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Abstract
Over the last decades, new mobility offers have emerged to enlarge the coverage and the accessibility
of public transportation systems. In many areas, public transit now incorporates on-demand
transport lines, that can be activated at user need. In this paper, we propose to integrate lines
without predefined schedules but with predefined stop sequences into a state-of-the-art trip planning
algorithm for public transit, the Trip-Based Public Transit Routing algorithm [30]. We extend this
algorithm to non-scheduled lines and explain how to model other modes of transportation, such as
bike sharing, with this approach. The resulting algorithm is exact and optimizes two criteria: the
earliest arrival time and the minimal number of transfers. Experiments on two large datasets show
the interest of the proposed method over a baseline modelling.
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1 Introduction

Based on modern public transit routing algorithms, hundreds of trip planning applications
are used by millions of users every day. They integrate public transit information with road
networks and usually compute itineraries combining only public transportation services with
walking transfers, which is often referred to as public transit routing. In order to offer a
more integrated experience to their users, some applications allow for more multimodality,
combining public transportation with other available transportation offers, such as taxis,
bike sharing or car sharing. We then speak of multimodal or intermodal routing.

In addition to the classical scheduled public transportation, many transport authorities
propose special transportation offers in sub-urban areas, or for elderly or disabled people.
They are usually organized as on-demand services, where transportation authorities define
lines (sequence of stops) or areas of coverage, but no fixed schedules. For this type of service,
users must “activate” the desired trip by contacting the transport agency. A lot of transport
authorities in France offer this type of services, for example in Montauban metropolitan
area [1] (non-scheduled lines with only a subset of stops activated), in Flers metropolitan
area [24] (on-demand transportation between predefined stations during given time intervals),
or in Pays de Dreux [16] (on-demand transportation for elderly people from home place to
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6:2 Routing in Multimodal Transportation Networks with Non-Scheduled Lines

any destination within a zone). Note that some transport authorities also provide on-demand
services with predefined schedules, but in that case, a public transit routing algorithm can
integrate them as classical scheduled lines in itinerary computations.

In this paper, we propose an extension of the Trip-Based Public Transit Routing (TB)
algorithm [30] which is a state-of-the-art algorithm for public transit routing. We modify
it to deal with non-scheduled lines, that we define as lines that can be activated on given
periods and for which a sequence of stops is defined, as well as possibly time-dependent
transport duration between stops of the line, but no exact schedules. This model covers also
the simpler cases where the line has exactly two stops. Bike sharing for instance could be
modeled using non-scheduled lines, for example by creating one line per pair of stations that
are reachable from each other. In that case, the bike section is considered as a trip from the
algorithm point of view, and using bike sharing increases the number of transfers between
trips of the itinerary. Similarly, taxi-like offers that cover some predefined sets of origins
and destinations can be modeled as non-scheduled lines. In both cases, we then consider
that using those modes is equivalent to taking one additional trip in terms of inconvenience
(which is modeled by the number of transfers of an itinerary).

Many public transit routing and multimodal trip planning algorithms have been proposed
recently in the literature [5], but to the best of our knowledge, general non-scheduled lines
have not been considered explicitly.

In Section 2, we discuss recent algorithms for public transit and multimodal routing and
models for the simpler cases that appear in the literature. In Section 3 we introduce the
notation and briefly present the Trip-Based Public Transit Routing algorithm [30] that we
extend in Section 4 for supporting non-scheduled lines. In Section 5, we present the results
of experiments on two real world datasets (Île-De-France and Netherlands), we summarize
our work and give directions for future research in Section 6.

2 Related work

In this article, we are mainly interested in two classical criteria to minimize in multimodal
routing, which are the number of transfers and the arrival time. The number of transfers
represents the inconvenience for the user to change vehicles and is an important criterion for
evaluating itineraries. Given a start time, computing the Pareto set for those two criteria is
intractable as the size of the Pareto set can be exponential [20]. However, the Pareto front is
of polynomial size (bounded by the number of trips) and can be computed in polynomial
time, along with one solution per value in the Pareto front (note that this is often referred to
computing the Pareto set in the literature, while only a subset of the Pareto set is indeed
obtained). We use here the notation of [26] and denote by complete set such a solution
set. Most recent algorithms, considering either minimum arrival time alone or bicriteria
queries, can compute earliest arrival time or Pareto front in time ranging from tens of
microseconds to a few hundreds of milliseconds for large public transit networks. Transfer
Patterns [4], RAPTOR [13, 10], Connection Scan (CSA) [14], Public Transit Labeling [12] or
Trip-Based Public Transit Routing [30] have been specifically designed for those networks as
using directly classical methods for road networks does not seem to perform well with the
time-dependent schedules [3].

