
20th International Symposium on
Experimental Algorithms

SEA 2022, July 25–27, 2022, Heidelberg, Germany

Edited by

Christian Schulz
Bora Uçar

LIPIcs – Vo l . 233 – SEA 2022 www.dagstuh l .de/ l ip i c s



Editors

Christian Schulz
Heidelberg University, Germany
christian.schulz@informatik.uni-heidelberg.de

Bora Uçar
CNRS, Laboratoire LIP, Lyon, France
bora.ucar@ens-lyon.fr

ACM Classification 2012
Theory of computation → Design and analysis of algorithms

ISBN 978-3-95977-251-8

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-251-8.

Publication date
July, 2022

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.SEA.2022.0

ISBN 978-3-95977-251-8 ISSN 1868-8969 https://www.dagstuhl.de/lipics

https://orcid.org/0000-0002-2823-3506
mailto:christian.schulz@informatik.uni-heidelberg.de
https://orcid.org/0000-0002-4960-3545
mailto:bora.ucar@ens-lyon.fr
https://www.dagstuhl.de/dagpub/978-3-95977-251-8
https://www.dagstuhl.de/dagpub/978-3-95977-251-8
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.SEA.2022.0
https://www.dagstuhl.de/dagpub/978-3-95977-251-8
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics


0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University - Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

SEA 2022

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics




Contents

Preface
Christian Schulz and Bora Uçar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:vii

Steering Committee
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:ix

Organization
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0:vii

Papers

Discrete Hyperbolic Random Graph Model
Dorota Celińska-Kopczyńska and Eryk Kopczyński . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1:1–1:19

Solving and Generating Nagareru Puzzles
Masakazu Ishihata and Fumiya Tokumasu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2:1–2:17

Fast Computation of Shortest Smooth Paths and Uniformly Bounded Stretch
with Lazy RPHAST

Tim Zeitz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3:1–3:18

Fast Succinct Retrieval and Approximate Membership Using Ribbon
Peter C. Dillinger, Lorenz Hübschle-Schneider, Peter Sanders, and
Stefan Walzer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4:1–4:20

Parallel Flow-Based Hypergraph Partitioning
Lars Gottesbüren, Tobias Heuer, and Peter Sanders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5:1–5:21

Routing in Multimodal Transportation Networks with Non-Scheduled Lines
Darko Drakulic, Christelle Loiodice, and Vassilissa Lehoux . . . . . . . . . . . . . . . . . . . . . . . 6:1–6:15

Relating Real and Synthetic Social Networks Through Centrality Measures
Maria J. Blesa, Mihail Eduard Popa, and Maria Serna . . . . . . . . . . . . . . . . . . . . . . . . . . . 7:1–7:21

Efficient and Accurate Group Testing via Belief Propagation: An Empirical Study
Amin Coja-Oghlan, Max Hahn-Klimroth, Philipp Loick, and
Manuel Penschuck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8:1–8:18

Efficient Exact Learning Algorithms for Road Networks and Other Graphs with
Bounded Clustering Degrees

Ramtin Afshar, Michael T. Goodrich, and Evrim Ozel . . . . . . . . . . . . . . . . . . . . . . . . . . . 9:1–9:18

A Parallel Framework for Approximate Max-Dicut in Partitionable Graphs
Nico Bertram, Jonas Ellert, and Johannes Fischer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10:1–10:15

A Fast Data Structure for Dynamic Graphs Based on Hash-Indexed Adjacency
Blocks

Alexander van der Grinten, Maria Predari, and Florian Willich . . . . . . . . . . . . . . . . . . 11:1–11:18

Efficient Minimum Weight Vertex Cover Heuristics Using Graph Neural Networks
Kenneth Langedal, Johannes Langguth, Fredrik Manne, and
Daniel Thilo Schroeder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12:1–12:17

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:vi Contents

A Branch-And-Bound Algorithm for Cluster Editing
Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann,
Tobias Heuer, Jonas Spinner, Christopher Weyand, and Marcus Wilhelm . . . . . . . . 13:1–13:19

An Experimental Study of Algorithms for Packing Arborescences
Loukas Georgiadis, Dionysios Kefallinos, Anna Mpanti, and
Stavros D. Nikolopoulos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14:1–14:16

Stochastic Route Planning for Electric Vehicles
Payas Rajan and Chinya V. Ravishankar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15:1–15:17

RLBWT Tricks
Nathaniel K. Brown, Travis Gagie, and Massimiliano Rossi . . . . . . . . . . . . . . . . . . . . . . 16:1–16:16

Heuristic Computation of Exact Treewidth
Hisao Tamaki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17:1–17:16

On the Satisfiability of Smooth Grid CSPs
Vasily Alferov and Mateus de Oliveira Oliveira . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18:1–18:14

An Experimental Evaluation of Semidefinite Programming and Spectral
Algorithms for Max Cut

Renee Mirka and David P. Williamson . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19:1–19:14

Digraph k-Coloring Games: From Theory to Practice
Andrea D’Ascenzo, Mattia D’Emidio, Michele Flammini, and
Gianpiero Monaco . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20:1–20:18

Practical Performance of Random Projections in Linear Programming
Leo Liberti, Benedetto Manca, and Pierre-Louis Poirion . . . . . . . . . . . . . . . . . . . . . . . . . 21:1–21:15

Computing Maximal Unique Matches with the r-Index
Sara Giuliani, Giuseppe Romana, and Massimiliano Rossi . . . . . . . . . . . . . . . . . . . . . . . 22:1–22:16

Automatic Reformulations for Convex Mixed-Integer Nonlinear Optimization:
Perspective and Separability

Meenarli Sharma and Ashutosh Mahajan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23:1–23:20

An Adaptive Refinement Algorithm for Discretizations of Nonconvex QCQP
Akshay Gupte, Arie M. C. A. Koster, and Sascha Kuhnke . . . . . . . . . . . . . . . . . . . . . . . . 24:1–24:14



Preface

We are pleased to present the collection of papers accepted for presentation at the 20th
edition of the International Symposium on Experimental Algorithms (SEA 2022) which was
held in Heidelberg from 25th July 2022 to 27th July 2022.

SEA, previously known as Workshop on Experimental Algorithms (WEA), is an interna-
tional forum for researchers in the area of the design, analysis, and experimental evaluation
and engineering of algorithms, as well as in various aspects of computational optimization
and its applications (telecommunications, transport, bioinformatics, cryptography, learning
methods, etc.). The symposium aims at attracting papers from both the Computer Science
and the Operations Research/Mathematical Programming communities. Submissions to
SEA are requested to present significant contributions supported by experimental evaluation,
methodological issues in the design and interpretation of experiments, the use of heuristics
and meta-heuritics, or application-driven case studies that deepen the understanding of the
complexity of a problem. A main goal of SEA is also the creation of a friendly environment
that can lead to and ease the establishment or strengthening of scientific collaborations
and exchanges among attendees. For this reason, the symposium solicits high-quality ori-
ginal research papers (including significant work-in-progress) on any aspect of experimental
algorithms.

Each submission that was made to SEA 2022 was reviewed by at least three Program
Committee members or external reviewers. After a careful peer review and evaluation
process, 24 papers were accepted for presentation and for inclusion in the LIPIcs proceedings,
according to the reviewers’ recommendations. The acceptance rate was 49%. The scientific
program of the symposium also includes presentations by three keynote speakers: Tobias
Achterberg (R&D Gurobi, Germany), Cynthia A. Phillips (Sandia National Laboratories,
US) and Paul Spirakis (University of Liverpool, England and University of Patras, Greece).
The conference reintroduced a best paper award. The best paper was selected by a selection
committee formed by Kathrin Hanuaer, Simon Puglisi, Alex Pothen (chair of the best paper
selection committee), and Julian Shun. Based on the committee’s careful assessment, the
best paper was selected to be “Fast Succinct Retrieval and Approximate Membership using
Ribbon” by Peter C. Dillinger, Lorenz Hubschle-Schneider, Peter Sanders and Stefan Walzer.
We congratulate the authors and thank the selection committee.

The 20th edition of SEA was organized by the Algorithm Engineering group at Heidelberg
University. We thank Catherine Proux-Wieland, Marcelo Fonseca Faraj and Ernestine
Großmann for their help with the organization of the symposium. We also thank the faculty
of mathematics and computer science for providing us with the facilities for the conference.
Moreover, we would like to thank the SEA steering committee for giving us the opportunity
to host SEA 2022. Thanks are also due to the editors of the ACM Journal of Experimental
Algorithmics for their interest in hosting a special issue of the best papers presented at SEA
2022. We would like to thank Google for providing us with financial support as well as
HGS MathComp for providing travel support for young scientists. Finally, we express our
gratitude to the members of the Program Committee as well as numerous subreviews for
their support, collaboration, and excellent work.

Heidelberg, July 2022
Christian Schulz and Bora Uçar

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




Steering Committee

Edoardo Amaldi (Politecnico di Milano, Italy)
David A. Bader (New Jersey Institute of Technology US)
Josep Diaz (Universitat Politecnica de Catalunya, Spain)
Giuseppe F. Italiano (University of Rome Tor Vergata, Italy)
Klaus Jansen (University of Kiel, Germany)
Kurt Mehlhorn (Max-Planck-Institut für Informatik, Germany)
Ian Munro (University of Waterloo, Canada)
Sotiris Nikoletseas (Patras University, Greece)
Jose Rolim (University of Geneva, Switzerland)
Pavlos Spirakis (University of Liverpool, UK)

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de




Organization

Program Chairs

Christian Schulz, Heidelberg University (Germany)
Bora Uçar, CNRS and LIP, ENS de Lyon (France)

Program Committee

Petra Berenbrink, Universität Hamburg (Germany)
Thomas Bläsius, Karlsruhe Institute of Technology (Germany)
Matteo Ceccarello, Freie Universität Bozen (Italy)
Stephane Chretien, University of Lyon II (France)
David Coudert, INRIA (France)
Simone Faro, Università di Catania (Italy)
D’Angelo Gianlorenzo, Gran Sasso Science Institute (Italy)
Marc Goerigk, University of Siegen (Germany)
Susana Ladra, Universidade Da Coruna (Spain)
Alexander van der Grinten, Humboldt-Universität zu Berlin (Germany)
Kathrin Hanauer, University of Vienna (Austria)
Juha Kärkkäinen, University of Helsinki (Finland)
M. Oğuzhan Külekci Istanbul Technical University (Turkey)
Stefano Leucci, University of L’Aquila (Italy)
Marco Lübbecke, RWTH Aachen (Germany)
Gonzalo Navarro, University of Chile (Chile)
Rolf Niedermeier, Technische Universtät Berlin (Germany)
Nicolas Nisse, INRIA (France)
Manuel Penschuck, Goethe University Frankfurt (Germany)
Cynthia A. Phillips, Sandia National Laboratories (US)
Marcin Pilipczuk, University of Warsaw (Poland)
Mustafa Pınar, Bilkent Univeristy (Turkey)
Michael Poss, LIRMM (France)
Alex Pothen, Purdue University (US)
Simon Puglisi, University of Helsinki (Finland)
Sebastian Schlag, Apple (US)
Stefan Schmid, Technical University of Berlin (Germany)
Melanie Schmidt, HHU Düsseldorf (Germany)
Shikha Singh, Williams College (US)
Julian Shun, Massachusetts Institute of Technology (US)
Bertrand Simon, CNRS (France)
Darren Strash, Hamilton College (US)
Sabine Storandt, University of Konstanz (Germany)
Stefan Szeider, Technical University Vienna (Austria)
Yihan Sun, University of California (US)
Annegret Wagler, Universitaire des Cézeaux (France)
Norbert Zeh, Dalhousie University in Halifax (Canada)

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


0:xii Organization

Best Paper Committee

Kathrin Hanauer, University of Vienna (Austria)
Alex Pothen (chair), Purdue University (US)
Simon Puglisi, University of Helsinki (Finland)
Julian Shun, Massachusetts Institute of Technology (US)

External Reviewers

Thorsten Koch, Marcus Wilhelm, Esmaeil Delfaraz, Hélène Toussaint, Till Fluschnik, Shangdi
Yu, Letong Wang, Yan Gu, Alessio Conte, Jessica Shi, Manuel Cáceres, Mirko Rossi,
Changwan Hong, Adrián Gómez Brandón, Diego Arroyuelo, Marcelo Fonseca Faraj, Ripon
Chakrabortty, Adrian Feilhauer, Ernestine Großmann, Dustin Cobas, Tomohiro Koana, Arie
Koster, Daniel Karapetyan, Soumen Maity, Lijun Chang, Christopher Weyand, S M Ferdous,
Stefano Scafiti, Malin Rau, Svetlana Kulagina, Javier Marenco, Yuji Shinano, Diego Diaz,
Cristian Urbina, Janis S. Neufeld, Xiaojun Dong.



Discrete Hyperbolic Random Graph Model
Dorota Celińska-Kopczyńska ! Ï

Institute of Informatics, University of Warsaw, Poland

Eryk Kopczyński ! Ï

Institute of Informatics, University of Warsaw, Poland

Abstract
The hyperbolic random graph model (HRG) has proven useful in the analysis of scale-free networks,
which are ubiquitous in many fields, from social network analysis to biology. However, working with
this model is algorithmically and conceptually challenging because of the nature of the distances
in the hyperbolic plane. In this paper, we propose a discrete variant of the HRG model (DHRG)
where nodes are mapped to the vertices of a triangulation; our algorithms allow us to work with this
model in a simple yet efficient way. We present experimental results conducted on networks, both
real-world and simulated, to evaluate the practical benefits of DHRG in comparison to the HRG
model.

2012 ACM Subject Classification Theory of computation → Random network models; Theory
of computation → Routing and network design problems; Human-centered computing → Social
network analysis

Keywords and phrases hyperbolic geometry, scale-free networks, routing, tessellation

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.1

Supplementary Material Software (Source Code and Data): https://figshare.com/articles/
software/Discrete_Hyperbolic_Random_Graph_Model_code_and_data_/16624369

Funding This work has been supported by the National Science Centre, Poland, grant DEC-
2016/21/N/HS4/02100.

Acknowledgements We would like to thank all the referees for their comments which have greatly
improved the paper.

1 Introduction

Hyperbolic geometry has been discovered by 19th century mathematicians wondering about
the nature of parallel lines. One of the properties of this geometry is that the amount of an
area in the distance d from a given point is exponential in d; intuitively, the metric structure
of the hyperbolic plane is similar to that of an infinite binary tree, except that each vertex
additionally connects to two adjacent vertices on the same level.

Recently, hyperbolic geometry has proven useful in modeling hierarchical data [17, 19].
In particular, it has found application in the analysis of scale-free networks, which are
ubiquitous in many fields, from network analysis to biology [21]. In the hyperbolic random
graph model (HRG), we place the nodes randomly in a hyperbolic disk; nodes that are in a
close neighbourhood are more likely to be connected. The properties of a HRG, such as its
power-law degree distribution or high clustering coefficient, are similar to those of real-world
scale-free networks [13]. Due to high clustering coefficients, HRG is more accurate than
earlier models such as Preferential Attachment [1] in modeling real-world networks.

Perhaps the two most important algorithmic problems related to HRGs are sampling
(generate a HRG) and MLE embedding: given a real-world network H = (V, E), map the
vertices of H to the hyperbolic plane in such a way that the edges are predicted as accurately
as possible. The quality of this prediction is measured with log-likelihood, computed with

© Dorota Celińska-Kopczyńska and Eryk Kopczyński;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 1; pp. 1:1–1:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dot@mimuw.edu.pl
https://www.mimuw.edu.pl/~dot/
https://orcid.org/0000-0001-5910-0039
mailto:erykk@mimuw.edu.pl
https://www.mimuw.edu.pl/~erykk/
https://orcid.org/0000-0001-5588-1181
https://doi.org/10.4230/LIPIcs.SEA.2022.1
https://figshare.com/articles/software/Discrete_Hyperbolic_Random_Graph_Model_code_and_data_/16624369
https://figshare.com/articles/software/Discrete_Hyperbolic_Random_Graph_Model_code_and_data_/16624369
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


1:2 Discrete Hyperbolic Random Graph Model

0

1
1

1

1 1

1

1

11
2

1

1

2

1

1
2

1
1 2 1

1

2
1

1

2

1

1
2

11211
21

21
1

2
1

1

2

1

2

1

1

2

1

1
2

1
2

1
1 2

1 1 2 1 2 1 1

2 1
1

2
1

2
1

1

2
1

1

2

1

2
1

1

2
1

12
12

112
1121211

211
21

21
1

2
1

21
1

2
1

1

2
1

2
1

1

2
1

1

2

1

2
1

1

2

1

2

1

1

2

1

1

2

1

2

1

1

2

1

1
2

1
2

1

1
2

1
2

1
1

2
1

1 2
1 2

1
1 2

1 1 2 1 2
1 1

2 1 2 1 1
2 1

1

2 1
2 1

1

2
1

1

2
1

2
1

1

2
1

2
1

1

2
1

1

2

1

2
1

1

2

1

1

2

1

2
1

1

2

1

2
1

1

2
1

1

2

1
2

1
1

2
1

12
1

2
1

12
12

112
112

12
112

11212
11

21211
211

21
211

211
21

21
1

21
21

1
21

1

2
1

21
1

2
1

21
1

2
1

1

2
1

2
1

1

2
1

1

2
1

2
1

1

2
1

2
1

1

2
1

1

2
1

2
1

1

2
1

1

2

1

2
1

1

2

1

2
1

1

2

1

1

2

1

2

1

1

2

1

2

1

1

2

1

1

2

1

2

1

1

2

1

1

2

1

2

1

1

2

1

2

1

1

2

1

1

2

1

2

1

1

2

1

1
2

1

2

1

1
2

1
2

1

1
2

1
1

2

1
2

1
1

2

1
2

1
1

2
1

1 2
1

2
1

1 2
1

1 2
1 2

1
1 2

1 2
1

1 2
1 1 2

1 2
1 1 2

1 1 2 1 2
1 1 2 1 2

1 1 2 1 1
2 1 2 1 1

2 1 2 1 1
2 1 1

2 1
2 1 1

2 1
1

2 1
2 1

1

2 1
2 1

1

2 1
1

2
1

2 1
1

2
1

1

2
1

2
1

1

2
1

2
1

1

2
1

1

2
1

2
1

1

2
1

2
1

1

2
1

1

2
1

2
1

1

2
1

1

2

1

2
1

1

2

1

2
1

1

2
1

1

2

1

2
1

1

2

1

1

2

1

2
1

1

2

1

2
1

1

2

1

1

2

1

2
1

1

2

1

2
1

1

2

1

1

2

1

2
1

1

2

1

1

2

1

2
1

1
2

1
2

1
1

2
1

1
2

1
2

1
1

2
1

12
1

2
1

12
1

2
1

12
1

12
12

1
12

12

Figure 1 (a) Order-3 heptagonal tiling (G710). (b) Its growth. (c) Bitruncated heptagonal tiling
(G711).

the formula
∑

v,w log p(v, w), where p(v, w) is the probability that the model correctly
predicts the existence or not of an edge (v, w). Those problems are non-trivial: even simply
computing the log-likelihood, using a naive algorithm would require time O(|V |2). The
original paper [21] used an O(|V |3) algorithm for embedding. Efficient algorithms have been
found for generating HRGs and the closely related Geometric Inhomogeneous Random Graphs
in expected time O(|V |) [6, 3, 22, 27, 25, 10] and for MLE embedding real-world scale-free
networks into the hyperbolic plane in time Õ(|V |) [4], which was a major improvement over
previous algorithms [20, 26]. Embedding has practical applications in link prediction [24]
and routing [5, 2].

This paper introduces and experimentally studies the discrete version of the HRG model
(DHRG). In the DHRG model, we use a tessellation rather than the hyperbolic plane. Instead
of the hyperbolic distance between points, we use the number of steps between two tiles in
the tessellation. Our approach has the following advantages:

Avoiding numerical issues. DHRG is not based on the tuple of coordinates, which makes
it immune to serious precision errors resulting from the exponential expansion. This way
we solve a fundamental issue for hyperbolic embeddings [2, 23].
Algorithmic simplicity. In DHRG we find efficient algorithms for sampling, computing the
log-likelihood, and improving an embedding by generalizing similar algorithms for trees.
Working with DHRG does not require a good understanding of hyperbolic geometry,
combating a major drawback of previous approaches.

The first potential objection to our approach is that discrete distances are inaccurate. This
inaccuracy comes from two sources: different geometry (distances in Euclidean square grid
correspond to the taxicab metric, which is significantly different from the usual Euclidean
metric) and discreteness. It is challenging to rigorously study the theoretical effects of
discretization on the properties of our model. However, according to our experiments, these
issues do not turn out to be threatening – the HRG embeddings are large enough to render
discreteness insignificant, and discrete distances are a good approximation of the actual
hyperbolic distances (better than in the case of Euclidean geometry).

Our experiments on artificial networks show that using DHRG improves the success rate
of greedy routing in 77% of the cases (depending on the parameters). A DHRG embedding
can be efficiently improved by moving the vertices so that the log-likelihood becomes better.
Our procedure yields about 10% improvement of log-likelihood on state-of-the-art HRG
embeddings on real graphs. This result is supported by our extensive simulations on artificial
graphs.

2 Prerequisities

In this section, we briefly introduce hyperbolic geometry and the HRG model. A more
extensive introduction to hyperbolic geometry can be found, e.g., in [8].



D. Celińska-Kopczyńska and E. Kopczyński 1:3

Figure 1 shows the order-3 heptagonal tessellation of the hyperbolic plane in the Poincaré
model. In the hyperbolic metric, all the triangles, heptagons, and hexagons on each picture
are actually of the same size. The points on the boundary of the disk are infinitely far from
the center. The area of a hyperbolic circle of radius r is exponential in r.

The hyperbolic plane (in the Minkowski hyperboloid model) is H2 = {(x, y, z) : z >

0, z2 − x2 − y2 = 1}. The distance between two points a = (x, y, z) and a′ = (x′, y′, z′) is
δ(a, a′) = acosh(zz′ − xx′ − yy′). Most introductions to hyperbolic geometry use the Poincaré
disk model; however, the Minkowski hyperboloid model is very useful in computational
hyperbolic geometry, because the essential operations are simple generalizations of their
Euclidean or spherical counterparts. In particular, rotation of a point v by angle α is given by cos α sin α 0

− sin α cos α 0
0 0 1

 v,

while a translation by x units along the X axis is given by cosh x 0 sinh x

0 1 0
sinh x 0 cosh x

 v.

We can easily map the Minkowski hyperboloid model to the Poincaré disk model (e.g., for
visualization purposes) using stereographic projection:

(x′, y′) = (x/(z + 1), y/(z + 1)).

In the hyperbolic polar coordinate system, every point is represented by two coordinates
(r, ϕ), where

P (r, ϕ) = (cos(ϕ) sinh(r), sin(ϕ) sinh(r), cosh(r)).

Here, r is distance from the central point (0, 0, 1), and ϕ is the angular coordinate.

▶ Definition 1. The hyperbolic random graph model has four parameters: n (number
of vertices), R (radius), T (temperature), and α (dispersion parameter). Each vertex v ∈
V = {1, . . . , n} is independently randomly assigned a point µ(v) = P (rv, ϕv), where the
distribution of ϕv is uniform in [0, 2π], and the density of the distribution of rv ∈ [0, R] is
given by f(r) = α sinh(αr)

cosh(αR)−1 . Then, for each pair of vertices v, w ∈ V , they are independently
connected with probability p(δ(µ(v), µ(w))), where δ(x, y) is the distance between x, y ∈ H2,
and p(d) = 1

1+e(d−R)/2T .

The parameter α controls the power-law exponent β = 2α + 1 [13]. The parameter T ,
typically chosen to be in [0, 1], regulates the importance of underlying geometry, and thus the
clustering coefficient: with T very close to 0, an edge exists iff δ(µ(v), µ(w)) < R, while with
larger values of T missing short edges and existing long edges are possible. In [13] and [4],
R equals 2 log n + C, where C is a parameter adjusting the average degree of the resulting
graph.

An MLE embedder is an algorithm which, given a network H = (V, E), finds a good
embedding of H in the hyperbolic plane, i.e., parameters R, T , and α, and a mapping
µ : V → H2. The quality of the embedding is measured with log-likelihood, computed with
the formula

log L(µ) =
∑

v<w∈V

log p{v,w}∈E(δ(µ(v), µ(w))),

SEA 2022



1:4 Discrete Hyperbolic Random Graph Model

where pϕ(d) = p(d) if ϕ is true and 1 − p(d) if ϕ is false. While not a goal by itself, we
can expect that a better embedding (in terms of log-likelihood) will perform better in the
applications, such as link prediction, greedy routing, visualization, etc.

Now, we explain the structure of a hyperbolic tessellation, on the example of the order-3
heptagonal tiling (G710 from Figure 1b). Let δ(t1, t2) be the distance between two tiles
(δ(t1, t2) = 1 iff t1 and t2 are adjacent). Let δ0(t) = δ(t, t0) be the distance of tile t from
the center tile t0. We denote the set of tiles t such that δ0(t) = d with Rd; for d > 0 it is
a cycle (in Figure 1b sets Rd are marked with colored rings). Except for the central tile,
every tile has one or two adjacent tiles in the previous layer (called left and right parent,
pL and pR), two adjacent tiles in the same layer (left and right sibling, sL and sR), and the
remaining tiles in the next layer (children). By connecting every tile to its (right) parent, we
obtain an infinite tree structure. The numbers 0, 1, 2 denote the type of the tile, which is
the number of parents. We can implement the function Adj(t, i) returning the pointer to the
i-th neighbor to tile t, clockwise starting from the parent in amortized time O(1) by using a
lazily generated representation of the tessellation, where each tile is represented by a node
holding pointers to the parent node, children nodes (if already generated), and siblings (if
already known). Since every tile has at least two (non-rightmost) children, this structure
grows exponentially. To gain intuition about hyperbolic tessellations, we recommend playing
HyperRogue [15] as its gameplay focuses on the crucial concepts of exponential growth and
distances in the tessellation graph.

In a Euclidean tessellation, the distance x between the center of two adjacent tiles can be
arbitrary; the same tessellation can be as coarse or fine as needed. This is not the case for
hyperbolic tessellations. In the case of G710, x must be the edge length of a triangle with
angles π/7, π/7, and 2π/3, which we can find using the hyperbolic cosine rule. If the central
tile is at Minkowski hyperboloid coordinates (0, 0, 1), the coordinates of every other tile t

can be found by composing translations (by x units) and rotations (by multiples of 2π/7).

3 Our contribution

Here we introduce the discrete hyperbolic random graph model (DHRG), which is the
discrete version of the HRG model (Definition 1). We map vertices v ∈ V not to points in
the continuous hyperbolic plane but the tiles of our tessellation, i.e., µ : V → DR, where DR

is the set of all tiles in distance at most R.

▶ Definition 2. A discrete hyperbolic random graph (DHRG) with parameters n, R,

T, and α is a random graph H = (V, E) constructed as follows:
The set of vertices is V = {1, . . . , n},
Every vertex v ∈ V is independently randomly assigned a tile µ(v) ∈ DR, in such a way
that the probability that µ(v) = w ∈ Rd is proportional to edα

|Rd| ;
Every pair of vertices v1, v2 ∈ V are independently connected with an edge with probability
p(δ(µ(v1), µ(v2))), where p(d) = 1

1+e(d−R)/2T .

Note that the definition permits µ(v1) = µ(v2) for two different vertices v1, v2 ∈ V . This
is not a problem; such vertices v1 and v2 are not necessarily connected, nor do they need
to have equal sets of neighbors. This may happen when two vertices are too similar to be
differentiated by our model.

Determining the relation between discrete and continuous distances theoretically is
challenging. We find this relation experimentally. We compute the hyperbolic distance Rd

between h0 = (0, 0, 1) and Td, where Td is a randomly chosen tile such that δ0(Td) = d. We get



D. Celińska-Kopczyńska and E. Kopczyński 1:5

Rd = c1d + c2 + Xd, where c1 ≈ 0.9696687, c2 ≈ 0.0863634, and Xd is a random variable with
a bell-shaped distribution, expected value EXd = o(1) and variance Var Xd = Θ(d). (See
Appendix A for the example detailed results for G710.) Note that the error is much better
than for Euclidean hexagonal grid, where a similar formula holds, but with Var Xd = Θ(d2).
This is because in the Euclidean plane, the stretch factor depends on the angle between
the line [h0, Td] and the grid, which remains constant along the whole line; on the other
hand, in the hyperbolic plane, this angle is not constant, and its values in sufficiently distant
fragments of that line are almost independent. Let nd be the number of tiles in distance d;
they are every second Fibonacci number multiplied by 7, and thus nd = Θ(γd) for γ = 3+

√
5

2 .
The radius of a hyperbolic disk which has the same area as the union of all tiles in distance
at most d is log(γ)d + O(1); our coefficient c1 is close to log(γ) ≈ 0.9624237, but slightly
larger.

Let j be a function which maps every tile of our tessellation to the coordinate of its center.
DHRG mappings can be converted to HRG by composing µ with j, and the other conversion
can be done by finding the tile containing µ(v) for each v ∈ V . Since our experimental
results show that the discrete distances are very good approximations of the continuous
distances (up to the multiplicative constant c1 and additive constant c2), we expect the
desired properties of HRGs, such as the high clustering coefficient and the power-law degree
distribution, to still be true in DHRGs. The parameters α, R and T of the DHRG model
will be obtained from the HRG parameters by dividing them by c1.

4 Algorithms for DHRG

In this section, we present our algorithms for working with the DHRG model. Our algorithms
will be efficient under the assumption R = O(log n) and m = o(n2/R).

▶ Proposition 3. There is a canonical shortest path between every pair of tiles (t1, t2). If
t2 is to the right from t1, this canonical shortest path consists of: a number of right parent
edges; at most one right sibling edge; and a number of non-leftmost child edges. If t1 is to
the right from t2, the canonical path is defined symmetrically. For any pair of tiles (t1, t2),
the distance δ(t1, t2) can be found in time O(δ(t1, t2)).

The algorithm for finding δ(t1, t2) works as follows: for every d starting from
min(δ0(t1), δ0(t2)) and going downwards, we find the leftmost and rightmost ancestors
of t1 and t2 in Rd. If one of the ancestors of t1 matches one of the ancestors of t2, we return
δ0(t1) + δ0(t2) − 2d; if they do not match but are adjacent, we return δ0(t1) + δ0(t2) − 2d + 1.

In our application, we will need to efficiently find the distance between a tile t and all
tiles u ∈ A. We will do it using the following data structure:

▶ Definition 4. A distance tally counter is a structure with the following operations:
Init, which initializes the multiset of tiles A to empty.
Add(u,x), which adds the tile u to the multiset A with multiplicity x (which can be
negative).
Count(t), which, for tile t, returns an array T such that T [d] is the number of elements
of A in distance d from t.

▶ Theorem 5. There is an implementation of distance tally counter where all the operations
are executed in O(R2), where R is the maximum distance from the central tile.

SEA 2022



1:6 Discrete Hyperbolic Random Graph Model

Proof (sketch). A segment is a pair of tiles of form [pk
L(t), pk

R(t)] for some tile t and k ≥ 0.
The notation pk

R here denotes the k-th iteration, i.e., the rightmost k-th ancestor in this case.
For a segment s = [vL, vR], let p(s) = [pL(vL), pR(vR)] be the parent segment. In the case of
G710, either pk

L(t) = pk
R(t), or they are neighbors. The algorithm from Proposition 3 can be

seen as follows: we start with two segments [t1, t1] and [t2, t2], and then apply the parent
segment operation to each of them until we obtain segments which are close. To construct
an efficient distance tally counter, we need to tally the ancestor segments for every u ∈ A.

For every segment s, we keep an array as, where as[d] is the number of u ∈ A such
that pd[u, u] = s. The operation Add updates these arrays in time O(R2). The operation
Count(t) constructs sd = pd[t, t] for d = 0, . . . , δ0(t), and uses the information in segments
intersecting or adjacent to sd to count the number of elements of u for which the distance
algorithm would return every possible distance. We need to make sure that we do not count
the same u ∈ A twice (for different values of d). However, this can be done by temporarily
subtracting from as[d] entries which correspond to u’s which have been already counted; see
Appendix B for details. ◀

Other tessellations than the order 3 heptagonal tessellation are possible. The order-3
octagonal grid, G810, is coarser. Finer tessellations can be obtained by applying the Goldberg-
Coxeter construction, such as G711 from Figure 1; their growth is less extreme than for G710,
and thus the distance between segment ends, as well as the number of sibling edges in the
canonical path, may be greater than 1. However, the algorithms generalize; see Appendix B.

Computing the likelihood. Computing the log-likelihood in the continuous model is difficult,
because we need to compute the sum over O(n2) pairs; a better algorithm was crucial for
efficient embedding of large real-world scale-free networks [4]. The algorithms above allow us
to compute it quite easily and efficiently in the DHRG model. To compute the log-likelihood
of our embedding of a network H with n vertices and m edges, such that δ0(v) ≤ R for each
v ∈ V , we:

for each d, compute Pairs[d], which is the number of pairs (v, w) such that δ(v, w) = d.
The distance tally counter allows doing this in a straightforward way (Add(µ(v),1) for
each v ∈ V followed by Count(µ(v)) for each v ∈ V ), in time O(nR2).
for each d, compute Edges[d], which is the number of pairs (v, w) connected by an edge
such that δ(v, w) = d. This can be done in time O(mR) simply by using the distance
algorithm for each of m edges.

After computing these two values for each d, computing the log-likelihood is straightfor-
ward. One of the advantages over [4] is that we can then easily compute the log-likelihood
obtained from other values of R and T , or from a function p(d) which is not necessarily
logistic.

Improving the embedding. A continuous embedding of good quality can be obtained by
first finding an approximate embedding and then improving it using a spring embedder [14].
Imagine there are attractive forces between connected pairs of vertices, and repulsive forces
between unconnected pairs. The embedding m changes in time as the forces push the vertices
towards locations in such a way that the quality of the embedding is improved. Computa-
tionally, spring embedders are very expensive – there are Θ(n2) forces, and potentially many
steps of simulation could be necessary.

On the contrary, our approach allows to improve DHRG embeddings easily. We use a
local search algorithm. Suppose we have computed the log-likelihood and on the way we
have computed the vectors Pairs and Edges, as well as the distance tally counter where



D. Celińska-Kopczyńska and E. Kopczyński 1:7

every µ(v) has been added. Let v′ ∈ V be a vertex of our embedding, and w be a tile. Let
µ′ be the new embedding given by µ′(v′) = w and µ′(v) = µ(v) for v ̸= v′. Our auxiliary
data lets us compute the log-likelihood of µ′ in time O(R2 + R deg(w)).

We try to improve the embedding in the following way: in each iteration, for each vertex
v ∈ V , consider all neighbors of µ(v), compute the log-likelihood for all of them, and if
for some µ′ we have log L(µ′) > log L(µ), replace µ with µ′. Each iteration takes time
O(R2n + Rm).

5 Experimental setup

The setup of the experiments is as follows. First, we map a network to the hyperbolic plane
using the hyperbolic embedder based on the algorithm from [4] (for brevity, we will call it
BFKL). This is the embedding stage. We start with a default parameters for the embedder
(R0, T0, α0). This way we obtain the placement of the nodes in the hyperbolic plane, on which
we estimate HRG predictive model with the same R0, T0, α0 as the embedder (prediction
stage). We compute the log-likelihood (L1). Usually, L1 is even worse than the log-likelihood
of the naïve Erdös-Rényi-Gilbert model where each edge exists with probability m/

(
n
2
)
. This

is because the influence of the parameter T on the quality of the embedding is small [20] and
BFKL uses a small value of T = 0.1 that does not necessarily correspond to the network. The
prediction stage is irreplaceable here – the log-likelihood is computed for the predictive model
that takes the placement of the nodes as given. That is why, we should be still able to obtain
a better log-likelihood during the prediction stage by estimating HRG models with different
parameters (R1, T1); for brevity, the log-likelihoods obtained via such an optimization will
be called “the best log-likelihoods”. L2 is the best log-likelihood obtained with the default
embedding. As it proxies the best possible outcome for the default embedding, it will serve
as the benchmark scenario in our experiment.

Now we need to check if using DHRG improves the quality of the embedding. To this
end, we convert our embedding into the DHRG model, by finding the nearest tile of our
tessellation for each v ∈ V . L3 is the best discrete log-likelihood for a new embedding
(computed with the logistic function). We call this phase discretization.

Next, we try our local search algorithm (20 iterations) and compute the best discrete
log-likelihood after local search (L5).1 Finally, we proceed to the de-discretization phase, i.e.,
convert our mapping back to the HRG model and find the best log-likelihood L7.

We denote the running times as tm (converting HRG to DHRG), tl (computing Pairs
and Edges), te (local search). For comparison, we also include the time of computing the
best continuous log-likelihood tc using a parallelized O(n2) algorithm2, and the time of
computing the log-likelihood by the BFKL algorithm (tb). All the times are measured on
Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz with 96 GB RAM. Most computations use
a single core, except the continuous log-likelihood values (L2 and L7) which use 8 cores.
Our implementation, using the RogueViz non-Euclidean geometry engine [16], as well as the
results of our experiments can be found at https://figshare.com/articles/software/
Discrete_Hyperbolic_Random_Graph_Model_code_and_data_/16624369.

1 We do 20 iterations because further iterations tend to move less and less vertices, and thus their effect
on the quality of embedding is minimal.

2 We compute the distance for every pair of nodes. This way we create the array d, where d[n] is the
number of distances in the interval [nε, (n + 1)ε); we take ε = 10−4. This computation is parallelized.
The array d allows computing a very good approximation of the log-likelihood for any value of parameters
R and T in time O(R/ε).)

SEA 2022

https://figshare.com/articles/software/Discrete_Hyperbolic_Random_Graph_Model_code_and_data_/16624369
https://figshare.com/articles/software/Discrete_Hyperbolic_Random_Graph_Model_code_and_data_/16624369


1:8 Discrete Hyperbolic Random Graph Model

Table 1 Experimental results on real-world networks. Facebook (Fb), Slashdot (Sd), Amazon
(Am), Google (Go), and Patents (Pa) networks from SNAP database; F09 and F11 are GitHub
networks. MB is the amount of memory in megabytes, and time is in seconds.

name n m R α grid -L2
L3
L2

L5
L3

L7
L2

MB tm [s] tl [s] te [s] tc [s] tb [s]
Fb 4309 88234 12.57 0.755 G710 176131 1.04 0.93 0.97 40 0.196 0.03 10 0.35 0.048
Fb 4309 88234 12.57 0.755 G810 176131 1.07 0.92 0.98 54 0.183 0.03 8 0.5 0.048
F09 74946 537972 20.90 0.855 G710 3954627 1.04 0.86 0.90 2010 5.432 1.16 222 131 0.896
F09 74946 537972 20.90 0.855 G810 3954627 1.06 0.84 0.90 1866 4.634 0.81 176 128 0.896
Sd 77352 327431 26.00 0.610 G710 2091651 1.25 0.72 0.92 2659 5.326 1.05 201 130 0.292
Sd 77352 327431 26.00 0.610 G810 2091651 1.27 0.71 0.92 2253 4.618 0.78 158 126 0.292
Am 334863 925872 24.11 0.995 G710 6957174 1.04 0.86 0.91 5677 23.34 5.40 721 2690 1.444
Am 334863 925872 24.11 0.995 G810 6957174 1.04 0.85 0.90 4868 19.76 3.92 576 2811 1.444
F11 405270 2345813 26.34 0.715 G710 20028756 1.22 0.76 0.93 9995 30.36 7.36 1349 3715 5.216
F11 405270 2345813 26.34 0.715 G810 20028756 1.22 0.76 0.93 8940 25.84 5.38 1113 3636 5.216
Go 855804 4291354 26.06 0.865 G710 22762281 1.30 0.75 0.98 18226 64.75 16.05 2363 16618 3.560
Go 855804 4291354 26.06 0.865 G810 22762281 1.32 0.75 0.99 15314 54.31 10.93 1823 15818 3.560
Pa 3764118 16511741 28.74 0.995 G810 — — 0.90 — 66396 250.6 73.65 9335 — 41.24

6 Experiments on real-world networks

Table 1 contains detailed results of the experiments. The networks we use come mostly from
SNAP database [18]. To benchmark our algorithm on a large network, we additionally study
undirected social networks with power-law-like scale behavior, representing the following
relations that occured between 2009 and 2011 in GitHub [9] (see Appendix C for the details).
It makes sense to use finer tessellations for smaller graphs and coarser tessellations for
larger ones. In most cases, we conduct our experiments on two tessellations: G710 (order-3
heptagonal) and the coarser G810 (order-3 octagonal). For the Facebook graphs, we also
try finer tessellations; see Appendix D for the details. Finer tessellations give better log-
likelihoods, but a too dense grid dramatically decreases the performance without giving
significant benefits.

The parameters n, m, R and α come from the BFKL embedder (n is the number of
vertices, m is the number of edges). Discretization worsens the log-likelihoods; for smaller
networks L3 are usually slightly worse than L2, but this is not surprising. First, our edge
predictor has lost some precision in the input because of our tesselation’s discrete nature.
Second, the original prediction was based on the hyperbolic distance r while our prediction
is based on the tesselation distance d, and the ratio of r and d depends on the direction.
The whole procedure improves the log-likelihood by up to 10%. For the patents network,
computing L2 and L7 was not feasible; L3 was 208618134.

The current version uses a significant amount of RAM. It should be possible to improve
this by better memory management (currently vertices and segments which are no longer
used or just temporarily created are not freed), or possibly path compression.

When it comes to the running time, computing Edges and Pairs takes negligible time (tl)
when compared to the network size. Even for as large network as Patents, those operations
took slightly over a minute (Table 1); for most of the networks analyzed, they took a few
seconds. Converting time tm increases with the size of the network, for most of the networks
analyzed we need less than a minute. In comparison to computing log-likelihood as performed
by BFKL, our solution is comparable in time; they are of the same order of magnitude. The



D. Celińska-Kopczyńska and E. Kopczyński 1:9

longest time is needed for local search. Not surprisingly, the larger graph, the longer it takes
to find improvements. However, their spring embedder working in quadratic time is much
slower than our local search.3

7 Experiments on simulated graphs

7.1 Log-likelihood
Our experiments on real-world graphs showed that discretization, local search, and de-
discretization improves the quality of the embedding in terms of log-likelihood. In this section
we conduct simulations to see whether we can generalize those observations.

We use the generator included with [4] to generate HRGs with the following parameters:
varying n, α = 0.75, T = 0.1, R = 2 log(n) − 1. These are the default values of parameters
used by this generator. For every value of n considered, we generate 1000 graphs. For each
of the generated graphs H, we embed H using BFKL, compute L2, convert to DHRG on
tessellation G710, improve the embedding (up to 20 iterations), convert back to HRG, and
compute L7. We also compute Lg, which is the log-likelihood of the originally generated
embedding (groundtruth).

Figure 2 shows the density graph of L2/Lg and L7/Lg for every n. Since Lg is negative,
larger values of these ratios are worse. We know that an optimal embedder should achieve
log-likelihood at least as good as Lg. We find that our algorithm yields a significant
improvement.

Table 2 Changes in log-likelihood after applying our procedure to BFKL embedders. Percent of
improvements signifies the percent of the cases the log-likelihood increased (improved). Average
and median improvements computed conditionally on improvement. In the “rel. to 0” columns,
we present the values of 100 · (1 − L7/L2); in the “groundtruth” column, we present the values of
100 · (1 − (Lg − L7)/(Lg − L2)).

n improved rel. to 0 groundtruth
avg median avg median

100 84.6 12.8 11.9 36.2 22.0
200 95.2 12.5 12.1 20.6 20.4
300 97.2 11.8 10.6 18.6 17.5
500 99.1 11.5 11.1 18.0 17.5
1000 99.6 11.4 11.0 17.2 16.8
2000 100.0 11.0 10.7 16.2 15.9
3000 100.0 10.9 10.7 15.9 15.8
4000 100.0 10.6 10.4 15.4 15.2
5000 100.0 10.5 10.3 15.0 14.7
10000 100.0 10.3 10.2 14.8 14.7
15000 100.0 10.0 9.9 14.5 14.4

3 We have also ran the BFKL spring embedder on the Facebook graph for T = 0.54336 and seed 123456789,
reporting the log-likelihood of -131634, better than ours. However, this result appears incorrect; our
implementation reports the original log-likelihood of L1 = −211454, and can improve it to L7 = −157026.
Computing the log-likelihood incorrectly may negatively impact the quality of BFKL embedding.

SEA 2022



1:10 Discrete Hyperbolic Random Graph Model

0 1 2 3 4 5

0.
0

0.
4

0.
8

all

0 1 2 3 4 5
0.
0

0.
2

0.
4

0.
6

n = 100

D
en
si
ty

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8 n = 200

D
en
si
ty

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

n = 300

1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

n = 500

D
en
si
ty

2 3 4 5

0.
0

0.
4

0.
8

n = 1000

D
en
si
ty

1.5 2.5 3.5 4.5

0.
0

0.
4

0.
8

n = 2000

2.0 3.0 4.0

0.
0

0.
4

0.
8

1.
2

n = 3000

D
en
si
ty

2.0 3.0 4.0

0.
0

0.
5

1.
0

1.
5

n = 4000

D
en
si
ty

1.5 2.5 3.5 4.5

0.
0

0.
4

0.
8

1.
2

n = 5000

2.0 3.0 4.0

0.
0

0.
5

1.
0

1.
5

2.
0

n = 10000

D
en
si
ty

2.0 2.5 3.0 3.5 4.0

0.
0

1.
0

2.
0

n = 15000

D
en
si
ty

Figure 2 Density of L2/Lg (black) and L7/Lg (blue) for T = 0.1.



D. Celińska-Kopczyńska and E. Kopczyński 1:11

According to the data in Table 2, we notice that our procedure leads to better embeddings
than the pure BFKL embedder no matter the size of the graph. Our procedure yields log-
likelihoods that are closer to the log-likelihood of the groundtruth. The improvement towards
groundtruth is not stable; with the increase of the graph the BFKL embeddings converge,
so our improvements become less prominent (around 15% for large graphs). However, the
improvements are statistically significant (p-values are always 0.00 for paired Wilcoxon test
with alternative hypothesis that the values of log-likelihood increased after our procedure).

In real-life cases, hardly do we know the groundtruth; comparison of log-likelihoods for
BFKL embedder and our procedure resembles what would we do with real data (columns rel.
to zero in Table 2). In such a case, we may expect that our procedure should improve the
result by average by 10%. This result seems stable no matter the size of the graph.

7.2 Greedy routing
One potential application of hyperbolic embedding is greedy routing [5, 2]. A node v obtains
a packet to node w; if w is not directly connected to v, v needs to select one of its neighbors
through which the packet will be forwarded. In the greedy routing approach, we use the
embedding to select the connected node which is the closest to the goal w. Greedy routing
fails if, at some point in the chain, none of the connected nodes is closer to w than v itself. In
[5] a hyperbolic embedding of the Internet is constructed, yielding 97% success rate of greedy
routing. This is much better than a similar algorithm based on geographical placement
of nodes (14%). High success rate is also robust with respect to link removals [5]. While
the MLE method of finding embedding yields worse results than embeddings constructed
specifically for the purpose of greedy routing [2], it is interesting to see how good our methods
are according to this metric.

Table 3 summarizes the changes in success rates after our procedure. We discuss the
conditional changes (improvement on the condition of the improvement or deterioration on
the condition of the deterioration), because we find the absolute changes possibly misleading
for small networks. Percent of changes proxies us the probability of the effect. If the effect
occurs, we know what to expect without the bias of the counter-effect. The success rates
of the original embedding are around 93% on average. Discretization usually worsens the
success probability. This appears to be caused by the fact that two neighbors of v can
be in the same distance to w (because of discretization), while originally the more useful
node is closer. We notice that if the deterioration due to discretization occurs, the average
percentage deterioration decreases with the increasing size of the graph. This is expected,
since the distances are larger in larger graphs. Meanwhile, the median deterioration (if
the deterioration occurs) is stable at around 3%. This means that with the increasing size
of the network we face serious deteriorations after discretization less often. The effect is
statistically significant (p-values of Wilcoxon paired tests with the alternative hypotheses
that the success rate is lower after the discretization are always 0.00). The whole procedure
improves the results in more than 45% of cases, however the change for bigger graphs is not
statistically significant (p-values for paired Wilcoxon tests with the alternative hypotheses
that the success rates increased after our procedure are greater than 10%). For large graphs
(over 4000 vertices) in about half of the cases the success rate after the procedure is not
worse than the original one.

To reduce the negative effect of discretization, we also perform the same experiment
using the G711 grid. The results are shown in Table 3. Contrary to the G710 tessellation,
usage of the finer tessellation for routing (when all three steps are performed) improves the
success rate, and the effect is statistically significant. The general directions of the effects
resemble the case of coarser grid. Discretization leads to a statistically significant decrease in
the success rate; the bigger graphs, the less frequent a noticeable deterioration.

SEA 2022



1:12 Discrete Hyperbolic Random Graph Model

Table 3 Changes in the success rate of greedy routing. Average and median computed conditionally
on change (improvement on the condition of the improvement or deterioration on the condition of
the deterioration). P-values for Wilcoxon paired tests.

T deterioration improvement improvement
tiling n (discretization) (local search) (three steps)

% med avg % med avg % med avg p-value

100 95.3 3.28 5.14 81.1 2.55 3.71 56.4 1.11 1.81 0.001
200 97.3 3.27 4.70 82.5 2.24 3.10 53.8 0.99 1.35 0.037
300 99.0 3.25 4.37 85.7 1.97 2.51 55.3 0.91 1.21 0.000
500 99.7 3.19 4.34 87.9 1.81 2.38 55.7 0.71 1.00 0.005
1000 100.0 3.25 3.92 90.8 1.66 1.99 54.0 0.51 0.70 0.071

T=0.1 2000 100.0 3.27 3.73 94.3 1.58 1.73 51.6 0.40 0.50 0.806
G710 3000 100.0 3.27 3.61 98.6 1.53 1.68 49.7 0.33 0.40 0.999

4000 100.0 3.33 3.52 98.6 1.55 1.63 49.0 0.29 0.37 0.999
5000 100.0 3.31 3.52 98.4 1.52 1.61 46.9 0.27 0.36 0.999
10000 100.0 3.27 3.37 99.8 1.56 1.60 42.1 0.19 0.23 1.000
15000 100.0 3.37 3.39 99.9 1.61 1.62 32.2 0.16 0.19 1.000

100 86.4 1.65 2.76 72.5 1.67 2.59 61.0 1.00 1.68 0.00
200 90.8 1.67 2.49 78.9 1.61 2.25 63.1 0.94 1.42 0.00
300 94.5 1.59 2.30 82.0 1.42 1.97 65.9 0.84 1.19 0.00
500 98.2 1.57 2.16 86.8 1.35 1.69 67.6 0.80 1.04 0.00
1000 99.4 1.65 1.96 93.9 1.23 1.42 70.4 0.59 0.73 0.00

T=0.1 2000 99.8 1.61 1.82 94.3 1.16 1.27 72.6 0.48 0.60 0.00
G711 3000 99.8 1.64 1.75 96.4 1.15 1.21 74.2 0.42 0.49 0.00

4000 100.0 1.65 1.76 98.1 1.11 1.19 74.0 0.40 0.45 0.00
5000 100.0 1.63 1.75 98.3 1.15 1.20 78.2 0.40 0.46 0.00
10000 100.0 1.61 1.67 99.6 1.17 1.19 82.5 0.36 0.38 0.00
15000 100.0 1.64 1.66 99.7 1.19 1.20 87.0 0.32 0.33 0.00

300 99.9 3.88 4.53 88.5 2.27 2.72 60.7 1.04 1.37 0.00
500 100.0 3.60 4.26 88.6 1.74 2.15 59.4 0.84 1.11 0.00
1000 100.0 3.39 3.73 88.1 1.25 1.48 55.9 0.65 0.78 0.00

T=0.7 2000 100.0 3.21 3.47 87.7 0.99 1.15 52.9 0.46 0.59 0.02
G710 3000 100.0 2.87 3.00 84.4 0.72 0.84 46.7 0.30 0.42 0.98

4000 100.0 3.22 3.31 89.7 0.80 0.88 38.3 0.28 0.37 1.00
5000 100.0 2.98 3.02 88.6 0.63 0.69 36.1 0.19 0.24 1.00
10000 100.0 2.95 2.96 90.6 0.55 0.60 29.1 0.13 0.22 1.00
15000 100.0 3.23 3.23 95.5 0.73 0.75 24.4 0.12 0.16 1.00

300 98.3 1.86 2.25 81.1 1.56 1.90 63.5 1.00 1.32 0.00
500 99.5 1.81 2.14 85.9 1.30 1.57 68.1 0.94 1.12 0.00
1000 99.9 1.65 1.86 84.0 0.97 1.11 67.5 0.62 0.75 0.00

T=0.7 2000 100.0 1.61 1.71 87.1 0.75 0.83 67.3 0.44 0.55 0.00
G711 3000 100.0 1.40 1.48 83.4 0.53 0.61 64.1 0.32 0.21 0.00

4000 100.0 1.61 1.64 90.5 0.56 0.62 61.7 0.28 0.36 0.00
5000 100.0 1.48 1.50 88.8 0.45 0.49 59.5 0.25 0.28 0.00
10000 100.0 1.47 1.48 94.1 0.41 0.46 61.0 0.18 0.22 0.00
15000 100.0 1.61 1.61 98.4 0.53 0.53 65.1 0.17 0.19 0.00



D. Celińska-Kopczyńska and E. Kopczyński 1:13

0.9 1.0 1.1 1.2

0
2

4
6

8

n = 300

0.85 0.95 1.05 1.15

0
2

4
6

8
10

n = 500

D
en
si
ty

0.9 1.0 1.1 1.2

0
2

4
6

8
10

n = 1000

D
en
si
ty

0.9 1.0 1.1 1.2

0
2

4
6

8
12

n = 2000

0.95 1.05 1.15 1.25

0
5

10
15

n = 3000
D
en
si
ty

0.90 1.00 1.10

0
5

10
15

n = 4000

D
en
si
ty

0.95 1.00 1.05 1.10 1.15

0
5

10
15

20

n = 5000

0.95 1.05 1.15

0
5

10
20

n = 10000

D
en
si
ty

0.95 1.00 1.05 1.10 1.15

0
5

15
25

n = 15000

D
en
si
ty

Figure 3 Density of L2/Lg (black) and L7/Lg (blue) for T = 0.7.

7.3 Changing the temperature

Real-world graphs are considered to have larger temperature T than 0.1. We have also
experimented with changing the temperature T to 0.7. This value of T has been used for
mapping the Internet [5].

For T = 0.7, the embedder and local search actually tend to achieve a better result
than the groundtruth. For all sizes of graphs, we observe about 3% improvement in the
absolute value of log-likelihood on average (1 − L2/L7) (Figure 3). This effect is statistically
significant (p-values for paired Wilcoxon tests with alternative hypotheses that the values of
log-likelihood increased after our procedure always 0.00).

One could argue that the temperature plays critical role for the success of the greedy
routing. With a higher temperature, the links are less predictable, and thus we can expect a
lower success rate. We conducted the simulations to check if the insights change in the case
of the value of temperature more typical to real-world networks. Table 3 contains the results
of the experiments with respect to the size of the graph.

Our insights driven from simulations for T = 0.7 resemble the conclusions for the case
of T = 0.1. In the case of the coarse tessellation (Table 3) the possibility of improvement
depends on n. For small and medium-sized graphs the effect is statistically significant; the
larger the graph, the less probable statistically significant improvement (p-values of Wilcoxon
paired test greater that any conventional significance levels). With the finer tessellation
(Table 3), no matter the size of the graph, the post-procedure improvement is statistically
significant.

SEA 2022



1:14 Discrete Hyperbolic Random Graph Model

We also checked if the change of the tessellation significantly improves the success rate.
To this end, we perfomed paired Wilcoxon tests with the alternative hypotheses that the
success rate increased after using a finer tessellation. In all the cases, the p-values were 0.00,
so the effect of the tessellation is statistically significant.

8 Conclusion

We introduced the discrete version of the HRG model, which allows efficient algorithms while
avoiding numerical issues. We also presented the result of the experimental evaluation of this
model. We analyzed both the real-world networks and 20,000 artifical ones, paying special
attention to the possible application of the model in greedy routing. Our experimental
evaluation shows that we achieve a good approximation of log-likelihood in the HRG model
and that using local search significantly improves its log-likelihood, even when converting back
to HRG. This is visible both in real-world and in simulated networks. A similar procedure
also slightly improves the success rate of greedy routing when a sufficiently fine tessellation
is used. The choice of the tessellation seems to be crucial for the success rate for all tested
values of the parameters.

References
1 Albert-László Barábasi and Reka Albert. Emergence of scaling in random networks. Science,

286(5439):509–512, 1999. doi:10.1126/science.286.5439.509.
2 Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, and Anton Krohmer. Hyperbolic

embeddings for near-optimal greedy routing. In Algorithm Engineering and Experiments
(ALENEX), pages 199–208, 2018.

3 Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel Penschuck,
and Christopher Weyand. Efficiently generating geometric inhomogeneous and hyperbolic ran-
dom graphs. In Michael A. Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual
European Symposium on Algorithms, ESA 2019, September 9-11, 2019, Munich/Garching,
Germany, volume 144 of LIPIcs, pages 21:1–21:14. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2019. doi:10.4230/LIPIcs.ESA.2019.21.

4 Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. Efficient embedding of
scale-free graphs in the hyperbolic plane. In European Symposium on Algorithms (ESA), pages
16:1–16:18, 2016.

5 Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the internet
with hyperbolic mapping. Nature Communications, 1(6):1–8, September 2010. doi:10.1038/
ncomms1063.

6 Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random
graphs. Theoretical Computer Science, 2018. doi:10.1016/j.tcs.2018.08.014.

7 Károly Böröczky. Gömbkitöltések állandó görbületű terekben I. Matematikai Lapok, 25:265–306,
1974.

8 James W. Cannon, William J. Floyd, Richard Kenyon, and Walter R. Parry. Hyperbolic
geometry. In In Flavors of geometry, pages 59–115. University Press, 1997. Available online at
http://www.msri.org/communications/books/Book31/files/cannon.pdf.

9 Dorota Celińska. Information and influence in social network of Open Source community. In
9th Annual Conference of the EuroMed Academy of Business, 2016.

10 Daniel Funke, Sebastian Lamm, Ulrich Meyer, Manuel Penschuck, Peter Sanders, Christian
Schulz, Darren Strash, and Moritz von Looz. Communication-free massively distributed
graph generation. Journal of Parallel and Distributed Computing, 131:200–217, 2019. doi:
10.1016/j.jpdc.2019.03.011.

11 Georgios Gousios. The ghtorrent dataset and tool suite. In Proceedings of the 10th Working
Conference on Mining Software Repositories, MSR ’13, pages 233–236, Piscataway, NJ, USA,
2013. IEEE Press. URL: http://dl.acm.org/citation.cfm?id=2487085.2487132.

https://doi.org/10.1126/science.286.5439.509
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.1038/ncomms1063
https://doi.org/10.1038/ncomms1063
https://doi.org/10.1016/j.tcs.2018.08.014
http://www.msri.org/communications/books/Book31/files/cannon.pdf
https://doi.org/10.1016/j.jpdc.2019.03.011
https://doi.org/10.1016/j.jpdc.2019.03.011
http://dl.acm.org/citation.cfm?id=2487085.2487132


D. Celińska-Kopczyńska and E. Kopczyński 1:15

12 Ilya Grigorik. Github Archive. https://www.githubarchive.org/, 2012.

13 Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs:
Degree sequence and clustering. In Artur Czumaj, Kurt Mehlhorn, Andrew Pitts, and
Roger Wattenhofer, editors, Automata, Languages, and Programming, pages 573–585, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

14 Stephen G. Kobourov and Kevin Wampler. Non-euclidean spring embedders, pages 207–214.
IEEE Computer Society, 2004. doi:10.1109/INFVIS.2004.49.

15 Eryk Kopczyński, Dorota Celińska, and Marek Čtrnáct. HyperRogue: Playing with hyperbolic
geometry. In Proceedings of Bridges : Mathematics, Art, Music, Architecture, Education,
Culture, pages 9–16, Phoenix, Arizona, 2017. Tessellations Publishing.

16 Eryk Kopczyński and Dorota Celińska-Kopczyńska. RogueViz: non-Euclidean geometry engine
for visualizations, games, math art, and research, October 2021. URL: https://github.com/
zenorogue/hyperrogue/.

17 John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on hyperbolic
geometry for visualizing large hierarchies. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’95, pages 401–408, New York, NY, USA, 1995. ACM
Press/Addison-Wesley Publishing Co. doi:10.1145/223904.223956.

18 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

19 Tamara Munzner. Exploring large graphs in 3d hyperbolic space. IEEE Computer Graphics
and Applications, 18(4):18–23, 1998. doi:10.1109/38.689657.

20 Fragkiskos Papadopoulos, Rodrigo Aldecoa, and Dmitri Krioukov. Network geometry inference
using common neighbors. Phys. Rev. E, 92:022807, August 2015. doi:10.1103/PhysRevE.92.
022807.

21 Fragkiskos Papadopoulos, Maksim Kitsak, M. Angeles Serrano, Marian Boguñá, and Dmitri
Krioukov. Popularity versus Similarity in Growing Networks. Nature, 489:537–540, September
2012.

22 Manuel Penschuck. Generating practical random hyperbolic graphs in near-linear time and
with sub-linear memory. In SEA, 2017.

23 Frederic Sala, Chris De Sa, Albert Gu, and Christopher Re. Representation tradeoffs for
hyperbolic embeddings. In Proc. ICML, pages 4460–4469, Stockholmsmässan, Stockholm
Sweden, 2018. PMLR. URL: http://proceedings.mlr.press/v80/sala18a.html.

24 Zeynab Samei and Mahdi Jalili. Application of hyperbolic geometry in link predic-
tion of multiplex networks. Scientific Reports, 9(1):12604, August 2019. doi:10.1038/
s41598-019-49001-7.

25 Moritz von Looz. High-Performance Graph Algorithms. PhD thesis, Karlsruher Institut für
Technologie (KIT), 2019. doi:10.5445/IR/1000095908.

26 Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. Generating Random Hyperbolic
Graphs in Subquadratic Time, pages 467–478. Springer Berlin Heidelberg, Berlin, Heidelberg,
2015. doi:10.1007/978-3-662-48971-0_40.

27 Moritz von Looz, Mustafa Safa Ozdayi, S. Laue, and Henning Meyerhenke. Generating massive
complex networks with hyperbolic geometry faster in practice. 2016 IEEE High Performance
Extreme Computing Conference (HPEC), pages 1–6, 2016.

SEA 2022

https://www.githubarchive.org/
https://doi.org/10.1109/INFVIS.2004.49
https://github.com/zenorogue/hyperrogue/
https://github.com/zenorogue/hyperrogue/
https://doi.org/10.1145/223904.223956
https://doi.org/10.1109/38.689657
https://doi.org/10.1103/PhysRevE.92.022807
https://doi.org/10.1103/PhysRevE.92.022807
http://proceedings.mlr.press/v80/sala18a.html
https://doi.org/10.1038/s41598-019-49001-7
https://doi.org/10.1038/s41598-019-49001-7
https://doi.org/10.5445/IR/1000095908
https://doi.org/10.1007/978-3-662-48971-0_40


1:16 Discrete Hyperbolic Random Graph Model

A Tessellation distances versus hyperbolic distances

Table 4 Tessellation distances (d) versus expected hyperbolic distances (ERd): expected value
and variance.

d nd ER Var(R)
0 1 0.00000000 0.00000000
1 7 1.09054966 0.00000000
2 21 2.02973974 0.02467308
3 56 2.99594181 0.03923368
4 147 3.96512066 0.05370197
5 385 4.93471877 0.06823850
6 1008 5.90437726 0.08279668
7 2639 6.87404448 0.09735968
8 6909 7.84371297 0.11192362
9 18088 8.81338165 0.12648772

10 47355 9.78305035 0.14105185
11 123977 10.75271905 0.15561599
12 324576 11.72238775 0.17018013
13 849751 12.69205646 0.18474427
14 2224677 13.66172516 0.19930841
15 5824280 14.63139386 0.21387255
16 15248163 15.60106257 0.22843669

Table 4 contains the example detailed results for G710 (see Section 3). The asymptotic
values are obtained in the following way: the difference ERd − ERd−1 converges very quickly
to 0.9696687, and the difference ERd − 0.9696687d converges very quickly to 0.0863634.

B Proofs and pseudocodes

Generalization of Proposition 3. For D(G) > 1, there is one more type of a canonical path
possible, where w is a parent of v, but neither the leftmost nor rightmost one.

The idea of the algorithm is to find the shortest canonical path. Suppose that δ0(v) =
d′ +δ0(w), where d′ ≥ 0. For each i starting from 0 we compute the endpoints of the segments
P d′+i(v) and P i(w). We check whether these segments are in distance at most γ on the
ring; if no, then we can surely tell that we need to check the next i; if yes, we know that the
shortest path can be found on one of the levels from i to i + ⌊γ/2⌋. We compute the length
of all such paths and return the minimum.

The pseudocode of our algorithm is given below. It uses five integer variables ai, di, d

and four tile variables li, ri (i = 1, 2). Variables ai, di, li and ri are modified only by the
function push(i), which lets us keep the following invariant: δ0(li) = δ0(ri) = di, li = pai

L (vi),
ri = pai

R (vi). By v + k, where v is a tile, we denote the k-th right sibling of v.
The lines (16-17) deal with the special case for D(G) > 1 mentioned above.
The main loop in lines (19-23) deals with the other cases. At all times d is the currently

found upper bound on δ(v, w). It is easy to check that the specific shortest path given in
Proposition 3 will be found by our algorithm.

Every iteration of every loop increases a1 or a2, and an iteration can occur only if
a1 + a2 < δ(v, w). Therefore, the algorithm runs in time O(δ(v, w)).



D. Celińska-Kopczyńska and E. Kopczyński 1:17

1. function Distance(v1, v2):
2. for i ∈ {1, 2}:
3. li := vi

4. ri := vi

5. di := δ0(vi)
6. ai := 0
7. function push(i):
8. ai := ai + 1
9. di := di − 1

10. li := pL(li)
11. ri := pR(ri)
12. while d1 > d2 :
13. push(1)
14. while d2 > d1 :
15. push(2)
16. for i ∈ {1, 2} if vi ∈ [li, ri] :
17. return a3−i

18. d := ∞
19. while a1 + a2 < d:
20. for i ∈ {1, 2} for k ∈ {0, . . . , D(G)} if li = r3−i + k :
21. d := min(d, a1 + a2 + k)
22. push(1)
23. push(2)
24. return d ◀

Proof of Theorem 5 for the general case. A segment is good if it is of the form P d([v, v])
for some v ∈ V and d ∈ N. In our algorithm the operation Add(w) will update the
information in the good segments of the form P d([w, w]), and the operation Count(v) will
follow the algorithm from Proposition 3, but instead of considering the single segment [w, w],
it will count all of them, by using the information stored in the segments close to P d([v, v]).
Our algorithm will optimize by representing all the good segments coming from tiles v added
to our structure.

We call a tile or good segment active if it has been already generated, and thus is
represented as an object in memory. For each active tile v ∈ V we keep two lists LL(v), LR(v)
of active segments S such that v is respectively the leftmost and rightmost element of S. Each
active segment S also has a pointer to P (S), which is also active (and thus, all the ancestors
of S are active too), and a dynamic array of integers a(S). Initially, there are no active tiles or
good segments; when we activate a segment S, its a(S) is initially filled with zeros. The value
of a(S)[i] represents the total f(w) for all tiles w which yield the segment S after i operations
of the algorithm from the proof of Proposition 3, i.e., a(S)[i] =

∑
w:P i[w,w]=S f(w).

The operation Add(w, k) works as follows: for each i = 0, . . . , δ0(v), we simply add k

to a(P i(S))[i]. In the pseudocode below, we assume that P (S) returns null if S is the root
segment.

1. function Add(w, x):
2. S := [w, w]
3. i := 0
4. while S ̸= null:
5. a(S)[i] = a(S)[i] + x

6. S := P (S)
7. i := i + 1

SEA 2022



1:18 Discrete Hyperbolic Random Graph Model

The operation Count(v) activates v and S = [v, v] together with all its ancestors. We
return the vector A obtained as follows. We look at P i(S) for i = 0, . . . , δ0(v), and for
each P i(S), we look at close good segments q′ on the same level, lists LL(w), Lr(w) for all
w in distance at most γ from Pi(S). The intuition here is as follows: the algorithm from
Proposition 3, on reaching pi1(v) = S and pi2(w) = S′, would find out that these two pairs
are close enough and return i1 + i2 + δ(S, S′); in our case, for each c such that a(S′)[c] ̸= 0,
we will instead add a(S′)[c] to A[a1 + δ(S, S′) + c].

We have to be careful that, if we count some vertex v when considering the pair of segments
(S, S′), we do not count it again when considering the pair of segments (P j(S), P j(S′)). This
is done in lines 18–21 in the pseudocode below. By SL and SR we respectively denote the
leftmost and rightmost vertex of the segment S.

1. function Count(v):
2. U = ∅
3. for each active S′ ∋ v:
4. insert(U, (S′, 0))
5. d := 0
6. S := [v, v]
7. while S ̸= null :
8. for i ∈ 0, . . . , D(G) :
9. for each S′ ∈ LR(SR + i):

10. insert(U, (S′, d + δ(S, S′)))
11. for each S′ ∈ LL(SL − i):
12. insert(U, (S′, d + δ(S, S′)))
13. d := d + 1
14. S := P (S)
15. T = []
16. for each (S′, d) ∈ U :
17. for each i: T [d + i] = T [d + i] + a(S′)[i]
18. S′′ := P (S′)
19. if (S′′, d′) ∈ U for some d′:
20. for each i: T [d′ + i] = T [d′ + i] − a(S′)[i]
21. break
22. return T ◀

C Details of the GitHub dataset

In GitHub convention, following means a registered user agreed to be sent notifications about
other user’s activity within the service. We represent this relationship using the following
graph Gf . There is an edge in Gf between A and B if and only if A follows B. Mechanisms
behind the creation of this network involve users’ popularity and the similarity, which suggests
underlying hyperbolic geometry of Gf . Gf also shows power-law-like scale behavior [9]; we
believe it is a useful benchmark for our analysis. Since the complete download of GitHub
data is impossible, our dataset is combined from two sources: GHTorrent project [11] and
GitHubArchive project [12]. The analyzed networks contain information about the following
relationships in two snapshots: F09 covers relationships that occurred in the service from
2008 to 2009 and F11 covers the same during 2008-2011 period.



D. Celińska-Kopczyńska and E. Kopczyński 1:19

Table 5 Experimental results on the Facebook network (L2 = −176131).

grid L3 L5 L7 MB #it tm [s] tl [s] te [s]
G810 -187738 -172018 -172585 46 37 0.180 0.027 14.17
G710 -182721 -170074 -170873 40 29 0.194 0.030 12.13
G711 -179125 -167991 -168445 61 23 0.281 0.058 17.82
G720 -179977 -168105 -168817 98 71 1.025 0.094 91.87
G721 -178108 -167407 -167824 146 99* 1.359 0.208 282.0
G753 -177254 -166889 -167648 1050 99* 4.446 3.059 4999
B2 -180354 -168055 -168338 47 15 1.278 0.037 17.17
B1.1 -180112 -169019 -168134 54 11 1.513 0.041 4.362
B1.0 -179554 -168717 -168214 53 59 1.555 0.042 8.830
B0.9 -179500 -168973 -168282 56 45 1.607 0.042 22.56
B0.5 -179742 -168906 -168017 62 7 2.158 0.046 6.182
{5, 4} -195952 -173641 -175671 38 20 0.159 0.024 5.700

G710 G810 G711 G720 G721 B1.0 {5,4}

D Choice of the tessellation

Table 5 presents the experimental results of running our algorithm on the Facebook social
circle network graph for various tessellations. We can obtain a coarser grid than G710 by
using octagons instead of heptagons (G810), and a finer grid by using the Goldberg-Coxeter
construction, which adds extra hexagons to the order-3 heptagonal tessellation (G7ab). We
can also use a tessellation Bx based on the binary tiling [7] (where x is the width of the tile),
or {5, 4}, where four pentagons meet in a vertex. Log-likelihoods are named as in Section 5:
L2, L7 – continuous best log-likelihoods
L3, L5 – best discrete log-likelihoods, logistic function
L4, L6 – best discrete log-likelihood, arbitrary function of distance (used for local search)
The column #it presents the number of iterations of local search; * denotes that we have
stopped the process after this number of iterations, while no * denotes that the local search
could not improve the log-likelihood any further. MB is the amount of memory in megabytes,
and time is in seconds.
As we can see, finer tessellations give better log-likelihoods, but a too dense grid dramatically
decreases the performance without giving significant benefits. Tessellation Bx does not
yield significantly better results, despite its circles’ greater similarity to continuous ones.
The results of {5, 4} are relatively bad; it approximates distances worse than three-valent
tessellations.

SEA 2022





Solving and Generating Nagareru Puzzles
Masakazu Ishihata ! Ï

NTT Communication Science Laboratories, Kyoto, Japan

Fumiya Tokumasu
National Institute of Technology, Nara College, Nara, Japan

Abstract
Solving paper-and-pencil puzzles is fun for people, and their analysis is also an essential issue in
computational complexity theory. There are some practically efficient solvers for some NP-complete
puzzles; however, the automatic generation of interesting puzzle instances still stands out as a
complex problem because it requires checking whether the generated instance has a unique solution.
In this paper, we focus on a puzzle called Nagareru and propose two methods: one is for implicitly
enumerating all the solutions of its instance, and the other is for efficiently generating an instance
with a unique solution. The former constructs a ZDD that implicitly represents all the solutions.
The latter employs the ZDD-based solver as a building block to check the uniqueness of the solution
of generated instances. We experimentally showed that the ZDD-based solver was drastically faster
than a CSP-based solver, and our generation method created an interesting instance in a reasonable
time.

2012 ACM Subject Classification Computing methodologies → Combinatorial algorithms; Theory
of computation → Generating random combinatorial structures; Mathematics of computing →
Graph algorithms

Keywords and phrases Paper-and-pencil puzzle, SAT, CSP, ZDD

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.2

Supplementary Material Software (Source Code and Data):
https://github.com/masakazu-ishihata/Nagareru

archived at swh:1:dir:6c6604df4d55d8e2f019fdfe5e19225060e8ce83

1 Introduction

Paper-and-pencil puzzles are a type of logic puzzle; a player gradually fills in parts of a
solution on the puzzle board without violating any rules and eventually constructs a single
consistent solution. Solving a puzzle is much fun for puzzle fans, but it has also attracted the
extensive attention of theoretical computer scientists because of an interest in computational
complexity [13]. They have been competing to prove the computational complexity of various
puzzles, and the following is just a small selection of the list of puzzles that have so far
proved to be NP-complete to solve: Bag (Corral) [3], Cross Sum [23], Country Road [5],
Dosun-Fuwari [8], Herugolf [7], Hiroimono [2], Makaro [7], Moon-or-Sun [9], Nagareru [9],
Nurikabe [4], Nurimeizu [9], Nurimisaki [10], Sashigane [10], Slitherlink [23], Sudoku (Number
Place) [23], Tatamibari [1], Yajilin [5], Yosenabe [6], and more. The above series of studies is
essential from the point of view of computational complexity theory; however, not so crucial
for puzzle fans because it does not directly help them enjoy puzzles more. In contrast, the
automatic generation of puzzle instances is one of the most promising computer science
techniques for puzzle fans. They believe that one of the necessary conditions for an interesting
puzzle instance is that the instance admits precisely one solution. However, for some puzzles,
checking the uniqueness of solutions of an instance is an equally or more difficult task than
solving the instance. Given an instance and its solution, finding another solution is called

© Masakazu Ishihata and Fumiya Tokumasu;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 2; pp. 2:1–2:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:masakazu.ishihata.ze@hco.ntt.co.jp
https://sites.google.com/site/masakazuishihata
https://doi.org/10.4230/LIPIcs.SEA.2022.2
https://github.com/masakazu-ishihata/Nagareru
https://github.com/masakazu-ishihata/Nagareru
https://archive.softwareheritage.org/swh:1:dir:6c6604df4d55d8e2f019fdfe5e19225060e8ce83;origin=https://github.com/masakazu-ishihata/Nagareru;visit=swh:1:snp:167af5861a04d20b13b4de922c67702693de365f;anchor=swh:1:rev:21f5e2baca87f68fd54efb40789e0b2965f3ec04
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


2:2 Solving and Generating Nagareru Puzzles

another solution problem (ASP) [21]. The ASP of an NP-complete problem is not necessary
NP-complete; however, it has been shown that many puzzles are NP-complete not only in
finding one solution but also in finding another solution [7, 10, 9].

In contrast to the theoretical difficulties of solving puzzles, practically efficient puzzle
solvers have been proposed. One of the most popular approaches for solving puzzles is
formulating a puzzle instance as a SAT problem, or its variants, including a constraint
satisfaction problem (CSP) and satisfiability modulo theories (SMT), and solving it by a
general constraint solver. For instance, Sugar [20], one of the latest CSP solvers, can solve a
wide range of real-world instances of various puzzles, including a part of the above list [18].
Furthermore, some methods for generating puzzle instances have been proposed [22] that
employ a SAT/CSP/SMT-based puzzle solvers as their building block to check the uniqueness
of the generated instance; however, it has been reported that such a generator is too slow to
generate a realistic instance (e.g., a 10× 10 grid) because it calls the solver so many times.

Another promising approach to solving puzzles is using zero-suppressed decision diagrams
(ZDDs) [14]. A ZDD is a compact graph representation of a set family and provides a variety
of queries, including counting, sampling, and set operations, in linear time for its size. The
frontier-based search (FBS) [11] is a meta-algorithm for constructing a ZDD representing
constrained subgraphs of a target graph. Many FBS examples for various constraints have
been proposed, e.g., trees, cycles, simple paths, and more complex constraints [12, 15]. Once
a puzzle is formulated as a constrained subgraph finding problem, one can construct a
ZDD-based puzzle solver by designing the FBS for the problem. For instance, Slitherlink is a
puzzle played on a graph G = (V, E) to find a single cycle C ⊆ E consistent with given all
hints, where a hint is a pair of an edge set H ⊆ E and a positive number n and restricts C

to |C ∩H| = n. Hence, Slitherlink can be formulated as a cycle finding problem with some
cardinality constraints of some edge sets. It has been reported that a ZDD-based Slitherlink
solver [24] performs faster than a CSP-based one [19], even though the former implicitly
enumerates all the solutions, whereas the latter finds only one solution. In addition, the
ZDD-based solver is helpful to generate puzzle instances because it can compute the number
of solutions by the counting query of ZDDs. ZDD-based puzzle instance generators have
been proposed for Slitherlink [24], Numberlink [24], and Minesweeper [17].

We focus on a puzzle called Nagareru [16], which has recently been proven to be NP-
complete to solve and find another solution [9], and propose practically efficient methods for
solving and generating its instance. Nagareru is a puzzle to draw a cycle that satisfies certain
constraints like Slitherlink, but the cycle must have a global orientation consistent with some
local orientation constraints (detailed rules are explained later), unlike Slitherlink. The FBS
for Nagareru cannot be realized by combining existing FBS examples; namely, a new FBS
is desired to solve Nagareru puzzles. The main contributions of this paper are threefold.
First, we propose a ZDD-based Nagareru solver; we formulate Nagareru as a constraint
cycle finding problem and propose the FBS for the constraints. Second, we propose an
efficient Nagareru instance generator that employs the ZDD-based solver as its building block.
Third, we empirically show that our solver outperforms a CSP-based solver and also that
our generator creates an interesting instance in a reasonable time. Note that our generator
is very different from those for other puzzles because the definition of “interesting” depends
strongly on the target puzzle.

The rest of this paper is organized as follows: In Section 2, we review the rules of Nagareru
and formulate it as a constrained cycle finding problem. We formulate a problem to find a
constrained cycle as CSP in Section 3. In Section 4, we propose a new FBS for constructing
a ZDD that implicitly enumerates all the constrained cycles; namely, it represents all the



M. Ishihata and F. Tokumasu 2:3

(a) Instance. (b) Solution. (c) Instance with winds.

Figure 1 The grid board (a) is an instance of Nagareru, and the grid board (b) indicates its
solution. The grid board (c) is the same instance as (a) with gray cells representing winds.

solutions of a Nagareru instance. In addition, we propose a new efficient generator of an
“interesting” Nagareru instance that employs our ZDD-based solver to check the uniqueness
of the solution in Section 5. We show the experimental results of the above methods in
Section 6 and then conclude this paper in Section 7.

2 Problem Definition

2.1 Nagareru Puzzles
Nagareru is a paper-and-pencil puzzle played according to the following rules on a grid
board [16]:
1. Draw a line to make a single continuous loop.
2. The line passes through the centers of cells, horizontally, vertically, or turning. It cannot

cross itself, branch off, or go through the same cell twice.
3. The line must go through the white cells with a black arrow, and when you go along the

arrows of the loop, that becomes the direction of all of the loop.
4. The white arrows in the black cells show that wind is blowing in the direction of the

arrow till it reaches another black cell or the border. In cells where the wind blows, the
line cannot advance against the wind.

5. When the line enters a cell where the wind blows, it must move at least one cell in that
direction. When the line is blown like this (bent by a side wind), it cannot progress to or
enter cells to hit the borders or enter black cells.

For example, the left grid board of Figure 1 is an instance of Nagareru, and the middle grid
board indicates its solution.

We begin by formulating an instance of Nagareru. For any positive integer n ∈ Z+, let
[n] ≡ {1, . . . , n}. Given w, h ∈ Z+, a w × h gird board consists of w columns and h rows;
namely, it has w × h cells. For any w′ ∈ [w] and h′ ∈ [h], let i = w′ + w(h′ − 1) refer to
the cell in the w′th column from the left and the h′th row from the top. For any i ∈ [wh],
let adj(i) ⊂ [wh] be a set of adjacent cells of i. Let D ≡ {Up, Down, Left, Right, No} denote
a set of directions, where No indicates non-directional. For any d ∈ D \ {No}, let d−1 ∈ D

denote the opposite direction of d. For any i, j ∈ [wh], let rel(i, j) ∈ D denote the relative
direction from i to j if i and j are adjacent each other, and rel(i, j) = No if otherwise. For
any i ∈ [wh] and d ∈ D \ {No}, there exists at most one adjacent cell j ∈ adj(i) satisfying
rel(i, j) = d, denoted by id, where id = Null denotes rel(i, j) ̸= d for any j ∈ adj(i). Then,
an instance of Nagareru is defined as follows:

SEA 2022



2:4 Solving and Generating Nagareru Puzzles

▶ Definition 1 (An instance of Nagareru). Let W ⊆ [wh] × (D \ {No}) be white cells with
(black) arrows and B ⊆ [wh]×D be black cells with (white) arrows. P ≡ (w, h, W, B) is an
instance of Nagareru on a w × h grid board if P satisfies ∀{(i, d), (i′, d′)} ⊆W ∪B, i ̸= i′.

▶ Theorem 2 (Hardness of finding a solution of Nagareru [9]). For input Nagareru instance
P , checking whether P admits a solution or not is NP-complete.

Let ω ≡ (ω1, . . . , ωL) ∈ [wh]L be a cell sequence of L-length. For any black cell (i, d) ∈ B

and j ∈ [wh], ω is a wind path from i to j if ω satisfies the following conditions:
ω1 = i and ωL = j,
∀l ∈ [L− 1], ∀d′ ∈ D, (ωl+1, d′) /∈ B: ω has no other black cell than (i, d),
∀l ∈ [L− 1], rel(ωl, ωl+1) = d: ω is a straight path of direction d.

Namely, the wind path ω from i to j indicates that a wind of direction d goes from i to j.
For any i ∈ [wh], we use Dwind

i ⊆ D to denote the directions of winds blowing on i; namely,
d ∈ Dwind

i indicates that there exist a black cell (j, d) ∈ B and a wind path ω of direction d

from j to i. We here introduce new colors, gray and colorless to make the explanation easier:
for any i ∈ [wh] such that ∀d ∈ D, (i, d) /∈ W ∪ B, i is gray if Dwind

i ̸= ∅ and colorless if
Dwind

i = ∅; namely, a cell with no arrow is gray if it is blown, and colorless if otherwise. For
example, the grid board (c) of Figure 1, obtained by adding gray and colorless to the grid
board (a), consists of three black cells, one white cell, six gray cells, and six colorless cells.

2.2 Formulating Nagareru as a constrained cycle finding problem
We formulate the problem of finding a solution of a Nagareru instance as a constrained
cycle finding problem on a graph representing the instance. Let C ≡ {White, Black, Gray, No}
denote a set of colors, where No indicates colorless. For any set V and n ∈ Z+, let

(
V
n

)
≡ {S ⊆

V | |S| = n}. For any i ∈ [wh] and d ∈ D, let E⊥
i,d ≡ {{i, j} | j ∈ adj(i) , rel(i, j) /∈ {d, d−1}}

be edges of i that are orthogonal to direction d.

▶ Definition 3 (A graph representation of a Nagareru instance). Let G ≡ ⟨V, E, col, dir⟩ where
V ⊆ [wh] is a vertex set, E ⊆

(
V
2
)

is an edge set, col : V → C defines the color of each
vertex, and dir : V → 2D defines the direction set of each vertex. G represents a Nagareru
instance P if G satisfies following conditions:

V ≡ [wh] \
⋃

(i,d)∈B

{i}, (1)

E ≡
{
{i, j} ∈

(
V

2

)
| j ∈ adj(i)

}
\

⋃
(i,d)∈W

E⊥
i,d, (2)

col(i) ≡


White ∃d ∈ D, (i, d) ∈W

Gray ∀d ∈ D, (i, d) /∈W, Dwind
i ̸= ∅

No ∀d ∈ D, (i, d) /∈W, Dwind
i = ∅

, (3)

dir(i) ≡
{
{d} (i, d) ∈W

Dwind
i otherwise

. (4)

For any color c ∈ C, let Vc ≡ {i ∈ V | col(i) = c}. Equation (1) leads to VBlack = ∅.
Equation (2) indicates that E has no edge inconsistent with (orthogonal to) an arrow
of a white vertex. Figure 2(a) indicates a 4x4 grid graph, and Figure 2(b) is the graph
representation of the instance shown in Figure 1.



M. Ishihata and F. Tokumasu 2:5

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2

5 6 7 8

9 11 12

13 14 15 16

1 2

5 6 7 8

9 11 12

13 14 15 16

(a) 4x4 grid graph. (b) Graph representation. (c) Solution.

Figure 2 The graph (a) indicates a 4x4 grid graph with 16 vertices and 24 edges. The graph (b)
is the graph representation of the instance shown in Figure 1, where white, gray, and dotted circles
represent vertices colored by white, gray, and colorless, respectively, and white arrows attached to
each vertex i indicate dir(i). A directed cycle of bold black directed edges in the graph (c) forms a
solution of Nagareru.

For any F ⊆ E, let V [F ] ≡
⋃

e∈F e denote a set of all endpoints of F , G[F ] ≡
⟨V [F ], F, col, dir⟩ denote an edge-induced subgraph of G, neiF (i) ≡ {j ∈ V [F ] | {i, j} ∈ F}
denote the neighbors of i on G[F ], and degF (i) ≡ |neiF (i) | denote the degree of i on G[F ].
Let n, m, nF , and mF denote |V |, |E|, |V [F ]|, and |F |, respectively.

▶ Definition 4 (A solution of a Nagareru instance). An edge set F ⊆ E is a solution of a
Nagareru instance P if there exits a permutation of V [F ], denoted by p ≡ (p1, . . . , pnF

), such
that the following conditions are satisfied, where let p0 ≡ pnF

, pnF +1 ≡ p1, el ≡ {pl, pl+1},
and rl ≡ rel(pl, pl+1) for any l ∈ [nF ].

∀i ∈ VWhite, ∃l ∈ [nF ], pl = i, (5)
∀l ∈ [nF ], degF (pl) = 2 ∧ el ∈ F, (6)
∀l ∈ [nF ], col(pl) = White =⇒ ∀d ∈ dir(pl) , rl−1 ̸= d−1, rl ̸= d−1, (7)
∀l ∈ [nF ], col(pl) = Gray =⇒ ∀d ∈ dir(pl) , rl−1 ̸= d−1, rl ̸= d−1, (8)
∀l ∈ [nF ], col(pl) = Gray =⇒ ∀d ∈ dir(pl) , {el−1, el} ̸= E⊥

pl,d. (9)

Equation (5) guarantees that every white vertex is contained in G[F ]. Equation (6) restricts
G[F ] to be a cycle. Equation (7) (resp. (8)) prohibits G[F ] from advancing against any wind
of a white (resp. gray) vertex. Equation (9) prohibits G[F ] from orthogonal to (crossing)
any wind of a gray vertex. Consequently, G[F ] forms a solution of P . Let FP ⊆ 2E be the
set of all the solutions of P . P is said to be invalid, valid, and good if it has no solution
(|F|P = 0), at least one solution (|FP | ≥ 1), exactly one solution (|FP | = 1), respectively.
For example, let P be a Nagareru instance shown in Figure 1, G be its graph representation
shown in Figure 2(b), and F be the set of bold black arrows (edges) in Figure 2(c). Then,
G[F ] forms a solution of P , and P admits no other solution; namely, P is a good instance.

3 A CSP-based Nagareru solver

We propose a baseline method for finding a solution of a Nagareru instance. The method
consists of three steps: (1) translating a constrained subgraph finding problem on a Nagareru
instance as a CSP instance, (2) solving the CSP instance by a CSP solver, and (3) converting
the obtained CSP solution to the solution of Nagareru.

SEA 2022



2:6 Solving and Generating Nagareru Puzzles

A CSP instance is denoted by a triplet of variables, variable domains, and constraints. We
first introduce variables and their domains. Because G[F ] for any F ∈ FP forms a directed
cycle, we introduce the same idea of a CSP formulation of Slitherlink [19] to represent a cycle
constraint; introducing auxiliary variables to represent a visiting order of variables that forms
a cycle. Let DE ≡ {(i, j) | i < j, {i, j} ∈ F}. Then, our CSP formulation contains following
four types of variables and domains: ui,j ∈ {−1, 0, +1}, di ∈ {0, 2}, qi ∈ {0, 1, . . . , m}, and
si ∈ {0, 1} for any (i, j) ∈ DE . ui,j denotes the use of edge {i, j} (i < j) with direction:
ui,j = 0 indicates {i, j} /∈ F and ui,j = +1 (resp. −1) indicates {i, j} ∈ F with the forward
direction rel(i, j) (resp. backward direction rel(j, i)). di denotes degF (i). A set of qi denotes
a permutation of V [F ]: qi = 0 indicates i /∈ V [F ] and the rest qi define a permutation
p = (p1, . . . , pnF

) such as pqi = i. si denotes the starting vertex of the permutation p: qi = 1
is represented by si = 1 and si′ = 0 for i′ ∈ [wh] \ {i}.

We then introduce constraints such that an assignment of the above variables satisfying
the conditions if-and-only-if P is valid; in other words, we describe Equation (5), (6), (7), (8),
and (9) of Definition 4 as formulas of the above variables. We first introduce the following
sets of doublets and triplets of indices:

Di ≡ {(j, k) ∈ DE | i ∈ {j, k}},
Fc ≡ {(i, j) ∈ DE | ∃k ∈ {i, j}, col(k) = c, rel(i, j) ∈ dir(k)},
Bc ≡ {(i, j) ∈ DE | ∃k ∈ {i, j}, col(k) = c, rel(j, i) ∈ dir(k)},
T⊥ ≡ {(i, j, k) | (i, j), (j, k) ∈ DE , col(j) = Gray, ∃d ∈ dir(j) , {{i, j}, {j, k}} = E⊥

j,d}.

Then, the constraints of our CSP formulation are follows:∧
i∈VWhite

(qi > 0) , (10)(∧
i∈V

(
di =

∑
(j,k)∈Di

|uj,k|
))
∧

(∧
i∈V

(∑
j:(j,i)∈Di

uj,i =
∑

j:(i,j)∈Di
ui,j

))
, (11)∧

i∈V (qi > 0 =⇒ di > 0) ∧ (qi = 1 ⇐⇒ si = 1) , (12)∧
i∈V (ui,j = +1⇒ (qi + 1 = qj ∨ qj = 1)) , (13)∧
i∈V (ui,j = −1⇒ (qi = qj + 1 ∨ qi = 1)) , (14)∑
i∈V si = 1, (15)(∧
(i,j)∈FWhite

(ui,j ̸= −1)
)
∧

(∧
(i,j)∈BWhite

(ui,j ̸= +1)
)

, (16)(∧
(i,j)∈FGray

(ui,j ̸= −1)
)
∧

(∧
(i,j)∈BGray

(ui,j ̸= +1)
)

, (17)∧
(i,j,k)∈T⊥

(ui,j = 0 ∨ uj,k = 0) , (18)

Equation (10) corresponds to Equation (5). Equation (11) defines di = degF (i). Equa-
tion (12), (13), (14), and (15) jointly represent Equation (6). Equation (16), (17), and (18)
correspond to Equation (7), (8), and (9), respectively.

▶ Proposition 5 (A CSP formulation of Nagareru). The triplet of the above variables, domains,
and constraints is a CSP formulation for finding a solution F ∈ FP of a Nagareru instance
P , and F is constructed from a CPS solution as F = {{i, j} | (i, j) ∈ DE , ui,j ̸= 0}.

4 A ZDD-based Nagareru Solver

We here propose a ZDD-based Nagareru solver that constructs a ZDD representing FP . We
first review a ZDD, a compact graph expression of a set family, and FBS, a meta-algorithm



M. Ishihata and F. Tokumasu 2:7

to construct a ZDD for constrained subgraphs. Then, we propose a new FBS for a ZDD
of FP .

4.1 ZDDs for subgraphs
A ZDD Z is a compact graph representation of a set family over a universe set E and let
FZ ⊆ 2E be the set family represented by Z. When the universe set E is an edge set of
a graph G ≡ ⟨V, E⟩, Z can be regarded as a set of edge-induced subgraphs G[F ] for each
F ∈ FZ. To avoid confusing two graphs Z and G, we use terms nodes and arcs for describing
Z. A ZDD requires a total order on E denoted by ≻ and let el denote the lth smallest
element of E. Then, a ZDD Z and its set family FZ are defined as follows.

▶ Definition 6 (A ZDD). Let Z ≡ ⟨N, A0, A1, ℓ⟩ where N is a set of nodes, Ab ⊆ N ×N is
a set of b-arcs for any b ∈ {0, 1}, and ℓ : N → E ∪ {Null} defines the label of each node. Z is
a ZDD if it satisfies the following conditions:

N has exactly one root node denoted by ρ and exactly two terminal nodes denoted by τ0
and τ1 such as ℓ(τ0) = ℓ(τ1) = Null.
Each non-terminal node ν ∈ N \{τ0, τ1} has exactly one outgoing b-arc for each b ∈ {0, 1},
and is labeled by some element of E: ℓ(ν) ∈ E.
For any arc (ν, ν′) ∈ A0 ∪A1, ℓ(ν) ≻ ℓ(ν′) holds where let e ≻ Null for any e ∈ E.

▶ Definition 7 (A set family represented by a ZDD). For any non-terminal node ν ∈ N\{τ0, τ1}
and b ∈ {0, 1}, let νb be the node pointed by the b-arc of ν, referred to as the b-child of ν.
For any ν ∈ N , let Fν ⊆ 2E be a set family recursively-defined as

Fτ0 ≡ ∅, Fτ1 ≡ {∅}, Fν ≡ Fν0 ∪ {F ∪ {ℓ(ν)} | F ∈ Fν1}.

Then, Z is said to represent Fρ denoted by FZ.

Definition 6 restricts Z to a rooted directed cyclic graph (DAG). Definition 7 defines Fν

in a bottom-up manner; however, it has another intuitive definition as follows. Let π ≡
(π1, . . . , πL) ∈ NL be a directed path from π1 to πL on Z of L-length, and also let Fπ ≡
{ℓ(πl) | l ∈ [L−1], (πl, πl+1) ∈ A1}; namely, Fπ contains ℓ(ν) if π contains the 1-arc of ν. Let
Πν→ν′ be a set of all directed path from ν to ν′ on Z, and also let Fν→ν′ ≡ {Fπ | π ∈ Πν→ν′}.
Then, for any ν ∈ N , Fν = Fν→τ1 holds [14]. Consequently, checking |FZ| > 0 corresponds
to finding a directed path from ρ to τ1 on Z, and counting |FZ| is equivalent to counting such
paths. Since Z is a rooted DAG, dynamic programming solves both tasks in O(|N |) time.

4.2 FBS for constrained subgraphs
A ZDD Z is said to represent constraint subgraphs of G if G[F ] for all F ∈ FZ satisfies
the target constraint but not for any F /∈ FZ. FBS is a meta-algorithm to construct such
Z. The basic idea of FBS is layer-wise top-down construction. For any l ∈ [m], let Nl be
non-terminal nodes labeled by el, and also let l be referred to as layer. FBS initializes
Nm ≡ {ρ} and repeats the generation of Nl−1 from Nl in order from the top layer m to
the bottom layer 1, and the resulting N = (∪l∈[m]Nl) ∪ {τ0, τ1} forms a ZDD. The essential
idea of FBS is introducing a state to each node ν, denoted by Sν . Each Sν is a set of some
variables, and its specific definition depends on the constraint of interest. We use Sν .x to
denote the value of the variable x in Sν . Given ν ∈ Nl and its state Sν , its b-child νb and its
state S.νb is generated by only using the information of Sν and G. In other words, all the
necessary information to create the children of ν should be concentrated in Sν . In addition,

SEA 2022



2:8 Solving and Generating Nagareru Puzzles

Algorithm 1 ConstructZDD.

1: Let ρ be a new node and ℓ(ρ)← m. ▷ Initialize the root
2: Nm ← {ρ}, Nl ← ∅ for l ∈ [m− 1] ▷ Initialize the node set N

3: Ab ← ∅ for b ∈ {0, 1} ▷ Initialize the arc sets A0 and A1
4: for l = m, . . . , 1 do ▷ The layer-wise top-down construction
5: for ν ∈ Nl do
6: for b ∈ {0, 1} do
7: νb ← getChild(Sν , l, b) ▷ Create νb, the b-child of ν

8: if νb ∈ {τ0, τ1} then ▷ Branching
9: ▷ do nothing ◁

10: else if ∃ν′ ∈ Nl−1 : Sνb
= Sν′ then ▷ νb has an identical existing node ν′

11: νb ← ν′ ▷ Merge ν′ and νb

12: else ▷ νb has no identical existing node
13: ℓ(νb)← l − 1
14: Nl−1 ← Nl−1 ∪ {νb} ▷ Add νb to Nl−1 as a new node
15: Ab ← Ab ∪ {(ν, νb)} ▷ Add (ν, νb), the b-arc of ν, to Ab as a new arc
16: N ←

(⋃
l∈[m] Nl

)
∪ {τ0, τ1} ▷ Unite all layers

17: return ⟨N, A0, A1, ℓ⟩

nodes with the same state must have the same children. Hence, such identical nodes in the
same layer can be merged into a single node. Algorithm 1 is the pseudo-code of FBS, where
a subroutine getChild(Sν , l, b), which returns the b-child of ν with its state, is defined depend
on the target constraint.

▶ Theorem 8 (The complexity of FBS [11]). For any l ∈ [m], let κl be the number of different
realizations of the state at the lth layer; namely, |Nl| = κl holds. Let κ ≡ maxl∈[m] κl. Then,
the space and time complexity of FBS is O(mκ) under the assumption that the identical state
can be found in O(1) time.

4.2.1 Example: the size constraint
Let us consider the FBS for the size constraint |F | ≤ K. For any non-terminal node ν, let
Sν consist only of an integer variable xused that indicates the number of passed 1-arcs from
the root ρ to ν; namely, |Fπ| = Sν .xused holds for any π ∈ Πρ→ν of Z under construction.
Sν .xused = K indicates that Fπ cannot adopt any more edges. Two nodes ν and ν′ are
equivalent if Sν = Sν′ because the paths from ρ to them passed the same number of 1-arcs.

In summary, Algorithm 2 describes getChild(S, l, b) of the size constraint. Since κl ≤ K

holds for any l ∈ [m], the resulting ZDD size is O(mK) by Theorem 8.

Algorithm 2 getChild(S, l, b) for a size constraint |F | ≤ K.

1: Let S′ be a new state.
2: S′.xused ← (l = m) ? 0 : S.xused ▷ Initialize & Copy
3: if b = 1 then ▷ Adopt el

4: S′.xused ← S′.xsize + 1 ▷ Update S′

5: return τ0 if S′.xsize > K ▷ Pruning: detect |F | > K

6: return τ1 if l = 1 ▷ Termination: reach the end without the violation
7: return a new node ν with Sν = S′



M. Ishihata and F. Tokumasu 2:9

Algorithm 3 getChild(S, l, b) for a cycle constraint.

1: Let el = {i, j}, S′ be a new state.
2: S′.mk ← S.mk for each k ∈ Vl ∩ Vl+1 ▷ Copy
3: S′.mk ← k for each k ∈ Vl \ Vl+1 ▷ Initialize
4: mk ← S′.mk for each k ∈ Vl ▷ Abbreviate
5: if b = 1 then ▷ Adopte el

6: return τ0 if mi = Null ∨mj = Null ▷ Pruning: detect a branching
7: if mi = j ∧mj = i then ▷ Detect a cycle
8: return τ0 if ∃k ∈ Vl \ el, mk ∈ Vk \ {k} ▷ Pruning: detect a redundant endpoint
9: return τ1 ▷ Termination: complete a single cycle

10: ▷ Update S′ ◁

11: S′.mmi
← mj

12: S′.mmj
← mi

13: S′.mi ← Null if S′.mj ̸= i

14: S′.mj ← Null if S′.mi ̸= j

15: return τ0 if ∃k ∈ Vl \ Vl−1, S′.mk ∈ Vl−1 ▷ Pruning: detect a leaving endpoint
16: return τ0 if l = 1 ▷ Pruning: reach the end without completing a cycle
17: return a new node ν with Sν = S′

4.2.2 Example: the cycle constraint

Let us consider the FBS for the cycle constraint. For each layer l ∈ [m], let E≤l ≡ {el′ ∈
E | l′ ≤ l}, E≥l ≡ {el′ ∈ E | l′ ≥ l}, Vl ≡ {i ∈ V | ∃e ∈ E≤l, ∃e′ ∈ E≥l, i ∈ e ∩ e′}, and
λ ≡ maxl∈[m] |Vl|, where Vl and λ are referred to as the frontier of the lth layer and the
maximum frontier size, respectively.

For each non-terminal node ν ∈ Nl, let Sν ≡ {mk | k ∈ Vl} where mk ∈ Vl ∪ {Null} is
referred to as the mate of k. The mate mk indicates the connectivity of k in G[Fπ] for any
π ∈ Πρ→ν : (1) mk = k indicates that k is an isolated fragment (vertex), (2) mk ∈ Vl \ {k}
indicates that k and mk are the endpoints of a path fragment, and (3) mk = Null indicates
that k is an intermediate vertex of a path fragment.

We next consider what will happen if an edge el = {i, j} is adopted to Fπ. If mi =
Null ∨mj = Null (i.e., i and/or j is an intermediate vertex of a path fragment), adopting
el violates the cycle condition because it causes a branching. Otherwise, it connects two
fragments to which i belongs and j belongs. More specifically, if mi ̸= j ∧mj ̸= i (i.e., i

and j belong to different fragments), it constructs a new path fragment whose endpoints
are mi and mj . If mi = j ∧ mj = i (i.e., i and j are the endpoints of the same path
fragment), it completes a cycle; in addition, if G[Fπ] has no redundant path fragment (i.e.,
∀k ∈ Vl \ el, mk /∈ Vl \ {k}), G[Fπ] forms a single cycle. Similarly, leaving an endpoint k (i.e.,
mk ∈ Vl \ {k}) from the frontier violates the cycle constraint because k has no chance to join
a cycle anymore; namely, k is fixed as an endpoint of a redundant path fragment.

In summary, Algorithm 3 describes getChild(S, l, b) of the cycle constraint. Since Sν

corresponds to a matching in the complete graph (Vl,
(

Vl

2
)
), κl ≤ 2|Vl|2 holds and the resulting

ZDD size is O(m2λ2) by Theorem 8. In practice, however, Sν does not take as many
realizations as 2λ2 , the actual ZDD size is empirically much smaller.

SEA 2022



2:10 Solving and Generating Nagareru Puzzles

4.3 The FBS for the Nagareru constraints
We here propose the FBS for the Nagareru constraints shown in Definition 4. For any
non-terminal node ν, let Sν consist of three types of variables: mk ∈ Vl ∪ {Null}, uk ∈ {0, 1},
and dk ∈ D ∪ {Null} for any k ∈ Vl. mk is the exactly same as the mate of Example 2 and
indicates the connectivity of k on G[Fπ]. uk indicates the upper stream of path fragments
on G[Fπ]. dk indicates the relative direction from the neighbor of k to k on G[Fπ]. More
specifically, uk and dk are defined as follows: If mk /∈ Vl \ {k} (i.e., k is an isolated vertex or
an intermediate vertex of a path fragment), let uk = 0 and dk = Null. If mk ∈ Vl \ {k} (i.e.,
k is an endpoint of a path fragment on G[Fπ]), let uk = 1 indicate that k must be upper
stream of a path fragment whose endpoints are k and mk, and also let dk ≡ rel(k′, k) where
{k′, k} ∈ Fπ. By regarding uk as a Boolean variable, uk ∧ umk

must always be false and
¬uk ∧ ¬umk

indicates that the upper stream of the path fragment is not yet decided.
Let us consider what will happen if el = {i, j} is adapted to Fπ. As Example 2, if

mi ≠ j ∧mj ̸= i, adapting el connects two different path fragments on G[Fπ] and constructs
a new path fragment whose endpoints are mi and mj . If ui ∧ uj (resp. umi ∧ umj ), it
corresponds to connecting up streams (resp. down streams) of the two path fragments
on G[Fπ]; namely, G[Fπ] has no consistent direction. If ui ∨ umj (resp. uj ∨ umi), the
up stream of the resulting path fragment should be mj (resp. mi). In addition, the
direction of el decided by its colored endpoints must be consistent with this direction. If
col(i) = White ∨ col(j) = White, el must be adapted to satisfy Equation (5) of Definition 4.
Let lWhite ≡ min{l ∈ [m] | ∃k ∈ el, col(k) = White}. Then, completing a cycle before
reaching lWhiteth layer deduces that at least one edge with a white endpoint is unused; namely,
Equation (5) is violated. In summary, Algorithm 4 describes getChild(S, l, b) of the Nagareru
constraints shown in Definition 4.

The complexity of the proposed FBS is following: Because κl is less than 2|Vl|2 × 2|Vl| ×
|D||Vl|, the product of the domain size of each variable in the state, κl = O(2|Vl|2) holds.
Hence, its complexity is O(m2λ2) that is the same as Example 2, where λ depends on
G and the total order ≻ on E. For instance, when ≻ is defined as e ≻ e′ ⇔ (min e <

min e′) ∨ (min e = min e′ ∧max e < max e′), λ of an n× n grid graph is n.

▶ Proposition 9 (The FBS for the Nagareru constraints). Given a Nagareru instance P , the
FBS shown in Algorithm 1 with getChild(S, l, b) shown in Algorithm 4 constructs a ZDD
representing FP , a set of all the solutions of P defined by Definition 4. The complexity of
the proposed FBS and the resulting ZDD size is O(m2λ2).

5 An efficient Nagareru instance generator

In this section, we first define the “interesting” instance of Nagareru and propose an efficient
Nagareru instance generator that generates interesting instances using our ZDD-based
Nagareru solver as its building blocks.

5.1 An interesting instance of Nagareru
Let us begin by defining an interesting instance. Given an instance P and its graph G of
Definition 3, we introduce infeasible, ineffective, and redundant cells as follows: A white
cell (i, d) ∈ W is infeasible if Dwind

i ̸⊆ dir(i) ∨ degE(i) < 2; namely, there exists a wind
inconsistent to its arrow or there is not enough number of neighbors to follow its arrow.
Consequently, P with an infeasible cell has no solution. A black cell (i, d) ∈ B is ineffective if



M. Ishihata and F. Tokumasu 2:11

Algorithm 4 getChild(S, l, b) for the Nagareru constraints.

1: ▷ Initialize & Copy ◁

2: Let S′ be a new state.
3: S′.mk ← k, S′.uk ← 0, S′.dk ← Null for each k ∈ Vl \ Vl+1
4: S′.mk ← S.mk, S′.uk ← S.uk, S′.dk ← S.dk for each k ∈ Vl ∩ Vl+1,
5: ▷ Abbreviate ◁

6: Let el = {i, j}.
7: mk ← S′.mk, uk ← S′.uk, dk ← S′.dk for each k ∈ Vl

8: ▷ Direction that el must follow ◁

9: dl ← Null
10: dl ← rel(i, j) if umi

∨ uj

11: dl ← rel(j, i) if umj
∨ ui

12: if b = 1 then ▷ Adopt el

13: ▷ Pruning: check Equation (6) of Definition 4 ◁

14: return τ0 if mi = Null ∨mj = Null
15: return τ0 if (ui ∧ uj) ∨ (umi ∧ umj )
16: ▷ Pruning: check Equation (7) of Definition 4 ◁

17: return τ0 if col(i) = White ∧ d−1
l ∈ dir(i)

18: return τ0 if col(j) = White ∧ d−1
l ∈ dir(j)

19: ▷ Pruning: check Equation (8) of Definition 4 ◁

20: return τ0 if col(i) = Gray ∧ d−1
l ∈ dir(i)

21: return τ0 if col(j) = Gray ∧ d−1
l ∈ dir(j)

22: ▷ Pruning: check Equation (9) of Definition 4 ◁

23: return τ0 if col(i) = Gray ∧ di = rel(i, j) ∧ (∃d ∈ dir(i) , di /∈ {d, d−1})
24: return τ0 if col(j) = Gray ∧ dj = rel(j, i) ∧ (∃d ∈ dir(j) , dj /∈ {d, d−1})
25: if mi = j ∧mj = i then ▷ Detect a cycle
26: return τ0 if l > lWhite ▷ Pruning: detect a unused white vertex
27: return τ0 if ∃k ∈ Vl \ el, mk ∈ Vl \ {k} ▷ Pruning: detect a redundant endpoint
28: return τ1 ▷ Termination: complete a solution
29: ▷ Update S′ ◁

30: S′.mmi
← mj , S′.mmj

← mi,
31: S′.mi ← Null if mi ̸= i

32: S′.mj ← Null if mj ̸= j

33: S′.di ← (mi = i) ? j : Null
34: S′.dj ← (mj = j) ? i : Null
35: S′.umi

← uj , S′.umj
= ui

36: S′.umi = 1 if ∃k ∈ el, (col(k) ∈ {White, Gray}) ∧ (rel(i, j) ∈ dir(k))
37: S′.umj

= 1 if ∃k ∈ el, (col(k) ∈ {White, Gray}) ∧ (rel(j, i) ∈ dir(k))
38: else ▷ Does not adopt el

39: ▷ Pruning: check Equation (5) of Definition 4 ◁

40: return τ0 if col(i) = White ∨ col(j) = White
41: return τ0 if ∃k ∈ Vl \ Vl−1, mk ∈ Vl−1 ▷ Pruning: detect a leaving endpoint
42: return τ0 if l = 1 ▷ Pruning: reach the end without completing a cycle
43: return a new node ν with Sν = S′

SEA 2022



2:12 Solving and Generating Nagareru Puzzles

id = Null; namely, there is no cell affected by its wind. A white or black cell (i, d) ∈W ∪D is
redundant if |FP | = |FP ′ | where P ′ is obtained by removing (i, d) from P ; namely, removing
it does not change the number of solutions. We define that P is interesting if P is good (i.e.,
|FP | = 1) and contains neither infeasible, ineffective, nor redundant cell.

5.2 The proposed Nagareru instance generator
We propose a new efficient method to generate an interesting Nagareru instance P as follows:
1. Let W = B = ∅ and P ≡ (w, h, W, B)
2. Enumerate AW ⊆ [wh]×D that is a set of non-infeasible white cells, and AB ⊆ [wh]×D

that is a set of non-ineffective black cells.
3. If AW = AB = ∅, restart this algorithm. Otherwise uniformly sample (i, d) from AW (or

AB) without replacement, and add (i, d) to W (or B.)
4. If P is good, go to 5. If P is not good but valid, repeat 2-3. If P is invalid, delete (i, d)

from P and go to 3.
5. Delete all redundant cells on P and output P .
The Algorithm employs our ZDD-based solver as its building block. In Step 4, the Algorithm
constructs the ZDD Z of FP and checks whether P is good, valid, or not by computing |FP |
on Z. In Step 5, for each white and black cell on P , the Algorithm constructs the ZDD of
FP ′ where P ′ is obtained by removing the cell from P and checks |FP | = |FP ′ | or not. If
every cell on P is non-redundant, the Algorithm outputs P as an interesting instance.

6 Experiments

We conducted several experiments and confirmed the following two facts:
1. The ZDD-based Nagareru solver works more efficiently than the CSP-based solver,
2. The ZDD-based Nagareru generator creates interesting instances with realistic board

sizes in a reasonable time.
We have uploaded our code and datasets used in the experiments to the following GitHub
repository: https://github.com/masakazu-ishihata/Nagareru.

6.1 Experimental Setting
Our CSP-based Nagareru solver was implemented using Sugar [20], a state-of-the-art CSP
solver. Our ZDD-based Nagareru solver was implemented in C++ using TdZdd1 that is
a C++ library for FBS. Our Nagareru instance generator was also implemented in C++
using the ZDD-based solver as a building block. The ZDD-based solver and generator were
compiled by g++ 11.0.3 with the -O3 option. All experiments were conducted on a 64-bit
mac OS Big Sur 11.2.3 with six Intel Core i7 3.2 GHz CPU and 64 GB RAM; however,
we ran all programs on a single core. The timeout for solving each instance is 100 seconds
throughout the experiment.

The whole dataset for evaluation consisted of 10 synthetic datasets and one handcrafted
dataset. Each synthetic dataset consisted of 100 interesting instances generated by our
generator with the different gird size (w, h) = (5, 5), (6, 6), . . . , (14, 14). The handcrafted
dataset consisted of 97 interesting instances on (10, 10) grid board obtained by crawling some
puzzle creators’ blogs and collecting instances in PUZ-PRE format, where PUZ-PRE2 is a
web application for editing and playing paper-and-pencil puzzles.

1 https://github.com/kunisura/TdZdd
2 http://pzv.jp/

https://github.com/masakazu-ishihata/Nagareru
https://github.com/kunisura/TdZdd
http://pzv.jp/


M. Ishihata and F. Tokumasu 2:13

Table 1 The averages (Ave.), variance (Var.), and median (Med.) of the computation time (sec)
and the numbers of solved instances (Sol.) of the CSP-based and the ZDD-based solver, respectively.
Timeout instances were excluded when calculating the averages, variances, and medians.

Datataset (w, h) The CSP-based solver The ZDD-based solver
Ave. Var. Med. Sol. Ave. Var. Med. Sol.

Synthetic

(5, 5) 0.521 0.001 0.523 100 0.007 0.000 0.007 100
(6, 6) 0.571 0.001 0.556 100 0.007 0.000 0.007 100
(7, 7) 0.673 0.060 0.611 100 0.007 0.000 0.007 100
(8, 8) 2.672 73.400 0.909 100 0.008 0.000 0.008 100
(9, 9) 1.402 11.518 0.948 99 0.009 0.000 0.008 100

(10, 10) 1.088 1.344 0.855 100 0.009 0.000 0.008 100
(11, 11) 1.306 0.682 1.186 100 0.010 0.000 0.010 100
(12, 12) 2.185 24.127 1.309 100 0.015 0.000 0.011 100
(13, 13) 4.169 105.999 1.565 100 0.022 0.001 0.013 100
(14, 14) 2.791 18.174 1.851 98 0.022 0.001 0.016 100

Handcrafted (10, 10) 1.089 0.008 1.084 97 0.008 0.000 0.008 97

6.2 Experimental Results
Table 1 shows the computation times and numbers of solved instances of the CSP- and
ZDD-based solver, respectively. It indicates that the ZDD-based solver is drastically faster
than the CSP-based solver for each dataset; even though the former implicitly enumerates
all the solutions, the latter finds only one solution. It also shows that the variance of the
ZDD-based solver is significantly smaller than that of the CSP-based solver. Similar results
have been reported for solving Slitherlink [24].

Table 2 indicates the statistics of each dataset; it shows that the average generation
time increases exponentially with the grid size, whereas the average number of calls of the
ZDD-based solver rises almost linearly. This result implies that the computation time of
the ZDD-based solver increases exponentially with the grid size, which is consistent with its
computational complexity shown in Proposition 9. It also shows that synthetic instances
slightly tend to have more white cells, fewer black cells, and smaller solutions than handcrafted
instances; however, it is unknown whether the proportion of white and black cells directly
contributes to the fun of instances that humans feel. The interesting instances of (14, 14) grid
with the smallest/largest |W |, |B|, and |F | are shown in Appendix; the one with the smallest
|F | seems too easy for humans to solve; however, the others seem complicated enough to
enjoy solving. Note that our generator allows adjusting the ratio of white and black cells by
changing the sampling distribution of its Step 3 and adjusting the size of the solution by
adding a size constraint to Nagareru constraints.

7 Conclusion

We proposed an efficient solver and generator for Nagareru. Our solver constructs a ZDD
representing all the solutions of a Nagareru instance by the FBS designed for this problem.
Our generator employs our solver to guarantee that a generated instance is interesting; namely,
it admits precisely one solution and has no redundant cell. We conducted some experiments
and confirmed that our ZDD-based solver was drastically faster than a CSP-based one and
our generator created interesting instances in a reasonable time.

SEA 2022



2:14 Solving and Generating Nagareru Puzzles

Table 2 The first and second columns indicate the database type and grid size, respectively. The
third and fourth ones indicate the averages of the construction time (sec) and the number of calls of
the ZDD-based solver of each instance generation, respectively. The fifth and sixth ones indicate the
average number of white and black cells, respectively. The seventh one indicates the average of the
solution size |F |.

Dataset (w, h) Ave. Time Ave. # calls Ave. |W | Ave. |B| Ave. |F |

Synthetic

(5, 5) 0.020 26.280 2.050 2.850 11.500
(6, 6) 0.040 39.930 2.920 3.430 16.360
(7, 7) 0.085 59.880 3.900 4.810 22.680
(8, 8) 0.212 84.460 5.200 6.470 30.580
(9, 9) 0.677 110.640 6.800 8.530 42.940

(10, 10) 2.638 148.380 8.800 10.720 53.980
(11, 11) 11.660 197.880 10.780 12.710 65.620
(12, 12) 58.152 240.010 12.590 15.780 76.680
(13, 13) 317.790 281.710 14.630 18.510 88.840
(14, 14) 1525.987 337.740 17.450 21.360 105.620

Handcrafted (10, 10) - - 6.814 16.278 66.020

References
1 Aviv Adler, Jeffrey Bosboom, Erik D. Demaine, Martin L. Demaine, Quanquan C. Liu, and

Jayson Lynch. Tatamibari is np-complete. In Martin Farach-Colton, Giuseppe Prencipe, and
Ryuhei Uehara, editors, 10th International Conference on Fun with Algorithms, FUN 2021,
May 30 to June 1, 2021, Favignana Island, Sicily, Italy, volume 157 of LIPIcs, pages 1:1–1:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.FUN.2021.1.

2 Daniel Andersson. HIROIMONO is np-complete. In Pierluigi Crescenzi, Giuseppe Prencipe,
and Geppino Pucci, editors, Fun with Algorithms, 4th International Conference, FUN 2007,
Castiglioncello, Italy, June 3-5, 2007, Proceedings, volume 4475 of Lecture Notes in Computer
Science, pages 30–39. Springer, 2007. doi:10.1007/978-3-540-72914-3_5.

3 Erich Friedman. Corral puzzles are np-complete. Technical Report, 2002. URL: https:
//erich-friedman.github.io/papers/corral.pdf.

4 Markus Holzer, Andreas Klein, Martin Kutrib, and Oliver Ruepp. Computational complexity
of NURIKABE. Fundam. Informaticae, 110(1-4):159–174, 2011. doi:10.3233/FI-2011-534.

5 Ayaka Ishibashi, Yuichi Sato, and Shigeki Iwata. Np-completeness of two pencil puzzles:
Yajilin and country road. UTILITAS MATHEMATICA, 88:237–246, July 2012.

6 Chuzo Iwamoto. Yosenabe is np-complete. J. Inf. Process., 22(1):40–43, 2014. doi:10.2197/
ipsjjip.22.40.

7 Chuzo Iwamoto, Masato Haruishi, and Tatsuaki Ibusuki. Herugolf and makaro are np-complete.
In Hiro Ito, Stefano Leonardi, Linda Pagli, and Giuseppe Prencipe, editors, 9th International
Conference on Fun with Algorithms, FUN 2018, June 13-15, 2018, La Maddalena, Italy,
volume 100 of LIPIcs, pages 24:1–24:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.FUN.2018.24.

8 Chuzo Iwamoto and Tatsuaki Ibusuki. Dosun-fuwari is np-complete. J. Inf. Process., 26:358–
361, 2018. doi:10.2197/ipsjjip.26.358.

9 Chuzo Iwamoto and Tatsuya Ide. Moon-or-sun, nagareru, and nurimeizu are np-complete (in
japanese). In Winter LA Symposium 2019, 2019.

10 Chuzo Iwamoto and Tatsuya Ide. Nurimisaki and sashigane are np-complete. In Zachary
Friggstad and Jean-Lou De Carufel, editors, Proceedings of the 31st Canadian Conference on
Computational Geometry, CCCG 2019, August 8-10, 2019, University of Alberta, Edmonton,
Alberta, Canada, pages 184–194, 2019.

https://doi.org/10.4230/LIPIcs.FUN.2021.1
https://doi.org/10.1007/978-3-540-72914-3_5
https://erich-friedman.github.io/papers/corral.pdf
https://erich-friedman.github.io/papers/corral.pdf
https://doi.org/10.3233/FI-2011-534
https://doi.org/10.2197/ipsjjip.22.40
https://doi.org/10.2197/ipsjjip.22.40
https://doi.org/10.4230/LIPIcs.FUN.2018.24
https://doi.org/10.2197/ipsjjip.26.358


M. Ishihata and F. Tokumasu 2:15

11 Jun Kawahara, Takeru Inoue, Hiroaki Iwashita, and Shin-ichi Minato. Frontier-based search for
enumerating all constrained subgraphs with compressed representation. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., 100-A(9):1773–1784, 2017. doi:10.1587/transfun.E100.A.
1773.

12 Jun Kawahara, Toshiki Saitoh, Hirofumi Suzuki, and Ryo Yoshinaka. Colorful frontier-based
search: Implicit enumeration of chordal and interval subgraphs. In Ilias S. Kotsireas, Panos M.
Pardalos, Konstantinos E. Parsopoulos, Dimitris Souravlias, and Arsenis Tsokas, editors,
Analysis of Experimental Algorithms - Special Event, SEA2 2019, Kalamata, Greece, June
24-29, 2019, Revised Selected Papers, volume 11544 of Lecture Notes in Computer Science,
pages 125–141. Springer, 2019. doi:10.1007/978-3-030-34029-2_9.

13 Graham Kendall, Andrew J. Parkes, and Kristian Spoerer. A survey of np-complete puzzles.
J. Int. Comput. Games Assoc., 31(1):13–34, 2008.

14 Shin-ichi Minato. Zero-suppressed bdds for set manipulation in combinatorial problems. In
Alfred E. Dunlop, editor, Proceedings of the 30th Design Automation Conference. Dallas, Texas,
USA, June 14-18, 1993, pages 272–277. ACM Press, 1993. doi:10.1145/157485.164890.

15 Yu Nakahata, Jun Kawahara, Takashi Horiyama, and Shin-ichi Minato. Implicit enumeration
of topological-minor-embeddings and its application to planar subgraph enumeration. In
M. Sohel Rahman, Kunihiko Sadakane, and Wing-Kin Sung, editors, WALCOM: Algorithms
and Computation - 14th International Conference, WALCOM 2020, Singapore, March 31 -
April 2, 2020, Proceedings, volume 12049 of Lecture Notes in Computer Science, pages 211–222.
Springer, 2020. doi:10.1007/978-3-030-39881-1_18.

16 Nikoli Co., Ltd. Puzzles: Nagareru [Nikoli]. Available online, 2021. https://www.nikoli.co.
jp/en/puzzles/nagareru.html, (accessed on 20th April 2021).

17 Hirofumi Suzuki, Sun Hao, and Shin-ichi Minato. Generating all solutions of minesweeper
problem using degree constrained subgraph model. In Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA),
page 356. The Steering Committee of The World Congress in Computer Science, Computer . . . ,
2016.

18 Naoyuki Tamura. Solving Puzzles with Sugar Constraint Solver (in Japanese). Available
online, 2013. https://cspsat.gitlab.io/sugar-puzzles/, (accessed on 20th April 2021).

19 Naoyuki Tamura. Solving Slither Link Puzzles with Sugar Constraint Solver (in Japan-
ese). Available online, 2013. https://cspsat.gitlab.io/sugar-puzzles/slitherlink.html,
(accessed on 20th April 2021).

20 Naoyuki Tamura, Akiko Taga, Satoshi Kitagawa, and Mutsunori Banbara. Compiling fi-
nite linear CSP into SAT. Constraints An Int. J., 14(2):254–272, 2009. doi:10.1007/
s10601-008-9061-0.

21 Nobuhisa Ueda and Tadaaki Nagao. Np-completeness results for nonogram via parsimonious
reductions. Technical report, Technical Report, TR96-0008, 1996.

22 Gerhard van der Knijff, H Zantema, and JH Geuvers. Solving and generating puzzles with a
connectivity constraint. Bachelor thesis of Radboud University, 2021.

23 Takayuki Yato and Takahiro Seta. Complexity and completeness of finding another solution
and its application to puzzles. IEICE Trans. Fundam. Electron. Commun. Comput. Sci.,
86-A(5):1052–1060, 2003. URL: http://search.ieice.org/bin/summary.php?id=e86-a_5_
1052.

24 Ryo Yoshinaka, Toshiki Saitoh, Jun Kawahara, Koji Tsuruma, Hiroaki Iwashita, and Shin-ichi
Minato. Finding all solutions and instances of numberlink and slitherlink by zdds. Algorithms,
5(2):176–213, 2012. doi:10.3390/a5020176.

A Solving blank instances

A Nagareru instance with a small number of white and black cells has a small number of
constraints; that is, it has many solutions. For instance, the number of solutions of the n× n

blank instance, which is a grid with no colored cell, is the same as the number of cycles on

SEA 2022

https://doi.org/10.1587/transfun.E100.A.1773
https://doi.org/10.1587/transfun.E100.A.1773
https://doi.org/10.1007/978-3-030-34029-2_9
https://doi.org/10.1145/157485.164890
https://doi.org/10.1007/978-3-030-39881-1_18
https://www.nikoli.co.jp/en/puzzles/nagareru.html
https://www.nikoli.co.jp/en/puzzles/nagareru.html
https://cspsat.gitlab.io/sugar-puzzles/
https://cspsat.gitlab.io/sugar-puzzles/slitherlink.html
https://doi.org/10.1007/s10601-008-9061-0
https://doi.org/10.1007/s10601-008-9061-0
http://search.ieice.org/bin/summary.php?id=e86-a_5_1052
http://search.ieice.org/bin/summary.php?id=e86-a_5_1052
https://doi.org/10.3390/a5020176


2:16 Solving and Generating Nagareru Puzzles

the grid that is exponential in n. Whereas it is trivial for humans to find a cycle in the blank
instance, it is not trivial for the CSP-based and ZDD-based solvers because, in most cases of
CSP, constraints help to reduce the search space. The CPS-based solver has to find a cycle
with no additional directional constraint, and the ZDD-based solver has to enumerate all
cycles in the grid. Table 3 indicates the computation time of solving the n×n blank instance
(n = 5, 6, . . . , 14) of the CSP-based and the ZDD-based solvers. Compared to Table 1 in our
main manuscript, the computation time of the blank instance is relatively more significant
than that of an interesting instance. Our generator constructs the ZDD of the blank instance
in the first step, which accounts for a large part of the total generation time. Thus, we can
quickly scale up our generator by initializing the grid with many colored cells.

Table 3 The computation time of solving the n × n blank instance of the CSP-based and the
ZDD-based solver. T.O. indicates timeout, meaning that it takes more than 100 seconds.

n CSP ZDD

5 0.586906 0.005276
6 0.722846 0.006490
7 0.867803 0.009694
8 1.106015 0.020341
9 1.102662 0.056783
10 1.430713 0.172517
11 4.939170 0.544814
12 4.022487 1.838747
13 T.O. 6.246969
14 T.O. 22.105007

B Various interesting instances generated by our Nagareru generator

Figure 3 shows a part of interesting instances generated by our generator. Figure 3(a) and (b)
have the smallest and the largest number of |W |, respectively. Figure 3(c) and (d) have the
smallest and the largest number of |B|, respectively. Figure 3(e) and (f) have the largest
number of |F | and |B ∪W |, respectively. Figure 3(c) has also the smallest |F | and |B ∪W |.

Figure 3(c) looks easy to solve for humans; however, the CSP-based solver could not solve
it in 100 seconds. In this instance, the variables corresponding to the bottom four blank rows
are not constrained. We consider that the CSP-based solver wasted much time determining
the values of such non-constraint variables.

In contrast to Figure 3(c), the other instances seem complex enough for humans to
enjoy solving. The first step of solving a Nagareru instance is extending each arrow in
each direction of its head and tail by one cell length and creating some line fragments. For
example, Figure 3(b) has the largest number of white cells; therefore, the first step can
create many long line fragments. On the other hand, Figure 3(a) and (d) have a few white
cells, and the first step creates a few short line fragments. However, an instance with many
line fragments is not always easy to solve because it is not obvious how to connect them to
construct a single consistent cycle. In fact, in Figure 3(b), one has to connect those line
fragments carefully to form a single consistent cycle.



M. Ishihata and F. Tokumasu 2:17

(a) Smallest |W |. (b) Largest |W |.

(c) Smallest |B|. (d) Largest |B|.

(e) Largest |F |. (f) Largest |B ∪ W |.

Figure 3 Some examples of 14x14 Nagareru instances generated by our method.

SEA 2022

http://pzv.jp/p.html?nagare/14/14/p75a5a6b8a5f4c55o6c8f9c7c5a3d1i4b6h2a56v7b87b6a8i1s8d3a85a56c6a8h6b
http://pzv.jp/p.html?nagare/14/14/f3h3a51c1a2a1h4b2a1b8b5p5a9a4a5b2a33b5a1d3p1a51a7a1e4j2a3f7a1f44b4c3b3p1a51a29b5a4a4j
http://pzv.jp/p.html?nagare/14/14/v4i7d6a6e4b9e6b4e1e7e4e5b1h3c2a33c16a7b3e5e8n6zzf
http://pzv.jp/p.html?nagare/14/14/o9b5a1a6c3c5g6d59c6a1a9f5c5c5c8b6d5a8a5k5a7a57a25a559g1g9a5a8b5d8b3g8m821a5a7j7c1d8a4g
http://pzv.jp/p.html?nagare/14/14/c3i5a8g4a5c3d1e7c1a1b5a4e2c3e3d9d5a2g86a3a9c7p33b33e2i6a1d2a1a3f9h6b3d51a21b4c4g9c9c
http://pzv.jp/p.html?nagare/14/14/a4k7e5b8a61c3a1b9a5c2b5b5d9a6d4d5d2a1d5d8i2d3a5a3e1b4g3c6c82a2b7c7c8g4c5d5a2d2b9g6a6d5b5a3i5




Fast Computation of Shortest Smooth Paths and
Uniformly Bounded Stretch with Lazy RPHAST
Tim Zeitz #

Karlsruhe Institute of Technology, Germany

Abstract
We study the shortest smooth path problem (SSPP), which is motivated by traffic-aware routing in
road networks. The goal is to compute the fastest route according to the current traffic situation
while avoiding undesired detours, such as briefly using a parking area to bypass a jammed highway.
Detours are prevented by limiting the uniformly bounded stretch (UBS) with respect to a second
weight function which disregards the traffic situation. The UBS is a path quality metric which
measures the maximum relative length of detours on a path. In this paper, we settle the complexity
of the SSPP and show that it is strongly NP-complete. We then present practical algorithms to solve
the problem on continental-sized road networks both heuristically and exactly. A crucial building
block of these algorithms is the UBS evaluation. We propose a novel algorithm to compute the
UBS with only a few shortest path computations on typical paths. All our algorithms utilize Lazy
RPHAST, a recently proposed technique to incrementally compute distances from many vertices
towards a common target. An extensive evaluation shows that our algorithms outperform competing
SSPP algorithms by up to two orders of magnitude and that our new UBS algorithm is the first to
consistently compute exact UBS values in a matter of milliseconds.

2012 ACM Subject Classification Theory of computation → Shortest paths; Mathematics of
computing → Graph algorithms; Applied computing → Transportation

Keywords and phrases realistic road networks, route planning, shortest paths, traffic-aware routing,
live traffic, uniformly bounded stretch

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.3

Supplementary Material Software (Source Code): https://github.com/kit-algo/traffic_aware
archived at swh:1:dir:656ed74654a81353c3de75f0a7a79bbc65ec5818

Acknowledgements I want to thank my colleagues for from the scalable algorithms group Christopher
Weyand, Marcus Wilhelm and Thomas Bläsius for pointing out a crucial fact on subpath-optimality
at our group workshop. Further, I want to thank my colleague Jonas Sauer for many helpful
discussions on algorithmic ideas and proofreading of early drafts of this paper. I also want to thank
the anonymous reviewers for their helpful comments. Finally, I would like to thank Jakob Bussas
who did a proof-of-concept implementation of the ideas presented here for his bachelor’s thesis.

1 Introduction

Over the past years, mobile navigation applications have become ubiquitous. A core feature
of these applications is to compute routes between locations in road networks. These routes
can be obtained by computing shortest paths on a weighted graph representing the road
network with travel times as weights. To present users with good routes, it is crucial to take
the current traffic situation into account. However, integrating the current traffic situation
comes with its own challenges. As traffic feeds are derived from live data, they are inherently
noisy and incomplete. Simply exchanging free flow for live traffic travel times and then
solving the classical shortest path problem may lead to problematic routes. For example,
such routes may include undesired detours such as briefly using a parking area to bypass a
jammed highway.

© Tim Zeitz;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 3; pp. 3:1–3:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tim.zeitz@kit.edu
https://orcid.org/0000-0003-4746-3582
https://doi.org/10.4230/LIPIcs.SEA.2022.3
https://github.com/kit-algo/traffic_aware
https://archive.softwareheritage.org/swh:1:dir:656ed74654a81353c3de75f0a7a79bbc65ec5818;origin=https://github.com/kit-algo/traffic_aware;visit=swh:1:snp:5723d1737c2eef1db972db07720cf997e6191dc2;anchor=swh:1:rev:c9eaeb0cacdfc064ed4790865b587b66937c86d6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


3:2 Fast Computation of Shortest Smooth Paths and UBS with Lazy RPHAST

We therefore study an extended problem model, the shortest smooth path problem
(SSPP) [8]. To avoid undesired detours, a second weight function is taken into account. The
first volatile weight function models the current traffic situation. The second smooth weight
function models the free flow travel times and may include additional penalties, for example
to avoid residential areas. The goal is to find the shortest path with respect to the volatile
weights without too severe detours with respect to the smooth weights.

Related Work. The classical shortest path problem on weighted graphs can be solved with
Dijkstra’s algorithm [11]. To this day, no asymptotically faster algorithm is known. However,
for many practical applications on continental-sized road networks, it is too slow. During
the past decade, this has motivated a lot of research effort on engineering faster shortest
path algorithms on road networks. Results from this research have played an important
role in enabling modern routing applications. By introducing an offline preprocessing phase
where auxiliary data is precomputed, queries can be accelerated by more than three orders of
magnitude over Dijkstra’s algorithm. For an extensive overview on these speed-up techniques,
we refer to [2]. One particularly popular technique which we also utilize in this work is
Contraction Hierarchies (CH) [14]. During preprocessing, additional shortcut arcs are inserted
into the graph, which skip over unimportant vertices. On continental-sized road networks
with tens of millions of vertices and arcs, CH preprocessing typically takes a few minutes.
Shortest path queries can be answered in less than a millisecond. Applying CH to extended
problem models is not always trivially possible. We therefore utilize CH indirectly as an
A* [15] heuristic. This approach is called CH-Potentials [18]. CH-Potentials is built on Lazy
RPHAST [18], a CH-based many-to-one algorithm to incrementally compute exact distances
from many vertices towards a common target.

So far, research on route planning algorithms and traffic has mostly focused on the
interactions between traffic and the preprocessing. For live traffic, speed-up techniques which
have two preprocessing phases have been proposed. The first one may be slow but must
be independent of any weight function. The second one, called customization, typically
takes few seconds or less and allows regular traffic updates. Multi-Level Dijkstra, commonly
referred to as CRP, was the first such three-phase technique and has since been extended
into a comprehensive framework of routing algorithms [2]. With Customizable Contraction
Hierarchies (CCH), CH has also been extended to support a three-phase setup [10]. Another
line of research studies the integration of predicted traffic [7, 3, 4, 17]. Here, edge weights
are functions of the daytime instead of scalar values.

The SSPP was initially introduced by Delling et al. in [8]. The authors discuss the
complexity of the problem and show some relations between SSPP and Knapsack but no
definitive conclusions could be drawn in their work. The paper also includes two CRP-based
algorithms for the SSPP. Iterative Path Blocking (IPB) is presented as an exact algorithm
for the SSPP. However, it has two issues: First, it takes several seconds even on short-range
queries. This makes it unsuitable for practical applications. Second, as we show in this work,
it is, in fact, not exact. The authors also present a heuristic algorithm based on the via-node
paradigm, i.e. it finds solutions which are concatenations of two shortest paths. It is much
faster but may miss promising paths because only via-paths are considered and the UBS is
checked heuristically. We are not aware of any other works studying the SSPP.

In the SSPP, limiting the relative length of detours is formalized with the uniformly
bounded stretch (UBS). The UBS is a path quality measure and quantifies how much longer
detours on a path are than their respective fastest alternative. So far, it has been primarily
studied in the context of alternative routes [1]. While quite useful, it is expensive to compute



T. Zeitz 3:3

and requires evaluating all subpaths of a path. The authors of [1] state that it would be ideal
to check the UBS in time proportional to the length of the path and a few shortest path
queries, though they are not aware of any way to do that. To the best of our knowledge, this
goal has not been achieved to this day.

Contribution. In Section 3, we settle the complexity of the SSPP by proving that it is
strongly NP-complete. Section 4 contains algorithmic results. First, we show that IPB as
described in [8] may not find optimal results. Second, we describe necessary adjustments to
make it exact. Third, we present an alternative realization based on A* and CH-Potentials [18].
Fourth, we present an efficient algorithm to compute exact UBS values, typically with only
a few shortest path queries and in time proportional to the path length as the authors
of [1] had hoped for. Fifth, we present Iterative Path Fixing, a new SSPP heuristic. All
our algorithms utilize Lazy RPHAST as a crucial ingredient to achieve fast running times.
Section 5 contains a thorough evaluation of our algorithms. It clearly shows the effectiveness
of our UBS algorithm and our CH-Potentials-based IPB realization, outperforming the state
of the art by up to two orders of magnitude.

2 Preliminaries

Let G = (V, A) be a directed graph with n = |V | vertices and m = |A| arcs. We use uv

as a short notation for arcs. A weight function w : A → N maps arcs to positive integers.
The reversed graph ←−G := (V, {vu | uv ∈ A}) contains all arcs in reverse direction. The
corresponding reversed weight function is ←−w (vu) := w(uv). A sequence of vertices P =
(v1, . . . , vk) where vivi+1 ∈ A is called a path. We denote by Pi,j = (vi, . . . , vj), 1 ≤ i < j ≤ k

a subpath of P . The length of a path with respect to a weight function w is denoted by
w(P ) =

∑
w(vivi+1). We refer to a shortest path between two vertices s and t by OPTw(s, t)

and call its length the distance Dw(s, t) between s and t.
Dijkstra’s algorithm [11] computes Dw(s, t) by traversing vertices by increasing distance

from s until t is reached. Vertices are inserted into a priority queue when they are discovered.
In each iteration the closest vertex u is popped from the queue and settled. Its distance is
now final. Outgoing arcs uv are relaxed, i.e. the algorithm checks if the path from s to v via
u is shorter than the previously known distance from s to v. If this is the case, v will be
inserted into the priority queue. To keep track of the best-known distances, the algorithm
maintains for each vertex v a tentative distance D[v]. By storing the predecessor vertex
on the shortest path from s to v in a parent array P[v], shortest paths can be efficiently
reconstructed. By construction, Dijkstra’s algorithm visits all vertices closer to s than the
target. The visited vertices are sometimes called the search space. It can be reduced with
the A* algorithm [15] by guiding the search towards the target. Here, the queue is ordered
by D[v] + ht(v) where ht is a heuristic which estimates D(v, t).

2.1 (C)CH-Potentials
Contraction Hierarchies (CH) is a two-phase speed-up technique to accelerate shortest path
computations on road networks through precomputation. For a detailed discussion we refer
to [14]. Here, we only briefly introduce necessary notation and algorithms used in this
paper. In a preprocessing phase, vertices are ordered totally by “importance” where more
important vertices should lie on more shortest paths. Intuitively, vertices on highways are
more important than vertices on some rural street. For CH, such an ordering is obtained
heuristically. Then, all vertices are contracted successively by ascending importance. To

SEA 2022



3:4 Fast Computation of Shortest Smooth Paths and UBS with Lazy RPHAST

contract a vertex means to temporarily remove it from the graph while inserting shortcut
arcs between more important neighbors to preserve shortest distances among them. The
result is an augmented graph G+ with original arcs and shortcuts. G+ can be split into G↑

and G↓ where G↑ only contains arcs uv where u is less important than v and G↓ vice versa.
The augmented graph has the property that for any two vertices s and t, there always exists
an up-down st-path of shortest distance which first uses only arcs from G↑ and then only
arcs from G↓. Such a path can be found by running Dijkstra’s algorithm from s on G↑ and
from t on the reversed downward graph

←−
G↓ graph. Reconstructing the full path without any

shortcuts is possible by recursively unpacking shortcuts. For this, one can store for each
shortcut the vertex which was contracted when the shortcut was inserted. The set of vertices
reachable in G↑ and

←−
G↓ is called the CH search space of a vertex.

Algorithm 1 Computing the distance from a single vertex u to t with Lazy RPHAST.

Data: D↓[u]: tentative distance from u to t computed by Dijkstra’s algorithm on
←−
G↓

Data: D[u]: memoized final distance from u to t, initially ⊥
Function ComputeAndMemoizeDist(u):

if D[u] = ⊥ then
D[u]← D↓[u];
for all arcs uv in G↑ do

d← ComputeAndMemoizeDist(v);
if d + w(uv) < D[u] then

D[u]← d + w(uv);

return D[u];

Lazy RPHAST [18] is a CH-based algorithm to quickly compute distances from many
sources to a single target. Lazy RPHAST starts by running Dijkstra’s algorithm from t on←−
G↓, similar to a standard CH query. The forward search space, however, is explored through
a recursive DFS-like search while memoizing distances to t as depicted in Algorithm 1. This
allows reusing the already computed distances for following sources. Lazy RPHAST can be
used analogously to compute distances from one vertex to many targets by swapping G↑ and←−
G↓. Using Lazy RPHAST as an A* heuristic is called CH-Potentials [18].

Customizable Contraction Hierarchies (CCH) [10] is a three-phase variant of CH. It allows
fast updates to the preprocessing, for example to integrate information on the current traffic
situation. However, this only affects the preprocessing. The result of the CCH preprocessing
is also an augmented graph, only with some additional properties. The CH query algorithms
and Lazy RPHAST can be applied without any modification. For the algorithms we discuss
in this paper, there is no practical difference between CH and CCH, and we describe our
algorithms based on augmented graphs. Our implementation is built on CCH-Potentials
to support quick updates to live traffic weights. For a detailed discussion of the differences
between CH and CCH and the changes to the preprocessing see [10].

2.2 Smooth Paths
The stretch of a path is defined as Sw(P ) = w(P )

Dw(v1,vk) , i.e. the ratio between the path
length and the shortest distance between its endpoints. The uniformly bounded stretch
UBSw(P ) = max0≤i<j≤k Sw(Pi,j) indicates the maximum stretch over all subpaths. We
observe the following useful property of UBS:



T. Zeitz 3:5

w

v

u

s

u1

v1

w1

u2

v2

w2

u3

v3

w3

t

1,1

1,1

1,1

1,1

1,1

1,1

1,2

1,2

1,2

1,2

1,2

1,2

1 +
ϵ,1

1 +
ϵ,1

1 + ϵ,1

1 + ϵ,1

1 + ϵ,1

1 + ϵ,1

Figure 1 Illustration of our transformation from HamiltonPath to ShortestSmoothPath.
The first arc weight is the smooth weight, the second the volatile weight. The thick arcs indicate a
Hamiltonian path and the corresponding shortest ϵ-smooth path.

▶ Observation 1. The UBS of a path P = (v1, . . . , vi, . . . , vj . . . , vk) where P1,i = OPT(v1, vi)
and Pj,k = OPT(vj , vk) is equal to UBS(Pi,j).

This is because the stretch of any subpath only decreases when appending optimal segments
to the beginning or end.

In [8], Delling et al. introduce the shortest smooth path problem (SSPP). A path P

is ϵ-smooth with respect to a weight function w when UBSw(P ) < 1 + ϵ. Given a graph
G, vertices s and t, a smooth weight function w and a volatile weight function w∗ and a
parameter ϵ > 0, the shortest smooth path problem is to find the shortest path with respect
to w∗ that is ϵ-smooth with respect to w.

3 Complexity

In this section, we prove that SSPP is strongly NP-complete for any ϵ ∈ Q>0. We define
the decision variant of the problem as follows: An instance (G, w, w∗, s, t, k) of the of ϵ-
ShortestSmoothPath-Dec problem admits a feasible solution if and only if there exists a
path P = (s, . . . , t) in G with w∗(P ) ≤ k and UBSw(P ) < 1 + ϵ.

▶ Theorem 2. ϵ-ShortestSmoothPath-Dec is strongly NP-complete for any ϵ ∈ Q>0.

Proof. A solution can be verified in polynomial time. Determining the path weight in
w∗ takes running time linear in O(|P |). To check the UBS, shortest distances have to be
computed for all O(|P |2) subpaths. This shows that ShortestSmoothPath-Dec ∈ NP.

To prove the hardness, we give a reduction from the strongly NP-complete HamiltonPath
problem [13]. The goal is to find a Hamiltonian path, i.e. a simple path which traverses every
vertex exactly once. Let G = (V, A) be the HamiltonPath instance. To distinguish them
from the vertices in the SSPP instance, we will denote the vertices in the HamiltonPath
instance as nodes. We construct the vertices of our SSPP instance by copying each node |V |
times (forming |V | layers) and creating two additional vertices s and t. Arcs only connect
successive layers. There are arcs between vertices corresponding to the same node and arcs
corresponding to arcs from the HamiltonPath instance. Any (s, . . . , t) path has exactly
|V |+ 1 arcs and has to traverse all layers. We will choose the arc weights in such a way that
the shortest ϵ-smooth path between s and t has to use a different node in each layer. Paths
using the same node in different layers will always be non-ϵ-smooth in w or too long in w∗.

Formally, we construct the graph G′ = (V ′, A′) for our SSPP instance as follows: We
set the vertices V ′ = {vi | v ∈ V, i ∈ [1, n]} ∪ {s, t}. The arc set A′ is the union of three
groups of arcs Aorig, Aself and Aterminal where Aorig = {(ui, vi+1) | uv ∈ A, 1 ≤ i < n}

SEA 2022



3:6 Fast Computation of Shortest Smooth Paths and UBS with Lazy RPHAST

are the arcs between the layers corresponding to arcs in the HamiltonPath instance,
Aself = {(vi, vi+1) | v ∈ V, 1 ≤ i < n} are the additional arcs between the same nodes in
successive layers and Aterminal = {(s, v1) | v ∈ V } ∪ {(vn, t) | v ∈ V } are the arcs connecting
the terminals with the first and last layer. In both weight functions, all arcs aterm ∈ Aterminal
get the weight w(aterm) = w∗(aterm) = 1. The arcs in aself ∈ Aself get a smooth weight
w(aself) = 1 and a volatile weight w∗(aself) = 2. The arcs in aorig ∈ Aorig get a smooth
weight w(aorig) = 1 + ϵ and a volatile weight w∗(aorig) = 1. Setting k = |V |+ 1, this forms
our ShortestSmoothPath-Dec instance. This transformation has a running time in
O(n · (n + m)). See Figure 1 for an illustrated example of the construction. For the sake of
readability, we use non-integer weights of 1 + ϵ in this proof. The weights can be turned into
integers by multiplying them with the denominator of ϵ.

Now, assume that the HamiltonPath instance admits a Hamiltonian path P =
(v1, . . . , vn). Then, P ′ = (s, v1

1 , . . . , vn
n , t) is a solution to the SSPP problem. The path

uses two arcs from Aterminal and |V | − 1 arcs from Aorig. Thus, w∗(P ′) = |V |+ 1 = k. Also,
its UBSw(P ′) must be smaller than 1 + ϵ. Due to Observation 1, it is sufficient to show
that the UBS is small enough for P ′′ = (v1

1 , . . . , vn
n). For any subpath P ′′

i,j = (ui, . . . vj) for
i < j, u must not be equal to v because P is a Hamiltonian path. As all arcs are from Aorig,
w(P ′′

i,j) = (j − i) · (1 + ϵ). The shortest path (with respect to w) between ui and vj has to
use at least one Aorig arc because u ̸= v. Thus, Dw(P ′′

i,j) ≥ (j − i− 1) + (1 + ϵ). This yields

UBSw(P ′′
i,j) =

w(P ′′
i,j)

Dw(P ′′
i,j) ≤

(j − i) · (1 + ϵ)
j − i + ϵ

<
(j − i) · (1 + ϵ)

j − i
= 1 + ϵ

which proves that P ′ is a valid solution for the SSPP instance.
Conversely, suppose that our SSPP instance has an ϵ-smooth path P ′ = (s, v1

1 , . . . , vn
n , t)

of weight w∗(P ′) = |V |+ 1. Such a path cannot contain any arcs from Aself because their
volatile weight is 2. We now show that no two vertices in the path can correspond to the
same node and thus that P = (v1, . . . , vn) is indeed a Hamiltonian path in G. Suppose for
contradiction that P ′

i,j = (vi, . . . , vj) was a subpath of P ′. The length w(P ′
i,j) is (i−j) ·(1+ϵ).

Since start and end vertex correspond to the same node, the shortest path with respect to
w between these vertices is made up of arcs from Aself and has distance Dw(vi, vj) = i− j.
Thus, UBSw(P ′

i,j) = (1 + ϵ) which means that this subpath must not be part of a solution
for the SSPP instance. This is a contradiction. Thus, the SSPP solution induces a valid
solution for the HamiltonPath instance. ◀

4 Algorithms

In [8], the Iterative Path Blocking (IPB) algorithm is proposed to solve the SSPP optimally.
The algorithm repeats two steps until a valid path is found. It maintains a set of blocked
paths, which is initially empty. In the first step, a shortest path with respect to w∗ is
computed while avoiding any blocked paths. In the second step, the obtained path is checked
for subpaths violating the UBS constraint. Any violating subpaths are added to the list of
blocked paths and the algorithm continues with the next iteration. If no violating subpath is
found, the final path is returned.

This framework can be implemented with different concrete algorithms for both steps.
The implementation described in [8] is based on CRP [5]. In this paper, we propose optimized
implementations for both steps based on Lazy RPHAST and (C)CH-Potentials.



T. Zeitz 3:7

s u v t
3 2

1

6

1, 10

Figure 2 Example graph where for ϵ = 1 the shortest ϵ-smooth path (s, v, t) is not prefix-optimal.
For all arcs except ut, the smooth and the volatile weight function are equal. For ut, the smooth
weight is 1 and the volatile weight 10.

4.1 Avoiding Blocked Paths

The authors of [8] describe their approach to the first phase as a variant of Dijkstra’s algorithm.
When relaxing an arc uv where v is the endpoint of a blocked path, they backtrack the
parent pointers of v, comparing the reconstructed path to the blocked path. Should the paths
match, the search is pruned at v. This algorithm correctly avoids blocked paths. However, it
also avoids some additional paths because Dijkstra’s algorithm by construction only finds
prefix-optimal paths. But optimal shortest smooth paths may not be prefix-optimal with
respect to the volatile weight function w∗. See Figure 2 for an example. To the best of our
understanding, IPB as described in [8] will not find the shortest smooth path in this example.
The algorithm will find the path (s, u, v, t) in the first iteration. This path is not 1-smooth
because (u, v, t) has stretch 3 and (u, v, t) will be added to the blocked path set. With (u, v, t)
blocked, the algorithm will find the path (s, u, t) in the next iteration and return it as the
final result. However, the shortest 1-smooth path is (s, v, t). It was missed because the prefix
(s, v) is not optimal in w∗ and was therefore pruned at v by (s, u, v). We will refer to this
variant from now on by heuristic iterative path blocking (IPB-H). IPB-H will still find an
ϵ-smooth path though it may not necessarily be the shortest.

To find shortest smooth path with Dijkstra’s algorithm, we need to adjust the notion of
optimality used to compare labels. It might be necessary to keep a label with suboptimal
distance from the start as in the example from Figure 2 where the label for (s, v) needs to
be kept at v despite being longer than (s, u, v). This leads to a label-correcting variation of
Dijkstra’s algorithm with possibly multiple labels per vertex. A label l at a vertex v consists
of a distance Dl from the source, a set of active blocked paths Al, and a pointer to the parent
vertex and label for efficient reconstruction of the labels’ path P (l) = (s, . . . , v). The active
blocked path set Al contains all blocked paths which have a prefix which is a suffix of P (l).
A label l can be discarded when v has another label l′ with Dl′ ≤ Dl and Al′ ⊆ Al.

The search is initialized with a single label at s with distance zero and an empty set of
active blocked paths. When a vertex u with a label lu is popped from the queue and an arc
uv is relaxed, we create a new label lv as follows: We set the distance Dlv = Dlu + w∗(uv)
and the parent label to lu. We also need to keep track of traversed blocked paths. If uv is
the first arc of a blocked path B = (u, v, . . . ), the path B needs to be added to Alv . For any
active blocked path B = (. . . , u, x, . . . ) ∈ Alu

, we need to check if x = v, i.e. uv lies on B.
If this is the case, B is contained in Alv

, or, if uv is the last arc of B, the label lv must be
dropped. If uv is not on B, the blocked path is not in Alv

.
An efficient implementation of this algorithm requires careful engineering. For each arc,

we keep track of the blocked paths it lies on. Labels use a bitset to store the active blocked
paths. This allows for efficient subset checks with bit-wise operations. The bitset size is

SEA 2022



3:8 Fast Computation of Shortest Smooth Paths and UBS with Lazy RPHAST

v1 v2
v3

v4

v5

v6

v7
v8 v9

Figure 3 Example path (solid, black) with shortest path tree from v1 to all vertices on the path
(dashed, blue) and reverse shortest path tree from all vertices on the path to v9 (dashed, red).

determined individually for each vertex by the number of blocked paths the respective vertex
lies on. In our implementation, we use at least one 128-bit integer which suffices for most
queries. Should the number of blocked paths for a vertex exceed 128, we switch to using
a dynamically sized array of integers for that vertex. Additionally, each vertex maintains
its own queue of labels ordered by distance from s. When the vertex is popped from the
queue, it pops the next label from its queue and propagates only this label. If there are any
remaining labels in the queue, the vertex is reinserted into the global queue. Finally, we
utilize A* with CCH-Potentials on the volatile weight function to guide the search towards
the target. As our experiments show, disallowing non-ϵ-smooth paths increases distances only
very slightly. Thus, the heuristic is close to perfect and A* very effective for this problem.

4.2 Efficient UBS Computation
According to Delling et al. [8], the UBS computation is one of the bottlenecks of the IPB
approach. They employ a many-to-many algorithm. Here, we introduce an algorithm which
can compute exact UBS values of typical paths with only a few shortest path queries. We
also present a worst-case example where each subpath has a distinct stretch value. This
suggests that achieving subquadratic worst-case running time may not be possible.

Consider a path P = (s = v1, . . . , t = vk) as depicted in Figure 3. Our algorithm works
iteratively. We start with the full path and successively remove prefixes and suffixes until
the path is empty or only a shortest path remains. We start by computing shortest distances
from s to all vertices on the path. This can be done with a single run of Dijkstra’s algorithm
which can terminate once all vi have been settled. Beside the shortest distances, this yields
a shortest path tree represented though parent pointers. We also run Dijkstra’s algorithm
from t on the reversed graph which yields a backward shortest path tree to t. Now we find
the greatest index i such that P1,i is a prefix of all shortest paths OPT(s, vl) where i < l ≤ k,
i.e. the first branching vertex in the forward shortest path tree. In the worst case this may
be s. In the example in Figure 3 this is v3. We analogously obtain the first branching vertex
in the reverse shortest path tree to vk (v8 in our example). Stated formally, this is the
smallest index j such that Pj,k is a suffix of all shortest paths OPT(vl, t) where 1 ≤ l ≤ j.
By Observation 1, subpaths starting from vertices in the segment P1,i−1 and subpaths ending
at vertices from Pj+1,k are not relevant to the UBS computation. We exploit this and only
check paths starting from vi or ending at vj in the current iteration.

We check the stretch of all subpaths Pi,l where i < l ≤ j with a linear sweep over
the vl. Since P1,i is a prefix of all shortest paths from s, we can compute the distance
D(vi, vl) as D(s, vl) − D(s, vi). Thus, each stretch can be checked in constant time with
the distances computed by Dijkstra’s algorithm. When we are only interested in violating



T. Zeitz 3:9

Algorithm 2 Path unpacking for Lazy RPHAST.

Data: P[u]: parent vertex on the shortest path from u to t, as computed by
Dijkstra’s algorithm on

←−
G↓ and an extended Algorithm 1

Data: U[u]: whether the path from u to t has been fully unpacked
Function Unpack(u):

if ¬(U[u] ∨ u = t) then
ComputeAndMemoizeDist(u);
Unpack(P[u]);
if (u, P[u]) is a shortcut for (u, v, P[u]) then

P[v]← P[u];
Unpack(v);
P[u]← v;
Unpack(u);

U[u]← true;

subpaths (rather than computing the exact UBS value of P ), the sweep can be stopped after
the first (i.e. shortest) violating segment has been found. Forbidding the shortest violating
segment starting at vi is sufficient because it is contained in all longer segments. Checking
the stretches of the subpaths Pl,j where i ≤ l < j works analogously.

