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Abstract
The group testing problem asks for efficient pooling schemes and inference algorithms that allow to
screen moderately large numbers of samples for rare infections. The goal is to accurately identify
the infected individuals while minimizing the number of tests.

We propose the novel adaptive pooling scheme adaptive Belief Propagation (aBP) that acknowl-
edges practical limitations such as limited pooling sizes and noisy tests that may give imperfect
answers. We demonstrate that the accuracy of aBP surpasses that of individual testing despite using
few overall tests. The new design comes with Belief Propagation as an efficient inference algorithm.
While the development of aBP is guided by mathematical analyses and asymptotic insights, we
conduct an experimental study to obtain results on practical population sizes.
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1 Introduction

Every day medical laboratories around the globe screen moderately large numbers of samples
for rare pathogens. The vast majority of samples, anywhere between 90% and 99.9%, are
actually uninfected [9, 25, 28, 40, 32, 37, 38, 39, 42]. Labs therefore test pools of samples
rather than individual samples. The group testing problem asks for pooling strategies that
minimise the total number of tests required while maximising the accuracy of the results.
The latter is crucial because test results are generally not perfectly accurate.

Practical solutions are challenging precisely because the number of samples in a real-world
scenario is in the hundreds or thousands. While the group testing problem has inspired a
body of mathematical work for the asymptotical scenario [5, 13, 12], these results, where the
number of samples grows to infinity, do not directly apply to practical problem sizes. They
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also tend to construct excessively large test pools or distribute samples in very many tests
[5, 13, 12]. Yet practical problem sizes are too large to exhaustively search for an optimal test.
Thus, pooling schemes from the 1940s remain in practical use [9, 25, 28, 40, 32, 37, 38, 39, 42].

The aim of this paper is to investigate better test designs for practical problem sizes. We
focus on improving the accuracy of the results, i.e., avoiding false positives and/or negatives
while keeping the number of tests as small as possible. Indeed, group testing, originally
invented to reduce the number of tests, actually excels at improving the accuracy of the
results. This may seem surprising at first glance because one might deem individual testing
optimal in terms of accuracy. It is not. Group testing does better in much the same way as
error-correcting codes gain power from encoding entire blocks of data simultaneously.

1.1 Our contributions and outline
Given the moderate number of samples in real-world scenarios, we obtain practically mean-
ingful results by conducting an extensive experimental study based on theoretical work on
group testing as well as recent ideas from information theory and statistical physics. Our
novel test design aBP improves the accuracy of the overall results while keeping the number
of tests conducted low. Furthermore, the new test design requires only relatively small test
pools and only assigns each sample to a small number of tests. Finally, the design comes
with an efficient, easy-to-implement algorithm to infer the status of the individual samples
from the test results, namely the Belief Propagation (BP) message passing algorithm.

We proceed to discuss the mathematical model we work with in Sec. 1.2. In Sec. 2,
we discuss designs and algorithms that are in practical use or have been studied in the
mathematical literature on group testing. In Sec. 3, we present the details behind our novel
test design aBP and relate aBP to the theoretical work on group testing and asymptotic
considerations in Sec. 5. Finally, in Sec. 6 we discuss the potential impact of the new results
and future directions for both empirical and theoretical work.

1.2 The model
We work with a simple but standard model of group testing that allows for inaccurate
test results [5]. Let x1, . . . , xn be the samples to be tested and let λ ∈ [0, 1] be the prior
probability that any one sample is infected. The true infection status of each sample is
indicated by σ(xj) ∈ {0, 1}, with 1 representing “infected”. The σ(xj) are assumed to be
independent Bernoulli variables with mean λ. We refer to the vector σ = (σ(xj))j=1,...,n as
the ground truth. Let k =

∑n
j=1 1{σ(xj) = 1} signify the actual number of infected samples.

A test design is a bipartite graph G with one class X = {x1, . . . , xn} representing the n
samples and the other class A = {a1, . . . , am} representing the test pools. An edge between
{xj , ai} indicates that xj is included in test pool ai. For each xj we let ∂xj = ∂Gxj be the
set of test pools that include xj ; analogously, ∂ai denotes the samples xj in pool ai.

Let σ̂ = (σ̂(ai))i=1,...,m denote the test results. Ideally, test ai should report positive iff
at least one sample xj ∈ ∂ai is infected. But the actual result σ̂(ai) may include independent
noise controlled via the specificity p and sensitivity q as follows:

σ̂(ai) =
{

0 with probability p
1 with probability 1 − p

if σ(xj) = 0 for all xj ∈ ∂ai (1)

σ̂(ai) =
{

0 with probability 1 − q

1 with probability q
if σ(xj) = 1 for some xj ∈ ∂ai (2)
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Unless p = q = 1 and every xj is tested separately, the ground truth σ cannot be inferred
perfectly form the test results σ̂ of a single “one-shot” test design [2]. Indeed, under the
noise model in Eqs. (1) and (2) the posterior of the ground truth given the test results reads

µG(σ) = P [σ = σ | σ̂] ∝
n∏

i=1
λσ(xi)(1 − λ)1−σ(xi)

m∏
i=1

ψσ̂(ai) ((σ(y))y∈∂ai) (3)

where ψ0(σ1, . . . , σℓ) = p1−
∨ℓ

i=1
σi(1 − q)

∨ℓ

i=1
σi , and

ψ1(σ1, . . . , σℓ) = (1 − p)1−
∨ℓ

i=1
σiq

∨ℓ

i=1
σi ,

and where the ∝-notation hides the normalisaton required to turn µG into a probability
distribution. Hence, the information-theoretically optimal inference algorithm just draws a
random sample from the distribution µG. In effect, the design’s accuracy is governed by the
entropy of the posterior µG: the smaller the entropy the better the results. Furthermore,
depending on the specific design G there may or may not exist an efficient algorithm for
sampling from µG.

