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—— Abstract

The completeness of road network data is significant in the quality of various routing services and

applications. We introduce an efficient randomized algorithm for exact learning of road networks
using simple distance queries, which can find missing roads and improve the quality of routing
services. The efficiency of our algorithm depends on a cluster degree parameter, dmax, which is an
upper bound on the degrees of vertex clusters defined during our algorithm. Unfortunately, we leave
open the problem of theoretically bounding dmax, although we conjecture that dmax is small for
road networks and other similar types of graphs. We support this conjecture by experimentally
evaluating our algorithm on road network data for the U.S. and 5 European countries of various
sizes. This analysis provides experimental evidence that our algorithm issues a quasilinear number
of queries in expectation for road networks and similar graphs.
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1 Introduction

We study the problem of reconstructing an undirected, unweighted and connected graph
G = (V, E), by taking as input its set of vertices V' and issuing queries to a distance oracle,
which takes as input a pair of vertices u,v € V and returns the number of edges on the
shortest path between them. The goal is to learn the edges in E by using the results that
are returned from these queries. In particular, we are concerned with reconstructing road
networks, which have been characterized in numerous ways, e.g., see [18, 21, 22, 25]. As a
starting point, we can view road networks as undirected, unweighted, and connected graphs
with a constant maximum degree, where each vertex corresponds to a road junction or
terminus, and each edge corresponds to road segments that connect two vertices. In this
paper, we present a randomized incremental algorithm for ezact learning of road networks,
where we assume the existence of a distance oracle that responds to distance queries.

Even though our algorithm only works with unweighted graphs, it is possible to use
weighted graphs as input by subdividing each edge, replacing each edge e with [w(e)] edges,
where w(e) is the weight of e. Since the average edge weight in road networks is typically
small (e.g., as observed in [25]), this will only increase the number of vertices and edges in the
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graph by a constant factor that is independent of the size of the graph. This preprocessing
step is important for applications of road network reconstruction in routing services, where
the completeness of road network data has great importance. For example, machine learning
techniques have been utilized in the past to find the missing roads in incomplete road network
data [24]. Though our experiments focus on unweighted road networks, we include some
experimental results for weighted road networks with subdivided edges as well.

Another application relevant to this work is the use of structured encryption [16] in
the context of cloud computing, where a data owner encrypts structured data, such as a
graph, stores it in a database managed by a third-party cloud provider, and wishes to query
it privately (e.g., using single-pair shortest path queries [26]). In the scenario where an
adversary server is able to generate valid queries of its own, it would be able to use a graph
reconstruction algorithm to learn the edges in the graph, resulting in a breach of privacy.

A graph reconstruction algorithm A is evaluated based on the number of queries it issues,
which we call the query complezity of A, following nomenclature from learning theory (e.g.,
see [2, 3, 17, 20, 35]) and complexity theory (where this is also known as “decision-tree
complexity,” e.g., see [38, 15]). For instance, Kannan, Mathieu and Zhou [29] present exact
learning algorithms for connected, undirected graphs that have bounded degree, including
a randomized algorithm that has expected query complexity O(A3n3/2 polylog(n)), where
A is the maximum degree of the graph, using distance queries. This bound simplifies to
O(n?/? polylog(n)) for graphs with maximum degree O(polylog(n)).

We note that a bound on the maximum degree is necessary for subquadratic exact
learning algorithms, as there is a simple ©(n?) lower bound for the query complexity of
graphs with unbounded degrees, e.g., see [29]. Likewise, a trivial upper bound for the task of
reconstructing a general graph G is O(n?) distance queries, as one can issue a distance query
for every pair of vertices in the graph and return all pairs of vertices that have distance 1
between them as edges. We refer to this as an erhaustive search on G.

1.1 Related Prior Results

The problem of reconstructing graphs by issuing queries has been studied extensively, e.g.,
see [1, 5, 8, 13, 32, 37,4, 6, 7,9, 10, 11, 17, 19, 27, 28, 30, 33]. These works differ in terms
of their assumptions about the hidden graph (e.g., whether the hidden graph is a tree, a
general graph, or something else) or the types of queries that they issue.