Although, to the best of our knowledge, combination of scheduled and non-scheduled
lines in public transit networks has not been studied before, some algorithms can handle
more transportation modes in combination to public transit, including bike or car sharing.
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In the graph-based approaches, the different networks corresponding to each mode are
combined into a single time-dependent or time-expanded graph. The timetable information
and transfer constraints (for instance minimum change times at a station) are modeled into
the graph structure, often increasing significantly the graph size [25]. In that type of approach,
non-scheduled lines can be modeled into the graph as additional arcs and nodes available
for some time intervals. In order to take into account the different modes with graph-based
modeling, one possible solution is to define an automaton that restricts the possible mode
sequences and solve a label-constrained shortest path problem. The label-constrained shortest
path problem is tractable for regular languages [2] and some authors proposed algorithms
allowing for mode sequences using or not public transit. Kirchler et al. [21] propose to
adapt the ALT algorithm [18] to take into account predefined mode sequences, resulting
in the SDALT algorithm (State-Dependent ALT). They consider a network that includes
bike and car sharing. Dibbelt et al. [15] modify Contraction Hierarchy [17] to integrate user
defined sequences provided at query time. The resulting algorithm is called User Constrained
Contraction Hierarchy. They apply it on networks combining cars and public transportation,
but the approach could be applied for bike or car sharing. One of the drawbacks of this
algorithm is the preprocessing time (42 minutes on a network with 30.5K stops and 1.6M
connections) that doesn’t allow for real-time modification of the schedules.

The second main type of approaches consists in using timetable directly without modeling
it into a graph. The RAPTOR algorithm [13] is one of these algorithms, using dynamic
programming to perform a breadth-first search that labels the stops reached, one additional
trip being taken at each iteration of the algorithm. It has been modified in [11, 28] to allow
for some more complex mode sequences, such as combining public transit with bike or car
sharing, by modeling it similarly as a walking transfer or with a biking part equivalent to a
trip. Shortest travel times between stops using bike or car sharing are then precomputed and
integrated as alternative ways to change from one line to another. A recent approach [27]
combines RAPTOR with ULTRA [7] to reduce the running time and to consider several bike
sharing operators simultaneously.

In this article, we are interested in the general case, where the sequence of non-scheduled
lines contains more than two elements. However, as bike and car sharing are special cases of
non-scheduled lines with two-stop sequences, our algorithm could be used to interleave them
with public transportation, even if it is not the main objective here. The proposed method
integrates non-scheduled lines in the Trip-Based Public Transit Routing algorithm that we
present in Section 3.

3 Preliminaries

We introduce in this section the notation used in the paper, and explain the principle of the
Trip-Based Public Transit Routing (TB) algorithm [30].

3.1 Notation
Public transit networks are defined by their stops and trip schedules. A stop p is a physical
location where passengers can board or alight a public transportation vehicle (e.g. a bus, a
tram, a metro). A trip t is represented by its schedule: a sequence of stops −→p (t) = (p1

t , p2
t , . . . )

where the vehicle stops, with arrival time τarr(t, i) and departure time τdep(t, i) at its ith

stop pi
t. A partial order is defined over trips with the same stop sequence (p1, p2, . . . , pn) by

the relations ≤ and <:

t ≤ t′ ⇔ ∀i ∈ {1, 2, . . . , n}, τarr(t, i) ≤ τarr(t′, i)

t < t′ ⇔ (t ≤ t′ and ∃i ∈ {1, 2, . . . , n}, τarr(t, i) < τarr(t′, i))

SEA 2022
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A scheduled line l is then a totally ordered set of trips with the same stop sequence
−→p (l). Note that if there are two trips with the same stop sequence such that one is
overtaking the other, they are associated to different lines. L is the set of all scheduled
lines, pi

l represents the ith stop of line l and lt denotes the line of trip t. For each stop p,
we define the set of the lines passing by p with their corresponding stop index at p by
L(p) = {(l, i) | l ∈ L, i ∈ {1, 2, . . . |−→p (l)|}, p = pi

l}.
When arriving at stop pi

l at time τ , it is possible to board a trip t of line l if τ ≤ τdep(t, i).
When it exists, we can hence define the earliest trip of line l departing from its ith stop after
time τ , that we denote by earliest(l, i, τ).

The segment of the trip t between stops of index i and j is denoted by pi
t → pj

t and
similarly, a transfer between the ith stop of trip t and the jth stop of trip t′ is denoted by
pi

t → pj
t′ .