Having checked all these stretches, we continue with the next iteration by applying the
whole algorithm to the subpath Pi+1,j−1. We can stop when i + 1 ≥ j − 1 or when the entire
considered path is a shortest path between its endpoints.

This algorithm can be adopted to efficiently compute other path quality measures such
as the local optimality [1].

4.2.1 Worst-Case Running Time
This algorithm performs great when long segments are shortest paths, which will often
be the case when searching shortest smooth paths. But in the worst case, it still has to
check Θ(n2) subpath stretches. Consider a complete graph with unit weights and the path
P = (v1, . . . , vn). In this graph, the shortest path between any two vertices is always the
direct arc and the distance is exactly one. Thus, the shortest path tree from any vertex is
a star with the direct arcs and our algorithm can only advance by a single vertex in each
iteration. This results in a worst case running time of n runs of Dijkstra’s algorithm.

We suspect that it is not possible to compute the UBS asymptotically faster. Consider
the same graph as before but with weights of unique powers of two for the arcs of the path.
Now any subpath has a unique length. As all subpaths of three or more vertices still have
a shortest distance of one between their endpoints, there are Θ(n2) unique stretch values.
Thus, computing the UBS of the whole path without checking all Θ(n2) stretch values should
be difficult if not impossible.

4.2.2 Lazy RPHAST with Path Unpacking
While this algorithm typically needs few stretch checks, running Dijkstra’s algorithm a
couple of times is still prohibitively slow on large road networks. Luckily, we can speed these
computations up drastically by employing Lazy RPHAST, which we already used as an A*
heuristic in the shortest path search phase. Recall that Lazy RPHAST allows us to select

SEA 2022



3:10 Fast Computation of Shortest Smooth Paths and UBS with Lazy RPHAST

one target vertex and then to compute shortest distances quickly from many vertices to this
target. For the efficient UBS computation, we use two instantiations of this algorithm. In
each iteration, we select both endpoints of the considered path and compute distances from
and to the endpoints for all vertices on the path. However, we also need the shortest path
trees. We therefore extend Lazy RPHAST to also compute shortest path trees.

Dijkstra’s algorithm on
←−
G↓ yields initial parent pointers. We adjust Algorithm 1 to

continue to maintain these parent pointers during arc relaxation. Thus, after having called
ComputeAndMemoizeDist, we have the shortest path through the CH search space in G+. Al-
gorithm 2 depicts the routine to efficiently unpack shortcuts on this path and retrieve shortest
path trees in the original graph. We use a bitvector U (using a clearlist for fast reinitialization)
to mark vertices for which the shortest path has already been fully unpacked which is checked
before any actual work is performed. Then, we have to call ComputeAndMemoizeDist to
ensure that the path through the CH search space has been obtained for u. For vertices
encountered through recursive shortcut unpacking this might have not happened before. In
the next step, we can now recursively unpack the full path up to the parent P[u] of our
current vertex u. Now, all that remains is to unpack the arc (u, P[u]) if it is a shortcut. If
so, the middle vertex v is set in P as the vertex between u and P[u] and Unpack is invoked
recursively first for v and then again for u to unpack the arcs (v, P[v]) and (u, v).

4.3 Iterative Path Fixing

With an efficient algorithm to find UBS-violating segments we can introduce another natural
heuristic to find short smooth paths: Find the shortest path with respect to w∗ and replace
each UBS violating subpath (vi, . . . , vj) with OPTw(vi, vj). The result may still contain
UBS violating subpaths. In this case, we iteratively continue to replace violating segments.
When a path contains overlapping violating subpaths, we replace the first, ignore following
overlapping subpaths and continue with the next non-overlapping segment. We denote this
algorithm as iterative path fixing (IPF).

5 Evaluation

In this section, we present our experimental results. Our benchmark machine runs openSUSE
Leap 15.3 (kernel 5.3.18), and has 192 GiB of DDR4-2666 RAM and two Intel Xeon Gold
6144 CPUs, each of which has eight cores clocked at 3.5 GHz and 8 × 64 KiB of L1,
8 × 1 MiB of L2, and 24.75 MiB of shared L3 cache. All running times are sequential.
We implement our algorithms in Rust1 and compile them with rustc 1.58.0-nightly
(b426445c6 2021-11-24) in the release profile with the target-cpu=native option.

Table 1 shows the road networks we use in our experiments alongside sequential prepro-
cessing times. OSM Europe is the same network used in [8] and publicly available.2 The
DIMACS Europe instance was made available by PTV3 for the 9th DIMACS implementation
challenge [9]. It is not publicly available but can be obtained on request for research purposes4.
We derived the OSM Germany instance from an early 2020 snapshot of OpenStreetMap and

1 The code for this paper, all implemented algorithms, scripts to perform experiments and to aggregate
the results is available at https://github.com/kit-algo/traffic_aware

2 https://i11www.iti.kit.edu/resources/roadgraphs.php
3 https://ptvgroup.com
4 https://i11www.iti.kit.edu/resources/roadgraphs.php

https://github.com/kit-algo/traffic_aware
https://i11www.iti.kit.edu/resources/roadgraphs.php
https://ptvgroup.com
https://i11www.iti.kit.edu/resources/roadgraphs.php


T. Zeitz 3:11

Table 1 Instances used in the evaluation with sequential preprocessing running times to construct
a CCH-Potential. Phase 1 needs to be run only once for each graph, Phase 2 once for each weight
function, or when a weight function changes.

Vertices Edges Preprocessing [s]

[·106] [·106] Phase 1 Phase 2

DIMACS Europe 18.0 42.2 2 260.7 11.3
OSM Europe 173.8 348.0 4 270.0 58.8
OSM Germany 11.1 26.2 1 314.0 7.5

converted into a routing graph using RoutingKit.5 For this instance, we have proprietary
traffic data provided by Mapbox6 which, unfortunately, we cannot provide. The data includes
two live traffic snapshots in the form of OSM node ID pairs and live speeds for the edge
between the vertices. One is from Friday 2019/08/02 afternoon and contains 320K vertex
pairs and the other from Tuesday 2019/07/16 morning and contains 185K pairs. For both
Europe instances, we do not have any real world traffic data. Thus, we resort to the approach
suggested in [8] and generate synthetic live traffic: For each road where the average speed is
greater than 30 kph, we reduce the speed to 5 kph with a probability of 0.5%.

We evaluate our algorithms by performing batches of point-to-point shortest ϵ-smooth
path queries. As the distance between source and target has a significant influence on the
performance, we generate different query batches. For each batch, we pick 1000 source
vertices uniformly at random. We then run Dijkstra’s algorithm from each source vertex on
the graph with the smooth weight function. Following the Dijkstra rank methodology, we
store every 2ith settled vertex [16]. This allows evaluating the performance development
against varying path lengths. In [8], 1-hour queries were performed. For comparison, we also
generate an 1h batch by picking the first settled vertex with a distance greater than one
hour. In addition, we generate a 4h batch for medium-range queries with the same method
and a random batch for long range queries where the target is picked uniformly at random.

Preliminary experiments showed that some queries take prohibitively long to answer.
Since we are solving an NP-hard problem, this is not very surprising. We abort queries if
the algorithm has not found a path with UBS < (1 + ϵ) after 10 seconds. We report these
queries as failed but, nevertheless, do include their running times in our measurements.

We start by evaluating different UBS algorithms in isolation. The paths checked by the
UBS algorithms are the paths we find while performing IPB-H to find shortest smooth paths
with ϵ = 0.2 on the Dijkstra rank queries. We limit the time per rank and UBS algorithm to
one hour. Thus, slow algorithms may not get to check all paths. Our baseline is computing
all distances between pairs of path vertices at once with SSE RPHAST [6], which to the
best of our knowledge is the fastest known many-to-many algorithm. The second algorithm,
denoted as Lazy RPHAST Naive, uses Lazy RPHAST to compute distances between all
pairs of path vertices. The third one is UBS Trees Dijkstra which is the non-accelerated,
i.e. Dijkstra-based, implementation of the efficient UBS algorithm introduced in Section 4.2.
UBS Trees Lazy RPHAST denotes the accelerated variant of this algorithm utilizing Lazy
RPHAST as described in Section 4.2.2.

5 https://github.com/RoutingKit/RoutingKit
6 https://mapbox.com

SEA 2022

https://github.com/RoutingKit/RoutingKit
https://mapbox.com


3:12 Fast Computation of Shortest Smooth Paths and UBS with Lazy RPHAST

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227

Rank

0.01ms

0.1ms

1ms

10ms

100ms

1s

10s

100s

1000s
R

un
ni

ng
 T

im
e

SSE RPHAST
Lazy RPHAST Naive
UBS Trees Dijkstra
UBS Trees Lazy RPHAST

Figure 4 Running times of different UBS checking algorithms for paths encountered by IPB-H
when answering queries of different ranks with ϵ = 0.2 on OSM Europe. The boxes cover the range
between the first and third quartile. The band in the box indicates the median, the whiskers cover
1.5 times the interquartile range. All other running times are indicated as outliers.

Figure 4 depicts the results of this experiment. We observe that SSE RPHAST is
consistently faster than the naive Lazy RPHAST variant by a roughly constant factor. SSE
RPHAST was designed as a many-to-many algorithm and is thus more efficient than naively
applying a many-to-one algorithm |P | times. The non-accelerated UBS Trees algorithm is
very fast for short paths but quickly becomes prohibitively slow for longer paths. Running
Dijkstra’s algorithm will traverse a large part of the network if source and target are sufficiently
far apart from each other. Doing this multiple times is not feasible. However, the accelerated
variant beats SSE RPHAST by about two orders of magnitude across all path lengths.

UBS Trees running times have significantly greater variance than the many-to-many
algorithms. This is because the amount of work which UBS Trees can avoid varies strongly
between different paths. In contrast, the many-to-many-based algorithms will always check
Θ(|P |2) subpath distances. Note that the UBS Trees Dijkstra outliers disappear because we
limit the time per rank and algorithm. If we checked all paths, the outliers would be present
too, but the experiment would take prohibitively long.

Next, we evaluate the performance of our query algorithms on realistic queries and
instances. Table 2 depicts the results. Both the query set and the instance have a strong
influence on the running time. Note that random queries on OSM Germany are on average
shorter than four hours which is the reason why the running times on OSM Germany for
random queries are faster than for 4h queries. The length increase of the solutions primarily
depends on the instance and less on the query set. The synthetic traffic affects DIMACS
Europe more strongly than OSM Europe. We suspect that this is because OSM is modeled
in much greater detail and contains more shorter arcs. In terms of running time, IPB-H is
significantly faster than IPB-E and IPF is significantly faster still, which is roughly what
we expected. Conversely, the heuristics find somewhat longer paths than the exact IPB-E
algorithm and IPF appears to find worse paths than IPB-H. However, one has to be careful
interpreting these numbers as a non-negligible amount of queries did not terminate with
IPB-E and IPB-H. Because the length increase numbers are averages over different sets, it is
not immediately clear if the differences appear because the heuristics find worse paths or
because the heuristics find long solutions where the exact algorithm did not finish within



T. Zeitz 3:13

Table 2 Average performance of our implementations of IPB-E, IPB-H and IPF for different
query sets on all instances with ϵ = 0.2. The Increase column denotes the length increase with
respect to w∗ of the obtained path over OPTw∗ and includes only successful queries. The running
time column also includes the running time of queries aborted after 10 seconds.

Increase [%] Running time [ms] Failed [%]

IPB-E IPB-H IPF IPB-E IPB-H IPF IPB-E IPB-H IPF

1h

DIMACS Eur Syn 0.8 2.5 4.1 718.0 168.4 1.5 6.4 1.6 0.0
OSM Eur Syn 0.2 0.3 0.3 59.8 22.4 2.7 0.4 0.2 0.0
OSM Ger Fri 0.2 1.5 2.2 1 373.7 219.1 4.7 12.7 1.2 0.0
OSM Ger Tue 0.1 0.3 0.4 261.5 9.2 1.8 2.2 0.0 0.0

4h

DIMACS Eur Syn 0.8 3.4 5.1 3 513.6 435.4 6.1 33.1 3.1 0.0
OSM Eur Syn 0.2 0.3 0.3 331.4 73.2 8.4 2.1 0.6 0.0
OSM Ger Fri 0.2 2.1 4.2 6 597.1 2 568.1 89.2 63.4 15.8 0.0
OSM Ger Tue 0.1 0.4 0.5 1 449.3 93.1 9.8 13.1 0.0 0.0

R
an

do
m

DIMACS Eur Syn 0.8 2.8 5.3 6 700.6 2 436.7 30.6 64.2 17.1 0.0
OSM Eur Syn 0.2 0.4 0.4 4 758.3 654.2 140.3 38.9 3.1 0.0
OSM Ger Fri 0.2 2.1 4.1 5 771.1 2 419.8 84.5 56.0 16.3 0.0
OSM Ger Tue 0.1 0.4 0.5 1 366.0 111.6 9.6 12.0 0.0 0.0

10 seconds. For running times, the averages are also difficult to interpret. They are heavily
skewed by outliers and there is no reason to assume a normal distribution. In fact, median
running times for 1h queries of all algorithms on all instances are all below 2 ms. Clearly,
drawing statistically sound conclusions from this experiment requires a closer look.

Figure 5 depicts performance profiles [12] for running times and obtained path lengths
on all queries from Table 2 combined. Investigating queries across all instances combined
is reasonable because we study the relative performance of the different algorithms on
each query. Let A be the set of algorithms, Q the set of queries and obj(a, q) denote the
considered measurement from the computation of a ∈ A to answer q ∈ Q. In our case,
this is either the running time or the length with respect to w∗ of the computed path.
The performance ratio r(a, q) = obj(a,q)

min {obj(a′,q)|a′∈A} indicates by what factor a deviates from
the best solution or the shortest running time for the query q. The performance profile
ρa : [1,∞)→ [0, 1], τ 7→ |{q∈Q|r(a,q)≤τ}|

|Q| of a is the fraction of queries for which a is within a
factor of τ of the best measurement. For computations that were aborted after 10 seconds,
obj(a, q) =∞. For the sake of completeness, we also include the same performance profiles
separated per instance and query set in the appendix (see Figure 6 and 7). However,
discussing the results in such detail is beyond the scope of this paper.

The running time performance profile in Figure 5 allows for some more nuanced observa-
tions: IPF is the fastest algorithm on about 65% of the queries and almost never more than
10 times slower than the fastest one. Surprisingly, IPB-H is also sometimes the fastest to
answer a query (in 35% of the queries) but it may also be up to 300 times slower than the
fastest algorithm. However, for 83% of all queries it stays within a factor of 10. The exact
algorithm is never the fastest but still within a factor of 10 for 65% of the queries. It still
may be several thousand times slower than the fastest algorithm in extreme cases, even with
the running time limited to 10 seconds.

SEA 2022



3:14 Fast Computation of Shortest Smooth Paths and UBS with Lazy RPHAST

1 10 100 1000
Slowdown over fastest

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 q
ue

rie
s

1.0 1.2 1.4 1.6 1.8 2.0
Length increase factor over best found

Algorithm
IPB-E
IPB-H
IPF

Figure 5 Relative performance profiles of our algorithms on all queries from Table 2.

The path length performance profile also yields useful insights. Since IPB-E is an exact
algorithm, its performance profile contains only a single data point, i.e. for all queries which
terminated successfully IPB-E finds the shortest path. The line for IPB-H is almost constant.
This means, there are only few queries where it does not find the best solution. Even when it
does not find the best solution, it is close to the best one, i.e. the maximum length increase
factor over the best solution is 1.36 and all other values are below 1.1. It is quite possible
that IPB-H found the optimal solution even for some queries where IPB-E did not terminate.
The qualitative performance of IPF varies more strongly. It also finds the best solution on
85% of the queries. More than 99% of the obtained solutions are within a factor of 1.2 to
the best found. In the worst case IPF found a path 1.96 times the length of the best one
found by another algorithm.

In combination with the averages reported in Table 2 we can now draw solid conclusions
on the performance of the algorithms. IPF is the algorithm with the most stable running time.
Even though it is not always the fastest, it is never much slower than any other algorithm.
It is the only algorithm able to answer all queries in less than 10 seconds. In fact, it usually
needs only a few milliseconds and only up to several hundreds of milliseconds for extreme
cases. It sometimes pays for this with worse solution quality but is still very close to the
best found for the vast majority of queries. This makes it an algorithm suitable for practical
applications. IPB-H is also a very effective heuristic. It is drastically faster than the exact
algorithm and sometimes even faster than IPF. Its performance in terms of quality is much
more stable than IPF and often IPB-H will find the best path or something very close to
it. The difference in average length increase between IPB-E and IPB-H was not because
IPB-H finds much worse paths but because it is able to answer queries which IPB-E cannot
answer. However, it still fails to answer about 5% of all queries in less than 10 seconds.
The running time of IPB-E varies even more strongly. On the one hand, many easy queries
can be answered in a few milliseconds, but on the other hand, 25% of all queries cannot be
answered in less than 10 seconds. The feasibility of solving the problem to exactness with
IPB-E strongly depends on the distance of queries and on the smoothness of w∗.

For our final experiment, we evaluate the performance of our algorithms with different
choices for ϵ with 1000 queries of 1h range on OSM Europe. Table 3 depicts the results. This
experiment was also performed in [8] but with only 100 queries. Given the observation from
the previous experiment, it should be clear that reported averages allow only for very rough
comparisons. However, it is the only data available to compare against related work. Also



T. Zeitz 3:15

Table 3 Average performance of our implementations of IPB-E, IPB-H and IPF for different
values of ϵ with 1h queries on OSM Europe with synthetic live traffic. The Increase column denotes
the length increase with respect to w∗ of the shortest smooth path over the shortest w∗ path. It
includes only values from successful queries. All other columns indicate average values over all
queries, including the ones terminated after 10 seconds.

Increase Iterations Blocked Running time [ms] Failed

ϵ [%] paths A* UBS Total [%]

0.01
IPB-E 0.43 137.90 676.2 307.6 22.7 335.9 2.4
IPB-H 0.56 22.38 24.9 52.8 21.0 74.0 0.6
IPF 0.61 1.73 - - - 2.3 0.0

0.05
IPB-E 0.34 68.10 351.7 132.5 14.8 150.3 0.9
IPB-H 0.39 32.78 39.8 19.6 38.7 58.6 0.5
IPF 0.41 1.54 - - - 2.3 0.0

0.10
IPB-E 0.27 47.35 256.4 103.3 12.7 118.3 0.8
IPB-H 0.33 27.10 27.1 3.5 28.9 32.7 0.3
IPF 0.34 1.45 - - - 2.7 0.0

0.20
IPB-E 0.23 24.92 141.7 51.1 7.5 59.7 0.4
IPB-H 0.26 19.33 19.0 2.6 19.6 22.4 0.2
IPF 0.28 1.36 - - - 2.1 0.0

0.50
IPB-E 0.16 13.64 80.0 41.1 3.8 45.6 0.1
IPB-H 0.17 19.54 18.9 2.5 19.4 22.1 0.2
IPF 0.19 1.26 - - - 2.0 0.0

1.00
IPB-E 0.11 10.51 55.5 28.1 4.4 33.4 0.2
IPB-H 0.12 15.13 14.3 2.4 9.6 12.2 0.1
IPF 0.14 1.19 - - - 2.5 0.0

note that due to the presence of heavy outliers, performing too few queries can distort the
numbers drastically. For example, when we ran the same experiment with only 100 queries,
the average running times of IPB-H were an order of magnitude faster.

We observe similar trends as the authors of [8]. The smaller the choice of ϵ, the harder the
problem becomes. Consequently, the length increase, the number of iterations, the number
of blocked paths and the running time increase. However, for our implementation of IPB-H,
we measure slightly bigger path increases and slightly more iterations. Our implementation
of IPB-H achieves running times two orders of magnitude faster than the CRP-based IPB-H
implementation in [8]. One reason for this is our UBS algorithm which only needs a couple
of milliseconds for all values of ϵ. In [8], the UBS checking phase takes between 1.3 and
1.9 seconds. The CH-Potentials-based shortest path phase is also very efficient across the
entire range of ϵ values. Even with many blocked paths, the path lengths increase only little
and the CH-Potentials heuristic remains tight and yields good speed-ups. Our exact IPB-E
implementation is still an order of magnitude faster than the IPB-H implementation in [8].

6 Conclusion
In this paper, we studied the shortest smooth path problem and proved its NP-completeness.
We introduced a new algorithm for practically efficient UBS computation. This algorithm can
compute the exact UBS of typically occurring paths with very few shortest path computations.
It outperforms state-of-the-art exact UBS algorithms by around two orders of magnitude
and makes computing exact UBS values feasible in practice. Also, it can be used for other
path quality measures such as local optimality.

SEA 2022



3:16 Fast Computation of Shortest Smooth Paths and UBS with Lazy RPHAST

We adapted the existing IPB-H algorithm and realized it with our new UBS algorithm and
A* with CH-Potentials. This realization of IPB-H outperforms the original implementation
by two orders of magnitude. Also, we present necessary modifications to make the algorithm
exact. IPB-E is still about an order of magnitude faster than the CRP-based heuristic
implementation. As IPB-H and IPB-E are not always able to find solutions in reasonable
time, we introduce another heuristic, IPF. It can consistently find smooth paths even for
random queries on massive continental sized instances in a few tenths of milliseconds.

For future work we would like to apply our algorithms not only to live traffic but also to
predicted traffic, i.e. find smooth paths in a time-dependent setting. Further, it would be
interesting to study what causes IPB-H to be so much faster than IPB-E while retaining
most of the quality. Maybe this could be traced to specific structures in road networks which
then could be exploited to speed up IPB-E.

References
1 Ittai Abraham, Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Alternative

Routes in Road Networks. ACM Journal of Experimental Algorithmics, 18(1):1–17, 2013.
2 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller–Hannemann, Thomas

Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in Trans-
portation Networks. In Lasse Kliemann and Peter Sanders, editors, Algorithm Engineering -
Selected Results and Surveys, volume 9220 of Lecture Notes in Computer Science, pages 19–80.
Springer, 2016.

3 Gernot Veit Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. Minimum Time-
Dependent Travel Times with Contraction Hierarchies. ACM Journal of Experimental Al-
gorithmics, 18(1.4):1–43, April 2013.

4 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Dynamic Time-Dependent
Route Planning in Road Networks with User Preferences. In Proceedings of the 15th Interna-
tional Symposium on Experimental Algorithms (SEA’16), volume 9685 of Lecture Notes in
Computer Science, pages 33–49. Springer, 2016.

5 Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck. Customizable
Route Planning in Road Networks. Transportation Science, 51(2):566–591, 2017. doi:
10.1287/trsc.2014.0579.

6 Daniel Delling, Andrew V. Goldberg, and Renato F. Werneck. Faster Batched Shortest
Paths in Road Networks. In Proceedings of the 11th Workshop on Algorithmic Approaches for
Transportation Modeling, Optimization, and Systems (ATMOS’11), volume 20 of OpenAccess
Series in Informatics (OASIcs), pages 52–63, 2011.

7 Daniel Delling and Giacomo Nannicini. Core Routing on Dynamic Time-Dependent Road
Networks. Informs Journal on Computing, 24(2):187–201, 2012.

8 Daniel Delling, Dennis Schieferdecker, and Christian Sommer. Traffic-Aware Routing in Road
Networks. In Proceedings of the 34rd International Conference on Data Engineering. IEEE
Computer Society, 2018. doi:10.1109/ICDE.2018.00172.

9 Camil Demetrescu, Andrew V. Goldberg, and David S. Johnson, editors. The Shortest Path
Problem: Ninth DIMACS Implementation Challenge, volume 74 of DIMACS Book. American
Mathematical Society, 2009.

10 Julian Dibbelt, Ben Strasser, and Dorothea Wagner. Customizable Contraction Hierarchies.
ACM Journal of Experimental Algorithmics, 21(1):1.5:1–1.5:49, April 2016. doi:10.1145/
2886843.

11 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269–271, 1959.

12 Elizabeth D Dolan and Jorge J Moré. Benchmarking optimization software with performance
profiles. Mathematical programming, 91(2):201–213, 2002.

https://doi.org/10.1287/trsc.2014.0579
https://doi.org/10.1287/trsc.2014.0579
https://doi.org/10.1109/ICDE.2018.00172
https://doi.org/10.1145/2886843
https://doi.org/10.1145/2886843


T. Zeitz 3:17

13 Michael R. Garey and David S. Johnson. Computers and Intractability. A Guide to the Theory
of N P-Completeness. W. H. Freeman and Company, 1979.

14 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact Routing in
Large Road Networks Using Contraction Hierarchies. Transportation Science, 46(3):388–404,
August 2012.

15 Peter E. Hart, Nils Nilsson, and Bertram Raphael. A Formal Basis for the Heuristic Determ-
ination of Minimum Cost Paths. IEEE Transactions on Systems Science and Cybernetics,
4:100–107, 1968.

16 Peter Sanders and Dominik Schultes. Highway Hierarchies Hasten Exact Shortest Path Queries.
In Proceedings of the 13th Annual European Symposium on Algorithms (ESA’05), volume 3669
of Lecture Notes in Computer Science, pages 568–579. Springer, 2005.

17 Ben Strasser, Dorothea Wagner, and Tim Zeitz. Space-efficient, Fast and Exact Routing in
Time-Dependent Road Networks. Algorithms, 14(3), January 2021. URL: https://www.mdpi.
com/1999-4893/14/3/90.

18 Ben Strasser and Tim Zeitz. A Fast and Tight Heuristic for A* in Road Networks. In
David Coudert and Emanuele Natale, editors, 19th International Symposium on Experimental
Algorithms (SEA 2021), volume 190 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 6:1–6:16, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik. doi:10.4230/LIPIcs.SEA.2021.6.

A Detailed Performance Profiles by Instance

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 q

ue
rie

s

DIMACS Eur Syn OSM Eur Syn OSM Ger Fri

1h

OSM Ger Tue

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 q

ue
rie

s

4h

1 10 100 1000
Slowdown over fastest

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 q

ue
rie

s

1 10 100 1000
Slowdown over fastest

1 10 100 1000
Slowdown over fastest

1 10 100 1000
Slowdown over fastest

R
andom

Algorithm
IPB-E
IPB-H
IPF

Figure 6 Relative performance profile for the running time of our algorithms on all queries from
Table 2 split by graph and query set.

SEA 2022

https://www.mdpi.com/1999-4893/14/3/90
https://www.mdpi.com/1999-4893/14/3/90
https://doi.org/10.4230/LIPIcs.SEA.2021.6


3:18 Fast Computation of Shortest Smooth Paths and UBS with Lazy RPHAST

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 q

ue
rie

s

DIMACS Eur Syn OSM Eur Syn OSM Ger Fri
1h

OSM Ger Tue

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 q

ue
rie

s

4h

1.00 1.25 1.50 1.75 2.00
Length increase factor over best

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 q

ue
rie

s

1.00 1.25 1.50 1.75 2.00
Length increase factor over best

1.00 1.25 1.50 1.75 2.00
Length increase factor over best

1.00 1.25 1.50 1.75 2.00
Length increase factor over best

R
andom

Algorithm
IPB-E
IPB-H
IPF

Figure 7 Relative performance profile for solution quality of our algorithms on all queries from
Table 2 split by graph and query set.



Fast Succinct Retrieval and
Approximate Membership Using Ribbon
Peter C. Dillinger !

Meta, Seattle, WA, USA

Lorenz Hübschle-Schneider !

Karlsruhe Institute of Technology, Germany

Peter Sanders !

Karlsruhe Institute of Technology, Germany

Stefan Walzer !

Universität Köln, Germany

Abstract
A retrieval data structure for a static function f : S → {0, 1}r supports queries that return
f(x) for any x ∈ S. Retrieval data structures can be used to implement a static approximate
membership query data structure (AMQ), i.e., a Bloom filter alternative, with false positive rate 2−r.
The information-theoretic lower bound for both tasks is r|S| bits. While succinct theoretical
constructions using (1 + o(1))r|S| bits were known, these could not achieve very small overheads in
practice because they have an unfavorable space–time tradeoff hidden in the asymptotic costs or
because small overheads would only be reached for physically impossible input sizes. With bumped
ribbon retrieval (BuRR), we present the first practical succinct retrieval data structure. In an
extensive experimental evaluation BuRR achieves space overheads well below 1 % while being faster
than most previously used retrieval data structures (typically with space overheads at least an order
of magnitude larger) and faster than classical Bloom filters (with space overhead ≥ 44 %). This
efficiency, including favorable constants, stems from a combination of simplicity, word parallelism,
and high locality.

We additionally describe homogeneous ribbon filter AMQs, which are even simpler and faster at
the price of slightly larger space overhead.

2012 ACM Subject Classification Theory of computation → Data compression; Information systems
→ Point lookups

Keywords and phrases AMQ, Bloom filter, dictionary, linear algebra, randomized algorithm, retrieval
data structure, static function data structure, succinct data structure, perfect hashing

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.4

Related Version There is a preprint [21] and an earlier technical report [22].
Full Version: https://arxiv.org/abs/2109.01892

Supplementary Material The code and scripts used in our experiments are available under a
permissive license at github:
Software (Source Code): https://github.com/lorenzhs/BuRR

archived at swh:1:dir:fa31381ae0e372bb33819932c0bcc1c51dcc0dfa
Software (Source Code): https://github.com/lorenzhs/fastfilter_cpp

archived at swh:1:dir:66c22ae4f3cc568d78c7b0d719988984a6688801

Funding Stefan Walzer : DFG grant WA 5025/1-1.

1 Introduction

A retrieval data structure (sometimes called “static function”) represents a function f : S →
{0, 1}r for a set S ⊆ U of n keys from a universe U and r ∈ N. A query for x ∈ S must
return f(x), but a query for x ∈ U \ S may return any value from {0, 1}r.

© Peter C. Dillinger, Lorenz Hübschle-Schneider, Peter Sanders, and Stefan Walzer;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 4; pp. 4:1–4:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peterd@fb.com
mailto:huebschle@4z2.de
mailto:sanders@kit.edu
mailto:walzer@cs.uni-koeln.de
https://doi.org/10.4230/LIPIcs.SEA.2022.4
https://arxiv.org/abs/2109.01892
https://github.com/lorenzhs/BuRR
https://archive.softwareheritage.org/swh:1:dir:fa31381ae0e372bb33819932c0bcc1c51dcc0dfa;origin=https://github.com/lorenzhs/BuRR;visit=swh:1:snp:761461e74cc9cc94b9dbbee68796fe60ebc7e5dc;anchor=swh:1:rev:1c62832ad7d6eab5b337f386955868c3ce9a54ea
https://github.com/lorenzhs/fastfilter_cpp
https://archive.softwareheritage.org/swh:1:dir:66c22ae4f3cc568d78c7b0d719988984a6688801;origin=https://github.com/lorenzhs/fastfilter_cpp;visit=swh:1:snp:f382662606c21d2501f97be5e425d263ea1f364c;anchor=swh:1:rev:4f35ed7dae783f5b799ef3019728067a027aa48b
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


4:2 Fast Succinct Retrieval and Approximate Membership Using Ribbon

The information-theoretic lower bound for the space needed by such a data structure is
nr bits in the general case.1 This significantly undercuts the Ω((log |U|+ r)n) bits2 needed
by a dictionary, which must return “None” for x ∈ U \ S. The intuition is that dictionaries
have to store f ⊆ U × {0, 1}r as a set of key-value pairs while retrieval data structures,
surprisingly, need not store the keys. We say a retrieval data structure using s bits has
(space) overhead s

nr − 1.
The starting point for our contribution is a compact retrieval data structure from [20], i.e.

one with overhead O(1). After minor improvements, we first obtain standard ribbon retrieval.
All theoretical analysis assumes computation on a word RAM with word size Ω(log n) and
that hash functions behave like random functions.3 The ribbon width w is a parameter that
also plays a role in following variants.

▶ Theorem 1 (similar to [20]). For any ε > 0, an r-bit standard ribbon retrieval data structure
with ribbon width w = log n

ε has construction time O(n/ε2), query time O(r/ε) and overhead
O(ε).

We then combine standard ribbon retrieval with the idea of bumping, i.e., a convenient subset
S′ ⊆ S of keys is handled in the first layer of the data structure and the small rest is bumped
to recursively constructed subsequent layers. The resulting bumped ribbon retrieval (BuRR)
data structure has much smaller overhead for any given ribbon width w.

▶ Theorem 2. An r-bit BuRR data structure with ribbon width w = O(log n) and r = O(w)
has expected construction time O(nw), space overhead O( log w

rw2 ), and query time O(1 + rw
log n ).

Table 1 Performance of various r-bit retrieval data structures with r = O(log n). Bold overhead
indicates that the data structure is (or can be configured to be) succinct. The parameters k ∈ N and
ε > 0 are constants with respect to n. The parameter C ∈ N is typically nα for constant α ∈ (0, 1).

Year tconstruct tquery
multiplicative

overhead shard size Solver

[34] 2001 O(n log k) O(log k)† 1
k

– peeling
[40] 2009 O(n) O(1) O( log log n

(log n)1/2 )
√

log n lookup table
[9] 2013 O(n) O(1) 0.2218 – peeling
[4] 2013 O(n) O(1) O( log2 log n

r log n
) O( log2 log n

r log n
) –

[39] 2014 O(n) O(1) Ω(1/r) O(1) sorting/sharding
[27] 2016 O(nC2) O(1) 0.024 + O( log n

C
) C structured Gauss

St
an

da
rd

R
ib

bo
n

[20] 2019 O(n/ε2) O(r/ε) ε – Gauss
[20] 2019 O(n/ε) O(r) ε + O( log n

nε ) nε Gauss
[18] 2019 O(nC2) O(r) O( log n

C
) C structured Gauss

[44] 2021 O(nk) O(k) (1 + ok(1))e−k – peeling

BuRR O(nw) O(1 + rw
log n

) O( log w
rw2 ) – on-the-fly Gauss

↪→ with w = Θ(log n): O(n log n) O(r) O( log log n
r log2 n

) – on-the-fly Gauss

† Expected query time. Worst case query time is O(D).

In particular, BuRR can be configured to be succinct, i.e., can be configured to have
an overhead of o(1) while retaining constant access time for small r. Construction time is
slightly superlinear. Note that succinct retrieval data structures were known before, even

1 If f has low entropy then compressed static functions [31, 4, 28] can do better and even machine learning
techniques might help; see e.g. [42].

2 This lower bound holds when |U| = Ω(n1+δ) for δ > 0. The general bound is log
(|U|

n

)
+ nr bits.

3 This is a standard assumption in many papers and can also be justified by standard constructions [17].



P. C. Dillinger, L. Hübschle-Schneider, P. Sanders, and S. Walzer 4:3

with asymptotically optimal construction and query times of O(n) and O(1), respectively
[40, 4]. Seeing the advantages of BuRR requires a closer look. Details are given in Section 5,
but the gist can be seen from Table 1: Among the previous succinct retrieval data structures
(overheads set in bold font), only [18] can achieve small overhead in a tunable way, i.e.,
independently of n using an appropriate tuning parameter C = ω(log n). However, this
approach suffers from comparatively high constructions times. [40] and [4] are not tunable
and only barely succinct with significant overhead in practice. A quick calculation to illustrate:
Neglecting the factors hidden by O-notation, the overheads are log log n√

log n
and log2 log n

r log n , which
is at least 75% and 7% for r = 8 and any n ≤ 264. A similar estimation for BuRR with
w = Θ(log n) suggests an overhead of log log n

r log2 n
≈ 0.1% already for r = 8 and n = 224. Moreover,

by tuning the ribbon width w, a wide range of trade-offs between small overhead and fast
running times can be achieved.

Overall, we believe that asymptotic analyses struggle to tell the full story due to the
extremely slow decay of some “o(1)” terms. We therefore accompany the theoretical account
with experiments comparing BuRR to other efficient (compact or succinct) retrieval data
structures. We do this in the use case of data structures for approximate membership and
also invite competitors not based on retrieval into the ring such as (blocked) Bloom filters
and Cuckoo filters.

Data structures for approximate membership. Retrieval data structures are an important
basic tool for building compressed data structures. Perhaps the most widely used application
is associating an r-bit fingerprint with each key from a set S ⊆ U , which allows implementing
an approximate membership query data structure (AMQ, aka Bloom filter replacement or
simply filter) that supports membership queries for S with false positive rate φ = 2−r.
A membership query for a key x ∈ U will simply compare the fingerprint of x with the
result returned by the retrieval data structure for x. The values will be the same if x ∈ S.
Otherwise, they are the same only with probability 2−r.

In addition to the AMQs following from standard ribbon retrieval and BuRR, we also
present homogeneous ribbon filters, which are not directly based on retrieval.

▶ Theorem 3. Let r ∈ N and ε ∈ (0, 1
2 ]. There is w ∈ N with w

max(r,log w) = O(1/ε) such
that the homogeneous ribbon filter with ribbon width w has false positive rate φ ≤ (1 + ε2)2−r

and space overhead O(ε). On a word RAM with word size ≥ w expected construction time is
O(n/ε) and query time is O(r).

Experiments. Figure 1 shows some of the results explained in detail later in the paper. In
the depicted parallel setting, ribbon-based AMQs (blue) are the fastest static AMQs when an
overhead less than ≈ 44% is desired (where “fastest” considers a somewhat arbitrary weighting
of construction and query times). The advantage is less pronounced in the sequential setting.

Why care about space? Especially in AMQ applications, retrieval data structures occupy
a considerable fraction of RAM in large server farms continuously drawing many megawatts
of power. Even small reductions (say 10 %) in their space consumption thus translate into
considerable cost savings. Whether or not these space savings should be pursued at the
price of increased access costs depends on the number of queries per second. The lower the
access frequency, the more worthwhile it is to occasionally spend increased access costs for a
permanently lowered memory budget. Since the false-positive rate also has an associated
cost (e.g. additional accesses to disk or flash) it is also subject to tuning. The entire set of

SEA 2022



4:4 Fast Succinct Retrieval and Approximate Membership Using Ribbon

2,000
3,000
5,000

Sequential, n = 108 Parallel, n = 107, k = 1280, 64 threads

100 50 30 16 8 4 2 1 0.50.25 0.10.05
0

200

400

600

800

1,000

1,200

100 50 30 16 8 4 2 1 0.50.25 0.10.05

Overhead (%); 6.6 < r < 8.4 (Pareto fronts)

P
er
-k
ey

co
n
st
ru
ct
io
n
ti
m
e
+

3
q
u
er
ie
s
(n
s)

Bloom BlBloom Cuckoo Morton QF CQF Xor

LMSS Coupled Standard Homog Bu1RR BuRR

Figure 1 Performance–overhead trade-off for measured false-positive rate in 0.003–0.01 (i.e.,
r ≈ 8), for different AMQs and inputs. Ribbon-based data structures are in blue. For each category
of approaches, only variants are shown that are not Pareto-dominated by variants in the same
category. Sequential benchmarks use a single filter of size n while the parallel benchmark uses 1280
filters of size n and utilizes 64 cores. Logarithmic vertical axis above 1200 ns.

Pareto-optimal variants with respect to tradeoffs between space, access time, and FP rate
is relevant for applications. For instance, sophisticated implementations of LSM-trees use
multiple variants of AMQs at once based on known access frequencies [14]. Similar ideas
have been used in compressed data bases [38].

Outline. The paper is organized as follows (section numbers in parentheses). After important
preliminaries (2), we explain our data structures and algorithms in broad strokes (3) and
summarize our experimental findings (4). We then summarize related work (5). In the full
paper [21] we give a detailed theoretical analysis, extensively describe the design space of
BuRR, and discuss additional experiments.

2 Linear Algebra Based Retrieval Data Structures and SGAUSS

A simple, elegant and highly successful approach for compact and succinct retrieval uses
linear algebra over the finite field Z2 = {0, 1} [16, 27, 1, 40, 12, 9, 18, 20]. Refer to Section 5
for a discussion of alternative and complementary techniques.

The train of thought is this: A natural idea would be to have a hash function point
to a location where the key’s information is stored while the key itself need not be stored.
This fails because of hash collisions. We therefore allow the information for each key to be
dispersed over several locations. Formally we store a table Z ∈ {0, 1}m×r with m ≥ n entries
of r bits each and to define f(x) as the bit-wise xor of a set of table entries whose positions



P. C. Dillinger, L. Hübschle-Schneider, P. Sanders, and S. Walzer 4:5

h(x) ⊆ [m] are determined by a hash function h.4 This can be viewed as the matrix product
h⃗(x)Z where h⃗(x) ∈ {0, 1}m is the characteristic (row)-vector of h(x). For given h, the main
task in building the data structure is to find the right table entries such that h⃗(x)Z = f(x)
holds for every key x. This is equivalent to solving a system of linear equations AZ = b
where A = (⃗h(x))x∈S ∈ {0, 1}n×m and b = (f(x))x∈S ∈ {0, 1}n×r. Note that rows in the
constraint matrix A correspond to keys in the input set S. In the following, we will thus
switch between the terms “row” and “key” depending on which one is more natural in the
given context.

An encouraging observation is that even for m = n, the system AZ = b is solvable with
constant probability if the rows of A are chosen uniformly at random [13, 40]. With linear
query time and cubic construction time, we can thus achieve optimal space consumption.
For a practically useful approach, however, we want the 1-entries in h⃗(x) to be sparse and
highly localized to allow cache-efficient queries in (near) constant time and we want a (near)
linear time algorithm for solving AZ = b. This is possible if m > n.

A particularly promising approach in this regard is SGAUSS from [20] that chooses the
1-entries within a narrow range. Specifically, it chooses w random bits c(x) ∈ {0, 1}w and
a random starting position s(x) ∈ [m − w − 1], i.e., h⃗(x) = 0s(x)−1c(x)0m−s(x)−w+1. For
m = (1 + ε)n some value w = O(log(n)/ε) suffices to make the system AZ = b solvable
with high probability. We call w the ribbon width because after sorting the rows of A by
s(x) we obtain a matrix which is not technically a band matrix, but which likely has all
1-entries within a narrow ribbon close to the diagonal. The solution Z can then be found
in time O

(
n/ε2)

using Gaussian elimination [20] and bit-parallel row operations; see also
Figure 2 (a).

3 Ribbon Retrieval and Ribbon Filters

We advance the linear algebra approach to the point where space overhead is almost eliminated
while keeping or improving the running times of previous constructions.

Ribbon solving. Our first contribution is a simple algorithm we could not resist to also
call ribbon as in Rapid Incremental Boolean Banding ON the fly. It maintains a system
of linear equations in row echelon form as shown in Figure 2 (b). It does so on-the-fly, i.e.
while equations arrive one by one in arbitrary order. For each index i of a column there
may be at most one equation that has its leftmost one in column i. When an equation with
row vector a arrives and its slot is already taken by a row a′, then ribbon performs the row
operation a← a⊕ a′, which eliminates the 1 in position i, and continues with the modified
row. An invariant is that rows have all their nonzeroes in a range of size w, which allows to
process rows with a small number of bit-parallel word operations. This insertion process is
incremental in that insertions do not modify existing rows. This improves performance and
allows to cheaply roll back the most recent insertions which will be exploited below. It is a
non-trivial insight that the order in which equations are added does not significantly affect
the expected number of row operations. This is made precise and proved in the full paper.

When all rows are processed we perform back-substitution to compute the solution matrix
Z. At least for small r, interleaved representation of Z works well, where blocks of size w× r

of Z are stored column-wise. A query for x can then retrieve one bit of f(x) at a time by

4 In this paper, [k] can stand for {0, . . . , k − 1} or {1, . . . , k} (depending on the context), and a..b stands
for {a, . . . , b}.

SEA 2022



4:6 Fast Succinct Retrieval and Approximate Membership Using Ribbon

(a) (b)

n

m = (1 + ε)n

w m

m

·Z =

c21 b2
c31 b3

c51 b5

c71 b7

c91 b9

⊕

⊕

h⃗(x)

⊕

⊕

f(x)

Figure 2 (a) Typical shape of the random matrix A with rows (⃗h(x))x∈S sorted by starting
positions. The shaded “ribbon” region contains random bits. Gaussian elimination never causes any
fill-in outside of the ribbon.
(b) Shape of the linear system M in row echelon form maintained using Boolean banding on the fly.
In gray we visualize the insertion of a key x where (i) h⃗(x) has its left-most 1 in position s(x) = 2,
(ii) after xoring the second row of M to h⃗(x), the left-most 1 is in position 5 and (iii) xoring the fifth
row as well, the left-most 1 is in position 6. The resulting row fills the previously empty sixth row of
M and f(x) ⊕ b2 ⊕ b5 is added as right hand side.

applying a population count instruction to pieces of rows retrieved from at most two of
these blocks. This is particularly advantageous for negative queries to AMQs (i.e. queries
of elements not in the set), where only two of r bits need to be retrieved on average. More
details are given in the full paper.

3.1 Standard Ribbon
When employing no further tricks, we obtain standard ribbon retrieval, which is essentially
the same data structure as in [20] except with a different solver that is faster by noticeable
constant factors. A problem is that w becomes prohibitively large when n is large and ε is
small. For example, experiments show that for ε ≤ 3.5% and construction success rate ≥ 50%,
standard word size w = 64 only scales to around n ≤ 104 and more expensive w = 128 only
scales to around n ≤ 106. To some degree this can be mitigated by sharding techniques [43],
but in this paper we pursue a more ambitious route.

3.2 Bumped Ribbon Retrieval
Our main contribution is bumped ribbon retrieval (BuRR), which reduces the required ribbon
width to a constant that only depends on the targeted space efficiency. BuRR is based on
two ideas.

Bumping. The ribbon solving approach manages to insert most rows (representing most
keys of S) even when w is small. Thus, by eliminating those rows/keys that cause a linear
dependency, we obtain a compact retrieval data structure for a large subset of S. The
remaining keys are bumped, meaning they are handled by a fallback data structure which,
by recursion, can be a BuRR data structure again. We show that only O( n log w

w ) keys need
to be bumped in expectation. Thus, after a constant number of layers (we use 4), a less
ambitious retrieval data structure can be used to handle the few remaining keys without
bumping.



P. C. Dillinger, L. Hübschle-Schneider, P. Sanders, and S. Walzer 4:7

The main challenge is that we need additional metadata to encode which keys are bumped.
The basic bumped retrieval approach is adopted from the updateable retrieval data structure
filtered retrieval (FiRe) [39]. To shrink the input size by a moderate constant factor, FiRe
needs a constant number of bits per key (around 4). This leads to very high space overhead
for small r. A crucial observation for BuRR is that bumping can be done with granularity
much coarser than per-key. We will bump keys based on their starting position and say
position i is bumped to indicate that all keys with s(x) = i are bumped. Bumping by
position is sufficient because linear dependencies in A are largely unrelated to the actual bit
patterns c(x) but mostly caused by fluctuations in the number of keys mapped to different
parts of the matrix A. By selectively bumping ranges of positions in overloaded parts of
the system, we can obtain a solvable system. Furthermore, our analysis shows that we can
drastically limit the spectrum of possible bumping ranges; see below.

Overloading. Besides metadata, space overhead results from the m− n + nb excess slots of
the table where nb is the number of bumped keys. Trying out possible values of ε = m−n

n > 0
one sees that the overhead due to excess slots is always Ω(1/w) and will thus dominate the
overhead due to metadata. However, we show that by choosing ε < 0 (of order −ε = O( log w

w )),
i.e., by overloading the table, we can almost completely eliminate excess table slots so that
the minuscule amount of metadata becomes the dominant remaining overhead. There are
many ways to decide and encode which keys are bumped. Here, we outline a simple variant
that achieves very good performance in practice and is a generalization of the theoretically
analyzed approach. We expand on the much larger design space of BuRR in the full paper.

Deciding what to bump. We subdivide the possible starting positions into buckets of width
b = O

(
w2/ log w

)
and allow to bump a single initial range of each bucket. The keys (or more

precisely pairs of hashes and the value to be retrieved) are sorted according to the bucket
addressed by the starting position s(x). We use a fast in-place integer sorter for this purpose
[2]. Then buckets are processed one after the other from left to right. Within a bucket,
however, keys are inserted into the row echelon form from right to left. The reason for this is
that insertions of the previous bucket may have “spilled over” causing additional load on the
left of the bucket – an issue we wish to confront as late as possible. See also Figure 3.

1 0 1 1
1 1 0 0
1 1 0 1

1 0 1 0
1 1 1 1
1 0 0 1

bucket 1 bucket 2
w − 1 positions
after last bucket

ro
w
s
in

b
u
ck
et

1
ro
w
s
in

b
u
ck
et

2

insertion order

rows sorted by starting position

⇝

1

1

1
1

1
1

0 1 1

1 1 0 1

1 1 1 1
1 0 0 1

1 0 0 0
1 0 0 0

row echelon form

Figure 3 Illustration of BuRR construction with n = 11 keys, m = 2b + w − 1 = 15 table
positions, ribbon width w = 4 and bucket size b = 6. Keys of the first bucket were successfully
inserted (from right to left) into row echelon form with two insertions “overflowing” into the second
bucket. Insertions of the second bucket’s rows will be attempted next, in the indicated order.

SEA 2022



4:8 Fast Succinct Retrieval and Approximate Membership Using Ribbon

If all keys of a bucket can be successfully inserted, no keys of the bucket are bumped.
Otherwise, suppose the first failed insertion for a bucket [i, i + b) concerns a key where
s(x) = i + k is the k-th position of the bucket. We could decide to bump all keys x′ of the
bucket with s(x′) ≤ i + k, which would require storing the threshold k using O(log w) bits
and which would yield an overhead of O(log2(w)/w2) due to metadata. Instead, to reduce
this overhead to O(log(w)/w2), we only allow a constant number of threshold values. This
means that we find the smallest threshold value t with t ≥ k representable by metadata and
bump all keys x′ with s(x′) ≤ i + t. This requires rolling back the insertions of keys x′ with
s(x′) ∈ [k, t] by clearing the most recently populated rows from the row echelon form. One
good compromise between space and speed stores 2 bits per bucket encoding the threshold
values {0, ℓ, u, b}, for suitable ℓ and u. The special case ℓ = u = 3

8 w is used in our analysis.
Another slightly more compact variant “1+-bit” stores one bit encoding threshold values
from the set {0, t}, for a suitable t, and additionally stores a hash table of exceptions for
thresholds > t.

Running times. With these ingredients we obtain Theorem 2 stated on page 2. It implies
constant query time5 if rw = O(log n) and linear construction time if w ∈ O(1). For
wider ribbons, construction time is slightly superlinear. However, in practice this does not
necessarily mean that BuRR is slower than other approaches with asymptotically better
bounds as the factor w involves operations with very high locality. An analysis in the external
memory model reveals that BuRR construction is possible with a single scan of the input
and integer sorting of n objects of size O(log n) bits; see the full paper for details.

3.3 Homogeneous Ribbon Filter
For the application of ribbon to AMQs, we can also compute a uniformly random solution of
the homogeneous equation system AZ = 0, i.e., we compute a retrieval data structure that
will retrieve 0r for all keys of S but is unlikely to produce 0r for other inputs. Since AZ = 0
is always solvable, there is no need for bumping. The crux is that the false positive rate is
no longer 2−r but higher. In the full paper we show that with table size m = (1 + ε)n and
ε = Ω( max(r,log w)

w ) the difference is negligible, thereby showing Theorem 3. Homogeneous
ribbon AMQs are simpler and faster than BuRR but have higher space overhead. Our
experiments indicate that together, BuRR and homogeneous ribbon AMQs cover a large
part of the best tradeoffs for static AMQs.

3.4 Analysis outline
To get an intuition for the relevant linear systems, it is useful to consider two simplifications.
First, assume that h⃗(x) contains a block of w uniformly random real numbers from [0, 1]
rather than w random bits. Secondly, assume that we sort the rows by starting position and
use Gaussian elimination rather than ribbon to produce a row echelon form. In Figure 4 (a)
we illustrate for such a matrix with ×-marks where the pivots would be placed and in yellow
the entries that are eliminated (with one row operation each); both with probability 1, i.e.
barring coincidences where a row operation eliminates more than one entry. The ×-marks
trace a diagonal through the matrix except that the green column and the red row are skipped

5 It should be noted that the proof invokes a lookup table in one case to speed up the computation
of a matrix vector product. In Section 5, we argue that lookup tables should be avoided in practice.
Technically, our implementation using interleaved representation has a query time of O(r).



P. C. Dillinger, L. Hübschle-Schneider, P. Sanders, and S. Walzer 4:9

because the end of the (gray) area of nonzeroes is reached. “Column failures” correspond to
free variables and therefore unused space. “Row failures” correspond to linearly dependent
equations and therefore failed insertions. This view remains largely intact when handling
Boolean equations in arbitrary order except that the ribbon diagonal, which we introduce as
an analogue to the trace of pivot positions, has a more abstract meaning and probabilistically
suffers from row and column failures depending on its distance to the ribbon border.

(a) (b)

E −→

Figure 4 (a) The simplified ribbon diagonal (made up of ×-marks) passing through A.
(b) The idea of BuRR: When starting with an “overloaded” linear system and removing sets of rows
strategically, we can often ensure that the ribbon diagonal does not collide with the ribbon border
(except possibly in the beginning and the end).

The idea of standard ribbon is to give the gray ribbon area an expected slope of less
than 1 such that row failures are unlikely. BuRR, as illustrated in Figure 4 (b) largely
avoids both failure types by using a slope bigger than 1 but removing ranges of rows in
strategic positions. Homogeneous ribbon filters, despite being the simplest approach, have
the most subtle analysis as both failure types are allowed to occur. While row failures cannot
cause outright construction failure, they are linked to a compromised false positive rate in a
non-trivial way. Our proofs involve mostly simple techniques as would be used in the analysis
of linear probing, which is unsurprising given that [20] has already established a connection
to Robin Hood hashing. We also profit from queuing theory via results we import from [20].

3.5 Further results
We have several further results around variants of BuRR that we summarize here. See the
full paper for detail.

Perhaps most interesting is bump-once ribbon retrieval (Bu1RR), which improves the
worst-case query time by guaranteeing that each key can be retrieved from one out of two
layers – its primary layer or the next one. The primary layer of the keys is now distributed
over all layers (except for the last). When building a layer, the keys bumped from the
previous layer are inserted into the row echelon form first. The layer sizes have to be chosen
in such a way that no bumping is needed for these keys with high probability. Only then are
the keys with the current layer as their primary layer inserted – now allowing bumping.

For building large retrieval data structures, parallel construction is important. Doing
this directly is difficult for ribbon retrieval since there is no efficient way to parallelize back-
substitutions. However, we can partition the equation system into parts that can be solved
independently by bumping w consecutive positions. Note that this can be done transparently
to the query algorithm by using the bumping mechanism that is present anyway.

For large r, we accelerate queries by working with sparse bit patterns that set only a
small fraction of the w bits in the window used for BuRR. In some sense, we are covering
here the middle ground between ribbon and spatial coupling [44]. Experiments indicate that

SEA 2022



4:10 Fast Succinct Retrieval and Approximate Membership Using Ribbon

setting 8 out of 64 bits indeed speeds up queries for r ∈ {8, 16} at the price of increased
(but still small) overhead. Analysis and further exploration of this middle ground may be an
interesting area for future work.

4 Summary of Experimental Findings

We performed extensive experiments to evaluate our ribbon-based data structures and
competitors. We summarize our findings here with details provided in the full paper.

Implementation Details. We implemented BuRR in C++ using template parameters that
allow us to navigate a large part of the design space mapped in the full paper. (Recall that r

is the retrieval width, ϵ the overloading factor, w the ribbon width, and b the bucket width;
t, ℓ, and u are bumping thresholds.) Input keys themselves are only hashed once to a 64-bit
master-hash-code (MHC) that is subsequently used when further hash values are needed. For
this, fast linear congruential mapping is used. The table is stored in an interleaved fashion,
i.e., it is organized as rm/w words of w bits each where word i represents bit i mod r of w

subsequent table entries. This organization allows the extraction of one retrieved bit from
two adjoining machine words using population-count instructions. Interleaved representation
is advantageous for uses of BuRR as an AMQ data structure since a negative query only
has to extract two bits in expectation. Moreover, the implementation directly works for any
value of r. The default data structure has four layers, the last of which uses w′ := min(w, 64)
and ε ≥ 0, where ε is increased in increments of 0.05 until no keys are bumped. For 1+-bit,
we choose t := ⌈−2εb +

√
b/(1 + ε)/2⌉ and ε := −2/3 · w/(4b + w). For 2-bit, parameter

tuning showed that ℓ := ⌈(0.13− ε/2)b⌉ , u := ⌈(0.3− ε/2)b⌉, and ε := −3/w work well for
w = 32; for w ≥ 64, we use ℓ = ⌈(0.09− 3ε/4)b⌉, u = ⌈(0.22− 1.3ε)b⌉, and ε := −4/w.

In addition, there is a prototypical implementation of Bu1RR from [22]. Both BuRR and
Bu1RR build on the same software for ribbon solving from [22]. For validation we extend the
experimental setup used for Cuckoo and Xor filters [29], with our code and scripts available
at github.com/lorenzhs/fastfilter_cpp and github.com/lorenzhs/BuRR.

Experimental Setup. All experiments were run on a machine with an AMD EPYC 7702
processor with 64 cores, a base clock speed of 2.0 GHz, and a maximum boost clock speed
of 3.35GHz. The machine is equipped with 1 TiB of DDR4-3200 main memory and runs
Ubuntu 20.04. We use clang++ 11.0 with optimization flags -O3 -march=native. During
sequential experiments, only a single core was used at any time to minimize interference.

We looked at different input sizes n ∈
{

106, 107, 108}
. Like most studies in this area, we

first look at a sequential workload on a powerful processor with a considerable number of
cores. However, this seems unrealistic since in most applications, one would not let most
cores lay bare but use them. Unless these cores have a workload with very high locality this
would have a considerable effect on the performance of the AMQs. We therefore also look at
a scenario that might be the opposite extreme to a sequential unloaded setting. We run the
benchmarks on all available hardware threads in parallel. Construction builds many AMQs
of size n in parallel. Queries select AMQs randomly. This emulates a large AMQ that is
parallelized using sharding and puts very high load on the memory system.

https://github.com/lorenzhs/fastfilter_cpp
https://github.com/lorenzhs/BuRR


P. C. Dillinger, L. Hübschle-Schneider, P. Sanders, and S. Walzer 4:11

−20% −18% −16% −14% −12% −10% −8% −6% −4% −2% 0%
10−7

10−6

10−5

10−4

10−3

10−2

10−1

ε = 1−m/n (i.e. overloading factor −ε)

Fr
ac

tio
n

of
em

pt
y

slo
ts

e
plain, b=256
1+-bit, b=256
2-bit, b=256
plain, b=128
1+-bit, b=128
2-bit, b=128
1+-bit, b=64
2-bit, b=64

Figure 5 Fraction of empty slots for various configurations of bumped ribbon retrieval with
w = 64, depending on the overloading factor −ε.

Experimental Results. Two preliminary remarks are in order: Firstly, since every retrieval
data structure can be used as a filter but not vice versa, our experiments are for filters, which
admits a larger number of competitors. Secondly, to reduce complexity (for now), our speed
ranking considers the sum of construction time per key and three query times.6

Space Overhead of BuRR. Figure 5 plots the fraction e of empty slots of BuRR for
w = 64 and several combinations of bucket size b and different threshold compression
schemes. Similar plots are given in the full paper for w = 32, w = 128, and for w = 64
with sparse coefficients. Note that (for an infinite number of layers), the overhead is about
o = e+µ/(rb(1−e)) where r is the number of retrieved bits and µ is the number of metadata
bits per bucket. Hence, at least when µ is constant, the overhead is a monotonic function in
e and thus minimizing e also minimizes overhead.

We see that for small |ε|, e decreases exponentially. For sufficiently small b, e can get
almost arbitrarily small. For fixed b > w, e eventually reaches a local minimum because with
threshold-based compression, a large overload enforces large thresholds (> w) and thus empty
regions of buckets. Which actual configuration to choose depends primarily on r. Roughly,
for larger r, more and more metadata bits (i.e., small b, higher resolution of threshold values)
can be invested to reduce e. For fixed b and threshold compression schemes, one can choose
ε to minimize e. One can often choose a larger ε to get slightly better performance due to
less bumping with little impact on o. Perhaps the most delicate tuning parameters are the
thresholds to use for 2-bit and 1+-bit compression. Indeed, in Figure 5 1+-bit compression

6 Queries measured in three settings: Positive keys, negative keys and a mixed data set (50 % chance
of being positive). The latter is not an average of the first two due to branch mispredictions. In the
appendix, we also measure the individual operations resulting in similar conclusions.

SEA 2022



4:12 Fast Succinct Retrieval and Approximate Membership Using Ribbon

Figure 6 Fastest AMQ category for different choices of overhead and false-positive rate φ =
2−r. Shaded regions indicates a dependency on the input type. Ranking metric: construction
time per key plus time for three queries, of which one is positive, one negative, and one mixed
(50 % chance of either).

has lower e than 2-bit compression for b = 64 but higher e for b = 128. We expect that 2-bit
compression could always achieve smaller e than 1+-bit compression, but we have not found
choices for the threshold values that always ensure this.

Ribbon yields the fastest static AMQs for overhead < 44%. Consider Figure 1 on page
4, where we show the tradeoff between space overhead and computation cost for a range
of AMQs for false positive rate φ ≈ 2−8 (i.e., r = 8 for BuRR) and large inputs.7 In the
parallel workload on the right all cores access many AMQs randomly.

Only three AMQs have Pareto-optimal configurations for this case: BuRR for space
overhead below 5 % (actually achieving between 1.4 % and 0.2 % for a narrow time range of
830–890 ns), homogeneous ribbon for space overhead below 44 % (actually achieving between
20 % and 10 % for a narrow time range 580–660 ns), and blocked Bloom filters [41] with time
around 400 ns at the price of space overhead of around 50 %. All other tried AMQs are
dominated by homogeneous ribbon and BuRR. Somewhat surprisingly, this even includes
plain Bloom filters [6] which are slow because they incur several cache faults for each insertion
and positive query. Since plain Bloom filters are extensively used in practice (often in cases
where a static interface suffices), we conclude that homogeneous ribbon and BuRR are fast
enough for a wide range of applications, opening the way for substantial space savings in
those settings. BuRR is at least twice as fast as all tried retrieval data structures.8 The
filter data structures that support counting and deletion (Cuckoo filters [24] and the related
Morton filters [10] as well as the quotient filters QF [35] and CQF [5]) are slower than the
best static AMQs.

7 Small deviations of parameters are necessary because not all filters support arbitrary parameter choices.
Also note that different filters have different functionality: (Blocked) Bloom allows dynamic insertion,
Cuckoo, Morton and Quotient additionally allow deletion and counting. Xor [9, 19, 30, 37], Coupled
[44], LMSS [34] and all ribbon variants are static retrieval data structures.

8 FiRe [39] is likely to be faster but has two orders of magnitude higher overhead; see the full paper for
more details.



P. C. Dillinger, L. Hübschle-Schneider, P. Sanders, and S. Walzer 4:13

The situation changes slightly when going to a sequential workload with large inputs as
shown on the left of Figure 1. Blocked Bloom and BuRR are still the best filters for large and
small overhead, respectively. But now homogeneous ribbon and (variants of) the hypergraph
peeling based Xor filters [30, 19] share the middle-ground of the Pareto curve between them.
Also, plain Bloom filters are almost dominated by Xor filters with half the overhead. The
reason is that modern CPUs can handle several main memory accesses in parallel. This is
very helpful for Bloom and Xor, whose queries do little else than computing the logical (x)or
of a small number of randomly chosen memory cells. Nevertheless, the faster variants of
BuRR are only moderately slower than Bloom and Xor filters while having at least an order
of magnitude smaller overheads.

Further Results. Other claims supported by our data are:
Good ribbon widths are w = 32 and w = 64. Ribbon widths as small as w = 16
can achieve small overhead but at least on 64-bit processors, w ∈ {32, 64} seems most
sensible. The case w = 32 is only 15–20 % faster than w = 64 while the latter has about
four times less overhead. Thus the case w = 64 seems the most favorable one. This
confirms that the linear dependence of the construction time on w is to some extent
hidden behind the cache faults which are similar for both values of w (this is in line with
our analysis in the external memory model).
Bu1RR is slower than BuRR by about 20 %, which may be a reasonable price for
better worst-case query time in some real-time applications.9

The 1+-bit variant of BuRR is smaller but slower than the variant with 2-bit
metadata per bucket, as expected, though not by a large margin.
Smaller inputs and smaller r change little. For inputs that fit into cache, the
Pareto curve is still dominated by blocked Bloom, homogeneous ribbon, and BuRR, but
the performance penalty for achieving low overhead increases. For r = 1 we have data
for additional competitors. GOV [28], which relies on structured Gaussian elimination,
is several times slower than BuRR and exhibits an unfavorable time–overhead tradeoff.
2-block [18] uses two small dense blocks of nonzeroes and can achieve very small overhead
at the cost of prohibitively expensive construction.
For large r, Xor filters and Cuckoo filters come into play. Figure 6 shows the
fastest AMQ depending on overhead and false positive rate φ = 2−r up to r = 16. While
blocked Bloom, homogeneous ribbon, and BuRR cover most of the area, they lose ground
for large r because their running time depends on r. Here Xor filters and Cuckoo filters
make an appearance.
Bloom filters and Ribbon filters are fast for negative queries where, on average,
only two bits need to be retrieved to prove that a key is not in the set. This improves
the relative standing of plain Bloom filters on large and parallel workloads with mostly
negative queries.
Xor filters [30] and Coupled [44] have fast queries since they can exploit parallelism
in memory accesses. They suffer, however, from slow construction on large sequential
inputs due to poor locality, and exhibit poor query performance when accessed from many
threads in parallel. For small n, large r, and overhead between 8 % and 20 %, Coupled
becomes the fastest AMQ.

9 Part of the performance difference might be due to implementation details; see the full paper.

SEA 2022



4:14 Fast Succinct Retrieval and Approximate Membership Using Ribbon

5 Related Results and Techniques

We now take the time to review some related work on retrieval including all approaches listed
in Table 1.

Related Problems. An important application of retrieval besides AMQs is encoding perfect
hash functions (PHF), i.e. an injective function p : S → [(1+ε)|S|] for given S ⊆ U . Objectives
for p are compact encoding, fast evaluation and small ε ≥ 0. Consider a result from cuckoo
hashing [25, 26, 33], namely that given four hash functions h1, h2, h3, h4 : S → [1.024|S|]
there exists, with high probability, a choice function f : S → [4] such that x 7→ hf(x)(x)
is injective. A 2-bit retrieval data structure for f therefore gives rise to a perfect hash
function [9]; see also [12]. Retrieval data structures can also be used to directly store compact
names of objects, e.g., in column-oriented databases [39]. This takes more space than perfect
hashing but allows to encode the ordering of the keys into the names.

In retrieval for AMQs and PHFs the stored values f(x) ∈ {0, 1}r are uniformly random.
However, some authors consider applications where f(x) has a skewed distribution and the
overhead of the retrieval data structure is measured with respect to the 0-th order empirical
entropy of f [31, 4, 28]. Note that once we can do 1-bit retrieval with low overhead, we
can use that to store data with prefix-free variable-bit-length encoding (e.g. Huffman or
Golomb codes). We can store the k-th bit of f(x) as data to be retrieved for the input
tuple (x, k). This can be further improved by storing R 1-bit retrieval data structures where
R = maxx∈S |f(x)| [31, 4, 28]. By interleaving these data structures, one can make queries
almost as fast as in the case of fixed r.

More Linear Algebra based approaches. It has long been known that some matrices with
random entries are likely to have full rank, even when sparse [13] and density thresholds
for random k-XORSAT formulas to be solvable – either at all [23, 15] or with a linear time
peeling algorithm [36, 32] – have been determined.

Building on such knowledge, a solution to the retrieval problem was identified by Botelho,
Pagh and Ziviani [8, 7, 9] in the context of perfect hashing. In our terminology, their rows
h⃗(x) contain 3 random 1-entries per key which makes AZ = b solvable with peeling, provided
m > 1.22n.

Several works develop the idea from [9]. In [27, 28] only m > 1.089n is needed in principle
(or m > 1.0238n for |⃗h(x)| = 4) but a Gaussian solver has to be used. More recently in the
spatial coupling approach [44] h⃗(x) has k random 1-entries within a small window, achieving
space overhead ≈ e−k while still allowing a peeling solver. With some squinting, a class of
linear erasure correcting codes from [34] can be interpreted as a retrieval data structure of a
similar vein, where |⃗h(x)| ∈ {5, . . . , k} is random with expectation O(log k).

Two recent approaches also based on sparse matrix solving are [18, 20] where h⃗(x) contains
two blocks or one block of random bits. Our ribbon approach builds on the latter.

We end this section with a discussion of seemingly promising techniques and give reasons
why we choose not to use them in this paper. Some more details are also discussed in the
experimental section of the full paper.

Shards. A widely used technique in hashing-based data structures is to use a splitting
hash function to first divide the input set into many much smaller sets (shards, buckets,
chunks, bins,. . . ) that can then be handled separately [28, 3, 18, 20, 1, 40]. This incurs only
linear time overhead during preprocessing and constant time overhead during a query, and



P. C. Dillinger, L. Hübschle-Schneider, P. Sanders, and S. Walzer 4:15

allows to limit the impact of superlinear cost of further processing to the size of the shard.
Even to ribbon, this could be used in multiple ways. For example, by statically splitting the
table into pieces of size nε for standard ribbon, one can achieve space overhead ε +O(n−ε),
preprocessing time O(n/ε), and query time O(r) [20]. This is, however, underwhelming
on reflection. Before arriving at the current form of BuRR, we designed several variants
based on sharding but never achieved better overhead than Ω(1/w). The current overhead of
O

(
log w/w2)

comes from using the splitting technique in a “soft” way – keys are assigned to
buckets for the purpose of defining bumping information but the ribbon solver may implicitly
allocate them to subsequent buckets.

Table lookup. The first asymptotically efficient succinct retrieval data structure we are
aware of [40] uses two levels of sharding to obtain very small shards of size O

(√
log n

)
with small asymptotic overhead. It then uses dense random matrices per shard to ob-
tain per-shard retrieval data structures. This can be done in constant time per shard by
tabulating the solutions of all possible matrices. This leads to a multiplicative overhead
of O

(
log log n/

√
log n

)
. Belazzougui and Venturini [4] use slightly larger shards of size

O((1 + log log(n)/r) log log(n)/ log n). Using carefully designed random lookup tables they
show that linear construction time, constant lookup time, and overhead O

(
(log log n)2/ log n

)
is possible. We discussed on page 3 why we suspect large overhead for [40] and [4] in practice.

In general, lookup tables are often problematic for compressed data structures in practice
– they cause additional space overhead and cache faults. Even if the table is small and fits
into cache, this may yield efficient benchmarks but can still cause cache faults in practical
workloads where the data structure is only a small part in a large software system with a
large working set.

Cascaded bumping. Hash tables consisting of multiple shrinking levels are also used in
multilevel adaptive hashing [11] and filter hashing [25]. While similar to BuRR in this sense,
they do not maintain bumping information. This is fine for storing key-value pairs because
all levels can be searched for a requested key. But it is unclear how the idea would work in
the context of retrieval, i.e. without storing keys.

6 Conclusion and Future Work

BuRR is a considerable contribution to close a gap between theory and practice of retrieval and
static approximate membership data structures. From the theoretical side, BuRR is succinct
while achieving constant access cost for small number of retrieved bits (r = O(log(n)/w)). In
contrast to previous succinct constructions with better asymptotic running times, its overhead
is tunable and already small for realistic values of n. In practice, BuRR is faster than widely
used data structures with much larger overhead and reasonably simple to implement. Our
results further strengthen the success of linear algebra based solutions to the problem. Our
on-the-fly approach shows that Gauss-like solvers can be superior to peeling-based greedy
solvers even with respect to speed.

While the wide design space of BuRR leaves room for further practical improvements,
we see the main open problems for large r. In practice, peeling based solvers (e.g., [44])
might outperform BuRR if faster construction algorithms can be found – perhaps using
ideas like overloading and bumping. In theory, existing succinct data structures (e.g. [40, 4])
allow constant query time but have high space overhead for realistic input sizes. Combining
constant cost per element for large r with small (preferably tunable) space overhead therefore
remains a theoretical promise yet to be convincingly redeemed in practice.

SEA 2022



4:16 Fast Succinct Retrieval and Approximate Membership Using Ribbon

References
1 Martin Aumüller, Martin Dietzfelbinger, and Michael Rink. Experimental variations of

a theoretically good retrieval data structure. In Proc. 17th ESA, pages 742–751, 2009.
doi:10.1007/978-3-642-04128-0_66.

2 Michael Axtmann, Sascha Witt, Daniel Ferizovic, and Peter Sanders. Engineering in-place
(shared-memory) sorting algorithms. CoRR, 2020. arXiv:2009.13569.

3 Djamal Belazzougui, Paolo Boldi, Giuseppe Ottaviano, Rossano Venturini, and Sebastiano
Vigna. Cache-oblivious peeling of random hypergraphs. In Proc. DCC, pages 352–361, 2014.
doi:10.1109/DCC.2014.48.

4 Djamal Belazzougui and Rossano Venturini. Compressed static functions with applications.
In Sanjeev Khanna, editor, Proc. 24th SODA, pages 229–240. SIAM, 2013. doi:10.1137/1.
9781611973105.17.

5 Michael A. Bender, Martin Farach-Colton, Rob Johnson, Russell Kraner, Bradley C. Kuszmaul,
Dzejla Medjedovic, Pablo Montes, Pradeep Shetty, Richard P. Spillane, and Erez Zadok. Don’t
thrash: How to cache your hash on flash. Proc. VLDB Endow., 5(11):1627–1637, 2012.
doi:10.14778/2350229.2350275.

6 Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors. Commun. ACM,
13(7):422–426, 1970. doi:10.1145/362686.362692.

7 Fabiano Cupertino Botelho. Near-Optimal Space Perfect Hashing Algorithms. PhD thesis,
Federal University of Minas Gerais, 2008. URL: http://cmph.sourceforge.net/papers/
thesis.pdf.

8 Fabiano Cupertino Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and space-efficient
minimal perfect hash functions. In Proc. 10th WADS, pages 139–150, 2007. doi:10.1007/
978-3-540-73951-7_13.

9 Fabiano Cupertino Botelho, Rasmus Pagh, and Nivio Ziviani. Practical perfect hashing in
nearly optimal space. Inf. Syst., 38(1):108–131, 2013. doi:10.1016/j.is.2012.06.002.

10 Alex D. Breslow and Nuwan Jayasena. Morton filters: fast, compressed sparse cuckoo filters.
VLDB J., 29(2-3):731–754, 2020. doi:10.1007/s00778-019-00561-0.

11 Andrei Z. Broder and Anna R. Karlin. Multilevel adaptive hashing. In David S. Johnson,
editor, Proc. 1st SODA, pages 43–53. SIAM, 1990. URL: http://dl.acm.org/citation.cfm?
id=320176.320181.

12 Bernard Chazelle, Joe Kilian, Ronitt Rubinfeld, and Ayellet Tal. The Bloomier filter: An
efficient data structure for static support lookup tables. In Proc. 15th SODA, pages 30–39.
SIAM, 2004. URL: http://dl.acm.org/citation.cfm?id=982792.982797.

13 Colin Cooper. On the rank of random matrices. Random Structures & Algorithms, 16(2):209–
232, 2000. doi:10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1.

14 Niv Dayan, Manos Athanassoulis, and Stratos Idreos. Monkey: Optimal navigable key-value
store. In Proceedings of the 2017 ACM International Conference on Management of Data,
SIGMOD ’17, pages 79–94, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3035918.3064054.

15 Martin Dietzfelbinger, Andreas Goerdt, Michael Mitzenmacher, Andrea Montanari, Rasmus
Pagh, and Michael Rink. Tight thresholds for cuckoo hashing via XORSAT. In Proc. 37th
ICALP (1), pages 213–225, 2010. doi:10.1007/978-3-642-14165-2_19.

16 Martin Dietzfelbinger and Rasmus Pagh. Succinct data structures for retrieval and approximate
membership (extended abstract). In Proc. 35th ICALP (1), pages 385–396, 2008. doi:
10.1007/978-3-540-70575-8_32.

17 Martin Dietzfelbinger and Michael Rink. Applications of a splitting trick. In Proc. 36th
ICALP (1), pages 354–365, 2009. doi:10.1007/978-3-642-02927-1_30.

18 Martin Dietzfelbinger and Stefan Walzer. Constant-time retrieval with O(log m) extra bits.
In Proc. 36th STACS, pages 24:1–24:16, 2019. doi:10.4230/LIPIcs.STACS.2019.24.

19 Martin Dietzfelbinger and Stefan Walzer. Dense peelable random uniform hypergraphs. In
Proc. 27th ESA, pages 38:1–38:16, 2019. doi:10.4230/LIPIcs.ESA.2019.38.

https://doi.org/10.1007/978-3-642-04128-0_66
http://arxiv.org/abs/2009.13569
https://doi.org/10.1109/DCC.2014.48
https://doi.org/10.1137/1.9781611973105.17
https://doi.org/10.1137/1.9781611973105.17
https://doi.org/10.14778/2350229.2350275
https://doi.org/10.1145/362686.362692
http://cmph.sourceforge.net/papers/thesis.pdf
http://cmph.sourceforge.net/papers/thesis.pdf
https://doi.org/10.1007/978-3-540-73951-7_13
https://doi.org/10.1007/978-3-540-73951-7_13
https://doi.org/10.1016/j.is.2012.06.002
https://doi.org/10.1007/s00778-019-00561-0
http://dl.acm.org/citation.cfm?id=320176.320181
http://dl.acm.org/citation.cfm?id=320176.320181
http://dl.acm.org/citation.cfm?id=982792.982797
https://doi.org/10.1002/(SICI)1098-2418(200003)16:2<209::AID-RSA6>3.0.CO;2-1
https://doi.org/10.1145/3035918.3064054
https://doi.org/10.1007/978-3-642-14165-2_19
https://doi.org/10.1007/978-3-540-70575-8_32
https://doi.org/10.1007/978-3-540-70575-8_32
https://doi.org/10.1007/978-3-642-02927-1_30
https://doi.org/10.4230/LIPIcs.STACS.2019.24
https://doi.org/10.4230/LIPIcs.ESA.2019.38


P. C. Dillinger, L. Hübschle-Schneider, P. Sanders, and S. Walzer 4:17

20 Martin Dietzfelbinger and Stefan Walzer. Efficient Gauss elimination for near-quadratic
matrices with one short random block per row, with applications. In Proc. 27th ESA, pages
39:1–39:18, 2019. doi:10.4230/LIPIcs.ESA.2019.39.

21 Peter C. Dillinger, Lorenz Hübschle-Schneider, Peter Sanders, and Stefan Walzer. Fast
succinct retrieval and approximate membership using ribbon. CoRR, abs/2106.12270, 2021.
arXiv:2109.01892.

22 Peter C. Dillinger and Stefan Walzer. Ribbon filter: practically smaller than Bloom and Xor.
CoRR, 2021. arXiv:2103.02515.

23 Olivier Dubois and Jacques Mandler. The 3-XORSAT threshold. In Proc. 43rd FOCS, pages
769–778, 2002. doi:10.1109/SFCS.2002.1182002.

24 Bin Fan, David G. Andersen, and Michael Kaminsky. Cuckoo filter: Better than
Bloom. ;login:, 38(4), 2013. URL: https://www.usenix.org/publications/login/
august-2013-volume-38-number-4/cuckoo-filter-better-bloom.

25 Dimitris Fotakis, Rasmus Pagh, Peter Sanders, and Paul G. Spirakis. Space efficient hash
tables with worst case constant access time. Theory Comput. Syst., 38(2):229–248, 2005.
doi:10.1007/s00224-004-1195-x.

26 Nikolaos Fountoulakis and Konstantinos Panagiotou. Sharp load thresholds for cuckoo hashing.
Random Struct. Algorithms, 41(3):306–333, 2012. doi:10.1002/rsa.20426.

27 Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. Fast scalable construction of
(minimal perfect hash) functions. In Proc. 15th SEA, pages 339–352, 2016. doi:10.1007/
978-3-319-38851-9_23.

28 Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. Fast scalable construction of
([compressed] static | minimal perfect hash) functions. Information and Computation, 2020.
doi:10.1016/j.ic.2020.104517.

29 Thomas Mueller Graf and Daniel Lemire. fastfilter_cpp, 2019. URL: https://github.com/
FastFilter/fastfilter_cpp.

30 Thomas Mueller Graf and Daniel Lemire. Xor filters: Faster and smaller than Bloom and
cuckoo filters. ACM J. Exp. Algorithmics, 25:1–16, 2020. doi:10.1145/3376122.

31 Jóhannes B. Hreinsson, Morten Krøyer, and Rasmus Pagh. Storing a compressed func-
tion with constant time access. In Proc. 17th ESA, pages 730–741, 2009. doi:10.1007/
978-3-642-04128-0_65.

32 Svante Janson and Malwina J. Luczak. A simple solution to the k-core problem. Random
Struct. Algorithms, 30(1-2):50–62, 2007. doi:10.1002/rsa.20147.

33 Marc Lelarge. A new approach to the orientation of random hypergraphs. In Proc. 23rd
SODA, pages 251–264. SIAM, 2012. doi:10.1137/1.9781611973099.23.

34 Michael Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and Daniel A. Spielman.
Efficient erasure correcting codes. IEEE Trans. Inf. Theory, 47(2):569–584, 2001. doi:
10.1109/18.910575.

35 Tobias Maier, Peter Sanders, and Robert Williger. Concurrent expandable AMQs on the
basis of quotient filters. In Proc. 18th SEA, pages 15:1–15:13, 2020. doi:10.4230/LIPIcs.
SEA.2020.15.

36 Michael Molloy. Cores in random hypergraphs and Boolean formulas. Random Struct.
Algorithms, 27(1):124–135, 2005. doi:10.1002/rsa.20061.

37 Thomas Mueller Graf and Daniel Lemire. Binary fuse filters: Fast and smaller than xor filters.
ACM Journal of Experimental Algorithmics, 27, March 2022. doi:10.1145/3510449.

38 Ingo Müller, Cornelius Ratsch, and Franz Färber. Adaptive string dictionary compression
in in-memory column-store database systems. In Proc. 17th EDBT, pages 283–294, 2014.
doi:10.5441/002/edbt.2014.27.

39 Ingo Müller, Peter Sanders, Robert Schulze, and Wei Zhou. Retrieval and perfect hashing using
fingerprinting. In Proc. 14th SEA, pages 138–149, 2014. doi:10.1007/978-3-319-07959-2_12.

40 Ely Porat. An optimal Bloom filter replacement based on matrix solving. In Proc. 4th CSR,
pages 263–273, 2009. doi:10.1007/978-3-642-03351-3_25.

SEA 2022

https://doi.org/10.4230/LIPIcs.ESA.2019.39
http://arxiv.org/abs/2109.01892
http://arxiv.org/abs/2103.02515
https://doi.org/10.1109/SFCS.2002.1182002
https://www.usenix.org/publications/login/august-2013-volume-38-number-4/cuckoo-filter-better-bloom
https://www.usenix.org/publications/login/august-2013-volume-38-number-4/cuckoo-filter-better-bloom
https://doi.org/10.1007/s00224-004-1195-x
https://doi.org/10.1002/rsa.20426
https://doi.org/10.1007/978-3-319-38851-9_23
https://doi.org/10.1007/978-3-319-38851-9_23
https://doi.org/10.1016/j.ic.2020.104517
https://github.com/FastFilter/fastfilter_cpp
https://github.com/FastFilter/fastfilter_cpp
https://doi.org/10.1145/3376122
https://doi.org/10.1007/978-3-642-04128-0_65
https://doi.org/10.1007/978-3-642-04128-0_65
https://doi.org/10.1002/rsa.20147
https://doi.org/10.1137/1.9781611973099.23
https://doi.org/10.1109/18.910575
https://doi.org/10.1109/18.910575
https://doi.org/10.4230/LIPIcs.SEA.2020.15
https://doi.org/10.4230/LIPIcs.SEA.2020.15
https://doi.org/10.1002/rsa.20061
https://doi.org/10.1145/3510449
https://doi.org/10.5441/002/edbt.2014.27
https://doi.org/10.1007/978-3-319-07959-2_12
https://doi.org/10.1007/978-3-642-03351-3_25


4:18 Fast Succinct Retrieval and Approximate Membership Using Ribbon

41 Felix Putze, Peter Sanders, and Johannes Singler. Cache-, hash-, and space-efficient Bloom
filters. ACM Journal of Experimental Algorithmics, 14, 2009. doi:10.1145/1498698.1594230.

42 Kapil Vaidya, Eric Knorr, Tim Kraska, and Michael Mitzenmacher. Partitioned learned bloom
filter. CoRR, abs/2006.03176, 2020. arXiv:2006.03176.

43 Stefan Walzer. Random Hypergraphs for Hashing-Based Data Structures. PhD thesis, Technis-
che Universität Ilmenau, 2020. URL: https://www.db-thueringen.de/receive/dbt_mods_
00047127.

44 Stefan Walzer. Peeling close to the orientability threshold: Spatial coupling in hashing-
based data structures. In Proc. 32nd SODA, pages 2194–2211. SIAM, 2021. doi:10.1137/1.
9781611976465.131.

A Further Experimental Data

The following figures and tables contain
Figures 7 and 8. Performance-overhead trade-off of AMQs for very high false positive rate

(≈ 50%) and very low false positive rate (≈ 0.01%) roughly corresponding to performance
of 1-bit retrieval and 16-bit retrieval for the retrieval-based AMQs.

Figures 9–11. Performance-overhead trade-off of AMQs as in Figure 1, but seperately for
positive queries, negative queries and construction.

1,000

2,000

5,000

10,000

100 50 30 16 8 4 2 1 0.5 0.25
0

200

400

600

800

Overhead (%); r < 1.1 (Pareto fronts)

P
er
-k
ey

co
n
st
ru
ct
io
n
ti
m
e
+

3
q
u
er
ie
s
(n
s) BlBloom

Xor

LMSS

Coupled

GOV

2-Block

Standard

Homog

Bu1RR

BuRR

n = 106

n = 108

parallel,
n = 107

Figure 7 Performance–overhead trade-off for false-positive rate > 46 % for different AMQs and
different inputs. This large false-positive rate is the only one for which we have implementations for
GOV [28] and 2-block [18]. Note that the vertical axis switches to a logarithmic scale above 900 ns.

https://doi.org/10.1145/1498698.1594230
http://arxiv.org/abs/2006.03176
https://www.db-thueringen.de/receive/dbt_mods_00047127
https://www.db-thueringen.de/receive/dbt_mods_00047127
https://doi.org/10.1137/1.9781611976465.131
https://doi.org/10.1137/1.9781611976465.131


P. C. Dillinger, L. Hübschle-Schneider, P. Sanders, and S. Walzer 4:19

2,000
3,000
4,000
5,000

100 50 30 16 8 4 2 1 0.5 0.25 0.1 0.05
0

200

400

600

800

1,000

1,200

1,400

1,600

Overhead (%); r > 13 (Pareto fronts)

P
er
-k
ey

co
n
st
ru
ct
io
n
ti
m
e
+

3
q
u
er
ie
s
(n
s) BlBloom

Cuckoo

QF

CQF

Xor

LMSS

Coupled

Standard

Homog

Bu1RR

BuRR

n = 106

n = 108

parallel,
n = 107

Figure 8 Performance–overhead trade-off for false-positive rate < 2−13 ≈ 0.01 % for different
AMQs and different inputs. Logarithmics vertical axis above 1600 ns.

350

700
1,000

2,000

100 50 30 16 8 4 2 1 0.5 0.25 0.1 0.05
0

100

200

300

Overhead (%); 6.6 < r < 8.4 (Pareto fronts)

Q
u
er
y
ti
m
e
p
er

ke
y,

p
os
it
iv
e
q
u
er
y
(n
s)

Bloom

BlBloom

Cuckoo

Morton

QF

CQF

Xor

LMSS

Coupled

Standard

Homog

Bu1RR

BuRR

n = 106

n = 108

parallel,
n = 107

Figure 9 Query time–overhead trade-off for positive queries, false-positive rate between 0.3 %
and 1 % for different AMQs and different inputs. Note that Xor filters have excellent query time
sequentially where random fetches can be performed in parallel but are far from optimal in the
parallel setting where the total number of memory accesses matters most. Logarithmic vertical axis
above 350 ns.

SEA 2022



4:20 Fast Succinct Retrieval and Approximate Membership Using Ribbon

350

700
1,000
1,500

100 50 30 16 8 4 2 1 0.5 0.25 0.1 0.05
0

100

200

300

Overhead (%); 6.6 < r < 8.4 (Pareto fronts)

Q
u
er
y
ti
m
e
p
er

ke
y,

n
eg
at
iv
e
q
u
er
y
(n
s)

Bloom

BlBloom

Cuckoo

Morton

QF

CQF

Xor

LMSS

Coupled

Standard

Homog

Bu1RR

BuRR

n = 106

n = 108

parallel,
n = 107

Figure 10 Query time–overhead trade-off for negative queries, false-positive rate between 0.3 %
and 1 % for different AMQs and different inputs. Again, Xor filters perform well sequentially but
suffer in the parallel case. Logarithmic vertical axis above 350 ns.

350

500

700

900

100 50 30 16 8 4 2 1 0.5 0.25 0.1 0.05
0

100

200

300

Overhead (%); 6.6 < r < 8.4 (Pareto fronts)

C
o
n
st
ru
ct
io
n
ti
m
e
p
er

ke
y
(n
s)

Bloom

BlBloom

Cuckoo

Morton

QF

CQF

Xor

LMSS

Coupled

Standard

Homog

Bu1RR

BuRR

n = 106

n = 108

parallel,
n = 107

Figure 11 Construction time–overhead trade-off for false-positive rate between 0.3 % and 1 % for
different AMQs and different inputs. Compressed vertical axis above 350 ns.



Parallel Flow-Based Hypergraph Partitioning
Lars Gottesbüren !

Karlsruhe Institute of Technology, Karlsruhe, Germany

Tobias Heuer !

Karlsruhe Institute of Technology, Karlsruhe, Germany

Peter Sanders !

Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract
We present a shared-memory parallelization of flow-based refinement, which is considered the most
powerful iterative improvement technique for hypergraph partitioning at the moment. Flow-based
refinement works on bipartitions, so current sequential partitioners schedule it on different block pairs
to improve k-way partitions. We investigate two different sources of parallelism: a parallel scheduling
scheme and a parallel maximum flow algorithm based on the well-known push-relabel algorithm.
In addition to thoroughly engineered implementations, we propose several optimizations that
substantially accelerate the algorithm in practice, enabling the use on extremely large hypergraphs
(up to 1 billion pins). We integrate our approach in the state-of-the-art parallel multilevel framework
Mt-KaHyPar and conduct extensive experiments on a benchmark set of more than 500 real-world
hypergraphs, to show that the partition quality of our code is on par with the highest quality
sequential code (KaHyPar), while being an order of magnitude faster with 10 threads.

2012 ACM Subject Classification Mathematics of computing → Hypergraphs; Mathematics of
computing → Graph algorithms

Keywords and phrases multilevel hypergraph partitioning, shared-memory algorithms, maximum
flow

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.5

Related Version Full Version: https://arxiv.org/abs/2201.01556

Supplementary Material
Software (Multilevel Framework): https://github.com/kahypar/mt-kahypar
Software (Flow-Based Refinement): https://github.com/larsgottesbueren/WHFC/tree/parallel
Dataset (Benchmark Set & Experimental Results): https://algo2.iti.kit.edu/heuer/sea22/

Funding This work was partially supported by DFG grants WA654/19-2 and SA933/11-1. The
authors acknowledge support by the state of Baden-Württemberg through bwHPC.

1 Introduction

Balanced hypergraph partitioning is a classical NP-hard optimization problem with numerous
applications. Hypergraphs are a generalization of graphs, where each hyperedge can connect
an arbitrary number of vertices. The problem is to partition the vertices of a hypergraph
H = (V, E, ω) into k disjoint blocks V1, . . . Vk of roughly equal size (∀Vi : |Vi| ≤ (1 + ε) |V |

k ),
such that an objective function defined on the hyperedges is minimized. In this work, we
consider the connectivity metric

∑
e∈E(λ(e)−1)·ω(e) where λ(e) := |{Vi | e∩Vi ̸= ∅}| denotes

the number of different blocks connected by hyperedge e ∈ E and ω(e) denotes its weight.
Often balanced partitioning is used as an acceleration technique for other applications, such as
quantum circuit simulation [28], sharding distributed databases [14, 32], load balancing [12],
route planning [16, 29], or boosting cache utilization in a search engine backend [7].

© Lars Gottesbüren, Tobias Heuer, and Peter Sanders;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 5; pp. 5:1–5:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lars.gottesbueren@kit.edu
mailto:tobias.heuer@kit.edu
mailto:sanders@kit.edu
https://doi.org/10.4230/LIPIcs.SEA.2022.5
https://arxiv.org/abs/2201.01556
https://github.com/kahypar/mt-kahypar
https://github.com/larsgottesbueren/WHFC/tree/parallel
https://algo2.iti.kit.edu/heuer/sea22/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


5:2 Parallel Flow-Based Hypergraph Partitioning

There is a substantial amount of literature, which is why we refer to survey articles [4, 9,
45, 50] for a summary. Most of the work focuses on heuristics, with the multilevel paradigm
emerging as the most successful approach [2, 12, 18, 26, 34, 40, 49, 50]. Most partitioners use
move-based heuristics such as label propagation [48] or variations of the Kernighan-Lin [37]
or Fiduccia-Mattheyses [20] algorithms for local search. These heuristics move nodes greedily
to different blocks according to their reduction in the objective function and are known to
get stuck in local minima [38].

In this situation, maximum flows are an excellent tool as they correspond to (unbalanced)
minimum cuts, thus offering a more global view than local move-based routines. Due to
their complexity [55], they were long overlooked for partitioning, but have since enjoyed
wide-spread adoption [5, 16, 29, 39, 49, 55] in many different algorithmic contexts.

Contribution. In this paper, we parallelize flow-based refinement, a powerful technique
that is the last missing component in a series of works [26, 27] on parallelizing the state-of-
the-art multilevel hypergraph partitioner KaHyPar [50]. Flow-based refinement operates on
bipartitions, or on two blocks at a time if used for k > 2. Scheduling independent block pairs
gives some trivial parallelism. One contribution we make is to improve the parallelism in the
scheduler by relaxing certain constraints and showing how to deal with the resulting race
conditions. For small k this is still insufficiently parallel, which is why we also parallelize
the refinement on two blocks. We adapt an existing parallel flow algorithm to handle the
incremental flow problems of the FlowCutter refinement algorithm [23, 24, 29]. Additionally,
we engineer an efficient implementation, proposing several optimizations that reduce running
time in practice, and fix a so far undocumented bug in the parallel flow algorithm. The
result is a parallel partitioner that achieves the same solution quality as the highest quality
sequential framework (KaHyPar), but in a fast parallel code. Using 10 threads, our code is
an order of magnitude faster than sequential KaHyPar with flow-based refinement.

Outline. The paper is organized as follows. In Section 2 we introduce notation, terminology,
and some algorithmic preliminaries. Section 3 briefly deals with related work. More details
on additional related work are given in the main sections 5–8, closer to where particular
parts are needed. In Section 4, we give an overview of the different components in the
framework and how they interact. We complement the algorithmic discussion with extensive
experiments in Section 9, before concluding in Section 10.

2 Preliminaries

Hypergraphs. A weighted hypergraph H = (V, E, c, ω) is defined as a set of vertices V and
a set of hyperedges/nets E with vertex weights c : V → R>0 and net weights ω : E → R>0,
where each net e is a subset of the vertex set V . The vertices of a net are called its pins. We
extend c and ω to sets in the natural way, i.e., c(U) :=

∑
v∈U c(v) and ω(F ) :=

∑
e∈F ω(e).

A vertex v is incident to a net e if v ∈ e. I(v) denotes the set of all incident nets of v. The
degree of a vertex v is deg(v) := |I(v)|. The size |e| of a net e is the number of its pins. We
call two nets ei and ej identical if ei = ej . Given a subset V ′ ⊂ V , the subhypergraph HV ′ is
defined as HV ′ := (V ′, {e ∩ V ′ | e ∈ E : e ∩ V ′ ̸= ∅}).

Balanced Hypergraph Partitioning. A k-way partition of a hypergraph H is a function
Π : V → {1, . . . , k}. The blocks Vi := Π−1(i) of Π are the inverse images. We call Π
ε-balanced if each block Vi satisfies the balance constraint: c(Vi) ≤ Lmax := (1 + ε)⌈ c(V )

k ⌉ for



L. Gottesbüren, T. Heuer, and P. Sanders 5:3

some parameter ε ∈ (0, 1). For each net e, Λ(e) := {Vi | Vi ∩ e ̸= ∅} denotes the connectivity
set of e. The connectivity λ(e) of a net e is λ(e) := |Λ(e)|. A net is called a cut net if
λ(e) > 1. A node u that is incident to at least one cut net is called boundary node. The
number of pins of a net e in block Vi is denoted by Φ(e, Vi) := |e ∩ Vi|. The quotient graph
Q := (Π, EΠ := {(Vi, Vj) | ∃e ∈ E : {Vi, Vj} ⊆ Λ(e)}) contains an edge between each pair of
adjacent blocks of a k-way partition Π. Given parameters ε and k, and a hypergraph H,
the balanced hypergraph partitioning problem is to find an ε-balanced k-way partition Π that
minimizes an objective function defined on the hyperedges. In this work, we minimize the
connectivity metric (λ− 1)(Π) :=

∑
e∈E(λ(e)− 1) ω(e).

Flows. A flow network N = (V, E , c) is a directed graph with a dedicated source s ∈ V
and sink t ∈ V in which each edge e ∈ E has capacity c(e) ≥ 0. An (s, t)-flow is a function
f : V × V → R that satisfies the capacity constraint ∀u, v ∈ V : f(u, v) ≤ c(u, v), the skew
symmetry constraint ∀u, v ∈ V : f(u, v) = −f(v, u) and the flow conservation constraint
∀u ∈ V \ {s, t} :

∑
v∈V f(u, v) = 0. The value of a flow |f | :=

∑
v∈V f(s, v) =

∑
v∈V f(v, t) is

defined as the total amout of flow transferred from s to t. An (s, t)-flow f is a maximum
(s, t)-flow if there exists no other (s, t)-flow f ′ with |f | < |f ′|. The residual capacity is
defined as rf (e) = c(e) − f(e). An edge e is saturated if rf (e) = 0. Nf = (V, Ef , rf ) with
Ef := {(u, v) ∈ V × V | rf (u, v) > 0} is the residual network. The max-flow min-cut theorem
states that the value |f | of a maximum (s, t)-flow equals the weight of a minimum cut that
separates s and t [21]. This is also called a minimum (s, t)-cut. The source-side cut can be
computed by exploring the nodes reachable from the source via residual edges (for example
via BFS), and analogously the sink-side cut from the sink.

Push-Relabel Algorithm. The push-relabel [22] maximum flow algorithm stores a distance
label d(u) and an excess value exc(u) :=

∑
v∈V f(v, u) for each node. It maintains a

preflow [36] which is a flow where the conservation constraint is replaced by exc(u) ≥ 0. A
valid distance labeling is defined by the conditions ∀(u, v) ∈ Ef d(u) ≤ d(v) + 1, d(s) = |V|,
d(t) = 0. A node u ∈ V is active if exc(u) > 0. An edge (u, v) ∈ E is admissible if rf (u, v) > 0
and d(u) = d(v) + 1. A push(u, v) operation sends δ = min(exc(u), rf (u, v)) flow units over
(u, v). It is applicable if u is active and (u, v) is admissible. A relabel(u) operation updates
the distance label of u to min({d(v) + 1 | rf (u, v) > 0}), which is applicable if u is active, and
has no admissible edges. The distance labels are initialized to ∀u ∈ V \ {s} : d(u) = 0 and
d(s) = |V | and all source edges are saturated. Efficient variants use the discharge routine,
which repeatedly scans the edges of an active node until its excess is zero. All admissible
edges are pushed and at the end of a scan, the node is relabeled. Discharging active nodes
in FIFO order results in an O(|V|3) time algorithm. The global relabeling heuristic [13]
frequently assigns exact distance labels by performing a reverse BFS from the sink, to reduce
relabel work in practice. Note that preflows already induce minimum sink-side cuts, so if
only a minimum cut is required, the algorithm can already stop once no active nodes with
distance label < n exist.

Flows on Hypergraphs. The Lawler expansion [41] of a hypergraph H = (V, E, c, ω)
is a graph consisting of V and two nodes ein, eout for each e ∈ E, with directed edges
∀u ∈ V, e ∈ I(u) : (u, ein), (eout, u) with infinite capacity and bridge edges ∀e ∈ E : (ein, eout)
with capacity ω(e). A minimum (s, t)-cut in the Lawler expansion directly corresponds to
one in the hypergraph (since only bridging edges have finite capacity).

SEA 2022



5:4 Parallel Flow-Based Hypergraph Partitioning

Algorithm 1 Parallel Flow-Based Refinement.

Input: Hypergraph H = (V, E, c, ω), k-way partition Π of H

1 Q ← buildQuotientGraph(H, Π) // Section 5
2 while ∃ active (Vi, Vj) ∈ Q do in parallel // Section 5
3 B := Bi ∪Bj ← constructRegion(H, Vi, Vj) // Bi ⊆ Vi, Bj ⊆ Vj, Section 6
4 (N , s, t)← constructFlowNetwork(H, B) // Section 6
5 (M, ∆exp)← FlowCutterRefinement(N , s, t) // Section 7 and 8
6 if ∆exp ≥ 0 // potential improvement
7 ∆λ−1 ← applyMoves(H, Π, M) // Section 5
8 if ∆λ−1 > 0 mark Vi and Vj as active // found improvement
9 else if ∆λ−1 < 0 revertMoves(H, Π, M) // no improvement

3 Related Work

The most well-known sequential algorithms are PaToH [12], hMetis [34, 35], and KaHyPar [1,
23, 51]. Notable parallel algorithms are Parkway [53] and Zoltan [18] for distributed memory,
as well as BiPart [42] and Mt-KaHyPar [26, 27] for shared memory.

All of these follow the multilevel paradigm that proceeds in three phases: First, the
hypergraph is coarsened to obtain a hierarchy of successively smaller and structurally similar
hypergraphs by contracting pairs or clusters of vertices. Once the coarsest hypergraph is
small enough, an initial partition into k blocks is computed. Subsequently, the contractions
are reverted level-by-level, and, on each level, local search heuristics are used to improve the
partition from the previous level (refinement phase).

Sanders and Schulz [49] propose an algorithm to improve the edge cut of bipartitions with
flow-based refinement. Their general idea is to grow a size-constrained region around the
cut edges of a bipartition. Afterwards, they compute a minimum (s, t)-cut in the subgraph
induced by the region and apply it to the original graph, if it satisfies the balance constraint.
They extended their algorithm to k-way partitions by scheduling it on pairs of adjacent
blocks. Heuer et al. [30] integrated this approach into their hypergraph partitioner KaHyPar.
This was improved by Gottesbüren et al. [23] by replacing the bipartitioning routine with
FlowCutter [24, 29]. Flow-based refinement substantially improved the solution quality (cut
and connectivity metric) of the partitions produced by KaHyPar, making it the method of
choice for high-quality hypergraph partitioning [50]. We explain the flow-based refinement
routine of KaHyPar in more detail in the main part.

4 Framework Overview

We first give an overview of how the different framework components interact, before providing
descriptions in their respective sections. For this we follow the high level structure shown
in Algorithm 1. We start with a parallel scheduling scheme of block pairs based on the
quotient graph in Section 5, see line 1 and 2. For each block pair, we extract a subhypergraph
constructed around the boundary nodes of the blocks, which yields a flow network, see line
3 and 4 and Section 6. On each network we run FlowCutter (line 5), whose partition we
convert into a set of moves M and an expected connectivity reduction ∆exp. FlowCutter
and its parallelization are discussed in Section 7 and 8 respectively. If FlowCutter claims
an improvement, i.e., ∆exp ≥ 0, we apply the moves to the global partition and compute
the exact reduction ∆λ−1, based on which we either mark the blocks for further refinement,



L. Gottesbüren, T. Heuer, and P. Sanders 5:5

or revert the moves, see line 8 and 9. We distinguish between expected ∆exp and actual
improvement ∆λ−1, due to concurrency conflicts that arise in the scheduler, which is described
again in Section 5.

5 Parallel Active Block Scheduling

Sanders and Schulz [49] propose the active block scheduling algorithm to apply their flow-
based refinement algorithm for bipartitions on k-way partitions. Their algorithm proceeds in
rounds. In each round, it schedules all pairs of adjacent blocks where at least one is marked
as active. Initially, all blocks are marked as active. If a search on two blocks improves the
edge cut, both are marked as active for the next round.

Parallelization. A simple scheme would be to schedule block pairs that form a maximum
matching in the quotient graph Q in parallel. This allows searches to operate in independent
regions of the hypergraph and thus avoids conflicts between different block pairs. However,
this scheme restricts the available parallelism to at most k

2 threads. Thus, we do not enforce
any constraints on the block pairs processed concurrently, e.g., there can be multiple threads
running on the same block and they can also share some of their nodes as illustrated in
Figure 1 (right). We use min(t, τ · k) threads to process the active block pairs in parallel,
where t is the number of available threads in the system. The parameter τ controls the
available parallelism in the scheduler. With higher values of τ , more block pairs are scheduled
in parallel. This can lead to interference between searches that operate on overlapping regions.
Lower values for τ can reduce these conflicts but put more emphasis on good parallelization
of 2-way refinement to achieve good speedups. In practice, we choose τ = 1.

Our parallel active block scheduling algorithm uses one concurrent FIFO queue A to
schedule active block pairs. Each block pair is associated with a round and each round uses
an array of size k to mark blocks that become active in the next round. If a search finds
an improvement on two blocks (Vi, Vj) and Vi or Vj becomes active, we push all adjacent
blocks into A if they are not contained yet (marked using an atomic test-and-set instruction).
If either Vi or Vj is already active, we insert (Vi, Vj) into A, if it is not already contained
in A. Thus, active block pairs of different rounds are stored interleaved in A and the end
of a round does not induce a synchronization point as in the original algorithm [49]. For
processing in the first round, we sort active block pairs in descending order of improvement
they contributed on previous levels, with ties broken by larger cut size. A round ends when
all of its block pairs have been processed and all prior rounds have ended. If the relative
improvement at the end of a round is less than 0.1%, we immediately terminate the algorithm.
In Appendix A, we describe how to construct and maintain the cut hyperedges between
block pairs that induce the quotient graph and are used for the network construction.

Apply Moves. We integrate flow-based refinement into Mt-KaHyPar [26, 27], which provides
data structures to concurrently access and modify the partition Π, block weights c(Vi),
connectivity sets Λ(e) and pin counts Φ(e, Vi) of each e ∈ E and Vi. When applying a move
sequence M to the global partition Π (each move m := (u, Vi, Vj) ∈M moves a node u from
its current block Vi to Vj), there are three conflict types that can occur: balance constraint
violations, ∆λ−1 ̸= ∆exp, i.e., the expected does not match the actual connectivity reduction,
and nodes may no longer be in the block expected by M . These conflicts arise, because
concurrently scheduled block pairs are not independent, which causes data races on the
partition assignment Π, pin counts Φ(e, Vi) and connectivity sets Λ(e). These are concurrently

SEA 2022



5:6 Parallel Flow-Based Hypergraph Partitioning

V1 V2

c(B2) ≤ (1 + αε)dc(V )
k e − c(V1)

B1 B2

s t

V1 V2

V3

T1

T2

T3

T4

V4

c(B1) ≤ (1 + αε)dc(V )
k e − c(V2)

Figure 1 Illustrates the flow network construction algorithm (left) and an how we schedule block
pairs of the quotient graph Q in parallel (right, Ti denotes the search region of thread i).

read by the network construction and modified when moves are applied. Updates after the
construction are not observed, and thus the state at the time a refinement finishes may differ
from the expected state. Since the running time to apply moves is negligible compared to
solving flow problems (see Figure 9 in Section 9), we can afford to use a lock so that only one
thread applies moves at a time to address these conflicts. We remove all nodes from M that
are not in their expected block. Afterwards, we compute the block weights if all remaining
moves were applied. If balanced, we perform the moves, during which we compute ∆λ−1. For
m = (u, Vi, Vj) and e ∈ I(u), we add ω(e) to ∆λ−1 if Φ(e, Vi) decreases to zero and −ω(e)
if Φ(e, Vj) increases to one (connectivity metric is

∑
e∈E(λ(e)− 1) ω(e)). If ∆λ−1 < 0, we

revert all moves.

Implementation Details. KaHyPar [30] established pruning rules to skip unpromising flow
computations that we use as well: skip if cut is small or no improvement found on previous
levels. We additionally introduce a time limit to abort long-running flow computations.

6 Network Construction

To improve the cut of a bipartition Π = {V1, V2}, we grow a size-constrained region B around
the cut hyperedges of Π. We then contract all nodes in V1 \B to the source s and V2 \B

to the sink t [24, 49] as illustrated in Figure 1 (left) and obtain a coarser hypergraph H.
We implemented two parallel algorithms to construct H, which are preferable in different
situations. These are described in more detail in Appendix B. The flow network N is then
given by the Lawler expansion of H (see Section 2). Note that reducing the hyperedge
cut of a bipartition induced by two adjacent blocks of a k-way partition Πk optimizes the
connectivity metric of Πk [30].

Sanders and Schulz [49] grow a region B := B1∪B2 with B1 ⊆ V1 and B2 ⊆ V2 around the
cut hyperedges of Π via two breadth-first-searches (BFS) as illustrated in Figure 1 (left). The
first BFS is initialized with all boundary nodes of block V1 and continues to add nodes to B1
as long as c(B1) ≤ (1 + αε)⌈ c(V1)+c(V2)

2 ⌉ − c(V2), where α is an input parameter. The second
BFS that constructs B2 proceeds analogously. For α = 1, each flow computation yields a
balanced bipartition with a possibly smaller cut in the original hypergraph, since only nodes
of B can move to the opposite block (c(B1) + c(V2) ≤ (1 + ε)⌈ c(V1)+c(V2)

2 ⌉ and vice versa).
Larger values for α lead to larger flow problems with potentially smaller minimum cuts, but
also increase the likelihood of violating the balance constraint. However, this is not a problem
since the flow-based refinement routine guarantees balance through incremental minimum



L. Gottesbüren, T. Heuer, and P. Sanders 5:7

Algorithm 2 FlowCutter Core.

1 S ← {s}, T ← {t}
2 while true do
3 augment flow to maximality regarding S, T

4 derive source- and sink-side cut Sr, Tr ⊂ V
5 if (Sr,V \ Sr) or (V \ Tr, Tr) balanced
6 return balanced partition
7 if c(Sr) ≤ c(Tr)
8 S ← Sr ∪ selectPiercingNode()
9 else

10 T ← Tr ∪ selectPiercingNode()

cut computations (see Section 7). In practice, we use α = 16 (also used in KaHyPar [23, 30]).
We additionally restrict the distance of each node v ∈ B to the cut hyperedges to be smaller
than or equal to a parameter δ (= 2). We observed that it is unlikely that a node far way
from the cut is moved to the opposite block by the flow-based refinement.

7 Flow-Based Refinement

In this section we discuss the flow-based refinement on a bipartition. We introduce the
aforementioned FlowCutter algorithm [29, 55]. It is parallelized by plugging in a parallel
maximum flow algorithm, which we discuss in the next section. To speed up convergence
and make parallelism worthwhile, we propose an optimization named bulk piercing.

Core Algorithm. FlowCutter solves a sequence of incremental maximum flow problems until
a balanced bipartition is found. Algorithm 2 shows pseudocode for the approach. In each
iteration, first the previous flow (initially zero) is augmented to a maximum flow regarding
the current source set S and sink set T . Subsequently, the node sets Sr, Tr ⊂ V of the source-
and sink-side cuts are derived. This is done via residual (parallel) BFS (forward from S

for Sr, backward from T for Tr). The node sets induce two bipartitions (Sr,V \ Sr) and
(V \ Tr, Tr). If neither is balanced, all nodes on the side with smaller weight are transformed
to a source (if c(Sr) ≤ c(Tr)) or a sink otherwise. To find a different cut in the next iteration,
one additional node is added, called piercing node. Thus, the bipartitions contributed by the
currently smaller side will be more balanced in future iterations. Since the smaller side is
grown, this process will converge to a balanced partition.

Piercing. For our purpose, there are two important piercing node selection heuristics: avoid
augmenting paths [29, 55] and distance from cut [23]. Whenever possible, a node that is not
reachable from the source or sink should be picked, i.e., v ∈ V \ (Sr ∪ Tr). Such nodes do
not increase the weight of the cut, while improving balance. As a secondary criterion, larger
distances from the original cut are preferred, to reconstruct parts of it.

Most Balanced Cut. Once the partition is balanced, we continue to pierce as long as the
cut does not increase. This is repeated with different random choices since it is fast (no flow
augmentation). More balance gives other refinement algorithms more leeway for improvement.
An equivalent heuristic was already employed in previous flow-based refinement [47, 49].

SEA 2022



5:8 Parallel Flow-Based Hypergraph Partitioning

Bulk Piercing. The complexity of FlowCutter is O(ζm), where ζ is the final cut weight, and
m = |E|. This bound stems from a pessimistic implementation that augments one flow unit
in O(m) work [29, 55]. For refinement, the performance is much better in practice, as the
first cut is often close to the final cut. Only few augmenting iterations are needed and much
less than O(m) work is spent per flow unit [24], with most work spent on the initial flow.

Still, the flow augmented per iteration is often small: at most the capacity of edges
incident to the piercing node. On large instances, we observed that the number of required
iterations increases substantially. We propose to accelerate convergence by piercing multiple
nodes per iteration, as long as we cannot avoid augmenting paths and are far from balance.
To ensure a poly-log iteration bound, we set a geometrically shrinking goal of weight to add
to each side per iteration. The initial goal for the source side is set to β( c(V)

2 − c(s)), where
β ∈ (0, 1) is the geometric shrinking factor that is multiplied with the term in each iteration,
and c(V)

2 − c(s) is the weight to add for perfect balance.
If a goal is not met, its remainder is added to next iteration’s goal. We track the average

weight added per node and from this estimate the number of piercing nodes needed to match
the current goal. To boost measurement accuracy, we pierce one node for the first few rounds.
The sides have distinct measurements and goals, so that we do not pierce too aggressively
when the smaller side flips. This scheme (with β = 0.55) reduces running time on our largest
instances from beyond two hours (time limit) to less than 10 minutes, while not incurring
any quality penalties on either small or large instances, as shown in our technical report [25].

8 Parallel Maximum Flow Algorithm

Maximum flow algorithms are notoriously difficult to parallelize efficiently [6, 10, 33, 52]. The
synchronous push-relabel approach of Baumstark et al. [10] is a recent algorithm that sticks
closely to sequential FIFO and thus shows good results. We first outline their algorithm, then
describe a so far undocumented bug followed by our fix, and conclude with implementation
details and intricacies of using FlowCutter with preflows. Note that a maximum preflow
already yields a minimum cut, which suffices for our purpose.

Synchronous Parallel Push-Relabel. The algorithm proceeds in rounds in which all active
nodes are discharged in parallel. The flow is updated globally, the nodes are relabeled locally
and the excess differences are aggregated in a second array using atomic instructions. After
all nodes have been discharged, the distance labels d are updated to the local labels d′ and
the excess deltas are applied. The discharging operations thus use the labels and excesses
from the previous round. This is repeated until there are no nodes with exc(v) > 0 and
d(v) < n left. To avoid concurrently pushing flow on residual arcs in both directions (race
condition on flow values), a deterministic winning criterion on the old distance labels is used
to determine which direction to push, if both nodes are active. If an arc cannot be pushed
due to this, the discharge terminates after the current scan, as the node may not be relabeled
in this round. The rounds are interleaved with global relabeling [13], after linear push and
relabel work, using parallel reverse BFS.

A Bug in the Synchronous Algorithm. The parallel discharge routine does not protect
against push-relabel conflicts [33] as illustrated in Figure 2. In particular the winning criterion
does not help. A node u may be relabeled too high if it is concurrently pushed to through
a residual arc (v, u) with d′(v) = d(u) + 1. The arc (u, v) may not be observed as residual
yet, and thus u may set its new label d′(u) > d′(v) + 1, violating label correctness. The bug



L. Gottesbüren, T. Heuer, and P. Sanders 5:9

u

v

w

u

v

w

d′ = 0

d′ = 1

d′ = 2

d′ = 3

d′ = 0

d′ = 1

d′ = 2

d′ = 3

exc(u) = 1

exc(v) = 1

exc(w) = 0

exc(u) = 2

exc(v) = 0

exc(w) = 0

3

1

1

1

2
thread 1: relabel(u)

thread 2: push(v, u)

(u, v) is residual, but

d′(u) > d′(v) + 1

Figure 2 Illustrates a push-relabel conflict in the parallel discharge routine (adapted from
Ref. [33]). The numbers on the arcs denote their residual capacities.

becomes noticeable when the algorithm terminates prematurely with incorrect distances.
Our fix is to collect mislabeled excess nodes during global relabeling. When the algorithm
would terminate, we run global relabeling, and restart the main loop if new active nodes
are found. The additional work is already accounted for, because we need to extract the
sink-side cut anyways.

Restricting Capacities. Recall that only bridge edges (ein, eout) have finite capacity (ω(e))
in the Lawler network. Since (ein, eout) is the only outgoing edge of ein with non-zero capacity,
the flow (but not preflow) on edges (u, ein) is also bounded by ω(e). Adding these capacities
during the preflow stage is a trivial optimization, but it reduces running time for one flow
computation on our largest instance from over two hours to 14 seconds, when using 16 cores.
It also boosts the available parallel work, since hypernodes are not immediately relieved of
all their excess. Without this optimization the minimum cut contains only bridge edges, but
now may contain edges (u, ein). This matters when tracking cut hyperedges (for collecting
piercing candidates), which are detected by checking if ein and eout are on different sides.
Therefore, we do not check the capacity and visit ein nodes during forward residual BFSs.

Avoid Pushing Flow Back. Once the correct flow value is found, the algorithm could ter-
minate in theory. This is often achieved in very few discharging rounds (< 1%). Furthermore,
we observed that the number of active nodes follows a power law distribution. At this point
flow is only pushed back to the source. We terminate once all nodes with exc(u) > 0 have
d(u) ≥ n, which is most often detected by global relabeling. Due to little work per round, it
takes many rounds to trigger. We perform additional relabeling, if the flow value has not
changed for some rounds (500), and only few active nodes (< 1500) were available in each.

Source-Side Cut. A maximum preflow only yields a sink-side cut via the reverse residual
BFS, but we also need the source-side cut. We can run flow decomposition [13] to push
excess back to the source, to obtain an actual flow. However, flow decomposition is difficult
to parallelize [10]. Instead, we initialize the forward residual BFS with all non-sink excess
nodes. This finds the reverse paths that carry flow from the source to the excess nodes,
which is what we need.

Sink-Side Piercing. Furthermore, when transforming a node with positive excess to a sink,
its excess must be added to the flow value. This only happens when piercing, as sink-side
nodes have no excess, if they are not sinks yet.

SEA 2022



5:10 Parallel Flow-Based Hypergraph Partitioning

Algorithm 3 Parallel Multilevel Hypergraph Partitioning (Mt-KaHyPar-D-F).

Input: Hypergraph H = (V, E), number of blocks k

Output: k-way partition Π of H

1 H1 ← H,H ← ⟨H1⟩, i← 1
2 while |Vi| is not small enough do // Coarsening Phase
3 C ← compute node clustering // Uses the heavy-edge rating function [1, 12, 34]
4 Hi+1 ← Hi.contract(C),H ← H∪ ⟨Hi+1⟩, i← i + 1
5 Π← initialPartition(Hi, k)
6 for l = i to 1 do // Uncoarsening Phase
7 Π← project Π onto Hl

8 while improvement relevant do
9 Π← labelPropagationRefinement(Hl, Π)

10 Π← fmLocalSearch(Hl, Π)
// Extends Mt-KaHyPar-D with flow-based refinement

11 Π← flowBasedRefinement(Hl, Π)
12 return Π

Maintain Distance Labels. Finally, we want to reuse the distance labels to avoid re-
initialization overheads. However, as the labels are a lower bound on the distance from the
sink, piercing on the sink side invalidates the labels. Additionally, no new excess nodes are
created. In this case, we run global relabeling to fix the labels and collect the existing excess
nodes, before starting the main discharge loop. When piercing on the source side the labels
remain valid and new excesses are created. These are added to the active nodes and we
do not run an additional global relabeling. The existing excess nodes are collected during
regular global relabel runs; at the latest for the termination check.

9 Experiments

We implemented the flow-based refinement routine in the shared-memory hypergraph parti-
tioner Mt-KaHyPar1, which is implemented in C++17, parallelized using the TBB library [46],
and compiled using g++9.2 with the flags -O3 -mtune=native -march=native. Mt-KaHyPar
provides two partitioners: Mt-KaHyPar-D [26] (Default setting) opts for the traditional
O(log n) level approach by contracting a vertex clustering on each level and Mt-KaHyPar-
Q [27] (Quality setting) implements a parallel version of the n-level scheme [1, 44, 51] that
(un)contracts only a single vertex on each level. We refer to the corresponding versions that
use flow-based refinement as Mt-KaHyPar-D-F and Mt-KaHyPar-Q-F (-Flows, integration is
described in the next paragraph). For parallel partitioners we add a suffix to their name
to indicate the number of threads used, e.g. Mt-KaHyPar-Q-F 64 for 64 threads. We omit
the suffix for sequential partitioners. Note that we performed extensive parameter tuning
experiments (e.g., τ , β, δ and the effects of bulk piercing) which we present only in the
technical report [25] due to space constraints.

The Multilevel Partitioning Algorithm. The high-level pseudocode of Mt-KaHyPar-D
is shown in Algorithm 3. Mt-KaHyPar-D uses a clustering-based coarsening algorithm
and parallel multilevel recursive bipartitioning with work-stealing to compute an initial

1 Mt-KaHyPar is available from https://github.com/kahypar/mt-kahypar

https://github.com/kahypar/mt-kahypar


L. Gottesbüren, T. Heuer, and P. Sanders 5:11

k-way partition of the coarsest hypergraph [26, 27]. In each refinement step, we first
run label propagation refinement [48] followed by a highly-localized version of the FM
algorithm [1, 2, 20, 49] (see Line 9 and 10). We run our flow-based refinement as the third
component. We run all refinement algorithms on each level multiple times in combination
and stop if the relative improvement is less than 0.25%.

Instead of contracting a node clustering, Mt-KaHyPar-Q contracts only a single vertex on
each level. In the uncoarsening phase, it assembles independent contractions in a batch and
uncontracts them in parallel. This induces a hierarchy with O(|V |) levels and refinement
steps, which would incur too much overhead when we use flow-based refinement. Thus, we
use approximately O(log n) synchronization points similar to Mt-KaHyPar-D and perform
FM local search followed by our flow-based refinement. We do not run label propagation
here since there were no quality benefits.

Setup. For comparison with sequential partitioners, we use the established benchmark set
of Heuer and Schlag [31] (referred to as set A, 488 hypergraphs). For these experiments, we
use k ∈ {2, 4, 8, 16, 32, 64, 128}, ε = 0.03, ten different seeds and a time limit of eight hours.
The experiments are done on a cluster of Intel Xeon Gold 6230 processors (2 sockets with
20 cores each) running at 2.1 GHz with 96GB RAM (machine A). To measure speedups
and to compare our implementation with other parallel partitioners, we use a benchmark
set composed of 94 large hypergraphs (referred to as set B) that was initially assembled
to evaluate Mt-KaHyPar-D [26]. On set B, we evaluate k ∈ {2, 8, 16, 64}, ε = 0.03 and use
three seeds each with a time limit of two hours. These experiments are run on an AMD
EPYC Rome 7702P (one socket with 64 cores) running at 2.0–3.35 GHz with 1024GB RAM
(machine B). The parameter space on set B is restricted, since we only have access to one
machine of type B. We describe the sources and properties of the instances in Appendix C2.

Methodology. Each partitioner optimizes the connectivity metric, which we also refer to as
the quality of a partition. For each instance (hypergraph and k), we aggregate running times
using the arithmetic mean over all seeds. To further aggregate over multiple instances, we
use the geometric mean for absolute running times and self-relative speedups. For runs that
exceeded the time limit, we use the time limit itself in the aggregates. In plots, we mark
these instances with U if all runs of that algorithm timed out.

To compare the solution quality of different algorithms, we use performance profiles [19].
Let A be the set of algorithms we want to compare, I the set of instances, and qA(I) the
quality of algorithm A ∈ A on instance I ∈ I. For each algorithm A, we plot the fraction of
instances (y-axis) for which qA(I) ≤ τ ·minA′∈A qA′(I), where τ is on the x-axis. Achieving
higher fractions at lower τ -values is considered better. For τ = 1, the y-value indicates the
percentage of instances for which an algorithm performs best. The U tick indicates the
fraction of instances for which all runs of that algorithm timed out.

Medium-Sized Instances. On set A, we compare Mt-KaHyPar with KaHyPar-HFC [24, 30]
(similar components as Mt-KaHyPar-Q-F) which is currently the best sequential partitioner
in terms of solution quality [50], the recursive bipartitioning version (hMetis-R) of hMetis
2.0 [34], as well as the default (PaToH-D) and quality preset (PaToH-Q) of PaToH 3.3 [12].
All configurations of Mt-KaHyPar use 10 threads.

2 Benchmark sets and results are available from https://algo2.iti.kit.edu/heuer/sea22

SEA 2022

https://algo2.iti.kit.edu/heuer/sea22


5:12 Parallel Flow-Based Hypergraph Partitioning

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

tio
n

of
in

st
an

ce
s

1 1.05 1.1 1.5 2 101102 U

Quality relative to best

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

tio
n

of
in

st
an

ce
s

1 1.05 1.1 1.5 2 101 103 U

Quality relative to best

Mt-KaHyPar-D-F 10
Mt-KaHyPar-Q-F 10

Mt-KaHyPar-D 10
Mt-KaHyPar-Q 10

KaHyPar-HFC
hMetis-R

PaToH-D
PaToH-Q

Figure 3 Solution quality of Mt-KaHyPar-Q-F compared with different partitioners on set A.

Figure 3 compares the solution quality of Mt-KaHyPar with different partitioners on set
A (see Figure 5 (left) for running times). In an individual comparison, Mt-KaHyPar-Q-F finds
better partitions than PaToH-D, PaToH-Q, Mt-KaHyPar-D, Mt-KaHyPar-Q, Mt-KaHyPar-D-F,
hMetis-R and KaHyPar-HFC on 94.7%, 87.7%, 97.3%, 95.7%, 73.5%, 74.5% and 51.3% of the
instances, respectively.

The median improvement of Mt-KaHyPar-D-F and Mt-KaHyPar-Q-F compared to the
configurations that use no flow-based refinement is 4.2% and 2.7% while only incuring a
slowdown by a factor of 3.1 (gmean time 2.73s vs 0.89s) and 1.7 (5.08s vs 2.99s). To put
this into perspective, the quality preset of PaToH (PaToH-Q) improves the default preset
(PaToH-D) by 5.3% in the median and is a factor of 5 slower (5.86s vs 1.17s). The median
improvement of hMetis-R compared to PaToH-Q is 2.6% while it is a factor of 15.9 slower
(93.21s vs 5.86s). The solutions produced by Mt-KaHyPar-Q-F are 3% better than those of
hMetis-R in the median and it has a similar running time as PaToH-Q (5.08s vs 5.86s). If we
compare our two partitioners that use flow-based refinement, we can see that Mt-KaHyPar-
Q-F gives only minor quality improvements over Mt-KaHyPar-D-F (median improvement is
0.6% whereas without flow-based refinement it is 1.9%). This demonstrates the effectiveness
of flow-based refinement. The solution quality of Mt-KaHyPar-Q-F and KaHyPar-HFC are on
par, while Mt-KaHyPar-Q-F is an order of magnitude faster with 10 threads (5.08s vs 48.98s).
In conclusion, we achieved the solution quality of the currently hiqhest quality sequential
partitioner in a fast parallel code.

Large Instances. On set B, we compare Mt-KaHyPar with the parallel algorithms Zoltan
3.83 [18] and BiPart [42], as well as PaToH-D (which is fast enough for set B as opposed to
other sequential algorithms). All parallel algorithms use 64 threads.

Figure 4 compares the solution quality of Mt-KaHyPar with different partitioners on
set B (see Figure 5 (right) for running times). The quality of the partitions produced by
Mt-KaHyPar-D-F and Mt-KaHyPar-Q-F are comparable while Mt-KaHyPar-D-F is a factor of
1.9 faster (gmean time 30.38s vs 58.24s). Therefore, we focus on Mt-KaHyPar-D-F in this
evaluation. In an individual comparison, Mt-KaHyPar-D-F finds better partitions than BiPart,
Zoltan, PaToH-D, Mt-KaHyPar-D, Mt-KaHyPar-Q and Mt-KaHyPar-Q-F on 97.3%, 96%, 92%,
91%, 85.1% and 47.3% of the instances, respectively.

The median improvement of Mt-KaHyPar-D-F and Mt-KaHyPar-Q-F compared to the
configurations that use no flow-based refinement is 5.2% and 3.4% while they are slower
by a factor of 6.6 (30.38s vs 4.63s) and 1.9 (58.24s vs 29.99s). Both the improvements and



L. Gottesbüren, T. Heuer, and P. Sanders 5:13

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

tio
n

of
in

st
an

ce
s

1 1.05 1.1 1.5 2 101102 U

Quality relative to best

0.01
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

Fr
ac

tio
n

of
in

st
an

ce
s

1 1.05 1.1 1.5 2101 103 U

Quality relative to best

Mt-KaHyPar-D-F 64
Mt-KaHyPar-Q-F 64

Mt-KaHyPar-D 64
Mt-KaHyPar-Q 64

Zoltan 64
BiPart 64

PaToH-D

Figure 4 Solution quality of Mt-KaHyPar-D-F compared with different partitioners on set B.

103

10−2

10−1

1

101

102

103

U

R
el

.
slo

w
do

w
n

to
M

t-K
aH

yP
ar

-D
-F

10

U
2−7

2−5

2−3

2−1

21

23

25

U
R

el
.

slo
w

do
w

n
to

M
t-K

aH
yP

ar
-D

-F
64

0 1000 2000 3000 3416
Instances

Mt-KaHyPar-Q-F 10
hMetis-R
KaHyPar-HFC
Mt-KaHyPar-D 10

Mt-KaHyPar-Q 10
PaToH-D
PaToH-Q

0 100 200 300 376
Instances

Mt-KaHyPar-Q-F 64
BiPart 64
Mt-KaHyPar-D 64

Mt-KaHyPar-Q 64
PaToH-D
Zoltan 64

Figure 5 Running times relative to Mt-KaHyPar-D-F on set A (left) and B (right). The U axis
markers represent timeouts for the baseline Mt-KaHyPar-D-F (at the bottom) or the compared
algorithm (at the top).

slowdowns are more pronounced here than on set A. The slowdowns are expected since the
size of the flow problems scales linearly with instance sizes, while the complexity of the
flow-based refinement routine does not. Mt-KaHyPar-D-F (30.38s) is slower than Zoltan (12.6s)
and BiPart (29.19s), but faster than PaToH-D (50.3s). However, Mt-KaHyPar-D-F computes
partitions that are 33% better than Zoltan’s and twice as good as BiPart’s in the median.

Scalability. Figure 6 shows self-relative speedups with varying number of threads t ∈
{4, 16, 64}. In the plot, we represent the speedup of each instance as a point and the centered
rolling geometric mean with a window size of 25 as a line. The x-axis shows the sequential
running time of Mt-KaHyPar-D-F for each instance.

We found that any one of the common (hyper)graph metrics (such as number of pins)
is not well correlated with speedups (or running times for that matter), since the running
time depends on a variety of different factors (metrics and events that trigger repetitions).
Fitting suitable parameters for a combination of the metrics seems much more complicated
than plotting against sequential running time, which is often nicely correlated with speedups.
Furthermore, the longer an algorithm runs sequentially, the more important is an efficient
parallelization to achieve reasonable running times.

SEA 2022



5:14 Parallel Flow-Based Hypergraph Partitioning

0
1
2
4
8

16
32
64

Sp
ee
d
U
p

0
1
2
4
8

16
32
64

0
1
2
4
8
16
32
64

0
1
2
4
8

16
32
64

Sp
ee
d
U
p

0
1
2
4
8

16
32
64

0
1
2
4
8
16
32
64

Mt-KaHyPar-D-F FlowCutter ParPR-RL

Flow-Based Refinement k = 2 Flow-Based Refinement k ∈ {8, 16} Flow-Based Refinement k = 64

101 102 103 104

Single-Threaded Time of Algorithm [s]
100 101 102

Single-Threaded Time of Algorithm [s]
100 101 102

Single-Threaded Time of Algorithm [s]

100 101 102 103 104

Single-Threaded Time of Algorithm [s]
100 101 102 103 104

Single-Threaded Time of Algorithm [s]
101 102 103 104

Single-Threaded Time of Algorithm [s]

4 16 64

Figure 6 Speedups of Mt-KaHyPar-D-F and the flow-based refinement routine (for different values
of k) as well as of the FlowCutter and parallel flow algorithm (ParPR-RL).

To assess FlowCutter and parallel push-relabel (referred to as ParPR-RL), we extract
flow networks from bipartitions of the instances in set B3. The results are shown in the
top-middle and -right plot. With 4 threads, we observe near-perfect speedups throughout,
with fairly small variance. For t = 16, 64, the parallelization overheads are only outweighed
for longer running instances, with more threads becoming worthwhile at about 10 seconds of
sequential time. Unfortunately, we even experience some minor slowdowns and the speedups
are strongly scattered. The maximum achieved speedups are 10.4, 18.4 for FlowCutter and
10.3, 17.3 for ParPR-RL. These results match what we expected from Ref. [10]. Restricted to
instances with sequential running time ≥ 10 seconds, the geometric mean speedups are 6.5
and 8.6 for FlowCutter and 7, 9.9 for ParPR-RL.

To evaluate the speedups of Mt-KaHyPar-D-F, we use a subset of set B (76 out of 94
hypergraphs)4. We measure the full partitioning process (top left) and just flow-based
refinement including scheduling (bottom row). Note that we use a sequential push-relabel
when there are enough flow problems that can be solved independently. The geometric mean
speedup of Mt-KaHyPar-D-F is 3.1 for t = 4, 7.4 for t = 16 and 10.62 for t = 64. If we only
consider instances with a single-threaded running time ≥ 100s, we achieve a geometric mean
speedup of 14.5 for t = 64. For k = 2, the scalability of the flow-based refinement routine
largely depends on FlowCutter as the only parallelism source. We can see that the speedups
of the two are comparable (compare Figure 6 top-middle with bottom-left). There are a
few outliers (e.g. nlpkkt200 with a speedup of 80.05 for t = 64) where the flow network
construction dominates the execution time for t = 1. For k = 64 and t = 64, we achieve a

3 The instances are available from https://algo2.iti.kit.edu/heuer/sea22.
4 Subset contains all hypergraphs on which Mt-KaHyPar-D-F 64 was able to complete in under 600 seconds

for k ∈ {2, 8, 16, 64}. We omit scalability experiments with Mt-KaHyPar-Q-F due to the long time
requirements and because flow-based refinement is used in the same context in Mt-KaHyPar-D-F. This
experiment still took 4 weeks on machine B.

https://algo2.iti.kit.edu/heuer/sea22


L. Gottesbüren, T. Heuer, and P. Sanders 5:15

0
10
20
30
40
50
60
70
80
90

100

C
ou

nt
[%

]

0
10
20
30
40
50
60
70
80
90

100

C
ou

nt
[%

]

k ∈ {8, 16} k = 64

U
∆exp ≥

0

c(Vi
) ≥

Lmax

∆λ−1 < 0
∆λ−1 ≥

0

∆λ−1 = ∆exp

∆λ−1 = 0 U
∆exp ≥

0

c(Vi
) ≥

Lmax

∆λ−1 < 0
∆λ−1 ≥

0

∆λ−1 = ∆exp

∆λ−1 = 0

1 4 16 64

Figure 7 Conflicts for k ∈ {8, 16} (left) and k = 64 (right) on set B. For each instance, we count
the refinements that exceed the time limit (U), the potential improvements (∆exp ≥ 0) and move
sequences that violate the balance constraint (c(Vi) ≥ Lmax) or degrade (∆λ−1 < 0) or improve
the connectivity metric (∆λ−1 ≥ 0). For move sequences with ∆λ−1 ≥ 0, we count if the actual
improvements equals the expected (∆λ−1 = ∆exp) and zero-gain improvements (∆λ−1 = 0).

0.01

0.20

0.40

0.60

0.80

1.00

Fr
ac

tio
n

of
in

st
an

ce
s

1 1.05 1.1 1.5 2 101102

Quality relative to best
1 1.05 1.1 1.5 2 101102

Quality relative to best
1 1.05 1.1 1.5 2 101102

Quality relative to best

Mt-KaHyPar-D-F 1
Mt-KaHyPar-D-F 4

Mt-KaHyPar-D-F 16
Mt-KaHyPar-D-F 64

Figure 8 Performance profiles comparing solution quality of Mt-KaHyPar-D-F with increasing
number of threads on set B.

geometric mean speedup of 18.48. In this case, all parallelism is leveraged in the scheduler,
and none in FlowCutter, which explains why the speedups are more reliable than for other k.
For k ∈ {8, 16}, both parallelism sources are used and speedups are better than for k = 2.

Search Interference. Figure 7 gives an overview on the different types of conflicts in the
flow-based refinement routine (as explained in Section 5) and how often they occur. In the
median, 33.38% of flow-based refinements find a potential improvement (∆exp ≥ 0), of which
we successfully apply 85.62% to the global partition for t = 64 (90.48% for t = 16 and 96.73%
for t = 4). For t = 64, 2.55% of the move sequences violate the balance constraint (2% for
t = 16 and 0.77% for t = 4) and 8.06% would actually degrade the solution quality before
being reverted (4.74% for t = 16 and 1.72% for t = 4). However, increasing the number of
threads does not adversely affect the solution quality of Mt-KaHyPar-D-F (see Figure 8), as
repetitions from multiple rounds and on different levels can compensate effectively.

SEA 2022



5:16 Parallel Flow-Based Hypergraph Partitioning

Detailed Running Times of Flow-Based Refinement. Figure 9 shows the running times
of the different phases of the flow-based refinement routine relative to its total running
time. For k ≤ 16, FlowCutter dominates the running time. For k = 64, the flow network
construction and FlowCutter have the same share on the total running time, while applying
move sequences and growing the region B are negligible.

0
10
20
30
40
50
60
70
80
90

100

R
un

ni
ng

T
im

e
[%

]

k = 2 k ∈ {8, 16} k = 64

Apply Moves

Grow Region

Construct Flow Network
FlowCutter

Apply Moves

Grow Region

Construct Flow Network
FlowCutter

Apply Moves

Grow Region

Construct Flow Network
FlowCutter

1 4 16 64

Figure 9 Running times of the different phases of the flow-based refinement routine relative to
its total running time for k = 2 (left), k ∈ {8, 16} (middle) and k = 64 (right) on set B.

10 Conclusion and Future Work

This work marks the end of a series of publications with the aim to transfer techniques used in
modern sequential partitioning algorithms into the shared-memory context without comprises
in solution quality. The result is a set of parallel algorithms unified in one framework [26, 27]
(Mt-KaHyPar) that outperforms all popular hypergraph partitioners. Summarizing our
experimental results, we obtain good speedups for larger values of k even on small instances,
where scheduling provides lots of parallelism. This is more difficult for small k where the
parallelism stems from the flow algorithm, yet we still obtain good speedups that match those
in Ref. [10]. In particular on long-running instances, the speedups are on par with those for
large k. Using 10 threads, our system is 10 times faster than the sequential state-of-the-art
system KaHyPar with flow-based refinement, while achieving the same solution quality.

Future work includes a deterministic version of parallel flow-based refinement, as well
as a highly localized version used in an n-level partitioner that only constructs small flow
problems around uncontracted nodes.

References
1 Yaroslav Akhremtsev, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Engineering a Direct

k-way Hypergraph Partitioning Algorithm. In 19th Workshop on Algorithm Engineering &
Experiments (ALENEX), pages 28–42. SIAM, January 2017. doi:10.1137/1.9781611974768.
3.

2 Yaroslav Akhremtsev, Peter Sanders, and Christian Schulz. High-Quality Shared-Memory
Graph Partitioning. In European Conference on Parallel Processing (Euro-Par), pages 659–671.
Springer, August 2017. doi:10.1007/978-3-319-96983-1_47.

3 Charles J. Alpert. The ISPD98 Circuit Benchmark Suite. In International Symposium on
Physical Design (ISPD), pages 80–85, April 1998. doi:10.1145/274535.274546.

4 Charles J. Alpert and Andrew B. Kahng. Recent Directions in Netlist Partitioning: A Survey.
Integration, 19(1-2):1–81, 1995. doi:10.1016/0167-9260(95)00008-4.

https://doi.org/10.1137/1.9781611974768.3
https://doi.org/10.1137/1.9781611974768.3
https://doi.org/10.1007/978-3-319-96983-1_47
https://doi.org/10.1145/274535.274546
https://doi.org/10.1016/0167-9260(95)00008-4


L. Gottesbüren, T. Heuer, and P. Sanders 5:17

5 Reid Andersen. and Kevin J. Lang. An Algorithm for Improving Graph Partitions. In Proc. of
the 19th ACM-SIAM Symposium on Discrete Algorithms, pages 651–660. Society for Industrial
and Applied Mathematics, 2008. doi:10.5555/1347082.1347154.

6 Richard J. Anderson and João C. Setubal. A Parallel Implementation of the Push-Relabel
Algorithm for the Maximum Flow Problem. J. Parallel Distributed Comput., 29(1):17–26,
1995. doi:10.1006/jpdc.1995.1103.

7 Aaron Archer, Kevin Aydin, Mohammad Hossein Bateni, Vahab S. Mirrokni, Aaron Schild,
Ray Yang, and Richard Zhuang. Cache-Aware Load Balancing of Data Center Applications.
Proceedings of the VLDB Endowment, 12(6):709–723, 2019. doi:10.14778/3311880.3311887.

8 Cevdet Aykanat, Berkant Barla Cambazoglu, and Bora Uçar. Multi-level Direct k-way
Hypergraph Partitioning With Multiple Constraints and Fixed Vertices. Journal of Parallel
and Distributed Computing, 68(5):609–625, 2008. doi:10.1016/j.jpdc.2007.09.006.

9 David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner. Graph Parti-
tioning and Graph Clustering, volume 588. American Mathematical Society Providence, RI,
2013. doi:10.1090/conm/588.

10 Niklas Baumstark, Guy E. Blelloch, and Julian Shun. Efficient implementation of a synchronous
parallel push-relabel algorithm. In Nikhil Bansal and Irene Finocchi, editors, Algorithms
- ESA 2015 - 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015,
Proceedings, volume 9294 of Lecture Notes in Computer Science, pages 106–117. Springer,
2015. doi:10.1007/978-3-662-48350-3_10.

11 Anton Belov, Daniel Diepold, Marijn Heule, and Matti Järvisalo. The SAT Competition 2014.
http://www.satcompetition.org/2014/, 2014.

12 Ümit V. Catalyurek and Cevdet Aykanat. Hypergraph-Partitioning-based Decomposition for
Parallel Sparse-Matrix Vector Multiplication. IEEE Transactions on Parallel and Distributed
Systems, 10(7):673–693, 1999. doi:10.1109/71.780863.

13 Boris V. Cherkassky and Andrew V. Goldberg. On Implementing the Push-Relabel Method for
the Maximum Flow Problem. Algorithmica, 19(4):390–410, 1997. doi:10.1007/PL00009180.

14 Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. Schism: a Workload-Driven
Approach to Database Replication and Partitioning. Proceedings of the VLDB Endowment,
3(1):48–57, 2010. doi:10.14778/1920841.1920853.

15 Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection. ACM
Transactions on Mathematical Software, 38(1):1:1–1:25, November 2011. doi:10.1145/2049662.
2049663.

16 Daniel Delling, Andrew V. Goldberg, Ilya Razenshteyn, and Renato F. Werneck. Graph
Partitioning with Natural Cuts. In Proc. of the 25th International Parallel and Distributed
Processing Symposium, pages 1135–1146, 2011. doi:10.1109/IPDPS.2011.108.

17 Mehmet Deveci, Kamer Kaya, and Ümit V. Çatalyürek. Hypergraph Sparsification and Its
Application to Partitioning. In 42nd International Conference on Parallel Processing, ICPP
2013, Lyon, France, October 1-4, 2013, pages 200–209, 2013. doi:10.1109/ICPP.2013.29.

18 Karen D. Devine, Erik G. Boman, Robert T. Heaphy, Rob H. Bisseling, and Ümit V. Catalyurek.
Parallel Hypergraph Partitioning for Scientific Computing. In IEEE Transactions on Parallel
and Distributed Systems, pages 10–pp. IEEE, 2006. doi:10.1109/IPDPS.2006.1639359.

19 Elizabeth D. Dolan and Jorge J. Moré. Benchmarking Optimization Software with Performance
Profiles. Mathematical Programming, 91(2):201–213, 2002. doi:10.1007/s101070100263.

20 Charles M. Fiduccia and Robert M. Mattheyses. A Linear-Time Heuristic for Improving
Network Partitions. In 19th Conference on Design Automation (DAC), pages 175–181, 1982.
doi:10.1145/800263.809204.

21 Lester Randolph Ford and Delbert R Fulkerson. Maximal Flow through a Network. Canadian
Journal of Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

22 Andrew V. Goldberg and Robert Endre Tarjan. A New Approach to the Maximum-Flow
Problem. Journal of the ACM, 35(4):921–940, 1988. doi:10.1145/48014.61051.

SEA 2022

https://doi.org/10.5555/1347082.1347154
https://doi.org/10.1006/jpdc.1995.1103
https://doi.org/10.14778/3311880.3311887
https://doi.org/10.1016/j.jpdc.2007.09.006
https://doi.org/10.1090/conm/588
https://doi.org/10.1007/978-3-662-48350-3_10
http://www.satcompetition.org/2014/
https://doi.org/10.1109/71.780863
https://doi.org/10.1007/PL00009180
https://doi.org/10.14778/1920841.1920853
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1109/IPDPS.2011.108
https://doi.org/10.1109/ICPP.2013.29
https://doi.org/10.1109/IPDPS.2006.1639359
https://doi.org/10.1007/s101070100263
https://doi.org/10.1145/800263.809204
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1145/48014.61051


5:18 Parallel Flow-Based Hypergraph Partitioning

23 Lars Gottesbüren, Michael Hamann, Sebastian Schlag, and Dorothea Wagner. Advanced Flow-
Based Multilevel Hypergraph Partitioning. 18th International Symposium on Experimental
Algorithms (SEA), 2020. doi:10.4230/LIPIcs.SEA.2020.11.

24 Lars Gottesbüren, Michael Hamann, and Dorothea Wagner. Evaluation of a Flow-Based
Hypergraph Bipartitioning Algorithm. In 27th European Symposium on Algorithms (ESA),
pages 52:1–52:17, 2019. doi:10.4230/LIPIcs.ESA.2019.52.

25 Lars Gottesbüren, Tobias Heuer, and Peter Sanders. Parallel Flow-Based Hypergraph Parti-
tioning. Technical report, Karlsruhe Institute of Technology, 2022.

26 Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Scalable Shared-
Memory Hypergraph Partitioning. In 23st Workshop on Algorithm Engineering & Experiments
(ALENEX). SIAM, January 2021. doi:10.1137/1.9781611976472.2.

27 Lars Gottesbüren, Tobias Heuer, Peter Sanders, and Sebastian Schlag. Shared-Memory n-level
Hypergraph Partitioning. In 24th Workshop on Algorithm Engineering and Experiments
(ALENEX). SIAM, January 2022. doi:10.1137/1.9781611977042.11.

28 Johnnie Gray and Stefanos Kourtis. Hyper-optimized tensor network contraction. Quantum,
5:410, 2021. doi:10.22331/q-2021-03-15-410.

29 Michael Hamann and Ben Strasser. Graph Bisection with Pareto Optimization. ACM Journal
of Experimental Algorithmics, 23, 2018. doi:10.1145/3173045.

30 Tobias Heuer, Peter Sanders, and Sebastian Schlag. Network Flow-Based Refinement for
Multilevel Hypergraph Partitioning. ACM Journal of Experimental Algorithmics (JEA),
24(1):2.3:1–2.3:36, September 2019. doi:10.1145/3329872.

31 Tobias Heuer and Sebastian Schlag. Improving Coarsening Schemes for Hypergraph Partitioning
by Exploiting Community Structure. In 16th International Symposium on Experimental
Algorithms (SEA), pages 21:1–21:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, June
2017. doi:10.4230/LIPIcs.SEA.2017.21.

32 Igor Kabiljo, Brian Karrer, Mayank Pundir, Sergey Pupyrev, Alon Shalita, Yaroslav Akhremt-
sev, and Alessandro Presta. Social Hash Partitioner: A Scalable Distributed Hypergraph
Partitioner. In Proceedings of the VLDB Endowment, volume 10, pages 1418–1429, 2017.
doi:10.14778/3137628.3137650.

33 Gökçehan Kara and Can C. Özturan. Graph Coloring Based Parallel Push-relabel Algorithm for
the Maximum Flow Problem. ACM Transactions on Mathematical Software, 45(4):46:1–46:28,
2019. doi:10.1145/3330481.

34 George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel Hypergraph
Partitioning: Applications in VLSI Domain. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 7(1):69–79, 1999. doi:10.1109/92.748202.

35 George Karypis and Vipin Kumar. Multilevel k-way Hypergraph Partitioning. VLSI Design,
2000(3):285–300, 2000. doi:10.1155/2000/19436.

36 Alexander V. Karzanov. Determining the Maximal Flow in a Network by the Method of
Preflows. In Soviet Mathematics Doklady, volume 15, pages 434–437, 1974.

37 Brian W. Kernighan and Shen Lin. An Efficient Heuristic Procedure for Partitioning Graphs.
The Bell System Technical Journal, 49(2):291–307, February 1970.

38 Balakrishnan Krishnamurthy. An improved min-cut algorithm for partitioning VLSI networks.
IEEE Trans. Computers, 33(5):438–446, 1984. doi:10.1109/TC.1984.1676460.

39 Kevin J. Lang and Satish Rao. A Flow-Based Method for Improving the Expansion or
Conductance of Graph Cuts. In Proc. of 10th International Integer Programming and Com-
binatorial Optimization Conference, volume 3064 of LNCS, pages 383–400. Springer, 2004.
doi:10.1007/978-3-540-25960-2_25.

40 Dominique LaSalle and George Karypis. Multi-Threaded Graph Partitioning. In IEEE
Transactions on Parallel and Distributed Systems, pages 225–236. IEEE, 2013. doi:10.1109/
IPDPS.2013.50.

41 Eugene L. Lawler. Cutsets and Partitions of Hypergraphs. Networks, 3(3):275–285, 1973.
doi:10.1002/net.3230030306.

https://doi.org/10.4230/LIPIcs.SEA.2020.11
https://doi.org/10.4230/LIPIcs.ESA.2019.52
https://doi.org/10.1137/1.9781611976472.2
https://doi.org/10.1137/1.9781611977042.11
https://doi.org/10.22331/q-2021-03-15-410
https://doi.org/10.1145/3173045
https://doi.org/10.1145/3329872
https://doi.org/10.4230/LIPIcs.SEA.2017.21
https://doi.org/10.14778/3137628.3137650
https://doi.org/10.1145/3330481
https://doi.org/10.1109/92.748202
https://doi.org/10.1155/2000/19436
https://doi.org/10.1109/TC.1984.1676460
https://doi.org/10.1007/978-3-540-25960-2_25
https://doi.org/10.1109/IPDPS.2013.50
https://doi.org/10.1109/IPDPS.2013.50
https://doi.org/10.1002/net.3230030306


L. Gottesbüren, T. Heuer, and P. Sanders 5:19

42 Sepideh Maleki, Udit Agarwal, Martin Burtscher, and Keshav Pingali. BiPart: A Parallel
and Deterministic Hypergraph Partitioner. In Proceedings of the 26th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, pages 161–174, 2021. doi:
10.1145/3437801.3441611.

43 Zoltán Á. Mann and Pál A. Papp. Formula Partitioning Revisited. In 5th Pragmatics of SAT
Workshop, pages 41–56, 2014. doi:10.29007/9skn.

44 Vitaly Osipov and Peter Sanders. n-Level Graph Partitioning. In 18th European Symposium
on Algorithms (ESA), pages 278–289. Springer, 2010. doi:10.1007/978-3-642-15775-2_24.

45 David A. Papa and Igor L. Markov. Hypergraph Partitioning and Clustering. In Handbook of
Approximation Algorithms and Metaheuristics. Citeseer, 2007. doi:10.1201/9781420010749.
ch61.

46 Chuck Pheatt. Intel Threading Building Blocks. Journal of Computing Sciences in Colleges,
23(4):298–298, 2008.

47 Jean-Claude Picard and Maurice Queyranne. On the Structure of All Minimum Cuts in a
Network and Applications. Math. Program., 22(1):121, 1982. doi:10.1007/BF01581031.

48 Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near Linear Time Algorithm
to Detect Community Structures in Large-Scale Networks. Physical Review E, 76(3):036106,
2007. doi:10.1103/PhysRevE.76.036106.

49 Peter Sanders and Christian Schulz. Engineering Multilevel Graph Partitioning Algorithms.
In 19th European Symposium on Algorithms (ESA), pages 469–480. Springer, 2011. doi:
10.1007/978-3-642-23719-5_40.

50 Sebastian Schlag. High-Quality Hypergraph Partitioning. PhD thesis, Karlsruhe Institute of
Technology, 2020. doi:10.5445/IR/1000105953.

51 Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter Sanders, and
Christian Schulz. k-way Hypergraph Partitioning via n-Level Recursive Bisection. In 18th
Workshop on Algorithm Engineering & Experiments (ALENEX), pages 53–67. SIAM, 2016.
doi:10.1137/1.9781611974317.5.

52 Yossi Shiloach and Uzi Vishkin. An O(n2 log n) Parallel Max-Flow Algorithm. Journal of
Algorithms, 3(2):128–146, 1982. doi:10.1016/0196-6774(82)90013-X.

53 Aleksandar Trifunovic and William J. Knottenbelt. Parkway 2.0: A Parallel Multilevel
Hypergraph Partitioning Tool. In International Symposium on Computer and Information
Sciences, pages 789–800. Springer, 2004. doi:10.1007/978-3-540-30182-0_79.

54 Natarajan Viswanathan, Charles J. Alpert, Cliff C. N. Sze, Zhuo Li, and Yaoguang Wei. The
DAC 2012 Routability-Driven Placement Contest and Benchmark Suite. In 49th Conference on
Design Automation (DAC), pages 774–782. ACM, June 2012. doi:10.1145/2228360.2228500.

55 Hannah Honghua Yang and D.F. Wong. Efficient Network Flow Based Min-Cut Balanced
Partitioning. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
15(12):1533–1540, 1996. doi:10.1007/978-1-4615-0292-0_41.

A Quotient Graph Maintenance

For each block pair, we explicitly store the hyperedges connecting the two. This information
is required by the flow network construction algorithm to construct the region B. Block
pairs that contain at least one hyperedge form the edges of the quotient graph. We construct
this data structure by iterating over all hyperedges in parallel and add a hyperedge e ∈ E to
the block pairs contained in {{Vi, Vj} ⊆ Λ(e) | i < j}.

If we apply a move sequence on the partition, we add all hyperedges e ∈ E where Φ(e, Vj)
increases to one to all block pairs contained in {{Vj , Vk} | Vk ∈ Λ(e) \ {Vj}}. If Φ(e, Vi)
decreases to zero, we remove e lazily from corresponding block pairs during the flow network
construction.

SEA 2022

https://doi.org/10.1145/3437801.3441611
https://doi.org/10.1145/3437801.3441611
https://doi.org/10.29007/9skn
https://doi.org/10.1007/978-3-642-15775-2_24
https://doi.org/10.1201/9781420010749.ch61
https://doi.org/10.1201/9781420010749.ch61
https://doi.org/10.1007/BF01581031
https://doi.org/10.1103/PhysRevE.76.036106
https://doi.org/10.1007/978-3-642-23719-5_40
https://doi.org/10.1007/978-3-642-23719-5_40
https://doi.org/10.5445/IR/1000105953
https://doi.org/10.1137/1.9781611974317.5
https://doi.org/10.1016/0196-6774(82)90013-X
https://doi.org/10.1007/978-3-540-30182-0_79
https://doi.org/10.1145/2228360.2228500
https://doi.org/10.1007/978-1-4615-0292-0_41


5:20 Parallel Flow-Based Hypergraph Partitioning

B Network Construction Algorithm

We implemented two construction algorithms that are preferable in different situations. Both
construct the hypergraph H as explained at the beginning of Section 6. In the following, we
will denote with EB := {e ∈ E | e ∩B ≠ ∅} the set of hyperedges that contain nodes of the
region B.

The first algorithm iterates over all nets e ∈ EB . If a pin p ∈ e is contained in B, we add
p to hyperedge e in H. Otherwise, we add the source s or sink t to e, if p ∈ V1 or p ∈ V2.
The second algorithm iterates over all nodes u ∈ B and for each net e ∈ I(u), we insert a
pair (e, u) into a vector. Sorting the vector (lexicographically) yields the pin lists of the
subhypergraph HB . Afterwards, we insert each net e in the pin list vector into H and add
the source s or sink t to e, if Φ(e, B1) < Φ(e, V1) or Φ(e, B2) < Φ(e, V2).

The first algorithm has linear running time, but has to scan all hyperedges of H in their
entirety in the worst case even if most of their pins are not contained in H. The complexity
of the second algorithm only depends on the number of pins in H, but requires to sort the
pin lists in a temporary vector. We use the second algorithm for hypergraphs with a low
density p := |E|/|V | (≤ 0.5) or a large average hyperedge size |e| (≥ 100).

Note that both algorithms discard single-pin nets and nets that contain both the source
and sink (such nets cannot be removed from the cut).

Parallelization. The first algorithm iterates over all nets e ∈ EB in parallel and each thread
uses the sequential algorithm to construct a thread-local pin list vector. Afterwards, we use
a prefix sum operation to copy the pin lists of each thread to H.

The second algorithm iterates over all nodes u ∈ B in parallel and then uses hashing to
distribute the pairs (e, u) to buckets. Afterwards, we process each bucket in parallel and
apply the sequential algorithm to construct the pin list vector of each bucket. Finally, we
use a prefix sum operation to copy the pin lists of each bucket to H.

