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Abstract
Computing a maximum cut in undirected and weighted graphs is a well studied problem and has
many practical solutions that also scale well in shared memory (despite its NP-completeness). For
its counterpart in directed graphs, however, we are not aware of practical solutions that also utilize
parallelism. We engineer a framework that computes a high quality approximate cut in directed
and weighted graphs by using a graph partitioning approach. The general idea is to partition a
graph into k subgraphs using a parallel partitioning algorithm of our choice (the first ingredient of
our framework). Then, for each subgraph in parallel, we compute a cut using any polynomial time
approximation algorithm (the second ingredient). In a final step, we merge the locally computed
solutions using a high-quality or exact parallel Max-Dicut algorithm (the third ingredient). On
graphs that can be partitioned well, the quality of the computed cut is significantly better than the
best cut achieved by any linear time algorithm. This is particularly relevant for large graphs, where
linear time algorithms used to be the only feasible option.
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1 Introduction

A directed and weighted graph G is a tuple (V, E, w) with the set of vertices V = {1, ..., n}, the
set of edges E ⊆ V 2 and nonnegative weights w : V 2 → R≥0. If (u, v) /∈ E, we set w(u, v) = 0.
A cut in a directed and weighted graph G = (V, E, w) is defined by a partitioning of V into
two complementary subsets S ⊆ V and T = V \ S. The value of a cut with respect to S and
T is defined by C(S, T ) =

∑
i∈S,j∈T w(i, j), i.e. we sum the weights of the edges with origin

in S and target in T . The maximum cut is then defined by Cmax = maxS⊆V,T =V \S C(S, T ).
The problem of finding a maximum cut in a directed and weighted graph is denoted by

Max-Dicut. It can be seen as a generalization of its well-studied counterpart Max-Cut in
undirected graphs, which is one of the classical NP-complete problems listed by Karp [13]. In
fact, Max-Dicut is at least as hard as Max-Cut, since every instance of Max-Cut can
be trivially reduced to an instance of Max-Dicut (by replacing each undirected edge (u, v)
with two directed edges (u, v) and (v, u) of the same weight). This reduction also shows that
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10:2 A Parallel Framework for Approximate Max-Dicut in Partitionable Graphs

Max-Dicut is NP-hard. Additionally, it is known that Max-Dicut is APX-hard, even
when restricted to directed acyclic graphs (DAGs) [16]. Thus (assuming P ̸= NP), we cannot
hope for more than a constant factor approximation algorithm.

One of the many practical applications of approximate Max-Dicut is as a subroutine in
grammar-based text compression [12], where we encounter large graphs that may contain
millions of nodes. In this setting, we are particularly interested in algorithms that not only
obtain a good approximation ratio, but also utilize shared memory parallelism to accelerate
the computation. To the best of our knowledge, there currently exists no such algorithm.

1.1 Related Work
Computing an undirected Max-Cut is a well-studied problem in theory as well as in practice.
Among the practical solutions are a variety of exact Max-Cut solvers like BiqMac [20] and
BiqCrunch [15]. However, these solvers do not use parallelism to accelerate the computation.
Recently, new exact parallel solvers were introduced, e.g., BiqBin [9] and MADAM [11].
Unfortunately, these solvers cannot easily be modified to compute a directed maximum cut
instead. They are also only practical for relatively small graphs.

There is a variety of sequential Max-Dicut approximation algorithms. A naive ran-
domized algorithm assigns each node independently with probability 1

2 either to S or T ,
which results in a cut with an expected performance guarantee of 1

4 . (As usual, we say
that an algorithm has performance guarantee α ∈ (0, 1) if it always computes a cut of value
at least α · Cmax, where Cmax is the value of a maximum cut.) By using the method of
conditional expectations [22, 19], we can derandomize this algorithm. A linear time algorithm
for unweighted graphs with a performance guarantee of 9

20 was described in [10]. In [6],
a set of algorithms with a performance guarantee in [0.25, 0.5) was described. In these
algorithms, the decision whether a node is assigned to S or T only depends on the in-degree
and out-degree of the node. Max-Dicut can be seen as a maximization of a submodular
function. In [4], a linear time algorithm with an expected performance guarantee of 1

