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3.1 Generalized IPA
In [5], IPA was presented as a mechanism for the single item auction. An interpretation of this
mechanism is as follows: start with an infeasible allocation of 1 unit to each advertiser (for a
total allocation of n) and then gradually decrease the allocations until the total allocation
reaches 1. The rate of this decrease is determined by a function g of the reported values.
The IPA with parameter ℓ uses g(x) = x–ℓ. [5] also presents an algorithmic interpretation
of the mechanism. The following is the generalization of this mechanism to the position
auctionsetting.

First, as a warm-up, we generalize IPA to a special case of the position auctionsetting
where β = −→1 . Our algorithm allocates a total of k units to the advertisers, with each
advertiser receiving an allocation ai ∈ [0, 1] such that

∑
i ai = k.

We follow the same intuition as for the case of k = 1. The mechanism first allocates 1 to
each advertiser, then decreases the allocations until the total allocation reaches k rather than
1. See Appendix A for an algorithmic interpretation of this mechanism. Note that setting
k = 1 gives the exact same mechanism as in [5]. Algorithm 3 is scale free and produces
allocations that are non-decreasing in k. Furthermore, the allocation to advertiser i, namely
ai, is non-decreasing in v̂i and non-increasing in v̂–i.

We now extend the k-unit setting to the position auction setting. The resulting allocation
algorithm is called Generalized IPA. The algorithm assigns to every slot j a distribution
over advertisers given by the difference in the j-unit and j – 1-unit allocations produced by
k-unit IPA.

Feasibility

We observe that the allocation produced by the generalized IPA algorithm is feasible. That
is, there exists a distribution over matchings from advertisers to slots, for which the total
probability that advertiser i is allocated a slot is equal to M.

Algorithm 1 Generalized IPA.
Input: Vector v of non-negative advertiser bids for user u; CTRs α1, · · · , αn and
β1, · · · , βk; number of slots k; function g : R≥0 → (0,∞] with g(0) =∞ and
limx→∞ g(x) = 0;

for h ∈ [k] do
Set a(h) ← the output of the IPA k-unit algorithm on input (v, α, h, g)

end
for j ∈ [k] do

Set M·,j = a(j) – a(j–1)

end
return M

Note that the generalized IPA algorithm is scale-free and independent of β.

3.2 Fairness
We now prove the value stability of the Generalized IPA mechanism.

▶ Theorem 9. The Generalized IPA mechanism with parameter ℓ > 0 and for any number of
advertisers n is value stable with respect to any function f satisfying f(λ) ≥ fℓ(λ) = 1 – λ–2ℓ

for all λ ∈ [1,∞), as in Definition 6.

FORC 2022
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Our proof has two parts. First, give a bound on the deviation between allocations given by
the k-unit IPA mechanism to similar users. Then, we use the bound to show that Generalized
IPA achieves value stability.

▶ Lemma 10. For the k-unit IPA mechanism with parameter ℓ run on any k and any bid
vectors v and v′ with λ = maxi∈[n]{v̂i/v̂′

i, v̂′
i/v̂i}, for all indices i, |ai(v) – ai(v′)| ≤ fℓ(λ).

Next, we show that Generalized IPA satisfies ordered value stability.

▶ Theorem 11. Generalized IPA with parameter ℓ satisfies ordered value stability with respect
to fℓ(λ). That is, for every set of value and CTR vectors v, v′, α, α′ and β, as well as for
any advertiser i and any decreasing vector h with 1 ≥ h1 ≥ . . . ≥ hk ≥ 0:

|
k∑

j=1
hj
(

Mi,j – M′
i,j
)
| ≤ fℓ(λ) where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})
where M = A(v, α, β) and M′ = A(v′, α′, β).

3.3 Social Welfare
We now show that Generalized IPA achieves a good approximation to the optimal social
welfare Unfair-Opt.

▶ Theorem 12. The IPA algorithm for the separable case, Algorithm 1, run with parameter
ℓ > 0 and any number of advertisers n achieves a

(
1 – ℓℓ

(1+ℓ)ℓ+1

)
-approximation the social

welfare of the unfair optimum.

To do so, we first show an approximation result for the special case of β⃗ = 1, the k–unit
algorithm.

▶ Lemma 13. The IPA algorithm for the k–unit case, Algorithm 3, run with parameter
ℓ and any number of advertisers n achieves a

(
1 – ℓℓ

(1+ℓ)ℓ+1

)
-approximation to the social

welfare of the unfair optimum.