In terms of the most relevant prior work, Kannan, Mathieu and Zhou [29] showed how to
reconstruct a connected, unweighted graph G using O(A%n3/2 polylog(n)) distance queries in
expectation, where they performed an exhaustive search on the Voronoi cells created by a call
to a graph clustering algorithm inspired by Thorup and Zwick [36]. They also raised the open
question of whether we can achieve an algorithm that uses O(n polylog(n)) distance queries
in expectation for bounded degree graphs. In a recent work [31], Mathieu and Zhou provided
a partial answer for that open question by providing an algorithm that uses O(n polylog(n))
distance queries in expectation for random A-regular graphs. However, this does not imply
an algorithm with an expected query complexity of O(n polylog(n)) distance queries for road
networks as they are not necessarily regular. For general graphs of bounded degree, their
algorithm uses O(n®/3 polylog(n)) distance queries in expectation.

In another work, Afshar, Goodrich, Matias and Osegueda [6] introduced a parallel
implementation of the graph clustering technique of Thorup and Zwick [36] and presented
a parallel algorithm for reconstructing connected, unweighted graphs using O(A2n3/2+¢)
distance queries in O(1) parallel rounds for constant 0 < e < 1/2; with high probability.
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1.2 Qur Contributions

In this paper, we introduce a randomized incremental algorithm for exact reconstruction of
bounded degree graphs and demonstrate through experiments that it has expected empirical
query complexity O(npolylog(n)), providing an empirical answer to the open question raised
by [29] mentioned above.

The main idea of our algorithm is to cluster the graph into cells by incrementally selecting
random vertices as centers. We then issue distance queries between that center and the rest
of the graph to decide which vertices should be added to the new cell. We continue this
process until the size of each cell is below some threshold value. The final step is to then
perform exhaustive searches in each cell.

Our algorithm uses the same overall strategy used in [29], which is based on finding a
Voronoi cell decomposition of the graph. However, our algorithm differs in a number of
important ways. In [29], the goal of the algorithm is to produce cells such that the size
of each cell is O(y/n/A). Our algorithm, however, produces cells that have size at most a
chosen constant. Since performing exhaustive searches on all of these cells requires only
O(n) queries, the query complexity of our algorithm depends mainly on the initial step
of constructing the cells and not the exhaustive querying step. Moreover, our algorithm
incrementally constructs the cell decomposition by updating it with each newly added center,
whereas [29] updates the cell decomposition only after adding multiple centers.

We perform experiments on several real-world road networks and show, by considering
the number of queries performed at each step, that our algorithm has expected empirical
query complexity O(n polylog(n)). Moreover, we theoretically analyze our algorithm and
prove an upper bound of O(d? . nlogn) expected queries, where dpax is the maximum
degree in the dual graph of cells during our algorithm. To characterize dy.x, we collect
data on the maximum cell degrees during our experiments, and find that the value of
dmax scales logarithmically with respect to n for road networks. When combined with our
theoretical analysis, this results in an alternative way to obtain an empirical upper bound of
O(n polylog(n)) expected queries for our algorithm. In addition, we perform experiments to
directly compare the number of queries our algorithm issues to the number of queries issued
by existing algorithms, and observe empirically that our algorithm issues significantly fewer
queries.

Our paper is organized as follows. We provide some preliminaries in Section 2, our
algorithm is in Section 3, the results from our analysis are in Section 4, experimental results
are in Section 5, comparisons between theoretical /experimental results are in Section 6, and
the conclusions are in Section 7.

2 Preliminaries

We reconstruct graphs G = (V, E) that consist of n = |V| vertices and m = |E| edges, and
are undirected, unweighted and connected. For a graph G = (V, E), a cell is defined as
any subset of V. A cover of G is a set of cells C such that (J,c, C =V and for each edge
(u,v) € E there exists at least one cell C' € C such that u,v € C.

For two vertices u,v € V, 0(u,v) denotes the number of edges on the shortest path
between u and v in G. For a subset of vertices A C V, 6(v, A) = minge 4 6(v,a). For a vertex
v and a cell C, the subroutine Distances(v,C) determines (v, u) Yu € C by issuing distance
queries between v and every vertex in C.
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Algorithm 1 Graph Reconstruction.