Identical Net Removal. Since some nets of H are only partially contained in H, some of
them may become identical. Therefore, we further reduce the size of H by removing all
identical nets except for one representative at which we aggregate their weight. We use the
identical net detection algorithm of Aykanat et al. [8, 17]. It uses fingerprints fe :=

∑
v∈e v2

to eliminate unnecessary pairwise comparisons between nets. Nets with different fingerprints
or different sizes cannot be identical. If we insert a net e into H, we store the pair (fe, e) in
a hash table with chaining to resolve collisions (uses concurrent vectors to handle parallel
access). We can then use the hash table to perform pin-list comparisons between the nets
with the same fingerprint for subsequent net insertions. Note that in the parallel scenario
we may not be able to detect all identical nets due to simultaneous insertions into the hash
table. However, this does not affect correctness of the refinement, as removing identical nets
is only a performance optimization.

C Benchmark Sets

All instances of the benchmark sets used in the experimental evaluation are derived from
four sources encompassing three application domains: the ISPD98 VLSI Circuit Benchmark
Suite [3], the DAC 2012 Routability-Driven Placement Contest [54], the SuiteSparse Matrix
Collection [15], and the 2014 SAT Competition [11]. VLSI instances are transformed into
hypergraphs by converting the netlist of each circuit into a set of hyperedges. Sparse matrices



L. Gottesbüren, T. Heuer, and P. Sanders 5:21

10
100
1K

10K
100K

1M
10M

100M
1B

|V | |E| |P | |̃e| ∆e d̃(v) ∆v

Set A Set B

Figure 10 Summary of different properties for our two benchmark sets. It shows for each
hypergraph (points), the number of vertices |V |, nets |E| and pins |P |, as well as the median and
maximum net size (|̃e| and ∆e) and vertex degree (d̃(v) and ∆v).

are translated to hypergraphs using the row-net model [12] and SAT instances to three
different hypergraph representations: literal, primal, and dual [43, 45] (see Ref. [31] for
more details). All hypergraphs have unit vertex and net weights. Figure 10 shows that the
hypergraphs of set B are more than an order of magnitude larger than those of set A.

SEA 2022





Routing in Multimodal Transportation Networks
with Non-Scheduled Lines
Darko Drakulic !

NAVER LABS Europe, Meylan, France

Christelle Loiodice !

NAVER LABS Europe, Meylan, France

Vassilissa Lehoux1 !

NAVER LABS Europe, Meylan, France

Abstract
Over the last decades, new mobility offers have emerged to enlarge the coverage and the accessibility
of public transportation systems. In many areas, public transit now incorporates on-demand
transport lines, that can be activated at user need. In this paper, we propose to integrate lines
without predefined schedules but with predefined stop sequences into a state-of-the-art trip planning
algorithm for public transit, the Trip-Based Public Transit Routing algorithm [30]. We extend this
algorithm to non-scheduled lines and explain how to model other modes of transportation, such as
bike sharing, with this approach. The resulting algorithm is exact and optimizes two criteria: the
earliest arrival time and the minimal number of transfers. Experiments on two large datasets show
the interest of the proposed method over a baseline modelling.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Multimodal routing, on-demand public transportation, bicriteria shortest
paths

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.6

1 Introduction

Based on modern public transit routing algorithms, hundreds of trip planning applications
are used by millions of users every day. They integrate public transit information with road
networks and usually compute itineraries combining only public transportation services with
walking transfers, which is often referred to as public transit routing. In order to offer a
more integrated experience to their users, some applications allow for more multimodality,
combining public transportation with other available transportation offers, such as taxis,
bike sharing or car sharing. We then speak of multimodal or intermodal routing.

In addition to the classical scheduled public transportation, many transport authorities
propose special transportation offers in sub-urban areas, or for elderly or disabled people.
They are usually organized as on-demand services, where transportation authorities define
lines (sequence of stops) or areas of coverage, but no fixed schedules. For this type of service,
users must “activate” the desired trip by contacting the transport agency. A lot of transport
authorities in France offer this type of services, for example in Montauban metropolitan
area [1] (non-scheduled lines with only a subset of stops activated), in Flers metropolitan
area [24] (on-demand transportation between predefined stations during given time intervals),
or in Pays de Dreux [16] (on-demand transportation for elderly people from home place to

1 Corresponding author

© NAVER LABS Europe;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 6; pp. 6:1–6:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:darko.drakulic@naverlabs.com
mailto:christelle.loiodice@naverlabs.com
mailto:vassilissa.lehoux@naverlabs.com
https://doi.org/10.4230/LIPIcs.SEA.2022.6
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


6:2 Routing in Multimodal Transportation Networks with Non-Scheduled Lines

any destination within a zone). Note that some transport authorities also provide on-demand
services with predefined schedules, but in that case, a public transit routing algorithm can
integrate them as classical scheduled lines in itinerary computations.

In this paper, we propose an extension of the Trip-Based Public Transit Routing (TB)
algorithm [30] which is a state-of-the-art algorithm for public transit routing. We modify
it to deal with non-scheduled lines, that we define as lines that can be activated on given
periods and for which a sequence of stops is defined, as well as possibly time-dependent
transport duration between stops of the line, but no exact schedules. This model covers also
the simpler cases where the line has exactly two stops. Bike sharing for instance could be
modeled using non-scheduled lines, for example by creating one line per pair of stations that
are reachable from each other. In that case, the bike section is considered as a trip from the
algorithm point of view, and using bike sharing increases the number of transfers between
trips of the itinerary. Similarly, taxi-like offers that cover some predefined sets of origins
and destinations can be modeled as non-scheduled lines. In both cases, we then consider
that using those modes is equivalent to taking one additional trip in terms of inconvenience
(which is modeled by the number of transfers of an itinerary).

Many public transit routing and multimodal trip planning algorithms have been proposed
recently in the literature [5], but to the best of our knowledge, general non-scheduled lines
have not been considered explicitly.

In Section 2, we discuss recent algorithms for public transit and multimodal routing and
models for the simpler cases that appear in the literature. In Section 3 we introduce the
notation and briefly present the Trip-Based Public Transit Routing algorithm [30] that we
extend in Section 4 for supporting non-scheduled lines. In Section 5, we present the results
of experiments on two real world datasets (Île-De-France and Netherlands), we summarize
our work and give directions for future research in Section 6.

2 Related work

In this article, we are mainly interested in two classical criteria to minimize in multimodal
routing, which are the number of transfers and the arrival time. The number of transfers
represents the inconvenience for the user to change vehicles and is an important criterion for
evaluating itineraries. Given a start time, computing the Pareto set for those two criteria is
intractable as the size of the Pareto set can be exponential [20]. However, the Pareto front is
of polynomial size (bounded by the number of trips) and can be computed in polynomial
time, along with one solution per value in the Pareto front (note that this is often referred to
computing the Pareto set in the literature, while only a subset of the Pareto set is indeed
obtained). We use here the notation of [26] and denote by complete set such a solution
set. Most recent algorithms, considering either minimum arrival time alone or bicriteria
queries, can compute earliest arrival time or Pareto front in time ranging from tens of
microseconds to a few hundreds of milliseconds for large public transit networks. Transfer
Patterns [4], RAPTOR [13, 10], Connection Scan (CSA) [14], Public Transit Labeling [12] or
Trip-Based Public Transit Routing [30] have been specifically designed for those networks as
using directly classical methods for road networks does not seem to perform well with the
time-dependent schedules [3].

Although, to the best of our knowledge, combination of scheduled and non-scheduled
lines in public transit networks has not been studied before, some algorithms can handle
more transportation modes in combination to public transit, including bike or car sharing.



D. Drakulic, C. Loiodice, and V. Lehoux 6:3

In the graph-based approaches, the different networks corresponding to each mode are
combined into a single time-dependent or time-expanded graph. The timetable information
and transfer constraints (for instance minimum change times at a station) are modeled into
the graph structure, often increasing significantly the graph size [25]. In that type of approach,
non-scheduled lines can be modeled into the graph as additional arcs and nodes available
for some time intervals. In order to take into account the different modes with graph-based
modeling, one possible solution is to define an automaton that restricts the possible mode
sequences and solve a label-constrained shortest path problem. The label-constrained shortest
path problem is tractable for regular languages [2] and some authors proposed algorithms
allowing for mode sequences using or not public transit. Kirchler et al. [21] propose to
adapt the ALT algorithm [18] to take into account predefined mode sequences, resulting
in the SDALT algorithm (State-Dependent ALT). They consider a network that includes
bike and car sharing. Dibbelt et al. [15] modify Contraction Hierarchy [17] to integrate user
defined sequences provided at query time. The resulting algorithm is called User Constrained
Contraction Hierarchy. They apply it on networks combining cars and public transportation,
but the approach could be applied for bike or car sharing. One of the drawbacks of this
algorithm is the preprocessing time (42 minutes on a network with 30.5K stops and 1.6M
connections) that doesn’t allow for real-time modification of the schedules.

The second main type of approaches consists in using timetable directly without modeling
it into a graph. The RAPTOR algorithm [13] is one of these algorithms, using dynamic
programming to perform a breadth-first search that labels the stops reached, one additional
trip being taken at each iteration of the algorithm. It has been modified in [11, 28] to allow
for some more complex mode sequences, such as combining public transit with bike or car
sharing, by modeling it similarly as a walking transfer or with a biking part equivalent to a
trip. Shortest travel times between stops using bike or car sharing are then precomputed and
integrated as alternative ways to change from one line to another. A recent approach [27]
combines RAPTOR with ULTRA [7] to reduce the running time and to consider several bike
sharing operators simultaneously.

In this article, we are interested in the general case, where the sequence of non-scheduled
lines contains more than two elements. However, as bike and car sharing are special cases of
non-scheduled lines with two-stop sequences, our algorithm could be used to interleave them
with public transportation, even if it is not the main objective here. The proposed method
integrates non-scheduled lines in the Trip-Based Public Transit Routing algorithm that we
present in Section 3.

3 Preliminaries

We introduce in this section the notation used in the paper, and explain the principle of the
Trip-Based Public Transit Routing (TB) algorithm [30].

3.1 Notation
Public transit networks are defined by their stops and trip schedules. A stop p is a physical
location where passengers can board or alight a public transportation vehicle (e.g. a bus, a
tram, a metro). A trip t is represented by its schedule: a sequence of stops −→p (t) = (p1

t , p2
t , . . . )

where the vehicle stops, with arrival time τarr(t, i) and departure time τdep(t, i) at its ith

stop pi
t. A partial order is defined over trips with the same stop sequence (p1, p2, . . . , pn) by

the relations ≤ and <:

t ≤ t′ ⇔ ∀i ∈ {1, 2, . . . , n}, τarr(t, i) ≤ τarr(t′, i)

t < t′ ⇔ (t ≤ t′ and ∃i ∈ {1, 2, . . . , n}, τarr(t, i) < τarr(t′, i))

SEA 2022



6:4 Routing in Multimodal Transportation Networks with Non-Scheduled Lines

A scheduled line l is then a totally ordered set of trips with the same stop sequence
−→p (l). Note that if there are two trips with the same stop sequence such that one is
overtaking the other, they are associated to different lines. L is the set of all scheduled
lines, pi

l represents the ith stop of line l and lt denotes the line of trip t. For each stop p,
we define the set of the lines passing by p with their corresponding stop index at p by
L(p) = {(l, i) | l ∈ L, i ∈ {1, 2, . . . |−→p (l)|}, p = pi

l}.
When arriving at stop pi

l at time τ , it is possible to board a trip t of line l if τ ≤ τdep(t, i).
When it exists, we can hence define the earliest trip of line l departing from its ith stop after
time τ , that we denote by earliest(l, i, τ ).

The segment of the trip t between stops of index i and j is denoted by pi
t → pj

t and
similarly, a transfer between the ith stop of trip t and the jth stop of trip t′ is denoted by
pi

t → pj
t′ .

Minimum walking transfer duration (footpath) between stops p and q is denoted by
∆τfp(p, q) and minimum changing vehicle duration at stop p by ∆τch(p) (for example, the
duration for changing platforms at the same stop). Transfer pi

t → pj
t′ is feasible if and only if:

τarr(t, i) + ∆τfp(pi
t, pj

t′) ≤ τdep(t′, j), if pi
t ̸= pj

t′

or τarr(t, i) + ∆τch(pi
t) ≤ τdep(t′, j), if pi

t = pj
t′

Lines without a schedule. Now, we extend the above defined notation to lines without a
schedule, whose set is denoted L̂. A non-scheduled line l has a sequence −→p (l) = (p1

l , p2
l , . . . )

of stops, but no fixed timetable, as they should be activated at the user’s demand. Trips
for those lines can be instantiated during given time intervals when the service is available
and we can define as before the set of all lines without schedule passing by p. We denote it
by L̂(p).

For easy computation of trip earliest(l, i, τ ), we defined one union of availability intervals
for each stop of the non-scheduled line l, and we denote it by I(l, i) for the ith stop of l.
A possible way to define those time intervals is to define them for the first stop and then
translate them to the other stops of the line by adding traveling duration between stops.
This could be the case for on-demand buses if the bus passes by all the stops when activated.
Another possibility is to use the same time interval for all stops. It can be the case for
non-scheduled lines defined for bike sharing stations or for taxi-like transportation between
two points where the time-intervals represent the service availability period.

An easy way of including non-scheduled lines in existing trip planning algorithms is to
discretize the intervals of I(l, 1) and generate all possible trips (e.g. creating one trip every
minute). In a context of urban mobility, the intervals can be wide (typically from 7.00 am to
6.00 pm) so this approach can significantly increase the number of trips and the number of
possible transfers. For the TB algorithm, it has a significant impact on preprocessing and
query times. This approach is used in our experiments as a baseline method.

In some cases, a boarding or alighting duration might be considered for the lines of L̂. For
instance, it can model the time needed to buy a bus ticket or to get off with some luggage.
For bike sharing rides, the boarding time could be the duration needed to get the bicycle
from the station and the alighting time the duration to put it back in place. We denote
by τbo(l) the duration necessary for boarding the line and τal(l) the duration necessary for
alighting. To remain general, we consider boarding and alighting times for all lines, as we
can just set them to 0 when they are not relevant.



D. Drakulic, C. Loiodice, and V. Lehoux 6:5

3.2 Trip-Based Public Transit Routing
Trip-Based Public Transit Routing [30] is an algorithm for computing a complete solution
set for minimum arrival time and number of transfers in public transit networks, considering
an origin, a destination and a start time. The author claims to consider maximum departure
time as a secondary criterion used to break ties, but it is proven in [22] that there is no
guarantee regarding this last criterion.

The TB algorithm is based on the preprocessing of a set of the possible transfers between
trips. The aim is to build for each trip, during a preprocessing phase, a neighborhood of
reachable trips in such way that for each value in the Pareto front, there exists an optimal path
with this value using only elements of the resulting neighborhoods. A bicriteria earliest arrival
time query then consists in a breadth-first search like exploration in a time-independent graph
where trips are vertices and transfers are arcs. Figure 1 gives an outline of the algorithm.

The method proposed in [30] also covers profile queries, where all the optimal values must
be found for a given starting time range, hence effectively optimizing latest departure time
as a third criterion.

Figure 1 Phases of the TB algorithm.

Preprocessing. The transfer set size impacts the exploration time. As many transfers
cannot appear in any optimal solution, it is advisable to prune the transfer set. For instance,
if you consider the possible transfers between one trip and a different line, only the earliest
trip that can be boarded is relevant for the above defined queries. The author hence suggests
two pruning methods to reduce the set of possible transfers.

The first removes U-turn transfers for each trip, i.e. transfers that take you back to the
previous stop in the trip (later than if you changed trip at the previous stop). The second
aims at pruning the set of feasible transfers for each trip based on earliest arrival times at
stops. Each transfer is considered, starting with the later ones. If taking later transfers (or
remaining on the current trip) leads to identical or better arrival times or if all the trips
reachable via the transfer can be reached via those later transfers, then the current transfer
is removed from the set, as it cannot lead to other optimal values than the transfers already
kept. Note that the transfer set obtained is not minimal in terms of number of transfers, and
that it depends on the order of the transfers checked.

Earliest arrival time queries. In the context of the TB algorithm, earliest arrival time
queries refer to bicriteria queries where a single departure time τ is provided as input, along
with a source stop, denoted by psrc, and a target stop ptgt. Minimum arrival time and the
minimum number of transfers are optimized. Note that even if this case is not considered
in [30], it is not necessary for the origin and destination of the queries to be stops. If they
are placed anywhere on the road network, the algorithm is hardly modified but the footpaths
to reach the closest stops in the network must be computed, for instance by classical shortest
paths in the walking road network.

SEA 2022



6:6 Routing in Multimodal Transportation Networks with Non-Scheduled Lines

Earliest arrival time queries start with an initialization phase where the queue of the
search phase is initialized and its target set is computed from the source and target stops.
The target set is the set of lines L from which the destination can be reached:

L = {(l, i, 0) | (l, i) ∈ L(ptgt)} ∪
{(l, i, ∆τfp(q, ptgt)) | (l, i) ∈ L(q) and q is a neighbor of ptgt}

In the query phase, the author labels the trips by the index R(t) of the first reached stop
of t, initialized to ∞ for all trips. He defines for each number of transfers one queue Qn of
trip segments reached after n transfers. Q0 is initialized from the lines that can be taken from
the source stop. For any stop q reached by walking from psrc, the earliest trip of (l, i) ∈ L(q)
is added to the queue, starting at index i. It is the smallest trip t of line l such that

τdep(t, i) ≥
{

τ if q = psrc
τ + ∆τfp(psrc, q) otherwise

After initialization, a breadth-first like search is performed. At each iteration, the
algorithm scans in turn the trip segments of the queue. If the current one belongs to a target
line, the arrival time at destination is compared to that of the solution set. Then, the trip
segments reached by transferring from the current trip segment are added to the queue of
the next iteration if they improve the trips’ labels. It is the case for a trip segment (t, i, k)
if t is earlier than any trip of tl taken so far at stop i. When a trip t is marked with R(t) = i,
all the later trips of lt are marked with the minimum of i and their current index.

Profile queries. In profile queries, the user provides an earliest departure time τedt and
a latest departure time τldt, i.e. an interval in which to depart. The result of the query is
a complete set of solutions for minimum arrival time, minimum number of transfers and
maximum departure time starting within the interval. The computation for profile queries is
as follows: perform an earliest arrival time query starting at τldt and add the solutions to
the result set of the profile search. Then restart the search starting at the preceding instant
without resetting the trip labels. By iterating the process, you obtain a complete set of
solutions without performing unnecessary computations as the labels only let you improve
on preceding arrival times.

4 Trip-Based algorithm with non-scheduled lines

As we mentioned above, to the best of our knowledge, lines without a schedule are not
covered in the literature, although the special case of bike sharing appears in several articles
(e.g. [11, 21, 28]). We explain here our method for the general case where the non-scheduled
lines can have more than two stops in their sequence.

4.1 Defining a trip for a non-scheduled line
We consider that non-scheduled lines have predefined stop sequences and availability intervals
for each stop of the line. In order to define the earliest trip segment of a trip t of a non-
scheduled line l starting after a time τ , we need to evaluate the duration of this trip segment.
One possibility is to use the same principle as in the General Transit Feed Specification
(GTFS) format [19] for frequency-based trips: one trip with a complete schedule is defined
and the others are translations of it with different start times. A more complex solution could
consider time-dependent travel times between the line’s consecutive stops and time-dependent



D. Drakulic, C. Loiodice, and V. Lehoux 6:7

arrival and departure times of the trips at its stops. In that case, one must keep in mind
that trips of a line cannot overtake one another and that those time-dependent travel times
need to respect the FIFO property.

The algorithm proposed here is independent of the solution chosen as long as we can
define a schedule for earliest(l, i, τ). Note that the trip segment’s departure time is either
time τ if τ ∈ I(l, i) or the earliest instant of I(l, i) after τ . If such time doesn’t exist in
the current day, then we can consider taking the line the day after at minθ∈I(l,i) θ, if the
service is available. If the intervals of I(l, i) are sorted in increasing start time order, τ can
be computed in logarithmic time of the number of intervals using binary search.

4.2 Transfers to and from a line without schedule

In the TB algorithm, the transfer generation phase starts by computing all the possible
transfers for each trip. For each stop pi

t of the current trip t, find all the stops q that can
be reached by footpaths (i.e. ∆τfp(pi

t, q) is defined), and check if a transfer can take place
for each element (l, j) of L(q). Stop q is reached at time θ = τarr(t, i) + ∆τfp(pi

t, q) (or
θ = τarr(t, i) + ∆τch(q) if q = pi

t) and we can enforce a minimum boarding time to get the
minimum time τ = θ + ∆τbo(l) at which a trip of line l can be taken. If it is defined, only
transfer to the earliest trip of each line passing after time τ is added to the neighborhood
of t. We can proceed identically for admissible transfers from trips of scheduled lines to
non-scheduled lines. The earliest trip passing at q after τ is defined as in Section 4.1 and we
keep only the transfer to that trip.

Initially, the trips of non-scheduled lines are not instantiated: they are implicit within the
non-scheduled line definition. It is however possible to precompute some trip segments and
transfers to make the search faster. We extend the set of transfers to add the transfers from
a trip of a scheduled line to non-scheduled lines. We then prune the resulting extended set of
transfers as before. We denote with T̂ the set of transfers from a trip segment of a scheduled
line to a trip segment of a non-scheduled line. T ∪ T̂ is the extended set of transfers.

Note that for non-scheduled lines, we do not perform a preprocessing of the transfers to
scheduled and non-scheduled lines: instead, the transfers from trip segments of non-scheduled
lines are computed online during the query phase. It avoids explicitly creating all the
non-scheduled trips.

4.3 Modifications in the query phase

The algorithm for the query phase and its initialization can be found in Algorithm 1. The
auxiliary procedures of both are described in Algorithm 2.

In the initialization, the lines without schedule are scanned similarly to regular lines for
determining the algorithm’s targets. To build the initial queue, we consider the availability
intervals of non-scheduled lines at the stops reached from the origin and the minimum
boarding times to propose the earliest trip segment for reached lines.

A major difference with the initial version of the algorithm is the change in determining
the next trip segments to add to the queue. For transfers from scheduled lines, the set T of
transfers contains all the preprocessed transfers. For transfers from non-scheduled lines, the
transfers are computed on the fly. For transfers to scheduled lines, the next trip to take is
computed as in the initial algorithm and the trip segments added to the queue by the procedure
ENQUEUE_TRIP. For transfers to non-scheduled lines, the more complicated process of
ENQUEUE_LINE and UPDATE_R is required to avoid unnecessary computations.

SEA 2022



6:8 Routing in Multimodal Transportation Networks with Non-Scheduled Lines

Algorithm 1 Earliest arrival time query.

input Timetable data, transfer set T ∪ T̂

input Source stop psrc, destination stop ptgt, start time τ

output Result set J

J ← ∅, L ← ∅
Qn ← ∅ for n = 0, 1, . . .

R(t)←∞ for each trip t

R̂(l, j)←∞ for each line l without schedule and each index j = 0, 1, . . . , |−→p (l)|
INITIALIZATION()
τmin ←∞ ▷ The current minimum arrival time at target
n← 0
while Qn ̸= ∅ do

for each pb
t → pe

t ∈ Qn do
for each (lt, i, ∆τ) ∈ L with b < i and τarr(t, i) + ∆τ < τmin do

τmin ← τarr(t, i) + ∆τ ▷ A target is reached and arrival time is improved
J ← J ∪ {(τmin, n)}, removing dominated entries

if τarr(t, b + 1) + ∆τal(lt) < τmin then ▷ Filling the queue for the next round
if lt ∈ L̂ then ▷ Transfers must be computed

for each stop pi
t with b < i ≤ e do

for each stop q such that ∆τfp(pi
t, q) is defined do

τ ← ∆τfp(pi
t, q) + τarr(t, i) + ∆τal(lt)

for each (l, k) ∈ L(q) do
t′ ← earliest(l, k, τ + ∆τbo(l))
ENQUEUE_TRIP(t′, k, n + 1)

for each (l, k) ∈ L̂(q) do
ENQUEUE_LINE(l, k, τ + ∆τbo(l), n + 1)

else
for each transfer pi

t → pj
u ∈ T with b < i ≤ e do

ENQUEUE_TRIP(u, j, n + 1)
for each (pi

t → pj
l , τ) ∈ T̂ do

ENQUEUE_LINE(l, j, τ, n + 1)
n← n + 1

procedure INITIALIZATION
for each stop q s.t. ∆τfp(q, ptgt) is defined do ▷ Initialization of the target lines

∆τ ← 0 if ptgt = q, else ∆τfp(q, ptgt)
for each (l, i) ∈ L(q) ∪ L̂(q) do
L ← L ∪ (l, i, ∆τ + ∆τal(l))

for each stop q s.t. ∆τfp(psrc, q) is defined do ▷ Initialization of Q0
∆τ ← 0 if psrc = q, else ∆τfp(psrc, q)
for each (l, i) ∈ L(q) do

t← earliest(l, i, τ + ∆τal(l))
ENQUEUE_TRIP(t, i, 0)

for each (l, i) ∈ L̂(q) do
ENQUEUE_LINE(l, i, τ + ∆τal(l), 0)



D. Drakulic, C. Loiodice, and V. Lehoux 6:9

This process is as follows. For a non-scheduled line l, label R̂(l) contains a set of pairs
with the index of a stop and the earliest departure time at that stop. This set is such that
an element (i, τ) of R̂(l) is not dominated by any other element of R̂(l). A pair (i, τ) is
dominated by a pair (j, τ ′) if and only if

i ≥ j and τ > τdep(earliest(l, j, τ ′), i)

Indeed, if i ≥ j, the trip is boarded later at i, missing some transfer opportunities compared
to boarding it at j. And if τ > τdep(earliest(l, j, τ ′), i), then the earliest trip that can be
boarded at j after τ ′ brings you at the ith stop earlier than τ . Hence, the set R̂(l) contains at
most |−→p (l)| elements and we can check the dominance of a new pair over the elements of the
set in polynomial time. To maintain the elements of R̂(l), one can save for each stop i of l

the earliest departure time of a trip of l at that stop during the search. In that case, R̂(l, i)
represents the earliest departure time of l at its ith stop in the current search. Another
possibility is to sort the pairs of the set R̂(l) by increasing stop index and to use the fact that
the times are sorted in decreasing order to accelerate the dominance checks while needing
less memory. Procedure UPDATE_R describes the update process of R̂ and computes the
maximum index k for which R̂(l, k) is modified, so as to determine the last element of the
trip segment to add to the queue in the procedure ENQUEUE_LINE if R̂ is modified.

Note that since profile queries are an adaptation of earliest arrival time queries, it is
possible to take them into account as proposed in [30] even after the modifications.

Algorithm 2 Earliest arrival query auxiliary procedures.

procedure ENQUEUE_TRIP(trip t, index i, number of transfers n)
if i < R(t) then ▷ Adding the given trip segment to the queue

Qn ← Qn ∪ {pi
t → p

R(t)
t }

for each trip u with t ≤ u and lt = lu do
R(u)← min (R(u), i)

procedure ENQUEUE_LINE(line l ∈ L̂, index i, time τ , number of transfers n)
ind, t← UPDATE_R(l, i, τ ) ▷ Updating non-scheduled line labels
if ind ≥ i then ▷ Adding the earliest trip segment to the queue

Qn ← Qn ∪ {pi
t → pind

t }

procedure UPDATE_R(line l ∈ L̂, index i, time τ)
output Maximum index j s.t. R̂(l, j) is modified, i− 1 if no modification
updated← i

t← earliest(l, i, τ )
while updated ≤ |−→p (l)| and τdep(t, updated) < R̂(l, updated) do

R̂(l, updated)← τdep(t, updated)
updated← updated + 1

▷ Trip is scanned to its end or stop is reached by an earlier trip
return updated− 1, t

4.4 Complexity and correctness
Complexity. In [30], the complexity of the algorithm is not indicated. However, it can be
shown that the algorithm performs a number of operations polynomial in the input size. We
discuss here the worst case complexity for the non-scheduled line extension that we propose.
An important difference is that only part of the instance is represented in the search graph.

SEA 2022



6:10 Routing in Multimodal Transportation Networks with Non-Scheduled Lines

The set of vertices V of the search graph contains the trips of the scheduled lines and
the destination trips of the transfers of T̂ . The number of elements in V is hence bounded
by the number of trips of scheduled lines, denoted Ns, plus the size of T̂ . Given an origin
trip t, it would be possible to transfer from each stop of t (except the first one) to each
stop (except the last one) of each non-scheduled line and to keep those transfers in T̂ . We
hence have |T̂ | = O(Ns |L̂| |S|2), if S is the set of stops, and |V | is polynomial. Similarly,
we can bound the number of elements of T by |T | = O(N2

s |S|2). The arcs A of the search
graph represent the transfers of T ∪ T̂ . So |A| = O(Ns(Ns + |L̂|)|S|2). Arcs from trips of
non-scheduled lines are implicit. Computing the earliest trip of a line leaving a given stop
after a time τ can be done efficiently using binary search in O(log n) for scheduled lines, if n

is the number of trips of the line and O(log |S|) for non-scheduled lines. The set of earliest
feasible transfers can hence be obtained in O(Ns(log(Ns)Ns + log(|S|)|L̂|)|S|2). The pruning
phase is also polynomial, as for each transfer, at most all the stops’ labels must be updated.

For the initialization of the query phase, at most all the stops can be reached from psrc
and all the lines taken, which takes O(|S| |L ∪ L̂|) ’ENQUEUE’ operations. Then, at each
iteration, we loop over the queue’s content. For each trip segment in the queue, we first
iterate over the targets (those number is bounded by |S| |L ∪ L̂|). Then if it is from a
scheduled line, we scan its outgoing arcs. At most, |T ∪ T̂ | arcs are processed and elements
are added to the queue. Otherwise, the worst case corresponds to the existence of a transfer
from each stop of the non-scheduled line to each stop of any other line. It is hence bounded
by O(|L ∪ L̂| |S|2). It results in a polynomial number of ’ENQUEUE’ operations.

The ENQUEUE_TRIP procedure updates in the worst case the labels of all the trips of
the line of its input trip t. It hence has complexity O(Ns). ENQUEUE_LINE updates at
most |−→p (l)| labels of the set of labels of its input line l. It is hence bounded by |S|.

Overall, each step of the search phase is hence polynomial in the instance size.
To bound the number of iterations, first note that it is not possible to take twice the

same trip in an optimal solution. A solution that alights a trip to board it again has at least
one more transfer than the solution remaining on the current trip. It hence cannot be built
by the algorithm and, for the original algorithm, the number of iterations is bounded by
Ns. Taking twice the same line would be possible, for instance if the line is passing twice by
the same stop, but not taking an earlier trip at a stop already passed by a preceding trip of
the same line. The number of non-scheduled line trip segments in a solution built by the
algorithm is hence bounded by O(|S|). Hence, the number of iterations is in O(Ns + |S| |L̂|).

Correctness. To prove that the algorithm is correct, we need to show that for any optimal
solution in the Pareto set, there exists an optimal solution with the same value whose
transfers are either in the pruned transfer set T ∪ T̂ or are transfers from non-scheduled
lines. Let s be an optimal solution with at least one transfer described by the trip segments
that compose it: s =

〈
pj1

t1
→ pi1

t1
, pj2

t2
→ pi2

t2
, . . . , p

jK+1
tK+1

→ p
iK+1
tK+1

〉
. If all its transfers are either

in the transfer set T ∪ T̂ or are transfers from non-scheduled lines, we are done. If not,
from this solution, we build another optimal solution s′ whose transfers are either in T ∪ T̂

or are transfers from non-scheduled lines. First, iterating from pj2
t2
→ pi2

t2
, we replace the

trip segments pjk
tk
→ pik

tk
that are not the earliest for which the transfer to ltk

is possible
from p

ik−1
tk−1

. Since s is optimal, it is not possible to arrive sooner at stop p
iK+1
tK+1

and trip
segment p

jK+1
tK+1

→ p
iK+1
tK+1

is not modified. To simplify, we keep the same notation for the
modified trip segments of s if any.



D. Drakulic, C. Loiodice, and V. Lehoux 6:11

Table 1 Netherlands and IDF datasets.

Netherlands IDF
# stops # lines # foot paths
47313 2773 429.4K

# stops # lines # foot paths
42302 1869 752K

# trips # connections
Baseline 364.2K 6.527M
Non-sch. 317.7K 5.938M

# trips # connections
Baseline 373.3K 7.867M
Non-sch. 318.0K 7.014M

Consider the last transfer piK
tK
→ p

jK+1
tK+1

of s. If trip tK is from a non-scheduled line, we
keep it in s′. Otherwise, suppose that this transfer is not in T ∪ T̂ . In that case, there exists
a transfer p

i′
K

tK
→ p

j′
K+1

t′
K+1

in T ∪ T̂ from tK such that i′
K ≥ ik and t′

K+1 arrives at p
iK+1
tK+1

at time
τarr(tK+1, iK+1) or before by definition of the pruning phase. Note that as the solution is
optimal, it is exactly at time τarr(tK+1, iK+1). If we denote with i′

K+1 the smallest index in
the stop sequence of t′

K+1 such that i′
K+1 ≥ j′

K+1 and p
iK+1
tK+1

= p
i′

K+1
t′

K+1
, we can hence replace

the two last trip segments by pjK

tK
→ p

i′
K

tK
, p

j′
K+1

t′
K+1
→ p

i′
K+1

t′
K+1

in s′.
Proceeding likewise for the other transfers going backward in the solution, we can obtain

a solution s′ with the same value as s those transfers are all in T ∪ T̂ or are transfers from a
non-scheduled line.

5 Experiments

To the best of our knowledge, there is no open transit dataset with non-scheduled lines. One
of the reason is that the most widespread data format, the GTFS format [19], does not
provide specifications for defining non-scheduled lines. A recent proposal [23] extends it to
some on-demand transports [29], but it doesn’t cover the general case of non-scheduled lines,
where the stop sequences of the lines are defined. Due to lack of standards, service providers
usually develop their own methods for specification and integration of non-scheduled lines in
their trip planners if they wish to propose them.

For our experiments, we modified public datasets for Netherlands [8] and Île-De-France [9]
(IDF). The Netherlands dataset contains on-demand lines, but with predefined schedules,
which require phone activation. From the perspective of the TB algorithm, this type of lines
are handled as standard lines as they have predefined schedules and are not appropriate for
our need. We hence slightly change the original dataset by converting 253 on-demand lines
with predefined schedules to lines without schedule. For the IDF dataset, we obtain 201
non-scheduled lines. For each line, we set the availability period to 7.30 am to 7 pm for the
first stop and translate the interval for each later stop of the line according to a fixed travel
time between the origin stop and that stop. We denote by Non-sch. those datasets and we
use the proposed algorithm to compute itineraries in those networks.

We also generate another variation of those datasets: instead of non-scheduled lines, we
instantiated all the possible trips for the non-scheduled lines by generating one trip every two
minutes in the interval. Those datasets are our baseline, as they allow to take into account
non-scheduled lines without modification of the base algorithm.

Table 1 summarizes the datasets. Non sch. and baseline have the same number of
stops, lines and foot paths, but the number of trips and connections (transfer between two
consecutive stops taking a trip) differ. The experiments are run on a 2.7 GHz CPU Intel(R)
Xeon(R) CPU E5-4650 server with 64 cores, 20M of L3 cache and 504 GB of RAM by using
a solver developed in the Rust programming language.

SEA 2022



6:12 Routing in Multimodal Transportation Networks with Non-Scheduled Lines

Table 2 Preprocessing phase.

Netherlands IDF
Time # Transfers to # Transfers to Time # Transfers to # Transfers to

(s) scheduled lines non-sch. lines (s) scheduled lines non-sch. lines
Baseline 49 62.087M 0 75 90.183M 0
Non-sch. 46 60.306M 0.121M 73 84.212M 1.191M

Table 3 Query times for Baseline and Non-sch.

Netherlands IDF
Query Mean time Min time Max time Mean time Min time Max time

(ms) (ms) (ms) (ms) (ms) (ms)

B
as

el
in

e Earliest arrival 60 23 173 56 21 153
Profile 8.30 147 47 319 118 42 199
Profile 14.30 134 44 244 131 41 238

N
on

-s
c h Earliest arrival 45 18 147 43 8 106

Profile 8.30 122 33 289 103 15 170
Profile 14.30 99 25 268 102 13 183

Preprocessing times of the two settings are similar, although the setting using non-
scheduled lines is slightly faster, as it has less trips to process (see Table 2). Remark that the
preprocessing time is low enough to allow for real-time updates of the network every couple
of minutes. It implies that in the case when a non-scheduled trip is booked, it is possible
to update the network to include it as a scheduled trip. The availability intervals of some
stops-line pairs can also be modified to take into account the fact that this booked vehicle is
no longer available.

To compare query times, we selected randomly 300 origin and destination pairs over
each network. We generated 3 queries per origin-destination pair: an earliest arrival time
query and two profile queries. For each query, a complete set of solutions is computed. We
fixed the departure times of the earliest arrival time queries at 8.30 (am), a time at which
trips are usually more frequent (which makes the exploration more time consuming) and for
profile queries, we considered time intervals of length one hour, starting at 8.30 and 14.30
respectively. Profile queries starting at 14.30, a time where trip frequencies are less high,
result in fewer solutions and are hence expected to run faster than the ones starting at 8.30.
Results of the experiments can be found in Table 3.

For our experiments, we turned about 10% of the lines into non-scheduled lines, and
hence cannot expect a huge difference in query times. However, the difference is significant
enough for the method to be interesting from a performance point of view, as mean query
times are between 13% and 27% faster than that of the baseline version (see Table 4).

Table 4 Non-sch. query times divided by baseline query times.

Netherlands IDF
Query Mean time Min time Max time Mean time Min time Max time
Earliest arrival 0.75 0.78 0.85 0.77 0.38 0.74
Profile 8.30 0.83 0.70 0.91 0.87 0.36 0.85
Profile 14.30 0.73 0.57 1.1 0.78 0.32 0.77



D. Drakulic, C. Loiodice, and V. Lehoux 6:13

6 Conclusion and future work

In this article, we proposed a method for computing itineraries in public transit or multimodal
networks with scheduled and non-scheduled lines. It extends the Trip-Based Public Transit
Routing algorithm to on-demand lines with a predefined stop sequence and availability
intervals but no associated schedules. Experimental results over two large datasets show
that the proposed approach performs better than the baseline consisting in discretizing the
availability interval to generate all the possible trips for the non-scheduled lines.

This model has car and bike sharing as a special case. A perspective of our work could
hence be to test our method with multimodal networks including those modes, against
classical modeling as a transfer, and not as a trip. Another line of work could be concerned
with applying classical acceleration techniques, such as Transfer Patterns [4, 6], to the
proposed algorithm. Transfer patterns have been adapted to Trip-Based Public Transit
Routing in [31] and could be extended to take into account non-scheduled lines.

References
1 Transports montalbanais. Access date: 2021/03/29. URL: https://www.montm.com/

transport-a-la-demande-et-pmr/.
2 Chris Barrett, Riko Jacob, and Madhav Marathe. Formal-language-constrained path problems.

SIAM J. Comput., 30(3):809–837, May 2000. doi:10.1137/S0097539798337716.
3 Hannah Bast. Car or Public Transport – Two Worlds. In Susanne Albers, Helmut Alt,

and Stefan Näher, editors, Efficient Algorithms: Essays Dedicated to Kurt Mehlhorn on the
Occasion of His 60th Birthday, pages 355–367. Springer Berlin Heidelberg, Berlin, Heidelberg,
2009. doi:10.1007/978-3-642-03456-5_24.

4 Hannah Bast, Erik Carlsson, Arno Eigenwillig, Robert Geisberger, Chris Harrelson, Veselin
Raychev, and Fabien Viger. Fast routing in very large public transportation networks using
transfer patterns. In Proceedings of the 18th Annual European Conference on Algorithms: Part
I, ESA’10, pages 290–301, Berlin, Heidelberg, 2010. Springer-Verlag.

5 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor,
Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in Transportation
Networks. In Kliemann L., Sanders P. (eds) Algorithm Engineering - Selected Results and
Surveys, volume 9220 of Lecture Notes in Computer Science, pages 19–80. Springer, Cham,
2016. doi:10.1007/978-3-319-49487-6_2.

6 Hannah Bast, Matthias Hertel, and Sabine Storandt. Scalable Transfer Patterns. In 2016
Proceedings of the Eighteenth Workshop on Algorithm Engineering and Experiments (ALENEX),
pages 15–29, January 2016. doi:10.1137/1.9781611974317.2.

7 Moritz Baum, Valentin Buchhold, Jonas Sauer, Dorothea Wagner, and Tobias Zündorf.
UnLimited TRAnsfers for Multi-Modal Route Planning: An Efficient Solution. In Michael A.
Bender, Ola Svensson, and Grzegorz Herman, editors, 27th Annual European Symposium
on Algorithms (ESA 2019), volume 144 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 14:1–14:16, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ESA.2019.14.

8 datahub. Timetables for transit in netherlands. Access date: 2019/07/29. URL: https:
//old.datahub.io/dataset/gtfs-nl.

9 Île de France Mobilités. Open data portal. Access date: 2020/05/04. URL: https://data.
iledefrance-mobilites.fr/pages/home/.

10 Daniel Delling, Julian Dibbelt, and Thomas Pajor. Fast and Exact Public Transit Routing
with Restricted Pareto Sets. In Proceedings of the Twenty-First Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 54–65, San Diego, California, USA, 2019.
Editor(s): Stephen Kobourov and Henning Meyerhenke. doi:10.1137/1.9781611975499.5.

SEA 2022

https://www.montm.com/transport-a-la-demande-et-pmr/
https://www.montm.com/transport-a-la-demande-et-pmr/
https://doi.org/10.1137/S0097539798337716
https://doi.org/10.1007/978-3-642-03456-5_24
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1137/1.9781611974317.2
https://doi.org/10.4230/LIPIcs.ESA.2019.14
https://old.datahub.io/dataset/gtfs-nl
https://old.datahub.io/dataset/gtfs-nl
https://data.iledefrance-mobilites.fr/pages/home/
https://data.iledefrance-mobilites.fr/pages/home/
https://doi.org/10.1137/1.9781611975499.5


6:14 Routing in Multimodal Transportation Networks with Non-Scheduled Lines

11 Daniel Delling, Julian Dibbelt, Thomas Pajor, Dorothea Wagner, and Renato F. Werneck.
Computing Multimodal Journeys in Practice. In Experimental Algorithms - Proceedings of the
12th International Symposium, SEA 2013, volume 7933 of Lecture Notes in Computer Science,
pages 260–271. Springer Berlin Heidelberg, 2013. doi:10.1007/978-3-642-38527-8_24.

12 Daniel Delling, Julian Dibbelt, Thomas Pajor, and Renato F. Werneck. Public Transit Labeling.
In Evripidis Bampis, editor, Experimental Algorithms - Proceedings of the 14th International
Symposium (SEA 2015), volume 9125 of Lecture Notes in Computer Science, pages 273–285.
Springer International Publishing, 2015. doi:10.1007/978-3-319-20086-6_21.

13 Daniel Delling, Thomas Pajor, and Renato F. Werneck. Round-Based Public Transit Routing.
In Society for Industrial and Applied Mathematics, editors, Proceedings of the 14th Meeting on
Algorithm Engineering and Experiments (ALENEX’12), pages 130–140, 2012. doi:10.1287/
trsc.2014.0534.

14 Julian Dibbelt, Thomas Pajor, Ben Strasser, and Dorothea Wagner. Intriguingly Simple
and Fast Transit Routing. In Vincenzo Bonifaci, Camil Demetrescu, and Alberto Marchetti-
Spaccamela, editors, Experimental Algorithms. International Symposium on Experimental
Algorithms, SEA 2013, volume 7933 of Lecture Notes in Computer Science, pages 43–54, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/978-3-642-38527-8_6.

15 Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. User-Constrained Multi-Modal Route
Planning. In Proceedings of the 14th Workshop on Algorithm Engineering and Experiments
(ALENEX’12), pages 118–129. SIAM, 2012. Editors David A. Bader and Petra Mutzel.
doi:10.1137/1.9781611972924.12.

16 Agglo du Pays de Dreux. Linéad. Access date: 2021/03/29. URL: https://www.linead.fr/
8-Transport-a-la-demande.html.

17 Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction Hier-
archies: Faster and Simpler Hierarchical Routing in Road Networks. In C.C. McGeoch, editor,
Experimental Algorithms. 7th Workshop on Experimental Algorithms (WEA 2008), volume
5038 of Lecture Notes in Computer Science, pages 319–333. Springer, Berlin, Heidelberg, 2008.
doi:10.1007/978-3-540-68552-4_24.

18 Andrew Goldberg and Chris Harrelson. Computing the shortest path: A* search meets
graph theory. In Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete Al-
gorithms(SODA’05), pages 156–165. SIAM, 2005.

19 General transit feed specification. Access date: 2021/03/29. URL: https://gtfs.org/.
20 Pierre Hansen. Bicriterion Path Problems. In Günter Fandel and Tomas Gal, editors,

Multiple Criteria Decision Making Theory and Application, volume 177 of Lecture Notes
in Economics and Mathematical Systems, pages 109–127. Springer Berlin Heidelberg, 1980.
doi:10.1007/978-3-642-48782-8_9.

21 Dominik Kirchler, Leo Liberti, and Roberto Wolfler Calvo. Efficient Computation of Shortest
Paths in Time-Dependent Multi-Modal Networks. ACM Journal of Experimental Algorithmics
(JEA), 19, January 2015. doi:10.1145/2670126.

22 Vassilissa Lehoux and Darko Drakulic. Mode Personalization in Trip-Based Transit Routing.
In Valentina Cacchiani and Alberto Marchetti-Spaccamela, editors, 19th Symposium on
Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2019), volume 75 of OpenAccess Series in Informatics (OASIcs), pages 13:1–13:15, Dagstuhl,
Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/OASIcs.
ATMOS.2019.13.

23 Ross MacDonald. Mobility on demand (mod) sandbox: Vermont agency of transportation
(vtrans) flexible trip planner. Technical Report 0150, Federal Transit Administration (FTA)
Research, 2020.

24 Transports publics de Flers Agglo. Némus. Access date: 2021/03/29. URL: https://nemus.
flers-agglo.fr/se-deplacer/transport-a-la-demande.

https://doi.org/10.1007/978-3-642-38527-8_24
https://doi.org/10.1007/978-3-319-20086-6_21
https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1287/trsc.2014.0534
https://doi.org/10.1007/978-3-642-38527-8_6
https://doi.org/10.1137/1.9781611972924.12
https://www.linead.fr/8-Transport-a-la-demande.html
https://www.linead.fr/8-Transport-a-la-demande.html
https://doi.org/10.1007/978-3-540-68552-4_24
https://gtfs.org/
https://doi.org/10.1007/978-3-642-48782-8_9
https://doi.org/10.1145/2670126
https://doi.org/10.4230/OASIcs.ATMOS.2019.13
https://doi.org/10.4230/OASIcs.ATMOS.2019.13
https://nemus.flers-agglo.fr/se-deplacer/transport-a-la-demande
https://nemus.flers-agglo.fr/se-deplacer/transport-a-la-demande


D. Drakulic, C. Loiodice, and V. Lehoux 6:15

25 Evangelia Pyrga, Frank Schulz, Dorothea Wagner, and Christos Zaroliagis. Efficient Models
for Timetable Information in Public Transportation Systems. ACM Journal of Experimental
Algorithmics (JEA), 12(2.4):1–39, 2008. doi:10.1145/1227161.1227166.

26 Andrea Raith, Marie Schmidt, Anita Schöbel, and Lisa Thom. Extensions of labeling algorithms
for multi-objective uncertain shortest path problems. Networks, 72(1):84–127, 2018. _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/net.21815. doi:10.1002/net.21815.

27 Jonas Sauer, Dorothea Wagner, and Tobias Zündorf. Faster Multi-Modal Route Planning
With Bike Sharing Using ULTRA. In Simone Faro and Domenico Cantone, editors, 18th
International Symposium on Experimental Algorithms (SEA 2020), volume 160 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 16:1–16:14, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.SEA.2020.16.

28 Luis Ulloa, Vassilissa Lehoux, and Frédéric Roulland. Trip Planning Within a Multimodal
Urban Mobility. IET Intelligent Transport Systems, 12(2):87–92, 2018. doi:10.1049/iet-its.
2016.0265.

29 GTFS-Flex v2. Flexible public transit services in gtfs. URL: https://github.com/
MobilityData/gtfs-flex/blob/master/spec/reference.md.

30 Sascha Witt. Trip-Based Public Transit Routing. In Nikhil Bansal and Irene Finocchi,
editors, Algorithms - Proceedings of the 23rd Annual European Symposium on Algorithms
(ESA’15), volume 9294 of Lecture Notes in Computer Science, pages 1025–1036, Berlin,
Heidelberg, 2015. Springer Berlin Heidelberg. Editors: Nikhil Bansal and Irene Finocchi.
doi:10.1007/978-3-662-48350-3_85.

31 Sascha Witt. Trip-Based Public Transit Routing Using Condensed Search Trees. In Marc
Goerigk and Renato Werneck, editors, Proceedings of the 16th Workshop on Algorithmic Ap-
proaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016), volume 54
of OpenAccess Series in Informatics (OASIcs), pages 10:1–12, Dagstuhl, Germany, 2016.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. Editors: Marc Goerigk and Renato
Werneck. doi:10.4230/OASIcs.ATMOS.2016.10.

SEA 2022

https://doi.org/10.1145/1227161.1227166
https://doi.org/10.1002/net.21815
https://doi.org/10.4230/LIPIcs.SEA.2020.16
https://doi.org/10.1049/iet-its.2016.0265
https://doi.org/10.1049/iet-its.2016.0265
https://github.com/MobilityData/gtfs-flex/blob/master/spec/reference.md
https://github.com/MobilityData/gtfs-flex/blob/master/spec/reference.md
https://doi.org/10.1007/978-3-662-48350-3_85
https://doi.org/10.4230/OASIcs.ATMOS.2016.10




Relating Real and Synthetic Social Networks
Through Centrality Measures
Maria J. Blesa !

Computer Science Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Mihail Eduard Popa !

Barcelona School of Informatics, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Maria Serna !

Computer Science Department, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain
Institute of Mathematics (IMTech), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain

Abstract
We perform here a comparative study on the behaviour of real and synthetic social networks with
respect to a selection of nine centrality measures. Some of them are topology based (degree, closeness,
betweenness), while others consider the relevance of the actors within the network (Katz, PageRank)
or their ability to spread influence through it (Independent Cascade rank, Linear Threshold Rank).
We run different experiments on synthetic social networks, with 1K, 10K, and 100K nodes, generated
according to the Gaussian Random partition model, the stochastic block model, the LFR benchmark
graph model and hyperbolic geometric graphs model. Some real social networks are also considered,
with the aim of discovering how do they relate to the synthetic models in terms of centrality. Apart
from usual statistical measures, we perform a correlation analysis between all the nine measures.
Our results indicate that, in general, the correlation matrices of the different models scale nicely
with size. Moreover, the correlation plots distinguish four categories that classify most of the real
networks studied here. Those categories have a clear correspondence with particular configurations
of the models for synthetic networks.

2012 ACM Subject Classification Networks → Network algorithms; Networks → Network dynamics

Keywords and phrases centrality measures, influence spread models, synthetic social networks

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.7

Supplementary Material Other (Experimental Results): https://www.cs.upc.edu/ mjblesa/
centrality/syntheticGraphs/

Funding M. Blesa and M. Serna acknowledge support by MICIN/AEI/10.13039/501100011033 under
grant PID2020-112581GB-C21 (MOTION). M.E. Popa was funded by the Ministry of Education
and Vocational Training (MEFP) with a student grant (Beca de colaboración, call 2020-2021).

1 Introduction

Nowadays, social media are more and more integrated in our daily lives leading to the
emergence of varied and complex social networks. One of the main research questions is
to understand the relevant characteristics of those huge networks. In network analysis,
indicators of centrality identify the most important vertices within a graph with respect to
some particular characteristic. Centrality concepts were first developed in social network
analysis, and many of the terms used to measure them reflect that sociological origin [17].
They should not be confused with node influence metrics, which seek to quantify the influence
of every node in the network. Traditional measures are degree, closeness and betweenness
which are topology dependant. Other well-known centrality measures are the Katz Rank [8]
and the PageRank [19]. Two new measures have been introduced in an attempt to measure
centrality with respect to influence spreading, the Independent Cascade (ICR) [9] and the
Linear Threshold Rank (LTR) [4].

© Maria J. Blesa, Mihail Eduard Popa, and Maria Serna;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 7; pp. 7:1–7:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:maria.j.blesa@upc.edu
https://orcid.org/0000-0001-8246-9926
mailto:mihail.eduard.popa@estudiantat.upc.edu
mailto:maria.serna@upc.edu
https://orcid.org/0000-0001-9729-8648
https://doi.org/10.4230/LIPIcs.SEA.2022.7
https://www.cs.upc.edu/~mjblesa/centrality/syntheticGraphs/
https://www.cs.upc.edu/~mjblesa/centrality/syntheticGraphs/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 Relating Real and Synthetic Social Networks Through Centrality Measures

Many efforts have been devoted to understand the relationship among different centrality
measures on real networks (see for example [26, 22, 18] and references herein). [18] show
that network topology determines the correlation pattern among several measures and the
combination of several centrality measures can help in the interpretation of the roles that
a node or a group of nodes play in the network. In all these studies the evaluation has
been performed in a selection of real networks. Our objective is to understand whether the
parameters and correlation patterns among a small number of centrality measure can identify
a family of synthetic social networks. Eventually, we would like to use such patterns to
associate a correct model to real networks. Recall that, after a surge in interest in network
structure among mathematicians and physicists, a body of research has been devoted to
modeling networks either analytically or numerically. We focus our attention on random
models generating synthetic networks from a priori knowledge on its communities. In
particular, we generate graphs according to the Gaussian Random partition model [25], the
stochastic block model [20], and the Lancichinetti–Fortunato–Radicchi (LFR) benchmark [13].
These models are accepted to be good generators for benchmarks in community detection [3].
We complement the study analyzing hyperbolic geometric graphs [12], known as graphs
showing properties expected in large real network graphs, and the behaviour of the centrality
on some real social networks.

We experimentally evaluate the behaviour of the considered centrality measures on the
selected models of synthetic networks and perform a stochastic comparison among them.
To compare the different centrality measures, we have extracted three statistics measuring
diversity: the standard deviation, the number of different values, and the Gini coefficient.
The second component is a correlation analysis. We use the Kendall [11] and Spearman [24]
coefficients. Our results show, as expected, that the considered models of synthetic social
networks perform differently with respect to the centrality measures. Besides this, our results
indicate that, in general, the correlation matrices on the different models scale nicely with
size. Furthermore, we observe that the correlation plots distinguish different graph families.
From the correlation plots, we have been able to obtain four categories classifying most of
the real networks studied here. Furthermore, such categories are identified with submodels
of the synthetic networks. The unclassified networks are very small or a particular structure
which hints to another type of generator will be needed for those networks.

2 Centrality Measures

We outline the centrality measures used in the paper. Some of them are based on the
topological properties of the nodes, some others take into account the relevance of the actors,
while other centrality measures quantify the influence exerted by the actors on the network
in terms of diffusion power. Given a directed graph G = (V, E), where |V | = n, we consider:

2.1 Topology based
Degree. This is one of the simplest centrality measures and simply consists on assigning
the centrality based of the degree of the node. For every node i ∈ V , the degree centrality of
i is the degree itself of i (δi), normalized by the number of nodes minus one, i.e.,

Deg(i) = δi

n − 1 .



M. J. Blesa, M. E. Popa, and M. Serna 7:3

Closeness. For the closeness measure, the distance to other nodes is considered. Intuitively,
the more central a node is, the closer it is to all other nodes. For every node i ∈ V , the
closeness of i is calculated as the normalized reciprocal of the sum of the length of the
shortest path distances between i and all other nodes j ∈ V \ {i} in the graph.

Clsn(i) =
1/

∑
j

d(j,i)

(n − 1) = n − 1∑
j d(j, i) .

In order to be able to compute the closeness measure also for the nodes of networks which
are not strongly connected, we will consider the adaptation in [27], defined as follows:

Clsn(i) = Ji/(n − 1)∑
j d(j, i)/Ji

.

where Ji is the number of actors in the influence range of actor i, i.e., the number of actor
who are reachable from i.

Betweenness. In the betweenness centrality, a node is more important if it belongs to
the shortest path between any pair of nodes in the graph [5]. Given G = (V, E), for every
node i ∈ V , we define the betweenness as the sum ∀s∀t ∈ V of the proportion of σst(i)
(the shortest paths between s, t that go through i) with respect to σst (all the shortest path
between s and t), i.e.,

Btwn(i) =
∑

s̸=i̸=t

σst(i)
σst

.

2.2 Relevance based
Katz. The Katz centrality [8] is a generalization of degree centrality and it can also be
viewed as a variant of eigenvector centrality. While degree centrality measures the number of
direct neighbors, the Katz centrality measures the number of all nodes that can be connected
through a path, while the contributions of distant nodes are penalized. It is based on the
idea that an actor is important if it is linked to other important actors or if it is highly
linked. It overcomes the limitations of the eigenvector centrality when the graph has nodes
that reach strongly connected components, but those connected components do not reach
the node, which may occur in social networks.

Let A be the adjacency matrix of the directed graph G = (V, E) (i.e., aij = 1 if there is
an edge between i and j, and a aij = 0 otherwise). Let β be a constant independent from the
structure of the social network and α ∈ [0, . . . , λmax

−1] is the damping factor, being λmax

the highest eigenvalue in A. Then the Katz(i) is defined as

Ktz(i) = α
∑
j∈V

aji Ktz(j) + β.

PageRank. One of the most popular centrality measures is the PageRank [19], that Google
uses to assign importance to web pages. A web page is important if other important web
pages point to it. It uses a parameter α ∈ (0, 1], that represents the probability that a user
keeps jumping from a web page to another through the links that are between them (and
thus, 1 − α represents the probability that the user goes to a random web page). Let A be

SEA 2022



7:4 Relating Real and Synthetic Social Networks Through Centrality Measures

the adjacency matrix of a directed graph G = (V, E) (i.e., aij = 1 if there is an edge between
i y j, and a aij = 0 otherwise), and let δ+(i) be the out degree of i ∈ V . The PageRank
(PR) of i is given by

PgR(i) = (1 − α) + α
∑
j∈V

aji PgR(j)
δ+(j) .

2.3 Influence based
Perhaps the two most prevalent diffusion models in computer science are the Independent
Cascade model [7] and the Linear Threshold model [9, 23]. Based on them, the corresponding
influence-based centrality measures are defined:

Independent Cascade Rank. The Independent Cascade Rank [10] is an influence-based
centrality measure based on the Independent Cascade Model (ICM) [7], which is a stochastic
model that was initially proposed in the context of marketing. It is based on the assumption
that whenever a node is activated, it will (stochastically) do attempt to activate each actor
he targets. Given an activated node i ∈ V , any neighbor j such that (i, j) ∈ E will be
activated with a probability pij . When a new actor is activated, the process is repeated for
this actor. The whole process ends when there are no active nodes with a new chance to
spread its influence.

Given an initial node u ∈ V and a probability p ∈ [0, 1] (where ∀(i, j) ∈ E : pij = p), the
expected influence spread of u is denoted by F ′(u, p) and comprises the set of activated nodes
under the ICM influence model, starting from the initial node u. Then, the Independent
Cascade Rank of a node u ∈ V is then defined as

ICR(u, p) = |F ′(u, p)|
maxv∈V {|F ′(v, p)|} .

Linear Threshold Rank. The Linear Threshold Rank [4] is also an influence-based centrality
measure, based on the Linear Threshold Model (LTM) [9]. Every node has an influence
threshold, which represents the resistance of this node to be influenced by others. Every
edge (u, v) also has a weight representing the influence that node u has over node v.

The influence algorithm starts with an initial predefined set of activated nodes. At every
iteration, the active nodes will influence their neighbors. When the total influence that a
node i receives exceeds its influence threshold θi, then this node will become active and join
the set of active nodes. As long as new nodes join the set of active nodes, the spread of
influence is still on progress. The algorithm stops when the set of active nodes converges,
i.e., when no new nodes are influenced. In order to formally define the Linear Threshold
Rank, we need to introduce the following concepts:

▶ Definition 1. An influence graph is a tuple (G, w, θ), where G = (V, E) is a directed
graph made by a set of actors V and a set of relations E, w : E → Z is a weight function
that assigns a weight to each edge, representing the influence of one node to the other, and
θ : V → N is a labeling function that quantifies how resistant to influence every node is.

▶ Definition 2. Given an influence graph (G, w, θ) and an initial active set X ⊆ V , Ft(X) ⊆
V denotes the set of activated nodes at the t-th iteration starting with X as kernel.



M. J. Blesa, M. E. Popa, and M. Serna 7:5

At the first step, t = 0 only the nodes in X are active, which means that F0(X) = X. At
the t + 1 iteration, a node i will be activated if, and only if, the sum of all the weights of the
active nodes incident to i is higher than the resistance (or influence) threshold of i, i.e.,∑

j⊆Ft(X)

wij ≥ θi,

Observe that the process is monotonic, therefore it stops after at most n = |V | steps.

▶ Definition 3. Let k = min {t ∈ N | Ft(X) = 0}, where k ≤ n. The expansion of X ⊆ V

on an influence graph (G = (E, V ), w, θ), is defined as F (X) =
⋃k

t=0 Ft(X).

Given an influence graph (G = (V, E), w, θ), the Linear Threshold Rank of a node i ∈ V

is given by

LTR(i) = |F ({i} ∪ N (i))|
|V |

, where N (u) = {v | (u, v) ∈ E ∨ (v, u) ∈ E}.

Forward and Backward Linear Threshold Rank. The Forward and the Backward Linear
Threshold Ranks [1] are centrality measures similar to the LTR, but with a different initial set
of activated nodes. Given an influence graph (G = (V, E), w, f), the Forward Linear Threshold
Rank and the Backward Linear Threshold Rank of a node i ∈ V is given, respectively, by

FwLTR(i) = |F ({i} ∪ N +(i))|
|V |

and BwLTR(i) = |F ({i} ∪ N −(i))|
|V |

where N +(i) = {j ∈ V | (i, j) ∈ E} and N −(i) = {j ∈ V | (j, i) ∈ E}.

3 Social Networks

We describe the characteristics of the synthetic networks considered in this work, as well as
the real social networks chosen for our experiments. The structural characteristics of the
networks are described by seven common attributes: the number of vertices, the number of
edges, whether the graph is weighted, whether the graph is directed, the average clustering
coefficient, and the size of the main core.

The average clustering coefficient (ACC) is the average of the local clustering coefficients
in the graph. The local clustering coefficient Ci of a node i is the number of triangles Ti in
which the node participates normalized by the maximum number of triangles that the node
could participate in.

ACC = 1
n

n∑
i=1

Ci, where Ci = Ti

δi(δi − 1)

where δi is the degree of the node i, and n = |V |. Given a graph G and k ∈ Z+, a k-core is
the maximal induced subgraph of G where every node has at least degree k. The main core
is a k-core of G with the highest k.

3.1 Synthetic Social Networks
Concerning the models for synthetic social networks, we have considered four different models:
Gaussian Random Partition Graphs, the Stochastic Block Model, LFR Benchmark Graphs
and Hyperbolic Geometric Graphs.

SEA 2022



7:6 Relating Real and Synthetic Social Networks Through Centrality Measures

3.1.1 Gaussian Random Partition Graph (GRP)

The process to create a Gaussian Random Partition Graph [25] starts by creating k partitions
of different size. Those sizes will be taken from a normal distribution N (µ, σ2). Two nodes
from the same partition are connected with probability pin, while two nodes from two different
partitions will be connected with probability pout. To generate this type of graph we will be
using the implementation from NetworkX [14], which lets us assign values for the following
parameters:

n: the number of nodes of the network,
µ: mean of the sizes of the partition in the graph,
σ: variance of the sizes of the partition in the graph,
pin: probability of generating a intracluster edge,
pout: probability of generating a intercluster edge,
dir: whether or not the graph is directed.

We created five different types of graphs, that we denote as GRPa, GRPb, GRPc, GRPd
and GRPe (see Table 1). They consider different size and variance of partitions, and also
different probabilities for creating intracluster and intercluster edges. All categories are
directed, except for GRPd. The choice for these parameters is based on the ones proposed
in [25], but conveniently adapted to represent bigger meaningful social networks.

3.1.2 Stochastic Block Model (SBM)

The construction of a Stochastic Block Model Graph [20] starts by partitioning the nodes of
the network into blocks of arbitrary sizes. Secondly, edges are placed between pairs of nodes
independently, with a probability that depends on the blocks, i.e., the probability to create
an edge (u, v) depends on the probability of connection defined between the cluster of u and
the cluster of v.

To generate this type of graph we will be using the implementation from NetworkX [16],
which lets us assign values for the following parameters:

n: the approximate number of nodes of the network,
k: the number of blocks within the network,
S = {s1, . . . , sk}: the list of block sizes, where si denotes the number of nodes in the
block i.
P ∈ k2: a probability matrix, where pij is the probability of creating an (intercluster)
edge between a node in cluster i and a node in cluster j. Observe that pii is then the
probability of an intracluster edge within block i.

We created five different types of graphs, that we denote as SBMa, SBMb, SBMc, SBMd
and SBMe (see Table 2). The sizes of the blocks are created according to different statistical
distributions. We use exponential distributions for all the types of graphs, except for the
SMBb, where a normal distribution is used. All categories are directed.

We can observe that all the networks have the order of θ(
√

n) number of clusters, except
for SBMd, which has less clusters but of bigger size. In general, we wanted to work with
very different cluster sizes. For that reason, in most of the cases we used the exponential
distribution to generate S. For the SBMb we used the normal distribution instead. We want
to see whether big differences on the size of the blocks affect the final result.



M. J. Blesa, M. E. Popa, and M. Serna 7:7

Table 1 Parameters for the Gaussian Random Partition Graphs. For each type, three different
graph sizes are considered: n = 1000, n = 10000 and n = 100000. For the probabilities, f(n) = log(n)

µ

and g(n) = log(n)
n−µ

.

Name µ σ pin pout dir

GRPa n/10
√

n 4 3/4 f(n) 1/4 g(n) True
GRPb n/10

√
n 2 3/4 f(n) 1/4 g(n) True

GRPc n/10
√

n 4 1/2 f(n) 1/2 g(n) True
GRPd n/10

√
n 4 3/4 f(n) 1/4 g(n) False

GRPe n/
√

n 4 3/4 f(n) 1/4 g(n) True

Table 2 Parameters for the Stochastic Block Model Graphs. For each type, three different graph
sizes are considered: n = 1000, n = 10000 and n = 100000. S ∼ Exp(λ) is a sample from an
exponential distribution with rate λ, and S ∼ N (µ, σ2) is a normal distribution with mean µ and
standard deviation σ2. For the probabilities, f(n) = log(n)/S and g(n) = log(n)/(n − S), where S

represents the mean size of the blocks.

Name k S pii pij

SBMa 10
√

n Exp(10/
√

n) 3/4 f(n) 1/4 g(n)
SBMb 10

√
n N (k/100, k/1000) 3/4 f(n) 1/4 g(n)

SBMc 10
√

n Exp(10/
√

n) 1/2 f(n) 1/2 g(n)
SBMd

√
n Exp(1/

√
n) 3/4 f(n) 1/4 g(n)

SBMe 10
√

n Exp(10/
√

n) 3/4
log(n)

si

1/4
log(n)
n−si

3.1.3 LFR Benchmark Graph
The LFR Benchmark [13] is a model for graph generation more complex than GRP and SBM
are. Consequently, it allows to create artificial networks that are significantly more similar to
real ones. In a very summarized way, the algorithm starts finding a power law distribution
for the degree of the nodes. Every node will have a proportion µ of its connections to nodes
belonging to other communities (intercluster), whereas the remaining (1 − µ) proportion of
its edges will be attached to nodes in same the community (intracluster). This leads to the
emergence of communities of different sizes (following a power law distribution as well). Each
node will be randomly assigned to one community following the constraint imposed by µ.

To generate this type of graph we will be using the implementation from NetworkX [15],
which lets us assign values for a lot of different parameters. After a deep study of them,
where we detected some incompatibilities, the following parameters where identified as the
most relevant and worth to play with:

n: the number of nodes that our social network will have,
τ1: exponent of the power law distribution for the node degree distribution,
τ2: exponent of the power law distribution for the community size distribution,
µ: proportion of intracluster edges for each node,
maxc: maximum community size in the graph,
minc: minimum community size in the graph,
maxd: maximum node degree in the graph,
avgd: mean node degree in the graph.

We create five different types of graphs, that we denote as LFRa, LFRb, LFRc, LFRd
and LFRe (see Table 3). We have fixed the parameters τ1 and τ2 to the values proposed
in [13]: the adequate values to represent social networks oscillate between 2 ≤ τ1 ≤ 3 and
1 ≤ τ2 ≤ 2. We do not work with τ2 = 1 because the generator implemented in NetworkX
demands that τ2 > 1. LFRc builds bigger communities than the rest of the graphs, and in
LFRe the proportion of intracluster edges is greater than the usual 0.2.

SEA 2022



7:8 Relating Real and Synthetic Social Networks Through Centrality Measures

Table 3 Parameters for the LFR Benchmark Graphs. For each type, three different graph sizes
are considered: n = 1000, n = 10000 and n = 100000.

Name τ1 τ2 µ maxc minc maxd avgd

LFRa 2 1.1 0.2 0.05 n maxc/100 0.05 n 5/4 log(n)
LFRb 2 2 0.2 0.05 n maxc/100 0.05 n 5/4 log(n)
LFRc 2 1.1 0.2 0.05 n maxc/10 0.05 n 5/4 log(n)
LFRd 3 2 0.2 0.05 n maxc/100 0.05 n 5/4 log(n)
LFRe 2 1.1 0.35 0.05 n maxc/100 0.05 n 5/4 log(n)

Table 4 Parameters for the Hyperbolic Geometric Graphs. For each type, three different graph
sizes are considered: n = 1000, n = 10000 and n = 100000.

Name k γ t z

HYPa log(n) 2 0 1
HYPb log(n) 2 2 1
HYPc log(n) 3 0 1
HYPd log(n) 3 0.5 1
HYPe log(n) ∞ 0.5 1

Table 5 Real data sets considered in this work. Shadowed rows state for directed networks. ACC
= Average Clustering Coefficient, MC = size of the main core. The diameter is ∞ when the graph
is not connected (or not strongly connected in the case of digraphs); in these cases, the diameter of
the biggest connected component is provided. The subscript (w) indicates edge weighted networks.

Networks n m ACC Diameter MC
Dining Table (w) 26 52 0.1178 ∞ (6) 20
Dolphins 62 159 0.2590 8 36
Human Brain (w) 480 1000 0.3004 ∞ (20) 11
ArXiv 5242 14496 0.5296 ∞ (17) 44
Wikipedia 7115 103689 0.1409 7 336
Caida (w) 26475 106762 0.2082 17 50
ENRON 36692 183831 0.4970 11 275
Gnutella 62586 147892 0.0055 11 1004
Epinions 75879 508837 0.1378 14 422
Higgs (w) 256491 328132 0.0156 19 10
Amazon 334863 925872 0.3967 44 497
Texas 1379917 1921660 0.0470 1054 1579

The parameters maxc and maxd are both fixed to 0.05 n for all the networks. For lower
values, the resulting graphs are not good representations for social networks. For bigger
values, the generator takes an enormous amount of time to converge (even with a very small
number of vertices) or even does not converge at all. In the same sense, another problematic
parameter was avgd. When fixed to avgd = log(n), the generator was no always converging
and thus, we had to slightly increase that value. In our case, that increase implies increasing
the average degree by one.

3.1.4 Hyperbolic Geometric Graph
Recent studies in graph geometry showed that many networks appearing in nature or
representing societies can be modeled as geometric graphs in hyperbolic spaces [21]. Based
on this fact, hyperbolic geometric graphs have started to be used as models for synthetic
social networks. In our study we will be using the generator proposed in [21], which allows
us to configure the following parameters:



M. J. Blesa, M. E. Popa, and M. Serna 7:9

n: the number of nodes that our social network will have,
k: mean node degree in the graph,
γ: exponent of the power law distribution for the node degree distribution,
t: temperature,
z: square root of the curvature of the hyperbolic space.

Using these parameters, we create five different types of graphs that we denote as HYPa,
HYPb, HYPc, HYPd and HYPe (see Table 4). Most of the values we work with are those
suggested in [21] for generating hyperbolic geometric graphs representing social networks.

3.2 Real Social Networks
We will also be using real social networks in our experiments in order to have a point of view
of what happens in reality and to see how our artificial models really compare. We consider
twelve well-known real social networks, which are mostly available at the snap.stanford.edu
and the networkrepository.com repositories. The main characteristics of these networks
are summarized in Table 5.

4 Statistical Metrics

For analysing the results of a centrality measure on its own, three statistical metrics will
be used: the number of different ranks, the standard deviations and the Gini coefficient of
the distribution. The Gini coefficient [6, 2] comes originally from sociology as a measure of
the inequality of populations with respect to different criteria (e.g., wealth spread), but it is
lately being used as a measure for quantifying the fairness of distributions in other areas.

▶ Definition 4. Given a list of values X of size n, the Gini coefficient of X is calculated as:

Gini(X ) =
∑n

i=1
∑n

j=1 |xi − xj |
2n

∑n
i=1 xi

As observed in other works, we will also use two well-known correlation measures for
comparing the centrality ranks among themselves: the Spearman’s correlation coefficient [24]
and the Kendall correlation coefficient [11].

▶ Definition 5. Given two lists of elements X , Y both with n elements, the Spearman’s rank
correlation coefficient (ρ) is equal to:

ρ(X , Y) = 1 −
6

∑n
i=1(xi − yi)2

n(n2 − 1)

▶ Definition 6. Let X and Y be two lists of elements, then the Kendall’s rank correlation
coefficient (τ) is defined as:

τ(X , Y) = nc − nd

0.5n(n − 1)

where nc is the number of concordant pairs between X and Y, and nd is the number of
discordant pairs. A pair (i,j) is concordant if either xi > xj and yi > yj, or xi < xj and
yi < yj. A discordant pair is one that is not concordant.

SEA 2022



7:10 Relating Real and Synthetic Social Networks Through Centrality Measures

5 Experiments and results

We have generated five different configurations for each of the four synthetic models. Then
we have calculated the centrality measures and statistically analyzed the results obtained
on those twenty configurations under different perspectives. In particular, the correlation
analysis between the different centrality measures gives us an insight about which metrics
seem to behave similarly in specific types of networks. The studies carried out can help us
understand the similarities of the centrality measures under diffusion processes in different
types of networks, but we do not believe that at the moment they can provide any information
for their inverse use, that is, on how to generate these networks.

Undirected networks are transformed into directed ones by replacing edges into bid-
irectional arcs. For unweighted networks, edge weights are all fixed to 1. As in [4], we
fix the threshold function θi of every actor i to the simple majority rule. ICR works
with probability p = 0.1. Here we can only summarize the most relevant observations.
For a detailed vision of the results and exact data on them, we point the reader to
www.cs.upc.edu/∼mjblesa/centrality/syntheticGraphs/.

5.1 Statistics results
We can observe some very clear trends when looking at the complete results of our experiments.
Starting with the GRP models (see Figure 1), the deviation and the number of different
ranks are the highest in GRPb and lowest in GRPd. The Gini coefficient is still high in
GRPb, but it is also high in GRPc, the latter is still the lowest for some metrics such as
Closeness and Pagerank. The rest of the models are quite similar to each other. Remember
that GRPb is the one of the networks with the highest deviation on the sizes of the clusters,
which implies more differences between clusters and thus more differences between nodes.
On the other hand, GRPd is the only undirected model which could explain the low values
for the standard deviation and the number of different ranks.

In the LFR models (see Figure 2), there is a clearly one model with the lowest values in
every scenario and for the majority of measures, specially the influence-based ones: LFRd.
These low results are caused mainly by the exponents used during the generation, being in
this models the highest, especially the exponent for the degree distribution. There does not
seem to be a model with clearly higher results, although LFRb does get higher values in
some cases.

For the stochastic block model generator (see Figure 3), STOa, STOc, STOd have the
highest values for every metric except Betweenness and Pagerank, for the standard deviation,
the number of different ranks and the Gini coefficient. The models with the lowest values are
STOb and STOe. Similarly to GRP, these differences occur due to the sizes of the clusters,
in STOb the sizes follow a normal distribution instead of a exponential distribution, this
will result in more similar clusters, so more similar nodes. In the case of STOe, although
the sizes of the clusters follow an exponential distribution, the probability of creating edges
inside the cluster depends on the size of the clusters, which means a node who belongs to a
big cluster will have a small probability, this will imply that the number of edges will be
close to a node that belongs to a small cluster but has a large probability of creating edges
inside of the cluster. This phenomena balances the degree distribution of the nodes to some
extent. This events can be observed specially well in the models with 100K nodes.

Finally, the hyperbolic models (see Figure 4) do not seem easy to analyse. The standard
deviation is low for HYPc, HYPd and HYPe for every metric except Betweeness but there
are more different ranks in these three models than in HYPa or HYPb, again with some

https://www.cs.upc.edu/~mjblesa/centrality/syntheticGraphs/


M. J. Blesa, M. E. Popa, and M. Serna 7:11

Figure 1 Statistics results for the GRP models.

exceptions like the Degree Centrality and the three centralities based on the LTM. The Gini
coefficient is high in HYPa and HYPb for some metrics, but for other metrics the results
in HYPc, HYPd and HYPe are higher. The only irrefutable conclusion from this network
generator is that there is a clear distinction between the results for HYPa, HYPb and those
for HYPc, HYPd, HYPe.

5.2 Correlation analysis
Figure 5 collects the correlation plots for the set of biggest networks (i.e., those with 100K
nodes) for each of the four synthetic models under study. Figure 6 shows the correlation
plots for four real social networks that represent each of the four behavioural tendencies
observed. The correlation plots do not include the results of the Ktz centrality because most
of the time the algorithm did not converge.

For the Gaussian graphs there is one network very different than the others, GRPd, but
this happens because it is the only undirected social network, which creates the difference
in the correlation patterns, having a maximum direct correlation between the three LTM

SEA 2022



7:12 Relating Real and Synthetic Social Networks Through Centrality Measures

Figure 2 Statistics results for the LFR models.

based centralities. Comparing the rest of the networks we observe very similar patterns in
the correlation plots, but they still can be distinguished, having more similarities between
GRPa and GRPb, and between GRPc and GRPe. This differences can be seen more clearly
as we decrease the number of nodes in the graph.

In the case of the LFR benchmark generator, we take into consideration that all the
networks are undirected which implies that the results from LTR, FWLTR and BWLTR
will be the same. The first three networks (LTRa, LTRb, LTRc) display similar patters,
with low correlation between Betweenness and the LTM based metrics and high correlations
between Pagerank and Degrees. One the other hand, LTRd differentiates in some aspects
from these three mentioned networks, such as the high correlation between Pagerank and
the LTM metrics and between Degree and the LTM metrics. Another difference is that in
LFRd the correlation between Closeness and the LTM metrics is lower than the correlation
between Betweenness and the LTM metrics. Finally, the LFRe network is pretty similar to
the first three networks (LTRa, LTRb, LTRc) but with very subtle differences.



M. J. Blesa, M. E. Popa, and M. Serna 7:13

Figure 3 Statistics results for the STO models.

We can observe more differences when comparing the results from the Stochastic Block
Model generator. The STOb and STOe are nearly identical, STOc has a similar pattern
as the these last two, but with higher correlations between all metrics. For the other two
graphs, STOa and STOd, we find most of the similarities when for big graphs with a large
number of nodes, however when we compare both models with only one thousand nodes, the
similarities in the patterns in the correlation plots seem to disappear, for example, STOa has
very high correlations between all the LTM based metrics (LTR, FWLTR, BWLTR) but
STOd does not, with very low correlations between FWLTR and BWLTR.

Finally, the networks generated in a hyperbolic space show two patterns. The first type,
present in HYPa and HYPb, with high correlation between Closeness and the LTM metrics,
and low correlation between the LTM metrics and almost any other metric where Betweenness
and Pagerank take the lowest values, this also implies a low correlation between Closeness
and, Betweenness and Pagerank. However, the other type, including HYPc, HYPd and
HYPe, Closeness takes the lowest correlation with the LTM metrics. HYPc is a little different
than HYPd and HYPe but the general distribution of the correlation is still the same.

SEA 2022



7:14 Relating Real and Synthetic Social Networks Through Centrality Measures

Figure 4 Statistics results for the HYP models.

5.3 Comparison with real networks

In order to extend the study of centrality measures on synthetic networks, we decided to
focus on real social networks. Our aim with that was to check whether the synthetic models
do really approximate real networks when centrality is concerned. We also wanted to check
whether the different behavioural patterns observed in the synthetic networks would help us
to classify the real networks.

Some correlation plots from real graphs look almost identical to correlation plots of
synthetic networks (e.g., the Texas graph and the HYPe, the Caida graph and the LFRa).
The Human Brain network is similar to most of the LFR benchmark models, but it is with
a hyperbolic graph where more similarities can be found (specifically with HYPa). There
are also examples of directed graphs where this also occurs, e.g., Epinions, which is pretty
similar to GRPa. In most of the real social networks considered, we can observe some kind
of similarity to some type of artificial network. Based on those similarities, we organize our
results in four categories (two for directed graphs and two for undirected graphs). These
categories are qualitative and based merely on correlations, thus describing distinguishable
color patterns in the plot of the Figure 6.



M. J. Blesa, M. E. Popa, and M. Serna 7:15

Figure 5 Heatmaps for the correlation between measures for synthetic networks with 100K nodes.
Kendall coefficients are represented in the upper triangular part and Spearman in the lower one.

Figure 6 Heatmaps for the correlation between measures for four real social networks (Amazon,
ENRON, Epinions, Higgs), which represent the four different behaviours observed experimentally.
Kendall coefficients are represented in the upper triangular part and Spearman in the lower one.

SEA 2022



7:16 Relating Real and Synthetic Social Networks Through Centrality Measures

The first type is for undirected graphs and includes the networks Amazon, Dolphins, Texas,
and ArXiv. The synthetic networks that represent this first category are GRPd, LFRd, HYPc,
HYPd, HYPe. They have low correlation between Betweenness and the LTM metrics and a
very low correlation between Closeness and the LTM metrics. We find higher correlations
between Degree and the LTM metrics, Pagerank and the LTM metrics, and Degree and
Pagerank.

The second category is also for undirected graphs and it includes the real networks Caida,
ENRON and Human Brain, and the synthetic networks LFRa, LFRb, LFRc, LFRe, HYPa and
HYPb. One of the main differences between this and the previous category is the change in
the correlations of Closeness and Degree: here the correlation between Degree and the LTM
is high, and the correlation between Closeness and the LTM metrics is one of the highest,
opposite to the first category.

We observe a third category for directed graphs, which includes the Epinions real graph
and GRPa, GRPb and STOc. We found the lowest correlations when looking at FWLTR
and ICRt. These two metrics have a low correlation with BWLTR, Closeness and Pagerank.
The rest of the correlations are neither high nor low.

The last category that we can distinguish is also for directed graphs. In this case we have
the Higgs and Wikipedia as real networks representatives, and GRPc, GRPe as synthetic
graphs. The main different with the third category is that this time the low correlations
of FWLTR and ICRt are much lower, with values very close to zero. In the rest of the
correlations we can find low and medium correlations unlike in the last category where most
of them were medium correlations.

The synthetic graphs STOb and STOe are halfway between the third and fourth category,
having similarities and differences with both of them.

There are two real social networks who do not seem to belong to any of the categories
mentioned, which means that they are not very similar with the synthetic networks generated
in terms of the centrality measures correlation. The first example, the Dining Table network,
can be easily explained. Most of the correlations given by this network have a p-value higher
than 0.05 which makes most of the results not statistically significant. However, in the
remaining network Gnutella, this phenomena does not occur which means than the results
are valid and significant. In this case, the problem could be that the number of generators
and models used is limited and does not cover all the possible networks. Another cause could
be that the structure of this network is very particular and it is hard to replicate artificially
with algorithms.

All the comparisons between correlations are qualitative in this work. We plan to introduce
quantitative measures to be able to weight those relation, e.g. by means of similarity measures
applied to the correlation matrices.

References

1 M.J. Blesa, P. García-Rodríguez, and M.Serna. Forward and backward linear threshold ranks.
In International Conference on Advances in Social Networks Analysis and Mining (ASONAM),
pages 265–269. ACM, 2021. doi:10.1145/3487351.3488355.

2 L. Ceriani and P. Verme. The origins of the Gini index: extracts from Variabilità e Mutabilità
(1912) by Corrado Gini. The Journal of Economic Inequality, 10(3):421–443, 2012.

3 Hocine Cherifi, Gergely Palla, Boleslaw K. Szymanski, and Xiaoyan Lu. On community
structure in complex networks: challenges and opportunities. Applied Network Science,
4(117):2364–8228, 2019. doi:10.1007/s41109-019-0238-9.

https://doi.org/10.1145/3487351.3488355
https://doi.org/10.1007/s41109-019-0238-9


M. J. Blesa, M. E. Popa, and M. Serna 7:17

4 X. Molinero F. Riquelme, P. Gonzalez-Cantergiani and M. Serna. Centrality measures in
social networks based on linear threshold model. Knowledge-Based Systems, 40:92–102, 2017.
doi:10.1016/j.knosys.2017.10.029.

5 L.C Freeman. A set of measures of centrality based on betweenness. Sociometry, 40(1):35–41,
1977.

6 C. Gini. Variabilitàe Mutuabilità. Contributo allo Studio delle Distribuzioni e delle Relazioni
Statistiche. C. Cuppini, 1912.

7 J. Goldenberg, B. Libai, and E. Muller. Using complex systems analysis to advance marketing
theory development. Technical Report, Academy of Marketing Science Review, 2001.

8 L. Katz. A new status index derived from sociometric analysis. Psychometrika, 18:39–43,
1953.

9 D. Kempe, J.M. Kleinberg, and É. Tardos. Maximizing the spread of influence through a
social network. Proceedings of the 9th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, pages 137–146, 2003.

10 D. Kempe, J.M. Kleinberg, and É. Tardos. Influential nodes in a diffusion model for social
networks. In Intl. Colloquium on Automata, Languages and Programming (ICALP), volume
3580, pages 1127–1138. Lecture Notes in Computer Science, 2005. doi:10.1007/11523468_91.

11 M. Kendall. A new measure of rank correlation. Biometrika, 30:81–93, 1938.
12 D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and M. Boguñá. Hyperbolic geometry

of complex networks. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 82((3 Pt 2):036106), 2010.
doi:10.1103/PhysRevE.82.036106.

13 A. Lancichinetti, S. Fortunato, and F. Radicchi. Benchmark graphs for testing community
detection algorithms. Phys. Rev. E, 78:046110, October 2008. doi:10.1103/PhysRevE.78.
046110.

14 NetworkX. Gaussian Random Partition Graph. Accessed: 2022-02. URL:
https://networkx.org/documentation/stable/reference/generated/networkx.
generators.community.gaussian_random_partition_graph.html.

15 NetworkX. LFR Benchmark Graph. Accessed: 2022-02. URL: https://networkx.org/
documentation/stable/reference/generated/networkx.generators.community.LFR_
benchmark_graph.html.

16 NetworkX. Stochastic Block Model. Accessed: 2022-02. URL: https://networkx.
org/documentation/stable/reference/generated/networkx.generators.community.
stochastic_block_model.html.

17 Mark E.J. Newman. Networks: An introduction. Oxford University Press, 2010. doi:
10.1093/acprof:oso/9780199206650.001.0001.

18 S. Oldham, B. Fulcher, L. Parkes, A. Arnatkevic̆iūté, C. Suo, and A. Fornito. Consistencies
and differences between centrality measures across distinct classes of networks. PLoS ONE,
14(7):0220061, 2019. doi:10.1371/journal.pone.0220061.

19 L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: Bringing
order to the web, technical report. Stanford Digital Library, 1999.

20 K. Blackmond Laskey P.W. Holland and S. Leinhardt. Stochastic blockmodels: First steps.
Social Networks, 5(2):109–137, 1983. doi:10.1016/0378-8733(83)90021-7.

21 C. Orsini R. Aldecoa and D. Krioukov. Hyperbolic graph generator. Computer Physics
Communications, 196:492–496, 2015. doi:10.1016/j.cpc.2015.05.028.

22 C. Sciarra, G. Chiarotti, F. Laio, and L. Ridolfi. A change of perspective in network centrality.
Scientific Reports, 2018. doi:10.1038/s41598-018-33336-8.

23 P. Shakarian, A. Bhatnagar, A. Aleali, E. Shaabani, and R. Guo. The Independent Cascade
and Linear Threshold Models, chapter 4, pages 35–48. Briefs in Computer Science. Springer,
2015. doi:10.1007/978-3-319-23105-1_4.

24 C. Spearman. The proof and measurement of association between two things. AM. J. Psychol,
15:88–103, 1904.

SEA 2022

https://doi.org/10.1016/j.knosys.2017.10.029
https://doi.org/10.1007/11523468_91
https://doi.org/10.1103/PhysRevE.82.036106
https://doi.org/10.1103/PhysRevE.78.046110
https://doi.org/10.1103/PhysRevE.78.046110
https://networkx.org/documentation/stable/reference/generated/networkx.generators.community.gaussian_random_partition_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.community.gaussian_random_partition_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.community.LFR_benchmark_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.community.LFR_benchmark_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.community.LFR_benchmark_graph.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.community.stochastic_block_model.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.community.stochastic_block_model.html
https://networkx.org/documentation/stable/reference/generated/networkx.generators.community.stochastic_block_model.html
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1093/acprof:oso/9780199206650.001.0001
https://doi.org/10.1371/journal.pone.0220061
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/j.cpc.2015.05.028
https://doi.org/10.1038/s41598-018-33336-8
https://doi.org/10.1007/978-3-319-23105-1_4


7:18 Relating Real and Synthetic Social Networks Through Centrality Measures

25 D. Wagner U. Brandes, M. Gaertler. Experiments on graph clustering algorithms. In Algorithms
- ESA 2003, pages 568–579. Springer Berlin Heidelberg, 2003.

26 T.W. Valente, K. Corognes, C. Lakon, and E. Costenbader. How correlated are network
centrality measures? Connections, 28(1):16–26, 2008.

27 S. Wasserman and K. Faust. Social Network Analysis: Methods and Applications. Cambridge
University Press, 1994.

A Details on the correlation analysis (Section 5.2, Fig. 5)

We detail the correlation coefficients for the centrality measures summarized in Figure 5. In
all the forthcoming tables, the Kendall coefficients (τ) are shown in the upper triangular
part and the Spearman coefficients (ρ) in the lower triangular part. For the Katz measure, a
− indicates non-convergence.

Table 6 Correlation for the different centrality measures on the synthetic GRP networks of size
100K from the data set.



M. J. Blesa, M. E. Popa, and M. Serna 7:19

Table 7 Correlation for the different centrality measures on the synthetic LFR networks of size
100K from the data set.

SEA 2022



7:20 Relating Real and Synthetic Social Networks Through Centrality Measures

Table 8 Correlation for the different centrality measures on the synthetic STO networks of size
100K from the data set.



M. J. Blesa, M. E. Popa, and M. Serna 7:21

Table 9 Correlation for the different centrality measures on the synthetic HYP networks of size
100K from the data set.

SEA 2022





Efficient and Accurate Group Testing via Belief
Propagation: An Empirical Study
Amin Coja-Oghlan !

Faculty of Computer Science, TU Dortmund, Germany

Max Hahn-Klimroth !

Faculty of Computer Science, TU Dortmund, Germany

Philipp Loick !

Institute for Mathematics, Goethe Universität, Frankfurt am Main, Germany

Manuel Penschuck !

Faculty of Computer Science, Goethe Universität, Frankfurt am Main, Germany

Abstract
The group testing problem asks for efficient pooling schemes and inference algorithms that allow to
screen moderately large numbers of samples for rare infections. The goal is to accurately identify
the infected individuals while minimizing the number of tests.

We propose the novel adaptive pooling scheme adaptive Belief Propagation (aBP) that acknowl-
edges practical limitations such as limited pooling sizes and noisy tests that may give imperfect
answers. We demonstrate that the accuracy of aBP surpasses that of individual testing despite using
few overall tests. The new design comes with Belief Propagation as an efficient inference algorithm.
While the development of aBP is guided by mathematical analyses and asymptotic insights, we
conduct an experimental study to obtain results on practical population sizes.

2012 ACM Subject Classification Mathematics of computing → Probabilistic inference problems;
Mathematics of computing → Random graphs; Mathematics of computing → Coding theory

Keywords and phrases Group testing, Probabilistic Construction, Belief Propagation, Simulation

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.8

Related Version Previous Version: https://arxiv.org/abs/2105.07882

Supplementary Material Software (Source Code): https://github.com/manpen/group-testing

Funding This work was partially supported by the Deutsche Forschungsgemeinschaft (DFG) under
DFG CO 646/3, DFG CO 646/5, and DFG ME 2088/5-1 (FOR 2975 – Algorithms, Dynamics, and
Information Flow in Networks).

1 Introduction

Every day medical laboratories around the globe screen moderately large numbers of samples
for rare pathogens. The vast majority of samples, anywhere between 90% and 99.9%, are
actually uninfected [9, 25, 28, 40, 32, 37, 38, 39, 42]. Labs therefore test pools of samples
rather than individual samples. The group testing problem asks for pooling strategies that
minimise the total number of tests required while maximising the accuracy of the results.
The latter is crucial because test results are generally not perfectly accurate.

Practical solutions are challenging precisely because the number of samples in a real-world
scenario is in the hundreds or thousands. While the group testing problem has inspired a
body of mathematical work for the asymptotical scenario [5, 13, 12], these results, where the
number of samples grows to infinity, do not directly apply to practical problem sizes. They

© Amin Coja-Oghlan, Max Hahn-Klimroth, Philipp Loick, and Manuel Penschuck;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amin.coja-oghlan@tu-dortmund.de
mailto:maximilian.hahnklimroth@tu-dortmund.de
mailto:loick@math.uni-frankfurt.de
mailto:manuel@ae.cs.uni-frankfurt.de
https://orcid.org/0000-0003-2630-7548
https://doi.org/10.4230/LIPIcs.SEA.2022.8
https://arxiv.org/abs/2105.07882
https://github.com/manpen/group-testing
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


8:2 Efficient and Accurate Group Testing via Belief Propagation: An Empirical Study

also tend to construct excessively large test pools or distribute samples in very many tests
[5, 13, 12]. Yet practical problem sizes are too large to exhaustively search for an optimal test.
Thus, pooling schemes from the 1940s remain in practical use [9, 25, 28, 40, 32, 37, 38, 39, 42].

The aim of this paper is to investigate better test designs for practical problem sizes. We
focus on improving the accuracy of the results, i.e., avoiding false positives and/or negatives
while keeping the number of tests as small as possible. Indeed, group testing, originally
invented to reduce the number of tests, actually excels at improving the accuracy of the
results. This may seem surprising at first glance because one might deem individual testing
optimal in terms of accuracy. It is not. Group testing does better in much the same way as
error-correcting codes gain power from encoding entire blocks of data simultaneously.

1.1 Our contributions and outline
Given the moderate number of samples in real-world scenarios, we obtain practically mean-
ingful results by conducting an extensive experimental study based on theoretical work on
group testing as well as recent ideas from information theory and statistical physics. Our
novel test design aBP improves the accuracy of the overall results while keeping the number
of tests conducted low. Furthermore, the new test design requires only relatively small test
pools and only assigns each sample to a small number of tests. Finally, the design comes
with an efficient, easy-to-implement algorithm to infer the status of the individual samples
from the test results, namely the Belief Propagation (BP) message passing algorithm.

We proceed to discuss the mathematical model we work with in Sec. 1.2. In Sec. 2,
we discuss designs and algorithms that are in practical use or have been studied in the
mathematical literature on group testing. In Sec. 3, we present the details behind our novel
test design aBP and relate aBP to the theoretical work on group testing and asymptotic
considerations in Sec. 5. Finally, in Sec. 6 we discuss the potential impact of the new results
and future directions for both empirical and theoretical work.

1.2 The model
We work with a simple but standard model of group testing that allows for inaccurate
test results [5]. Let x1, . . . , xn be the samples to be tested and let λ ∈ [0, 1] be the prior
probability that any one sample is infected. The true infection status of each sample is
indicated by σ(xj) ∈ {0, 1}, with 1 representing “infected”. The σ(xj) are assumed to be
independent Bernoulli variables with mean λ. We refer to the vector σ = (σ(xj))j=1,...,n as
the ground truth. Let k =

∑n
j=1 1{σ(xj) = 1} signify the actual number of infected samples.

A test design is a bipartite graph G with one class X = {x1, . . . , xn} representing the n
samples and the other class A = {a1, . . . , am} representing the test pools. An edge between
{xj , ai} indicates that xj is included in test pool ai. For each xj we let ∂xj = ∂Gxj be the
set of test pools that include xj ; analogously, ∂ai denotes the samples xj in pool ai.

Let σ̂ = (σ̂(ai))i=1,...,m denote the test results. Ideally, test ai should report positive iff
at least one sample xj ∈ ∂ai is infected. But the actual result σ̂(ai) may include independent
noise controlled via the specificity p and sensitivity q as follows:

σ̂(ai) =
{

0 with probability p
1 with probability 1 − p

if σ(xj) = 0 for all xj ∈ ∂ai (1)

σ̂(ai) =
{

0 with probability 1 − q

1 with probability q
if σ(xj) = 1 for some xj ∈ ∂ai (2)



A. Coja-Oghlan, M. Hahn-Klimroth, P. Loick, and M. Penschuck 8:3

Unless p = q = 1 and every xj is tested separately, the ground truth σ cannot be inferred
perfectly form the test results σ̂ of a single “one-shot” test design [2]. Indeed, under the
noise model in Eqs. (1) and (2) the posterior of the ground truth given the test results reads

µG(σ) = P [σ = σ | σ̂] ∝
n∏

i=1
λσ(xi)(1 − λ)1−σ(xi)

m∏
i=1

ψσ̂(ai) ((σ(y))y∈∂ai) (3)

where ψ0(σ1, . . . , σℓ) = p1−
∨ℓ

i=1
σi(1 − q)

∨ℓ

i=1
σi , and

ψ1(σ1, . . . , σℓ) = (1 − p)1−
∨ℓ

i=1
σiq

∨ℓ

i=1
σi ,

and where the ∝-notation hides the normalisaton required to turn µG into a probability
distribution. Hence, the information-theoretically optimal inference algorithm just draws a
random sample from the distribution µG. In effect, the design’s accuracy is governed by the
entropy of the posterior µG: the smaller the entropy the better the results. Furthermore,
depending on the specific design G there may or may not exist an efficient algorithm for
sampling from µG.

In contrast, adaptive group testing uses multiple stages; an ℓ-stage test design is a sequence
G(0), G(1), . . . , G(ℓ) of test designs such that G(i+1) is obtained from G(i) by adding tests and
edges based on the results from previous stages. The results of the new tests are assumed
to be distributed independently according to Eqs. (1) and (2). The aim, of course, is to
diligently add tests so as to maximally reduce the entropy of the posterior.
In summary, the group testing problem poses the following, partially conflicting, challenges:

(i) We require an adaptive test design with high accuracy and a small number of tests.
(ii) We require an efficient algorithm that infers the σ(xj) from the observed σ̂(ai).
(iii) Practical limitations require a small number of samples in a test and tests per sample.
(iv) We aim for a small number of test stages to ensure a timely reporting of test outcomes

– or at least ensure that most samples can be diagnosed after the first or second stage.

2 Established designs and algorithms

2.1 Individual testing
The most straightforward test strategy, of course, is to conduct m = n individual tests for
each of the n samples. Naturally, in the case p = q = 1, individual testing will register
the status of each sample correctly. However, realistic values for p and q range between
0.95 and 0.99 [9, 10, 31, 40, 44]. Then individual testing will produce numbers of false
positives/negatives distributed as Bin(n− k, 1 − p) and Bin(k, 1 − q), respectively.

The accuracy of the results could obviously be boosted by conducting two or three
individual tests per sample. Indeed, if we test each xj twice and report xj as infected only if
both tests come back positive, then we could reduce the expected number of false positives
to (n − k)(1 − p)2. But we would now expect a slightly larger number of 2k(1 − q) false
negatives. To reduce the number of false positives and negatives simultaneously we could
test each xj thrice and report the majority of the three test results.

2.2 Dorfman
The test designs that appear to be currently most widely adapted in practice date back to
the 1940s. Indeed, the idea of group testing was first brought up by Dorfman in 1943 [20].
He suggested a two-stage test procedure, we denote as Dorfman. In the first stage, every
sample gets placed in precisely one pool. All pools are the same size, which depends on the
prior λ only. Pools with a positive test result get tested separately in the second stage.

SEA 2022



8:4 Efficient and Accurate Group Testing via Belief Propagation: An Empirical Study

x1 x2 x3 x4 x5 x6 x7 x8 x9

a1 a2 a3 a4 a5 a6

Figure 1 Illustration of a random biregular test design with ∆ = 3 and Γ = 4.

Depending on the prior, this scheme can significantly reduce the number of tests required.
For example, with λ = 0.05 this scheme uses pools of size five and the expected overall number
of tests conducted in both stages comes to about 0.426n. At the same time, Dorfman’s
two-stage procedure reduces the number of false positives because a sample is ultimately
reported as positive only if both the tests are positive. But for the same reason, the expected
number of false negatives increases. For instance, with n = 104 and k = λn = 500, we expect
18.2 false positives and 9.95 false negatives.

A natural extension of the Dorfman procedure employs three stages. In the first stage,
relatively large pools are formed. The second stage then splits the positive pools into smaller
sub-pools and the third stage resorts to individual testing. In effect, as with the two-stage
procedure, the expected number of false positives decreases while the expected number of
false negatives increases. For n = 104 and k = λn = 500 the expected numbers of false
positives/negatives work out to be 11.76 and 14.8, respectively.

2.3 Probabilistic constructions
More sophisticated test designs have been proposed in the mathematical theory of group
testing. The currently best, and in certain asymptotic settings provably optimal, test designs
harness randomisation [5, 13]. For instance, in the random biregular test design illustrated in
Fig. 1 every test pool has an equal size Γ and every individual sample joins an equal number
∆ of pools. In other words, the test design G = Gn,m(Γ,∆) is chosen uniformly at random
from the set of all (∆,Γ )-regular bipartite graphs (e.g., see [41]).1 To maximize information
gained, the parameters Γ and ∆ need to be chosen as to maximise the conditional entropy
of the vector σ̂ of test results, i.e., so that about half the tests will be positive:2

∆ = m log(2)/(nλ) Γ = log(2)/λ (4)

Intuitively, the randomness of the test design minimizes dependencies between the different
test results σ̂(ai). Thus, with the parameters as in Eq. (4) and for a number m of tests up
to a threshold, we can hope to squeeze up to one bit of information from each test. Similar
randomised constructions are used in coding theory and compressed sensing [17, 18, 26, 35].

Unlike previous discussions, the random biregular design has no obvious inference algo-
rithm. For p = q = 1, a posteriori inference implies a minimum hypergraph vertex cover [12],
which is an NP-hard problem and even on random instances no efficient algorithm is known.

1 G is typically drawn from the pairing model [8, 34]. Then, in rare cases the same individual joins a test
pool twice. In practice, such double occurrence could, of course, be reduced to single occurrences.

2 Due to rounding issues, we cannot ensure that the expected number of positive tests is precisely m/2.



A. Coja-Oghlan, M. Hahn-Klimroth, P. Loick, and M. Penschuck 8:5

Definite defectives (DD) [4] is a blunt but efficient algorithm. The algorithm classifies
every sample that is only included in positive test as infected under the condition that it
appears in at least one positive test pool where all other samples appear in a negative test.
All other samples are classified as uninfected. In symbols,

σDD(xj) =
∧

a∈∂xj

σ̂(a) ∧
∨

a∈∂xj

∧
y∈∂a

∨
b∈∂y

(1 − σ̂(b)).

For p = q = 1 this algorithm will never produce false positives but may render false negatives.
Several similarly-flavoured algorithms have been analysed mathematically. Aldridge analysed
an adaptive test design whose different stages employ random biregular test designs with
suitably chosen degrees [3]. This adaptive test design carried out over an unbounded number
of stages (which may take too long in practice) achieves rates in excess of 0.95 bits per tests.

2.4 Glauber dynamics
While DD merely extracts binary information about each sample, we want a more fine-
grained picture of the posterior distribution Eq. (3) of the random test design. Glauber
dynamics (Glauber) is a Markov Chain Monte Carlo algorithm and starts at a random
initial configuration σ(0) = (σ(0)(xi))i=1,...,n drawn from the prior. Thus, the individual
σ(0)(xi) are independent Be(λ) variables. Glauber then proceeds to generate a random
sequence (σ(t))t=0,...,T of configurations by updating the status of a random sample at each
time step according to Eq. (3); see [27] for details of the update rule. The hope is that for
moderate T the empirical means of the sequence approximate the actual posteriors well, i.e.,

µG({σ(xj) = s}) ≈ 1
T

T∑
i=0

1
{
σ(t)(xj) = s

}
(j = 1, . . . , n; s ∈ {0, 1}). (5)

We are unaware of a rigorous analysis of Glauber. Further, an exact empirical assessment
appears difficult as the marginals of the posterior in Eq. (3) cannot be computed by exhaustive
enumeration even for moderate values of n. Still, [16] studies Glauber experimentally.

2.5 Informative Dorfman
Informative Dorfman [29] is a multi-stage test design that uses the posterior marginals of a
first stage (e.g., as approximated by Glauber) to determine the group sizes of a subsequent
Dorfman test design. More precisely, it sorts the samples increasingly by their marginals
and groups them in this order. The pools containing samples with small marginals are
relatively large, while samples with marginals above 0.3 get tested individually. In the
empirical study [16] of a combination of Glauber and InfDorfman, Cuturi et al. find that
this procedure works decently well for a given number of tests but is still outperformed by
quite a margin by more complicated multi-stage test designs and algorithms.

3 Adaptive Belief Propagation (ABP)

In this section we discuss our novel design aBP and its inference algorithm. The first stage
employs the random biregular test design (Sec. 2.3). Given the results of the first stage, in
the second and third stage we use a blend of the random biregular design and InfDorfman.
For the inference algorithm we seize upon the BP message passing paradigm [33].

SEA 2022



8:6 Efficient and Accurate Group Testing via Belief Propagation: An Empirical Study

3.1 Belief Propagation
In recent years the Belief Propagation (BP) message passing paradigm has been applied
in combination with randomised constructions with stunning success. Prominent examples
include coding theory and other signal processing tasks such as compressed sensing [18, 26, 35].
The development of BP with randomised constructions has been inspired by ideas from the
statistical mechanics of disordered systems [30]. More recently, substantial mathematical
research has been devoted to BP (e.g., [6, 14, 21, 43]). Although most of this theoretical
work is asymptotical, we let these ideas guide our quest for a practical group testing design.

BP is a generic message passing technique to approximate the marginals of Boltzmann
distributions on factor graphs (e.g., Eq. (3)). The basic intuition behind BP is that under
certain assumptions the posterior distribution admits a succinct representation in terms
of messages [14, 15, 30, 45]. These assumptions are provably met in many Bayes-optimal
inference problems on random factor graphs including the group testing problem as modelled
in Sec. 1.2; at least asymptotically as the problem size tends to infinity [7, 11].

At first glance the posterior distribution Eq. (3) appears to be quite a difficult object to
study; e.g., to estimate its entropy, we might have to inspect all 2n possible vectors σ ∈ {0, 1}n.
But according to the BP paradigm we can get a handle on the posterior distribution in terms of
messages associated with the edges of the test design G = Gn,m(Γ,∆). Formally, the message
space of M(G) consists of vectors (µxj→ai

(s), µai→xj
(s))j=1,...,n; i=1,...,m; xj∈∂ai; s∈{0,1}.

The idea is that there are two messages µxj→ai( · ) and µai→xj ( · ) associated with
every edge of G, one directed from the sample xj to the test ai and one in the opposite
direction. The messages themselves are probability distributions on {0, 1}. Thus, we have
µxj→ai

(0), µxj→ai
(1) ∈ [0, 1] and µxj→ai

(0) +µxj→ai
(1) = 1, and analogously for µai→xj

( · ).
Roughly speaking, µai→xj ( · ) represents the impact that ai has on xj in the absence of all

other tests b ∈ ∂xj . Moreover, µxj→ai
( · ) represents the status of xj in the absence of test ai.

More formally, we define the standard message µG,xj→ai
(s) as the posterior probability that

σ(xj) = s given the test design G− ai obtained from G by omitting test ai and given the
test results (σ̂(ah))h̸=i. With the notation of Eq. (3), we can write this probability out as

µG,xj→ai
(s) ∝

∑
σ∈{0,1}X , σ(xj)=s

n∏
i=1

λσ(xi)(1 − λ)1−σ(xi)
m∏

i=1
ψσ̂(ai) ((σy)y∈∂ai

)

with the ∝-sign hiding the normalisation to ensure that µG,xj→ai
(0) + µG,xj→ai

(1) = 1.
Similarly, the standard message µG,ai→xj

(s) is defined as the posterior probability that
σ(xj) = s given the test design G− (∂xj \ {ai}) obtained by removing all tests that xj takes
part in except for ai and given the test results σ̂(ah) of all tests ah ̸∈ ∂xj \ {ai}.

Conceived wisdom, vindicated mathematically for a broad family of inference problems,
predicts that asymptotically these messages satisfy the following BP equations [7, 11, 14, 45]:

µG,x→a(s) ∝ λs(1 − λ)1−s
∏

b∈∂x\{a}

µG,b→x(s), (6)

µG,a→x(0) ∝ 1 − q + (p + q − 1)
∏

y∈∂a\{x}

µG,y→a(0), µG,a→x(1) ∝ 1 − q if σ̂(a) = 0, (7)

µG,a→x(0) ∝ q + (1 − p − q)
∏

y∈∂a\{x}

µG,y→a(0), µG,a→x(1) ∝ q if σ̂(a) = 1 (8)

These equations express the notion that the random biregular design Gn,m(Γ,∆) minimises
dependencies between the test results. Furthermore, we expect that the marginals of the
posterior distribution can be well approximated in terms of the messages:

µG({σ(xi) = s}) ∝ λs(1 − λ)1−s
∏

b∈∂xi

µG,b→xi
(s) (9)



A. Coja-Oghlan, M. Hahn-Klimroth, P. Loick, and M. Penschuck 8:7

Apart from the marginals, asymptotic results also suggest that the entropy of the posterior
distribution can be approximated in terms of the messages [11, 14, 30]. This approximation
comes in terms of a functional called the Bethe free energy, defined as

BG =
∑
x∈X

BG,x +
∑
a∈A

BG,a −
∑

x∈X ,a∈∂x

BG,x,a with (10)

BG,x = log
∑

s∈{0,1}

∏
a∈∂x

µG,a→x(s) (11)

BG,a =
{

log
(
1 − q + (p+ q − 1)

∏
x∈∂a µG,x→a(0)

)
if σ̂(a) = 0

log
(
q + (1 − p− q)

∏
x∈∂a µG,x→a(0)

)
if σ̂(a) = 1

(12)

BG,x,a = log
∑

s∈{0,1}

µG,x→a(s)µG,a→x(s). (13)

The resulting approximation of the entropy reads

HG = BG − n log λ +
n∑

i=1

µG({σx = 0}) log λ

1 − λ
(14)

−
m∑

i=1
σ̂(ai)=0

 p log(p)
∏

x∈∂ai
µG,x→ai (0)

1 − q + (p + q − 1)
∏

x∈∂ai

µG,x→ai (0)
+

(1 − q) log(1−q)(1 −
∏

x∈∂ai

µG,x→ai (0))

1 − q + (p + q − 1)
∏

x∈∂ai

µG,x→ai (0)



−
m∑

i=1
σ̂(ai)=1

 (1 − p) log(1 − p)
∏

x∈∂ai

µG,x→ai (0)

q + (1 − p − q)
∏

x∈∂ai

µG,x→ai (0)
+

q log(q)(1 −
∏

x∈∂ai

µG,x→ai (0))

q + (1 − p − q)
∏

x∈∂ai

µG,x→ai (0)

 .

Hence, in order to estimate the marginals and the entropy of the posterior we need to
calculate the BP messages. A natural idea is to perform a fixed point iteration using the
BP Eqs. (6)–(8). These equation usually possess several solutions [11, 45]. Whether or not
the fixed point iteration homes in on the correct solution then depends on the initialisation.

While there is no generic recipe for choosing an appropriate initialisation µ(0) ∈ M(G),
two choices suggest themselves. First, we can initialise the messages based to the prior λ, i.e.,

µ(0)
xj→ai

(s) = λs(1 − λ)1−s. (15)

We can also initialise the messages according to the ground truth, i.e. µ(0)
xj→ai(s) = σ(xj).

While the latter is not practically useful for the obvious reason, the analogy with other
inference problems suggests that if the fixed point iteration converges to the same solution
from both initialisations, then this solution actually is a good approximation to the correct
messages. Luckily, this can be tested using empirical simulations.

3.1.1 Preventing oscillations
The textbook method to perform the fixed point iteration is to update all messages in parallel.
This means that, starting from the initialisation (µ(0)

xj→ai)i,j , we compute all test-to-sample
approximations µ(0)

ai→xj via Eqs. (6)–(8). Then we use these together with Eq. (6) to compute
the next approximation (µ(1)

xj→ai( · ))i,j to all sample-to-test messages, and so forth.
Cuturi et al. [16] demonstrated experimentally that such parallel updates do not converge.

Instead, the messages oscillate between odd and even rounds. A similar observation was
already made by Sejdinovic and Johnson [36]. Similar oscillations emerge in other applications

SEA 2022



8:8 Efficient and Accurate Group Testing via Belief Propagation: An Empirical Study

0.0 0.5 1.0
fraction of individuals

0.0

0.2

0.4

0.6

0.8

1.0

m
ar

gi
na

l

Iteration 100

0.0 0.5 1.0
fraction of individuals

m
ar

gi
na

l

Iteration 101

0.0 0.5 1.0
fraction of individuals

m
ar

gi
na

l

Iteration 102

0.0 0.5 1.0
fraction of individuals

m
ar

gi
na

l

Iteration 103

Figure 2 Oscillations in BP with parallel updates for λ = 0.05, 0.2 tests/n, and p = q = 1.

of BP and can also be observed in our simulations as illustrated in Fig. 2. They may result
from an instability of the empirical mean of the messages. If in some particular iteration t

the deviation from the prior
n∑

j=1

m∑
i=1

1 {ai ∈ ∂xj} (µ(t)
xj→ai

(1) − λ) (16)

is positive, then we should expect a negative deviation in the next round. This is because
due to Eq. (16) in the next iteration many tests will receive a relatively large indication that
one of their samples may be infected. The test will therefore send out “less urgent” messages
to the other samples. Conversely, if Eq. (16) is negative, then in iteration t+ 1 we expect to
see a positive deviation. Due to the analytic nature of the update rules Eq. (6)–Eq. (8) these
oscillations do not dampen down but actually amplify. This observation led the authors
of [16] to turn to the computationally more intensive Glauber.

But actually oscillations of this type have been observed in other problems and several
mitigations are known. We resort to a natural solution, namely to update the messages in a
randomised order rather than in parallel to break the cycle of oscillations. Starting from the
initialisation (µ(0)

xj→ai( · ))i,j , we apply Eq. (7)–Eq. (8) once to initialise the test-to-sample
messages µai→xj

( · ). Then at each time t ≥ 1 we choose an edge aixj of G randomly and
then randomly either process µ(t)

xj→ai( · ) or µ(t)
ai→xj ( · ).

We stop the fixed point iteration after a fixed number T of steps. The precise choice of T
is guided by experiments but T should be large enough so that every message will likely get
updated several times. We note that this update scheme does not impede practical matters
from using our algorithm in a laboratory setting since it purely pertains to the computations
behind the scene and does not impact how samples are split and combined.

Beyond relying on asymptotic ideas and comparing the messages that result from the two
aforementioned initialisations we take two additional steps to corroborate the results of BP.
First, we compared the marginals obtained by BP with the empirical marginals of Glauber
on a number of samples. They match. Second, we compared the marginals obtained via
BP on moderately sized biregular test designs with the marginal distributions obtained via
population dynamics, a heuristic intended to approximate the limiting distribution of the
marginals as n → ∞ [30]. They, too, align very well. Figure 3 displays the typical outcome
of the BP along with the estimate Eq. (14) of the remaining entropy.

3.2 The first stage
As the first stage we use the random biregular design G = Gn,m(∆,Γ ) with the optimal
parameters from Eq. (4). Thus, the only free parameter is the total number m of tests
conducted in the first stage. Its choice is informed by BP. Specifically, we choose the



A. Coja-Oghlan, M. Hahn-Klimroth, P. Loick, and M. Penschuck 8:9

0.0 0.5 1.0
fraction of individuals

0.0

0.2

0.4

0.6

0.8

1.0

m
ar

gi
na

l

healthy

0.0 0.025 0.05
fraction of individuals

infected

0.0 0.5 1.0
fraction of individuals

total

0.0 0.5 1.0
fraction of individuals

0.0

0.2

0.4

0.6

0.8

1.0

m
ar

gi
na

l

healthy

0.0 0.025 0.05
fraction of individuals

infected

0.0 0.5 1.0
fraction of individuals

total

0.0 0.5 1.0
fraction of individuals

0.0

0.2

0.4

0.6

0.8

1.0

m
ar

gi
na

l

healthy

0.0 0.025 0.05
fraction of individuals

infected

0.0 0.5 1.0
fraction of individuals

total

0.0 0.1 0.2 0.3 0.4 0.5 0.6
tests / n

0.0

0.1

0.2

0.3

en
tro

py
 (i

n 
bi

ts
/n

)

actual entropy
max entropy reduction

Figure 3 Posteriors of BP on a random biregular design with 0.15 (top left), 0.25 (top right) and
0.6 (bottom left) tests/n and remaining entropy (bottom right) for λ = 0.05 and p = q = 1.

largest number m of tests up to which each test yields the optimal entropy reduction of
ln 2. Practically, this means that we choose m to match the point at which the entropy plot
for the corresponding parameter values flattens. The fourth graphic in Fig. 3 shows the
approximation of the entropy as a function of the number of tests for n = 1000 and λ = 0.05
in the noiseless setting. For other priors and noise levels, the story turns out to be analogous.

3.3 The second and third stage
Given the approximation of the marginals from the first stage, how should we proceed? As
we saw in Sections 2.3 and 2.5, two ideas for the subsequent stages proposed in the literature
include InfDorfman as well as individual testing of all samples whose marginals are not
entirely polarised after the first round. The former suffers from the same problem as the
original Dorfman scheme, namely a potentially fairly large number of false positives and
negatives. The latter strategy, known as DD, seems wasteful as it completely disregards any
non-trivial information about the marginals resulting from the BP computation.

To remedy these issues, we propose a new design that blends the random biregular design
with the InfDorfman scheme from Sec. 2.5. First, we directly report samples with marginals
obtained from the first stage marginals less than 0.1% as healthy and those with marginals
beyond 99.9% as infected. As illustrated in Fig. 4, the remaining samples are split into
two groups, one comprising samples with marginals below 12.4% (low risk) and one with
marginals above (high risk). The choice of 12.4% marks precisely the threshold beyond which
the expressions Eq. (4) suggest that any sample should be placed in one test only.

For the high risk group, we set up an InfDorfman design G′′. If such a pooled test turns
out to be negative, we classify all samples in this pool as healthy. Otherwise, we conduct
individual tests and classify samples solely based on these individual test results.

For the low risk group, we set up another random biregular test design on which we run
BP where the priors are given by the posteriors of the first stage. The resulting marginals
are again thresholded at 0.1% and 99.9%. Those samples whose marginals fall in between
are subsequently retested individually with their classification being solely determined by
the outcome of the individual test. To be more precise, let X ′ be the samples in the low risk

SEA 2022



8:10 Efficient and Accurate Group Testing via Belief Propagation: An Empirical Study

0.0 0.5 1.0
fraction of individuals

0.0

0.2

0.4

0.6

0.8

1.0

m
ar

gi
na

l

all marginals

0.0 0.25 0.5
fraction of individuals

0.00

0.02

0.04

0.06

0.08

0.10

0.12
low risk marginals

0.0 0.1 0.2
fraction of individuals

0.2

0.4

0.6

0.8

1.0
high risk marginals

Figure 4 Low and high risk marginals for λ = 0.05 in the high noise setting with m/n = 0.25.

group, let n′ = |X ′| and let m′ be the number of tests dedicated to this group. Based on the
first round’s BP results we approximate the average marginal λ′ = 1

n′

∑
x∈X ′ µG({σ(x) = 1}.

Mimicking Eq. (4) we then choose the degrees

∆′ = m′ log(2)/(n′λ′) Γ ′ = log(2)/λ′ (17)

and set up a random biregular test design G′ = Gn′,m′(∆′, Γ ′) on X ′. Furthermore, we
modify the BP equations on this random biregular design to accommodate the marginals
computed in the first stage. Hence, instead of using the universal prior λ′ for all the samples,
we substitute the separate marginals computed in the first stage:

µG′,x→a(s) ∝ µG({σ̂(x) = 1})s(1 − µG({σ̂(x) = 1})1−s
∏

b∈∂x\{a}

µb→x(s) (18)

3.4 Enhanced accuracy
In the following, we discuss a trade-off between accuracy and number of tests. The construc-
tion discussed so far is denoted as aBP-1, and the more accurate variants are aBP-2 and
aBP-3. In aBP-1, almost all false results originate from the InfDorfman procedure in the
second stage and neither the thresholding nor the second-stage random biregular design tend
to produce a notable number of mistakes. Therefore, in aBP-2 and aBP-3 we perform the
InfDorfman procedure twice or thrice independently in parallel.3

If we perform InfDorfman twice (aBP-2), we need to choose whether to reduce false
negatives or false positives. Accordingly, we classify a sample as healthy (infected) if both
InfDorfman procedures classify it as healthy (infected). In aBP-3, we classify according to
the majority vote of the three InfDorfman schemes. We refer to Appendix A for a listing
of the number of tests to be performed in the first and second stage.

4 Empirical investigation

In this section, we consider instance of n = 1000 samples and omit extensive simulations
for n = 100 and n = 10 000 since the results presented here, particularly the power of aBP
carry over to those sizes. For smaller instance, rounding issues and few samples in the second
stage necessitate slightly more tests; for larger n, we obtain a better performance.

3 In case of aBP-3, we opted to keep the number of stages small. Instead, we may also run aBP-2 and
only carry out a third round on samples where both runs yield different results.



A. Coja-Oghlan, M. Hahn-Klimroth, P. Loick, and M. Penschuck 8:11

0.005 0.01 0.05 0.1
prior

0.02

0.04

0.06

0.08

0.10

0.12

0.14

fa
lse

 n
eg

at
iv

e 
ra

te
 (f

nr
)

0.005 0.01 0.05 0.1
prior

0.00

0.01

0.02

0.03

0.04

0.05

fa
lse

 p
os

iti
ve

 ra
te

 (f
pr

)

0.005 0.01 0.05 0.1
prior

0.0

0.2

0.4

0.6

0.8

1.0

te
st

s /
 n

algorithm
individual testing
adaptive bp (1x)
bp + inf. dorfman
3-stage dorfman
bp + individual
2-stage dorfman

Figure 5 High noise scenario (sensitivity and specificity of p = q = 95%).

0.005 0.01 0.05 0.1
prior

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

fa
lse

 n
eg

at
iv

e 
ra

te
 (f

nr
)

0.005 0.01 0.05 0.1
prior

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

fa
lse

 p
os

iti
ve

 ra
te

 (f
pr

)

0.005 0.01 0.05 0.1
prior

0.0

0.2

0.4

0.6

0.8

1.0

te
st

s /
 n

algorithm
adaptive bp (1x)
adaptive bp (2x)
adaptive bp (3x)
3-stage dorfman
2-stage dorfman

Figure 6 Reliability-enhanced aBP for high noise scenario (sensitivity/specificity of p = q = 95%).

We study infection rates λ ∈ {0.5%, 1%, 5%, 10%} and the following specificity/sensitivity
scenarios (details on the parametrizations of the test designs for these settings are reported
in Appendices A and B):
(a) perfectly reliable tests, i.e. p = q = 1,
(b) moderately values p = 0.99 and q = 0.98 (e.g., certain Covid-19 tests [9, 10, 31, 40, 44])
(c) a noisy scenario with p = q = 0.95.

Our experiments show that aBP improves the accuracy by an order of magnitude
compared to known test designs while keeping the number of tests at a reasonable level.
In the following, let the false positive rate (fpr) be the number of healthy samples falsely
classified as infected over all healthy samples; define the false negative rate (fnr) analogously.

In the High-noise scenario with p = q = 0.95, aBP reaps the greatest gains. Figure 5
displays the results of aBP-1 in comparison to several previously known approaches. These
include the widely used two- and three-stage Dorfman designs (Sec. 2.2), the InfDorfman
design (Sec. 2.5) as well as BP followed by individual testing advocated in the theoretical
literature4. The figure shows that with about the same number of tests as 2-stage Dorfman,
aBP achieves up to 78% reduction in the number of false positives and an up to 42%
reduction in the number of false negatives. The gains are particularly high for small priors.

Still, the absolute error rates in Fig. 5, particularly for large priors, may still be prohibitive
for many real-world applications. Here our two designs aBP-2 and aBP-3 (Sec. 3.4) come
to the rescue. As Fig. 6 shows, these designs, particularly aBP-3, dramatically reduce the
number of false positives and negatives. Of course, these improvements come at the expense
of a larger number of tests. But for priors λ ≤ 0.05 the number of extra tests is moderate,
and for the largest prior λ = 0.1 aBP-2 and aBP-3 require not many more tests than
individual testing while being the only designs that deliver decent accuracy.

4 With perfectly reliable tests, this approach is equivalent to DD algorithm followed by individual testing.

SEA 2022



8:12 Efficient and Accurate Group Testing via Belief Propagation: An Empirical Study

0.005 0.01 0.05 0.1
prior

0.01

0.02

0.03

0.04

0.05

0.06
fa

lse
 n

eg
at

iv
e 

ra
te

 (f
nr

)

0.005 0.01 0.05 0.1
prior

0.000

0.002

0.004

0.006

0.008

0.010

fa
lse

 p
os

iti
ve

 ra
te

 (f
pr

)

0.005 0.01 0.05 0.1
prior

0.0

0.2

0.4

0.6

0.8

1.0

te
st

s /
 n

algorithm
individual testing
adaptive bp (1x)
bp + inf. dorfman
3-stage dorfman
bp + individual
2-stage dorfman

Figure 7 Sensitivity for moderate noise scenario (p = 98%, q = 99%).

0.005 0.01 0.05 0.1
prior

0.00

0.01

0.02

0.03

0.04

0.05

0.06

fa
lse

 n
eg

at
iv

e 
ra

te
 (f

nr
)

0.005 0.01 0.05 0.1
prior

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

fa
lse

 p
os

iti
ve

 ra
te

 (f
pr

)

0.005 0.01 0.05 0.1
prior

0.0

0.2

0.4

0.6

0.8

1.0

te
st

s /
 n

algorithm
adaptive bp (1x)
adaptive bp (2x)
adaptive bp (3x)
3-stage dorfman
2-stage dorfman

Figure 8 Reliability-enhanced aBP for moderate noise (p = 98%, q = 99%).

Figure 7 indicates a similar behaviour for moderately high noise with p = 0.99,
q = 0.98. In comparison to the classical two- and three-stage Dorfman, aBP requires at
most 11% more tests for high priors of λ = 0.1 and even fewer for small priors. The benefit
is that aBP boosts accuracy compared to all the previously known designs, particularly
so for low priors. We point out that the gains vis-a-vis InfDorfman for moderately high
priors are modest. The key benefit in aBP lies in its versatility to meaningfully enhance the
accuracy at the expense of somewhat more tests as shown in Fig. 8. A similar extension of
InfDorfman would yield a similar accuracy but require significantly more tests than aBP.

Even with perfectly reliable tests, the conventional DD approach (Sec. 2.3) is improved
upon by aBP or the InfDorfman approach. Both schemes are able to reduce the number of
tests compared to the former by up to 18% and comes within 19% to 32% of the information-
theoretic lower bound. The gains vis-a-vis two-stage Dorfman with up to 57% and individual
testing with up to 94% are even more pronounced. We do not need to consider the accuracy
in the noiseless case since all test designs recover the entire ground truth by construction.

In Fig. 10, we consider the fraction of samples that are identified by in each stage. It
highlights that despite a total of three stages needed for aBP the majority of samples are
identified already in the first and second stage, depending on the prior and noise level.

All examined algorithms require reasonable pool sizes and splits of the individual sample
that are in line with common pooling procedures [22, 24, 29]. The maximum pool size is
between 8 and 170 depending on noise level and prior, while the splits of the individual
sample range between 3 and 19. It should be noted that the proposed algorithms and test
designs can readily be adjusted to accommodate smaller pool sizes or individual sample splits
– at the expense of somewhat more tests.



A. Coja-Oghlan, M. Hahn-Klimroth, P. Loick, and M. Penschuck 8:13

0.0 0.2 0.4 0.6 0.8 1.0
tests / n

0.005

0.01

0.05

0.1

pr
io

r
algorithm

adaptive bp (1x)
bp + inf. dorfman
3-stage dorfman
DD + individual
2-stage dorfman
inf.-theor. lower bound

0.0 0.1 0.2 0.3 0.4 0.5
reduction vs two-stage dorfman

Figure 9 Simulation results for the noiseless setting. The black area represents a plausible
information-theoretic lower bound for the number of tests. The left plot displays the numbers of
tests required by the different designs; the right plot shows the reduction achieved by comparison to
the 2-stage Dorfman procedure, a classical and widely used test design.

Figure 10 Fraction of samples identified in each stage by (i) aBP, (ii) BP followed by individual
testing, and (iii) BP followed by InfDorfman.

5 Asymptotic considerations

Clearly, aBP relies on heuristics and is not asymptotically optimal. This begs the question
of how we would adapt the design and algorithm if we decide to live unburdened by practical
considerations and consider the case n → ∞?

5.1 Variations on aBP
The optimal drop in entropy in Fig. 3 encourages running BP on a random biregular test
design in the first. The discrete partition into three groups in the second stage, however,
gives something away. Indeed, in the asymptotic regime infinitesimal intervals of posterior
marginals contain an unbounded number of samples.5 Thus, it seems information-theoretically
optimal to construct a random biregular design for every single small marginal interval and
repeat this procedure over a few stages. However, such an approach is impractical as, for
moderate n, each random biregular design would only contain very few samples.

A simpler alternative that we considered is to still include all samples in one single
second-stage test design, in which we choose the number of tests in which each sample takes
part according to the posterior marginal from the first stage. Specifically, we chose these
numbers so that in expectation half the tests should be positive. However, this design turned
out to be unstable for small values of n because of random fluctuations.

5 Of course, depending on the prior and the noise setting the distribution of the posterior marginals need
not be supported on the entire unit interval.

SEA 2022



8:14 Efficient and Accurate Group Testing via Belief Propagation: An Empirical Study

0.0 0.2 0.4 0.6 0.8 1.0
fraction of tests vs individual testing

0.0

0.2

0.4

0.6

0.8

1.0

%
 o

f i
nd

iv
id

ua
ls 

po
la

ris
ed

healthy
infected

0.2 0.4 0.6 0.8 1.0
marginal

0.00

0.05

0.10

0.15

di
st

rib
ut

io
n

infection status
infected
healthy

Figure 11 Asymptotic fraction of polarised marginals and the posteriors for non-polarised samples
obtained with population dynamics on the distribution by [23] for λ = 0.05 and p = q = 1.

5.2 Plain Belief Propagation
Thus far we disregarded what might seem at first glance the most straightforward scheme:
just run BP on a random biregular design and then simply threshold the marginals at, say,
50%. An obvious advantage of this approach is that it requires one stage only. Indeed,
when we simulated this scheme for large group testing instances such as n = 10 000, this
approach turned out to work extremely well. Particularly for small priors such as 0.5% and
1% the plain BP plus thresholding design is on par or even outperforms aBP in terms of
both efficiency and reliability. However, for smaller values of n plain BP plus threshold is
extremely vulnerable to fluctuations of the number k of infected samples. This is because
such fluctuations might cause the fraction of positive tests to significantly deviate from half.

5.3 Population dynamics
As already discussed, the population dynamics heuristics allows us to get a glimpse of the
marginal distribution resulting from running BP as n → ∞ [30]. To this end, we require
as input the distribution of infected and healthy samples in the local neighbourhood of a
sample which is provided in [23]. Subsequently, we iteratively sample the local neighbourhood
for infected and healthy samples and perform one-step BP updates to model the marginal
distribution of those samples whose marginal is not completely polarised. As shown in Fig. 11,
the resulting distribution closely resembles the marginal distribution that we observe from
running BP in our simulation in the first stage. As a side product, we obtain the proportion
of polarised healthy and infected samples which lines up nicely with our simulation results. It
should be noted that the population dynamics heuristic is nowhere near a complete analysis
of BP on random biregular graphs. Given the gains in efficiency and reliability that we
observe in this empirical work for moderately-sized instances, a formal analysis of BP seems
to be an important next step in group testing research.

6 Discussion

Group testing is a powerful method to efficiently and accurately detect infected samples. Since
the mathematical work on group testing deals with the asymptotic n → ∞ scenario, practical
adoption of methods proposed in this literature has been limited. Instead practitioners
tend to apply very simple test designs dating back to the 1940s. In this paper we therefore
conducted an experimental study that shows how a mildly more sophisticated test design
can significantly improve the accuracy of the overall test results by comparison to classical
methods without asking for many more tests. The new test design comes with an efficient,



A. Coja-Oghlan, M. Hahn-Klimroth, P. Loick, and M. Penschuck 8:15

easy-to-run and easy-to-implement algorithm that determines the status of each sample
from the test results. Since the new design employs randomisation, its adoption is probably
feasible only in a practical setting that employs a degree of automation in preparing test
pools. But on the plus side the new aBP design keeps the pool sizes and the number of
pools that each sample has to be placed in fairly low.

Apart from the group testing model studied in the present paper, there are complicated
models; e.g., in quantitative group testing each test returns the number of infected samples
rather than a binary positive or negative result. Further variants include the pooled data
problem, the generalised coin weighing problem or the compressed sensing problem [1, 19].

What are the loose ends of the present work? On the one hand, it seems worthwhile to
consider alternative noise models. A candidate might be one where the specificity decreases in
the test size. Both the fixed noise model considered in this work and this diluted model have
value from a practical perspective and it would be interesting to see whether our results carry
over. On the other hand, the success of BP in practical group testing leaves us wondering
whether it is guaranteed to converge to a fixpoint reminiscent of the ground truth. Hence, a
mathematical analysis of BP remains as an outstanding open problem.

References
1 A. El Alaoui, A. Ramdas, F. Krzakala, L. Zdeborová, and M. I. Jordan. Decoding from

pooled data: Phase transitions of message passing. IEEE Transactions on Information Theory,
65:572–585, 2019.

2 M. Aldridge. Individual testing is optimal for nonadaptive group testing in the linear regime.
IEEE Transactions on Information Theory, 65:2058–2061, 2018.

3 M. Aldridge. Conservative two-stage group testing. arXiv, 2020. arXiv:2005.06617.
4 M. Aldridge, L. Baldassini, and O. Johnson. Group testing algorithms: Bounds and simulations.

IEEE Transactions on Information Theory, 60:3671–6687, 2014.
5 M. Aldridge, O. Johnson, and J. Scarlett. Group testing: an information theory perspective.

Foundations and Trends in Communications and Information Theory, 2019.
6 V. Bapst and A. Coja-Oghlan. Harnessing the bethe free energy. Random Structures and

Algorithms, 49:694–741, 2016.
7 J. Barbier and D. Panchenko. Strong replica symmetry in high-dimensional optimal bayesian

inference. arXiv, 2020. arXiv:2005.03115.
8 E. A. Bender and E. R. Canfield. The asymptotic number of labeled graphs with given degree

sequences. Journal of Combinatorial Theory and Series A, 24, 1978.
9 V. Brault, B. Mallein, and JF Rupprecht. Group testing as a strategy for covid-19 epidemio-

logical monitoring and community surveillance. PLOS Computational Biology, 17:e1008726,
2021.

10 A. Cohen and B. Kessel. False positives in reverse transcription pcr testing for sars-cov-2.
medRxiv, page 10.1101/2020.04.26.20080911, 2020.

11 A. Coja-Oghlan, C. Efthymiou, N. Jaafari, M. Kang, and T. Kapetanopoulos. Charting the
replica symmetric phase. Communications in Mathematical Physics, 359:603–698, 2018.

12 A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimroth, and P. Loick. Information-theoretic and
algorithmic thresholds for group testing. Proc. 46th ICALP, page #43, 2019.

13 A. Coja-Oghlan, O. Gebhard, M. Hahn-Klimroth, and P. Loick. Optimal group testing. Proc.
33rd COLT, pages 1374–1388, 2020.

14 A. Coja-Oghlan and W. Perkins. Belief propagation on replica symmetric random factor graph
models. Annales de l'institut Henri Poincare D, 5:211–249, 2018.

15 A. Coja-Oghlan and W. Perkins. Bethe states of random factor graphs. Communications in
Mathematical Physics, 366:273–201, 2019.

SEA 2022

http://arxiv.org/abs/2005.06617
http://arxiv.org/abs/2005.03115


8:16 Efficient and Accurate Group Testing via Belief Propagation: An Empirical Study

16 M. Cuturi, O. Teboul, O. Berthet, A. Doucet, and J. Vert. Noisy adaptive group testing using
bayesian sequential experimental design. arXiv, 2020. arXiv:2004.12508.

17 D. Donoho. Compressed sensing. IEEE Transactions on Information Theory, 52:1289–1306,
2006.

18 D. Donoho, A. Javanmard, and A. Montanari. Information-theoretically optimal compressed
sensing via spatial coupling and approximate message passing. IEEE Transactions on Infor-
mation Theory, 59:7434–7464, 2013.

19 D. Donoho, A. Maleki, and A. Montanari. Message-passing algorithms for compressed sensing.
Proceedings of the National Academy of Sciences, 106:18914–18919, 2009.

20 R. Dorfman. The detection of defective members of large populations. Annals of Mathematical
Statistics, 14:436–440, 1943.

21 C. Efthymiou, T. Hayes, D. Stefankovic, E. Vigoda, and Y. Yin. Convergence of mcmc and
loopy bp in the tree uniqueness region for the hard-core model. SIAM J. Comput., 48:581–643,
2019.

22 L. Garrison, J. Babigumira, A. Masaquel, B. Wang, D. Lalla, and M. Brammer. The lifetime
economic burden of inaccurate her2 testing: Estimating the costs of false-positive and false-
negative her2 test results in us patients with early-stage breast cancer. Journal of the
International Society for Pharmacoeconomics and Outcomes Research, 18:541–546, 2015.

23 O. Gebhard and P. Loick. Note on the offspring distribution for group testing in the linear
regime. arXiv, 2021. arXiv:2103.13039.

24 E. Joly and B. Mallein. Group testing and pcr: a tale of charge value. arXiv, 2020. arXiv:
2012.09096.

25 S. Kleinman, D. Strong, G. Tegtmeier, P. Holland, J. Gorlin, C. Cousins, R. Chiacchierini,
and L. Pietrelli. Hepatitis b virus (hbv) dna screening of blood donations in minipools with
the cobas ampliscreen hbv test. Transfusion, 45:1247–1257, 2005.

26 F. Krzakala, M. Mézard, F. Sausset, Y. Sun, and L. Zdeborová. Statistical-physics-based
reconstruction in compressed sensing. Physical Review X, 2:021005, 2012.

27 D. Levin, Y. Peres, and E. Wilmer. Markov chains and mixing times. AMS, 2 edition, 2017.
28 S. Mallapaty. The mathematical strategy that could transform coronavirus testing. Nature,

583:504–505, 2020.
29 C. McMahan, J. Tebbs, and C. Bilder. Informative dorfman screening. Biometrics, 68:287–296,

2012.
30 M. Mézard and A. Montanari. Information and physics and computation. Oxford University

Pres, 2009.
31 M. Mueller, P. Derlet, C. Mudry, and G. Aeppli. Testing of asymptomatic individuals for fast

feedback-control of covid-19 pandemic. Physical biology, 17:065007, 2020.
32 Y. Ohhashi, A. Pai, H. Halait, and R. Ziermann. Analytical and clinical performance evaluation

of the cobas taqscreen mpx test for use on the cobas s201 system. Journal of Virological
Methods, 165:246–253, 2010.

33 J. Pearl. Probabilistic reasoning in intelligent systems: networks of plausible inference. Morgan
Kaufmann, 1988.

34 M. Penschuck, U. Brandes, M. Hamann, S. Lamm, U. Meyer, I. Safro, P. Sanders, and
C. Schulz. Recent advances in scalable network generation. arXiv, 2020. arXiv:2003.00736.

35 T. Richardson and R. Urbanke. Modern coding theory. Cambridge University Press, 2008.
36 D. Sejdinovic and O. Johnson. Note on noisy group testing: Asymptotic bounds and belief

propagation reconstruction. 48th Annual Allerton Conference on Communication and Control
and and Computing, pages 998–1003, 2010.

37 Noam Shental, Shlomia Levy, Vered Wuvshet, Shosh Skorniakov, Bar Shalem, Aner Ot-
tolenghi, Yariv Greenshpan, Rachel Steinberg, Avishay Edri, Roni Gillis, Michal Goldhirsh,
Khen Moscovici, Sinai Sachren, Lilach M. Friedman, Lior Nesher, Yonat Shemer-Avni, Angel
Porgador, and Tomer Hertz. Efficient high-throughput sars-cov-2 testing to detect asymp-
tomatic carriers. Science Advances, 6:eabc5961, 2020.

http://arxiv.org/abs/2004.12508
http://arxiv.org/abs/2103.13039
http://arxiv.org/abs/2012.09096
http://arxiv.org/abs/2012.09096
http://arxiv.org/abs/2003.00736


A. Coja-Oghlan, M. Hahn-Klimroth, P. Loick, and M. Penschuck 8:17

38 M. Sherlock, N. Zelota, and J. Klausner. Routine detection of acute hiv infection through
rna pooling: Survey of current practice in the united states. Sexually Transmitted Diseases,
34:314–316, 2007.

39 J. Tebbs, C. McMahan, and C. Bilder. Two-stage hierarchical group testing for multiple
infections with application to the infertility prevention project. Biometrics, 69:1064–1073,
2013.

40 L. Theagarajan. Group testing for covid-19: how to stop worrying and test more. arXiv, 2020.
arXiv:2004.06306.

41 R. van der Hofstad. Random Graphs and Complex Networks. Cambridge Series in Statistical
and Probabilistic Mathematics, 2016.

42 G. van Zyl, W. Preiser, S. Potschka, A. Lundershausen, R. Haubrich, and D. Smith. Pooling
strategies to reduce the cost of hiv-1 rna load monitoring in a resource-limited setting. Clinical
Infectious Diseases, 52:264–270, 2011.

43 P. Vontobel. Counting in graph covers: a combinatorial characterization of the bethe entropy
function. IEEE Transactions on Information Theory, 59:6018–6048, 2013.

44 J. Watson, P. Whiting, and J. Brush. Interpreting a covid-19 test result. BMJ, page 369, 2020.
45 L. Zdeborová and F. Krzakala. Statistical physics of inference: thresholds and algorithms.

Advances in Physics, 65:453–552, 2016.

A Number of tests in first and second stage

Number of tests for the first and second stage found via optimization for various algorithms,
priors and noise levels. The number of tests in the second stage in terms of the stated
parameter c can be obtained as cλ′n′ log(n′) with λ′ and n′ defined as the average marginal
and size of the low risk group, respectively.

noiseless moderate noise high noise
algorithm prior m1/n c m1/n c m1/n c

BP +
individual testing

0.5% 0.05 n/a 0.09 n/a 0.11 n/a
1% 0.08 n/a 0.12 n/a 0.16 n/a
5% 0.23 n/a 0.37 n/a 0.45 n/a
10% 0.3 n/a 0.7 n/a 0.34 n/a

BP + InfDorf-
man

0.5% 0.045 n/a 0.05 n/a 0.045 n/a
1% 0.075 n/a 0.075 n/a 0.1 n/a
5% 0.28 n/a 0.24 n/a 0.16 n/a
10% 0.125 n/a 0.1 n/a 0.1 n/a

aBP-1

0.5% 0.035 1.0 0.05 2.0 0.05 2.0
1% 0.075 1.0 0.085 2.0 0.1 2.0
5% 0.28 1.0 0.18 2.0 0.16 2.0
10% 0.125 0.25 0.15 4.0 0.1 2.0

aBP-2

0.5% n/a n/a 0.075 8.0 0.02 8.0
1% n/a n/a 0.12 8.0 0.03 8.0
5% n/a n/a 0.4 2.0 0.36 2.0
10% n/a n/a 0.5 2.0 0.325 2.0

aBP-3

0.5% n/a n/a 0.075 8.0 0.02 8.0
1% n/a n/a 0.085 8.0 0.03 8.0
5% n/a n/a 0.4 2.0 0.4 2.0
10% n/a n/a 0.55 2.0 0.5 2.0

SEA 2022

http://arxiv.org/abs/2004.06306


8:18 Efficient and Accurate Group Testing via Belief Propagation: An Empirical Study

B Sample splits and test degree

The algorithms required the following number of maximum test degree and the following
maximum and average split of samples. The algorithms can be readily adjusted to work with
smaller test degrees or sample splits at the expense of slightly more tests.

noiseless moderate noise high noise
algorithm prior Γmax ∆max ∆mean Γmax ∆max ∆mean Γmax ∆max ∆mean

BP +
individual testing

0.5% 140 8 7.0 134 13 12.0 137 16 15.0
1% 75 7 6.0 67 9 8.0 69 12 11.0
5% 14 4 3.1 14 6 5.2 14 7 6.2
10% 7 3 2.3 8 6 5.2 6 3 2.8

BP +
InfDorfman

0.5% 134 8 6.0 140 9 7.1 134 8 6.2
1% 67 7 5.1 67 7 5.2 70 9 7.2
5% 15 6 4.1 20 5 3.5 13 4 2.9
10% 8 3 1.8 14 3 2.3 10 3 2.3

aBP

0.5% 143 8 5.2 140 11 7.6 140 13 8.0
1% 67 8 5.1 71 12 6.7 70 13 8.0
5% 15 7 4.1 147 12 6.2 66 12 6.5
10% 8 3 1.8 172 19 10.3 50 10 4.9



Efficient Exact Learning Algorithms for Road
Networks and Other Graphs with Bounded
Clustering Degrees
Ramtin Afshar !

University of California, Irvine, CA, USA

Michael T. Goodrich !

University of California, Irvine, CA, USA

Evrim Ozel !

University of California, Irvine, CA, USA

Abstract
The completeness of road network data is significant in the quality of various routing services and
applications. We introduce an efficient randomized algorithm for exact learning of road networks
using simple distance queries, which can find missing roads and improve the quality of routing
services. The efficiency of our algorithm depends on a cluster degree parameter, dmax, which is an
upper bound on the degrees of vertex clusters defined during our algorithm. Unfortunately, we leave
open the problem of theoretically bounding dmax, although we conjecture that dmax is small for
road networks and other similar types of graphs. We support this conjecture by experimentally
evaluating our algorithm on road network data for the U.S. and 5 European countries of various
sizes. This analysis provides experimental evidence that our algorithm issues a quasilinear number
of queries in expectation for road networks and similar graphs.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Random network models; Theory of computation → Query learning

Keywords and phrases Road Networks, Exact Learning, Graph Reconstruction, Randomized
Algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.9

Supplementary Material Software (Source Code): https://github.com/UC-Irvine-Theory/Road
NetworkReconstruction; archived at swh:1:dir:337dc5ac6d78bd68031d6f94b24332b935797a67

1 Introduction

We study the problem of reconstructing an undirected, unweighted and connected graph
G = (V, E), by taking as input its set of vertices V and issuing queries to a distance oracle,
which takes as input a pair of vertices u, v ∈ V and returns the number of edges on the
shortest path between them. The goal is to learn the edges in E by using the results that
are returned from these queries. In particular, we are concerned with reconstructing road
networks, which have been characterized in numerous ways, e.g., see [18, 21, 22, 25]. As a
starting point, we can view road networks as undirected, unweighted, and connected graphs
with a constant maximum degree, where each vertex corresponds to a road junction or
terminus, and each edge corresponds to road segments that connect two vertices. In this
paper, we present a randomized incremental algorithm for exact learning of road networks,
where we assume the existence of a distance oracle that responds to distance queries.

Even though our algorithm only works with unweighted graphs, it is possible to use
weighted graphs as input by subdividing each edge, replacing each edge e with ⌈w(e)⌉ edges,
where w(e) is the weight of e. Since the average edge weight in road networks is typically
small (e.g., as observed in [25]), this will only increase the number of vertices and edges in the

© Ramtin Afshar, Michael T. Goodrich, and Evrim Ozel;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 9; pp. 9:1–9:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:afsharr@uci.edu
mailto:goodrich@uci.edu
mailto:eozel@uci.edu
https://doi.org/10.4230/LIPIcs.SEA.2022.9
https://github.com/UC-Irvine-Theory/RoadNetworkReconstruction
https://github.com/UC-Irvine-Theory/RoadNetworkReconstruction
https://archive.softwareheritage.org/swh:1:dir:337dc5ac6d78bd68031d6f94b24332b935797a67;origin=https://github.com/UC-Irvine-Theory/RoadNetworkReconstruction;visit=swh:1:snp:98ced9fe727f516927660fa44bcc83e32c06e86e;anchor=swh:1:rev:c19c998347519a1dd8eeb370fc6832c4dc1e0ad2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


9:2 Efficient Exact Learning Algorithms for Road Networks

graph by a constant factor that is independent of the size of the graph. This preprocessing
step is important for applications of road network reconstruction in routing services, where
the completeness of road network data has great importance. For example, machine learning
techniques have been utilized in the past to find the missing roads in incomplete road network
data [24]. Though our experiments focus on unweighted road networks, we include some
experimental results for weighted road networks with subdivided edges as well.

Another application relevant to this work is the use of structured encryption [16] in
the context of cloud computing, where a data owner encrypts structured data, such as a
graph, stores it in a database managed by a third-party cloud provider, and wishes to query
it privately (e.g., using single-pair shortest path queries [26]). In the scenario where an
adversary server is able to generate valid queries of its own, it would be able to use a graph
reconstruction algorithm to learn the edges in the graph, resulting in a breach of privacy.

A graph reconstruction algorithm A is evaluated based on the number of queries it issues,
which we call the query complexity of A, following nomenclature from learning theory (e.g.,
see [2, 3, 17, 20, 35]) and complexity theory (where this is also known as “decision-tree
complexity,” e.g., see [38, 15]). For instance, Kannan, Mathieu and Zhou [29] present exact
learning algorithms for connected, undirected graphs that have bounded degree, including
a randomized algorithm that has expected query complexity O(∆3n3/2 polylog(n)), where
∆ is the maximum degree of the graph, using distance queries. This bound simplifies to
O(n3/2 polylog(n)) for graphs with maximum degree O(polylog(n)).

We note that a bound on the maximum degree is necessary for subquadratic exact
learning algorithms, as there is a simple Ω(n2) lower bound for the query complexity of
graphs with unbounded degrees, e.g., see [29]. Likewise, a trivial upper bound for the task of
reconstructing a general graph G is O(n2) distance queries, as one can issue a distance query
for every pair of vertices in the graph and return all pairs of vertices that have distance 1
between them as edges. We refer to this as an exhaustive search on G.

1.1 Related Prior Results
The problem of reconstructing graphs by issuing queries has been studied extensively, e.g.,
see [1, 5, 8, 13, 32, 37, 4, 6, 7, 9, 10, 11, 17, 19, 27, 28, 30, 33]. These works differ in terms
of their assumptions about the hidden graph (e.g., whether the hidden graph is a tree, a
general graph, or something else) or the types of queries that they issue.

In terms of the most relevant prior work, Kannan, Mathieu and Zhou [29] showed how to
reconstruct a connected, unweighted graph G using O(∆3n3/2 polylog(n)) distance queries in
expectation, where they performed an exhaustive search on the Voronoi cells created by a call
to a graph clustering algorithm inspired by Thorup and Zwick [36]. They also raised the open
question of whether we can achieve an algorithm that uses O(n polylog(n)) distance queries
in expectation for bounded degree graphs. In a recent work [31], Mathieu and Zhou provided
a partial answer for that open question by providing an algorithm that uses O(n polylog(n))
distance queries in expectation for random ∆-regular graphs. However, this does not imply
an algorithm with an expected query complexity of O(n polylog(n)) distance queries for road
networks as they are not necessarily regular. For general graphs of bounded degree, their
algorithm uses O(n5/3 polylog(n)) distance queries in expectation.

In another work, Afshar, Goodrich, Matias and Osegueda [6] introduced a parallel
implementation of the graph clustering technique of Thorup and Zwick [36] and presented
a parallel algorithm for reconstructing connected, unweighted graphs using O(∆2n3/2+ϵ)
distance queries in O(1) parallel rounds for constant 0 < ϵ < 1/2, with high probability.



R. Afshar, M. T. Goodrich, and E. Ozel 9:3

1.2 Our Contributions
In this paper, we introduce a randomized incremental algorithm for exact reconstruction of
bounded degree graphs and demonstrate through experiments that it has expected empirical
query complexity O(n polylog(n)), providing an empirical answer to the open question raised
by [29] mentioned above.

The main idea of our algorithm is to cluster the graph into cells by incrementally selecting
random vertices as centers. We then issue distance queries between that center and the rest
of the graph to decide which vertices should be added to the new cell. We continue this
process until the size of each cell is below some threshold value. The final step is to then
perform exhaustive searches in each cell.

Our algorithm uses the same overall strategy used in [29], which is based on finding a
Voronoi cell decomposition of the graph. However, our algorithm differs in a number of
important ways. In [29], the goal of the algorithm is to produce cells such that the size
of each cell is O(

√
n/∆). Our algorithm, however, produces cells that have size at most a

chosen constant. Since performing exhaustive searches on all of these cells requires only
O(n) queries, the query complexity of our algorithm depends mainly on the initial step
of constructing the cells and not the exhaustive querying step. Moreover, our algorithm
incrementally constructs the cell decomposition by updating it with each newly added center,
whereas [29] updates the cell decomposition only after adding multiple centers.

We perform experiments on several real-world road networks and show, by considering
the number of queries performed at each step, that our algorithm has expected empirical
query complexity O(n polylog(n)). Moreover, we theoretically analyze our algorithm and
prove an upper bound of O(d2

maxn log n) expected queries, where dmax is the maximum
degree in the dual graph of cells during our algorithm. To characterize dmax, we collect
data on the maximum cell degrees during our experiments, and find that the value of
dmax scales logarithmically with respect to n for road networks. When combined with our
theoretical analysis, this results in an alternative way to obtain an empirical upper bound of
O(n polylog(n)) expected queries for our algorithm. In addition, we perform experiments to
directly compare the number of queries our algorithm issues to the number of queries issued
by existing algorithms, and observe empirically that our algorithm issues significantly fewer
queries.

Our paper is organized as follows. We provide some preliminaries in Section 2, our
algorithm is in Section 3, the results from our analysis are in Section 4, experimental results
are in Section 5, comparisons between theoretical/experimental results are in Section 6, and
the conclusions are in Section 7.

2 Preliminaries

We reconstruct graphs G = (V, E) that consist of n = |V | vertices and m = |E| edges, and
are undirected, unweighted and connected. For a graph G = (V, E), a cell is defined as
any subset of V . A cover of G is a set of cells C such that

⋃
C∈C C = V and for each edge

(u, v) ∈ E there exists at least one cell C ∈ C such that u, v ∈ C.
For two vertices u, v ∈ V , δ(u, v) denotes the number of edges on the shortest path

between u and v in G. For a subset of vertices A ⊆ V , δ(v, A) = mina∈A δ(v, a). For a vertex
v and a cell C, the subroutine Distances(v,C) determines δ(v, u) ∀u ∈ C by issuing distance
queries between v and every vertex in C.

SEA 2022



9:4 Efficient Exact Learning Algorithms for Road Networks

Algorithm 1 Graph Reconstruction.

1: Function reconstruct(V ):
2: E ← ∅, C ← ∅, W ← V

3: Let M denote the maximum size of cells, initially +∞
4: while M > g do // g is a chosen constant
5: a← a random vertex from W

6: W ←W \ {a}
7: C ← cover(V, C, a)
8: M ← max

C∈C
{|C|}

9: for C ∈ C do
10: E ← E ∪ Exhaustive-Query(C)
11: return E

3 Algorithm

The first component of our algorithm is reconstruct(V ), which takes as input the set
of vertices V of the input graph and returns the reconstructed graph with the correct edge
assignments. We start by choosing a constant, g, which is the threshold value for the
maximum sized cell in our cover. In a loop, we randomly select an unselected vertex to be
the center for the new cell, and call cover(V, C, a) to get a new cover which includes the
new cell with center a. We describe how cover(V, C, a) works later in this section.

We keep performing this loop until the maximum sized cell in the cover becomes less
than g, in which case we terminate the loop and perform an exhaustive search on each cell
of the cover. The function Exhaustive-Query(C) takes as input a cell C and returns all
edges between vertices in C by issuing distance queries for each pair of vertices in C. We
provide details in Algorithm 1.

The second and main component of our algorithm is cover(V, C, a) (see Algorithm 2),
which takes as input the set of vertices V , a set of cells C and a vertex a, and returns a
new cover where a is the center of a new cell N . We define S, which we call the frontier, to
be the set of cells that we should search in expanding N , and we initialize it with the cells
that a belongs to. The only exception is when we first call cover(V, C, a), in which case we
initialize S to be {V } (see lines 3-6). Then, an arbitrary cell, C, from S is chosen, and we
issue distance queries between a and all of the vertices of C.

Using the results from these queries, we determine which vertices in C are close to a,
compared to their distances to all the other centers. We define A to be a global variable that
stores the set of all centers that were added before the new center a. For a vertex v ∈ C,
if δ(a, v) ≤ δ(A, v) − 1, we remove v from all of the cells that contains it (see line 18). If,
however, δ(a, v) = δ(A, v) or δ(a, v) = δ(A, v) + 1, we consider v to be on the boundary
between C and N and so we do not remove v from any cells. In both cases, we add v to
the new cell N , and we add any unvisited cells that contain v to S since they might have
vertices that are close to a as well.

We say that a cell C2 ∈ C is a neighbor of C1 ∈ C if C1 ∩ C2 ̸= ∅. In other words, two
cells are neighbors if there exists a boundary vertex that belongs to both of them. So, each
iteration of cover(V, C, a) ends up adding to the frontier all unvisited neighbors of the
current cell C ∈ S that share at least one boundary vertex with C such that this boundary
vertex can be added to N according to the closeness definition in line 15. Note that we do



R. Afshar, M. T. Goodrich, and E. Ozel 9:5

Algorithm 2 cover(V, C, a) algorithm for constructing a new cover after adding a cell centered
at vertex a.