We use Lemma 13 and extend definition of Generalized IPA allocation vector based on
k–unit vectors to show Theorem 12. The proof is deferred to Appendix A. The approximation
factor is 3

4 at ℓ = 1 and as ℓ→∞, the approximation factor goes to 1.
▶ Remark 14. The approximation factor in Lemma 13 is tight for IPA mechanism.

Proof. Consider the following example. Fix a user u and let the bidding vector of the
advertisers be:

(1, . . . , 1︸ ︷︷ ︸
k

,
n–k︷ ︸︸ ︷

ϵ, . . . , ϵ)

where 1 > ϵ =
–5k+

√
25k2–16(n–k) k2

n–k –4–4(n–k)
8(n–k > 0. Let ℓ = 1 and n > 2k. We get:

SW(Alg) = k(1– n – k
(n – k)ϵ–1 + k

)+(n – k)ϵ(1– (n – k) ϵ–1

(n – k)ϵ–1 + k
), Unfair-Opt = k.

For the aforementioned value of ϵ, we will have SW(Alg)
Unfair-Opt = 3

4 . Note that this example fits
the maxima point we found in the proof of Lemma 13. ◀
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4 Fairness for users with different preferences

So far we have assumed that similar users are similar in all aspects – the values advertisers
assign to them as well as the rates at which the users click on different ads. However, these
two sets of parameters are asymmetric. Values capture advertisers’ preferences over users
whereas CTRs capture users’ preferences over advertisers. We will now distinguish between
similarity in qualification (i.e. values) from similarity in user preferences (i.e. CTR).

A myopic viewpoint might suggest that two users that are similarly qualified should be
treated similarly by the auction no matter their preferences. However, this is fundamentally
at odds with the objective of maximizing the social welfare4 a.k.a. the collective value of
the advertisers, as the latter are contingent upon clicks. Consequently, the outcome of the
auction cannot be completely independent of user preferences and we look towards a notion
of fairness that is appropriately preference aligned.

To motivate our definitions, consider the following example. We have two users Alice and
Bob, two advertisers A and B, and a single slot to display an ad. The users look identical to
the advertisers: A places a value of $1 on a click from either user and B places a value of
$10 from either click. However the users behave differently when they view ads. Bob clicks
both ads with certainty. Alice clicks A’s ad with certainty but B’s ad with probability only
1%. The platform should clearly display ad A for Alice and ad B for Bob. Although these
outcomes are different, both users are happy: Bob is essentially indifferent between A and B,
while Alice greatly prefers A. In this case, any differences in allocation are aligned with user
preferences.

Can we always expect this to be the case? Formally, consider a single slot auction with
n advertisers, and two users with identical value vectors v = v′. Let a and a′ denote their
respective allocation vectors. Can we ensure that any allocation mass that is moved between
advertisers in a′ relative to a is moved from low CTR advertisers to high CTR advertisers?

Unfortunately, we cannot ensure this property while also maintaining a reasonable
approximation for social welfare. To see this, consider the above example with Alice and Bob
once again and suppose that Bob’s CTR for advertiser B changes to 20%. In order to obtain
a good social welfare, the auction must continue to display ad B for Bob. However, now Bob
gets to see much more of ad B and much less of ad A than Alice even though he greatly
prefers ad A to ad B. The key observation here is that the allocation mass in B’s allocation
shifts to an advertiser with high relative CTR, when measured relative to the CTRs of Alice.

Motivated by this example, we propose the following new preference-aligned definition
of fairness for identically valued users. Underlying this definition is a relative ordering of
advertisers for two users u and v with advertiser specific CTR vectors αu = (αu

1 , · · · , αu
n) and

αv = (αv
1, · · · , αv

n). We will assume that advertisers are ordered in (weakly) decreasing order
of the ratio αv

i /αu
i , and require that allocation mass for user v is shifted from advertisers

that appear later in the ordering to those that appear earlier in the ordering.

▶ Definition 15 (Value Stability for Identically-Valued Users with Heterogeneous Preferences).
An allocation mechanism A(·) is value-stable for identical users with heterogeneous preferences
if for every pair of users with identical value vectors v; CTR vectors α, α′, β, and β ′; any
ordering over advertisers that is weakly decreasing in α/α′; and for every advertiser i ∈ [n]
and slot j ∈ [k]:

i∑
t=1

j∑
s=1

Mt,s ≥
i∑

t=1

j∑
s=1

M′
t,s, where M = A(v, α, β) and M′ = A(v, α′, β ′).