Function RECONSTRUCT(V):
E—0C«0 W<V
Let M denote the maximum size of cells, initially +oo
while M > g do // gis a chosen constant
a < a random vertex from W
W+ W {a}
C <« cover(V,C,a)
M « max{|C]}
for C €C do
E + E U EXHAUSTIVE-QUERY(C)
return F

— =
= O

3 Algorithm

The first component of our algorithm is RECONSTRUCT(V'), which takes as input the set
of vertices V of the input graph and returns the reconstructed graph with the correct edge
assignments. We start by choosing a constant, g, which is the threshold value for the
maximum sized cell in our cover. In a loop, we randomly select an unselected vertex to be
the center for the new cell, and call COVER(V,C,a) to get a new cover which includes the
new cell with center a. We describe how COVER(V,C, a) works later in this section.

We keep performing this loop until the maximum sized cell in the cover becomes less
than g, in which case we terminate the loop and perform an exhaustive search on each cell
of the cover. The function EXHAUSTIVE-QUERY(C) takes as input a cell C' and returns all
edges between vertices in C' by issuing distance queries for each pair of vertices in C'. We
provide details in Algorithm 1.

The second and main component of our algorithm is COVER(V,C,a) (see Algorithm 2),
which takes as input the set of vertices V', a set of cells C and a vertex a, and returns a
new cover where a is the center of a new cell N. We define .S, which we call the frontier, to
be the set of cells that we should search in expanding IV, and we initialize it with the cells
that a belongs to. The only exception is when we first call COVER(V,C, a), in which case we
initialize S to be {V'} (see lines 3-6). Then, an arbitrary cell, C, from S is chosen, and we
issue distance queries between a and all of the vertices of C.

Using the results from these queries, we determine which vertices in C' are close to a,
compared to their distances to all the other centers. We define A to be a global variable that
stores the set of all centers that were added before the new center a. For a vertex v € C,
if §(a,v) < 6(A,v) — 1, we remove v from all of the cells that contains it (see line 18). If,
however, §(a,v) = §(A,v) or §(a,v) = §(A,v) + 1, we consider v to be on the boundary
between C' and N and so we do not remove v from any cells. In both cases, we add v to
the new cell N, and we add any unvisited cells that contain v to S since they might have
vertices that are close to a as well.

We say that a cell Cy € C is a neighbor of C1 € C if C; N Cs # (). In other words, two
cells are neighbors if there exists a boundary vertex that belongs to both of them. So, each
iteration of COVER(V,C,a) ends up adding to the frontier all unvisited neighbors of the
current cell C' € S that share at least one boundary vertex with C such that this boundary
vertex can be added to N according to the closeness definition in line 15. Note that we do
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Algorithm 2 coveR(V,C,a) algorithm for constructing a new cover after adding a cell centered
at vertex a.

1: N+« {a} // N is the new cell centered at a

2: L+ 0 // L is the set of cells that have been visited

3: if C = () then

4: S {V}

5: else

6: S« {CeClaecC} // S isthe set of cells that we should search in expanding N
7: while S # () do

8:  C < an arbitrary cell from S

9: S+ S\{C}

10 L+ LUC

11:  Distances(a, C')

12: // Ais a global variable denoting the set of all cell centers
13 IHA=0,VYveV: set §(A,v) = +oc.

14: forv e Cdo

15: if d(a,v) < §(A4,v)+ 1 then

16: S+ Su{C'"eC|veC and C' ¢ L} // add all of the unvisited cells that

contain v to the frontier S

17: if 6(a,v) < J(A,v) — 1 then

18: Remove v from all the cells that contain it

19: N+ NU{v}
20: A<+ AU{a}

21: return CU{N}

not necessarily add all the neighbors of C' to the frontier: if none of the boundary vertices v
between C' and a neighboring cell N’ have distance at most (4, v) + 1 to N’s center, then it
is clear that none of the vertices in N’ can be added to N.