In contrast, adaptive group testing uses multiple stages; an ℓ-stage test design is a sequence
G(0), G(1), . . . , G(ℓ) of test designs such that G(i+1) is obtained from G(i) by adding tests and
edges based on the results from previous stages. The results of the new tests are assumed
to be distributed independently according to Eqs. (1) and (2). The aim, of course, is to
diligently add tests so as to maximally reduce the entropy of the posterior.
In summary, the group testing problem poses the following, partially conflicting, challenges:

(i) We require an adaptive test design with high accuracy and a small number of tests.
(ii) We require an efficient algorithm that infers the σ(xj) from the observed σ̂(ai).
(iii) Practical limitations require a small number of samples in a test and tests per sample.
(iv) We aim for a small number of test stages to ensure a timely reporting of test outcomes

– or at least ensure that most samples can be diagnosed after the first or second stage.

2 Established designs and algorithms

2.1 Individual testing
The most straightforward test strategy, of course, is to conduct m = n individual tests for
each of the n samples. Naturally, in the case p = q = 1, individual testing will register
the status of each sample correctly. However, realistic values for p and q range between
0.95 and 0.99 [9, 10, 31, 40, 44]. Then individual testing will produce numbers of false
positives/negatives distributed as Bin(n− k, 1 − p) and Bin(k, 1 − q), respectively.

The accuracy of the results could obviously be boosted by conducting two or three
individual tests per sample. Indeed, if we test each xj twice and report xj as infected only if
both tests come back positive, then we could reduce the expected number of false positives
to (n − k)(1 − p)2. But we would now expect a slightly larger number of 2k(1 − q) false
negatives. To reduce the number of false positives and negatives simultaneously we could
test each xj thrice and report the majority of the three test results.

2.2 Dorfman
The test designs that appear to be currently most widely adapted in practice date back to
the 1940s. Indeed, the idea of group testing was first brought up by Dorfman in 1943 [20].
He suggested a two-stage test procedure, we denote as Dorfman. In the first stage, every
sample gets placed in precisely one pool. All pools are the same size, which depends on the
prior λ only. Pools with a positive test result get tested separately in the second stage.

SEA 2022
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Figure 1 Illustration of a random biregular test design with ∆ = 3 and Γ = 4.

Depending on the prior, this scheme can significantly reduce the number of tests required.
For example, with λ = 0.05 this scheme uses pools of size five and the expected overall number
of tests conducted in both stages comes to about 0.426n. At the same time, Dorfman’s
two-stage procedure reduces the number of false positives because a sample is ultimately
reported as positive only if both the tests are positive. But for the same reason, the expected
number of false negatives increases. For instance, with n = 104 and k = λn = 500, we expect
18.2 false positives and 9.95 false negatives.

A natural extension of the Dorfman procedure employs three stages. In the first stage,
relatively large pools are formed. The second stage then splits the positive pools into smaller
sub-pools and the third stage resorts to individual testing. In effect, as with the two-stage
procedure, the expected number of false positives decreases while the expected number of
false negatives increases. For n = 104 and k = λn = 500 the expected numbers of false
positives/negatives work out to be 11.76 and 14.8, respectively.

2.3 Probabilistic constructions
More sophisticated test designs have been proposed in the mathematical theory of group
testing. The currently best, and in certain asymptotic settings provably optimal, test designs
harness randomisation [5, 13]. For instance, in the random biregular test design illustrated in
Fig. 1 every test pool has an equal size Γ and every individual sample joins an equal number
∆ of pools. In other words, the test design G = Gn,m(Γ,∆) is chosen uniformly at random
from the set of all (∆,Γ )-regular bipartite graphs (e.g., see [41]).1 To maximize information
gained, the parameters Γ and ∆ need to be chosen as to maximise the conditional entropy
of the vector σ̂ of test results, i.e., so that about half the tests will be positive:2

∆ = m log(2)/(nλ) Γ = log(2)/λ (4)

Intuitively, the randomness of the test design minimizes dependencies between the different
test results σ̂(ai). Thus, with the parameters as in Eq. (4) and for a number m of tests up
to a threshold, we can hope to squeeze up to one bit of information from each test. Similar
randomised constructions are used in coding theory and compressed sensing [17, 18, 26, 35].

Unlike previous discussions, the random biregular design has no obvious inference algo-
rithm. For p = q = 1, a posteriori inference implies a minimum hypergraph vertex cover [12],
which is an NP-hard problem and even on random instances no efficient algorithm is known.