Minimum walking transfer duration (footpath) between stops p and q is denoted by
∆τfp(p, q) and minimum changing vehicle duration at stop p by ∆τch(p) (for example, the
duration for changing platforms at the same stop). Transfer pi

t → pj
t′ is feasible if and only if:

τarr(t, i) + ∆τfp(pi
t, pj

t′) ≤ τdep(t′, j), if pi
t ̸= pj

t′

or τarr(t, i) + ∆τch(pi
t) ≤ τdep(t′, j), if pi

t = pj
t′

Lines without a schedule. Now, we extend the above defined notation to lines without a
schedule, whose set is denoted L̂. A non-scheduled line l has a sequence −→p (l) = (p1

l , p2
l , . . . )

of stops, but no fixed timetable, as they should be activated at the user’s demand. Trips
for those lines can be instantiated during given time intervals when the service is available
and we can define as before the set of all lines without schedule passing by p. We denote it
by L̂(p).

For easy computation of trip earliest(l, i, τ), we defined one union of availability intervals
for each stop of the non-scheduled line l, and we denote it by I(l, i) for the ith stop of l.
A possible way to define those time intervals is to define them for the first stop and then
translate them to the other stops of the line by adding traveling duration between stops.
This could be the case for on-demand buses if the bus passes by all the stops when activated.
Another possibility is to use the same time interval for all stops. It can be the case for
non-scheduled lines defined for bike sharing stations or for taxi-like transportation between
two points where the time-intervals represent the service availability period.

An easy way of including non-scheduled lines in existing trip planning algorithms is to
discretize the intervals of I(l, 1) and generate all possible trips (e.g. creating one trip every
minute). In a context of urban mobility, the intervals can be wide (typically from 7.00 am to
6.00 pm) so this approach can significantly increase the number of trips and the number of
possible transfers. For the TB algorithm, it has a significant impact on preprocessing and
query times. This approach is used in our experiments as a baseline method.

In some cases, a boarding or alighting duration might be considered for the lines of L̂. For
instance, it can model the time needed to buy a bus ticket or to get off with some luggage.
For bike sharing rides, the boarding time could be the duration needed to get the bicycle
from the station and the alighting time the duration to put it back in place. We denote
by τbo(l) the duration necessary for boarding the line and τal(l) the duration necessary for
alighting. To remain general, we consider boarding and alighting times for all lines, as we
can just set them to 0 when they are not relevant.
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3.2 Trip-Based Public Transit Routing
Trip-Based Public Transit Routing [30] is an algorithm for computing a complete solution
set for minimum arrival time and number of transfers in public transit networks, considering
an origin, a destination and a start time. The author claims to consider maximum departure
time as a secondary criterion used to break ties, but it is proven in [22] that there is no
guarantee regarding this last criterion.

The TB algorithm is based on the preprocessing of a set of the possible transfers between
trips. The aim is to build for each trip, during a preprocessing phase, a neighborhood of
reachable trips in such way that for each value in the Pareto front, there exists an optimal path
with this value using only elements of the resulting neighborhoods. A bicriteria earliest arrival
time query then consists in a breadth-first search like exploration in a time-independent graph
where trips are vertices and transfers are arcs. Figure 1 gives an outline of the algorithm.

The method proposed in [30] also covers profile queries, where all the optimal values must
be found for a given starting time range, hence effectively optimizing latest departure time
as a third criterion.

Figure 1 Phases of the TB algorithm.

Preprocessing. The transfer set size impacts the exploration time. As many transfers
cannot appear in any optimal solution, it is advisable to prune the transfer set. For instance,
if you consider the possible transfers between one trip and a different line, only the earliest
trip that can be boarded is relevant for the above defined queries. The author hence suggests
two pruning methods to reduce the set of possible transfers.

The first removes U-turn transfers for each trip, i.e. transfers that take you back to the
previous stop in the trip (later than if you changed trip at the previous stop). The second
aims at pruning the set of feasible transfers for each trip based on earliest arrival times at
stops. Each transfer is considered, starting with the later ones. If taking later transfers (or
remaining on the current trip) leads to identical or better arrival times or if all the trips
reachable via the transfer can be reached via those later transfers, then the current transfer
is removed from the set, as it cannot lead to other optimal values than the transfers already
kept. Note that the transfer set obtained is not minimal in terms of number of transfers, and
that it depends on the order of the transfers checked.