4 Social welfare is a misnomer in this context, as it does not take into account the benefit or value users
derive from viewing the ad.
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Similar users

The above definition extends in a straightforward manner to pairs of users that are similarly
rather than identically qualified, and again have different preferences over advertisers as
expressed through CTRs. Once again we require that allocation mass shifts from advertisers
with low relative CTR to those with higher relative CTR, but we allow for additive errors in
allocation that grow with the dissimilarity in the users’ values.

▶ Definition 16 (Value Stability for Similarly-Valued Users with Heterogeneous Preferences).
An allocation mechanism A(·) is value-stable for users with heterogeneous preferences with
respect to function fℓ : [1,∞]→ [0, 1] if for every pair of users with value vectors v and v′;
CTR vectors α, α′, β, and β ′; any ordering over advertisers that is weakly decreasing in
α/α′; and for every advertiser i ∈ [n] and slot j ∈ [k]:

i∑
t=1

j∑
s=1

Mt,s ≥
i∑

t=1

j∑
s=1

M′
t,s – ifℓ(λ)

where M = A(v, α, β), M′ = A(v′, α′, β ′) and λ = max
i∈[n]

{
max

{
vi
v′

i
, v′

i
vi

}}
.

Comparing Definition 15 and Definition 16, note that if v = v′ then λ = 1 and, as discussed
in [5], a proper f function has the property of f(1) = 0. Therefore, Definition 15 is exactly
Definition 16 in the special case of v = v′.

4.1 Fairness of IPA and PA for heterogeneous users
We show that both the Generalized IPA and Generalized PA mechanisms satisfy Definition 15
and more generally Definition 16.

To begin, we show that any mechanism for the k-unit case satisfying certain mild
conditions also satisfies Definition 15. Both k-unit IPA and k-unit PA satisfy these conditions
and hence are value-stable for identically qualified users with heterogeneous preferences.

▶ Lemma 17. Let a(v) be a scale-free k-unit allocation algorithm such that ai(v) is weakly
increasing in vi. Suppose further that for all t ̸= i, ai(v) is weakly decreasing in vt. Then
a(v) satisfies Definition 15.

Proof. Fix i and scale α′ so that αi = α′
i. Since the advertisers are sorted, we now know

that for all t < i, αt ≥ α′
t and for all t > i, αt ≤ α′

t.
We proceed by two cases and then use a transitivity argument to show the theorem holds

in general.

Consider the case where for all t ≤ i, αt = α′
t. Then αv

{
= α′v for all t ≤ i
≤ α′v for all t > i

.

Therefore, since the allocation at is weakly decreasing in vs for all s ̸= t, we have that for
all t ≤ i, a(αv) ≥ a(α′v). Hence,

∑i
t=1 at(αv) ≥

∑i
t=1 at(α′v), as desired.

Now, consider the case where for all t ≥ i, αt = α′
t. Then αv

{
≥ α′v for all t < i
= α′v for all t ≥ i

.

Therefore, since the allocation at is weakly decreasing in vs for all s ̸= t, we have
that for all t > i, a(αv) ≤ a(α′v) and hence

∑n
t=i+1 at(αv) ≤

∑n
t=i+1 at(α′v). But∑i

t=1 at(αv) = k–
∑n

t=i+1 at(αv) and likewise
∑i

t=1 at(α′v) = k–
∑n

t=i+1 at(α′v). Therefore,∑n
t=i+1 at(αv) ≤

∑n
t=i+1 at(α′v) implies

∑i
t=1 at(αv) ≥

∑i
t=1 at(α′v), as desired.
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We now argue that the theorem holds in general. Let α′′
t :=

{
αt if t ≤ i
α′

t if t > i
. By the first

case,
∑i

t=1 at(αv) ≥
∑i

t=1 at(α′′v), and by the second case
∑i

t=1 at(α′′v) ≥
∑i

t=1 at(α′v).
Hence,

∑i
t=1 at(αv) ≥

∑i
t=1 at(α′v), as desired. ◀

▶ Corollary 18. The k-unit IPA and k-unit PA mechanisms satisfy Definition 15.

Because our generalized mechanisms are defined in terms of telescoping differences of the
k-unit allocations, Theorem 19 follows directly from Corollary 18.

▶ Theorem 19. The Generalized IPA and Generalized PA mechanisms satisfy Definition 15.

Next, we show Generalized IPA and Generalized PA are value-stable for similarly-valued
users with heterogeneous preferences. The only thing changing from Definition 15 to
Definition 16 is that we need to keep track of small changes between the two allocations,
which leads to the following theorem. The proof is deferred to Appendix B.

▶ Theorem 20. The Generalized IPA and Generalized PA mechanisms A(·) with parameter
ℓ are value-stable for similarly-valued users with heterogeneous preferences.