1: N ← {a} // N is the new cell centered at a

2: L← ∅ // L is the set of cells that have been visited
3: if C = ∅ then
4: S ← {V }
5: else
6: S ← {C ∈ C | a ∈ C} // S is the set of cells that we should search in expanding N

7: while S ̸= ∅ do
8: C ← an arbitrary cell from S

9: S ← S \ {C}
10: L← L ∪ C

11: Distances(a, C)
12: // A is a global variable denoting the set of all cell centers
13: If A = ∅, ∀v ∈ V : set δ(A, v) = +∞.
14: for v ∈ C do
15: if δ(a, v) ≤ δ(A, v) + 1 then
16: S ← S ∪ {C ′ ∈ C | v ∈ C ′ and C ′ /∈ L} // add all of the unvisited cells that

contain v to the frontier S

17: if δ(a, v) ≤ δ(A, v)− 1 then
18: Remove v from all the cells that contain it
19: N ← N ∪ {v}
20: A← A ∪ {a}
21: return C ∪ {N}

not necessarily add all the neighbors of C to the frontier: if none of the boundary vertices v

between C and a neighboring cell N ′ have distance at most δ(A, v) + 1 to N ’s center, then it
is clear that none of the vertices in N ′ can be added to N .

4 Correctness and Analysis

▶ Theorem 1. For any undirected, unweighted and connected graph G = (V, E),
reconstruct(V ) correctly reconstructs E.

Proof. We use an inductive argument to prove that the union of exhaustive searches performed
on the cells created by the algorithm discovers all (u, v) ∈ E.

Initially, there is a single cell containing all of the vertices V , which trivially covers all
the edges of E. Now, let Ai represent the first i centers that we add in the algorithm and
assume, at every step 2 ≤ s ≤ i, that for each edge (u, v) ∈ E there is a cell with its center
in As that contains both u and v. We then prove that if we create a new cell N , centered at
the (i + 1)-th center a ∈ Ai+1, the union of the new cells still covers all the edges in E.

Consider an edge (e1, e2) ∈ E. Let x be the last center among the first i + 1 centers such
that x = argmina∈Ai+1

{min(δ(a, e1), δ(a, e2))}. In other words, x is the last center that is
closest to either endpoint of the edge (e1, e2). If δ(x, e1) ̸= δ(x, e2), we denote the endpoint
that is closer to x as v, and denote the other endpoint as u. Otherwise, we denote the endpoints
arbitrarily as u and v. So, we have min(δ(x, e1), δ(x, e2)) = δ(x, v) = δ(Ai+1, v) ≤ δ(Ai+1, u).
We prove that both u and v belong to the cell centered at x, after the (i + 1)-th iteration.

SEA 2022



9:6 Efficient Exact Learning Algorithms for Road Networks

First, we prove that we add both v and u to the cell at x. Let (s1, s2, . . . , sm) denote
the ordered vertices on a shortest path from x to v, where s1 = x and sm = v. Using the
inductive hypothesis for each 2 ≤ j ≤ m, there exists a cell that contains both sj−1 and sj

right before adding center x. Now, consider the smallest j such that sj is not added to the
cell at x during the loop at line 14. Since sj−1 is added to the cell at x, and since sj−1 and
sj are connected, then by the inductive hypothesis there is a cell C that contains both sj−1
and sj . Therefore, when we add sj−1 to the cell at x, we add C to the set of cells that we
should explore in expanding the cell centered at x (see line 16). On the other hand, since
sj is on the shortest path from x to v and δ(x, v) = δ(Ai+1, v), then δ(x, sj) = δ(Ai+1, sj).
Therefore, sj will be added to the cell at x when exploring cell C. Using this inductive
approach, all vertices on the shortest path from x to v will be added to the cell at x. Finally,
since δ(x, u) ≤ δ(x, v) + 1 = δ(Ai+1, v) + 1 ≤ δ(Ai+1, u) + 1, and since u and v also have a
common cell, we add u to the cell at x.

Next, we prove that if we add v and u to the cell centered at x, no other cells that we create
later on in the first (i + 1)-th steps removes v or u from the cell at x. Note that for removing
a node from cell x, the condition at line 17 must hold. Since δ(x, v) = δ(Ai+1, v), there will
be no center b among the first (i + 1) centers such that δ(b, v) ≤ δ(Ai+1, v) − 1, meaning
that v will stay in cell at x. On the other hand, we remove u from x only if for a center b:
δ(b, u) ≤ δ(x, u) − 1. If δ(b, u) ≤ δ(x, u) − 1, and given the fact that δ(x, u) ≤ δ(x, v) + 1
and δ(x, v) ≤ δ(x, u), then δ(b, u) ≤ δ(x, v) ≤ δ(x, u). However, we assumed that x is the
last center, among the first i + 1 centers, that is closest to either of the endpoints u and v.
Therefore, u will also stay in the cell at x. ◀

▶ Theorem 2. The expected query complexity of reconstruct(V ) is O(d2
maxn log n), where

dmax is the maximum cell degree over all steps.

Proof. We use a backwards analysis [34] to derive an expression for the expected query
complexity of the algorithm. We assume i centers have already been added, and analyze the
expected number of queries we issue at step i.

We observe that our algorithm only issues distance queries for cells in the set S. Moreover,
the only cells we add to S are the ones that contain vertices that get added to the ith cell.
This means that all cells in S will become neighbors of the ith cell at the end of step i. So
the number of distance queries issued at step i is the sum of the sizes of each cell that gets
added to S, which is at most the sum of the sizes of the ith cell and its neighbors at the end
of step i. Denoting the set of cells at the end of step i as Ci, and the set of cells neighboring
any cell C as N(C), we have that the expected number of queries issued at the ith step is

≤
∑

C∈Ci

1
i
(|C|+

∑
C′∈N(C)

|C ′|)

=
∑

C∈Ci

(d(C) + 1)|C|
i

,

by observing that each cell size |C| is summed d(C) + 1 times, where d(C) denotes the degree
of cell C, i.e. the number of neighboring cells it has. To bound this summation, we express
each cell size as the sum of boundary and non-boundary vertices. We have∑

C∈Ci

(d(C) + 1)|C|
i

=
∑

C∈Ci

(d(C) + 1)(|C|NB + |C|B)
i

≤ (dmax + 1)
i

(
(
∑

C∈Ci

|C|NB) + (
∑

C∈Ci

|C|B)
)



R. Afshar, M. T. Goodrich, and E. Ozel 9:7

where dmax is the maximum degree of any cell during any step, | · |B denotes the number of
boundary vertices, and | · |NB denotes the number of non-boundary vertices. We use the
fact that

∑
C∈Ci

|C|NB ≤ n, and observe that
∑

C∈Ci
|C|B ≤ (dmax + 1) ·n as each boundary

vertex can belong to at most dmax + 1 cells, and thus can only be counted that many times
at most in the summation. So, we have

(dmax + 1)
i

(
(
∑

C∈Ci

|C|NB) + (
∑

C∈Ci

|C|B)
)

<
n(dmax + 2)2

i
.

The expected number of queries when all steps are considered is

<

#steps∑
i=1

n(dmax + 2)2

i
= n(dmax + 2)2

#steps∑
i=1

1
i
,

which is O(d2
maxn log n). To finish our analysis, we also need to consider the number of

queries issued during the exhaustive searches in each cell. Since the total number of cells is
O(n), and each cell is of size at most a constant g, the exhaustive querying part has query
complexity O(n). ◀

5 Experimental results

5.1 Implementation and Datasets
We implemented our algorithm in C++, and simulated the distance query oracle by performing
BFS in each iteration to compute distances between nodes while keeping track of how many
distance queries would be necessary to find these distances. We selected the value of g to be
50. We include experimental results for road networks from 50 U.S. states and Washington,
D.C. obtained from the formatted TIGER/Line dataset available from the 9th DIMACS
Implementation Challenge website1 and road networks from Belgium, the U.K. (limited
to the road network of Great Britain), Italy, Luxembourg, and the Netherlands obtained
from formatted OpenStreetMaps data available from the 10th DIMACS Implementation
Challenge [12]. For all of the datasets, only the largest connected component is considered.
In Section 6, we discuss how the upper bounds derived from these experiments compare to
our theoretical upper bound.

5.2 Batch Length
We define the batch length of a step to be the number of distance queries issued at that step.
To find the relation between batch length and the step number, based on the theoretical
upper bound we derived in Section 4, we fit the function Batch-Length(step) = a + b n

step
to the data points in our results, where a and b are the fitting parameters. Data points for
the batch lengths of some of our datasets are provided in Figure 1. We list our results for all
of the datasets in Table 1, which includes the best-fit parameters in columns a and b, and
the maximum number of cells visited at any step in column M .

We can see that parameter b does not exceed 2, and that parameter a is close to 0 for
all of the datasets. This suggests that a constant or logarithmic factor of n

step could be an
upper bound for the batch size at any step, which leads us to predict an upper bound of
log n · n

step which we show in Figure 1. We report the percentage of steps that fall below this
upper bound for each dataset in Table 1, column U .

1 http://www.diag.uniroma1.it/~challenge9/data/tiger/

SEA 2022

http://www.diag.uniroma1.it/~challenge9/data/tiger/


9:8 Efficient Exact Learning Algorithms for Road Networks

Figure 1 Batch lengths for select datasets of varying sizes.



R. Afshar, M. T. Goodrich, and E. Ozel 9:9

Table 1 Batch length results for all datasets. Columns a, b and U were rounded to 4, 2 and 2
decimal places respectively.
a, b: best-fit parameters for Batch-Length(step#) = a + b n

step#
U: percentage of batch lengths that are below the upper bound of n

step# log n.

Dataset n a b U
AK 48 560 0.0036 1.69 96%
AL 561 459 0.0005 1.91 98%
AR 478 024 0.0005 1.85 98%
AZ 533 008 0.0005 1.95 95%
CA 1 595 577 0.0002 1.89 96%
CO 436 084 0.0006 1.91 96%
CT 152 036 0.0019 1.75 94%
DC 9522 0.0321 1.89 70%
DE 48 812 0.0053 1.77 91%
FL 1 036 647 0.0003 1.86 97%
GA 731 954 0.0004 1.97 97%
HI 21 774 0.0086 1.88 90%
IA 388 487 0.0008 1.92 93%
ID 265 552 0.0010 1.81 97%
IL 790 439 0.0004 1.89 96%
IN 495 581 0.0007 1.88 94%
KS 471 066 0.0007 1.87 93%
KY 463 542 0.0006 1.90 98%
LA 408 161 0.0006 1.84 97%
MA 294 345 0.0009 1.98 95%
MD 264 378 0.0010 1.86 95%
ME 187 315 0.0013 1.81 99%
MI 661 718 0.0005 1.74 95%
MN 541 166 0.0006 1.76 95%
MO 668 322 0.0004 1.89 97%
MS 409 994 0.0007 1.93 98%
MT 300 809 0.0007 1.80 98%
NC 876 954 0.0003 1.72 99%

Dataset n a b U
ND 203 583 0.0015 1.76 92%
NE 304 335 0.0011 1.99 93%
NH 115 055 0.0023 1.91 97%
NJ 329 404 0.0010 1.90 94%
NM 456 896 0.0006 1.88 97%
NV 253 012 0.0009 1.85 94%
NY 708 520 0.0004 1.76 97%
OH 672 527 0.0005 1.93 95%
OK 535 032 0.0006 1.87 96%
OR 529 702 0.0005 1.90 98%
PA 866 352 0.0004 1.83 97%
RI 51 642 0.0047 1.88 92%
SC 460 763 0.0005 1.81 97%
SD 206 998 0.0014 1.85 94%
TN 578 981 0.0004 1.70 98%
TX 2 037 156 0.0001 1.97 97%
UT 242 432 0.0010 1.95 96%
VA 620 680 0.0004 1.92 98%
VT 95 672 0.0022 1.95 98%
WA 560 336 0.0005 1.69 97%
WI 514 687 0.0006 1.89 96%
WV 292 557 0.0006 1.89 99%
WY 243 545 0.0010 1.92 97%
BE 1 441 295 0.0002 2.00 99%
GB 7 733 822 0 1.81 100%
IT 6 686 493 0 1.81 100%
LU 114 599 0.0019 1.96 99%
NL 2 216 688 0.0001 1.86 99%

5.3 Maximum Cell Degree
To combine our experimental results with our theoretical upper bound, we collected data on
the maximum cell degree at each step. We combine the step-wise data in each dataset using
different measures: mean, max, and the 1st, 2nd and 3rd quartiles to see how the data is
spread. Then for each dataset, we represent the value corresponding to each measure as a
point. Based on our intuition, we fit the function a log n + b for each measure. We list our
results in Figure 2, which includes the best-fit parameters for each measure. We can see that
a < 2, and b is a small constant for each measure. The datasets with the largest maximum
cell degrees turned out to be VA, NV and OH, with values of 43, 43 and 42 respectively. It
is clear from the figure that a small constant multiple of log n would be enough to produce
an upper bound that covers all of the data points, suggesting that the maximum cell degree
might have an upper bound of O(log n).

5.3.1 Road Networks with Subdivided Edges
We provide experimental results in Table 2 for the maximum cell degrees of the weighted
road networks of the District of Columbia and the state of Hawaii, which we transform into
unweighted graphs by replacing each edge e with ⌈w(e)⌉ edges, where w(e) is the weight of e.
The size of each road network increased by factors of approximately 192 and 167 respectively,
while the maximum cell degree values ended up decreasing for both road networks. This
indicates that our algorithm can also perform efficiently on weighted road networks.

SEA 2022



9:10 Efficient Exact Learning Algorithms for Road Networks

14 16 18 20 22
log n

15

20

25

30

35

40

M
ax

im
um

 C
el

l D
eg

re
e

mean
25%
50%
75%
max

(a) Best-fit lines for the function a + b log n.

Measure a b

mean -2.34 1.48
1st quartile -4.52 1.48
2nd quartile -1.49 1.47
3rd quartile -0.2 1.53

max 4.4 1.50

(b) Parameters for best-fit lines. Columns a and b
were rounded to 2 decimal places.

Figure 2 Results from combining step-wise maximum cell degrees.

0 50000 100000 150000 200000 250000 300000
n

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Nu
m

be
r o

f q
ue

rie
s

1e9
s = n2/3

s = n2/3log2n
s = log2n
Our algorithm

0.0 0.5 1.0 1.5 2.0
n 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Nu
m

be
r o

f q
ue

rie
s

1e9
s = log2n
Our algorithm

Figure 3 Number of queries issued by our algorithm compared to [31].

5.4 Comparisons with Existing Algorithms
We directly compare the number of queries issued by our algorithm to the algorithm introduced
in [31], which takes as input a parameter s that affects the query complexity. The authors
prove their query complexity bounds for ∆-regular graphs and bounded graphs with the value
of s being set to log2 n and n2/3 respectively. We use these values for s in our experiments,
and we also try setting s to be the geometric mean of these values. We summarize the results
of our experiments on road networks in Figure 3.

We then compare our results to the number of queries issued by the algorithm in [29].
Without performing any experiments, it can be observed that this algorithm will issue
significantly more queries than our algorithm: the first iteration of Estimated-Centers
(Algorithm 2 in [29]) will issue at least Ω(n ·∆

√
n · log n · log log n) distance queries.

Table 2 Maximum cell degrees for weighted road networks compared to their unweighted
versions.

Unweighted Weighted
|V | dmax |V | dmax

DC 9522 23 1 826 049 12
HI 21 774 26 3 643 818 11



R. Afshar, M. T. Goodrich, and E. Ozel 9:11

6 Comparison of Theoretical/Experimental Results and Future Work

The theoretical upper bound we derived in Section 4 contains a d2
max term, which can be

O(n2) in the worst case. However, our experiments show that the maximum cell degree is
actually low for road networks throughout the algorithm. From our results in Section 5.3, we
can see that O(log n) would be a suitable upper bound for dmax. In this case, the expected
query complexity of our algorithm would be O(n log3 n). The experimental results for batch
length support this observation, as the upper bound for the batch length at any step number
amounted to be n log n

step# , from which we get an expected query complexity of O(n polylog(n))
as well. Future work might involve trying to find if there exists a better theoretical upper
bound on the query complexity of our algorithm. This might require making some additional
simplifying assumptions about the graphs being used as input.

We would like to point out a connection between our results and the graph-theoretical
Delaunay triangulation of road networks.

6.1 Delaunay Triangulations and dmax

We can consider the cells (resp. covers) that are constructed during our algorithm as a
redefinition of graph-theoretical Voronoi cells (resp. diagrams) (e.g., see [23]). Similarly, we
can consider the dual graph connecting neighboring cells in the cover as being a form of
a graph-theoretical Delaunay triangulation of G. There exists prior work on bounding the
expected maximum degree of the Delaunay triangulation of a set of points selected randomly
from the Euclidean plane. In [14], the authors consider the Delaunay triangulation of a
Poisson point process limited to the portion of the triangulation within a cube of d dimensions.
They show that the expected maximum degree of this triangulation is Θ(log n/ log log n).
Having such a bound for the expected maximum degree for our redefinition of the graph-
theoretical Delaunay triangulation might allow us to prove a theoretical quasilinear bound
for the query complexity of our algorithm, so another interesting direction for future work
can be to adapt this result for random point sets in Euclidean d-space to our setting, where
the point set is selected randomly from the vertex set of a road network.

7 Conclusions

We introduced an efficient exact reconstruction algorithm for road networks and showed
through experiments on several real-world road networks that our algorithm has an expected
empirical query complexity that is quasilinear. As mentioned in Section 6, an important
direction for future work can be to derive a theoretical upper bound for our algorithm that
matches our experimental results.

References
1 Mikkel Abrahamsen, Greg Bodwin, Eva Rotenberg, and Morten Stöckel. Graph reconstruction

with a betweenness oracle. In Nicolas Ollinger and Heribert Vollmer, editors, 33rd Symposium
on Theoretical Aspects of Computer Science, STACS 2016, February 17-20, 2016, Orléans,
France, volume 47 of LIPIcs, pages 5:1–5:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016. doi:10.4230/LIPIcs.STACS.2016.5.

2 Peyman Afshani, Manindra Agrawal, Benjamin Doerr, Carola Doerr, Kasper Green Larsen,
and Kurt Mehlhorn. The query complexity of finding a hidden permutation. In Andrej
Brodnik, Alejandro López-Ortiz, Venkatesh Raman, and Alfredo Viola, editors, Space-Efficient
Data Structures, Streams, and Algorithms: Papers in Honor of J. Ian Munro on the Occasion
of His 66th Birthday, pages 1–11, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg. doi:
10.1007/978-3-642-40273-9_1.

SEA 2022

https://doi.org/10.4230/LIPIcs.STACS.2016.5
https://doi.org/10.1007/978-3-642-40273-9_1
https://doi.org/10.1007/978-3-642-40273-9_1


9:12 Efficient Exact Learning Algorithms for Road Networks

3 Ramtin Afshar, Amihood Amir, Michael T. Goodrich, and Pedro Matias. Adaptive exact
learning in a mixed-up world: Dealing with periodicity, errors and jumbled-index queries
in string reconstruction. In Christina Boucher and Sharma V. Thankachan, editors, String
Processing and Information Retrieval - 27th International Symposium, SPIRE 2020, Orlando,
FL, USA, October 13-15, 2020, Proceedings, volume 12303 of Lecture Notes in Computer
Science, pages 155–174. Springer, 2020. doi:10.1007/978-3-030-59212-7_12.

4 Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda. Reconstructing
binary trees in parallel. In Christian Scheideler and Michael Spear, editors, SPAA ’20: 32nd
ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, July
15-17, 2020, pages 491–492. ACM, 2020. doi:10.1145/3350755.3400229.

5 Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda. Reconstructing
biological and digital phylogenetic trees in parallel. In Fabrizio Grandoni, Grzegorz Herman,
and Peter Sanders, editors, 28th Annual European Symposium on Algorithms, ESA 2020,
September 7-9, 2020, Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 3:1–3:24.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.3.

6 Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda. Parallel
network mapping algorithms. In Kunal Agrawal and Yossi Azar, editors, SPAA ’21: 33rd
ACM Symposium on Parallelism in Algorithms and Architectures, Virtual Event, USA, 6-8
July, 2021, pages 410–413. ACM, 2021. doi:10.1145/3409964.3461822.

7 Ramtin Afshar, Michael T. Goodrich, Pedro Matias, and Martha C. Osegueda. Mapping
networks via parallel kth-hop traceroute queries. In Petra Berenbrink and Benjamin Monmege,
editors, 39th International Symposium on Theoretical Aspects of Computer Science, STACS
2022, March 15-18, 2022, Marseille, France (Virtual Conference), volume 219 of LIPIcs, pages
4:1–4:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
STACS.2022.4.

8 Noga Alon and Vera Asodi. Learning a hidden subgraph. SIAM J. Discret. Math., 18(4):697–
712, 2005. doi:10.1137/S0895480103431071.

9 Noga Alon, Richard Beigel, Simon Kasif, Steven Rudich, and Benny Sudakov. Learning a
hidden matching. SIAM J. Comput., 33(2):487–501, 2004. doi:10.1137/S0097539702420139.

10 Dana Angluin and Jiang Chen. Learning a hidden hypergraph. J. Mach. Learn. Res.,
7:2215–2236, 2006. URL: http://jmlr.org/papers/v7/angluin06a.html.

11 Dana Angluin and Jiang Chen. Learning a hidden graph using o(logn) queries per edge. J.
Comput. Syst. Sci., 74(4):546–556, 2008. doi:10.1016/j.jcss.2007.06.006.

12 David A. Bader, Henning Meyerhenke, Peter Sanders, and Dorothea Wagner, editors. Graph
Partitioning and Graph Clustering, 10th DIMACS Implementation Challenge Workshop,
Georgia Institute of Technology, Atlanta, GA, USA, February 13-14, 2012. Proceedings, volume
588 of Contemporary Mathematics. American Mathematical Society, 2013. doi:10.1090/conm/
588.

13 Zuzana Beerliova, Felix Eberhard, Thomas Erlebach, Alexander Hall, Michael Hoffmann,
Matús Mihalák, and L. Shankar Ram. Network discovery and verification. IEEE J. Sel. Areas
Commun., 24(12):2168–2181, 2006. doi:10.1109/JSAC.2006.884015.

14 Marshall W. Bern, David Eppstein, and F. Frances Yao. The expected extremes in a delaunay
triangulation. In Javier Leach Albert, Burkhard Monien, and Mario Rodríguez-Artalejo,
editors, Automata, Languages and Programming, 18th International Colloquium, ICALP91,
Madrid, Spain, July 8-12, 1991, Proceedings, volume 510 of Lecture Notes in Computer Science,
pages 674–685. Springer, 1991. doi:10.1007/3-540-54233-7_173.

15 Anna Bernasconi, Carsten Damm, and Igor Shparlinski. Circuit and decision tree complexity
of some number theoretic problems. Information and Computation, 168(2):113–124, 2001.
doi:10.1006/inco.2000.3017.

16 Melissa Chase and Seny Kamara. Structured encryption and controlled disclosure. In Masayuki
Abe, editor, Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference
on the Theory and Application of Cryptology and Information Security, Singapore, December
5-9, 2010. Proceedings, volume 6477 of Lecture Notes in Computer Science, pages 577–594.
Springer, 2010. doi:10.1007/978-3-642-17373-8_33.

https://doi.org/10.1007/978-3-030-59212-7_12
https://doi.org/10.1145/3350755.3400229
https://doi.org/10.4230/LIPIcs.ESA.2020.3
https://doi.org/10.1145/3409964.3461822
https://doi.org/10.4230/LIPIcs.STACS.2022.4
https://doi.org/10.4230/LIPIcs.STACS.2022.4
https://doi.org/10.1137/S0895480103431071
https://doi.org/10.1137/S0097539702420139
http://jmlr.org/papers/v7/angluin06a.html
https://doi.org/10.1016/j.jcss.2007.06.006
https://doi.org/10.1090/conm/588
https://doi.org/10.1090/conm/588
https://doi.org/10.1109/JSAC.2006.884015
https://doi.org/10.1007/3-540-54233-7_173
https://doi.org/10.1006/inco.2000.3017
https://doi.org/10.1007/978-3-642-17373-8_33


R. Afshar, M. T. Goodrich, and E. Ozel 9:13

17 Sung-Soon Choi and Jeong Han Kim. Optimal query complexity bounds for finding graphs.
Artificial Intelligence, 174(9):551–569, 2010. doi:10.1016/j.artint.2010.02.003.

18 Padraig Corcoran, Musfira Jilani, Peter Mooney, and Michela Bertolotto. Inferring semantics
from geometry: the case of street networks. In Jie Bao, Christian Sengstock, Mohammed Eunus
Ali, Yan Huang, Michael Gertz, Matthias Renz, and Jagan Sankaranarayanan, editors,
Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic
Information Systems, Bellevue, WA, USA, November 3-6, 2015, pages 42:1–42:10. ACM, 2015.
doi:10.1145/2820783.2820822.

19 Luca Dall’Asta, J. Ignacio Alvarez-Hamelin, Alain Barrat, Alexei Vázquez, and Alessandro
Vespignani. Exploring networks with traceroute-like probes: Theory and simulations. Theor.
Comput. Sci., 355(1):6–24, 2006. doi:10.1016/j.tcs.2005.12.009.

20 Shahar Dobzinski and Jan Vondrak. From query complexity to computational complexity. In
Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC ’12,
pages 1107–1116, New York, NY, USA, 2012. ACM. doi:10.1145/2213977.2214076.

21 David Eppstein and Michael T. Goodrich. Studying (non-planar) road networks through an
algorithmic lens. CoRR, abs/0808.3694, 2008. arXiv:0808.3694.

22 David Eppstein and Siddharth Gupta. Crossing patterns in nonplanar road networks. In
Erik G. Hoel, Shawn D. Newsam, Siva Ravada, Roberto Tamassia, and Goce Trajcevski,
editors, Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, GIS 2017, Redondo Beach, CA, USA, November 7-10, 2017,
pages 40:1–40:9. ACM, 2017. doi:10.1145/3139958.3139999.

23 Martin Erwig. The graph voronoi diagram with applications. Networks, 36(3):156–163, 2000.
doi:10.1002/1097-0037(200010)36:3<156::AID-NET2>3.0.CO;2-L.

24 Stefan Funke, Robin Schirrmeister, and Sabine Storandt. Automatic extrapolation of missing
road network data in openstreetmap. In Ioannis Katakis, François Schnitzler, Thomas Liebig,
Dimitrios Gunopulos, Katharina Morik, Gennady L. Andrienko, and Shie Mannor, editors,
Proceedings of the 2nd International Workshop on Mining Urban Data co-located with 32nd
International Conference on Machine Learning (ICML 2015), Lille, France, July 11th, 2015,
volume 1392 of CEUR Workshop Proceedings, pages 27–35. CEUR-WS.org, 2015. URL:
http://ceur-ws.org/Vol-1392/paper-04.pdf.

25 Stefan Funke and Sabine Storandt. Provable efficiency of contraction hierarchies with
randomized preprocessing. In Khaled M. Elbassioni and Kazuhisa Makino, editors, Algorithms
and Computation - 26th International Symposium, ISAAC 2015, Nagoya, Japan, December
9-11, 2015, Proceedings, volume 9472 of Lecture Notes in Computer Science, pages 479–490.
Springer, 2015. doi:10.1007/978-3-662-48971-0_41.

26 Esha Ghosh, Seny Kamara, and Roberto Tamassia. Efficient graph encryption scheme for
shortest path queries. In Jiannong Cao, Man Ho Au, Zhiqiang Lin, and Moti Yung, editors,
ASIA CCS ’21: ACM Asia Conference on Computer and Communications Security, Virtual
Event, Hong Kong, June 7-11, 2021, pages 516–525. ACM, 2021. doi:10.1145/3433210.
3453099.

27 Vladimir Grebinski and Gregory Kucherov. Reconstructing a hamiltonian cycle by querying
the graph: Application to DNA physical mapping. Discret. Appl. Math., 88(1-3):147–165,
1998. doi:10.1016/S0166-218X(98)00070-5.

28 Vladimir Grebinski and Gregory Kucherov. Optimal reconstruction of graphs under the
additive model. Algorithmica, 28(1):104–124, 2000. doi:10.1007/s004530010033.

29 Sampath Kannan, Claire Mathieu, and Hang Zhou. Graph reconstruction and verification.
ACM Trans. Algorithms, 14(4), August 2018. doi:10.1145/3199606.

30 Valerie King, Li Zhang, and Yunhong Zhou. On the complexity of distance-based evolutionary
tree reconstruction. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages 444–453.
ACM/SIAM, 2003. URL: http://dl.acm.org/citation.cfm?id=644108.644179.

SEA 2022

https://doi.org/10.1016/j.artint.2010.02.003
https://doi.org/10.1145/2820783.2820822
https://doi.org/10.1016/j.tcs.2005.12.009
https://doi.org/10.1145/2213977.2214076
http://arxiv.org/abs/0808.3694
https://doi.org/10.1145/3139958.3139999
https://doi.org/10.1002/1097-0037(200010)36:3<156::AID-NET2>3.0.CO;2-L
http://ceur-ws.org/Vol-1392/paper-04.pdf
https://doi.org/10.1007/978-3-662-48971-0_41
https://doi.org/10.1145/3433210.3453099
https://doi.org/10.1145/3433210.3453099
https://doi.org/10.1016/S0166-218X(98)00070-5
https://doi.org/10.1007/s004530010033
https://doi.org/10.1145/3199606
http://dl.acm.org/citation.cfm?id=644108.644179


9:14 Efficient Exact Learning Algorithms for Road Networks

31 Claire Mathieu and Hang Zhou. A simple algorithm for graph reconstruction. In Petra
Mutzel, Rasmus Pagh, and Grzegorz Herman, editors, 29th Annual European Symposium on
Algorithms, ESA 2021, September 6-8, 2021, Lisbon, Portugal (Virtual Conference), volume
204 of LIPIcs, pages 68:1–68:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ESA.2021.68.

32 Lev Reyzin and Nikhil Srivastava. On the longest path algorithm for reconstructing trees from
distance matrices. Inf. Process. Lett., 101(3):98–100, 2007. doi:10.1016/j.ipl.2006.08.013.

33 Guozhen Rong, Wenjun Li, Yongjie Yang, and Jianxin Wang. Reconstruction and verification
of chordal graphs with a distance oracle. Theor. Comput. Sci., 859:48–56, 2021. doi:
10.1016/j.tcs.2021.01.006.

34 Raimund Seidel. Backwards analysis of randomized geometric algorithms. In János Pach,
editor, New Trends in Discrete and Computational Geometry, pages 37–67. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1993. doi:10.1007/978-3-642-58043-7_3.

35 G. Tardos. Query complexity, or why is it difficult to separate NP A ∩ coNP A from P A by
random oracles A? Combinatorica, 9(4):385–392, December 1989. doi:10.1007/BF02125350.

36 Mikkel Thorup and Uri Zwick. Approximate distance oracles. J. ACM, 52(1):1–24, 2005.
doi:10.1145/1044731.1044732.

37 M.S. Waterman, T.F. Smith, M. Singh, and W.A. Beyer. Additive evolutionary trees. Journal
of Theoretical Biology, 64(2):199–213, 1977. doi:10.1016/0022-5193(77)90351-4.

38 Andrew Chi-Chih Yao. Decision tree complexity and Betti numbers. In Proceedings of the
Twenty-sixth Annual ACM Symposium on Theory of Computing, STOC ’94, pages 615–624,
New York, NY, USA, 1994. ACM. doi:10.1145/195058.195414.

https://doi.org/10.4230/LIPIcs.ESA.2021.68
https://doi.org/10.1016/j.ipl.2006.08.013
https://doi.org/10.1016/j.tcs.2021.01.006
https://doi.org/10.1016/j.tcs.2021.01.006
https://doi.org/10.1007/978-3-642-58043-7_3
https://doi.org/10.1007/BF02125350
https://doi.org/10.1145/1044731.1044732
https://doi.org/10.1016/0022-5193(77)90351-4
https://doi.org/10.1145/195058.195414


R. Afshar, M. T. Goodrich, and E. Ozel 9:15

A Batch Length Results for All Datasets

SEA 2022



9:16 Efficient Exact Learning Algorithms for Road Networks



R. Afshar, M. T. Goodrich, and E. Ozel 9:17

SEA 2022



9:18 Efficient Exact Learning Algorithms for Road Networks



A Parallel Framework for Approximate Max-Dicut
in Partitionable Graphs
Nico Bertram !

Department of Computer Science, Technische Universität Dortmund, Germany

Jonas Ellert !

Department of Computer Science, Technische Universität Dortmund, Germany

Johannes Fischer !

Department of Computer Science, Technische Universität Dortmund, Germany

Abstract
Computing a maximum cut in undirected and weighted graphs is a well studied problem and has
many practical solutions that also scale well in shared memory (despite its NP-completeness). For
its counterpart in directed graphs, however, we are not aware of practical solutions that also utilize
parallelism. We engineer a framework that computes a high quality approximate cut in directed
and weighted graphs by using a graph partitioning approach. The general idea is to partition a
graph into k subgraphs using a parallel partitioning algorithm of our choice (the first ingredient of
our framework). Then, for each subgraph in parallel, we compute a cut using any polynomial time
approximation algorithm (the second ingredient). In a final step, we merge the locally computed
solutions using a high-quality or exact parallel Max-Dicut algorithm (the third ingredient). On
graphs that can be partitioned well, the quality of the computed cut is significantly better than the
best cut achieved by any linear time algorithm. This is particularly relevant for large graphs, where
linear time algorithms used to be the only feasible option.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Design and analysis of algorithms

Keywords and phrases maximum directed cut, graph partitioning, algorithm engineering, approxim-
ation, parallel algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.10

Supplementary Material Software (Source Code): https://github.com/NicoBertram/par-max-dicut

Funding This work has been supported by the German Research Association (DFG) within the
Collaborative Research Center SFB 876 “Providing Information by Resource-Constrained Analysis”,
project A6.

1 Introduction

A directed and weighted graph G is a tuple (V, E, w) with the set of vertices V = {1, ..., n}, the
set of edges E ⊆ V 2 and nonnegative weights w : V 2 → R≥0. If (u, v) /∈ E, we set w(u, v) = 0.
A cut in a directed and weighted graph G = (V, E, w) is defined by a partitioning of V into
two complementary subsets S ⊆ V and T = V \ S. The value of a cut with respect to S and
T is defined by C(S, T ) =

∑
i∈S,j∈T w(i, j), i.e. we sum the weights of the edges with origin

in S and target in T . The maximum cut is then defined by Cmax = maxS⊆V,T =V \S C(S, T ).
The problem of finding a maximum cut in a directed and weighted graph is denoted by

Max-Dicut. It can be seen as a generalization of its well-studied counterpart Max-Cut in
undirected graphs, which is one of the classical NP-complete problems listed by Karp [13]. In
fact, Max-Dicut is at least as hard as Max-Cut, since every instance of Max-Cut can
be trivially reduced to an instance of Max-Dicut (by replacing each undirected edge (u, v)
with two directed edges (u, v) and (v, u) of the same weight). This reduction also shows that

© Nico Bertram, Jonas Ellert, and Johannes Fischer;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nico.bertram@tu-dortmund.de
mailto:jonas.ellert@tu-dortmund.de
https://orcid.org/0000-0003-3305-6185
mailto:johannes.fischer@cs.tu-dortmund.de
https://doi.org/10.4230/LIPIcs.SEA.2022.10
https://github.com/NicoBertram/par-max-dicut
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


10:2 A Parallel Framework for Approximate Max-Dicut in Partitionable Graphs

Max-Dicut is NP-hard. Additionally, it is known that Max-Dicut is APX-hard, even
when restricted to directed acyclic graphs (DAGs) [16]. Thus (assuming P ̸= NP), we cannot
hope for more than a constant factor approximation algorithm.

One of the many practical applications of approximate Max-Dicut is as a subroutine in
grammar-based text compression [12], where we encounter large graphs that may contain
millions of nodes. In this setting, we are particularly interested in algorithms that not only
obtain a good approximation ratio, but also utilize shared memory parallelism to accelerate
the computation. To the best of our knowledge, there currently exists no such algorithm.

1.1 Related Work
Computing an undirected Max-Cut is a well-studied problem in theory as well as in practice.
Among the practical solutions are a variety of exact Max-Cut solvers like BiqMac [20] and
BiqCrunch [15]. However, these solvers do not use parallelism to accelerate the computation.
Recently, new exact parallel solvers were introduced, e.g., BiqBin [9] and MADAM [11].
Unfortunately, these solvers cannot easily be modified to compute a directed maximum cut
instead. They are also only practical for relatively small graphs.

There is a variety of sequential Max-Dicut approximation algorithms. A naive ran-
domized algorithm assigns each node independently with probability 1

2 either to S or T ,
which results in a cut with an expected performance guarantee of 1

4 . (As usual, we say
that an algorithm has performance guarantee α ∈ (0, 1) if it always computes a cut of value
at least α · Cmax, where Cmax is the value of a maximum cut.) By using the method of
conditional expectations [22, 19], we can derandomize this algorithm. A linear time algorithm
for unweighted graphs with a performance guarantee of 9

20 was described in [10]. In [6],
a set of algorithms with a performance guarantee in [0.25, 0.5) was described. In these
algorithms, the decision whether a node is assigned to S or T only depends on the in-degree
and out-degree of the node. Max-Dicut can be seen as a maximization of a submodular
function. In [4], a linear time algorithm with an expected performance guarantee of 1

2 and
one with deterministic ratio 1

3 were described, both using maximization of a submodular
function as their main ingredient. Max-Dicut was also considered in an online model [2]
and shown to have an online algorithm with a performance guarantee of 1

3 .
By solving a relaxation of an integer linear program (ILP) and using a simple round-

ing scheme, we can achieve an expected performance guarantee of 1
2 [18]. The currently

best known performance guarantee uses an idea that was first described by Goemans and
Williamson [7]. It relaxes an integer program into a semidefinite program, and then uses
an interesting rounding technique to achieve a performance guarantee of 0.79607. The
performance guarantee was subsequently improved to 0.859 [23] and 0.874 [17]. It has been
shown that it can only be improved up to 0.878 in case that the Unique Games Conjecture
[14] is true. These algorithms have a polynomial running time and do not perform well in
practice. Also, they cannot easily be parallelized.

Summing up, when faced with graphs of nonhomeopathic size, the only practical option
to date is to use one of the (randomized) linear time algorithms [4, 6], resulting possibly in
poor quality directed cuts. Better performing algorithms such as [7] cannot be applied to
dense graphs of more than a few thousand nodes.

1.2 Our Contributions
To bridge the gap between the linear time algorithms and the expensive ILP-based solutions,
we propose a practical framework that computes high quality Max-Dicut approximations
in well partitionable graphs using shared memory parallelism. In recent years, practical



N. Bertram, J. Ellert, and J. Fischer 10:3

improvements for a variety of graph problems were achieved by using graph partitioning
[5, 1]. The general approach is to partition a graph into multiple subgraphs (usually aiming
at minimizing the number of edges between the subgraphs), solve the problem locally on
each subgraph, and then merge the local solutions into a global solution. Since we can
independently compute a solution for each subgraph, this approach is well suited to be
parallelized in shared (and potentially also distributed) memory.

This is also the idea behind our framework, which consists of three main algorithmic
components and an optional post-processing step:

S1 A graph partitioner is used to split the input graph G into k ≪ n subgraphs Gi of roughly
equal size, such that the dependency between the subgraphs is small, i.e. the sum of the
edge-weights between the subgraphs is small.

S2 An approximation algorithm for Max-Dicut is used to compute a cut Si, Ti for each
subgraph Gi (processing up to p subgraphs simultaneously, using p processors).

S3 A merger is used to integrate all the local solutions Si, Ti into a global cut. This is
achieved by defining a new contracted graph with 2k nodes, where each node represents
a partition set Si or Ti. Merging the local cuts then corresponds to computing a Max-
Dicut in the contracted graph. Thus, the merger is just another Max-Dicut algorithm,
which can either be a high-quality approximation algorithm or even an exact solver, if k

is sufficiently small.

S4 (optional) A local search is performed in order to improve the current solution by
swapping nodes between the partitions until we cannot further increase the value of the
cut.

The C++ implementation of the framework is publicly available on GitHub (see sup-
plementary material on the title page). At the time of writing, the framework provides
three different partitioners, four sequential Max-Dicut approximation algorithms, and four
mergers. It has been designed with extendability in mind, such that it should be little effort
for the user to add new algorithms.

We evaluated the different options for each component on various real world graphs of
up to 223 nodes and 224 edges. If we choose the right components, then the framework
scales well in practice, while computing high quality cuts. The quality of the cut depends
heavily on how well the graph can be partitioned in the first step. For graphs that can be
partitioned well, we obtain a cut that is significantly better than the cut achieved by linear
time algorithms. This is particularly relevant for large graphs, where linear time algorithms
used to be the only feasible option.

The remainder of the paper is structured as follows. First, we describe the main steps
of the framework in more detail, providing examples of each step (Section 2). Then, we
give implementation details, focusing on the actual algorithms that we use as components of
the framework (Section 3.1). Finally, we provide practical results (Section 3.2), and discuss
future work and open problems (Section 4).

2 Framework

In this section, we describe the framework in more detail. The description is accompanied by
a full example in Figure 1.

SEA 2022



10:4 A Parallel Framework for Approximate Max-Dicut in Partitionable Graphs

1 2

3 4

5 6

7

8

9

10

1
5

2

2 2

5 5

2

3

1
2

1
4

3

72
1

2

2

4

1
2

3
10

(a) The directed and weighted input graph G for
which we want to compute a maximum directed
cut.

1 2

3 4

5 6

7

8

9

10

1
5

5 5

4

3

72
2

4
3

10

(b) Step 1: We partition the input graph into
subgraphs G1, G2, G3, G4 induced by the node
sets V1 = {1, 2, 5}, V2 = {6, 7, 8}, V3 = {3, 4}
and V4 = {9, 10}. The partition aims to minim-
ize the sum of edge weights between subgraphs.

2

3

6

7

10

1

4

5 8

9

1
5

5 5

4

3

72
2

4
3

10

(c) Step 2: We compute a directed cut Si, Ti

on each Gi. The source nodes, i.e., the elements
of any Si, are filled and dashed.

2 6,7

3 10

1,5 8

4 9

2 2 2 3
2

1
2

1

12

2

2

1

7

4

4

3

3

10

1
2

(d) Step 3.1: We obtain a contracted graph H
from G by contracting each Si and each Ti into
a single node. The number of nodes is twice the
number of subgraphs. The value of the naive
cut S =

⋃
Si, T = V \ S is 37.

2 8

43 10

1,5 6,7

9

2 2 2 3
2

1
2

1

12

2

2

1

7

4

4

3

3

10

1
2

(e) Step 3.2: We compute an exact Max-Dicut
SH , TH on H. Nodes from SH are filled and
dashed. The value of the cut is 37.5.

2

3 4

8 10

1

5 6

7

9

1
5

2

2 2

5 5

2

3

1
2

1
4

3

72
1

2

2

4

1
2

3
10

(f) Step 3.3: We obtain the final cut S, T on G
by defining S =

⋃
X∈SH

X and T = V \ S. The
unchanged value of the cut is 37.5.

2

3 4

8 106

1

5

7

9

1
5

2

2 2

5 5

2

3

1
2

1
4

3

72
1

2

2

4

1
2

3
10

2

3

6 8 10

1

5

7

94

1
5

2

2 2

5 5

2

3

1
2

1
4

3

72
1

2

2

4

1
2

3
10

(g) Step 4 (optional): We perform the local search and repeatedly identify nodes that have a positive
gain, i.e., nodes that can be moved to the other partition set such that the overall cut improves. After
Step 3.3, the only node with positive gain is node 6 with gain(6) = (5 + 2) − (2 + 1

2 + 4) = 1
2 . After

moving node 6 from T to S (left part of the drawing), the cut has value 38. Now the only node with
positive gain is node 4 with with gain(4) = 4 − 2 = 2. After moving it from S to T , (right part of the
drawing), there is no node with positive gain, and the value of the cut is 40.

Figure 1 Running our framework on a small example.



N. Bertram, J. Ellert, and J. Fischer 10:5

2.1 Graph Partitioning
The first step of our framework is to partition the input graph G = (V, E, w) into k disjoint
subgraphs G1, . . . , Gk (where k is a freely choosable parameter), such that we can run on
each subgraph independently an algorithm for approximating Max-Dicut. In order to
improve the quality of the computed cut, we want to retain as much information as possible
in each subgraph, while losing as little information as possible between the subgraphs. This
can be achieved by maximizing the sum of the edge-weights in each subgraph, or, vice versa,
minimizing the sum of the edge-weights between the subgraphs, i.e. we want to minimize∑

i,j∈{1,...,k},i̸=j Eij , where Eij is the sum of the edge-weights between subgraph Gi and Gj .
We use partitioning algorithms that split G into subgraphs Gi = (Vi, Ei, w) of roughly

equal size, i.e. we allow for a multiplicative error ϵ > 0 such that |Vi| ≤ (1 + ϵ)
⌈

|V |
k

⌉
.

Although graph partitioning is a hard problem itself, there are high-quality parallel graph
partitioners that scale well on multiple processors [1, 8]. In Figures 1a and 1b, we see an
example of an input graph partitioned into four subgraphs.

2.2 Compute Local Solutions
In the next step, we run on each subgraph Gi an algorithm that computes an approximation
Si, Ti for Max-Dicut. We process up to p subgraphs at the same time, where p ≤ k is
the number of processors that we want to use. The choice of the approximation algorithm
depends on the available time and the size of the subgraphs. If the subgraph are rather
small, e.g., 100 nodes each, then we may be able to compute an optimal solution for each of
them. If the subgraphs are slightly bigger, e.g., around 1000 nodes each, then a superlinear
approximation algorithm with a relatively high performance guarantee might be feasible. If
the subgraphs are even bigger, then we may have to use a simple linear time approximation
algorithm with a lower performance guarantee. Depending on our choice of k, we have the
flexibility to choose the algorithm such that we achieve the best trade-off between the quality
of the cut and the runtime of the framework. As an example, we show in Figure 1c the
optimal Max-Dicut for all subgraphs that were computed in Figure 1b.

2.3 Merging
In a final step, we have to merge the computed local cuts into a global cut. A naive approach
is to define S =

⋃
i Si and T =

⋃
i Ti as the trivial cut. The problem with this approach

is that we did not consider the edges between the subgraphs. For some i ∈ {1, . . . , k}, it
might be more advantageous to swap the subsets Si and Ti in the global graph, or even to
put Si and Ti into the same partition. To consider the dependencies between the subgraphs,
we reduce the problem of merging the local solutions to another Max-Dicut instance. We
build a complete graph H with 2k nodes, where each node represents a locally computed
partition set Si or Ti. For every pair X, Y of nodes in H, we add an edge (X, Y ) to H with
weight

∑
i∈X,j∈Y w(i, j) (see Figure 1d). Since the graph H has only 2k nodes, we can use an

expensive algorithm to compute an exact Max-Dicut defined by SH and TH (see Figure 1e).
Finally, the global cut is defined by S =

⋃
X∈Sh

X and T =
⋃

X∈Th
X (see Figure 1f).

2.4 Optimization by Local Search
To further optimize the computed cut, we use in an optional fourth step, a local search. The
idea of the local search is to check if we can improve the cut by swapping the partitioning of
a node. We repeatedly swap the partitioning of nodes to improve the cut until we can no
longer swap any nodes.

SEA 2022



10:6 A Parallel Framework for Approximate Max-Dicut in Partitionable Graphs

More precisely, for a node u we calculate the gain for swapping the partitioning of u. If
u ∈ S, then we calculate the gain by gain(u) =

∑
(v,u)∈E,v∈S w(v, u) −

∑
(u,v)∈E,v∈T w(u, v),

and if u ∈ T by gain(u) =
∑

(u,v)∈E,v∈T w(u, v)−
∑

(v,u)∈E,v∈S w(v, u). We repeatedly find a
node u with gain(u) > 0 and swap its partitioning, until for all nodes u we have gain(u) ≤ 0.
In this case, we have arrived at a local maximum. An example is provided in Figure 1g.

There are multiple ways of choosing a node u with gain(u) > 0. We use a simple first
candidate strategy, which chooses the first node u with gain(u) > 0 that it encounters. We
also implemented a best candidate strategy, which chooses the node u with maximal gain.
However, in practice taking the best candidate rather than the first candidate improves the
cut only by a small margin, while it significantly increases the running time.

We point out that this step is hard to parallelize, as multiple iterations of the local search
are dependent of each other.

3 Experimental Evaluation

In this section, we present practical results of our framework. We implemented the framework
in C++17 and used OpenMP for parallelization.

We evaluate our framework on the input graphs as summarized in Table 1. The graphs
great-britain, luxembourg, flixster, flickr, Stanford3, and web-sk-2005 were taken
from Network Repository [21]. The graphs luxembourg and great-britain are road networks
of Luxembourg and Great Britain, respectively. The graph flixster is a graph which
represents all links between users of the website Flixster and the graph flickr is a graph
where an edge represents if one user added another user as a contact on the website Flickr.
The graph Stanford3 is a Facebook graph with all users from Stanford University and the
graph web-sk-2005 is a crawl from 2005 for the .sk domain by using UbiCrawler [3]. For a
comparison of our results with the optimal cut, we also took 121 small graphs from Network
Repository on which we can compute the optimal cut in the time limit of one hour by doing
three runs with different random seeds each (see Appendix A for a list).

To specify how well we can partition a weighted graph G = (V, E, w), we additionally
provide the coverage measure of a weighted graph for a partitioning P = {G1, ..., Gk}.
Intuitively, the coverage describes how many edges are covered by the partitioning. It is
defined as cov(G, P ) = W (P )

W , where W (P ) =
∑

Gi=(Vi,Ei,w)∈P

∑
e∈Ei

w(e) and W is simply
the sum of all edge-weights in G. The more the coverage of a graph tends towards 1, the
less influence the merging step of our framework has on the computed cut. In case that G is
clear from the context, we omit it in the notation. When we want to emphasize that there
exists a partitioning P into k subgraphs with cov(P ) = x, we also write cov(k) = x (so x is
a lower bound on the coverage of a graph with a partitioning into k subgraphs).

3.1 Implementation Details
For partitioning the input graph, we use the shared memory algorithm KaMinPar [8], which
aims at minimizing the number of edges between subgraphs. To use this algorithm, we first
have to transform our directed graph into an undirected graph by constructing a new graph
G′ = (V, E′, w′) where E′ = {(u, v) | (u, v) ∈ E ∨ (v, u) ∈ E} and w′(u, v) = w(u, v) + w(v, u).
We configured KaMinPar with an imbalance value of 0.01 and use a random seed for each
computation.1

1 We also tried two naive partitioning algorithms: simply slicing the list of nodes ore edges into equal-size
parts, but, despite being fast, these turned out to produce cuts of inferior quality.



N. Bertram, J. Ellert, and J. Fischer 10:7

Table 1 A summary of our large input graphs. We provide for each graph the number of nodes
n, the number of edges m and the coverage with four different partitionings. We partitioned the
graph using KaMinPar into k ∈ {64, 256, 1024, 4096} subgraphs and calculated for each the coverage
measurement cov(k) (in percent).

Graph n m cov(64) cov(256) cov(1024) cov(4096)
great-britain 7,733,822 16,313,034 99.96 99.92 99.82 99.58
flixster 2,523,386 15,837,602 55.26 49.26 44.41 39.83
flickr 513,969 6,380,904 69.78 53.68 37.14 27.50
luxembourg 114,599 239,332 99.62 99.10 97.64 92.83
web-sk-2005 121,422 668,838 99.59 98.45 93.98 77.07
Stanford3 11,586 1,136,618 27.76 15.56 6.20 1.69

We implemented several sequential algorithms that approximate Max-Dicut. As dis-
cussed earlier, they can be used both for computing the local solutions, as well as for merging
them into the global solution. Our most naive implementations are the randomized algorithm
that puts every node independently with probability 1

2 either in S or T , and its derandomized
counterpart. We call these 1

4 -approximation algorithms Random and Derandomized respect-
ively. Additionally, we implemented the algorithm by Buchbinder et al. [4] with performance
guarantee 1

3 , which we call Buchbinder. We also implemented the algorithm by Goemans
and Williamson [7] with expected performance guarantee 0.79607, which we call Goemans.
For solving semidefinite programs (which is needed as a subroutine of Goemans), we use the
MOSEK Fusion API2 with enabled parallelism. Lastly, we also implemented an algorithm
that computes the exact Max-Dicut. This algorithm uses an Integer Linear Program (ILP)
representation of Max-Dicut which was described in [10] and solves it using Gurobi3 using
only a single thread. We call this algorithm ILP.

To denote which of the sequential Max-Dicut algorithms we use in step 2, we use
notations like BuchbinderS2, meaning that we used the algorithm Buchbinder for computing
the local solutions. (The merging step might still use other algorithms; see the following
paragraph.)

When k gets large, the complete graph H as defined in Section 2.3 can get very large. For
example, if we set k to 2048, then H has 4096 nodes and up to 16 million edges. In this case,
the approximation algorithms with high performance guarantee are not practical anymore and
the time to construct H can get too slow. To deal with this problem, we also implemented a
tree-like merging algorithm. More precisely, we first divide the subgraphs G1, ..., Gk computed
by the graph partitioner (with their local cuts) into k

l groups of l subgraphs each (for some
fixed l < k) where group i consists of the graphs G(i−1)l+1, ..., Gil. Then, for each group
we merge its subgraphs using the merge algorithm described in Section 2.3, resulting in k

l

subgraphs G′
i, each with a directed cut. We repeat this process with this new partitioning

until the number of partitions gets smaller than l, where a final merging step produces the
ultimate cut of G. We parallelized this algorithm with the exception of the Max-Dicut
algorithm used to merge the directed cuts.

We denote this merge algorithm as Merge-Tree. In our experiments we use Merge-Tree
with Goemans and l = 256 as our default configuration.

2 https://www.mosek.com/
3 https://www.gurobi.com/

SEA 2022

https://www.mosek.com/
https://www.gurobi.com/


10:8 A Parallel Framework for Approximate Max-Dicut in Partitionable Graphs

3.2 Results
We now present experimental results on the running times and quality of our new algorithms
in comparison with other existing approaches. When running an algorithm on a particular
instance, we run it three times and for each execution we stop its execution after a time limit
of 10 hours. Then, we take the average of the computed cuts and running times. This reflects
the main research question that motivated our research: Which quality can we achieve for
directed cuts under given time and hardware constraints?

We conducted our experiments on a Linux machine running Ubuntu version 18.04.6 with
two AMD EPYC 7452 processors with 32 physical cores each and 1 TB of RAM. Thus when
running the framework, we can compute the local cuts of up to p = 64 subgraphs at the
same time. The code was compiled using GCC 7.5.0 with flag -O3 enabled using Gurobi
version 9.1.2 and Mosek version 9.3.

3.2.1 Overview

g
r
e
a
t
-
b
r
i
t
a
i
n

l
u
x
e
m
b
o
u
r
g

w
e
b
-
s
k
-
2
0
0
5

f
l
i
c
k
r

f
l
i
x
s
t
e
r

S
t
a
n
f
o
r
d
3

s
m

a
ll

g
r
a
p
h
s

80

90

100

C
u
t

[%
o
f
b
e
s
t

k
n
o
w
n
]

0.001

10

100, 000

T
h
r
o
u
g
h
p
u
t

[|
G

|/
m

s
]

best linear time algorithm best linear time algorithm (with local search)

best k for GoemansS2 best k for GoemansS2 (with local search)
Goemans ILP

Figure 2 Overview of our results. For each algorithm, we visualize the quality of the cuts by
a bar plot, and the throughput (size of the graph divided by the running time) by circles. The
graphs from Table 1 are sorted in descending order by the value cov(64) to visualize the effect of the
coverage on the computed cut quality. (Best viewed in color.)

Figure 2 provides an overview of what can be achieved with our framework. As we will
see in Section 3.2.3 that the best performing configuration of our framework is to use the
Goemans algorithm in step 2 (be it for varying k), we compare this configuration with other
existing algorithms.

First look at the bar plots for the large graphs from Table 1, where currently the only
feasible option is to use a linear time algorithm (Buchbinder, Derandomized, Random): we can
observe that our new algorithms compute significantly better cuts than the best linear time
algorithm on well partionable graphs which is indicated by their coverage. This is especially
the case for great-britain, luxembourg, and web-sk-2005. Also, the computed cuts are



N. Bertram, J. Ellert, and J. Fischer 10:9

never worse for the other graphs (flickr, flixster, and Stanford3). We can also see that
the final local search step (Section 2.4) pays off for all algorithms, in particular for the graphs
that are not particularly well partitionable.

All this comes, of course, at the price of a lower throughput (cf. the circles in Figure 2),
by several orders of magnitude. Nonetheless, we can conclude that within the given time and
hardware constraints our new algorithms compute often better (and never worse) directed
cuts than all previous existing approaches.

The final 4 bars show the cut quality of the small graphs in relation to the best possible
cut. We calculated for each small graph the percentage and provide an (unweighted) average
over the percentages of all small graphs since these values are independent of a graph. In
addition to the linear time algorithms and our new parallel ones we could also run the
Goemans algorithm on the entire graph, and the exact solution with ILP for each small
graph. We see that our new algorithms again give better results than the best linear time
algorithm with a final local search, and also slightly better results than Goemans. However,
the difference between Goemans and our algorithms is not very large, which might be due to
the fact that both of them are already very close to the exact solution (see final bar). On the
positive side, our algorithms have a higher throughput than Goemans for the small graphs.

3.2.2 Scaling on Multiple Processors

1 2 4 8 64

1

10

100

1, 000

T
h
r
o
u
g
h
p
u
t

[|
G

|/
m

s
]

great-britain

1 2 4 8 64

10

100

flickr

1 2 4 8 64

10

100

1, 000

flixster

1 2 4 8 64

10

Number of Threads

T
h
r
o
u
g
h
p
u
t

[|
G
|/

m
s
]

luxembourg

1 2 4 8 64

10

100

Number of Threads

web-sk-2005

1 2 4 8 64

10

100

Number of Threads

Stanford3

DerandomizationS2 BuchbinderS2
RandomS2 GoemansS2

Figure 3 Scaling experiments on all graphs in Table 1. In all experiments, we partition the graph
into 8192 subgraphs and run our framework with up to 64 threads. For this experiments we compare
the algorithms DerandomizedS2, BuchbinderS2, RandomS2 or GoemansS2. On the x-axis we show the
number of used threads and on the y-axis we show the throughput (size of graph divided by running
time) of our framework.

SEA 2022



10:10 A Parallel Framework for Approximate Max-Dicut in Partitionable Graphs

Since our algorithms employ shared memory parallelism, we now briefly evaluate their
scalability. Figure 3 shows the throughput for different choices of the approximation al-
gorithms for the local solutions (DerandomizedS2, BuchbinderS2, RandomS2 or GoemansS2).
For a better comparison, in all experiments we partition the graph into 8192 subgraphs and
run our framework with up to 64 threads. We chose the value 8192 because our framework
calculates for that value in all experiments a solution before the time limit is exceeded. We
observe almost perfect scalability for up to 32 threads, with only slightly less good results for
32 threads, and significantly worse results for 64 threads. There are two possible explanations
for the non-optimal scaling with a large number of threads. First, the used Max-Dicut
algorithm in the final merging step is always performed sequentially. If we have many threads
available, then the computation of the partition and the local solutions becomes faster, and
thus the sequential merging step becomes more relevant for the total execution time. Second,
our test system has two CPUs with 32 cores each, where each CPU is part of a separate
NUMA node. When using close to or even more than 32 threads, the system will use cores
from both CPUs. Some cores will therefore inevitably access memory outside their local
NUMA node, which is slower than accessing local memory4.

Note that for great-britain (the largest graph that we considered) we require at least
16 threads in order to use Goemans. With fewer threads, the framework will not finish within
the given time limit.

3.2.3 Number of Subgraphs vs. Quality
Finally, we evaluate the influence of the number k of subgraphs on the quality of the computed
dicut. This will also allow us to draw conclusions on how the framework should be best
configured when running on different graphs. As we have seen already, the simple local
search sometimes significantly improves the quality of the computed cut. For the following
experiments, we therefore omit the local search. This allows us to see the true effect of
the choice of k on the cut quality. Also, we always use 64 threads in order to get the best
performance that is possible with our test system.

Figure 4 shows plots for both the quality and the achieved throughput for k between
64 and 8192. For DerandomizedS2, RandomS2, and BuchbinderS2, the throughput decreases
for increasing k. This is due to the fact that we use the superlinear Goemans algorithm for
merging, and the graph used for merging has 2k nodes. On the other hand, the throughput
increases with k when running GoemansS2. The reason for this is that a large value of k

implies smaller subgraphs, for which the local solutions can then be computed faster. As seen
for the graphs flickr, luxembourg and web-sk-2005, there is a range of k for which the
throughput of GoemansS2 is in an equilibrium; increasing k within this range seems to equally
accelerate the local solutions and decelerate the merging into a global solution. However,
once k becomes too large, the throughput of GoemansS2 appears to decrease with k. We
could only observe this for our smallest graph Stanford3.

Now let us focus on the quality of the cut. For GoemansS2, the quality generally decreases
for larger values of k. This can be seen for all graphs except for great-britain, where
k = 8192 is the only configuration that finished in time, and for Stanford3, where the
cut quality first decreases, and then increases again once k exceeds 1024. This anomaly
is likely due to the fact that Stanford3 only has around 10000 nodes, and for large k the

4 For more information on NUMA architectures see https://uefi.org/specs/ACPI/6.4/17_NUMA_
Architecture_Platforms/NUMA_Architecture_Platforms.html

https://uefi.org/specs/ACPI/6.4/17_NUMA_Architecture_Platforms/NUMA_Architecture_Platforms.html
https://uefi.org/specs/ACPI/6.4/17_NUMA_Architecture_Platforms/NUMA_Architecture_Platforms.html


N. Bertram, J. Ellert, and J. Fischer 10:11

64 256 1024 4096

40

60

80

C
u
t

[V
a
lu

e
/
1
0
5
]

great-britain

64 256 1024 4096

16

18

20

flickr

64 256 1024 4096

40

50

60

70

flixster

64 256 1024 4096

100

10, 000

Number of Subgraphs

T
h
r
o
u
g
h
p
u
t

[|
G
|/

m
s
]

64 256 1024 4096
1

100

10, 000

Number of Subgraphs

64 256 1024 4096

100

10, 000

Number of Subgraphs

64 256 1024 4096

0.6

0.8

1

1.2

C
u
t

[V
a
lu

e
/
1
0
5
]

luxembourg

64 256 1024 4096

1.8

2

2.2

web-sk-2005

64 256 1024 4096

2.9

3

3.1

3.2

Stanford3

64 256 1024 4096

1

10

100

1, 000

Number of Subgraphs

T
h
r
o
u
g
h
p
u
t

[|
G
|/

m
s
]

64 256 1024 4096

1

10

100

1, 000

Number of Subgraphs

64 256 1024 4096

100

1, 000

Number of Subgraphs

DerandomizationS2 BuchbinderS2
RandomS2 GoemansS2
best linear time algorithm best k for GoemansS2

Figure 4 Scaling experiments for our framework where we visualize the effect of partitioning
different graphs into a varying number of subgraphs on the computed cut quality and the running
time of our framework. We partition our graph into between 64 to 8192 subgraphs while the number
of used threads is fixed to 64. For this experiments we compare the algorithms DerandomizedS2,
BuchbinderS2, RandomS2 or GoemansS2. In the plot above we see the computed cut and in the plot
below the throughput (size of graph divided by running time) of our framework for each configuration.
We additionally provide the cut quality of the best linear time algorithm (as continuous red line)
that does not use our framework and the best computed cut for some k ∈ {2, 4, 8, ..., 8192} by using
GoemansS2 in our framework as dashed blue line.

SEA 2022



10:12 A Parallel Framework for Approximate Max-Dicut in Partitionable Graphs

computation becomes more and more similar to a simple sequential execution of Goemans on
the entire graph. The cuts computed by DerandomizedS2, RandomS2 and BuchbinderS2 are
generally worse than the one computed by GoemansS2. The overall order of quality is (from
worst to best): RandomS2, BuchbinderS2, DerandomizedS2, GoemansS2. The only exception is
flixster, where the cut quality of most algorithms is almost the same, and only RandomS2
performs very poorly. With increasing k, the cut quality of DerandomizedS2, RandomS2 and
BuchbinderS2 on the smaller graphs (luxembourg, web-sk-2005, Stanford3) increases. This
is because for large k, a significant fraction of the total edge weights is between the subgraphs.
Thus, the simple linear time algorithms used for the local solutions loose relevance, while the
better Goemans algorithm used for merging becomes more relevant. However, the quality
does not reach the one of GoemansS2.

We conclude that GoemansS2 produces the best cuts, and that the best choice of k is
the smallest k that allows the framework to finish within the given time limit. Increasing k

further than that will only decrease the cut quality, and not even necessarily accelerate the
computation.

4 Conclusion

We described a parallel framework for computing an approximate Max-Dicut that scales
well for large graphs and produces high quality cuts for graphs with high coverage. It is also
extendable, such that it is easy to add new algorithms.

The experiments showed that the best quality cuts are obtained by dividing the graphs
into as few partitions as the Goemans algorithm finishes within the time limit on each of the
partitions. While the sizes of resulting partitions can be used as a first indicator for choosing
the right number of partitions, it remains an open problem to find an exact predictor for
this. Also, our algorithms only sensibly scale for ≈

√
n processors, as with more processors

the sequential merging part becomes too expensive. Maybe a recursive (multilevel) approach
can be used to fill this gap.

References
1 Y. Akhremtsev, P. Sanders, and C. Schulz. High-Quality Shared-Memory Graph Partitioning.

IEEE Transactions on Parallel and Distributed Systems, 31(11):2710–2722, 2020. doi:10.
1109/TPDS.2020.3001645.

2 Amotz Bar-Noy and Michael Lampis. Online maximum directed cut. Journal of combinatorial
optimization, 24(1):52–64, 2012. doi:10.1007/s10878-010-9318-6.

3 Paolo Boldi, Bruno Codenotti, Massimo Santini, and Sebastiano Vigna. UbiCrawler: A
scalable fully distributed web crawler. Software: Practice & Experience, 34(8):711–726, 2004.
doi:10.1002/spe.587.

4 N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. A Tight Linear Time (1/2)-
Approximation for Unconstrained Submodular Maximization. In 2012 IEEE 53rd Annual Sym-
posium on Foundations of Computer Science, pages 649–658, 2012. doi:10.1137/130929205.

5 A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent Advances in Graph
Partitioning, pages 117–158. Springer International Publishing, Cham, 2016. doi:10.1007/
978-3-319-49487-6_4.

6 U. Feige and S. Jozeph. Oblivious Algorithms for the Maximum Directed Cut Problem.
Algorithmica, 71(2):409–428, February 2015. doi:10.1007/s00453-013-9806-z.

7 M. X. Goemans and D. P. Williamson. Improved Approximation Algorithms for Maximum
Cut and Satisfiability Problems Using Semidefinite Programming. J. ACM, 42(6):1115–1145,
1995. doi:10.1145/227683.227684.

https://doi.org/10.1109/TPDS.2020.3001645
https://doi.org/10.1109/TPDS.2020.3001645
https://doi.org/10.1007/s10878-010-9318-6
https://doi.org/10.1002/spe.587
https://doi.org/10.1137/130929205
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/s00453-013-9806-z
https://doi.org/10.1145/227683.227684


N. Bertram, J. Ellert, and J. Fischer 10:13

8 Lars Gottesbüren, Tobias Heuer, Peter Sanders, Christian Schulz, and Daniel Seemaier.
Deep Multilevel Graph Partitioning. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman,
editors, 29th Annual European Symposium on Algorithms (ESA 2021), volume 204 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 48:1–48:17, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ESA.2021.48.

9 N. Gusmeroli, T. Hrga, B. Luvzar, J. Povh, M. Siebenhofer, and A. Wiegele. BiqBin: a
parallel branch-and-bound solver for binary quadratic problems with linear constraints. arXiv:
Optimization and Control, 2020. doi:10.48550/arxiv.2009.06240.

10 E. Halperin and U. Zwick. Combinatorial Approximation Algorithms for the Maximum
Directed Cut Problem. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’01, pages 1–7, USA, 2001. Society for Industrial and Applied
Mathematics.

11 T. Hrga and J. Povh. MADAM: A parallel exact solver for Max-Cut based on semidefinite
programming and ADMM. Computational Optimization and Applications, 80:347–375, 2021.
doi:10.1007/s10589-021-00310-6.

12 A. Jez. Recompression: A Simple and Powerful Technique for Word Equations. J. ACM,
63(4):1–51, 2016. doi:10.1145/2743014.

13 R. M. Karp. Reducibility among Combinatorial Problems, pages 85–103. Springer US, 1972.
doi:10.1007/978-1-4684-2001-2_9.

14 S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal Inapproximability Results for
MAX-CUT and Other 2-Variable CSPs? SIAM J. Comput., 37(1):319–357, 2007. doi:
10.1137/S0097539705447372.

15 N. Krislock, J. Malick, and F. Roupin. BiqCrunch: A Semidefinite Branch-and-Bound
Method for Solving Binary Quadratic Problems. ACM Trans. Math. Softw., 43(32):1–23, 2017.
doi:10.1145/3005345.

16 M. Lampis, G. Kaouri, and V. Mitsou. On the Algorithmic Effectiveness of Digraph De-
compositions and Complexity Measures. In Seok-Hee Hong, Hiroshi Nagamochi, and Takuro
Fukunaga, editors, Algorithms and Computation, pages 220–231, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg. doi:10.1007/978-3-540-92182-0_22.

17 M. Lewin, D. Livnat, and U. Zwick. Improved Rounding Techniques for the MAX 2-SAT and
MAX DI-CUT Problems. In W. J. Cook and A. S. Schulz, editors, Integer Programming and
Combinatorial Optimization, pages 67–82, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.
doi:10.1007/3-540-47867-1_6.

18 Michael Luby and Noam Nisan. A parallel approximation algorithm for positive linear
programming. In Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing, pages 448–457, 1993. doi:10.1145/167088.167211.

19 P. Raghavan. Probabilistic construction of deterministic algorithms: Approximating packing
integer programs. Journal of Computer and System Sciences, 37(2):130–143, 1988. doi:
10.1016/0022-0000(88)90003-7.

20 F. Rendl, G. Rinaldi, and A. Wiegele. Solving Max-Cut to optimality by intersecting
semidefinite and polyhedral relaxations. Mathematical Programming, 121:307–335, 2010.
doi:10.1007/s10107-008-0235-8.

21 R. A. Rossi and N. K. Ahmed. The Network Data Repository with Interactive Graph
Analytics and Visualization. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence, 2015. URL: http://networkrepository.com.

22 J. Spencer. Ten Lectures on the Probabilistic Method, volume CBMS-NSF Regional Conference
Series in Applied Mathematics. Society for Industrial and Applied Mathematics, 2nd edition,
1994. doi:10.1137/1.9781611970074.

23 U. Zwick. Analyzing the MAX 2-SAT and MAX DI-CUT approximation algorithms of Feige
and Goemans, 2000. manuscript.

SEA 2022

https://doi.org/10.4230/LIPIcs.ESA.2021.48
https://doi.org/10.48550/arxiv.2009.06240
https://doi.org/10.1007/s10589-021-00310-6
https://doi.org/10.1145/2743014
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1145/3005345
https://doi.org/10.1007/978-3-540-92182-0_22
https://doi.org/10.1007/3-540-47867-1_6
https://doi.org/10.1145/167088.167211
https://doi.org/10.1016/0022-0000(88)90003-7
https://doi.org/10.1016/0022-0000(88)90003-7
https://doi.org/10.1007/s10107-008-0235-8
http://networkrepository.com
https://doi.org/10.1137/1.9781611970074


10:14 A Parallel Framework for Approximate Max-Dicut in Partitionable Graphs

A Small Graphs

Table 2 Our used small graphs.

Graph n m

08blocks.mtx 300 592
3elt.mtx 4,720 27,444
BA-1_10_60-L5.edges 805 46,410
BZR.edges 14,480 31,070
COIL-RAG.edges 11,758 23,588
CSphd.mtx 1,882 1,740
California.mtx 9,664 16,150
DD199.edges 842 1,902
DD21.edges 5,749 14,267
DD242.edges 1,285 3,303
DD244.edges 292 822
DD349.edges 898 2,087
DD497.edges 904 2,453
DD6.edges 4,153 10,320
DD68.edges 776 2,093
DD687.edges 726 2,600
D_11.mtx 461 2,952
ENZYMES118.edges 97 121
ENZYMES123.edges 91 127
ENZYMES295.edges 125 139
ENZYMES296.edges 127 141
ENZYMES297.edges 123 149
ENZYMES8.edges 89 133
EPA.mtx 4,772 8,965
EVA.mtx 8,497 6,726
Franz3.mtx 2,800 11,520
G11.mtx 800 3,200
G12.mtx 800 3,200
G13.mtx 800 3,200
G32.mtx 2,000 8,000
G33.mtx 2,000 8,000
G34.mtx 2,000 8,000
G48.mtx 3,000 12,000
G49.mtx 3,000 12,000
G57.mtx 5,000 20,000
G62.mtx 7,000 28,000
G65.mtx 8,000 32,000
G66.mtx 9,000 36,000
G67.mtx 10,000 40,000
Letter-high.edges 10,508 20,250
Letter-low.edges 10,523 14,092
Letter-med.edges 10,519 14,426

Graph n m

MSRC-21C.edges 8,419 40,380
OHSU.edges 6,480 31,546
PTC-FM.edges 4,926 10,110
PTC-FR.edges 5,111 10,532
PTC-MM.edges 4,696 9,624
PTC-MR.edges 4,916 10,108
Peking-1.edges 3,342 13,150
SW-10000-6-0d3-L2.edges 10,001 30,000
SW-10000-6-0d3-L5.edges 10,001 30,000
TerroristRel.edges 882 8,592
aves-sparrow-social.edges 53 516
aves-weaver-social.edges 446 1,426
aves-wildbird-network.edges 203 11,900
bio-CE-GN.edges 2,220 53,683
bio-CE-GT.edges 924 3,239
bio-CE-HT.edges 2,617 2,985
bio-CE-LC.edges 1,387 1,648
bio-CE-PG.edges 1,871 47,754
bio-DM-HT.edges 2,989 4,660
bio-DM-LC.edges 658 1,129
bio-HS-HT.edges 2,570 13,691
bio-HS-LC.edges 4,227 39,484
bio-SC-CC.edges 2,223 34,879
bio-SC-GT.edges 1,716 33,987
bio-SC-LC.edges 2,004 20,452
bio-SC-TS.edges 636 3,959
bio-celegans.mtx 453 4,050
bio-celegansneural.mtx 297 2,345
bio-diseasome.mtx 516 2,376
bio-grid-fission-yeast.edges 2,031 25,274
bio-grid-mouse.edges 1,455 3,272
bio-grid-plant.edges 1,745 6,196
bio-grid-worm.edges 3,518 13,062
bio-yeast.mtx 1,458 3,896
bn-mouse-kasthuri_graph_v4.edges 1,029 1,700
c-fat200-1.mtx 200 3,068
c-fat200-2.mtx 200 6,470
c-fat500-1.mtx 500 8,918
chesapeake.mtx 39 340
citeseer.edges 3,244 4,536
cora.edges 2,709 5,429
delaunay_n10.mtx 1,024 6,112
delaunay_n11.mtx 2,048 12,254
delaunay_n12.mtx 4,096 24,528



N. Bertram, J. Ellert, and J. Fischer 10:15

Table 3 Our used small graphs.

Graph n m

eco-florida.edges 129 2,106
eco-foodweb-baydry.edges 129 2,137
eco-foodweb-baywet.edges 129 2,106
eco-mangwet.edges 98 1,492
eco-stmarks.edges 55 356
email-dnc-corecipient.edges 2,030 12,085
email-dnc.edges 2,029 39,264
email-enron-only.mtx 143 1,246
email-univ.edges 1,134 5,451
fb-forum.edges 900 33,720
gene.edges 1,094 1,672
ia-contacts_hypertext2009.edges 114 20,818
ia-dnc-corecipient.edges 2,030 12,085
ia-hospital-ward-proximity-attr.edges 1,661 32,424
ia-hospital-ward-proximity.edges 1,661 32,424
ia-workplace-contacts.edges 876 9,827
inf-euroroad.edges 1,175 1,417
insecta-ant-trophallaxis-colony1.edges 42 308
insecta-ant-trophallaxis-colony2.edges 40 330
internet-industry-partnerships.edges 218 631
mammalia-primate-association.edges 26 1,340
mammalia-raccoon-proximity.edges 25 1,997
mammalia-voles-bhp-trapping.edges 1,687 5,324
mammalia-voles-kcs-trapping.edges 1,219 4,258
mammalia-voles-plj-trapping.edges 1,264 3,863
mammalia-voles-rob-trapping.edges 1,481 4,569
reptilia-tortoise-network-bsv.edges 137 554
reptilia-tortoise-network-cs.edges 74 258
reptilia-tortoise-network-fi.edges 788 1,713
reptilia-tortoise-network-hw.edges 17 22
reptilia-tortoise-network-lm.edges 46 134
reptilia-tortoise-network-mc.edges 16 45
reptilia-tortoise-network-pv.edges 36 104
reptilia-tortoise-network-sg.edges 25 29
reptilia-tortoise-network-sl.edges 12 18

SEA 2022





A Fast Data Structure for Dynamic Graphs Based
on Hash-Indexed Adjacency Blocks
Alexander van der Grinten #

Humboldt-Universität zu Berlin, Germany

Maria Predari #

Humboldt-Universität zu Berlin, Germany

Florian Willich #

Humboldt-Universität zu Berlin, Germany

Abstract
Several dynamic graph data structures have been proposed in literature. Yet, these data structures
either offer limited support for arbitrary graph algorithms or they are designed as part of specific
frameworks (e.g., for GPUs or specialized hardware). Such frameworks are difficult to adopt to
arbitrary graph computations and lead practitioners to fall back to less sophisticated solutions when
dealing with dynamic graphs. In this work, we propose a new “dynamic hashed blocks” (DHB)
data structure for sparse dynamic graphs and matrices on general-purpose CPU architectures. DHB
combines an efficient block-based memory layout to store incident edges with an additional per-vertex
hash index for high degree vertices. This hash index allows us to quickly insert edges without
introducing duplicates, while the block-based memory layout retains advantageous cache locality
properties of traditional adjacency arrays.

Experiments show that DHB outperforms competing dynamic graph structures for edge insertions,
updates, deletions, and traversal operations. Compared to static CSR layouts, DHB exhibits only
a small overhead in traversal performance. DHB’s interface is similar to general-purpose abstract
graph data types and can be easily used as a drop-in replacement for traditional adjacency arrays.
To demonstrate that, we modify the well-known NetworKit framework to use DHB instead of its
own dynamic graph representation. Experiments show that this modification only slightly penalizes
the performance of graph algorithms while considerably boosting update rates.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases dynamic graph data structures, sparse matrix layout, dynamic algorithms,
parallel algorithms, graph analysis

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.11

Supplementary Material Software (Source Code): https://github.com/hu-macsy/dhb
archived at swh:1:dir:9576f651115c810985803de5214f519bfc9600ef

Funding Alexander van der Grinten: The author was supported by German Research Foundation
(DFG) grant GR 5745/1-1 (DyANE).
Maria Predari: The author was supported by German Research Foundation (DFG) DFG grant ME
3619/4-1 (ALMACOM).

Acknowledgements The authors would like to thank Duy Le Thanh for his help in setting up some
competitors.

1 Introduction

Large-scale graph data are ubiquitous in various areas of science and engineering [1, 16]. Yet,
their efficient processing is still challenging. For one, the graphs in question are large and
sparse. Typically, the number of neighbors [non-zero values] of a vertex [row/column] in a
sparse graph [matrix] is bounded by a small constant and most possible edges [matrix entries]

© Alexander van der Grinten, Maria Predari, and Florian Willich;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 11; pp. 11:1–11:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:avdgrinten@hu-berlin.de
mailto:predarim@hu-berlin.de
mailto:florian.willich@informatik.hu-berlin.de
https://doi.org/10.4230/LIPIcs.SEA.2022.11
https://github.com/hu-macsy/dhb
https://archive.softwareheritage.org/swh:1:dir:9576f651115c810985803de5214f519bfc9600ef;origin=https://github.com/hu-macsy/dhb;visit=swh:1:snp:3ad4cf85634d7475ec4f80fa9c7cac21aed459f1;anchor=swh:1:rev:c35e6ef4b6b0f1c590a69b07e6846feedd7db2b8
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 A Fast Data Structure for Dynamic Graphs

do not exist [are zero].1 Thus, sparse-friendly data structures are employed to avoid wasting
processing and memory on empty entries. Dynamic graph applications introduce a second
challenge as, in practice, most well-known graph processing frameworks still use static data
structures [17, 26, 27]. Static graph representations are memory-efficient and support fast
operations but lack flexibility in terms of dynamic updates. Examples of highly dynamic
data are the Facebook and Twitter graphs, where users and connections are added/removed
continuously [1]. Those mutations on the data structure (updates) are typically followed by
graph queries to ensure consistency of analytics.

Recently, a number of dynamic graph frameworks were proposed, enabling graph pro-
cessing and analysis for dynamically changing data [5, 8, 30, 31]. These frameworks often
perform updates and queries concurrently, either via snapshots (simultaneous graph copies)
or via batched updates. Existing dynamic graph frameworks differ in multiple aspects: their
design, concurrency strategy, API support for graph analytics and applicability to generic
architectures. In general, there are two performance goals for dynamic graph algorithms. The
first goal aims at maximizing update rates, while maintaining low memory utilization. The
second one aims at accelerating graph analytics running on top of their graph structure. Most
dynamic graph frameworks consider the first goal but ignore the second. These frameworks
focus mainly on graph updates and offer limited support for developing higher-level graph
analytics [30]. Moreover, the ones that also consider the second goal are systematically slower
than the ones that only focus on the first [19].

We propose a new data structure (DHB) for efficient processing of dynamically mutating
large-scale sparse graphs. DHB is designed for general-purpose CPU architectures and com-
bines an efficient block-based memory layout to store incident edges with an additional hash
index for high degree vertices. The data structure is conceptually simple (and straightforward
to implement); yet, we are not aware of any systematic experimental evaluation of this (or
an equivalent) data structure. DHB utilizes on average the same memory as NetworKit,
a static graph data framework using adjacency arrays. In a single-threaded environment,
DHB outperforms all competitors regarding insertions, deletions and weight updates for
different graph types and sizes, being on average from 1.9 to 93.8 × faster. Our data sets
include static and temporal graphs with up to 1.8B edges. In a parallel environment, DHB’s
performance is similar to aspen which is reported to be one of the fastest dynamic graph
frameworks [4, 7]. Moreover, DHB implements efficient lookups and other graph operations
to accelerate common graph algorithms. Our experiments demonstrate that running BFS in
a dynamic setting on top of DHB outperforms the corresponding BFS execution on top of
aspen by a factor of 2.5. Finally, we demonstrate that the overhead of using DHB instead of
a static graph structure is low. More precisely, we integrate DHB as a drop-in replacement
into NetworKit and run BFS in a static setting (no updates). We observe that BFS on
top of DHB is only 15% slower than BFS on top of NetworKit’s adjacency arrays. This is
a low overhead compared to the significant performance improvement under edge updates.

The paper is organized as follows: in Section 2, we present relevant background on
traditional graph structures and in Section 3 we briefly review existing solutions for dynamic
graphs. In Section 4, we present our newly proposed graph structure (DHB) while in Section 5
we evaluate it against both static and dynamic competitors. Finally, in Section 6 we give our
concluding remarks.

1 Due to the correspondence of matrices and graphs [11], in the remainder, we use these terms inter-
changeably.



A. van der Grinten, M. Predari, and F. Willich 11:3

2 Preliminaries

Static graph representation

We consider directed sparse graphs G = (V, E). Undirected graphs are modelled by splitting
each undirected edge {u, v} into two directed ones. General graphs are commonly represented
by their n × n adjacency matrix A, where n = |V | (the number of non-zero entries of A

correspond to the number of edges m = |E|). The data structures that we consider, store A

into a sparse layout. Common sparse data structures are the adjacency array (or adjacency
list), the coordinate list (COO) and the compressed sparse row (CSR) (or compressed sparse
column). In the adjacency array representation, each vertex u has an associated array that
maintains the IDs of all vertices in its neighborhood N(u). Adjacency arrays use O(n + m)
space and check connectivity of two vertices in O(deg(u)) ⊆ O(degmax) time, where deg(u)
is the degree of u and degmax is the maximum degree in G. COO holds an array of (row,
column, value) tuples and is similar to the adjacency array in the asymptotic time, space
complexity, and general design. The main difference is that each edge is stored explicitly,
with both its source and destination vertex. The above storage formats allow for a limited
number of updates but have big overheads due to re-allocation of data and slow search
operations. Finally, CSR uses three arrays to store a sparse graph: a node array, an edge
array, and a values array. Each entry in the node array contains the starting index in the edge
array where the edges from that node are stored in sorted order by destination. The edge
array stores the destination vertices of each edge. CSR stores a graph in O(n + m) space.
Inserting an edge into the CSR format takes linear time in the worst case. The entire edge
array may need to be copied into a larger block of memory if there are too many elements in
the structure. As a result, CSR is also not a suitable format for dynamic updates.

Updates

When talking about dynamic graphs, we consider edge updates, i.e., insertion and deletions
of edges, as well as edge weight changes. Insertions and/or deletions of vertices are handled
by standard techniques, i. e. by resizing the data structure to be able to hold enough vertex
IDs and by storing an additional bit per vertex to determine if the vertex is deleted or not.

Dynamic challenges

For dynamic graph structures there is a trade off between efficient updates, optimal memory
layout, and fast lookups. Traditional adjacency arrays allocate one array per vertex. Block-
based data structures refine this strategy by storing incident edges in blocks. A block is an
array whose size comes from a set of size classes (often powers of two). Blocks of the same
size are stored in a superblock of fixed size (e.g., 2 MiB). On the other hand, compressed
sparse layouts simply concatenate all adjacency arrays to a single memory allocation. This
makes it easy to iterate over edges, but difficult to resize the data structure. Finally, other
data structures do not store edges in arrays at all but opt for a different primitive, such as
hash tables. These data structures usually exhibit considerable overhead when iterating over
incident edges. Regarding edge lookups (e. g. to detect duplicates or to update edge weights),
many implementations simply loop over the entire adjacency list. Other data structures sort
the edges to support O(log n) lookups; however, this comes with the cost of more expensive
dynamic updates (i. e. O(degmax) to delete an arbitrary edge). Implementations based on
hash tables can usually look up edges in expected O(1) time.

SEA 2022



11:4 A Fast Data Structure for Dynamic Graphs

3 Related Work

Recently, a number of dynamic graph frameworks have been proposed in the literature. We
focus on frameworks that are designed for CPU architectures. STINGER [8] is a dynamic
graph structure for multi-core architectures that stores the adjacency information of each
vertex using blocked linked lists of pre-selected, fixed size. GraphIn [24] allows for incremental
graph processing by combining two static graph data structures: CSR for the original input
and a COO to store new edge updates. The framework has similar limitations as COO; it is
constrained to a limited number of updates (pre-defined by the users). PSCR [28] (later
extended to PPCSR [29]) is a dynamic data structure based on the packed memory array
(PMA) [3]. Sha et al. [25] also uses a variant of PMA. PMA is an array with all neighborhoods
(i.e., essentially a CSR) augmented with an implicit binary tree structure that enables edge
insertions and deletions in O(log2 n) time. Unfortunately, the above solutions can not be
easily integrated into existing graph frameworks, due to their limited support for arbitrary
graph operations. Moreover, aspen [7] uses a novel probabilistic tree called a C-tree to
store the graph structure and is reported to be one of the faster frameworks targeting CPUs
for insertions and deletions [4]. Recently, Terrace [20] introduced a hierarchical graph
structure for dynamic graphs that uses both arrays and trees to store adjacencies, depending
on their size.

Although our focus is on solutions for general-purpose CPU architectures, we briefly
describe Hornet [5], a data structure designed for GPU architectures. Hornet is relevant
to our work as it uses a similar block-based mechanism. More precisely, Hornet groups
adjacency information of several vertices together in blocks, whose sizes are a power of
two. Additionally, it uses a vectorized bit tree, and B+trees for managing memory blocks.
Hornet is shown to outperform competing dynamic graph structures implemented for GPU
architectures [4, 5]. An excellent survey on dynamic graph data structures, frameworks and
databases can be found in [4].

4 Dynamic Hashed Blocks (DHB)

Our new DHB data structure uses a block-based memory layout with an additional hash
index for high degree vertices to accelarate lookups of neighbors. While DHB builds on simple
algorithmic primitives, the resulting data structure is highly competitive with state-of-the-art
graph data structures, as demonstrated by our experiments in Section 5. Our data structure
is designed around the following properties:

Basic operations. DHB supports the usual operations expected from an abstract data type
for (dynamic) graphs: changing the number of vertices, insertion, update, and deletion
of edges, edge existence queries, as well as neighborhood traversals. In contrast to
frameworks such as Ligra or aspen [7], our data structure allows direct access to the
neighbors of a vertex (while these frameworks only allow access via an edgeMap function).
Unlike many other dynamic graph frameworks, we do not only focus on batch updates.

Random access. Likewise, many algorithms expect the ability to access the i-th neighbor of
vertex u, where i ∈ [0, deg(u)). For example, this is frequently used to sample a random
neighbor of a vertex. To support this operation in O(1), it is convenient to store the
neighbors of a vertex in a contiguous array. This requirement motivates the use of a
block-based storage format in DHB.

Arbitrary neighbor ordering. Some algorithms require neighborhoods to be ordered in spe-
cific ways to work correctly. For example, the Suitor algorithm to approximate the
weighted matching problem requires edges to be sorted according to non-increasing edge



A. van der Grinten, M. Predari, and F. Willich 11:5

deg(0) = 3

β(0) = 8

V
er

te
x

0

deg(1) = 4

β(1) = 4

V
er

te
x

1

. . ..
.
.

5 0.3

0

8 -1

1

1 7.2

2 3 4 5 6 7 = β(0) − 1
N(0), ω(0, ·)

□

0

0

1

⊥

2

2

3

1

4

□

5

⊥

6

□

7 = β(0) − 1

H(0)

8 1.2

0

4 1.2

1

3 -4

2

7 8.1

3 = β(1) − 1
N(1), ω(1, ·)

1

0

0

1

3

2

2

3 = β(1) − 1

H(1)

Figure 1 Layout of DHB. Each vertex has an associated adjacency block consisting of N(·) (red)
and H(·) (blue). The adjacency block of vertex 0 has five empty slots left, while the adjacency block
of vertex 1 is fully occupied. Gray boxes indicate edge weights that are stored interleaved with N(·).

weights [18]. To support these algorithms, the graph data structure should not impose
a fixed order on the neighbors of each vertex, but preserve a user-specified order. This
makes it possible to support an operation to re-order edges according to an arbitrary order.
These requirements essentially rule out data structures that store neighbors directly in
hash tables and data structures that rely on sorting to efficiently look up neighbors.

Support for concurrency. Many parallel algorithms (e. g. parallel graph generation algo-
rithms) expect that neighbors of different vertices can be mutated in parallel. For this
reason, we choose to use per-vertex hash indices (and not a global edge index) to accelerate
lookups of neighbors.

4.1 Neighbors and Hash Index
The layout of DHB’s main data structure is illustrated in Figure 1. DHB associates four
data fields with each vertex u: (i) the current degree deg(u), (ii) a non-negative integer β(u)
that will store the number of neighbors currently reserved for vertex u, (iii) a pointer to an
array N(u) that can hold up to β(u) neighbors of u, and (iv) a pointer to the hash index
H(u) of u. These fields are stored in an array indexed by the vertex ID u.2 We define an
adjacency block as the combination of the array that holds N(u) and the array that holds
H(u). We call β(u) the block size of the adjacency block of u. β(u) will always be a power
of two to accelerate the maintenance of the hash index. By extending the data structure
appropriately, we always guarantee that deg(u) ≤ β(u) (see below for details). In particular,
the first deg(u) entries of N(u) always hold the current neighbors of u, while the remaining
(β(u)− deg(u)) entries remain empty until new neighbors are inserted.

When edge weights and/or other per-edge data needs to be stored, we store this data
interleaved with N(u) (i. e. using an “array of structures”, the gray boxes in Figure 1).
This minimizes the number of pointers that our data structure has to store per vertex. For
algorithms that only rarely access associated data, the data structure can be modified to

2 Without loss of generality, we assume that vertices are identified by non-negative integer IDs in the
range [0, n). If this assumption is not satisfied (e. g. due to large gaps between IDs), an additional hash
map can be used to map input vertex IDs to internal vertex IDs.

SEA 2022



11:6 A Fast Data Structure for Dynamic Graphs

store pointers to additional per-vertex arrays that hold data associated with edges (yielding
a “structure of arrays”). Another implementation strategy is assigning an edge ID to each
edge, and storing associated data in a separate array that is indexed by edge ID (e. g. this is
what NetworKit does).

The hash index H(u)

The hash index of a vertex u is used to quickly look up the position of neighbors of u in
the adjacency array N(u). We maintain H(u) only for high degree vertices; for low-degree
vertices, it is more efficient in practice to simply scan the entire adjacency list to find the
index of a neighbor. We define high degree vertices as those whose neighborhood spans
several cache lines (in our experiments, this threshold is set to 16 cache lines). If H(u) is
present, it consists of an array of β(u) non-negative integers. H(u) is used to implement a
hash table based on open addressing. We use standard linear probing to resolve collisions.
However, our hash table does not directly store any graph data; instead, it stores indices into
N(u). Initially, all slots of H(u) are set to a special value □ to indicate that the slots are
empty. Another special value ⊥ is used to indicate slots that became empty after deletions
(i. e. ⊥ represents a tombstone). If H(u)[j] /∈ {□,⊥}, then H(u)[j] is always a valid index
into N(u), i. e. H(u)[j] ∈ [0, deg(u)). We say that a slot j of the hash index corresponds to
neighbor v of u if N(u)[i] = v, where i = H(u)[j]. The hash index will be constructed such
that each non-empty slots of H(u) correspond exactly to the neighbors of u. In Figure 1,
this is represented by the arrows from H(u) to N(u).

Since the operations of DHB depend on the correct maintenance of the hash index, we
briefly discuss how operations on the hash index itself behave. Looking up the possible
neighbor v in the hash index of vertex u proceeds as follows: we start by evaluating a hash
function h : V → N to probe H(u) at j := (h(v) mod β(u)). Since β(u) is a power of two,
the modulo operation can be computed by a simple bitwise AND. If H(u)[j] = □, then v is
not a neighbor of u. In case we want to insert v, we can now set N(u)[i]← v and H(u)[j]← i,
where i is the smallest previously unused index of N(u). On the other hand, if H(u)[j] = ⊥,
we increment (j mod β(u)) (i. e. we probe linearly). Otherwise, H(u)[j] /∈ {□,⊥}. Let
i = H(u)[j]. We can assume that i is a valid index into N(u). If N(u)[i] = v, then v is a
neighbor of u and we found its index i into N(u). Otherwise, we continue probing linearly
by incrementing (j mod β(u)) and repeating the procedure.

We note that when updating H(u) during the insertion of a new neighbor v, we can
overwrite the first slot j with H(u)[j] = ⊥, if we encounter such a slot; however, to correctly
detect duplicates, we first have to finish through the entire probe sequence (i. e. until we
either find v or H(u)[j] = □). Furthermore, we remark that we can periodically purge
all tombstones by rehashing a block (e.g., when there are more tombstones than entries
present); this operation amortizes over many deletion operations and does not affect the
overall running time complexity.

Reallocation

If deg(u) = β(u), i. e. the adjacency block of vertex u does not have any unused indices left,
we need to allocate a new adjacency block for u before we can insert new neighbors. Note
that allocating a new adjacency block does not necessarily trigger an OS-level allocation
(e. g. malloc) if our custom memory allocation scheme is used (which is described in detail
in Section A of our appendix). Since the performance of our hash index depends on the
fill factor of H(u), it is not advisable to wait until deg(u) = β(u), i. e. until the fill factor



A. van der Grinten, M. Predari, and F. Willich 11:7

Table 1 Asymptotic complexity (amortized and in expectation) of various common data structures
that implement the graph abstract data type. DHB is at least as fast as the best competing algorithm
for all operations. d: degree of modified source vertex, β: size of adjacency storage (β ≥ d), n = |V |.
For simplicity, block sizes (which only yield constant speedups) are omitted from this table. We also
remark that low degree vertices (e. g. the vertices which are not hashed in DHB) do not affect the
overall complexities.

Insert Delete Change Iterate Query Arbitrary
weight over N(·) edge order

DHB O(1) O(1) O(1) O(d) O(1) yes
Adj. arrays (e. g. STINGER) O(d) O(d) O(d) O(d) O(d) yes
Adj. arrays (sorted) O(d) O(d) O(log d) O(d) O(log d) no
Hashing only O(1) O(1) O(1) O(β) O(1) no
aspen O(log n + log d) O(log n + log d) O(log n + log d) O(log n + d) O(log n + log d) no
Terrace O(log d) O(log d) O(log d) O(d) O(log d) no

reaches 100 %. Instead, we already reallocate the adjacency block once deg(u) ≥ C · β(u) for
some constant C < 1 (e. g. C = 1

2 ). When reallocating the adjacency block, we allocate a
new adjacency block of block size 2 · β(u), thereby increasing β(u) to the next power of two.3
Afterwards, we copy N(u) into the new block, rebuild the hash index, update the pointers to
N(u) and H(u) and deallocate the old adjacency block. Rebuilding the hash index is done
by resetting all entries of H(u) to □, followed by a re-insertion of all neighbors of N(u) into
the hash index.

To perform actual allocations and/or deallocations, DHB can either use the system
allocator (i. e. malloc), or a custom memory allocation scheme that is optimized for the
block sizes that DHB uses. Our custom memory management works similarly to allocators
in other block-based graph data structure (e. g. Hornet [5]); due to space constraints, we
describe it in Section A of our appendix. In our experiments, we always use our custom
memory allocator for DHB.

4.2 Operations
We briefly review the operations that DHB supports and their computational efficiency.
The asymptotic running times given below are amortized over many updates (to account
for reallocations) and in expectation (because of the hash index). We summarize these
complexities in Table 1. In all cases, our running times are equally fast, or faster, than
our competitors. Compared to traditional adjacency arrays, our hash index does not add
asymptotic complexity for any operation.

Insertion of a new edge (u, v) at the end of the adjacency block first uses the hash index to
check whether v is already a neighbor of u. If that is not the case, v is inserted at index
deg(u) of A(u) and deg(u) is incremented. This operation runs in O(1) time. Insertion
in an arbitrary position needs to move trailing entries of N(u) to free space for the new
edge. Afterwards, the hash table needs to be updated for all entries that were moved.
Overall, the operations runs in O(deg(u)).

Weight changes (or changes of other associated data) of an edge (u, v) can be performed in
O(1) time by using the hash index to find the index of v in N(u), followed by an update
of the edge weight (which is stored interleaved with N(u)).

3 Due to this reallocation strategy, the size of N(u) can only ever reach C · β(u). Hence, it is actually
enough to only allocate C · β(u) slots (and not β(u) slots) for N(u).

SEA 2022



11:8 A Fast Data Structure for Dynamic Graphs

Deletion of an edge (u, v) first looks up the index of v in N(u) by using the hash index.
If the order does not need to be preserved, v can be swapped to the end of N(u) and
deleted in O(1) time. Otherwise, trailing entries of N(u) need to be moved, incurring
O(deg(u)) time.

Iteration over all neighbors of u simply iterates over the first deg(u) indices of N(u), without
involving H(u) at all.

Edge queries check whether an edge (u, v) exists in O(1) time by looking up v in the hash
index of u.

Reordering the neighbors of u (e. g. when sorting edges) is done by reordering N(u) first.
Afterwards, H(u) is rebuilt from scratch in O(deg(u)) time.

Parallel updates

While not the focus of our data structure, we can support parallel batch updates of edges
due to the fact that DHB allows adjacency blocks of distinct vertices to be manipulated
concurrently. We achieve this by distributing the batch to all available threads in such a way
that no threads t and t′ receive edges (u, v) and (u, v′) that share the same source vertex
u. We achieve this by using a hash function to map source vertices u to threads. Integer
sorting is used to sort the source vertices according to their hash value; afterwards, each
thread applies all updates that concern the source vertices that are mapped to itself.

5 Evaluation

We perform experiments to evaluate the behavior of our data structure on several static and
temporal graphs coming from SNAP [15], NR [22], and the KONECT [12] interactive data
repository (see Tables 2 and 3 in Section B of the appendix). The largest graph has around
1.8B edges. Temporal graphs represent real dynamic applications and typically consist of a
sequence of edges along with their timestamps. That sequence expresses some predefined
pattern of edge additions related to the underlying application. We compare DHB to both
static and dynamic graph frameworks. We choose NetworKit as the representative for
static graph frameworks. NetworKit uses adjacency arrays to store the input graph, and
the CSR representation for matrix based operations. For the comparison with dynamic graph
frameworks, we choose STINGER, aspen and Terrace. STINGER is the representative
framework for block-based adjacencies, aspen represents tree-based graph structures and
Terrace uses different data structures depending on the neighborhood degree. We do
not compare against a hashing-only implementation, as hashing alone is not competitive
with other approaches when downstream algorithm performance (e. g. traversal of the data
structure) is considered (and thus, state-of-the art dynamic graph data structures do not
rely only on hashing).

We group the experiments into two categories. In Section 5.1, we evaluate all competitors
in terms of common dynamic operations, i. e. insertions, deletions and edge weight updates.
Then, in Section 5.2, we evaluate the performance of DHB for common graph applications,
under dynamic and static settings. More experiments can be found in the appendix regarding:
memory consumption and batch size evaluation (See Section C of the appendix) and scalability
experiments for DHB (See Section D of our appendix). Experiments were conducted on
a shared-memory parallel machine equipped with an 2x 18-Core Intel Xeon 6154 CPU



A. van der Grinten, M. Predari, and F. Willich 11:9

(2 sockets, 18 cores each), and a total of 1,5 TB RAM. 4 To ensure reproducibility, all
experiments were managed by SimexPal [2]. Our code and the experimental pipeline is
publicly available at https://github.com/hu-macsy/dhb.

Configuration of competitors

STINGER reserves half of the available physical memory and also requires the user to set the
number of adjacency blocks allocated for the data structure. We set the number of expected
neighbors per vector to STINGER’s default (i. e. STINGER_DEFAULT_NEB_FACTOR · |V |)
and let STINGER use enough memory to fit these blocks into memory (i. e. 768 GiB). We
do not use STINGER’s client-server architecture or vertex mappings features (and also do
not remap vertex IDs for all other data structures). All edge updates are performed by using
STINGER’s stinger_update_directed_edge() function.

aspen implements a single-writer, multi-reader interface following a lock-free approach
i. e. allowing any number of concurrent readers and a single writer on a graph snapshot. To
enable parallelism, aspen uses its own scheduler, similar to Cilk [14]. All edge insertions
[deletions] are performed via aspen ’s insert_edges_batch() [delete_edges_batch()].

The recommended instructions for building Terrace require a non-standard branch of the
LLVM compiler (Tapir) and use Cilk Plus [6] for multi-threading. These options introduce
additional optimizations and make Terrace difficult to compare to other, arbitrary graph
libraries. More precisely, the Tapir branch improves upon mainline LLVM by optimizing
across parallel regions [23], which contributes to an increased performance for Terrace [20].
To ensure similar build settings for all involved frameworks, we compile Terrace with GCC
and use OpenMP for multi-threading (since Cilk Plus support was recently deprecated and
removed from GCC). Finally, we set Terrace’s MEDIUM_DEGREE to 210 to avoid memory
issues (after discussion with the authors of Terrace).

5.1 Insertion, Update and Deletion Performance
For edge insertions, we perform experiments with initially empty graphs and insert all edges
after verifying existence in the graph. We use two different modes for the insertion, a single-
edge insertion and a bulk insertion in one batch – depicted in Figures 2a and 2b, respectively.
The above experiments are performed in a single-threaded environment and include all
competitions. Note that since Terrace pre-allocates data structures in its constructor
(i. e. enough memory for up to 15 edges per vertex), we also include the construction time
in our measurements. This does not hinder the fairness of the experiment since all other
frameworks have insignificant construction times (less than a millisecond). It is clear that
DHB outperforms all competitors for both insertion modes in the single-threaded case. More
precisely, DHB is on average 3.6 × faster than NetworKit and 9.4 × faster than Terrace
(the best competitors) for single insertions and 1.9 × faster than aspen (the best competitor)
for the bulk insertion. Compared to STINGER, DHB is on average 17.3 [93.8] × faster for
single [bulk] insertions.

Moreover, we perform experiments in a multi-threaded environment with 18 threads,
depicted in Figure 3. NetworKit is not included in the multi-threaded experiment as it
does not support parallelism. Moreover, it seems that building Terrace with OpenMP
highly penalizes its performance (causing it to run slower than in a single-threaded run).

4 https://www2.hu-berlin.de/macsy/technical-overview.html

SEA 2022

https://github.com/hu-macsy/dhb
https://www2.hu-berlin.de/macsy/technical-overview.html


11:10 A Fast Data Structure for Dynamic Graphs

BerkStan
patents

topcats

LiveJournal
orkut

tech-p2p
wiki-lin

k

web-uk2005

twitter-mpi

friendster

102

103

104
na

no
se

co
nd

s p
er

 e
dg

e 
in

se
rti

on
NetworKit
STINGER
Aspen
Terrace
DHB

(a) Single edge insertions (one-by-one).

BerkStan
patents

topcats

LiveJournal
orkut

tech-p2p
wiki-lin

k

web-uk2005

twitter-mpi

friendster

102

103

na
no

se
co

nd
s p

er
 e

dg
e 

in
se

rti
on

NetworKit
STINGER
Aspen
Terrace
DHB

(b) Bulk edge insertion (all in one batch).

Figure 2 Edge insertion experiments for static graphs on single-threaded environment.

BerkStan
patents

topcats

LiveJournal
orkut

tech-p2p
wiki-lin

k

web-uk2005

twitter-mpi

friendster

101

102

103

na
no

se
co

nd
s p

er
 e

dg
e 

in
se

rti
on

STINGER
Aspen
DHB

Figure 3 Bulk edge insertion for static graphs on multi-threaded environment (18 threads).

The results we obtain do not reflect the expected performance of Terrace, as reported in
the original paper [20] (which uses the custom Tapir branch of LLVM). Therefore, to avoid
ill-founded conclusions regarding Terrace’s performance in the multi-threaded experiment,
we choose to exclude such results. In Figure 3, we observe that DHB is slightly faster than
aspen (10% on average) regarding multi-threaded insertions and both competitors are on
average around 14.2 × faster than STINGER.

Moreover, we perform experiments for the temporal graphs of Table 3 including edge
insertions, deletions and edge weight updates (changing the weight of an edge – not inserting
a new one). For deletions and weight updates, we pick the affected edges uniformly at
random from the set of all edges after insertion. In this way, we do not risk altering the
degree distribution of the updated graph. For edge weight updates aspen and Terrace are
excluded from the experiments. The former because it does not support weighted graphs
while the latter because it does not offer an explicit method for edge weight updates (other
than deleting and re-inserting the edge). The results are reported in Figure 4. For insertions
[deletions] to temporal graphs, DHB is on average 7.4 [8.9] × faster than NetworKit,
as seen in Figures 4a and 4b. Unfortunately, STINGER times out for all edge deletion
experiments at 1 800 secs, so we exclude it from Figure 4b. The general trend is similar for
edge weight updates too: DHB is 10.2 × faster than NetworKit and 53.1 × faster than
STINGER, as seen in Figure 4c.



A. van der Grinten, M. Predari, and F. Willich 11:11

epns-tru
st

stackexch

wiki-temp
youtube

epns-user
flick

r

stacko
verflow

102

103

104

105

na
no

se
co

nd
s p

er
 e

dg
e 

in
se

rti
on

NetworKit
STINGER
Aspen
Terrace
DHB

(a) Random edge insertions.

epns-tru
st

stackexch

wiki-temp
youtube

epns-user
flick

r

stacko
verflow

102

103

na
no

se
co

nd
s p

er
 e

dg
e 

de
le

tio
n

NetworKit
Aspen
Terrace
DHB

(b) Random edge deletions.

epns-tru
st

stackexch

wiki-temp
youtube

epns-user
flick

r

stacko
verflow

102

103

104

105

na
no

se
co

nd
s p

er
 e

dg
e 

up
da

te

NetworKit
STINGER
DHB

(c) Random edge weight update.

Figure 4 Single-threaded edge insertions, deletions and weight updates for temporal graphs.

BerkStan
patents

topcats

LiveJournal
orkut

tech-p2p
wiki-lin

k

web-uk2005

twitter-mpi

friendster

103

104

105

106

m
s

Timeout
NetworKit
STINGER
Aspen
Terrace
DHB

(a) BFS.

BerkStan
patents

topcats

LiveJournal
orkut

tech-p2p
wiki-lin

k

web-uk2005

twitter-mpi

friendster

104

105

106

m
s

Timeout
NetworKit
STINGER
Aspen
Terrace
DHB

(b) SpGEMM.

Figure 5 Performance of common graph applications on top of dynamic graph structures (dynamic
setting).

5.2 Applications
We evaluate how DHB performs in various application scenarios. For this purpose, we pick
the popular BFS and SpGEMM benchmarks. We also demonstrate that DHB can easily be
integrated into existing graph applications.

Breadth-first search (BFS)

We compare the performance of alternating edge insertions and BFS queries of DHB and
its competitors. In this experiment, we initialize the graph to all but 10M edges (without
measuring the initialization time). Afterwards, we insert 100k edges into the graph and run
a BFS from a random source vertex. This process is iterated 100 times, i. e. until all edges
of the graph are inserted. Identical source vertices are picked for all competitors. Figure 5a
depicts the results (reporting end-to-end running time). DHB is on average 1.7 × faster than
NetworKit and 2.5 × faster than aspen.

Sparse matrix-matrix multiplication (SpGEMM)

In a second experiment, we aggregate the results of a SpGEMM computation into an existing
matrix. The need to aggregate the result of a SpGEMM computation arises in various graph
mining applications and/or in distributed matrix multiplication algorithms [9]. In particular,
we compute the first 100M non-zeros of A2 where A is the adjacency matrix of each graph
and measure the running time of this computation. We use the standard sparse row-by-row
algorithm by Gustavson [10]. Note that aspen does not support weights, but only aggregates

SEA 2022



11:12 A Fast Data Structure for Dynamic Graphs

BerkStan
patents

topcats

LiveJournal
orkut

tech-p2p
wiki-lin

k

web-uk2005

104

105

106

tim
e 

(m
s)

Native
CSR
DHB

(a) BFS.

BerkStan
patents

topcats

LiveJournal
orkut

tech-p2p
wiki-lin

k

web-uk2005

twitter-mpi

friendster

103

104

105

106

tim
e 

(m
s)

Native
CSR
DHB

(b) SpMV.

Figure 6 Comparison of DHB and NetworKit’s native graph structures on static graph
algorithms (no updates).

the structure and not the actual values in this experiment. Furthermore, since aspen only
supports batch updates, we always buffer one row of the output before inserting it into
aspen’s data structure; this strategy improves aspen’s performance considerably. All other
data structures support weights and perform individual edge updates without buffering.
Figure 5b shows that DHB and aspen report the best performance results for SpGEMM
and are on average 8.4 × faster than Terrace. Unfortunately, most of the runs time out
for STINGER and NetworKit at 1 800 secs.

Integrating DHB into custom graph structures

Our final experiment demonstrates the viability of DHB as a faster drop-in replacement for
custom graph data structures. We integrate DHB into the well-known graph framework
NetworKit. NetworKit includes two graph data structures: a native adjacency array,
and a CSR representation. We evaluate the overhead of DHB’s integration compared to both
NetworKit’s representations. For the evaluation we pick the BFS and SpMV (= sparse
matrix times dense vector multiplication) benchmarks, since they are both used as primitives
in more sophisticated graph algorithms. Adjusting NetworKit’s BFS and SpMV to work
on top of DHB is easy to do since our data structure has the same interface as custom graph
data structures. Experiments demonstrate that the DHB-enhanced version of NetworKit
slightly penalizes the performance of BFS and SpMV (being on average 15% [25%] slower
than NetworKit’s native adjacency array [CSR] representation). The results suggest only
a small overhead for graph algorithm performance compared to a significant performance
improvement for edge updates. Specifically, the overhead is in line with what other authors
have observed when moving from static to dynamic graphs [7].

6 Conclusions

In this work, we present DHB, a new data structure for storing and processing dynamic, large-
scale, sparse graphs and matrices. DHB is designed for general-purpose CPU architectures and
combines an efficient block-based memory layout to store incident edges with an additional
hash index for high degree vertices. Our dynamic data structure supports edge insertions,
deletions and edge weight updates. We demonstrate experimentally that DHB outperforms
competing dynamic graph data structures in terms of update rates and graph applications for



A. van der Grinten, M. Predari, and F. Willich 11:13

both static and temporal (real) graph data. To show the viability of our data structure, we
integrate DHB as a drop-in replacement for NetworKit’s native dynamic graph structure
(adjacency arrays). Experiments demonstrate that using DHB instead of NetworKit’s
native graph layout incur a small overhead for graph algorithms, while significantly increasing
the update rates for edge insertions, deletions and, weight updates.

References
1 Khaled Ammar. Techniques and systems for large dynamic graphs. In Eduard C. Dragut and

Heng Tao Shen, editors, Proceedings of the SIGMOD 2016 PhD Symposium, San Francisco,
California, USA, June 26, 2016, pages 7–11. ACM, 2016.

2 Eugenio Angriman, Alexander van der Grinten, Moritz von Looz, Henning Meyerhenke, Martin
Nöllenburg, Maria Predari, and Charilaos Tzovas. Guidelines for experimental algorithmics: A
case study in network analysis. Algorithms, 12(7):127, 2019.

3 Michael A. Bender and Haodong Hu. An adaptive packed-memory array. In Proceedings of
the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, PODS ’06, pages 20–29, New York, NY, USA, 2006. Association for Computing
Machinery. doi:10.1145/1142351.1142355.

4 Maciej Besta, Marc Fischer, Vasiliki Kalavri, Michael Kapralov, and Torsten Hoefler. Practice
of streaming processing of dynamic graphs: concepts, models, and systems, 2021. URL:
https://open.bu.edu/handle/2144/42895.

5 Federico Busato, Oded Green, Nicola Bombieri, and David A. Bader. Hornet: An efficient
data structure for dynamic sparse graphs and matrices on gpus. In The 22nd Annual
IEEE High Performance Extreme Computing Conference, HPEC 2018, Waltham, MA, USA,
September 25-27, 2018, pages 1–7, Los Alamitos, CA, 2018. IEEE Computer Society. doi:
10.1109/HPEC.2018.8547541.

6 Intel Corporation. Intel cilk plus language specification, 2010. URL: http://software.intel.
com/sites/products/cilkplus/cilk_plus_language_specification.pdf.

7 Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Low-latency graph streaming using
compressed purely-functional trees. In Proceedings of the 40th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI 2019, pages 918–934, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3314221.3314598.

8 David Ediger, Robert McColl, Jason E. Riedy, and A. David Bader. Stinger: High performance
data structure for streaming graphs. HPEC, pages 1–5, 2012.

9 Jianhua Gao, Weixing Ji, Zhaonian Tan, and Yueyan Zhao. A systematic survey of general
sparse matrix-matrix multiplication. CoRR, abs/2002.11273, 2020. arXiv:2002.11273.

10 Fred G. Gustavson. Two fast algorithms for sparse matrices: Multiplication and permuted
transposition. ACM Trans. Math. Softw., 4(3):250–269, September 1978. doi:10.1145/355791.
355796.

11 Jeremy Kepner, Peter Aaltonen, A. David Bader, Aydin Buluç, Franz Franchetti, R. John
Gilbert, Dylan Hutchison, Manoj Kumar, Andrew Lumsdaine, Henning Meyerhenke, Scott
McMillan, E. José Moreira, D. John Owens, Carl Yang, Marcin Zalewski, and G. Timothy
Mattson. Mathematical foundations of the graphblas. HPEC, pages 1–9, 2016.

12 Jérôme Kunegis. Konect: The koblenz network collection. In Proceedings of the 22nd
International Conference on World Wide Web, WWW ’13 Companion, pages 1343–1350, New
York, NY, USA, 2013. Association for Computing Machinery. doi:10.1145/2487788.2488173.

13 Daan Leijen, Benjamin Zorn, and Leonardo de Moura. Mimalloc: Free list sharding in action.
In APLAS, volume 11893 of Lecture Notes in Computer Science, pages 244–265. Springer,
2019.

14 Charles E. Leiserson. Cilk, pages 273–288. Springer US, Boston, MA, 2011. doi:10.1007/
978-0-387-09766-4_289.

SEA 2022

https://doi.org/10.1145/1142351.1142355
https://open.bu.edu/handle/2144/42895
https://doi.org/10.1109/HPEC.2018.8547541
https://doi.org/10.1109/HPEC.2018.8547541
http://software.intel.com/sites/products/cilkplus/cilk_plus_language_specification.pdf
http://software.intel.com/sites/products/cilkplus/cilk_plus_language_specification.pdf
https://doi.org/10.1145/3314221.3314598
http://arxiv.org/abs/2002.11273
https://doi.org/10.1145/355791.355796
https://doi.org/10.1145/355791.355796
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1007/978-0-387-09766-4_289
https://doi.org/10.1007/978-0-387-09766-4_289


11:14 A Fast Data Structure for Dynamic Graphs

15 J. Leskovec. Stanford Network Analysis Package (SNAP). URL: http://snap.stanford.edu/
index.html.

16 Chun Liu, Shuhang Zhang, Hangbin Wu, and Qiang Fu. A dynamic spatiotemporal analysis
model for traffic incident influence prediction on urban road networks. ISPRS International
Journal of Geo-Information, 6(11), 2017. URL: https://www.mdpi.com/2220-9964/6/11/362.

17 Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and Joseph
Hellerstein. Graphlab: A new framework for parallel machine learning. In Proceedings of
the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, UAI’10, pages 340–349,
Arlington, Virginia, USA, 2010. AUAI Press.

18 Fredrik Manne and Mahantesh Halappanavar. New effective multithreaded matching algorithms.
In IPDPS, pages 519–528. IEEE Computer Society, 2014.

19 Mugilan Mariappan and Keval Vora. Graphbolt: Dependency-driven synchronous processing
of streaming graphs. In Proceedings of the Fourteenth EuroSys Conference 2019, EuroSys ’19,
New York, NY, USA, 2019. Association for Computing Machinery.

20 Prashant Pandey, Brian Wheatman, Helen Xu, and Aydin Buluc. Terrace: A hierarchical graph
container for skewed dynamic graphs. In Proceedings of the 2021 International Conference
on Management of Data, SIGMOD/PODS ’21, pages 1372–1385, New York, NY, USA, 2021.
Association for Computing Machinery.

21 J. M. Robson. Worst case fragmentation of first fit and best fit storage allocation strategies.
Comput. J., 20(3):242–244, 1977.

22 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph
analytics and visualization. In AAAI, 2015. URL: http://networkrepository.com.

23 Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding fork-
join parallelism into llvm’s intermediate representation. In Proceedings of the 22nd ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP ’17,
pages 249–265, New York, NY, USA, 2017. Association for Computing Machinery. doi:
10.1145/3018743.3018758.

24 Dipanjan Sengupta, Narayanan Sundaram, Xia Zhu, Theodore L. Willke, Jeffrey Young,
Matthew Wolf, and Karsten Schwan. Graphin: An online high performance incremental graph
processing framework. In Proceedings of the 22nd International Conference on Euro-Par 2016:
Parallel Processing - Volume 9833, pages 319–333, 2016.

25 Mo Sha, Yuchen Li, Bingsheng He, and Kian-Lee Tan. Accelerating dynamic graph analytics
on gpus. Proc. VLDB Endow., 11(1):107–120, September 2017.

26 Julian Shun and E. Guy Blelloch. Ligra: a lightweight graph processing framework for shared
memory. PPOPP, pages 135–146, 2013.

27 Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: A tool suite for
large-scale complex network analysis. Network Science, 4(4):508–530, 2016. doi:10.1017/nws.
2016.20.

28 Brian Wheatman and Helen Xu. Packed compressed sparse row: A dynamic graph rep-
resentation. In 2018 IEEE High Performance Extreme Computing Conference, HPEC
2018, Waltham, MA, USA, September 25-27, 2018, pages 1–7, September 2018. doi:
10.1109/HPEC.2018.8547566.

29 Brian Wheatman and Helen Xu. A parallel packed memory array to store dynamic graphs.
In Martin Farach-Colton and Sabine Storandt, editors, Proceedings of the Symposium on
Algorithm Engineering and Experiments, ALENEX 2021, Virtual Conference, January 10-11,
2021, pages 31–45. SIAM, 2021.

30 Martin Winter, Daniel Mlakar, Rhaleb Zayer, Hans-Peter Seidel, and Markus Steinberger.
Faimgraph: High performance management of fully-dynamic graphs under tight memory
constraints on the gpu. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage, and Analysis, SC ’18. IEEE Press, 2018.

http://snap.stanford.edu/index.html
http://snap.stanford.edu/index.html
https://www.mdpi.com/2220-9964/6/11/362
http://networkrepository.com
https://doi.org/10.1145/3018743.3018758
https://doi.org/10.1145/3018743.3018758
https://doi.org/10.1017/nws.2016.20
https://doi.org/10.1017/nws.2016.20
https://doi.org/10.1109/HPEC.2018.8547566
https://doi.org/10.1109/HPEC.2018.8547566


A. van der Grinten, M. Predari, and F. Willich 11:15

31 Martin Winter, Rhaleb Zayer, and Markus Steinberger. Autonomous, independent management
of dynamic graphs on gpus. In 2017 IEEE High Performance Extreme Computing Conference
(HPEC), pages 1–8, 2017. doi:10.1109/HPEC.2017.8091058.

A Memory Management

Since expanding the storage associated with a vertex (i. e. increasing β(u)) happens frequently
when using the DHB data structure, care must be taken to avoid costly OS-level memory
allocations whenever possible. Like other block-based dynamic graph data structure, we
implement a custom memory manager to allocate adjacency blocks for this purpose. While
sophisticated malloc() implementations exist, our allocator is able to improve upon invoking
malloc() directly because of two reasons: first, due to the design of our data structure
(and the hash index in particular), we only need to manage blocks of size 2k for some k. In
contrast, general purpose malloc() implementations usually maintain more fine-grained size
classes to avoid wasting memory on arbitrary workloads. Secondly, our block deallocation
procedure does not need to recover a pointer to the (more coarse-grained) OS-level memory
allocation from a pointer to the adjacency block; instead, we can store additional meta data
in our data structure.

The auxiliary data structures of our memory allocator are depicted in Figure 7. As
all blocked-based dynamic graph data structures, our allocation scheme groups multiple
adjacency blocks into a single contiguous superblock. Hence, we only need to perform an
OS-level memory allocation per superblock. In our design, all blocks of the same superblock
have the same block size (i. e. the same β(u)). To protect the memory allocator against
concurrent access, we use a mutex per size class (i. e. per power of two).

Block allocation

We usually use a first fit allocation strategy to allocate blocks. This allocation strategy
is known to result in low fragmentation [21]. Since it causes long-lived allocations to
accumulate in the first few superblocks, we expect it to reduce the number of partially
occupied superblocks that we have to maintain. More precisely, we allocate from the oldest
superblock of a given block size that currently has unused blocks available. For this purpose,
we store all superblocks of the same block size that are not fully occupied in a balanced
binary search tree ordered by their age, i. e. the order in which they were created.

Vertex SB Index

0 0

1 0

. . . . . . . . .

Meta
data

. . .

. . .

Block 0

Meta
data

. . .

. . .

Block 0 Block 1

Figure 7 Layout of superblocks and block handles. Each vertex stores a pointer to its superblock
and the index of its adjacency block within this superblock. The adjacency block contains both N(·)
(red) and H(·) (blue); colors match Figure 1.

SEA 2022

https://doi.org/10.1109/HPEC.2017.8091058


11:16 A Fast Data Structure for Dynamic Graphs

Table 2 Static graphs. The columns of the table correspond (in order) to network name,
abbreviation, minimum degree, maximum degree, mean degree, maximum vertex ID, and edge count.

Network Abbrev. degmin degmax degmean |V | |E|

web-BerkStan BerkStan 0 249 11.1 685K 7.6M
cit-Patents patents 0 770 2.8 6.01M 16.5M
wiki-topcats topcats 0 3.91K 16.0 1.79M 28.5M
soc-LiveJournal1 LiveJournal 0 20.3K 14.3 4.85M 69M
com-orkut orkut 0 33K 38.2 3.07M 117M
tech-p2p tech-p2p 1 10.7K 25.6 5.79M 148M
web-wikipedia_link_en13 wiki-link 0 37K 20.2 27.2M 601M
web-uk-2005 web-uk2005 1 1.78M 23.7 39.5M 936M
soc-twitter-mpi-sws twitter-mpi 0 3M 35.3 41.7M 1.47B
com-friendster friendster 0 3.62K 14.5 125M 1.81B

Table 3 Temporal graphs from real dynamic applications. The columns of the table correspond (in
order) to network name, abbreviation, minimum degree, maximum degree, mean degree, maximum
vertex ID, edge count during initial read, edge cout after update accordingly.

Network Abbrev. degmin degmax degmean |V | Ein Eout

soc-epinions-trust-dir epns-trust 0 2.07K 6.4 132K 841K 841K
ia-stackexch-user-marks-post-und stackexch 0 4.92K 2.4 545K 1.3M 1.3M
wiki-talk-temporal wiki-temp 0 142K 3.0 1.14M 7.83M 3.31M
soc-youtube-growth youtube 0 83.3K 3.0 3.22M 12.2M 9.38M
rec-epinions-user-ratings epns-user 0 162K 18.1 756K 13.7M 13.7M
soc-flickr-growth flickr 0 26.4K 14.4 2.3M 33.1M 33.1M
sx-stackoverflow stackoverflow 0 42.2K 10.9 2.58M 47.9M 28.2M

The are two exceptions to this first fit rule: within a superblock, we simply allocate
an arbitrary block (by storing a per-superblock stack of free blocks). This does not affect
fragmentation since we can only release entire superblocks to the OS at a time. Secondly, to
avoid frequent modifications of the balanced binary search tree, we do not immediate re-insert
a fully occupied superblock into the tree once one of its blocks is deallocated. Instead, we
employ a strategy similar to the one used by mimalloc [13]. In particular, we wait until β

2
of a superblock’s blocks are deallocated before allocating from the superblock again. This
reduces the overhead of the memory allocator without affecting its asymptotic properties.

To be able to free adjacency blocks, we let each vertex store a pointer to the superblock
of its current adjacency block, and the index of this adjacency block within the superblock
(depicts as arrows in Figure 7. When freeing the adjacency block, we simply push its index
back to the stack of free blocks that is stored within the superblock. Since block reallocations
happen only O(log k)-times for k edge updates, our implementation does not store these
information within our main per-vertex array (i. e. the array depicted in Figure 1). Instead,
we use a differnet array to improve memory locality.

B Instances

All graph used in the experiments can be found in Tables 2 (static) and 3 (temporal).

C Memory and Batch Size Experiments

We perform additional experiments regarding memory consumption and scaling of the batch
size.



A. van der Grinten, M. Predari, and F. Willich 11:17

27 29 211 213 215 217

Batch Size

101

102

103

na
no

se
co

nd
s p

er
 e

dg
e 

in
se

rti
on

DHB
Aspen
STINGER
DHB G.M.
Aspen G.M.
STINGER G.M.

Figure 8 Edge insertion rate over the largest static graphs for an increasing batch size. We report
individual and aggregated results using geometric mean over the graphs.

Batch size experiment

We use the five largest static graphs of Table 2 and scale the batch size for batched edge
insertions in a parallel environment with 36 threads. Batch sizes range from 2 to 217 updates
per batch. The edges to be inserted are randomly generated and their existence is verified
prior to insertion. In Figure 8 we report times per edge insertion for DHB, aspen, and
STINGER (in logarithmic scale). DHB performs better than aspen for larger batch sizes
while both exhibit a linear scaling. The best performance for DHB corresponds to a batch
size of 216 edges.

Memory consumption

Figure 9 presents memory utilization results for all involved data structures. We measure the
peak memory consumption of each competitor for all temporal instances of Table 3. More
precisely, we consider the peak resident set size after constructing and reading in the temporal
graphs. DHB allocates similar amounts of memory as NetworKit and is on average 30%
more memory-efficient that STINGER. STINGER’s memory allocation is less dynamic,
since it allocates multiple blocks of fixed size per neighborhood. It also does not seem to be
optimized for memory efficiency. Moreover, DHB uses on average 20% less memory than
aspen, although in some cases (see flickr) the trend may be opposite. aspen’s overhead
is due to the tree-based data structure which requires more space. Terrace appears to
have, on average, similar memory utilization as aspen. In particular, both Terrace and
aspen show significant memory savings over the competitors on the epns-user and flickr
instances which have the highest average degrees.

D Scalability Experiments

We perform experiments to test the scalability of DHB w. r. t. a growing graph size. We also
evaluate the parallel scalability of DHB in a multi-threaded parallel environment. For the first
experiment, we perform 15× n random edge insertions for an increasing number of vertices,
i. e. n = 220, . . . , 226. In Figure 10a we observe that DHB exhibits a linear scaling behavior
w. r. t. the graph size. For the parallel scalability, we perform edge insertion experiments for
the five larger temporal graphs of Table 3. In Figure 10b we report aggregated speed ups
of DHB w. r. t. a sequential run, for a thread count of up to 36 threads. We also include

SEA 2022



11:18 A Fast Data Structure for Dynamic Graphs

epns-tru
st

stackexch

wiki-temp
youtube

epns-user
flick

r

stacko
verflow

0

500

1000

1500

2000

2500

3000

3500

M
em

or
y 

Fo
ot

pr
in

t i
n 

M
eg

a 
By

te
s (

KB
) NetworKit

STINGER
Aspen
Terrace
DHB

Figure 9 Memory footprint for DHB, STINGER, aspen, Terrace and NetworKit on temporal
graphs.

220 221 222 223 224 225 226

count of vertices |V|

130

140

150

160

170

180

190

na
no

se
co

nd
s p

er
 e

dg
e 

in
se

rti
on

DHB T1

(a) Edge insertion rate of DHB for scaling graph
size in a single-threaded execution.

20 21 22 23 24 25

Thread Count

0

1

2

3

4

Sp
ee

du
p

DHB G.M.
STINGER G.M.
Aspen G.M.

(b) Geometric mean of speedups for DHB, aspen,
STINGER on multiple threads w. r. t. a sequential
run.

Figure 10 Scaling behavior of DHB w. r. t. growing number of vertices (10a) and increasing
thread count (10b).

STINGER and aspen’s speed ups for comparison. DHB scales slightly better than aspen
while STINGER performs rather poorly. Finally, DHB’s performance drops for 36 threads
probably due to the NUMA issues across the two sockets of our parallel system.



Efficient Minimum Weight Vertex Cover Heuristics
Using Graph Neural Networks
Kenneth Langedal1 ! Ï

University of Bergen, Norway

Johannes Langguth !

Simula Research Laboratory, Oslo, Norway

Fredrik Manne !

University of Bergen, Norway

Daniel Thilo Schroeder !

Simula Research Laboratory, Oslo, Norway

Abstract
Minimum weighted vertex cover is the NP-hard graph problem of choosing a subset of vertices
incident to all edges such that the sum of the weights of the chosen vertices is minimum. Previous
efforts for solving this in practice have typically been based on search-based iterative heuristics or
exact algorithms that rely on reduction rules and branching techniques. Although exact methods
have shown success in solving instances with up to millions of vertices efficiently, they are limited in
practice due to the NP-hardness of the problem.

We present a new hybrid method that combines elements from exact methods, iterative search,
and graph neural networks (GNNs). More specifically, we first compute a greedy solution using
reduction rules whenever possible. If no such rule applies, we consult a GNN model that selects a
vertex that is likely to be in or out of the solution, potentially opening up for further reductions.
Finally, we use an improved local search strategy to enhance the solution further.

Extensive experiments on graphs of up to a billion edges show that the proposed GNN-based
approach finds better solutions than existing heuristics. Compared to exact solvers, the method
produced solutions that are, on average, 0.04% away from the optimum while taking less time than
all state-of-the-art alternatives.

2012 ACM Subject Classification Mathematics of computing → Combinatorial algorithms; Theory
of computation → Randomized local search

Keywords and phrases Minimum weighted vertex cover, Maximum weighted independent set, Graph
neural networks, Reducing-peeling

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.12

Supplementary Material
Software (Source Code): https://github.com/KennethLangedal/GNN-MWVC
Dataset (Results): https://github.com/KennethLangedal/MWVC-GNN-LS

Funding The work has benefited from the Experimental Infrastructure project eX3, which is
financially supported by the Research Council of Norway under contract 270053.
Kenneth Langedal: Supported by the Research Council of Norway under contract 303404.
Johannes Langguth: Supported by the Research Council of Norway under contract 303404.
Daniel Thilo Schroeder : Supported by the Research Council of Norway under contract 303404.

1 Corresponding author

© Kenneth Langedal, Johannes Langguth, Fredrik Manne, and Daniel Thilo Schroeder;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 12; pp. 12:1–12:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Kenneth.Langedal@uib.no
http://www.ii.uib.no
mailto:langguth@simula.no
https://orcid.org/0000-0003-4200-511X
mailto:Fredrik.Manne@uib.no
mailto:daniels@simula.no
https://orcid.org/0000-0003-0125-5243
https://doi.org/10.4230/LIPIcs.SEA.2022.12
https://github.com/KennethLangedal/GNN-MWVC
https://github.com/KennethLangedal/MWVC-GNN-LS
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


12:2 Efficient Minimum Weight Vertex Cover Heuristics Using Graph Neural Networks

1 Introduction

Consider an undirected graph G = (V, E) where V is the set of vertices and E is the set of
edges. A vertex cover is a set C ⊆ V such that ∀{u, v} ∈ E =⇒ u ∈ C ∨ v ∈ C, or with
words, that each edge has at least one of its endpoints in C. The minimum vertex cover
problem (MVC) is to find a vertex cover where |C| is minimized. The minimum weighted
vertex cover problem (MWVC) includes a positive weight w : V → R+ for each vertex and
the problem is then to find a vertex cover where

∑
u∈C w(u) is minimized. The decision

version of MVC was one of Karp’s original 21 NP-complete problems and it thus follows
that MVC is NP-hard [13]. MWVC is at least as difficult as MVC since the case where the
weights are all one is precisely the same as the unweighted version.

It is well known that kernelization techniques can speed up the computation of solutions
to NP-hard problems. They shrink the instance by applying reduction rules so that an
optimal solution for the reduced instance can be expanded to an optimal solution for the
original instance. Several such reduction rules have been developed both for the MVC and
the MWVC problem. Using reduction rules, Lamm et al. were able to solve large instances
of both MVC and MWVC with millions of edges and vertices [8, 10,18].

Reduction rules have also been used to speed up heuristics for computing vertex covers
and solving associated problems. It is straightforward to see that such rules can be used as a
preprocessing step before running an iterative search heuristic [19]. However, they can also
be used in combination with heuristics that classify vertices when no reduction rules apply.
This technique was introduced by Chang et al., who named it reducing-peeling [6]. Examples
of such methods that have been used for MVC include genetic algorithms [17] and graph
neural networks [21].

We present a hybrid approach that combines several strategies to create an effective
heuristic for the MWVC problem. First, we use a combination of reduction rules, a graph
neural network, and an exact solver to compute an initial vertex cover. The vertex cover is
then further enhanced using an improved iterative search strategy. The proposed heuristic is
compared to the best existing methods, yielding the following main results:

We demonstrate the first successful application of graph neural networks on the MWVC
problem.
We give an improved local search implementation for MWVC on very large sparse graphs.
On instances that can be solved exactly we compute solutions that are on average 0.04%
heavier than the optimal ones.
We obtain consistently better solutions than existing heuristics for the MWVC problem.
Finally, we give results on several hundred graphs from SuiteSparse, including instances
with more than 1 billion edges, which is significantly larger than those computed in
previous efforts. Even at these sizes, our proposed heuristic finds vertex covers in less
than one hour using a standard CPU.

In the remainder of the paper, we first introduce the main concepts along with previous
work in Section 2 and present our approach in Section 3. Sections 4 and 5 present our
experiments along with their results, while Section 6 concludes the paper.

2 Background and Related Work

The MWVC problem has several real-world applications, including dynamic map labeling [2],
biological network alignment [1], and network engineering [26]. Furthermore, the problem
of finding a minimum vertex cover is equivalent to the problem of finding a maximum



K. Langedal, J. Langguth, F. Manne, and D. T. Schroeder 12:3

independent set. For any feasible vertex cover C, the vertices not in the vertex cover V \ C

make an independent set, and if |C| is a minimum vertex cover, then V \ C is a maximum
independent set. This also extends to the weighted versions of these problems. Thus, results
for the maximum weighted independent set problem (MWIS) carry over to MWVC.

When constructing a cover C for a graph G = (V, E), each decision whether a vertex
u ∈ V should be in C or not has immediate implications for its neighborhood N(u), i.e. the set
of vertices adjacent to u. The resulting graph G′ is smaller and can be solved independently
from previous decisions. If u is added to C, then every edge connecting u to the rest of the
graph will be covered. From that point, the problem is to find an MWVC on G′ = G \ {u}.
Similarly, if u is excluded from C, it follows from the definition of a vertex cover that N(u)
must be in C. In that case, u and its neighborhood can be removed from the graph, yielding
G′ = G \N [u], where N [u] = N(u) ∪ {u}.

This observation points to two immediate questions. First, how to decide for a vertex u

whether to include u or N(u), and second in which order such decisions should be made. In
the following, we discuss the principal ways in which this has been done previously.

2.1 Reduction Rules

There has been extensive research on computing exact solutions to NP-hard problems
using kernelization combined with various branch-and-bound (BB) techniques. BB makes
temporary decisions but is able to backtrack in order to find an exact solution.

The currently best exact solver for the MWVC problem is the branch-and-reduce solver
B & R by Lamm et al. [18]. B & R is actually an MWIS solver, but as stated earlier, it can
be directly applied to solve the MWVC problem as well. B & R selects vertices for branching
based on degree, breaking ties based on weight. Clique covers are used to find an upper
bound for the optimal solution to prune the search. What extends it from branch-and-bound
to branch-and-reduce is the addition of reduction rules. Before each branch, the remaining
graph is checked to see if any reduction rules can be applied to the current remaining graph.
It is crucial to check before each branch, not only the first, since branching on a vertex
and temporarily labeling it can enable further reductions. The graph is also checked for
connectivity after applying reduction rules. If there are multiple connected components,
these are solved separately, combining the partial results afterward. Reduction rules are not
always applicable, but they are exact in the sense that decisions taken by reduction rules
never prevent an optimum solution. By using an extensive set of reduction rules, B & R can
often find minimum weight vertex covers on graphs with millions of vertices in a reasonable
amount of time.

Our heuristic makes use of the same reduction rules as B & R. Therefore, only an outline
of the main ideas is provided here. At a high level, reduction rules come in two varieties.
Rules of the first type, called removal, directly decide whether vertices should be added to
the cover and remove vertices or neighborhoods from the graph. Rules of the second type,
called folding, also reduce the size of the graph, but without making immediate decisions
about vertices. The idea is that after solving the reduced graph, it can be unfolded to extend
the solution to the original graph. The following rules are examples. Other rules used in our
heuristic are described by Lamm et al. [18].

Neighborhood Removal. If the weight of a vertex is greater than or equal to the combined
weight of its neighborhood, i.e, w(u) ≥ w(N(u)), then some MWVC C includes N(u) and
not u. To see this assume u ∈ C. Then the cost of the solution will not increase if u is
replaced by N(u).

SEA 2022



12:4 Efficient Minimum Weight Vertex Cover Heuristics Using Graph Neural Networks

Neighborhood Folding. Let u be a vertex such that no vertices in N(u) are adjacent and
let v ∈ N(u) be a lightest neighbor. If w(u) < w(N(u)) but w(u) ≥ w(N(u) \ v) then some
MWVC includes exactly one of u and N(u). This follows since if a vertex cover includes u

and at least one vertex from N(u), then swapping u for the remaining vertices in N(u) will
not increase the cost. Unlike the previous rule, there is still the possibility that an MWVC
could include u and no vertices from N(u). Therefore, N(u) cannot directly be classified
yet. Instead, N [u] is folded into a new vertex u′ connected to every vertex adjacent to N(u).
The weight of this new vertex is set to w(N(u))− w(u). The new vertex u′ represents the
choice between N(u) and u. Choosing N(u) costs more than u, but could cover more edges.
To unfold the reduced graph, include N(u) if u′ was part of the solution and u otherwise.

Note that if there had been any edges between vertices in N(u), these edges would need
to be covered. Therefore, selecting u and no vertices from N(u) would not be an option, and
N(u) should be added and its neighborhood removed as in the first rule.

Typically, different reduction rules are executed in a fixed order, checking the applicability
of the rule for each vertex before moving on to the next rule. The precise order is based on
the computational cost associated with each rule, and the idea is to apply the cheaper rules
frequently and the more expensive ones less often. Whenever a rule successfully reduces the
graph, the vertices whose neighborhoods have changed are checked again, starting from the
least expensive rule.

2.2 Local Search

Since the MWVC problem is NP-hard, only heuristics and approximation algorithms are
feasible for large instances. Popular heuristics include genetic algorithms [22], ant-colony
approaches [12], tabu search [27], and local search [3,19,20,23]. Among these, local search
heuristics are the most successful.

Consequently, local search plays an essential part in our proposed approach. These
heuristics efficiently search for improvements to an existing solution, with a predictable
running time for each iteration of the search. Previous studies show that local search can
quickly find high-quality solutions and scale to graphs with several million vertices and
edges [20].

Algorithm 1 Local search overview, outlining the core ideas used by several iterative local search
procedures for the MWVC problem.

1: C ← ConstructWV C ▷ Construct the initial vertex cover
2: C ′ ← C ▷ Best vertex cover found
3: while elapsed_time < max_time do
4: Remove vertex u with lowest score(u) from C

5: while C is not a vertex cover do
6: Add vertex v with highest score(v) to C

7: Add 1 to the weight of each uncovered edge
8: end while
9: if w(C) < w(C ′) then

10: C ′ ← C

11: end if
12: end while



K. Langedal, J. Langguth, F. Manne, and D. T. Schroeder 12:5

Most of the heuristic algorithms utilize an edge weighting strategy that dynamically
changes as the search proceeds [3,20,27]. The edge weights, denoted by edgew, are initialized
to one. We show the common strategy of these heuristics in Algorithm 1. Here

cost(C) =
∑

{u,v}∈E|u/∈C∧v /∈C

edgew({u, v})

dscore(u) =
{

cost(C \ {u})− cost(C), u ∈ C

cost(C)− cost(C ∪ {u}), u /∈ C

score(u) = dscore(u)
w(u) .

In addition to the procedure described so far, all heuristics mentioned above make use of
configuration checking, which was first introduced by Cai et al. [4]. This aims at preventing
a vertex that was recently removed or added to the solution from going back to its previous
state in the next iteration. Only after some other change has occurred in its neighborhood
will it be allowed to change state again. Incorporating configuration checking can be as
simple as defining a Boolean flag for each vertex. Only vertices with set flags are eligible
for selection (Line 4). When a vertex is added to C (Line 6), the flag is set to false, but its
neighbors’ flags are flipped to true.

Each search iteration always starts and ends with a valid vertex cover. However, the
solution quality is not guaranteed to improve during every iteration. This relaxation is
necessary to escape local minima since restricting the search to only make changes that
improve the solution cost will cause it to get stuck quickly. To better understand how local
search works, consider the initial iteration when every edge weight equals one. The first step
of each iteration removes a vertex from C with the lowest score value. The score of a vertex
u ∈ C is the weight of every edge that u alone covers, divided by w(u). As a sanity check, if u

is redundant and could be removed without leaving any edges uncovered, then score(u) would
be zero. In general, vertices with high weight and a low number of covered edges will have
low scores and are likely candidates for removal. The idea being that these vertices contribute
less to the overall solution. After removing a vertex, the neighbors that are not part of the
solution are added back in order of their score, increasing the weight of the uncovered edges
along the way. The effect of increasing the edge weights is that a newly added vertex gets
higher scores than it would otherwise, and is therefore less likely to be chosen for removal.
This scheme effectively handles the balance between intensifying and diversifying the search
and has been demonstrated to be an efficient technique in practice [3, 19,20,27].

Many successful heuristics have used the technique outlined in Algorithm 1. One such
heuristic, FastWVC [20], improved performance on large graphs using a new construction
procedure and exchange step that removed two vertices instead of one. This was further
improved in DynWVC2 [3] by using dynamic strategies for vertex selection. Another
heuristic, Hybrid Iterated Local Search (Hils) [23], alternated between efficient neighborhood
swaps and random permutations to balance quality and diversity. NuMWVC [19] used simple
reduction rules to construct the initial solution, improved configuration checking, and dynamic
vertex selection strategies. The most recent heuristic named Master-Apprentice Evolutionary
Algorithm with Hybrid Tabu Search (MAE-HTS) [27] showed further improvements over
NuMWVC.

SEA 2022



12:6 Efficient Minimum Weight Vertex Cover Heuristics Using Graph Neural Networks

2.3 Graph Neural Networks
Graph neural networks (GNNs) [25] are machine learning architectures adapted to handle
graph data. There are several issues with conventional neural network architectures when
working on graphs. For instance, typical convolutional neural networks (CNNs) [15] work on
images of fixed size. However, graphs differ in size and cannot easily be scaled. Furthermore,
results for graphs should be invariant to different vertex permutations, which CNNs do
not normally support. GNNs overcome these limitations and, following the success of
CNNs, neural network architectures for graphs have recently made significant progress on
combinatorial optimization problems [5]. GNN models can be trained for several different
tasks, including vertex labeling, edge prediction, or whole graph predictions. GNNs can learn
structural information about graphs since they consider neighborhood information for each
vertex.

Starting from a feature vector on each vertex, the GNN propagates information along the
edges of the graph for a fixed number of rounds. When finished the GNN outputs a value
for each vertex that indicates if this vertex should be part of the solution or not. Values
that are being moved between two neighbors are processed using a multi-layered perceptron
that has been trained on graph instances where an optimal solution is known. Like local
search, decisions taken by the GNN are not exact. A previous study on the MVC problem
demonstrated the effectiveness of graph neural networks in this setting, but at a significantly
smaller scale [21].

3 Approach

Our proposed heuristic consists of two stages, where the first computes a vertex cover using
reduction rules, output from a GNN model, and an exact solver. In the second stage, the
obtained vertex cover is improved using an efficient local search procedure. In the following,
we outline the stages in more detail.

3.1 Initial Computation
The first stage starts with all vertices unclassified. It then follows a greedy strategy where
reduction rules are used whenever possible to classify vertices, thereby reducing the size
of the remaining unsolved graph. Classified here refers to the decision made for a vertex,
regardless of whether it is in the vertex cover or not. A connectivity check is performed
when no reduction rule applies, and any sufficiently small component is solved exactly using
a branch-and-reduce strategy. For larger components that cannot be reduced further, the
vertex with the highest probability of being either in or out of the solution is classified,
according to the GNN’s evaluation. This procedure is repeated until a complete vertex cover
for the whole graph has been obtained.

As the computation progresses, the size of the remaining unclassified graph shrinks. As a
consequence, the predictions from the GNN will also change. However, computing predictions
from the GNN has a cost that is linear in the size of the remaining graph, and thus, it can
be expensive to apply this too often. Therefore, it is essential to decide when to update
the probabilities by rerunning the GNN and when to use probabilities from the last GNN
computation. The following scheme is used to decide when to recompute the probabilities
from the GNN.



K. Langedal, J. Langguth, F. Manne, and D. T. Schroeder 12:7

Each application of the GNN gives a prediction for each vertex regarding whether or
not it should be part of the vertex cover. The list of predictions is ordered by decreasing
assurance. When consulting this list, the top choice might already have been classified by a
reduction rule. If the current configuration of that vertex and the prediction by the GNN
disagree, it is an indication that the predictions should be updated. This could still occur
often, so it is also required that the remaining graph’s size has shrunk sufficiently since the
last time the GNN output was computed.

Like the GNN computation, checking the graph’s connectivity also has a cost that is linear
in the size of the remaining graph and is therefore only done before each GNN computation.
Small connected components are solved exactly using a simplified version of the solver
presented by Lamm et al. [18]. Due to the limited input size, some aspects have been omitted,
such as branch elimination based on lower and upper bounds and connectivity checking.
Instead, it is more important to target the worst-case scenario, which seems to occur in
very dense graphs. To this end, a degree-based branching technique is used, as described by
Imamura and Iwama [11], and based on an observation by Karpinski and Zelikovsky [14].
The idea is that for some set S ⊆ V with |S| = k, where ∀u ∈ S =⇒ degree(u) ≥ k. Then
an optimal solution C will either include the whole set S ⊆ C or the entire neighborhood for
one of the vertices ∃u ∈ S : N(u) ⊆ C. In a branch-and-reduce setting, this means that one
can branch based on k + 1 options, and each of these branches will already have at least k

vertices classified. This should be compared to a traditional branching on a single vertex,
where one branch typically only reduces the size of the problem by one.

To recap the construction procedure, first, apply reduction rules. Then check if the size
of the graph has been sufficiently reduced. If so, perform a connectivity check, solve small
connected components exactly, and apply the GNN model to the rest. If the size of the graph
has not decreased enough, consult the most recent GNN predictions. Finally, when the size
of the remaining graph reaches zero, unfold the graph up until the first non-exact decision
was made. The last unfolding only occurs after local search.

3.2 Graph Neural Network Architecture
The GNN architecture used is a combination of message-passing steps interleaved with
multi-layered perceptrons (MLPs). The message-passing step is inspired by the layer-wise
propagation rule presented by Kipf and Welling [16]. It is slightly modified using a few
handcrafted features and a direct passthrough, similar to a residual link used in CNNs [9].
The message-passing step then looks like this:

H l+1 = AH l|H l|D|W |N.

Here, H l is the |V | × f matrix at layer l, where f is the number of activations for each vertex
at this layer and A is the graph’s adjacency matrix. Then, H l is concatenated unchanged,
followed by D, W , and N , who are |V | × 1 matrices corresponding to vertex degree, weight,
and neighborhood weight. The output H l+1 then becomes a |V | × 2f + 3 matrix. Initially,
f = 1 since the only attribute of a vertex is its weight.

The MLPs used are extensions of the original perceptron model introduced by Rosen-
blatt [24]. Each layer is a dense matrix of trainable weights, and in between the layers are
non-linear activation functions. The forward flow through one of these layers is given by:

H l+1 = σ(H lW l + bl)

SEA 2022



12:8 Efficient Minimum Weight Vertex Cover Heuristics Using Graph Neural Networks

where σ is the activation function, W l are the trainable weights, and bl is the bias term at
this layer. The dimensions of W l is f l × f l+1, meaning these layers can scale f as desired.
The vector bl is added to each row of H lW l. The activation functions used are ReLU and
sigmoid. These are elementwise functions defined as:

ReLU(x) = max(0, x)

sigmoid(x) = 1
1 + e−x

.

The model used in the proposed heuristic consists of three message-passing layers interleaved
with three-layer MLPs. The MLP layers consist of 32 activations with a single activation
for each vertex at the output layer. ReLU is used between every MLP layer, except in the
output layer, where sigmoid is used. The benefit of the sigmoid activation in the output
layer is that each value can be interpreted as a probability.

3.3 Optimized Local Search
For the second stage, a local search procedure is employed, similar to that shown in Al-
gorithm 1. However, this contains three costly operations that need to be analyzed carefully.

1. Finding the next vertex u to remove (Line 4)
2. Reconstructing the vertex cover (lines 5-7)
3. Storing the new solution if it turns out to be an improvement (Line 10)

When done naively, the first and third points will take O(|V |) time and the second
O(|N(u)|2), where u is the vertex from Line 4. This might not be too costly if the graph
is small and the current solution is close to the optimal. However, since our aim is to find
vertex covers on massive graphs with millions of vertices, a more careful implementation
could make a significant difference.

To address the linear cost of finding the next vertex to remove, we store every vertex
in the graph in a binary heap. Whenever the score of a vertex changes, its position in the
heap is also updated. In one remove and reconstruct step, the neighborhood of u and the
neighborhood of every added vertex will change their score value. This means that the cost
of maintaining the heap during each iteration will be log(|V |) times the size of the distance-2
neighborhood of u.

The next point is how to reconstruct the solution efficiently. Since u is not allowed to
enter the solution again in the same step as it was removed, the vertices with a positive score

are precisely the neighbors of u that are currently not in the vertex cover. Furthermore,
since these vertices are not part of the vertex cover, every other neighbor they might have
besides u, will already be in the vertex cover. This means that the score value for each
v ∈ N(u) where v /∈ C will be equal to the weight of its edge incident on u divided by w(v).
To improve the speed of reconstructing the vertex cover, we sort the adjacency list of u based
on edge weight and then add them in that order. This improves the running time for this
step from O(|N(u)|2) to O(|N(u)| log(|N(u)|)). Reconstructing the vertex cover this way
is not equivalent to Algorithm 1. However, it is faster and based on our experiments, has
negligible impact on solution quality.

Finally, the last consideration is how to keep track of the best solution found. The best
solution is not used for anything during the execution of the algorithm. It is only stored to be
returned at the end. If the initial solution is far from the eventual local minima, repeatedly
storing the improved vertex covers could become a bottleneck. To address this issue, multiple
iterations are performed without checking if the solution quality has improved. Initially,



K. Langedal, J. Langguth, F. Manne, and D. T. Schroeder 12:9

the number of iterations is high, but gradually shrinks as the search continues. This idea is
not new, as NuMWVC uses a similar technique called self-adaptive-vertex-removing [19].
However, in NuMWVC, the authors changed the number of vertices removed during each
iteration, unlike here, where only the updating is omitted. Compared with NuMWVC, our
approach also varies significantly in scope. NuMWVC starts by removing three vertices
and gradually moves down to one, whereas in our approach, the idea is to let the search run
for thousands of iterations without updating the best solution. It is important to note that
these improvements only speed up the search and does not necessarily lead to solutions that
other existing heuristics would not have found given sufficient time.

4 Experimental Setup

In the following, we present the computation platform, benchmark datasets, and details
on how the GNN model was trained. We refer to our heuristic as GNN with local search
(GNN & LS). The exact solver is employed on connected components with ≤ 75 vertices
and requires a 5% size reduction before each connectivity check and recomputation of GNN
probabilities. We require a minimum of 1024 iterations during the local search before
updating the best solution.

Computing Platform. All heuristics are implemented in C++ and compiled using GCC 9.3
with the O3 optimization flag. All the experiments were run on a single thread of an Intel
Xeon Silver 4112 CPU with 2.60 GHz and 38 GB of memory. The machine runs Ubuntu
18.04.6 and Linux kernel version 5.4.0-109.

4.1 Benchmark Data

We use graphs from the SuiteSparse collection [7]. In order to get graphs with a wide variety
of meaningful sizes and densities, a subset of the entire SuiteSparse collection was used,
selected on the basis of file size. The first set of graphs, Dataset 1, contains graphs with a file
size between 40 MB and 4 GB, 371 graphs in total. The smallest graphs start at roughly 500
thousand edges, while the largest exceed 180 million2. Most of these graphs do not initially
have vertex weights or undirected edges, so the graphs are first converted to the correct
format. This is done by considering each edge as undirected, removing any duplicates or self
edges, and then generating vertex weights uniformly at random. There are some differences
in previous studies on how weights are assigned. For instance, weights in the integer range
[20, 100], [20, 120], or [1, 200] have all been used. We use weights drawn uniformly at random
in the integer range [1, 200], which is similar to B & R [18] and Hils [23]. However, based
on preliminary experiments, different weight ranges did not significantly impact the results.

Some of the other heuristics used for comparison contain built-in input size limitations.
For instance, NuMWVC only accepts graphs with less than 9 million vertices. Therefore,
Dataset 2 consist of the graphs from Dataset 1 that every heuristic accepted as input. The
exact solver B & R [18], in its default configuration and with a time limit of 1200 seconds,
was able to find exact solutions for 111 graphs from Dataset 1. These 111 graphs constitute
Dataset 3. Lastly, six massive graphs with more than one billion edges are also included as
Dataset 4.

2 A complete list of graphs along with results and source code can be found at this repository: https:
//github.com/KennethLangedal/MWVC-GNN-LS

SEA 2022

https://github.com/KennethLangedal/MWVC-GNN-LS
https://github.com/KennethLangedal/MWVC-GNN-LS


12:10 Efficient Minimum Weight Vertex Cover Heuristics Using Graph Neural Networks

4.2 Training the GNN Model

When training a GNN model directly on vertex classification, one has to take into consideration
that a minimum weighted vertex cover might not be unique. One idea that has already
been successfully used for the MVC problem is to have multiple vertex covers as output and
use a hindsight loss that only acts on the best output [21]. We propose another approach
for MWVC, where one increases the weight range to lower the chance for multiple optimal
solutions. Therefore, the weights assigned to the training data are drawn uniformly at
random from the integer range [10, 2000] instead of [1, 200]. The input to the model is then
linearly scaled down to the real interval [0, 1], to ensure that the data is in the same range
when training as during inference. Roughly 1400 graphs from the SuiteSparse collection with
sizes less than 40 MB were used as training data. The exact solver B & R [18] was able to
find optimal solutions for 929 of these graphs, thus giving us over 8 million labeled vertices
that we could then use for training.

Mean squared error (MSE) and stochastic gradient descent (SGD) with momentum were
used to fit the model’s parameters to the training data. The training data was divided into
90% for training and 10% for validation. Additional parameters used during the training
include a 0.01 learning rate, 0.9 momentum, and a batch size of 250,000 vertices. The results
from the training can be seen in Figure 1.

0 25 50 75 1000

0.1

0.2

0.3

0.4

0.5

Epoch

M
S

E

Training Validation

0 25 50 75 1000

20

40

60

80

100

Epoch

A
cc

u
ra

cy
(%

)

Figure 1 GNN training over 100 epochs, showing MSE and accuracy for training and validation
sets.

5 Experimental Results

In this section, we report on a set of experiments to gauge the performance of our new GNN-
based approach. We start with results from Dataset 2 compared to other state-of-the-art
heuristics. Then, based on Dataset 1 and 3, we present a deeper analysis of the different
components of our GNN-based approach. Finally, we include results on Dataset 4.