Earliest arrival time queries. In the context of the TB algorithm, earliest arrival time
queries refer to bicriteria queries where a single departure time τ is provided as input, along
with a source stop, denoted by psrc, and a target stop ptgt. Minimum arrival time and the
minimum number of transfers are optimized. Note that even if this case is not considered
in [30], it is not necessary for the origin and destination of the queries to be stops. If they
are placed anywhere on the road network, the algorithm is hardly modified but the footpaths
to reach the closest stops in the network must be computed, for instance by classical shortest
paths in the walking road network.

SEA 2022
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Earliest arrival time queries start with an initialization phase where the queue of the
search phase is initialized and its target set is computed from the source and target stops.
The target set is the set of lines L from which the destination can be reached:

L = {(l, i, 0) | (l, i) ∈ L(ptgt)} ∪
{(l, i, ∆τfp(q, ptgt)) | (l, i) ∈ L(q) and q is a neighbor of ptgt}

In the query phase, the author labels the trips by the index R(t) of the first reached stop
of t, initialized to ∞ for all trips. He defines for each number of transfers one queue Qn of
trip segments reached after n transfers. Q0 is initialized from the lines that can be taken from
the source stop. For any stop q reached by walking from psrc, the earliest trip of (l, i) ∈ L(q)
is added to the queue, starting at index i. It is the smallest trip t of line l such that

τdep(t, i) ≥
{

τ if q = psrc
τ + ∆τfp(psrc, q) otherwise

After initialization, a breadth-first like search is performed. At each iteration, the
algorithm scans in turn the trip segments of the queue. If the current one belongs to a target
line, the arrival time at destination is compared to that of the solution set. Then, the trip
segments reached by transferring from the current trip segment are added to the queue of
the next iteration if they improve the trips’ labels. It is the case for a trip segment (t, i, k)
if t is earlier than any trip of tl taken so far at stop i. When a trip t is marked with R(t) = i,
all the later trips of lt are marked with the minimum of i and their current index.

Profile queries. In profile queries, the user provides an earliest departure time τedt and
a latest departure time τldt, i.e. an interval in which to depart. The result of the query is
a complete set of solutions for minimum arrival time, minimum number of transfers and
maximum departure time starting within the interval. The computation for profile queries is
as follows: perform an earliest arrival time query starting at τldt and add the solutions to
the result set of the profile search. Then restart the search starting at the preceding instant
without resetting the trip labels. By iterating the process, you obtain a complete set of
solutions without performing unnecessary computations as the labels only let you improve
on preceding arrival times.

4 Trip-Based algorithm with non-scheduled lines

As we mentioned above, to the best of our knowledge, lines without a schedule are not
covered in the literature, although the special case of bike sharing appears in several articles
(e.g. [11, 21, 28]). We explain here our method for the general case where the non-scheduled
lines can have more than two stops in their sequence.

4.1 Defining a trip for a non-scheduled line
We consider that non-scheduled lines have predefined stop sequences and availability intervals
for each stop of the line. In order to define the earliest trip segment of a trip t of a non-
scheduled line l starting after a time τ , we need to evaluate the duration of this trip segment.
One possibility is to use the same principle as in the General Transit Feed Specification
(GTFS) format [19] for frequency-based trips: one trip with a complete schedule is defined
and the others are translations of it with different start times. A more complex solution could
consider time-dependent travel times between the line’s consecutive stops and time-dependent
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arrival and departure times of the trips at its stops. In that case, one must keep in mind
that trips of a line cannot overtake one another and that those time-dependent travel times
need to respect the FIFO property.

The algorithm proposed here is independent of the solution chosen as long as we can
define a schedule for earliest(l, i, τ). Note that the trip segment’s departure time is either
time τ if τ ∈ I(l, i) or the earliest instant of I(l, i) after τ . If such time doesn’t exist in
the current day, then we can consider taking the line the day after at minθ∈I(l,i) θ, if the
service is available. If the intervals of I(l, i) are sorted in increasing start time order, τ can
be computed in logarithmic time of the number of intervals using binary search.

4.2 Transfers to and from a line without schedule

In the TB algorithm, the transfer generation phase starts by computing all the possible
transfers for each trip. For each stop pi

t of the current trip t, find all the stops q that can
be reached by footpaths (i.e. ∆τfp(pi

t, q) is defined), and check if a transfer can take place
for each element (l, j) of L(q). Stop q is reached at time θ = τarr(t, i) + ∆τfp(pi

t, q) (or
θ = τarr(t, i) + ∆τch(q) if q = pi

t) and we can enforce a minimum boarding time to get the
minimum time τ = θ + ∆τbo(l) at which a trip of line l can be taken. If it is defined, only
transfer to the earliest trip of each line passing after time τ is added to the neighborhood
of t. We can proceed identically for admissible transfers from trips of scheduled lines to
non-scheduled lines. The earliest trip passing at q after τ is defined as in Section 4.1 and we
keep only the transfer to that trip.