1 G is typically drawn from the pairing model [8, 34]. Then, in rare cases the same individual joins a test
pool twice. In practice, such double occurrence could, of course, be reduced to single occurrences.

2 Due to rounding issues, we cannot ensure that the expected number of positive tests is precisely m/2.
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Definite defectives (DD) [4] is a blunt but efficient algorithm. The algorithm classifies
every sample that is only included in positive test as infected under the condition that it
appears in at least one positive test pool where all other samples appear in a negative test.
All other samples are classified as uninfected. In symbols,

σDD(xj) =
∧

a∈∂xj

σ̂(a) ∧
∨

a∈∂xj

∧
y∈∂a

∨
b∈∂y

(1 − σ̂(b)).

For p = q = 1 this algorithm will never produce false positives but may render false negatives.
Several similarly-flavoured algorithms have been analysed mathematically. Aldridge analysed
an adaptive test design whose different stages employ random biregular test designs with
suitably chosen degrees [3]. This adaptive test design carried out over an unbounded number
of stages (which may take too long in practice) achieves rates in excess of 0.95 bits per tests.

2.4 Glauber dynamics
While DD merely extracts binary information about each sample, we want a more fine-
grained picture of the posterior distribution Eq. (3) of the random test design. Glauber
dynamics (Glauber) is a Markov Chain Monte Carlo algorithm and starts at a random
initial configuration σ(0) = (σ(0)(xi))i=1,...,n drawn from the prior. Thus, the individual
σ(0)(xi) are independent Be(λ) variables. Glauber then proceeds to generate a random
sequence (σ(t))t=0,...,T of configurations by updating the status of a random sample at each
time step according to Eq. (3); see [27] for details of the update rule. The hope is that for
moderate T the empirical means of the sequence approximate the actual posteriors well, i.e.,

µG({σ(xj) = s}) ≈ 1
T

T∑
i=0

1
{
σ(t)(xj) = s

}
(j = 1, . . . , n; s ∈ {0, 1}). (5)

We are unaware of a rigorous analysis of Glauber. Further, an exact empirical assessment
appears difficult as the marginals of the posterior in Eq. (3) cannot be computed by exhaustive
enumeration even for moderate values of n. Still, [16] studies Glauber experimentally.

2.5 Informative Dorfman
Informative Dorfman [29] is a multi-stage test design that uses the posterior marginals of a
first stage (e.g., as approximated by Glauber) to determine the group sizes of a subsequent
Dorfman test design. More precisely, it sorts the samples increasingly by their marginals
and groups them in this order. The pools containing samples with small marginals are
relatively large, while samples with marginals above 0.3 get tested individually. In the
empirical study [16] of a combination of Glauber and InfDorfman, Cuturi et al. find that
this procedure works decently well for a given number of tests but is still outperformed by
quite a margin by more complicated multi-stage test designs and algorithms.

3 Adaptive Belief Propagation (ABP)

In this section we discuss our novel design aBP and its inference algorithm. The first stage
employs the random biregular test design (Sec. 2.3). Given the results of the first stage, in
the second and third stage we use a blend of the random biregular design and InfDorfman.
For the inference algorithm we seize upon the BP message passing paradigm [33].

SEA 2022
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3.1 Belief Propagation
In recent years the Belief Propagation (BP) message passing paradigm has been applied
in combination with randomised constructions with stunning success. Prominent examples
include coding theory and other signal processing tasks such as compressed sensing [18, 26, 35].
The development of BP with randomised constructions has been inspired by ideas from the
statistical mechanics of disordered systems [30]. More recently, substantial mathematical
research has been devoted to BP (e.g., [6, 14, 21, 43]). Although most of this theoretical
work is asymptotical, we let these ideas guide our quest for a practical group testing design.

BP is a generic message passing technique to approximate the marginals of Boltzmann
distributions on factor graphs (e.g., Eq. (3)). The basic intuition behind BP is that under
certain assumptions the posterior distribution admits a succinct representation in terms
of messages [14, 15, 30, 45]. These assumptions are provably met in many Bayes-optimal
inference problems on random factor graphs including the group testing problem as modelled
in Sec. 1.2; at least asymptotically as the problem size tends to infinity [7, 11].

At first glance the posterior distribution Eq. (3) appears to be quite a difficult object to
study; e.g., to estimate its entropy, we might have to inspect all 2n possible vectors σ ∈ {0, 1}n.
But according to the BP paradigm we can get a handle on the posterior distribution in terms of
messages associated with the edges of the test design G = Gn,m(Γ,∆). Formally, the message
space of M(G) consists of vectors (µxj→ai

(s), µai→xj
(s))j=1,...,n; i=1,...,m; xj∈∂ai; s∈{0,1}.

The idea is that there are two messages µxj→ai( · ) and µai→xj ( · ) associated with
every edge of G, one directed from the sample xj to the test ai and one in the opposite
direction. The messages themselves are probability distributions on {0, 1}. Thus, we have
µxj→ai

(0), µxj→ai
(1) ∈ [0, 1] and µxj→ai

(0) +µxj→ai
(1) = 1, and analogously for µai→xj

( · ).
Roughly speaking, µai→xj ( · ) represents the impact that ai has on xj in the absence of all

other tests b ∈ ∂xj . Moreover, µxj→ai
( · ) represents the status of xj in the absence of test ai.