K. Langedal, J. Langguth, F. Manne, and D. T. Schroeder 12:11

5.1 Comparison with State-of-the-art Heuristics
The first set of experiments compares GNN & LS with the following heuristics: DynWVC2,
Hils, FastWVC, and NuMWVC. The source codes for all of these are available online,
except NuMWVC, where the authors provided the code. There is one newer heuristic,
MAE-HTS [27], but we were unable to obtain the code for it. Each heuristic ran for 1000
seconds, while recovering the best solution found. Dataset 2 was used here due to the built-in
limitations on some implementations. Figure 2 shows the solution quality compared to the
best solution found by any of the heuristics on each graph. The y-axis gives the percentage
of graphs that a heuristic was able to solve with increasing distance to the best solution given
by the x-axis. Here, the distance is measured as a percentage of the best solution. Thus the
values initially show the percentage of graphs where each heuristic gave the best solution.
The absolute numbers are also given in the first row of Table 1.

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

Gap to best (%)

Fr
ac

tio
n

of
gr

ap
hs

GNN & LS
DynWVC2

Hils
FastWVC
NuMWVC

Figure 2 Solution quality on Dataset 2, based on the gap to the best solution found by one of
the heuristics.

Table 1 Summary of results on Dataset 2.

GNN & LS DynWVC2 Hils FastWVC NuMWVC
Best solutions 262 77 29 19 10
Average gap to best 0.06% 0.84% 2.37% 1.44% 2.33%
Average time in sec. 480.79 735.83 907.9 826.75 669.91

As shown in Table 1, GNN & LS finds higher-quality solutions on significantly more
test instances than the other heuristics. It is also, on average, closest to the best solution
and uses the least time.

Table 1 gives the time it took to find the reported solution. Measuring the running time
this way does not necessarily give meaningful insight into how fast the different methods are.
A heuristic that finds a good solution quickly but then makes a small improvement after a
long time would register as slow in this metric, while one that finds the same solution but
does not make the improvement would register as fast, even though it never had a better
solution than the first heuristic. In order to get a better understanding of the speed of the
heuristics, we run the programs for a shorter duration and compare the results, as shown in

SEA 2022



12:12 Efficient Minimum Weight Vertex Cover Heuristics Using Graph Neural Networks

Figure 3. The GNN-based approach spends considerable time constructing the initial vertex
cover, 27.7 seconds on average. Before that point, GNN & LS has nothing to report. Figure
3a shows the results when using the time the GNN spent constructing the initial solution
as the time limit for the other programs, effectively testing the GNN construction part in
isolation against the other heuristics.

Again, as can be seen from the results, GNN & LS also find higher-quality solutions
with these lower time limits. Figure 3a shows that the advantage of the new heuristic is even
greater when comparing the construction step alone against the other heuristics. A reason
for the drop in performance from Figure 3a to 3b is due to graphs where GNN & LS did
not finish constructing the initial vertex cover in the first 100 seconds.

0 1 2
0

0.5

1

Gap to best (%)

Fr
ac

tio
n

of
gr

ap
hs

(a) GNN time

GNN & LS DynWVC2 Hils FastWVC NuMWVC

0 1 2
0

0.5

1

Gap to best (%)

(b) 100 seconds

0 1 2
0

0.5

1

Gap to best (%)

(c) 500 seconds

Figure 3 Solution quality on Dataset 2 using different time limits. Quality is measured based on
the gap to the best solution found by one of the heuristics.

5.2 Evaluation of Different Configurations
In this section, we perform a deeper evaluation of the different components of our heuristic
in isolation, with the main focus on the GNN component. The GNN’s part is to label one
vertex when reduction rules fail to make progress. One sensible alternative is to exclude the
heaviest vertex, breaking ties based on degree, similar to how exact solvers pick a vertex
to branch on. This modified version of GNN & LS will be referred to as Quick & LS.
Additionally, to measure the importance of local search, both GNN and Quick without
local search are also included. Lastly, a pure local search (LS) is used for comparison. These
different configurations are evaluated w.r.t. running times and solution quality, including
results on graphs where the optimal solution is known.

Table 2 Summary of results on Dataset 1.

GNN GNN & LS Quick Quick & LS LS
Best solutions 65 242 57 122 77
Average gap to best 0.68% 0.01% 2.52% 0.22% 0.95%

When comparing different configurations of the proposed heuristic, GNN & LS wins on
both the number of best solutions and the average gap to the best solution, as shown in
Table 2. Taking away components from GNN & LS all lead to worse performance, but to
different extents. Taking away the GNN, represented by Quick & LS, is the second-best



K. Langedal, J. Langguth, F. Manne, and D. T. Schroeder 12:13

0 0.5 1 1.5 2

0.2

0.4

0.6

0.8

1

Gap to best (%)

Fr
ac

tio
n

of
gr

ap
hs

GNN & LS Quick & LS GNN LS Quick

Figure 4 Solution quality on Dataset 1, based on the gap to the best solution found by one of
the configurations.

configuration and shows that using reduction rules during the construction of the initial
solution benefits the subsequent local search. Comparing the GNN and Quick results, both
without local search, highlights the impact of the GNN model at this stage. Ultimately, the
GNN, local search, and reduction rules are all responsible for significant parts of the quality
of the final vertex cover.

Table 3 Summary of results on Dataset 3.

GNN GNN & LS Quick Quick & LS LS
Optimal solutions 52 57 52 56 10
Average gap to optimal 1.12% 0.04% 3.27% 0.60% 1.77%

On Dataset 3, GNN & LS is on average closest to the optimal solutions, shown in Table 3,
while the other configurations are noticeably worse. In order to find optimal vertex covers on
graphs of these sizes, the graphs need to be especially amenable to reduction rules. Counting
the number of vertices remaining after the initial reduction step confirms this, as 43 graphs
were completely solved by reduction rules alone. On the graphs that had more than zero
vertices left, the average on Dataset 3 was a reduction of 46.44%, while for Dataset 1, it
was 26.7%. These numbers further demonstrate the power of reduction rules on the MWVC
problem.

5.3 Running Time
So far, the focus has been on solution quality within a fixed time window. Since Dataset 1
contains several hundred graphs of various sizes, condensing this data to a single number
or figure can oversimplify the results. For instance, on some graphs, the local search could
quickly get stuck in a local minimum, while on others, an improved solution could be found
after a long time. The interesting feature is how the solution quality changes over time. For
example, the GNN-based approach takes considerable time to construct the initial solution.

SEA 2022



12:14 Efficient Minimum Weight Vertex Cover Heuristics Using Graph Neural Networks

0 500 1,0000

0.5

1

Time per graph (s)

Fr
ac

tio
n

of
gr

ap
hs

so
lv

ed
(a) Cost within 0.1% of best

LS Quick & LS GNN & LS

0 500 1,0000

0.5

1

Time per graph (s)

(b) Cost within 0.5% of best

0 500 1,0000

0.5

1

Time per graph (s)

(c) Cost within 2% of best

Figure 5 Performance profile on Dataset 1 showing the fraction of graphs solved over time,
including different definitions of solved. Before GNN & LS and Quick & LS have solutions to
report on a graph, it counts as not being solved regardless of defined threshold.

However, if that solution is better than what a pure local search could do in the same
amount of time, it would likely be worthwhile. The same argument can be made for the
Quick alternative as well. However, there is no guarantee that this is the case, and a worse
initial solution can produce a better final solution after local search. To show how the
solution quality changes over time, we ran each configuration for 1000 seconds, reporting the
best solution at 10-second intervals.

The results, seen in Figure 5, show that there is a time/quality tradeoff that comes with
the GNN component. When the best solution quality is desired, GNN & LS is the best
choice (Figure 5a). However, since GNN & LS is slowest to produce a feasible solution,
there comes the point where omitting the GNN component becomes beneficial, as shown in
Figure 5c.

5.4 Large Instances

Table 4 Results from Dataset 4. Each configuration ran for 3000 seconds. The best solutions are
indicated in bold.

GNN & LS Quick & LS LS
Graph Cost Time Cost Time Cost Time
webbase-2001 3,440,309,297 311.03 3,442,765,890 176.72 3,539,284,688 62.68
it-2004 1,438,951,442 749.59 1,439,091,400 490.23 1,480,088,254 76.98
GAP-twitter 1,160,408,463 724.04 1,160,512,688 712.48 1,201,023,583 30.18
twitter7 1,160,187,362 763.95 1,160,291,460 680.71 1,200,789,078 29.82
GAP-web 1,861,729,481 2,562.73 1,883,467,468 1,724.99 1,932,504,652 227.39
sk-2005 1,861,502,940 2,797.92 1,882,779,425 1,788.75 1,932,262,816 221.15

Dataset 4 contains six larger graphs to show that our GNN-based approach can scale
beyond the problems sizes investigated in previous work. The results are shown in Table 4,
with GNN & LS giving the best quality on all of these instances. The final solution cost of
GNN & LS and Quick & LS is very similar. This is due to the effect the reduction rules
has on these graphs, as shown in Table 5. They are particularly effective on GAP-twitter
and twitter7, with less than 200,000 vertices left after the initial round of reductions. As
a consequence, no matter how the remaining graphs are solved, the solution quality of the
different methods is very close, but it is relevant that the GNN finds better solutions.



K. Langedal, J. Langguth, F. Manne, and D. T. Schroeder 12:15

Table 5 Reduction rules on Dataset 4.

Graph |V| |E| |V| after reduction
webbase-2001 118,142,155 854,809,760 4,936,598
it-2004 41,291,594 1,027,474,946 8,826,771
GAP-twitter 61,578,415 1,202,513,046 164,512
twitter7 41,652,230 1,202,513,046 165,489
GAP-web 50,636,151 1,810,063,329 16,803,173
sk-2005 50,636,154 1,810,063,329 16,756,003

6 Conclusion and Future Work

We have demonstrated that GNNs can boost the performance of heuristics for the MWVC
problem. We have also introduced a local search implementation for large sparse graphs that
avoids frequently occurring O(|V |) steps. Our complete heuristic also incorporates previously
established reduction rules and an exact solver. Extensive experiments on several hundred
large graphs show that our heuristic significantly outperforms previous methods. We also
demonstrate that every part of our strategy is needed to achieve these results and show that
it can scale to larger graphs than previously considered, including graphs with more than 1
billion edges.

Despite our promising results, it is clear that each component of our strategy can be
improved further based solely on existing work. For instance, the exact solver used on
small connected components could also be significantly improved, evident by the success of
solvers like B & R. The proposed improvements to local search are primarily focused on
implementation, and there is undoubtedly room to include techniques from recent work in
this area as well. Similarly, using a more sophisticated GNN architecture or increasing the
amount of training data is likely to improve the performance. Naturally, it is also possible to
apply the same strategy to new problems. This is something we intend to investigate in the
future.

References

1 Ferhat Ay, Manolis Kellis, and Tamer Kahveci. Submap: aligning metabolic pathways with
subnetwork mappings. Journal of Computational Biology, 18(3):219–235, 2011.

2 Ken Been, Eli Daiches, and Chee Yap. Dynamic map labeling. IEEE Transactions on
Visualization and Computer Graphics, 12(5):773–780, 2006.

3 Shaowei Cai, Wenying Hou, Jinkun Lin, and Yuanjie Li. Improving local search for minimum
weight vertex cover by dynamic strategies. In Proceedings of the Twenty-Seventh International
Joint Conference on Artificial Intelligence, IJCAI-18, pages 1412–1418. International Joint
Conferences on Artificial Intelligence Organization, July 2018. doi:10.24963/ijcai.2018/196.

4 Shaowei Cai, Kaile Su, and Abdul Sattar. Local search with edge weighting and configuration
checking heuristics for minimum vertex cover. Artificial Intelligence, 175(9-10):1672–1696,
2011.

5 Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. arXiv
preprint, 2021. arXiv:2102.09544.

6 Lijun Chang, Wei Li, and Wenjie Zhang. Computing a near-maximum independent set in
linear time by reducing-peeling. In Proceedings of the 2017 ACM International Conference on
Management of Data, pages 1181–1196, 2017.

SEA 2022

https://doi.org/10.24963/ijcai.2018/196
http://arxiv.org/abs/2102.09544


12:16 Efficient Minimum Weight Vertex Cover Heuristics Using Graph Neural Networks

7 Timothy A. Davis and Yifan Hu. The University of Florida sparse matrix collection.
ACM Transactions on Mathematical Software, 38(1), December 2011. doi:10.1145/2049662.
2049663.

8 Alexander Gellner, Sebastian Lamm, Christian Schulz, Darren Strash, and Bogdan Zavalnij.
Boosting data reduction for the maximum weight independent set problem using increas-
ing transformations. In 2021 Proceedings of the Workshop on Algorithm Engineering and
Experiments (ALENEX), pages 128–142. SIAM, 2021.

9 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

10 Demian Hespe, Sebastian Lamm, Christian Schulz, and Darren Strash. WeGotYouCovered:
The winning solver from the pace 2019 challenge, vertex cover track. In 2020 Proceedings of
the SIAM Workshop on Combinatorial Scientific Computing, pages 1–11. SIAM, 2020.

11 Tomokazu Imamura and Kazuo Iwama. Approximating vertex cover on dense graphs. In
Symposium on Discrete Algorithms: Proceedings of the sixteenth annual ACM-SIAM symposium
on Discrete algorithms, volume 23, pages 582–589, 2005.

12 Raka Jovanovic and Milan Tuba. An ant colony optimization algorithm with improved
pheromone correction strategy for the minimum weight vertex cover problem. Applied Soft
Computing, 11(8):5360–5366, 2011.

13 Richard M Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

14 Marek Karpinski and Alexander Zelikovsky. Approximating dense cases of covering problems.
Citeseer, 1996.

15 Asifullah Khan, Anabia Sohail, Umme Zahoora, and Aqsa Saeed Qureshi. A survey of the
recent architectures of deep convolutional neural networks. Artificial Intelligence Review,
53(8):5455–5516, December 2020. doi:10.1007/s10462-020-09825-6.

16 Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv preprint, 2016. arXiv:1609.02907.

17 Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F Werneck.
Finding near-optimal independent sets at scale. In 2016 Proceedings of the Eighteenth Workshop
on Algorithm Engineering and Experiments (ALENEX), pages 138–150. SIAM, 2016.

18 Sebastian Lamm, Christian Schulz, Darren Strash, Robert Williger, and Huashuo Zhang.
Exactly solving the maximum weight independent set problem on large real-world graphs. In
2019 Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments
(ALENEX), pages 144–158. SIAM, 2019.

19 Ruizhi Li, Shuli Hu, Shaowei Cai, Jian Gao, Yiyuan Wang, and Minghao Yin. NuMWVC: A
novel local search for minimum weighted vertex cover problem. Journal of the Operational
Research Society, 71(9):1498–1509, 2020.

20 Yuanjie Li, Shaowei Cai, and Wenying Hou. An efficient local search algorithm for minimum
weighted vertex cover on massive graphs. In Asia-Pacific Conference on Simulated Evolution
and Learning, pages 145–157. Springer, 2017.

21 Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph
convolutional networks and guided tree search. arXiv preprint, 2018. arXiv:1810.10659.

22 Sk Md Abu Nayeem and Madhumangal Pal. Genetic algorithmic approach to find the
maximum weight independent set of a graph. Journal of Applied Mathematics and Computing,
25(1):217–229, 2007.

23 Bruno Nogueira, Rian G.S. Pinheiro, and Anand Subramanian. A hybrid iterated local
search heuristic for the maximum weight independent set problem. Optimization Letters,
12(3):567–583, 2018.

24 Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organiz-
ation in the brain. Psychological Review, 65(6):386, 1958.

https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1145/2049662.2049663
https://doi.org/10.1007/s10462-020-09825-6
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.10659


K. Langedal, J. Langguth, F. Manne, and D. T. Schroeder 12:17

25 Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

26 Changbing Tang, Ang Li, and Xiang Li. Asymmetric game: A silver bullet to weighted vertex
cover of networks. IEEE Transactions on Cybernetics, 48(10):2994–3005, 2017.

27 Yang Wang, Zhipeng Lu, and Abraham P Punnen. A fast and robust heuristic algorithm for
the minimum weight vertex cover problem. IEEE Access, 9:31932–31945, 2021.

SEA 2022





A Branch-And-Bound Algorithm for Cluster Editing
Thomas Bläsius #

Karlsruhe Institute of Technology, Germany
Philipp Fischbeck #

Hasso Plattner Institute, Potsdam, Germany

Lars Gottesbüren #

Karlsruhe Institute of Technology, Germany
Michael Hamann
Karlsruhe Institute of Technology, Germany

Tobias Heuer #

Karlsruhe Institute of Technology, Germany
Jonas Spinner #

Karlsruhe Institute of Technology, Germany

Christopher Weyand #

Karlsruhe Institute of Technology, Germany
Marcus Wilhelm #

Karlsruhe Institute of Technology, Germany

Abstract
The cluster editing problem asks to transform a given graph into a disjoint union of cliques by
inserting and deleting as few edges as possible. We describe and evaluate an exact branch-and-bound
algorithm for cluster editing. For this, we introduce new reduction rules and adapt existing ones.
Moreover, we generalize a known packing technique to obtain lower bounds and experimentally show
that it contributes significantly to the performance of the solver. Our experiments further evaluate
the effectiveness of the different reduction rules and examine the effects of structural properties of
the input graph on solver performance. Our solver won the exact track of the 2021 PACE challenge.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases cluster editing

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.13

Supplementary Material
Software (Source Code): https://github.com/kittobi1992/cluster_editing
Software (Source Code): https://doi.org/10.5281/zenodo.4892524

Funding Michael Hamann: This work was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under grant WA 654/22-2.

Acknowledgements We thank Darren Strash for helpful discussions and literature research.

1 Introduction

In graph clustering, the goal is typically to partition the vertices into clusters such that
there are many edges inside and few between clusters. The most clear-cut cases are so-called
cluster graphs in which each connected component forms a clique. Thus, with one cluster for
each connected component, there are no edges between clusters and all possible edges inside
clusters exist. The cluster editing problem asks to use as few edge insertions and deletions as
possible to transform a given graph into a cluster graph; thereby computing a clustering.

The cluster editing problem is NP-hard [18] and thus we cannot expect to solve it efficiently
in general. Nonetheless there are algorithmic approaches using reduction rules [11, 12, 14] or
search trees [8, 15]. The theoretically fastest known algorithm is by Böcker [7] with a running
time of O(1.62k + n + m), where k is the number of edits (edge insertions plus deletions)
and n, m are the number of vertices and edges of the graph, respectively. To encourage
development and implementation of practical algorithms, the challenge of PACE 2021 [16]
was to solve cluster editing. Our solvers won the exact [4] and heuristic [3] track.

In this paper, we describe the details of our exact solver [4] and present an in-depth
evaluation. Roughly speaking our solver is a branch-and-bound algorithm: Whenever possible,
we apply reduction rules to shrink the instance. When no reductions apply, we branch on the

© Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas
Spinner, Christopher Weyand, and Marcus Wilhelm;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 13; pp. 13:1–13:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.blaesius@kit.edu
mailto:philipp.fischbeck@hpi.de
mailto:lars.gottesbueren@kit.edu
https://orcid.org/0000-0003-1895-5828
https://orcid.org/0000-0002-6958-4927
mailto:tobias.heuer@kit.edu
mailto:jonas.spinner@student.kit.edu
mailto:christopher.weyand@kit.edu
https://orcid.org/0000-0003-0354-6650
mailto:marcus.wilhelm@kit.edu
https://orcid.org/0000-0002-4507-0622
https://doi.org/10.4230/LIPIcs.SEA.2022.13
https://github.com/kittobi1992/cluster_editing
https://doi.org/10.5281/zenodo.4892524
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


13:2 A Branch-And-Bound Algorithm for Cluster Editing

decision whether to put a pair of vertices in the same or in different clusters. To reduce the
size of the resulting search tree, we compute lower bounds on the optimal solution and prune
subtrees where the lower bound exceeds the upper bound computed by our heuristic solver.

Our lower bounds are based on so-called packings of small substructures for which we
know optimal solutions. This approach has been used before to solve related problems [13]
and for cluster editing in particular by packing paths of length 3 [15]. We generalize this
approach to support larger substructures and weighted1 instances; see Section 3.2. For the
reduction rules, we use various rules from the literature [2, 9, 11, 12, 13, 14] as well as newly
developed ones; see Section 3.3. One type of reduction rule are so-called forced choices that
essentially look ahead one branching step, e.g., if putting two vertices in different clusters
would yield a lower bound exceeding the upper bound, one must put them in the same cluster.
Thus, the lower bounds and the reduction rules are intertwined in the sense that better lower
bounds lead to more applications of the forced choices rules. In Section 4 we evaluate how
effective and efficient different reductions and lower bounds are, using the instances from
the PACE challenge. Additionally, we evaluate our algorithm on geometric inhomogeneous
random graphs [10], which lets us study scaling behavior of our solver and its efficiency
depending on certain instance properties. Our main findings are summarized as follows.

The instances we can solve are usually already solved by just the reduction rules, i.e.,
once we have to apply branching we usually do not find a solution within reasonable time.
The forced choices reduction rules are by far the most effective rules. This identifies good
lower bounds as the key ingredient of our algorithm.
Using packings of stars instead of paths of length 3 is still computationally feasible and
yields substantially better lower bounds.
The solver performs better on graphs with low average degree and if the graph is well-
clusterable.
The upper bounds computed by our heuristic solver are exceptionally good. In fact, the
heuristic solver found an optimal solution on all instances where we know it.

2 Preliminaries

Let G = (V, E) be a simple, undirected graph. The cluster editing problem asks to transform
G into a disjoint union of cliques with the least number of edge edit operations. An edit is
the deletion of an existing edge or the insertion of a missing edge. As a graph is a disjoint
union of cliques if and only if it does not contain an induced path on three vertices (a P3),
the problem can also be seen as P3-free editing.

The weighted cluster editing problem replaces the set of edges with a symmetric cost
function s : V × V 7→ Z. If s(uv) > 0, the pair uv is considered an edge with a deletion cost
of s(uv). For s(uv) < 0 the pair uv is a non-edge with an insertion cost of −s(uv). A vertex
pair with s(uv) = 0 is called a zero-edge that can be inserted or deleted for free. A solution
to the weighted cluster editing problem is a partition of vertices. We associate a solution
K with its corresponding equivalence relation ≡K . The cost of K for the instance (V, s) is
defined as the total cost of edges between clusters and non-edges inside clusters. That is,

cost(K, s) =
∑

s(uv)>0
u̸≡K v

|s(uv)| +
∑

s(uv)<0
u≡K v

|s(uv)|.

1 Though the input is unweighted, our reduction rules as well as the branching lead to weighted instances.



T. Bläsius et al. 13:3

3 A Branch-and-Bound Algorithm For Cluster Editing

Our algorithm uses branch-and-bound to solve the decision variant of cluster editing, which
asks if there exists a solution with a cost of k or less. The optimization problem is solved
by calling the decision variant with increasing values of k. At its core our algorithm is a
simple recursive subroutine that computes a kernel by applying reductions, returns if the
lower bound for the remaining instance is above k, and otherwise branches on the inclusion
or exclusion of an edge in the solution, introducing permanent and forbidden edges into the
instance. We select the edge to branch on by highest edit cost and tiebreak by the number
of P3s that overlap this edge. As outlined by Böcker et al. [7, 8], the endpoints of permanent
edges can immediately be merged to obtain an equivalent weighted instance2 of smaller size.

Since branching creates weighted instances, we initially apply a series of reductions that
are only possible for unweighted instances before we run the recursive branch-and-bound
algorithm. Furthermore, we split the initial instance into connected components and solve
them separately because an optimal solution never connects them.

In the following we discuss the different parts of our algorithm. In Section 3.1, we mention
our approach to obtain upper bounds. Section 3.2 introduces and generalizes the concept of
lower bounds via conflict packings. Finally, we list the used reduction rules and explain their
application in our algorithm in Section 3.3.

3.1 Upper Bounds
An upper bound for the optimal solution is crucial for any branch-and-bound algorithm to
identify and prune branches that cannot lead to an optimal solution. For this, we use our
heuristic solver that won the heuristic track of the 2021 PACE challenge [3]. The heuristic
solutions are optimal on all 173 of the 200 test instances for the exact track we were able to
solve (see Section 4). We refer to the solver description [3] for details about the algorithm.

3.2 Lower Bounds
For lower bounds, we use an idea from recent solvers for this and other similar problems [6,
13, 15]. The idea is to find a large set of vertex-pair disjoint P3s. Recall that cluster editing
can be seen as P3-free editing. We call such a set a conflict-packing or packing for short.
Since each P3 in a packing needs at least one edit to resolve and no edit overlaps with more
than one conflict, the size of the set is a lower bound on the required number of edits.

Finding a maximum disjoint set of conflicts is an independent set problem, which is
hard to solve in general. We are not aware of complexity results for independent set on
this specific kind of intersection graph. Hartung et al. [15] use the commonly known small
degree heuristic and some random perturbation to find a maximal set of P3s. Gottesbüren et
al. [13] also use the concept of a conflict packing in their algorithm for the quasi-threshold
editing problem, i.e., {C4, P4}-free editing. They propose to use a local search with random
replacements and the 2-improvement heuristic for independent set to grow the packing [1].

With these heuristics, good P3 packings can be found in reasonable time. However, P3
packings have two major drawbacks. First, they are defined only for unweighted instances
while the best known branch-and-bound algorithms for cluster-editing work on weighted
instances [7, 8]. Second, each P3 has two edges and one non-edge. Therefore a P3 packing can
never be larger than |E|/2 while many difficult instances require more than |E|/2 edits. We
propose a framework to circumvent both these drawbacks by generalizing conflict packings.

2 Forbidden edges have a weight of negative infinity.

SEA 2022



13:4 A Branch-And-Bound Algorithm for Cluster Editing

We call two cost functions a, b : V ×V 7→ Z conflicting if there is a vertex pair uv that is a
non-edge in (V, a) and an edge in (V, b) or vice versa, i.e., if |a(uv)+b(uv)| < |a(uv)|+ |b(uv)|.
Let a + b denote the element-wise addition of the functions a, b, that is, (a + b)(uv) =
a(uv) + b(uv). We call a set of cost functions P a packing for the instance (V, s) if (1) they
are pairwise non-conflicting, (2) they are non-conflicting with s, and (3) they do not exceed s

in any vertex pair, that is
∑

p∈P |p(uv)| ≤ |s(uv)|. Note that
∑

p∈P |p(uv)| = |
∑

p∈P p(uv)|
because of property (1). Also note that property (1) actually follows from (2) and (3).

▶ Theorem 1. For packing P of the instance (V, s),
∑

p∈P opt(V, p) ≤ opt(V, s).

The theorem states that we can pack structures together and sum their lower bounds to
obtain a lower bound for the initial instance. A P3, for example, is represented by a cost
function that is zero throughout except for its three (non-)edges. Therefore, the concept
generalizes P3 packings to weighted instances. Moreover, our formulation of a packing allows
for other structures than P3s. Recall that P3 packings have the drawback that they cannot
exceed |E|/2. To remedy this, we have to find other structures that have a better lower
bound to edge ratio. Actually, a star Sk with k leaves (thus k edges and

(
k
2
)

non-edges)
cannot be solved with less than k − 1 edits. Coincidentally, a P3 is a star with two leaves.
One can even generalize from stars to complete bipartite graphs Ka,b which cannot be solved
in less than a · (b − 1) edits. A star Sk is just a K1,k. So there is a tradeoff between structures
that are easy to find and pack and structures that have strong lower bounds.

We implemented a P3 packing, a star packing, and a Ka,b packing. In preliminary
experiments, we observed that the quality of star and Ka,b packings were similar while star
packings were easier, and thus slightly quicker, to compute. We thus focus on star bounds in
the following. Our implementation of the star packing builds upon the P3 packing described
by Gottesbüren et al. [13]. They go through all items in the packing and try to replace
one with two currently not in the packing. To not get stuck in a local optimum, they also
randomly replace an item with one other item with a small probability when it cannot be
replaced by two new ones. We make three major changes. First, we introduce more mutations
that change the lower bound by exactly one. For P3s, the packing grows by removal of one
P3 and insertion of two new ones in its place. We never insert or remove stars with more
than two leaves. Instead, we add the option to add/remove a leaf. Second, when possible
we merge a star with another existing star instead of mutating it. The merge increases the
lower bound of the packing by one. Third, we relax the termination condition for the local
search. They stop if the packing does not grow for five iterations. In contrast, we continue
while the average number of improving iterations is still above one in five, i.e., five times the
number of improving iterations is greater or equal the number of total iterations. This leads
to better packings for instances that benefit from longer local search while still being fast on
instances that quickly hit a local maximum. Finally note that the packing is weighted but
we only pack or modify unweighted structures. For performance, however, we associate an
integer weight with each star to represent multiple identical overlapping stars.

3.3 Reduction Rules
There exist various reduction rules [2, 9, 11, 12, 13, 14] and we introduce additional ones
(Forced Choices Single Merge and Clique-Like Subgraph). In the following, we discuss the
reduction rules used by our solver and go into detail on how our solver applies the rules.

Twin Simple [14]. This rule merges vertices with identical neighborhoods and is part of
the unweighted 4k kernel based on critical cliques [14]. The rule originally only works for
unweighted instances. We generalize it to a pair of vertices in the weighted setting as follows.



T. Bläsius et al. 13:5

We can merge u and v with s(uv) ≥ 0 if their edit cost to every other vertex differs by
the same constant positive factor, i.e., there exists a c > 0 such that s(uw) = c · s(vw) for
every other vertex w. The correctness proof is analogous to the unweighted case and goes
roughly as follows. If v being in a certain cluster produces cost X, then u being in this
cluster produces cost cX. Thus, the cheapest cluster for v is also the cheapest cluster for u,
though there could be multiple equally cheap clusters. In the latter case it is nonetheless still
not worse to put u and v together as s(uv) ≥ 0. We note that applying this rule repeatedly
to an initially unweighted instance merges all critical cliques.

Twin Complex [9, Rule 5]. Let u, v be two nodes that are connected with an edge. The
rule considers, for all possible ways to separate them into different cliques, the worst case
cost of moving one into the clique of the other. If deleting the edge uv is at least as expensive
as this worst case, then there is an optimal solution with u, v in the same clique and the edge
can be contracted. The rule is checked with a dynamic programming (DP) approach [9].

Unfortunately, the DP degenerates when dealing with forbidden edges, i.e., edges with
cost −∞. In the following, we discuss why this problem exists and what we did to fix it. If u

and v have a similar neighborhood, then there is no worst case where both, moving u into v’s
clique or vice versa, are expensive. Intuitively, the rule works because one of the two options
is always cheap. Now consider a vertex w with non-edges to u and v. If another reduction
finds the edge uw to be forbidden, i.e., s(uw) = −∞, then two things happen to the DP.
First, the solutions that put u and w in the same clique can be ignored, which is beneficial
as it makes it more likely that v can be moved into the clique of u. Second, the worst case
will put w and v together, which makes it impossible to move u into the cluster of v. Thus,
due to the second implication, knowing that uw is forbidden can have a detrimental effect
on the applicability of the reduction rule. In fact, the DP degenerates to the point that not
even true twins (except for the forbidden edge to w) can be merged. To circumvent this
problem, we remember the edit cost for edges that are marked forbidden throughout the
whole algorithm. In the DP we then use the original weights (getting rid of the downside
due to the second aspect) but still skip solutions that put forbidden node pairs in the same
clique (still using the upside of knowing uw is forbidden for the first aspect).

Induced Cost Forbidden/Permanent (icf,icp) [9]. Let ∆ denote the symmetric difference.
The induced costs for setting a vertex pair to forbidden (icf) or permanent (icp) are

icf(uv) =
∑

w∈N(u)∩N(v)

min{s(uw), s(vw)}

icp(uv) =
∑

w∈N(u)∆N(v)

min{|s(uw)|, |s(vw)|}.

If the induced cost of setting a vertex pair to forbidden (icf) exceeds the current budget,
then the pair must be merged. If the induced cost of setting a vertex pair to permanent (icp)
exceeds the current budget, then the pair must be forbidden.

Heavy Non-Edge [9, Rule 1]. If s(uv) < 0 and |s(uv)| ≥
∑

w∈N(u) s(uw), i.e., inserting
the edge uv is at least as expensive as isolating u by cutting all of its edges, one can set uv

to forbidden, forcing u and v to be in different clusters.

Heavy Edge, Single End [9, Rule 2]. If s(uv) ≥
∑

w∈V \{u,v} |s(uw)|, i.e., deleting uv is at
least as expensive as editing all other pairs involving u, one can merge u and v.

SEA 2022



13:6 A Branch-And-Bound Algorithm for Cluster Editing

Heavy Edge, Both Ends [9, Rule 3]. If s(uv) ≥
∑

w∈N(u)\{v} s(uw) +
∑

w∈N(v)\{u} s(vw),
i.e., deleting uv is at least as expensive as deleting all other edges adjacent to u and v, one
can merge u and v, as it is always better to let u and v form their own cluster of size 2 than
to separate them.

Distance Three Rule [2]. Two vertices with distance three or more cannot be in the same
cluster in an optimal solution. Therefore, all vertex pairs with distance three or more are
initially marked as forbidden. This does not apply to weighted instances.

Forced Choices, all Pairs [13]. If setting an edge to forbidden or permanent would raise
the lower above the upper bound, then the opposite edit must be performed. In other words,
we identify an edge where, if branched on it, one branch would be pruned immediately.

A naive implementation of this rule is too slow as it requires a quadratic number of lower
bound (i.e. packing) computations [13]. However all these packings are similar. Given a
packing lower bound for the instance, we locally modify the packing for each vertex pair
to obtain the required bounds. Because a packing changes only locally, this can be done
significantly faster than computing

(
n
2
)

packing lower bounds from scratch.

Forced Choices, Single Merge. Updating the lower bounds as in the previous rule is usually
worse than computing the bounds from scratch. Thus, we additionally identify a constant
number of edits that are unlikely to be included in the optimal solution and compute lower
bounds for them from scratch. Specifically, we choose five vertex pairs and test if editing
them to non-edges would be too expensive so that the rule produces a merge when applicable.
We do not test for the converse because merges are far more rewarding than finding a single
forbidden edge. To choose the five pairs, a heuristic estimates in advance which pairs would
produce the highest cost when set to non-edges. Criteria for this heuristic are the cost of the
edit as well as the number of overlapping P3s with the vertex pair before and after the edit.

Clique-Like Subgraph. Given the instance (V, s) and the subset C ⊂ V , we define the
C-subinstance (V, sC) by setting sC(u, v) = s(u, v) if u ∈ C or v ∈ C and sC(u, v) = 0
otherwise, i.e., if u, v ∈ V \ C. With this, we prove the following theorem.

▶ Theorem 2. Let (V, s) be an instance of Weighted Cluster Editing, and let C ⊂ V be
a set of vertices. If an optimal solution for the C-subinstance isolates C into its own cluster,
then there is an optimal solution for (V, s) that does so as well.

The rule can be checked by solving the C-subinstance. We note that the instance (V, sC)
is likely easier than (V, s) due to the following observation. When looking at the graph
with vertex set V with an edge between u and v if s(u, v) > 0, then we expect the closed
neighborhood N [C] of C to be rather small. Moreover, for a vertex u ∈ V \ N [C] and any
other vertex v ∈ V , we have sC(u, v) = 0. Thus, we know that there is an optimal solution
of (V, sC) that has u as singleton, which reduces the instance to only the vertices in N [C].

Reduction Order

Reductions are checked sequentially in a certain order. If one reduction was applied, the
process rechecks all reductions starting with the first one. Before the loop repeats, a new
lower bound is computed to check if the current branch can be pruned. We chose the order
of reductions by decreasing effectiveness. The forced choices reductions are the most effective



T. Bläsius et al. 13:7

reductions and come first. Twin Complex is also very effective, but we do Twin Simple before
that because it is faster and already catches some cases for Twin Complex. The remaining
reductions run in O(n3) each with low constant factors so their order does not matter as
much. The final order of reductions that are checked during the branching algorithm is:

1. Forced Choices, all Pairs (Star)
2. Forced Choices, all Pairs (P3)
3. Twin Simple
4. Twin Complex
5. Induced Cost Forbidden/Permanent
6. Heavy Edge, Both Ends
7. Heavy Edge, Single End
8. Heavy Non-Edge

The initial instance is reduced differently. The Distance Three rule is applied once before
the reduction loop since it is only applicable to unweighted instances. Then, the Clique-Like
Subgraph reduction checks the clusters that are found by the heuristic solver. The optimal
solution for the subinstances is computed with the exact solver itself. To keep the running
time reasonable we skip subinstances with 50 vertices or more and run the solver with a
timeout of 5 seconds. Finally, the other reductions are applied in a loop. During the loop, the
order differs in three aspects from the order given in the list above. First, small connected
components are brute-forced before the first item on the list. Second, Forced Choices Single
Merge is added as a last reduction. Third, Force P3 is applied before Force Star.

4 Experiments

In Section 4.1, we discuss the performance of our solver, the efficiency and effectiveness of
the reduction rules, and the quality of lower and upper bounds. In Section 4.2 we perform
scaling experiments and determine how structural properties affect the solver performance
on geometric inhomogeneous random graphs (GIRGs) [10], which are a generalization of
hyperbolic random graphs [17]. As a generative network model, GIRGs can generate a series
of similar instances that differ in a single property such as size, average degree, or clustering.

Setup. The experiments were run single threaded on a 4-Core Intel Xeon E5-1630v3 at
3.7GHz with 128GB DDR4 at 2133MHz. Each run has a soft timeout of one hour except for
Figure 4a where it was 10 minutes per instance. Soft timeout means the current subroutine,
is allowed to finish for the solver to terminate gracefully. To generate GIRGs, we use the
efficient generator by Bläsius et al. [5]. The code for the experiments, raw data, execution
logs, instances, as well as the plotting code can be found in a branch of our public repository3.

4.1 PACE Instances
In the following, we use the public and hidden instances from the 2021 PACE challenge to
evaluate our solver. They represent a well balanced selection of instances from bioinformatics
and data mining as well as randomly generated ones. Moreover, they are publicly available

3 https://github.com/kittobi1992/cluster_editing/tree/experiments

SEA 2022

https://github.com/kittobi1992/cluster_editing/tree/experiments


13:8 A Branch-And-Bound Algorithm for Cluster Editing

0 100 200 300 400 500 600
n

0

100

101

102
in

iti
al

 g
ap

unsolved
solved with branching
empty kernel

(a) The initial gap between lower and upper bound.

0 25 50 75 100 125 150 175 200
instance

0

100

200

300

400

500

600

n

input w/o isolated cliques
input as is

(b) Vertices before/after removing isolated cliques.

Figure 1 For the 200 PACE instances, the gap between upper and initial lower bound (left) and
the number of vertices per instance (right). In the left plot, the color indicates if an instance was
solved by reductions only, needed branching, or remained unsolved in the given one-hour time limit.

at the PACE website4. We discuss the effectiveness and efficiency of individual reduction
rules as well as their combination used in the solver. Then, we compare the quality of the
greedy upper bound to the lower bounds obtained by the P3 and star packing, respectively.

Solver Performance. In total, the algorithm solves 173 of the 200 instances from the PACE
challenge with a timeout of one hour. Most instances finish significantly faster than that;
98 are solved in just one second and 160 finish in under a minute. Figure 1a shows for
each instance if it was solved and whether reductions produce an empty kernel or branching
was necessary. The axes correspond to the number of nodes and the initial gap between
upper and lower bound. The gap is a good indicator of difficulty for our solver while the
number of nodes seems unrelated to difficulty. All unsolved instances have a gap above 10.
Surprisingly, 151 instances are solved with reductions alone. For a comparative evaluation of
solver performance with other state-of-the-art algorithms, we refer to the official report of
the 2021 PACE challenge [16]. On the hardware used in the actual challenge and a 30 min
timeout, our algorithm solved 171 instances, while the second best submission solved 160.

Reduction Effectiveness. To evaluate the effectiveness of the reduction rules, we compute
a kernel with each rule separately, i.e., apply the rule exhaustively with a soft timeout of
one hour. This results in one kernel per combination of rule and instance. Before the kernel
is computed we apply the Distance Three reduction rule which marks all vertex pairs in
distance three or more as forbidden. Isolated cliques are removed from the input instance
and once more from the final kernel. Figure 1b shows the size of the instances with and
without the removal of isolated cliques. The results of the kernelization experiments can be
seen in Figure 2. Each plot has a box for each reduction rule which represents the kernels
made with this rule. There are two columns; the left one includes all instances while the right
one only includes instances where the initial star bound does not match the upper bound.
The instances with a gap between upper and lower bound represent more difficult instances
for the solver thus making reductions more valuable on them. The rules force p3 and force
star refer to the Forced Choices, all Pairs reduction with the respective lower bound. The
combination of the Induced Cost Forbidden and Permanent rules is labeled with icx. We

4 https://pacechallenge.org/

https://pacechallenge.org/


T. Bläsius et al. 13:9

0

20

40

60

80

100

ke
rn

el
 si

ze
 in

 %

all instances instances with gap>0

0

20

40

60

80

100

fo
un

d 
ed

its
 in

 %
 o

f u
pp

er
 b

ou
nd

101

100

0
100

101

102

ke
rn

el
 g

ap
 - 

in
iti

al
 g

ap

all 
red

s

for
ce 

p3

for
ce 

sta
r

tw
in 

sim
ple

tw
in 

com
ple

x icx

he
av

y e
dg

e (
b)

he
av

y e
dg

e (
s)

he
av

y n
on

-ed
ge

for
ced

 sin
gle

 m
erg

e
100

101

102

103

104

105

106

107

tim
e 

in
 m

s

all 
red

s

for
ce 

p3

for
ce 

sta
r

tw
in 

sim
ple

tw
in 

com
ple

x icx

he
av

y e
dg

e (
b)

he
av

y e
dg

e (
s)

he
av

y n
on

-ed
ge

for
ced

 sin
gle

 m
erg

e

Figure 2 Kernels of PACE instances for each reduction rule. The rows show size, found edits,
absolute gap change and time to compute the kernels. The left column includes all 200 instances
while the right includes only the 121 instances with non-matching upper and lower bound. The label
all reds refers to a combination of all other listed reduction rules.

SEA 2022



13:10 A Branch-And-Bound Algorithm for Cluster Editing

also compute a kernel using all reduction rules (labeled as all reds) in the combination and
order they are used by our solver to reduce the initial instance (see Section 3.3) excluding
the brute-force of small components and the Clique-Like Subgraph reduction.

To evaluate the quality, we use three different measures. First, the number of vertices in
the kernel, second, the number of edits that are already found, and third, whether the lower
and upper bound get closer after computing the kernel. The number of vertices is a typical
metric for kernel quality. For the second measure, the existence of an FPT algorithm for
cluster editing indicates that the difficulty of the problem (the exponential part) is due to the
size of the solution (the number of edits) rather than the size of the instance. In that sense,
the percentage of edits that are already found during kernelization is a better indicator for
progress towards a solution than instance size. The third measure, the gap between upper
and lower bound, represents the difficulty of the kernel for any branch-and-bound solver
using the lower bound that was used to compute the gap. With the change of the gap we
estimate whether the kernel is easier or harder for our algorithm than the initial instance.

The first row shows the number of vertices in the produced kernels relative to the size of
the initial instance without isolated cliques. The icx rules, both heavy edge rules and the
heavy non-edge rule do not reduce the instance in the median. The heavy non-edge rule finds
only forbidden edges. Therefore, the only way this rule could possibly reduce the number of
vertices is by isolating a clique that is removed by our postprocessing. The simple twin and
complex twin reductions are more effective with the complex twin producing smaller kernels.
The non-zero gap instances prove to be harder for the twin reductions but the rules still
find some application. The reductions based on forced choices produce the smallest kernels
with an average size of 26% for force star, 44% for force P3 and 36% for forced single merge.
Best of all is the combination of all reduction rules that produces an empty kernel on more
than 75% of instances and more than 50% of instances with a positive gap. On average, all
reds reduces the instance to a size of 18%. While not explicitly shown, the instances with
zero gap are interesting, too. The force star and the forced single merge reductions should
produce an empty kernel in this case. While they indeed always apply initially, they do
not always produce an empty kernel. This is because after the instance was reduced a few
times it becomes weighted. Computing good packings for weighted instances becomes more
difficult and might not be sufficient for the forced choices rules. In case of the forced single
merge, the larger instances time out before the kernel is finished. Both these phenomenon
happen rather rarely. On zero-gap instances the forced star produces a kernel size of 1.26%
on average and 5.08% for forced single merge.

The second row shows the number of found edits that must be included in an optimal
solution, i.e., the value that k is lowered by during kernelization. This value is normalized
relative to the upper bound and represents another kind of progress towards solving the
instance. The higher this value, the fewer choices remain to be fixed to solve the instance.
Note that the values should be inverted when comparing with kernel size because for this plot
100% means solved while for instance size 0% means solved. Most reductions indicate similar
results as for the kernel size. A notable exception is the simple twin rule. Since this rule
only merges vertices with identical neighborhood, it never produces any cost but just reduces
the instance. Interestingly, the progress made due to found edits is slightly better than the
kernel size for the forced choices rules. For example, the force p3 kernel finds ca. 90% of edits
in the median while the median kernel shrinks the instance by less than 80%. Since cluster
editing is FPT in the number of edits, this is contrary to the expectation that the number of
edits instead of the size of the instance should be responsible for the instance difficulty.



T. Bläsius et al. 13:11

star bound p3 bound

0.70

0.75

0.80

0.85

0.90

0.95

1.00
bo

un
ds

 re
la

tiv
e 

to
 u

pp
er

 b
ou

nd

(a) Lower bounds via P3, star packing (all instances).

star bound p3 bound optimum

0.70

0.75

0.80

0.85

0.90

0.95

1.00

bo
un

ds
 re

la
tiv

e 
to

 u
pp

er
 b

ou
nd

(b) Lower bounds and optimum for solved instances.

Figure 3 Packing lower bounds via P3 and star packings on all instances (left) and on solved
instances (right). The right plot additionally contains a column for the optimum. All values are
relative to the respective upper bound for the instance. Note that the y-axis ranges from 0.7 to 1.0.

The third row shows the absolute change in gap after the kernel was computed, i.e., how
much the difference between upper and lower bound has changed due to the kernelization.
The y-axis uses symmetric log-scaling. A positive value means the gap grew and a negative
value means the gap shrank. It might seem unintuitive that the gap can grow as previous
lower bounds (before kernelization) still hold for the kernel. To explain this, consider two
types of progress. The number of performed edits is hard progress, the lower bound represents
soft progress. Once the total progress reaches the upper bound, the instance is solved. Hard
progress is final but soft progress is temporary in the sense that, when actually solving the
remaining instance, each reduction or branching step produces a new instance for which it
might be more difficult to find good lower bounds. In general, there is no clear tendency for
any reduction rule to only grow or only shrink the gap. The variance is very high to both
sides. Thus, the inaccessibility of the kernel for soft progress sometimes outweighs the hard
progress. In other cases it is the other way round or soft progress is even easier to achieve
on the kernel. This is, e.g., the case for the simple twin rule, which makes no hard progress
at all but has outliers to both sides. The median gap change is zero when looking at all
instances. This is not surprising since 79 of the 200 instances already start with a gap of
zero. For instances with a non-zero initial gap (the right column), the combination of all
reductions actually reduces the gap by one for the median instance.

Reduction Efficiency. To evaluate the kernels by performance, we measure the time it takes
to compute them. The last row of Figure 2 shows the results. The y-axis is logarithmic.
Note that the highest outliers are approximately at 3.6 · 106ms which equals the soft timeout
of one hour. All but the forced choices rules have a comparable run time with less than
100ms for more than 75% of the instances. Of these rules, just the twin complex and the
icx rule have outliers over 1s and are in general the slowest of the non-forced choices rules.
Note that the icx rule can be exhaustively applied in time O(n3) which is the same time one
execution of the rule takes [8]. We instead apply the rule repeatedly since its run time is
dominated by the forced choices rules. In the median, force p3 is slightly below 100ms, force
star takes just above 1s, and forced single merge approximately one minute. All reductions
combined are faster than force star but slower than force p3. Since all reductions produce by
far the best kernels, this speaks for the order in which they are applied.

SEA 2022



13:12 A Branch-And-Bound Algorithm for Cluster Editing

7 8 9 10 11 12 13
deg

0.0

0.2

0.4

0.6

0.8
T

Num Solved
0
2
4
6
8
10

(a) Number of solved instances by T and degree.

100 120 140 160 180 200
n

0

5

10

15

20

in
iti

al
 g

ap

unsolved
solved with branching
empty kernel

(b) The initial gap between lower and upper bound.

Figure 4 Solved instances by degree and T (left) and the initial gap on growing GIRGs (right).
The colors in the right plot indicate if an instance was solved by reductions only, needed branching,
or remained unsolved in the given time limit. The left plot maps color and size to solved instances.

Bound Quality. Figure 3 compares the P3 bound, the star bound, and the optimum
solution. The values are given relative to the upper bound computed for the instance.
Figure 3a aggregates this over all instances while Figure 3b contains only solved instances
and additionally shows the optimum solution. Note that the y-axis begins at 0.7 which
means that even the worst outlier is already fairly good. The first observation is that the
optimum is at 1.0 relative to the upper bound with no variance between instances. In fact,
the upper bound from our heuristic solver matches the optimum on all 173 instance we can
solve. Therefore, the lower bounds can be considered relative to the optimum; at least for
the right plot. In total, the star bound is significantly better than the P3 bound with all but
one instances having a bound at more than 90% of the upper bound. The orange line for the
median is only slightly lower for P3 compared to the star bound but in this context this is
huge. The number of edits in an optimal solution is approximately 1800 on average and goes
as high as 27000. In contrast to this, we did not solve any instance with an initial gap of
more than 30 (see Figure 1a), which is less than 2% of the 1800 edits needed on average.
The average gap over all instances is 123 for P3 and 15 for the star bound. Of course the
average is heavily biased by the huge number of edits for the larger instances. Nevertheless,
the 75th percentile ordered by absolute gap represents a gap of 43 for P3 and 9 for the star
bound, which makes the difference between solvable and unsolvable in this context.

4.2 Scaling Experiments
We use geometric inhomogeneous random graphs [10] to benchmark the solver for a growing
number of vertices, temperature, and average degree. Unless noted otherwise, the number
of vertices is 150, the average degree is ten, the power-law exponent describing the degree
distribution is 2.9, the temperature parameter, which controls the degree of clustering, is
zero (meaning high clustering) and the dimension of the ground space torus is two.

Temperature and Average Degree. Figure 4a shows the effect of clustering and average
degree on solver performance. For each combination of temperature and average degree, the
plot shows how many of ten instances were solved in less than ten minutes. There is a clear
threshold behavior that instances with both, high temperature and high average degree, are
rarely solved. High average degree (13) and low temperature (0.0) is manageable with four



T. Bläsius et al. 13:13

100 110 120 130 140 150 160 170 180 190 200
n

102

103

104

105

106

ru
n 

tim
e 

in
 m

s

(a) Run time in milliseconds on solved instances.

100 110 120 130 140 150 160 170 180 190 200
n

102

103

104

105

106

ru
n 

tim
e 

in
 m

s

(b) Run time in milliseconds for the initial kernel.

Figure 5 The run time of the solver in total (left) and to compute the initial kernel (right).

of ten instances solved; high temperature (0.8) and low average degree (7) even more so with
seven of ten instances solved. In contrast, the algorithm solved only 4 of the 80 instances
with temperature at least 0.6 and average degree at least 10.

Graph Size. Figure 4b gives an overview of which instances could be solved with or without
branching. The axes are the size of the graph and the initial gap between lower and upper
bound. As expected, the instances that could not be solved have a higher gap. Compared to
the PACE instances, fewer can be solved without branching and only one has matching initial
upper and lower bounds. Nevertheless, 41 of these 110 instances are solved by reductions
alone. An instance with only 140 vertices was not solved and has a substantially higher gap
than the others of the same size. GIRGs with the same configuration can vary greatly in
difficulty for our solver. Two instances with 190 nodes and three with 200 nodes are unsolved.

Figure 5a and 5b show the total run time of the solver and the time spent with initial
reductions, respectively. Although the run time of the solver differs up to three orders of
magnitude between instances of the same size, the median time to solve an instance grows
from 100 to 140 vertices. After that, the growth becomes less pronounced such that the
variance makes it hard to estimate a clear trend. Also the last two columns are biased because
of the instances that timed out. We explain the high variance by the comparatively small
range of n that can reliably be solved and the low number of samples. Thus, in the range
from 150 to 200 vertices the random sampling of position and degree distribution affects the
difficulty of the GIRG for our solver more than the size of the graph. Nevertheless, the time
to compute the initial kernel grows steadily with increasing number of nodes (see Figure 5b).

5 Conclusion

We present an exact branch-and-bound algorithm for the cluster editing problem. Moreover,
we propose new reduction rules as well as formalize an improved technique to obtain lower
bounds via subgraph packings, which contributes significantly to the success of the solver.
We evaluate the lower bounds as well as various reductions rules on the instances of the
2021 PACE challenge. The lower bounds match the optimum on 79 of the 173 instances we
were able to solve. For the reduction rules, by far the most effective ones are the rules that
depend on lower bounds to identify forced choices, i.e., edge pairs that must or must not be
edited in any optimal solution. They produce kernels with a small number of vertices and
reduce k (the number of allowed edits) to an even greater extent. Combining all reductions

SEA 2022



13:14 A Branch-And-Bound Algorithm for Cluster Editing

used by the solver produces an empty kernel on more than 75% of all instances. We also
investigate the effect of size, clustering, and density on our algorithm in a scale-free network
model. While the size of the graph has a small effect on performance, the combination of
high density and low clustering produces remarkably hard instances.

References
1 Diogo V. Andrade, Mauricio G. C. Resende, and Renato F. Werneck. Fast local search

for the maximum independent set problem. Journal of Heuristics, 18(4):525–547, 2012.
doi:10.1007/s10732-012-9196-4.

2 Lucas Bastos, Luiz Satoru Ochi, Fábio Protti, Anand Subramanian, Ivan César Martins, and
Rian Gabriel S Pinheiro. Efficient algorithms for cluster editing. Journal of Combinatorial
Optimization, 31(1):347–371, 2016. doi:10.1007/s10878-014-9756-7.

3 Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas
Spinner, Christopher Weyand, and Marcus Wilhelm. PACE solver description: KaPoCE: A
heuristic cluster editing algorithm. In 16th International Symposium on Parameterized and
Exact Computation (IPEC 2021), pages 31:1–31:4, 2021. doi:10.4230/LIPIcs.IPEC.2021.31.

4 Thomas Bläsius, Philipp Fischbeck, Lars Gottesbüren, Michael Hamann, Tobias Heuer, Jonas
Spinner, Christopher Weyand, and Marcus Wilhelm. PACE solver description: The KaPoCE
exact cluster editing algorithm. In 16th International Symposium on Parameterized and Exact
Computation (IPEC 2021), Leibniz International Proceedings in Informatics (LIPIcs), pages
27:1–27:3, 2021. doi:10.4230/LIPIcs.IPEC.2021.27.

5 Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel Penschuck,
and Christopher Weyand. Efficiently generating geometric inhomogeneous and hyperbolic
random graphs. In 27th Annual European Symposium on Algorithms (ESA 2019), pages
21:1–21:14, 2019. doi:10.4230/LIPIcs.ESA.2019.21.

6 Thomas Bläsius, Tobias Friedrich, David Stangl, and Christopher Weyand. An efficient branch-
and-bound solver for hitting set. In 2022 Proceedings of the Symposium on Algorithm Engineer-
ing and Experiments (ALENEX), pages 209–220, 2022. doi:10.1137/1.9781611977042.17.

7 Sebastian Böcker. A golden ratio parameterized algorithm for cluster editing. Journal of
Discrete Algorithms, 16:79–89, 2012. doi:10.1016/j.jda.2012.04.005.

8 Sebastian Böcker, Sebastian Briesemeister, Quang Bao Anh Bui, and Anke Truß. Going
weighted: Parameterized algorithms for cluster editing. Theoretical Computer Science,
410(52):5467–5480, 2009. doi:10.1016/j.tcs.2009.05.006.

9 Sebastian Böcker, Sebastian Briesemeister, and Gunnar W Klau. Exact algorithms for cluster
editing: Evaluation and experiments. Algorithmica, 60(2):316–334, 2011. doi:10.1007/
s00453-009-9339-7.

10 Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random
graphs. Theoretical Computer Science, 760:35–54, 2019. doi:10.1016/j.tcs.2018.08.014.

11 Yixin Cao and Jianer Chen. Cluster editing: Kernelization based on edge cuts. Algorithmica,
64(1):152–169, 2012. doi:10.1007/s00453-011-9595-1.

12 Jianer Chen and Jie Meng. A 2k kernel for the cluster editing problem. Journal of Computer
and System Sciences, 78(1):211–220, 2012. doi:10.1016/j.jcss.2011.04.001.

13 Lars Gottesbüren, Michael Hamann, Philipp Schoch, Ben Strasser, Dorothea Wagner, and
Sven Zühlsdorf. Engineering Exact Quasi-Threshold Editing. In 18th International Symposium
on Experimental Algorithms (SEA 2020), volume 160, pages 10:1–10:14. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.SEA.2020.10.

14 Jiong Guo. A more effective linear kernelization for cluster editing. Theoretical Computer
Science, 410(8-10):718–726, 2009. doi:10.1016/j.tcs.2008.10.021.

15 Sepp Hartung and Holger H. Hoos. Programming by optimisation meets parameterised
algorithmics: A case study for cluster editing. In Learning and Intelligent Optimization, pages
43–58. Springer, 2015. doi:10.1007/978-3-319-19084-6_5.

https://doi.org/10.1007/s10732-012-9196-4
https://doi.org/10.1007/s10878-014-9756-7
https://doi.org/10.4230/LIPIcs.IPEC.2021.31
https://doi.org/10.4230/LIPIcs.IPEC.2021.27
https://doi.org/10.4230/LIPIcs.ESA.2019.21
https://doi.org/10.1137/1.9781611977042.17
https://doi.org/10.1016/j.jda.2012.04.005
https://doi.org/10.1016/j.tcs.2009.05.006
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1007/s00453-009-9339-7
https://doi.org/10.1016/j.tcs.2018.08.014
https://doi.org/10.1007/s00453-011-9595-1
https://doi.org/10.1016/j.jcss.2011.04.001
https://doi.org/10.4230/LIPIcs.SEA.2020.10
https://doi.org/10.1016/j.tcs.2008.10.021
https://doi.org/10.1007/978-3-319-19084-6_5


T. Bläsius et al. 13:15

16 Leon Kellerhals, Tomohiro Koana, André Nichterlein, and Philipp Zschoche. The PACE 2021
Parameterized Algorithms and Computational Experiments challenge: Cluster editing. In
16th International Symposium on Parameterized and Exact Computation (IPEC 2021), pages
26:1–26:18, 2021. doi:10.4230/LIPIcs.IPEC.2021.26.

17 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián
Boguñá. Hyperbolic geometry of complex networks. Physical Review E, 82(3), 2010. doi:
10.1103/physreve.82.036106.

18 Mirko Křivánek and Jaroslav Morávek. NP-hard problems in hierarchical-tree clustering. Acta
informatica, 23(3):311–323, 1986. doi:10.1007/BF00289116.

A Missing Proofs

▶ Lemma 3. Let a, b, c be three cost functions. If they are pairwise non-conflicting, then
(a + b) and c are non-conflicting.

Proof. Let uv be a vertex pair with c(uv) > 0. If c(uv) > 0, then a(uv) ≥ 0 and b(uv) ≥ 0
since both are non-conflicting with c. Thus (a+ b)(uv) = a(uv)+ b(uv) ≥ 0 which means that
(a + b) is non-conflicting with c on this vertex pair. The case for c(uv) < 0 works analogously.
The case where c(uv) = 0 cannot lead to a conflict for c with any other function. ◀

▶ Lemma 4. Let a, b be two non-conflicting cost functions. If for all vertex pairs uv,
|a(uv)| ≤ |b(uv)|, then opt(V, a) ≤ opt(V, b).

Proof. Let K be a solution for (V, a). Lemma 4 follows from the fact that all vertex pairs
that are edited in cost(K, a) are present in cost(K, b) with greater or equal absolute value. ◀

▶ Lemma 5. For non-conflicting cost functions a, b, opt(V, a) + opt(V, b) ≤ opt(V, a + b).

Proof. Let K be an optimal solution of (V, a + b). Since a, b and a + b are all non-conflicting
(due to Lemma 3), there is never a non-edge in one instance that is an edge in the other.
Thus we get,

opt(V, a) + opt(V, b) ≤ cost(K, a) + cost(K, b)

=
∑

a(uv)<0
u≡K v

|a(uv)| +
∑

a(uv)>0
u̸≡K v

|a(uv)| +
∑

b(uv)<0
u≡K v

|b(uv)| +
∑

b(uv)>0
u̸≡K v

|b(uv)|

=
∑

(a+b)(uv)<0
u≡K v

|(a + b)(uv)| +
∑

(a+b)(uv)>0
u ̸≡K v

|(a + b)(uv)|

= cost(K, a + b) = opt(V, a + b). ◀

▶ Theorem 1. For packing P of the instance (V, s),
∑

p∈P opt(V, p) ≤ opt(V, s).

Proof. Let c : V × V 7→ Z be the element-wise addition of all functions in P which is non-
conflicting with s by Lemma 3. Moreover, Lemma 5 implies that

∑
p∈P opt(V, p) ≤ opt(V, c).

Since P is a packing for (V, s) the third property of packings states that for all vertex pairs
uv: |c(uv)| ≤ |s(uv)|. Therefore, Lemma 4 results in opt(V, c) ≤ opt(V, s). ◀

▶ Theorem 2. Let (V, s) be an instance of Weighted Cluster Editing, and let C ⊂ V be
a set of vertices. If an optimal solution for the C-subinstance isolates C into its own cluster,
then there is an optimal solution for (V, s) that does so as well.

SEA 2022

https://doi.org/10.4230/LIPIcs.IPEC.2021.26
https://doi.org/10.1103/physreve.82.036106
https://doi.org/10.1103/physreve.82.036106
https://doi.org/10.1007/BF00289116


13:16 A Branch-And-Bound Algorithm for Cluster Editing

Proof. Let P be any solution of (V, s). We construct a new partition P⋆ that isolates C

such that cost(P⋆, s) ≤ cost(P, s). For every cluster A ∈ P , the partition P⋆ contains A \ C.
Additionally P⋆ contains C.

For a pair u, v ∈ V , we say that P splits u and v if u and v are in different clusters
of P; otherwise P joins u and v. Similarly, for C ⊆ V , we say that P splits C if P splits
at least one pair of vertices in C. Otherwise, if C is contained in a cluster of P, then P
joins C. We regularly need to sum over only negative or only positive cost. To simplify
notation in these cases, let s+, s− : V × V → N be defined as s+(u, v) = max(0, s(u, v)) and
s−(u, v) = max(0, −s(u, v)). The cost of the solution P is then defined as

cost(P , s) =
∑

u,v∈V
P splits u,v

s+(u, v) +
∑

u,v∈V
P joins u,v

s−(u, v).

For the subset C ⊂ V and its complement T = V \ C it will be useful to split the sum in
cost(P , s) by vertex pairs within C, pairs between C and T , and pairs within T . We have

cost(P , s) =
∑

u,v∈C
P splits u,v

s+(u, v) +
∑

u,v∈C
P joins u,v

s−(u, v) +

∑
(u,v)∈C×T
P splits u,v

s+(u, v) +
∑

(u,v)∈C×T
P joins u,v

s−(u, v) +

∑
u,v∈T

P splits u,v

s+(u, v) +
∑

u,v∈T
P joins u,v

s−(u, v). (1)

Now we can bound the cost of P⋆ in the original instance. Consider the six sums of
cost(P⋆, s) as in Equation (1). The first sum evaluates to 0 as P⋆ does not split pairs in C.
Similarly, the fourth sum evaluates to 0, as P⋆ does not join vertices from C with vertices
from T . For the second and third sum, we can drop the condition that P joins and splits
u, v, respectively, as P joins all pairs in C and splits all pairs between C and T . Finally, P⋆

splits a vertex pair u, v ∈ T if and only if P does, i.e., we can exchange P⋆ with P in the
fifth and sixth sum. Thus, writing the remaining sums in order 5, 6, 2, 3, we obtain

cost(P⋆, s) =
∑

u,v∈T
P splits u,v

s+(u, v) +
∑

u,v∈T
P joins u,v

s−(u, v) +
∑

u,v∈C

s−(u, v) +
∑

(u,v)∈C×T

s+(u, v)

=
∑

u,v∈T
P splits u,v

s+(u, v) +
∑

u,v∈T
P joins u,v

s−(u, v) + opt(V, sC)

≤
∑

u,v∈T
P splits u,v

s+(u, v) +
∑

u,v∈T
P joins u,v

s−(u, v) + cost(P, sC)

= cost(P, s).

The first equality follows from the premise of the theorem that there is an optimal solution
for the C-subinstance that isolates C. Any solution for the subinstance that isolates C has
to pay for all non-edges in C as well as all edges from C to V \ C. Moreover the solution
that keeps all other vertices as singletons incurs no additional cost beyond this. Therefore
the premise can alternatively be stated as∑

u,v∈C

s−(u, v) +
∑

(u,v)∈C×T

s+(u, v) = opt(V, sC). (2)



T. Bläsius et al. 13:17

For the inequality, we have opt(V, sC) ≤ cost(P, sC) because P is also a solution for
(V, sC). Regarding the last equality, note that cost(P, sC) coincides with cost(P, s) except
that the last two terms of Equation (1) evaluate to 0 for costS(P , sC), i.e.,

cost(P , s) = cost(P , sC) +
∑

u,v∈T
P splits u,v

cost+(u, v) +
∑

u,v∈T
P joins u,v

cost−(u, v).

In conclusion, we obtain cost(P⋆) ≤ cost(P), which proves the claim. ◀

B Unused Reductions

There are other reduction rules in the literature, which did not make it into our solver for
different reasons, which we briefly discuss in the following.

The Clique-Like Subgraph rule is similar to Rule 4 by Böcker et al. [9], which is based on
min-cuts. Since the min-cut rule can be computed more efficiently it could be useful in a
solver, but we found it to be ineffective during preliminary testing.

We implemented the reduction rules by Cao and Chen [11] leading to a kernel of size 2k,
which is the smallest known kernel for cluster editing. However, our preliminary experiments
showed that these reduction rules were dominated by other rules. Moreover, the rules
explicitly exclude zero-edges, which we can get due to edge contractions, and it is not obvious
how to adapt the rules to this setting.

Böcker et al. [9] suggest the improvement to the Induced Cost Forbidden/Permanent
rules to add a lower bound for the graph without u and v to the induced costs to obtain
an even stronger rule. The P3-packing bound exactly captures this idea, even if it does not
explicitly compute icf / icp, because all triangles formed with uv have a combined cost of
icf / icp and can all be included in the packing because they share only the vertex pair uv.
Moreover, the P3-packing bound is strictly stronger in a weighted setting because it can
additionally use the residual cost of edges uw and vw for all w ∈ V \ {u, v} after each P3
constituting the icf / icp is removed. Although the Forced Choices All Pairs rule with P3
packings as bound dominates this improved version of the icp/icf rules, we keep the icp/icf
rules in the solver as a failsafe to detect possible errors in the involved implementation of the
forced choices rule.

Finally, there are the rules used in the unweighted 4k and 2k kernels [12, 14]. We have
not implemented or adapted them to a weighted setting except for our generalization of
the Simple Twin rule. The kernels are based on critical cliques, i.e., a clique containing
nodes with identical closed neighborhood and the Simple Twin rule merges all critical cliques
when applied repeatedly. Moreover, some other rules from these kernels are captured by
our implemented rules. E.g., the Induced Cost Forbidden rule dominates rule 1 from the
unweighted 2k-kernel [12]. Nevertheless, the rules could be useful in future work.

C Reproducibility

The random components such as the generation of GIRGs or the local search to find a
packing bound use the Mersenne Twister algorithm of the C++ standard template library.
They are seeded as to produce deterministic results. In fact, each lower bound computation
uses the same seed therefore producing the same output when given identical inputs. For
each set of input parameters for the GIRG model we generate 10 instances with different
seeds.

SEA 2022



13:18 A Branch-And-Bound Algorithm for Cluster Editing

100 110 120 130 140 150 160 170 180 190 200
n

0

100

200

300

400

500

600

#b
ra

nc
he

s

Figure 6 The number of branching decisions of the solver.

10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

n

0

100

200

300

400

500

600

#o
f e

di
ts

deleted edges
added edges

(a) Average number of edits in an optimal solution.

0

7
22

23

71

105

125

133

140

145

148

32

118

136

14

25

30

52

53
60

63

75

128

54

59

126

137

5

143

48
79

28

29

46

47

70

76

78

81

101

108

112

123

132

9

35

73

87

103

1

4

11

13

21

27

36

66

69

82

85

98

100

120

122

127

134

139

144

146

20

67

84

95

107

129

41
80

102

93

86

48

142

45

51

55

106

115

15

99

104

8

16

24

34

44

90

91

124

130

83
109

10

121

12

43

50

65

89

68

37

58

113

72

138

117

26

3

6

56

111

116

57

61
62

77

88 131

64

40

135

119

141

49

96

2

31

42

38

19

39

74

92

110

147

17

18
33

43

94

97

149

114

(b) Visualization of an optimal solution for a GIRG.

Figure 7 The number of edits in an optimal solution (left) and a possible optimal solution (right).
The left plot shows the average over ten instances. The right GIRG was generated with default
parameters and edits are indicated by color. Thus, the green edges are not in the generated GIRG.

D Search Space on Growing GIRGs

Figure 6 shows the number of branching decisions while solving GIRGs of different size. The
plot includes only the solved instances. The results confirm that reductions contribute the
most to solver performance. The number of branches is six on average. More than half of
all instances are solved with less than ten branches. There is no clear trend for growing
number of vertices. All graph sizes have outliers that need far more branching decisions. The
instance with the highest number of branches that was still solved has 580.

E Solution Structure on GIRGs

Figure 7b shows the edits of an optimal solution for a GIRG with the default parameters
listed above. Note that the positions for the vertices are sampled in a unit torus where
opposite borders are identified. Due to the scale-free degree distribution, some vertices have
very high degree in the input instance. Most of those edges are deleted and the high-degree
node is placed in the largest clique in close proximity. There are many small cliques in the
resulting cluster graph and more edges are deleted than inserted. Figure 7a confirms this
observation. The plot shows the number of deleted or added edges in an optimal solution
over growing graph size. Each bar represents the average over all solved instances for this



T. Bläsius et al. 13:19

size. Due to the average degree of ten, the number of edges in the input is between 500 and
1000. The number of total edits grows approximately linear in the size of the graph and
deletes about half of all edges. In fact, between 44 and 64 percent of the edges are deleted
which seems to be independent of graph size. The number of inserted edges is comparatively
low but also grows with growing number of vertices.

SEA 2022





An Experimental Study of Algorithms for Packing
Arborescences
Loukas Georgiadis !

Department of Computer Science & Engineering, University of Ioannina, Greece

Dionysios Kefallinos !

Department of Computer Science & Engineering, University of Ioannina, Greece

Anna Mpanti !

Department of Computer Science & Engineering, University of Ioannina, Greece

Stavros D. Nikolopoulos !

Department of Computer Science & Engineering, University of Ioannina, Greece

Abstract
A classic result of Edmonds states that the maximum number of edge-disjoint arborescences of a
directed graph G, rooted at a designated vertex s, equals the minimum cardinality cG(s) of an s-cut
of G. This concept is related to the edge connectivity λ(G) of a strongly connected directed graph
G, defined as the minimum number of edges whose deletion leaves a graph that is not strongly
connected. In this paper, we address the question of how efficiently we can compute a maximum
packing of edge-disjoint arborescences in practice, compared to the time required to determine
the edge connectivity of a graph. To that end, we explore the design space of efficient algorithms
for packing arborescences of a directed graph in practice and conduct a thorough empirical study
to highlight the merits and weaknesses of each technique. In particular, we present an efficient
implementation of Gabow’s arborescence packing algorithm and provide a simple but efficient
heuristic that significantly improves its running time in practice.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Mathematics
of computing → Graph algorithms

Keywords and phrases Arborescences, Edge Connectivity, Graph Algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.14

Supplementary Material Software (Source Code and Sample Input Instances):
https://github.com/sakiskef/PackingArborescencesAlgorithms

archived at swh:1:dir:de7880aa38dd66bdb3661030d905a224bd23c8b9

Funding Research supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.)
under the “First Call for H.F.R.I. Research Projects to support Faculty members and Researchers
and the procurement of high-cost research equipment grant”, Project FANTA (eFficient Algorithms
for NeTwork Analysis), number HFRI-FM17-431.

Acknowledgements We would like to thank the anonymous referees for several useful comments.

1 Introduction

Let G = (V, E) be a directed graph (digraph), with m edges and n vertices. Digraph G

is strongly connected if there is a directed path from each vertex to every other vertex.
Throughout the paper we let s be a fixed but arbitrary start vertex of G. If G is strongly
connected, then all vertices are reachable from s and reach s. The edge connectivity λ(G)
of G is the minimum number of edges whose deletion leaves a digraph that is not strongly
connected. Computing the edge connectivity of a graph is a classical subject in graph
theory, as it is an important notion in several application areas, such as in the reliability

© Loukas Georgiadis, Dionysios Kefallinos, Anna Mpanti, and Stavros D. Nikolopoulos;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 14; pp. 14:1–14:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:loukas@cs.uoi.gr
https://orcid.org/0000-0002-9706-7409
mailto:d.kefallinos@uoi.gr
mailto:ampanti@cs.uoi.gr
mailto:stavros@cs.uoi.gr
https://doi.org/10.4230/LIPIcs.SEA.2022.14
https://github.com/sakiskef/PackingArborescencesAlgorithms
https://github.com/sakiskef/PackingArborescencesAlgorithms
https://archive.softwareheritage.org/swh:1:dir:de7880aa38dd66bdb3661030d905a224bd23c8b9;origin=https://github.com/sakiskef/PackingArborescencesAlgorithms;visit=swh:1:snp:820587054832b664c8f3cdf3d4a55d2e5fbaa084;anchor=swh:1:rev:69d422f9e333592656ea4b874e6ca8e26afd533d
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


14:2 An Experimental Study of Algorithms for Packing Arborescences

𝐺

𝑎

𝑠

𝑐
𝑏

𝑎

𝑠

𝑐
𝑏

𝐴1

𝑎

𝑠

𝑐
𝑏

𝐴2

Figure 1 A directed graph G with start vertex s and minimum s-cut value cG(s) = 2. Subgraphs
A1 and A2 are two edge-disjoint s-arborescences of G.

of transportation and communication networks, and in production, scheduling, and power
engineering [23]. The reverse digraph of G, denoted by GR = (V, ER), is the digraph that
results from G by reversing the direction of all edges. An s-cut is the set of edges directed
from S to V \ S, where S is any vertex set that contains s such that S ⊂ V . We let cG(s)
denote the minimum cardinality of an s-cut of G. Then, the edge connectivity of G is
the minimum cardinality of an s-cut of G or GR, i.e., λ(G) = min{cG(s), cGR(s)}. This
observation also holds for undirected graphs, since the edge-connectivity of an undirected
graph is equal to the edge-connectivity of the corresponding directed graph where each edge
is oriented in both directions.

A spanning tree of an undirected connected graph G is a connected acyclic spanning
subgraph of G. We extend this definition to directed graphs by ignoring the edge orientations.
Let T be a spanning tree of a directed graph G rooted at s; T is an s-arborescence of G if s

has in-degree zero and every other vertex has in-degree one. (Thus, any s-arborescence is a
spanning tree of G but not vice versa.) The arborescence packing problem for vertex s is to
construct the greatest possible number of edge-disjoint s-arborescences. See Figure 1. These
concepts are useful in applications such as modeling broadcasting and evacuation [10].

Currently, the state of the art algorithm for computing the edge-connectivity λ of a digraph
is the algorithm of Gabow [11] which runs in O(λm log n2/m) time. Gabow’s algorithm
is inspired by matroid intersection and is based on the idea of packing spanning trees.
Moreover, in [11], Gabow shows how to extend his edge-connectivity algorithm so that it also
computes a maximum packing of edge-disjoint s-arborescences of G in O(k2n2) time, where
k = cG(s). The edge connectivity of a simple undirected graph can be computed in Õ(m)
time1, randomized [14, 17] or deterministic [15, 18]. In particular, the deterministic algorithm
of Kawarabayashi and Thorup [18], as well as its improvement by Henzinger et al. [15], apply
Gabow’s algorithm on a contracted graph, for which the latter runs in Õ(m) time.

In this paper we consider the arborescence packing problem from a practical perspective.
Our starting point is the following fundamental theorem of Edmonds:

▶ Theorem 1 (Edmonds [7]). The maximum number of edge-disjoint s-arborescences of G

equals the minimum cardinality of an s-cut.

Edmonds gave an algorithmic proof, but the algorithm is complicated and seems to require
exponential time in the worst-case [11]. Later, Lovasz [21] gave an elegant proof of Edmonds’
theorem. Tarjan [25] presented an O(k2m2)-time algorithm to compute a maximum packing

1 The notation Õ(·) hides poly-logarithmic factors.



L. Georgiadis, D. Kefallinos, A. Mpanti, and S. D. Nikolopoulos 14:3

of edge-disjoint s-arborescences, where k = cG(s). Schiloach [24], presented later an O(k2mn)-
time algorithm. The same bound was achieved by Tong and Lowler [26], who also claimed
that Schiloach’s algorithm is flawed. See also [9, 16] for recent interesting generalizations of
Edmonds’ theorem.

Currently, the best bound for the arborescence packing problem is O(mk log n+nk4 log2 n),
which was achieved by Bhalgat et al. [2] using the concept of edge splitting [1, 12]. Let G be
a digraph with start vertex s. Define the s-v edge-connectivity cG(s, v), for any vertex v ≠ s,
as the cardinality of the minimum s-v cut. We say that a vertex v is eligible if indegree(v) ≥
outdegree(v). For such a vertex v, we can assume that indegree(v) = outdegree(v) since we
can add multiple edges from v to s without affecting the s-w edge-connectivity cG(s, w) of
any w ̸= s. Splitting off two edges (x, y) and (y, z) means deleting these two edges, and
adding a new edge (x, z). This operation can be done so that the s-v edge-connectivity
cG(s, v) is preserved for any v ̸= y. Splitting off of an eligible vertex v means to split off pairs
of edges incident on v so that each pair consists of an edge entering v and an edge leaving
v, without affecting the connectivity of the remaining graph until v has no outgoing edge.
Now, v can be removed from the graph without affecting the connectivity of the remaining
graph [2]. Bhalgat et al. describe a procedure that removes any specified set S of eligible
vertices while maintaining the s-v edge-connectivity of all v ̸∈ S. Their algorithm extends
the edge-connectivity algorithm of Gabow so that it can compute a splitting of all vertices in
S. Then, it recursively computes a maximum arborescence packing of the resulting graph,
which can then be used to recover a maximum arborescence packing of the original graph by
putting back the vertices in S.

Here we explore the design space of efficient algorithms that compute a maximum packing
of edge-disjoint arborescences. In particular, we present an efficient implementation of
Gabow’s arborescence packing algorithm, and provide a simple but efficient heuristic that
significantly improves its running time in practice. Then, we conduct a thorough empirical
study to highlight the merits and weaknesses of each technique. To the best of our knowledge,
we present the first efficient implementations of algorithms for packing arborescences. Hence,
we also complement the work of Georgiadis et al. [13] that studies the practical efficiency of
algorithms for computing the edge-connectivity.

2 Preliminaries

Let G be a directed graph, which may have multiple edges, with a distinguished start vertex
s. We denote the vertex and edge sets of G by V (G) and E(G), respectively. A vertex v is
reachable in G if there is a path from s to v; v is unreachable if no such path exists. An s-cut
is the set of edges directed from S to V (G) \ S, where S is any vertex set that contains s

such that S ⊂ V (G). We let cG(s) denote the minimum cardinality of an s-cut of G. Then,
cG(s) > 0 if and only if all vertices are reachable.

Let S ⊆ V (G). The out-degree (resp., in-degree) of S, denoted by δ+
G(S) (resp., δ−

G(S)),
is the number of edges directed from S to V (G) \ S (resp., from V (G) \ S to S). For
a vertex v ∈ V (G), δ+

G(v) (resp., δ−
G(v)) denotes its out-degree (resp., in-degree) in G.

We let δG = minv∈V (G){δ+
G(v), δ−

G(v)} denote the minimum degree of the graph. We let
E+

G(v) = {(v, w) ∈ E(G)} (resp., E−
G(v) = {(u, v) ∈ E(G)}), i.e., the set of edges directed

from v (resp., to v), and refer to EG(v) = E+
G(v) ∪ E−

G(v) as the set of edges adjacent to v.
We omit the subscript G if the graph is clear from the context.

Let T be a spanning tree of G and let e be an edge that is not contained in T . The
fundamental cycle of e in T , denoted by C(e, T ), is the cycle that is formed by adding e

into T .

SEA 2022



14:4 An Experimental Study of Algorithms for Packing Arborescences

An s-arborescence A is a directed graph such that all vertices in V (A) are reachable
from s, δ−

A(s) = 0 and δ−
A(v) = 1 for all v ∈ V (G) − s. I.e., there is exactly one directed

path in A from s to any other vertex. We say that A is an s-arborescence of G if A is a
spanning subgraph of G, i.e., V (A) = V (G). If V (A) ⊂ V (G), then we say that A is a partial
s-arborescence of G.

A k-intersection of G is a collection T of k spanning forests T1, . . . , Tk of G that contains
at most k edges directed to each vertex v ∈ V (G) − s, and none to s, i.e., δ−

T (s) = 0 and
δ−

T (v) ≤ k for v ∈ V (G) − s. A k-intersection T = {T1, . . . , Tk} is complete if each Tj is a
spanning tree, so that δ−

T (v) = k for all v ̸= s. Edmonds [6] also proved the following Matroid
Characterization of s-cuts:

▶ Theorem 2 (Edmonds [6]). The edges of a directed graph can be partitioned into k s-
arborescences if and only if they can be partitioned into k spanning trees and every vertex
except s has in-degree k.

Referring to this result as the Matroid Characterization of minimum-cut is justified by the
fact that the spanning trees with the above property are formed by the intersection of two
matroids.

For a graph G and a subgraph H of G, we let G − H denote the subgraph of G with
vertex set V (G) and edge set E(G) − E(H). Also, for an edge e, we let G ∪ {e} denote the
graph after adding e to G, and let G − e denote the graph after deleting e from G.

3 Algorithms

In this section we provide an overview of the algorithms that we consider in our experimental
study. Let G be the input digraph with n vertices, m edges, and start vertex s. Throughout
this section, we let k = cG(s). We assume that all vertices are reachable (from s) in G, so
k > 0, since otherwise there is nothing to do.

Let A be a partial s-arborescence of G. We say that A is good if cG−A(s) ≥ k − 1. All
the algorithms we consider try to enlarge a partial s-arborescence A of G by adding one edge
at a time.

We note that we can combine any packing arborescences algorithm with Gabow’s edge
connectivity algorithm as follows. First, we run Gabow’s edge connectivity algorithm on
G, and compute a complete k-intersection T of G in O(km log n2/m) time. Then, we
keep in G only the edges of E(T ) and run the packing arborescences algorithm on the
reduced graph. (This is valid by the Matroid Characterization of s-cuts.) If the packing
algorithm runs in O(f(m, n)) time on the original graph, then the combined algorithm runs
in O(km log n2/m + f(nk, n)) total time.

3.1 The algorithm of Tarjan
Tarjan [25] computes a maximum packing of arborescences A = {A1, . . . , Ak} by executing
k iterations of the following procedure. During the j-th iteration (for j = 1, 2, . . . , k), it com-
putes an arborescence Aj of G such that Aj is pairwise edge-disjoint with the arborescences
in A(j−1) = {A1, . . . , Aj−1}, and G(j) = G \ A(j) has cG(j)(s) = k − j. (I.e., Aj is good for
G(j−1).) To compute Aj we work as follows. We initialize a vertex set S = {s}, the set of
edges E(Aj) = ∅ and mark all edges of G(j−1) as usable. Then, we perform the following
step until S = V (G). We find a usable edge e = (u, v) such that u ∈ S and v ∈ V (G) \ S,
mark e as unusable and compute cG′(S), where G′ = G(j−1) \ (Aj ∪ {e}). If cG′(S) ≥ k − j

then we add v to S, and add e to Aj .



L. Georgiadis, D. Kefallinos, A. Mpanti, and S. D. Nikolopoulos 14:5

To test if cG′(S) ≥ k − j, it suffices to determine if we can send at least k − j units of
flow from S to v (where we assign unit edge capacities). This can be done in O(km) time
by executing at most k − j iterations of the Ford-Fulkerson method [8]. Since we perform k

iterations, and in each iteration we test at most m edges, the total running time is O(k2m2).
This bound is reduced to O(km log n2/m + k4n2) = O(k4n2) if we first compute a complete
k-intersection of G by Gabow’s edge connectivity algorithm, and then run Tarjan’s algorithm
on the reduced graph that contains only the edges of E(T ).

Implementation details

In our experiments, we noticed that the order in which we examine the usable edges may
affect the running time of the algorithm significantly. Hence, we considered two versions of
the algorithm: In the first version, we maintain the vertices of S in a stack, and examine the
usable edges e = (u, v) starting from the most recently added vertices u ∈ S. In the second
version, we maintain S in a FIFO queue, and examine the usable edges e = (u, v) starting
from the least recently added vertices u ∈ S. As in turns out, in our experiments the stack
version performed significantly better on most instances. (See Appendix A.)

3.2 The algorithm of Tong and Lawler
The algorithm of Tong and Lawler [26] applies a divide and conquer approach. Similarly
to Tarjan’s algorithm, it grows a partial arborescence A of G by trying to add one edge
at a time. Initially V (A) = {s} and E(A) = ∅. A candidate edge e = (u, v), such that
u ∈ V (A) and v ∈ V (G) \ V (A), is selected according to the following rule: u ̸= s, unless
there is no other candidate edge. Then, we compute cG′(s), where G′ = G − (A ∪ {e}),
and consider the following two cases. (a) If cG′(s) ≥ k − 1 then the examination of e is
successful. In this case, we add v to V (A), and add e to E(A). If A is now an arborescence,
that is V (A) = V (G), then we set G = G − A and recursively compute k − 1 edge-disjoint
arborescences in G. (b) Otherwise, we have cG′(S) = k − 2, and the examination of e is
unsuccessful. In this case, the algorithm of Tong and Lawler applies divide and conquer as
follows. Let (S, V (G) \ S) be a minimum s-cut of G, where s ∈ S. It is easy to observe
that e ∈ E(S, V (G) \ S), hence v ∈ V (G) \ S, and moreover, that there must be an edge
e′ ∈ E(A) such that e′ ∈ E(S, V (G) \ S). Next, we split G into two auxiliary graphs G1 and
G2, with corresponding partial arborescences A1 and A2 as follows. To construct G1, we
contract the vertices of S into s and delete all edges directed to s. Then, A1 consists of the
edges of A that were not deleted and is a partial arborescence of G1 (but it may not be a
full arborescence yet). Similarly, we construct G2 by contracting the vertices of V (G) \ S

into v and delete self-loops. To form a corresponding partial arborescence A2 of A in G2,
we delete all the edges of A that are directed from S to V (G) \ S except for the first edge
(x, y) on a path from S to V (G) \ S in A. That is, x is reachable from s through a path
that contains only vertices in S ∩ V (A). So, A2 consists of the edges of A that were not
deleted and is a partial arborescence of G2 (but it may not be a full arborescence yet). We
recursively compute k edge-disjoint arborescences A1

1, A1
2, . . . , A1

k of G1 and A2
1, A2

2, . . . , A2
k

of G2, where E(A1
1) ⊆ E(A1) and E(A2

1) ⊆ E(A2). Then, we combine these arborescences
to form k edge-disjoint arborescences of G. This combination is easy to perform because
each arborescence of G1 is edge-disjoint from exactly k − 1 arborescences of G2 and vice
versa. Hence, to form the desired arborescences of G, we combine each pair of non-disjoint
arborescences.

SEA 2022



14:6 An Experimental Study of Algorithms for Packing Arborescences

As in Tarjan’s algorithm, we can test if an edge e can be included in the partial arborescence
A in O(km) time by executing k iterations of the Ford-Fulkerson method. Since at most
kn edges are added in the packing A, the total time spent for successful edge additions is
O(k2mn). On the other hand, since we can split G at most n times, there are at most n

unsuccessful edge examinations. Thus, the total time spent for unsuccessful edge examinations
is O(kmn), which results to a total running time of O(k2mn).

Tong and Lawler also observed that the running time of their algorithm can be improved
to O(kmn + k3n2) after some preprocessing. The preprocessing phase computes a flow of
value k from s to each other vertex t ̸= s. After we have computed an s-t flow, we delete
the edges entering t with zero flow. By repeating this process for all vertices t ≠ s, after
O(kmn) time we are left with a subgraph H of G with O(kn) edges and cH(s) = k. Thus,
we can compute k edge-disjoint arborescences of H in O(k3n2) time. If we use Gabow’s edge
connectivity algorithm to compute a complete k-intersection of G instead of H, then we
obtain an O(km log n2/m + k3n2) = O(k3n2) time bound.

Implementation details

As in our implementation of Tarjan’s algorithm, we examine candidate edges (to be included
in the partial arborescence A) using a stack or a FIFO queue. As with Tarjan’s algorithm,
the running time of the Tong-Lawler algorithm depends on the order in which we examine
candidate edges. In our experiments the stack version of the Tong-Lawler algorithm out-
performed the queue version, but not consistently. (See Appendix A.) When we split G, we
create two new graph instances for G1 and G2, and assign new vertex ids so that they are in
the ranges [1, |V (G1)|] and [1, |V (G2)|] respectively. To restore the original vertex ids, we
maintain mappings hi : V (Gi) 7→ V (G), i = 1, 2. Moreover, for each edge in G1 and G2 that
has exactly one endpoint in a contracted part of the graph (i.e., for each edge (x, y) such
that x ∈ S and y ∈ V (G) \ S, or vice versa), we associate it with the corresponding original
edge of G. This information suffices to combine the arborescences in G1 and G2 and form
the arborescences of G. Thus, after a split, we no longer need to keep the initial graph in
memory.

3.3 The algorithm of Gabow
Gabow [11] presented an O(k2n2)-time algorithm to compute a maximum arborescence
packing. First, it computes a complete k-intersection T of the input digraph for s. We let G

be the subgraph with edges E(T ). Then, it repeats the following procedure, until k = 0:
1. Compute a complete (k − 1)-intersection T of G.
2. Find a good s-arborescence A of G, using the algorithm described below in Section 3.3.2.
3. Decrease k by one and repeat the procedure on G − A.

Similarly to the algorithms of Tarjan, and of Tong and Lawler, in Step 2 Gabow’s
algorithm tries to enlarge a partial arborescence by adding one edge at a time. Unlike the
these other algorithms, however, Gabow’s algorithm does not perform flow computations,
but relies on the framework of his edge-connectivity algorithm. Hence, we first provide an
overview of how Gabow computes the value k = cs(G) of a minimum s-cut, together with a
complete k-intersection T of G, in O(km log n2/m) time.

3.3.1 Computing a complete k-intersection T of G

Recall that a complete k-intersection T of G is a collection of k edge-disjoint spanning trees
T1, . . . , Tk, such that each vertex v ̸= s has in-degree k and s has in-degree zero. Gabow’s
algorithm computes T in k iterations, where in the k′-th iteration (k′ = 1, . . . , k), it begins



L. Georgiadis, D. Kefallinos, A. Mpanti, and S. D. Nikolopoulos 14:7

with a complete (k′ − 1)-intersection and tries to enlarge it so that it becomes a complete
k′-intersection. To that end, it executes a round robin algorithm that maintains a forest Tk′

and tries to locate “joining” edges that will make Tk′ a spanning tree of G, while satisfying
the invariant that δ−

T (s) = 0 and δ−
T (v) ≤ k′ for all v ̸= s. In the following, we call a vertex

v deficient if δ−
T (v) < k′.

In more detail, during the k′-th iteration Tk′ is a forest of rooted trees, referred to
as f-trees, where each f -tree Fz is rooted at its unique deficient vertex z. For z ̸= s,
δ−

T (z) = k′ − 1. An edge e = (x, y) is joining if x and y are in different f -trees of Tk′ . The
round robin algorithm looks to enlarge Tk′ by one edge at a time, and simultaneously to
increase the in-degree of a deficient vertex z ≠ s by one. To that end, it examines an edge e1
in E−(z) \ E(T ). If e1 is joining then we are done. Otherwise, it adds e1 in some Ti and
looks for a joining edge in the fundamental cycle C(e, Ti). To break the cycle, we can remove
from Ti an edge e2 ∈ C(e, Ti). Then, we can add e2 = (u, v) to some other tree of T , or
replace e2 with a edge in E−(v) \ E(T ). This pattern continues until a joining edge is found.
The sequence of edges that leads to a joining edge is called an augmenting path. We define
this notion formally below.

An ordered pair of edges e, f is called a swap if f ∈ C(e, Ti) for some Ti ∈ T . To execute
the swap is to replace f in Ti by e. A partial augmenting path P from z is a sequence of
distinct edges e1, . . . , el, such that:
1. e1 ∈ E−(z) \ E(T ).
2. For each i < l either

a. ei+1 ∈ C(ei, Tj), where Tj contains ei+1 but not ei, or
b. ei, ei+1 ∈ E−(v), for some vertex v, where T contains ei but not ei+1.

3. Executing all swaps of P (i.e., the pairs ei, ei+1 of (2a)) gives a new collection of forests.

An augmenting path P from z is a partial augmenting path from z whose last edge el is
joining for z. To augment T along P is to execute each swap of P and add el to Tk′ . This
increases the in-degree of z by one (so z is no longer deficient), while no other in-degree
changes.

Each iteration is organized as a sequence of at most ⌈log n⌉ rounds. At the start of
each round all f -trees are active except Fs. Then, we repeatedly choose an active f -tree Fz

and search for an augmenting path from z. If no such path is found, then the algorithm
terminates and reports an s-cut of cardinality k′ −1. Otherwise, we have found an augmenting
path P from z and we augment T along P . Thus, we enlarge T by one edge and Fz is
joined to another f -tree Fw. The resulting f -tree of Tk′ is rooted at w (since z is no longer
deficient), and becomes inactive for the rest of the current round. Gabow showed that with
an appropriate implementation, each round runs in O(m) time. Furthermore, he showed that
by organizing the search for augmenting paths carefully, all augmentations can be executed
at the end of a round.

3.3.2 Computing a good s-arborescence
We now give an overview of how Gabow computes a good s-arborescence A of G in Step 2
of his arborescence packing algorithm. The algorithm maintains the following subgraphs of
G: a partial s-arborescence A of G, a working graph H = G − A, and a complete (k − 1)-
intersection T for s on G. It uses the following key concept. An enlarging path consists of an
edge e ∈ E+(A), and if e ∈ T , an augmenting path P for the (k − 1)-intersection T − e on
H − e. Gabow shows that if V (A) ̸= V (G), then there is always an enlarging path.

SEA 2022



14:8 An Experimental Study of Algorithms for Packing Arborescences

The algorithm marks the edges that are known to belong in any complete (k − 1)-
intersection contained in H. It also maintains a set X of vertices such that each u ∈ X has
all edges of E+(u) ∩ E+(V (A)) marked. The algorithm is divided into “periods”, where each
period enlarges either A or X. Initially, A contains only the start vertex s, X is empty, and
all edges are unmarked. Then, we repeatedly apply the following procedure that locates an
enlarging path, until it halts:
Period Step. If A is an arborescence, that is V (A) = V (G) then halt. Otherwise, choose a

vertex u ∈ V (A) \ X and execute the Edge Step.
Edge Step. If all edges in E+(u) ∩ E+(V (A)) are marked then add u to X and continue

with the next Period Step. Otherwise, choose an unmarked edge e ∈ E+(u) ∩ E+(V (A)).
If e ̸∈ E(T ), then add e to A and continue with the next Period Step.

Search Step. At this point e belongs in T . Search for an augmenting path for the (k − 1)-
intersection T − e in H − e. If the search is successful, then use the augmenting path
to enlarge A and continue with the next Period Step. If the search is unsuccessful then
mark e and go to Edge Step.

The correctness of this procedure is based on the following facts. Suppose e ∈ E+(u) ∩
E+(V (A)) has no enlarging path, i.e., the Search Step was unsuccessful. Let L be the set
of edges labelled in the search, and let e′ be any edge in E+(u). Then, e belongs to any
complete (k − 1)-intersection contained in H , and no edge of L is in an enlarging path for e′,
with respect to the current A and T . This implies that for any v ∈ X, no edge of E+(v) has
an enlarging path.

To make the search for enlarging paths fast, each unsuccessful search in a period contracts
the edges in L that become labelled during an unsuccessful search for an edge e ∈ E+(u).
The contraction is valid since, for each tree Ti ∈ T , i = 1, 2 . . . , k − 1, the edges in L ∩ (Ti − e)
form a tree. Contracting V (L) into a single vertex v results in a graph H ′ that has a complete
(k − 1)-intersection that contains all edges in E−

H′(v). Then, for any edges e′ ∈ E+
H′(v),

graphs H and H ′ have the same enlarging paths for e′, and unsuccessful searches in H − e′

and H − e label the same edges not in L.
To implement the above procedure efficiently, Gabow’s algorithm performs the contractions

implicitly. To that end, it maintains a partition of V (G) into disjoint sets S1, . . . , Sl, such
that each set Sj induces a tree in each Ti ∈ T . Each vertex is labelled with the name of the
set that contains it and also, for each i = 1, . . . , k − 1, each set Sj is labelled with its root
vertex in Ti. The Search Step for an edge e = (u, w) ∈ Ti removes e from T and H, and
searches for an augmenting path P from w. During this search, when a vertex v is reached,
if v ∈ Sj then the search continues from the root of Sj in Ti. If the search is successful, then
we augment along P . Otherwise, when the search is unsuccessful, we add e back to H and
T , and update the vertex partition {Sj} by merging together all sets Sj that contain an end
of an edge that was labelled during the search.

Gabow shows that this algorithm constructs an s-arborescence A in O(kn2) time; there
are at most kn searches (at most one per edge), and at most 2n periods. The latter follows
from the fact that a period enlarges A or X, and each set can be enlarged less than n times.
Moreover, each period can be implemented to run in O(kn) time. Since we compute k

arborescences, the total running time is O(k2n2).

Practical speedup

In order to speedup Gabow’s algorithm in practice, we implemented the following simple
heuristic. Let G be the current graph. We compute an s-arborescence A of G, e.g., by
executing a depth-first search (DFS) from s, and test if A is good. To do that, it suffices to



L. Georgiadis, D. Kefallinos, A. Mpanti, and S. D. Nikolopoulos 14:9

Table 1 An overview of the algorithms considered in our experimental study. The bounds refer
to a digraph G with minimum s-cut value k = cs(G), n vertices and m edges; m ≤ kn if G contains
only the edges of a complete k-intersection.

Algorithm Technique Complexity Ref.

Tarjan (Tar) Test if a usable edge can be added via max-flow O(k2m2) [25]

Run on a complete k-intersection O(k4n2)

Tong-Lawler (TL) Graph splitting via min-cut O(k2mn) [26]

Run on a complete k-intersection O(k3n2)

Gabow (Gab) Compute complete k′-intersections (k′ ≤ k)
and enlarging paths

O(k2n2) [11]

test if cG−T (s) = k − 1. If this is the case, then we can keep A in the packing. Otherwise,
we simply discard A, and compute a good s-arborescence of G using Gabow’s algorithm. In
either case, after we have computed a good s-arborescence A of G, we decrease k by one and
repeat the procedure on G − A.

Despite its simplicity, the above modification provides significant speedups in practice, as
the experimental results of Section 4 suggest. Moreover, we can immediately observe that
the overall O(k2n2) running time still holds for this variant of Gabow’s algorithm.

4 Empirical Analysis

We implemented our algorithms in C++, using g++ 7.5.0 with full optimization (flag -O4)
to compile the code. The reported running times were measured on a GNU/Linux machine,
with Ubuntu (18.04.6 LTS): a Dell Precision Tower 7820 server 64-bit NUMA machine with
an Intel(R) Xeon(R) Gold 5220R processor and 192GB of RAM memory. The processor
has 24.75MB of cache memory and 18 cores. In our experiments we did not use any
parallelization, and each algorithm ran on a single core. We report CPU times measured
with the high_resolution_clock class of the standard library chrono, averaged over ten
different runs.

Table 1 gives an overview of the algorithms we consider in our experimental study. We
did not include the algorithm of Bhalgat et al. because some important details are omitted
from the extended abstract of [2].2

We base our implementation of Gabow’s arborescence packing algorithm on efficient
implementations of Gabow’s edge connectivity algorithm presented in [13]. Also, for the
algorithms of Tarjan (Tar) and of Tong-Lawler (TL), we report the running time of their stack-
based implementations. We compare the stack-based against the queue-based implementations
in Appendix A. For the experimental evaluation, we considered two types of graphs: (i)
real-world directed graphs, augmented with additional edges in order to increase their
edge-connectivity, and (ii) k-cores of undirected graphs.

Augmented graphs

In our first experiment, we consider how the running time of each algorithm is affected as
the minimum s-cut value k = cs(G) increases. To that end, we augment some real-word
graphs as follows. Let G be an input strongly connected digraph. For a given parameter

2 We are unaware of a full version of [2].

SEA 2022



14:10 An Experimental Study of Algorithms for Packing Arborescences

β, we create an augmented instance Gβ of G by executing the following procedure. We go
through the vertices of G and, for each vertex v, we add β − δ−(v) edges directed to v if
δ−(v) < β, where each added edge originates from a randomly chosen vertex. Then, we make
a second pass over the vertices and, for each vertex v, we add β − δ+(v) edges directed away
from v if δ+(v) < β, where each added edge is directed to a randomly chosen vertex. Notice
that the resulting graph has minimum degree δ ≥ β.

Table 2 reports the characteristics of the augmented graphs Gβ produced by the above
procedure for β ∈ {2, 4, 8, 16}. Here, we also give the number of edges (m′) in a complete k

intersection T of G (with respect to the start vertex s). In Table 3 we report the corresponding
running times of each algorithm. The execution of an algorithm was terminated if it exceeded
one hour. We also report the running times of two versions of Gabow’s algorithm that
computes a complete k intersection T of G: the standard version (Gab-EC), and a version
that uses DFS to do a fast initialization of the forest Tk′ at the beginning of the k′-th
iteration (Gab-EC-DFS). Both implementations are taken from [13]. For the algorithms of
Tarjan (Tar), and of Tong and Lawler (TL), we report both the running time when the input
is the original graph G (above) and a complete k intersection of G (below). In the latter case,
the algorithms receive a complete k intersection T of G as input, and we do not account for
the time required to compute T .

Table 2 Characteristics of augmented graphs, resulting from some real-world graphs after inserting
some edges; n is the number of vertices, m the number of edges; δ denotes the minimum vertex (in
or out) degree, and cs(G) denotes the cardinality of the minimum s-cut; m′ is the number of edges
in a complete k intersection of G (for the start vertex s).

Graph n m δ cs(G) m′ type and source

enron-EC2 8271 151651 2 2 8270

email network [19]enron-EC4 8271 162999 4 4 24810
enron-EC8 8271 190618 8 8 57890
enron-EC16 8271 253345 16 16 124050
p2p-Gnutella25-EC2 5152 19765 2 2 10302

peer2peer network [19]p2p-Gnutella25-EC4 5152 27565 4 4 20604
p2p-Gnutella25-EC8 5152 50076 8 8 41208
p2p-Gnutella25-EC16 5152 100669 16 16 82416
rome99-EC2 3352 9869 2 2 6702

road network [5]rome99-EC4 3352 15468 4 4 13404
rome99-EC8 3352 31952 8 8 26808
rome99-EC16 3352 65542 16 16 53616
s38584-EC2 16310 42128 2 2 32618

VLSI circuit [4]s38584-EC4 16310 80250 4 4 65236
s38584-EC8 16310 160297 8 8 130472
s38584-EC16 16310 323963 16 16 260944
web-Stanford-EC2 150475 2334929 2 2 300948

web graph [19]web-Stanford-EC4 150475 3307506 4 4 601896
web-Stanford-EC8 150475 2379878 8 8 1203792
web-Stanford-EC16 150475 3643794 16 16 2407584

From the results, we observe that TL has overall the worst performance, even compared
to Tar despite the inferior upper bound of the latter. Indeed, on average Tar runs twice as
fast compared to TL. This is due to the overhead incurred in TL for splitting a graph G into



L. Georgiadis, D. Kefallinos, A. Mpanti, and S. D. Nikolopoulos 14:11

Table 3 Running times in seconds of the algorithms for the augmented graphs of Table 2. For
the algorithms of Tarjan (Tar), and of Tong and Lawler (TL), we report the running time when the
input is the original graph G (above) and a complete k intersection of G (below). The execution of
an algorithm was terminated if it exceeded 1 hour.

Graph Gab-EC Gab-EC-DFS Tar TL Gab Gab-DFS

enron-EC2 0.01 0.01 0.01
0.01

1.09
0.04 0.15 0.01

enron-EC4 0.02 0.01 36.34
7.43

118.17
7.59 9.81 0.05

enron-EC8 0.06 0.01 304.29
95.58

614.18
131.91 38.42 0.28

enron-EC16 0.17 0.02 1840.76
951.43

2782.78
1319.77 130.58 1.50

p2p-Gnutella25-EC2 0.01 0.01 1.19
0.79

3.90
1.12 1.39 0.02

p2p-Gnutella25-EC4 0.02 0.01 8.46
7.05

23.76
14.34 6.57 0.04

p2p-Gnutella25-EC8 0.04 0.01 55.21
53.41

124.36
91.05 21.63 0.17

p2p-Gnutella25-EC16 0.09 0.01 403.92
450.80

760.74
629.79 61.32 0.80

rome99-EC2 0.01 0.01 0.45
0.35

0.37
0.24 0.36 0.34

rome99-EC4 0.02 0.01 3.20
3.19

7.26
5.56 2.63 0.02

rome99-EC8 0.03 0.01 21.67
21.62

50.86
37.24 8.65 0.10

rome99-EC16 0.06 0.01 160.01
156.29

312.30
241.95 25.32 0.49

s38584-EC2 0.03 0.01 14.12
8.88

37.02
23.45 14.73 12.76

s38584-EC4 0.06 0.01 131.86
117.79

262.07
98.85 75.42 0.14

s38584-EC8 0.14 0.02 1012.85
878.79

2007.45
1258.60 245.01 0.68

s38584-EC16 0.34 0.04 >1h
>1h

>1h
>1h 717.20 3.29

web-Stanford-EC2 0.60 0.29 >1h
2307.26

>1h
2350.42 520.22 1.39

web-Stanford-EC4 1.45 0.69 >1h
>1h

>1h
>1h >1h 5.40

web-Stanford-EC8 3.26 1.03 >1h
>1h

>1h
>1h >1h 14.32

web-Stanford-EC16 7.73 3.28 >1h
>1h

>1h
>1h >1h 70.98

two auxiliary graphs G1 and G2, and manipulating mappings from the vertex ids of G1 and
G2 to those in G. Furthermore, we observe that TL runs consistently faster on the complete
k intersection T of G compared to the original graph G. While this is expected since T has
fewer edges, on the other hand we note that it may be easier to find good candidate edges
to augment a partial arborescence if the graph contains some additional edges. The same

SEA 2022



14:12 An Experimental Study of Algorithms for Packing Arborescences

observation holds for Tar as well, but here we see that in one instance (p2p-Gnutella25-EC16)
the algorithm runs faster on G rather than on T . Moreover, we note that the executions of
TL and Tar on T outperform Gab in some instances.

Next, we turn to the algorithms of Gabow. First, we verify that the edge-connectivity
algorithms Gab-EC and Gab-EC-DFS are very effective. Regarding the arborescence packing
algorithms, we first note that Tar and TL perform close to Gab when the edge-connectivity
cG(s) is small (EC2 instances), but quickly become uncompetitive when the edge-connectivity
increases. Overall, in our experiment, Gab was 50% faster than Tar on average. Finally, we
note that Gab-DFS is faster than Gab by two orders of magnitude on most instances. This is
due to the fact that our simple heuristic very often manages to construct a good arborescence
by a simple DFS traversal.

k-cores

A k-core of an undirected graph G is a maximal subgraph of G such that δ(v) ≥ k for all
v ∈ V (H). This concept is useful in the analysis of social networks [3] as well as in several
other applications [22]. In this experiment, we use the k-core decomposition algorithm of the
SNAP software library and tools [20], and use subgraphs of this decomposition as inputs,
for various values of k. We transform each such undirected graph to a directed graph by
orienting each edge in both directions. Table 4 reports the characteristics of the resulting
graphs. In Table 5 we report the corresponding running times of each algorithm. Again, we
terminated the execution of an algorithm if that exceeded one hour.

Here too, we observe that Tar outperforms TL on most instances, but unlike the augmented
graphs, their difference is marginal. Both TL and Tar run consistently faster on the complete
k intersection T of G compared to the original graph G. Again, the executions of TL and Tar
on T outperform Gab in some instances, but overall Gab is 50% faster. Also, our heuristic
was very effective in this experiment as well, since Gab-DFS ran faster than Gab by two
orders of magnitude.

Table 4 Characteristics of k-core graphs, extracted from real-world graphs in [19]; n is the number
of vertices, m the number of edges; δ denotes the minimum vertex degree, and cs(G) denotes the
cardinality of the minimum s-cut (which equal the edge-connectivity since the graphs are undirected);
m′ is the number of edges in a complete k intersection.

Graph n m δ cs(G) m′ type and source

facebook_combined-core02 3964 176318 2 2 7926
social circles

from facebook
facebook_combined-core04 3754 175332 4 4 11258
facebook_combined-core25 1366 118810 25 25 6824
facebook_combined-core50 616 75246 50 30 19064
Email-Enron-core09 5088 206472 9 9 45783

email
network

Email-Enron-core10 4513 196594 10 10 45120
Email-Enron-core16 2873 157506 16 16 45952
Email-Enron-core18 2561 147332 18 18 46080
CA-AstroPh-core18 5049 244004 18 18 90864

collaboration
network

CA-AstroPh-core25 3202 175520 4 4 12804
CA-AstroPh-core29 2441 139070 29 2 4880
CA-AstroPh-core32 1926 112830 32 32 61600
Gowalla_edges-core11 22742 851196 11 6 136443

social
network

Gowalla_edges-core12 19938 791666 12 5 99684
Gowalla_edges-core15 13833 639244 15 4 55328
Gowalla_edges-core20 8161 456014 20 8 65280



L. Georgiadis, D. Kefallinos, A. Mpanti, and S. D. Nikolopoulos 14:13

Table 5 Running times in seconds of the algorithms for the k-core graphs of Table 4. For the
algorithms of Tarjan (Tar), and of Tong and Lawler (TL), we report the running time when the
input is the original graph G (above) and a complete k intersection of G (below). The execution of
an algorithm was terminated if it exceeded 1 hour.

Graph Gab-EC Gab-EC-DFS Tar TL Gab Gab-DFS

facebook_combined-core02 0.01 0.01 2.47
0.22

8.71
0.43 2.00 0.01

facebook_combined-core04 0.01 0.01 6.88
0.29

20.32
0.86 2.88 0.02

facebook_combined-core25 0.01 0.01 3.97
0.29

6.82
0.53 0.95 0.02

facebook_combined-core50 0.04 0.01 43.41
29.38

47.76
22.59 4.59 0.55

Email-Enron-core09 0.03 0.01 109.84
44.41

156.29
55.41 30.06 0.17

Email-Enron-core10 0.03 0.01 107.00
47.09

101.79
54.95 28.60 0.17

Email-Enron-core16 0.04 0.01 136.26
106.58

170.74
74.56 20.65 0.35

Email-Enron-core18 0.04 0.01 151.68
119.37

177.93
77.12 19.80 0.42

CA-AstroPh-core18 0.25 0.01 894.66
716.73

1029.08
412.42 63.18 1.86

CA-AstroPh-core25 0.02 0.01 6.74
1.83

16.29
1.16 2.03 0.04

CA-AstroPh-core29 0.01 0.01 0.72
0.08

2.68
0.21 0.53 0.01

CA-AstroPh-core32 0.15 0.01 556.99
537.45

545.93
270.58 28.09 1.61

Gowalla_edges-core11 0.10 0.06 2086.57
567.03

2559.07
394.37 404.29 0.49

Gowalla_edges-core12 0.07 0.04 915.08
80.10

1094.83
166.56 219.33 0.31

Gowalla_edges-core15 0.04 0.02 197.84
28.64

321.91
49.67 71.65 0.15

Gowalla_edges-core20 0.05 0.02 327.64
118.93

412.93
109.56 68.57 0.32

References

1 András A Benczúr and David R Karger. Augmenting undirected edge connectivity in Õ(n2)
time. Journal of Algorithms, 37(1):2–36, 2000. doi:10.1006/jagm.2000.1093.

2 Anand Bhalgat, Ramesh Hariharan, Telikepalli Kavitha, and Debmalya Panigrahi. Fast edge
splitting and edmonds’ arborescence construction for unweighted graphs. In Proceedings of the
Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’08, pages 455–464,
USA, 2008. Society for Industrial and Applied Mathematics.

3 Kshipra Bhawalkar, Jon Kleinberg, Kevin Lewi, Tim Roughgarden, and Aneesh Sharma.
Preventing unraveling in social networks: The anchored k-core problem. SIAM Journal on
Discrete Mathematics, 29(3):1452–1475, 2015.

4 CAD Benchmarking Lab. ISCAS’89 benchmark information. http://www.cbl.ncsu.edu/
www/CBL_Docs/iscas89.html.

SEA 2022

https://doi.org/10.1006/jagm.2000.1093
http://www.cbl.ncsu.edu/www/CBL_Docs/iscas89.html
http://www.cbl.ncsu.edu/www/CBL_Docs/iscas89.html


14:14 An Experimental Study of Algorithms for Packing Arborescences

5 C. Demetrescu, A.V. Goldberg, and D.S. Johnson. 9th DIMACS Implementation Challenge:
Shortest Paths. http://www.dis.uniroma1.it/~challenge9/, 2007.

6 J. Edmonds. Submodular functions, matroids, and certain polyhedra. Combinatorial Structures
and their Applications, pages 69–81, 1970.

7 J. Edmonds. Edge-disjoint branchings. Combinatorial Algorithms, pages 91–96, 1972.
8 D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press, USA, 2010.
9 S. Fujishige. A note on disjoint arborescences. Combinatorica, 30(2):247–252, 2010. doi:

10.1007/s00493-010-2518-y.
10 Satoru Fujishige and Naoyuki Kamiyama. The root location problem for arc-disjoint arbores-

cences. Discrete Applied Mathematics, 160(13):1964–1970, 2012. doi:10.1016/j.dam.2012.
04.013.

11 H. N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.
Journal of Computer and System Sciences, 50:259–273, 1995.

12 Harold N. Gabow. Efficient splitting off algorithms for graphs. In Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing, STOC ’94, pages 696–705, New York,
NY, USA, 1994. Association for Computing Machinery. doi:10.1145/195058.195436.

13 Loukas Georgiadis, Dionysios Kefallinos, Luigi Laura, and Nikos Parotsidis. An experimental
study of algorithms for computing the edge connectivity of a directed graph. In Martin
Farach-Colton and Sabine Storandt, editors, Proceedings of the Symposium on Algorithm
Engineering and Experiments, ALENEX 2021, Virtual Conference, January 10-11, 2021, pages
85–97. SIAM, 2021. doi:10.1137/1.9781611976472.7.

14 M. Ghaffari, K. Nowicki, and M. Thorup. Faster algorithms for edge connectivity via random
2-out contractions. In Proceedings of the Thirty-First Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’20, pages 1260–1279, USA, 2020. Society for Industrial and
Applied Mathematics.

15 M. Henzinger, S. Rao, and D. Wang. Local flow partitioning for faster edge connectivity.
SIAM Journal on Computing, 49(1):1–36, 2020.

16 N. Kamiyama, N. Katoh, and A. Takizawa. Arc-disjoint in-trees in directed graphs. Combin-
atorica, 29:197–214, 2009. doi:10.1007/s00493-009-2428-z.

17 D. R. Karger. Minimum cuts in near-linear time. Journal of the ACM, 47(1):46–76, January
2000. doi:10.1145/331605.331608.

18 K.-I. Kawarabayashi and M. Thorup. Deterministic edge connectivity in near-linear time.
Journal of the ACM, 66(1), December 2018. doi:10.1145/3274663.

19 J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http:
//snap.stanford.edu/data, June 2014.

20 Jure Leskovec and Rok Sosič. Snap: A general-purpose network analysis and graph-mining
library. ACM Transactions on Intelligent Systems and Technology (TIST), 8(1):1, 2016.

21 László Lovász. On two minimax theorems in graph. Journal of Combinatorial Theory, Series
B, 21(2):96–103, 1976. doi:10.1016/0095-8956(76)90049-6.

22 F. D. Malliaros, C. Giatsidis, A. N. Papadopoulos, and M. Vazirgiannis. The core decomposition
of networks: theory, algorithms and applications. The VLDB Journal, 29(1):61–92, 2020.
doi:10.1007/s00778-019-00587-4.

23 H. Nagamochi and T. Ibaraki. Algorithmic Aspects of Graph Connectivity. Cambridge
University Press, 2008. 1st edition.

24 Yossi Shiloach. Edge-disjoint branching in directed multigraphs. Information Processing
Letters, 8(1):24–27, 1979. doi:10.1016/0020-0190(79)90086-3.

25 Robert Endre Tarjan. A good algorithm for edge-disjoint branching. Information Processing
Letters, 3(2):51–53, 1974. doi:10.1016/0020-0190(74)90024-6.

26 Po Tong and E.L. Lawler. A faster algorithm for finding edge-disjoint branchings. Information
Processing Letters, 17(2):73–76, 1983. doi:10.1016/0020-0190(83)90073-X.

http://www.dis.uniroma1.it/~challenge9/
https://doi.org/10.1007/s00493-010-2518-y
https://doi.org/10.1007/s00493-010-2518-y
https://doi.org/10.1016/j.dam.2012.04.013
https://doi.org/10.1016/j.dam.2012.04.013
https://doi.org/10.1145/195058.195436
https://doi.org/10.1137/1.9781611976472.7
https://doi.org/10.1007/s00493-009-2428-z
https://doi.org/10.1145/331605.331608
https://doi.org/10.1145/3274663
http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://doi.org/10.1016/0095-8956(76)90049-6
https://doi.org/10.1007/s00778-019-00587-4
https://doi.org/10.1016/0020-0190(79)90086-3
https://doi.org/10.1016/0020-0190(74)90024-6
https://doi.org/10.1016/0020-0190(83)90073-X


L. Georgiadis, D. Kefallinos, A. Mpanti, and S. D. Nikolopoulos 14:15

A Stack-based vs queue-based implementations

Tables 6 and 4 compare the stack-based against the queue-based implementation of the
algorithms of Tarjan (Tar) and of Tong-Lawler (TL), for augmented and k-core graphs,
respectively.

Table 6 Running times in seconds of the stack-based and queue-based implementations of the
algorithms of Tarjan (Tar) and of Tong-Lawler (TL), for the augmented graphs of Table 2. We report
the running time when the input is the original graph G (above) and a complete k intersection of G

(below). The execution of an algorithm was terminated if it exceeded 1 hour.

Graph Tar TL
stack queue stack queue

enron-EC2 0.01
0.01

0.01
0.01

1.09
0.04

2.41
0.48

enron-EC4 36.34
7.23

111.44
8.18

118.17
7.59

131.24
6.73

enron-EC8 304.29
95.58

591.30
136.25

614.18
131.91

786.56
118.14

enron-EC16 1840.76
951.43

2662.05
1298.16

2782.78
1319.77

3340.18
1343.09

p2p-Gnutella25-EC2 1.19
0.79

3.66
1.13

3.90
1.12

4.41
1.59

p2p-Gnutella25-EC4 8.46
7.05

22.00
14.67

23.76
14.34

23.61
14.73

p2p-Gnutella25-EC8 55.21
53.41

123.56
99.95

124.36
91.005

119.05
88.94

p2p-Gnutella25-EC16 403.92
450.80

744.87
662.15

760.74
629.79

768.10
620.41

rome99-EC2 0.45
0.35

0.40
0.32

0.37
0.24

0.45
0.21

rome99-EC4 3.20
3.19

8.12
6.08

7.26
5.56

6.98
3.88

rome99-EC8 21.67
21.62

49.48
37.11

50.86
37.24

47.44
35.71

rome99-EC16 160.01
156.29

306.58
239.31

312.30
241.95

320.36
243.20

s38584-EC2 14.12
8.88

39.62
25.96

37.02
23.45

44.71
26.93

s38584-EC4 131.86
117.79

286.66
102.47

262.07
98.85

282.07
114.64

s38584-EC8 1012.85
878.22

2040.86
1541.89

2007.45
1258.60

1867.42
1265.24

s38584-EC16 >1h
>1h

>1h
>1h

>1h
>1h

>1h
>1h

web-Stanford-EC2 >1h
2307.26

>1h
3100.36

>1h
2350.42

>1h
>1h

web-Stanford-EC4 >1h
>1h

>1h
>1h

>1h
>1h

>1h
>1h

SEA 2022



14:16 An Experimental Study of Algorithms for Packing Arborescences

Table 7 Running times in seconds of the stack-based and queue-based implementations of the
algorithms of Tarjan (Tar) and of Tong-Lawler (TL), for the k-core graphs of Table 4. We report the
running time when the input is the original graph G (above) and a complete k intersection of G

(below). The execution of an algorithm was terminated if it exceeded 1 hour.

Graph Tar TL
stack queue stack queue

facebook_combined-core02 2.47
0.22

8.04
0.37

8.71
0.43

6.63
0.36

facebook_combined-core04 6.88
0.29

18.83
0.83

20.32
0.86

11.51
0.95

facebook_combined-core25 3.97
0.29

6.32
0.51

6.82
0.53

3.97
0.31

facebook_combined-core50 43.41
29.38

44.34
21.88

47.76
22.59

8.54
3.11

Email-Enron-core09 109.84
44.41

146.24
55.64

156.29
55.41

221.64
47.98

Email-Enron-core10 107.00
47.09

94.40
53.62

101.79
54.95

116.07
41.25

Email-Enron-core16 136.26
106.58

161.54
90.43

170.74
74.56

226.42
94.21

Email-Enron-core18 151.68
119.37

168.80
90.58

177.93
77.12

240.51
104.76

CA-AstroPh-core18 894.66
716.73

991.31
99.58

1029.08
412.42

619.59
213.50

CA-AstroPh-core25 6.74
1.83

15.42
1.66

16.29
1.16

19.77
0.75

CA-AstroPh-core29 0.72
0.08

2.50
0.19

2.68
0.21

3.02
0.10

CA-AstroPh-core32 556.99
537.45

526.15
427.66

545.93
270.58

991.77
349.73

Gowalla_edges-core11 2086.57
567.03

2468.99
455.23

2559.07
394.37

>1h
403.34

Gowalla_edges-core12 915.08
80.10

1425.66
187.11

1094.83
166.56

2482.81
169.45

Gowalla_edges-core15 197.84
28.64

498.99
53.81

321.91
49.67

780.18
47.25

Gowalla_edges-core20 327.64
118.93

552.16
122.30

412.93
109.56

847.61
105.48



Stochastic Route Planning for Electric Vehicles
Payas Rajan !

Department of Computer Science, University of California, Riverside, CA, USA

Chinya V. Ravishankar !

Department of Computer Science, University of California, Riverside, CA, USA

Abstract
Electric Vehicle routing is often modeled as a generalization of the energy-constrained shortest
path problem, taking travel times and energy consumptions on road network edges to be deter-
ministic. In practice, however, energy consumption and travel times are stochastic distributions,
typically estimated from real-world data. Consequently, real-world routing algorithms can make
only probabilistic feasibility guarantees. Current stochastic route planning methods either fail to
ensure that routes are energy-feasible, or if they do, have not been shown to scale well to large
graphs. Our work bridges this gap by finding routes to maximize on-time arrival probability and
the set of non-dominated routes under two criteria for stochastic route feasibility: E-feasibility and
p-feasibility. Our E-feasibility criterion ensures energy-feasibility in expectation, using expected
energy values along network edges. Our p-feasibility criterion accounts for the actual distribution
along edges, and keeps the stranding probability along the route below a user-specified threshold
p. We generalize the charging function propagation algorithm to accept stochastic edge weights to
find routes that maximize the probability of on-time arrival, while maintaining E- or p-feasibility.
We also extend multi-criteria Contraction Hierarchies to accept stochastic edge weights and offer
heuristics to speed up queries. Our experiments on a real-world road network instance of the Los
Angeles area show that our methods answer stochastic queries in reasonable time, that the two
criteria produce similar routes for longer deadlines, but that E-feasibility queries can be much faster
than p-feasibility queries.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Shortest paths; Theory of computation → Stochastic control and optimization

Keywords and phrases Stochastic Routing, Electric Vehicles, Route Planning Algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.15

Acknowledgements The authors would like to thank the Mapbox Community team for access to
the Mapbox Traffic Data used in our experiments.

1 Introduction

Routing methods for Electric Vehicles (EVs) cannot just minimize travel time, but must also
address driver range anxiety. EVs have limited battery capacity, charging times are long,
and the charging infrastructure remains relatively sparse, so a major concern is stranding,
which occurs when the battery’s State of Charge (SoC) reaches zero en route. A route for an
EV is hence considered feasible only if the SoC along the route never reaches zero.

Merely trying to minimize travel time greatly increases the risk of stranding, since
energy consumption is typically quadratic in vehicle speed. Standard formulations such
as [9, 14, 30] model EV routing as a generalization of the NP-hard Constrained Shortest
Path problem [26, 58], and seek to minimize travel time while maintaining a non-zero SoC
along the route. Some recent work [7, 36] even tries to exercise direct control over travel
time and route feasibility, by pre-determining and assigning optimal EV travel speeds for
each road segment.

© Payas Rajan and Chinya V. Ravishankar;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:payas.rajan@email.ucr.edu
https://orcid.org/0000-0001-8939-1682
mailto:ravi@cs.ucr.edu
https://orcid.org/0000-0001-5735-9792
https://doi.org/10.4230/LIPIcs.SEA.2022.15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


15:2 Stochastic Route Planning for Electric Vehicles

Most existing problem formulations also assume that travel times and energy consumption
values on road network edges are deterministic. In practice, both travel time and energy
consumption are stochastic, and difficult to estimate reliably [2, 17, 46]. In such a context,
even routing algorithms offering strong feasibility guarantees are of limited value. Approaches
that pre-determine and assign vehicle speeds for each edge are not practical, since speed is
not always a variable under driver control, but rather a result of prevalent traffic conditions.

Consequently, travel times and route feasibility may only be defined probabilistically.
Stochastic routing algorithms [12, 20, 40, 39, 38, 42, 43, 44, 27, 59], model travel times
along network edges as random variables with given probability distributions, and allow
richer query semantics, such as finding paths to maximize the probability of arrival before a
deadline [15], or finding the latest departure time and path to guarantee a certain probability
of arrival before a deadline [35]. Despite recent improvements [47], stochastic routing is
typically several orders of magnitude slower than deterministic routing, since obtaining travel
time distributions along a path requires very expensive convolutions of its edge distributions.

Limited work exists on stochastic route planning for EVs. Chen et al. [13] assume
lognormal travel-time and Gaussian energy-consumption distributions, and uses bicriteria
search to find the Pareto-optimal routes optimizing energy consumption and travel time
reliability. Jafari et al. [25] allow arbitrary distributions of travel times on edges and charging
stations, and uses multicriteria search to minimize the cost of charging and travel time, subject
to a minimum reliability threshold, on small synthetic graphs with randomly generated
edge weights and charging station placements. Shen et al. [51] allow correlated travel time
distributions between edges, and use bicriteria search on travel times and energy consumptions.
However, they assume deterministic energy consumptions, and run experiments on a network
of only a few hundred vertices.

1.1 Our Contributions
We study EV routing when both travel times and energy consumptions are stochastic. The
travel time on each edge e ∈ E of a road network G = ⟨V, E⟩ is always a random variable
Te with a known distribution (estimated from data, say). The energy consumption along
e is a function εe of EV speed and distance. We introduce two probabilistic definitions of
route feasibility: We say that a route is E-feasible if the SoC of the EV is always maintained
above zero in expectation, and p-feasible if the probability of route feasibility is at least p.
We show how to enhance stochastic routing queries for travel times with these feasibility
criteria to find non-dominated feasible routes and probabilistic budget feasible routes. Our
work addresses the four types of stochastic routing queries in the cells of the following table:

E-Feasibility p-Feasibility
Non-Dominated Routes ✓ ✓

Probabilistic Budget Routes ✓ ✓

We address these queries by generalizing the Charging Function Propagation algorithm
of [8, 9] to accommodate stochastic edge weights. We evaluate our methods experimentally
using a realistic road network instance with travel time distributions derived from traffic speeds
observed over four and a half months in the Los Angeles area, and real-world elevations
and charging station locations. Further, we apply an uncertain variant of Contraction
Hierarchies [21] to speed up our queries and present results. Our results indicate that in
general, E-feasible routing queries can be computed much faster than p-feasible queries, and
produce similar routes for longer routes with higher time budgets.



P. Rajan and C. V. Ravishankar 15:3

Stochastic
Routing

Routing Objective Distribution Type Algorithm Output

minimize E[T ]
[11, 33, 32]

maximize Pr[T < d]
[15], This work.

lower-boundPr[T < d]
[35]

In functional form
[28, 13, 51, 40]

In arbitrary form
[35, 23, 18, 20, 42,
48, 38], This work.

Driver Policy
[11, 15, 48, 27, 37]

Actual Routes
[35, 40, 39, 38, 28, 13,
51, 42, 23], This work.

Figure 1 Stochastic route planning, classified by routing objective, edge distribution, and result.
Our work finds energy-feasible routes that maximize probability of arrival before deadline.

2 Related Work

EV routing has been typically modeled as energy-aware routing, with objective functions
ranging from minimizing the total energy consumption [14, 49], to minimizing travel time
while maintaining route feasibility [3, 9, 36, 54], to multicriteria search on both travel time and
energy consumption [22]. In contrast, most prior work on routing Internal Combustion-based
vehicles merely minimizes the total travel time [4, 53].

More attention is now being paid to real-world issues. Examples include allowing battery-
swapping stations [56], partial recharges at stations [9, 30, 8, 57] and maintaining battery
buffer to relieve range anxiety [45, 24, 18]. Many challenges remain, however. The energy
consumption models are imperfect, and factors such as battery wear, driver aggressiveness [31],
or traffic conditions are hard to model, but can have a significant impact. Data also suggests
that drivers may prefer familiar paths to shortest paths [60, 29].

2.1 Stochastic Route Planning
Stochastic route planning goes back to [20], which attempted an exact solution for the
shortest path problem in stochastic graphs, using Monte Carlo simulations to derive path
weights. It is now known that driver behavior changes if travel time is stochastic [19, 52], so
problem variants have been explored. Existing work can be categorized in three ways: by
objective function, the forms assumed for edge probability distributions, and by targeted
outcome. For conciseness, we discuss our categorization here, and show references in Figure 1.

By routing objective. Routing objectives can be quite varied, such as minimizing expected
time [11, 33, 32], maximizing the on-time-arrival probability [15], maintaining on-time-arrival
probability above a given threshold [35]. Some works [51, 13, 25] apply stochastic routing
algorithms to EVs, while others [1] route multiple EVs collaboratively, on-line.

By distribution. The edge distributions assumed can have a functional form, or be arbitrary
without a closed form. This choice also affects the edge weight representations used. For
functional forms, storing the distributional parameters suffices, but arbitrary distributions
require more space-intensive representations such as histograms. Further, with functional
forms, a small number of observations can suffice to capture real-world behaviour, but
histograms require much more data. Edge weight representations have been shown to
significantly affect the runtime performance of stochastic shortest path queries [44, 47].

SEA 2022



15:4 Stochastic Route Planning for Electric Vehicles

Output. Adaptive methods [41, 35] output policies for drivers to make routing decisions
on-line, as they reach vertices or edges during the drive. In contrast, a-priori approaches
produce routes before travel begins. [35] showed that adaptive approaches can produce
strictly better solutions than the a-priori approaches, but are much more computationally
expensive. Recently, performance improvements to policy-based approaches, such as the
Stochastic On-Time Arrival problem have also been proposed [48, 37, 27].

3 Problem Setup

A road network is a directed graph G = ⟨V, E⟩ where V is the set of vertices and E : V × V

is the set of edges. An s-t path P = [s = v1, v2 · · · , vn = t] is a sequence of adjacent vertices
in the road network G. A set C ⊆ V is marked as charging stations.

▶ Definition 1 (State of Charge). The State of Charge (SoC) of an EV is the charge status
of the EV’s battery, lying between 0 and the battery capacity M . We denote the SoC on
arrival at a vertex v by vβ and the SoC at departure from v by βv. We have βv ≥ vβ if the
EV charges its batteries at node v, and βv = vβ otherwise.

Each c ∈ C has a monotonically increasing, piecewise-linear charging function Φc such
that Φc(cβ, tc) 7→ βc where tc is charging time. We require cβ ≥ 0, and βc ≤ M [45].

▶ Definition 2 (Leg and Prefix). A subpath L = [c1, . . . , v, . . . , c2] is a leg of path P iff c1, c2
are successive charging stations along P . Each λv = [c1, . . . , v], v ̸= c2 is a prefix of L.

3.1 Travel Times and Energy Depletion
The travel time along each edge e is a random variable Te with a known probability
distribution. For problem tractability, we assume that the EV travels on e at a uniform
speed drawn from the distribution Te. This is reasonable, since variable travel time on an
edge can be easily modeled by splitting an edge into several smaller edges.

Let e1, e2, . . . , en−1 be the edges along path P , and let ek have travel time distribution Tk.
The aggregate travel time distribution for the path P is TP = T1 ∗ T2 ∗ · · · ∗ Tn−1, where ∗
denotes linear convolution. Let T∅ be the Dirac “delta” distribution defined so that T∅(0) = 1
and T∅(x) = 0 at x ̸= 0. Now, T∅ functions as a convolution identity, so T∅ ∗ TP = TP .

We assign to each edge e a function εe : R+ → R, which maps a travel time to the battery
energy depleted by travel along e. The total energy depletion is the sum of the work done
along e by the EV against air resistance, rolling resistance, and against gravity. The wind
resistance grows quadratically with speed. If t is the travel time along edge e, these three
terms cause εe(t) to assume the form

εe(t) = ae

t2 − be
+ ce

t
+ de. (1)

where ae, be, ce, de are fixed coefficients for each edge e. We can derive the edge energy
depletion distribution De from the travel time distribution Te using Equation 1, thereby
associating probabilities with energy depletions. A path may have negative energy depletion;
EVs have regenerative brakes, and can accumulate charge, say, when going down a slope.

We can also aggregate energy depletion distributions using convolutions. If e1, e2, . . . , en−1
are the edges along a path P , and edge ei has the depletion distribution Di, the aggregate
energy depletion distribution for P is DP = D1 ∗ D2 ∗ · · · ∗ Dn−1. By analogy with
T∅, we define D∅ to be the Dirac “delta” function corresponding to energy depletion, so
that D∅ ∗ DP = DP . Sometimes, as with expected-feasibility queries, it suffices to add
expectations directly, since E[D1 ∗ D2] = E[D1] + E[D2].



P. Rajan and C. V. Ravishankar 15:5

Table 1 Symbols used in this paper.

Sym Meaning Sym Meaning

TP Travel time distribution on path P T∅ Convolution identity for T

DP Energy depletion distribution on path P D∅ Convolution identity for D

δλ Depletion function for leg prefix λ δ∅ Depletion function for null path

uβ SoC on arrival at vertex u βu SoC at departure from vertex u

Φc Charging function at charging station c εe Energy depletion function on edge e

3.2 E-Feasible Routing
In this class of queries, we assume that the travel times are stochastic, but define feasibility
in terms of the expectations for the energy depletion distributions. Say that an EV starts
from vertex s with State of Charge (SoC) βs ∈ [0, M ] and wishes to travel to vertex t along
the s-t path P . Let leg L = [c, . . . , c′] of P lie between charging stations c and c′ along P .

▶ Definition 3 (E-Feasible Path). Leg L is expected-feasible (or E-feasible) iff E[Dλ] ≤ βc,
where Dλ is the depletion distribution for all prefixes λ of L, and βc is the EV’s SoC when
it departs c. A path P = [L1, L2, . . . , Ln] is E-feasible iff each of its legs Li is E-feasible.

We consider two E-feasible queries:

▶ Query 4 (Non-Dominated E-feasible Paths). Find the set of E-feasible s-t paths such that
their travel time distributions are not dominated by any other path.

▶ Query 5 (Probabilistic Budget E-feasible Path). Find an E-feasible s-t path that maximizes
the probability of reaching t before a given deadline d.

3.3 p-Feasible Routing
▶ Definition 6 (p-Feasible Path). A path P with legs L1, L2, . . . , Ln is p-feasible iff the
probability of the EV not being stranded along P is at least p, the non-stranding probability.

The non-stranding probability of P is given by the product of non-stranding probabilities of
P ’s legs. For P to be p-feasible, each of its legs must have a non-stranding probability of at
least p. We consider two p-feasible queries:

▶ Query 7 (Non-Dominated p-Feasible Paths). Find the set of s-t paths whose travel time
distributions are not dominated by any other path, and which ensure that probability not being
stranded is at least p.

▶ Query 8 (Probabilistic Budget p-Feasible Paths). Find an s-t path which maximizes the
probability of reaching t before a given deadline d, while keeping the probability of not being
stranded is at least p.

4 Charging Function Propagation for E-Feasible Routing

The CFP algorithm of [9] uses only deterministic edge weights, but we show how to extend it
to answer expected-feasible stochastic shortest path queries. As in [9], we ensure that the SoC
on departing a charging station suffices to complete the ensuing leg. Our Dijkstra’s search
labels maintain the set of all possible tradeoffs between charging time and the resulting SoC.

SEA 2022



15:6 Stochastic Route Planning for Electric Vehicles

s t
2 3 1 -5 6

SoC SoC

Charging TimeCharging Time

0.0

0.2

0.4

0.6

30 60 90
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

Figure 2 E-feasible queries. Edges have two weights: a travel time distribution (below), and
an expected energy depletion (above). Shaded nodes are charging stations, with piecewise-linear
charging functions. The CFP search propagates travel time distributions using convolutions.

However, complexities arise since we use stochastic travel times. The deterministic case
can simply use a min-priority queue ordered by travel times, but distributions can be ordered
in different ways. For simplicity, we will use usual stochastic ordering [50] to order the travel
time distributions in the priority queue, under which two random variables X and Y obey
X ⪯ Y iff Pr[X > x] ≤ Pr[Y > x], ∀x ∈ (−∞, ∞). Other stochastic orderings, such as the
hazard rate or likelihood ratio ordering, may result in interesting tradeoffs for the EV, but are
beyond the scope of this paper. Also, deterministic travel times can be simply added along a
path, but travel time distributions must be convolved to aggregate travel time distributions.

For expected-feasible routes, we will use stochastic travel times, but expected values for
energy depletion. That is, let e1, e2, . . . , en be the edges comprising a path P , and let edge ei

have travel time and energy depletion distributions Ti and Di. For expected-feasible routing,
the aggregate travel time distribution TP = T1 ∗ T2 ∗ · · · ∗ Tn, and the aggregate energy
depletion value is E[DP ] = E[D1] + E[D2] + . . . + E[Dn].

4.1 The Depletion Function Along Route Legs

Even if the energy depletion over leg L = [c1, . . . , v, . . . , c2] is deterministic with value EL,
departing c1 with an SoC of βc1 = EL may not suffice to complete L. For instance, L may
go up a hill, climbing which requires more energy than βc1 . Similarly, c2

β, the arrival SoC at
c2, may not equal βc1 + EL when EL < 0, since the SoC can never exceed M .

Consider a prefix λ = [c, . . . , v] of some leg that starts with charging station c. Let sλ be
the minimum starting SoC required to traverse λ, eλ be the maximum ending SoC possible
at v, and let cλ = E[Dλ]. The depletion function δλ (similar to SoC profiles in [8, 9]) for
prefix λ maps the SoC at the start of λ to the SoC at the end of λ, and is defined as

δλ(βc) = vβ =


−∞, if βc < sλ,

eλ, if βc − cλ > eλ,

βc − cλ, otherwise.
(2)

The depletion function for a null path comprising a single vertex s is the identity depletion
function δ∅ : βs 7→ βs. Let P1 = [vi, vi+1, . . . , vj ] and P2 = [vj+1, vj+2, . . . , vk] be contiguous
segments, and P = P1P2 = [vi, . . . , vk] be their concatenation. In this case, we have
sP = max{sP1 , cP1 + sP2}, eP = min{eP2 , eP1 − cP2} and cP = cP1 + cP2 .



P. Rajan and C. V. Ravishankar 15:7

4.2 Dijkstra Search for E-feasible Routes
We find expected-feasible paths via Dijkstra search using two types of priority queues: the
global queue QG holds the travel time distributions from s to all other vertices in the road
network G, and per-vertex queues Lu(v) and Ls(v). Lu(v) and Ls(v) hold the unsettled and
settled search labels at vertex v respectively. All priority queues are ordered by T[s...v] using
the usual stochastic ordering ⪯ defined above. Each label in Ls(v) corresponds to an s-v
path already known to be feasible, and gives the required charging time at the last charging
station. Consequently, as in [9], we maintain the invariant that the minimum element in
Lu(v) is not dominated by any label in Ls(v).

The EV leaves s having acquired an SoC of βs at s, so we treat s as a charging station,
by default. One of our major challenges in the search will be to determine at which stations
to charge, and for how long. Our search hence remembers the last charging station c along
the route in the search labels, since dropping to an SoC below a permissible threshold signals
the need to include a charging time at c, and update route times accordingly.

4.2.1 The Search Algorithm
When the search reaches vertex v, the label at v is a four-tuple ⟨T[s...v], cβ, c, δ[c...v]⟩, where
T[s...v] is the travel time distribution for the subpath [s . . . v], c is the last charging station
en route from s to v, cβ is the arrival SoC at c, and δ[c...v] is the depletion function of the
subpath [c . . . v]. We note that the charging times at some charging stations may be zero.

A label is extracted from Lu(v) on each search iteration, where v is the minimum-travel
time vertex in QG. It is then settled, and added to Ls(v). A label in Ls(v) represents a
path from s to v that we know to be feasible, along with the exact charging time at the
last charging station. A label in Lu(v) represents a potentially feasible path that we haven’t
checked for feasibility. If an unsettled label in Lu(v) is dominated by a label in Ls(v), we
can discontinue search along that path and discard that label, because we already know a
better feasible path. The search proceeds as follows:
1. At s: Mark s as a charging station. Add the label ⟨T∅, sβ, s, δ∅⟩ to Lu(s).
2. At a non-charging vertex v: Let ℓ = ⟨T[s...v], cβ, c, δ[c...v]⟩ be the label extracted from

Lu(v). Since ℓ indicates that c is the last charging station encountered, add label
⟨T[s...v], δ[c...v](cβ), c, δ[c...v]⟩ to Lu(v) and update the travel times for v in QG.

3. At a charging vertex v: Let label ℓ = ⟨T[s...v], cβ, c, δ[c...v]⟩ be the minimum element
extracted from Lu(v). Let tc be the charging time at the last charging station c, so that
βc = Φc(cβ, tc) is the SoC when the EV departs c.
The CFP algorithm of [8, 9] uses only deterministic travel times, but our travel times are
distributions. As [8] shows, however, the charging times corresponding to the breakpoints
of the charging function Φc(·) capture the information required to make the required
tradeoffs between charging times and travel times. To see how we approach the problem,
let τ represent some value for the travel time from s to v, and compute

bℓ(tc, τ) :=
{

δ[c...v](βc) if tc > 0 and T[s...v](τ) > 0
−∞ otherwise

Since the charging function Φc(·) is assumed to be piecewise linear, its breakpoints induce
breakpoints for bℓ. For a given value of τ we need to create one label per breakpoint of
bℓ [8]. For a fixed τ and each breakpoint B = (tB , SoCB) of bℓ, we add to Lu(v) the label
⟨tB , SoCB , v, T∅⟩, and update the travel times to v in QG.

SEA 2022



15:8 Stochastic Route Planning for Electric Vehicles

s t

SoC SoC

Charging TimeCharging Time

0.0

0.2

0.4

0.6

30 60 90
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

50 100
Travel time (s)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

0 50 100
Energy (kJ)

P
ro

ba
bi

lit
y

0.0

0.2

0.4

0.6

0.8

0 50 100 150 200
Energy (kJ)

P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Energy (kJ)

P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

0 50 100 150
Energy (kJ)

P
ro

ba
bi

lit
y

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200
Energy (kJ)

P
ro

ba
bi

lit
y

Figure 3 p-Feasible queries. Travel time and energy depletion are both distributions., propagated
by the CFP search using convolutions. While the non-dominated search stops only when QG becomes
empty, the probabilistic budget route search can stop when TP (t) drops to 0.

In principle, τ can take an infinite number of values. We handle this difficulty by
discretizing the domain of Te. We use histograms to represent Te in our implementation,
and generate only one set of breakpoints per histogram bin.

4. At the destination t: End search, backtrack using parent pointers to extract an s-t path.

A label ℓ is said to dominate another label ℓ′ if bℓ(t, τ) ≥ bℓ′(t, τ) for all t > 0 and all τ > 0.

If we end the search only when QG is empty, not simply when t is reached, we obtain the
E-feasible non-dominated paths. For E-feasible probabilistic budget paths, we end the search
when TP (d) = 0, i.e. the probability of reaching t within the time budget d drops to 0.

5 Charging Function Propagation for p-Feasible Routing

For p-feasible routing, we must consider the actual depletion distribution DP for a path
P , not simply E[DP ], which sufficed for expected-feasible paths. As with expected-feasible
paths, we must also deal with the travel time distribution TP . If path P has the edges
e1, e2, . . . , en, then TP = T1 ∗ T2 ∗ · · · ∗ Tn and DP = D1 ∗ D2 ∗ · · · ∗ Dn. We can use p to
place a bound on the maximum energy depletion we can accommodate over a path P . Let

cP (p) = arg max x{DP (x) ≤ p},

so that cP (p) is the highest energy depletion that could occur along P with a probability of
no more than p, that is, to ensure a non-stranding probability of p.



P. Rajan and C. V. Ravishankar 15:9

We define the stochastic depletion function analogously to Equation 2. Let sP (p) be
the minimum starting SoC at s required to traverse P with non-stranding probability p.
Similarly, let eP (p) be the maximum SoC possible on arriving at vertex t with at least
probability p, and cP = DP . The stochastic depletion function for P is

σP (βs, p) = tβ =


−∞, if βs < sP (p),
eP (p), if βs − cP (p) > eP (p),
βs − cP (p), otherwise.

(3)

Let σ∅ be the identity stochastic depletion profile for a null path, so that σ∅(βs, p) = βs. If
P1 = [vi, vi+1, . . . , vj ] and P2 = [vj+1, vj+2, . . . , vk], the depletion profile of the concatenated
path P = P1P2 = [vi . . . vk] is given by sP (p) = max{sP1(p), cP1(p) + sP2(p)}, eP (p) =
min{eP2(p), eP1(p) − cP2(p)} and cP = cP1 ∗ cP2 .

5.1 Dijkstra Search for p-feasible Routes
The label at vertex v is a four-tuple ⟨T[s...v], cβ, c, σ[c...v]⟩, where T[s...v] is the travel time
distribution for the subpath [s . . . v], c is the last charging station enroute from s to v, cβ is
the arrival SoC at c, and σ[c...v] is the stochastic depletion function of the subpath [c . . . v].

As for E-feasible routes, we maintain a global priority queue QG storing the travel time
distributions from s, and queues Lu(v) and Ls(v) to store the unsettled and settled labels at
vertex v respectively. All queues use the usual stochastic ordering. On each search iteration,
a label is extracted from Lu(v), where v is the minimum-travel time vertex in QG, settled,
and added to Ls(v). Each label in Ls(v) represents a feasible path from s to v, including
the charging time at the last charging station. Each label in Lu(v) represents a potentially
feasible path whose feasibility is yet unverified. If a label ℓ ∈ Lu(v) is dominated by ℓ′ ∈ Ls(v),
we can prune the search along that path and discard ℓ, because a faster feasible path is
already known. p-feasible queries have four parameters: the source vertex s, the destination
vertex t, the βs, and the given p. The search proceeds as follows:
1. At s: Mark s as a charging station. Add the label ⟨T∅, sβ, s, σ∅⟩ to Lu(s).
2. At a non-charging vertex v: Let ℓ = ⟨T[s...v], cβ, c, σ[c...v]⟩ be the label extracted from

Lu(v). Since c is the last charging station encountered on the route represented by ℓ, add
label ⟨T[s...v], σ[c...v](cβ, p), c, σ[c...v]⟩ to Lu(v) and update the travel times for v in QG.

3. At a charging vertex v: Let ℓ = ⟨T[s...v], cβ, c, σ[c...v]⟩ be the label extracted from Lu(v).
Let tc be the charging time at the last charging station c, so βc = Φc(cβ, tc). As with
E-feasible routes, the charging times corresponding to breakpoints of Φc(·) suffice to make
the required trade-off between charging and travel times. Let τ represent some value for
travel time from s to v, and compute

b′
ℓ(tc, τ, p) :=

{
σ[c...v](βc, p) if tc > 0 and T[s...v](τ) > 0
−∞ otherwise

Since Φc(·) is piecewise linear, its breakpoints induce breakpoints for bℓ. Moreover, p is
already known at query time, so for a given value of τ , we only need to create one label
per breakpoint of b′

ℓ [8]. For a fixed τ and each breakpoint B = (tB , SoCB) of b′
ℓ, we add

to Lu(v) the label ⟨tB , SoCB , v, T∅⟩, and update the travel times to v in QG.
As with E-feasible routes, τ can take an infinite number of values, but we use histograms
to represent Te, and we need to generate only one set of breakpoints per histogram bin.
Lastly, we verify p-feasibility of path [s . . . v], by maintaining the running product of the
non-stranding probabilities of all legs over this path. If this product falls below p, the
path [s . . . v] is no longer p-feasible. The search is pruned and labels for v are dropped.

SEA 2022



15:10 Stochastic Route Planning for Electric Vehicles

4. At the destination t: End search, backtrack using parent pointers to extract an s-t path.
For a given p, a label ℓ dominates another label ℓ′ if b′

ℓ(t, τ, p) ≥ b′
ℓ(t, τ, p) for all t > 0 and

τ > 0. If the search terminates only when QG is empty, the resulting s-t paths are the
p-feasible Non-Dominated Paths. For Probabilistic Budget queries, we end the search only
when it reaches far enough for the probability of reaching t within the time budget d is 0.

6 Stochastic Contraction Hierarchies

For deterministic queries, Contraction Hierarchies (CHs) [21] are widely used for speed up.
Graph vertices are ranked, and contracted in ranked order. If u-v-w is a shortest path from
u to w, vertex v is contracted by adding an edge u-w, and removing v from the graph. Such
shortcuts significantly speed up the query-time Dijkstra search. The vertex ranks and the
edge-weight hierarchy significantly affect preprocessing and query times [6]. A multicriteria
CH variant is used in [55] for constrained shortest paths with positive weights. The CHArge
algorithm [9, 8] combines a partial multicriteria CH with A* search. It contracts most graph
vertices, creating a partial multicriteria CH but keeps an uncontracted core with charging
stations. A* search using potential functions is used in the core to find routes at query time.

CHs have also been applied recently to stochastic route planning [42, 47]. However, we
are interested in finding feasible routes that satisfy the energy bounds on EVs. Our queries
are stochastic, and in fact doubly so. Travel time is always stochastic, and energy depletion
is also stochastic for p-feasible queries. The stochastic dominance criterion is known to be
too restrictive in practice [61], so it is hard to find dominating paths for most shortest paths
in the network. Since the added shortcuts in CHs must not violate correctness, we can only
avoid adding a shortcut covering a shortest path P only if we can find another witness path
that dominates P [21, 55].

We solve this problem by relaxing our definition of dominance as follows. For distributions
TP and DP , we use the restricted-dominance criterion of [10], which checks if the CDF of one
distribution is greater than that of the other within a fixed interval I, which we set to two
standard deviations on each side of E[TP ] or E[DP ]. For search labels, we use a definition
of ϵ-dominance similar to that of [5, 45]. We say that a label ℓ1 dominates another label ℓ2
if all breakpoints of bℓ1 or b′

ℓ1
have SoCB values within ϵ of bℓ2 or b′

ℓ2
. We set ϵ = 2% of

battery capacity in our experiments.

7 Experiments

Our algorithms were implemented in Rust 1.60.0-nightly with full optimizations and run on
an Intel core i5-8600K processor with 3.6GHz base clock, 192KB of L1, 1.5 MB of L2, and 9
MB of L3 cache and equipped with 64GB of dual-channel 3200MHz DDR4 RAM.

7.1 Preparing a realistic routing instance
We extracted traffic speeds from Mapbox Traffic Data1 for Tile 0230123,2 between 15th July
and 30th November, 2019. Tile 0230123 covers Los Angeles county between Long Beach
and Oxnard, and yielded a graph with 559,271 vertices and 1,058,450 edges. The dataset
contained speed updates for an edge subset at 5-minute intervals, which we aggregated

1 https://www.mapbox.com/traffic-data
2 https://labs.mapbox.com/what-the-tile

https://www.mapbox.com/traffic-data
https://labs.mapbox.com/what-the-tile


P. Rajan and C. V. Ravishankar 15:11

into weekday and weekend speed histograms. We discarded the weekend histograms due to
sparsity, and used only the weekday speeds for our experiments. We added latitudes and
longitudes for each vertex from the OSM dataset taken from GeoFabrik,3 contracted the
degree-2 vertices, and extracted the largest connected component. This step resulted in the
final routing graph of 244,728 vertices and 453,942 edges.

We added elevation data from the NASADEM dataset [34] at 30M resolution to each
vertex, using bilinear interpolation to estimate elevations at vertex locations. Lastly, we
obtained charging stations from the Alternative Fuels Data Center,4 marking the vertex
closest to each charging station as the charging vertex. The charging function Φc on each
vertex c was linear, and either (1) a slow, charging to 100% in 100 minutes, or (2) fast,
charging up to 80% in 30 minutes, and up to 100% in 60 minutes. We randomly assigned the
slow charging function to 70% of charging stations, the fast charging function to the rest.

Energy consumption parameters for εe on all edges e were derived using the vertex
elevations and the values ae, be, ce, de used for Nissan Leaf 2013 in [16]. To force the search
to require charging en route for feasibility, we assumed that the EV had a 12 kWh battery.

Choice of edge weight representation. Histograms capture arbitrary Te and De distribu-
tions, but take more space. Functions may be less faithful to real-world distributions, but are
compact and may lead to faster queries in some cases [47]. We used histograms to represent
the travel time and energy consumption distributions on edges since our dataset had enough
data for most edges. This allows us to represent arbitrary distributions while keeping the
implementation simple.

Applying Contraction Hierarchies. Building a full CH by contracting all vertices of the
graph can be prohibitively expensive due to the high cost of contracting the highest ranked
vertices [9]. So, we build a only partial CH by contracting 97% of the vertices, keeping an
uncontracted core containing all the charging stations on the network. Queries are run in
three stages—from s to a vertex in the core restricted to using only (upward) edges from lower
to higher ranked vertices, backward search from t to a vertex in the core using downward
edges, and a simple bidirectional search within the core of the network.

7.2 Results
Using stochastic edge weights raises many challenges that do not arise for deterministic weights.
Two obvious issues are maintaining route feasibility, and aggregating edge distributions Te

and De into path distributions TP or DP , which requires expensive convolutions. Several
other issues also arise, two of which we will discuss.

Number of histogram bins. The time and energy value ranges in the path distributions
TP , DP increases linearly with the number of edges in P , so more histogram bins are needed
to maintain accuracy. As in the deterministic case, the Dijkstra search labels track the travel
time-charging time tradeoff. The labels represent histograms, so the label sizes increase with
the number bins used for TP and DP . Labels become progressively larger for longer routes,
raising the cost of all operations on the distributions, (convolution, dominance checks, etc.).

3 https://download.geofabrik.de/north-america/us/california/socal.html
4 https://afdc.energy.gov/fuels/electricity_locations.html

SEA 2022

https://download.geofabrik.de/north-america/us/california/socal.html
https://afdc.energy.gov/fuels/electricity_locations.html


15:12 Stochastic Route Planning for Electric Vehicles

At charging stations, moreover, we must create a set of breakpoints per bin of the energy
depletion histogram. More breakpoints are created for charging stations further along the
route, increasing costs and making label dominance checks labels more difficult.

We also note that the CH shortcuts represent longer routes, whose histograms have more
bins than the original graph edges. Shortcut edges are hence more expensive to handle than
original graph edges, decreasing the utility of shortcuts in speeding up route planning queries.

Ensuring stochastic feasibility. Standard probabilistic budget routes use a single criterion,
such as travel time [42, 47]. In contrast, our queries must handle search with two criteria to
maintain feasibility. Further, the number of breakpoints in the charging functions along a
route determines the number of labels generated.

For deterministic edge weights, path costs are just sums of edge costs, so routing takes
just microseconds even on continent-sized road networks [4]. Routing with stochastic edge
weights is far slower, since the convolutions needed to get path costs are very expensive.
Prior work [42, 47] deals only with stochasticity in time, ignoring energy feasibility, but we
consider both aspects. Our methods take tens of seconds, which is comparable to these prior
methods. In preliminary experiments, our use of stochastic, multicriteria CH yielded a 2–2.4
factor speedup over queries not using CH. In deterministic settings, similar methods have
been reported to achieve speedups of two to three orders of magnitude [21]. This lower gain
can be attributed to the weaker “hierarchy” with stochastic edge weights, causing far more
shortcuts to be added to the original graph. This forces the Dijkstra search to scan many
more edges on settling each vertex.

Table 2 Single-criterion probabilistic budget routing queries [47] vs. our E-feasible and p-feasible
queries on the Tile 0230123 graph. Query times (seconds) are averages over 100 random vertex pairs.
The EV is a Nissan Leaf 2013 with 12 kWh battery and 50% starting SoC.

d Feasibility Ignored [47] E-feasible Routes p-feasible Routes

p = 0.8 p = 0.85 p = 0.9

5 min. 6.192 10.662 12.993 11.99 10.31
15 min. 19.999 24.711 38.71 38.9 36.2
25 min. 45.384 38.123 75.05 73.8 71.34

Table 2 quantifies the overhead of maintaining feasibility of routes in stochastic settings,
and compares the query times for single-criteria probabilistic budget routes (time only,
feasibility ignored) with those of our two-criteria feasible probabilistic budget routes. Single-
criteria routing is fastest, followed by E-feasible routing, and p-feasible routing. The anomaly
for d = 25 minutes can be understood as follows. Multicriteria search must explore a larger
set of routes from the source than single-criteria queries, because it needs to return the
pareto frontier of routes, rather than a single route. The E-feasible and p-feasible queries
must also carry and update per-vertex labels, and maintain more information in each label
to capture the travel time-charging time tradeoffs. However, we use the restricted dominance
criterion for E-feasible and p-feasible routes but not for the single-criteria routes, making the
cost per convolution is slightly lower for the two feasible-path queries. This suffices to make
E-feasible routing slightly faster for longer routes than even single-criterion queries.

