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Abstract
The phenomenon of adversarial examples in deep learning models has caused substantial concern over
their reliability and trustworthiness: in many instances an imperceptible perturbation can falsely flip
a neural network’s prediction. Applied research in this area has mostly focused on developing novel
adversarial attack strategies or building better defenses against such. It has repeatedly been pointed
out that adversarial robustness may be in conflict with requirements for high accuracy. In this work,
we take a more principled look at modeling the phenomenon of adversarial examples. We argue that
deciding whether a model’s label change under a small perturbation is justified, should be done in
compliance with the underlying data-generating process. Through a series of formal constructions,
systematically analyzing the relation between standard Bayes classifiers and robust-Bayes classifiers,
we make the case for adversarial robustness as a locally adaptive measure. We propose a novel
way defining such a locally adaptive robust loss, show that it has a natural empirical counterpart,
and develop resulting algorithmic guidance in form of data-informed adaptive robustness radius.
We prove that our adaptive robust data-augmentation maintains consistency of 1-nearest neighbor
classification under deterministic labels and thereby argue that robustness should not be at odds
with accuracy.
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1 Introduction

Deep learning methods have enjoyed phenomenal successes on a wide range of applications
of predictive tasks in the past decade. However, it has been demonstrated that, while
these networks are often highly accurate at making predictions on natural data inputs, the
performance can degrade drastically when inputs are slightly manipulated [32]. Flipping
a few pixels in an image, a perturbation that is not perceivable by humans, can lead to
misclassification by the trained network. These unexpected, and seemingly erratic behaviors of
deep learning models have caused substantial concern over their reliability and trustworthiness.
Particularly so, if these models are to be employed in applications where vulnerability to
manipulations may have fatal consequences (for example if learning based vision technologies
are to be employed in self-driving cars).

1 This research was done while Sadia Chowdhury was a graduate student at York University, Toronto,
Canada.
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Recent years have thus seen a surge in studies aiming to enhance robustness of deep
learning [10, 18, 1]. Practical approaches often either smooth out a trained predictor [12, 28],
or augment the training data with perturbations of natural inputs as a way to promote
robustness [36, 41]. In adversarial training this is done as part of the optimization [20, 24].
On the other hand, studies on the theory of adversarial robustness have often focused on
exploring unexpected gaps in statistical and computational complexity when learning under
an adversarial loss as opposed to the standard binary classification loss [26, 40, 25]. Numerous
studies, both theoretical and practical, have pointed out that increasing robustness often
comes at a cost of lower predictive accuracy [15, 19, 27, 5].

Naturally, an important component of analyzing and exploring a real world phenomenon,
such as adversarial perturbations, is formalizing it appropriately. In supervised machine
learning, the learning objective is typically encoded in form of a loss function. In this work, we
take a principled look at the common definition of adversarial loss. Both theoretical studies
and practical heuristics developed in the context of promoting robustness to adversarial
attacks are mostly aimed at a fixed notion of smoothness with a fixed degree of perturbations
that the model should be made robust to. In contrast, we formally argue how the notion
of what is an admissible adversarial perturbation should be informed by the data. That is,
robustness requirements should be aligned with the underlying data-generating process. We
show how such an alignment inherently requires a locally adaptive notion of robustness, that
is, a locally adaptive robust loss.

More specifically, we start by analyzing carefully how the previously established trade-offs
between accuracy and robustness depend on a chosen (fixed) robustness parameter and the
probability mass close to the decision boundary of the true underlying data-generating process.
We introduce a new notion to quantify this trade-off, the margin rate of the distribution. We
prove that, given the margin rate of a distribution, a robustness parameter can be chosen so
that the two predictors that are optimal with respect to accuracy and optimal with respect
to robustness loss respectively, have similar loss values (in terms of both classification and
robust loss). However, we also show that choosing the robustness parameter slightly too
large, can result in those two optimal predictors be very different functions. They may assign
different labels on half of the space (with probability 0.5 over the data-generating process).
This means that, if the robustness parameter is chosen even slightly too large, any learning
method that converges to the best possible robust loss as training data set size increases, may
converge to a predictor with classification error 0.5 !

This motivates our proposition of redefining the robustness requirement. We argue that
robustness is inherently a local property and that learned predictors should thus satisfy a local
notion of robustness that is in line with the underlying data-generating process. While such a
requirement can not readily be phrased as a loss function (that operates on a pair of predictor
and input/output data instance), we derive a natural empirical version of this requirement.
This allows for evaluating the novel adaptive robustness requirement on datasets. Further, we
show how our notion of locally adaptive robustness yields a natural way of determining the
robustness radius for data-augmentation. This could be used either for data-augmentation
as a preprocessig step or for advesarial training.

Finally, we prove that using this form of data-augmentation as a pre-processing step
maintains consistency of 1-nearest neighbor classification on tasks without stochasticity
in the labels. That is, a nearest neighbor classifier on an adaptively augmented dataset
converges to the optimal classification accuracy, while also satisfying the requirements of the
adaptive robust loss. This formally shows how our novel framework resolves the conflicts
with accuracy that are inherent in any non-adaptive notions of robustness.
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1.1 Overview and summary of main contributions
We introduce our formal setup, notation for loss functions, optimal predictors and notions of
statistical consistency in Section 3. In Section 4, we start with a few simple constructions,
exploring how robustness (and potential divergence of 0/1-optimal and robust-optimal
classifiers) relates to margins and separability of the underlying data-generating distribution.
Our main contributions are presented in Sections 5 and 6 and can be summarized as follows:

Margin rate and margin canonical Bayes predictor. In Section 5.1, we introduce the notion
of a margin canonical Bayes predictor and the margin-rate (Definition 4). The margin
canonical Bayes predictor is a classifier that is optimal both in terms of accuracy and in
terms of margins (in a precise sense that we define in this section). The margin rate can be
viewed as a relaxed measure of distributional class separateness. It is relaxed in the sense
that is does not enforce a hard margin between different classes (which is an unrealistic
requirement) and instead even allows for overlap between the two class-conditional marginals
(resulting in stochastic labels). We then relate the margin rate to suitable choices of r. We
prove that, given the margin rate, we can choose the robustness parameter so that optimal
predictors for the binary loss are also close to optimal with respect to the robust loss and
vice versa (Theorem 5). Further, we show that if the labels are deterministic (no overlap
between the two class-conditional marginals), then these are also close as functions. However,
we also show that the non-stochasticity of the labels is necessary for the functions to be
guaranteed to be close and that choosing r slightly too large can lead to large differences in
the optimal predictors (Observations 6 and 7). Subsequently, in Subsection 5.2 we argue
that, if the distribution has inherently different scales of robustness in different parts of the
space, then even under deterministic labels choosing r suitable according to Theorem 5 does
not lead to what is intuitively desired of a robust predictor.