2 and
one with deterministic ratio 1

3 were described, both using maximization of a submodular
function as their main ingredient. Max-Dicut was also considered in an online model [2]
and shown to have an online algorithm with a performance guarantee of 1

3 .
By solving a relaxation of an integer linear program (ILP) and using a simple round-

ing scheme, we can achieve an expected performance guarantee of 1
2 [18]. The currently

best known performance guarantee uses an idea that was first described by Goemans and
Williamson [7]. It relaxes an integer program into a semidefinite program, and then uses
an interesting rounding technique to achieve a performance guarantee of 0.79607. The
performance guarantee was subsequently improved to 0.859 [23] and 0.874 [17]. It has been
shown that it can only be improved up to 0.878 in case that the Unique Games Conjecture
[14] is true. These algorithms have a polynomial running time and do not perform well in
practice. Also, they cannot easily be parallelized.

Summing up, when faced with graphs of nonhomeopathic size, the only practical option
to date is to use one of the (randomized) linear time algorithms [4, 6], resulting possibly in
poor quality directed cuts. Better performing algorithms such as [7] cannot be applied to
dense graphs of more than a few thousand nodes.

1.2 Our Contributions
To bridge the gap between the linear time algorithms and the expensive ILP-based solutions,
we propose a practical framework that computes high quality Max-Dicut approximations
in well partitionable graphs using shared memory parallelism. In recent years, practical
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improvements for a variety of graph problems were achieved by using graph partitioning
[5, 1]. The general approach is to partition a graph into multiple subgraphs (usually aiming
at minimizing the number of edges between the subgraphs), solve the problem locally on
each subgraph, and then merge the local solutions into a global solution. Since we can
independently compute a solution for each subgraph, this approach is well suited to be
parallelized in shared (and potentially also distributed) memory.

This is also the idea behind our framework, which consists of three main algorithmic
components and an optional post-processing step:

S1 A graph partitioner is used to split the input graph G into k ≪ n subgraphs Gi of roughly
equal size, such that the dependency between the subgraphs is small, i.e. the sum of the
edge-weights between the subgraphs is small.

S2 An approximation algorithm for Max-Dicut is used to compute a cut Si, Ti for each
subgraph Gi (processing up to p subgraphs simultaneously, using p processors).

S3 A merger is used to integrate all the local solutions Si, Ti into a global cut. This is
achieved by defining a new contracted graph with 2k nodes, where each node represents
a partition set Si or Ti. Merging the local cuts then corresponds to computing a Max-
Dicut in the contracted graph. Thus, the merger is just another Max-Dicut algorithm,
which can either be a high-quality approximation algorithm or even an exact solver, if k

is sufficiently small.

S4 (optional) A local search is performed in order to improve the current solution by
swapping nodes between the partitions until we cannot further increase the value of the
cut.

The C++ implementation of the framework is publicly available on GitHub (see sup-
plementary material on the title page). At the time of writing, the framework provides
three different partitioners, four sequential Max-Dicut approximation algorithms, and four
mergers. It has been designed with extendability in mind, such that it should be little effort
for the user to add new algorithms.

We evaluated the different options for each component on various real world graphs of
up to 223 nodes and 224 edges. If we choose the right components, then the framework
scales well in practice, while computing high quality cuts. The quality of the cut depends
heavily on how well the graph can be partitioned in the first step. For graphs that can be
partitioned well, we obtain a cut that is significantly better than the cut achieved by linear
time algorithms. This is particularly relevant for large graphs, where linear time algorithms
used to be the only feasible option.

The remainder of the paper is structured as follows. First, we describe the main steps
of the framework in more detail, providing examples of each step (Section 2). Then, we
give implementation details, focusing on the actual algorithms that we use as components of
the framework (Section 3.1). Finally, we provide practical results (Section 3.2), and discuss
future work and open problems (Section 4).

2 Framework

In this section, we describe the framework in more detail. The description is accompanied by
a full example in Figure 1.