5 Computing payments

In this section we develop an algorithm for computing supporting payments for the generalized
IPA and generalized PA allocation rules. Our main observation is that the allocation functions
of IPA and PA are piecewise rational functions with polynomially many pieces where each
piece can be computed in polynomial time. With these pieces in hand, and using Myerson’s
lemma, computing payments amounts to computing polynomially many integrals of rational
functions.

We focus on the generalized IPA; the argument for generalized PA is similar. Formally,
for a fixed and implicit user u, and a fixed and implicit advertiser i, let xi(v) denote the net
allocation to the advertiser, a.k.a. the expected number of clicks the advertiser receives from
the user. If the user is assigned allocation M = A(v, α, β) then we have xi(v) =

∑
j Mi,jαiβj.

Let a(j) denote the cumulative allocation to the user in the first j slots as in the description
of Algorithm 2 and recall that Mi,j = a(j)

i – a(j–1)
i . Accordingly we get:

xi(v) = αi
∑

j
a(j)

i (βj – βj+1). (1)

In other words, xi(v) is a linear combination of the functions a(j)
i (v).

We will now argue that for all i, j, the function a(j)
i (v), as defined in Algorithm 1, is

piecewise rational in vi. Consider the following equivalent formulation of Algorithm 1. Given
the values v1, · · · , vn, ad-specific CTRs α1, α2, · · · , αn, and decreasing function g, we find a
parameter t such that∑

i′
min(1, t · g(αi′vi′)) = n – j. (2)

The allocation a(j)
i is then given by 1 – min(1, t · g(αivi)).

Suppose without loss of generality that i receives a non-zero allocation at value vi (other-
wise a(j)

i is trivially piecewise rational at values ≤ vi). We can then rewrite Equation (2) as:

t · g(αivi) +
∑
i′ ̸=i

min(1, t · g(αi′vi′)) = n – j. (3)
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Now, the expression
∑

i′ ̸=i min(1, tg(αi′vi′)) is independent of vi and piecewise linear in
t with at most n pieces. Given the values v–i and CTRs α–i, we can efficiently compute the
linear pieces in this function. Substituting any particular linear piece with t in the range
[t1, t2] in Equation (3) then gives us an equation of the following form with appropriate
parameters x and y:

t · g(αivi) + xt = y

leading to the solution

a(j)
i (vi) = 1 – g(αivi) ·

y
g(αivi) + x for vi ∈

[
1
αi

g–1
(

y – xt2
t2

)
, 1

αi
g–1
(

y – xt1
t1

)]
.

Observe that the RHS in the above equation is a rational function as the function g in the
definition of IPA is also rational.

Summarizing, we first compute the piecewise rational form of the function a(j)
i (vi) for all

slots j. Each of these functions has at most n pieces. We then use Equation (1) to express
xi(vi) as a piecewise rational function with at most nk pieces. Finally, we use Myerson’s
lemma and compute per-impression payments as

pi(vi) = vixi(vi) –
∫ vi

z=0
xi(z) dz.

6 Proportional Allocation

In this section, we present a generalization of the mechanism first introduced in [4] as
Proportional Allocation (PA) to the position auction setting. We show that the generalization
retains the same approximation ratio to the optimal social welfare and an appropriate
generalization of the total variation value stability condition. This is a stronger fairness
guarantee than that of Generalized IPA, but comes at the cost of a weaker approximation to
the optimal social welfare. For a detailed discussion of the trade-offs between the single-unit
versions these methods, see [5]. Some of the proofs in this section are deferred to Appendix C.

6.1 Generalized PA
In contrast to IPA, PA can be thought of as initially assigning each advertiser an allocation
of 0 and then increasing the allocations in proportion to (some function of) the bid amounts
until the total allocation reaches 1. [4] analyzes this mechanism for the single unit case.
In particular, they prove value stability with respect to the total variation distance on the
allocations, rather than with respect to the ℓ∞ distance as with IPA. However, in exchange,
the social welfare approximation achieved by PA degrades as the number of advertisers
increases.

Just like the previous section, we start with a warm-up case in which we consider a
special case of position auctionwhere β = −→1 . For this case, we will attempt to allocate
proportionally, assigning k · g(vi)∑

t g(vt) to each bidder i. If this allocation is more than 1 for any
advertiser, we cap their allocation at 1 and divide the additional mass proportionally among
the remaining advertisers. See Algorithm 4 in Appendix C for an algorithmic interpretation
of this mechanism. Note that the function g in this mechanism is different than the one in
Section 3, as it is a continuous, super-additive and increasing function.