Redefining robustness and resolving the conflicts with accuracy. The analysis outlined
above leads to our proposition to re-define robustness as a locally adaptive requirement. This
is presented in Section 6. There, we introduce the adaptive robust loss, define its empirical
version, and develop guidance for adaptive robust data augmentation. Our proposed definition
implies that the optimal predictors with respect to the binary loss and the adaptive robust
loss coincide. Further, we prove that our adaptive robust data-augmentation maintains
consistency of 1-nearest neighbor classification (NN) under deterministic labels. This shows
that the undesirable effect of robustness being “at odds” with accuracy is an artifact of a
specific, though common, way of defining robustness. It can be avoided be letting robustness
requirements be informed by the underlying data-generating process.

Illustrative visualizations. Finally, in Appendix Section A we present a set of illustrative
experiments for the proposed data-augmentation method and adaptive robust loss in combin-
ation with training a ReLU neural network. The synthetic datasets were designed so as to
highlight the occurrence of adversarial examples when the data sits on a lower dimensional
manifold, a scenario that is considered one of the sources adversarial vulnerability [22]. Our
experiments visually make the case for the adaptive robust loss in situations where the label
classes have different degrees of separation in different parts of the space.

A note on generalizations. For concreteness, we focus our presentation in this work on
binary classification and work with the Euclidian metric. However, our definitions and result
straightforwardly generalize to multi-class classification and to other metrics (with suitably
chosen covering numbers replacing the Euclidian dimension in our result on consistency
under adaptive robust data-augmentation).

FORC 2022
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2 Related Work

Enhancing robustness to adversarial attacks has received an enormous amount of research
attention in recent years, in particular in terms of practical advancements [10, 18, 1, 9, 21].
We will focus our discussion of prior work on studies relating to theoretical aspects of learning
under a robust loss.

Numerous recent theoretical studies focus on the parametric setup and analyze how
introducing a robustness requirement may affect statistical convergence of the induced loss
classes [13, 29, 26, 40, 2], whereas others have focused on computational implications [4, 25].
In particular, that there can be arbitrarily large gaps between the sample complexity of
learning a hypothesis with respect to classification versus roust loss [13, 26]. Several studies
have derived convergence bounds for classification under adversarial manipulations for fixed
hypothesis classes [16, 3, 8].

Most related to our work are recent studies that also discuss possible options (and their
implications) for phrasing a robust loss [15, 19], and in particular studies that pointed out
and analyzes the trade-off between accuracy and robustness [17, 33, 39]. In particular, a
recent study systematically explored the relationship between (a notion of local) Lipschitzness
of a nearest neighbor predictor and its robustness. Further closely related to our work are
recent studies that analyze and derive properties of optimal predictors under the robust
loss and their relation to nearest neighbor predictors [35, 6, 38]. The latter work studies
non-parametric learning for robust classification and proposes a method of data-preprocessing,
and, similar to our result for 1-Nearest Neighbor prediction, proves implied consistency.
However, the pre-processing in that study consists of pruning rather than augmenting the
data. However, robustness in these prior works is considered with respect to a fixed robustness
parameter. In this work, we carefully argue that adversarial robustness should instead be
phrased as a locally adaptive requirement. Recently, a similar argument has independently
been made [7]. Ideas of a locally adaptive robustness parameter have also appeared in some
practical developments on refining adversarial training [5, 14]. Our work can be viewed
as providing a formal foundation to those ideas, cleanly relating the concept of adaptive
robustness to the distribution that models the data-generating process, as well as formally
showing how a fixed robustness parameter easily yields inconsistencies between the robust
and the standard classification loss.

Finally, we note that relationship between non-parametric methods and local adaptivity
is well established and our work builds on this. In particular, it has been shown shown that
nearest neighbor methods’ convergence can be understood and quantified in terms of local
smoothness properties of the underlying data-generating process for regression [23] as well as
for classification tasks [11].

3 Formal Setup

3.1 Basic notions of statistical learning
We employ a standard setup of statistical learning theory for classification. We let X ⊆ Rd

denote the domain and Y (mostly Y = {0, 1}) a (binary) label space. We assume that
data is generated by some distribution P over X × Y and let PX denote the marginal of P

over X . We let supp(PX ) denote the support of this marginal. Further, we use notation
ηP (x) = P(x,y)∼P [y = 1 | x] to denote the regression function of P . We say that the
distribution has deterministic labels if ηP (x) ∈ {0, 1} for all x ∈ X . A classifier or hypothesis
is a function h : X → Y. We let F denote the set of all Borel measurable functions from X
to Y (or all functions in case of a countable domain). A hypothesis class is a subset of F ,
often denoted by H ⊆ F .
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The quality of prediction of a hypothesis on an input/output pair (x, y) is measured by a
loss function ℓ : (F × X × Y) → R. For classification problems, the quality of prediction is
typically measured with the binary or classification loss: ℓ0/1(h, x, y) = 1 [h(x) ̸= y], where
1 [α] denotes the indicator function for predicate α.

We denote the expected loss (or true loss) of a hypothesis h with respect to the distribution
P and loss function ℓ by LP (h) = E(x,y)∼P [ℓ(h, x, y)]. In particular, we will denote the true
binary loss by L0/1

P (h). The Bayes classifier is a (in general not unique) classifier which has
the minimal true loss with regard to P . We denote the Bayes classifier with respect to the
binary loss as hB

P and it’s loss, the Bayes risk by LB
P = L0/1

P (hB
P )

The empirical loss of a hypothesis h with respect to loss function ℓ and a sample
S = ((x1, y1), . . . , (xn, yn)) is defined as LS(h) = 1

n

∑n
i=1 ℓ(h, xi, yi).

Further, we use the following notation to denote the set of domain points on which two
classifiers differ: h∆h′ := {x ∈ X | h(x) ̸= h′(x)}.

A learner A is a function that maps a finite sequence of labeled instances S = ((x1, y1), . . .