SEA 2022
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(a) The directed and weighted input graph G for
which we want to compute a maximum directed
cut.
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(b) Step 1: We partition the input graph into
subgraphs G1, G2, G3, G4 induced by the node
sets V1 = {1, 2, 5}, V2 = {6, 7, 8}, V3 = {3, 4}
and V4 = {9, 10}. The partition aims to minim-
ize the sum of edge weights between subgraphs.
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(c) Step 2: We compute a directed cut Si, Ti

on each Gi. The source nodes, i.e., the elements
of any Si, are filled and dashed.
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(d) Step 3.1: We obtain a contracted graph H
from G by contracting each Si and each Ti into
a single node. The number of nodes is twice the
number of subgraphs. The value of the naive
cut S =

⋃
Si, T = V \ S is 37.
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(e) Step 3.2: We compute an exact Max-Dicut
SH , TH on H. Nodes from SH are filled and
dashed. The value of the cut is 37.5.
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(f) Step 3.3: We obtain the final cut S, T on G
by defining S =

⋃
X∈SH

X and T = V \ S. The
unchanged value of the cut is 37.5.
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(g) Step 4 (optional): We perform the local search and repeatedly identify nodes that have a positive
gain, i.e., nodes that can be moved to the other partition set such that the overall cut improves. After
Step 3.3, the only node with positive gain is node 6 with gain(6) = (5 + 2) − (2 + 1

2 + 4) = 1
2 . After

moving node 6 from T to S (left part of the drawing), the cut has value 38. Now the only node with
positive gain is node 4 with with gain(4) = 4 − 2 = 2. After moving it from S to T , (right part of the
drawing), there is no node with positive gain, and the value of the cut is 40.

Figure 1 Running our framework on a small example.
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2.1 Graph Partitioning
The first step of our framework is to partition the input graph G = (V, E, w) into k disjoint
subgraphs G1, . . . , Gk (where k is a freely choosable parameter), such that we can run on
each subgraph independently an algorithm for approximating Max-Dicut. In order to
improve the quality of the computed cut, we want to retain as much information as possible
in each subgraph, while losing as little information as possible between the subgraphs. This
can be achieved by maximizing the sum of the edge-weights in each subgraph, or, vice versa,
minimizing the sum of the edge-weights between the subgraphs, i.e. we want to minimize∑

i,j∈{1,...,k},i̸=j Eij , where Eij is the sum of the edge-weights between subgraph Gi and Gj .
We use partitioning algorithms that split G into subgraphs Gi = (Vi, Ei, w) of roughly

equal size, i.e. we allow for a multiplicative error ϵ > 0 such that |Vi| ≤ (1 + ϵ)
⌈

|V |
k

⌉
.

Although graph partitioning is a hard problem itself, there are high-quality parallel graph
partitioners that scale well on multiple processors [1, 8]. In Figures 1a and 1b, we see an
example of an input graph partitioned into four subgraphs.

2.2 Compute Local Solutions
In the next step, we run on each subgraph Gi an algorithm that computes an approximation
Si, Ti for Max-Dicut. We process up to p subgraphs at the same time, where p ≤ k is
the number of processors that we want to use. The choice of the approximation algorithm
depends on the available time and the size of the subgraphs. If the subgraph are rather
small, e.g., 100 nodes each, then we may be able to compute an optimal solution for each of
them. If the subgraphs are slightly bigger, e.g., around 1000 nodes each, then a superlinear
approximation algorithm with a relatively high performance guarantee might be feasible. If
the subgraphs are even bigger, then we may have to use a simple linear time approximation
algorithm with a lower performance guarantee. Depending on our choice of k, we have the
flexibility to choose the algorithm such that we achieve the best trade-off between the quality
of the cut and the runtime of the framework. As an example, we show in Figure 1c the
optimal Max-Dicut for all subgraphs that were computed in Figure 1b.