The extension of this algorithm to the position auctioncase is similar to the extension we
saw in Section 3 for IPA, and works as follows:
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Algorithm 2 Generalized PA.
Input: Vector v of non-negative advertiser bids for user u; CTRs α1, · · · , αn and
β1, · · · , βk; number of slots k; function g : R≥0 → [0,∞] with g a continuous,
super-additive, increasing function and g(0) = 0;

for h ∈ [k] do
Set p(h) ← the output of the PA k-unit algorithm on input (v, α, h, g)

end
for j ∈ [k] do

Set P·,j = p(j) – p(j–1)

end
return P

Observe that Generalized PA is scale-free, independent of β, and produces feasible
allocations.

6.2 Fairness
First, we prove the fairness guarantees of our mechanism. We begin by showing the total
variation value stability of PA, which as we’ve discussed is the main advantage of PA over IPA.

▶ Theorem 21. The Generalized PA mechanism with parameter g(x) = xℓ satisfies Defini-
tion 8 Total Variation Value Stability for Position Auctions with respect to fℓ(λ). That is,
for all pairs of effective value vectors v̂, v̂′, subsets of advertisers S ⊆ [n], and slots j,

|
∑
s∈S

Ps,j(v̂) –
∑
s∈S

Ps,j(v̂′)| ≤ 2fℓ(λ).

The proof of Theorem 21 uses the following key lemma, which shows a similar property
holds for k-unit PA mechanism.

▶ Lemma 22. The k-unit PA mechanism with parameter g(x) = xℓ satisfies the property
that, for all pairs of effective value vectors v̂, v̂′ and subsets of advertisers S ⊆ [n],

|
∑
s∈S

as(v̂) –
∑
s∈S

as(v̂′)| ≤ λℓ – 1
λℓ + 1

≤ fℓ(λ).

We now show that Generalized PA also satisfies the same ordered value stability property
as IPA. The proof is essentially identical as the proof of Theorem 11 except in that it uses
the total variation value stability of PA instead the value stability of IPA. For the full proof,
see Appendix C.

▶ Theorem 23. Generalized PA with parameter ℓ satisfies ordered value stability with respect
to fℓ(λ). That is, for every set of value and CTR vectors v, v′, α, α′ and β, as well as for
any advertiser i and any decreasing vector h with 1 ≥ h1 ≥ . . . ≥ hk ≥ 0:

|
k∑

j=1
hj
(

Pi,j – P′
i,j
)
| ≤ fℓ(λ) where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})

where P = A(v, α, β) and P′ = A(v′, α′, β).
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6.3 Social Welfare
Finally, we give our guarantee on the social welfare approximation ratio achieved by Gen-
eralized PA relative to Unfair-Opt. The proof relies on a lemma showing the same
approximation result for the special case of β⃗ = 1, k-unit PA.

▶ Theorem 24. The Generalized PA mechanism with parameter ℓ achieves a(
n–k

n (n – k)–1/ℓ + 1/n
)

-approximation to the optimal social welfare for any instance with n
advertisers and k slots.

▶ Lemma 25. The k-unit PA subroutine with parameter ℓ achieves a
(

n–k
n (n – k)–1/ℓ + 1/n

)
-

approximation to the optimal social welfare for any instance with n advertisers and k slots.
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A Deferred Proofs from Section 3

Below is the algorithmic description of position auctionin the case of β⃗ = 1:

Algorithm 3 k-unit IPA.
Input: Vector v of non-negative advertiser bids for user u; ad-specific CTRs
α1, · · · , αn; number of slots k; function g : R≥0 → (0,∞] with g(0) =∞ and
limx→∞ g(x) = 0;

Initialization: Determine effective values, v̂i = viαi for all i;
WLOG assume v̂1 ≥ . . . ≥ v̂n;
if k = 0 then

return a(v) = −→0
end
if v̂1 ≤ 0 then

Set ai = k
n for all i ∈ [n], return a(v);

end
Set s← max{i ∈ [n] : v̂i > 0};
while (s – k)g(v̂s) ≥

∑s
i=1 g(v̂i) do

s← s – 1;
end
For i > s: set ai = 0;
For i ≤ s set ai = 1 – (s – k) g(v̂i)∑s

t=1 g(v̂t) ;
return a(v)

▶ Theorem 11. Generalized IPA with parameter ℓ satisfies ordered value stability with
respect to fℓ(λ). That is, for every set of value and CTR vectors v, v′, α, α′ and β, as well
as for any advertiser i and any decreasing vector h with 1 ≥ h1 ≥ . . . ≥ hk ≥ 0:

|
k∑

j=1
hj
(

Mi,j – M′
i,j
)
| ≤ fℓ(λ) where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})
where M = A(v, α, β) and M′ = A(v′, α′, β).
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Proof. Fix some vectors v, v′, α, α′, and β, and the corresponding allocation matrices M and
M′. Consider some advertiser i. We begin by using the definition Generalized IPA and then
rearranging terms. Note that we define hk+1 := 0 for notational simplicity.