More formally, we define the standard message µG,xj→ai
(s) as the posterior probability that

σ(xj) = s given the test design G− ai obtained from G by omitting test ai and given the
test results (σ̂(ah))h̸=i. With the notation of Eq. (3), we can write this probability out as

µG,xj→ai
(s) ∝

∑
σ∈{0,1}X , σ(xj)=s

n∏
i=1

λσ(xi)(1 − λ)1−σ(xi)
m∏

i=1
ψσ̂(ai) ((σy)y∈∂ai

)

with the ∝-sign hiding the normalisation to ensure that µG,xj→ai
(0) + µG,xj→ai

(1) = 1.
Similarly, the standard message µG,ai→xj

(s) is defined as the posterior probability that
σ(xj) = s given the test design G− (∂xj \ {ai}) obtained by removing all tests that xj takes
part in except for ai and given the test results σ̂(ah) of all tests ah ̸∈ ∂xj \ {ai}.

Conceived wisdom, vindicated mathematically for a broad family of inference problems,
predicts that asymptotically these messages satisfy the following BP equations [7, 11, 14, 45]:

µG,x→a(s) ∝ λs(1 − λ)1−s
∏

b∈∂x\{a}

µG,b→x(s), (6)

µG,a→x(0) ∝ 1 − q + (p + q − 1)
∏

y∈∂a\{x}

µG,y→a(0), µG,a→x(1) ∝ 1 − q if σ̂(a) = 0, (7)

µG,a→x(0) ∝ q + (1 − p − q)
∏

y∈∂a\{x}

µG,y→a(0), µG,a→x(1) ∝ q if σ̂(a) = 1 (8)

These equations express the notion that the random biregular designGn,m(Γ,∆) minimises
dependencies between the test results. Furthermore, we expect that the marginals of the
posterior distribution can be well approximated in terms of the messages:

µG({σ(xi) = s}) ∝ λs(1 − λ)1−s
∏

b∈∂xi

µG,b→xi
(s) (9)
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Apart from the marginals, asymptotic results also suggest that the entropy of the posterior
distribution can be approximated in terms of the messages [11, 14, 30]. This approximation
comes in terms of a functional called the Bethe free energy, defined as

BG =
∑
x∈X

BG,x +
∑
a∈A

BG,a −
∑

x∈X ,a∈∂x

BG,x,a with (10)

BG,x = log
∑

s∈{0,1}

∏
a∈∂x

µG,a→x(s) (11)

BG,a =
{

log
(
1 − q + (p+ q − 1)

∏
x∈∂a µG,x→a(0)

)
if σ̂(a) = 0

log
(
q + (1 − p− q)

∏
x∈∂a µG,x→a(0)

)
if σ̂(a) = 1

(12)

BG,x,a = log
∑

s∈{0,1}

µG,x→a(s)µG,a→x(s). (13)

The resulting approximation of the entropy reads

HG = BG − n log λ +
n∑

i=1

µG({σx = 0}) log λ

1 − λ
(14)

−
m∑

i=1
σ̂(ai)=0

 p log(p)
∏

x∈∂ai
µG,x→ai (0)

1 − q + (p + q − 1)
∏

x∈∂ai

µG,x→ai (0)
+

(1 − q) log(1−q)(1 −
∏

x∈∂ai

µG,x→ai (0))

1 − q + (p + q − 1)
∏

x∈∂ai

µG,x→ai (0)



−
m∑

i=1
σ̂(ai)=1

 (1 − p) log(1 − p)
∏

x∈∂ai

µG,x→ai (0)

q + (1 − p − q)
∏

x∈∂ai

µG,x→ai (0)
+

q log(q)(1 −
∏

x∈∂ai

µG,x→ai (0))

q + (1 − p − q)
∏

x∈∂ai

µG,x→ai (0)

 .

Hence, in order to estimate the marginals and the entropy of the posterior we need to
calculate the BP messages. A natural idea is to perform a fixed point iteration using the
BP Eqs. (6)–(8). These equation usually possess several solutions [11, 45]. Whether or not
the fixed point iteration homes in on the correct solution then depends on the initialisation.

While there is no generic recipe for choosing an appropriate initialisation µ(0) ∈ M(G),
two choices suggest themselves. First, we can initialise the messages based to the prior λ, i.e.,

µ(0)
xj→ai

(s) = λs(1 − λ)1−s. (15)

We can also initialise the messages according to the ground truth, i.e. µ(0)
xj→ai(s) = σ(xj).

While the latter is not practically useful for the obvious reason, the analogy with other
inference problems suggests that if the fixed point iteration converges to the same solution
from both initialisations, then this solution actually is a good approximation to the correct
messages. Luckily, this can be tested using empirical simulations.

3.1.1 Preventing oscillations
The textbook method to perform the fixed point iteration is to update all messages in parallel.
This means that, starting from the initialisation (µ(0)

xj→ai)i,j , we compute all test-to-sample
approximations µ(0)

ai→xj via Eqs. (6)–(8). Then we use these together with Eq. (6) to compute
the next approximation (µ(1)

xj→ai( · ))i,j to all sample-to-test messages, and so forth.
Cuturi et al. [16] demonstrated experimentally that such parallel updates do not converge.