. . . , (xn, yn)) to a hypothesis h = A(S). The following notion of a consistent learner captures
a basic desirable property: as the learner sees larger and larger samples from the data-
generating distribution, the loss of the learner’s output should converge to the Bayes risk.

▶ Definition 1 (Consistency). We say that a learner A is consistent with respect to a set of
distributions P if, for every P ∈ P, every ϵ, δ > 0 we have there is a sample-size n(P, ϵ, δ)
such that, for all n ≥ n(P, ϵ, δ), we have PS∼P n

[
LP (A(S)) ≤ LB

P + ϵ
]

≥ 1 − δ.

3.2 (Adversarially) robust loss
We consider the most commonly used notion of an (adversarial) robust loss [26, 37]. For a
point x ∈ X , we let Br(x) denote the (open) ball of radius r around x. We then define the
robust loss as: ℓr(h, x, y) = 1 [∃z ∈ Br : h(z) ̸= y] and we let Lr

P (h) denote the expected
robust loss of h.

As has been done in prior work, we decompose the robust loss into its error and margin
components [42, 2]: We have ℓr(h, x, y) = 1 if and only if h makes a mistake on x with
respect to label y, or, there is an r-close instance z ∈ Br(x) that h labels different than x,
that is, x is r-close to h’s decision boundary.

The first condition holds when (x, y) falls into the error region, err[h] = {(x, y) ∈
X × Y ) | h(x) ̸= y}. The second condition holds when x lies in the margin area of h. We
define the margin area of h, as the subset mar[h, r] ⊆ X defined by

mar[h, r] = {x ∈ X | ∃z ∈ Br(x) : h(x) ̸= h(z)}

We can define notions of a Bayes classifier, and consistency of a learner A with respect
to the robust loss analogously to these notions for the binary loss. We will denote the
robust-Bayes classifier by hrB

P and the robust-Bayes risk by LrB
P = Lr

P (hrB
P ). We will often

simply refer to the Bayes predictors as the 0/1-optimal or the r-robust optimal predictors.
We note that these optimal predictors are not unique, in particular in the case that the
support of the marginal PX does not cover the full space. For example, if the data-generating
distribution is supported on a lower dimensional manifold, then a 0/1-optimal predictor is
only uniquely determined on that manifold (and even there only with exception of 0-mass
subsets and not in areas with ηP (x) = 0.5). Similarly, r-robust optimality can be fulfilled by
various predictors if the data-generating distribution is strongly separable (see Definition 4).
Explicit forms (analogous to the 0/1-Bayes being a threshold of the regression function) of
the r-robust optimal predictor have been derived in the literature ([38]).

FORC 2022
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4 Robustness and Margins

In this section, as a warm-up, we investigate implications of the existence of a low robust-loss
classifier and differences between low binary and low robust loss. We show that the optimal
classifiers with respect to these losses can differ significantly, implying that optimizing for one
can strongly hurt performance with respect to the other. We then analyze the relationship
between the existence of robust classifiers and margin (or separability) properties of the
underlying data-generating process. We argue that, while separability implies the existence
of robust classifiers with respect to some robustness parameter r, using a fixed robustness
parameter can contravene the intention of deriving predictors that are both accurate and as
robust as possible.

4.1 Binary optimal versus robust optimal
It has been shown before that the definition of the r-robust loss implies that, even in situations
where the 0/1-Bayes risk is 0, that is where the labels are deterministic, no classifier may
have 0 robust loss [15, 33, 42, 19]: The existence of a classifier h with Lr

P (h) = 0 implies
that the distribution is separable, that is, PX is supported on r-separated regions of X and
these regions are label-homogeneous. Namely, Lr

P (h) = 0 implies L0/1
P (h) = 0, which means

that the labeling of P is deterministic. In addition, we must have P (mar[h, r]) = 0, which
implies that any point x in the support of PX with h(x) = 1 has distance at least 2r from
any point in that support with h(x) = 0. In this case, this function h = hB

P = hrB
P is optimal

with respect to both losses.
In this subsection we inspect the potential tension between robustness and accuracy with

an emphasis on the role that stochasticity of the labels play in this phenomenon. We start
by observing that even if the labels are not necessarily deterministic, the optimal robust loss
is strictly larger than the optimal 0/1-loss if and only if a Bayes classifier does not have a
strict margin.

▶ Theorem 2. We have LrB
P = LB

P if and only if there exists a 0/1-optimal classifier hB
P

with PX (mar[hB
P , r]) = 0.

Proof. We first assume that PX (mar[h, r]) > 0 for all classifiers h that are 0/1-optimal.
We fix one of them and denote it by hB

P . Then Lr
P (hB

P ) > LP (hB
P ) = LB

P , since on every
point in its margin area, hB

P suffers binary loss at most 0.5, while it suffers robust loss
1. Outside the margin area the loss contributions are identical for both loss functions.
Furthermore, for any classifier h that is not 0/1-optimal, we have Lr

P (h) ≥ L0/1
P (h) > LB

P .
Thus, independently of whether an optimal robust classifier hrB

P is also 0/1-optimal or not,
we have LrB

P = Lr
P (hrB

P ) > LB
P .

As for the other direction, if there is a 0/1-optimal classifier hB
P with PX (mar[hB

P , r]) = 0,
then it follows immediately, that this classifier is also optimal with respect to the robust loss
and its robust loss is identical to its binary loss. Thus LrB

P = LB
P . ◀

Moreover, we will now see, that if the data-generating distribution does not have a margin
in the above strong sense, then the optimal classifiers with respect to 0/1-loss and r-robust
loss can differ significantly as functions. The construction for the below result has (in very
similar form) appeared in earlier work [42].