Table 3 compares E-feasible and p-feasible queries, for longer deadlines. E-feasible queries
are generally faster than p-feasible queries because they must convolve only TP , but p-feasible
queries convolve both TP and DP . p-feasible queries with higher p thresholds tend to run
slightly faster, as they can prune the search quicker than searches run with lower p.



P. Rajan and C. V. Ravishankar 15:13

Table 3 E-feasible and p-feasible query performance on the Tile 0230123 graph, with real-world
charging station and elevation data. Query times (seconds) are over 500 random vertex pairs. EV
used is a Nissan Leaf 2013 fitted with a 12 kWh battery and 50% starting SoC.

Query Type Feasibility Threshold Time Budget (d)

10 min. 20 min. 30 min. 40 min.

E-feasible — 18.01 34.975 48.662 72.198

p = 0.8 33.1 52.895 81.94 91.04
p = 0.85 27.1 49.58 80.35 98.312
p = 0.9 26.43 47.901 78.419 96.51p-feasible

Table 4 Average Jaccard Index for 500 random E-feasible and p-feasible routes, with p = 0.85.
The index is 0 when the routes are edge-disjoint, and 1 when they are identical.

Queries Compared d Avg. Jaccard Index

10 min. 0.73
20 min. 0.74
30 min. 0.87
40 min. 0.94

E-feasible and p-feasible,
for p = 0.85

Table 4 shows how similar the E-feasible and p-feasible routes are, using the average
Jaccard Similarity between the set edges of a route chosen by each of them. The Jaccard
similarity for two routes P1 and P2 is the number of edges common to both divided by the
number of edges in their union. That is,

J(P1, P2) = |{e ∈ P1} ∩ {e ∈ P2}|
|{e ∈ P1} ∪ {e ∈ P2}|

The Jaccard index clearly increases with the time budget, so the E-feasible and p-feasible
routes are more similar when the routes are longer. This is because longer routes require
more convolutions, making DP closer to the Gaussian, which is more concentrated near its
mean. In such cases, the pruning of edges forced by the feasibility criterion brings the set
of edges of E-feasible routes closer to the set of edges for p-feasible routing. For shorter
routes, however, the difference between the two types of queries is higher. Hence, if stronger
feasibility guarantees are desired for shorter routes, p-feasible queries may be better.

8 Conclusion and Future Work

EV routing methods usually model the problem as a generalized constrained shortest-path
problem, with deterministic travel times and energy consumptions. This is unrealistic since
these are really stochastic parameters. Current stochastic route planning methods either
fail to ensure that routes are energy-feasible, or when they do, have not been shown to
scale well to large graphs. In this work, we address this shortcoming by making travel
time and energy consumption stochastic, and requiring paths to be energy-feasible. We
defined two energy-feasibility criteria, namely, E-feasibility and p-feasibility. We showed
how to generalize the standard Charging Function Propagation algorithm of [8, 9] to accept

SEA 2022



15:14 Stochastic Route Planning for Electric Vehicles

stochastic edge weights, while allowing recharging stations. We also applied a multicriteria
variant of stochastic Contraction Hierarchies to speed up our queries, using the restricted
stochastic dominance criterion of [10] and the ϵ-dominance among labels. We demonstrated
that our techniques were feasible in the real world by running experiments on a realistic
routing instance, using real-world travel speeds in the Los Angeles area collected over four
and a half months. The similarity between E-feasible and p-feasible routes indicates the
potential applicability of a tiered-hierarchy style approach [47] to help speed up stochastic
feasible routing queries even further, and could be an interesting avenue for further work.

References
1 Niklas Akerblöm, Yuxin Chen, and Morteza Haghir Chehreghani. An online learning framework

for Energy-Efficient navigation of electric vehicles. In Proceedings of the Twenty-Ninth
International Joint Conference on Artificial Intelligence (IJCAI-20), pages 2051–2057, 2020.

2 Yazan Al-Wreikat, Clara Serrano, and José Ricardo Sodré. Driving behaviour and trip
condition effects on the energy consumption of an electric vehicle under real-world driving.
Appl. Energy, 297:117096, September 2021.

3 Andreas Artmeier, Julian Haselmayr, Martin Leucker, and Martin Sachenbacher. The shortest
path problem revisited: Optimal routing for electric vehicles. In KI 2010: Advances in Artificial
Intelligence, Lecture Notes in Computer Science, pages 309–316. Springer, Berlin, Heidelberg,
September 2010.

4 Hannah Bast, Daniel Delling, Andrew Goldberg, Matthias Müller-Hannemann, Thomas Pajor,
Peter Sanders, Dorothea Wagner, and Renato F Werneck. Route planning in transportation
networks. In Algorithm Engineering, Lecture Notes in Computer Science, pages 19–80. Springer,
Cham, 2016.

5 Lucas S Batista, Felipe Campelo, Frederico G Guimarães, and Jaime A Ramírez. A comparison
of dominance criteria in many-objective optimization problems. In 2011 IEEE Congress of
Evolutionary Computation (CEC), pages 2359–2366, June 2011.

6 Reinhard Bauer, Tobias Columbus, Ignaz Rutter, and Dorothea Wagner. Search-space size in
contraction hierarchies. Theor. Comput. Sci., 645:112–127, September 2016.

7 Moritz Baum. Engineering Route Planning Algorithms for Battery Electric Vehicles. PhD
thesis, Karlsruhe Institute of Technology, 2018.

8 Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Zündorf. Shortest
feasible paths with charging stops for battery electric vehicles. In Proceedings of the 23rd
SIGSPATIAL International Conference on Advances in Geographic Information Systems,
page 44. ACM, November 2015.

9 Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Zündorf. Shortest
feasible paths with charging stops for battery electric vehicles. Transportation Science,
53(6):1627–1655, November 2019.

10 Roger L Berger. A nonparametric, intersection-union test for stochastic order. Technical
report, North Carolina State University. Dept. of Statistics, 1986.

11 Dimitri P Bertsekas and John N Tsitsiklis. An analysis of stochastic shortest path problems.
Math. Oper. Res., 16(3):580–595, August 1991.

12 Anthony Chen and Zhaowang Ji. Path finding under uncertainty. J. Adv. Transp., 39(1):19–37,
September 2005.

13 Xiao-Wei Chen, Bi Yu Chen, William H K Lam, Mei Lam Tam, and Wei Ma. A bi-objective re-
liable path-finding algorithm for battery electric vehicle routing. Expert Syst. Appl., 182:115228,
November 2021.

14 Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal route planning for electric vehicles
in large networks. In AAAI, 2011.

15 Y Y Fan, R E Kalaba, and J E Moore. Arriving on time. J. Optim. Theory Appl., 127(3):497–
513, December 2005.



P. Rajan and C. V. Ravishankar 15:15

16 Chiara Fiori, Kyoungho Ahn, and Hesham A Rakha. Power-based electric vehicle energy
consumption model: Model development and validation. Appl. Energy, 168:257–268, April
2016.

17 Chiara Fiori, Vittorio Marzano, Vincenzo Punzo, and Marcello Montanino. Energy consumption
modeling in presence of uncertainty. IEEE Trans. Intell. Transp. Syst., pages 1–12, 2020.

18 Matthew William Fontana. Optimal routes for electric vehicles facing uncertainty, congestion,
and energy constraints. PhD thesis, Massachusetts Institute of Technology, 2013.

19 Mogens Fosgerau. The valuation of travel time variability. Technical report, International
Transport Forum, 2016.

20 H Frank. Shortest paths in probabilistic graphs. Oper. Res., 17(4):583–599, 1969.
21 Robert Geisberger, Peter Sanders, Dominik Schultes, and Daniel Delling. Contraction hierar-

chies: Faster and simpler hierarchical routing in road networks. In Experimental Algorithms,
pages 319–333. Springer, Berlin, Heidelberg, May 2008.

22 Michael T Goodrich and Paweł Pszona. Two-phase bicriterion search for finding fast and
efficient electric vehicle routes. In Proceedings of the 22nd ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems, pages 193–202. ACM, November
2014.

23 Ming Hua and Jian Pei. Probabilistic path queries in road networks: traffic uncertainty aware
path selection. In Proceedings of the 13th International Conference on Extending Database
Technology, EDBT ’10, pages 347–358, New York, NY, USA, March 2010. Association for
Computing Machinery.

24 Gerhard Huber, Klaus Bogenberger, and Hans van Lint. Optimization of charging strategies
for battery electric vehicles under uncertainty. IEEE Trans. Intell. Transp. Syst., pages 1–17,
2020.

25 Ehsan Jafari and Stephen D Boyles. Multicriteria stochastic shortest path problem for electric
vehicles. Networks Spat. Econ., 17(3):1043–1070, September 2017.

26 H C Joksch. The shortest route problem with constraints. J. Math. Anal. Appl., 14(2):191–197,
May 1966.

27 Moritz Kobitzsch, Samitha Samaranayake, and Dennis Schieferdecker. Pruning techniques
for the stochastic on-time arrival problem- an experimental study. arXiv, July 2014. arXiv:
1407.8295.

28 Sejoon Lim, Christian Sommer, Evdokia Nikolova, and Daniela Rus. Practical route planning
under delay uncertainty: Stochastic shortest path queries. In Robotics: Science and Systems,
volume 8, pages 249–256. books.google.com, 2013.

29 Antonio Lima, Rade Stanojevic, Dina Papagiannaki, Pablo Rodriguez, and Marta C González.
Understanding individual routing behaviour. J. R. Soc. Interface, 13(116), March 2016.

30 Sören Merting, Christian Schwan, and Martin Strehler. Routing of electric vehicles: Con-
strained shortest path problems with resource recovering nodes. In OASIcs-OpenAccess
Series in Informatics, volume 48. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH,
Wadern/Saarbruecken, Germany, 2015.

31 Sebastiano Milardo, Punit Rathore, Marco Amorim, Umberto Fugiglando, Paolo Santi, and
Carlo Ratti. Understanding drivers’ stress and interactions with vehicle systems through
naturalistic data analysis. IEEE Trans. Intell. Transp. Syst., pages 1–12, 2021.

32 Elise D Miller-Hooks and Hani S Mahmassani. Least expected time paths in stochastic,
Time-Varying transportation networks. Transportation Science, 34(2):198–215, May 2000.

33 Elise Deborah Miller-Hooks. Optimal routing in time-varying, stochastic networks: Algorithms
and implementations. PhD thesis, The University of Texas at Austin, 1997.

34 J P L Nasa. NASADEM merged DEM global 1 arc second V001 [dataset], 2020. Accessed:
2021-6-9. doi:10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001.

35 Yu (marco) Nie and Xing Wu. Shortest path problem considering on-time arrival probability.
Trans. Res. Part B: Methodol., 43(6):597–613, July 2009.

SEA 2022

http://arxiv.org/abs/1407.8295
http://arxiv.org/abs/1407.8295
https://doi.org/10.5067/MEaSUREs/NASADEM/NASADEM_HGT.001


15:16 Stochastic Route Planning for Electric Vehicles

36 Patrick Niklaus. A unified framework for electric vehicle routing. Master’s thesis, Karlsruhe
Institute of Technology, 2017.

37 Mehrdad Niknami and Samitha Samaranayake. Tractable pathfinding for the stochastic
On-Time arrival problem. In Experimental Algorithms, pages 231–245. Springer International
Publishing, 2016.

38 Evdokia Nikolova. Approximation algorithms for reliable stochastic combinatorial optimiza-
tion. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 338–351. Springer Berlin Heidelberg, 2010.

39 Evdokia Nikolova, Matthew Brand, and David R Karger. Optimal route planning under
uncertainty. ICAPS, 2006.

40 Evdokia Nikolova, Jonathan A Kelner, Matthew Brand, and Michael Mitzenmacher. Stochastic
shortest paths via quasi-convex maximization. In Algorithms – ESA 2006, pages 552–563.
Springer Berlin Heidelberg, 2006.

41 Axel Parmentier and Frédéric Meunier. Stochastic shortest paths and risk measures. arXiv,
August 2014. arXiv:1408.0272.

42 Simon Aagaard Pedersen, Bin Yang, and Christian S Jensen. Fast stochastic routing under
time-varying uncertainty. VLDB J., October 2019.

43 Simon Aagaard Pedersen, Bin Yang, and Christian S Jensen. Anytime stochastic routing with
hybrid learning. Proceedings VLDB Endowment, 13(9):1555–1567, May 2020.

44 Simon Aagaard Pedersen, Bin Yang, and Christian S Jensen. A hybrid learning approach to
stochastic routing. In 2020 IEEE 36th International Conference on Data Engineering (ICDE),
pages 1910–1913, April 2020.

45 Payas Rajan, Moritz Baum, Michael Wegner, Tobias Zündorf, Christian J West, Dennis
Schieferdecker, and Daniel Delling. Robustness generalizations of the shortest feasible path
problem for electric vehicles. In Matthias And Federico, Müller-Hannemann, editor, Proceedings
of 21st Symposium on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems (ATMOS 2021), Open Access Series in Informatics (OASIcs), pages 11:1–11:18,
Dagstuhl, Germany, September 2021. Schloss Dagstuhl - Leibniz-Zentrum für Informatik.

46 Payas Rajan and Chinya V Ravishankar. The phase abstraction for estimating energy
consumption and travel times for electric vehicle route planning. In Proceedings of the 27th
ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems,
SIGSPATIAL ’19, pages 556–559, New York, NY, USA, 2019. ACM.

47 Payas Rajan and Chinya V Ravishankar. Tiering in contraction and edge hierarchies for
stochastic route planning. In Proceedings of the 29th International Conference on Advances
in Geographic Information Systems, SIGSPATIAL ’21, pages 616–625, New York, NY, USA,
November 2021. Association for Computing Machinery.

48 Guillaume Sabran, Samitha Samaranayake, and Alexandre Bayen. Precomputation techniques
for the stochastic on-time arrival problem. In 2014 Proceedings of the Meeting on Algorithm
Engineering and Experiments (ALENEX), Proceedings, pages 138–146. Society for Industrial
and Applied Mathematics, December 2013.

49 M Sachenbacher, M Leucker, A Artmeier, and J Haselmayr. Efficient Energy-Optimal routing
for electric vehicles. AAAI, 2011.

50 Moshe Shaked and J George Shanthikumar. Stochastic Orders. Springer New York, October
2006.

51 Liang Shen, Hu Shao, Ting Wu, William H K Lam, and Emily C Zhu. An energy-efficient
reliable path finding algorithm for stochastic road networks with electric vehicles. Transp. Res.
Part C: Emerg. Technol., 102:450–473, May 2019.

52 Kenneth A Small, Clifford Winston, and Jia Yan. Uncovering the distribution of motorists’
preferences for travel time and reliability. Econometrica, 73(4):1367–1382, July 2005.

53 Christian Sommer. Shortest-path queries in static networks. ACM Computing Surveys (CSUR),
46(4):45, April 2014.

http://arxiv.org/abs/1408.0272


P. Rajan and C. V. Ravishankar 15:17

54 Sabine Storandt. Quick and energy-efficient routes: Computing constrained shortest paths for
electric vehicles. In Proceedings of the 5th ACM SIGSPATIAL International Workshop on
Computational Transportation Science, IWCTS ’12, pages 20–25, New York, NY, USA, 2012.
ACM.

55 Sabine Storandt. Route planning for bicycles – exact constrained shortest paths made practical
via contraction hierarchy. In Proceedings of the Twenty-Second International Conference on
Automated Planning and Scheduling, 2012.

56 Sabine Storandt and Stefan Funke. Cruising with a Battery-Powered vehicle and not getting
stranded. In AAAI, volume 3, page 46, 2012.

57 Martin Strehler, Sören Merting, and Christian Schwan. Energy-efficient shortest routes for
electric and hybrid vehicles. Trans. Res. Part B: Methodol., 103(Supplement C):111–135,
September 2017.

58 Christoph Witzgall and Alan J Goldman. Most profitable routing before maintenance. In
OPERATIONS RESEARCH, page B82. INST OPERATIONS RESEARCH MANAGEMENT
SCIENCES 901 ELKRIDGE LANDING RD, STE 400, LINTHICUM HTS, MD, USA, 1965.

59 Bin Yang, Chenjuan Guo, Christian S Jensen, Manohar Kaul, and Shuo Shang. Stochastic
skyline route planning under time-varying uncertainty. In 2014 IEEE 30th International
Conference on Data Engineering, pages 136–147, March 2014.

60 Shanjiang Zhu and David Levinson. Do people use the shortest path? an empirical test of
wardrop’s first principle. PLoS One, 10(8):e0134322, August 2015.

61 Weiwei Zhuang, Yadong Li, and Guoxin Qiu. Statistical inference for a relaxation index of
stochastic dominance under density ratio model. J. Appl. Stat., pages 1–19, August 2021.

SEA 2022





RLBWT Tricks
Nathaniel K. Brown !

Faculty of Computer Science, Dalhousie University, Halifax, Canada

Travis Gagie !

Faculty of Computer Science, Dalhousie University, Halifax, Canada

Massimiliano Rossi !

Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL, USA

Abstract
Until recently, most experts would probably have agreed we cannot backwards-step in constant time
with a run-length compressed Burrows-Wheeler Transform (RLBWT), since doing so relies on rank
queries on sparse bitvectors and those inherit lower bounds from predecessor queries. At ICALP ’21,
however, Nishimoto and Tabei described a new, simple and constant-time implementation. For a
permutation π, it stores an O(r)-space table – where r is the number of positions i where either
i = 0 or π(i + 1) ̸= π(i) + 1 – that enables the computation of successive values of π(i) by table
look-ups and linear scans. Nishimoto and Tabei showed how to increase the number of rows in the
table to bound the length of the linear scans such that the query time for computing π(i) is constant
while maintaining O(r)-space.

In this paper we refine Nishimoto and Tabei’s approach, including a time-space tradeoff, and
experimentally evaluate different implementations demonstrating the practicality of part of their
result. We show that even without adding rows to the table, in practice we almost always scan
only a few entries during queries. We propose a decomposition scheme of the permutation π

corresponding to the LF-mapping that allows an improved compression of the data structure, while
limiting the query time. We tested our implementation on real-world genomic datasets and found
that without compression of the table, backward-stepping is drastically faster than with sparse
bitvector implementations but, unfortunately, also uses drastically more space. After compression,
backward-stepping is competitive both in time and space with the best existing implementations.

2012 ACM Subject Classification Theory of computation → Data compression

Keywords and phrases Compressed String Indexes, Repetitive Text Collections, Burrows-Wheeler
Transform

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.16

Related Version Full Version: https://arxiv.org/abs/2112.04271

Supplementary Material Software (Source Code): https://github.com/drnatebrown/r-index-f
archived at swh:1:dir:62d807654bc1f9a8781427668e68212f8d99a5b6

Funding This work was funded by NIH R01AI141810 and R01HG011392, NSERC Discovery Grant
RGPIN-07185-2020, and NSF IIBR 2029552 and IIS 1618814.

Acknowledgements Many thanks to Omar Ahmed, Christina Boucher and Ben Langmead for
discussions and assistance during our research, and to the anonymous reviewers for their insightful
feedback.

1 Introduction

The FM-index [5] is the basis for key tools in computational genomics, such as the popular
short-read aligners BWA [12] and Bowtie [11], and is probably now the most important
application of the Burrows-Wheeler Transform (BWT) [4]. As genomic databases have grown

© Nathaniel K. Brown, Travis Gagie, and Massimiliano Rossi;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 16; pp. 16:1–16:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:nathaniel.brown@dal.ca
https://orcid.org/0000-0002-6201-2301
mailto:travis.gagie@dal.ca
https://orcid.org/0000-0003-3689-327X
mailto:rossi.m@ufl.edu
https://orcid.org/0000-0002-3012-1394
https://doi.org/10.4230/LIPIcs.SEA.2022.16
https://arxiv.org/abs/2112.04271
https://github.com/drnatebrown/r-index-f
https://archive.softwareheritage.org/swh:1:dir:62d807654bc1f9a8781427668e68212f8d99a5b6;origin=https://github.com/drnatebrown/r-index-f;visit=swh:1:snp:2a80ac9cb74d4f9223c3461c8926ebb52246b68b;anchor=swh:1:rev:a160b7e994d5abd3632bdc5703a23661943b49c1
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


16:2 RLBWT Tricks

and researchers and clinicians have realized that using only one or a few reference genomes
biases their results and diagnoses, interest in computational pan-genomics has surged and
versions of the FM-index based on the run-length compressed BWT (RLBWT) [13] have
been developed that can index thousands of genomes in reasonable space [6, 10, 16]. Those
versions have all relied heavily on compressed sparse bitvectors, however, which are inherently
slower than the bitvectors used in regular FM-indexes (see [14] for details). Experts would
probably have guessed that sparse bitvectors were an essential component for RLBWT-based
pan-genomic indexes – until Nishimoto and Tabei [15] recently showed how to replace them
with theoretically more efficient alternatives.

In particular, Nishimoto and Tabei’s result gives an approach which achieves constant time
LF-mapping in O(r)-space [15]. Speeding up LF can reduce the time for basic queries over
the RLBWT and other applications. For example, Ahmed et al.’s SPUMONI [1] tool allows
rapid targeted nanopore sequencing over compressed pan-genome indexes using approximate
matching statistics; “nontarget” DNA molecules are ejected from the sequencer with an
emphasis on speed. Their method depends on LF-mapping to extend matches, and otherwise
“jumping” forwards or backwards in the BWT based on threshold computation. Thresholds
over the BWT is a rather new approach, introduced by Bannai et al. in 2020 [2], suggesting
further improvements may be developed; however, avoiding the lower bounds inherited from
predecessor queries from rank on sparse bitvectors1 is a more surprising result. For tools
that heavily depend on LF, experiments showing practical results provide an opportunity for
speed improvements that otherwise would not have been expected to be attainable.

In this paper we focus on the first part of Nishimoto and Tabei’s result: we demonstrate
experimentally that we can reduce the time for basic queries on an RLBWT by replacing
queries on sparse bitvectors by table lookups, sequential scans, and queries on relatively
short uncompressed bitvectors. We implement LF-mapping over the RLBWT using table
lookup; preliminary results showed this could be made practical even without theoretical
worst case time guarantees. Although their result also applies to the ϕ function over the
RLBWT [15], we focus on LF since it allows backward-stepping (performed before locating,
which requires ϕ) and its seems more compressible for LF; we leverage the unique structure
of LF to partition columns of the table into non-decreasing subsequences.

With this motivation, we present various techniques and optimizations towards a practical
implementation. To demonstrate its practicality, we use real-world genomic datasets to
perform count queries using haplotypes of chromosome 19 and SARS-CoV2 genomes. We
find that our implementations are competitive in time/space with the best existing methods:
in the average case without row insertions, and exploring a run splitting approach to loosely
bound sequential scanning in the worst case. Further analysis shows in practice, sequential
scans are quite rare, but can become more common as n/r grows, motivating our run splitting
and further approaches.

The rest of this paper is laid out as follows: in Section 2 we present the two parts of
Nishimoto and Tabei’s result and explain how they relate to RLBWT-based pan-genomic
indexes; Section 3 describes methods used to make the result practical for implementation;
in Section 4 we present our experimental results; and in Section 5 we analyse its practicality
and summarize findings.

1 Conventionally, LF-mapping in runs bounded space relies on rank queries over sparse bitvectors.



N. K. Brown, T. Gagie, and M. Rossi 16:3

2 Nishimoto and Tabei’s Result

Suppose we want to compactly store a permutation π on {0, . . . , n − 1} such that we can
evaluate π(i) quickly when given i. If π is chosen arbitrarily then Θ(n) space is necessary to
store it in the worst case, and sufficient to allow constant-time evaluation. If the sequence
π(0), π(1), π(2), . . . , π(n−1) consists of a relatively small number b of unbroken incrementing
subsequences, however – meaning π(i + 1) = π(i) + 1 whenever π(i) and π(i + 1) are in the
same subsequence – then we can store π in O(b) space and evaluate it in O(log log n) time.
To do this, we simply store in an O(b)-space predecessor data structure with O(log log n)
query time – such as a compressed sparse bitvector – each value i such that π(i) is the head
of one of those subsequences, with π(i) as satellite data; we evaluate any π(i) in O(log log n)
time as

π(i) = π(pred(i)) + i− pred(i) .

Nishimoto and Tabei first proposed a simple alternative O(b)-space representation:2 we
store a sorted table in which, for each subsequence head p, there is quadruple: p; the length
of the subsequence starting with p; π(p); and the index of the subsequence containing π(p).

If we know the index of the subsequence containing i then we can look up the quadruple
for that subsequence and find both its head p and π(p), then compute π(i) = π(p) + i− p

in constant time. If we want to compute π2(i) the same way, however, we should compute
the index of the subsequence containing π(i), since π(i) may be in a later subsequence than
π(p). To do this, we look up the quadruple for the subsequence containing π(p) (which takes
constant time since we have its index) and find its head and length, from which we can tell if
π(i) is in the subsequence. If it is not, we continue reading and checking the quadruples for
the following subsequences (which takes constant time for each one, since they are next in
the table) until we find the one that does contain π(i).

Sequentially scanning the table to find the quadruple for the subsequence containing π(i)
could take Ω(b) time in the worst case, so Nishimoto and Tabei then proved the following
result, which implies we can artificially divide some of the subsequences before building the
table, such that all the sequential scans are short. We still find their proof surprising, so we
have included a summary of it below which introduces our parameter d. This refinement of
the original theorem allows for a time/space tradeoff.

▶ Theorem 1 (Nishimoto and Tabei [15]). Let π be a permutation on {0, . . . , n− 1},

P = {0} ∪ {i : 0 < i ≤ n− 1, π(i) ̸= π(i− 1) + 1} ,

and Q = {π(i) : i ∈ P}. For any integer d ≥ 2, we can construct P ′ with P ⊆ P ′ ⊆
{0, . . . , n− 1} and Q′ = {π(i) : i ∈ P ′} such that

if q, q′ ∈ Q′ and q is the predecessor of q′ in Q′, then |[q, q′) ∩ P ′| < 2d,
|P ′| ≤ d|P |

d−1 .

Proof. We start by setting P0 = P and Q0 = Q. Suppose at some point we have Pi and
Qi = {π(i) : i ∈ Pi}. If there do not exist q, q′ ∈ Qi such that q is the predecessor of q′

in Qi and |[q, q′) ∩ Pi| ≥ 2d, then we stop and return P ′ = Pi and Q′ = Qi; otherwise, we
choose some such q and q′.

2 We may have taken some artistic license with their format.

SEA 2022



16:4 RLBWT Tricks

We choose the (d + 1)st largest element p in [q, q′)∩Pi and set Pi+1 = Pi ∪ {π−1(p)} and
Qi+1 = Qi ∪ {p} = {π(i) : i ∈ Pi+1}. Since q < p < q′ we have p ̸∈ Qi and so π−1(p) ̸∈ Pi.
Therefore, |Pi+1| = |Pi|+ 1 and so, by induction, |Pi+1| = |P |+ i + 1.

Let Ei be the set of intervals [u, u′) such that u, u′ ∈ Qi and u is the predecessor
of u′ in Qi and |[u, u′) ∩ Pi| ≥ d, and let Ei+1 be the set of intervals [u, u′) such that
u, u′ ∈ Qi+1 and u is the predecessor of u′ in Qi+1 and |[u, u′) ∩ Pi+1| ≥ d. Since Ei+1 =
(Ei\{[q, q′)}) ∪ {[q, p), [p, q′)}, we have |Ei+1| = |Ei|+ 1 and, by induction, |Ei+1| ≥ i + 1.

Since the intervals in Ei+1 are disjoint and each contain at least d elements of Pi+1, we
have |Pi+1| ≥ d|Ei+1| ≥ d(i + 1). Since |Pi+1| = |P |+ i + 1 and |Pi+1| ≥ d(i + 1), we have
|P |+ i + 1 ≥ d(i + 1) and thus i + 1 ≤ |P |

d−1 and |Pi+1| = |P |+ i + 1 ≤ d|P |
d−1 . It follows that

we find P ′ and Q′ after at most |P |
d−1 steps. ◀

To discuss how Theorem 1 relates to RLBWTs, we first recall the definitions of the suffix
array (SA), the BWT, the LF mapping and ϕ for a text T [0..n− 1]:

SA[i] is the starting position of the lexicographically ith suffix of T ;
BWT[i] is the character immediately preceding that suffix;
LF(i) is the position of SA[i]− 1 in SA;
ϕ(i) is the value that precedes i in SA.

Let T be defined over an alphabet Σ of size σ. For convenience we assume T ends with a
special symbol T [n− 1] = $ that occurs nowhere else, we consider strings and arrays as cyclic
and we work modulo n.

It is not difficult to see that LF and ϕ (and thus also ϕ−1) are permutations that can
be divided into at most r of unbroken incrementing subsequences, where r is the number
of runs in the BWT.3 First, if BWT[i] = BWT[i + 1] then LF(i + 1) = LF(i) + 1, so there
are at most r values for which LF(i + 1) ̸= LF(i) + 1. Second, if BWT[i] = BWT[i + 1] so
LF(i + 1) = LF(i) + 1 then

SA[LF(i)] = ϕ(SA[LF(i + 1)])

and, as illustrated in Figure 1,

ϕ(SA[i + 1]) = SA[i] = SA[LF(i)] + 1 = ϕ(SA[LF(i + 1)]) + 1 = ϕ(SA[i + 1]− 1) + 1

or, choosing i′ = SA[i + 1] − 1, we have ϕ(i′ + 1) = ϕ(i′) + 1. It follows that there are at
most r values for which ϕ(i′ + 1) ̸= ϕ(i′) + 1. Nishimoto and Tabei’s result therefore gives us
O(r)-space data structures supporting LF, ϕ and ϕ−1 in constant time.

As a practical aside we note that, although applying Theorem 1 means we store quadruples
for sub-runs in the BWT, we can store with them the indexes of the maximal runs containing
them and thus, for example, store SA samples in an r-index only at the boundaries of
maximal runs and not sub-runs.

The queries needed for most RLBWT-based pan-genomic indexes4 can be implemented
using LF, ϕ, ϕ−1 and access, rank and select queries on the string R[0..r − 1] in which R[i]
is the distinct character appearing in the ith run in BWT, which can be supported with a

3 Realizing this about ϕ, however, led directly to Gagie, Navarro and Prezza’s r-index [6].
4 For example, for the recent pan-genomic index MONI [16], we need LF, ϕ, ϕ−1 and access to so-called

thresholds. A threshold for a consecutive pair of runs of the same character in BWT is a position of a
minimum LCP value in the interval between those runs. If we know the index of the run containing a
particular character BWT[i] and its offset in that run, and we want to know whether it is before or
after the threshold for the pair of runs of another character c bracketing BWT[i], then we can find
in O(log σ) time the index of the preceding run of cs; if we have the index of the run containing the
threshold and its offset in that run stored with that preceding run of cs, then we can tell immediately if
BWT[i] is before or after the threshold.



N. K. Brown, T. Gagie, and M. Rossi 16:5

SA[i + 2]

SA[i] = φ(SA[i + 1])

SA[i + 1]

SA[i− 1]

SA[LF(i)] = SA[i]− 1 = φ(SA[LF(i) + 1])

SA[LF(i) + 1] = SA[LF(i + 1)] = SA[i + 1]− 1

SA[LF(i)− 1]

SA[LF(i) + 2]

...

...

...

BWT[i− 1]

BWT[i + 2]

BWT[i] = c

BWT[i + 1] = c

BWT[LF(i)− 1]

BWT[LF(i)]

BWT[LF(i) + 1]

BWT[LF(i) + 2]

...

...

...

BWT LF SA

Figure 1 An illustration of why BWT[i] = BWT[i + 1] implies ϕ(SA[i + 1]) = ϕ(SA[i + 1] − 1) + 1.

wavelet tree on R. Of course that wavelet tree uses bitvectors, but even with uncompressed
bitvectors it takes only r lg σ + o(r log σ) bits, where σ is the size of the alphabet (usually 4
for genomics and pan-genomics), and supports those queries in O(log σ) time (or constant
time when σ = logO(1) n).

3 Practical Approach

To provide a practical implementation of Nishimoto and Tabei’s first result, we slightly
modify the structure of the table. Consider the permutation to be LF(i) over the BWT, with
runs being unary substrings of the BWT. In Section 2 we presented the quadruples using
absolute indexes over the permutation, but we can instead perform access using the run
index itself: let positions of run heads in the BWT be the array I[0..r− 1] storing the sorted
values i such that i = 0 or LF(i− 1) ̸= LF(i)− 1. For all k ∈ {0, 1, . . . , |I| − 1} we store a
triple containing: the length of the run, i.e. I[k + 1]− I[k], where I[r] = n; the index of the
run containing LF(I[k]), i.e., max{j | I[j] ≤ LF(I[k])}; and the offset d of LF(I[k]) in that
run. Let j be a position in the k-th run, the offset of LF(j) and LF(I[k]) is I[k]− j, hence
we can find the correct run containing LF(j) and its offset in that run using a sequential scan
as described in Section 2. With this approach, we can represent positions in the BWT as
run/offset pairs and implement LF accordingly, i.e. (k′, d′)← LF(k, d). This change removes
the need for the p column of the table, with successive LF steps performed using the returned
run/offset pair; access row k′ with offset d′ and perform LF(k′, d′).

3.1 Block Compression
For each row on the previous representation of the BWT, we store the character of the run
corresponding to the row to enable support of count and inversion queries. Figure 2 shows
an example of this uncompressed table. Preliminary results showed that left uncompressed,
LF-mapping could be made drastically faster than a sparse bitvector implementation (seen in

SEA 2022



16:6 RLBWT Tricks

Section 4 as rle-string) for inversion or LF queries. However, the result is also drastically
larger; this formulation is not practical because it requires storing three integers and one
character for each run, and to perform count operations, it requires scanning the run heads to
find the preceding and following run of the character we are seeking. One first improvement
is to store the array R[0..r − 1] in a wavelet-tree as described in Section 2, which supports
rank and select queries to efficiently find the preceding and following run of a given character.

ଵ

ଶ ଵ

ଷ ଶ

ଵ ଷ

ଵ ସ

ଶ ହ

ଵ ଵ

ଶ ଵ

ଶ

ଷ ଵ

ସ ଶ

ସ ଷ

ହ ସ

                 

 

 

Figure 2 For an example text T = GAT T AGAT ACAT , the LF mapping and subsequent
uncompressed table is built (with appended terminal character $). The run/offset columns show
positions with respect to the L column used to find a mappings predecessor. Notice that highlighted
stored mappings (destinations) for any run of As form a non-decreasing subsequence.

The tabular approach exploits space locality of the entries that facilitate the linear scans
required by the algorithm when accessing rows sequentially; however, there is no apparent
relationship which makes row-wise compression easy. To mitigate locality concerns, we
partition the table into blocks of size B which are loaded in a cache friendly manner. Using
a fixed B, we can easily perform modular arithmetic to map positions within the blocks. For
each block we store the corresponding character of each run in a wavelet tree that allows fast
rank and select queries inside the block (using uncompressed bitvectors). For each character
c of the alphabet, the position of the first run of c’s preceding the beginning of the block
and following the end of the block is stored, allowing efficient retrieval of these characters’
correct rows when they are not stored in the wavelet tree and occur in another block. For
example, we may need to look to another block if some character has no occurrences in the
current block, or has no occurrences before/after some position.

To improve compression inside the block, we compress the lists of lengths and offsets
using directly-addressable codes (DACs, see [14]); we divide the list of run indices into σ

sub-lists, each containing the indices from rows corresponding to runs of a distinct character
c ∈ Σ. Compressing the lengths and offsets in DACs is naive compression5 leveraging the

5 DACs are a simple method to allow both random access alongside compression; however, more specific
techniques would be preferred if these columns have exploitable properties that we could not uncover.



N. K. Brown, T. Gagie, and M. Rossi 16:7

length of a value’s bit representation while also supporting random access. For mapping
destinations, it follows from LF that the mapping indices across a common character c form
a non-decreasing sub-sequence [4] as highlighted in Figure 2. If we store in a block, for each
of the σ sub-lists, the mapping index of the first occurrence in the list, then the rest of the
list can be truncated as a difference from the base mapping. We can also choose to represent
the sub-lists by partial differences; for m occurrences of a character c let M [0..m − 1] be
such a sub-list where we explicitly store the first mapping M [0], and represent the list as
D[0] = 0, D[i] = M [i]−M [i− 1]. Storing only partial differences allows us to recover the
mapping using prefix sum, which we expand upon in Section 3.2 alongside an approach over
absolute offsets from the base. To manoeuvre around our positional change to run indices,
we also store a sparse bitvector marking sampled run head positions in the BWT, which is
used after backwards-stepping to recover the absolute index from a run/offset pair.6

3.2 Optimizations

Compressing the mapping column as “difference lists” gives various representations of
exploiting the σ non-decreasing sub-sequences:
DAC Sampling. By storing the partial differences space efficiently and sampling the absolute

difference from the base, the number of random accesses needed to recover the correct
value is bounded when computing the prefix sum. Implementing the approach using
DACs to store the partial differences, we have a first method to retrieve mappings in
compressed space while avoiding a costly traversal of the entire list. Although basic,
this method is a simple choice to illustrate how we can leverage these sequences being
non-decreasing.

Linear Interpolation. We perform linear interpolation between sampled offsets (as opposed
to partial differences); with a sample rate s, prior sample x, next sample z, and unsampled
difference y at position i. For each y, we then store its difference ∆ = y − ϵ from a
weighted average defined by

ϵ = x + (z − x) · (i− s · (⌊i/s⌋)/s)

into a DAC. 7 Given i and s, we lookup x and z to compute ϵ, after which we compute
(y − ϵ) + ϵ = y from our stored value ∆ = y − ϵ to recover the mapping. At worst the
stored value can only be the difference between the sampled values themselves, and we
expect each value to tend towards the interpolated average obtained by assuming a linear
increase between samples.

Bitvector. Construct an uncompressed bitvector in which the number of 0s before the kth 1
is the offset from the first pointer (which is stored explicitly) to the kth. For example,
given a sequence M = [11, 16, 19, 21] and corresponding partial differences D = [0, 5, 3, 2],
we store the first pointer M [0] = 11 alongside the bitvector

10000010001001

6 Although we introduce a sparse bitvector into our data structure, it is not used during sequential LF
stepping, but rather as an “exit” or “entrance” from the table’s run/offset pairs.

7 We store a bitvector denoting the sign of the stored component, allowing us to compress unsigned
integers using the DAC.

SEA 2022



16:8 RLBWT Tricks

constructed as described above. Performing select(k)− k over this bitvector returns the
number of 0s prior to the kth 1 and recovers the difference; in essence, a prefix sum over
the partial differences where we remove the k number of 1s from our calculation. Adding
the stored M [0] to this difference restores the original value. Given our example and
k = 3, we have

M [0] + select(3)− 3 = 11 + 11− 3 = 19 = M [2]

and we recover the correct value at M [2] (i = 2 corresponds to the k = 3 bit due to
0-based array indexing).

To further optimize for practical input, consider an alternative to the wavelet tree suitable
for small alphabets or when query support is needed for only a subset of characters. Where
the wavelet tree performs rank and select over multiple tree levels, we could instead store
full length uncompressed bitvectors in our blocks, one for each chosen character c marking
positions i where BWT[i] = c. For large alphabets, this approach is much larger than a
wavelet tree representation; however, for genomic datasets which in practice support queries
on few characters such as the nucleobases {A, C, G, T}, this alternative may be preferred.
As this is the case in our experiments, we use this restricted alphabet trick to trade off space
for increased speed in performing rank and select operations. A summary of the structure of
our proposed practical approach is shown in Figure 3; an overview of the hierarchy of the
proposed optimizations with respect to components of the data structure and the varying
options which we have implemented.

3.3 Scanning Complexity
We have not yet implemented the second part of Nishimoto and Tabei’s result because we
correctly expected their idea of table lookup (perhaps modified slightly) to be interesting and
practical by itself. Over real world datasets (as discussed in Section 5), our typical sequential
scan is very small; however, theoretically we use Ω(r)-time in the worst case for such a scan
for LF . In fact, there are strings for which the average time for a scan is Ω(r). Suppose a
string has BWT[0..n− 1] = (bc)n/10 · (a)4n/5 with r = n/5 + 1 runs. By LF properties we
have 3n

5 LF steps which require scanning r − 1 rows, as described in Figure 4. Similarly, we
encounter Ω(n · r)-time for inversion, as we perform exactly n possible LF steps during a full
retrieval of the original string.

In practice, a very similar string can be produced which preserves a similar worst case.
Consider a randomly generated binary string, for our purposes over the alphabet Σ = {b, c}.
We then interleave the sequence with four consecutive a characters between each of the
original characters (resulting in 4n

5 a characters). The number of runs we expect in its BWT
cannot be much less than the number of runs in the original sequence, since the introduced a

characters are easily run-length compressed and such a technique would improve compression
of any random sequence otherwise. The expected number of runs in a random binary string is
half its length ( n

10 ), also observed in practical experiments, and thus mapping to a characters
results in almost the same case as Figure 4. To perform some practical bounding against scans
without theoretical guarantees, we allow splitting of large runs by specifying the maximum
acceptable run length to provide an alternative construction.

3.4 Count Queries
Standard FM-indexes are particularly good at counting queries, both in theory and in practice,
and counting was also the first query supported quickly and in small space by RLBWT-
based versions of the FM-index [13] (time- and space-efficient reporting was developed much



N. K. Brown, T. Gagie, and M. Rossi 16:9

Query Support 

Supports count
using LF 

Block Table

Partitioned into
B sized Blocks 

LF Table 

Uncompressed
Table 

Block 

Columnwise
compressed 

Index Samples 

Sampled indexes of
run heads 

Heads 

Run heads,
supporting rank 

Lengths 

Full length
values 

Mappings 

σ non-
decreasing

subsequences 

Offsets 

Full offset values 

Wavelet Tree 

Support for
rank/select 

Char Bitvectors 

More space, 
faster support 

DAC Vector 

Bit
representation
compression 

DAC Vector 

Bit
representation
compression 

Difference List

Transform into
element

differences 

Bitvector

Mark partial
differences 

Full Alphabet 

Operate with full
support 

ACGT Support 

Optimize
support for DNA

bases only 

Interpolation

Sample and
interpolate 

DAC Sampling 

Store partial
differences 

Figure 3 Shows hierarchy of implementation, outlining different approaches and optimizations.
Solid lines show required components of parents given our work, where dotted lines denote multiple
options being available. For example, the various methods to recover the mapping of a run head are
shown as children of difference list. Shaded nodes show paths that are implemented for experiments
in Section 4.

later [6]). It seems appropriate, therefore, to test with counting queries our implementation
of the first part of Nishimoto and Tabei’s result. A counting query for pattern S[0..m− 1] in
text T [0..n−1] returns the number of occurrences of S in T , by backward searching for S and
returning the length of the BWT interval containing the characters preceding occurrences
of S in T . We can implement a backward step using access to the string R described in
Section 2, up to 2 rank queries and 2 select queries on R, and 2 LF queries.

Suppose the interval BWT[s..e] contains the characters preceding occurrences of S[i +
1..m− 1] in T and we know both the indices js and je of the runs containing BWT[s] and
BWT[e], and the offsets of those characters in those runs. We need not assume we know s

and e themselves. If R[js] = S[i] then the BWT interval containing the characters preceding
occurrences of S[i..m− 1] in T , starts at BWT[LF(s)]. Otherwise, it starts at BWT[LF(s′)],
where s′ is the first character in run

js′ = R.selectS[i](R.rankS[i](js) + 1) .

Symmetrically, if R[je] = S[i] then the interval ends at BWT[LF(e)]; otherwise, it ends at
BWT[LF(e′)], where e′ is the last character in run

je′ = R.selectS[i](R.rankS[i](je)) .

(If js′ > je′ then S[i..m− 1] does not occur in T .) These operations are all supported across
our block compressed table, and the final interval positions in the BWT can be computed
using sampled run head positions to return the final count.

SEA 2022



16:10 RLBWT Tricks

𝑳 𝑭
𝑏 𝑎
𝑐 𝑎
𝑏 𝑎
𝑐 𝑎
⋮ ⋮
𝑎 𝑎
𝑎 𝑎
𝑎 𝑎
𝑎 𝑎
⋮ ⋮
𝑎 𝑏
⋮ ⋮
𝑎 𝑏
𝑎 𝑐
⋮ ⋮
𝑎 𝑐

                    

 

𝑛

5
 

𝑛

5
 

3𝑛

5
 

𝑛

10
 

𝑛

10
 

𝐵𝑊𝑇 = (𝑏𝑐)
𝑛
10(𝑎)

4𝑛
5  

𝐿𝐹(𝑛/5) = 0 

Figure 4 Visual representation of amortized analysis in Section 3.3. Notice that given a BWT
of this form, any character a corresponding to run k with I[k] = n/5 stores LF(n/5) = 0 as its
mapping. If the offset d is greater than n/5, then the sequential scan must cross the boundaries of
each run of b or c, of which there are n/5 in total; since there is only one run of a, we scan r − 1
entries, and perform this operation for 3n

5 possible steps. Amortized over all possible LF steps, we
cannot avoid Ω(r) scans in the worst case.

4 Experiments

Our code was written in C++ and compiled with flags -O3 -DNDEBUG -funroll-loops
-msse4.2 using data structures from sdsl-lite [7]. We performed our experiments on a
server with an Intel® Xeon® Silver 4214 CPU running at 2.20GHz with 32 cores and 100 GB
of memory. Our code is available at https://github.com/drnatebrown/r-index-f.git.
Count query times were measured using Google Benchmark, and construction with the Unix
/usr/bin/time command.

4.1 Data Structures
For our table lookup implementations, we partition into blocks of size B = 220 and sample
every 16th run position in the BWT. We compared the following data structures:

lookup-bv table lookup with bitvector marking differences with 0s, recovered with select
described in Section 3.2.

lookup-int table lookup with linear interpolation between sampled values described in
Section 3.2 with sample rate 16.

lookup-dac table lookup with DAC sampling of differences described in Section 3.2 with
sample rate 5.

lookup-split2 table lookup with naive run splitting using lookup-bv data structure described
in Sections 3.2, 3.3. Runs larger than twice the average length n/r are split.

lookup-split5 table lookup identical to lookup-split2, except runs larger than five times the
average length n/r are split.

wt-fbb fixed-block boosting wavelet tree of [8] using default parameters; implementation at
https://github.com/dominikkempa/faster-minuter.

rle-string run-length encoded string of the r-index [6]; implementation based off https:
//github.com/nicolaprezza/r-index.

https://github.com/drnatebrown/r-index-f.git
https://github.com/dominikkempa/faster-minuter
https://github.com/nicolaprezza/r-index
https://github.com/nicolaprezza/r-index


N. K. Brown, T. Gagie, and M. Rossi 16:11

RLCSA the BWT component8 of the run-length encoded compressed suffix array of [13]
using default parameters; implementation at https://github.com/adamnovak/rlcsa.

4.2 Datasets
We tested our data structures for construction and query on 4 collections of 128, 256, 512
and 1000 haplotypes of chromosome 19 from the 1000 Genomes Project [17] (chr19) and 4
collections of 100k, 200k, 300k, 400k SARS-CoV2 genomes from the EBI’s COVID-19 data
portal [9]9 (Sars-CoV2). Each set is a superset of the previous one. Table 1 describes the
lengths n and ratio n/r of the datasets.

Table 1 Table of the different datasets. In column 1 and 2 we report the name and description of
the datasets, in column 3 we report the number of sequences in the collection, in column 4 we report
the length of the file, and in column 5 the ratio of the length to the number of runs in the BWT.

Name Description N n/106 n/r

chr19 Human chromosome 19 128 7568.01 222.24
chr19 Human chromosome 19 256 15136.04 424.93
chr19 Human chromosome 19 512 30272.08 771.54
chr19 Human chromosome 19 1,000 59125.12 1287.38
Sars-CoV2 Sars-CoV2 genomes database 100,000 2979.01 881.16
Sars-CoV2 Sars-CoV2 genomes database 200,000 5958.35 977.19
Sars-CoV2 Sars-CoV2 genomes database 300,000 8944.37 1178.00
Sars-CoV2 Sars-CoV2 genomes database 400,000 11931.17 1328.92

4.3 Construction
In Figure 5 we report the time and memory for construction of the data structures for the
chr19 and Sars-CoV2 datasets. RLCSA is omitted, since it is the only data structure not
built using prefix free parsing (PFP) [3], and its construction time far exceeded the other
methods.

4.4 Query
To query the data structures we performed counting queries for 10000 randomly chosen
substrings each of length 10, 100, 1000 and 10000. In Figure 6 and 7 we report the time
and memory for querying of the data structures for the chr19 and Sars-CoV2 datasets
respectively.

5 Discussion

With respect to our table lookup implementations, lookup-bv and its variants (lookup-
split2, lookup-split5) perform better than the alternatives (lookup-int, lookup-dac) a
majority of the time across all queries, while being smaller in space. For query lengths greater
than 10 on chr19, these approaches are faster than rle-string but slightly larger, while

8 We build the data structure without suffix-array sampling.
9 The complete list of accession numbers is reported in the repository.

SEA 2022

https://github.com/adamnovak/rlcsa


16:12 RLBWT Tricks

0 50 100 150 200 250 300 350
Size [mb]

0

100

200

300

400

500
Ti

m
e 

[s
]

Exceeds Comparison

Chromosome-19 Constructions: Size vs Time
rle-string
wt_fbb
lookup-bv
lookup-split2
lookup-split5
lookup-int
lookup-dac

0 20 40 60 80 100
Size [mb]

0

50

100

150

200

Ti
m

e 
[s

]

SARS-CoV-2 Constructions: Size vs Time

Figure 5 Construction for chr19 of 128, 256, 512 and 1000 copies (left) and Sars-CoV2 of 100k,
200k, 300k and 400k copies (right). Copies increase for an instance plotted left to right. For chr19
we partially omit wt-fbb for being magnitudes larger than other values (approximately 4 times
slower and larger than lookup-bv for 512 copies and similarly 5 times slower and 7 times larger for
1000).

slower than RLCSA but smaller in size; we occupy a time/space trade-off position between
these values. This is while also being much smaller than wt-fbb whose space makes it an
outlier despite best speeds for various queries.

On Sars-CoV2, our implementations perform well on queries of length 10, with lookup-
split2 the fastest implementation and other approaches competitive in both time/space.
For query lengths greater than 10, the non-splitting approaches (lookup-bv, lookup-int,
lookup-dac) perform the worst across data structures with respect to speed. With splitting
approaches, we are comparable to rle-string in time but worse in space. Although again
an outlier in space, wt-fbb performs fastest, with RLCSA occuping the least space with
comparable speed to wt-fbb.

In terms of size/construction, we perform worse than rle-string across all data, but
are highly competitive for lookup-bv’s space despite slower construction. For our imple-
mentations, lookup-bv is the definitive choice across results in regard to both space and
construction time. When compared to RLCSA, despite being more space-efficient on chr19
across lookup-bv approaches, we cannot compete on Sars-CoV2 where it is a clear winner
across all data structures. This motivates applying table lookup to also speed up RLCSA;
however, we note adding support for ϕ and ϕ−1 (thus, supporting locate) to RLCSA is still an
open problem.

With regard to our splitting approaches, they are superior to lookup-bv for long query
lengths and as n/r rises. To examine the cause in terms of n/r and growing text collections,
we examine the number of sequential scans required across LF steps during count queries of
length 100 for chr19 in Figure 8. Although the distribution is similar across all copies near
zero, with a majority requiring no sequential scan and most of the rest scanning very few,
worst cases become both more prevalent and longer as the number of copies and n/r grows.
This gives further insight into the success of the splitting approaches in these instances, as
bounding the maximum runs also bounds worst case sequential scans. We find this result
intriguing with respect to Theorem 1 when n/r or the worst case number of scans is high.
Concentrating on Nishimoto and Tabei’s first result, lookup-bv performs competitively in
space/time for low n/r with naive run splitting as a practical alternative otherwise in our
observed experiments.



N. K. Brown, T. Gagie, and M. Rossi 16:13

2 6 2 5 2 4 2 3 2 2

Size [bits/character]
0

2

4

6

8

10

12

14

Ti
m

e 
[µ

s]
Query Length: 10

rle-string wt_fbb RLCSA lookup-bv lookup-split2 lookup-split5 lookup-int lookup-dac

2 6 2 5 2 4 2 3 2 2

Size [bits/character]
0

25

50

75

100

125

150

175

Ti
m

e 
[µ

s]

Query Length: 100

2 6 2 5 2 4 2 3 2 2

Size [bits/character]
0

200

400

600

800

1000

1200

1400

1600

Ti
m

e 
[µ

s]

Query Length: 1000

2 6 2 5 2 4 2 3 2 2

Size [bits/character]
0

2000

4000

6000

8000

10000

12000

14000

16000

Ti
m

e 
[µ

s]

Query Length: 10000

Chromosome-19 10000 Samples: Query Time vs Size

Figure 6 The time per query to count the occurrences of 128, 256, 512 and 1000 copies of chr19
for 10000 randomly-chosen substrings of length 10, 100, 1000 and 10000 each. Copies for a single
line are read from largest number of copies to smallest, left to right. The x axis is logarithmically
scaled, motivated by doubling the number of copies across examples.

SEA 2022



16:14 RLBWT Tricks

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Size [bits/character]

0

2

4

6

8

10

12

14
Ti

m
e 

[µ
s]

Query Length: 10

rle-string wt_fbb RLCSA lookup-bv lookup-split2 lookup-split5 lookup-int lookup-dac

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Size [bits/character]

0

20

40

60

80

100

120

140

160

Ti
m

e 
[µ

s]

Query Length: 100

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Size [bits/character]

0

250

500

750

1000

1250

1500

1750

2000

Ti
m

e 
[µ

s]

Query Length: 1000

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
Size [bits/character]

0

2500

5000

7500

10000

12500

15000

17500

20000

Ti
m

e 
[µ

s]

Query Length: 10000

SARS-CoV-2 10000 Samples: Query Time vs Size

Figure 7 The time per query to count the occurrences of 100k, 200k, 300k and 400k Sars-CoV2
copies for 10000 randomly-chosen substrings. Results are given for queries of length 10, 100, 1000
and 10000. Copies for a single line are read from largest number of copies to smallest, left to right.



N. K. Brown, T. Gagie, and M. Rossi 16:15

0 1 2 3 4 5 6 7 8 9
Scanned

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pe
rc

en
t

Runs Scanned Frequency (0 to 9)
1000 Copies
512 Copies
256 Copies
128 Copies

0 100 200 300 400 500 600 700 800
Scanned

10 6

10 5

10 4

10 3

10 2

10 1

100

Pe
rc

en
t

Runs Scanned Frequency (All, Log Scaled)
1000 copies
512 copies
256 copies
128 copies

Figure 8 Frequencies in percentage of runs scanned for any LF step across 10000 count queries
of length 100 for 100, 200, 512 and 1000 copies of chr19. Plot on left is restricted only to steps
scanning 0 to 9 runs; plot on right shows all scans, log scaled since the frequency of scans decreases
quickly for large values.

References
1 Omar Ahmed, Massimiliano Rossi, Sam Kovaka, Michael C. Schatz, Travis Gagie, Christina

Boucher, and Ben Langmead. Pan-genomic matching statistics for targeted nanopore sequen-
cing. iScience, 24(6):102696, 2021.

2 Hideo Bannai, Travis Gagie, and Tomohiro I. Refining the r-index. Theor. Comput. Sci.,
812:96–108, 2020.

3 Christina Boucher, Travis Gagie, Alan Kuhnle, Ben Langmead, Giovanni Manzini, and Taher
Mun. Prefix-free parsing for building big BWTs. Algorithms Mol. Biol., 14(1):13:1–13:15,
2019.

4 Michael Burrows and David J. Wheeler. A block-sorting lossless data compression algorithm.
Technical Report 124, DEC, 1994.

5 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005.

6 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal
text searching in BWT-runs bounded space. J. ACM, 67(1):2:1–2:54, 2020.

7 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In 13th International Symposium on Experimental
Algorithms (SEA), pages 326–337, 2014.

8 Simon Gog, Juha Kärkkäinen, Dominik Kempa, Matthias Petri, and Simon J. Puglisi. Fixed
block compression boosting in FM-indexes: Theory and practice. Algorithmica, 81(4):1370–
1391, 2019.

9 Peter W Harrison et al. The COVID-19 Data Portal: accelerating SARS-CoV-2 and COVID-19
research through rapid open access data sharing. Nucleic Acids Research, 49(W1):W619–W623,
2021.

10 Alan Kuhnle, Taher Mun, Christina Boucher, Travis Gagie, Ben Langmead, and Giovanni
Manzini. Efficient construction of a complete index for pan-genomics read alignment. J.
Comput. Biol., 27(4):500–513, 2020.

11 Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome biology, 10(3):1–10,
2009.

12 Heng Li and Richard Durbin. Fast and accurate short read alignment with Burrows-Wheeler
transform. Bioinform., 25(14):1754–1760, 2009.

13 Veli Mäkinen, Gonzalo Navarro, Jouni Sirén, and Niko Välimäki. Storage and retrieval of
highly repetitive sequence collections. J. Comput. Biol., 17(3):281–308, 2010.

SEA 2022



16:16 RLBWT Tricks

14 Gonzalo Navarro. Compact Data Structures – A Practical Approach. Cambridge University
Press, 2016.

15 Takaaki Nishimoto and Yasuo Tabei. Optimal-time queries on bwt-runs compressed indexes.
In 48th International Colloquium on Automata, Languages, and Programming (ICALP), pages
101:1–101:15, 2021.

16 Massimiliano Rossi, Marco Oliva, Ben Langmead, Travis Gagie, and Christina Boucher. Moni:
A pangenomic index for finding maximal exact matches. J. Comput. Biol., 29(2):169–187,
2022.

17 The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature, 526(7571):68–74, 2015.



Heuristic Computation of Exact Treewidth
Hisao Tamaki #

Department of Computer Science, Meiji University, Tokyo, Japan

Abstract
We are interested in computing the treewidth tw(G) of a given graph G. Our approach is to design
heuristic algorithms for computing a sequence of improving upper bounds and a sequence of improving
lower bounds, which would hopefully converge to tw(G) from both sides. The upper bound algorithm
extends and simplifies the present author’s unpublished work on a heuristic use of the dynamic
programming algorithm for deciding treewidth due to Bouchitté and Todinca. The lower bound
algorithm is based on the well-known fact that, for every minor H of G, we have tw(H) ≤ tw(G).
Starting from a greedily computed minor H0 of G, the algorithm tries to construct a sequence of
minors H0, H1, . . . Hk with tw(Hi) < tw(Hi+1) for 0 ≤ i < k and hopefully tw(Hk) = tw(G).

We have implemented a treewidth solver based on this approach and have evaluated it on the
bonus instances from the exact treewidth track of PACE 2017 algorithm implementation challenge.
The results show that our approach is extremely effective in tackling instances that are hard for
conventional solvers. Our solver has an additional advantage over conventional ones in that it
attaches a compact certificate to the lower bound it computes.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases graph algorithm, treewidth, heuristics, BT dynamic programming, contrac-
tion, obstruction, minimal forbidden minor, certifying algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.17

Acknowledgements I thank Holger Dell for posing the challenging bonus instances, which have kept
defying my “great ideas”, showing how they fail, and pointing to yet greater ideas.

1 Introduction

Treewidth is a graph parameter which plays an essential role in the graph minor theory [15, 16,
17] and is an indispensable tool in designing graph algorithms (see, for example, a survey [6]).
See Section 2 for the definition of treewidth and tree-decompositions. Let tw(G) denote
the treewidth of graph G. Deciding if tw(G) ≤ k for given G and k is NP-complete [2], but
admits a fixed-parameter linear time algorithm [5].

Practical algorithms for treewidth have also been actively studied [8, 9, 3, 20, 18, 1],
with recent progresses stimulated by PACE 2016 and 2017 [13] algorithm implementation
challenges. The modern treewidth solvers use efficient implementations of the dynamic
programming algorithm due to Boudhitté and Todinca (BT) [10]. After a first leap in that
direction [20], some improvements have been reported [18, 1], but those improvements are
incremental.

In this paper, we pursue a completely different approach. We develop a heuristic algorithm
for the upper bound as well as one for the lower bound. These algorithms iteratively improve
the bounds in hope that they converge to the exact treewidth from both sides.

Our upper bound algorithm is based on the following idea. For B ⊆ 2V (G), we say that B
admits a tree-decomposition of G if every bag of this tree-decomposition belongs to B. The
treewidth of G with respect to B, denoted by twB(G), is the smallest k such that B admits a
tree-decomposition of G of width k. If B admits no tree-decomposition of G, then twB(G) is
undefined. A vertex set X ⊆ V (G) is a potential maximal clique of G if it is a maximal clique
of some minimal triangulation of G. We denote by Π(G) the set of all potential maximal

© Hisao Tamaki;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hisao.tamaki@gmail.com
https://orcid.org/0000-0001-7566-8505
https://doi.org/10.4230/LIPIcs.SEA.2022.17
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


17:2 Heuristic Computation of Exact Treewidth

cliques of G. Bouchitté and Todinca [10] observe that Π(G) admits a tree-decomposition of G

of width tw(G) and present a dynamic programming algorithm (BT dynamic programming)
to compute tw(G) based on this fact. Indeed, BT dynamic programming can be applied
to an arbitrary set Π of potential maximal cliques to compute twΠ(G). This allows us to
work in a solution space where each solution is a set of potential maximal cliques rather than
an individual tree-decomposition. A solution Π encodes a potentially exponential number
of tree-decompositions it admits and offers rich opportunities of improvements in terms
of twΠ(G). This approach has been proposed by the present author in his unpublished
work [19], where he presents several ad hoc operations to enrich Π in hope of reducing twΠ(G).
We extend and simplify this approach by replacing those operations with a single merging
operation: given two sets Π1 and Π2 of potential maximal cliques, we construct a new set Π
that includes Π1 ∪ Π2 together with some additional potential maximal cliques potentially
useful for making twΠ(G) smaller than both twΠ1(G) and twΠ2(G). See Section 3 for more
details.

The lower bound algorithm is based on the well-known fact that, for every minor H

of G, we have tw(H) ≤ tw(G). Starting from a greedily computed minor H0 of G, the
algorithm tries to construct a sequence of minors H0, H1, . . . Hk with tw(Hi) < tw(Hi+1) for
0 ≤ i < k and hopefully tw(Hk) = tw(G). Although minors have been used to compute lower
bounds on the treewidth [9], the goal has been to quickly obtain a lower bound of reasonable
quality to be used, say, in branch-and-bound procedures. There seems to be no attempt in
the literature to develop an algorithm which, given a minor H of G with tw(H) < tw(G),
construct a minor H ′ of G with an improved lower bound tw(H ′) > tw(H). In view of this
lack of attempts, our finding that this task can be performed with reasonable efficiency in
practice might be somewhat surprising. See Section 4 for details.

We have implemented a treewidth solver based on this approach and evaluated it on the
bonus instance set from the PACE 2017 algorithm implementation challenge for treewidth.
This set is designed to remain challenging for solvers to be developed after the challenge.
It consists of 100 instances and, according to the summary provided with the set, the time
spent to compute the exact treewidth by the winning solvers of PACE 2017 is longer than an
hour for 57 instances and longer than 12 hours for 23 instances, including 9 instances which
fail to be solved at all. The results of applying our solver on the 91 solved instances are
summarized as follows. With a timeout of 30 minutes using two threads (one for the upper
bound and the other for the lower bound), 62 instances are exactly solved; for 20 of the other
instances, the upper bound equals the exact treewidth and the lower bound is off by one.
Moreover, with a timeout of 6 hours, our solver exactly solves 2 of the 9 unsolved instances.
These results suggest that our approach is extremely effective in coping with instances that
are hard for conventional solvers. See Section 6 for details.

The source code of the solver used in our experiments is available at [22].

2 Preliminaries

Graph notation

In this paper, all graphs are simple, that is, without self loops or parallel edges. Let G be
a graph. We denote by V (G) the vertex set of G and by E(G) the edge set of G. As G is
simple, each edge of G is a subset of V (G) with exactly two members that are adjacent to
each other in G. The complete graph on V , denoted by K(V ), is a graph with vertex set V in
which every vertex is adjacent to all other vertices. The subgraph of G induced by U ⊆ V (G)
is denoted by G[U ]. We sometimes use an abbreviation G \ U to stand for G[V (G) \ U ].



H. Tamaki 17:3

A vertex set C ⊆ V (G) is a clique of G if G[C] is a complete graph. For each v ∈ V (G),
NG(v) denotes the set of neighbors of v in G: NG(v) = {u ∈ V (G) | {u, v} ∈ E(G)}. For
U ⊆ V (G), the open neighborhood of U in G, denoted by NG(U), is the set of vertices
adjacent to some vertex in U but not belonging to U itself: NG(U) = (

⋃
v∈U NG(v)) \ U .

The closed neighborhood of U in G, denoted by NG[U ], is defined by NG[U ] = U ∪ NG(U).
We say that vertex set C ⊆ V (G) is connected in G if, for every u, v ∈ C, there is a path

in G[C] between u and v. It is a connected component or simply a component of G if it is
connected and is inclusion-wise maximal subject to this condition. A vertex set S ⊆ V (G) is
a separator of G if G \ S has more than one component. A graph is a cycle if it is connected
and every vertex is adjacent to exactly two vertices. A graph is a forest if it does not have a
cycle as a subgraph. A forest is a tree if it is connected.

Tree-decompositions

A tree-decomposition of G is a pair (T, X ) where T is a tree and X is a family {Xi}i∈V (T )
of vertex sets of G, indexed by the nodes of T , such that the following three conditions are
satisfied. We call each Xi the bag at node i.
1.

⋃
i∈V (T ) Xi = V (G).

2. For each edge {u, v} ∈ E(G), there is some i ∈ V (T ) such that u, v ∈ Xi.
3. For each v ∈ V (G), the set of nodes Iv = {i ∈ V (T ) | v ∈ Xi} ⊆ V (T ) is connected in T .
The width of this tree-decomposition is maxi∈V (T ) |Xi| − 1. The treewidth of G, denoted by
tw(G) is the smallest k such that there is a tree-decomposition of G of width k.

It is well-known that, for each pair (i, j) of adjacent nodes of a tree-decomposition
T = (T, X ), the intersection Xi ∩ Xj is a separator of G. We say that T induces separator
S if there is an adjacent pair (i, j) such that S = Xi ∩ Xj .

Minimal separators and potential maximal cliques

Let G be a graph and S a separator of G. For distinct vertices a, b ∈ V (G), S is an a-b
separator if there is no path between a and b in G \ S; it is a minimal a-b separator if it is
an a-b separator and no proper subset of S is an a-b separator. A separator is a minimal
separator if it is a minimal a-b separator for some a, b ∈ V (G).

Graph H is chordal if every induced cycle of H has exactly three vertices. H is a
triangulation of graph G if it is chordal, V (G) = V (H), and E(G) ⊆ E(H). A triangulation
H of G is minimal if it there is no triangulation H ′ of G such that E(H ′) is a proper subset
of E(H). A vertex set X ⊆ V (G) is a potential maximal clique of G, if X is a maximal clique
in some minimal triangulation of G. We denote by Π(G) the set of all potential maximal
cliques of G and by Πk(G) the set of all potential maximal cliques of G of cardinality at
most k.

Bouchitté-Todinca dynamic programming

The treewidth algorithm of Bouchitté and Todinca [10] is based on the fact that every graph
G has a minimal triangulation H such that tw(H) = tw(G) (see [14] for a clear exposition).
This fact straightforwardly implies that Π(G) admits an optimal tree-decomposition of G.
Their algorithm consists of an algorithm for constructing Π(G) and a dynamic programming
algorithm (BT dynamic programming) to compute twΠ(G)(G). As noted in the introduction,
BT dynamic programming can be applied to compute twΠ(G) for an arbitrary Π ⊆ Π(G).

The most time-consuming part of their treewidth algorithm is the construction of Π(G).
Empirically observing that Πk+1(G) is substantially smaller than Π(G) for k ≤ tw(G), authors
of modern implementations of the BT algorithm [20, 18, 1] use BT dynamic programming

SEA 2022



17:4 Heuristic Computation of Exact Treewidth

with Π = Πk+1(G) to decide if tw(G) ≤ k. Moreover, they try to avoid the full generation of
Πk+1(G), by being lazy and generating a potential maximal clique only when it becomes
absolutely necessary in evaluating the recurrence.

Both our upper and lower bound algorithms use, as a subprocedure, such an implement-
ation of the BT algorithm for treewidth, in particular an implementation of the version
proposed in [18]. In addition, our upper bound algorithm uses BT dynamic programming in
its fully general form, to evaluate each solution Π in our solution space as described in the
introduction. The efficiency of BT dynamic programming, which runs in time linear in |Π|
with a factor polynomial in |V (G)|, is crucial in our upper bound algorithm.

Contractions and minors

Let F ⊆ E(G) be a forest on V (G). The contraction of G by F , denoted by G/F is a
graph whose vertices are the connected components of F and two components C1 and C2
are adjacent to each other if and only if there is v1 ∈ C1 and v2 ∈ C2 such that v1 and v2
are adjacent to each other in G. A graph H is a minor of G if it is a subgraph of some
contraction of G. It is well-known and is easy to verify that tw(H) ≤ tw(G) if H is a minor
of G.

Minimal triangulation algorithms

There are many algorithms for minimal triangulation of a graph (see [14] for a survey).
For purposes in the current work, we are interested in algorithms that produce a minimal
triangulation of small treewidth. Although a minimal triangulation H of G such that
tw(H) = tw(G), hence of the smallest treewidth, can be computed by the BT algorithm
for treewidth, we need a faster heuristic algorithm. The MMD (Minimal Minimum Degree)
algorithm [4] is known to perform well, in terms of the treewidth of the resulting triangulation.
We use a variant MMAF (Minimal Minimum Average Fill) [21] of MMD which performs
slightly better than the original MMD on benchmark instances.

Safe separators and almost-clique separators

Bodlaender and Koster [7] introduced the notion of safe separators for treewidth. Let S

be a separator of a graph G. We say that S is safe for width k, if S is induced by some
tree-decomposition of G of width k. It is simply safe if it is safe for width tw(G). The
motivation of looking at safe separators is the fact that there are easily verifiable sufficient
conditions for S being safe and a safe separator detected by those sufficient conditions can
be used to reduce the problem of deciding if tw(G) ≤ k to smaller subproblems. A trivial
sufficient condition is that S is a clique. Bodlaender and Koster observed that this condition
can be relaxed to S being an almost-clique, where S is an almost-clique if S \ {v} is a
clique for some v ∈ S. More precisely, a minimal separator that is an almost-clique is safe.
They showed that this observation leads to a powerful preprocessing method of treewidth
computation. An almost-clique separator decomposition of graph G is a tree-decomposition
A of G such that every separator induced by A is an almost-clique minimal separator. For
each bag Ai of A, let Gi be a graph on Ai obtained from G[Ai] by adding edges of K(N(C))
for every component C of G \ Ai. The following proposition holds [7].

▶ Proposition 1.
1. tw(G) is the maximum of tw(Gi), where i ranges over the nodes of the decomposition, and

a tree-decomposition of G of width tw(G) is obtained by combining tree-decompositions of
Gi as prescribed by A.

2. Gi is a minor of G for each i.



H. Tamaki 17:5

Unpublished work of the present author [21] shows that this preprocessing approach is
effective for instances that are much larger than those tested in [7], using a heuristic method
for constructing almost-clique separator decompositions. We use his implementation in the
current work.

We also make an unconventional use of safe separators in our lower bound algorithm.
When we have a lower bound of k on tw(G), we wish to evaluate a minor H of G for the
possibility of leading to a stronger lower bound. We use the set of all minimal separators of
H that are safe for width k in this evaluation. Note that the computation of such a set is
possible because H is small.

3 The upper bound algorithm

Recall that Π(G) denotes the set of all potential maximal cliques of G. In our upper bound
algorithm, a solution for G is a subset Π of Π(G) that admits at least one tree-decomposition
of G and the value of solution Π is twΠ(G).

Our algorithm starts from a greedy solution and iteratively improves the solution. To
improve a solution Π, we merge it with another solution Ω into another solution Π′ in hope of
having twΠ′(G) < min{twΠ(G), twΩ(G)}. This merged solution Π′ contains Π ∪ Ω together
with some other potential maximal cliques so that Π′ would admit a tree-decomposition that
contains some bags in Π, some bags in Ω, and some bags belonging to this additional set
of potential maximal cliques. We describe below how these additional potential maximal
cliques are computed.

Let X ∈ Π and Y ∈ Ω be distinct and not crossing each other. Then, there is a unique
component C of G \ X such that Y ⊆ N [C] and a unique component D of G \ Y such
that X ⊆ N [D]. Let U = N [C] ∩ N [D] and let H be a graph on U obtained from G[U ] by
adding edges of K(N(B)) for each component B of G \ U . Let Ĥ be a minimal triangulation
of H with small treewidth: if |U | does not exceed a fixed threshold BASE_SIZE (=60),
then we use the BT algorithm for treewidth to compute Ĥ; otherwise we use MMAF to
compute Ĥ . Here, BASE_SIZE is a parameter of the algorithm represented as a constant in
the implementation. The parenthesized number is the value of this parameter used in our
experiment. In the following, we use the same convention for citing algorithm parameters.
Note that each maximal clique of Ĥ is either a potential maximal clique of G or a minimal
separator of G. If tw(Ĥ) ≤ twΠ(G), then we add all potential maximal cliques of G that
are maximal cliques of Ĥ to Π′. When this happens, then Π′ admits a tree-decomposition
of width at most max{twΠ(G), twΩ(G)} consisting of some bags in Π, some bags in Ω, and
some bags that are maximal cliques of Ĥ. In this way, Π′ would admit tree-decompositions
that are not admitted by the simple union Π ∪ Ω and, with some luck, some of the newly
admitted tree-decomposition may have width smaller than twΠ(G).

The procedure Merge(Π, Ω) merges Π with Ω, applying the above operation to some
pairs X ∈ Π and Y ∈ Ω chosen as follows. We first pick X ∈ Π uniformly at random.
Then, let C be the largest component of G \ X. We choose Y ∈ Ω such that Y ⊆ N [C] and
|Y | ≤ twΠ(G). The first condition ensures that the method in the previous paragraph can
be applied to this pair of X and Y . The second condition is meant to increase the chance
of newly admitted tree-decompositions to have width smaller than twΠ(G). We sort the
candidates of such Y in the nondecreasing order of |N [C] ∩ N [D]|, where D is the component
of Y such that X ⊆ N [D], and use the first N_TRY (=50) elements of this sorted list. We
prefer Y such that U = N [C] ∩ N [D] is small, because that would increase the chance of the
minimal triangulation Ĥ, described in the previous paragraph, to have small treewidth. All
the resulting potential maximal cliques from these trials are added to Π′.

SEA 2022



17:6 Heuristic Computation of Exact Treewidth

In addition to procedure Merge, our algorithm uses two more procedures InitialSolu-
tion() and Improve(Π) described below. The input graph G is fixed in these procedures.

InitialSolution() generates an initial solution Π. We use a randomize version of MMAF
to generate N_INITIAL_GREEDY( =10) minimal triangulations of G and take H with
the smallest treewidth. The solution Π returned by the call InitialSolution() is the
set of maximal cliques of H.

Improve(Π) returns a solution Π′ with Π ⊆ Π′, where efforts are made to make twΠ′(G)
strictly smaller than twΠ(G). We proceed in the following steps.
1. Let Ω = InitialSolution().
2. While twΩ(G)) > twΠ(G), replace Ω by Improve(Ω).
3. Return Merge(Π, Ω).
Note the solution Ω to be merged with Π is generated independently of Π and improved
so that twΩ(G) ≤ twΠ(G) before being merged with Π.

Given these procedures, the main iteration of our algorithm proceeds as follows. It is
supposed that the algorithm has an access to lower bounds provided by the lower bound
algorithm.

1. Let Π = InitialSolution(). Report twΠ(G) as the initial upper bound on tw(G),
together with a tree-decomposition of G of width twΠ(G) admitted by Π.

2. While twΠ(G) is greater than the current lower bound, replace Π by Improve(Π). When
this replacement reduces twΠ(G), report this new upper bound on tw(G), together with
a tree-decomposition of G of width twΠ(G) admitted by Π. We also shrink Π, removing
all members of cardinality greater than k + 2, whenever twΠ(G) is improved to k.

4 The lower bound algorithm

In our lower bound algorithm, we use a procedure we call Lift, which, given a graph G and
a forest F on V (G), finds another forest F ′ such that tw(G/F ′) > tw(G/F ); it inevitably
fails if tw(G/F ) = tw(G). Given this procedure, the overall lower bound algorithm proceeds
in the following steps. Let G be given. It is supposed that the algorithm has an access to
the upper bound being computed by the upper bound algorithm.

1. Construct a contraction G/F of G, using a greedy heuristic for contraction-based lower
bounds on treewidth.

2. While tw(G/F ) is smaller than the current upper bound on tw(G), replace F by Lift(G,
F ) unless this call fails.

When the current upper bound is larger than tw(G), it is possible that the call Lift(G,
F ) is made for F such that tw(G/F ) = tw(G). In such an event, the call would eventually
fail but the time it takes would be at least as the time taken by conventional solvers to
compute tw(G). Our solver implements a mechanism to let such a call terminate as soon as
the upper bound is updated to be equal to the current lower bound tw(G/F ).

The design of procedure Lift is described in the following subsections.

4.1 Contraction lattice
First consider looking for the result of Lift(G, F ) among the subsets of F . Assuming that
tw(G/F ) < tw(G), a subset F ′ of F such that tw(G/F ′) > tw(G/F ) certainly exists.



H. Tamaki 17:7

For each A ∈ 2F , let HA denote the contraction G/(F \ A). Then, Λ(G, F ) = {HA | A ∈
2F } is a lattice isomorphic to the power set lattice 2F , with top G and bottom G/F . Brute
force searches for H with tw(H) > tw(G/F ) in this lattice are hopeless as |F | can be large:
we typically have |F | > 100 for graph instances we target.

We need to understand the terrain of this lattice to design an effective search method. In
the remainder of this subsection and subsequent subsections, let k denote tw(G/F ). Call
H ∈ Λ(G, F ) lifted if tw(H) > k; otherwise call it unlifted. Let ML(G, F ) denote the set of
minimal lifted elements of Λ(G, F ). Call an unlifted element HA covered if there is some
HB ∈ ML(G, F ) with A ⊂ B. Let COV(G, F ) denote the set of all covered unlifted elements
of Λ(G, F ). Ideally, we wish to confine our search in COV(G, F ) ∪ ML(G, F ). This would be
possible if there is a way of knowing, for each covered element HA and e ∈ F \ A, if HA∪{e}
is still covered. Then, we would start with the clearly covered element H∅ and greedily
ascend the lattice staying in COV(G, F ) until we hit an element in ML(G, F ). Although
such an ideal scenario is unlikely to be possible, we still aim at something close to it in the
following sense. For each A ∈ 2F such that HA is unlifted, call S ⊆ A an excess in A if HA\S

is covered. We wish to confine our search among elements with a small excess. We employ a
strategy that works only for pairs (G, F ) with a special property, which is described in the
following subsections.

4.2 Critical fills
Call a pair {u, v} of distinct vertices of G a fill of G if u and v are not adjacent to each other
in G. For a fill e of G, let G + e denote the graph on V (G) with edge set E(G) ∪ {e}. We
say that a fill e of G is critical for F if tw((G + e)/F ) > tw(G/F ).

Suppose G has a critical fill for F . Observe the following.

1. Since adding a single edge to G/F increases its treewidth, a small number of uncontractions
applied to G/F may suffice to increase its treewidth. Thus, we may expect that there is
a lifted element HA in the lattice Λ(G, F ) such that |A| is smaller than the value that
is expected in a general case (without a critical fill). This would make our search for a
lifted element easier.

2. The fact that e is a critical fill could be used to guide our search for a lifted element.

The next section describes how we exploit the existence of a critical fill to guide our
search.

4.3 Breaking a critical fill
Assuming that G has a fill e = {u, v} critical for F , we look for a lifted element HA in the
lattice Λ(G, F ). We call the procedure for this operation BreakFill(F , e). The reason of
this naming is that, informally speaking, we remove the fill e from G + e by uncontracting
some edges in F maintaining the treewidth. We need some preparations before we describe
this procedure.

▶ Proposition 2. If HA is unlifted then e is critical for F \ A.

Proof. Since HA is unlifted, we have tw(G/(F \ A)) = k. So, it suffices to show that
tw((G + e)/(F \ A)) > k. We have tw((G + e)/F ) > k, since e is critical for F . We also have
tw((G + e)/(F \ A)) ≥ tw((G + e)/F ), since (G + e)/F is a contraction of (G + e)/(F \ A).
Therefore we have tw((G + e)/(F \ A)) > k. ◀

SEA 2022



17:8 Heuristic Computation of Exact Treewidth

Let uA (vA) denote the vertex of HA into which u (v, respectively) is contracted. We
say that a separator S of HA crosses e if uA and vA belong to two distinct components of
HA \ S. Define ncsk(A, e) to be the number of minimal separators of HA that are safe for
width k and moreover cross e. Observe the following.

1. We have ncsk(A, e) > 0 if HA is unlifted. To see this, suppose otherwise that HA is
unlifted but ncsk(A) = 0. Then, HA has a tree-decomposition T of width k such that
none of the minimal separators induced by T crosses e. Then, T is a tree-decomposition
of (G + e)/(F \ A) as well, contradicting the assumption that e is critical for F and hence
for F \ A by Proposition 2.

2. We have ncsk(A, e) = 0 if HA is lifted. This is simply because HA does not have any
minimal separator that is safe for treewidth k if tw(HA) > k.

We empirically observe a tendency that ncsk(A, e) decreases as HA approaches a lifted
element from below. Based on this observation, we use this function ncsk to guide our search
for lifted elements. We are ready to describe our procedure BreakFill(F , e). It involves
two parameters UNC_CHUNK ( =5) and N_TRY ( =100) and proceeds as follows.

1. Let A = ∅.
2. While HA is unlifted, repeat the following:

a. Pick N_TRY random supersets A′ of A with cardinality |A| + UNC_CHUNK (or |F |
if this exceeds |F |) and let Abest be A′ such that ncsk(A′, e) is the smallest.

b. Replace A by Abest.
3. Return A.

This procedure is correct in a purely theoretical sense: since HF = G is always lifted, provided
tw(G/F ) < tw(G), it eventually returns some A such that HA is lifted. The time required
for this to happen, however, can be prohibitively long since we are supposing that |F | is
fairly large. The success of this procedure hinges on the effectiveness of our heuristic relying
on the critical fill.

4.4 Procedure Lift
Our procedure Lift(G, F ) is recursive and works in the following steps.

1. Choose a fill e of G with the following heuristic criterion. For each v ∈ V (G), let dF (v)
denote the degree of v′ in G/F , where v′ is the vertex of G/F into which v contracts.
Then we choose e = {u, v} so as to maximize the pair (dF (u), dF (v)) in the lexicographic
ordering, where the order of u and v is chosen so that dF (u) ≤ dF (v).

2. Let F1 =Lift((G + e)/F ). If tw(G/F1) > tw(G/F ) then return F1; otherwise, observing
that e is critical for F1, call BreakFill(e, F1) to find F2 ⊆ F1 such that tw(G/F2) >

tw(G/F1).
3. Greedily compute a maximal forest F3 on V (G) such that F2 ⊆ F3 and tw(G/F3) =

tw(G/F2). Return F3.

The criterion for choosing e in the first step is based on the following heuristic reasoning. Let
u′′ (v′′) be the vertex of G/F1 into which u (v, respectively) contracts. We expect that if
the size of the minimum vertex cut between u′′ and v′′ in G/F1 is large, then the minimum
cardinality of A such that HA is lifted in Λ(G, F1) would have a tendency to be small. Indeed,
if the size of this cut is as large as k, then no separator of cardinality at most k crosses e and
therefore we have tw(H∅) > 0. Although we cannot predict the size of the minimum u′′-v′′



H. Tamaki 17:9

cut in G/F1 when we are choosing e, having larger degrees of u′ and v′ in G/F could have
some positive influence toward this goal. This criterion, however, has not been evaluated
with respect to this goal: further experimental studies are needed here.

We emphasize that Step 3 above is crucial in allowing us to work on relatively small
contractions throughout the entire computation. Note also that, due to this step, the result
of Lift(G, F ) is not a subset of F in general.

5 The overall algorithm

The upper bound algorithm and the lower bound algorithm, together with the preprocessing
algorithm, are combined in the following manner. Fix the graph G given.

1. We compute an almost-clique separator decomposition A of G using the method in [21].
2. For each bag Ai of A, let Gi denote the graph on Ai obtained from G[Ai] by adding edges

of K(N(C)) for each component C of G \ Ai. By Proposition 1, the task of computing
tw(G) reduces to the tasks of computing tw(Gi) for i, for all nodes i of A. Moreover, Gi

is a minor of G.
3. Let i∗ be such that |Ai∗ | ≥ |Ai| for every node i of A. The lower bound algorithm works

on Gi∗ . When it finds a new lower bound tw(Gi∗/F ) on tw(Gi∗), this is also a lower
bound on tw(G) since Gi∗ is a minor of G; we record this new lower bound tw(Gi∗/F )
together with the minor Gi∗/F of G certifying it.

4. The upper bound algorithm works on Gi for each i, keeping the current solution Πi of
Gi for each i. After initializing Πi for each i, we start iterations. In each iteration, we
choose i0 to be i such that the current upper bound twΠi

(Gi) on tw(Gi) is the largest
and replace Πi0 by Improve(Πi0), where the implicit graph it works on is set to Gi.
When the maximum of the upper bounds twΠi

(Gi) decreases, we record the new upper
bound on G together with the tree-decomposition of G combining A with the currently
best tree-decomposition of Gi for all nodes i of A.

5. As described in the previous sections, the upper bound algorithm and the lower bound
algorithm have access to the current bound computed by each other and terminate when
they match.

6 Experiments

We have evaluated our solver by experiments. The computing environment for our experiments
is as follows. CPU: Intel Core i7-8700K, 3.70GHz; RAM: 64GB; Operating system: Windows
10Pro, 64bit; Programming language: Java 1.8; JVM: jre1.8.0_271. The maximum heap size
is set to 60GB. The solver uses two threads, one for the upper bound and the other for the
lower bound, although more threads may be invoked for garbage collection by JVM.

As described in the previous sections, both of the upper and lower bound algorithms use
BT dynamic programming for deciding the treewidth, and enumerating the safe separators, of
small graphs. Our solver uses an implementation of the semi-PID version of this algorithm [18],
which is available at the same github repository [22] in which the entire source code of our
solver is posted.

The upper bound computation uses a single sequence of pseudo-random numbers and the
lower bound computation uses another independent single sequence. The initial seed is set
to a fixed value of 1 for both of these sequences, for the sake of reproducibility. With this
setting, our solver can be considered deterministic.

SEA 2022



17:10 Heuristic Computation of Exact Treewidth

We use the bonus instance set from the exact treewidth track of PACE 2017 algorithm
implementation challenge [13]. This set of instances are available at [12]. We quote the note
by Holgar Dell, the PACE 2017 organizer, explaining his intention to compile these instances.

The instance set used in the exact treewidth challenge of PACE 2017 is now considered
to be too easy. Therefore, this bonus instance set has been created to offer a fresh and
difficult challenge. In particular, solving these instances in five minutes would require
a 1000x speed improvement over the best exact treewidth solvers of PACE 2017.

The set consists of 100 instances and their summary, available at [12] in csv format, lists
each instance with the time spent for solving it and its exact treewidth if the computation is
successful. According to this summary, the exact treewidth is known for 91 of those instances;
the remaining 9 instances are unsolved.

Tables 1 and 2 show the list of those 91 solved instances. We number them in the
increasing order of the computation time provided in the summary. Columns “n”, “m”, and
“tw” give the number of vertices, the number of edges, and the treewidth, respectively, of
each instance.

We see that some of these instances are indeed challenging. Even though they have been
solved, they require more than a day to solve. We also note that, to date, no new solvers has
been published that have overcome the challenge posed by this instance set.

We have run our solver on these instances with the timeout of 30 minutes. Figure 1
(instance No.1 – No.45) and Figure 2 (instance No.46 – No.91) show the results. In each
column representing an instance G, the box with a blue number plots the time for obtaining
the best upper bound computed before timeout, where the non-negative number d in the box
indicates that this bound is tw(G) + d. Similarly, the box with a red non-positive number d

plots the time for obtaining the best lower bound, which is tw(G) + d.
We see from these figures that the bounds computed by our solver are quite tight for

most instances. Let us say that the result for instance G is of type (d1, d2) if the lower bound
(upper bound) obtained by our solver is tw(G) + d1 (tw(G) + d2, respectively). Then, the
results are of type (0, 0) for 62 instances, (−1, 0) for 20 instances, (−2, 0) for 3 instances,
(−3, 0) for one instance, (0, 1) for 4 instances, and (−2, 1) for one instance.

We also see from these figures that the performance of our solver on an instance is not
so strongly correlated to the hardness of the instance as measured by the time taken by
conventional solvers. For example, of the last 6 instances, each of which took more than a
day to solve by the PACE 2017 solvers, 5 are exactly solved by our solver and the remaining
one has a result of type (−1, 0). Most of the instances with poorer results, with the gap of 2
or 3 between the upper and lower bounds, occur much earlier in the list.

We have also run our solver on the 9 unsolved instances of the bonus set, with 6 hour
timeout. It solved 2 of them and, for other 7 instances, the gap between the upper/lower
bounds is 2 for 2 instances, 3 for 4 instances, and 7 for one instance.

The certificates of the lower bounds computed by our algorithm are small and easily
verified. For each G, let lb(G) denote the best lower bound computed by our algorithm before
the timeout of 30 minutes and let nc(G) denote the number of vertices of the certificate for
this lower bound. Figures 3 and 4 show lb(G), nc(G), and the time to verify the certificate
using our implementation of the BT algorithm, for each instance G. The average, the
minimum, and the maximum of the ratio nc(G) / lb(G) over the 91 solved instances are 2.32,
1.25, and 3.9 respectively. The maximum of nc(G) over these instances is 49 and the time
for verifying each certificate is at most 400 milliseconds.



H. Tamaki 17:11

Table 1 bonus instances with known treewidth (first half).

no. name n m tw time
1 Sz512_15127_1.smt2-stp212.gaifman_3 175 593 14 4.74 seconds
2 MD5-32-1.gaifman_4 225 705 12 7.45 seconds
3 Promedas_69_9 133 251 9 11.5 seconds
4 GTFS_VBB_EndeApr_Dez2016.zip_train+metro_12 103 212 11 18.5 seconds
5 Promedas_56_8 155 299 10 28.3 seconds
6 Promedas_48_5 134 278 11 46.1 seconds
7 minxor128.gaifman_2 231 606 4 1.24 minutes
8 Promedas_49_8 184 367 10 1.92 minutes
9 FLA_14 266 423 8 3.06 minutes

10 post-cbmc-aes-d-r2.gaifman_10 263 505 11 4.32 minutes
11 Pedigree_11_7 202 501 14 4.64 minutes
12 countbitsarray04_32.gaifman_10 331 843 13 4.96 minutes
13 mrpp_4x4#8_8.gaifman_3 106 589 24 5.00 minutes
14 GTFS_VBB_EndeApr_Dez2016.zip_train+metro+tram_9 143 303 13 5.24 minutes
15 Promedus_38_15 208 398 10 5.35 minutes
16 Promedas_50_7 175 362 12 7.40 minutes
17 Promedus_34_11 157 289 11 7.61 minutes
18 GTFS_VBB_EndeApr_Dez2016.zip_train+metro_15 124 250 13 7.73 minutes
19 GTFS_VBB_EndeApr_Dez2016.zip_train+metro_14 123 248 13 7.88 minutes
20 Promedas_43_13 197 354 10 8.09 minutes
21 Promedas_46_8 175 318 11 8.36 minutes
22 Promedus_14_9 173 357 12 9.27 minutes
23 jgiraldezlevy.2200.9086.08.40.41.gaifman_2 95 568 34 9.76 minutes
24 modgen-n200-m90860q08c40-14808.gaifman_2 112 686 35 10.0 minutes
25 Promedus_38_14 242 462 10 11.1 minutes
26 Pedigree_11_6 205 503 14 14.9 minutes
27 Promedas_27_8 165 323 12 15.4 minutes
28 Promedas_45_7 159 313 12 17.4 minutes
29 jgiraldezlevy.2200.9086.08.40.46.gaifman_2 105 658 33 20.4 minutes
30 jgiraldezlevy.2200.9086.08.40.22.gaifman_2 111 675 33 22.2 minutes
31 Promedas_25_8 204 378 11 22.5 minutes
32 Pedigree_12_8 217 531 14 22.8 minutes
33 Promedus_34_12 210 389 11 26.1 minutes
34 Promedas_22_6 200 415 12 28.0 minutes
35 aes_24_4_keyfind_5.gaifman_3 104 380 23 31.5 minutes
36 Promedus_18_8 195 411 13 35.2 minutes
37 6s151.gaifman_3 253 634 14 36.8 minutes
38 LKS_15 220 385 10 39.4 minutes
39 Promedas_23_6 253 500 12 45.3 minutes
40 Promedus_28_14 193 351 11 47.8 minutes
41 Promedas_21_9 253 486 11 50.9 minutes
42 Promedas_59_10 209 396 11 56.3 minutes
43 Promedas_60_11 216 387 11 58.2 minutes
44 Promedas_69_10 194 379 12 1.08 hours
45 newton.3.3.i.smt2-stp212.gaifman_2 119 459 19 1.18 hours

SEA 2022



17:12 Heuristic Computation of Exact Treewidth

Table 2 bonus instances with known treewidth (second half).

no. name n m tw time
46 jgiraldezlevy.2200.9086.08.40.167.gaifman_2 92 552 34 1.22 hours
47 Promedus_34_14 188 352 12 1.30 hours
48 modgen-n200-m90860q08c40-22556.gaifman_2 135 855 33 1.33 hours
49 jgiraldezlevy.2200.9086.08.40.93.gaifman_2 100 593 36 1.33 hours
50 Promedas_61_8 156 305 13 1.48 hours
51 Promedas_30_7 164 320 13 1.62 hours
52 FLA_13 280 456 9 1.66 hours
53 am_7_7.shuffled-as.sat03-363.gaifman_6 189 424 14 1.72 hours
54 LKS_13 293 484 9 1.78 hours
55 SAT_dat.k80-24_1_rule_1.gaifman_3 130 698 22 1.83 hours
56 Promedas_28_10 333 605 11 1.84 hours
57 smtlib-qfbv-aigs-lfsr_004_127_112-tseitin.gaifman_6 316 669 13 1.89 hours
58 Promedas_11_7 191 385 13 2.64 hours
59 Promedus_20_13 193 353 12 3.39 hours
60 Pedigree_13_12 264 646 15 3.50 hours
61 GTFS_VBB_EndeApr_Dez2016.zip_train+metro+tram_10 187 385 14 3.64 hours
62 Promedas_22_8 224 441 13 3.77 hours
63 FLA_15 325 522 9 4.68 hours
64 GTFS_VBB_EndeApr_Dez2016.zip_train+metro+tram_15 198 406 14 4.99 hours
65 GTFS_VBB_EndeApr_Dez2016.zip_train+metro+tram_13 190 390 14 5.35 hours
66 GTFS_VBB_EndeApr_Dez2016.zip_train+metro+tram_12 197 404 14 5.46 hours
67 Promedas_63_8 181 374 14 5.53 hours
68 GTFS_VBB_EndeApr_Dez2016.zip_train+metro+tram_11 192 395 14 5.64 hours
69 Pedigree_12_14 284 703 15 6.18 hours
70 Promedus_12_15 293 533 11 6.19 hours
71 Promedus_12_14 272 494 11 6.63 hours
72 Promedas_44_9 276 534 12 6.65 hours
73 Promedas_32_8 238 487 13 7.05 hours
74 NY_13 283 448 9 7.16 hours
75 Promedus_18_10 187 397 14 8.98 hours
76 Promedas_34_8 174 348 14 9.11 hours
77 Promedas_62_9 217 427 13 9.67 hours
78 Promedus_17_13 180 349 13 11.1 hours
79 Promedus_11_15 247 497 13 12.5 hours
80 Promedas_24_11 273 494 12 13.4 hours
81 Promedus_14_8 199 417 14 15.1 hours
82 am_9_9.gaifman_6 212 480 15 15.7 hours
83 NY_11 226 369 10 17.9 hours
84 mrpp_8x8#24_14.gaifman_3 140 856 28 18.5 hours
85 Pedigree_12_10 286 712 16 22.1 hours
86 Promedas_55_9 221 425 13 27.0 hours
87 Pedigree_12_12 277 683 16 27.9 hours
88 Promedas_46_15 227 416 13 28.4 hours
89 Pedigree_13_9 268 665 16 38.9 hours
90 Promedas_51_12 230 431 13 40.2 hours
91 Promedus_27_15 189 353 13 41.6 hours



H. Tamaki 17:13

Figure 1 Time for computing upper/lower bounds for instances 1–45.

Figure 2 Time for computing upper/lower bounds for instances 46–91.

SEA 2022



17:14 Heuristic Computation of Exact Treewidth

Figure 3 Lower bound certificates for instances 1–45.

Figure 4 Lower bound certificates for instances 46–91.



H. Tamaki 17:15

7 Conclusions and future work

Our experiments using the bonus instance set from PACE 2017 algorithm implementation
challenge have revealed that our approach to treewidth computation is extremely effective in
tackling instances that are hard for conventional treewidth solvers. Even when it fails to
give the exact treewidth, it produces a lower bound very close to the upper bound. In many
applications, such a pair of tight bounds would be satisfactory, since it shows that further
search for a better tree-decomposition could only result in a small improvement if at all.

To examine the strength and the weakness of our approach more closely, evaluation on
more diverse sets of instances is necessary. For the upper bound part, there are several
implementations of heuristic algorithms publicly available, such as the submissions to the
heuristic treewidth track of PACE 2017 [11]. Although they are primarily intended for large
instances for which exact treewidth appears practically impossible to compute, some of them
are nonetheless potential alternatives to our upper bound algorithm. Comparative studies
would be needed to determine which algorithm is most suitable for our purposes. On the
other hand, it would also be interesting to evaluate our upper bound algorithm on large
instances that are the principal targets of those algorithms.

Since our lower approach is new, there are several potential improvements that have not
been tried out yet. More work could result in better performances.

We may also ask several theoretical questions regarding our lower bound approach. For
example, it would be interesting to ask if the lower bound algorithm can be turned into a
fixed parameter tractable algorithm for treewidth. It would also be interesting and useful to
identify parameters or structures of graph instances that make them difficult for our lower
bound algorithm.

References
1 Ernst Althaus, Daniela Schnurbusch, Julian Wüschner, and Sarah Ziegler. On tamaki’s

algorithm to compute treewidths. In 19th International Symposium on Experimental Algorithms
(SEA 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.

2 Stefan Arnborg, Derek G Corneil, and Andrzej Proskurowski. Complexity of finding embeddings
in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277–284, 1987.

3 Max Bannach, Sebastian Berndt, and Thorsten Ehlers. Jdrasil: A modular library for
computing tree decompositions. In 16th International Symposium on Experimental Algorithms
(SEA 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

4 Anne Berry, Pinar Heggernes, and Genevieve Simonet. The minimum degree heuristic and the
minimal triangulation process. In International Workshop on Graph-Theoretic Concepts in
Computer Science, pages 58–70. Springer, 2003.

5 Hans L Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on computing, 25(6):1305–1317, 1996.

6 Hans L Bodlaender. Treewidth: characterizations, applications, and computations. In
International Workshop on Graph-Theoretic Concepts in Computer Science, pages 1–14.
Springer, 2006.

7 Hans L Bodlaender and Arie MCA Koster. Safe separators for treewidth. Discrete Mathematics,
306(3):337–350, 2006.

8 Hans L Bodlaender and Arie MCA Koster. Treewidth computations i. upper bounds. Inform-
ation and Computation, 208(3):259–275, 2010.

9 Hans L Bodlaender and Arie MCA Koster. Treewidth computations ii. lower bounds. Inform-
ation and Computation, 209(7):1103–1119, 2011.

10 Vincent Bouchitté and Ioan Todinca. Treewidth and minimum fill-in: Grouping the minimal
separators. SIAM Journal on Computing, 31(1):212–232, 2001.

SEA 2022



17:16 Heuristic Computation of Exact Treewidth

11 Holgar Dell. PACE-challenge/Treewidth. https://github.com/PACE-challenge/Treewidth,
2017. [github repository, accessed January 12, 2022].

12 Holgar Dell. Treewidth-PACE-2017-bonus-instances. https://github.com/PACE-challenge/
Treewidth-PACE-2017-bonus-instances/, 2017. [github repository, accessed January 12,
2022].

13 Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The pace 2017
parameterized algorithms and computational experiments challenge: The second iteration. In
12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

14 Pinar Heggernes. Minimal triangulations of graphs: A survey. Discrete Mathematics, 306(3):297–
317, 2006.

15 Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.
Journal of algorithms, 7(3):309–322, 1986.

16 Neil Robertson and Paul D Seymour. Graph minors. xiii. the disjoint paths problem. Journal
of combinatorial theory, Series B, 63(1):65–110, 1995.

17 Neil Robertson and Paul D Seymour. Graph minors. xx. wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004.

18 Hisao Tamaki. Computing treewidth via exact and heuristic lists of minimal separators. In
International Symposium on Experimental Algorithms, pages 219–236. Springer, 2019.

19 Hisao Tamaki. A heuristic use of dynamic programming to upperbound treewidth. arXiv
preprint, 2019. arXiv:1909.07647.

20 Hisao Tamaki. Positive-instance driven dynamic programming for treewidth. Journal of
Combinatorial Optimization, 37(4):1283–1311, 2019.

21 Hisao Tamaki. A heuristic for listing almost-clique minimal separators of a graph. arXiv
preprint, 2021. arXiv:2108.07551.

22 Hisao Tamaki. twalgor/tw. https://github.com/twalgor/, 2022. [github repository].

https://github.com/PACE-challenge/Treewidth
https://github.com/PACE-challenge/Treewidth-PACE-2017-bonus-instances/
https://github.com/PACE-challenge/Treewidth-PACE-2017-bonus-instances/
http://arxiv.org/abs/1909.07647
http://arxiv.org/abs/2108.07551
https://github.com/twalgor/


On the Satisfiability of Smooth Grid CSPs
Vasily Alferov !

National Research University Higher School of Economics, Saint Petersburg, Russia

Mateus de Oliveira Oliveira !

University of Bergen, Norway

Abstract
Many important NP-hard problems, arising in a wide variety of contexts, can be reduced straightfor-
wardly to the satisfiability problem for CSPs whose underlying graph is a grid. In this work, we
push forward the study of grid CSPs by analyzing, from an experimental perspective, a symbolic
parameter called smoothness.

More specifically, we implement an algorithm that provably works in polynomial time on grids
of polynomial smoothness. Subsequently, we compare our algorithm with standard combinatorial
optimization techniques, such as SAT-solving and integer linear programming (ILP). For this
comparison, we use a class of grid-CSPs encoding the pigeonhole principle. We demonstrate,
empirically, that these CSPs have polynomial smoothness and that our algorithm terminates in
polynomial time.

On the other hand, as strong evidence that the grid-like encoding is not destroying the essence
of the pigeonhole principle, we show that the standard propositional translation of pigeonhole
CSPs remains hard for state-of-the-art SAT solvers, such as minisat and glucose, and even to
state-of-the-art integer linear-programming solvers, such as Coin-OR CBC.

2012 ACM Subject Classification Theory of computation → Discrete optimization

Keywords and phrases Grid CSPs, Smoothness, SAT Solving, Linear Programming

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.18

Supplementary Material Software: https://github.com/AutoProving/GridCSPs
archived at swh:1:dir:04dab414f88c68d273bc136840c6286e26e0d0b7

Funding Mateus de Oliveira Oliveira: Research Council of Norway, Grant Numbers 288761 and
326537.

1 Introduction

In this work, we consider constraint satisfaction problems (CSPs) where variables are arranged
on an m× n-grid, and where the domain of each variable is the set {1, . . . , k}. Constraints
are local, in the sense that they can only relate pairs of variables that correspond edges of
the grid. In our work, these CSPs are called (m,n, k)-grid CSPs, or simply as grid CSPs
when the parameters m,n, k are not relevant.

Grid CSPs have a wide variety of applications, ranging from board games to the simulation
of Turing machines running for a given number of steps. From a complexity-theoretic
perspective, the problem of determining whether a given grid CSP is satisfiable can be
solved in polynomial time for k ≤ 2 by a straightforward reduction to 2-SAT. On the other
hand, for k ≥ 3 the problem becomes NP-complete. Indeed, several natural NP-complete
problems reduce straightforwardly to the satisfiability problem for grid CSPs with constant-
size domains, including problems arising in the context of pattern recognition [20, 22], image
processing [5, 20], tiling systems [15, 21], formal language theory [9, 12, 16, 20], and many
others. Since the satisfiability problem for grid-like CSPs is NP-complete, and can be used
to model many classes of interesting problems, the identification of subclasses of grid CSPs
that can be solved efficiently is a fundamental quest.

© Vasily Alferov and Mateus de Oliveira Oliveira;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 18; pp. 18:1–18:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vasily.v.alferov@gmail.com
mailto:mateus.oliveira@uib.no
https://orcid.org/0000-0001-7798-7446
https://doi.org/10.4230/LIPIcs.SEA.2022.18
https://github.com/AutoProving/GridCSPs
https://archive.softwareheritage.org/swh:1:dir:04dab414f88c68d273bc136840c6286e26e0d0b7
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


18:2 On the Satisfiability of Smooth Grid CSPs

We approach this quest by leveraging on the notion of smoothness, a complexity measure
defined in [6] in the context of the picture satisfiability problem. In particular, we consider
a similar notion of smoothness for grid-CSPs and prove analytically that the satisfiability
problem for polynomially-smooth instances is solvable in polynomial time. From an experi-
mental perspective, we implement our algorithm and evaluate the performance of our solver
on a class of grid-CSPs encoding the pigeonhole-principle, which essentially states that there
is no bijection between a set of n + 1 and a set of n elements. In particular, we confirm
experimentally that grid-CSPs encoding the pigeonhole principle has polynomial smoothness.
In particular, our algorithm was able to solve both positive instances (that require mapping
n pigeons to n holes), and negative instances (that require mapping n+ 1 pigeons to n holes)
in time O(n3).

In an influential work, Haken showed that a family of propositional formulas Hm encoding
the pigeonhole principle requires resolution refutations of exponential size [3, 10]. Super-
polynomial lower bounds for this principle have been shown for a variety of proof systems,
including constant-depth Frege proof systems [13, 14, 19]. It turns out that the formulas
arising from Haken’s encoding of the pigeonhole principle are also hard in practice to state-of-
the-art SAT-solvers based on the technique of conflict-driven clause-learning (CDCL) [7, 17].
Indeed, it has been shown that certain variants of CDCL-based SAT solvers, such as those
introduced in [7, 17], are equivalent in power to resolution-based proof systems [2, 4, 11, 18].

We give strong evidence that our encoding of the pigeonhole principle as grid CSPs
preserves its inherent difficulty by showing empirically that the most direct propositional
translation of our grid CSPs into SAT instances remain hard for two of the most well known
SAT solvers based on the CDCL paradigm (minisat [7] and glucose [1]). Going further, we
show experimentally that the most straightforward integer linear-programming formulation
of our grid CSPs is hard to the state-of-the-art integer linear programming solver Coin-OR
CBC solver [8].

Our theoretical and experimental results give strong evidence that the smoothness of
grid-CSPs is a parameter that may be valuable in the study of combinatorial problems
involving constraints based on the pigeonhole principle.

2 Preliminaries

We denote by N .= {0, 1, . . .} the set of natural numbers (including zero), and by N+
.= N\{0}

the set of positive natural numbers. For each c ∈ N+, we let [c] .= {1, 2, . . . , c} and
JcK .= {0, 1, . . . , c− 1}.

Let Σ be an alphabet and w ∈ N+. A (Σ, w)-layer is a tuple B .= (ℓ, r, T, I, F, ι, ϕ), where
ℓ ⊆ JwK is a set of left states, r ⊆ JwK is a set of right states, T ⊆ ℓ × Σ × r is a set of
transitions, I ⊆ ℓ is a set of initial states, F ⊆ r is a set of final states and ι, ϕ ∈ {0, 1} are
Boolean flags satisfying the two following conditions:
1. if ι = 0 then I = ∅;
2. if ϕ = 0 then F = ∅.
In what follows, we may write ℓ(B), r(B), T (B), I(B), F (B), ι(B) and ϕ(B) to refer to the
sets ℓ, r, T , I and F and to the Boolean flags ι and ϕ, respectively.

We let B(Σ, w) denote the set of all (Σ, w)-layers. Note that, B(Σ, w) is non-empty and
has at most 2O(|Σ|·w2) elements. Let n ∈ N+. A (Σ, w)-ordered decision diagram (or simply,
(Σ, w)-ODD) of length n is a string D .= B1 · · ·Bn ∈ B(Σ, w)n of length n over the alphabet
B(Σ, w) satisfying the following conditions:



V. Alferov and M. de Oliveira Oliveira 18:3

1. for each i ∈ [n− 1], ℓ(Bi+1) = r(Bi);
2. ι(B1) = 1 and, for each i ∈ {2, . . . , n}, ι(Bi) = 0;
3. ϕ(Bn) = 1 and, for each i ∈ [n− 1], ϕ(Bi) = 0.
We note that Condition 2 guarantees that only the first layer of an ODD is allowed to have
initial states. Analogously, Condition 3 guarantees that only the last layer of an ODD is
allowed to have final states.

The size of an ODD D = B1 . . . Bn is defined as size(D) = |ℓ(B1)|+
∑n

j=1 |r(Bj)|. For
each n ∈ N+, we denote by B(Σ, w)◦n the set of all (Σ, w)-ODDs of length n. The width of
an ODD D = B1 · · ·Bn ∈ B(Σ, w)◦n is defined as w(D) .= max{|ℓ(B1)|, . . . , |ℓ(Bn)|, |r(Bn)|}.
We remark that w(D) ≤ w.

Let D = B1 · · ·Bn ∈ B(Σ, w)◦n and s = σ1 · · ·σn ∈ Σn. A valid sequence for s in D is a
sequence of transitions ⟨(p1, σ1, q1), . . . , (pn, σn, qn)⟩ such that pi+1 = qi for each i ∈ [n− 1],
and (pi, σi, qi) ∈ T (Bi) for each i ∈ [n]. Such a valid sequence is called accepting for s
if, additionally, p1 ∈ I(B1) and qn ∈ F (Bn). We say that D accepts s if there exists an
accepting sequence for s in D. The language of D, denoted by L(D), is defined as the set of
all strings accepted by D, i.e. L(D) .= {s ∈ Σn : s is accepted by D}.

A (Σ, w)-layer B is called deterministic if the following conditions are satisfied:
1. for each p ∈ ℓ(B) and each σ ∈ Σ, there exists at most one right state q ∈ r(B) such that

(p, σ, q) ∈ T (B);
2. if ι(B) = 1, then I(B) = ℓ(B) and |ℓ(B)| = 1.
On the other hand, a (Σ, w)-layer B is called complete if, for each p ∈ ℓ(B) and each σ ∈ Σ,
there exists at least one right state q ∈ r(B) such that (p, σ, q) ∈ T (B). We let B̂(Σ, w) be
the subset of B(Σ, w) comprising all deterministic, complete (Σ, w)-layers.

An ODD D = B1 · · ·Bn ∈ B(Σ, w)◦n is called deterministic (complete, resp.) if, for each
i ∈ [n], Bi is a deterministic (complete, resp.) layer. We remark that, if D is deterministic,
then there exists at most one valid sequence in D for each string in Σn. On the other hand,
if D is complete, then there exists at least one valid sequence in D for each string in Σn.
For each n ∈ N+, we let B̂(Σ, w)◦n be the subset of B(Σ, w)◦n comprising all deterministic,
complete (Σ, w)-ODDs of length n.

We say that an ODD D = B1 . . . Bn in B([k], w)◦n has non-determisitic degree d if all,
but at most one, layers of D are deterministic. Additionally, if there is a j such that Bj is
not deterministic, then for each state q ∈ ℓ(Bj), and each symbol σ ∈ [k], there is at most d
states q′ ∈ r(Bj) such that (q, σ, q′) ∈ T (Bj).

The following lemma can be proved by applying the standard power set construction
followed by a standard minimization algorithm for ODDs, and by observing that only subsets
of size at most d belonging to each frontier are relevant.

▶ Lemma 1. Let D be an ODD in B([k], w)◦n be an ODD of nondeterministic degree d.
Then one can construct in time n · wO(d) a deterministic ODD D′ with minimum number of
states with the property that L(D′) = L(D).

We will also need the following lemma stating that ODD representatives for synchronized
products of languages accepted by two given ODDs can be computed efficiently.

▶ Lemma 2 (Synchronized Product of Automata). Let D and D′ be ODDs in B([k], k)◦n. Let
V = {V1, . . . , Vn} be a set where for each i ∈ [n], Vi ⊆ [k]× [k]. Then one can construct in
time O(k2 · n) an ODD D ⊗V D′ accepting the following language over [k]× [k].

L(D ⊗V D′) = {(σ1, σ
′
1) . . . (σn, σ

′
n) | σ1 . . . σn ∈ L(D), σ′

1 . . . σ
′
n ∈ L(D′), (σi, σ

′
i) ∈ Vi}.

SEA 2022



18:4 On the Satisfiability of Smooth Grid CSPs

3 Smooth Grid Constraint Satisfaction Problems

Let m,n and k be positive integers. An (m,n, k)-grid CSP is specified by a pair (V,H) where
V = {Vi,j}i∈[m−1],j∈[n] is a collection of sets Vi,j ⊆ [k]× [k] called local vertical constraints,
and H = {Hi,j}i∈[m],j∈[n−1] is a collection of sets Hi,j ⊆ [k] × [k] called local horizontal
constraints. A solution for (V,H) is an m× n matrix M ∈ [k]m×n which satisfies all local
vertical and horizontal constraints. More precisely, such a solution M satisfies the following
conditions.
1. For each (i, j) ∈ [m− 1]× [n], the pair (Mi,j ,Mi+1,j) belongs to Vi,j .
2. For each (i, j) ∈ [m]× [n− 1], the pair (Mi,j ,Mi,j+1) belongs to Hi,j .

Let m and n be positive integers. We endow the set [m]× [n] = {(i, j) | i ∈ [m], j ∈ [n]}
with a lexicographic order < that sets (i, j) < (i′, j′) if either i < i′, or i = i′ and j < j′. We
write (i, j) ≤ (i′, j′) to denote that (i, j) = (i′, j′) or (i, j) < (i′, j′). For each (i, j) ∈ [m]× [n],
we let

S(m,n, i, j) = {(i′, j′) ∈ [m]× [n] : (i′, j′) ≤ (i, j)}

be the set of all positions in [m]× [n] that are (lexicographically) smaller than or equal to
(i, j). Given (m,n, k)-grid CSP (V,H), we say that a function M : S(m,n, i, j)→ [k] is an
(i, j)-partial (V ,H)-solution if the following conditions are satisfied.

1. (Mi′,j′ ,Mi′+1,j′) ∈ Vi′,j′ for each (i′, j′), (i′ + 1, j′) in S(m,n, i, j).
2. (Mi′,j′ ,Mi′,j′+1) ∈ Hi′,j′ for each (i′, j′), (i′, j′ + 1) in S(m,n, i, j).

Note that for simplicity, we write Mi,j in place of M(i, j) to designate an entry of M .
Intuitively, an (i, j)-partial (V,H)-solution for N is a function that colors the positions of N
up to the entry (i, j) with elements from Σ in such a way that the vertical and horizontal
constraints imposed by V and H respectively are respected. If (i, j1) and (i, j2) are positions
in S(m,n, i, j) with j1 < j2, then we let Mi,[j1,j2] = Mi,j1 ...Mi,j2 be the string over [k] formed
by all entries at the i-th row of M between positions j1 and j2. Now let (i, j) ∈ S(m,n, i, j)
with (i, j) ≥ (1, n). The (i, j)-boundary of M is defined as follows.

∂i,j(M) =


Mi,[1,n] if j = n.

Mi,[1,j] ·Mi−1,[j+1,n] if j < n.
(1)

In other words, if j = n, then ∂(M) is the string consisting of all entries in the i-th row
of M . On the other hand, if j < n, then ∂(M) is obtained by concatenating the string
corresponding to the first j entries of row i with the last (n− j) entries of row (i− 1). The
notion of boundary of a partial solution is illustrated in Figure 1.

Figure 1 An (i, j)-partial solution M where i = 3 and j = 4. The grey entries form the boundary
of M . Therefore ∂i,j(M) = 3123312.

The (i, j)-feasibility boundary of (V ,H), denoted by ∂i,j(V ,H), is defined as follows.

∂i,j(V ,H) = {∂i,j(M) |M is an (i, j)-partial (V ,H)-solution}. (2)



V. Alferov and M. de Oliveira Oliveira 18:5

Note that a (V ,H)-solution exists if and only if ∂m,n(V ,H) is non-empty.

▶ Definition 3. We say that an (m,n, k)-grid CSP (V,H) is s-smooth if for each i ∈ [m] and
each j ∈ [n], there is a deterministic ODD D of size at most s such that L(D) = ∂i,j(V,H).

In [6] a similar notion of smoothness has been defined in the context of the picture
satisfiability problem. The crucial difference is that our grid CSPs are a much more general
combinatorial object, since the vertical constraints Vi,j and the horizontal constraints Hi,j

may depend on the position (i, j), whereas in the context of pictures, all vertical (horizontal)
constraints are required to be identical over the whole grid. The main result from [6]
established that the satisfiability problem for pictures of polynomial smoothness is solvable
in polynomial time. In this section, we generalize this result to the context of general grid
CSPs.

The following lemma states that given an (m,n, k)-grid CSP (V,H), one can construct
and initial ODD D(H, 1) ∈ B([k], k)◦n accepting precisely those strings in [k]n that satisfy
all local horizontal constraints in the first row of H.

▶ Lemma 4. Let (V,H) be an (m,n, k)-grid CSP. There is a deterministic ODD D(H, 1) ∈
B([k], k)◦n such that

L(D(H, 1)) = {σ1 . . . σn ∈ [k]n : (σj , σj+1) ∈ H1,j for each j ∈ [n− 1]}

Proof. We let D(H, 1) = B1 . . . Bn be the ODD in B([k], k)◦n where
1. ℓ(Bj) = r(Bj) = [k] for each j ∈ [n],
2. I(B1) = {1} and I(Bj) = ∅ for each j ∈ {2, . . . , n},
3. F (Bn) = [k] and F (Bj) = ∅ for each j ∈ {1, . . . , n− 1},
4. T (Bj) = {(σ, σ′, σ′) : (σ, σ′) ∈ H1,j}.
Then it should be clear that a string s = σ1σ2 . . . σn belongs to L(D(H, 1)) if and only if

⟨(σ1, σ2, σ2) . . . (σn−1, σn, σn)⟩

is an accepting sequence for s in D(H, 1). By construction, this happens if and only if
(σj , σj+1) ∈ H1,j for each j ∈ [n− 1]. ◀

▶ Lemma 5. Let k and w be a positive integers, V ⊆ [k]× [k] and D be a deterministic ODD
in B([k], w)◦n. Then one can construct in time O(n · wk) an ODD Up(D,V, 1) accepting the
following language

L(Up(D,V, 1)) = {aw : ∃b ∈ [k], bw ∈ L(D), (b, a) ∈ V }.

Proof. Let k and w be positive integers, B be a layer in B([k], w) and V ⊆ [k]× [k]. We let
l(B, V ) be the layer in B([k], k · w) defined as follows.

1. ℓ(l(B, V )) = ℓ(B) and I(l(B, V )) = I(B).
2. ι(l(B, V )) = ι(B) and ϕ(l(B, V )) = ϕ(B).
3. r(l(B, V )) = {j · w + j′ : j ∈ r(B), j′ ∈ JkK}.
4. F (l(B, V )) = {j · w + j′ : j ∈ F (B), j′ ∈ JkK}.
5. T (l(B, V )) = {(i, b, j · w + b) : ∃a ∈ [k], (i, a, j) ∈ T (B), (a, b) ∈ V }.

Additionally, we let r(B, V ) be the layer in B([k], k · w) defined as follows.

1. r(r(B, V )) = r(B) and F (r(B, V )) = F (B).
2. ι(r(B, V )) = ι(B) and ϕ(r(B, V )) = ϕ(B).

SEA 2022



18:6 On the Satisfiability of Smooth Grid CSPs

3. ℓ(r(B, V )) = {i · w + i′ : i ∈ ℓ(B), i′ ∈ JkK}
4. I(r(B, V )) = ∅.
5. T (r(B, V )) = {(i · w + i′, a, j) : ∃a ∈ [k], (i, a, j) ∈ T (B)}.

Now, let D = B1 . . . Bn be a deterministic an ODD in B([k], w)◦n and let

D′ = l(B1, V )r(B2, V )B3 . . . Bn

be the ODD obtained from D by replacing B1 with l(B1, V ) and B2 with r(B2, V ). Then
one can verify that

L(D′) = {aw : ∃b ∈ [k], bw ∈ L(D), (b, a) ∈ V }.

Additionally, D′ has non-deterministic degree at most k. Now we set the ODD Up(D,V, 1)
as the minimum deterministic ODD such that L(Up(D,V, 1)) = L(D′). Since D′ has
non-deterministic degree at most k, we have that Up(D,V, 1) can be constructed in time
O(n · wk). ◀

▶ Lemma 6. Let k and w be a positive integers, V,H ⊆ [k] × [k], D be a deterministic
ODD in B([k], w)◦n, and j ∈ [n − 1]. Then one can construct in time O(n · wk) an ODD
Up(D,V,H, j) accepting the following language

L(Up(D, V, H, j)) = {ubav : ∃c ∈ [k], ubcv ∈ L(D), |ub| = j − 1, (b, a) ∈ H, and (c, a) ∈ V }.

Proof. Let k and w be positive integers, B be a layer in B([k], w) and V,H ⊆ [k]× [k]. We
let l(B, V,H) be the layer in B([k], k · w) defined as follows.

1. ℓ(l(B, V,H)) = ℓ(B) and I(l(B, V,H)) = I(B).
2. ι(l(B, V,H)) = ι(B) and ϕ(l(B, V,H)) = ϕ(B).
3. r(l(B, V,H)) = {j · w + j′ : j ∈ r(B), j′ ∈ JkK}.
4. F (l(B, V,H)) = {j · w + j′ : j ∈ F (B), j′ ∈ JkK}.
5. T (l(B, V,H)) = {(i, b, j · w + b) : ∃a ∈ [k], (i, a, j) ∈ T (B), (a, b) ∈ V }.

Additionally, we let r(B, V,H) be the layer in B([k], k · w) defined as follows.

1. r(r(B, V,H)) = r(B) and F (r(B, V,H)) = F (B).
2. ι(r(B, V,H)) = ι(B) and ϕ(r(B, V,H)) = ϕ(B).
3. ℓ(r(B, V,H)) = {i · w + i′ : i ∈ ℓ(B), i′ ∈ JkK}
4. I(r(B, V,H)) = ∅.
5. T (r(B, V,H)) = {(i · w + i′, a, j) : ∃a ∈ [k], (i, a, j) ∈ T (B)}.

Now, let D = B1 . . . Bn be a deterministic an ODD in B([k], w)◦n and j ∈ [n− 1]. Let

D′ = B1 . . . l(Bj , V,H)r(Bj+1, V,H) . . . Bn

be the ODD obtained from D by replacing Bj with l(Bj , V,H) and Bj+1 with r(Bj+1, V,H).
Then one can verify that

L(D′) = {ubav : ∃c ∈ [k], ubcv ∈ L(D), |ub| = j − 1, (b, a) ∈ H, and (c, a) ∈ V }.

Additionally, D′ has non-deterministic degree at most k. Now we set the ODD Up(D,V,H, j)
as the minimum deterministic ODD such that L(Up(D,V,H, j)) = L(D′). Since D′ has
non-deterministic degree at most k, we have that Up(D,V,H, j) can be constructed in time
O(n · wk). ◀



V. Alferov and M. de Oliveira Oliveira 18:7

The following corollary is a consequence of Lemmas 5 and 6.

▶ Corollary 7. Let (V ,H) be an (m,n, k)-grid CSP, and let D be an ODD in B([k], w)◦n.
1. If L(D) = ∂i,n(V ,H) for some i ∈ [m− 1], then

L(Up(D,Vi+1,1, 1)) = ∂i+1,1(V ,H).

2. If L(D) = ∂i,j(V ,H) for some i ∈ [m] and some j ∈ [n− 1], then

L(Up(D,Vi,j+1, Hi,j+1, j + 1)) = ∂i,j+1(V ,H).

Algorithm 1 Decision algorithm for grid-like CSPs.

Data: An (m,n, k)-grid CSP (V ,H).
Result: Yes if (V ,H) is satisfiable. No otherwise.
D1 ← D(H, 1);
for i = 2 . . .m do

Di ← Up(Di−1, Vi−1,1, 1);
for j = 2 . . . n do

Di ← Up(Di, Vi−1,j , Hi,j , j);
end

end
Return Yes if L(Dm) ̸= ∅ and No otherwise.

The algorithm described in Algorithm 1 can be used to determine whether a given (m,n, k)-
grid like CSP (V,H) is satisfiable. It turns out that the sequence of ODDs D1, ..., Dm can
be used to construct an actual solution in case it exists. The description of the construction
is given below in Algorithm 2.

Algorithm 2 Construction of a solution of a satisfiable grid-like CSP.

Data: ODDs D1, . . . , Dm constructed in Algorithm 1 where L(Dm) ̸= ∅.
Result: A solution for the (m,n, k)-grid like CSP (V,H) input to Algorithm 1.
Let s be a string in L(Dm). ;
Mm ← s;
for i = m− 1 . . . 1 do

Let s ∈ L(Di) be such that s⊗V Mi+1 belongs to L(Di ⊗V Di+1).;
Mi ← s;

end
Return the (m,n, k)-matrix M whose rows are M1, . . . ,Mm. ;

From Corollary 7 and Algorithms 1 and 2, we infer the following theorem.

▶ Theorem 8. Let (V,H) be an s-smooth (m,n, k)-grid CSP. Then one can determine
whether (V,H) has a solution using Algorithm 1 in time sO(k) · mO(1) · nO(1). In case a
solution exists, it can be constructed within the same time bounds using Algorithm 2.

4 Experiments

In this section, we evaluate the performance of our algorithm and compare it with two
general-purpose SAT solvers (minisat and glucose) and the integer-programming solver
Coin-OR CBC.

SEA 2022



18:8 On the Satisfiability of Smooth Grid CSPs

We start by defining the notion of Pigeonhole grid-CSPs, a CSP with uniform vertical
and horizontal constraints over an alphabet of size 5 encoding the pigeonhole principle. A
more contrieved version of this CSP was studied in [6], under the name of pigeonhole pictures.
It was proved in [6] that these pigeonhole pictures have polynomial smoothness, and that
the straightforward propositional translation of these CSPs is hard for the bounded-depth
Frege proof system.

In this section, we defined a simpler notion of pigeonhole grid CSP than the one employed
in [6]. The simplicity of our definition is due to the fact that in our setting local constraints
may vary according to the position in the grid, while in [6] local constraints were required to
be uniform. Both the fact that these CSPs have polynomial smoothness and the fact that they
are hard to bounded Frege are inherited from the corresponding results in [6]. In this section,
we confirm empirically both of these theoretical results. Additionally, we show empirically
that the straightforward integer-programming formulation of the Pigeonhole grid-CSP is
hard for state-of-the-art integer programming tools such as Cplex and Coin-OR CBC.

4.1 The Pigeonhole Grid CSP
For each two positive integers m and n we define an (m,n, 5)-grid CSP

PHP(m,n) = (V(m,n),H(m,n))

encoding the principle that m pigeons are placed into n holes. Clearly such a CSP should be
satisfiable if and only if m ≤ n. To make the definition more intuitive, instead of defining the
local vertical and horizontal constraints as subsets of [5]× [5], we let Σ = {bb, bg, gb, gg, rr}
and assume that these local constraints are defined as subsets of Σ × Σ. First, for each
i ∈ [m− 1] and any j ∈ [n], we let the local vertical constraint Vi,j be equal to the following
relation.

V = { (xb, yb), (xb, rr), (rr, xg), (xg, yg) | x, y ∈ {b, g} }.

Now, there are three types of local horizontal constraints. For i ∈ [m], we set Hi,1 equal
to the relation

Hleft = { (bx, by), (bx, rr), (rr, gy) : x, y ∈ {b, g} }. (3)

For each i ∈ [m] and each j ∈ [n− 2], we set Hi,j equal to the relation.

Hmiddle = { (bx, by), (bx, rr), (rr, gy), (gx, gy) : x, y ∈ {b, g} } (4)

Finally, for each i ∈ [m], we set Hi,n−1 equal to the relation

Hright = { (bx, rr), (rr, gy), (gx, gy) : x, y ∈ {b, g} }. (5)

Intuitively, if M is a solution for PHP(m,n) then M has one row for each pigeon and one
column for each hole. The Mi,j = rr indicates that the i-th pigeon is placed at the hole j.
On the other hand, Mi,j = bx for some x ∈ {g, b} indicates that the i-th pigeon is placed in
some hole greater than j, while Mi,j = gx for some x ∈ {b, g} indicates that the i-th pigeon
is placed in some hole smaller than j. Analogously, if Mi,j = xb for some x ∈ {b, g}, then the
pigeon that is placed at the j-th hole is greater than i, while if Mi,j = xg, then the pigeon
that is placed at the j-th hole is smaller than i.



V. Alferov and M. de Oliveira Oliveira 18:9

Note that the way in which the horizontal constraints are defined guarantees that exactly
one pigeon must occur in each row of a solution. This is because there is no allowed pair
(xy, x′y′) where x is blue and x′ is green. Therefore in a solution, each row must have at
least one entry with value rr. Additionally, the vertical constraints guarantee that that at
most one pigeon will occur in each column. Indeed, if some pigeon occurs in a position (i, j)
then the second color in each entry below (i, j) must be green, while the second color of each
entry above (i, j) must be blue. Therefore no two pigeons are allowed to appear on the same
column of a satisfying assignment. In Figure 2 we depict a solution to the pigeonhole CSP
PHP(4, 4), while one can readily check that the CSP PHP(4, 3) has no solution.

Figure 2 i) A solution to the pigeonhole CSP PHP(4, 4). ii) A maximal partial solution to
PHP(4, 3). In this last case, it is not possible to assign a value to the entry (4, 3) of the matrix in
such a way that both the constraints V3,3 and H4,2 are satisfied.

▶ Theorem 9 (Follow from results in [6]). Let PHP(m,n) be the pigeonhole grid CSP defined
above.
1. PHP(m,n) has a solution if and only if m ≤ n.
2. The smoothness of PHP is bounded by mO(1) · n.
3. For each fixed d ∈ N, PHP(m+ 1,m) require depth-d Frege proofs of superpolynomial size.

4.2 Solving Pigeonhole Pictures with the ODD solver
Since the PHP(m,n) has smoothness upper bounded by mO(1) ·n, there is no visible difference
between the performance of the solver on barely-satisfiable instances PHP(m,m) and the
performance of the solver on barely-unsatisfiable instances PHP(m+ 1,m). This is confirmed
empirically in Figure 3.

0 200 400
0

500

1,000

n

T
im

e,
se

co
nd

s

n× n
(n+ 1)× n n w(D) m × m, s (m + 1) × m, s

50 51 2.172 2.220
100 101 17.834 17.780
150 151 60.715 60.552
200 201 145.587 144.179
250 251 291.692 286.952
300 301 511.754 505.581
350 351 818.724 813.929
400 401 1241.258 1236.734

Figure 3 (a) Performance of the ODD solver on PHP(m, m) and on PHP(m + 1, m). The running
times grows as O(m3). The plots corresponding to both cases almost match. (b) Execution times
(in seconds) and maximum width of minimized deterministic ODDs occurring during the execution
of the ODD algorithm. Note that the maximum width is identical in both test cases.

SEA 2022



18:10 On the Satisfiability of Smooth Grid CSPs

4.3 Experiments with SAT Solvers
First we describe the straightforward translation from (m,n, k)-grid CSPs to CNFs. We
note that the obtained CNFs have width at most k. Given such a CSP (V,H), the formula
ψ(V,H) has a variable xijσ for each (i, j) ∈ [m] × [n], and each σ ∈ [k]. Intuitively, the
variable xijσ is true if the position (i, j) of a solution is set to σ. The following set of clauses
specifies that in a satisfying assignment, precisely value is associated with entry (i, j).

OneSymbol(M, i, j) ≡
∨

s∈[k]

xijs ∧
∧

s,s′∈[k],s̸=s′

(xijs ∨ xijs′) (6)

The next set of clauses expresses the fact that no pair (σ, σ′) /∈ Hi,j occurs in consecutive
horizontal positions at row i.

Horizontal(M, i) ≡
∧

(σ,σ′)/∈Hi,j ,j∈[n−1]}

(xijσ ∨ xi(j+1)σ′) (7)

Similarly, the following set of of clauses expresses the fact that that no pair (σ, σ′) /∈ Vi,j

occurs in consecutive vertical positions at column j.

Vertical(M, j) ≡
∧

(σ,σ′)/∈Vi,j ,i∈[m−1]}

(xijσ ∨ x(i+1)jσ′) (8)

Finally, we set the formula ψ(M) as follows.

ψ(V ,H) ≡
m∧

i=1
Horizontal(M, i) ∧

n∧
j=1

Vertical(M, j) ∧
∧
ij

OneSymbol(M, i, j) (9)

0 200 400

10−1

100

101

102

103

104

n

T
im

e,
se

co
nd

s

ODD
Minisat
Glucose

n ODD, s Minisat, s Glucose, s
40 1.072 0.319 0.370
70 5.744 1.024 1.123
100 17.834 2.683 9.057
130 39.440 19.997 39.525
160 73.322 73.149 136.082
190 125.788 251.317 241.092
220 195.433 348.214 336.554
250 291.692 495.185 1038.347

Figure 4 Performances of ODD, Minisat and Glucose solvers on Pigeonhole picture of size n × n.

The test cases corresponding to the CNF translation of the grid CSPs PHP(m,m) and
PHP(m+ 1,m) were given as input to the SAT solvers Minisat 2.21 and Glucose 4.12.

The performance of these solvers on the barely satisfiable case is plotted on Figure 4.
The timeout for each experiment was set at 3600 seconds. As it can be seen, Glucose solver
times out for n > 250, and Minisat times out for n > 350. The performance of SAT solvers
seems to be exponential, while ODD solver performs clearly in polynomial time.

1 http://www.minisat.se/Main.html
2 https://www.labri.fr/perso/lsimon/glucose/

http://www.minisat.se/Main.html
https://www.labri.fr/perso/lsimon/glucose/


V. Alferov and M. de Oliveira Oliveira 18:11

0 100 200

10−1

100

101

102

103

n

T
im

e,
se

co
nd

s

Real
Regression

(a) Minisat.

0 100 200
10−1

100

101

102

103

104

n

T
im

e,
se

co
nd

s

Real
Regression

(b) Glucose.

Figure 5 Exponential regressions for SAT solver running times.

Based on the results of the tests, the empirical exponential approximations were estimated
for running times of Minisat and Glucose solvers. For Minisat, it is O∗(1.033n), while for
Glucose it is O∗(1.041n). The regressions are plotted on Figure 5.

Interestingly, the amount of memory used by the ODD solver is significantly larger than
the amount of memory used by SAT solvers. As it is clearly shown on Figure 6, both
amounts are polynomial, but the degree of the polynomial for the ODD solver is larger. SAT
solvers most probably use linear amount of memory in terms of the formula length (which
is quadratic with respect to m). However, the ODD-based solver needs to store ODDs for
all layers in order to be able to restore the solution, so the amount of memory used by this
solver on this test is cubic.

101 102
106

108

1010

m

M
em

or
y,

by
te

s

ODD
Minisat
Glucose

n ODD, Mb Minisat, Mb Glucose, Mb
40 27.273 21.082 22.202
70 121.126 61.706 65.559
100 323.002 123.988 144.478
130 677.117 226.307 239.545
160 1227.509 318.518 370.232
190 2007.272 485.630 500.627
220 3077.601 702.075 739.147
250 4458.830 969.132 934.675

Figure 6 Memory used by ODD, Minisat and Glucose solvers on Pigeonhole picture of size m×m.

A more expressive difference is achieved for the barely unsatisfiable case, PHP(m+ 1,m).
The performance is plotted in figure 7. Both solvers time out in this case even for for
n = 14. Therefore, we can conclude that CNF encodings corresponding to PHP(m+ 1,m)
are extremely hard for the tested SAT solvers.

SEA 2022



18:12 On the Satisfiability of Smooth Grid CSPs

0 5 10 15 20

10−1

100

101

102

103

104

m

T
im

e,
se

co
nd

s
ODD

Minisat
Glucose

m ODD, s Minisat, s Glucose, s
5 0.152 0.158 0.169
6 0.163 0.041 0.070
7 0.074 0.125 0.123
8 0.072 0.226 0.174
9 0.077 2.436 1.277
10 4.169 37.477 5.043
11 0.072 903.836 24.553
12 0.119 3598.044 217.029

Figure 7 Performances of ODD, Minisat and Glucose solvers on Pigeonhole picture of size
(m + 1) × m. Both SAT solvers timed out for m ≥ 14, while the ODD solver run without problems
in all test sizes (up to m ≤ 400).

4.4 Integer Programming Translation

The ILP encoding of grid CSPs is done in a similar way to the CNF encoding. More precisely,
a variable xi,j,s ∈ {0, 1} is created for each (i, j) ∈ [m] × [n] and each s ∈ [k]. Then, the
following constraints are added:

OneSymbol(M, i, j) ≡
∑
s∈[k]

xijs = 1 (5’)

Horizontal(M, i, j, σ, σ′) ≡ xijσ + xi(j+1)σ′ < 2, if (σ, σ′) /∈ Hi,j (6’)

Vertical(M, i, j, σ, σ′) ≡ xijσ + x(i+1)jσ′ < 2, if (σ, σ′) /∈ Vi,j (7’)

20 40 60 80 100

10−1

100

101

102

103

104

m

T
im

e,
se

co
nd

s

ODD
CBC

Regression n ODD, s CBC, s
10 0.068 2.565
20 0.219 10.489
30 0.471 23.465
40 1.072 85.323
50 2.172 177.186
60 3.584 383.363
70 5.744 698.603
80 9.105 1522.991

Figure 8 Performances of ODD and CBC solvers on Pigeonhole picture if size m × m.



V. Alferov and M. de Oliveira Oliveira 18:13

The resulting ILP instances were given to the Coin-OR CBC3 solver. The performance is
plotted on Figure 8. For m ×m instances the solver timed out for m = 90. The running
time of the solvers grows clearly as an exponential function. On each of the test cases, the
running time of the ILP sover is several orders of magitude above the running time of the
ODD-based solver. For the ILP solver empirical exponential approximation of O∗(1.093n)
was also built. The regression is shown on Figure 8. As in the case of SAT solvers, for the
barely unsatisfiable case the ILP solver timed out much earlier (for m = 21). The results for
m ≤ 20 are plotted on Figure 9.

0 5 10 15 20

10−1

100

101

102

103

m

T
im

e,
se

co
nd

s

ODD
CBC m ODD, s CBC, s

6 0.163 0.942
8 0.072 2.422
10 4.169 8.201
12 0.119 3.946
14 0.120 51.762
16 0.217 2046.332
18 0.167 622.360
20 5.060 1543.712

Figure 9 Performances of ODD and CBC solvers on Pigeonhole picture if size (m + 1) × m.

5 Conclusion

In this work, we have lifted the notion of smoothness for pictures (grid-CSPs with uniform
vertical and horizontal constraints) to the context of general grid CSPs, where the vertical
and horizontal constraints at each position (i, j) may depend on (i, j). We have shown
that the satisfiability problem for grid-CSPs of polynomial smoothness can be solved in
polynomial time. Additionally, we have given evidence for the relevance of the concept of
smoothness in practical situations by demonstrating empirically that the class for pigeonhole
grids can be solved in cubic time.

This opens up the possibility of applying our algorithm to grid CSPs involving constraints
where one particular object can appear at most once in any row/column, such as the problem
of placing r towers in an m× n chess grid in such a way that no tower attacks each other. It
can be shown in this case that the ODDs occurring in the execution of the algorithm have
size polynomial in m,n and r.

References

1 Gilles Audemard and Laurent Simon. On the glucose SAT solver. Int. J. Artif. Intell. Tools,
27(1):1840001:1–1840001:25, 2018. doi:10.1142/S0218213018400018.

2 Paul Beame, Henry Kautz, and Ashish Sabharwal. Towards understanding and harnessing the
potential of clause learning. Journal of Artificial Intelligence Research, pages 319–351, 2004.

3 https://github.com/coin-or/Cbc

SEA 2022

https://doi.org/10.1142/S0218213018400018
https://github.com/coin-or/Cbc


18:14 On the Satisfiability of Smooth Grid CSPs

3 Paul Beame and Toniann Pitassi. Simplified and improved resolution lower bounds. In
Foundations of Computer Science, 1996. Proceedings., 37th Annual Symposium on, pages
274–282. IEEE, 1996.

4 Samuel R Buss, Jan Hoffmann, and Jan Johannsen. Resolution trees with lemmas: Resolution
refinements that characterize DLL algorithms with clause learning. Logical Methods in
Computer Science, 4, 2008.

5 Alessandra Cherubini, Stefano Crespi Reghizzi, Matteo Pradella, and Pierluigi San Pietro.
Picture languages: Tiling systems versus tile rewriting grammars. Theoretical Computer
Science, 356(1):90–103, 2006.

6 Mateus de Oliveira Oliveira. Satisfiability via smooth pictures. In International Conference
on Theory and Applications of Satisfiability Testing, pages 13–28. Springer, 2016.

7 Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Theory and applications of
satisfiability testing, pages 502–518. Springer, 2003.

8 John Forrest and Robin Lougee-Heimer. Cbc user guide. In Emerging theory, methods, and
applications, pages 257–277. INFORMS, 2005.

9 Dora Giammarresi and Antonio Restivo. Recognizable picture languages. International Journal
of Pattern Recognition and Artificial Intelligence, 6(2&3):241–256, 1992.

10 Armin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308,
1985.

11 Philipp Hertel, Fahiem Bacchus, Toniann Pitassi, and Allen Van Gelder. Clause learning
can effectively P-simulate general propositional resolution. In Proc. of the 23rd National
Conference on Artificial Intelligence (AAAI 2008), pages 283–290, 2008.

12 Changwook Kim and Ivan Hal Sudborough. The membership and equivalence problems for
picture languages. Theoretical Computer Science, 52(3):177–191, 1987.

13 Jan Krajíček. Lower bounds to the size of constant-depth propositional proofs. The Journal
of Symbolic Logic, 59(01):73–86, 1994.

14 Jan Krajíček, Pavel Pudlák, and Alan Woods. An exponential lower bound to the size of
bounded depth frege proofs of the pigeonhole principle. Random Structures & Algorithms,
7(1):15–39, 1995.

15 Michel Latteux and David Simplot. Recognizable picture languages and domino tiling.
Theoretical computer science, 178(1):275–283, 1997.

16 Hermann A Maurer, Grzegorz Rozenberg, and Emo Welzl. Using string languages to describe
picture languages. Information and Control, 54(3):155–185, 1982.

17 Matthew W Moskewicz, Conor F Madigan, Ying Zhao, Lintao Zhang, and Sharad Malik. Chaff:
Engineering an efficient SAT solver. In Proceedings of the 38th annual Design Automation
Conference, pages 530–535. ACM, 2001.

18 Knot Pipatsrisawat and Adnan Darwiche. On the power of clause-learning SAT solvers as
resolution engines. Artificial Intelligence, 175(2):512–525, 2011.

19 Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for the
pigeonhole principle. Computational complexity, 3(2):97–140, 1993.

20 Azriel Rosenfeld. Picture languages: formal models for picture recognition. Academic Press,
2014.

21 David Simplot. A characterization of recognizable picture languages by tilings by finite sets.
Theoretical Computer Science, 218(2):297–323, 1999.

22 Gift Stromoney, Rani Siromoney, and Kamala Krithivasan. Abstract families of matrices and
picture languages. Computer Graphics and Image Processing, 1(3):284–307, 1972.



An Experimental Evaluation of Semidefinite
Programming and Spectral Algorithms for Max Cut
Renee Mirka !

Cornell University, Ithaca, NY, USA

David P. Williamson !

Cornell University, Ithaca, NY, USA

Abstract
We experimentally evaluate the performance of several Max Cut approximation algorithms. In
particular, we compare the results of the Goemans and Williamson algorithm using semidefinite
programming with Trevisan’s algorithm using spectral partitioning. The former algorithm has
a known .878 approximation guarantee whereas the latter has a .614 approximation guarantee.
We investigate whether this gap in approximation guarantees is evident in practice or whether
the spectral algorithm performs as well as the SDP. We also compare the performances to the
standard greedy Max Cut algorithm which has a .5 approximation guarantee and two additional
spectral algorithms. The algorithms are tested on Erdős-Renyi random graphs, complete graphs
from TSPLIB, and real-world graphs from the Network Repository. We find, unsurprisingly, that
the spectral algorithms provide a significant speed advantage over the SDP. In our experiments, the
spectral algorithms return cuts with values which are competitive with those of the SDP.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Max Cut, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.19

Supplementary Material Software (Source Code): https://github.com/rmirka/max-cut-
experiments; archived at swh:1:dir:eb13652be65db33c0ea45e66314475a4327cae0d

Funding This work was supported by the National Science Foundation [NSF CCF-2007009].

1 Introduction

Given as input a graph G = (V, E) and weights we ∈ R+ for all e ∈ E, the Max Cut problem
asks to partition V into two sets such that the sum of the weights of the edges crossing
the partition is maximized. In particular, a cut is given by a pair of sets (S, T ) such that
V = S ∪ T and S ∩ T = ∅. The value of this cut is∑

(s,t)∈E:s∈S,t∈T

w(s,t),

and Max Cut seeks to find a cut maximizing this quantity.
Max Cut is a problem of vast theoretical and practical significance. It is polynomial

solvable for certain classes of graphs, e.g. planar graphs [9, 15], and is well-known to be NP-
hard in general; it appears on Karp’s original list of NP-complete problems [12]. Additionally,
Max Cut has applications in fields such as data clustering [16], circuit design, and statistical
physics [1]; see Poljak and Tuza for a comprehensive survey [17].

Many researchers have made improvements towards exact solvers for Max Cut. For
general graphs of unbounded average degree, Williams presented a Max Cut algorithm
using exponential space to exactly solve (and count the number of optimal solutions) in
O(m32ωn/3) time where ω < 2.376 [24]. Croce, Kaminski, and Paschos introduced an
algorithm to find a Max Cut in graphs with bounded maximum degree, ∆, running in
O∗(2(1−2/∆)n) time where O∗() suppresses polynomial factors [4]. Golovnev improved this

© Renee Mirka and David P. Williamson;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 19; pp. 19:1–19:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rem379@cornell.edu
mailto:davidpwilliamson@cornell.edu
https://doi.org/10.4230/LIPIcs.SEA.2022.19
https://github.com/rmirka/max-cut-experiments
https://github.com/rmirka/max-cut-experiments
https://archive.softwareheritage.org/swh:1:dir:eb13652be65db33c0ea45e66314475a4327cae0d;origin=https://github.com/rmirka/max-cut-experiments;visit=swh:1:snp:fc829bfa9df47e184ad0ee91dcb68b82acf3654d;anchor=swh:1:rev:53472eb7a91d41d140df035aed4d939f3ef97339
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


19:2 Exp Eval of SDP and Spectral Algs for Max Cut

to O∗(2(1−3/(∆+1))n) [8]. Results from Hrga et al., Hrga and Povh, Krislock, Malick, and
Roupin, and Rendl, Rinaldi, and Wiegele utilize branch and bound techniques to produce
further exact solvers [10, 11, 14, 19]. However, due to the lack of an efficient (polynomial-time)
algorithm, researchers have also considered finding good approximation algorithms. An
α-approximation algorithm is a polynomial time algorithm which guarantees a solution with a
value at least an α fraction of the optimal solution. As one of the most well-studied problems
in theoretical computer science, there is a breadth of known approximation algorithms for
Max Cut varying in runtime and approximation guarantee quality.

The simplest randomized approximation algorithm assigns a vertex v ∈ V to either S

or T with equal probability. In expectation, this is a .5-approximation algorithm. Another
.5-approximation can be achieved through a simple greedy algorithm presented by Sahni
and Gonzalez [21]. In this algorithm, start with S, T = ∅. While there are still unassigned
vertices, any unassigned vertex v is chosen and the quantities cS(v) =

∑
u∈S:(u,v)∈E w(u,v)

and cT (v) =
∑

u∈T :(u,v)∈E w(u,v) are computed. If cS(v) > cT (v), v is assigned to T and
otherwise to S.

The .5-approximation guarantee was the best known until Goemans and Williamson [7]
presented a .878-approximation algorithm, which is the best possible guarantee assuming
the Unique Games Conjecture [13]. Their algorithm relies on a semidefinite programming
(SDP) relaxation of the Max Cut problem to find a high-value cut. While the approximation
guarantee likely cannot be surpassed by another polynomial-time algorithm, solving the SDP
can be quite costly in practice.

More recently, Trevisan [23] introduced a simple .531-approximation for Max Cut based on
spectral partitioning. Soto [22] improved this guarantee to .614. Though the approximation
guarantees are weaker than the SDP algorithm, the spectral techniques are much cheaper
to implement. In theory, there is a trade off between the computational speed and solution
quality of Goemans and Williamson’s SDP algorithm versus Trevisan’s spectral algorithm.
This paper seeks to determine whether this trade off exists in practice or if Trevisan’s
algorithm returns solutions competitive with those of the SDP.

Several previous papers have experimentally compared Max Cut algorithms and heuristics.
Bertoni, Campadelli, and Grossi compare cuts computed by their .39-approximation Lorena
algorithm, inspired by Goemans-Williamns SDP, to the SDP and a neural .5-approximation
algorithm [3]. They found, on average, Lorena provided larger cuts on random graphs
in significantly less time than the SDP and comparable time to the neural algorithm.
Dolezal, Hofmeister, and Lefmann compare cuts from six algorithms, including the SDP,
on random graphs concluding that the computationally-cheap random .5-approximation
algorithm provides the best tradeoff between runtime and cut quality [5]. Goemans and
Williamson also included computational results in their initial paper demonstrating the SDP
often outperforms its .878 approximation guarantee. Berry and Goldberg tested several
graph partitioning heuristics against each other and against the SDP, finding the heuristics
consistently produce larger cuts than the SDP [2]. Dunning, Gupta, and Silberholz performed
a systematic review of Max Cut heuristics and computationally tested 19 of them [6]. As
far as we are aware there are no previously published results comparing Trevisan’s spectral
algorithm.

In this paper, we evaluate the performances of the SDP, spectral, and greedy algorithms
on a variety of graphs. Section 2 provides more complete descriptions of the five algorithms
considered. Section 3 describes the experiments and presents the results of the algorithms on
different classes of graphs. Finally, Section 4 concludes with a summary of the performances
and introduces a few possible directions for future theoretical study.



R. Mirka and D. P. Williamson 19:3

2 Algorithms

This section describes the five algorithms that we implemented for Max Cut. Section 2.1 de-
scribes the benchmark greedy .5-approximation algorithm for Max Cut. Section 2.2 describes
Trevisan’s spectral algorithm for Max Cut, while Section 2.3 describes two simplifications of
this algorithm. Finally Section 2.4 describes the SDP algorithm.

2.1 Greedy Algorithm
The first Max Cut algorithm we consider is the standard greedy algorithm. This fast and
simple algorithm provides a benchmark for the speed and cut value of the others. For a
graph G = (V, E), we return a cut (L, R) by greedily assigning vertices to either L or R one
at a time. We start with L, R = ∅. In each step of the algorithm, we choose a vertex v ∈ V

yet to be assigned to L or R. Then we add v to L or R by choosing the larger of the two
cuts (L ∪ {v}, R) and (L, R ∪ {v}) at this step.

2.2 Trevisan’s Algorithm
The next algorithm for finding a large cut in a graph is Trevisan’s spectral algorithm. Trevisan
proved a .531 approximation ratio for the algorithm, while Soto improved the analysis to
.614. Here, we describe Soto’s presentation of the algorithm. Given a graph G = (V, E) with
|V | = n, the adjacency matrix A = (aij) is given by aij = 1 if (i, j) ∈ E and 0 otherwise.
Then the normalized adjacency matrix A is given by A = D−1/2AD−1/2 where D = diag(d)
for d(i) the degree of vertex i. In our implementation of the algorithm, we compute the
eigenvector, x, corresponding to the minimum eigenvalue of I + A. After normalizing x so
that maxi |xi| = 1, a number t2 is drawn uniformly at random from [0,1]. We let

L = {v : xv ≤ −t},

R = {v : xv ≥ t}, and
V ′ = V \ (L ∪ R).

Now (L, R) represents a partial cut of the vertices with V ′ being the vertices yet to be
partitioned.

Given L, R, and V ′, we compute

C = total weight of the edges between L and R,

X = total weight of the edges between L ∪ R and V ′, and
M = total weight of all edges − total weight of the edges between vertices of V ′.

If C + X/2 − M/2 < 0, we use the greedy algorithm to partition the vertices instead of t

as the expected value of the cut is worse than that of greedy. If C + X/2 − M/2 > 0, we
keep the partial cut and recurse to find a cut of the vertices in V ′ given by (L′, R′). Finally,
we return the larger of the cuts (L ∪ L′, R ∪ R′) and (L ∪ R′, R ∪ L′).

Since the results of Trevisan’s algorithm are highly reliant on the t2 value chosen, one
could ask if there are ways to modify the algorithm to increase the likelihood of choosing a
good t2 value. We tested two methods. The first chooses more than one t2 value at each
stage of the algorithm. In particular, T = max(5, n/k) values were chosen where k was tested
for k = 1, 2, 5, 10, 15, 25, 50, 100. The idea here was that choosing many random numbers
should increase the probability of choosing a “good” random number. The major roadblock
is deciding which partial cut corresponding to one of the t2 values the algorithm should

SEA 2022



19:4 Exp Eval of SDP and Spectral Algs for Max Cut

recurse on. We tested the greedy choice. More specifically, C, X, and M were computed
for each drawn t2 value as above, and we kept the partial cut maximizing C + X/2 − M/2.

We made this selection because it represents the partial cut that is currently performing
better than the greedy algorithm by the largest margin. In particular, given a partial cut
due to a partial assignment of vertices, we can consider three types of edges: edges with
both endpoints assigned, edges with exactly one endpoint assigned, and edges with neither
endpoint assigned. The third type are not affected by the partial cut and aren’t considered
in this iteration. However, C computes the value of the cut in Trevisan’s algorithm due to
the first type of edge. X/2 is the expected value added to this cut from the edges of the
second type if the remaining vertices are greedily assigned, and M/2 is the expected value of
the greedy cut due to edges of both of the first two types. Therefore, if C + X/2 > M/2,
the partial cut being considered is performing better than the greedy algorithm would be in
expectation. The greater the difference between C + X/2 and M/2, theoretically the better
Trevisan’s algorithm is performing compared to greedy. It is not obvious that this is the best
heuristic, but it does allow the algorithm to test several random values quickly.

Alternatively, we also experimented with running Trevisan’s algorithm for several iter-
ations and maintaining the best cut that was found. The advantage here as opposed to
the previous modification is we do not have to determine which t value to keep. However,
the runtime is slower because the entire algorithm is run several times instead of adding
additional quick random draws.

The results of these modifications for two of the tested graphs are provided in Figure 1.
In each figure, the line represents the results from trials of running the algorithm multiple
times (1, 2, 5, 10, 20, 35, and 50 times). Note that the line is not monotonically increasing.
This is because each group of runs was unique and not a cumulative total. For example,
when considering how well Trevisan’s algorithm performs when running 10 iterations, we run
10 new iterations and do not build off of the 5 from the previous data point. The single dot
represents the average runtime and cut value of the best result when implementing the first
modification of multiple t2 values.

The experiments were run on a variety of graphs and these are a representative sample.
In general, it seems running the algorithm multiple times is more effective in increasing cut
quality than choosing multiple t2 values. However, the number of iterations needed is not
obvious, though it appears at least 5 are beneficial. Due to this observation, we use this
method of running Trevisan’s algorithm 5 times and keeping the best cut for the experiments
presented in this paper.

2.3 Simple Spectral and Sweep Cuts Algorithms
The simple spectral algorithm is a modification of Trevisan’s algorithm described in the previ-
ous section. Instead of drawing a random number t in [0, 1], we return the cut corresponding
to t = 0. In particular, let x be the eigenvector corresponding to the smallest eigenvalue
as before. Since scaling numbers by a positive factor does not change their sign, we may
skip the normalizing step for x. We let L = {v : xv < 0} and R = V \ L and return the cut
(L, R). This modified simple spectral algorithm has no known approximation guarantee.

The sweep cuts algorithm works in a similar fashion. Here, we consider n − 1 different
cuts and return the best. Given the smallest eigenvector x, we sort the entries so that
xi1 ≤ xi2 ≤ · · · ≤ xin

. Then we calculate the sweep cut value for Lj = {i1, . . . , ij} and
Rj = V \ Lj for j = 1, . . . , n − 1. The sweep cuts algorithm returns the cut (Lj , Rj) of
maximal value.



R. Mirka and D. P. Williamson 19:5

(a) johnson16-2-4. (b) ca-netscience.

Figure 1 Plots depicting the effects on runtime and returned cut quality of running Trevisan’s
algorithm multiple times on the johnnson16-2-4 and ca-netscience graphs. The X and Y axes are
the time in seconds and the cut value, respectively. The light gray ‘x’ is presented for comparison
and is the result of running Trevisan’s algorithm once, but testing many random values.

It is worth noting that the sweep cuts algorithm will always perform at least as well as
the simple spectral algorithm in terms of cut value since one of the sweep cuts will be the
same as the t = 0 cut. However, it is interesting to see how much better the sweep cuts
algorithm performs since it is also guaranteed to have a slower runtime for the same reasons.

2.4 SDP Algorithm
Goemans and Williamson introduced a .878 approximation algorithm for Max Cut. Instead
of directly solving

MaxCut(G) = max
xi∈{1,−1}

1
2

∑
i<j

wij(1 − xixj)

where again wij is the weight of edge (i, j), they relax this program to one solvable by a
semidefinite program. In particular, instead of requiring xi ∈ {1, −1}, they require vi ∈ Rn

to be unit vectors and replace xixj with ⟨vi, vj⟩. Given a solution to this SDP relaxation,
they draw a random vector r ∈ Rn uniformly from the unit sphere and partition the vertices
according to

L = {i : ⟨r, vi⟩ ≤ 0} and
R = {i : ⟨r, vi⟩ > 0}.