Instead, the messages oscillate between odd and even rounds. A similar observation was
already made by Sejdinovic and Johnson [36]. Similar oscillations emerge in other applications

SEA 2022
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Figure 2 Oscillations in BP with parallel updates for λ = 0.05, 0.2 tests/n, and p = q = 1.

of BP and can also be observed in our simulations as illustrated in Fig. 2. They may result
from an instability of the empirical mean of the messages. If in some particular iteration t

the deviation from the prior
n∑

j=1

m∑
i=1

1 {ai ∈ ∂xj} (µ(t)
xj→ai

(1) − λ) (16)

is positive, then we should expect a negative deviation in the next round. This is because
due to Eq. (16) in the next iteration many tests will receive a relatively large indication that
one of their samples may be infected. The test will therefore send out “less urgent” messages
to the other samples. Conversely, if Eq. (16) is negative, then in iteration t+ 1 we expect to
see a positive deviation. Due to the analytic nature of the update rules Eq. (6)–Eq. (8) these
oscillations do not dampen down but actually amplify. This observation led the authors
of [16] to turn to the computationally more intensive Glauber.

But actually oscillations of this type have been observed in other problems and several
mitigations are known. We resort to a natural solution, namely to update the messages in a
randomised order rather than in parallel to break the cycle of oscillations. Starting from the
initialisation (µ(0)

xj→ai( · ))i,j , we apply Eq. (7)–Eq. (8) once to initialise the test-to-sample
messages µai→xj

( · ). Then at each time t ≥ 1 we choose an edge aixj of G randomly and
then randomly either process µ(t)

xj→ai( · ) or µ(t)
ai→xj ( · ).

We stop the fixed point iteration after a fixed number T of steps. The precise choice of T
is guided by experiments but T should be large enough so that every message will likely get
updated several times. We note that this update scheme does not impede practical matters
from using our algorithm in a laboratory setting since it purely pertains to the computations
behind the scene and does not impact how samples are split and combined.

Beyond relying on asymptotic ideas and comparing the messages that result from the two
aforementioned initialisations we take two additional steps to corroborate the results of BP.
First, we compared the marginals obtained by BP with the empirical marginals of Glauber
on a number of samples. They match. Second, we compared the marginals obtained via
BP on moderately sized biregular test designs with the marginal distributions obtained via
population dynamics, a heuristic intended to approximate the limiting distribution of the
marginals as n → ∞ [30]. They, too, align very well. Figure 3 displays the typical outcome
of the BP along with the estimate Eq. (14) of the remaining entropy.

3.2 The first stage
As the first stage we use the random biregular design G = Gn,m(∆,Γ ) with the optimal
parameters from Eq. (4). Thus, the only free parameter is the total number m of tests
conducted in the first stage. Its choice is informed by BP. Specifically, we choose the
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Figure 3 Posteriors of BP on a random biregular design with 0.15 (top left), 0.25 (top right) and
0.6 (bottom left) tests/n and remaining entropy (bottom right) for λ = 0.05 and p = q = 1.

largest number m of tests up to which each test yields the optimal entropy reduction of
ln 2. Practically, this means that we choose m to match the point at which the entropy plot
for the corresponding parameter values flattens. The fourth graphic in Fig. 3 shows the
approximation of the entropy as a function of the number of tests for n = 1000 and λ = 0.05
in the noiseless setting. For other priors and noise levels, the story turns out to be analogous.

3.3 The second and third stage
Given the approximation of the marginals from the first stage, how should we proceed? As
we saw in Sections 2.3 and 2.5, two ideas for the subsequent stages proposed in the literature
include InfDorfman as well as individual testing of all samples whose marginals are not
entirely polarised after the first round. The former suffers from the same problem as the
original Dorfman scheme, namely a potentially fairly large number of false positives and
negatives. The latter strategy, known as DD, seems wasteful as it completely disregards any
non-trivial information about the marginals resulting from the BP computation.

To remedy these issues, we propose a new design that blends the random biregular design
with the InfDorfman scheme from Sec. 2.5. First, we directly report samples with marginals
obtained from the first stage marginals less than 0.1% as healthy and those with marginals
beyond 99.9% as infected. As illustrated in Fig. 4, the remaining samples are split into
two groups, one comprising samples with marginals below 12.4% (low risk) and one with
marginals above (high risk). The choice of 12.4% marks precisely the threshold beyond which
the expressions Eq. (4) suggest that any sample should be placed in one test only.

For the high risk group, we set up an InfDorfman design G′′. If such a pooled test turns
out to be negative, we classify all samples in this pool as healthy. Otherwise, we conduct
individual tests and classify samples solely based on these individual test results.

For the low risk group, we set up another random biregular test design on which we run
BP where the priors are given by the posteriors of the first stage. The resulting marginals
are again thresholded at 0.1% and 99.9%. Those samples whose marginals fall in between
are subsequently retested individually with their classification being solely determined by
the outcome of the individual test. To be more precise, let X ′ be the samples in the low risk
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Figure 4 Low and high risk marginals for λ = 0.05 in the high noise setting with m/n = 0.25.

group, let n′ = |X ′| and let m′ be the number of tests dedicated to this group. Based on the
first round’s BP results we approximate the average marginal λ′ = 1

n′

∑
x∈X ′ µG({σ(x) = 1}.