▶ Theorem 3. Let r > 0 be a robustness parameter. There exist distributions P such that any
predictors hB

P and hrB
P that are optimal with respect to 0/1-loss and r-robust loss respectively,

satisfy PX [hB
P ∆ hrB

P ] = 1
2 , where hB

P ∆ hrB
P = {x ∈ X | hB

P (x) ̸= hrB
P (x)} is the set of

domain points on which the two optimal classifiers differ.
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Proof. We consider a distribution P , where PX is supported (uniformly) on just two points
x0 and x1 at distance less than r from each other. x0 is always generated with label 0 and
x1 is always generated with label 1. Clearly, the 0/1-optimal classifier hB

P labels accordingly:
hB

P (x0) = 0 and hB
P (x1) = 1, resulting in L0/1

P (hB
P ) = 0. However, this classifier has largest

possible r-robust loss: Lr
P (hB

P ) = 1, since both points are at distance less than r from a
point that hB

P labels differently. On the other hand, any constant function hc has robust loss
Lr

P (hc) = 1/2, since it’s margin has weight 0 and it mislabels with probability 1/2. This is
optimal with respect to the r-robust loss. Thus, we showed that PX [hB

P ∆ hrB
P ] = 1

2 . ◀

The example in the above proof shows that binary and robust optimal predictors can differ in
half the area of the space. In particular, when the robustness radius r is not chosen suitably,
optimizing for one can be strongly sub-optimal (incurring regret of 1/2) for the other. This
means that any learning method, will be inconsistent with respect to at least one of the two
losses in question.

Of course, in the above example, the robustness parameter and distribution are constructed
to not match suitably.

5 Relaxations of separability and the margin canonical Bayes

Strict separability between the label classes, as considered in the previous section, is a very
strong assumption. We extend and refine the arguments in the previous section by relaxing
this requirement and showing that, one can choose the robustness parameter r in dependence
on “how separable” (in a precise sense that we introduce next) the distribution P is and on
how close we would like the optimal predictors to be.

5.1 Choosing a robustness parameter
Note that, for a fixed predictor h, we have PX (mar[h, r]) ≥ PX (mar[h, r′]) if r ≥ r′. Thus,
we can define a function

ϕh
P (r) = PX (mar[h, r])

which will monotonically decrease to 0 as r goes to 0 for any predictor h. If h is a Bayes
predictor, then the rate at which ϕh

P (r) converges to 0 as r → 0, can be viewed as a measure of
“how separable” the data- generating process is, that is, how fast the density of the marginal
PX vanishes towards the boundary between the two label classes. However, since the Bayes
predictor is generally not uniquely defined, we need to specify which Bayes predictor should
be employed to serve as a measure of the separability of the distribution. For simplicity,
we will assume here that we have ηP (x) ̸= 0.5 for the regression function with probability
1. Then we define a margin-canonical Bayes predictor as follows: We let X 0 ⊆ supp(PX )
denote the closure of the part of the space, where ηP (x) < 0.5 and let X 1 ⊆ supp(PX ) the
closure of the part of the space where ηP (x) > 0.5. That is, under the above assumption,
the support of the marginal PX is X 0 ∪ X 1.

We can now define a margin-canonical Bayes classifier hB
P by nearest neighbor labeling

with respect to the sets X 0 and X 1. We only need to specify hB
P (x) for points x that are

outside the support of PX . By definition, there exists a ball of some radius r around such
a point x that has has no probability mass: PX (Br(x)) = 0. Thus, x has positive distance
to both X 0 and X 1 and we will set hB

P (x) = i if X i is the closer set to x, breaking ties
arbitrarily. We note that our definitions and results in subsequent sections also hold for the
margin rate of any other Bayes classifier.

FORC 2022
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▶ Definition 4 (Margin rate). Let P be a distribution over X ×{0, 1} and let hB
P be the margin-

canonical Bayes classifier. Then we define margin-rate of P as the function ΦP (r) = ϕ
hB

P

P (r).
If there exists an r > 0 such that ΦP (r) = 0, we call the distribution P strongly separable.

The margin rate is related the notion of Probabilistic Lipschitzness [34] and the geometric
noise exponent [31]. We now show how the margin rate can be used for the suitable choice of
robustness parameter r. We show below how to choose a robustness parameter for which the
optimal robust predictor has close to optimal classification loss and vice versa. If the labels
of the distribution are deterministic, then we also get closeness as functions of the optimal
predictors.

▶ Theorem 5. Let P be a data-generating distribution over X × {0, 1}, let ΦP : R+ → [0, 1]
denote its margin rate, and let hB

P denote the 0/1-optimal classifier defining the margin rate.
For every ϵ > 0, if we let r ∈ Φ−1

P ([0, ϵ]), then for any r-robust optimal classifier hrB
P we

have Lr
P (hB

P ) ≤ LrB
P + ϵ and L0/1

P (hrB
P ) ≤ LB

P + ϵ.

In addition, if the labeling of P is deterministic, we have PX [hB
P ∆ hrB

P ] ≤ ϵ.

Proof of Theorem 5. Due to the way we chose the robustness parameter r here, we imme-
diately get

Lr
P (hB

P ) ≤ L0/1
P (hB

P ) + ϵ = LB
P + ϵ

since P (mar[hB
P , r]) ≤ ϵ. We need to argue, that no other classifier h can have significantly

smaller robust loss. As in the proof of Theorem 2, we observe that, we have Lr
P (h) ≥

L0/1
P (h) ≥ LB

P for any classifier h. Thus, in particular Lr
P (hrB

P ) = LrB
P ≥ LB

P , which yields
the first claim.

For the second inequality observe that hB
P has r-robust loss at most LB

P + ϵ by choice of
r. Any robust-optimal classifier hrB

P therefore has robust loss at most LB
P + ϵ, which implies

that its binary loss is bounded by the same quantity.
Now we assume that the labeling of P is deterministic. This implies that L0/1

P (hB
P ) = 0,

thus Lr
P (hB

P ) = PX (mar[hB
P , r]). Let hrB

P be a robust-optimal classifier. By definition of being
robust-optimal, we have Lr

P (hrB
P ) ≤ Lr

P (hB
P ) = PX (mar[hB

P , r]) ≤ ϵ. Thus, in particular
L0/1

P (hrB
P ) ≤ ϵ, which, in the case of deterministic labels implies PX [hB

P ∆ hrB
P ] ≤ ϵ. ◀

We next argue that, while a separability assumption can yield closeness in loss values of the
optimal predictors, it implies closeness of the actual functions only if the labeling is also
deterministic. That is, the assumption of deterministic labels is necessary for the second part
of the above Theorem (Observation 6). More specifically, the result in the observation below
shows that, a non-adaptive robustness parameter that will guarantee closeness of functions
as in the first part of the above theorem, can not be determined as a function of the marginal
distribution, but depends on a combination of the marginal and the “noise rate”.