This gives the .878 approximation in expectation. For our testing purposes, we draw 100
random vectors instead of 1. In terms of computation time, this is a cheap modification as
the SDP does not have to be rerun. We return the maximum cut resulting from these 100
random vectors.

3 Experiments

All algorithms were implemented in Julia. They were run on a machine with a 2 GHz Intel
Core i5 processor with 8 GB 1867 MHz LPDDR3 memory. The SDP algorithm was computed
with the JuMP modeling language for Julia and the SCS package providing the splitting
cone solver. The LinearAlgebra package was used for the eigenvector computations of the
spectral algorithms.

SEA 2022



19:6 Exp Eval of SDP and Spectral Algs for Max Cut

We measured the algorithms’ performance with three types of test data. We used 20
Erdős-Renyi random graphs with 50-500 vertices, 16 complete graphs from TSPLIB [18] with
29-280 vertices (average 124), and 17 sparser graphs from the Network Repository [20] with
39-1133 vertices (average 327).

3.1 Erdős-Renyi Random Graphs

The first class of graphs tested was Erdős-Renyi random graphs. An Erdős-Renyi random
graph G(n, p) is a graph on n vertices where each possible edge is included independently with
probability p. We tested random graphs with n = 50, 100, 200, 350, 500 and p = .1, .25, .5, .75.
In our model, each included edge was given an edge weight of 1.

In terms of speed, the simple spectral algorithm significantly outperformed the other
algorithms on all but three tested random graphs (where greedy was faster). On the other
end of the spectrum, the SDP was far slower than the alternative algorithms. The time
statistics are presented in Table 1. The plots in Figure 2a and Figure 2b illustrate how the
computation times of each algorithm grow as the number of vertices increases. For these
plots, we use the data from Table 1 with p = .5 fixed.

Table 1 The time in seconds each algorithm took to compute a cut of an Erdős-Renyi random
graph.

Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP

G(50,0.1) 5.560 × 10−35.560 × 10−35.560 × 10−3 2.503 × 10−1 5.192 × 10−2 3.485 × 10−2 5.556 × 10−1

G(50,0.25) 7.600 × 10−4 1.533 × 10−2 6.600 × 10−46.600 × 10−46.600 × 10−4 2.410 × 10−3 4.711 × 10−1

G(50,0.5) 1.280 × 10−3 2.354 × 10−2 7.800 × 10−47.800 × 10−47.800 × 10−4 4.760 × 10−3 4.502 × 10−1

G(50,0.75) 1.870 × 10−3 1.741 × 10−2 8.000 × 10−48.000 × 10−48.000 × 10−4 8.690 × 10−3 9.727 × 10−1

G(100,0.1) 2.000 × 10−32.000 × 10−32.000 × 10−3 3.597 × 10−2 2.380 × 10−3 1.106 × 10−2 2.929
G(100,0.25) 3.860 × 10−3 6.945 × 10−2 2.340 × 10−32.340 × 10−32.340 × 10−3 1.849 × 10−2 3.440
G(100,0.5) 7.330 × 10−3 1.021 × 10−1 2.370 × 10−32.370 × 10−32.370 × 10−3 3.206 × 10−2 7.235
G(100,0.75) 1.064 × 10−2 1.162 × 10−1 9.960 × 10−39.960 × 10−39.960 × 10−3 2.653 × 10−1 5.823
G(200,0.1) 1.222 × 10−21.222 × 10−21.222 × 10−2 2.464 × 10−1 3.299 × 10−2 6.941 × 10−2 2.575 × 101

G(200,0.25) 2.963 × 10−2 2.444 × 10−1 8.650 × 10−38.650 × 10−38.650 × 10−3 1.892 × 10−1 2.942 × 101

G(200,0.5) 5.428 × 10−2 6.949 × 10−1 1.266 × 10−21.266 × 10−21.266 × 10−2 3.853 × 10−1 3.848 × 101

G(200,0.75) 7.809 × 10−2 6.463 × 10−1 9.900 × 10−39.900 × 10−39.900 × 10−3 4.740 × 10−1 4.945 × 101

G(350,0.1) 6.192 × 10−2 1.022 2.407 × 10−22.407 × 10−22.407 × 10−2 4.184 × 10−1 1.216 × 102

G(350,0.25) 1.737 × 10−1 1.201 3.009 × 10−23.009 × 10−23.009 × 10−2 1.138 1.726 × 102

G(350,0.5) 3.013 × 10−1 1.718 3.848 × 10−23.848 × 10−23.848 × 10−2 2.342 2.058 × 102

G(350,0.75) 4.438 × 10−1 2.015 3.324 × 10−23.324 × 10−23.324 × 10−2 3.015 2.798 × 102

G(500,0.1) 1.668 × 10−1 1.875 7.049 × 10−27.049 × 10−27.049 × 10−2 1.622 3.355 × 102

G(500,0.25) 3.937 × 10−1 2.239 5.936 × 10−25.936 × 10−25.936 × 10−2 3.325 3.919 × 102

G(500,0.5) 7.859 × 10−1 4.587 6.472 × 10−26.472 × 10−26.472 × 10−2 6.598 5.669 × 102

G(500,0.75) 1.260 5.263 7.195 × 10−27.195 × 10−27.195 × 10−2 9.837 8.116 × 102

The spectral algorithms also performed the best in terms of the returned cut quality for
random graphs. The SDP returned the best result for three graphs but one of the cuts was
matched by Trevisan’s algorithm. Trevisan’s algorithm provided the best cut for 5 graphs,
and the sweep cuts algorithm was the second best option for all of these, in addition to being
the best for 14 graphs. These results are provided in Table 2.



R. Mirka and D. P. Williamson 19:7

(a) All tested algorithms excluding the SDP. (b) All tested algorithms.

Figure 2 Plots depicting the effects on runtime of increasing the number of vertices of an
Erdős-Renyi graph with p = .5. The X and Y axes are the number of vertices and the computation
time in seconds, respectively.

Table 2 The value of the cut each algorithm returned for an Erdős-Renyi random graph.

Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP

G(50,0.1) 8.700 × 101 9.600 × 1019.600 × 1019.600 × 101 9.400 × 101 9.500 × 101 9.200 × 101

G(50,0.25) 1.970 × 102 2.060 × 102 2.060 × 102 2.080 × 102 2.100 × 1022.100 × 1022.100 × 102

G(50,0.5) 3.480 × 102 3.600 × 1023.600 × 1023.600 × 102 3.560 × 102 3.600 × 1023.600 × 1023.600 × 102 3.600 × 1023.600 × 1023.600 × 102

G(50,0.75) 5.140 × 102 5.140 × 102 4.990 × 102 5.190 × 102 5.240 × 1025.240 × 1025.240 × 102

G(100,0.1) 3.210 × 102 3.290 × 102 3.420 × 102 3.430 × 1023.430 × 1023.430 × 102 3.290 × 102

G(100,0.25) 7.640 × 102 7.830 × 102 7.850 × 102 7.880 × 1027.880 × 1027.880 × 102 7.860 × 102

G(100,0.5) 1.351 × 103 1.363 × 103 1.346 × 103 1.375 × 1031.375 × 1031.375 × 103 1.361 × 103

G(100,0.75) 2.019 × 103 2.024 × 103 2.020 × 103 2.026 × 1032.026 × 1032.026 × 103 2.016 × 103

G(200,0.1) 1.212 × 103 1.250 × 1031.250 × 1031.250 × 103 1.234 × 103 1.242 × 103 1.211 × 103

G(200,0.25) 2.795 × 103 2.859 × 103 2.847 × 103 2.861 × 1032.861 × 1032.861 × 103 2.778 × 103

G(200,0.5) 5.388 × 103 5.420 × 103 5.412 × 103 5.423 × 1035.423 × 1035.423 × 103 5.326 × 103

G(200,0.75) 7.784 × 103 7.855 × 103 7.831 × 103 7.875 × 1037.875 × 1037.875 × 103 7.815 × 103

G(350,0.1) 3.556 × 103 3.582 × 103 3.639 × 103 3.651 × 1033.651 × 1033.651 × 103 3.611 × 103

G(350,0.25) 8.378 × 103 8.544 × 103 8.583 × 103 8.585 × 1038.585 × 1038.585 × 103 8.236 × 103

G(350,0.5) 1.623 × 104 1.627 × 104 1.643 × 104 1.649 × 1041.649 × 1041.649 × 104 1.603 × 104

G(350,0.75) 2.356 × 104 2.378 × 1042.378 × 1042.378 × 104 2.374 × 104 2.374 × 104 2.353 × 104

G(500, .1) 7.155 × 103 7.155 × 103 7.303 × 103 7.329 × 1037.329 × 1037.329 × 103 7.097 × 103

G(500, .25) 1.673 × 104 1.697 × 104 1.712 × 104 1.714 × 1041.714 × 1041.714 × 104 1.652 × 104

G(500, .5) 3.272 × 104 3.275 × 104 3.313 × 104 3.314 × 1043.314 × 1043.314 × 104 3.311 × 104

G(500, .75) 4.820 × 104 4.852 × 1044.852 × 1044.852 × 104 4.847 × 104 4.849 × 104 4.813 × 104

SEA 2022



19:8 Exp Eval of SDP and Spectral Algs for Max Cut

Table 3 The time in seconds each algorithm took to compute a cut of a complete graph from
TSPLIB.

Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP

bayg29 4.300 × 10−4 5.040 × 10−3 3.100 × 10−43.100 × 10−43.100 × 10−4 9.700 × 10−4 1.945 × 10−1

bays29 7.500 × 10−4 9.660 × 10−3 6.900 × 10−46.900 × 10−46.900 × 10−4 1.160 × 10−3 3.002 × 10−1

berlin52 2.190 × 10−32.190 × 10−32.190 × 10−3 3.058 × 10−2 2.540 × 10−3 7.580 × 10−3 9.291 × 10−1

bier127 3.674 × 10−2 3.520 × 10−1 1.370 × 10−21.370 × 10−21.370 × 10−2 1.125 × 10−1 6.832
brazil58 3.260 × 10−33.260 × 10−33.260 × 10−3 3.237 × 10−2 4.370 × 10−3 8.490 × 10−3 1.229
brg180 9.482 × 10−29.482 × 10−29.482 × 10−2 1.223 2.028 × 10−1 3.072 × 10−1 1.548 × 101

ch130 3.371 × 10−2 3.355 × 10−1 1.221 × 10−21.221 × 10−21.221 × 10−2 1.352 × 10−1 7.503
ch150 5.701 × 10−2 9.769 × 10−1 1.811 × 10−21.811 × 10−21.811 × 10−2 1.745 × 10−1 1.209 × 101

d198 1.094 × 10−1 1.402 3.997 × 10−23.997 × 10−23.997 × 10−2 4.869 × 10−1 3.844 × 101

eil101 1.912 × 10−2 5.535 × 10−1 8.870 × 10−38.870 × 10−38.870 × 10−3 7.724 × 10−2 3.982
gr120 2.376 × 10−2 4.412 × 10−1 1.050 × 10−21.050 × 10−21.050 × 10−2 1.153 × 10−1 1.372 × 101

gr137 4.262 × 10−2 6.078 × 10−1 1.493 × 10−21.493 × 10−21.493 × 10−2 1.665 × 10−1 1.452 × 101

gr202 1.194 × 10−1 2.471 2.662 × 10−22.662 × 10−22.662 × 10−2 4.779 × 10−1 3.067 × 101

gr96 1.632 × 10−2 3.044 × 10−1 4.690 × 10−34.690 × 10−34.690 × 10−3 5.674 × 10−2 4.753
kroA100 1.880 × 10−2 2.037 × 10−1 7.720 × 10−37.720 × 10−37.720 × 10−3 5.644 × 10−2 3.285

a280 2.988 × 10−1 4.439 6.127 × 10−26.127 × 10−26.127 × 10−2 1.534 1.555 × 102

3.2 Complete Graphs
The algorithms were also tested on 16 complete graphs from TSPLIB, an online library of
sample instances for the Travelling Salesman Problem and related graph problems. The
performance in regards to time largely mirrored that of the random graphs. The simple
spectral algorithm was significantly faster than the rest of the algorithms on the vast majority
of graphs, followed by the greedy, Trevisan’s, and sweep cuts algorithms with relatively quick
computation times, and the SDP with a massive slowdown. This data is presented in Table 3.

Again, the spectral algorithms most frequently returned the highest quality cut; these
results are summarized in Table 4. For 15

16 (93.75%) of these graphs, the best cut was found
by either the simple spectral algorithm (5 times), Trevisan’s algorithm (3 times) or the sweep
cuts algorithm (12 times). Furthermore, for the graph d198 where the SDP computed the
best cut, the loss in quality from the spectral solutions was quite small. These values are
given in Table 5.

In Figure 3a, Figure 3b, Figure 4a, and Figure 4b, we provide a representative sample
of the trade-off between runtime and returned cut value of the algorithms using the a280,
ch150, and eil101 graphs.

3.3 Sparser Graphs
The third group of graphs is composed of a variety of graphs from the Network Repository,
an online and interactive collection of network graph data coming from a variety of sources
and applications. Though more structured than a random graph, these 17 graphs are sparser
than the complete graphs tested in Section 3.2 and were chosen from a range of real-world
scenarios. Unsurprisingly, the relationships between relative computation times remains
unchanged. The simple spectral and greedy algorithms each accounted for about half of the
fastest times while the SDP was consistently considerably slower (Table 6).



R. Mirka and D. P. Williamson 19:9

Table 4 The value of the cut each algorithm returned for a complete graph from TSPLIB.

Graph Greedy Trevisan Simple Spectral Sweep Cuts SDP

bayg29 3.837 × 104 4.225 × 104 4.269 × 1044.269 × 1044.269 × 104 4.269 × 1044.269 × 1044.269 × 104 4.269 × 1044.269 × 1044.269 × 104

bays29 4.831 × 104 5.393 × 104 5.369 × 104 5.399 × 1045.399 × 1045.399 × 104 5.386 × 104

berlin52 4.532 × 105 4.616 × 105 4.465 × 105 4.681 × 1054.681 × 1054.681 × 105 4.522 × 105

bier127 2.162 × 107 2.300 × 107 2.322 × 107 2.330 × 1072.330 × 1072.330 × 107 2.320 × 107

brazil58 2.319 × 1062.319 × 1062.319 × 106 2.319 × 1062.319 × 1062.319 × 106 2.315 × 106 2.315 × 106 2.180 × 106

brg180 4.118 × 107 4.616 × 1074.616 × 1074.616 × 107 4.531 × 107 4.551 × 107 4.330 × 107

ch130 1.777 × 106 1.885 × 106 1.888 × 1061.888 × 1061.888 × 106 1.888 × 1061.888 × 1061.888 × 106 1.887 × 106

ch150 2.500 × 106 2.521 × 106 2.526 × 1062.526 × 1062.526 × 106 2.526 × 1062.526 × 1062.526 × 106 2.434 × 106

d198 9.635 × 106 1.286 × 107 1.292 × 107 1.293 × 107 1.293 × 1071.293 × 1071.293 × 107

eil101 1.052 × 105 1.070 × 1051.070 × 1051.070 × 105 1.063 × 105 1.064 × 105 1.058 × 105

gr120 2.123 × 106 2.147 × 106 2.156 × 106 2.157 × 1062.157 × 1062.157 × 106 2.154 × 106

gr137 2.241 × 107 3.044 × 107 3.066 × 107 3.070 × 1073.070 × 1073.070 × 107 3.070 × 107

gr202 1.372 × 107 1.533 × 107 1.559 × 107 1.593 × 1071.593 × 1071.593 × 107 1.581 × 107

gr96 8.967 × 106 1.156 × 107 1.166 × 1071.166 × 1071.166 × 107 1.166 × 1071.166 × 1071.166 × 107 1.157 × 107

kroA100 5.848 × 106 5.850 × 106 5.897 × 1065.897 × 1065.897 × 106 5.897 × 1065.897 × 1065.897 × 106 5.897 × 1065.897 × 1065.897 × 106

a280 2.447 × 106 3.151 × 106 3.21 × 106 3.21 × 1063.21 × 1063.21 × 106 2.970 × 106

Table 5 The percent decrease in cut value from the SDP to the spectral cuts.

Graph Trevisan Simple Spectral Sweep Cuts

d198 ∼ .6% ∼ .1% ∼ .06%

(a) All tested algorithms excluding the SDP. (b) All tested algorithms.

Figure 3 Plots depicting the computation time and returned cut values of algorithms on the a280
graph. The X and Y axes are the runtime in seconds and the returned cut value, respectively.

SEA 2022



19:10 Exp Eval of SDP and Spectral Algs for Max Cut

(a) ch150. (b) eil101.

Figure 4 Plots depicting the computation time and returned cut values of algorithms excluding
the SDP on the ch150 and eil101 graphs. The X and Y axes are the runtime in seconds and the
returned cut value, respectively.

For this group of graphs, the algorithms’ relative cut quality is more varied than with the
previous. Of the 17 graphs tested, the SDP returned the best cut for 7 instances whereas
the spectral algorithms combined for 11 best (with one instance of a tie between the SDP
and simple spectral) (Table 7).

In Figure 5a, Figure 5b, Figure 6a, and Figure 6b, we provide a representative sample
of the trade-off between runtime and returned cut value of the algorithms using the graphs
ia-infect-dublin, email-enron-only, and soc-dolphins.

4 Conclusion

The goal of this paper was to compare Max Cut algorithms with varying approximation
guarantees in practice. In particular, we know the SDP has the provably best approximation
guarantee; however, it is also the costliest in terms of computational space and time. This
raises the question of whether or not the “cheaper” spectral Max Cut algorithms can perform
competitively to the SDP in practice. Furthermore, if yes, can the approximation guarantees
be improved? As demonstrated, the spectral and greedy algorithms provide a significant speed
advantage over the SDP. Additionally, they often compute cuts better than or comparable to
the cuts returned by the SDP, despite the disparity in approximation guarantees. The results
of this experiment appear to illustrate spectral algorithms are competitive with the SDP
algorithm in practice. This suggests that the investigation into approximation guarantees is
a direction for further theoretical study.

In terms of practical implementations, for the graphs that the SDP seems to perform
better on, one could consider running Trevisan’s algorithm for even more than 5 iterations
and choosing the best cut returned. The magnitude of the speed advantage of Trevisan’s
algorithm would allow for many runs before being as costly as the SDP, especially since the
initial eigenvector only needs to be computed once. Additionally, finding a viable heuristic
to use when choosing multiple t2 values would also provide implementation benefits. We
attempted to improve Trevisan’s algorithm through drawing additional random t2 values
and greedily choosing one. However, it is not obvious that this choice in heuristic is optimal.



R. Mirka and D. P. Williamson 19:11

Table 6 The time in seconds each algorithm took to compute a cut of a graph from the Network
Repository arising in the real-world.

Graph # vertices # edges Greedy Trevisan Simple Spectral Sweep Cuts SDP

ENZYMES8 88 133 1.370 × 10−31.370 × 10−31.370 × 10−3 4.342 × 10−2 1.776 × 10−1 1.015 × 10−2 2.356 × 101

eco-stmarks 54 356 5.900 × 10−45.900 × 10−45.900 × 10−4 2.146 × 10−2 1.993 × 10−1 2.597 × 10−2 6.939
johnson16-2-4 120 5460 2.519 × 10−2 1.603 × 10−1 2.600 × 10−32.600 × 10−32.600 × 10−3 8.544 × 10−2 8.178 × 10−1

hamming6-2 64 1824 3.540 × 10−3 5.081 × 10−2 1.190 × 10−31.190 × 10−31.190 × 10−3 1.558 × 10−2 9.926 × 10−1

ia-infect-hyper 113 2196 8.920 × 10−3 1.248 × 10−1 3.280 × 10−33.280 × 10−33.280 × 10−3 4.649 × 10−2 6.279
soc-dolphins 62 159 4.600 × 10−44.600 × 10−44.600 × 10−4 1.845 × 10−2 8.900 × 10−4 1.690 × 10−3 2.464

email-enron-only 143 623 5.960 × 10−3 1.174 × 10−1 5.650 × 10−35.650 × 10−35.650 × 10−3 1.575 × 10−2 5.681 × 101

dwt_209 209 976 1.349 × 10−2 3.012 × 10−1 8.380 × 10−38.380 × 10−38.380 × 10−3 4.641 × 10−2 7.073 × 101

inf-USAir97 332 2126 5.780 × 10−25.780 × 10−25.780 × 10−2 2.944 7.350 × 10−2 2.258 × 10−1 3.361 × 102

ca-netscience 379 914 2.590 × 10−22.590 × 10−22.590 × 10−2 5.124 × 10−1 8.440 × 10−2 1.146 × 10−1 3.584 × 102

ia-infect-dublin 410 2765 6.480 × 10−2 9.720 × 10−1 4.770 × 10−24.770 × 10−24.770 × 10−2 2.387 × 10−1 6.438 × 102

road-chesapeake 39 170 4.000 × 10−44.000 × 10−44.000 × 10−4 8.000 × 10−3 5.000 × 10−4 1.200 × 10−3 2.759 × 10−1

Erdos991 492 1417 4.490 × 10−24.490 × 10−24.490 × 10−2 2.634 6.090 × 10−2 1.933 × 10−1 5.143 × 102

dwt_503 503 3265 7.240 × 10−2 2.039 6.640 × 10−26.640 × 10−26.640 × 10−2 3.471 × 10−1 1.081 × 103

p-hat700-1 700 60999 1.264 1.009 × 101 1.591 × 10−11.591 × 10−11.591 × 10−1 9.273 1.270 × 103

DD687 725 2600 9.390 × 10−29.390 × 10−29.390 × 10−2 4.332 3.816 × 10−1 6.521 × 10−1 3.320 × 103

email-univ 1133 5451 2.081 × 10−12.081 × 10−12.081 × 10−1 1.345 × 101 1.179 2.703 7.572 × 103

Table 7 The value of the cut each algorithm returned for a graph from the Network Repository.

Graph # vertices # edges Greedy Trevisan Simple Spectral Sweep Cuts SDP

ENZYMES8 88 133 1.170 × 102 1.260 × 1021.260 × 1021.260 × 102 1.260 × 1021.260 × 1021.260 × 102 1.260 × 1021.260 × 1021.260 × 102 1.260 × 1021.260 × 1021.260 × 102

eco-stmarks 54 356 8.891 × 102 1.190 × 1031.190 × 1031.190 × 103 9.354 × 102 9.354 × 102 9.601 × 102

johnson16-2-4 120 5460 3.036 × 1033.036 × 1033.036 × 103 3.036 × 1033.036 × 1033.036 × 103 2.958 × 103 2.986 × 103 2.918 × 103

hamming6-2 64 1824 9.920 × 1029.920 × 1029.920 × 102 9.920 × 1029.920 × 1029.920 × 102 9.680 × 102 9.690 × 102 9.760 × 102

ia-infect-hyper 113 2196 1.213 × 103 1.233 × 1031.233 × 1031.233 × 103 1.227 × 103 1.227 × 103 1.211 × 103

soc-dolphins 62 159 1.120 × 102 1.120 × 102 1.190 × 102 1.210 × 1021.210 × 1021.210 × 102 1.150 × 102

email-enron-only 143 623 3.920 × 102 4.130 × 1024.130 × 1024.130 × 102 3.710 × 102 3.800 × 102 3.960 × 102

dwt_209 209 976 5.250 × 102 5.270 × 102 5.250 × 102 5.270 × 102 5.400 × 1025.400 × 1025.400 × 102

inf-USAir97 332 2126 9.661 × 101 9.820 × 101 8.184 × 101 9.337 × 101 1.074 × 1021.074 × 1021.074 × 102

ca-netscience 379 914 5.830 × 102 5.880 × 102 5.270 × 102 5.270 × 102 6.110 × 1026.110 × 1026.110 × 102

ia-infect-dublin 410 2765 1.648 × 103 1.659 × 103 1.550 × 103 1.558 × 103 1.664 × 1031.664 × 1031.664 × 103

road-chesapeake 39 170 1.230 × 102 1.230 × 102 1.210 × 102 1.230 × 102 1.250 × 1021.250 × 1021.250 × 102

Erdos991 492 1417 9.330 × 102 9.340 × 102 7.350 × 102 7.580 × 102 9.240 × 102

dwt_503 503 3265 1.822 × 103 1.822 × 103 1.921 × 103 1.921 × 103 1.909 × 103

p-hat700-1 700 60999 3.261 × 104 3.269 × 104 3.215 × 104 3.305 × 104 3.304 × 104

DD687 725 2600 1.669 × 103 1.671 × 103 1.616 × 103 1.617 × 103 1.680 × 103

email-univ 1133 5451 3.546 × 103 3.546 × 103 3.341 × 103 3.344 × 103 3.264 × 103

SEA 2022



19:12 Exp Eval of SDP and Spectral Algs for Max Cut

(a) All tested algorithms excluding the SDP. (b) All tested algorithms.

Figure 5 Plots depicting the computation time and returned cut values of algorithms on the
ia-infect-dublin graph. The X and Y axes are the runtime in seconds and the returned cut value,
respectively.

(a) email-enron-only. (b) soc-dolphins.

Figure 6 Plots depicting the computation time and returned cut values of algorithms excluding
the SDP on the email-enron-only and soc-dolphins graphs. The X and Y axes are the runtime in
seconds and the returned cut value, respectively.



R. Mirka and D. P. Williamson 19:13

In particular, perhaps it is more useful to draw a fixed number of t2 values but finish the
algorithm’s entire partitioning instead of estimating at that point in time. The magnitude by
which the spectral algorithms are faster than the SDP allows this to be a reasonable option.

It is also worth noting the performances of the simple spectral and sweep cuts algorithms.
Particularly for large graphs, these two algorithms along with the greedy algorithm are
much faster than even Trevisan’s algorithm, with the simple spectral almost always being
several times faster than greedy (and sweep cuts being slightly slower than greedy). It is
known that the greedy algorithm has a .5 approximation guarantee, but to the best of our
knowledge, there is no known approximation guarantee for the simple spectral or sweep cuts
algorithms. This raises the question of whether any approximation guarantee can be proven
for either of these algorithms. A desired guarantee would be greater than greedy’s .5; given
the performance results presented here, it seems possible that this is achievable.

Relatedly, there is no indication that Soto’s .614 approximation guarantee for Trevisan’s
algorithm is tight. It is clear that the algorithm often far surpasses this in practice. Can the
analysis of this algorithm be improved?

References

1 Francisco Barahona, Martin Grötschel, Michael Jünger, and Gerhard Reinelt. An application
of combinatorial optimization to statistical physics and circuit layout design. Operations
Research, 36(3):493–513, 1988. doi:10.1287/opre.36.3.493.

2 Jonathan W. Berry and Mark K. Goldberg. Path optimization for graph partitioning problems.
Discrete Appl. Math., 90(1–3):27–50, January 1999. doi:10.1016/S0166-218X(98)00084-5.

3 Alberto Bertoni, Paola Campadelli, and Giuliano Grossi. An approximation algorithm for the
maximum cut problem and its experimental analysis. Discrete Applied Mathematics, 110:3–12,
2001. doi:10.1016/S0166-218X(00)00299-7.

4 F. Della Croce, M.J. Kaminski, and V.Th. Paschos. An exact algorithm for MAX-CUT in sparse
graphs. Operations Research Letters, 35(3):403–408, 2007. doi:10.1016/j.orl.2006.04.001.

5 Oliver Dolezal, Thomas Hofmeister, and Hanno Lefmann. A comparison of approximation
algorithms for the maxcut-problem, May 2000. doi:10.17877/DE290R-5013.

6 Iain Dunning, Swati Gupta, and John Silberholz. What works best when? A systematic
evaluation of heuristics for max-cut and QUBO. INFORMS Journal on Computing, 30(3):608–
624, 2018. doi:10.1287/ijoc.2017.0798.

7 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. J. ACM, 42(6):1115–
1145, November 1995. doi:10.1145/227683.227684.

8 Alexander Golovnev. New upper bounds for MAX-2-SAT and MAX-2-CSP w.r.t. the average
variable degree. In Dániel Marx and Peter Rossmanith, editors, Parameterized and Exact
Computation, pages 106–117, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

9 F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM Journal on
Computing, 4(3):221–225, 1975. doi:10.1137/0204019.

10 Timotej Hrga, Borut Lužar, Janez Povh, and Angelika Wiegele. BiqBin: Moving boundaries
for NP-hard problems by HPC. In Ivan Dimov and Stefka Fidanova, editors, Advances in
High Performance Computing, pages 327–339, Cham, 2021. Springer International Publishing.

11 Timotej Hrga and Janez Povh. MADAM: A parallel exact solver for max-cut based on
semidefinite programming and ADMM. Comput. Optim. Appl., 80(2):347–375, November 2021.
doi:10.1007/s10589-021-00310-6.

12 Richard Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, volume 40, pages 85–103, January 1972. doi:10.1007/978-3-540-68279-0_8.

SEA 2022

https://doi.org/10.1287/opre.36.3.493
https://doi.org/10.1016/S0166-218X(98)00084-5
https://doi.org/10.1016/S0166-218X(00)00299-7
https://doi.org/10.1016/j.orl.2006.04.001
https://doi.org/10.17877/DE290R-5013
https://doi.org/10.1287/ijoc.2017.0798
https://doi.org/10.1145/227683.227684
https://doi.org/10.1137/0204019
https://doi.org/10.1007/s10589-021-00310-6
https://doi.org/10.1007/978-3-540-68279-0_8


19:14 Exp Eval of SDP and Spectral Algs for Max Cut

13 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357, April
2007. doi:10.1137/S0097539705447372.

14 Nathan Krislock, Jérôme Malick, and Frédéric Roupin. BiqCrunch: A semidefinite branch-
and-bound method for solving binary quadratic problems. ACM Trans. Math. Softw., 43(4),
January 2017. doi:10.1145/3005345.

15 G.I. Orlova and Ya. G. Dorfman. Finding the maximal cut in a graph. Engineering Cybernetics,
10(3):502–506, 1972.

16 Jan Poland and Thomas Zeugmann. Clustering pairwise distances with missing data: Maximum
cuts versus normalized cuts. In Ljupčo Todorovski, Nada Lavrač, and Klaus P. Jantke, editors,
Discovery Science, pages 197–208, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

17 Svatopluk Poljak and Zsolt Tuza. Maximum cuts and largest bipartite subgraphs. In DIMACS
Series in Discrete Mathematics and Theoretical Computer Science, volume 20, pages 181–244,
1995. doi:10.1090/dimacs/020/04.

18 Gerhard Reinelt. TSPLIB – A traveling salesman problem library. ORSA Journal on
Computing, 3(4):376–384, 1991.

19 Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. Solving max-cut to optimality by
intersecting semidefinite and polyhedral relaxations. Mathematical Programming, 121:307–335,
February 2010. doi:10.1007/s10107-008-0235-8.

20 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph
analytics and visualization. In AAAI, 2015. URL: https://networkrepository.com.

21 Sartaj Sahni and Teofilo Gonzalez. P-Complete approximation problems. J. ACM, 23(3):555–
565, July 1976. doi:10.1145/321958.321975.

22 José A. Soto. Improved analysis of a max-cut algorithm based on spectral partitioning. SIAM
Journal on Discrete Mathematics, 29(1):259–268, 2015. doi:10.1137/14099098X.

23 Luca Trevisan. Max cut and the smallest eigenvalue. SIAM Journal on Computing, 41(6):1769–
1786, 2012. doi:10.1137/090773714.

24 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theoretical Computer Science, 348(2):357–365, 2005. Automata, Languages and Programming:
Algorithms and Complexity (ICALP-A 2004). doi:10.1016/j.tcs.2005.09.023.

https://doi.org/10.1137/S0097539705447372
https://doi.org/10.1145/3005345
https://doi.org/10.1090/dimacs/020/04
https://doi.org/10.1007/s10107-008-0235-8
https://networkrepository.com
https://doi.org/10.1145/321958.321975
https://doi.org/10.1137/14099098X
https://doi.org/10.1137/090773714
https://doi.org/10.1016/j.tcs.2005.09.023


Digraph k-Coloring Games: From Theory to
Practice
Andrea D’Ascenzo !

Department of Computer Science, Information Engineering and Mathematics,
University of L’Aquila, Italy

Mattia D’Emidio !

Department of Computer Science, Information Engineering and Mathematics,
University of L’Aquila, Italy

Michele Flammini !

Gran Sasso Science Institute, L’Aquila, Italy

Gianpiero Monaco !

Department of Computer Science, Information Engineering and Mathematics,
University of L’Aquila, Italy

Abstract
We study digraph k-coloring games where agents are vertices of a directed unweighted graph and
arcs represent agents’ mutual unidirectional idiosyncrasies or conflicts. Each agent can select one
of k different colors, and her payoff in a given state is given by the number of outgoing neighbors
with a different color. Such games model lots of strategic real-world scenarios and are related to
several fundamental classes of anti-coordination games. Unfortunately, the problem of understanding
whether an instance of the game admits a pure Nash equilibrium is NP-complete [33]. Therefore, in
the last few years a relevant research focus has been that of designing polynomial time algorithms
able to compute approximate Nash equilibria, i.e., states in which no agent, changing her strategy,
can improve her payoff by some bounded multiplicative factor. The only two known algorithms in
this respect are those in [14]. While they provide theoretical guarantees, their practical performance
over real-world instances so far has not been investigated. In this paper, under the further motivation
of the lack of practical approximation algorithms for the problem, we experimentally evaluate the
above algorithms with the conclusion that, while they were suitably designed for achieving a bounded
worst case behavior, they generally have a poor performance. Therefore, we next focus on classical
best-response dynamics, and show that, despite of the fact that they might not always converge,
they are very effective in practice. In particular, we provide a strong empirical evidence that they
outperform existing methods, since surprisingly they quickly converge to exact Nash equilibria in
almost all instances arising in practice. This also shows that, while this class of games is known to
not always possess pure Nash equilibria, in almost all cases such equilibria exist and can be efficiently
computed, even in a distributed uncoordinated way by a decentralized interaction of the agents.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory and mechanism
design; Theory of computation → Quality of equilibria; Theory of computation → Design and
analysis of algorithms; Theory of computation → Graph algorithms analysis

Keywords and phrases Algorithmic Game Theory, Coloring Games, Experimental Algorithmics,
Exact vs Approximate Nash Equilibria, Decentralized Dynamics

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.20

Supplementary Material Software (Source Code): https://github.com/buildfreak/sea_2022
archived at swh:1:dir:f09c580538ebfe5b245c15fb6a24810fbb817fa2

1 Introduction

In this paper we consider digraph k-coloring games. We are given an unweighted directed
graph where vertices represent selfish autonomous agents and arcs mutual unidirectional
idiosyncrasies or conflicts. Moreover, we have a set of k ≥ 2 available colors denoting agents’

© Andrea D’Ascenzo, Mattia D’Emidio, Michele Flammini, and Gianpiero Monaco;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrea.dascenzo@graduate.univaq.it
https://orcid.org/0000-0001-5612-0798
mailto:mattia.demidio@univaq.it
https://orcid.org/0000-0001-7833-9520
mailto:michele.flammini@gssi.it
https://orcid.org/0000-0003-0327-3728
mailto:gianpiero.monaco@univaq.it
https://orcid.org/0000-0002-0998-5649
https://doi.org/10.4230/LIPIcs.SEA.2022.20
https://github.com/buildfreak/sea_2022
https://archive.softwareheritage.org/swh:1:dir:f09c580538ebfe5b245c15fb6a24810fbb817fa2;origin=https://github.com/buildfreak/sea_2022;visit=swh:1:snp:5e98b14664c605c80282b17d10873c6bdbfc3927;anchor=swh:1:rev:ad236c5818507739cb66fbecfab9261e60d638f9
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


20:2 Digraph k-Coloring Games: From Theory to Practice

available choices or strategies. A state of the game is a vertex coloring, induced by the
choices of the agents. The objective of each agent is that of maximizing her own payoff,
which is defined as the number of outgoing neighbors with a color different from hers.

Digraph k-coloring games form some of the basic payoff structures in algorithmic game
theory, they fall within the fundamental classes of (anti-)coordination games (see the Related
Work section) and model many relevant real-world scenarios. Typical examples are wireless
networks in which radio stations wish to select the transmission frequency not used by the
maximum number of neighboring stations within their range in order to limit interferences,
or social networks in which members must be split in groups and want to maximize the
number of enemies they do not end together with, or markets in which sellers aim to locate
their activities as far as possible from their direct competitors.

A classical solution concept of stable outcomes in scenarios with selfish and autonomous
agents is the (pure) Nash equilibrium (NE, for short) where no agent can improve her payoff
by unilaterally changing her strategy. In our setting of digraph k-coloring games, a NE
is a coloring where no vertex can improve her payoff by changing color. The NE is one
of the most important concepts in game theory. As such, its efficient computation is one
of the most important problems in algorithmic game theory [24]. In the specific setting
when the input graph is undirected, the k-coloring game is a potential game [39], which
implies that a NE always exists. In particular, when the graph is unweighted undirected, the
dynamics (where at each step one agent performs an improving move) always converges to a
NE in a polynomial number of steps [29,33]. However, in the more general case of directed
graphs, for any k ≥ 2 it is known that even the problem of understanding whether digraph
k-coloring games admit a NE is NP-complete [33]. Therefore, like in a variety of games
falling in this class, where Nash equilibria do not exist or cannot be computed in polynomial
time, researchers focused on the milder form of approximate equilibria [14]. Namely, a state
is called a γ-Nash equilibrium (γ-NE, for short), for some γ ≥ 1, if no agent can strictly
improve her payoff by a multiplicative factor of γ by changing her strategy.

To the best of our knowledge, the only advancements in this direction about digraph
k-coloring games are those presented in [14]. In details, the authors: (i) show that a pure NE
(i.e., with γ = 1) is not guaranteed to exist for any number of players n and colors k < n;
(ii) observe that, for any k ≥ 2, a pure NE exists and can be found in polynomial time if
the graph is bipartite or directed acyclic; (iii) notice that, for the case of k = 2, a γ-Nash
equilibria might not exist for any bounded value of γ. In fact, it is easy to see that in any
2-coloring of a directed cycle with an odd number of vertices there is always at least one
vertex with zero utility (and hence no NE can have bounded γ); (iv) present a deterministic
polynomial time algorithm (called ap1) that, for any k ≥ 3, returns a k-coloring that is a
∆o-Nash equilibrium, where ∆o is the maximum outgoing degree of the input digraph G; (v)
present a randomized algorithm (denoted as lll-spe in what follows) that, by exploiting
the constructive version of the well-known Lovász Local Lemma (LLL, for short, from here
onwards) [40], computes a constant approximate Nash equilibrium in polynomial expected
running time. Specifically, the algorithm works for any constant k ≥ 2 and for the special
class of n-vertex digraphs having Ω(log n) minimum outgoing degree.

However, notwithstanding the aforementioned progress, very little is known about the true
performance of existing algorithms in practice. Specifically, it remains unclear which method
performs best, in terms of approximation and running time, for inputs arising from real-world
application domains. On the one hand, in fact, no average case analysis is known for ap1 and
hence it is difficult to capture how much the upper bound on the approximation is pessimistic



A. D’Ascenzo, M. D’Emidio, M. Flammini, and G. Monaco 20:3

on real inputs. On the other hand, algorithm lll-spe guarantees constant approximation
with a value of γ that is quite large, and only for a class of digraphs that appears to be
quite infrequent in the application domains of the considered game. Nothing is known about
the behavior of lll-spe on general digraphs. Moreover, to the best our knowledge, no
experimental evaluations have been conducted on the subject, nor any algorithm has been
shown to perform nicely in practice.

Our Contribution. In this paper we attack such research questions through algorithmic
experimentation. In particular, our contribution is twofold. First, we implement and test
both ap1 and lll-spe1 against both artificial and real-world graphs of heterogeneous sizes
and topologies, and different values of k. We observe that the measured approximation
achieved by the two solutions, on the considered combinations of inputs and values of k, is
unsatisfactory. Specifically, the obtained colorings are comparable, in terms of measured γ,
to those one can produce by simply assigning colors to agents/vertices uniformly at random.
Then, motivated by such unsatisfactory performance, under the further motivation of the lack
of practical approximation algorithms for the problem, we focus on the classical best-response
paradigm, where at each step an agent having an improving move is selected uniformly at
random (we refer to this approach as algorithm best-resp in the following). Such paradigm
induces a dynamics on the coloring that does not offer any upper bound on the provided
approximation and might not always stabilize. Hence, to evaluate the practical effectiveness of
best-resp, we implement it and compare it against ap1 and lll-spe, through an extensive
experimental evaluation again involving large sets of heterogeneous inputs and values of
k. In our study we consider, as main performance indicators, both approximation (namely
measured γ) and computational time. Plus, we assess other metrics we introduce here, namely
average payoff and fraction of unhappy vertices, which naturally characterize the practical
effectiveness of considered algorithms in the application domains where they are intended to
be applied. Our experimental results provide strong empirical evidences of best-resp being
the most effective solution among the tested ones, and hence advised for practical usage. In
fact, in essentially all considered combinations of inputs and values of k ≥ 3, best-resp
results to be the best performing method in terms of approximation. Moreover, remarkably,
in the majority of the cases it converges to a pure NE (i.e. computes exact, non-approximate
solutions) in a reasonably low running time, even for large graphs. In the (few) remaining
cases, best-resp is comparable to other methods in terms of approximation, but achieves
better results in terms of average payoff and fraction of unhappy vertices. Our results trigger
new theoretical questions and demand for new investigation on the possibility of achieving
constant approximation for general digraphs or computing a pure NE in polynomial time for
special classes of digraphs. Our study also highlights that, while this class of games is known
to not always possess NE, in almost all cases such equilibria exist and can be efficiently
computed, even in a distributed uncoordinated way by a decentralized interaction of the
agents, such as that underlying best-resp (while ap1 and lll-spe are not naturally suited
for distributed implementations).

Related Work. k-coloring games in undirected graphs have been first investigated in [29,33],
where it is shown that a NE always exists and can be computed in polynomial time if the
graph is unweighted. When the graph is weighted, instead, a NE always exists but the
problem of computing it is PLS-complete, i.e. conjectured difficult, even for k = 2 [46] (notice

1 More precisely, a slightly modified version of lll-spe that incorporates a stopping criterion to apply it
on general digraphs, where the convergence is not guaranteed since the LLL might not hold.

SEA 2022



20:4 Digraph k-Coloring Games: From Theory to Practice

that graph 2-coloring games are exactly max cut games). In [43] it is proven that NE can
be computed in polynomial time for graph 2-coloring games if the maximum degree of the
graph is at most 3. A related investigation for the same class of games is presented in [5, 12],
where the authors give an algorithm that, for any ϵ > 0, computes a (3 + ϵ)-equilibrium
in time polynomial in 1

ϵ and in the instance size. All above results exploit the potential
function method. Unfortunately, digraph k-coloring games (where the graph is directed)
do not admit a potential function and the problem of understanding whether they admit a
Nash equilibrium is NP-complete for any fixed k ≥ 2, even in the unweighted case [33]. The
performance of NE in general graph k-coloring games has been addressed in [25], while the
authors of [15] consider Nash equilibria where players also have an extra profit depending
on the chosen color. Finally, the authors of [13, 28] study the existence of strong NE, i.e.
resistant to coalitional moves, again for graph k-coloring games.

Digraph k-coloring games are related to many fundamental games that have been widely
studied in recent literature. One example is graphical games, first introduced in [32], where
the payoff of each agent depends only on the strategies of her neighbours in a given social
knowledge graph defined over the set of the agents. An interesting class of graphical games,
related to digraph k-coloring games, is that of graphical congestion games [7]. Digraph
k-coloring games can also be seen as a particular form of hedonic games with an upper
bound (i.e., k) to the number of coalitions (see [4] for a brief introduction to hedonic games).
Specifically, given a k-coloring, agents having a same color can be seen as members of the
same coalition in the corresponding hedonic game. In order to get the equivalence between
the two games, the so–called hedonic utility of an agent v has to be defined as the overall
number of her neighbors minus the number of agents of her neighborhood that are in the
same coalition. Issues related to NE in hedonic games have been largely investigated under
several assumptions (see [6, 26,27,37,38,42] and references therein).

While coloring games are the paradigmatic class of anti-coordination games, another very
active stream of research has been dedicated to coordination games, where agents instead
are rewarded for choosing common strategies rather than different ones. Results about
coordination games can be found in [2, 3, 44]. Finally, the authors of [41] study games where
Nash equilibria are proper vertex colorings in an undirected unweighted graphs setting.

Another prominent class of games, generalizing coloring games and bearing strong
connections with coalition, coordination, and anti-coordination games is the one of the
so-called polymatrix coordination games [51]. Here each agent v must select an action in
her strategy set, and the utility is given by the preference she has for her action plus, for
each neighbor w, a payoff which strictly depends on the mutual actions played by v and w.
Polymatrix games have been thoroughly studied both in some classical works [23,30, 31, 36]
and also, more recently, with a special focus on equilibria [11,20,21,44].

2 Notation and Background

Graph Notation. We assume we are given an unweighted directed graph, or simply digraph,
G = (V,A), without self loops, having |V | = n vertices and |A| = m arcs connecting vertices
of G. Any arc (v, w) ∈ A is directed from vertex v to vertex w. An arc is said to be an
outgoing arc from vertex v (incoming arc to vertex w, respectively) if such arc is any arc
(v, w) ∈ A.

Given a vertex v ∈ V , we denote by δv
o (δv

i , respectively) the outgoing degree of v (the
incoming degree of v, respectively), that is the number of outgoing arcs from v (the number of
incoming arcs to v, respectively) in G. The set of outgoing neighbors Nout(v) of a vertex v is
the set of vertices induced by all outgoing arcs of v, i.e. Nout(v) = {w : w ∈ V ∧ (v, w) ∈ A}.



A. D’Ascenzo, M. D’Emidio, M. Flammini, and G. Monaco 20:5

Moreover, we denote by do = minv∈V δ
v
o and ∆o = maxv∈V δ

v
o the minimum and maximum

outgoing degree of G, respectively. Similarly, we call do and do the average and median
outgoing degree, respectively, and ∆i = maxv∈V δ

v
i the maximum incoming degree of G.

Digraph k-coloring games. In a digraph k-coloring game we are given a digraph G = (V,A),
without self loops, in which each vertex v ∈ V is a selfish agent, and a set C of |C| = k

available colors. Each agent has a same set of actions (i.e. a same strategy set), which is the
set of the k available colors. A state of the game c = {c1, . . . , cn} is a k-coloring for graph
G (simply coloring when k is clear from the context), where each cv is the color chosen by
each agent v ∈ V (i.e., a number from 1 to k). In what follows, we will use vertex and agent
interchangeably. Given a coloring c, the payoff µc(v) (often also referred to as the utility) of
an agent v is the number of outgoing neighbors whose color in c is different from that of v,
i.e. µc(v) = |{(v, w) ∈ A : cv ̸= cw}|. Observe that, for a vertex v, having Nout(v) = ∅ or
cv = cw ∀w ∈ Nout(v) implies µc(v) = 0.

A coloring c is a pure Nash equilibrium (a.k.a. stable equilibrium, denoted in what follows
as pure NE for short), if no agent v can improve her payoff by unilaterally changing strategy
(i.e., color). Formally, if we use (c−v, c

′
v) to denote the coloring obtained, from a coloring

c = {c1, . . . , cn}, by changing the strategy of agent v from cv to c′
v, then a coloring c is a

pure NE if µc(v) ≥ µ(c−v,c′
v)(v), for any possible color c′

v ∈ C and for any vertex v ∈ V .
Unfortunately, a pure NE is not guaranteed to exist even for a large number of available

colors k. In particular, while it is easy to observe that there always exists a NE with |C| = n

colors, by just assigning to each vertex a different color, it is also possible to prove that, for
arbitrary values of n ≥ 3, and for any fixed k such that 1 < k ≤ n−1, there exist instances of
the digraph k-coloring game that do not admit any pure NE [14]. Furthermore, it is known
that, for general digraphs, the problem of determining whether the digraph k-coloring game
admits a pure NE is NP-complete, for all k ≥ 2. Moreover, the cases of bipartite graphs and
directed acyclic graphs are simpler and can be handled in polynomial time [14].

Therefore, from here onward we consider the notion of approximate Nash equilibrium,
defined as follows: a state or coloring c is a γ-approximate Nash equilibrium (simply γ-NE
or γ-stable equilibrium for short), for some γ ≥ 1, if no agent can strictly improve her payoff
by a multiplicative factor of γ, by changing color. More formally, we have that a coloring
c = {c1, . . . , cn} is a γ-NE when, for any possible color c′

v ∈ C and for any vertex v ∈ V , we
have:

γ · µc(v) ≥ µ(c−v,c′
v)(v).

Each vertex in a γ-NE is said to be γ-happy. Viceversa, a vertex v is γ-unhappy, for some
γ ≥ 1, if and only if γ · µc(v) < µ(c−v,c′

v)(v) for some color c′
v ∈ C. In other words, a

γ-unhappy vertex can strictly improve her payoff by a multiplicative factor of γ, by changing
color. In this case, we define the potential payoff πc(v) of vertex v as the maximum payoff a
vertex v can achieve by unilaterally changing its color to another color of the strategy, that
is πc(v) = maxc′

v∈C µ(c−v,c′
v)(v). Consequently, we call the potential color of a vertex v to be

the color of C inducing the potential payoff, i.e. ψc(v) = argmaxc′
v∈C µ(c−v,c′

v)(v).
By analogy, we introduce the special notion of (simply) unhappy vertex, which occurs

for a γ-unhappy vertex when γ = 1. Specifically, given a coloring c, we say a vertex v is
unhappy if and only if µc(v) < µ(c−v,c′

v)(v) for some color c′
v ∈ C, i.e. when the vertex can

strictly improve her payoff by changing color unilaterally (c is not a pure NE). Clearly, if a
vertex v is unhappy we have that µc(v) < πc(v) and cv ≠ ψc(v) while, if πc(v) = γµc(v), for
all vertices v ∈ V for some γ > 0, we have a γ-NE.

SEA 2022



20:6 Digraph k-Coloring Games: From Theory to Practice

3 Algorithms for Digraph k-coloring Games

In this section, we first summarize the main characteristics of known algorithms for the
computation of approximate γ-NE with guarantees on the achieved γ, namely ap1 and
lll-spe [14]. Note that we equip the latter with a stopping criterion to apply it to general
digraphs. Then, we present a formal description of algorithm best-resp, an iterative best-
response-based approach that computes a k-coloring without any guarantee on the achieved
approximation. We will show in the experimental section how this simple strategy results to
be the best solution in practice.

Algorithm ap1. In this paragraph, we provide a brief description of algorithm ap1, proposed
in [14]. Given a digraph G, algorithm ap1, is deterministic and, for any k ≥ 3, returns a
k-coloring such that every vertex v with δv

o ≥ 1 has payoff at least 1, in polynomial time.
Clearly this corresponds to a ∆o-NE since ∆o is the maximum payoff any agent can achieve.

The algorithm is iterative and works as follows (see [14] for more details and for the
pseudocode of the algorithm): at each iteration the algorithm visits the graph induced by
the uncolored vertices and detects a cycle or a path (the latter happens only when the visit
reaches a vertex with zero outgoing neighbors in the induced subgraph). Then, it colors the
vertices of the cycle or the path by alternating three colors, say colors 1, 2 and 3, in a way
that every vertex gets payoff of at least 1, as follows. If the induced subgraph is a cycle,
then the algorithm considers vertices of the cycle in clockwise order and assigns the colors
by following such order, starting by any vertex and alternating the three colors. Viceversa,
if the subgraph is a path from vertex v to vertex w, then two cases can occur. If the arc
(w, u) ∈ A then it colors w by a different color with respect to the already colored vertex
u. Otherwise, it means that δw

o = 0 and we can assign any color to w. Then, it alternates
colors (in this case two colors are enough) for the other vertices of the path considered in the
reverse order starting from w. Observe that it is easy to show, by analyzing the pseudocode
of ap1, given in [14], that the following holds.

▶ Lemma 1. Algorithm ap1 runs in O(∆onm) worst case time.

Algorithm lll-gen. In this paragraph, we introduce algorithm lll-gen, a generalization
of the randomized algorithm lll-spe presented in [14]. Observe that algorithm lll-spe is
based on the Lovász Local Lemma (LLL, for short) [47], which can be used for proving that
there is a positive probability that a random assignment of the k colors to the vertices of
digraphs returns a constant approximate NE, for any value of k ≥ 2, for any graph G = (V,A)
such that the outgoing degree of any v ∈ V is δv

o = Ω(log ∆o + log ∆i). More precisely,
algorithm lll-spe is designed to compute such a NE, in polynomial expected running time,
by exploiting the constructive version of the LLL provided by [40]. Specifically, the algorithm,
starting from a random assignment of the colors, repeatedly and iteratively applies operations
of random resampling of the colors of γ-unhappy vertices of the graph, and to vertices in
their dependency sets, until the coloring converges to a γ-NE. The dependency set of a vertex
v is the set of vertices whose status of being unhappy/happy is influenced by (influences,
resp.) the status of v, namely v’s neighbours, their incoming neighbors, and v itself (see [14]).

The convergence is guaranteed to occur, for lll-spe, w.h.p., if the LLL is satisfied for a
given graph, i.e. when δv

o = Ω(log ∆o + log ∆i). In details, in order to apply the LLL: (i) a
“bad event” Iv is defined over each vertex v of the graph when v is not γ-happy; (ii) a bound
to the maximum size of the dependency set, denoted as depv, of each bad event Iv is given



A. D’Ascenzo, M. D’Emidio, M. Flammini, and G. Monaco 20:7

as |depv| ≤ δv
o + δv

i + δv
oδ

v
i . If the LLL is satisfied, then algorithm lll-spe returns a γ-NE

by performing a number of resampling operations of dependency sets of γ-unhappy vertices
that is polynomial in expectation, for a constant value of γ, defined as follows:

γ = max
v∈V :δv

o >0

max possible payoff
min expected payoff ≈ max

v∈V :δv
o >0

k

k − 1 +
(

k

k − 1

)2
O

(
(r − k

k − 1)−1
)

(1)

where r = δv
o/ log (∆o∆i). Note that vertices with zero out-degree are not considered in this

formula, indeed they are always happy because they can always select a strategy that yields
a non-zero payoff [14].

Now, observe that the above guarantees hold only for graphs whose structure satisfies the
LLL. Thus, in order to generalize algorithm lll-spe and apply it to any digraph, motivated
by the lack of algorithms to compute approximate NE in general digraphs, we introduce
a stopping criterion to the maximum number of resampling operations that the algorithm
can perform. This is a necessary change for our purpose of experimentally evaluating the
behavior of such algorithm also in digraphs such that δv

o is not Ω(log ∆o + log ∆i), for some
vertex v, as in this case lll-spe might not converge in polynomial time in expectation. In

Algorithm 1 Algorithm lll-gen.

Input: A digraph G(V,A), a set C of |C| = k available colors, a maximum number
of iterations I

Output: A k-coloring c of G
1 c← random k–coloring of G with uniform probability 1

k ;
2 Compute threshold on γ as in Eq. 1;
3 i← 0;
4 while ∃ a γ-unhappy vertex and i < I do
5 Let S be the set of γ unhappy vertices; /* c is not a γ-NE, hence S ̸= ∅ */
6 Select randomly a vertex v ∈ S, with uniform probability 1

|S| ;
7 Randomly, uniformly, color vertices in dependency set depv of v;
8 i← i+ 1;
9 return c;

more details, besides the input digraph and the number of available colors k, the modified
method lll-gen, summarized in Algorithm 1, takes as input also an integer value I and
stops when either a γ-NE is found or a maximum number of iterations I is performed. By
such modification, it is easy to see that the following holds.

▶ Lemma 2. Algorithm lll-gen runs in O(I(n+ ∆o + ∆i + ∆o∆i)) worst case time.

Proof. In each iteration, lines 5 and 7 are executed, with the former requiring O(n) time
while the latter performing a number of operations that is bounded by the maximum size of
the dependency set of any vertex, i.e. O(∆o + ∆i + ∆o∆i). ◀

Algorithm best-resp. In this paragraph we describe an approach for computing approx-
imated NE, named best-resp, that is inspired to classical best-response dynamics, since
they have been shown to be effective in practice to handle similar kinds of games [16, 49, 50].
More specifically, we consider what, in the literature, is sometimes referred to as myopic
best-response method [16,50], i.e. best-response dynamics where agents decide their strategy
based on knowledge of their neighbors only. Such method is universally considered one of
the most appealing strategies in this domain, since its update rules depend only on local

SEA 2022



20:8 Digraph k-Coloring Games: From Theory to Practice

knowledge and hence they are very easy to be translated into distributed algorithms for
decentralized systems of agents [8, 49]. We remark that this is a very relevant domain
for digraph k-coloring games, and no distributed solution to compute approximate NE is
currently known.

In more details, the idea underlying algorithm best-resp is to start from a random
coloring c. Then, if c is not a pure NE, the algorithm tries to iteratively improve it by
applying best response strategies to unhappy vertices. More specifically, during a generic
iteration the algorithm performs the following steps: (i) an unhappy vertex, say v, is selected
uniformly at random; (ii) the color cv of the unhappy vertex is set to the color in the strategy
set C that maximizes her payoff (ties are broken arbitrarily), i.e. to πc(v). The process
stops if a NE is reached, i.e. if no unhappy vertices exist in the graph, or when a maximum
number of iterations I, given as part of the input, is performed. The pseudocode of procedure
best-resp is summarized in Algorithm 2. Given the above, the following result easily follows.

Algorithm 2 Algorithm best-resp.

Input: A digraph G(V,A), a set C of |C| = k available colors, a maximum number I
of iterations

Output: A k-coloring c of G
1 c← random k–coloring of G with uniform probability 1

k ;
2 i← 0;
3 while ∃ an unhappy vertex and i < I do
4 Let S be the set of unhappy vertices; /* c is not a NE, hence S ̸= ∅ */
5 Select randomly a vertex v ∈ S, with uniform probability 1

|S| ;
6 cv ← ψc(v); // Color that maximizes payoff
7 i← i+ 1;
8 return c;

▶ Lemma 3. Algorithm best-resp runs in O(n∆oI) worst case time.

Proof. Observe that executing line 1 takes Θ(n) time. Moreover, the block of Lines 3–7
is executed at most I times, and strictly less than I times only if a pure NE is found. To
this regard, testing the existence of an unhappy vertex in each iteration requires computing
the payoff of all vertices in the worst case, which takes O(∆on) time since, for each vertex,
we need to evaluate the colors of her outgoing neighbors. Selecting at random an unhappy
vertex costs |S| hence O(n) time, and for said unhappy vertex an additional δv

o = O(∆o) time
in necessary to determine the color that maximizes her payoff. Thus, the claim follows. ◀

4 Experimentation

In this section, we describe the experimental study we conducted to assess the performance of
algorithms for digraph k-coloring games. In particular, we implemented lll-gen, best-resp,
and ap1, and designed and deployed an experimental framework to evaluate said algorithms,
with respect to various metrics of interest for the context of digraph k–coloring games, and
on large set of meaningful input digraphs.

Test Environment and Implementation Details. Our entire test environment is based on
NetworKit [48], a widely adopted open-source toolkit for implementing graph algorithms
and performing network analysis tasks at scale. All our code is written in Python, with



A. D’Ascenzo, M. D’Emidio, M. Flammini, and G. Monaco 20:9

some sub-routines in C++/Cython. All tests have been executed, through the Python 3.8
interpreter, under Linux (Kernel 5.3.0-53), on a workstation equipped with an Intel© Xeon©

CPU E5-2643 3.40GHz and 128 GB of RAM.

Input Details. As input to our experiments, inspired by other empirical studies on graph
algorithms [1,10,17–19,22], we employed a large dataset of digraphs, including: (i) real-world
instances, taken from publicly available repositories [34, 45]; (ii) artificial digraphs, built via
well-established random generators, namely Erdős-Rényi and Paley models [9]. More details
on used inputs, including sizes and main characteristics are reported in Table 1, while Figure
1 shows how outgoing degree is distributed in the considered inputs.

Table 1 Overview of used input digraphs. The first three columns contain dataset name, acronym,
and type; the 4th and 5th columns show number of vertices and arcs of the digraph, respectively;
columns from the 6th to the 8th report average, median and maximum outgoing degree, respectively.
Finally, the 9th column highlights whether the graph is synthetic or real-world ( = true, = false),
while the last column specifies whether the LLL holds in the given graph ( = true, = false).
Inputs are sorted by do, non-decreasing.

Dataset Short Type |V| |A| do do ∆o S LLL
Twitter twi digital social 23370 33101 1.42 0 238
facebook fac digital social 309717 472792 1.53 0 358
amazon ama ratings 80679 135336 1.68 2 9
Flight flt infrastructure 1226 2613 2.13 1 24
Peer2Peer p2p internet 62586 147892 2.36 0 78
Luxembourg lux road 30647 75546 2.47 3 9
rand3 rr3 random 10000 30000 3 3 3
rand4 rr4 random 10000 40000 4 4 4
Oregon-AS ore autonomous system 10670 44004 4.12 2 2312
rand5 rr5 random 10000 50000 5 5 5
Health hea human social 2539 12969 5.11 5 10
relativity rel collaboration 5242 28968 5.53 3 81
Linux lin community 30834 213424 6.92 5 243
Peer2PeerSm spp internet 10876 79988 7.35 5 103
Google goo hyperlinks (local) 15763 170335 10.81 8 852
Erdős-Rényi A era random 1000 12460 12.46 12 27
Blog blg interaction 1224 19022 15.54 7 256
Erdős-Rényi B erb random 1000 24943 24.94 25 45
wiki-Vote wvt voting 7115 201524 28.32 4 1065
Email ema interaction 1005 32128 31.97 21 345
Erdős-Rényi C erc random 1000 49924 49.92 50 74
Erdős-Rényi D erd random 1000 100025 100.03 100 134
Erdős-Rényi E ere random 1000 199443 199.44 199 238
paley601 pl1 random 601 180300 300 300 300
paley1181 pl2 random 1181 696790 590 590 590

Concerning parameter k, since no direct, well-established relationship is known between k
itself and the approximation provided by the algorithms under study, our experimental trials
consider carefully selected values of said parameter to investigate how the algorithms’ behavior
changes as k increases. Specifically, we consider both the reference case of k = 3 (representing
a conjectured threshold on the computational hardness of the problem) and, as suggested by
established guidelines for experimental algorithmics [35], to magnify the dependency on k

in a reasonable number of tests, values of k ranging in the interval [max{4, do},∆o], evenly
spaced as multiples of ⌊∆o−do

5 ⌉. For iterative algorithms, we fix I = n log n, since this leads
in all cases to practical running times, even on the largest inputs.

Objectives of Experimentation. The purpose of our experimentation is twofold. First, we
want to assess how effective are state-of-the-art solutions for digraph k-coloring games in
practice. To this regard, we test our implementations of ap1 and lll-gen against all inputs
and the mentioned values of k and compare, in terms of resulting γ, computed colorings

SEA 2022



20:10 Digraph k-Coloring Games: From Theory to Practice

hea spp blg goo era ema erb erc erd ere pl1 pl2

10−1

101

103

d
e
g
r
e
e

twi fac p2p flt ama ore rr3 lux rel wvt rr4 rr5 lin

10−1

101

103

d
e
g

r
e
e

Figure 1 Distributions of outgoing vertex degrees of input graphs: each box plot shows minimum,
1st quartile, median, 3rd quartile, and maximum values. The red dotted line shows log ∆o + log ∆i

for graphs where the LLL holds. The blue line, viceversa, marks graphs where the LLL does not
hold. Inputs are sorted, left to right, bottom to top, in non-decreasing order of do.

to randomly generated colorings, obtained by randomly, uniformly assigning a color of the
strategy set C to each agent with probability 1

|C| (we denote this method by random in what
follows). Second, we aim at establishing the practical effectiveness of algorithm best-resp,
hereby formalized. To this aim, we execute and compare obtained results to those achieved
by ap1 and lll-gen for the same inputs and values of k. In all conducted tests, as a measure
of quality of the computed colorings, we focus primarily on the obtained approximation.
Specifically, for each graph G and value of k, and for each execution of each algorithm
yielding a coloring c, we measure the approximation ratio with respect to a pure, exact NE,
denoted as γ(G, c), as follows:

γ(G, c) =
{

0 if ∃v ∈ V : cv = cu ∀ u ∈ Nout(v)
maxv∈V :δv

o >0
πc(v)
µc(v) otherwise.

In other words, if an algorithm computes a coloring c with γ(G, c) > 1 (a sufficient condition
for the latter to happen is all vertices having strictly positive payoff, cf. Sec. 1), it follows
that said coloring is a γ-NE. Moreover, γ(G, c) = 1 implies the computed coloring is a
pure NE. Now, since algorithms lll-gen and best-resp are iterative and induce dynamics
on the state of the game (i.e. on the coloring), this part of the study measures also further
performance indicators to better characterize the behavior of the considered algorithms.
More in details, we measure: average payoff denoted as

P (G, c) =

∑
v∈V

µc(v)

|V |
and fraction of unhappy vertices, denoted as

U(G, c) = |{v ∈ V : v is unhappy}|
|V |

.



A. D’Ascenzo, M. D’Emidio, M. Flammini, and G. Monaco 20:11

Finally, for all algorithms, we measure the running time T (G, c) spent to compute c. Notice
that most of our experimental framework is written in Python, with some sub-routines
in C++/Cython, with a fairly optimized code. We leave the problem open of achieving
a faster version of all implementations through careful code tuning and porting to more
high-performance programming languages., e.g. pure C++. In what follows, we will use llg,
br, rnd and ap1 to refer to algorithms lll-gen, best-resp, random and ap1, respectively,
for the sake of brevity.

Analysis. In Table 2 we present a summary of the results of our experimentation, for all
input graphs and values of k. In details, for each considered metric, starting from the most
relevant (i.e. approximation), we report the number of times each algorithm resulted to be
the best performing one (2nd, 3rd, 4th best performing one, respectively) with respect to
said metric. Note that, for those algorithms that resort to randomization, we executed three
trials for each combination and computed average values of observed measures.

Table 2 Aggregate statistics for all tested algorithms with respect to the four considered indicators,
for all combinations of inputs and values of k (for a total of 175 combinations).

metric algorithm best 2nd 3rd worst

γ(G, c)
rnd 4 (2.3 %) 33 (18.9 %) 81 (46.3 %) 57 (32.5 %)
ap1 1 (0.6 %) 69 (39.4 %) 51 (29.1 %) 54 (30.9 %)
llg 7 (4.0 %) 62 (35.4 %) 43 (24.6 %) 63 (36.0 %)
br 163 (93.1 %) 11 (6.3 %) 0 (0.0 %) 1 (0.6 %)

U(G, c)
rnd 1 (0.6 %) 42 (24.0 %) 106 (60.6 %) 26 (14.8 %)
ap1 0 (0.0 %) 13 (7.4 %) 13 (7.4 %) 149 (85.1 %)
llg 6 (3.4 %) 114 (65.1 %) 55 (31.5 %) 0 (0.0 %)
br 168 (96.0 %) 6 (3.4 %) 1 (0.6 %) 0 (0.0 %)

P (G, c)
rnd 5 (2.9 %) 56 (32.0 %) 96 (54.9 %) 18 (10.2 %)
ap1 0 (0.0 %) 7 (4.0 %) 13 (7.4 %) 155 (88.6 %)
llg 7 (4.0 %) 106 (60.6 %) 60 (34.3 %) 2 (1.1 %)
br 163 (93.2 %) 6 (3.4 %) 6 (3.4 %) 0 (0.0 %)

T (G,c)
rnd 173 (98.9 %) 2 (1.1 %) 0 (0.0 %) 0 (0.0 %)
ap1 2 (1.1 %) 152 (86.9 %) 14 (8.0 %) 7 (4.0 %)
llg 0 (0.0 %) 20 (11.4 %) 101 (57.7 %) 54 (30.9 %)
br 0 (0.0 %) 1 (0.6 %) 60 (34.3 %) 114 (65.1 %)

Our data highlight clearly that algorithm br is the best performing one, globally, in
terms of approximation. In fact, out of 175 combinations of input instances and values of k,
br computes a γ(G, c)-NE with the smallest value of γ(G, c) in 163 of them (93.1% of the
combinations). Algorithms rnd, llg and ap1, instead, behave rather badly, providing the
best approximation, together, only in the remaining 6.9% of the combinations. Moreover,
values of γ(G, c) obtained by llg and ap1 are often quite close to those of rnd, as shown
in Figures 2–3 (for k = 3) and Figure 4 (for larger k), which represents a solid evidence
of the practical ineffectiveness of the two. Notice that, in such figures we report detailed
measures of γ(G, c) and of other indicators introduced in this section, for all algorithms
and for a meaningful selection of input graphs and values of k (results for other inputs
lead to similar considerations and hence are omitted, due to space constraints). Notice
also that, in all mentioned figures, we report a default of γ(G, c) = 0 when there exist at
least one vertex with zero payoff (hence γ is unbounded) while γ(G, c) = 1 and U(G, c) = 0
correspond to a pure NE being found. Besides br being the best solution with respect to
approximation, the most surprising outcome of our experimentation is that br is able to
compute, in almost all cases, colorings that are pure, exact NEs (see e.g. Figure 2 or 3
(middle)). This is remarkable, considering the known hardness of determining this kind of
colorings in general digraphs. Specifically, br is able to find pure Nash equilibria, often in less

SEA 2022



20:12 Digraph k-Coloring Games: From Theory to Practice

rnd llg ap1 br
0

2

4

6

8
7.00

3.33

1.00

γ(G, c)

rnd llg ap1 br
0.00

0.01

0.02

0.03

0.02 0.02 0.02

0.00

U(G, c)

rnd llg ap1 br
0.0

0.5

1.0 0.94 0.94 0.92

1.04

P (G, c)

rnd llg ap1 br
0

20

40

60

0.03 1.21

49.97

32.66

T (G, c)

rnd llg ap1 br
0

10

20 20.00

1.00

γ(G, c)

rnd llg ap1 br
0.00

0.05

0.10

0.15

0.20

0.15

0.11

0.09

0.00

U(G, c)

rnd llg ap1 br
0.0

0.5

1.0

1.5

1.01
1.10 1.09

1.38

P (G, c)

rnd llg ap1 br
0

50000

100000

150000

200000

0.33

171441.95

7775.35

65588.69

T (G, c)

rnd llg ap1 br
0

2

4

6
5.00

1.00

γ(G, c)

rnd llg ap1 br
0.0

0.2

0.4

0.6

0.46

0.12

0.38

0.00

U(G, c)

rnd llg ap1 br
0

1

2

3

1.64

2.16
1.92

2.42

P (G, c)

rnd llg ap1 br
0

50000

100000

150000

200000

0.04

166675.87

45.85 3526.52

T (G, c)

Figure 2 Performance of algorithms rnd, llg, ap1 and br, respectively, in graphs twi (top),
fac (middle), and lux (bottom) with k = 3. Time is expressed in seconds.

rnd llg ap1 br
0

1

2

3

1.37

1.96

2.52

1.92

γ(G, c)

rnd llg ap1 br
0.00

0.25

0.50

0.75

1.00

0.62 0.64

0.89

0.46

U(G, c)

rnd llg ap1 br
0

20

40

60

80
66.53 66.58

59.44

68.42

P (G, c)

rnd llg ap1 br
0

10

20

30

40

0.02 0.10 0.07

31.41

T (G, c)

rnd llg ap1 br
0

1

2

1.19

1.71

2.16

1.00

γ(G, c)

rnd llg ap1 br
0.0

0.5

1.0

0.61

0.85

1.00

0.00

U(G, c)

rnd llg ap1 br
0

100

200 199.69
184.47

145.10

207.33

P (G, c)

rnd llg ap1 br
0

25

50

75

100

0.04
7.50

0.05

75.37

T (G, c)

rnd llg ap1 br
0

1

2

3

4

1.63

2.15

3.29

2.00

γ(G, c)

rnd llg ap1 br
0.00

0.25

0.50

0.75

1.00

0.60 0.63

0.91

0.44

U(G, c)

rnd llg ap1 br
0

10

20

30

40
33.30 33.29

29.34

34.59

P (G, c)

rnd llg ap1 br
0

5

10

15

20

0.01 0.05 0.05

17.22

T (G, c)

Figure 3 Performance of algorithms rnd, llg, ap1 and br, respectively, in graphs erd (top),
pl1 (middle), and ere (bottom), with k = 3. Time is expressed in seconds.



A. D’Ascenzo, M. D’Emidio, M. Flammini, and G. Monaco 20:13

than n iterations, for all considered graphs and values of k (see, e.g., Figure 5, two left-most
panels) except Erdős-Rényi instances (where however in some case still achieves the best
approximation). In these latter inputs, colorings computed by best-resp appears to exhibit
a γ(G, c) that becomes periodic at some point of the optimization process, around some value
close to 1 (see Figure 5, two right-most panels). Note that, when br ranks 2nd best in terms

rnd llg ap1 br
0

1

2

3

4
γ(G, c)

4 50 96 142 188 234

rnd llg ap1 br
0.00

0.01

0.02

0.03
U(G, c)

4 50 96 142 188 234

rnd llg ap1 br
0.0

0.5

1.0

P (G, c)
4 50 96 142 188 234

rnd llg ap1 br
0

20

40

T (G, c)
4 50 96 142 188 234

rnd llg ap1 br
0

2

4

6
γ(G, c)

4 5 6 7 8 9

rnd llg ap1 br
0.0

0.1

0.2

0.3

U(G, c)
4 5 6 7 8 9

rnd llg ap1 br
0.0

0.5

1.0

1.5

P (G, c)
4 5 6 7 8 9

rnd llg ap1 br
0

5000

10000

15000

T (G, c)
4 5 6 7 8 9

rnd llg ap1 br
0

5

10

15

γ(G, c)
4 173 342 511 680 849

rnd llg ap1 br
0.0

0.2

0.4

U(G, c)
4 173 342 511 680 849

rnd llg ap1 br
0.0

2.5

5.0

7.5

10.0

P (G, c)
4 173 342 511 680 849

rnd llg ap1 br
0

20000

40000

60000

80000

T (G, c)
4 173 342 511 680 849

rnd llg ap1 br
0

1

2

γ(G, c)
6 31 56 81 106 131

rnd llg ap1 br
0.00

0.25

0.50

0.75

1.00
U(G, c)

6 31 56 81 106 131

rnd llg ap1 br
0

25

50

75

100
P (G, c)

6 31 56 81 106 131

rnd llg ap1 br
0

500

1000

1500
T (G, c)

6 31 56 81 106 131

rnd llg ap1 br
0.0

0.5

1.0

1.5

2.0

γ(G, c)
4 5 6 7 8 9

rnd llg ap1 br
0.00

0.25

0.50

0.75

1.00
U(G, c)

4 5 6 7 8 9

rnd llg ap1 br
0

100

200

P (G, c)
4 5 6 7 8 9

rnd llg ap1 br
0

20

40

60

80

T (G, c)
4 5 6 7 8 9

Figure 4 Performance of algorithms rnd, llg, ap1 and br, respectively, in graphs twi (top-most),
ama (middle-top), goo (middle), erd (middle-bottom) and pl1 (bottom-most), with increasing
values of k. Time is expressed in seconds.

of γ(G, c), algorithm rnd results to be the best performing one (see, e.g., Figure 3, top or
bottom). At the same time, br exhibits higher average payoff and lower fraction of unhappy
vertices, which suggests that random assignment might be “lucky” in picking and making
happy high-degree vertices, while algorithm br is able to achieve maximum payoff for a large
fraction of the vertex set. By the above, we conjecture that there might exist an analysis for
algorithm br to prove a bounded approximation ratio for a broad class of graphs.

SEA 2022



20:14 Digraph k-Coloring Games: From Theory to Practice

In this direction, it is worth noticing that, unexpectedly, llg fails at achieving the best
approximation even in graphs where the LLL is satisfied (i.e. where llg finds constant
approximation in expected polynomial time). This might be due the fact that the threshold
value of γ, for which llg stops, is rather high, often larger than ∆o (e.g. 2690.36 for instance
erc, see Eq. 1 with k = 3). In this respect, to achieve better results in practice, one might

2500 3000 3500
iterations

1

2

3

(a)

5970 5971 5972
iterations

1.0

1.5

2.0

(b)

0 5000 10000
iterations

1.5

2.0

(c)

0 5000 10000
iterations

1.25

1.50

1.75

(d)

Figure 5 Results achieved by the execution of algorithm br, in terms of γ(G, c), on graphs blg
(a), wvt (b), erd (c) and ere (d) with k = 3, respectively. The y–axis shows the measured value
of γ(G, c) as a function of the number of iterations performed by the algorithm, reported on the
x-axis (we omit iterations where γ(G, c) is unbounded due e.g. to some vertex having zero payoff).
In the two left-most panels, i.e. (a)–(b), we can observe γ(G, c) the algorithm quickly converging to
a pure NE (γ(G, c) approaches and then stabilizes at 1 (in much less than n log n and n iterations,
respectively). In the two right-most panels, , i.e. (c)–(d), instead, n log n iterations do not suffice to
achieve convergence at pure NE and γ(G, c) seems to start oscillating around a value of 1.75 and 2,
respectively.

think of removing such stopping criterion from lll-gen to let the coloring being updated,
via resampling, for a maximum number of iterations, as done by best-resp. Nonetheless,
as further experimentation shows (omitted due to space limitations), this does not lead to
meaningful improvements, in terms of both approximation and other indicators. We can
hence conclude that repeated operations of resampling of the dependency set are indeed
enough to obtain constant approximation w.h.p. but result to be empirically ineffective.
Thus, another outcome of our study is that the use of llg is discouraged for practical
purposes, unless more effective ways of exploiting the LLL can be determined. Nonetheless,
for the sake of completeness, it is worth noticing that also the latter might not be enough.
In fact, our study points out that inputs arising in real-world applications satisfying the LLL
are essentially non-existent (see Figure 1).

Regarding the impact of varying k on the performance of the considered algorithms, we
observe that, while br remains the best performing in essentially all cases, approximation
ratio and fraction of unhappy vertices (running time and average payoff, respectively) tend
to decrease (increase, respectively) with k, for all algorithms. This might suggest that larger
values of k could reduce the possibility of being unhappy, by increasing the choices of the
agents in the strategy set. Further investigation is hence necessary also here to find out
whether there exists some relationship between k, ∆o, and the quality of the equilibrium
that can be achieved. As a final remark, concerning running time, our data mostly confirm
what it is expected, i.e. that: (i) rnd is trivially the fastest method; (ii) in some cases br is
the most time consuming solution (always achieving the best approximation in these cases);
(iii) in the remaining cases, either ap1 and llg yield the largest T (G, c) but they do not
achieve the best approximation. The latter represents another evidence of br being fast at
converging to a pure NE, when it exists. To summarize, our experimental study identifies
algorithm br as the best performing one for digraph k-coloring games. This observation,



A. D’Ascenzo, M. D’Emidio, M. Flammini, and G. Monaco 20:15

combined with the fact that (myopic) best response approaches are easy to implement, even
in a distributed uncoordinated environment, suggests that br is strongly advised to find
good Nash equilibria in application domains where the considered game arise.

5 Conclusion and Future Work

Our experimental study adds considerable insights on digraph k-coloring games w.r.t. previous
theoretical work. In fact, it provides a strong empirical evidence of the fact that theoretical
results probably required very rare graphs, tailored around the worst case behaviour, and
that best response heuristics outperforms algorithms with guarantees. This motivates further
research effort towards proving the existence of a NE in specific classes of graphs, especially
the ones typically arising from social phenomena. Moreover, our results suggest that, in
general, a NE with a better approximation factor could be found. In fact, for the very few
cases in which a NE is not reached by br, the returned solution is always a γ-NE with a
very low approximation ratio. This renews theoretical interest on this relevant class of games.
In this direction, it is worth noticing that, a viable strategy to obtain lower bounds on the
approximation factor could be that of exploiting a linear programming formulation for the
problem, as done for other combinatorial problems in the past.

References
1 Eugenio Angriman, Alexander van der Grinten, Moritz von Looz, Henning Meyerhenke, Martin

Nöllenburg, Maria Predari, and Charilaos Tzovas. Guidelines for experimental algorithmics: A
case study in network analysis. Algorithms, 12(7):127, 2019. doi:10.3390/a12070127.

2 Elliot Anshelevich and Shreyas Sekar. Approximate equilibrium and incentivizing social
coordination. In Proceedings of the 28th Conference on Artificial Intelligence (AAAI 2014),
pages 508–514, 2014.

3 Krzysztof R. Apt, Bart de Keijzer, Mona Rahn, Guido Schäfer, and Sunil Simon. Co-
ordination games on graphs. Int. J. Game Theory, 46(3):851–877, 2017. doi:10.1007/
s00182-016-0560-8.

4 Haris Aziz and Rahul Savani. Hedonic games. In Felix Brandt, Vincent Conitzer, Ulle Endriss,
Jérôme Lang, and Ariel D. Procaccia, editors, Handbook of Computational Social Choice, pages
356–376. Cambridge University Press, 2016. doi:10.1017/CBO9781107446984.016.

5 Anand Bhalgat, Tanmoy Chakraborty, and Sanjeev Khanna. Approximating pure nash
equilibrium in cut, party affiliation, and satisfiability games. In Proceedings of the 11th ACM
Conference on Electronic Commerce (EC 2010), pages 73–82, 2010.

6 Vittorio Bilò, Angelo Fanelli, Michele Flammini, Gianpiero Monaco, and Luca Moscardelli.
Nash stable outcomes in fractional hedonic games: Existence, efficiency and computation. J.
Artif. Intell. Res., 62:315–371, 2018. doi:10.1613/jair.1.11211.

7 Vittorio Bilò, Angelo Fanelli, Michele Flammini, and Luca Moscardelli. Graphical congestion
games. Algorithmica, 61(2):274–297, 2011.

8 Lawrence E. Blume. The statistical mechanics of best-response strategy revision. Games and
Economic Behavior, 11(2):111–145, 1995. doi:10.1006/game.1995.1046.

9 Béla Bollobas. Random Graphs. Cambridge University Press, 2001.
10 Michele Borassi and Emanuele Natale. Kadabra is an adaptive algorithm for betweenness via

random approximation. ACM J. Exp. Algorithmics, 24, February 2019. doi:10.1145/3284359.
11 Yang Cai, Ozan Candogan, Constantinos Daskalakis, and Christos H. Papadimitriou. Zero-sum

polymatrix games: A generalization of minmax. MOR, 41(2):648–655, 2016.
12 Ioannis Caragiannis, Angelo Fanelli, and Nick Gravin. Short sequences of improvement moves

lead to approximate equilibria in constraint satisfaction games. In Proceedings of the 7th
International Symposium on Algorithmic Game Theory (SAGT 2014), pages 49–60, 2014.

SEA 2022

https://doi.org/10.3390/a12070127
https://doi.org/10.1007/s00182-016-0560-8
https://doi.org/10.1007/s00182-016-0560-8
https://doi.org/10.1017/CBO9781107446984.016
https://doi.org/10.1613/jair.1.11211
https://doi.org/10.1006/game.1995.1046
https://doi.org/10.1145/3284359


20:16 Digraph k-Coloring Games: From Theory to Practice

13 Raffaello Carosi, Simone Fioravanti, Luciano Gualà, and Gianpiero Monaco. Coalition resilient
outcomes in max k-cut games. In Proceedings of the 45th International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM 2019), volume 11376 of Lecture
Notes in Computer Science, pages 94–107. Springer, 2019. doi:10.1007/978-3-030-10801-4_
9.

14 Raffaello Carosi, Michele Flammini, and Gianpiero Monaco. Computing approximate pure nash
equilibria in digraph k-coloring games. In Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems (AAMAS 2017), pages 911–919. ACM, 2017.

15 Raffaello Carosi and Gianpiero Monaco. Generalized graph k-coloring games. Theory Comput.
Syst., 64(6):1028–1041, 2020. doi:10.1007/s00224-019-09961-9.

16 Matthew Cary, Aparna Das, Benjamin Edelman, Ioannis Giotis, Kurtis Heimerl, Anna R.
Karlin, Scott Duke Kominers, Claire Mathieu, and Michael Schwarz. Convergence of position
auctions under myopic best-response dynamics. ACM Trans. Econ. Comput., 2(3), 2014.

17 Annalisa D’Andrea, Mattia D’Emidio, Daniele Frigioni, Stefano Leucci, and Guido Proietti.
Experimental evaluation of dynamic shortest path tree algorithms on homogeneous batches.
In Joachim Gudmundsson and Jyrki Katajainen, editors, Proceedings of the 13th International
Symposium on Experimental Algorithms (SEA 2014), volume 8504 of Lecture Notes in Computer
Science, pages 283–294. Springer, 2014. doi:10.1007/978-3-319-07959-2_24.

18 Gianlorenzo D’Angelo, Mattia D’Emidio, and Daniele Frigioni. Distance queries in large-scale
fully dynamic complex networks. In Veli Mäkinen, Simon J. Puglisi, and Leena Salmela,
editors, Proceedings of the 27th International Workshop on Combinatorial Algorithms (IWOCA
2016), volume 9843 of Lecture Notes in Computer Science, pages 109–121. Springer, 2016.
doi:10.1007/978-3-319-44543-4_9.

19 Gianlorenzo D’Angelo, Mattia D’Emidio, and Daniele Frigioni. Fully dynamic 2-hop cover
labeling. J. Exp. Algorithmics, 24(1):1.6:1–1.6:36, 2019. doi:10.1145/3299901.

20 Argyrios Deligkas, John Fearnley, and Rahul Savani. Tree polymatrix games are ppad-
hard. In Proceedings of the 47th International Colloquium on Automata, Languages, and
Programming (ICALP 2020), volume 168 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 38:1–38:14. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ICALP.2020.38.

21 Argyrios Deligkas, John Fearnley, Rahul Savani, and Paul Spirakis. Computing approximate
nash equilibria in polymatrix games. Algorithmica, 77(2):487–514, 2017. doi:10.1007/
s00453-015-0078-7.

22 Mattia D’Emidio. Faster algorithms for mining shortest-path distances from massive time-
evolving graphs. Algorithms, 13(8):191, 2020.

23 B. Curtis Eaves. Polymatrix games with joint constraints. SIAM Journal on Applied Mathe-
matics, 24(3):418–423, 1973.

24 Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The complexity of pure nash
equilibria. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing
(STOC 2004), pages 604–612. ACM, 2004.

25 Michal Feldman and Ophir Friedler. A unified framework for strong price of anarchy in
clustering games. In Proceedings of the 42nd International Colloquium on Automata, Languages,
and Programming (ICALP 2015), volume 9135 of Lecture Notes in Computer Science, pages
601–613. Springer, 2015.

26 Moran Feldman, Liane Lewin-Eytan, and Joseph (Seffi) Naor. Hedonic clustering games. ACM
Trans. Parallel Comput., 2(1), 2015. doi:10.1145/2742345.

27 Martin Gairing and Rahul Savani. Computing stable outcomes in hedonic games with voting-
based deviations. In Proceedings of the 10th International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2011), pages 559–566, 2011.

28 Laurent Gourvès and Jérôme Monnot. The max k-cut game and its strong equilibria. In
Proceedings of the 7th Annual Conference on Theory and Applications of Models of Computation
(TAMC 2010), volume 6108 of Lecture Notes in Computer Science, pages 234–246. Springer,
2010. doi:10.1007/978-3-642-13562-0_22.

https://doi.org/10.1007/978-3-030-10801-4_9
https://doi.org/10.1007/978-3-030-10801-4_9
https://doi.org/10.1007/s00224-019-09961-9
https://doi.org/10.1007/978-3-319-07959-2_24
https://doi.org/10.1007/978-3-319-44543-4_9
https://doi.org/10.1145/3299901
https://doi.org/10.4230/LIPIcs.ICALP.2020.38
https://doi.org/10.4230/LIPIcs.ICALP.2020.38
https://doi.org/10.1007/s00453-015-0078-7
https://doi.org/10.1007/s00453-015-0078-7
https://doi.org/10.1145/2742345
https://doi.org/10.1007/978-3-642-13562-0_22


A. D’Ascenzo, M. D’Emidio, M. Flammini, and G. Monaco 20:17

29 Martin Hoefer. Cost sharing and clustering under distributed competition. PhD thesis,
University of Konstanz, 2007.

30 Joseph T. Howson. Equilibria of polymatrix games. Management Science, 18(5):312–318,
1972.

31 Joseph T. Howson and Robert W. Rosenthal. Bayesian equilibria of finite two-person games
with incomplete information. Management Science, 21(3):313–315, 1974.

32 Michael J. Kearns, Michael L. Littman, and Satinder P. Singh. Graphical models for game
theory. In Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence (UAI
2001), pages 253–260, 2001.

33 Jeremy Kun, Brian Powers, and Lev Reyzin. Anti-coordination games and stable graph
colorings. In Proceedings of the 6th International Symposium on Algorithmic Game Theory
(SAGT 2013), pages 122–133, 2013.

34 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, 2014.

35 Catherine C. McGeoch. A Guide to Experimental Algorithmics. Cambridge University Press,
2012.

36 Douglas A. Miller and Steven W. Zucker. Copositive-plus lemke algorithm solves polymatrix
games. Operations Research Letters, 10(5):285–290, 1991. doi:10.1016/0167-6377(91)
90015-H.

37 Gianpiero Monaco, Luca Moscardelli, and Yllka Velaj. On the performance of stable outcomes
in modified fractional hedonic games with egalitarian social welfare. In Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems (AAMAS 2019),
pages 873–881. International Foundation for Autonomous Agents and Multiagent Systems,
2019.

38 Gianpiero Monaco, Luca Moscardelli, and Yllka Velaj. Stable outcomes in modified frac-
tional hedonic games. Auton. Agents Multi Agent Syst., 34(1):4, 2020. doi:10.1007/
s10458-019-09431-z.

39 Dov Monderer and Lloyd S. Shapley. Potential games. Games and Economic Behavior,
14(1):124–143, 1996.

40 Robin A. Moser and Gábor Tardos. A constructive proof of the general lovász local lemma. J.
ACM, 57(2), 2010.

41 Panagiota N. Panagopoulou and Paul G. Spirakis. A game theoretic approach for efficient graph
coloring. In Proceedings of the 19th International Symposium on Algorithms and Computation
(ISAAC 2008), pages 183–195, 2008.

42 Dominik Peters and Edith Elkind. Simple causes of complexity in hedonic games. In Proceedings
of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), pages 617–
623, 2015.

43 Svatopluk Poljak. Integer linear programs and local search for max-cut. SIAM J. Comput.,
24(4):822–839, 1995.

44 Mona Rahn and Guido Schäfer. Efficient equilibria in polymatrix coordination games. In
Proceedings of 40th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2015), pages 529–541, 2015.

45 Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph
analytics and visualization. In Proceedings of the 29th Conference on Artificial Intelligence
(AAAI 2015), pages 4292–4293. AAAI Press, 2015.

46 Alejandro A. Schäffer and Mihalis Yannakakis. Simple local search problems that are hard to
solve. SIAM J. Comput., 20(1):56–87, 1991.

47 Joel Spencer. Asymptotic lower bounds for ramsey functions. Discrete Mathematics, 20:69–76,
1977. doi:10.1016/0012-365X(77)90044-9.

48 Christian L. Staudt, Aleksejs Sazonovs, and Henning Meyerhenke. Networkit: A tool suite for
large-scale complex network analysis. Network Science, 4(4):508–530, 2016. doi:10.1017/nws.
2016.20.

SEA 2022

http://snap.stanford.edu/data
https://doi.org/10.1016/0167-6377(91)90015-H
https://doi.org/10.1016/0167-6377(91)90015-H
https://doi.org/10.1007/s10458-019-09431-z
https://doi.org/10.1007/s10458-019-09431-z
https://doi.org/10.1016/0012-365X(77)90044-9
https://doi.org/10.1017/nws.2016.20
https://doi.org/10.1017/nws.2016.20


20:18 Digraph k-Coloring Games: From Theory to Practice

49 Brian Swenson, Ryan Murray, and Soummya Kar. On best-response dynamics in potential
games. SIAM Journal on Control and Optimization, 56(4):2734–2767, 2018.

50 Brian Woodbury Swenson. Myopic Best-Response Learning in Large-Scale Games. PhD thesis,
Carnegie Mellon University, 2017. doi:10.1184/R1/6720788.v1.

51 Elena B. Yanovskaya. Equilibrium points in polymatrix games. Lithuanian Mathematical
Journal, 8(2):381–384, 1968.

https://doi.org/10.1184/R1/6720788.v1


Practical Performance of Random Projections in
Linear Programming
Leo Liberti # Ñ

LIX CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France

Benedetto Manca #

Department of Mathematics and Informatics, University of Cagliari, Italy

Pierre-Louis Poirion #

RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Abstract
The use of random projections in mathematical programming allows standard solution algorithms
to solve instances of much larger sizes, at least approximately. Approximation results have been
derived in the relevant literature for many specific problems, as well as for several mathematical
programming subclasses. Despite the theoretical developments, it is not always clear that random
projections are actually useful in solving mathematical programs in practice. In this paper we
provide a computational assessment of the application of random projections to linear programming.

2012 ACM Subject Classification Mathematics of computing → Mathematical optimization; Theory
of computation → Random projections and metric embeddings

Keywords and phrases Linear Programming, Johnson-Lindenstrauss Lemma, Computational testing

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.21

Supplementary Material Software (Source Code):
https://mega.nz/file/p8MQhbpT#0TJBUVgaBf4KPVk2fu_5k05cMy2VozJk-0fQ1PZdJ0U

Funding Benedetto Manca: Partly supported by grant STAGE, Fondazione Sardegna 2018.

1 Introduction

This paper is about applying Random Projections (RP) to Linear Programming (LP)
formulations. RPs are dimensional reduction operators that usually apply to data. The
point of applying RPs to LPs is to obtain an approximate solution of the high-dimensional
formulation by solving a related lower-dimensional one. The main goal of this paper is to
discuss the pros and cons of this technique from a computational (practical) point of view.

1.1 Random Projections
In general, RPs are functions, sampled randomly from certain distributions, that map a
vector in Rm to one in Rk, where k ≪ m. In this paper we restrict our attention to linear
RPs, which are k × m random matrices T . The most famous result about RPs is the
Johnson-Lindenstrauss Lemma [13], which we recall here in its probabilistic form. Given a
finite set X = {x1, . . . , xn} ⊂ Rm and an ϵ ∈ (0, 1), there exists a δ = O(e−Cϕ(k)) (with ϕ

usually linear and C a universal constant not depending on input data) and an RP T with
k = O(ϵ−2 ln n) such that

Prob
(

∀i < j ≤ n (1 − ϵ)∥xi − xj∥2 ≤ ∥Txi − Txj∥2 ≤ (1 + ϵ)∥xi − xj∥2
)

≥ 1 − δ. (1)

If T is sampled componentwise from the normal distribution N(0, 1/
√

k), Eq. (1) holds (note
that other distributions also work). The JLL is not the only result worth mentioning in RP
[22, 11, 19], but it is the object of interest in this paper.

© Leo Liberti, Benedetto Manca, and Pierre-Louis Poirion;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:liberti@lix.polytechnique.fr
https://orcid.org/0000-0003-3139-6821
mailto:bmanca@unica.it
https://orcid.org/0000-0003-0209-0655
mailto:pierre-louis.poirion@riken.jp
https://orcid.org/0000-0002-3783-3036
https://doi.org/10.4230/LIPIcs.SEA.2022.21
https://mega.nz/file/p8MQhbpT#0TJBUVgaBf4KPVk2fu_5k05cMy2VozJk-0fQ1PZdJ0U
https://mega.nz/file/p8MQhbpT#0TJBUVgaBf4KPVk2fu_5k05cMy2VozJk-0fQ1PZdJ0U
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


21:2 Practical Random Projections for LP

The JLL directly applies to all problems involving the Euclidean distance between points
in a Euclidean space of high dimension, e.g. the design of an efficient nearest-neighbor data
structure (i.e. given X ⊂ Rm and q ∈ Rm quickly return x ∈ X closest to q) [12].

More in general, the JLL shows that RPs can transform the point set X to a lower
dimensional set TX such that X and TX are “approximately congruent”: the pairwise
distances in X are approximately the same (multiplicatively) as the corresponding pairwise
distances in TX, even if X has m dimensions and TX only k (proportional to ϵ−2 ln |X|).
Since “approximately congruence” means “almost the same, aside from translations, rotations,
and reflections”, it is reasonable to hope that RPs might apply to other constructs than just
sets of points, and still deliver a theoretically quantifiable approximation. In this paper we
consider LP.

1.2 Applying RPs to Linear Programming
In this paper we are interested in the application of the JLL to LP in standard form:

min
x

c⊤x

Ax = b

x ≥ 0,

 (LP)

where x = (x1, . . . , xn), A is an m × n matrix, and b ∈ Rm.
There are several issues in applying RPs to Mathematical Programs (MP) in general.

The three foremost are:
1. RPs project vectors rather than decision variables and constraint functions;
2. RPs ensure approximate congruence of the input vectors in the lower-dimensional output:

but approximation arguments in LP must instead be based on optimality and feasibility
(unrelated to the ℓ2 norm);

3. RPs only apply to finite point sets, whereas LP decision variables represent infinite point
sets.

These issues pose nontrivial theoretical challenges, and the proof techniques vary consid-
erably depending on the MP subclass being considered. The first issue mentioned above is
addressed by applying RPs to the problem parameters (the input data); in the LP case, we
project the linear system Ax = b. We speak of the original formulation P and the projected
formulation TP . This yields a fourth issue: the solution of TP may be infeasible in P : in
such cases, a solution retrieval phase is necessary in order to construct a feasible solution of
P from that of TP .

The second and third issues are addressed in [25], leading to statements similar to the
JLL, but concerning approximate LP feasibility and optimality. If E(P, T ) is a statement
about the feasibility or optimality error between the LP formulations P and TP , the general
structure of these results is similar to the probabilistic version of the JLL:

Prob
(

E(P, T )
)

≥ 1 − δ, (2)

where δ usually depends on ϵ, k and possibly even the solution of P . We shall recall the
statements of these results more precisely in Sect. 2.

1.3 Relevant literature
The main reference for RPs and LP in standard form is [25], which presents the theory
addressing the above issues, and a computational study focussing on dense random LP
instances. RPs were also applied to some specific LP problems: PAC learning [20] and
quantile regression [26], with dimensional reduction techniques tailored to the corresponding



L. Liberti, B. Manca, and P.-L. Poirion 21:3

LP structure. Other works in applying RPs to different types of MP subclasses are [24]
(quadratic programs with a ball constraint), [4] (general quadratic programs), [18] (conic
programs including second-order cone and semidefinite programs).

1.4 Contributions of this paper
Although some of the relevant literature carries computational results, we think that, compu-
tationally, the application of RPs to LPs is still experimental: in practice the output on a
given instance can range from accurate all the way to catastrophic.

One of the difficulties is that, in writing k = O(ϵ−2 ln n), we are neglecting a constant
multiplicative coefficient C related to the “big oh”, the appropriate value of which is usually
the fruit of guesswork. Another difficulty is that the the theoretical results in this area apply
to “high dimensions”, without specifying a minimum dimension above which they hold. In
catastrophic cases, the theory ensures that results would improve for larger instance sizes,
but just how large is unknown. At this time, in our opinion, no-one is able to justifiably
foresee whether RPs will be useful or not on a given LP instance. The only existing work
about practical RP usage is [23], which only focusses on computational testing of different
RP matrices.

This paper will provide a computational analysis of LP cases where RPs work reasonably
well, and others where they do not, and attempt to derive some guidelines for choosing
appropriate values for the most critical unknown parameters. On the theoretical side, we
tighten two results of [18] when applied to the LP case.

The rest of this paper is organized as follows. In Sect. 2 we recall the main theoretical
results relative to the application of RPs to LP, and state the two new tightened results. In
Sect. 3 we illustrate the benchmark goal, the LP structures we test, and the methodology. In
Sect. 4 we discuss the benchmark results.

2 Summary of theoretical results

We apply RPs to the original formulation (LP) by reducing the number m of constraints.
Let T be a k × m RP matrix. The projected formulation is:

min{c⊤x | TAx = Tb ∧ x ≥ 0} (T LP).

We first discuss feasibility. We note that the geometric interpretation of the feasible
set F = {x | Ax = b ∧ x ≥ 0} of (LP) is that F is the set of conic combinations of the
columns Aj of A, i.e. F = cone(A). We also let conv(A) the convex hull of the columns of
A, and ∥x∥A = min{

∑
j λj | x =

∑
j λjAj} be the A-norm of x ∈ cone(A). Is F is invariant

w.r.t. the application of T to (LP)? If x ∈ F then TAx = Tb by linearity of T . On the
other hand, it is generally false that if x ≥ 0 but x ̸∈ F , then TAx ̸= Tb. The following
approximate feasibility statement

b ̸∈ cone(A) ⇒ Prob
(

Tb ̸∈ coneTA
)

≥ 1 − 2(n + 1)(n + 2)e−C(ϵ2−ϵ3)k (3)

is proved in [25, Thm. 3] for all ϵ ∈ (0, ∆2/(µA + 2µA

√
1 − ∆2 + 1)), where C is the universal

constant of the JLL, µA = max{∥x∥A | x ∈ cone(A) ∧ ∥x∥2 ≤ 1}, and ∆ is a lower bound to
minx∈conv(A) ∥b − x∥2.

Let val(·) indicate the optimal objective function value of a MP formulation. The
approximate optimality statement for (LP) derived in [25, Thm. 4] is conditional to the LP
formulation being feasible and bounded, so that, if x∗ is an optimal solution, there is θ

(assumed w.l.o.g. ≥ 1) such that
∑

j x∗
j < θ. Given γ ∈ (0, val(LP)),

Prob
(

val(LP) − γ ≤ val(T LP) ≤ val(LP)
)

≥ 1 − δ, (4)

SEA 2022



21:4 Practical Random Projections for LP

where δ = 4ne−C(ϵ2−ϵ3)k, ϵ = O(γ/(θ2∥y∗∥2)), and y∗ is an optimal dual solution of (LP).
Like other approximate optimality results in this field, some quantities in the probabilistic
statement depend on the norm of a dual optimal solution. This adds a further difficulty to
computational evaluations, since they cannot be computed prior to solving the problem.

Let x̄ be a projected solution, i.e. an optimal solution of the projected formulation. In [25,
Prop. 3], it is proved that x̄ is feasible in the original formulation with zero probability. We
therefore need to provide a solution retrieval method. A couple were proposed in [25], but
the one found in [18, Eq. (6)] comes with an approximation guarantee and a good practical
performance. The retrieved solution x̃ is defined as the projection of x̄ on the affine subspace
Ax = b, and computed using the pseudoinverse:

x̃ = x̄ + A⊤(AA⊤)−1(b − Ax̄). (5)

The fact that we only project on Ax = b without enforcing x ≥ 0 is necessary, since otherwise
we would need to solve the whole high-dimensional LP. On the other hand, it causes potential
infeasibility errors w.r.t. x ≥ 0. A probabilistic bound on this error is cast in general terms
for conic programs in [25]. Let κ(A) be the condition number of A; applying [25, Thm. 4.4] to
LP, we obtain the following result, which bound the (negativity of) the smallest component
of x̃ in terms of that of x̄.

▶ Proposition 1. There is a universal constant C2 such that, for any u ≥ 0, we have:

Prob
(

min
j≤n

x̃j ≥ min
j≤n

x̄j − ϵθκ(A)(C2 + u
√

2/ ln(n))
)

≥ 1 − 2e−u2
.

The proof is based on an improvement of [18, Eq. (7)] based on computing the Gaussian
width and diameter of {x ≥ 0 | ⟨1, x⟩ ≤ 1}. As a corollary, we also have the following
result about the difference between objective function values of the retrieved and projected
solutions.

▶ Corollary 2. Let f̃ be the objective function value of the retrieved solution x̃, and f̄ be the
optimal objective function value of the projected formulation. There is a universal constant
C2 such that, for any u ≥ 0, we have:

Prob
(

|f̃ − f̄ | ≤ ϵθκ(A)∥c∥2(C2 + u
√

2/ ln(n))
)

≥ 1 − 2e−u2
.

3 What we establish and how

Upon receving an LP instance to be solved using RPs, one has to at least know how to decide
k (the projected dimension) so that the solution of the projected formulation is reasonably
close to that of the original one.

Ideally, one would like to estimate all unknown parameters: k, ϵ, C, C in function of γ

and δ. This is theoretically hopeless because the theoretical bounds derived for “all LPs”
are far from tight. We shall see below that it is also computationally hopeless. In practice,
moreover, one might be much more interested in finding a good retrieved solution (i.e. almost
feasible in the original problem), rather than finding a good approximation to the optimal
objective function value, since a feasible solution can be improved by local methods, while
an approximate optimal value may at best be useful as an objective cut.

Our approach will accordingly be based on solving sets of uniformly sampled LP instances
(from different applications) using a standard solver, and analyse the output in terms of how
the feasibility and optimality errors of the retrieved solution vary with problem size and ϵ.



L. Liberti, B. Manca, and P.-L. Poirion 21:5

3.1 The RP matrix

All componentwise sampled sub-Gaussian distributions [7] can be used to ensure the results
cited in this paper. Some sparse variants also exist, along the lines of [1, 15]. We use the
sparse RPs described in [4, §5.1]. For a given density σ ∈ (0, 1) and standard deviation√

1/(kσ), with probability σ we sample a component of the k×m RP T from the distribution
N(0,

√
1/(kσ)), and set it to zero with probability 1 − σ. In our computational study, we set

σ = dA/2, where dA is the density of the constraint matrix A.

3.2 LP structures

We consider randomly generated LPs of the following four classes: Max Flow problems [8],
Diet problems [6], Quantile Regression problems [16], and Basis Pursuit problems from
sparse coding [3]. This choice yields a set of LP problems going from extremely sparse (Max
Flow) to completely dense (Basis Pursuit), with the Diet and Quantile Regression
providing cases of various intermediate densities. These four test cases arise from a diverse
range of application settings: combinatorial optimization, continuous optimization, statistics,
data science.

3.2.1 Maximum flow

The Max Flow formulation is defined on a weighted digraph G = (N, A, u) with a source
node s ∈ N , a target node t ∈ N (with s ̸= t) and u : A → R+, as follows:

max
x∈R|A|

+

∑
i∈N∖{s}
(s,i)∈A

xsi −
∑

i∈N∖{s}
(i,s)∈A

xis

∀i ∈ N ∖ {s, t}
∑

j∈N
(i,j)∈A

xij =
∑

j∈N
(j,i)∈A

xji

∀(i, j) ∈ A 0 ≤ xij ≤ uij .

 (MF)

We generate random weighted digraphs G = (N, A, u) with the property that a single
(randomly chosen) node s is connected (through paths) to all of the other nodes: we first
generate a random tree on N ∖ {t}, orient it so that s is the root, add a node t with the same
indegree as the outdegree of s, and then proceed to enrich this digraph with arcs generated at
random using the Erdős-Renyi model with probability 0.05. We then generate the capacities
u uniformly from [0, 1]. Finally, we compute the digraph’s incidence matrix A, which has
m = |N | − 2 rows and |A| columns. Instances are feasible because the graph always has a
path from s to t by construction, and the zero flow is always feasible.

Although (MF) is an LP, it is not in standard form, because of the upper bounding
constraints x ≤ u. But, by [25, §4.2], we can devise a block-structured RP matrix that only
projects the equations Ax = b, leaving the inequalities x ≤ u alone. In this case, A is a flow
matrix with two nonzeros per column, one set to 1 the other to −1, aside from columns
referring to source and target nodes s, t that only have one nonzero; and b = 0. The density
of A is dA = 2|A|−2

(m−2)|A| ≈ 2/m.
For our random (MF) instances, θ = |A| is a valid upper bound to

∑
(i,j)∈A x∗

ij , since
0 ≤ xij ≤ uij ≤ 1 for all (i, j) ∈ A.

SEA 2022



21:6 Practical Random Projections for LP

3.2.2 Diet problem

The Diet formulation is defined on an m × n nutrient-food matrix D, a food cost vector
c ∈ Rn

+, and a nutrient requirement vector b ∈ Rm, as follows:

min
q∈Rmn

+

c⊤q

Dq ≥ b.

}
(DP)

We sample c, D, b uniformly componentwise in [0, 1], and set the density of D to dD = 0.5.
Instances are feasible because one can always buy enough food to satisfy all nutrient
requirements. If ∥Di∥0 = |nonzeros of row Di|, then q̂ =

(
max
i≤m

(bi/(∥Di∥0Dij)) | j ≤ n
)

is a
feasible solution.

Again, (DP) is not in standard form, but the transformation is immediate using slack
variables ri ≥ 0 for i ≤ m. We let A = (D | −I), where I is m × m. The decision variable
vector is x = (q, r). The density of A is dA = (dDmn + m)/(m(n + m)) = (dDn + 1)/(n + m).

For (DP), the upper bounding solution q̂ yields slack values r̂i = Diq̂ − bi for all i ≤ m,
where Di is the i-th row of D. So we let θ =

∑
j q̂j +

∑
i r̂i be an upper bound for

∑
j x∗

j .

3.2.3 Quantile regression

The Quantile Regression formulation, for a quantile τ ∈ (0, 1), is defined over a database
table D having density dD with m records and p fields, and a further column field b. We
make a statistical hypothesis b =

∑
j βjDj , and aim at estimating β = (βj | j ≤ p) from the

data b, D so that errors from the τ -quantile are minimized. Instances may only have nonzero
optimal value if m > p, as is clear from the constraints of the formulation below:

min
β∈Rp

u+,u−∈Rm
+

τ1⊤u+ + (1 − τ)1⊤u−

Dβ + Iu+ − Iu− = b,

 (QR)

where the constraint system Ax = b has A = (D|I| −I), x = (β, u+, u−), and τ (the quantile
level) is given, and fixed at 0.2 in our experiments. The data matrix (D, b) is sampled
uniformly componentwise from [−1, 1], with dD = 0.8. Instances are all feasible because
the problem reduces to solving the overconstrained linear system Dβ = b with a “skewed”
version of an ℓ1 error function.

We note that (QR) is not in standard form, since the components of β are unconstrained;
but this is not an issue, insofar as the problem is bounded (since it is feasible and it minimizes
a weighted sum of non-negative variables), and this is enough to have the results in [25] hold.
On the contrary, the lack of non-negative bounds on β is an advantage, since we need not
worry about negativity errors in the β components of the retrieved solution (Prop. 1). The
density of A is dA = (dDmp + 2m)/(mp + 2m2) = (dDp + 2)/(p + 2m).

For (QR), given that all data is sampled uniformly from [−1, 1], no optimum can ever
have |βj | > 1. As for u+, u−, we note that any feasible β yields an upper bound to the
optimal objective function value, which only depends on u+, u−: we can therefore choose
β = 0, and obtain u+

i − u−
i = bi for all i ≤ m; we then let u+

i = bi ∧ u−
i = 0 if bi > 0, and

u+
i = 0 ∧ u−

i = −bi otherwise. This yields an upper bound estimate θ = p +
∑

i |bi| to
∑

j x∗
j .



L. Liberti, B. Manca, and P.-L. Poirion 21:7

3.2.4 Basis pursuit

The Basis Pursuit formulation aims at finding the sparsest vector x satisfying the underde-
termined linear system Ax = b by resorting to a well-known approximation of the zero-norm
by the ℓ1 norm [3]:

min
x,s∈Rn

1⊤s

Ax = b

∀j ≤ n −sj ≤ xj ≤ sj .

 (BP)

According to sparse coding theory [5], we work with a fully dense m×n matrix A sampled
componentwise from N(0, 1) (with density dA = 1), a random message obtained as z/Z from
a sparse z ∈ (Z∩ [−Z, Z])n (with density 0.2) and Z = 10, and compute the encoded message
b = Az. We then solve (BP) in order to recover the sparsest solution of the underconstrained
system Ax = b, which should provide an approximation of z. Basis pursuit problems undergo
a phase transition as m decreases from n down to zero [2], so it shouldn’t really make sense
to decrease m by using RPs, and yet some mileage can unexpectedly be extracted from this
operation [17].

Similarly to (MF), in (BP) we can partition the constraints into equations Ax = b and
inequalities −s ≤ x ≤ s. Again by [25, §4.2], we devise a block-structured RP matrix which
only projects the equations.

As in Sect. 3.2.3, (BP) is not in standard form, since none of the variables are non-
negative. In this case, moreover, it is not easy to establish a bound θ on

∑
j(x∗

j + s∗
j ), since

A is sampled from a normal distribution. On the other hand, for Aij ∼ N(0, 1) we have
Prob

(
Aij ∈ [−3, 3]

)
= 0.997. By construction, we have b ∈ [−3n, 3n]m, which implies

a defining interval [−n, n] on the components of optimal solutions, yielding θ = 2n2 with
probability 0.997.

3.3 Methodology

The goal of this paper is to provide a computational assessment of RPs applied to LP.
As discussed at the beginning of Sect. 3, the actual determination of all relevant parameters

is theoretically hopeless. We can certainly simplify the task a little by noting that the
coefficient C can be removed since it suffices to decide a value for ϵ in order to decide k.
Ideally we would like to decide γ first (see Eq. (4)), then compute ϵ as O(γ/(θ2∥y∗∥2)),
and sample an appropriate RP. Unfortunately, estimating θ and ∥y∗∥2 prior to solving the
original LP leads to tiny values for ϵ (e.g. 10−i for i ∈ {2, . . . , 11} in some preliminary tests),
which would require the rows of A to be at least O(10i2) in order to yield a useful projection.
Since we are interested in applying RPs to LPs with O(102) and O(103) rows, this “ideal”
approach is inapplicable.

Instead, we repeatedly solve sets of instances of each LP structure. Each projected
instance is solved with different values of ϵ ∈ E = {0.15, 0.2, 0.25, 0.3, 0.35, 0.4} (these values
have been found to be the most relevant in preliminary computational experiments performed
over several years). Moreover, to mitigate the effect of randomness, we solve each instance
with each ϵ multiple times. For each instance and ϵ we collect performance measures on
objective function values, infeasibility errors, and CPU time. This allows us to illustrate the
co-variability of ϵ and instance size with the performance measures.

SEA 2022



21:8 Practical Random Projections for LP

4 The benchmark

The solution pipeline is based on Python 3 [21] and the libraries scipy [14] and amplpy [9]
(besides other standard python libraries). For each problem type, we loop over instances
(based on row size of the equality constraint system, varying in S, see below), over ϵ ∈ E ,
and over 5 different runs for each instance and ϵ in order to amortize the result randomness
depending on the choice of T . We solve all of the original and projected instances using
CPLEX 20.1 [10]. We use the barrier solver, because we found this to be more efficient with
large dense LPs than the simplex-based solvers in CPLEX. Our code can be downloaded
here.1 All tests have been carried out on a MacBook 2017 wih a 1.4GHz dual-core Intel Core
i7 with 16GB RAM.

4.1 Choice of instances

In the case of Diet, Quantile Regression, and Basis Pursuit, we generated instances
so that the number of rows of the equality constraint system Ax = b is in the set S =
{500p | 1 ≤ p ≤ 5 ∧ p ∈ N}. For Max Flow we used S ′ = S ∖ {2500} because the larger
size triggered a RAM-related error in a part of the solution pipeline involving the AMPL [9]
interpreter.

4.1.1 The variable space

The space of original, projected, and retrieved variable values is identical for Max Flow,
Quantile Regression, and Basis Pursuit, since these three structures are originally cast
in an equality constraint form Ax = b. This desirable property fails to hold for Diet, which
deserves a separate discussion.

The original formulation (DP) of Diet is in inequality form Dq ≥ b, but the projected
formulation is derived from the constraints Ax = b in standard form, where A = (D| −I).

The theoretical results in Sect. 2 justify a fair comparison only between original and
projected solutions in standard form. Since this paper is about a practical comparison,
however, and since no-one would convert (DP) to standard form before solving it (because the
solver would do it as needed), we chose to compute objective function values and feasibility
errors of the projected formulation on the space of the original formulation variables q. Thus,
for a retrieved solution x̃ = (q̃, r̃) we only considered q̃ in order to compute the objective
function value of x̃.

Considering only the q variables is unproblematic if applied to the optimal solution x∗

of the original formulation in standard form, because s∗ ≥ 0 and A = (D| −I) ensure that
q∗ is a feasible solution in Dq ≥ b. When applied to the projected formulation, however,
TA = (TD| −TI) yields a block matrix TI with both positive and negative entries (since T

is sampled from a normal distribution). Thus, it often happens that the underdetermined
k × m system TI = Tb has solutions. In this case, since the objective tends to minimize c⊤q,
the projected solution x̄ = (q̄, s̄) will have q̄ = 0, yielding zero projected objective function
value. This, in turn, may yield Dq̃ ̸≥ b. The application of RPs to Diet is therefore less
successful than for other structures.

1 The URL is https://mega.nz/file/p8MQhbpT#0TJBUVgaBf4KPVk2fu_5k05cMy2VozJk-0fQ1PZdJ0U.

https://mega.nz/file/p8MQhbpT#0TJBUVgaBf4KPVk2fu_5k05cMy2VozJk-0fQ1PZdJ0U
https://mega.nz/file/p8MQhbpT#0TJBUVgaBf4KPVk2fu_5k05cMy2VozJk-0fQ1PZdJ0U


L. Liberti, B. Manca, and P.-L. Poirion 21:9

4.2 Performance measures
At the end of each solver call we record: the optimal objective function f∗ of the original
problem, the optimal objective function f̄ of the projected problem, the objective function
value f̃ of the retrieved solution x̃, the feasibility error w.r.t. equation constraints Ax = b

(eq) and inequalities x ≥ 0 (in), the CPU time t∗ taken to solve the original formulation,
and the CPU time t̄ taken to solve the projected formulation.

The CPU time t∗ takes into account: reading the instance, constructing the original
formulation, and solving it. The CPU time t̄ takes into account: reading the instance,
sampling the RP, projecting the instance data, constructing the projected formulation,
solving it, and performing solution retrieval.

The benchmark considers: the average objective function ratios f̄/f∗, f̃/f∗, the average
errors avgeq, avgin for Ax = b and x ≥ 0, the ratio k/m, the average CPU ratio t̄/t∗: all
averages are computed over 5 solution runs over a given instance size and ϵ value.

4.3 RP performance on Max Flow
The application of RPs to the Max Flow problem looks like a success story: the ratio
of projected to original optimal objective function value is very close to 1.0 and constant
w.r.t. ϵ (f̄/f∗ ≥ 1 is normal insofar as Max Flow is a maximization problem, and TLP is
a relaxation of LP). The feasibility error of the retrieved solution related to the equality
constraints Ax = b is very close to zero, and the error w.r.t. x ≥ 0 decreases as m increases
(a healthy behaviour in RPs) and also as ϵ increases (implying that maximum negativity
error increases more slowly than the number of variables). The CPU time ratio decreases
proportionally to k/m, as expected. The only issue is that the objective function value at
the retrieved solution is only around 0.5 of the optimum.

4.4 RP performance on Diet
As mentioned in Sect. 4.1.1, the practical application of RPs to the Diet problem is not
successful, as shown by the plots in Fig. 2. The projected cost is almost always zero, because
the constraint projection allowed the solver to satisfy (D| −I)(q, r)⊤ = b using slack variables
only. This causes sizable errors in the retrieved solutions. As expected, the CPU time
taken to solve the projected formulation is a tiny fraction of the time to solve the original
formulation.

We tried to experiment with a modified projected objective (c | 1) so that we would
minimize the sum of the projected slack variables. This yielded quantitatively better results,
as shown in Fig. 3; qualitatively, the results still look like a failure.

4.5 RP performance on Quantile Regression
The results quality on Quantile Regression is mixed. The ratio f̄/f∗ is rather low, but
we note that it is higher (better) for low sizes and low ϵ values, which is a sign that ϵ should
be further decreased for all (and specially large) sizes. Interestingly, the objective value of
the retrieved solution x̃ has better quality. The feasibility errors of x̃ are zero for Ax = b,
and not negligible (around 0.2, with one outlier) for x ≥ 0: the trend, unfortunately, is not
decreasing, either with ϵ or m increasing. CPU time ratios are good.

To see whether increasing sizes and decreasing ϵ improved performances, we solved an
instance with m = 5000 and p = 100 with ϵ = 0.1, obtaining the following results.

SEA 2022



21:10 Practical Random Projections for LP

Figure 1 Max Flow plots (increasing ϵ on abscissae): instances of growing size on rows, objective
function ratios on the first column, feasibility errors on the second, k/m and CPU time ratio on the
third.

ϵ f̄/f∗ f̃/f∗ avgin avgeq k/m t̄/t∗

quantreg-5000
0.10 0.1460 0.3839 0.1784 0.0000 0.18 4.43

We can see that the objective function ratios of this instance provide a definite improvement
with respect to the three largest instances in Fig. 4 (m ∈ {1500, 2000, 2500}). The negativity
error is, however, of the same magnitude as before.

4.6 RP performance on Basis Pursuit
In the Basis Pursuit problem we see an encouraging trend of the ratio f̄/f∗, which starts
off at 0.8 for m = 500 and ϵ = 0.15, and indicates that ϵ should be decreased for larger sizes.
The retrieved solution was not computed on the “sandwich” variables s (see Eq. (BP)), but
as the ℓ1 norm of x̃. Since there are fewer constraints in the encoding matrix A, it follows
from compressed sensing theory that the sparsest solution is found less often, a fact that
increases the objective value of the retrieved solution. The feasibility errors are always zero



L. Liberti, B. Manca, and P.-L. Poirion 21:11

Figure 2 Diet plots (increasing ϵ on abscissae): instances of growing size on rows, objective
function ratios on the first column, feasibility errors on the second, k/m and CPU time ratio on the
third.

(for Ax = b and x ≥ 0), which happens because the variables x are unbounded. The CPU
time ratio is not as regular as for the other structures, but still denotes a remarkable time
saving when solving projected formulations.

To see whether increasing sizes and decreasing ϵ improved performances, we solved an
instance with m = 5000 and n = 6000 with ϵ = 0.1, obtaining the following results.

ϵ f̄/f∗ f̃/f∗ avgin avgeq k/m t̄/t∗

basispursuit-5000
0.10 0.4925 1.5395 0.0000 0.0000 0.17 0.09

An improvement with respect to the three largest instances in Fig. 5 (m ∈ {1500, 2000, 2500})
is present, which points to the correct trend, albeit not substantial.

SEA 2022



21:12 Practical Random Projections for LP

Figure 3 Diet plots with modified objective attempting to drive the slack variables to zero.

5 Conclusion

In this paper we have pursued a computational study of the application of random projections
to linear program data, based on solving original and projected formulations linear program
instances of various structures and sizes. We found that original formulations only involving
inequalities are particularly challenging, but those that natively involve equations behave
better. The sparsity of the constraint matrix does not appear to pose issues, as long as
sparse RPs are used. Lastly, the sizes we considered here are possibly at the lower end of the
range allowed by RPs: better results should be obtained with larger sizes and smaller values
of ϵ, which in turn imply larger CPU times.



L. Liberti, B. Manca, and P.-L. Poirion 21:13

Figure 4 Quantile Regression plots (increasing ϵ on abscissae): instances of growing size on
rows, objective function ratios on the first column, feasibility errors on the second, k/m and CPU
time ratio on the third.

SEA 2022



21:14 Practical Random Projections for LP

Figure 5 Basis Pursuit plots (increasing ϵ on abscissae): instances of growing size on rows,
objective function ratios on the first column, feasibility errors on the second, k/m and CPU time
ratio on the third.

References

1 D. Achlioptas. Database-friendly random projections: Johnson-Lindenstrauss with binary
coins. Journal of Computer and System Sciences, 66:671–687, 2003.

2 D. Amelunxen, M. Lotz, M. McCoy, and J. Tropp. Living on the edge: phase transitions
in convex programs with random data. Information and Inference: A Journal of the IMA,
3:224–294, 2014.

3 E. Candès and T. Tao. Decoding by Linear Programming. IEEE Transactions on Information
Theory, 51(12):4203–4215, 2005.



L. Liberti, B. Manca, and P.-L. Poirion 21:15

4 C. D’Ambrosio, L. Liberti, P.-L. Poirion, and K. Vu. Random projections for quadratic
programs. Mathematical Programming B, 183:619–647, 2020.

5 S. Damelin and W. Miller. The mathematics of signal processing. CUP, Cambridge, 2012.
6 G. Dantzig. The Diet Problem. Interfaces, 20(4):43–47, 1990.
7 S. Dirksen. Dimensionality reduction with subgaussian matrices: A unified theory. Foundations

of Computational Mathematics, 16:1367–1396, 2016.
8 L. Ford and D. Fulkerson. Flows in Networks. Princeton University Press, Princeton, NJ,

1962.
9 R. Fourer and D. Gay. The AMPL Book. Duxbury Press, Pacific Grove, 2002.

10 IBM. ILOG CPLEX 20.1 User’s Manual. IBM, 2020.
11 P. Indyk. Algorithmic applications of low-distortion geometric embeddings. In Foundations of

Computer Science, volume 42 of FOCS, pages 10–33, Washington, DC, 2001. IEEE.
12 P. Indyk and A. Naor. Nearest neighbor preserving embeddings. ACM Transactions on

Algorithms, 3(3):Art. 31, 2007.
13 W. Johnson and J. Lindenstrauss. Extensions of Lipschitz mappings into a Hilbert space. In

G. Hedlund, editor, Conference in Modern Analysis and Probability, volume 26 of Contemporary
Mathematics, pages 189–206, Providence, RI, 1984. AMS.

14 E. Jones, T. Oliphant, and P. Peterson. SciPy: Open source scientific tools for Python, 2001.
[Online; accessed 2016-03-01]. URL: http://www.scipy.org/.

15 D. Kane and J. Nelson. Sparser Johnson-Lindenstrauss transforms. Journal of the ACM,
61(1):4, 2014.

16 R. Koenker. Quantile regression. CUP, Cambridge, 2005.
17 L. Liberti. Decoding noisy messages: a method that just shouldn’t work. In A. Deza, S. Gupta,

and S. Pokutta, editors, Data Science and Optimization. Fields Institute, Toronto, pending
minor revisions.

18 L. Liberti, P.-L. Poirion, and K. Vu. Random projections for conic programs. Linear Algebra
and its Applications, 626:204–220, 2021.

19 L. Liberti and K. Vu. Barvinok’s naive algorithm in distance geometry. Operations Research
Letters, 46:476–481, 2018.

20 D. Pucci de Farias and B. Van Roy. On constraint sampling in the Linear Programming
approach to approximate Dynamic Programming. Mathematics of Operations Research,
29(3):462–478, 2004.

21 G. van Rossum and et al. Python Language Reference, version 3. Python Software Foundation,
2019.

22 S. Vempala. The Random Projection Method. Number 65 in DIMACS Series in Discrete
Mathematics and Theoretical Computer Science. AMS, Providence, RI, 2004.

23 S. Venkatasubramanian and Q. Wang. The Johnson-Lindenstrauss transform: An empirical
study. In Algorithm Engineering and Experiments, volume 13 of ALENEX, pages 164–173,
Providence, RI, 2011. SIAM.

24 K. Vu, P.-L. Poirion, C. D’Ambrosio, and L. Liberti. Random projections for quadratic
programs over a Euclidean ball. In A. Lodi and et al., editors, Integer Programming and
Combinatorial Optimization (IPCO), volume 11480 of LNCS, pages 442–452, New York, 2019.
Springer.

25 K. Vu, P.-L. Poirion, and L. Liberti. Random projections for linear programming. Mathematics
of Operations Research, 43(4):1051–1071, 2018.

26 J. Yang, X. Meng, and M. Mahoney. Quantile regression for large-scale applications. SIAM
Journal of Scientific Computing, 36(5):S78–S110, 2014.

SEA 2022

http://www.scipy.org/




Computing Maximal Unique Matches with the
r-Index
Sara Giuliani !

Department of Computer Science, University of Verona, Italy

Giuseppe Romana !

Department of Computer Science, University of Palermo, Italy

Massimiliano Rossi !

Department of Computer and Information Science and Engineering, University of Florida,
Gainesville, FL, USA

Abstract
In recent years, pangenomes received increasing attention from the scientific community for their
ability to incorporate population variation information and alleviate reference genome bias. Maximal
Exact Matches (MEMs) and Maximal Unique Matches (MUMs) have proven themselves to be useful
in multiple bioinformatic contexts, for example short-read alignment and multiple-genome alignment.
However, standard techniques using suffix trees and FM-indexes do not scale to a pangenomic level.
Recently, Gagie et al. [JACM 20] introduced the r-index that is a Burrows-Wheeler Transform
(BWT)-based index able to handle hundreds of human genomes. Later, Rossi et al. [JCB 22] enabled
the computation of MEMs using the r-index, and Boucher et al. [DCC 21] showed how to compute
them in a streaming fashion.

In this paper, we show how to augment Boucher et al.’s approach to enable the computation
of MUMs on the r-index, while preserving the space and time bounds. We add additional O(r)
samples of the longest common prefix (LCP) array, where r is the number of equal-letter runs of the
BWT, that permits the computation of the second longest match of the pattern suffix with respect
to the input text, which in turn allows the computation of candidate MUMs. We implemented a
proof-of-concept of our approach, that we call mum-phinder, and tested on real-world datasets. We
compared our approach with competing methods that are able to compute MUMs. We observe that
our method is up to 8 times smaller, while up to 19 times slower when the dataset is not highly
repetitive, while on highly repetitive data, our method is up to 6.5 times slower and uses up to 25
times less memory.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases Burrows–Wheeler Transform, r-index, maximal unique matches, bioinformat-
ics, pangenomics

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.22

Related Version Full Version: https://arxiv.org/abs/2205.01576

Supplementary Material Software: https://github.com/saragiuliani/mum-phinder
archived at swh:1:dir:5408c1a53cd0cb26926d545f3748ad0dbb207263

Funding Massimiliano Rossi : National Science Foundation NSF EAGER (Grant No. 2118251), and
National Institutes of Health (NIH) NIAID (Grant No. HG011392).

Acknowledgements We thank Travis Gagie for suggesting this problem as a project for his course
CSCI 6905 at Dalhousie University. We also thank the anonymous reviewers for their insightful
comments.

© Sara Giuliani, Giuseppe Romana, and Massimiliano Rossi;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 22; pp. 22:1–22:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sara.giuliani_01@univr.it
https://orcid.org/0000-0002-1179-3929
mailto:giuseppe.romana01@unipa.it
https://orcid.org/0000-0002-3489-0684
mailto:rossi.m@ufl.edu
https://orcid.org/0000-0002-3012-1394
https://doi.org/10.4230/LIPIcs.SEA.2022.22
https://arxiv.org/abs/2205.01576
https://github.com/saragiuliani/mum-phinder
https://archive.softwareheritage.org/swh:1:dir:5408c1a53cd0cb26926d545f3748ad0dbb207263;origin=https://github.com/saragiuliani/mum-phinder;visit=swh:1:snp:cee111b9e8109ae19a056679449b594b2bbcda3b;anchor=swh:1:rev:07c5062a73ca3218fc76e9346b0cabce8f4c4963
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


22:2 Computing Maximal Unique Matches with the r-Index

1 Introduction

With the advent of third-generation sequencing, the quality of assembled genomes drastically
increased. In the last year the Telomere-to-Telomere project released the first complete
haploid human genome [19] and the Human Pangenome Reference Consortium (HPRC)
plans to release hundreds of high-quality assembled genomes to be used as a pangenome
reference. One important step to enable the use of these high-quality assembled genomes is
to build a multiple-sequence alignment of the genomes. Tools like MUMmer [13, 18], and
Mauve [5] proposed a solution to the original problem of multiple-sequence alignment by
using Maximal Unique Matches (MUMs) between two input sequences as prospective anchors
for an alignment. MUMs are long stretches of the genomes that are equal in both genomes
and occur only once in each of them. To reduce the computational costs of computing the
MUMs, progressive approaches have also been developed like progressive Mauve [6] and
progressive Cactus [1] that enables the construction of pangenome graphs, among others,
that have been used in recent aligners like Giraffe [21]. MUMs have also been proven useful
for strain level read quantification [23], and as a computationally efficient genomic distance
measure [7].

Recent advances in pangenomics [20, 3] demonstrated that it is possible to index hundreds
of Human Genomes and to query such an index to find supersets of MUMs that are maximal
exact matches (MEMs), which are substrings of the pattern that occur in the reference and
that cannot be extended neither on the left nor on the right. The tool called MONI [20]
requires two passes over the query sequence to report the MEMs. Later PHONI [3] showed
how to modify the query to compute the MEMs in a streaming fashion, with only one single
pass over the query string. Both MONI and PHONI are built on top of an r-index [11] and
a straight-line program SLP [9]. Their main objective is to compute the so called matching
statistics (see Definition 3) of the pattern with respect to the text, that can be used to
compute the MEMs with a linear scan. While, MONI uses the SLP for random access to the
text, and needs to store additional information to compute the matching statistics and the
MEMs, PHONI uses the SLP to compute efficient longest common extension (LCE) queries
which allow to compute the matching statistics and the MEMs with only one scan of the
query.

We present mum-phinder, a tool that is able to compute MUMs of a query pattern
against an index on a commodity computer. The main observation of our approach is to
extend the definition of matching statistics to include, for each suffix of the pattern, the
information of the length of the second longest match of the suffix in the text, which allows
to decide whether a MEM is also unique. We extended PHONI to keep track at each step of
the query, the second longest match of the pattern in the index, and its length. To do this,
we add O(r) samples of the longest common prefix (LCP) array to PHONI.

We evaluated our algorithm on real-world datasets, and we tested mum-phinder against
MUMmer [18]. We measured time and memory required by both tools for sets of increasing
size of haplotypes of human chromosome 19 and SARS-CoV2 genomes and queried using one
haplotype of chromosome 19 and one SARS-CoV2 genome not present in the dataset. We
report that mum-phinder requires consistently less memory than MUMer for all experiments
being up to 25 times smaller. Although MUMer is generally faster than ours (18 times faster
for 1 haplotype of chromosome 19, and 6.5 times faster for 12,500 SARS-CoV2 genomes),
it cannot process longer sequences due to memory limitations. Additionally, we observe
that when increasing the number of sequences in the dataset, the construction time of
mum-phinder increases, while the query time decreases. This phenomenon is due to the



S. Giuliani, G. Romana, and M. Rossi 22:3

increase in the number of matches in the search process, that prevents the use of more
computational-demanding operations. Note that, due to the use of the r-index, the efficiency
of our method increases when the dataset is highly repetitive as in the case of pangenomes.

2 Preliminaries

Let Σ = {a0 < a1 < . . . < aσ−1} be an ordered alphabet, where < represents the lexicograph-
ical order. A string (or text) T is a sequence of characters T [0]T [1] · · ·T [n − 1] such that
T [j] ∈ Σ for all j ∈ [0..n). The length of a string is denoted by |T |. We refer to the empty
string with ε, that is the only substring of length 0.

We denote a factor (or substring) of T as T [i..j) = T [i]T [i + 1] · · ·T [j − 1] if i < j, and
T [i..j) = ε otherwise. We refer to T [0..j) as the j − 1-th prefix of T and to T [i..n) as the
i-th suffix of T .

We assume throughout the paper that the text T is terminated by termination character
$ that does not occur in the original text and it is lexicographically smaller than all the other
characters in the alphabet.

Suffix array, inverse suffix array, and longest common prefix array

The Suffix array (SA) of a string T [0..n) is an array of length n such that T [SA[i]..n) <

T [SA[j]..n) for any 0 ≤ i < j < n. The Inverse Suffix array (ISA) is the inverse of
SA, i.e. ISA[i] = j if and only if SA[j] = i. Let lcp(u, v) be the length of the longest
common prefix between two strings u and v, that is u[0..lcp(u, v)) = v[0..lcp(u, v)) but
u[lcp(u, v)] ̸= v[lcp(u, v)] (assuming lcp(u, v) < min{|u|, |v|}). The Longest Common Prefix
array (LCP) of T [0..n) is an array of length n such that LCP[0] = 0 and LCP[i] = lcp(T [SA[i−
1]..n), T [SA[i]..n)), for any 0 < i < n.

Burrows-Wheeler Transform, Run-Length Encoding, and r-index

The Burrows-Wheeler Transform (BWT) of T is a reversible transformation of the characters
of T [4]. That is the concatenation of the characters preceding the suffixes of T listed in
lexicographic order, i.e., for all 0 ≤ i < n, BWT[i] = T [SA[i]− 1 mod n]. The LF-mapping
is the function that maps every character in the BWT with its preceding text character, in
the BWT, i.e. LF(i) = ISA[SA[i]− 1 mod n].

The run-length encoding of a string T is the representation of maximal equal-letter runs
of T as pairs (c, ℓ), where c is the letter of the run and ℓ > 0 is the length of the run. For
example, the run length encoding of T = AAACAAGGGG is (A, 3)(C, 1)(A, 2)(G, 4). We
refer to the number of runs of the BWT with r.

The BWT tends to create long equal-letter runs on highly repetitive texts such as genomic
datasets. The run-length encoding applied to the BWT (in short RLBWT) is the basis of
many lossless data compressors and text indexes, such as the FM-index [8] which is the base
of widely used bioinformatics tools such as Bowtie [14] and BWA [15]. Although the BWT
can be stored and queried in compressed space [17], the number of samples of the SA required
by the index grows with the length of the uncompressed text. To overcome this issue Gagie
et al. [11] proposed the r-index whose number of SA samples grows with the number of runs
r of the BWT. The r-index is a text index composed by the run-length encoded BWT and
the SA sampled at run boundaries, i.e., in correspondence of the first and last character of a
run of the BWT, and it is able to retrieve the missing values of the SA by using a predecessor
data structure on the samples of the SA.

SEA 2022



22:4 Computing Maximal Unique Matches with the r-Index

Grammar and straight-line program

A context-free grammar G = {V, Σ, R, S} consists in a set of variables V , a set of terminal
symbols Σ, a set of rules R of the type A 7→ α, where A ∈ V and α ∈ {V ∪ Σ}∗, and the
start variable S ∈ V . The language of the grammar L(G) ⊆ Σ∗ is the set of all words over
the alphabet of terminal symbols generated after applying some rules in R starting from S.
When L(G) contains only one string T , that is G only generates T , then the grammar G is
called straight-line program (SLP).

Longest Common Extension, rank, and select queries

Given a text T [0..n), the longest common extension (LCE) query between two positions
0 ≤ i, j < n in T is the length of the longest common prefix of T [i..n) and T [j..n). Thus, if
ℓ = LCE(i, j), then T [i..i + ℓ) = T [j..j + ℓ) and either T [i + ℓ] ̸= T [j + ℓ] or either i + ℓ = n

or j + ℓ = n.
Given a character c and an integer i, we define T.rankc(i) as the number of occurrences

of the character c in the prefix T [0..i), while we define T.selectc(i) as the position p ∈ [0..n)
of the ith occurrence of c in T if it exists, and p = n otherwise.

3 Computing MUMs using MS

Given a text T [0..n) and a pattern P [0..m), we refer to any factor in P that also occurs in T

as a match. A match w in P can be defined as a pair (i, ℓ) such that w = P [i..i + ℓ). We say
that w is maximal if the match can not be extended neither on the left nor on the right, i.e.
either i = 0 or P [i− 1..i + ℓ) does not occur in T and either i = m− ℓ or P [i..i + ℓ + 1) does
not occur in T .

▶ Definition 1. Given a text T and a pattern P , a Maximal Unique Match (MUM) is a
maximal match that occurs exactly once in T and P .

▶ Example 2. Let T = ACACTCTTACACCATATCATCAA$ be the text and P =
AACCTAA the pattern. The factor AA is maximal in P and occurs only once in T ,
while it is repeated in P at positions 0 and 5. The factor CT of P starting in position 3 is a
maximal match that occurs only once in P , but it is not unique in T . The factor CC of P

starting in position 2 is unique in both T and P , but both can be extended on the left with
an A. On the other hand, the factor P [1..4) = T [10..13) =ACC is a MUM.

From now on, we refer to the set of all maximal unique matches between T and P as
MUMs. In [3] the authors showed how to compute maximal matches (not necessarily unique
neither in T nor P ) in O(r + g) space, where r is the number of runs of the BWT of T and g

is the size of the SLP representing the text T . This is achieved by computing the matching
statistics, for which we report the definition given in [3].

▶ Definition 3 ([3]). The matching statistics MS of a pattern P [0..m) with respect to a text
T [0..n) is an array of (position, length)-pairs MS[0..m) such that

P [i..i + MS[i].len) = T [MS[i].pos..MS[i].pos + MS[i].len);
either i = m−MS[i].len or P [i..i + MS[i].len + 1) does not occur in T .

That is, MS[i].pos is the starting position in T of an occurrence of the longest prefix of P [i..m)
that occurs in T , and MS[i].len is its length.

A known property of the matching statistics is that for all i > 0, MS[i].len ≥ MS[i −
1].len− 1.



S. Giuliani, G. Romana, and M. Rossi 22:5

Our objective is to show how to further compute MUMs within the same space bound.
For our purpose, we extend the definition of MS array with an additional information field
to each entry.

▶ Definition 4. Given a text T = [0 . . . n) and a pattern P = [0 . . . m), we define the extended
matching statistics eMS as an array of (pos, len, slen)-tuples eMS[0 . . . m) such that

eMS[i].pos = MS[i].pos and eMS[i].len = MS[i].len;
eMS[i].slen is the largest value ℓ for which there exists p ̸= eMS[i].pos such that P [i..i+ℓ) =
T [p..p + ℓ).

In other words, eMS[i].slen is the length of the second longest match of a prefix P [i..n) in T .

Note that eMS[i].slen ≤ eMS[i].len, for any i ∈ [0..m).

3.1 Checking Maximality and Uniqueness of matches
We now show how to compute MUMs by using the eMS array. Lemma 5 shows how to verify
if a match occurs only once in T .

▶ Lemma 5. Given a text T , a pattern P , and the eMS array computed for P with respect to
T , let w = P [i..i + eMS[i].len) = T [eMS[i].pos..eMS[i].pos + eMS[i].len) be a maximal match
between a pattern P [0..m) and a text T [0..n)$. Then w occurs exactly once in T if and only
if eMS[i].slen < eMS[i].len.

Proof. For the if direction, we assume by contradiction that w is unique in T and
that eMS[i].slen ≥ eMS[i].len. By definition, eMS[i].slen ≤ eMS[i].len, hence we assume
eMS[i].slen = eMS[i].len. By definition of eMS[i].slen there exists p ̸= eMS[i].pos such that
w = P [i..i + eMS[i].slen) = T [p..p + eMS[i].slen) = T [eMS[i].pos..eMS[i].pos + eMS[i].len),
that contradicts the assumption that w occurs only once in the text T . Analogously, as-
sume that eMS[i].slen < eMS[i].len and that there exists a position j ̸= eMS[i].pos such that
T [j..j +eMS[i].len) = T [eMS[i].pos..eMS[i].pos+eMS[i].len). However, this is in contradiction
with the definition of eMS[i].slen and the assumption of eMS[i].slen < eMS[i].len, concluding
the proof. ◀

We check the maximality of a match in the pattern using an analogous approach as
in [20], that we summarize with the following lemma.

▶ Lemma 6. Given a text T , a pattern P , and the eMS array computed for P with respect
to T , let w = P [i..i + eMS[i].len) be a match with a text T . Then w is a maximal match if
and only if either i = 0 or eMS[i− 1].len ≤ eMS[i].len.

Proof. First we show that if w = P [i..i + eMS[i].len) is a maximal match then either
i = 0 or eMS[i − 1].len ≤ eMS[i].len. Let us assume that w is not maximal and either
i = 0 or eMS[i − 1].len ≤ eMS[i].len, hence either P [i..i + eMS[i].len + 1) occurs in T or
P [i− 1..i + eMS[i].len) occurs in T . The former case is in contradiction with the definition
of eMS, hence P [i − 1..i + eMS[i].len) occurs in T . This implies that i > 0 and that
eMS[i − 1].len = eMS[i].len + 1 in contradiction with the hypothesis that eMS[i − 1].len ≤
eMS[i].len.

Now we show that if either i = 0 or eMS[i−1].len ≤ eMS[i].len then w is a maximal match.
By definition of eMS[i].len, we know that either i + eMS[i].len = m or P [i..i + eMS[i].len + 1)
does not occur in T$, that is w cannot be extended on the right in P . If i = 0 we can not
further extend the match w on the left, hence w is maximal. If i > 0, then by definition of
matching statistics it holds that eMS[i− 1].len ≤ eMS[i].len + 1. Note that if there exists a

SEA 2022



22:6 Computing Maximal Unique Matches with the r-Index

character a ∈ Σ such that P [i − 1..i − 1 + eMS[i − 1].len) = aw and aw occurs in T , then
eMS[i− 1] = eMS[i] + 1. Hence if eMS[i− 1] = eMS[i] + 1 then it is easy to see that w is not
maximal because it can be extended on the left. It also follows that if eMS[i− 1] ≤ eMS[i]
then w cannot be extended on the left, hence it is maximal and the thesis follows. ◀

Let L ⊆ [0..m) be the subset of positions in P such that both Lemma 5 and Lemma 6
hold, i.e. L contains all the positions in P where a maximal match unique in T starts. One
can notice that if a match wi = P [i..i + eMS[i].len) is a MUM, then i ∈ L.

We first show that given i ∈ L, if a match wi is not unique in P , then the second
occurrence of wi in P is contained in another maximal match unique in T .

▶ Lemma 7. Given a text T , a pattern P , and the eMS array computed for P with respect
to T , let L be the subset of positions in P such that wi = P [i..i + eMS[i].len) is maximal and
occurs only once in T for all i ∈ L. Then, wi is not unique in P if and only if there exist
i′ ∈ L \ {i} and two possibly empty strings u, v such that wi′ = uwiv is a factor of P .

Proof. Let us assume by contradiction that such i′ does not exist, then let j /∈ L be such
that P [j..j + |wi|) = wi. Since j /∈ L then either P [j..j + |wi|) is not unique in T , or it is not
maximal. The former case it contradicts i ∈ L because P [j..j + |wi|) = wi occurs twice in
T . Hence, P [j..j + |wi|) occurs only once in T and it is not maximal, therefore there exists
k ∈ L such that k ≤ j and |wk| > |wi| which contradict the hypothesis. The other direction
of the proof is straightforward since by definition of wi′ , either wi occurs twice in P or it is
not maximal. ◀

The following Lemma shows, for any i ∈ L, if a match wi is unique in P by using the
eMS array.

▶ Lemma 8. Given a text T , a pattern P , and the eMS array computed for P with respect to T ,
let L be the subset of positions in P such that wi = P [i..i + eMS[i].len) is maximal and occurs
only once in T , for all i ∈ L. Then, wi occurs only once in P if and only if, for all i′ ∈ L\{i},
either eMS[i].pos < eMS[i′].pos or eMS[i].len + eMS[i].pos > eMS[i′].len + eMS[i′].pos.

Proof. We first show that if wi occurs only once in P then for all i′ ∈ L \ {i}, either
eMS[i].pos < eMS[i′].pos or eMS[i].len + eMS[i].pos > eMS[i′].len + eMS[i′].pos. Since L
contains only positions of maximal matches unique in T , then for all for i ∈ L we can map wi to
its occurrence in the text T [eMS[i].pos..eMS[i].pos + eMS[i].len). Since wi occurs only once in
T , by Lemma 7 we have that eMS[i′].pos = eMS[i].pos−|u| and eMS[i′].len = eMS[i].len+|u|+
|v|. Hence, eMS[i′].pos ≤ eMS[i].pos and eMS[i].pos + eMS[i].len ≤ eMS[i′].pos + eMS[i′].len.

We now show the other direction of the implication. If given a position i ∈ L for all i′ ∈
L\ {i}, either eMS[i].pos < eMS[i′].pos or eMS[i].len + eMS[i].pos > eMS[i′].len + eMS[i′].pos
then wi occurs only once in P . Assuming by contradiction that there exists a position i ∈ L
such that for all i′ ∈ L \ {i}, either eMS[i].pos < eMS[i′].pos or eMS[i].len + eMS[i].pos >

eMS[i′].len + eMS[i′].pos and wi does not occur only once in P , then by Lemma‘7 there
exist j ∈ L and two possibly empty strings u, v such that wj = uwiv is a factor of P . It
is easy to see that eMS[j].pos = eMS[i].pos − |u| and eMS[j].len = eMS[i].len + |u| + |v|.
Hence, eMS[j].pos ≤ eMS[i].pos and eMS[i].pos + eMS[i].len ≤ eMS[j].pos + eMS[j].len, in
contradiction with the hypothesis, concluding the proof. ◀

We can summarize the previous Lemmas in the following Theorem.

▶ Theorem 9. Given a text T , a pattern P , and the eMS array computed for P with respect
to T , for all 0 ≤ i < m, wi = P [i..i + eMS[i].len) is a MUM if and only if i ∈ L and Lemma 8
holds.



S. Giuliani, G. Romana, and M. Rossi 22:7

▶ Example 10. Let T = ACACTCTTACACCATATCATCAA$ be the text and P =
AACCTAA the pattern. In the table below we report the values of the eMS of P with respect
to T .

i 0 1 2 3 4 5 6
P [i] A A C C T A A

eMS[i].pos 21 10 11 5 6 21 8
eMS[i].len 2 3 2 2 2 2 1

eMS[i].slen 1 2 1 2 2 1 1

It is easy to check that L = {0, 1, 5}, where L contains those indices i which verify both
Lemma 5 (eMS[i].slen < eMS[i].len) and Lemma 6 (either i = 0 or eMS[i−1].len ≤ eMS[i].len).
Note that eMS[0].pos = eMS[5].pos and eMS[0].len = eMS[5].len, and by Lemma 8 we know
that P [0..2)(= P [5..7)) is repeated in P . Since eMS[1].pos < eMS[0].pos = eMS[5].pos, by
Theorem 9 the match P [1..4) = T [10..13) = ACC is a MUM.

3.2 Computing the second longest match

Now we show how we can compute eMS extending the algorithm presented in Boucher et
al. [3] while preserving the same space-bound.

We can apply verbatim the algorithm of [3] to compute the eMS[i].pos and eMS[i].len
while we extend the algorithm to include the computation of eMS[i].slen. The following
Lemma shows how to find the second longest match using the LCP array.

▶ Lemma 11. Given a text T , a pattern P , and the eMS array of P with respect to T , let
P [i..i + eMS[i].len) = T [eMS[i].pos..eMS[i].pos + eMS[i].len) and q = ISA[eMS[i].pos]. Then,
for all 0 ≤ q < n, eMS[i].slen = max{LCP[q], LCP[q + 1]}, where LCP[n] = 0.

Proof. Let us consider the set T = {w0 < w1 < . . . < wn} of the lexicographically sorted
suffixes of T . Then, for all i ∈ [0..m), at least one suffix of T starting with the second longest
match P [i..i + eMS[i].slen) must be adjacent to wq = T [eMS[i].pos..n) in T . Hence, assuming
q ̸= 0 and q ̸= n, eMS[i].slen is either the LCP value between wq−1 and wq or between wq

and wq+1, that are respectively LCP[q] and LCP[q + 1]. Note that if q = 0 then both LCP[0]
and LCP[1] exist, while for the case q = n only LCP[n] is available, that is eMS[i].slen must
be LCP[n]. ◀

4 Algorithm description

In this section we present the algorithm that we use to compute MUMs that builds on the
approach of Boucher et al. [3] for the computation of the MS array. The authors showed
how to use the r-index and the SLP of [10, 9] to compute the MS array of a pattern P [0..m)
in O(m · (tLF + tLCE + tpred)) time, where tLF, tLCE, and tpred represent the time to perform
respectively one LF, one LCE, and one predecessor query. Our algorithm extends Boucher et
al.’s method by storing additional O(r) samples of the LCP array. Given a text T [0..n) and
a pattern P [0..m), in the following, we first show how to compute the eMS array of P with
respect to T using the r-index, the SLP, and the additional LCP array samples. Then we
show how to apply Theorem 9 to compute the MUMs from the eMS array.

SEA 2022



22:8 Computing Maximal Unique Matches with the r-Index

4.1 Computing the eMS array
The key point of the algorithm is to extend the last computed match backwards when possible,
otherwise we search for the new longest match that can be extended on the left by using the
BWT. Let q be the index such that P [i..i + eMS[i].len) = T [SA[q]..SA[q] + eMS[i].len) is the
longest match found at step i:

if BWT[q] = P [i− 1], then it can be extended on the left, i.e. P [i− 1..i + eMS[i].len) =
T [SA[q]− 1..SA[q] + eMS[i].len);
otherwise, we want to find the longest prefix of P [i..i + eMS[i].len) that is preceded
by P [i − 1] in the text T . As observed in Bannai et al. [2] it can be either the suffix
corresponding to the occurrence of P [i − 1] in the BWT immediately preceding or
immediately following q, that we refer to as qp and qs respectively. Formally, qp =
max{j < q | BWT[j] = P [i− 1]} and qs = min{j > q | BWT[j] = P [i− 1]}.

The algorithm to compute the pos and len entry of the eMS array is analogous to the
procedure detailed in [3]. We use the same data structures as the one defined in [3], that are
the run-length encoded BWT and the samples of the SA in correspondence of positions q

such that BWT[q] is either the first or the last symbol of an equal-letter run of the BWT.
Note that both qp and qs are respectively the last and the first index of their corresponding
equal-letter run.

An analogous reasoning can be formulated to compute the second longest match.

▶ Lemma 12. Given a text T [0..n), let LCP, SA and ISA be respectively the longest common
prefix array, suffix array and inverse suffix array of T . Then, for all 0 < q ≤ n, let i, j be two
integers such that q − 1 = LF[i] and q = LF[j], then if BWT[i] ̸= BWT[j] then LCP[q] = 0,
otherwise LCP[q] = LCE(SA[i], SA[j]) + 1.

Proof. Let wq be the q-th suffix in lexicographic order. Note that if wq = $ then LCP[q] =
LCP[q + 1] = 0. For all 1 ≤ q < n, if wq−1 = au$ and wq = bv$ for some a < b ∈ Σ and
some strings u and v, then LCP[q] = 0. On the other hand, if wq−1 = au$ and wq = av$,
then LCP[q] = 1 + lcp(u$, v$). The thesis follows by observing that the suffixes u$ and v$
respectively correspond to wi and wj . ◀

Note that, the second longest match can be retrieved from the LCP values in corres-
pondence of the longest maximal match (Lemma 11). Once we have the maximal match
in position q in the BWT, we can compute LCP[q] and LCP[q + 1] from the LCE queries on
T [SA[q]..n) with T [SA[qp]..n) and T [SA[qs]..n) (Lemma 12).

Moreover, assuming the index qp is the greatest index smaller than q such that BWT[qp] =
BWT[q], then LF(qp) = LF(q) − 1. It follows that if BWT[LF(qp)] = BWT[LF(q) − 1] =
BWT[LF(q)], then LCP[LF(q)]) is an extension of the LCE query computed between SA[qp]
and SA[q] (see Figure 1). Symmetrically, if qs is the smallest index greater than q such that
BWT[qs] = BWT[q], then LF(qs) = LF(q) + 1. Thus, at each iteration, we keep track of both
LCP values computed to find the second longest match.

With respect to the implementation in [3], we add O(r) sampled values from the LCP
array. Precisely, we store the LCP values between the first and the last two suffixes in
correspondence of each equal-letter run (if only one suffix corresponds to a run we simply
store 0). As shown later, this allows to overcome the problem of computing the LCE queries
in case a position p in T is not stored in the sampled SA, i.e. when ISA[p] is neither the first
nor the last index of its equal-letter run.

For simplicity of exposition we ignore the cases when a select query of a symbol c in
the BWT fails. However, whenever it happens, either c does not occur in T or we are
attempting to find an occurrence out of the allowed range, that is between 0 and the number



S. Giuliani, G. Romana, and M. Rossi 22:9

F BWT

LCE(SA[q],SA[qp])

q

qp

LF(qp )
LF(q )

LCP[LF(q)]

Figure 1 Application of Lemma 12 to compute LCP[LF(q)] by extending the result of the last
LCE query.

of occurrences of the character c minus 1. For the first case we can simply reset the algorithm
starting from the next character of P to process, while the second occurs when we are
attempting to compute an LCE query, whose result can be safely set to 0.

Algorithm 1 computes the extended matching statistics eMS of the pattern P = [0 . . . m)
with respect to the text T = [0 . . . n) starting from the last element of the pattern (line 2).
Moreover, we keep track of the first LCP values with respect to the maximal match of length 1
(line 3).

At each iteration of the loop (line 5), the algorithm tries to extend the match backwards
position by position. If the match can be extended (line 7), then we use Algorithm 2 to
compute the entry of the eMS. Otherwise, we use Algorithm 3 to compute the next entry of
eMS (line 9).

Match case

Suppose eMS[i + 1 . . . m) has already been processed and that P [i] = T [eMS[i + 1].pos− 1],
namely we can further extend the longest match at the previous step by one position to the
left. Algorithm 2 handles such scenario.

Let q be such that SA[q] = eMS[i + 1].pos − 1. Hence, we have that eMS[i].pos =
eMS[i + 1].pos− 1 and eMS[i].len = eMS[i + 1].len + 1 (line 1). At this point, we search for
the greatest index qp among those smaller than q such that BWT[qp] = P [i]. As discussed
before, when qp = q− 1, then LCP[LF(q)] = LCP[q] + 1 = lcpp + 1 (line 3). Otherwise we can
compute the LCE query between SA[q] and SA[qp], to which we add 1 for the match with
P [i] in correspondence of BWT[q] and BWT[qp] (line 6). Note that SA[q] = eMS[i + 1].pos,
while qp is the last index of its equal-letter run (and therefore SA[qp] is stored).

Analogously we compute lcps (lines 7-10) and, by Lemmas 11 and 12, we assign to
eMS[i].slen the maximum between lcpp and lcps.

SEA 2022



22:10 Computing Maximal Unique Matches with the r-Index

Algorithm 1 Computation of eMS.

Input : Pattern P [0, m)
Output : Extended matching statistics eMS[0..m)

1 q ← BWT.selectP [m−1](1)
2 eMS[m− 1]← (pos : SA[q]− 1, len : 1, slen : 1)
3 lcpp ← 0, lcps ← 1
4 q ← LF(q)
5 for i← m− 2 down to 0 do
6 if BWT[q] = P [i] then
7 eMS[i], lcpp, lcps ← MSMatch(P [i], q, eMS[i + 1].pos, eMS[i + 1].pos, lcpp, lcps)
8 else
9 eMS[i], lcpp, lcps ←

MSMisMatch(P [i], q, eMS[i + 1].pos, eMS[i + 1].pos, lcpp, lcps)
10 q ← LF(q)
11 return eMS

Mismatch case

We use Algorithm 3 when q is such that BWT[q] ̸= P [i]. We search for the index q′ in SA
such that, among the suffixes of T preceded by P [i], at position SA[q′] in T starts the longest
match with a prefix of P [i + 1..m). Note that T [SA[q′]− 1] = P [i], and that q′ is either qp

or qs.
Hence, if qp = q − 1, then by Lemma 12 the longest common prefix of T [SA[q′]..n) and

P [i + 1..m) has length lcp′
p = lcpp computed at the previous step (line 5), otherwise we

compute and store the LCE between T [q..n) and T [qp..n) (line 7). A symmetric procedure is
used to compute lcp′

s (lines 8-11).
Without loss of generality, we assume that lcp′

s ≥ lcp′
p, hence eMS[i].pos = SA[qs] − 1.