Mimicking Eq. (4) we then choose the degrees

∆′ = m′ log(2)/(n′λ′) Γ ′ = log(2)/λ′ (17)

and set up a random biregular test design G′ = Gn′,m′(∆′, Γ ′) on X ′. Furthermore, we
modify the BP equations on this random biregular design to accommodate the marginals
computed in the first stage. Hence, instead of using the universal prior λ′ for all the samples,
we substitute the separate marginals computed in the first stage:

µG′,x→a(s) ∝ µG({σ̂(x) = 1})s(1 − µG({σ̂(x) = 1})1−s
∏

b∈∂x\{a}

µb→x(s) (18)

3.4 Enhanced accuracy
In the following, we discuss a trade-off between accuracy and number of tests. The construc-
tion discussed so far is denoted as aBP-1, and the more accurate variants are aBP-2 and
aBP-3. In aBP-1, almost all false results originate from the InfDorfman procedure in the
second stage and neither the thresholding nor the second-stage random biregular design tend
to produce a notable number of mistakes. Therefore, in aBP-2 and aBP-3 we perform the
InfDorfman procedure twice or thrice independently in parallel.3

If we perform InfDorfman twice (aBP-2), we need to choose whether to reduce false
negatives or false positives. Accordingly, we classify a sample as healthy (infected) if both
InfDorfman procedures classify it as healthy (infected). In aBP-3, we classify according to
the majority vote of the three InfDorfman schemes. We refer to Appendix A for a listing
of the number of tests to be performed in the first and second stage.

4 Empirical investigation

In this section, we consider instance of n = 1000 samples and omit extensive simulations
for n = 100 and n = 10 000 since the results presented here, particularly the power of aBP
carry over to those sizes. For smaller instance, rounding issues and few samples in the second
stage necessitate slightly more tests; for larger n, we obtain a better performance.

3 In case of aBP-3, we opted to keep the number of stages small. Instead, we may also run aBP-2 and
only carry out a third round on samples where both runs yield different results.
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Figure 5 High noise scenario (sensitivity and specificity of p = q = 95%).

0.005 0.01 0.05 0.1
prior

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

fa
lse

 n
eg

at
iv

e 
ra

te
 (f

nr
)

0.005 0.01 0.05 0.1
prior

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

fa
lse

 p
os

iti
ve

 ra
te

 (f
pr

)

0.005 0.01 0.05 0.1
prior

0.0

0.2

0.4

0.6

0.8

1.0

te
st

s /
 n

algorithm
adaptive bp (1x)
adaptive bp (2x)
adaptive bp (3x)
3-stage dorfman
2-stage dorfman

Figure 6 Reliability-enhanced aBP for high noise scenario (sensitivity/specificity of p = q = 95%).

We study infection rates λ ∈ {0.5%, 1%, 5%, 10%} and the following specificity/sensitivity
scenarios (details on the parametrizations of the test designs for these settings are reported
in Appendices A and B):
(a) perfectly reliable tests, i.e. p = q = 1,
(b) moderately values p = 0.99 and q = 0.98 (e.g., certain Covid-19 tests [9, 10, 31, 40, 44])
(c) a noisy scenario with p = q = 0.95.

Our experiments show that aBP improves the accuracy by an order of magnitude
compared to known test designs while keeping the number of tests at a reasonable level.
In the following, let the false positive rate (fpr) be the number of healthy samples falsely
classified as infected over all healthy samples; define the false negative rate (fnr) analogously.

In the High-noise scenario with p = q = 0.95, aBP reaps the greatest gains. Figure 5
displays the results of aBP-1 in comparison to several previously known approaches. These
include the widely used two- and three-stage Dorfman designs (Sec. 2.2), the InfDorfman
design (Sec. 2.5) as well as BP followed by individual testing advocated in the theoretical
literature4. The figure shows that with about the same number of tests as 2-stage Dorfman,
aBP achieves up to 78% reduction in the number of false positives and an up to 42%
reduction in the number of false negatives. The gains are particularly high for small priors.

Still, the absolute error rates in Fig. 5, particularly for large priors, may still be prohibitive
for many real-world applications. Here our two designs aBP-2 and aBP-3 (Sec. 3.4) come
to the rescue. As Fig. 6 shows, these designs, particularly aBP-3, dramatically reduce the
number of false positives and negatives. Of course, these improvements come at the expense
of a larger number of tests. But for priors λ ≤ 0.05 the number of extra tests is moderate,
and for the largest prior λ = 0.1 aBP-2 and aBP-3 require not many more tests than
individual testing while being the only designs that deliver decent accuracy.

4 With perfectly reliable tests, this approach is equivalent to DD algorithm followed by individual testing.
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Figure 7 Sensitivity for moderate noise scenario (p = 98%, q = 99%).