Initially, the trips of non-scheduled lines are not instantiated: they are implicit within the
non-scheduled line definition. It is however possible to precompute some trip segments and
transfers to make the search faster. We extend the set of transfers to add the transfers from
a trip of a scheduled line to non-scheduled lines. We then prune the resulting extended set of
transfers as before. We denote with T̂ the set of transfers from a trip segment of a scheduled
line to a trip segment of a non-scheduled line. T ∪ T̂ is the extended set of transfers.

Note that for non-scheduled lines, we do not perform a preprocessing of the transfers to
scheduled and non-scheduled lines: instead, the transfers from trip segments of non-scheduled
lines are computed online during the query phase. It avoids explicitly creating all the
non-scheduled trips.

4.3 Modifications in the query phase

The algorithm for the query phase and its initialization can be found in Algorithm 1. The
auxiliary procedures of both are described in Algorithm 2.

In the initialization, the lines without schedule are scanned similarly to regular lines for
determining the algorithm’s targets. To build the initial queue, we consider the availability
intervals of non-scheduled lines at the stops reached from the origin and the minimum
boarding times to propose the earliest trip segment for reached lines.

A major difference with the initial version of the algorithm is the change in determining
the next trip segments to add to the queue. For transfers from scheduled lines, the set T of
transfers contains all the preprocessed transfers. For transfers from non-scheduled lines, the
transfers are computed on the fly. For transfers to scheduled lines, the next trip to take is
computed as in the initial algorithm and the trip segments added to the queue by the procedure
ENQUEUE_TRIP. For transfers to non-scheduled lines, the more complicated process of
ENQUEUE_LINE and UPDATE_R is required to avoid unnecessary computations.
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Algorithm 1 Earliest arrival time query.

input Timetable data, transfer set T ∪ T̂

input Source stop psrc, destination stop ptgt, start time τ

output Result set J

J ← ∅, L ← ∅
Qn ← ∅ for n = 0, 1, . . .

R(t)←∞ for each trip t

R̂(l, j)←∞ for each line l without schedule and each index j = 0, 1, . . . , |−→p (l)|
INITIALIZATION()
τmin ←∞ ▷ The current minimum arrival time at target
n← 0
while Qn ̸= ∅ do

for each pb
t → pe

t ∈ Qn do
for each (lt, i, ∆τ) ∈ L with b < i and τarr(t, i) + ∆τ < τmin do

τmin ← τarr(t, i) + ∆τ ▷ A target is reached and arrival time is improved
J ← J ∪ {(τmin, n)}, removing dominated entries

if τarr(t, b + 1) + ∆τal(lt) < τmin then ▷ Filling the queue for the next round
if lt ∈ L̂ then ▷ Transfers must be computed

for each stop pi
t with b < i ≤ e do

for each stop q such that ∆τfp(pi
t, q) is defined do

τ ← ∆τfp(pi
t, q) + τarr(t, i) + ∆τal(lt)

for each (l, k) ∈ L(q) do
t′ ← earliest(l, k, τ + ∆τbo(l))
ENQUEUE_TRIP(t′, k, n + 1)

for each (l, k) ∈ L̂(q) do
ENQUEUE_LINE(l, k, τ + ∆τbo(l), n + 1)

else
for each transfer pi

t → pj
u ∈ T with b < i ≤ e do

ENQUEUE_TRIP(u, j, n + 1)
for each (pi

t → pj
l , τ) ∈ T̂ do

ENQUEUE_LINE(l, j, τ, n + 1)
n← n + 1

procedure INITIALIZATION
for each stop q s.t. ∆τfp(q, ptgt) is defined do ▷ Initialization of the target lines

∆τ ← 0 if ptgt = q, else ∆τfp(q, ptgt)
for each (l, i) ∈ L(q) ∪ L̂(q) do
L ← L ∪ (l, i, ∆τ + ∆τal(l))

for each stop q s.t. ∆τfp(psrc, q) is defined do ▷ Initialization of Q0
∆τ ← 0 if psrc = q, else ∆τfp(psrc, q)
for each (l, i) ∈ L(q) do

t← earliest(l, i, τ + ∆τal(l))
ENQUEUE_TRIP(t, i, 0)

for each (l, i) ∈ L̂(q) do
ENQUEUE_LINE(l, i, τ + ∆τal(l), 0)
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This process is as follows. For a non-scheduled line l, label R̂(l) contains a set of pairs
with the index of a stop and the earliest departure time at that stop. This set is such that
an element (i, τ) of R̂(l) is not dominated by any other element of R̂(l). A pair (i, τ) is
dominated by a pair (j, τ ′) if and only if

i ≥ j and τ > τdep(earliest(l, j, τ ′), i)