2.3 Merging
In a final step, we have to merge the computed local cuts into a global cut. A naive approach
is to define S =

⋃
i Si and T =

⋃
i Ti as the trivial cut. The problem with this approach

is that we did not consider the edges between the subgraphs. For some i ∈ {1, . . . , k}, it
might be more advantageous to swap the subsets Si and Ti in the global graph, or even to
put Si and Ti into the same partition. To consider the dependencies between the subgraphs,
we reduce the problem of merging the local solutions to another Max-Dicut instance. We
build a complete graph H with 2k nodes, where each node represents a locally computed
partition set Si or Ti. For every pair X, Y of nodes in H, we add an edge (X, Y ) to H with
weight

∑
i∈X,j∈Y w(i, j) (see Figure 1d). Since the graph H has only 2k nodes, we can use an

expensive algorithm to compute an exact Max-Dicut defined by SH and TH (see Figure 1e).
Finally, the global cut is defined by S =

⋃
X∈Sh

X and T =
⋃

X∈Th
X (see Figure 1f).

2.4 Optimization by Local Search
To further optimize the computed cut, we use in an optional fourth step, a local search. The
idea of the local search is to check if we can improve the cut by swapping the partitioning of
a node. We repeatedly swap the partitioning of nodes to improve the cut until we can no
longer swap any nodes.

SEA 2022
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More precisely, for a node u we calculate the gain for swapping the partitioning of u. If
u ∈ S, then we calculate the gain by gain(u) =

∑
(v,u)∈E,v∈S w(v, u) −

∑
(u,v)∈E,v∈T w(u, v),

and if u ∈ T by gain(u) =
∑

(u,v)∈E,v∈T w(u, v)−
∑

(v,u)∈E,v∈S w(v, u). We repeatedly find a
node u with gain(u) > 0 and swap its partitioning, until for all nodes u we have gain(u) ≤ 0.
In this case, we have arrived at a local maximum. An example is provided in Figure 1g.

There are multiple ways of choosing a node u with gain(u) > 0. We use a simple first
candidate strategy, which chooses the first node u with gain(u) > 0 that it encounters. We
also implemented a best candidate strategy, which chooses the node u with maximal gain.
However, in practice taking the best candidate rather than the first candidate improves the
cut only by a small margin, while it significantly increases the running time.

We point out that this step is hard to parallelize, as multiple iterations of the local search
are dependent of each other.

3 Experimental Evaluation

In this section, we present practical results of our framework. We implemented the framework
in C++17 and used OpenMP for parallelization.

We evaluate our framework on the input graphs as summarized in Table 1. The graphs
great-britain, luxembourg, flixster, flickr, Stanford3, and web-sk-2005 were taken
from Network Repository [21]. The graphs luxembourg and great-britain are road networks
of Luxembourg and Great Britain, respectively. The graph flixster is a graph which
represents all links between users of the website Flixster and the graph flickr is a graph
where an edge represents if one user added another user as a contact on the website Flickr.
The graph Stanford3 is a Facebook graph with all users from Stanford University and the
graph web-sk-2005 is a crawl from 2005 for the .sk domain by using UbiCrawler [3]. For a
comparison of our results with the optimal cut, we also took 121 small graphs from Network
Repository on which we can compute the optimal cut in the time limit of one hour by doing
three runs with different random seeds each (see Appendix A for a list).

To specify how well we can partition a weighted graph G = (V, E, w), we additionally
provide the coverage measure of a weighted graph for a partitioning P = {G1, ..., Gk}.
Intuitively, the coverage describes how many edges are covered by the partitioning. It is
defined as cov(G, P ) = W (P )

W , where W (P ) =
∑

Gi=(Vi,Ei,w)∈P

∑
e∈Ei

w(e) and W is simply
the sum of all edge-weights in G. The more the coverage of a graph tends towards 1, the
less influence the merging step of our framework has on the computed cut. In case that G is
clear from the context, we omit it in the notation. When we want to emphasize that there
exists a partitioning P into k subgraphs with cov(P ) = x, we also write cov(k) = x (so x is
a lower bound on the coverage of a graph with a partitioning into k subgraphs).

3.1 Implementation Details
For partitioning the input graph, we use the shared memory algorithm KaMinPar [8], which
aims at minimizing the number of edges between subgraphs. To use this algorithm, we first
have to transform our directed graph into an undirected graph by constructing a new graph
G′ = (V, E′, w′) where E′ = {(u, v) | (u, v) ∈ E ∨ (v, u) ∈ E} and w′(u, v) = w(u, v) + w(v, u).
We configured KaMinPar with an imbalance value of 0.01 and use a random seed for each
computation.1

1 We also tried two naive partitioning algorithms: simply slicing the list of nodes ore edges into equal-size
parts, but, despite being fast, these turned out to produce cuts of inferior quality.
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Table 1 A summary of our large input graphs. We provide for each graph the number of nodes
n, the number of edges m and the coverage with four different partitionings. We partitioned the
graph using KaMinPar into k ∈ {64, 256, 1024, 4096} subgraphs and calculated for each the coverage
measurement cov(k) (in percent).