0.005 0.01 0.05 0.1
prior

0.00

0.01

0.02

0.03

0.04

0.05

0.06

fa
lse

 n
eg

at
iv

e 
ra

te
 (f

nr
)

0.005 0.01 0.05 0.1
prior

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

fa
lse

 p
os

iti
ve

 ra
te

 (f
pr

)

0.005 0.01 0.05 0.1
prior

0.0

0.2

0.4

0.6

0.8

1.0

te
st

s /
 n

algorithm
adaptive bp (1x)
adaptive bp (2x)
adaptive bp (3x)
3-stage dorfman
2-stage dorfman

Figure 8 Reliability-enhanced aBP for moderate noise (p = 98%, q = 99%).

Figure 7 indicates a similar behaviour for moderately high noise with p = 0.99,
q = 0.98. In comparison to the classical two- and three-stage Dorfman, aBP requires at
most 11% more tests for high priors of λ = 0.1 and even fewer for small priors. The benefit
is that aBP boosts accuracy compared to all the previously known designs, particularly
so for low priors. We point out that the gains vis-a-vis InfDorfman for moderately high
priors are modest. The key benefit in aBP lies in its versatility to meaningfully enhance the
accuracy at the expense of somewhat more tests as shown in Fig. 8. A similar extension of
InfDorfman would yield a similar accuracy but require significantly more tests than aBP.

Even with perfectly reliable tests, the conventional DD approach (Sec. 2.3) is improved
upon by aBP or the InfDorfman approach. Both schemes are able to reduce the number of
tests compared to the former by up to 18% and comes within 19% to 32% of the information-
theoretic lower bound. The gains vis-a-vis two-stage Dorfman with up to 57% and individual
testing with up to 94% are even more pronounced. We do not need to consider the accuracy
in the noiseless case since all test designs recover the entire ground truth by construction.

In Fig. 10, we consider the fraction of samples that are identified by in each stage. It
highlights that despite a total of three stages needed for aBP the majority of samples are
identified already in the first and second stage, depending on the prior and noise level.

All examined algorithms require reasonable pool sizes and splits of the individual sample
that are in line with common pooling procedures [22, 24, 29]. The maximum pool size is
between 8 and 170 depending on noise level and prior, while the splits of the individual
sample range between 3 and 19. It should be noted that the proposed algorithms and test
designs can readily be adjusted to accommodate smaller pool sizes or individual sample splits
– at the expense of somewhat more tests.
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Figure 9 Simulation results for the noiseless setting. The black area represents a plausible
information-theoretic lower bound for the number of tests. The left plot displays the numbers of
tests required by the different designs; the right plot shows the reduction achieved by comparison to
the 2-stage Dorfman procedure, a classical and widely used test design.

Figure 10 Fraction of samples identified in each stage by (i) aBP, (ii) BP followed by individual
testing, and (iii) BP followed by InfDorfman.

5 Asymptotic considerations

Clearly, aBP relies on heuristics and is not asymptotically optimal. This begs the question
of how we would adapt the design and algorithm if we decide to live unburdened by practical
considerations and consider the case n → ∞?

5.1 Variations on aBP
The optimal drop in entropy in Fig. 3 encourages running BP on a random biregular test
design in the first. The discrete partition into three groups in the second stage, however,
gives something away. Indeed, in the asymptotic regime infinitesimal intervals of posterior
marginals contain an unbounded number of samples.5 Thus, it seems information-theoretically
optimal to construct a random biregular design for every single small marginal interval and
repeat this procedure over a few stages. However, such an approach is impractical as, for
moderate n, each random biregular design would only contain very few samples.

A simpler alternative that we considered is to still include all samples in one single
second-stage test design, in which we choose the number of tests in which each sample takes
part according to the posterior marginal from the first stage. Specifically, we chose these
numbers so that in expectation half the tests should be positive. However, this design turned
out to be unstable for small values of n because of random fluctuations.

5 Of course, depending on the prior and the noise setting the distribution of the posterior marginals need
not be supported on the entire unit interval.
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Figure 11 Asymptotic fraction of polarised marginals and the posteriors for non-polarised samples
obtained with population dynamics on the distribution by [23] for λ = 0.05 and p = q = 1.

5.2 Plain Belief Propagation
Thus far we disregarded what might seem at first glance the most straightforward scheme:
just run BP on a random biregular design and then simply threshold the marginals at, say,
50%. An obvious advantage of this approach is that it requires one stage only. Indeed,
when we simulated this scheme for large group testing instances such as n = 10 000, this
approach turned out to work extremely well. Particularly for small priors such as 0.5% and
1% the plain BP plus thresholding design is on par or even outperforms aBP in terms of
both efficiency and reliability. However, for smaller values of n plain BP plus threshold is
extremely vulnerable to fluctuations of the number k of infected samples. This is because
such fluctuations might cause the fraction of positive tests to significantly deviate from half.