4 Correctness and Analysis

» Theorem 1. For any undirected, unweighted and connected graph G = (V. E),
RECONSTRUCT(V') correctly reconstructs E.

Proof. We use an inductive argument to prove that the union of exhaustive searches performed
on the cells created by the algorithm discovers all (u,v) € E.

Initially, there is a single cell containing all of the vertices V', which trivially covers all
the edges of E. Now, let A; represent the first ¢ centers that we add in the algorithm and
assume, at every step 2 < s < 4, that for each edge (u,v) € E there is a cell with its center
in A, that contains both v and v. We then prove that if we create a new cell N, centered at
the (¢ + 1)-th center a € A;;1, the union of the new cells still covers all the edges in E.

Consider an edge (e1,e2) € E. Let = be the last center among the first ¢ 4+ 1 centers such
that x = argmin,¢ 4, {min(d(a, e1),d(a,e2))}. In other words, z is the last center that is
closest to either endpoint of the edge (e1,es2). If §(z,e1) # §(x, e2), we denote the endpoint
that is closer to x as v, and denote the other endpoint as u. Otherwise, we denote the endpoints
arbitrarily as v and v. So, we have min(d(z, e1),6(x, e2)) = 6(x,v) = §(Aiz1,v) < 0(Ajr1,u).
We prove that both u and v belong to the cell centered at z, after the (i + 1)-th iteration.

9:5
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First, we prove that we add both v and u to the cell at z. Let (s1, $2,...,Sm,) denote
the ordered vertices on a shortest path from x to v, where s; = x and s,, = v. Using the
inductive hypothesis for each 2 < j < m, there exists a cell that contains both s;_; and s;
right before adding center x. Now, consider the smallest j such that s; is not added to the
cell at  during the loop at line 14. Since s;_; is added to the cell at x, and since s;_; and
s; are connected, then by the inductive hypothesis there is a cell C' that contains both s;_;
and s;. Therefore, when we add s;_; to the cell at =, we add C' to the set of cells that we
should explore in expanding the cell centered at x (see line 16). On the other hand, since
s; is on the shortest path from x to v and d(z,v) = §(Ai+1,v), then §(z, s;) = 6(Ai11,8,).
Therefore, s; will be added to the cell at = when exploring cell C. Using this inductive
approach, all vertices on the shortest path from = to v will be added to the cell at z. Finally,
since 6(z,u) < 0(x,v) + 1 =0(Asr1,v) +1 < §(A;41,u) + 1, and since u and v also have a
common cell, we add u to the cell at x.

Next, we prove that if we add v and u to the cell centered at z, no other cells that we create
later on in the first (i + 1)-th steps removes v or u from the cell at . Note that for removing
a node from cell z, the condition at line 17 must hold. Since d(z,v) = 6(A4;41,v), there will
be no center b among the first (i + 1) centers such that §(b,v) < §(A4;11,v) — 1, meaning
that v will stay in cell at . On the other hand, we remove u from x only if for a center b:
d(b,u) < 6(x,u) — 1. If §(b,u) < §(z,u) — 1, and given the fact that d(x,u) < d(x,v) +1
and §(z,v) < §(z,u), then 6(b,u) < d(z,v) < é(x,u). However, we assumed that z is the
last center, among the first ¢ + 1 centers, that is closest to either of the endpoints v and v.
Therefore, u will also stay in the cell at x. |

» Theorem 2. The expected query complexity of RECONSTRUCT(V ) is O(d>
dmax s the mazimum cell degree over all steps.

nlogn), where

max

Proof. We use a backwards analysis [34] to derive an expression for the expected query
complexity of the algorithm. We assume ¢ centers have already been added, and analyze the
expected number of queries we issue at step i.