|
k∑

j=1
hj
(

Mi,j – M′
i,j
)
| = |

k∑
j=1

hj
(

(a(j)
i – a(j–1)

i ) – (a(j)
i′ – a(j–1)

i′ )
)
|

= |
k∑

j=1

(
hj(a

(j)
i – a(j–1)

i ) – hj(a
(j)
i′ – a(j–1)

i′ )
)
|

= |
k∑

j=1

(
a(j)

i – a(j–1)
i′

) (
hj – hj+1

)
|.

Now, observe that because h1 ≤ 1 and the coefficients (hj – hj+1) telescope, the sum of
these coefficients is at most 1. Since the expression is a weighted sum over columns of the
differences in allocation at that column, the expression is bounded by the maximum difference
in any column. But because Generalized IPA satisfies value stability (by Lemma 10), this is
bounded by fℓ(λ), as desired.

|
k∑

j=1
hj
(

Mi,j – M′
i,j
)
| = |

k∑
j=1

(
a(j)

i – a(j–1)
i′

) (
hj – hj+1

)
| = |max

j

(
a(j)

i – a(j–1)
i′

)
| ≤ fℓ(λ) ◀

▶ Theorem 12. The IPA algorithm for the separable case, Algorithm 1, run with parameter
ℓ > 0 and any number of advertisers n achieves a

(
1 – ℓℓ

(1+ℓ)ℓ+1

)
-approximation the social

welfare of the unfair optimum.

Proof. Suppose the k-unit IPA mechanism attains an η approximation to the optimal
social welfare in the k-unit setting. Then the Generalized IPA mechanism attains the same
approximation factor η in the position auctionwhen run with the k-unit IPAmechanism as a
subroutine. In order to prove this, we consider the social welfare attained by the Generalized
IPA mechanism. Since βk+1 = 0 and a(0)

i = 0⃗,

SW(Alg) =
n∑

i=1

k∑
j=1

αiviβjMij =
n∑

i=1

k∑
j=1

v̂iβj
[
a(j)

i – a(j–1)
i

]
=

n∑
i=1

k∑
j=1

v̂i(βj – βj+1)a(j)
i .

Since for all j ∈ [k],
∑

i v̂ia
(j)
i ≥ η(v̂1 + · · ·+ v̂j), then:

SW(Alg) =
k∑

j=1
(βj – βj+1)

( n∑
i=1

v̂ia
(j)
i

)
≥ η

k∑
j=1

(βj – βj+1)
(
v̂1 + · · ·+ v̂j

)
= η

k∑
j=1

v̂jβj = η Unfair-Opt.

Finally, we know by Lemma 13 that the k-unit IPA mechanism is an η =
(

1 – ℓℓ

(1+ℓ)ℓ+1

)
-

approx -imation to the optimal k-unit social welfare. Replacing η by
(

1 – ℓℓ

(1+ℓ)ℓ+1

)
concludes

the proof. ◀
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B Deferred Proofs from Section 4

▶ Theorem 20. The Generalized IPA and Generalized PA mechanisms A(·) with parameter
ℓ are value-stable for similar users with heterogeneous preferences.

Proof. Fix users with user-dependent CTR vectors α and α′ and value vectors v and v′.
Also fix slot-dependent CTR vector β, advertiser i, and column j. Let M = A(v, α, β) and
M′ = A(v, α′, β), where at =

∑j
s=1 Mt,s, and a′

t =
∑j

s=1 M′
t,s. Finally, fix a permutation π

on advertisers for which απ1
α′

π1
≥ . . . ≥ απn

α′
πn

.

Since A(·) is envy-free, we know that
∑i

s=1
∑j

t=1 Mst(αv) ≥
∑i

s=1
∑j

t=1 Mst(α′v).
Therefore, it suffices to show

∑i
s=1

∑j
t=1 Mst(α′v) ≥

∑i
s=1

∑j
t=1 Mst(α′v′) – if(λ). Consider

the difference
∑i

s=1
∑j

t=1 Mst(α′v′) –
∑i

s=1
∑j

t=1 Mst(α′v). Since
∑j

t=1 Mst(αv) = aj
s(αv),

we can simplify this to:

i∑
s=1

aj
s(α′v′) –

i∑
s=1

aj
s(α′v) ≤ |

i∑
s=1

aj
s(α′v′) –

i∑
s=1

aj
s(α′v)| = |

i∑
s=1

aj
s(α′v′) – aj

s(α′v)|

≤
i∑

s=1
|aj

s(α′v′) – aj
s(α′v)| ≤

i∑
s=1

f(λ) = i ∗ f(λ).