▶ Observation 6. Let ϵ > 0 be given. Then, for any γ with 0 < γ < ϵ, there exists a
data-generating distribution P over R2 × {0, 1} with linear margin rate ΦP : R+ → [0, 1],
ΦP (r) = min{r, 1} such that, for any r ∈ Φ−1

P ((γ, ϵ)), we get PX [hB
P ∆ hrB

P ] = 1
2

Proof. We consider a uniform marginal over two rectangles in R2: We set R1 = [−2, −1] ×
[−1, 1] and R2 = [1, 2] × [−1, 1]. Further, we set the regression function

η(x1, x2) =
{ 1

2 + γ if x2 ≥ 0
1
2 − γ if x2 ≤ 0.

Now it follows that a 0/1-optima predictor is hB
P = 1 [x2 ≥ 0] while, for any r > γ, we have

hrB
P = 1 [x1 ≥ 0], thus PX [hB

P ∆ hrB
P ] = 1

2 . ◀
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Next, we argue that, even under deterministic labels, choosing a robustness parameter
slightly larger than implied by Theorem 5, can yield largely differing optimal predictors. The
same construction as in the proof of Theorem 3 shows the following statement:

▶ Observation 7. Let ϵ > 0 be given. There exists a distribution P over R × {0, 1} that is
strongly separable, such that, for any r > sup Φ−1

P ([0, ϵ]), we have PX [hB
P ∆ hrB

P ] = 1
2 .

5.2 Towards local robustness
We now argue that, even if the distribution is strongly separable and the labels are de-
terministic, then choosing a uniform robustness parameter may not result in the desired
outcomes in the following sense (see Figure 5.2): a classifier may be optimal with respect
to the largest possible fixed robustness parameter (the orange classifier), but have a de-
cision boundary that is unnecessarily close in some parts of the space where a larger local
robustness would have been possible. To argue more formally, we consider a distribu-
tion over domain R2 × {0, 1}, where the support is distributed uniformly on four points,
((−1, 0.9), 0), ((−1, 1.1), 1), ((1, 0.9), 0), ((1, 2), 1). Then predictor h(x1, x2) = 1 [x2 ≥ 1] is
0/1-optimal and also r-robust optimal for any r ≤ 0.1. However, we may prefer a predictor
h∗ that keeps a larger distance from the point (1, .9), and is equally optimal with respect to
the 0.1-robust loss.

h0.1B
P

h∗

Figure 1 A robustness requirement with a uniform robustness radius is unsuitable here.

6 Redefining the Robustness Requirement

We have argued (Sections 4.1 and 5.1) that using a fixed robustness parameter r can lead to
inconsistencies (in the sense that the optimal predictors with respect to binary and robust
loss differ vastly) and that even under conditions where the optimal predictors can coincide
(strong separability or suitably chosen robustness parameter), optimizing for the robust loss
can lead to classifiers that do not reflect our intuition about an optimally robust predictor
(Section 5.2). Ideally we would like a learned predictor to be everywhere as robust as possible
(in the sense of the illustration in Figure 5.2). We will next formalize this intuition using
the notions of the margin canonical Bayes and the margin rate, that we developed in the
previous section.

6.1 A local robustness objective
We propose to phrase robustness in relation to a margin-canonical Bayes predictor. The core
idea behind our definition is the following: If a margin-canonical Bayes predictor assigns a
constant label in a ball Br(x) around point x, then a robust predictor h should do the same
(and only then!). For a predictor h and x ∈ X , we let Bh(x) denote the largest ball around x

on which h assigns a constant label (possibly Bh(x) = {x}).
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▶ Definition 8 (Adaptive robustness). Let P be a data-generating distribution hB
P denote

a margin-canonical Bayes predictor, and h an arbitrary predictor. We define the adaptive
robust loss ℓar as

ℓar(h, x, y) = 1
[
h(x) ̸= y ∨ BhB

P (x) ⊈ Bh(x)
]

.

That is, h suffers adaptive robust loss on point (x, y) if it misclassifies the point or if the point
is closer to the decision boundary of h than to the decision boundary of the margin-canonical
Bayes hB

P . This definition implies that hB
P has both minimal binary loss and optimal robust

loss. We note that the above proposed loss is not technically a valid loss function, since it
depends on hB

P rather than just on h, x and y. Thus, we next propose a substitute notion of
empirical adaptive robust loss.

6.2 Empirical adaptive robust loss

Let S = ((x1, y1), . . . , (xn, yn)) be a labeled dataset. For a labeled domain point (x, y) we
let ρS(x) denote the distance from x to its nearest neighbor with opposite (or different in
the case of more than two classes) label in S:

ρS(x, y) = min
i∈[n]

{∥xi − x∥ | (xi, yi) ∈ S, yi ̸= y}.

In the (degenerate) case that no such point in S has a label different from y (that is, all
points in S have the same label), we set ρS(x, y) to ∞ (or the diameter of the space). Note
that ρS(x, y) is well defined for points (x, y) = (xi, yi) ∈ S from the dataset S itself. We
now expand the dataset S by replacing each point with a (constant labeled) ball of radius
c · ρS(xi, yi), for some (to be chosen) constant c.

▶ Definition 9 (c-Adaptive robust expansion). Let S = ((x1, y1), . . . , (xn, yn)). We call
the collection Sc = ((Bc·ρS(x1,y1)(x1), y1), . . . , (Bc·ρS(xn,yn)(xn), yn)) the c-adaptive robust
expansion of S.

It is easy to see that, as long as c ≤ 1/2, balls in the c-adaptive robust expansion of
S overlap only if they have the same label. Thus, this expansion does not introduce any
inconsistencies in the label requirements. Depending on the geometry of the data-generating
process (eg. the curvature of the decision boundary of the regression function) we may
also employ larger expansion parameters without introducing inconsistencies. Using the
c-adaptive robust expansion of S, we can define an empirical version of the adaptive robust
risk for fixed parameter c. For this, for a predictor h : X → Y and label y, we let h−1(y) ⊆ X
denote the part of the domain that h labels with y.

▶ Definition 10 (Empirical c-adaptive robust loss). Let c be an expansion parameter,
S = ((x1, y1), . . . , (xn, yn)) and h : X → Y. We define the empirical c-adaptive robust loss
of h on S as

Lc−ar
S (h) = 1

n

n∑
i=1

1
[
Bc·ρS(xi,yi)(xi) ⊈ h−1(yi)

]
.