We observe that our algorithm only issues distance queries for cells in the set .S. Moreover,
the only cells we add to S are the ones that contain vertices that get added to the ith cell.
This means that all cells in S will become neighbors of the ¢th cell at the end of step 7. So
the number of distance queries issued at step 4 is the sum of the sizes of each cell that gets
added to S, which is at most the sum of the sizes of the ith cell and its neighbors at the end
of step i. Denoting the set of cells at the end of step i as C;, and the set of cells neighboring
any cell C as N(C), we have that the expected number of queries issued at the ith step is

<Z (cr+ > 1)

cec; C'EN(C)
_ Z +1 |C|
CeC;

by observing that each cell size |C| is summed d(C) + 1 times, where d(C') denotes the degree
of cell C, i.e. the number of neighboring cells it has. To bound this summation, we express
each cell size as the sum of boundary and non-boundary vertices. We have

3 @) +vic] 3 (dC)+1)(ClnB +1C|B)

cec; ! cec; !

SM ((Z Clvs) + () |C|B)>

CecC; cec;
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where dax is the maximum degree of any cell during any step, | - |5 denotes the number of
boundary vertices, and | - |y denotes the number of non-boundary vertices. We use the
fact that "o |Clnp < n, and observe that Y- cc. [C|B < (dmax + 1) - 12 as each boundary
vertex can belong to at most dmax + 1 cells, and thus can only be counted that many times
at most in the summation. So, we have

(uee + 1 ((Z Clvs) + (Y |0|B>> < Mo + 27

i
CcecC; cecC;
The expected number of queries when all steps are considered is

#steps

F#step
< Z IIl"Lx+2) — ma,x+2 Z %

which is O(d2,,,nlogn). To finish our analysis, we also need to consider the number of
queries issued during the exhaustive searches in each cell. Since the total number of cells is
O(n), and each cell is of size at most a constant g, the exhaustive querying part has query
complexity O(n). <

5 Experimental results

5.1 Implementation and Datasets

We implemented our algorithm in C++, and simulated the distance query oracle by performing
BFS in each iteration to compute distances between nodes while keeping track of how many
distance queries would be necessary to find these distances. We selected the value of g to be
50. We include experimental results for road networks from 50 U.S. states and Washington,
D.C. obtained from the formatted TIGER/Line dataset available from the 9th DIMACS
Implementation Challenge website! and road networks from Belgium, the U.K. (limited
to the road network of Great Britain), Italy, Luxembourg, and the Netherlands obtained
from formatted OpenStreetMaps data available from the 10th DIMACS Implementation

Challenge [12]. For all of the datasets, only the largest connected component is considered.

In Section 6, we discuss how the upper bounds derived from these experiments compare to
our theoretical upper bound.

5.2 Batch Length

We define the batch length of a step to be the number of distance queries issued at that step.

To find the relation between batch length and the step number, based on the theoretical
upper bound we derived in Section 4, we fit the function BATCH-LENGTH(step) = a + bbtep
to the data points in our results, where a and b are the fitting parameters. Data points for
the batch lengths of some of our datasets are provided in Figure 1. We list our results for all
of the datasets in Table 1, which includes the best-fit parameters in columns a and b, and
the maximum number of cells visited at any step in column M.

We can see that parameter b does not exceed 2, and that parameter a is close to 0 for
all of the datasets. This suggests that a constant or logarithmic factor of Stc
upper bound for the batch size at any step, which leads us to predict an upper bound of
logn - =2~ which we show in Figure 1. We report the percentage of steps that fall below this

step
upper bound for each dataset in Table 1, column U.

could be an

! http://www.diag.uniromal.it/~challenge9/data/tiger/
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Table 1 Batch length results for all datasets. Columns a, b and U were rounded to 4, 2 and 2
decimal places respectively.
a, b: best-fit parameters for BATCH-LENGTH(step#) = a + b2+

step#
U: percentage of batch lengths that are below the upper bound of ﬁ log n.