Simply combining this with the previous inequality gives the desired result. ◀

C Deferred Proofs from Section 6

Below is the algorithmic description of position auctionin the case of β⃗ = 1:

Algorithm 4 k-unit PA.
Input: Vector v of non-negative advertiser bids for user u; ad-specific CTRs
α1, · · · , αn; number of slots k; function g : R≥0 → [0,∞] with g a continuous,
super-additive, increasing function and g(0) = 0;

Initialization: Determine effective values, WLOG assume v̂1 ≥ . . . ≥ v̂n;
if k = 0 then

return p(v) = −→0
end
if v̂1 ≤ 0 then

Set pi = k
n for all i ∈ [n], return p(v);

end
Set s← max{i ∈ [n] : v̂i > 0};
Set r = 1;
while k.g(v̂r)

s∑
t=r

g(v̂t)
≥ 1 do

pr = 1;
r← r + 1;

end
For i ≥ r: set pi = (k–r).g(v̂i)

s∑
t=r

g(v̂t)
;

return p(v);

FORC 2022
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▶ Theorem 23. Generalized PA with parameter ℓ satisfies ordered value stability with
respect to fℓ(λ). That is, for every set of value and CTR vectors v, v′, α, α′ and β, as well
as for any advertiser i and any decreasing vector h with 1 ≥ h1 ≥ . . . ≥ hk ≥ 0:

|
k∑

j=1
hj
(

Pi,j – P′
i,j
)
| ≤ fℓ(λ) where λ is defined as max

i∈[n]

(
max

{
αivi
α′

iv′
i
,

α′
iv′

i
αivi

})

where P = A(v, α, β) and P′ = A(v′, α′, β).

Proof. Fix some vectors v, v′, α, α′, and β, and the corresponding allocation matrices P and
P′. Consider some advertiser i. We begin by using the definition of Generalized PA and then
rearranging terms. Note that we define hk+1 := 0 for notational simplicity.

|
k∑

j=1
hj
(
Pi,j – Pi,j

)
| = |

k∑
j=1

hj
(

(p(j)
i (v̂) – p(j–1)

i (v̂)) – (p(j)
i (v̂′) – p(j–1)

i (v̂′))
)
|

= |
k∑

j=1

(
hj(p

(j)
i (v̂) – p(j–1)

i (v̂)) – hj(p
(j)
i (v̂′) – p(j–1)

i (v̂′))
)
|

= |
k∑

j=1

(
p(j)

i (v̂) – p(j–1)
i (v̂′)

) (
hj – hj+1

)
|.

Now, observe that because h1 ≤ 1 and the coefficients (hj – hj+1) telescope, the sum of
these coefficients is at most 1. Since the expression is a weighted sum over columns of
the differences in allocation at that column, the expression is bounded by the maximum
difference in any column. But because Generalized PA satisfies total variation value stability
(by Lemma 22), this is bounded by fℓ(λ) for all subsets of advertisers, including the singleton
i, as desired.

|
k∑

j=1
hj
(

Pi,j – P′
i,j
)
| = |

k∑
j=1

(
p(j)

i (v̂) – p(j–1)
i (v̂′)

) (
hj – hj+1

)
|

= |max
j

(
p(j)

i (v̂) – p(j–1)
i (v̂′)

)
| ≤ fℓ(λ) ◀

▶ Lemma 22. The k-unit PA mechanism with parameter g(x) = xℓ satisfies the property
that, for all pairs of effective value vectors v̂, v̂′ and subsets of advertisers S ⊆ [n],

|
∑
s∈S

as(v̂) –
∑
s∈S

as(v̂′)| ≤ λℓ – 1
λℓ + 1

≤ fℓ(λ).

Proof. Fix some pairs of effective value vectors v̂, v̂′ and a subset of advertisers S ⊆ [n].
Define E to be

∑
s∈S as(v̂) –

∑
s∈S as(v̂′) and assume without loss of generality that E ≥ 0.