Graph n m cov(64) cov(256) cov(1024) cov(4096)
great-britain 7,733,822 16,313,034 99.96 99.92 99.82 99.58
flixster 2,523,386 15,837,602 55.26 49.26 44.41 39.83
flickr 513,969 6,380,904 69.78 53.68 37.14 27.50
luxembourg 114,599 239,332 99.62 99.10 97.64 92.83
web-sk-2005 121,422 668,838 99.59 98.45 93.98 77.07
Stanford3 11,586 1,136,618 27.76 15.56 6.20 1.69

We implemented several sequential algorithms that approximate Max-Dicut. As dis-
cussed earlier, they can be used both for computing the local solutions, as well as for merging
them into the global solution. Our most naive implementations are the randomized algorithm
that puts every node independently with probability 1

2 either in S or T , and its derandomized
counterpart. We call these 1

4 -approximation algorithms Random and Derandomized respect-
ively. Additionally, we implemented the algorithm by Buchbinder et al. [4] with performance
guarantee 1

3 , which we call Buchbinder. We also implemented the algorithm by Goemans
and Williamson [7] with expected performance guarantee 0.79607, which we call Goemans.
For solving semidefinite programs (which is needed as a subroutine of Goemans), we use the
MOSEK Fusion API2 with enabled parallelism. Lastly, we also implemented an algorithm
that computes the exact Max-Dicut. This algorithm uses an Integer Linear Program (ILP)
representation of Max-Dicut which was described in [10] and solves it using Gurobi3 using
only a single thread. We call this algorithm ILP.

To denote which of the sequential Max-Dicut algorithms we use in step 2, we use
notations like BuchbinderS2, meaning that we used the algorithm Buchbinder for computing
the local solutions. (The merging step might still use other algorithms; see the following
paragraph.)

When k gets large, the complete graph H as defined in Section 2.3 can get very large. For
example, if we set k to 2048, then H has 4096 nodes and up to 16 million edges. In this case,
the approximation algorithms with high performance guarantee are not practical anymore and
the time to construct H can get too slow. To deal with this problem, we also implemented a
tree-like merging algorithm. More precisely, we first divide the subgraphs G1, ..., Gk computed
by the graph partitioner (with their local cuts) into k

l groups of l subgraphs each (for some
fixed l < k) where group i consists of the graphs G(i−1)l+1, ..., Gil. Then, for each group
we merge its subgraphs using the merge algorithm described in Section 2.3, resulting in k

l

subgraphs G′
i, each with a directed cut. We repeat this process with this new partitioning

until the number of partitions gets smaller than l, where a final merging step produces the
ultimate cut of G. We parallelized this algorithm with the exception of the Max-Dicut
algorithm used to merge the directed cuts.

We denote this merge algorithm as Merge-Tree. In our experiments we use Merge-Tree
with Goemans and l = 256 as our default configuration.

2 https://www.mosek.com/
3 https://www.gurobi.com/
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3.2 Results
We now present experimental results on the running times and quality of our new algorithms
in comparison with other existing approaches. When running an algorithm on a particular
instance, we run it three times and for each execution we stop its execution after a time limit
of 10 hours. Then, we take the average of the computed cuts and running times. This reflects
the main research question that motivated our research: Which quality can we achieve for
directed cuts under given time and hardware constraints?

We conducted our experiments on a Linux machine running Ubuntu version 18.04.6 with
two AMD EPYC 7452 processors with 32 physical cores each and 1 TB of RAM. Thus when
running the framework, we can compute the local cuts of up to p = 64 subgraphs at the
same time. The code was compiled using GCC 7.5.0 with flag -O3 enabled using Gurobi
version 9.1.2 and Mosek version 9.3.