Dataset n a U Dataset n a b U
AK 48 560 0.0036 96% ND 203583 | 0.0015 | 1.76 | 92%
AL 561459 | 0.0005 98% NE 304335 | 0.0011 | 1.99 | 93%
AR 478024 | 0.0005 98% NH 115055 | 0.0023 | 1.91 | 97%
AZ 533008 | 0.0005 95% NJ 329404 | 0.0010 | 1.90 | 94%
CA 1595577 | 0.0002 96% NM 456896 | 0.0006 | 1.88 | 97%
CO 436084 | 0.0006 96% NV 253012 | 0.0009 | 1.85 | 94%
CT 152036 | 0.0019 94% NY 708520 | 0.0004 | 1.76 | 97%
DC 9522 0.0321 70% OH 672527 | 0.0005 | 1.93 | 95%
DE 48 812 0.0053 91% OK 535032 | 0.0006 | 1.87 | 96%

97% OR 529702 | 0.0005 | 1.90 | 98%
97% PA 866352 | 0.0004 | 1.83 | 97%

FL 1036647 | 0.0003
GA 731954 | 0.0004

HI 21774 0.0086 90% RI 51642 0.0047 | 1.88 | 92%
IA 388487 | 0.0008 93% SC 460763 | 0.0005 | 1.81 | 97%
ID 265552 | 0.0010 97% SD 206998 | 0.0014 | 1.85 | 94%
IL 790439 | 0.0004 96% TN 578981 | 0.0004 | 1.70 | 98%
IN 495581 | 0.0007 94% X 2037156 | 0.0001 | 1.97 | 97%
KS 471066 | 0.0007 93% UuT 242432 | 0.0010 | 1.95 | 96%
KY 463542 | 0.0006 98% VA 620680 | 0.0004 | 1.92 | 98%
LA 408161 | 0.0006 97% VT 95672 0.0022 | 1.95 | 98%
MA 294345 | 0.0009 95% WA 560336 | 0.0005 | 1.69 | 97%
MD 264378 | 0.0010 95% WI 514687 | 0.0006 | 1.89 | 96%

99% Wv 292557 | 0.0006 | 1.89 | 99%
95% WY 243545 | 0.0010 | 1.92 | 97%

ME 187315 | 0.0013
MI 661718 | 0.0005

e e e e el el e e T e T o T e e O e R R R
~J 00 © 00 ~J~J 00 00 W 00 WO 00 00 W0 WO~J O~ W WO D T
NOWODOI R DI RON0OFNOOIDJOUlHO©ULOL= O

MN 541166 | 0.0006 95% BE 1441295 | 0.0002 | 2.00 | 99%
MO 668322 | 0.0004 97% GB 7733822 0 1.81 | 100%
MS 409994 | 0.0007 98% 1T 6686493 0 1.81 | 100%
MT 300809 | 0.0007 98% LU 114599 | 0.0019 | 1.96 | 99%
NC 876954 | 0.0003 99% NL 2216688 | 0.0001 | 1.86 | 99%

5.3 Maximum Cell Degree

To combine our experimental results with our theoretical upper bound, we collected data on
the maximum cell degree at each step. We combine the step-wise data in each dataset using
different measures: mean, max, and the 1st, 2nd and 3rd quartiles to see how the data is
spread. Then for each dataset, we represent the value corresponding to each measure as a
point. Based on our intuition, we fit the function alogn + b for each measure. We list our
results in Figure 2, which includes the best-fit parameters for each measure. We can see that
a < 2, and b is a small constant for each measure. The datasets with the largest maximum
cell degrees turned out to be VA, NV and OH, with values of 43, 43 and 42 respectively. It
is clear from the figure that a small constant multiple of logn would be enough to produce
an upper bound that covers all of the data points, suggesting that the maximum cell degree
might have an upper bound of O(logn).

5.3.1 Road Networks with Subdivided Edges

We provide experimental results in Table 2 for the maximum cell degrees of the weighted
road networks of the District of Columbia and the state of Hawaii, which we transform into

unweighted graphs by replacing each edge e with [w(e)] edges, where w(e) is the weight of e.

The size of each road network increased by factors of approximately 192 and 167 respectively,
while the maximum cell degree values ended up decreasing for both road networks. This
indicates that our algorithm can also perform efficiently on weighted road networks.
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g 351 max
% 304
2 Measure a b
£2 mean -2.34 | 1.48
=
ol 1st quartile | -4.52 | 1.48
2nd quartile | -1.49 | 1.47
» , , , , , 3rd quartile | -0.2 | 1.53
0 a max 44 | 1.50
(a) Best-fit lines for the function a + blogn. (b) Parameters for best-fit lines. Columns a and b

were rounded to 2 decimal places.