We want to upper bound E by fℓ(λ).
First, we reduce the general case to that where the while loop never executes. That is,

we modify the given instance so that the while loop never executes while only increasing E
and decreasing λ. First, we can assume that i ∈ S if ai(v̂) > ai(v̂′) and i ̸∈ S if ai(v̂) < ai(v̂′),
since that those choices maximize E (and do not effect λ). We also assume that for all i,
v̂i ≥ v̂′

i and therefore λ = maxi{v̂i/v̂′
i}. If this is violated for i ∈ S, then raising v̂i to v̂′

i
cannot decrease E (it can only increase

∑
s∈S as(v̂)) and cannot increase λ. Similarly, if the

assumption violated for i ̸∈ S, then lowering v̂′
i to v̂i cannot decrease E (it can only decrease∑

s∈S as(v̂′)) and cannot increase λ.
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Now, suppose there exists some i ∈ S such that k·g(v̂i)∑n
t=s g(v̂t) > 1. Then we can reduce

v̂i so that k·g(v̂i)∑n
t=s g(v̂t) = 1 since this doesn’t change E but potentially decreases λ. Finally,

suppose there exists some i ∈ S such that k·g(v̂′
i)∑n

t=s g(v̂′
t) > 1. Then consider lowering v̂′

i so that
k·g(v̂′

i)∑n
t=s g(v̂′

t) = 1 and then scaling v̂′′ so that v̂′
i has its original value. This does not change E

and potentially decreases λ. Therefore, we’ve successfully reduced to an instance in which
the while loop never executes.

We now assume without loss of generality that the while loop never executes. The
remaining argument follows closely from [4].

Define α :=
∑

s∈S g(v̂s) and β :=
∑

s ̸∈S g(v̂s), and define α′ and β ′ analogously. Note
now that the while loop never executes, we have that for all i, ai(v̂) = g(v̂i)/

∑n
i=1 g(v̂s), and

similarly for ai(v̂′). Therefore we can write

E = α

α + β
– α′

α′ + β ′ = 1 – β

α + β
– α′

α′ + β ′ .

Let Rα := α/α′ and Rβ := β ′/β. Note that Rα ≤ g(λ) because for any s ∈ S, v̂s/v̂′
s ≤ λ

so g(v̂s)/g(v̂′
s) ≤ g(λ). Similarly, Rβ ≤ g(λ). Observe also that our expression for E can be

upper bounded by the case that these inequalities for Rα and Rβ are tight.

E ≤ 1 – α · g(λ)
α · g(λ) + β ′ – α

α + β · g(λ) = αβ ′(g(λ)2 – 1)
(α + β ′g(λ))(g(λ)α + β ′)

= αβ ′(g(λ)2 – 1)
g(λ)α2 + g(λ)β ′2 + αβ ′(g(λ)2 + 1)

≤ αβ ′(g(λ)2 – 1)
2g(λ)αβ ′ + αβ ′(g(λ)2 + 1)

= g(λ)2 – 1
2g(λ) + g(λ)2 + 1

= g(λ) – 1
g(λ) + 1.

Finally, we observe that g(λ)–1
g(λ)+1 ≤ fℓ(λ), as desired:

E ≤ λℓ – 1
λℓ + 1

= 1 – 2(λℓ + 1)–1 ≤ 1 – 2(λℓ + λℓ)–1 = 1 – λ–ℓ ≤ 1 – λ–2ℓ = fℓ(λ). ◀

▶ Theorem 24. The Generalized PA mechanism with parameter ℓ achieves a(
n–k

n (n – k)–1/ℓ + 1/n
)

-approximation to the optimal social welfare for any instance with n
advertisers and k slots.

Proof. First, we consider the social welfare attained by the Generalized PA mechanism.
Since βk+1 = 0 and p(0)

i = 0⃗,

SW(Alg) =
n∑

i=1

k∑
j=1

αiviβjMij =
n∑

i=1

k∑
j=1

v̂iβj
[
p(j)

i – p(j–1)
i

]

=
n∑

i=1

k∑
j=1

v̂i(βj – βj+1)p(j)
i =

k∑
j=1

(βj – βj+1)
( n∑

i=1
v̂ip

(j)
i

)
.
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Lemma 25 proves the approximation ratio of the k-unit PA mechanism. Observe
that this ratio is decreasing in k. Therefore, for any j,

(∑n
i=1 v̂ip

(j)
i

)
is at least an

η =
(

n–k
n (n – k)–1/ℓ + 1/n

)
fraction of Unfair-Opt. Therefore, we have

SW(Alg) =
k∑

j=1
(βj – βj+1)

( n∑
i=1

v̂ia
(j)
i

)
≥ η

k∑
j=1

(βj – βj+1)
(
v̂1 + · · ·+ v̂j

)
= η

k∑
j=1

v̂jβj = η Unfair-Opt. ◀
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