5.3 Population dynamics
As already discussed, the population dynamics heuristics allows us to get a glimpse of the
marginal distribution resulting from running BP as n → ∞ [30]. To this end, we require
as input the distribution of infected and healthy samples in the local neighbourhood of a
sample which is provided in [23]. Subsequently, we iteratively sample the local neighbourhood
for infected and healthy samples and perform one-step BP updates to model the marginal
distribution of those samples whose marginal is not completely polarised. As shown in Fig. 11,
the resulting distribution closely resembles the marginal distribution that we observe from
running BP in our simulation in the first stage. As a side product, we obtain the proportion
of polarised healthy and infected samples which lines up nicely with our simulation results. It
should be noted that the population dynamics heuristic is nowhere near a complete analysis
of BP on random biregular graphs. Given the gains in efficiency and reliability that we
observe in this empirical work for moderately-sized instances, a formal analysis of BP seems
to be an important next step in group testing research.

6 Discussion

Group testing is a powerful method to efficiently and accurately detect infected samples. Since
the mathematical work on group testing deals with the asymptotic n → ∞ scenario, practical
adoption of methods proposed in this literature has been limited. Instead practitioners
tend to apply very simple test designs dating back to the 1940s. In this paper we therefore
conducted an experimental study that shows how a mildly more sophisticated test design
can significantly improve the accuracy of the overall test results by comparison to classical
methods without asking for many more tests. The new test design comes with an efficient,
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easy-to-run and easy-to-implement algorithm that determines the status of each sample
from the test results. Since the new design employs randomisation, its adoption is probably
feasible only in a practical setting that employs a degree of automation in preparing test
pools. But on the plus side the new aBP design keeps the pool sizes and the number of
pools that each sample has to be placed in fairly low.

Apart from the group testing model studied in the present paper, there are complicated
models; e.g., in quantitative group testing each test returns the number of infected samples
rather than a binary positive or negative result. Further variants include the pooled data
problem, the generalised coin weighing problem or the compressed sensing problem [1, 19].

What are the loose ends of the present work? On the one hand, it seems worthwhile to
consider alternative noise models. A candidate might be one where the specificity decreases in
the test size. Both the fixed noise model considered in this work and this diluted model have
value from a practical perspective and it would be interesting to see whether our results carry
over. On the other hand, the success of BP in practical group testing leaves us wondering
whether it is guaranteed to converge to a fixpoint reminiscent of the ground truth. Hence, a
mathematical analysis of BP remains as an outstanding open problem.
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A Number of tests in first and second stage

Number of tests for the first and second stage found via optimization for various algorithms,
priors and noise levels. The number of tests in the second stage in terms of the stated
parameter c can be obtained as cλ′n′ log(n′) with λ′ and n′ defined as the average marginal
and size of the low risk group, respectively.

noiseless moderate noise high noise
algorithm prior m1/n c m1/n c m1/n c

BP +
individual testing

0.5% 0.05 n/a 0.09 n/a 0.11 n/a
1% 0.08 n/a 0.12 n/a 0.16 n/a
5% 0.23 n/a 0.37 n/a 0.45 n/a
10% 0.3 n/a 0.7 n/a 0.34 n/a

BP + InfDorf-
man

0.5% 0.045 n/a 0.05 n/a 0.045 n/a
1% 0.075 n/a 0.075 n/a 0.1 n/a
5% 0.28 n/a 0.24 n/a 0.16 n/a
10% 0.125 n/a 0.1 n/a 0.1 n/a

aBP-1

0.5% 0.035 1.0 0.05 2.0 0.05 2.0
1% 0.075 1.0 0.085 2.0 0.1 2.0
5% 0.28 1.0 0.18 2.0 0.16 2.0
10% 0.125 0.25 0.15 4.0 0.1 2.0

aBP-2

0.5% n/a n/a 0.075 8.0 0.02 8.0
1% n/a n/a 0.12 8.0 0.03 8.0
5% n/a n/a 0.4 2.0 0.36 2.0
10% n/a n/a 0.5 2.0 0.325 2.0

aBP-3

0.5% n/a n/a 0.075 8.0 0.02 8.0
1% n/a n/a 0.085 8.0 0.03 8.0
5% n/a n/a 0.4 2.0 0.4 2.0
10% n/a n/a 0.55 2.0 0.5 2.0
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B Sample splits and test degree

The algorithms required the following number of maximum test degree and the following
maximum and average split of samples. The algorithms can be readily adjusted to work with
smaller test degrees or sample splits at the expense of slightly more tests.

noiseless moderate noise high noise
algorithm prior Γmax ∆max ∆mean Γmax ∆max ∆mean Γmax ∆max ∆mean

BP +
individual testing

0.5% 140 8 7.0 134 13 12.0 137 16 15.0
1% 75 7 6.0 67 9 8.0 69 12 11.0
5% 14 4 3.1 14 6 5.2 14 7 6.2
10% 7 3 2.3 8 6 5.2 6 3 2.8

BP +
InfDorfman

0.5% 134 8 6.0 140 9 7.1 134 8 6.2
1% 67 7 5.1 67 7 5.2 70 9 7.2
5% 15 6 4.1 20 5 3.5 13 4 2.9
10% 8 3 1.8 14 3 2.3 10 3 2.3

aBP

0.5% 143 8 5.2 140 11 7.6 140 13 8.0
1% 67 8 5.1 71 12 6.7 70 13 8.0
5% 15 7 4.1 147 12 6.2 66 12 6.5
10% 8 3 1.8 172 19 10.3 50 10 4.9
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