Figure 2 Results from combining step-wise maximum cell degrees.

le9 le9

1.6
e s=n?? . 107 o s=log?n N
144 e s=Vn?log?n . Our algorithm .
e s=log’n o 08

1.24 Our algorithm
I L4 [ .
2104 . ¢
E . 306 .
N o
%5 0.8 g
8 ’ 3 .
€ 0.6 . £ 04
E 2 . o

i Cd
0.4 4 oo ° o . .
.
. 4 o° /
0.2 . .
° © o oo o° o'
2 . . e o
ool on &8 20 Wl
T T T T T T T T . T T .
0 50000 100000 150000 200000 250000 300000 0.0 0.5 1.0 15 2.0

n n le6

Figure 3 Number of queries issued by our algorithm compared to [31].

5.4 Comparisons with Existing Algorithms

We directly compare the number of queries issued by our algorithm to the algorithm introduced
in [31], which takes as input a parameter s that affects the query complexity. The authors
prove their query complexity bounds for A-regular graphs and bounded graphs with the value
of s being set to log? n and n?/3
and we also try setting s to be the geometric mean of these values. We summarize the results

respectively. We use these values for s in our experiments,

of our experiments on road networks in Figure 3.

We then compare our results to the number of queries issued by the algorithm in [29].
Without performing any experiments, it can be observed that this algorithm will issue
significantly more queries than our algorithm: the first iteration of ESTIMATED-CENTERS
(Algorithm 2 in [29]) will issue at least Q(n - Ay/n - logn - loglogn) distance queries.

Table 2 Maximum cell degrees for weighted road networks compared to their unweighted
versions.

Unweighted Weighted

V] dmax V| dmax
DC 9522 23 1826 049 12
HI | 21774 26 3643818 11
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6 Comparison of Theoretical/Experimental Results and Future Work

The theoretical upper bound we derived in Section 4 contains a d2,,, term, which can be
O(n?) in the worst case. However, our experiments show that the maximum cell degree is
actually low for road networks throughout the algorithm. From our results in Section 5.3, we
can see that O(logn) would be a suitable upper bound for dyax. In this case, the expected
query complexity of our algorithm would be O(nlog®n). The experimental results for batch
length support this observation, as the upper bound for the batch length at any step number
nlogn from which we get an expected query complexity of O(n polylog(n))

step#
as well. Future work might involve trying to find if there exists a better theoretical upper

amounted to be

bound on the query complexity of our algorithm. This might require making some additional
simplifying assumptions about the graphs being used as input.

We would like to point out a connection between our results and the graph-theoretical
Delaunay triangulation of road networks.

6.1 Delaunay Triangulations and d,,.«

We can consider the cells (resp. covers) that are constructed during our algorithm as a
redefinition of graph-theoretical Voronoi cells (resp. diagrams) (e.g., see [23]). Similarly, we
can consider the dual graph connecting neighboring cells in the cover as being a form of
a graph-theoretical Delaunay triangulation of G. There exists prior work on bounding the
expected maximum degree of the Delaunay triangulation of a set of points selected randomly
from the Euclidean plane. In [14], the authors consider the Delaunay triangulation of a
Poisson point process limited to the portion of the triangulation within a cube of d dimensions.
They show that the expected maximum degree of this triangulation is ©(logn/loglogn).
Having such a bound for the expected maximum degree for our redefinition of the graph-
theoretical Delaunay triangulation might allow us to prove a theoretical quasilinear bound
for the query complexity of our algorithm, so another interesting direction for future work
can be to adapt this result for random point sets in Euclidean d-space to our setting, where
the point set is selected randomly from the vertex set of a road network.

7 Conclusions

We introduced an efficient exact reconstruction algorithm for road networks and showed
through experiments on several real-world road networks that our algorithm has an expected
empirical query complexity that is quasilinear. As mentioned in Section 6, an important
direction for future work can be to derive a theoretical upper bound for our algorithm that
matches our experimental results.
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