Then eMS[i].len = lcp′
s+1 and lcpp = lcp′

p+1 (line 13). We add 1 to both lcp′
s and lcp′

p because
both matches can be extended by one position on the left since P [i] = BWT[qp] = BWT[qs].
In order to compute eMS[i].slen we need to compute the value of lcps with respect to qs. To
do so, we look for the smallest index q′

s greater than qs such that BWT[q′
s] = P [i], and then

apply a similar procedure to Algorithm 2 (lines 14-18). In this case, if BWT[qs + 1] = P [i],
then we can retrieve lcps from LCP[qs + 1] since qs is in correspondence of a run boundary.
Symmetrically we handle the case lcp′

p > lcp′
s (lines 20-26). Finally, we compute eMS[i].slen

by picking the maximum between lcpp and lcps.

▶ Theorem 13. Given a text T [0..n), we can build a data structure in O(r + g) space that
allows to compute the set MUMs between any pattern P [0..m) and T in O(m·(tLF+tLCE+tpred))
time.

Proof. Algorithm 1, Algorithm 2 and Algorithm 3 show how to compute the eMS array
in m steps by using the data structure used in [3] of size O(r + g), to which we add O(r)
words from the LCP array, preserving the space bound. Since at each step the dominant cost
depends on the LF, LCE, and rank/select queries, eMS is computed in O(m(tLF + tLCE + tpred))
time. By Lemmas 5 and 6, we can build the set L in O(m) steps from the eMS array. Recall
that L contains those indices i ∈ [0..m) such that P [i..i + eMS[i].len) is a maximal match
that occurs only once in T .



S. Giuliani, G. Romana, and M. Rossi 22:11

Algorithm 2 MSMatch(P [i], q, eMS[i + 1].pos, eMS[i + 1].len, lcpp, lcps).

1 pos← eMS[i + 1].pos− 1, len← eMS[i + 1].len + 1
2 c← BWT.rankP [i](q)
3 if BWT[q − 1] = P [i] then

lcpp ← lcpp + 1
4 else
5 qp ← BWT.selectP [i](c)
6 lcpp ← min(lcpp, LCE(eMS[i + 1].pos, SA[qp])) + 1
7 if BWT[q + 1] = P [i] then

lcps ← lcps + 1
8 else
9 qs ← BWT.selectP [i](c + 2)

10 lcps ← min(lcps, LCE(eMS[i + 1].pos, SA[qs])) + 1
11 slen← max(lcpp, lcps)
12 return (pos, len, slen), lcpp, lcps

Now we have to search those indices in L that are also unique in P . A simple algorithm is
to build both the LCP and ISA array of P , and then check for each i ∈ L if both LCP[ISA[i]]
and LCP[ISA[i] + 1] (or only LCP[ISA[i]] if ISA[i] = m) are smaller than eMS[i].len, i.e. the
same property that we use to check the uniqueness in T . Both structures can be build
in O(m) time. The overall time is O(m(tLF + tLCE + tpred) + m + m), which collapses to
O(m(tLF + tLCE + tpred)). ◀

Note that both g and tLCE depends on the grammar scheme chosen. In fact, if exists a
data structure of size λ that supports LCE queries on a text T , then we can still compute
MUMs in O(r + λ) space and O(m · (tLF + tLCE + tpred)) time, with tLCE that depends on the
data structure used.

4.2 Computing MUMs from eMS
Here we present a different approach to compute the MUMs from the eMS from the one in
Theorem 13, that is of more practical use, and that does not require sorting the suffixes of P .
We summarize this approach in Algorithm 4.

Let L be the set of indexes i ∈ [0..m) such that P [i..eMS[i].len) =
T [eMS[i].pos..eMS[i].pos + eMS[i].len) is a maximal and unique match in T . By Lemmas
5 and 6, we can check in constant time if an index i belongs to L. Note that building L
(lines 3-4) can be also executed in streaming while computing the eMS array (for simplicity
of exposition of the algorithms we have separated the procedures). Observe that a match
P [i..i + eMS[i].len) such that i ∈ L is a MUM if and only if it is not fully contained into
another candidate, i.e. it does not exist j ∈ L \ {i} such that (i) eMS[j].pos ≤ eMS[i].pos
and (ii) eMS[i].pos + eMS[i].len ≤ eMS[j].pos + eMS[j].len (Theorem 9). Hence, we sort
the elements in L with respect to the position in T , and starting from L[0], we compare
every entry with the following and if both factors are not contained into the other, we store
in the set MUMs the one with the smallest starting position and keep track of the other
one, otherwise we simply discard the one that is repeated and continue with the following
iteration.

SEA 2022



22:12 Computing Maximal Unique Matches with the r-Index

Algorithm 3 MSMismatch(P [i], q, eMS[i + 1].pos, eMS[i + 1].len, lcpp, lcps).

1 c← BWT.rankP [i](q)
2 qp ← BWT.selectP [i](c)
3 qs ← BWT.selectP [i](c + 1)
4 if qp = q − 1 then
5 lcp′

p ← lcpp

6 else
7 lcp′

p ← min(eMS[i + 1].len, LCE(eMS[i + 1].pos, SA[qp]))
8 if qs = q + 1 then
9 lcp′

s ← lcps

10 else
11 lcp′

s ← min(eMS[i + 1].len, LCE(eMS[i + 1].pos, SA[qs]))
12 if lcp′

p ≤ lcp′
s then

13 pos← SA[qs]− 1, len← lcp′
s + 1, lcpp ← lcp′

p + 1
14 q′

s ← BWT.selectP [i](c + 2)
15 if q′

s = qs + 1 then
16 lcps ← min(len, LCP[qs + 1] + 1)
17 else
18 lcps ← min(len, LCE(SA[qs], SA[q′

s]) + 1)
19 q ← qs

20 else
21 pos← SA[qp]− 1, len← lcpp, lcps ← lcp′

s + 1
22 q′

p ← BWT.selectP [i](c− 1)
23 if q′

p = qp − 1 then
24 lcpp ← min(len, LCP[qp] + 1)
25 else
26 lcpp ← min(len, LCE(SA[qp], SA[q′

p]) + 1)
27 q ← qp

28 slen← max(lcpp, lcps)
29 return (pos, len, slen), lcpp, lcps

To handle the special case when two candidates i ̸= j ∈ L are such that
T [eMS[i].pos..eMS[i].pos + eMS[i].len) = T [eMS[j].pos..eMS[j].pos + eMS[j].len), we further
keep track whether the current maximal match is unique. This final procedure, excluding
the building time for L that is done in streaming, takes O(|L| log |L|) time, since the sorting
of the indexes in L dominates the overall cost.

5 Experimental results

We implemented our algorithm for computing MUMs and measured its performances on real
biological datasets. We performed the experiments on a desktop computer equipped with
3.4 GHz Intel Core i7-6700 CPU, 8 MiB L3 cache. and 16 GiB of DDR4 main memory. The
machine had no other significant CPU tasks running, and only a single thread of execution
was used. The OS was Linux (Ubuntu 16.04, 64bit) running kernel 4.4.0. All programs were
compiled using gcc version 8.1.0 with -O3 -DNDEBUG -funroll-loops -msse4.2 options. We
recorded the runtime and memory usage using the wall clock time, CPU time, and maximum
resident set size from /usr/bin/time.



S. Giuliani, G. Romana, and M. Rossi 22:13

Algorithm 4 retrieveMUMs(eMS).

Input : Extended Matching Statistics eMS[0, m)
Output : MUMs

1 L, MUMs← ∅
2 for i← 0 to m− 1 do
3 if (i = 0 or MS[i− 1].len ≤ MS[i].len) and MS[i].len > MS[i].slen then
4 L.add(i)

5 sortByPosition (L)
6 (p, ℓ)← (eMS[L[0]].pos, eMS[L[0]].len)
7 unique← true
8 for i← 1 to |L| − 1 do
9 (p′, ℓ′)← (eMS[L[i]].pos, eMS[L[i]].len)

10 if p = p′ then
11 if ℓ = ℓ′ then
12 unique← false
13 else if ℓ < ℓ′ then
14 ℓ← ℓ′

15 unique← true

16 else if ℓ < ℓ′ + (p′ − p) then
17 if unique then
18 MUMs.add((p, ℓ))
19 (p, ℓ)← (p′, ℓ′)
20 unique← true

21 if unique then
22 MUMs.add((p, ℓ))
23 return MUMs

Setup

We compare our method (mum-phinder) with MUMmer [18] (mummer). We tested two
versions of mummer, v3.27 [13] (mummer3) and v4.0 [18] (mummer4). We executed mummer with
the -mum flag to compute MUMs that are unique in both the text and the pattern, -l 1
to report all MUMs of length at least 1, and -n to match only A,C,G,and T characters.
We setup mum-phinder to produce the same output as mummer. We did not test against
Mauve [6] because the tool does not directly reports MUMs. We also did not consider
algorithms that does not produces an index for the text that can be queried with different
patterns without reconstructing the index, e.g. the algorithm described in Mäkinen et al. [16,
Section 11.1.2]. The experiments that exceeded exceeded 16 GB of memory were omitted
from further consideration.

Datasets

We evaluated our method using real-world datasets. We build our index for up to 512
haplotypes of human chromosome 19 from the 1000 Genomes Project [22] and up to 300,000
SARS-CoV2 genomes from EBI’s COVID data portal [12]. We provide a complete list of

SEA 2022



22:14 Computing Maximal Unique Matches with the r-Index

Table 1 Dataset used in the experiments. For each collection of datasets of the human chromosome
19 (chr19) dataset in Table 1a and for the SARSCoV2 (sars-cov2) dataset in Table 1b, we report
the number of sequences (No. seqs), the length n in Megabytes (MB), and the ratio n/r, where r is
the number of runs of the BWT for each number of sequences in a collection.

(a) Collections of chromosome 19.

No. seqs n (MB) n/r

1 59 1.92
2 118 3.79
4 236 7.47
8 473 14.78

16 946 29.19
32 1892 57.63
64 3784 113.49

128 7568 222.23
256 15,136 424.93
512 30,272 771.53

(b) Collections of SARS-CoV2 gen-
omes.

No. seqs n (MB) n/r

1562 46 459.57
3125 93 515.42
6250 186 576.47

12,500 372 622.92
25,000 744 704.73
50,000 1490 848.29

100,000 2983 1060.07
200,000 5965 1146.24
300,000 8947 1218.82

accession numbers in the repository. We divide the sequences into 11 collections of 1, 2, 3, 4,
8, 16, 32, 64, 128, 256, 512 chromosomes 19 (chr19) and 9 collections of 1,562, 3,125, 6,250,
1250,00, 25,000, 50,000, 100,000, 200,000, 300,000 genomes of SARS-CoV2 (sars-cov2). In
both datasets, each collection is a superset of the previous one. In Table 1 we report the
length n of each collection and the ratio n/r, where r is the number of runs of the BWT.

Furthermore, for querying the datasets, we used the first haplotype of chromosome 19
of the sample NA21144 from the 1000 Genomes Project, and the genome with accession
number MZ477765 from EBI’s COVID data portal [12].

Results

In Figure 2 we show the construction and query time and space for mum-phinder and
mummer. Since mummer is not able to decouple the construction of the suffix tree from the
query, for our method we report the sum of the running times for construction and query,
and the maximum resident set size of the two steps. We observe that on chr19 mummer3
is up to 9 times faster than mum-phinder, while using up to 8 times more memory, while
mummer4 is up to 19 times faster than mum-phinder, while using up to 7 times more memory.
However both mummer3 and mummer4 cannot process more than 8 haplotypes of chr19 due to
memory limitations. mum-phinder was able to build the index and query in 48 minutes for
512 haplotypes of chr19 while using less than 11.5 GB of RAM. On sars-cov2, mummer3 is
up to 6.5 times faster than mum-phinder, while using up to 24 times more memory, while
mummer4 is up to 1.2 times slower than mum-phinder, while using up to 25 times more
memory. mummer3 was not able to process more than 25,000 genomes while mummer4 were
not able to query mote than 12,500 genomes of sars-cov2 due to memory limitations.

In Figure 2 we also show the construction time and space for mum-phinder. We observe
that the construction time grows with the number of sequences in the dataset, however
the query time decreases while increasing the number of sequences in the index with a
9x speedup when moving from 1 to 512 haplotypes of chr19. A similar phenomenon is
observed in [3] and it is attributed to the increase number of match cases (Algorithm 2) while
increasing the number of sequences in the index. From our profiling (data not shown) the



S. Giuliani, G. Romana, and M. Rossi 22:15

108 109 1010

Length [characters]

101

102

103

C
PU

 t
im

e 
[s

ec
]

512
128

6432168421 256
1 2 4 8 16 32 64 512

128
256

21 256
512

128
64321684 821 42 4 81

Num ber of sequences in collect ion

(a) Construction time chr19.

108 109 1010

Length [characters]

106

107

Pe
ak

 m
em

or
y 

[K
by

te
]

512
128

6432168421 256
1 2 4 8 16 32 64 512

128
256

21 256
512

128
64321684 821 42 4 81

Num ber of sequences in collect ion

(b) Peak memory chr19.

(c) Construction time sars-cov2.

108 109 1010

Length [characters]

104

105

106

107
Pe

ak
 m

em
or

y 
[K

by
te

]

mum-phinder
mum-phinder [build]
mum-phinder [query]
mummer3
mummer4

300000

50000

25000

12500

6250
3125

1562
100000

200000

100000

50000

25000

300000

6250
3125

1562
12500

300000

200000

100000

25000

50000

6250
3125

1562
12500

25000

12500

6250
3125

1562
6250

12500

3125
1562

Num ber of sequences in collect ion

(d) Peak memory sars-cov2.

Figure 2 Human chromosome 19 and SARS-CoV2 genomes dataset construction CPU time and
peak memory usage. We compare mum-phinder with mummer3 and mummer4. For mum-phinder
we report a breakdown of the construction (build) and query time and space. Note that for
mum-phinder we consider as time the sum of construction and query time, while for memory we
consider the maximum between construction and query memory.

more time-demanding part of the queries are LCE queries, which are not performed in case
of matches. This observation also motivates the increase in the control logic of Algorithm 3
to limit the number of LCE queries to the essential ones.

References
1 Joel Armstrong, Glenn Hickey, Mark Diekhans, Ian T. Fiddes, Adam M. Novak, Alden Deran,

Qi Fang, Duo Xie, Shaohong Feng, et al. Progressive Cactus is a multiple-genome aligner for
the thousand-genome era. Nature, 587(7833):246–251, 2020.

2 Hideo Bannai, Travis Gagie, and Tomohiro I. Refining the r-index. Theoretical Computer
Science, 812:96–108, 2020.

3 Christina Boucher, Travis Gagie, Tomohiro I, Dominik Köppl, Ben Langmead, Giovanni
Manzini, Gonzalo Navarro, Alejandro Pacheco, and Massimiliano Rossi. PHONI: streamed
matching statistics with multi-genome references. In Proceedings of 2021 Data Compression
Conference DCC, pages 193–202. IEEE, 2021.

4 Michael Burrows and David Wheeler. A block-sorting lossless data compression algorithm.
Technical report, DIGITAL SRC RESEARCH REPORT, 1994.

5 Aaron C. E. Darling, Bob Mau, Frederick R. Blattner, and Nicole T. Perna. Mauve: multiple
alignment of conserved genomic sequence with rearrangements. Genome Res., 14(7):1394–1403,
2004.

SEA 2022



22:16 Computing Maximal Unique Matches with the r-Index

6 Aaron E. Darling, Bob Mau, and Nicole T. Perna. progressiveMauve: multiple genome
alignment with gene gain, loss and rearrangement. PLoS One, 5(6):e11147, 2010.

7 Marc Deloger, Meriem El Karoui, and Marie-Agnès Petit. A genomic distance based on MUM
indicates discontinuity between most bacterial species and genera. J. Bacteriol., 191(1):91–99,
2009.

8 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications. In
In Proceedings 41st annual Symposium on Foundations of Computer ScienceFOCS, pages
390–398. IEEE Computer Society, 2000.

9 Travis Gagie, Tomohiro I, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, Louisa
Seelbach Benkner, and Yoshimasa Takabatake. Practical Random Access to SLP-Compressed
Texts. In Proceedings of the 27th International Symposium on String Processing and Information
Retrieval (SPIRE 2020), volume 12303 of LNCS, pages 221–231. Springer, 2020.

10 Travis Gagie, Tomohiro I, Giovanni Manzini, Gonzalo Navarro, Hiroshi Sakamoto, and
Yoshimasa Takabatake. Rpair: Rescaling RePair with Rsync. In String Processing and
Information Retrieval - 26th International Symposium, SPIRE 2019, volume 11811 of LNCS,
pages 35–44. Springer, 2019. doi:10.1007/978-3-030-32686-9_3.

11 Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal
text searching in BWT-runs bounded space. J. ACM, 67(1):2:1–2:54, 2020.

12 Peter W. Harrison, Rodrigo Lopez, Nadim Rahman, Stefan Gutnick Allen, Raheela Aslam,
Nicola Buso, Carla Cummins, Yasmin Fathy, Eloy Felix, et al. The COVID-19 Data Portal:
accelerating SARS-CoV-2 and COVID-19 research through rapid open access data sharing.
Nucleic Acids Research, 49(W1):W619–W623, 2021.

13 Stefan Kurtz, Adam Phillippy, Arthur L. Delcher, Michael Smoot, Martin Shumway, Corina
Antonescu, and Steven L. Salzberg. Versatile and open software for comparing large genomes.
Genome Biol., 5(2):R12, 2004.

14 Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L. Salzberg. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome biology, 10(3):R25,
2009.

15 Heng Li and Richard Durbin. Fast and accurate long-read alignment with Burrows-Wheeler
transform. Bioinformatics, 26(5):589–595, 2010.

16 Veli Mäkinen, Djamal Belazzougui, Fabio Cunial, and Alexandru I Tomescu. Genome-scale
algorithm design. Cambridge University Press, 2015.

17 Veli Mäkinen and Gonzalo Navarro. Succinct suffix arrays based on run-length encoding.
Nordic Journal of Computing, 12(1):40–66, 2005.

18 Guillaume Marçais, Arthur L. Delcher, Adam M. Phillippy, Rachel Coston, Steven L. Salzberg,
and Aleksey Zimin. MUMmer4: A fast and versatile genome alignment system. PLoS Comput.
Biol., 14(1):e1005944, 2018.

19 Sergey Nurk, Sergey Koren, Arang Rhie, Mikko Rautiainen, Andrey V. Bzikadze, Alla
Mikheenko, Mitchell R. Vollger, Nicolas Altemose, Lev Uralsky, et al. The complete sequence
of a human genome. bioRxiv, 2021.

20 Massimiliano Rossi, Marco Oliva, Ben Langmead, Travis Gagie, and Christina Boucher. MONI:
A Pangenomic Index for Finding Maximal Exact Matches. J. Comput. Biol., January 2022.

21 Jouni Sirén, Jean Monlong, Xian Chang, Adam M. Novak, Jordan M. Eizenga, Charles
Markello, Jonas A. Sibbesen, Glenn Hickey, Pi-Chuan Chang, et al. Pangenomics enables
genotyping of known structural variants in 5202 diverse genomes. Science, 374(6574):abg8871,
2021.

22 The 1000 Genomes Project Consortium. A global reference for human genetic variation.
Nature, pages 68–74, 2015.

23 Kaiyuan Zhu, Welles Robinson, Alejandro A. Schäffer, Junyan Xu, Eytan Ruppin, A. Funda Er-
gun, Yuzhen Ye, and S. Cenk Sahinalp. Strain Level Microbial Detection and Quantification
with Applications to Single Cell Metagenomics. bioRxiv, page 2020.06.12.149245, 2020.

https://doi.org/10.1007/978-3-030-32686-9_3


Automatic Reformulations for Convex
Mixed-Integer Nonlinear Optimization: Perspective
and Separability
Meenarli Sharma1 !

Institute of Mathematics, University of Augsburg, Germany

Ashutosh Mahajan !

Industrial Engineering and Operations Research, Indian Institute of Technology Bombay, India

Abstract
Tight reformulations of combinatorial optimization problems like Convex Mixed-Integer Nonlinear
Programs (MINLPs) enable one to solve these problems faster by obtaining tight bounds on optimal
value. We consider two techniques for reformulation: perspective reformulation and separability
detection. We develop routines for automatic detection of problem structures suitable for these
reformulations, and implement new extensions. Since detecting all “on-off” sets for perspective
reformulation in a problem can be as hard as solving the original problem, we develop heuristic
methods to automatically identify them. The LP/NLP branch-and-bound method is strengthened
via “perspective cuts” derived from these automatic routines. We also provide methods to generate
tight perspective cuts at different nodes in the branch-and-bound tree. The second structure, i.e.,
separability of nonlinear functions, is detected by means of the computational graph of the function.
Our routines have been implemented in the open-source Minotaur solver for general convex MINLPs.
Computational results show an improvement of up to 45% in the solution time and the size of
the branch-and-bound tree for convex instances from benchmark library MINLPLib. On instances
where reformulation using function separability induces structures that are amenable to perspective
reformulation, we observe an improvement of up to 88% in the solution time.

2012 ACM Subject Classification Mathematics of computing → Combinatorial optimization; Math-
ematics of computing → Solvers; Applied computing → Operations research

Keywords and phrases Convex MINLP, perspective reformulation, branch-and-bound, outer approx-
imation, function separability

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.23

Related Version Full Version: http://www.optimization-online.org/DB_HTML/2022/04/8888.
html

1 Introduction

We study convex MINLPs that are optimization problems of the form

minimize
x

cT x

subject to gi(x) ≤ 0, i = 1, . . . , m,

xi ∈ Z, i ∈ I.

 (P)

Here, variables with indices in set I are restricted to take only integer values and constraint
functions gi : Rn → R, i = 1, . . . , m are convex and twice continuously differentiable. Convex
MINLPs arise in a several real-world applications and are also solved as subproblems in
nonconvex MINLPs [19, 22], and mixed-integer PDE constrained optimization problems [25].

1 corresponding author

© Meenarli Sharma and Ashutosh Mahajan;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 23; pp. 23:1–23:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:meenarli.sharma@math.uni-augsburg.de
https://orcid.org/0000-0002-5677-2822
mailto:amahajan@iitb.ac.in
https://orcid.org/0000-0002-4602-7431
https://doi.org/10.4230/LIPIcs.SEA.2022.23
http://www.optimization-online.org/DB_HTML/2022/04/8888.html
http://www.optimization-online.org/DB_HTML/2022/04/8888.html
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


23:2 Automatic Reformulation of Convex MINLP: Perspective and Separability

In a branch-and-bound framework for solving a convex MINLP (P), iteratively tightened
relaxations of the problem are solved to obtain lower bounds on optimal objective value, Z∗.
Since tight relaxations often give good bounds, one seeks to generate tight relaxations at
different nodes in a tree-search. Reformulation of the problem is one of the ways to tighten
relaxations. In this work, we consider two useful reformulations (i) Perspective Reformulation
(PR) [9, 13] (ii) and a reformulation using the “separability” property of functions in nonlinear
constraints.

It is shown in [9, 13] that, for some special disjunctive sets (“on-off” sets) convex hull
description can be given in the space of the original variables using the perspective function.
Problems to which PR can be applied occur in many applications, and they are shown to
be solved better in terms of solution time and branch-and-bound tree size by using PR
[2, 8, 13]. Although PR is useful, a bottleneck in its implementation is detecting the on-off
sets in a given problem. Moreover, the reformulation involves a nonlinear constraint that
can cause numerical difficulty due to possible division by zero. Depending on how this
nonlinear constraint is handled, there are different ways to solve the reformulated problem
[10, 12, 13]. We first introduce structures (in the form of collections of constraints) that
indicate disjunctions suitable for PR, and then provide computationally economical ways to
automatically detect these structures in a problem. More specifically, we present some new
structures that imply “semi-continuous” variables, an important component in defining on-off
sets. To obtain tight linear inequalities that outer-approximate the perspective reformulation,
we propose novel line search approaches.

In the context of outer-approximation based algorithms, it is demonstrated in [17, 27] that,
if a convex function is decomposed into its convex sub-expressions then outer-approximating
these decomposed components separately gives better approximation of the original function
than outer-approximating the original function directly. Exploiting separability in functions
defining nonlinear convex constraints allows such a decomposition. The effectiveness of
exploiting separability in specific models is further demonstrated in [14], where such algorithms
are shown to require orders of magnitude fewer cuts to converge using separability. We
implement routines to automatically detect separable functions using their “computational
graphs” that are available in some solvers to store nonlinear functions.

All presented methods have been implemented within the open-source solver Minotaur2 [20].
Our computational experiments show the improved performance of Minotaur on convex
instances in MINLPLib [5] achieved by these reformulation techniques. To the best of
our knowledge, PR has only recently been implemented in SCIP [3] for both convex and
nonconvex problems. Also, a reformulation based on separability exists in the convex MINLP
solver SHOT [18].

The rest of the paper is organized as follows. In Section 2 and Section 3, we present the
perspective reformulation and the separability based reformulation, respectively, and their
impact on the performance of a branch-and-cut algorithm in Minotaur. The combined effect
of these reformulations is reported in Section 4. Section 5 presents our conclusions.

2 Available at http://github.com/minotaur-solver/minotaur

http://github.com/minotaur-solver/minotaur


M. Sharma and A. Mahajan 23:3

2 Perspective Reformulation

A disjunctive set of the form (S){
(x, z) ∈ Rn × {0, 1}

∣∣∣∣ x ∈ Γ0, if z = 0
x ∈ Γ1, if z = 1

}
, (S)

where Γ0 is a singleton set and Γ1 is a bounded convex set, is called an “on-off” set. The
roles of z = 0 and z = 1 in (S) can be swapped without losing generality. The binary variable
z “controls” variables x in the sense that when z = 0, x takes a fixed value x̂ ∈ Rn, and
z = 1 implies that x lies in a compact convex set. Such variables x are called semi-continuous
variables [9, 10] and they appear in many real-world applications [11, 15, 29].

The convex hull of an “on-off” set can be represented using a function f̌ in the space of
original variables [7]. Given a function f(x) : Rn → R, f̌(x, λ) : Rn+1 → R is defined as

f̌(x, λ) =


λf

(x − (1 − λ)x̂
λ

)
, if λ > 0,

0, if λ = 0,

∞, otherwise,

(PF )

where x̂ is some fixed vector. It can be easily shown that if f is convex, then f̌ is also convex.
When x̂ = 0, the function f̌ is well known as the perspective function of f . Two sets that
conform to the form (S) are as follows.
1. This set referred to as (S1), equals Γ0 ∪ Γ1 with

Γ0 := {(x, z) ∈ Rp × {0, 1} : x = x̂, z = 0}
Γ1 := {(x, z) ∈ Rp × {0, 1} : gi(x) ≤ 0, A(x, z) ≤ a, z = 1}

}
(S1)

2. This set, referred to as (S2), is defined as Γ0 ∪ Γ1, with

Γ0 := {(x, v, z) ∈ Rp+q × {0, 1} : x = x̂, dT v ≤ 0, z = 0}.

Γ1 := {(x, v, z) ∈ Rp+q × {0, 1} : gi(x) + dT v ≤ 0, A(x, z) ≤ a, z = 1}.

}
(S2)

Even though (S2) is not an on-off set by definition, its convex hull can still be described
by a perspective function like an on-off set in the space of original variables.

In both sets x̂ is a fixed vector, gi is a convex nonlinear function, and Γ1 is a compact convex
set. In the first set Γ0 is a singleton and in the second it is a halfspace. The polyhedral set
defined by A(x, z) ≤ a is compact (A and a are a matrix and a vector of the corresponding
dimension) and contains (x̂, 0), enforcing the on-off relation between x and z. The convex
hulls (conv(.)) of these sets (Lemmas 1–2) can be shown to lie in the space of the original
variables x and z [13].

▶ Lemma 1. conv(S1) = closure(S̃1), where

S̃1 =
{

(x, z) ∈ Rp+1 :zgi

(x − (1 − z)x̂
z

)
≤ 0,

A(x − (1 − z)x̂) ≤ az, 0 < z ≤ 1
}

.

▶ Lemma 2. conv(S2) = closure(S̃2), where

S̃2 =
{

(x, v, z) ∈ Rp+q+1 : zgi

(x − (1 − z)x̂
z

)
+ dT v ≤ 0,

A(x − (1 − z)x̂) ≤ az, 0 < z ≤ 1
}

.

SEA 2022



23:4 Automatic Reformulation of Convex MINLP: Perspective and Separability

In sets (S1) and (S2), x are semi-continuous variables. Given a convex MINLP, to find
if xi is a semi-continuous variable controlled by z, where z ∈ {0, 1}, two MINLPs have
to be solved to check if xi can be fixed to x̂i. In these two MINLPs, z is fixed to 0 and
the objective functions are max xi and min xi, respectively (the rest remains same as the
original problem). If the optimal value of these two MINLPs is equal to x̂i, then it implies
z = 0 fixes xi to x̂i. Since detecting semi-continuous variables in a given problem requires
solving MINLPs (which can be as difficult as solving the original problem), there is a trade-off
between the number of (S1) and (S2) sets detected and the time spent in detecting them.
A less time-consuming alternative is to heuristically find collections of constraints during
presolve, that indicate semi-continuous variables and binary variables controlling them. Some
such collections ((C1), (C2), and (C3)) are presented below, and our computational study
show that these collections appear as small blocks in many optimization problems. The
techniques to detect them are similar to probing for MILPs [24]. Henceforth, x̂ indicates the
fixed value that semi-continuous variables x takes when the corresponding binary variable
has value 0.

1. Linear inequalities in at most two variables of the form,

l1z + l0(1 − z) ≤ x ≤ u1z + u0(1 − z),
z ∈ {0, 1}, x ∈ R,

}
(C1)

where l0, l1, u0, u1 ∈ R and lj ≤ uj , j = 0, 1. If l0 = u0, then x is a semi-continuous
variable controlled by z. Similarly, if l1 = u1, then (1 − z) controls x. A simple example
of (C1) that appears in many problems is, lz ≤ x ≤ uz, z ∈ {0, 1}, x ∈ R.

2. Single constraint with an indicator

aT x + d1z ≤ d2,

l ≤ x ≤ u,

z ∈ {0, 1},

 (C2)

where d1 and d2 are scalars, and l, u ∈ Rp with li ≤ ui, ∀i, with the additional property
that if ai > 0, then li = 0, and if ai < 0, then ui = 0.

a. If d2 = 0 and d1 < 0, every component of x is semi-continuous variable controlled by z

such that x̂ = 0. If d2 = 0 and d1 > 0, z = 1 is infeasible and therefore, z can be fixed
to 0.

b. When d1 = d2, x is semi-continuous variable controlled by 1−z and x̂ = 0. Additionally,
if d1 < 0, then z = 0 becomes infeasible and z can be fixed to 1. A simple example of
this case is

∑p
i=1 zi ≤ 1, z ∈ {0, 1}p where any (1 − zi) controls all the other variables.

3. (C1) or (C2) with an extra equality constraint

dT x + d3x̃ = d4,

x̃ ∈ R, x ∈ C1 or C2,

}
(C3)

where d ∈ Rp, and d3 and d4 are any scalars. If x is controlled by z or (1−z) (x̂ being the

corresponding fixed value of x), then so is x̃ if l̃ ≤ d4 − dT x̂

d3
≤ ũ, where l̃ and ũ are lower

and upper bounds respectively on x̃, otherwise, z can be fixed to 1 or 0, respectively.



M. Sharma and A. Mahajan 23:5

Out of 374 convex MINLP instances in MINLPLib, 274 instances have at least one binary
variable remaining after Minotaur’s presolve routine. Table 9 in Appendix B reports the
number of instances out of these 274 with above mentioned collections. Out of these 274
instance, 220 have at least one of these three collections, and set of these instances is referred
to as TSc, which is used for detecting sets amenable to PR. Details of instances in test set
TSc are presented in the Table 6 in Appendix A. Note that these are the instances that
have semi-continuous variables, and some of them may not be suitable for the perspective
reformulation.

2.1 Structures Amenable to Perspective Reformulation
Given the problem (P), following structures conform with sets of the form (S1) or (S2), and
thus, are amenable to perspective reformulation.
1. A constraint in which all variables in the nonlinear function are semi-continuous, that is,

gi(x) ≤ 0,

(x, z) ∈ C̄,

}
(PS1)

where C̄ is a union of at least one of C1 or C2 or C3. This structure conforms with (S1).
2. A constraint in which all variables in only the nonlinear part of the function are semi-

continuous. Let g̃i and gi denote nonlinear and linear parts of function gi in disjoint set
of variables x̃ and x, respectively. If z exists in the constraint, it should be considered a
part of g̃i. This structure conforms with set (S2).

g̃i(x̃) + gi(x) ≤ 0,

(x̃, z) ∈ C̄,

}
(PS2)

The PR amenable structure specified in [3] is of form (PS2), with semi-continuous variables
recognized by the constraints (C1). A reformulation of the problem that results by replacing
structures (PS1) and (PS2) by their convex hull description (as mentioned in Lemma 1 and
Lemma 2, respectively) is referred to as perspective reformulation of the problem.

2.2 Detecting Structures (PS1) and (PS2)
Given a problem (P), we have a straightforward two-phase algorithm for detecting nonlinear
constraints amenable to PR. In the first phase, the algorithm iterates through linear in-
equalities to find blocks of constraints (C1) and (C2). Then it iterates through all the linear
equalities to detect (C3). The outcome of the first phase is either a set of semi-continuous
variables (and binary variables controlling them) or an indication that there is none. If
there are semi-continuous variables, then in the second phase, the algorithm iterates through
nonlinear constraints and checks if it has form required for (PS1) or (PS2). In case a
nonlinear constraint conforms to either of the forms, it is declared amenable to PR.

Our computational results show that 104 instances (all mixed-binary nonlinear programs)
in the test set TSc have structures amenable to PR. We refer to the set of these 104 instances
as TSpr and Table 7 in Appendix A reports more details of these instances. Out of these,
103 instances have all PR amenable constraints of type (PS1), and instance synthes3 has
one constraint each of type (PS1) and (PS2). Moreover, we found that all instances (except
synthes2 and synthes3) in TSpr have all nonlinear constraints amenable to PR.

As this algorithm iterates through linear constraints for finding semi-continuous variables,
it might take more time on instances with a large number of linear constraints. In our

SEA 2022



23:6 Automatic Reformulation of Convex MINLP: Perspective and Separability

experiments, the time taken to detect these structures (including detection of semi-continuous
variables) in any instance in the set TSpr is negligible (less than half a second).

2.3 Solving Perspective Reformulation
We solve the reformulated problem using perspective cuts in the LP/NLP based branch-and-
bound method [23]. This method, also known as the QG algorithm, is based on a branch-
and-cut framework and is a state-of-art method for convex MINLPs. It is implemented and
practically enhanced in many MINLP solvers [1, 4, 16, 21, 26].

Perspective cuts (PCs) are outer-approximation cuts to constraints after PR is applied to
them [13]. For the nonlinear constraint in structure (PS1), the outer-approximation cut at

(x′, z′) and
(x′

z′ , 1
)

are the same and is given by

x⊤s + z
(

gi

(x′

z′

)
+ s

(
x̂ − x′

z′

))
≤ s⊤x̂, s ∈ ∂xgi

(x′

z′

)
. (1)

Adding infinitely many PCs to the defining function in a PR amenable structure gives its
convex hull. Also, note that all PCs pass through the point (x̂, 0). Similarly, a PC for a
reformulated constraint in (PS2), a perspective cut is given by

x̃⊤s + z
(

g̃i

( x̃′

z′

)
+ s̃

(
ˆ̃x − x̃′

z′

))
+ gi(x) ≤ sT ˆ̃x, s ∈ ∂x̃g̃i

(x′

z′

)
. (2)

In QG, cuts (gradient inequalities) are added at nodes where associated linear programs
yield integer optimal solutions. Traditionally, the solution to the continuous relaxation
of the root node, say (x0, z0), is used to create the initial linear relaxation by linearizing
the nonlinear constraints at (x0, z0). Here, z0 represents the vector of binary variables
associated with semi-continuous variables appearing in the structures amenable to PR. These
linearizations to the constraints active at (x0, z0) are supporting for P c (the feasible region
of the continuous relaxation of problem), but not necessarily for P r (the feasible region of
the continuous relaxation of the perspective reformulated problem). This scenario arises
when some z0

i ∈ (0, 1) satisfies the original nonlinear constraint but not the reformulated
constraint. Moreover, this can also happen at other nodes in the branch-and-bound tree.

We found that in 68 instances in TSpr, at least one reformulated nonlinear constraint
is violated at (x0, z0) and 20 of them have more than 50% of the reformulated constraints
violated. This observation motivated us to generate tight PCs for the reformulated problem
at a point (x′, z′) that is not in P r. We study the problem of generating perspective cuts at
such a point (x′, z′) under the following two cases.

1. (x′, z′) ∈ P c and (x′, z′) /∈ P r: This happens when (x0, z0) does not lie in P r.
2. (x′, z′) /∈ P c and (x′, z′) /∈ P r: This can happen at nodes other than root node yielding

fractional optimal solutions.
Given such a point (x′, z′) /∈ P r, we propose the following two methods that find another
point (x′′, z′′) in P r (or at least at the boundary of the violated constraint) such that the
linearizations at (x′′, z′′) cut off (x′, z′).
1. SimLS Method: This is a simple line search that considers each violated constraint and

search for a point that satisfies the reformulated constraint at equality. That is, given

z′
igi

(x′ − (1 − z′
i)x̂

z′
i

)
> 0,



M. Sharma and A. Mahajan 23:7

this method finds a point (x′′, z′′) such that zi
′′gi

(
x′′−(1−zi

′′)x̂
zi

′′

)
= 0. Given the point

(x′, z′) ∈ P c, if (x′, 1) ∈ P r, then (x′′, z′′) is such that x′′ = x′ and z′′
i = (1 − λ)z′

i + λ for
some λ ∈ (0, 1].
Also, if (x̂, 1) ∈ P c (and thus, in P r), then for every (x′, z′) ∈ P c, (x′, 1) ∈ P c (and thus,
in P r). Verifying (x̂, 1) ∈ P c amounts to evaluating whether the nonlinear constraint
satisfies at (x′, 1). Also, for the structure (PS1), if the associated binary variable does
not exist in the defining nonlinear constraint, then (x̂, 1) ∈ P c.
We found that in 98 instances in TSpr, (x̂, 1) belongs to P c for all the PR amenable
constraints and in 50 of them, the binary variables controlling the semi-continuous
variables do not appear in the constraint functions. The 6 instances in which this
condition is not satisfied for any of the PR amenable constraints are of the type clay*.

2. CenLS Method: This method performs a line search between the given point and (xC , zC)
(an approximation of the center of P c) to obtain a point (x′′, z′′) at the boundary. The
point (xC , zC) is obtained by solving the following nonlinear problem (NLPI), in which all
the nonlinear inequalities in the original problem are modified using an auxiliary variable,
ν, which also forms the objective of (NLPI). All the linear constraints remain unchanged.
Let the optimal solution of (NLPI) be (ν̃, x̃, z̃). If ν̃ < 0, then we set (xC , zC) = (x̃, z̃). If
ν̃ = 0, then no point in the feasible region of the original problem exists at which all the
nonlinear constraints are inactive. In this case, we terminate the method. If (NLPI) is
unbounded, then we add ν to the linear inequalities in the same way as the nonlinear
constraints and then re-solve.

minimize
x,ν

ν

subject to gi(x) ≤ ν, i ∈ M,

ν ≤ 0.

 (NLPI)

If (xC , zC) is obtained, then it lies in P r.

The following two sections present the computational experiments that compare the
default implementation of QG in Minotaur, referred to as qg, to qg with PCs on overall
solution time and size of the tree (in terms of the number of nodes processed). All the
computational experiments have been carried out on a system with two 64-bit Intel(R)
Xeon(R) E5-2670 v2, 2.50GHz CPUs having 10 cores each and sharing 128GB RAM. Our
schemes are available in the development version of Minotaur3. All codes are complied with
GCC-4.9.2 compiler. IPOPT-3.12 with MA27 linear-systems solver is used as the NLP solver.
CPLEX-12.8 has been used as the LP solver. We have set a time limit of one hour for all
our experiments and reported all the solution times in seconds.

2.3.1 Adding Perspective Cuts at Root Node
First we add PCs only at the root node with the following three settings.

1. root_reg: adds PCs to PR amenable constraints violated at (x0, z0).
2. root_cenls: adds PCs to violated PR amenable using CenLS method in addition to PCs

from root_reg.
3. root_bothls: adds additional PCs using SimLS method, wherever applicable, in addition

to PCs from root_reg and root_cenls.

3 Available at http://github.com/minotaur-solver/minotaur

SEA 2022

http://github.com/minotaur-solver/minotaur


23:8 Automatic Reformulation of Convex MINLP: Perspective and Separability

In these experiments, we commonly add the following cuts:
1. PCs to PR constraints at corresponding points (x̂, 0), where z = 0 implies x = x̂.
2. If the perspective reformulated constraint is inactive at (x0, z0) and (x0, 1) does not lie

in P r, then we find a point on the boundary by moving along the direction −ez (which is
always feasible), a vector whose components associated with z are -1 and the rest are 0.

Table 1 and Table 2 show a comparison of default qg and qg with settings s ∈ {root_reg,
root_cenls, root_bothls} for instances in test set TSpr. These results show the distribution of
performance across instances with varying difficulty. Each row corresponds to an experimental
setting (s). Each row in Table 1 (Top) corresponds to the results of instances solved by qg
and qg with setting s, and in Table 1 (Bottom), Table 2, it corresponds to instances that
are solved by both, but where at least one of the methods takes more than 10, 100, and 500
seconds, respectively. The first column under the headings “time” and “nodes” shows the
shifted geometric mean (SGM) of these measures reported by the reference solver (qg in
this case) for the instances solved by both. The second column under these headings show
the relative SGM (“rel.”) under the setting s for the same instances. The relative SGM
of a measure is computed as the ratio of the SGM value of the proposed scheme (here, qg
under setting s) to the SGM value of the reference solver (qg). If this ratio, say r, is less
than one, it implies that the proposed solver has performed better than the reference solver.
More specifically, the proposed solver has shown an improvement over the reference solver
with a factor (1 − r) on the considered performance measure. One instance (rsyn0830m04m)
on which qg reached the time limit took 56.22s with the setting root_reg, 53.93s with
root_cenls, and 47.17s with root_bothls.

Table 1 (Top) Comparison of qg and qg with
setting s on 103 instances that are solved by both
the methods. (Bottom) Performance on 26 in-
stances for qg and qg with first two settings, and
25 instances with root_bothls that are solved
by both methods, but at least one method took
more than 10 seconds.

time nodes
setting (s) qg rel. qg rel.
root_reg 8.60 0.67 505.44 0.69
root_cenls 8.60 0.63 505.44 0.69
root_bothls 8.60 0.57 505.44 0.59

time nodes
setting (s) qg rel. qg rel.
root_reg 67.23 0.48 14956.08 0.41
root_cenls 67.23 0.43 14956.08 0.41
root_bothls 72.39 0.34 17005.06 0.29

Table 2 (Top) Comparison of qg and qg
with setting s on 9 instances that are solved
by both the methods but at least one method
took more than 100 seconds. (Bottom) Sim-
ilar comparison on 2 instances that are solved
by both the methods, but at least one method
took more than 500 seconds.

time nodes
qg rel. qg rel.

294.93 0.28 55751.27 0.24
294.93 0.24 55751.27 0.26
294.93 0.19 55751.27 0.19

time nodes
qg rel. qg rel.

1249.47 0.10 595448.0 0.09
1249.47 0.10 595448.0 0.09
1249.47 0.05 595448.0 0.04

Our computational results show improvements in both the considered measures under all
three settings. The highest improvement is reported by qg with root_bothls. Overall, it
improved the solution time and tree size by about 43.19% and 41.45%, respectively. Even
higher improvements (about 81% and 95%, respectively) are observed for instances in with
default qg took more than 100 seconds and 500 seconds, respectively.



M. Sharma and A. Mahajan 23:9

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
0

2
1

2
2

2
3

F
ra

c
ti
o

n
 o

f 
In

s
ta

n
c
e

s

Ratio to Fastest

qg
root_reg

root_cenls
root_bothls

Best possible
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
0

2
1

2
2

2
3

F
ra

c
ti
o

n
 o

f 
In

s
ta

n
c
e

s

Ratio to Fastest

qg
root_bothls

other_reg
other_cenls

Best possible

Figure 1 Performance profiles comparing solution times of qg and qg with root_reg , root_cenls,
root_bothls (on left), and qg and qg with root_bothls, other_reg, other_cenls (on right).

Furthermore, we use performance profiles [6] that graphically demonstrate the relative
performance of different solvers for a particular performance measure over a given set of
instances.

Figure 1 shows the performance profiles of qg and qg with settings root_reg , root_cenls,
root_bothls using the solution times of the instances in test set TSpr. It shows that on nearly
85% of these instances, root_cenls is not slower than the rest and it solved all instances
within 2 times of the best solvers among the considered ones. On the other hand, on 20% of
the instances qg took more than double the time taken by the fastest method.

2.3.2 Adding Perspective Cuts at Other Nodes
Next, we generate PCs at other nodes yielding integer feasible solutions in addition to the
root node. The nodes that we have selected for generating perspective cuts are the same
as in default qg (the ones yielding integer optimal LP solution). But using the fixed-NLP
solution as in QG algorithm may not produce tight inequalities for the reformulated problem
for the same reason as mentioned for the case of the root node. Here, we employ CenLS
method for finding points for generating tighter perspective cuts. Let (x′, z′) be an integer
solution of the fixed-NLP at any node. If the fixed-NLP is infeasible, (x′, z′) is a solution
to the feasibility problem. When the fixed-NLP is optimal, a reformulated constraint is
always feasible. However, some constraints could be inactive. In the test set TSpr, in 6
instances, at least one reformulated nonlinear constraint is violated at some node yielding an
integer optimal solution. In 10 instances, at least one reformulated constraint is inactive at
the fixed-NLP optimal solution. Thus, keeping the best setting at the root node, following
computational experiments have been performed for adding PCs at integer optimal nodes.

other_reg: This setting generates perspective cuts to every nonlinear constraint in the
reformulated problem at (x′, z′) if z′ ̸= 0.
other_cenls: This setting employs CenLS method for generating perspective cuts.

We have experimented other_cenls method with and without adding constraints for inactive
perspective amenable constraints in the same manner as in the root node. We found better
results by not adding additional constraints for inactive constraints and thus report the same.
Table 3 and Table 4 summarize the results of qg with these settings in comparison to the
default qg on instances in the test set TSpr.

Our computational results show improvements in both the considered measures under all
the three settings. The highest improvement is reported by qg with other_cenls. Overall,
it improved the solution time and the tree size by about 47.40% and 44.62%, respectively,
but even higher improvements (around 82% and 95% for both the measures) are observed

SEA 2022



23:10 Automatic Reformulation of Convex MINLP: Perspective and Separability

Table 3 (Top) Comparison of qg and qg with
setting s on 103 instances that are solved by
both the methods. (Bottom) Performance on
instances (25 for qg and qg with first two set-
tings, and 26 with other_cenls) that are solved
by both but at least one method took more than
10 seconds.

time nodes
setting (s) qg rel. qg rel.
root_bothls 8.60 0.57 505.44 0.59
other_reg 8.60 0.53 505.44 0.56
other_cenls 8.60 0.53 505.44 0.55

time nodes
setting (s) qg rel. qg rel.
root_bothls 72.39 0.34 17005.06 0.29
other_reg 72.39 0.30 17005.06 0.26
other_cenls 67.61 0.31 15645.84 0.27

Table 4 (Top) Comparison of qg and qg
with setting s on 9 instances that are solved
by both the methods but at least one method
took more than 100 seconds. (Bottom) Sim-
ilar comparison on 2 instances that are solved
by both the methods, but at least one method
took more than 500 seconds.

time nodes
qg rel. qg rel.

294.93 0.19 55751.27 0.19
294.93 0.18 55751.27 0.17
294.93 0.19 55751.27 0.17

time nodes
qg rel. qg rel.

1249.47 0.05 595448.0 0.04
1249.47 0.06 595448.0 0.05
1249.47 0.06 595448.0 0.05

for instances in with default qg took more than 100 seconds and 500 seconds, respectively.
Figure 1 shows the performance profiles of qg and qg with settings root_bothls, other_reg ,
other_cenls using the solution times of the instances in test set TSpr.

One can also add the perspective cuts at the fractional nodes in the tree. However, since
we compare with traditional QG, we limit our PR related computational experiments to the
root node and the nodes yielding integer optimal solutions only.

3 Reformulation Based on Function Separability

A function f : Rn → R is called “group separable” or separable if there exist functions
f i : Rni → R, i = 1, . . . , m, such that

f(x) =
m∑

i=1
f i(xi), (3)

where f i and f j for i ̸= j have no variables in common [28]. That is, f can be written as
a sum of functions with a disjoint set of variables. A function is said to be fully separable
if every f i is a univariate function and partially separable if some f i are not univariate
functions.

▶ Proposition 3. If f as defined in (3) is convex, then every f i(xi), i = 1, . . . , m is also
convex.

Given a nonlinear separable constraint of the form
∑m

i=1 f i(xi) ≤ b, where b ∈ R is a scalar,
using function separability it can be reformulated as∑m

i=1 γ̃i ≤ b,

f i(xi) ≤ γ̃i, i = 1, . . . , m,

γ̃i ∈ R, i = 1, . . . , m.

 (SepCon)

Proposition 3 ensures that the reformulated problem is also a convex MINLP.



M. Sharma and A. Mahajan 23:11

To detect separability of a nonlinear function, we use its computational graph (CG) that
represents the function as a directed acyclic graph for computational purposes. A CG of a
nonlinear function f is constructed as a combination of unary, binary, or other operations
carried out on the input variables, constants, and intermediate variables, which themselves
are created using these operations.

A node in a CG represents either a variable, a constant, or an operation. An edge eij from
node i to node j implies that i is a parent of j, or j is an operand of operation represented
by i. A node with no child is called an independent (or leaf) node and it represents either a
constant or a variable. Other nodes are called dependent nodes. A node that represents a
binary operation has two child nodes. A node representing a unary operation has only one
child. Let Eo

i and Et
i denote the sets of edges originating from a node i and terminating

at node i, respectively. Node i with Et
i = ∅ is called the root node and is unique in a CG.

If Eo
i = ∅ then i is a leaf node. For an edge eij , let No

ij and N t
ij represent the origin and

terminal nodes, respectively. In our implementation, a node representing a constant can have
only one parent.

Computational Subgraph

We use a notion of computational subgraph (CSG) in finding separable parts in the CG of a
nonlinear function. Let Gf (C, E) be a CG of a nonlinear function f where C and E refer to
the sets of nodes and edges in the CG, respectively. A graph Gs

f (V, F ) is called a subgraph
of Gf (C, E) if the following conditions hold.
1. V ⊆ C and F ⊆ E.
2. For each v ∈ V , Eo

v ∈ F , and for each eij ∈ F, N t
ij ∈ V and No

ij ∈ V .
3. A node with no parent node in V should not represent operations +, −, or unary minus.
4. Gs

f (V, F ) is connected.
A subgraph can have more than one node with no parent. Every CG is also its CSG. We
define “maximal subgraph” as a CSG that is not a part of any CSG other than the original
CG. Figure 2 shows the CG of a separable function and its maximal subgraphs.

+

e +

+ ∧ ∧

x1 x2 2 x3 4

e

+ ∧

x1 x2 2

∧

x3 4

Figure 2 Computational graph of f = ex1+x2 + x2
2 + x3

4 (left) and its two maximal subgraphs.

Let f be a separable function (which cannot be further simplified symbolically) and let
Gf be its CG.

▶ Proposition 4. The number of maximal subgraphs in Gf is equal to the number of separable
parts f and vice-versa.

▶ Proposition 5. f is not separable if and only if Gf has only one maximal subgraph.

SEA 2022



23:12 Automatic Reformulation of Convex MINLP: Perspective and Separability

3.1 Detection of Function Separability
Given a nonlinear convex function f : Rn → R and its CG Gf , checking whether f is not
separable is easier than checking otherwise. We start with employing simple rules to check if
a function is not separable. If a function does not follow these rules, we use more extensive
checking for separability.

Let r be the root node of Gf . Function f is not considered separable if any of the
following conditions is met:
1. r represents a unary operation like log, exp, sin, cos,

√
(.), etc., other than unary minus.

2. r represents the binary operation × and both its children represent a nonconstant
expression.

3. r represents the binary operation ÷ and its right child (divisor) represents a nonconstant
expression.

If r represents the operation × with any of its children representing a constant, we compute
the tree rooted at the nonconstant node and check again. Similarly, if r represents ÷ with
the right child representing a constant, we further analyze the graph rooted at its left child.

If a function does not satisfy the above conditions, Gf is iteratively searched for its
maximal subgraphs. If there is only one maximal subgraph, the function is not separable.
Otherwise, it is separable into as many parts as the number of maximal subgraphs.

3.2 Some Implementation Details
As our algorithm for detecting separability relies on the CG of the function, we prefer
to express the function as explicitly as possible. Different separable expressions (in an
explicit form) that can be identified by our algorithms include (1) a × (

∑m
i=1 f i(xi)) (2)∑m

i=1 ai × f i(xi) (3)
∑m

i=1
f i(xi)

ai
, where a, ai, b ∈ R, ∀i = 1, . . . , m. However, if an

expression can be simplified symbolically, e.g.,
√

(x2
1 + x2

2)2, then the proposed algorithm
cannot recognize it as separable, even if it is technically a separable function.

In some instances of MINLPLib, we found that different separable constraints have
common separable parts (f i). Our implementation reuses variables corresponding to different
separable parts in different constraint expressions, thus avoids creating an extra variable and
an additional constraint. For example, the set of constraints of the form

a1f1(x1) + a2f2(x2) ≤ b1, d1f1(x1) + d2f3(x3) ≤ b2,

is reformulated as

a1γ1 + a2γ2 ≤ b1, d1γ1 + d2γ3 ≤ b2,

f1(x1) ≤ γ1, f2(x2) ≤ γ2, f3(x3) ≤ γ3.

In Minotaur, we carry out separability detection before the presolving step. We have
found that 126 instances have at least one separable nonlinear function (either in constraint
or objective) out of 374 convex instances in MINLPLib. Out of 126 such instances, 79 have
separability only in the nonlinear objective function. In 45 of the remaining 47 instances,
all the nonlinear constraints are separable, and 2 have 40% of the nonlinear constraints
with separability property. Also, 108 out of these 126 instances have at least one integer
constrained variable. These 108 instances constitute our test set, TSsep for analyzing the
impact of exploiting separability in QG. More details on these instances are provided in the
Table 8 in Appendix A. Using the same performance measures as before, Table 5 reports a



M. Sharma and A. Mahajan 23:13

comparison of default qg and qg with separability based reformulation (denoted qgsep) on
instances in test set TSsep. The time required by the proposed routine to detect function
separability is a very small fraction of the total solution time in all instances of the test set.
Overall, we achieve about 40% improvement in the solution time and the tree size; even

Table 5 Comparison of qg and qgsep on instances in T Ssep. The second column indicates the
number of instances solved by both methods, where at least one method took more than the number
of seconds indicated in the first column.

time nodes
time # of inst. qg rel. qg rel.
>= 0 76 13.68 0.60 700.04 0.50
>= 10 26 94.54 0.42 5902.23 0.32
>= 100 11 714.61 0.20 24311.92 0.28
>= 500 7 1900.22 0.12 54480.5 0.26

better improvements are obtained for difficult instances. Using this reformulation, 8 instances
that reached the time limit earlier with qg could be solved. Figure 3 in Appendix B shows
the performance profiles of qg and qgsep using the solution times of the instances in test set
TSsep.

4 Combined Effects of the Two Reformulations

Reformulation using separability sometimes results in structures amenable to PR. For example,
consider the following uncapacitated facility location problem.

minimize
x, z, η

η

subject to
∑

i∈F cizi +
∑

i∈F ,j∈C tijx2
ij ≤ η,

0 ≤ xij ≤ zi, i ∈ F , j ∈ C,∑
i∈F xij = 1, j ∈ C,

xij ≥ 0, zi ∈ {0, 1}, i ∈ F , j ∈ C.


(UFL1)

The function in the nonlinear constraint is separable and on reformulating (UFL1), we get

minimize
x, z, η

η

subject to
∑

i∈F cizi +
∑

i∈F ,j∈C tijγij ≤ η,

x2
ij ≤ γij , i ∈ F , j ∈ C,

0 ≤ xij ≤ zi, i ∈ F , j ∈ C,∑
i∈F xij = 1, j ∈ C,

xij ≥ 0, zi ∈ {0, 1}, i ∈ F , j ∈ C.


(UFL2)

(UFL2) now has structures of the form (PS2) and thus, becomes amenable to PR.
Our results show that 26 instance in TSsep become amenable to PR after separability

based reformulation. These instances comprise test set TSps and are reported in Table 8
in Appendix A. Results on TSps using qg, qgsep, and qgprsep (qg with both separability
and perspective reformulations) are reported in Table 10 and Table 11, respectively, in
Appendix B. Overall, there is a significant improvement of about 88% in both the solution

SEA 2022



23:14 Automatic Reformulation of Convex MINLP: Perspective and Separability

time and the tree size, and 4 more instances that reached the time limit with even separability
based reformulation could now be solved. Figure 3 in Appendix B shows the performance
profiles of qg, qgsep, and qgprsep using the solution times of the instances in test set TSps.

5 Conclusions

Our study concludes that perspective reformulation and exploitation of separability of
nonlinear constraint functions help generate better polyhedral-approximations of the feasible
region. This is observed even when these reformulations are deployed using automatic
routines that detect corresponding structures heuristically. We see improvement in both the
solution time and the size of the tree in the branch-and-cut framework of the QG method on
our test instances. The improvements are even higher for difficult instances and for those
that became amenable to PR after separability based reformulation. We believe that such
automatic routines can also reduce the effort required to model convex MINLPs.

References
1 K. Abhishek, S. Leyffer, and J. T. Linderoth. FilMINT: An outer-approximation-based solver

for nonlinear mixed integer programs. Preprint ANL/MCS-P1374-0906, Mathematics and
Computer Science Division, Argonne National Laboratory, 2006.

2 S. Aktürk, A. Atamtürk, and S. Gürel. A strong conic quadratic reformulation for machine-job
assignment with controllable processing times. Operations Research Letters, 37:187–191, 2009.

3 Ksenia Bestuzheva, Ambros Gleixner, and Stefan Vigerske. A computational study of per-
spective cuts. arXiv preprint arXiv:2103.09573, 2021.

4 Pierre Bonami and Jon Lee. BONMIN user’s manual. Numer Math, 4:1–32, 2007.
5 Michael R Bussieck, Arne Stolbjerg Drud, and Alexander Meeraus. MINLPLib - a collection

of test models for mixed-integer nonlinear programming. INFORMS Journal on Computing,
15(1):114–119, 2003.

6 Elizabeth Dolan and Jorge Moré. Benchmarking optimization software with performance
profiles. Mathematical Programming, 91:201–213, 2002.

7 A. Frangioni and C. Gentile. Perspective cuts for a class of convex 0-1 mixed integer programs.
Mathematical Programming, 106:225–236, 2006.

8 Antonio Frangioni, Fabio Furini, and Claudio Gentile. Approximated perspective relaxations:
a project and lift approach. Computational Optimization and Applications, 63(3):705–735,
2016.

9 Antonio Frangioni and Claudio Gentile. Perspective cuts for a class of convex 0–1 mixed
integer programs. Mathematical Programming, 106(2):225–236, 2006.

10 Antonio Frangioni and Claudio Gentile. A computational comparison of reformulations of the
perspective relaxation: SOCP vs. cutting planes. Operations Research Letters, 37(3):206–210,
2009.

11 Antonio Frangioni, Claudio Gentile, and Fabrizio Lacalandra. Solving unit commitment
problems with general ramp constraints. International Journal of Electrical Power & Energy
Systems, 30(5):316–326, 2008.

12 Kevin C Furman, Nicolas W Sawaya, and Ignacio E Grossmann. A computationally useful
algebraic representation of nonlinear disjunctive convex sets using the perspective function.
Computational Optimization and Applications, pages 1–26, 2020.

13 Oktay Günlük and Jeff Linderoth. Perspective reformulations of mixed integer nonlinear
programs with indicator variables. Mathematical programming, 124(1-2):183–205, 2010.

14 Hassan Hijazi, Pierre Bonami, and Adam Ouorou. An outer-inner approximation for separable
mixed-integer nonlinear programs. INFORMS Journal on Computing, 26(1):31–44, 2014.



M. Sharma and A. Mahajan 23:15

15 Norbert J Jobst, Michael D Horniman, Cormac A Lucas, Gautam Mitra, et al. Computational
aspects of alternative portfolio selection models in the presence of discrete asset choice
constraints. Quantitative finance, 1(5):489–501, 2001.

16 KNITRO. KNITRO Documentation. Ziena Optimization., December 2012.
17 Jan Kronqvist, Andreas Lundell, and Tapio Westerlund. Reformulations for utilizing separab-

ility when solving convex MINLP problems. Journal of Global Optimization, 71(3):571–592,
2018.

18 Andreas Lundell, Jan Kronqvist, and Tapio Westerlund. The supporting hyperplane optimiza-
tion toolkit for convex minlp. Journal of Global Optimization, pages 1–41, 2022.

19 Andreas Lundell and Tapio Westerlund. Solving global optimization problems using refor-
mulations and signomial transformations. Computers & Chemical Engineering, 116:122–134,
2018.

20 Ashutosh Mahajan, Sven Leyffer, Jeff Linderoth, James Luedtke, and Todd Munson. Minotaur:
A mixed-integer nonlinear optimization toolkit. Mathematical Programming Computation,
pages 1–38, 2020.

21 Wendel Melo, Marcia Fampa, and Fernanda Raupp. An overview of minlp algorithms and
their implementation in muriqui optimizer. Annals of Operations Research, 286(1):217–241,
2020.

22 Ivo Nowak, Norman Breitfeld, Eligius MT Hendrix, and Grégoire Njacheun-Njanzoua.
Decomposition-based inner-and outer-refinement algorithms for global optimization. Journal
of Global Optimization, 72(2):305–321, 2018.

23 Ignacio Quesada and Ignacio E Grossmann. An LP/NLP based branch and bound algorithm for
convex MINLP optimization problems. Computers & chemical engineering, 16(10-11):937–947,
1992.

24 M. W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer programming
problems. ORSA Journal on Computing, 6:445–454, 1994.

25 Meenarli Sharma, Mirko Hahn, Sven Leyffer, Lars Ruthotto, and Bart van Bloemen Waanders.
Inversion of convection–diffusion equation with discrete sources. Optimization and Engineering,
pages 1–39, 2020.

26 Meenarli Sharma, Prashant Palkar, and Ashutosh Mahajan. Linearization and parallelization
schemes for convex mixed-integer nonlinear optimization. Computational Optimization and
Applications, pages 1–56, 2022.

27 Mohit Tawarmalani and Nikolaos V Sahinidis. A polyhedral branch-and-cut approach to
global optimization. Mathematical Programming, 103(2):225–249, 2005.

28 Stephen J Wright, Robert D Nowak, and Mário AT Figueiredo. Sparse reconstruction by
separable approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, 2009.

29 Juan M Zamora and Ignacio E Grossmann. A global MINLP optimization algorithm for
the synthesis of heat exchanger networks with no stream splits. Computers & Chemical
Engineering, 22(3):367–384, 1998.

SEA 2022



23:16 Automatic Reformulation of Convex MINLP: Perspective and Separability

A Description of Test Sets

Table 6 Description of instances with collections (C1), (C2), and (C3). First column shows
instance name and the entries (bv, tv, fv, b0, b1, b01, v0, v1, v01) in the second column are: bv denotes
the number of binary variables, tv indicates the total number of variables, fv reports the number of
binary variables that are fixed as part of structure identification, b0 and b1 represent the number
of binary variables z and 1 − z, respectively, controlling at least one other variable, b01 denotes
number of binary variables z such that both z and 1 − z control another variable, v0 and v1 report
the number of variables controlled by a binary variable z and 1 − z respectively, v01 is the number
of variables controlled by a binary variable z and also 1 − z.

Instance (bv, tv, fv, b0, b1, b01, v0, v1, v01)
alan (4, 4, 0, 4, 0, 0, 4, 0, 0)
batch0812 (60, 60, 28, 0, 32, 0, 0, 70, 0)
batchdes (9, 9, 1, 0, 8, 0, 0, 12, 0)
batch (24, 24, 2, 0, 22, 0, 0, 30, 0)
batchs101006m (120, 120, 0, 0, 120, 0, 0, 140, 0)
batchs121208m (191, 191, 0, 0, 191, 0, 0, 215, 0)
batchs151208m (188, 188, 0, 0, 188, 0, 0, 212, 0)
batchs201210m (225, 225, 0, 0, 225, 0, 0, 249, 0)
clay0203h (18, 18, 0, 0, 0, 18, 60, 12, 6)
clay0203m (18, 18, 0, 0, 12, 6, 0, 12, 6)
clay0204h (32, 32, 0, 0, 0, 32, 112, 24, 8)
clay0204m (32, 32, 0, 0, 24, 8, 0, 24, 8)
clay0205h (50, 50, 0, 0, 0, 50, 180, 40, 10)
clay0205m (50, 50, 0, 0, 40, 10, 0, 40, 10)
clay0303h (21, 21, 0, 0, 0, 21, 66, 21, 0)
clay0303m (21, 21, 0, 0, 21, 0, 0, 21, 0)
clay0304h (36, 36, 0, 0, 0, 36, 120, 36, 0)
clay0304m (36, 36, 0, 0, 36, 0, 0, 36, 0)
clay0305h (55, 55, 0, 0, 0, 55, 190, 55, 0)
clay0305m (55, 55, 0, 0, 55, 0, 0, 55, 0)
color_lab2_4x0 (28920, 28920, 0, 0, 28680, 240, 28680, 240, 0)
color_lab6b_4x20 (27730, 27730, 0, 0, 27495, 235, 27495, 235, 0)
enpro48pb (92, 92, 0, 0, 92, 0, 0, 108, 0)
enpro56pb (73, 73, 0, 0, 73, 0, 0, 85, 0)
fac1 (6, 6, 0, 2, 0, 4, 16, 0, 4)
fac2 (12, 12, 0, 3, 0, 9, 54, 0, 9)
fac3 (12, 12, 0, 3, 0, 9, 54, 0, 9)
flay02h (4, 4, 0, 0, 0, 4, 32, 4, 0)
flay02m (4, 4, 0, 0, 4, 0, 0, 4, 0)
flay03h (12, 12, 0, 0, 0, 12, 96, 12, 0)
flay03m (12, 12, 0, 0, 12, 0, 0, 12, 0)
flay04h (24, 24, 0, 0, 0, 24, 192, 24, 0)
flay04m (24, 24, 0, 0, 24, 0, 0, 24, 0)
flay05h (40, 40, 0, 0, 0, 40, 320, 40, 0)
flay05m (40, 40, 0, 0, 40, 0, 0, 40, 0)
flay06h (60, 60, 0, 0, 0, 60, 480, 60, 0)
flay06m (60, 60, 0, 0, 60, 0, 0, 60, 0)
gams01 (110, 110, 0, 0, 100, 0, 0, 100, 0)
hybriddynamic_fixed (1, 1, 0, 0, 0, 1, 8, 0, 2)
ibs2 (1500, 1500, 0, 0, 0, 1500, 1500, 1500, 0)
meanvarx (12, 12, 0, 2, 0, 10, 12, 10, 0)
meanvarxsc (22, 22, 0, 12, 0, 10, 12, 10, 0)
netmod_dol1 (462, 462, 0, 0, 0, 462, 1524, 462, 0)
netmod_dol2 (455, 455, 0, 0, 79, 367, 973, 440, 6)
netmod_kar1 (136, 136, 0, 0, 15, 121, 255, 136, 0)
netmod_kar2 (136, 136, 0, 0, 15, 121, 255, 136, 0)
pedigree_ex1058 (49386, 49386, 0, 112, 48387, 865, 48387, 112, 865)
pedigree_ex485_2 (7136, 7136, 0, 110, 6710, 294, 6710, 110, 294)

Instance (bv, tv, fv, b0, b1, b01, v0, v1, v01)
pedigree_ex485 (7136, 7136, 0, 110, 6710, 294, 6710, 110, 294)
pedigree_sim400 (11226, 11226, 0, 51, 11076, 99, 11076, 51, 99)
pedigree_sp_top4_250 (11694, 11694, 0, 243, 10981, 414, 10981, 243, 414)
pedigree_sp_top4_300 (5969, 5969, 0, 160, 5496, 244, 5496, 160, 244)
pedigree_sp_top4_350tr (3100, 3100, 0, 105, 2838, 145, 2838, 105, 145)
pedigree_sp_top5_200 (32120, 32120, 0, 336, 30862, 871, 30862, 336, 871)
pedigree_sp_top5_250 (17028, 17028, 0, 243, 16193, 536, 16193, 243, 536)
portfol_buyin (8, 8, 0, 8, 0, 0, 8, 0, 0)
portfol_card (8, 8, 0, 8, 0, 0, 8, 0, 0)
portfol_classical050_1 (50, 50, 0, 50, 0, 0, 50, 0, 0)
portfol_classical200_2 (200, 200, 0, 200, 0, 0, 200, 0, 0)
procurement2mot (60, 60, 0, 19, 3, 38, 77, 18, 23)
ravempb (53, 53, 0, 0, 53, 0, 0, 65, 0)
risk2bpb (12, 12, 0, 0, 12, 0, 0, 183, 0)
rsyn0805h (37, 37, 0, 3, 0, 34, 84, 32, 26)
rsyn0805m02h (148, 148, 0, 3, 0, 145, 171, 37, 166)
rsyn0805m02m (148, 148, 0, 3, 64, 81, 19, 53, 118)
rsyn0805m03h (222, 222, 0, 3, 0, 219, 255, 42, 264)
rsyn0805m03m (222, 222, 0, 3, 96, 123, 27, 66, 192)
rsyn0805m04h (296, 296, 0, 3, 0, 293, 339, 47, 362)
rsyn0805m04m (296, 296, 0, 3, 128, 165, 35, 79, 266)
rsyn0805m (37, 37, 0, 3, 32, 2, 8, 32, 2)
rsyn0810h (41, 41, 0, 3, 0, 38, 95, 34, 26)
rsyn0810m02h (166, 166, 0, 3, 0, 163, 187, 47, 182)
rsyn0810m02m (166, 166, 0, 3, 64, 99, 35, 63, 134)
rsyn0810m03h (249, 249, 0, 3, 0, 246, 278, 57, 289)
rsyn0810m03m (249, 249, 0, 3, 96, 150, 50, 81, 217)
rsyn0810m04h (332, 332, 0, 3, 0, 329, 369, 67, 396)
rsyn0810m04m (332, 332, 0, 3, 128, 201, 65, 99, 300)
rsyn0810m (41, 41, 0, 3, 32, 6, 19, 34, 2)
rsyn0815h (44, 44, 0, 3, 0, 41, 105, 35, 27)
rsyn0815m02h (182, 182, 0, 3, 0, 179, 204, 57, 197)
rsyn0815m02m (182, 182, 0, 3, 64, 115, 52, 73, 149)
rsyn0815m03h (273, 273, 0, 3, 0, 270, 303, 72, 312)
rsyn0815m03m (273, 273, 0, 3, 96, 174, 75, 96, 240)
rsyn0815m04h (364, 364, 0, 3, 0, 361, 402, 87, 427)
rsyn0815m04m (364, 364, 0, 3, 128, 233, 98, 119, 331)
rsyn0815m (44, 44, 0, 3, 32, 9, 29, 35, 3)
rsyn0820h (49, 49, 0, 3, 0, 46, 116, 35, 29)
rsyn0820m02h (202, 202, 0, 3, 0, 199, 223, 67, 214)
rsyn0820m02m (202, 202, 0, 3, 64, 135, 71, 83, 166)
rsyn0820m03h (303, 303, 0, 3, 0, 300, 330, 87, 339)
rsyn0820m03m (303, 303, 0, 3, 96, 204, 102, 111, 267)
rsyn0820m04h (404, 404, 0, 3, 0, 401, 437, 107, 464)
rsyn0820m04m (404, 404, 0, 3, 128, 273, 133, 139, 368)
rsyn0820m (49, 49, 0, 3, 32, 14, 40, 35, 5)
rsyn0830h (58, 58, 0, 6, 0, 52, 136, 37, 30)
rsyn0830m02h (240, 240, 0, 6, 0, 234, 259, 90, 243)



M. Sharma and A. Mahajan 23:17

Instance (bv, tv, fv, b0, b1, b01, v0, v1, v01)
rsyn0830m02m (240, 240, 0, 6, 64, 170, 107, 106, 195)
rsyn0830m03h (360, 360, 0, 6, 0, 354, 381, 120, 387)
rsyn0830m03m (360, 360, 0, 6, 96, 258, 153, 144, 315)
rsyn0830m04h (480, 480, 0, 6, 0, 474, 503, 150, 531)
rsyn0830m04m (480, 480, 0, 6, 128, 346, 199, 182, 435)
rsyn0830m (58, 58, 0, 6, 32, 20, 60, 37, 6)
rsyn0840h (66, 66, 0, 6, 0, 60, 157, 38, 33)
rsyn0840m02h (276, 276, 0, 6, 0, 270, 295, 110, 275)
rsyn0840m02m (276, 276, 0, 6, 64, 206, 143, 126, 227)
rsyn0840m03h (414, 414, 0, 6, 0, 408, 433, 150, 437)
rsyn0840m03m (414, 414, 0, 6, 96, 312, 205, 174, 365)
rsyn0840m04h (552, 552, 0, 6, 0, 546, 571, 190, 599)
rsyn0840m04m (552, 552, 0, 6, 128, 418, 267, 222, 503)
rsyn0840m (66, 66, 0, 6, 32, 28, 81, 38, 9)
slay04h (24, 24, 0, 0, 0, 24, 96, 24, 0)
slay04m (24, 24, 0, 0, 24, 0, 0, 24, 0)
slay05h (40, 40, 0, 0, 0, 40, 160, 40, 0)
slay05m (40, 40, 0, 0, 40, 0, 0, 40, 0)
slay06h (60, 60, 0, 0, 0, 60, 240, 60, 0)
slay06m (60, 60, 0, 0, 60, 0, 0, 60, 0)
slay07h (84, 84, 0, 0, 0, 84, 336, 84, 0)
slay07m (84, 84, 0, 0, 84, 0, 0, 84, 0)
slay08h (112, 112, 0, 0, 0, 112, 448, 112, 0)
slay08m (112, 112, 0, 0, 112, 0, 0, 112, 0)
slay09h (144, 144, 0, 0, 0, 144, 576, 144, 0)
slay09m (144, 144, 0, 0, 144, 0, 0, 144, 0)
slay10h (180, 180, 0, 0, 0, 180, 720, 180, 0)
slay10m (180, 180, 0, 0, 180, 0, 0, 180, 0)
squfl010-025 (10, 10, 0, 10, 0, 0, 250, 0, 0)
squfl010-040 (10, 10, 0, 10, 0, 0, 400, 0, 0)
squfl010-080 (10, 10, 0, 10, 0, 0, 800, 0, 0)
squfl015-060 (15, 15, 0, 15, 0, 0, 900, 0, 0)
squfl015-080 (15, 15, 0, 15, 0, 0, 1200, 0, 0)
squfl020-040 (20, 20, 0, 20, 0, 0, 800, 0, 0)
squfl020-050 (20, 20, 0, 20, 0, 0, 1000, 0, 0)
squfl020-150 (20, 20, 0, 20, 0, 0, 3000, 0, 0)
squfl025-025 (25, 25, 0, 25, 0, 0, 625, 0, 0)
squfl025-030 (25, 25, 0, 25, 0, 0, 750, 0, 0)
squfl025-040 (25, 25, 0, 25, 0, 0, 1000, 0, 0)
squfl030-100 (30, 30, 0, 30, 0, 0, 3000, 0, 0)
squfl030-150 (30, 30, 0, 30, 0, 0, 4500, 0, 0)
squfl040-080 (40, 40, 0, 40, 0, 0, 3200, 0, 0)
sssd08-04 (44, 44, 0, 0, 32, 12, 12, 44, 0)
sssd12-05 (75, 75, 0, 0, 60, 15, 15, 75, 0)
sssd15-04 (72, 72, 0, 0, 60, 12, 12, 72, 0)
sssd15-06 (108, 108, 0, 0, 90, 18, 18, 108, 0)
sssd15-08 (144, 144, 0, 0, 120, 24, 24, 144, 0)
sssd16-07 (133, 133, 0, 0, 112, 21, 21, 133, 0)
sssd18-06 (126, 126, 0, 0, 108, 18, 18, 126, 0)
sssd18-08 (168, 168, 0, 0, 144, 24, 24, 168, 0)
sssd20-04 (92, 92, 0, 0, 80, 12, 12, 92, 0)
sssd20-08 (184, 184, 0, 0, 160, 24, 24, 184, 0)
sssd22-08 (200, 200, 0, 0, 176, 24, 24, 200, 0)
sssd25-04 (112, 112, 0, 0, 100, 12, 12, 112, 0)
sssd25-08 (224, 224, 0, 0, 200, 24, 24, 224, 0)
st_miqp2 (2, 2, 0, 2, 0, 0, 2, 0, 0)
st_miqp4 (2, 2, 0, 2, 0, 0, 2, 0, 0)
stockcycle (432, 432, 0, 0, 432, 0, 0, 480, 0)
st_test3 (5, 5, 0, 3, 0, 0, 3, 0, 0)
syn05h (5, 5, 0, 3, 0, 2, 8, 0, 2)
syn05m02h (20, 20, 0, 3, 0, 17, 19, 13, 14)
syn05m02m (20, 20, 0, 3, 0, 17, 19, 13, 14)

Instance (bv, tv, fv, b0, b1, b01, v0, v1, v01)
syn05m03h (30, 30, 0, 3, 0, 27, 27, 18, 24)
syn05m03m (30, 30, 0, 3, 0, 27, 27, 18, 24)
syn05m04h (40, 40, 0, 3, 0, 37, 35, 23, 34)
syn05m04m (40, 40, 0, 3, 0, 37, 35, 23, 34)
syn05m (5, 5, 0, 3, 0, 2, 8, 0, 2)
syn10h (9, 9, 0, 3, 0, 6, 19, 2, 2)
syn10m02h (38, 38, 0, 3, 0, 35, 35, 23, 30)
syn10m02m (38, 38, 0, 3, 0, 35, 35, 23, 30)
syn10m03h (57, 57, 0, 3, 0, 54, 50, 33, 49)
syn10m03m (57, 57, 0, 3, 0, 54, 50, 33, 49)
syn10m04h (76, 76, 0, 3, 0, 73, 65, 43, 68)
syn10m04m (76, 76, 0, 3, 0, 73, 65, 43, 68)
syn10m (9, 9, 0, 3, 0, 6, 19, 2, 2)
syn15h (12, 12, 0, 3, 0, 9, 29, 3, 3)
syn15m02h (54, 54, 0, 3, 0, 51, 52, 33, 45)
syn15m02m (54, 54, 0, 3, 0, 51, 52, 33, 45)
syn15m03h (81, 81, 0, 3, 0, 78, 75, 48, 72)
syn15m03m (81, 81, 0, 3, 0, 78, 75, 48, 72)
syn15m04h (108, 108, 0, 3, 0, 105, 98, 63, 99)
syn15m04m (108, 108, 0, 3, 0, 105, 98, 63, 99)
syn15m (12, 12, 0, 3, 0, 9, 29, 3, 3)
syn20h (17, 17, 0, 3, 0, 14, 40, 3, 5)
syn20m02h (74, 74, 0, 3, 0, 71, 71, 43, 62)
syn20m02m (74, 74, 0, 3, 0, 71, 71, 43, 62)
syn20m03h (111, 111, 0, 3, 0, 108, 102, 63, 99)
syn20m03m (111, 111, 0, 3, 0, 108, 102, 63, 99)
syn20m04h (148, 148, 0, 3, 0, 145, 133, 83, 136)
syn20m04m (148, 148, 0, 3, 0, 145, 133, 83, 136)
syn20m (17, 17, 0, 3, 0, 14, 40, 3, 5)
syn30h (26, 26, 0, 6, 0, 20, 60, 5, 6)
syn30m02h (112, 112, 0, 6, 0, 106, 107, 66, 91)
syn30m02m (112, 112, 0, 6, 0, 106, 107, 66, 91)
syn30m03h (168, 168, 0, 6, 0, 162, 153, 96, 147)
syn30m03m (168, 168, 0, 6, 0, 162, 153, 96, 147)
syn30m04h (224, 224, 0, 6, 0, 218, 199, 126, 203)
syn30m04m (224, 224, 0, 6, 0, 218, 199, 126, 203)
syn30m (26, 26, 0, 6, 0, 20, 60, 5, 6)
syn40h (34, 34, 0, 6, 0, 28, 81, 6, 9)
syn40m02h (148, 148, 0, 6, 0, 142, 143, 86, 123)
syn40m02m (148, 148, 0, 6, 0, 142, 143, 86, 123)
syn40m03h (222, 222, 0, 6, 0, 216, 205, 126, 197)
syn40m03m (222, 222, 0, 6, 0, 216, 205, 126, 197)
syn40m04h (296, 296, 0, 6, 0, 290, 267, 166, 271)
syn40m04m (296, 296, 0, 6, 0, 290, 267, 166, 271)
syn40m (34, 34, 0, 6, 0, 28, 81, 6, 9)
synthes1 (3, 3, 0, 0, 1, 1, 1, 2, 0)
synthes2 (5, 5, 0, 1, 1, 3, 3, 2, 2)
synthes3 (8, 8, 0, 3, 1, 4, 8, 3, 2)
tls12 (489, 489, 0, 12, 465, 12, 0, 504, 129)
tls2 (31, 31, 0, 2, 29, 0, 0, 18, 17)
tls4 (85, 85, 0, 4, 81, 0, 0, 76, 25)
tls5 (131, 131, 0, 5, 126, 0, 0, 125, 31)
tls6 (165, 165, 0, 6, 159, 0, 0, 156, 45)
tls7 (278, 278, 0, 7, 271, 0, 0, 266, 61)
unitcommit1 (427, 427, 0, 9, 235, 179, 310, 196, 83)
unitcommit_200_100_1_mod_8 (4380, 4380, 0, 3843, 0, 537, 13245, 398, 190)
unitcommit_200_100_2_mod_8 (4400, 4400, 0, 3969, 0, 431, 13148, 530, 230)
unitcommit_50_20_2_mod_8 (1093, 1093, 0, 991, 0, 102, 3259, 132, 58)
watercontamination0202 (7, 7, 0, 7, 0, 0, 521, 0, 0)
watercontamination0202r (7, 7, 0, 7, 0, 0, 188, 0, 0)
watercontamination0303 (14, 14, 0, 14, 0, 0, 1046, 0, 0)
watercontamination0303r (14, 14, 0, 14, 0, 0, 370, 0, 0)

SEA 2022



23:18 Automatic Reformulation of Convex MINLP: Perspective and Separability

Table 7 Description of test set Tpr of 104 instances with structures, (P S1) and (P S2), amenable
to perspective reformulation in the Section 2. The entry in the first column is the instance name
and for each instance the entries in the second column are as follows: ts denotes total number of
nonlinear constraints, pc shows the number of PR amenable constraints, s1 and s2 report number of
constraints (out of pc) of type (S1) and (S2), respectively, and the last entry ub denotes the number
of unique variables associated with PR amenable constraints.

Instance (tc, pc, s1, s2)
clay0203h (24, 24, 24, 0)
clay0204h (32, 32, 32, 0)
clay0205h (40, 40, 40, 0)
clay0303h (36, 36, 36, 0)
clay0304h (48, 48, 48, 0)
clay0305h (60, 60, 60, 0)
rsyn0805h (3, 3, 3, 0)
rsyn0805m02h (6, 6, 6, 0)
rsyn0805m02m (6, 6, 6, 0)
rsyn0805m03h (9, 9, 9, 0)
rsyn0805m03m (9, 9, 9, 0)
rsyn0805m04h (12, 12, 12, 0)
rsyn0805m04m (12, 12, 12, 0)
rsyn0805m (3, 3, 3, 0)
rsyn0810h (6, 6, 6, 0)
rsyn0810m02h (12, 12, 12, 0)
rsyn0810m02m (12, 12, 12, 0)
rsyn0810m03h (18, 18, 18, 0)
rsyn0810m03m (18, 18, 18, 0)
rsyn0810m04h (24, 24, 24, 0)
rsyn0810m04m (24, 24, 24, 0)
rsyn0810m (6, 6, 6, 0)
rsyn0815h (11, 11, 11, 0)
rsyn0815m02h (22, 22, 22, 0)
rsyn0815m02m (22, 22, 22, 0)
rsyn0815m03h (33, 33, 33, 0)
rsyn0815m03m (33, 33, 33, 0)
rsyn0815m04h (44, 44, 44, 0)
rsyn0815m04m (44, 44, 44, 0)
rsyn0815m (11, 11, 11, 0)
rsyn0820h (14, 14, 14, 0)
rsyn0820m02h (28, 28, 28, 0)
rsyn0820m02m (28, 28, 28, 0)
rsyn0820m03h (42, 42, 42, 0)
rsyn0820m03m (42, 42, 42, 0)

Instance (tc, pc, s1, s2)
rsyn0820m04h (56, 56, 56, 0)
rsyn0820m04m (56, 56, 56, 0)
rsyn0820m (14, 14, 14, 0)
rsyn0830h (20, 20, 20, 0)
rsyn0830m02h (40, 40, 40, 0)
rsyn0830m02m (40, 40, 40, 0)
rsyn0830m03h (60, 60, 60, 0)
rsyn0830m03m (60, 60, 60, 0)
rsyn0830m04h (80, 80, 80, 0)
rsyn0830m04m (80, 80, 80, 0)
rsyn0830m (20, 20, 20, 0)
rsyn0840h (28, 28, 28, 0)
rsyn0840m02h (56, 56, 56, 0)
rsyn0840m02m (56, 56, 56, 0)
rsyn0840m03h (84, 84, 84, 0)
rsyn0840m03m (84, 84, 84, 0)
rsyn0840m04h (112, 112, 112, 0)
rsyn0840m04m (112, 112, 112, 0)
rsyn0840m (28, 28, 28, 0)
syn05h (3, 3, 3, 0)
syn05m02h (6, 6, 6, 0)
syn05m02m (6, 6, 6, 0)
syn05m03h (9, 9, 9, 0)
syn05m03m (9, 9, 9, 0)
syn05m04h (12, 12, 12, 0)
syn05m04m (12, 12, 12, 0)
syn05m (3, 3, 3, 0)
syn10h (6, 6, 6, 0)
syn10m02h (12, 12, 12, 0)
syn10m02m (12, 12, 12, 0)
syn10m03h (18, 18, 18, 0)
syn10m03m (18, 18, 18, 0)
syn10m04h (24, 24, 24, 0)
syn10m04m (24, 24, 24, 0)
syn10m (6, 6, 6, 0)

Instance (tc, pc, s1, s2)
syn15h (11, 11, 11, 0)
syn15m02h (22, 22, 22, 0)
syn15m02m (22, 22, 22, 0)
syn15m03h (33, 33, 33, 0)
syn15m03m (33, 33, 33, 0)
syn15m04h (44, 44, 44, 0)
syn15m04m (44, 44, 44, 0)
syn15m (11, 11, 11, 0)
syn20h (14, 14, 14, 0)
syn20m02h (28, 28, 28, 0)
syn20m02m (28, 28, 28, 0)
syn20m03h (42, 42, 42, 0)
syn20m03m (42, 42, 42, 0)
syn20m04h (56, 56, 56, 0)
syn20m04m (56, 56, 56, 0)
syn20m (14, 14, 14, 0)
syn30h (20, 20, 20, 0)
syn30m02h (40, 40, 40, 0)
syn30m02m (40, 40, 40, 0)
syn30m03h (60, 60, 60, 0)
syn30m03m (60, 60, 60, 0)
syn30m04h (80, 80, 80, 0)
syn30m04m (80, 80, 80, 0)
syn30m (20, 20, 20, 0)
syn40h (28, 28, 28, 0)
syn40m02h (56, 56, 56, 0)
syn40m02m (56, 56, 56, 0)
syn40m03h (84, 84, 84, 0)
syn40m03m (84, 84, 84, 0)
syn40m04h (112, 112, 112, 0)
syn40m04m (112, 112, 112, 0)
syn40m (28, 28, 28, 0)
synthes2 (3, 1, 1, 0)
synthes3 (4, 2, 1, 1)



M. Sharma and A. Mahajan 23:19

Table 8 Description of the instances in the test set T Ssep for separability based reformulation
in the Section 3. First column shows the instance name and the entries (nc, sp, os, us, rs) in the
second column are: nc and sc number of nonlinear constraints and number of separable nonlinear
constraints, respectively, os indicates whether objective function is separabe (1) or not (0), us is the
number of unique separable parts considering all separable constraints and objective function, rs is
the number of separable parts that are repeated. 26 instances also belonging to the test set T Sps

(that became amenable to perspective reformulation after the reformulation based on separability of
nonlinear constraints and objective) are highlighted in bold.

Instance (nc, sp, os, us, rs)
ball_mk2_10 (1, 1, 0, 10, 0)
ball_mk2_30 (1, 1, 0, 30, 0)
ball_mk3_10 (1, 1, 0, 10, 0)
ball_mk3_20 (1, 1, 0, 20, 0)
ball_mk3_30 (1, 1, 0, 30, 0)
ball_mk4_05 (1, 1, 0, 5, 0)
ball_mk4_10 (1, 1, 0, 10, 0)
ball_mk4_15 (1, 1, 0, 15, 0)
batch0812 (2, 2, 0, 20, 0)
batchdes (2, 2, 0, 5, 0)
batch (2, 2, 0, 11, 0)
batchs101006m (2, 2, 0, 29, 0)
batchs121208m (2, 2, 0, 35, 0)
batchs151208m (2, 2, 0, 38, 0)
batchs201210m (2, 2, 0, 43, 0)
clay0203m (24, 24, 0, 24, 24)
clay0204m (32, 32, 0, 32, 32)
clay0205m (40, 40, 0, 40, 40)
clay0303m (36, 36, 0, 36, 36)
clay0304m (48, 48, 0, 48, 48)
clay0305m (60, 60, 0, 60, 60)
enpro48pb (2, 2, 0, 13, 0)
enpro56pb (2, 2, 0, 12, 0)
ex1223a (5, 2, 0, 6, 0)
ex1223b (5, 5, 0, 12, 5)
ex1223 (5, 5, 0, 12, 5)
ex4 (26, 26, 0, 125, 2)
fac1 (1, 0, 1, 2, 0)
fac2 (1, 0, 1, 3, 0)
fac3 (1, 0, 1, 3, 0)
gams01 (111, 0, 1, 10, 0)
hybriddynamic_fixed (1, 0, 1, 11, 0)
immun (1, 0, 1, 6, 0)
netmod_dol1 (1, 0, 1, 6, 0)
netmod_dol2 (1, 0, 1, 6, 0)
netmod_kar1 (1, 0, 1, 4, 0)
netmod_kar2 (1, 0, 1, 4, 0)
nvs03 (2, 0, 1, 2, 0)
nvs10 (3, 0, 1, 2, 0)
pedigree_ex1058 (1, 1, 0, 28, 0)
pedigree_ex485_2 (1, 1, 0, 28, 0)
pedigree_ex485 (1, 1, 0, 28, 0)
pedigree_sp_top4_250 (1, 1, 0, 58, 0)
pedigree_sp_top4_300 (1, 1, 0, 74, 0)
pedigree_sp_top4_350tr (1, 1, 0, 17, 0)
pedigree_sp_top5_200 (1, 1, 0, 54, 0)
pedigree_sp_top5_250 (1, 1, 0, 58, 0)
portfol_classical050_1 (1, 1, 0, 50, 0)
portfol_classical200_2 (1, 1, 0, 200, 0)
risk2bpb (1, 0, 1, 3, 0)
slay04h (1, 0, 1, 8, 0)
slay04m (1, 0, 1, 8, 0)
slay05h (1, 0, 1, 10, 0)
slay05m (1, 0, 1, 10, 0)

Instance (nc, sp, os, us, rs)
slay06h (1, 0, 1, 12, 0)
slay06m (1, 0, 1, 12, 0)
slay07h (1, 0, 1, 14, 0)
slay07m (1, 0, 1, 14, 0)
slay08h (1, 0, 1, 16, 0)
slay08m (1, 0, 1, 16, 0)
slay09h (1, 0, 1, 18, 0)
slay09m (1, 0, 1, 18, 0)
slay10h (1, 0, 1, 20, 0)
slay10m (1, 0, 1, 20, 0)
squfl010-025 (1, 0, 1, 250, 0)
squfl010-040 (1, 0, 1, 400, 0)
squfl010-080 (1, 0, 1, 800, 0)
squfl015-060 (1, 0, 1, 900, 0)
squfl015-080 (1, 0, 1, 1200, 0)
squfl020-040 (1, 0, 1, 800, 0)
squfl020-050 (1, 0, 1, 1000, 0)
squfl020-150 (1, 0, 1, 3000, 0)
squfl025-025 (1, 0, 1, 625, 0)
squfl025-030 (1, 0, 1, 750, 0)
squfl025-040 (1, 0, 1, 1000, 0)
squfl030-100 (1, 0, 1, 3000, 0)
squfl030-150 (1, 0, 1, 4500, 0)
squfl040-080 (1, 0, 1, 3200, 0)
st_e14 (5, 5, 0, 12, 5)
st_miqp1 (1, 0, 1, 5, 0)
st_miqp2 (1, 0, 1, 2, 0)
st_miqp4 (1, 0, 1, 3, 0)
st_miqp5 (1, 0, 1, 2, 0)
stockcycle (1, 0, 1, 48, 0)
st_test1 (1, 0, 1, 4, 0)
st_test2 (1, 0, 1, 5, 0)
st_test3 (1, 0, 1, 5, 0)
st_test4 (1, 0, 1, 2, 0)
st_test5 (1, 0, 1, 7, 0)
st_test6 (1, 0, 1, 10, 0)
st_test8 (1, 0, 1, 24, 0)
st_testgr1 (1, 0, 1, 10, 0)
st_testgr3 (1, 0, 1, 20, 0)
st_testph4 (1, 0, 1, 3, 0)
synthes2 (4, 0, 1, 3, 0)
synthes3 (5, 2, 0, 6, 1)
tls12 (12, 12, 0, 144, 0)
tls2 (2, 2, 0, 4, 0)
tls4 (4, 4, 0, 16, 0)
tls5 (5, 5, 0, 25, 0)
tls6 (6, 6, 0, 36, 0)
tls7 (7, 7, 0, 49, 0)
unitcommit1 (1, 0, 1, 240, 0)
unitcommit_200_100_1_mod_8 (1, 0, 1, 4662, 0)
unitcommit_200_100_2_mod_8 (1, 0, 1, 4639, 0)
unitcommit_50_20_2_mod_8 (1, 0, 1, 1152, 0)
watercontamination0202 (1, 0, 1, 4017, 0)
watercontamination0303 (1, 0, 1, 4521, 0)

SEA 2022



23:20 Automatic Reformulation of Convex MINLP: Perspective and Separability

B Computational Results

Table 9 Summary of collections of type Ci, i = 1, 2, 3 in instances in test set T Sc. The second
column reports the number of instances containing at least one collection of the type mentioned in
the first column. In the last column, the first sub-column corresponds to the number of instances
(out of the number of instances mentioned under the second column) in which at least 50% of the
total number of variables are found to be semi-continuous. The second sub-column shows the number
of instances in which the total number of semi-continuous variables is less than 10%.

# inst. with semi-continuous variables
type # inst. ≥ 50% ≤ 10%
C1 194 151 9
C2 132 41 5
C1 and C2 220 203 0
C1 and C3 194 154 7
C2 and C3 132 43 5
C1 and C2 and C3 220 208 0

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
0

2
1

2
2

2
3

2
4

F
ra

c
ti
o

n
 o

f 
In

s
ta

n
c
e

s

Ratio to Fastest

qg
qgsep

Best possible
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2
0

2
1

2
2

2
3

2
4

F
ra

c
ti
o

n
 o

f 
In

s
ta

n
c
e

s

Ratio to Fastest

qg
qgsep

qgprsep
Best possible

Figure 3 Performance profiles comparing solution times of qg and qgsep (on left), and of qg,
qgsep, and qgprsep (on right).

Table 10 (Top) Comparison of qg and
methods (M) on 15 instances in T Sps that
are solved by both the techniques. (Bottom)
Performance on ten instances that are solved
by both, but at least one technique took more
than 10 seconds.

time nodes
Method (M) qg rel. qg rel.
qgsep 78.24 0.32 1213.03 0.42
qgprsep 78.24 0.12 1213.03 0.12

time nodes
Method (M) qg rel. qg rel.
qgsep 251.01 0.22 4418.17 0.31
qgprsep 251.01 0.07 4418.17 0.06

Table 11 (Top) Comparison of qg and
methods (M) on instances that are solved by
both, but at least one method took more than
100 seconds. (Bottom) Similar comparisons
for instances that are solved by both methods,
but at least one took more than 500 seconds.

# solved time nodes
by both qg rel. qg rel.

7 654.78 0.15 10605.48 0.27
5 1454.86 0.01 15711.76 0.02

# solved time nodes
by both qg rel. qg rel.

4 2389.38 0.04 27068.51 0.15
4 2389.38 0.01 27068.51 0.01



An Adaptive Refinement Algorithm for
Discretizations of Nonconvex QCQP
Akshay Gupte1 # Ñ

School of Mathematics, The University of Edinburgh, UK

Arie M. C. A. Koster # Ñ

Lehrstuhl II für Mathematik, RWTH Aachen University, Germany

Sascha Kuhnke # Ñ

Lehrstuhl II für Mathematik, RWTH Aachen University, Germany

Abstract
We present an iterative algorithm to compute feasible solutions in reasonable running time to
quadratically constrained quadratic programs (QCQPs), which form a challenging class of nonconvex
continuous optimization. This algorithm is based on a mixed-integer linear program (MILP) which
is a restriction of the original QCQP obtained by discretizing all quadratic terms. In each iteration,
this MILP restriction is solved to get a feasible QCQP solution. Since the quality of this solution
heavily depends on the chosen discretization of the MILP, we iteratively adapt the discretization
values based on the MILP solution of the previous iteration. To maintain a reasonable problem size
in each iteration of the algorithm, the discretization sizes are fixed at predefined values. Although
our algorithm did not always yield good feasible solutions on arbitrary QCQP instances, an extensive
computational study on almost 1300 test instances of two different problem classes – box-constrained
quadratic programs with complementarity constraints and disjoint bilinear programs, demonstrates
the effectiveness of our approach. We compare the quality of our solutions against those from
heuristics and local optimization algorithms in two state-of-the-art commercial solvers and observe
that on one instance class we clearly outperform the other methods whereas on the other class we
obtain competitive results.

2012 ACM Subject Classification Theory of computation → Mixed discrete-continuous optimization;
Mathematics of computing → Nonconvex optimization

Keywords and phrases Quadratically Constrained Quadratic Programs, Mixed Integer Linear
Programming, Heuristics, BoxQP, Disjoint Bilinear

Digital Object Identifier 10.4230/LIPIcs.SEA.2022.24

Supplementary Material Software (Source Code): https://github.com/skuhnke/qcqp_sourcecode

Funding The second and third authors’ visit was supported by a grant from DAAD, the German
Academic Exchange Service.
Akshay Gupte: Initial phase of this research supported by NSF grant DMS-1913294.

Acknowledgements This research was initiated during the second and third authors’ visit to Clemson
University, USA, in 2019, where the first author was a faculty member.

1 Introduction

A quadratically constrained quadratic program (QCQP) is the optimization problem

z∗ = max
x

x⊤ Q0 x + c⊤
0 x

s.t. x⊤ Qr x + c⊤
r x ≤ br, r ∈ R

x ∈ P

1 Corresponding author

© Akshay Gupte, Arie M. C. A. Koster, and Sascha Kuhnke;
licensed under Creative Commons License CC-BY 4.0

20th International Symposium on Experimental Algorithms (SEA 2022).
Editors: Christian Schulz and Bora Uçar; Article No. 24; pp. 24:1–24:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:akshay.gupte@ed.ac.uk
https://www.maths.ed.ac.uk/school-of-mathematics/people/a-z?person=820
https://orcid.org/0000-0002-7839-165X
mailto:koster@math2.rwth-aachen.de
https://www.math2.rwth-aachen.de/koster
https://orcid.org/0000-0002-8035-7012
mailto:kuhnke@math2.rwth-aachen.de
https://www.math2.rwth-aachen.de/de/mitarbeiter/kuhnke
https://doi.org/10.4230/LIPIcs.SEA.2022.24
https://github.com/skuhnke/qcqp_sourcecode
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


24:2 Adaptive Discretizations for QCQP

where x = (x1, . . . , xn) ∈ Rn, the set P ⊆ Rn is a polytope, the index set R is allowed to be
empty so that only the objective is quadratic, and all the data are of conformable dimensions.
We assume that the matrices Qr are symmetric for all r ∈ R ∪ {0}. When at least one
of these matrices has at least one negative eigenvalue (i.e., is not positive semidefinite),
then the QCQP instance is nonconvex, which are of interest to us in this paper since they
are global optimization problems and solving them to optimality is NP-hard in general.
It is common practice in global optimization to assume finite lower and upper bounds on
the variables, these bounds may either be pre-specified in the problem or implied by the
quadratic constraints or P . The assumption of P being in the nonnegative orthant can be
easily achieved by translating the variables. We assume feasible instances.

1.1 Background
QCQPs are a rich and important class of nonconvex optimization with a wide-range of
applications. There has been active research for many decades on solution algorithms for
them, but a majority of the literature is devoted to convex relaxations and cutting planes
that can be used in spatial branch-and-cut algorithms to find a global optimum. The focus
of this paper is on generating strong primal (upper) bounds on z∗. A standard choice for
doing this is to employ a nonlinear solver to search for a local optima and possibly improve
on this local optimum [23]. Although local search heuristics work well sometimes on specific
problems, such as box-constrained QPs [4] and also those arising from independent set
problem in graphs [22], in general, local solutions can be far away from the global optimum
and local solvers have been shown to either fail or produce not-so-good solutions when there
are many difficult-to-satisfy nonconvex quadratic constraints. Employing primal heuristics,
such as [2, 3, 7, 8, 18, 20], that generate feasible solutions of general mixed-integer nonlinear
problems is another approach, but these primarily use integrality of variables and are not
always effective for continuous nonconvex problems such as in QCQP. A third way is to solve
a convex relaxation of the problem and then round its solution so that it becomes feasible to
QCQP; however, a general rounding scheme is not known and difficult to characterise.

Another method for primal bounds is to develop restrictions (i.e., inner approximations)
of the feasible region and optimize the objective over it. A common choice for generating
restrictions is variable discretization, wherein the domain of a subset of variables is constrained
to take values in a pre-defined finite set of reals. Although this idea is elementary, to the
best of our knowledge, we have not seen it being widely employed for QCQP, except for the
aforementioned pooling problem [16, 1, 24, 15, 10], for applications in energy systems [13]
and water treatment [17], and for BoxQP [12], which is a subclass of QCQP wherein R = ∅
(no quadratic constraints) and P = [0, 1]n. Discretising a QCQP yields a mixed-integer QCQP
which can be reformulated as a mixed-integer LP (MILP) using different ways of expressing
an integer variable as a linear function of binary variables [14]. Convexification studies for
such binarization transformations have been carried out for MILPs [9]. The MILP approach to
obtaining primal bounds for QCQP is attractive due to many decades of advances in solving
MILPs and very sophisticated and powerful commercial solvers available for them. It also
complements MILP-based relaxation techniques [5].

Variable discretization algorithms do not fix variables values, and in that sense they bear
an advantage to some primal heuristics that obtain feasible solutions by fixing a subset of
the variables to certain values [3] (typically obtained through a convex relaxation of the
feasible set) and then optimizing over the variables that were left unfixed. However, as
they are currently designed and implemented, they have the drawback of requiring that the
discretised variables and values be pre-specified. Thus, these methods are “static” in the



A. Gupte, A. M. Koster, and S. Kuhnke 24:3

sense that they solve only once and do not adapt to the solution that has been found, i.e.,
once a MILP has been solved and feasible solution obtained, there is no guidance on how to
solve another MILP to improve on the current solution. An arbitrary discretization can likely
miss close-to-optimal values that may be suggested by a convex relaxation. Of course, one
could employ immense computing power and parallelise the solve of multiple MILPs, each
with a different discretization scheme, and then take the best primal bound out of all these
runs. However, such a brute-force approach is undesirable since it relies on a great amount of
computing power and time that may not always be available, and can be rendered needless
if instead one adopts a dynamic/adaptive approach where the discretization scheme gets
updated according to the previous solution. We know of only two studies [13, 17] that take
an adaptive discretization approach for nonconvex problems, but they are focused on specific
applications. There are also other areas of optimization where adaptive schemes are used,
for e.g., in stochastic programming [25].

1.2 Contributions of this Paper
We devise an adaptive variable discretization algorithm for any QCQP and test it extensively
on different problem classes. Our iterative algorithm solves in each iteration an MILP
restriction of the original QCQP based on discretization. The discretizations of the MILP
restrictions are adapted after each iteration based on the previous solution. The numerical
experiments show that our adaptive discretization algorithm yields very good feasible solutions
that are competitive and frequently superior than those obtained from global solvers (which
employ local solvers and also MILP heuristics) and other discretizations from literature, not
only in terms of objective value but also in terms of the running time required for obtaining
them. We remark that dynamic updating has been recently carried out for MILP relaxations
[6, 19] of nonconvex problems, and so our algorithm serves as a complement and lays the
groundwork for future work on a global optimization algorithm where both dual and primal
bounds are computed by adapting MILP problems.

Section 2.1 introduces the procedure to discretize the quadratic terms. Then, we present
in Section 2.2 a procedure to decide which variables in the quadratic terms to discretize.
Section 2.3 explains the adaption of the discretization which we apply in each iteration of
the algorithm. In Section 2.4, we present the whole adaptive discretization algorithm. Our
computational experiments are described in section 3. The algorithms used in this study are
introduced in Section 3.1 while details about their implementations are given in Section 3.2.
Subsequently, we apply the algorithms to two different problem classes. Then, we perform in
Section 3.3 calculations on a huge test set of 1230 BoxQPcc instances. Finally, in Section 3.4,
we evaluate the performance of the algorithms on 60 DisjBLP instances.

2 Adaptive Discretization Algorithm

2.1 Discretization of Quadratic Terms
To solve nonconvex QCQPs to optimality, a global optimization algorithm is required which
handles the quadratic terms xixj . Global solvers such as BARON sometimes struggle to
compute good feasible solutions in reasonable running time for several mid-size instances.
Therefore, a common approach to obtain strong feasible solutions for such problems is
discretization. In this paper, we reduce the solution space of the QCQP by restricting at
least one of the continuous variables in each quadratic term to certain discrete values. This
restriction can be equivalently reformulated into an MILP which is likely to be easier to solve
than the original QCQP.

SEA 2022



24:4 Adaptive Discretizations for QCQP

We propose a discretization method which is similar to the unary expansion [14]. To
introduce this discretization method, we consider a single quadratic term wij = xi xj where
xi ∈ [ℓi, ui] and xj ∈ [ℓj , uj ] with ℓi < ui and ℓj < uj . This term can also be strictly quadratic,
i.e., i = j. Let u ≥ 2 be a positive integer which defines the size of the discretization. Then,
we allow the originally continuous variable xi to assume only one of the predefined equidistant
values xi1 < · · · < xiu with xi1 ≥ ℓi and xiu ≤ ui. This means we have xi ∈ {xin | n ∈ N}
where N := {1, . . . , u} is the set of indices of the discretized values. In the following, we
express wij using linear expressions instead of a quadratic one. To this end, we introduce
additional binary variables zi1, . . . , ziu which are used to set xi equal to one of the values xin:

xi =
∑
n∈N

xin zin,
∑
n∈N

zin = 1, zin ∈ {0, 1} ∀n ∈ N. (1)

We first consider the case where wij is bilinear, i.e., i ̸= j. In this case, we add non-negative
continuous variables yij1, . . . , yiju defined by yijn := xj zin for all n ∈ N . In the unary
expansion, the bilinear terms xj zin are linearized by applying their McCormick envelopes
which consist of 4 u additional constraints. By exploiting the SOS-1 property of the binary
variables zin, we use an equivalent but smaller linearization with only 2 u + 1 additional
constraints:

xj =
∑
n∈N

yijn, ℓj zin ≤ yijn ≤ uj zin ∀n ∈ N. (2)

The above constraints (1)-(2) allow us to rewrite the bilinear term wij as a linear term where
we sum over each discretized value xin multiplied by corresponding additional variable yijn:

wij =
∑
n∈N

xin yijn . (3)

In the second case where wij is strictly quadratic, i.e., i = j, the additional continuous
variables yijn and their corresponding linearization (2) are not necessary. Along with
constraints (1), we can rewrite wii as follows:

wii =
∑
n∈N

x2
in zin . (4)

It is known from the results in [14] that the above linearization of the bilinear terms xjzin is
stronger than the standard one using McCormick envelopes.

By discretizing all quadratic terms in the QCQP as described above, the continuous
non-convex problem turns into a mixed-integer linear problem which we denote as discretized
MILP. This discretized MILP is likely to be easier to solve than the original QCQP since the
solution methods for MILPs are very advanced and modern MILP solvers are able to solve
very large instances quickly. All feasible solutions to the discretized MILP are also feasible to
the original QCQP. However, since we restricted the solution space of the original problem by
discretization, an optimal solution to the discretized MILP may not be an optimal solution
to the original QCQP.

2.2 Selection of Discretized Variables
To apply the discretization from Section 2.1 to general QCQPs, we have to decide which
variables in the quadratic terms we discretize. To this end, we consider a graph G = (V, E)
where the set of nodes V is equal to the set of variables of the QCQP and the set of edges E



A. Gupte, A. M. Koster, and S. Kuhnke 24:5

k = 2

(a) Internal point.

k = 5 ∧ xik < u

(b) End point within feasible region.

k = 1 ∧ xik = ℓ

(c) End point on boundary.

Figure 1 Adaption of discretization for u = 5.

contains an edge {xi, xj} if and only if the quadratic term xi xj exists in the QCQP. In this
graph, a vertex cover is equivalent to a feasible discretization for the QCQP where at least
one variable in each quadratic term is discretized. It is desirable to discretize as few variables
as possible because the problem size of the discretized MILP increases with the number of
discretized variables. However, since the minimum vertex cover problem is NP-complete,
solving it to optimality might become too time consuming for larger instances. Therefore,
we apply the greedy heuristic to obtain a good vertex cover in fast running time.

This heuristic creates a vertex cover by successively adding variables to the set D. After
initializing the set D = ∅, we first add all strictly quadratic variables to D and afterwards
remove them along with its adjacent edges from G. Then, we iteratively determine the node
with the highest degree in the current graph, add it to D if its degree is positive, and remove
it from G afterwards. When the graph is empty, the set D consists of a vertex cover, i.e., D

represents a feasible discretization for the QCQP. On our instances, this heuristic performed
better than other well-known factor 2 approximation algorithms for the vertex cover problem.

2.3 Adaption of Discretization
The quality of the optimal solution of the discretized MILP depends on the chosen discretized
values xi1, . . . , xiu of each discretized variable xi ∈ D. Using a big discretization size u

might lead to better solutions, but the corresponding discretized MILPs get too large and
computationally intractable. On the other hand, if we use a reasonable discretization size,
it is unlikely to choose an initial discretization that leads to a very good solution for the
original problem. Therefore, we use a computationally tractable discretization size u and
iteratively adapt the discretization values xi1, . . . , xiu while keeping the size u fixed. This
leads to an iterative algorithm which allows us to improve the discretization quality in each
iteration based on the previous solution of the discretized MILP. By keeping the discretized
values corresponding to the solution of the previous iteration, the adapted discretized MILPs
yield solutions at least as good as the previous one. Moreover, since the discretization size is
fixed, we are able to solve each discretized MILP in reasonable running time.

Let us again consider the discretization of a single quadratic term wij = xi xj and let
k ∈ N be the selected index in the solution of the previous discretized MILP, i.e., we have
xi = xik with zik = 1. To adapt the discretization, we consider three different cases depending
on xik as proposed by [13]. First, we consider the case 1 < k < u where the previous solution
xik is an internal point of the discretization. Here, we halve the length of the discretization
by moving the new discretized values closer around xik. This procedure is illustrated in
Figure 1a where the second discretized value xi2 is selected in the solution of the previous
discretized MILP. Second, we consider the case k ∈ {1, u} where the previous solution is an
end point of the discretization which lies strictly within the feasible region and not on its
boundary, i.e., xik ∈ (ℓi, ui). Then, we shift the discretization towards xik without reducing

SEA 2022



24:6 Adaptive Discretizations for QCQP

Algorithm 1 Adaption of discretization.
Input: Discretized values xin for n ∈ N , Previous solution zin for n ∈ N

Output: Adapted discretized values xin for n ∈ N

1: Choose k ∈ N such that zik = 1
2: if 1 < k < u then ▷ Internal point
3: δ ← (xi2 − xi1) / 2 ▷ Step size of new discretization
4: m← ⌈u

2 ⌉ ▷ New selected index
5: else if k ∈ {1, u} ∧ xik ∈ (ℓ, u) then ▷ End point within feasible region
6: δ ← (xi2 − xi1)
7: m← ⌈u

2 ⌉
8: else if k = 1 ∧ xik = ℓ then ▷ End point on left boundary
9: δ ← (xi2 − xi1) / 2

10: m← 1
11: else if k = u ∧ xik = u then ▷ End point on right boundary
12: δ ← (xi2 − xi1) / 2
13: m← u

14: end if
15: while xik + (1−m) δ < ℓ do ▷ New discretization is outside of feasible region
16: m← m− 1 ▷ Shift to the right into feasible region
17: end while
18: while xik + (u−m) δ > u do ▷ New discretization is outside of feasible region
19: m← m + 1 ▷ Shift to the left into feasible region
20: end while
21: xi ← xik ▷ Store previous selected discretized value
22: for n ∈ N do
23: xin ← xi + (n−m) δ ▷ Assign new discretized values
24: end for

its length. See Figure 1b for a visualization of this adaption where the last point of the
discretization is selected. Lastly, we consider the case k ∈ {1, u} where the previous solution
is an end point of the discretization which lies on the boundary of the feasible region, i.e.,
xik ∈ {ℓi, ui}. We then halve the length of the discretization by moving the discretized values
towards xik while keeping xik as an end point of the new discretization. This situation is
shown in Figure 1c where xik lies on the left boundary of the feasible region. In all three cases,
we ensure that the new discretization is equidistant and that it still contains the previous
solution xik. If parts of the new discretization are located outside the feasible region, we shift
the discretization back into the feasible region by keeping the previous solution xik in the
discretization. A detailed description of the whole adaption can be found in Algorithm 1.

To adapt the whole discretized MILP, we perform the above adaption for all discretized
variables xi ∈ D. Since the solution of the previous problem is also feasible to the adapted
discretized MILP, it can be used as MILP warm start for the latter. This guarantees that the
adapted discretized MILP yields a solution at least as good as the previous one.

2.4 Iterative Algorithm
Now we present the adaptive discretization algorithm for the calculation of feasible solutions
to QCQPs. A flowchart of this algorithm is displayed in Figure 2. We start the algorithm by
determining the set of discretized variables D according to Section 2.2 and then choosing



A. Gupte, A. M. Koster, and S. Kuhnke 24:7

Start Initialize discretization

Solve

discretized MILP

Feasible QCQP solution

Stop criterion?

Adapt discretization

based on

previous MILP solution

no

Use previous solution

as MILP Warm-Start

Stop

yes

Figure 2: Adaptive discretization algorithm

zero and cv while the flow on each arc a has to be between zero and ca. Each arc a also has
a weight fa 2 R for each unit of flow. Moreover, we have a set K of specifications with given
values �i

k 2 R at each input i 2 I for all k 2 K. At the pools and outputs, the specifications
are mixed linearly, i.e., the specification values at these nodes are equal to the weighted average
specification value of all entering flows. The specifications at each output j 2 J have to be
between the given lower bounds �j

k 2 R and upper bounds �j
k 2 R for all k 2 K. While

satisfying the above constraints, the objective of the pooling problem is to maximize a linear
function where the weights fa on each arc are multiplied by its corresponding flows.

3.2 Mathematical Formulation

A well studied and frequently used formulation for the pooling problem is the pq-formulation
proposed by [TS02] which uses proportion variables for the inlet flows of pools. In this paper,
we consider the tp-formulation introduced by [AH13] which is symmetric to the pq-formulation,
i.e., it has proportion variables for the outlet flows of pools instead for the inlet flows. We use
the tp-formulation instead of the pq-formulation because our computational experiments on the
discretization introduced in Section 2.1 yield much better results for the former formulation.
We remark that there are also some other formulations that are in a similar vein to pq and tp
and were studied by [BKR16], but for now we do not experiment with all of them.

In the following, we present the tp-formulation for the pooling problem. This formulation
contains three different kinds of variables. The first kind are the flow variables yij which are
equal to the flow on each arc (i, j) 2 A with i 2 I and j 2 L[J . Second, the path flow variables
vilj represent the flow along the path from input i via pool l to output j. Finally, for each pool
l and output j, the variable qlj is the proportion of flow in arc (l, j) to the total outlet flow
of pool l. The whole tp-formulation is given by (8)-(20). Its objective is to maximize a linear
weight function over the flow variables:

max
y,v,q

X

i2I,j2J
fij yij +

X

i2I,l2L,j2J

�
fil + flj

�
vilj . (8)

9

Figure 2 Adaptive discretization algorithm.

Algorithm 2 Adaptive discretization algorithm.
Input: QCQP instance T , Discretization size u

Output: Feasible solution x for T
1: Determine discretized variables D

2: for xi ∈ D do ▷ Initialize discretization
3: δ ← (u− ℓ) / (u− 1) ▷ Initial step size
4: for n ∈ N do
5: xin ← ℓ + (n− 1) δ ▷ Assign initial discretized values
6: end for
7: end for
8: repeat
9: Compute solution (x, y, z) to discretized MILP ▷ Use MILP start

10: for xi ∈ D do
11: Adapt discretization of xi with Algorithm 1 ▷ Use previous solution z

12: end for
13: until Stop criterion is fulfilled

an initial discretization xi1, . . . , xiu for each discretized variable xi ∈ D. Usually, this initial
discretization covers the whole feasible region, i.e., it has the end points xi1 = ℓi and xiu = ui.
Next, we solve the corresponding discretized MILP (see Section 2.1) which yields a first feasible
solution to the original QCQP. Then, we check if a stop criterion of the algorithm is fulfilled.
If no stop criterion is fulfilled, we enter the iteration loop and adapt the discretization of
each discretized variable xi ∈ D based on the previous MILP solution as stated in Section 2.3.
Subsequently, we solve the new discretized MILP where we pass the solution of the previous
problem as MILP start. This speeds up the calculations of the current discretized MILP and
ensures that the current solution is at least as good as the previous one. Once we calculated
the next feasible solution to the original QCQP, we again check for stop criteria. If one of
the stop criteria is now fulfilled, we terminate the algorithm instead of entering the next
iteration loop and return the QCQP solution calculated in the last iteration. Algorithm 2
describes the above steps in detail.

Our computational experiments in the next section show that this adaptive discretization
algorithm computes high quality solutions in reasonable running time for many instances.
One drawback of this algorithm is that no feasibility is guaranteed in the first iteration. It

SEA 2022



24:8 Adaptive Discretizations for QCQP

could occur that the discretized MILP with the initial discretization is infeasible even though
the original QCQP is feasible. In this case, one could either increase the discretization size u

or modify the discretized MILPs to obtain a relaxation instead of a restriction [17]. We do
not address in this paper the question of selecting a suitable discretization that is feasible
and leave it as a question for separate work in the future.

3 Computational Study

We present an extensive computational study where we apply the adaptive discretization
algorithm to two problem classes of QCQP which we describe in the subsequent sections. In
preliminary testing, we did try some arbitrary instances of QCQP from the library QPLib [11];
however, for many of these instances it was not easy to determine a initial discretization that
is feasible and hence our algorithm would terminate without computing a primal bound.

The source code for our implementations and the instances we used are both available
upon request.

3.1 Algorithms
To evaluate the performance of our adaptive algorithm, we use performance profiles to
compare objective values and running times to the commercial global solvers BARON and
Gurobi, which are well-known to be state-of-the-art for solving nonconvex QCQP. We also
compared against the popular global solver SCIP which employs some MILP-based primal
heuristics [2, 3], but it performed much worse than BARON and Gurobi and our algorithm,
and so we do not include SCIP in the results reported in this paper. As far as we are aware,
BARON uses a variety of local solvers to compute feasible solutions to nonlinear problems,
whereas Gurobi employs some MILP heuristics on a disjunctive formulation for QCQP. Thus,
our numerical experiments showcase the advantages of our MILP discretizations not only
over local solvers but also over other MILP heuristics.

Our adaptive refinement algorithm is denoted by AD-u, using the discretization and
adaption from Section 2.1 and Section 2.3, respectively, and where the parameter u represents
the size of the discretizations used in the algorithm. We calculate solutions to the original
QCQPs with the global solvers BARON and Gurobi. Beside primal solutions, the global solvers
also yield dual bounds which allow us to evaluate the optimality gap of our solutions.

3.2 Implementation
GAMS 31.1.1 is used along with its Python API as the mathematical modeling system.
Gurobi 9.1.1 is used to solve all discretized MILPs, and it is also used as a global solver for
the original QCQP. We also compare against the global solver BARON 20.4.14. For all solvers,
we use a feasibility tolerance 10−6 and an integrality tolerance 10−5. For MILPs solved by
Gurobi, we set the option mipstart = 1 and for QCQPs solved by Gurobi, we set the option
nonconvex = 2. All remaining solver options are the standard values. Each calculation is
performed on a single core of a Linux machine with an Intel Core i9-9900 CPU with 4.7 GHz
clock rate and 32 GB RAM where 14 GB RAM is reserved for this calculation.

For the adaptive discretization algorithms AD-u and ADP-u, we set a global time limit of
3600 seconds. Furthermore, we specify a time limit of 1200 seconds and a relative optimality
gap of 0.01% for each discretized MILP. Besides the global time limit of 3600 seconds, the
overall algorithm also stops if the relative improvement of the best solution over the last two
iterations is smaller than 0.01%. For the QCQP solvers BARON and Gurobi, calculations are



A. Gupte, A. M. Koster, and S. Kuhnke 24:9

stopped if the global time limit of 4 hours or a relative optimality gap of 0.01% is reached.
Here, we allow a longer calculation time of 4 hours to obtain good dual bounds as well as
to show the difficulties of QCQP solvers to find competitive primal solutions even with this
advantage in terms of running time.

3.3 Study I: BoxQPs with Complementarity Constraints
A BoxQP has a quadratic objective and lower and upper bounds on variables as the only
constraints. Due to triviality of the constraints, good primal bounds for BoxQP can generally
be computed very quickly by local solvers, and so it is of no interest to apply our discretization
algorithm to BoxQP directly. Instead, we consider BoxQPs with complementarity constraints

(BoxQPcc) : max
x

x⊤ Q x + c⊤ x

s.t. xi xj = 0 ∀ (i, j) ∈ E,

0 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , n},

where E is some given subset of the Cartesian product of {1, . . . , n} with itself. The
complementarity constraints enforce that at least one of the variables xi and xj is zero.

Based on the 246 BoxQPs from [21], we generate a test set of 1230 BoxQPcc instances. Let
ρ ∈ {0, 0.125, 0.25, 0.375, 0.5} be a fixed probability and T be one of the BoxQP instances.
Then, we create a new BoxQPcc instance Tρ by adding for each quadratic term xi xj that
occurs in the objective function of T the constraint xi xj = 0 with probability ρ. This means
that the instances T0 are equal to the original 246 BoxQP instances while the remaining
instances Tρ for ρ ∈ {0.125, 0.25, 0.375, 0.5} have additional quadratic complementarity
constraints. We only consider probabilities ρ ∈ {0, 0.125, 0.25, 0.375, 0.5} in this study since
higher probabilities yield instances with a very high density of complementarity constraints
which force many quadratic terms to zero and thus make the instances very easy for most
algorithms.

Now we compare the adaptive discretization algorithm AD-u for u ∈ {2, 3, 4, 5} with the
global solvers BARON and Gurobi. Since the gaps for most of the BoxQPcc instances are
relatively large, performance profiles using relative optimality gaps are not very informative
for these instances. Therefore, we only present performance profiles with relative objective
values for the BoxQPcc instances.

Figure 3a shows the performance profile with relative objective values for the BoxQPcc
instances with ρ = 0, i.e., the original BoxQP instances. We see that BARON calculates by
far the strongest objectives with the best objective values for 99% of the instances. The
second best results are achieved by AD-2 with objectives at most 5% worse than the best
for 88% of the instances and all instances at most 77% worse than the best solutions. The
remaining adaptive discretization algorithms perform even weaker and only manage to solve
all instances with objective values at most 5 times worse than the best. Gurobi achieves
clearly the weakest results by terminating for 65% of the instances with objectives more than
5 times worse than the best solutions.

A performance profile with relative objective values for the BoxQPcc instances with
ρ = 0.125 is presented in Figure 3b. Here, the results look very different as the adaptive
discretization algorithms AD-3, AD-4, and AD-5 perform clearly best and outclass all remaining
algorithms. AD-2 yields weaker objectives than the other discretization algorithms but is
still much stronger than BARON and Gurobi for up to 95% of the instances. Gurobi only
calculates better objective values than AD-2 for percentages between 95% and 100%. While
the performance of BARON has heavily dropped, Gurobi achieves stronger results as for ρ = 0.

SEA 2022



24:10 Adaptive Discretizations for QCQP

1.0 2.0 3.0 4.0 5.0

0.2

0.4

0.6

0.8

1.0

Relative objective

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

(a) ρ = 0.

1.0 3.0 5.0 7.0 9.0

0.4

0.6

0.8

1.0

Relative objective

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

(b) ρ = 0.125.

1.0 2.0 3.0 4.0 5.0

0.4

0.6

0.8

1.0

Relative objective

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

(c) ρ = 0.25.

1.0 1.5 2.0 2.5 3.0

0.5

0.6

0.7

0.8

0.9

1.0

Relative objective

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

(d) ρ = 0.375.

1.0 1.2 1.4 1.6 1.8

0.6

0.7

0.8

0.9

1.0

Relative objective

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

(e) ρ = 0.5.

Figure 3 Relative objective values of AD-u and QCQP solvers for BoxQPcc instances.

For ρ = 0.25, a corresponding performance profile is depicted in Figure 3c. The adaptive
discretization algorithms still yield the best objectives with their results relatively close to
each other and AD-3 being the strongest and AD-2 being the weakest. However, AD-2 is now
very close behind the remaining discretization algorithms and beats both QCQP solvers by
far. While BARON and Gurobi are beaten by magnitudes, Gurobi now has clearly stronger
objective values than BARON.

Figure 3d shows the performance profile with relative objective values for the BoxQPcc
instances with ρ = 0.375. While the adaptive discretization algorithms are still on top,
Gurobi is now relatively close behind them and is even stronger than AD-4 and AD-5 for
less than 80% of the instances. AD-2 and AD-3 reach the best results where the former is
even able to find the best solution for 80% of the instances. The discretization algorithms
terminate for all instances with objective values at most 1.63 times worse than the best
solution while Gurobi achieves this only with objective values more than 3 times worse than
the best. BARON is beaten by magnitudes by all other algorithms.

The performance profile for the BoxQPcc instances with ρ = 0.5 is illustrated in Figure 3e.
Here, only AD-2 performs stronger than Gurobi for all percentages of instances while the
remaining discretization algorithms are weaker than Gurobi for less than 97% of the instances
and outperform Gurobi for 97% to 100% of the instances. While Gurobi can only guarantee
a relative objective value of at most 66% worse than the best, all discretization algorithms
achieve achieve a value of less than 40% while AD-2 even guarantees objective values at most
26% worst than the best ones. Again, BARON is outclassed by all other algorithms.

The above five performance profiles are summarized in Figure 4a. This figure shows
for each considered probability ρ the geometric mean of the relative objective values of
the corresponding 246 instances calculated by each algorithm. We see that the adaptive
discretization algorithms AD-3, AD-4, and AD-5 yield the most consistent results. They
achieve top results for all probabilities except ρ = 0 where they are beaten by AD-2 and
BARON. AD-2 is also very strong for most probabilities but fails for ρ = 0.125. While BARON



A. Gupte, A. M. Koster, and S. Kuhnke 24:11

0 0.125 0.25 0.375 0.5

1

2

3

4

5

6

7

Probability ⇢

R
el
at
iv
e
ob

je
ct
iv
e
(m

ea
n)

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

Figure 16: Summary of relative objective values of AD-n and QCQP for BoxQPCC instances

tions, we adapt the discretization of the MILP after each iteration based on the previous MILP
solution. During this adaption, we only change the discretization values while the discretization
sizes remain the same.

We applied this adaptive discretization algorithm to the standard pooling problem which
can be formulated as a computationally challenging BLP. Moreover, we introduced a specifically
tailored modification of the adaptive discretization algorithm to the pooling problem. In addition
to the discretization values, this adaption allows a dynamic change of the discretization sizes in
each iteration based on the previous solution.

To evaluate the performance of the adaptive discretization algorithms in comparison to
commercial QCQP solvers, we conducted an extensive computational study which is divided
into three parts. In the first part, we applied the algorithms on 70 medium- to large-scale
test instances of the pooling problem. After clarifying what discretization sizes work best for
these instances, we showed that the adaptive discretization algorithm outperforms a previous
discretization approach from the literature as well as the QCQP solvers BARON and Gurobi
in terms of objective values. The second part of the study is devoted to BoxQPs with com-
plementarity constraints. On a large test set of 1230 instances, we showed that the adaptive
discretization algorithms are more consistent than BARON and Gurobi and calculate stronger
objective values than the global solvers for most instances. In the last part of the study, we
consider 60 test instances for disjointly constrained BLPs. Here, the adaptive discretization
algorithms and the QCQP solvers performed very similar with a slight advantage for Gurobi.
In all calculations, the discretizations were given only one quarter of the running time of the
global QCQP solvers. Altogether, these studies show that the adaptive discretization algorithm
yields strong competitive solutions in terms of objective values and running times for different
instance classes.

Future work in this area could point in two directions. On the one hand, one could improve
the presented approach of adaptive discretization for QCQPs. This could be done either by
developing more efficient solution approaches for the MILP restriction through reformulating
constraints or adding valid inequalities, or by enhancing the adaption process similar to the

30

(a) All profiles.

0 0.125 0.25 0.375 0.5

1

1.1

1.2

1.3

1.4

Probability ⇢

R
el
at
iv
e
ob

je
ct
iv
e
(m

ea
n)

AD-2
AD-3
AD-4
AD-5
BARON
Gurobi

Figure 17: Zoomed summary of relative objective values of AD-n and QCQP for BoxQPCC
instances

dynamic adaptive discretization introduced in this paper for the pooling problem. Moreover,
one could use different discretization techniques than the one presented here to design further
adaptive discretization algorithms for QCQPs. On the other hand, this approach could be
extended from solving QCQPs to more general problem classes and be incorporated into a
metaheuristic for non-convex optimization problems.

Bibliography
[Ala+01] S. Alarie, C. Audet, B. Jaumard, and G. Savard. “Concavity cuts for disjoint bilinear

programming”. In: Mathematical Programming 90.2 (2001), pp. 373–398.

[AH11] M. Alfaki and D. Haugland. “Comparison of discrete and continuous models for the pool-
ing problem”. In: 11th Workshop on Algorithmic Approaches for Transportation Modeling,

Optimization, and Systems: ATMOS 2011, ed. by A. Caprara et al. Vol. 20. OpenAccess
Series in Informatics (OASIcs). 2011, pp. 112–121.

[AH13] M. Alfaki and D. Haugland. “Strong formulations for the pooling problem”. In: Journal of
Global Optimization 56.3 (2013), pp. 897–916.

[Ans12] K. M. Anstreicher. “On convex relaxations for quadratically constrained quadratic pro-
gramming”. In: Mathematical Programming 136.2 (2012), pp. 233–251.

[Aud+00] C. Audet, P. Hansen, B. Jaumard, and G. Savard. “A branch and cut algorithm for non-
convex quadratically constrained quadratic programming”. In: Mathematical Programming

87.1 (2000), pp. 131–152.

[BST11] X. Bao, N. Sahinidis, and M. Tawarmalani. “Semidefinite relaxations for quadratically con-
strained quadratic programming: A review and comparisons”. In: Mathematical Program-

ming 129.1 (2011), pp. 129–157.

[BST09] X. Bao, N. V. Sahinidis, and M. Tawarmalani. “Multiterm polyhedral relaxations for non-
convex, quadratically constrained quadratic programs”. In: Optimization Methods and Soft-

ware 24.4-5 (2009), pp. 485–504.

31

(b) Zoomed summary.

Figure 4 Summary of relative objective values of AD-u and QCQP for BoxQPcc instances.

only achieves competitive results for ρ = 0, Gurobi gets stronger with increasing probabilities
with competitive objective values for ρ = 0.5. To evaluate the performance of the individual
adaptive discretization algorithms, we show the same figure zoomed to smaller relative
objective values in Figure 4b. From this figure follows that AD-3 overall performs most
consistent among the adaptive discretization algorithms. AD-4 and AD-5 yield slightly weaker
results than AD-3 while AD-2 performs very unstable. On the one hand, AD-2 beats the
remaining discretization algorithms for ρ ∈ {0, 0.375, 0.5} and, on the other hand, it performs
poorly for ρ = 0.125.

3.4 Study II: Disjointly Constrained Bilinear Programs
Another subclass of QCQP that we consider are disjoint bilinear programs

(DisjBLP) : max
x,y

x⊤ Q y + c⊤ x + d⊤ y

s.t. A x ≤ a, B y ≤ b

with variables x ∈ Rn, y ∈ Rm and inputs Q ∈ Rn×m, c ∈ Rn, d ∈ Rm, A ∈ Rr×n, B ∈ Rs×m,
a ∈ Rr and b ∈ Rs. These are called disjoint because they are bipartite due to the variables
being partitioned into two sets x and y, and the feasible set is the Cartesian product of a
polyhedron in x-space and a polyhedron in y-space.

We generate 60 DisjBLP test instances following the procedure in [26]. For all generated
instances, we use the parameters δ = 2.5, ρ = 1.5, and randomized them with Householder
matrices defined by unit vectors with random numerators and a denominator of 1000. The
size of the instances depends on the parameters κ1 and κ2 where the total number of variables
and constraints is equal to κ1 + 3 κ2 and κ1 + 5 κ2. Here, we generate six classes of DisjBLP
instances where each class contains 10 instances with size κ1 ∈ {50, 100, 150, 200, 300, 400}
and κ2 = 2 κ1. For each instance, we used the random seed κ1 + κ2 + δ + ρ + k where
k ∈ {0, . . . , 9} is the number of the instance. After the instance generation, we applied LP
based bound tightening on all variables. Moreover, we discovered that the kernel problem 2
described by [26] does not have the optimal solution stated by them in Property 6. Therefore,
we added the constraint y ≥ 1 to kernel problem 2 to fix this issue.

The adaptive algorithm AD-u for u ∈ {5, 6} is compared with the QCQP solvers BARON
and Gurobi on the 60 generated instances. Here, we only use greater discretization sizes
since the smaller sizes u ∈ {2, 3, 4} struggle to find competitive feasible solutions for many
instances due to the randomized bounds on the variables. Figure 5 presents a performance
profile with the relative optimality gaps of the above algorithms. This figure shows that

SEA 2022



24:12 Adaptive Discretizations for QCQP

0.00 0.01 0.02 0.03

0.0

0.2

0.4

0.6

0.8

1.0

Relative gap

P
e
r
c
e
n
t
a
g
e
o
f
in
s
t
a
n
c
e
s

AD-5

AD-6

BARON

Gurobi

Figure 18: Relative gaps of AD-5, AD-6, and the QCQP solvers for DisjBLP instances

[BHH20] B. Beach, R. Hildebrand, and J. Huchette. Compact mixed-integer programming relaxations

in quadratic optimization. arXiv Preprint. 2020. arXiv: 2011.08823 [math.OC].

[BGN09] A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series In
Applied Mathematics. Princeton University Press, 2009.

[BH96] J. M. Bloemhof-Ruwaard and E. M. Hendrix. “Generalized bilinear programming: An ap-
plication in farm management”. In: European Journal of Operational Research 90.1 (1996),
pp. 102–114.

[BKR16] N. Boland, T. Kalinowski, and F. Rigterink. “New multi-commodity flow formulations for
the pooling problem”. In: Journal of Global Optimization 66.4 (2016), pp. 669–710.

[BD02] I. M. Bomze and E. De Klerk. “Solving standard quadratic optimization problems via linear,
semidefinite and copositive programming”. In: Journal of Global Optimization 24.2 (2002),
pp. 163–185.

[BGL18] P. Bonami, O. Günlük, and J. Linderoth. “Globally solving nonconvex quadratic program-
ming problems with box constraints via integer programming methods”. In: Mathematical

Programming Computation 10.3 (2018), pp. 333–382.

[Bon+19] P. Bonami, A. Lodi, J. Schweiger, and A. Tramontani. “Solving quadratic programming by
cutting planes”. In: SIAM Journal on Optimization 29.2 (2019), pp. 1076–1105.

[BKK14] S. Burer, S. Kim, and M. Kojima. “Faster, but weaker, relaxations for quadratically con-
strained quadratic programs”. In: Computational Optimization and Applications 59.1-2
(2014), pp. 27–45.

32

Figure 5 Relative gaps of AD-5, AD-6, and the QCQP solvers for DisjBLP instances.

all considered algorithms perform relatively similar on the DisjBLP instances as the scale
of the relative gaps only reaches to 3%. Gurobi yields slightly better objective values than
the rest while BARON yields slightly worse. The adaptive discretization algorithms AD-5 and
AD-6 show very similar results and are even able to compete with Gurobi for above 90% of
the instances. On the other hand, BARON is able to terminate for all instances with the best
gap of at most 2% while the other algorithms are very close behind. Altogether, these four
algorithms perform very similar on the DisjBLP instances where Gurobi calculates marginally
better objective values than the rest.

4 Conclusion

We presented an iterative algorithm that adaptively refines a MILP restriction of a QCQP.
This restriction arises from discretizing all quadratic terms, and our adaptive step modifies
the discretization of the MILP after each iteration based on the previous MILP solution.
During this adaption, we only change the discretization values while the discretization sizes
remain the same. Since arbitrary instances of QCQP are not always amenable to a MILP
discretization approach due to the difficulty of finding a good feasible discretization to begin
with, for our computational testing, we chose two problem classes of QCQP. On a large test
set of 1230 instances of box-constrained quadratic programs with complementarities, we
showed that our adaptive discretization algorithm calculates much better objective values
than the heuristics employed in global solvers BARON and Gurobi. For 60 test instances of
disjointly constrained BLPs, the solutions obtained by all methods were of similar value with
a slight advantage for Gurobi.

References
1 Mohammed Alfaki and Dag Haugland. Comparison of discrete and continuous models for the

pooling problem. In Alberto Caprara and Spyros Kontogiannis, editors, 11th Workshop on
Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, volume 20
of OpenAccess Series in Informatics (OASIcs), pages 112–121, 2011. doi:10.4230/OASIcs.
ATMOS.2011.112.

2 Timo Berthold. RENS. Mathematical Programming Computation, 6(1):33–54, 2014. doi:
10.1007/s12532-013-0060-9.

https://doi.org/10.4230/OASIcs.ATMOS.2011.112
https://doi.org/10.4230/OASIcs.ATMOS.2011.112
https://doi.org/10.1007/s12532-013-0060-9
https://doi.org/10.1007/s12532-013-0060-9


A. Gupte, A. M. Koster, and S. Kuhnke 24:13

3 Timo Berthold and Ambros M Gleixner. Undercover: a primal MINLP heuristic ex-
ploring a largest sub-MIP. Mathematical Programming, 144(1-2):315–346, 2014. doi:
10.1007/s10107-013-0635-2.

4 Endre Boros, Peter L Hammer, and Gabriel Tavares. Local search heuristics for quadratic
unconstrained binary optimization (QUBO). Journal of Heuristics, 13(2):99–132, 2007.

5 Samuel Burer and Anureet Saxena. The MILP road to MIQCP. In Jon Lee and Sven Leyffer,
editors, Mixed Integer Nonlinear Programming, volume 154 of IMA Volumes in Mathematics
and its Applications, pages 373–405. Springer, 2012.

6 Robert Burlacu, Björn Geißler, and Lars Schewe. Solving mixed-integer nonlinear programmes
using adaptively refined mixed-integer linear programmes. Optimization Methods and Software,
35(1):37–64, 2020.

7 C. D’Ambrosio, A. Frangioni, L. Liberti, and A. Lodi. Experiments with a feasibility pump
approach for nonconvex MINLPs. In P. Festa, editor, Experimental Algorithms, volume 6049
of Lecture Notes in Computer Science, pages 350–360. Springer, Berlin, Heidelberg, 2010.
doi:10.1007/978-3-642-13193-6_30.

8 Claudia D’Ambrosio, Antonio Frangioni, Leo Liberti, and Andrea Lodi. A storm of feasibility
pumps for nonconvex MINLP. Mathematical Programming, 136(2):375–402, 2012. doi:
10.1007/s10107-012-0608-x.

9 Sanjeeb Dash, Oktay Günlük, and Robert Hildebrand. Binary extended formulations of
polyhedral mixed-integer sets. Mathematical Programming, 170(1):207–236, 2018. doi:10.
1007/s10107-018-1294-0.

10 Santanu S Dey and Akshay Gupte. Analysis of MILP techniques for the pooling problem.
Operations Research, 63(2):412–427, 2015. doi:10.1287/opre.2015.1357.

11 Fabio Furini, Emiliano Traversi, Pietro Belotti, Antonio Frangioni, Ambros Gleixner, Nick
Gould, Leo Liberti, Andrea Lodi, Ruth Misener, Hans Mittelmann, et al. QPLIB: a library of
quadratic programming instances. Mathematical Programming Computation, 11(2):237–265,
2019.

12 Laura Galli and Adam N Letchford. A binarisation heuristic for non-convex quadratic
programming with box constraints. Operations Research Letters, 46(5):529–533, 2018.

13 S. Goderbauer, B. Bahl, P. Voll, M.E. Luebbecke, A. Bardow, and A.M.C.A. Koster. An
adaptive discretization MINLP algorithm for optimal synthesis of decentralized energy supply
systems. Computers & Chemical Engineering, 95:38–48, 2016. doi:10.1016/j.compchemeng.
2016.09.008.

14 Akshay Gupte, Shabbir Ahmed, Myun S. Cheon, and Santanu S Dey. Solving mixed integer
bilinear problems using MILP formulations. SIAM Journal on Optimization, 23(2):721–744,
2013. doi:10.1137/110836183.

15 Akshay Gupte, Shabbir Ahmed, Santanu S. Dey, and Myun Seok Cheon. Relaxations and
discretizations for the pooling problem. Journal of Global Optimization, 67(3):631–669, 2017.
doi:10.1007/s10898-016-0434-4.

16 Scott P Kolodziej, Ignacio E Grossmann, Kevin C Furman, and Nicolas W Sawaya. A
discretization-based approach for the optimization of the multiperiod blend scheduling problem.
Computers & Chemical Engineering, 53:122–142, 2013.

17 Arie M. C. A. Koster and Sascha Kuhnke. An adaptive discretization algorithm for the design
of water usage and treatment networks. Optimization and Engineering, 20(2):497–542, June
2019. doi:10.1007/s11081-018-9413-6.

18 Leo Liberti, Nenad Mladenović, and Giacomo Nannicini. A recipe for finding good solutions
to MINLPs. Mathematical Programming Computation, 3(4):349–390, 2011. doi:10.1007/
s12532-011-0031-y.

19 Harsha Nagarajan, Mowen Lu, Site Wang, Russell Bent, and Kaarthik Sundar. An adaptive,
multivariate partitioning algorithm for global optimization of nonconvex programs. Journal of
Global Optimization, 74(4):639–675, 2019.

SEA 2022

https://doi.org/10.1007/s10107-013-0635-2
https://doi.org/10.1007/s10107-013-0635-2
https://doi.org/10.1007/978-3-642-13193-6_30
https://doi.org/10.1007/s10107-012-0608-x
https://doi.org/10.1007/s10107-012-0608-x
https://doi.org/10.1007/s10107-018-1294-0
https://doi.org/10.1007/s10107-018-1294-0
https://doi.org/10.1287/opre.2015.1357
https://doi.org/10.1016/j.compchemeng.2016.09.008
https://doi.org/10.1016/j.compchemeng.2016.09.008
https://doi.org/10.1137/110836183
https://doi.org/10.1007/s10898-016-0434-4
https://doi.org/10.1007/s11081-018-9413-6
https://doi.org/10.1007/s12532-011-0031-y
https://doi.org/10.1007/s12532-011-0031-y


24:14 Adaptive Discretizations for QCQP

20 Giacomo Nannicini and Pietro Belotti. Rounding-based heuristics for nonconvex MINLPs.
Mathematical Programming Computation, 4(1):1–31, 2012. doi:10.1007/s12532-011-0032-x.

21 Carlos J Nohra, Arvind U Raghunathan, and Nikolaos Sahinidis. Spectral relaxations and
branching strategies for global optimization of mixed-integer quadratic programs. SIAM
Journal on Optimization, 31(1):142–171, 2021.

22 Foad Mahdavi Pajouh, Balabhaskar Balasundaram, and Oleg A Prokopyev. On characterization
of maximal independent sets via quadratic optimization. Journal of Heuristics, 19(4):629–644,
2013. doi:10.1007/s10732-011-9171-5.

23 Jaehyun Park and Stephen Boyd. General heuristics for nonconvex quadratically constrained
quadratic programming. arXiv Preprint, May 2017. arXiv:1703.07870.

24 V. Pham, C. Laird, and M. El-Halwagi. Convex hull discretization approach to the global
optimization of pooling problems. Industrial and Engineering Chemistry Research, 48(4):1973–
1979, 2009.

25 Wim van Ackooij, Welington de Oliveira, and Yongjia Song. Adaptive partition-based
level decomposition methods for solving two-stage stochastic programs with fixed recourse.
INFORMS Journal on Computing, 30(1):57–70, 2018. doi:10.1287/ijoc.2017.0765.

26 Luis N Vicente, Paul H Calamai, and Joaquim J Júdice. Generation of disjointly constrained
bilinear programming test problems. Computational Optimization and Applications, 1(3):299–
306, 1992.

https://doi.org/10.1007/s12532-011-0032-x
https://doi.org/10.1007/s10732-011-9171-5
http://arxiv.org/abs/1703.07870
https://doi.org/10.1287/ijoc.2017.0765

	p000-Frontmatter
	Preface
	Steering Committee
	Organization

	p001-Celinska-Kopczynska
	1 Introduction
	2 Prerequisities
	3 Our contribution
	4 Algorithms for DHRG
	5 Experimental setup
	6 Experiments on real-world networks
	7 Experiments on simulated graphs
	7.1 Log-likelihood
	7.2 Greedy routing
	7.3 Changing the temperature

	8 Conclusion
	A Tessellation distances versus hyperbolic distances
	B Proofs and pseudocodes
	C Details of the GitHub dataset
	D Choice of the tessellation

	p001-ZZZ-Celinska-Kopczynska
	p002-Ishihata
	1 Introduction
	2 Problem Definition
	2.1 Nagareru Puzzles
	2.2 Formulating Nagareru as a constrained cycle finding problem

	3 A CSP-based Nagareru solver
	4 A ZDD-based Nagareru Solver
	4.1 ZDDs for subgraphs
	4.2 FBS for constrained subgraphs
	4.2.1 Example: the size constraint
	4.2.2 Example: the cycle constraint

	4.3 The FBS for the Nagareru constraints

	5 An efficient Nagareru instance generator
	5.1 An interesting instance of Nagareru
	5.2 The proposed Nagareru instance generator

	6 Experiments
	6.1 Experimental Setting
	6.2 Experimental Results

	7 Conclusion
	A Solving blank instances
	B Various interesting instances generated by our Nagareru generator

	p002-ZZZ-Ishihata
	p003-Zeitz
	1 Introduction
	2 Preliminaries
	2.1 (C)CH-Potentials
	2.2 Smooth Paths

	3 Complexity
	4 Algorithms
	4.1 Avoiding Blocked Paths
	4.2 Efficient UBS Computation
	4.2.1 Worst-Case Running Time
	4.2.2 Lazy RPHAST with Path Unpacking

	4.3 Iterative Path Fixing

	5 Evaluation
	6 Conclusion
	A Detailed Performance Profiles by Instance

	p004-Dillinger
	1 Introduction
	2 Linear Algebra Based Retrieval Data Structures and SGAUSS
	3 Ribbon Retrieval and Ribbon Filters
	3.1 Standard Ribbon
	3.2 Bumped Ribbon Retrieval
	3.3 Homogeneous Ribbon Filter
	3.4 Analysis outline
	3.5 Further results

	4 Summary of Experimental Findings
	5 Related Results and Techniques
	6 Conclusion and Future Work
	A Further Experimental Data

	p005-Gottesburen
	1 Introduction
	2 Preliminaries
	3 Related Work
	4 Framework Overview
	5 Parallel Active Block Scheduling
	6 Network Construction
	7 Flow-Based Refinement
	8 Parallel Maximum Flow Algorithm
	9 Experiments
	10 Conclusion and Future Work
	A Quotient Graph Maintenance
	B Network Construction Algorithm
	C Benchmark Sets

	p005-ZZZ-Gottesburen
	p006-Drakulic
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 Notation
	3.2 Trip-Based Public Transit Routing

	4 Trip-Based algorithm with non-scheduled lines
	4.1 Defining a trip for a non-scheduled line
	4.2 Transfers to and from a line without schedule
	4.3 Modifications in the query phase
	4.4 Complexity and correctness

	5 Experiments
	6 Conclusion and future work

	p006-ZZZ-Drakulic
	p007-Blesa
	1 Introduction
	2 Centrality Measures
	2.1 Topology based
	2.2 Relevance based
	2.3 Influence based

	3 Social Networks
	3.1 Synthetic Social Networks
	3.1.1 Gaussian Random Partition Graph (GRP)
	3.1.2 Stochastic Block Model (SBM)
	3.1.3 LFR Benchmark Graph
	3.1.4 Hyperbolic Geometric Graph

	3.2 Real Social Networks

	4 Statistical Metrics
	5 Experiments and results
	5.1 Statistics results 
	5.2 Correlation analysis 
	5.3 Comparison with real networks

	A Details on the correlation analysis (Section 5.2, Fig. 5)

	p007-ZZZ-Blesa
	p008-Coja-Oghlan
	1 Introduction
	1.1 Our contributions and outline
	1.2 The model

	2 Established designs and algorithms
	2.1 Individual testing
	2.2 Dorfman
	2.3 Probabilistic constructions
	2.4 Glauber dynamics
	2.5 Informative Dorfman

	3 Adaptive Belief Propagation (ABP)
	3.1 Belief Propagation
	3.1.1 Preventing oscillations

	3.2 The first stage
	3.3 The second and third stage
	3.4 Enhanced accuracy

	4 Empirical investigation
	5 Asymptotic considerations
	5.1 Variations on aBP
	5.2 Plain Belief Propagation
	5.3 Population dynamics

	6 Discussion
	A Number of tests in first and second stage
	B Sample splits and test degree

	p009-Afshar
	1 Introduction
	1.1 Related Prior Results
	1.2 Our Contributions

	2 Preliminaries
	3 Algorithm
	4 Correctness and Analysis
	5 Experimental results
	5.1 Implementation and Datasets
	5.2 Batch Length
	5.3 Maximum Cell Degree
	5.3.1 Road Networks with Subdivided Edges

	5.4 Comparisons with Existing Algorithms

	6 Comparison of Theoretical/Experimental Results and Future Work
	6.1 Delaunay Triangulations and dmax

	7 Conclusions
	A Batch Length Results for All Datasets

	p010-Bertram
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Framework
	2.1 Graph Partitioning
	2.2 Compute Local Solutions
	2.3 Merging
	2.4 Optimization by Local Search

	3 Experimental Evaluation
	3.1 Implementation Details
	3.2 Results
	3.2.1 Overview
	3.2.2 Scaling on Multiple Processors
	3.2.3 Number of Subgraphs vs. Quality


	4 Conclusion
	A Small Graphs

	p010-ZZZ-Bertram
	p011-VanderGrinten
	p012-Langedal
	1 Introduction
	2 Background and Related Work
	2.1 Reduction Rules
	2.2 Local Search
	2.3 Graph Neural Networks

	3 Approach
	3.1 Initial Computation
	3.2 Graph Neural Network Architecture
	3.3 Optimized Local Search

	4 Experimental Setup
	4.1 Benchmark Data
	4.2 Training the GNN Model

	5 Experimental Results
	5.1 Comparison with State-of-the-art Heuristics
	5.2 Evaluation of Different Configurations
	5.3 Running Time
	5.4 Large Instances

	6 Conclusion and Future Work

	p012-ZZZ-Langedal
	p013-Blasius
	1 Introduction
	2 Preliminaries
	3 A Branch-and-Bound Algorithm For Cluster Editing
	3.1 Upper Bounds
	3.2 Lower Bounds
	3.3 Reduction Rules

	4 Experiments
	4.1 PACE Instances
	4.2 Scaling Experiments

	5 Conclusion
	A Missing Proofs
	B Unused Reductions
	C Reproducibility
	D Search Space on Growing GIRGs
	E Solution Structure on GIRGs

	p013-ZZZ-Blasius
	p014-Georgiadis
	1 Introduction
	2 Preliminaries
	3 Algorithms
	3.1 The algorithm of Tarjan
	3.2 The algorithm of Tong and Lawler
	3.3 The algorithm of Gabow
	3.3.1 Computing a complete k-intersection T of G
	3.3.2 Computing a good s-arborescence


	4 Empirical Analysis
	A Stack-based vs queue-based implementations

	p015-Rajan
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	2.1 Stochastic Route Planning

	3 Problem Setup
	3.1 Travel Times and Energy Depletion
	3.2 E-Feasible Routing
	3.3 p-Feasible Routing

	4 Charging Function Propagation for E-Feasible Routing
	4.1 The Depletion Function Along Route Legs
	4.2 Dijkstra Search for E-feasible Routes
	4.2.1 The Search Algorithm


	5 Charging Function Propagation for {{p}} {}-Feasible Routing
	5.1 Dijkstra Search for p-feasible Routes

	6 Stochastic Contraction Hierarchies
	7 Experiments
	7.1 Preparing a realistic routing instance
	7.2 Results

	8 Conclusion and Future Work

	p015-ZZZ-Rajan
	p016-Brown
	1 Introduction
	2 Nishimoto and Tabei's Result
	3 Practical Approach
	3.1 Block Compression
	3.2 Optimizations
	3.3 Scanning Complexity
	3.4 Count Queries

	4 Experiments
	4.1 Data Structures
	4.2 Datasets
	4.3 Construction
	4.4 Query

	5 Discussion

	p017-Tamaki
	1 Introduction
	2 Preliminaries
	3 The upper bound algorithm
	4 The lower bound algorithm
	4.1 Contraction lattice
	4.2 Critical fills
	4.3 Breaking a critical fill
	4.4 Procedure Lift

	5 The overall algorithm
	6 Experiments
	7 Conclusions and future work

	p018-Alferov
	1 Introduction
	2 Preliminaries
	3 Smooth Grid Constraint Satisfaction Problems
	4 Experiments
	4.1 The Pigeonhole Grid CSP
	4.2 Solving Pigeonhole Pictures with the ODD solver
	4.3 Experiments with SAT Solvers
	4.4 Integer Programming Translation

	5 Conclusion

	p019-Mirka
	1 Introduction
	2 Algorithms
	2.1 Greedy Algorithm
	2.2 Trevisan's Algorithm
	2.3 Simple Spectral and Sweep Cuts Algorithms
	2.4 SDP Algorithm

	3 Experiments
	3.1 Erdős-Renyi Random Graphs
	3.2 Complete Graphs
	3.3 Sparser Graphs

	4 Conclusion

	p020-DAscenzo
	1 Introduction
	2 Notation and Background
	3 Algorithms for Digraph k-coloring Games
	4 Experimentation
	5 Conclusion and Future Work

	p021-Liberti
	1 Introduction
	1.1 Random Projections
	1.2 Applying RPs to Linear Programming
	1.3 Relevant literature
	1.4 Contributions of this paper

	2 Summary of theoretical results
	3 What we establish and how
	3.1 The RP matrix
	3.2 LP structures
	3.2.1 Maximum flow
	3.2.2 Diet problem
	3.2.3 Quantile regression
	3.2.4 Basis pursuit

	3.3 Methodology

	4 The benchmark
	4.1 Choice of instances
	4.1.1 The variable space

	4.2 Performance measures
	4.3 RP performance on Max Flow
	4.4 RP performance on Diet
	4.5 RP performance on Quantile Regression
	4.6 RP performance on Basis Pursuit

	5 Conclusion

	p021-ZZZ-Liberti
	p022-Giuliani
	1 Introduction
	2 Preliminaries
	3 Computing MUMs using MS
	3.1 Checking Maximality and Uniqueness of matches
	3.2 Computing the second longest match

	4 Algorithm description
	4.1 Computing the eMS array
	4.2 Computing MUMs from eMS

	5 Experimental results

	p023-Sharma
	1 Introduction
	2 Perspective Reformulation
	2.1 Structures Amenable to Perspective Reformulation
	2.2 Detecting Structures (PS_1) and (PS_2)
	2.3 Solving Perspective Reformulation
	2.3.1 Adding Perspective Cuts at Root Node
	2.3.2 Adding Perspective Cuts at Other Nodes


	3 Reformulation Based on Function Separability
	3.1 Detection of Function Separability
	3.2 Some Implementation Details

	4 Combined Effects of the Two Reformulations
	5 Conclusions
	A Description of Test Sets
	B Computational Results

	p024-Gupte
	1 Introduction
	1.1 Background
	1.2 Contributions of this Paper

	2 Adaptive Discretization Algorithm
	2.1 Discretization of Quadratic Terms
	2.2 Selection of Discretized Variables
	2.3 Adaption of Discretization
	2.4 Iterative Algorithm

	3 Computational Study
	3.1 Algorithms
	3.2 Implementation
	3.3 Study I: BoxQPs with Complementarity Constraints
	3.4 Study II: Disjointly Constrained Bilinear Programs

	4 Conclusion