Indeed, if i ≥ j, the trip is boarded later at i, missing some transfer opportunities compared
to boarding it at j. And if τ > τdep(earliest(l, j, τ ′), i), then the earliest trip that can be
boarded at j after τ ′ brings you at the ith stop earlier than τ . Hence, the set R̂(l) contains at
most |−→p (l)| elements and we can check the dominance of a new pair over the elements of the
set in polynomial time. To maintain the elements of R̂(l), one can save for each stop i of l

the earliest departure time of a trip of l at that stop during the search. In that case, R̂(l, i)
represents the earliest departure time of l at its ith stop in the current search. Another
possibility is to sort the pairs of the set R̂(l) by increasing stop index and to use the fact that
the times are sorted in decreasing order to accelerate the dominance checks while needing
less memory. Procedure UPDATE_R describes the update process of R̂ and computes the
maximum index k for which R̂(l, k) is modified, so as to determine the last element of the
trip segment to add to the queue in the procedure ENQUEUE_LINE if R̂ is modified.

Note that since profile queries are an adaptation of earliest arrival time queries, it is
possible to take them into account as proposed in [30] even after the modifications.

Algorithm 2 Earliest arrival query auxiliary procedures.

procedure ENQUEUE_TRIP(trip t, index i, number of transfers n)
if i < R(t) then ▷ Adding the given trip segment to the queue

Qn ← Qn ∪ {pi
t → p

R(t)
t }

for each trip u with t ≤ u and lt = lu do
R(u)← min (R(u), i)

procedure ENQUEUE_LINE(line l ∈ L̂, index i, time τ , number of transfers n)
ind, t← UPDATE_R(l, i, τ) ▷ Updating non-scheduled line labels
if ind ≥ i then ▷ Adding the earliest trip segment to the queue

Qn ← Qn ∪ {pi
t → pind

t }

procedure UPDATE_R(line l ∈ L̂, index i, time τ)
output Maximum index j s.t. R̂(l, j) is modified, i− 1 if no modification
updated← i

t← earliest(l, i, τ)
while updated ≤ |−→p (l)| and τdep(t, updated) < R̂(l, updated) do

R̂(l, updated)← τdep(t, updated)
updated← updated + 1

▷ Trip is scanned to its end or stop is reached by an earlier trip
return updated− 1, t

4.4 Complexity and correctness
Complexity. In [30], the complexity of the algorithm is not indicated. However, it can be
shown that the algorithm performs a number of operations polynomial in the input size. We
discuss here the worst case complexity for the non-scheduled line extension that we propose.
An important difference is that only part of the instance is represented in the search graph.

SEA 2022
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The set of vertices V of the search graph contains the trips of the scheduled lines and
the destination trips of the transfers of T̂ . The number of elements in V is hence bounded
by the number of trips of scheduled lines, denoted Ns, plus the size of T̂ . Given an origin
trip t, it would be possible to transfer from each stop of t (except the first one) to each
stop (except the last one) of each non-scheduled line and to keep those transfers in T̂ . We
hence have |T̂ | = O(Ns |L̂| |S|2), if S is the set of stops, and |V | is polynomial. Similarly,
we can bound the number of elements of T by |T | = O(N2

s |S|2). The arcs A of the search
graph represent the transfers of T ∪ T̂ . So |A| = O(Ns(Ns + |L̂|)|S|2). Arcs from trips of
non-scheduled lines are implicit. Computing the earliest trip of a line leaving a given stop
after a time τ can be done efficiently using binary search in O(log n) for scheduled lines, if n

is the number of trips of the line and O(log |S|) for non-scheduled lines. The set of earliest
feasible transfers can hence be obtained in O(Ns(log(Ns)Ns + log(|S|)|L̂|)|S|2). The pruning
phase is also polynomial, as for each transfer, at most all the stops’ labels must be updated.

For the initialization of the query phase, at most all the stops can be reached from psrc
and all the lines taken, which takes O(|S| |L ∪ L̂|) ’ENQUEUE’ operations. Then, at each
iteration, we loop over the queue’s content. For each trip segment in the queue, we first
iterate over the targets (those number is bounded by |S| |L ∪ L̂|). Then if it is from a
scheduled line, we scan its outgoing arcs. At most, |T ∪ T̂ | arcs are processed and elements
are added to the queue. Otherwise, the worst case corresponds to the existence of a transfer
from each stop of the non-scheduled line to each stop of any other line. It is hence bounded
by O(|L ∪ L̂| |S|2). It results in a polynomial number of ’ENQUEUE’ operations.