That is, a point (xi, yi) ∈ S is counted towards the empirical c-adaptive robust empirical
risk, if h does not label the whole ball Bc·ρS(xi,yi)(xi) in the expanded set with yi.
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Remark on connection between the population and empirical version
As is usual for an empirical loss, the empirical adaptive robust loss as defined above for
c = 0.5 corresponds to the adaptive robust loss on the empirical distribution (that is a
uniform distribution of the finite data sample).

6.3 Adaptive robust data-augmentation
While the empirical c-adaptive robust risk is well defined for any predictor h and
dataset S, it may, computationally, not be straightforward to verify the condition
1

[
Bc·ρS(x,y)(x, y) ⊈ h−1(y)

]
. A natural estimate is to use m uniform sample points z1, . . . , zm

from the ball Bc·ρS(x,y)(x) and verify whether h labels all of these with y. Similarly, for
training purposes, we may want to use a sample version of the c-adaptive robust expansion
of S. We call this the m-sample-c-adaptive robust augmentation of S. The so augmented
dataset Smc is a set of labeled domain points and can be used as a training data-set for a
standard learning algorithm.

▶ Definition 11 (Adaptive robust data augmentation). Let S = ((x1, y1), . . . , (xn, yn)) be a
labeled dataset, and m ∈ N. We call the collection
Smc = ((z1

1 , y1), . . . , (zm
1 , y1), . . . (z1

n, yn), . . . , (zm
n , yn)), where every zj

i is uniformly sampled
from the ball Bc·ρS(xi,yi)(xi), the m-sample-c-adaptive robust augmentation of S.

To visualize the adaptive robust augmentation and its effects, we generated data from a
“lower-dimensional manifold” in two dimensions, see Figure 2. It has been conjectured that
the data being supported on a lower-dimensional manifold is a source of the phenomenon of
vulnerability to small perturbations [22], which our visualization illustrates. The original
support (the data-manifold) of data generating distributions can be seen as the green and
blue lines in the first column of Figure 2, blue and green points representing points from
the two classes. We trained a ReLU Neural Network with 2-hidden layers (of 10 neurons
each) data points drawn from these shapes. The labeling behavior of the trained network is
visualized over the ambient space in red and purple. The first column depicts the original,
labeled data sets together with the networks trained on the original data. The next columns
show the effect of augmentation and training with a fixed robustness parameter while the
last column shows the adaptive robust augmentation.

The sequence of trained network illustrates how without augmentation, the network’s
decision boundary passes close to the data-manifold in several areas, yielding areas of
adversarial vulnerability. The augmentation with fixed robustness, does not change this
for small robustness radius. For larger, fixed robustness radius, the augmentation leads to
blurring the labels. The last column shows how the adaptive robust augmentation changes
the decision boundary of the trained network in the ambient space to “curve away” from the
lower dimensional data manifold. Importantly the prediction on the data manifold remains
unchanged. Thus the adaptive robust augmentation yields robustness without negatively
affecting the accuracy of the predictor on the data-generating distribution.

We conjecture that most learners, that are consistent with respect to binary loss, remain
consistent when fed a c-adaptive robust augmentation of S for c ≤ 1/2. We prove this for a
1-nearest neighbor classification under deterministic labels. This result serves as evidence
that our adaptive data augmentation does not induce any inconsistencies with the accuracy
requirements. It holds for a c-robust augmentation and any m-sample-c-robust augmentation
if c ≤ 0.5. The proof has been moved to Appendix C.
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Figure 2 ReLU networks trained on data from a one-dimensional manifold, labeled with two
classes (blue and green here). Left to right: original data, incrasing fixed augmentation parameters,
and adaptive robust robust augmentation.

▶ Theorem 12. Let P be a distribution over [0, 1]d × {0, 1} with deterministic labels and
margin rate ΦP (r). Let ϵ, δ > 0 be given. Then, with probability at least 1 − δ over an is an
i.i.d. sample S of size n ≥ 3dd0.5d

eΦ−1
P

(ϵ)dϵδ
from P , the a 1-nearest neighbor predictor h0.5

NN on a

m-sample-0.5-adaptive robust augmentation of S satisfies L0/1
P (h0.5

NN) ≤ ϵ for any m ≥ 1.

We will employ a similar proof technique as in Chapter 19 of [30]. In particular, we will
employ Lemma 19.2 therein:

▶ Lemma 13 (Lemma 19.2 in [30]). Let C1, C2, . . . Ct be a collection of subsets of some
domain set X . Let D be a distribution over X and S be an iid sample from P of size n.
Then ES∼Dn

[∑
i:Ci∩S=∅ D(Ci)

]
≤ t

n·e .

Recall that, for a labeled sample S, the collection Sc = (Bc·ρS(x1,y1)(x1, y1), . . . ,

Bc·ρS(xn,yn)(xn, yn)) denotes the c-adaptive robust expansion of S. We will prove the theorem
using this expansion for c = 0.5, but note, that the proof (and thus the Theorem) holds
equally for

Smc = ((z1
1 , y1), . . . , (zm

1 , y1), . . . (z1
n, yn), . . . , (zm

n , yn)),

any m-sample-c-adaptive robust augmentation of S (where every zj
i is uniformly sampled

from the ball Bc·ρS(xi,yi)(xi)).

Proof of Theorem 12. Let P be a distribution over [0, 1]d × {0, 1} with deterministic labels
and margin rate ΦP (·). We let hB

P be a margin optimal Bayes predictor for P . Note that,
since the labels of P are deterministic L0/1

P (hB
P ) = 0. Further, we let ϵ and δ be given and

set r = Φ−1
P (ϵ) (to mean the largest r, such that ΦP (r) ≤ ϵ). Further, we set r′ = r/3.

We can now partition the space [0, 1]d into t =
( √

d
r′

)d

many sub-cubes of side-length
r′/

√
d and thus diameter r′. We denote the cells in this partition by C1, . . . , Ct.

We now let S be a labeled sample and let hc
S = h.5

S be the nearest neighbor classifier on
the .5-adaptive robust expansion of S. We now bound the mass of points x on which hc

S

makes a false classification by noting that hc
S(x) ̸= hB

P (x) implies that one of these three
conditions hold:
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C1: x falls into a cell Ck that has empty intersection with the sample S;
C2: there is at least one sample point (xi, yi) ∈ S in the same cell Ck as x, and there exists

at least one such (xi, yi) ∈ S with yi ̸= hB
P (x);

C3: there is at least one sample point (xi, yi) ∈ S in the same cell Ck as x, and we have
yi = hB

P (x) for all (xi, yi) in the same cell, but there is another sample point (xj , yj) ∈ S

(in a different cell) with yj ̸= hB
P (x) and x is closer to the expansion Bc·ρS(xj ,yj)(xj , yj) of

xj than to the expansion Bc·ρS(xi,yi)(xi, yi) for all xi in Ck.
If S is an iid sample from P , then, by Lemma 13 the expected mass of points x cells that are
not hit by the sample S is bounded by t

n·e = 3d
√

d
d

Φ−1
P

(ϵ)d·n·e . By Markov’s inequality, this implies

PS∼P n

 ∑
i:Ci∩S=∅

PX (Ci) > ϵ

 ≤ 3d
√

d
d

ϵ · Φ−1
P (ϵ)d · n · e

.

Setting this to δ shows that, with probability at least 1 − δ over a sample S of size n ≥
3d

√
d

d

ϵ·Φ−1
P

(ϵ)d·δ·e the mass of points that fall into “error case” C1 is bounded by ϵ.
We now argue that the mass of points that fall into “error case” C2 or C3 is also bounded

by ϵ by showing that such points actually fall into the r-margin area of hB
P and, by choice of

r and by definition of ΦP , we have PX (mar[r, hB
P ]) ≤ ϵ.

Consider a point x in case C2. If there exist a point (xi, yi) ∈ S in the same cell as x

with yi ̸= hB
P (x), then by the choice of the size of the cells x ∈ mar[r′, hB

P ] ⊆ mar[r, hB
P ].

Now consider a point x in case C3: There exists at least one point (xi, yi) ∈ S in the
same cell as x and all points in the same cell as x have label hB

P (x). But there is another
sample point (xj , yj) ∈ S (in a different cell) with yj ̸= hB

P (x) and x is closer to the expansion
Bc·ρS(xj ,yj)(xj , yj) of xj than to the expansion Bc·ρS(xi,yi)(xi, yi) for any xi in the same cell
as x, where c = 0.5.

Recall that ρS(xj , yj) is the distance between xj and a closest point in S of opposite
label to yj . We now set ρ = 0.5 · ρS(xj , yj) for short, that is ρ is the radius of the expansion
of (xj , yj). Since the cell that x is in also contains (xi, yi) and yi ̸= yj in this case C3, we
know that

2ρ ≤ ∥xi − xj∥. (1)

Further, we know

∥xi − x∥ ≤ r′ (2)

since xi in in the same cell as x.
Let z ∈ Bc·ρS(xj ,yj)(xj , yj) be the point in Bc·ρS(xj ,yj)(xj , yj) closest to x. Note that,

since z in in the expansion of xj , we have

∥z − xj∥ ≤ ρ. (3)

Then, since x is closer to the expansion of xj than the expansion of xi, we can infer, using
Equation 2 that

∥x − z∥ ≤ ∥x − xi∥ ≤ r′ = r/3. (4)

This implies using the triangle inequality and Equations 4 and 2 that

∥z − xi∥ ≤ ∥z − x∥ + ∥x − xi∥ ≤ 2r′. (5)
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Now, by again using the triangle inequality and Equations 3 we get

∥xi − xj∥ ≤ ∥xi − z∥ + ∥z − xj∥ ≤ ∥xi − z∥ + ρ, (6)

Thus, using Equations 1 and then Equation 6, we get

2ρ ≤ ∥xi − xj∥ ≤ ∥xi − z∥ + ρ

which immediately implies ρ ≤ ∥xi − z∥. Together with Equation 5 the above yields: ρ ≤ 2r′.

Now, again invoking the triangle inequality and using Equations 4 and 3, we can bound the
distance between x and xj :

∥x − xj∥ ≤ ∥x − z∥ + ∥z − xj∥ ≤ r′ + 2r′ = r.

Thus, in this case, x also falls into the r-margin area of hB
P since hB

P (x) ̸= hB
P (xj). This

concludes the proof of the Theorem. ◀

7 Concluding Remarks

In this work, we provide a formal foundation for adversarial robustness as an adaptive
requirement. We argue for re-framing adversarial robustness as a requirement that should be
in line with the underlying distribution’s margin properties. We do this by introducing a novel
notion of the margin-rate that quantifies probability mass in proximity to a Bayes optimal’s
decision boundary in a more flexible way than standard notions of margin-separability do.
We employ this measure to propose a formal notion of such an adaptive loss, as well as
an accompanying empirical version and implied data-augmentation paradigm. As a first
sound justification of this proposal, we prove that this type of adaptive data-augmentation
maintains consistency of a non-parametric method (namely 1-nearest neighbor classification
under deterministic labels). We believe this to be a natural and useful take on resolving the
discrepancies with accuracy that have been reported in the context of adversarial robustness
(both in theoretical and practical studies). Further, we believe that our notion of a data-
informed, adaptive robustness radius might be useful for other methods that employ data
augmentation.
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A Visualizations

To further validate our proposed adaptive robust data augmentation method, we present
a set of illustrative experiments on various synthetic datasets. To allow for visualizations,
we generate data from a “lower-dimensional manifold” in two dimensions. It has been
conjectured that the data being supported on a lower-dimensional manifold is a source of the
phenomenon of vulnerability to small perturbations [22]. Our visualizations in in Figure 3
illustrate this phenomenon.

The original support (the data-manifold) of the data generating distributions is one-
dimensional hehre and can be seen as the green and blue lines in the first column of images
in Figure 3. Blue and green points represent points from the two classes. We term our
synthetic shapes in Figure 3 Sines, S-figure, NNN, circles, boxes. We train a ReLU
Neural Network with 2-hidden layers (of 10 neurons each) data points drawn from these
shapes. The labeling behavior of the trained network is visualized over the ambient space in
red and purple. The first image in each row depicts the original, labeled data together with
the network trained on the original data.

We see in those left-most illustrations that without any augmentation, the network’s
decision boundary is often located close to the data-manifold. Since the data is supported
only on the lower-dimensional manifold, there is no incentive for the decision boundary to
keep a distance from the data-manifold. While the network labels areas on the manifold itself
correctly, this behavior leads to the existence of points that are vulnerable to adversarial
perturbations: a small deviation away from the data-manifold can lead to a different labeling
by the network.