The ENQUEUE_TRIP procedure updates in the worst case the labels of all the trips of
the line of its input trip t. It hence has complexity O(Ns). ENQUEUE_LINE updates at
most |−→p (l)| labels of the set of labels of its input line l. It is hence bounded by |S|.

Overall, each step of the search phase is hence polynomial in the instance size.
To bound the number of iterations, first note that it is not possible to take twice the

same trip in an optimal solution. A solution that alights a trip to board it again has at least
one more transfer than the solution remaining on the current trip. It hence cannot be built
by the algorithm and, for the original algorithm, the number of iterations is bounded by
Ns. Taking twice the same line would be possible, for instance if the line is passing twice by
the same stop, but not taking an earlier trip at a stop already passed by a preceding trip of
the same line. The number of non-scheduled line trip segments in a solution built by the
algorithm is hence bounded by O(|S|). Hence, the number of iterations is in O(Ns + |S| |L̂|).

Correctness. To prove that the algorithm is correct, we need to show that for any optimal
solution in the Pareto set, there exists an optimal solution with the same value whose
transfers are either in the pruned transfer set T ∪ T̂ or are transfers from non-scheduled
lines. Let s be an optimal solution with at least one transfer described by the trip segments
that compose it: s =

〈
pj1

t1
→ pi1

t1
, pj2

t2
→ pi2

t2
, . . . , p

jK+1
tK+1

→ p
iK+1
tK+1

〉
. If all its transfers are either

in the transfer set T ∪ T̂ or are transfers from non-scheduled lines, we are done. If not,
from this solution, we build another optimal solution s′ whose transfers are either in T ∪ T̂

or are transfers from non-scheduled lines. First, iterating from pj2
t2
→ pi2

t2
, we replace the

trip segments pjk
tk
→ pik

tk
that are not the earliest for which the transfer to ltk

is possible
from p

ik−1
tk−1

. Since s is optimal, it is not possible to arrive sooner at stop p
iK+1
tK+1

and trip
segment p

jK+1
tK+1

→ p
iK+1
tK+1

is not modified. To simplify, we keep the same notation for the
modified trip segments of s if any.
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Table 1 Netherlands and IDF datasets.

Netherlands IDF
# stops # lines # foot paths
47313 2773 429.4K

# stops # lines # foot paths
42302 1869 752K

# trips # connections
Baseline 364.2K 6.527M
Non-sch. 317.7K 5.938M

# trips # connections
Baseline 373.3K 7.867M
Non-sch. 318.0K 7.014M

Consider the last transfer piK
tK
→ p

jK+1
tK+1

of s. If trip tK is from a non-scheduled line, we
keep it in s′. Otherwise, suppose that this transfer is not in T ∪ T̂ . In that case, there exists
a transfer p

i′
K

tK
→ p

j′
K+1

t′
K+1

in T ∪ T̂ from tK such that i′
K ≥ ik and t′

K+1 arrives at p
iK+1
tK+1

at time
τarr(tK+1, iK+1) or before by definition of the pruning phase. Note that as the solution is
optimal, it is exactly at time τarr(tK+1, iK+1). If we denote with i′

K+1 the smallest index in
the stop sequence of t′

K+1 such that i′
K+1 ≥ j′

K+1 and p
iK+1
tK+1

= p
i′

K+1
t′

K+1
, we can hence replace

the two last trip segments by pjK

tK
→ p

i′
K

tK
, p

j′
K+1

t′
K+1
→ p

i′
K+1

t′
K+1

in s′.
Proceeding likewise for the other transfers going backward in the solution, we can obtain

a solution s′ with the same value as s those transfers are all in T ∪ T̂ or are transfers from a
non-scheduled line.

5 Experiments

To the best of our knowledge, there is no open transit dataset with non-scheduled lines. One
of the reason is that the most widespread data format, the GTFS format [19], does not
provide specifications for defining non-scheduled lines. A recent proposal [23] extends it to
some on-demand transports [29], but it doesn’t cover the general case of non-scheduled lines,
where the stop sequences of the lines are defined. Due to lack of standards, service providers
usually develop their own methods for specification and integration of non-scheduled lines in
their trip planners if they wish to propose them.

For our experiments, we modified public datasets for Netherlands [8] and Île-De-France [9]
(IDF). The Netherlands dataset contains on-demand lines, but with predefined schedules,
which require phone activation. From the perspective of the TB algorithm, this type of lines
are handled as standard lines as they have predefined schedules and are not appropriate for
our need. We hence slightly change the original dataset by converting 253 on-demand lines
with predefined schedules to lines without schedule. For the IDF dataset, we obtain 201
non-scheduled lines. For each line, we set the availability period to 7.30 am to 7 pm for the
first stop and translate the interval for each later stop of the line according to a fixed travel
time between the origin stop and that stop. We denote by Non-sch. those datasets and we
use the proposed algorithm to compute itineraries in those networks.

We also generate another variation of those datasets: instead of non-scheduled lines, we
instantiated all the possible trips for the non-scheduled lines by generating one trip every two
minutes in the interval. Those datasets are our baseline, as they allow to take into account
non-scheduled lines without modification of the base algorithm.

Table 1 summarizes the datasets. Non sch. and baseline have the same number of
stops, lines and foot paths, but the number of trips and connections (transfer between two
consecutive stops taking a trip) differ. The experiments are run on a 2.7 GHz CPU Intel(R)
Xeon(R) CPU E5-4650 server with 64 cores, 20M of L3 cache and 504 GB of RAM by using
a solver developed in the Rust programming language.

SEA 2022
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Table 2 Preprocessing phase.

Netherlands IDF
Time # Transfers to # Transfers to Time # Transfers to # Transfers to

(s) scheduled lines non-sch. lines (s) scheduled lines non-sch. lines
Baseline 49 62.087M 0 75 90.183M 0
Non-sch. 46 60.306M 0.121M 73 84.212M 1.191M

Table 3 Query times for Baseline and Non-sch.

Netherlands IDF
Query Mean time Min time Max time Mean time Min time Max time

(ms) (ms) (ms) (ms) (ms) (ms)

B
as

el
in

e Earliest arrival 60 23 173 56 21 153
Profile 8.30 147 47 319 118 42 199
Profile 14.30 134 44 244 131 41 238

N
on

-s
ch Earliest arrival 45 18 147 43 8 106

Profile 8.30 122 33 289 103 15 170
Profile 14.30 99 25 268 102 13 183

Preprocessing times of the two settings are similar, although the setting using non-
scheduled lines is slightly faster, as it has less trips to process (see Table 2). Remark that the
preprocessing time is low enough to allow for real-time updates of the network every couple
of minutes. It implies that in the case when a non-scheduled trip is booked, it is possible
to update the network to include it as a scheduled trip. The availability intervals of some
stops-line pairs can also be modified to take into account the fact that this booked vehicle is
no longer available.

To compare query times, we selected randomly 300 origin and destination pairs over
each network. We generated 3 queries per origin-destination pair: an earliest arrival time
query and two profile queries. For each query, a complete set of solutions is computed. We
fixed the departure times of the earliest arrival time queries at 8.30 (am), a time at which
trips are usually more frequent (which makes the exploration more time consuming) and for
profile queries, we considered time intervals of length one hour, starting at 8.30 and 14.30
respectively. Profile queries starting at 14.30, a time where trip frequencies are less high,
result in fewer solutions and are hence expected to run faster than the ones starting at 8.30.
Results of the experiments can be found in Table 3.

For our experiments, we turned about 10% of the lines into non-scheduled lines, and
hence cannot expect a huge difference in query times. However, the difference is significant
enough for the method to be interesting from a performance point of view, as mean query
times are between 13% and 27% faster than that of the baseline version (see Table 4).

Table 4 Non-sch. query times divided by baseline query times.

Netherlands IDF
Query Mean time Min time Max time Mean time Min time Max time
Earliest arrival 0.75 0.78 0.85 0.77 0.38 0.74
Profile 8.30 0.83 0.70 0.91 0.87 0.36 0.85
Profile 14.30 0.73 0.57 1.1 0.78 0.32 0.77
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6 Conclusion and future work

In this article, we proposed a method for computing itineraries in public transit or multimodal
networks with scheduled and non-scheduled lines. It extends the Trip-Based Public Transit
Routing algorithm to on-demand lines with a predefined stop sequence and availability
intervals but no associated schedules. Experimental results over two large datasets show
that the proposed approach performs better than the baseline consisting in discretizing the
availability interval to generate all the possible trips for the non-scheduled lines.

This model has car and bike sharing as a special case. A perspective of our work could
hence be to test our method with multimodal networks including those modes, against
classical modeling as a transfer, and not as a trip. Another line of work could be concerned
with applying classical acceleration techniques, such as Transfer Patterns [4, 6], to the
proposed algorithm. Transfer patterns have been adapted to Trip-Based Public Transit
Routing in [31] and could be extended to take into account non-scheduled lines.
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