We then augment the training datasets with both fixed and adaptive expansion parameter
and train ReLU Neural Networks of the same size on the augmented datasets. The remaining
images in each row again illustrate the augmented datasets (green and blue) together with
the labeling behaviors of the resulting networks (red and purple). The last image in each
row corresponds to the adaptive augmented data, while the intermediate images correspond
to augmentations with increasing, but fixed expansion parameters.

For non-adaptive expansion parameter, we iteratively increase the parameter in a fixed
sequence, (0.1, 0.5, 1, 2, ...., 16). These expansion parameters were chosen based on the range
of the attribute values in the datasets. For each sample in a d-dimensional dataset, a
d-dimensional sphere is generated where the radius is the fixed-parameter and the current
sample is the center of the sphere. Four new points are then generated in this sphere for
each sample point. Hence, the training dataset is expanded to five times its original size
after fixed-parameter expansion.

Analogously we augment the data with an adaptive expansion parameter. The key
difference is in the calculation of the radius of the sphere. A fraction of the distance between
the current sample and a nearest neighbor of a different class is used as the radius for the
sphere generation. Each of the middle columns in Figure 3 corresponds to augmentation
with a fixed expansion parameter, while the last column shows the 2/3-adaptive robust
augmentation of the training data. The original training dataset contains 1000 training
points and the augmented datasets 5000 data points each.

For the various networks we evaluate binary loss and the adaptive robust loss. To estimate
the adaptive robust loss at a point x, we determine its distance ρ to a point in the dataset
with a different label and then generate 10 test points uniformly at random from a ball
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of radius ρ/2. If one of these gets a different label than x by the network (or if the point
is mislabeled itself) it suffers adaptive robust loss 1. Table 1 summarizes the binary and
adaptive robust losses of the various networks. We see that the adaptive augmentation leads
consistently to the lowest binary (always rank 1) and low adaptive robust loss (rank 1 and
once rank 2). This shows that the adaptive augmentation not only is not in conflict with
accuracy, but empirically improves accuracy of a trained network.

Finally, we also trained ReLU neural networks on several real-world data sets from the
UCI repository. For each dataset, we normalized the features to take values in [0,1]. As in
the experiments on the synthetic data, we trained the networks on the original data, as well
as various augmented datasets, including using the 2/3-adaptive augmentation. The datasets
were split into training and test data with a ratio of 80 − 20 respectively. In Tables 1 and 2,
we report the binary and robust losses of these networks. We observe, again, that the robust

Figure 3 ReLU networks trained on data from a one-dimensional manifold in two-dimensional
space, labeled using two classes (blue and green here). The various shapes by row: Sines, S-
figure, NNN, circles, boxes. Left-most: original training data; various middle images: training
data augmented using increasing expansion parameters; right-most: training data robust-adaptive
expanded. We use data generated uniformly at random from the ambient space to illustrate the
network’s labeling (red and purple). Using just original training data, or only slightly augmented
data, we observe that the network’s decision boundary is often close to the manifold.



S. Chowdhury and R. Urner 5:19

augmentation promotes the best performance in terms of 0/1 accuracy. Additionally, the
adaptive robust loss is close to the best adaptive robust loss achieved with a fixed expansion
parameter on each dataset. Using the adaptive augmentation can thus serve to save needing
to search for an optimal expansion parameter on different tasks.

In summary, our initial experimental explorations here showed that the adaptive aug-
mentation consistently yielded a robust predictor with best 0/1-loss. This confirms the
intended design of an adaptive robustness and data augmentation paradigm that avoids the
undesirable tradeoffs between robustness and accuracy.

Table 1 Overview on the binary and adaptive robust losses of the networks trained on trained
on the various synthetic datasets with various augmentations.

Dataset Expansion Radius
for Training

Adaptive
Robust Loss

Binary Loss

Sines Original 0.2882 0.104
0.1 0.1693 0.071
0.5 0.2443 0.147
1 0.3116 0.177
2 0.3521 0.208

Adaptive 0.1403 0.038
S-figure Original 0.3516 0.044

0.1 0.1514 0.016
0.5 0.0429 0.027
1 0.0844 0.05
2 0.2373 0.21

Adaptive 0.0393 0.017
NNN Original 0.3841 0.2124

0.1 0.2609 0.1086
0.5 0.2008 0.1048
1 0.1969 0.0952
2 0.386 0.3714

Adaptive 0.08972 0.04
circles Original 0.4483 0.0133

0.5 0.2629 0
1 0.3472 0.0108
2 0.1778 0.0242
4 0.3076 0.0783
8 0.3557 0.1733
16 0.3054 0.1633

Adaptive 0.254 0
boxes Original 0.3427 0.08

0.5 0.2623 0.0775
1 0.2229 0.0775
2 0.2252 0.1667
4 0.2839 0.2283
8 0.4274 0.3458

Adaptive 0.2077 0.075
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Table 2 Overview on the binary and adaptive robust losses of the networks trained on trained
on the various UCI datasets with various augmentations.

Dataset Expansion Radius
for Training

Adaptive
Robust Loss

Binary Loss

Iris Original 0.0957 0.0435
0.1 0.0783 0
0.5 0.1304 0
1 0.3478 0.087
2 0.391 0.3478

Adaptive 0.087 0
Breast Cancer Original 0.1351 0.0263

0.1 0.0956 0.0175
0.5 0.0842 0.0351
1 0.0833 0.0439
2 0.0693 0.0175

Adaptive 0.0719 0.0175
Bank Note Original 0.0804 0

Authentication 0.1 0.0479 0
0.5 0.1593 0.0909
1 0.1153 0.0036
2 0.1058 0.0036

Adaptive 0.0167 0
Heart Disease Original 0.3465 0.1628

0.1 0.3791 0.2093
0.5 0.386 0.2093
1 0.4489 0.2791
2 0.507 0.3488

Adaptive 0.3604 0.1395
Immunotherapy Original 0.263 0.1852

0.1 0.2926 0.1111
0.5 0.3482 0.1852
1 0.2333 0.1852
2 0.437 0.2593

Adaptive 0.174 0.0741
Parkinsons Original 0.1423 0.078

0.1 0.1678 0.0847
0.5 0.1542 0.0678
1 0.2322 0.1017
2 0.2322 0.1186

Adaptive 0.1627 0.0508
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