3.2.1 Overview
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Figure 2 Overview of our results. For each algorithm, we visualize the quality of the cuts by
a bar plot, and the throughput (size of the graph divided by the running time) by circles. The
graphs from Table 1 are sorted in descending order by the value cov(64) to visualize the effect of the
coverage on the computed cut quality. (Best viewed in color.)

Figure 2 provides an overview of what can be achieved with our framework. As we will
see in Section 3.2.3 that the best performing configuration of our framework is to use the
Goemans algorithm in step 2 (be it for varying k), we compare this configuration with other
existing algorithms.

First look at the bar plots for the large graphs from Table 1, where currently the only
feasible option is to use a linear time algorithm (Buchbinder, Derandomized, Random): we can
observe that our new algorithms compute significantly better cuts than the best linear time
algorithm on well partionable graphs which is indicated by their coverage. This is especially
the case for great-britain, luxembourg, and web-sk-2005. Also, the computed cuts are
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never worse for the other graphs (flickr, flixster, and Stanford3). We can also see that
the final local search step (Section 2.4) pays off for all algorithms, in particular for the graphs
that are not particularly well partitionable.

All this comes, of course, at the price of a lower throughput (cf. the circles in Figure 2),
by several orders of magnitude. Nonetheless, we can conclude that within the given time and
hardware constraints our new algorithms compute often better (and never worse) directed
cuts than all previous existing approaches.

The final 4 bars show the cut quality of the small graphs in relation to the best possible
cut. We calculated for each small graph the percentage and provide an (unweighted) average
over the percentages of all small graphs since these values are independent of a graph. In
addition to the linear time algorithms and our new parallel ones we could also run the
Goemans algorithm on the entire graph, and the exact solution with ILP for each small
graph. We see that our new algorithms again give better results than the best linear time
algorithm with a final local search, and also slightly better results than Goemans. However,
the difference between Goemans and our algorithms is not very large, which might be due to
the fact that both of them are already very close to the exact solution (see final bar). On the
positive side, our algorithms have a higher throughput than Goemans for the small graphs.

3.2.2 Scaling on Multiple Processors
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Figure 3 Scaling experiments on all graphs in Table 1. In all experiments, we partition the graph
into 8192 subgraphs and run our framework with up to 64 threads. For this experiments we compare
the algorithms DerandomizedS2, BuchbinderS2, RandomS2 or GoemansS2. On the x-axis we show the
number of used threads and on the y-axis we show the throughput (size of graph divided by running
time) of our framework.
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Since our algorithms employ shared memory parallelism, we now briefly evaluate their
scalability. Figure 3 shows the throughput for different choices of the approximation al-
gorithms for the local solutions (DerandomizedS2, BuchbinderS2, RandomS2 or GoemansS2).
For a better comparison, in all experiments we partition the graph into 8192 subgraphs and
run our framework with up to 64 threads. We chose the value 8192 because our framework
calculates for that value in all experiments a solution before the time limit is exceeded. We
observe almost perfect scalability for up to 32 threads, with only slightly less good results for
32 threads, and significantly worse results for 64 threads. There are two possible explanations
for the non-optimal scaling with a large number of threads. First, the used Max-Dicut
algorithm in the final merging step is always performed sequentially. If we have many threads
available, then the computation of the partition and the local solutions becomes faster, and
thus the sequential merging step becomes more relevant for the total execution time. Second,
our test system has two CPUs with 32 cores each, where each CPU is part of a separate
NUMA node. When using close to or even more than 32 threads, the system will use cores
from both CPUs. Some cores will therefore inevitably access memory outside their local
NUMA node, which is slower than accessing local memory4.

Note that for great-britain (the largest graph that we considered) we require at least
16 threads in order to use Goemans. With fewer threads, the framework will not finish within
the given time limit.

3.2.3 Number of Subgraphs vs. Quality
Finally, we evaluate the influence of the number k of subgraphs on the quality of the computed
dicut. This will also allow us to draw conclusions on how the framework should be best
configured when running on different graphs. As we have seen already, the simple local
search sometimes significantly improves the quality of the computed cut. For the following
experiments, we therefore omit the local search. This allows us to see the true effect of
the choice of k on the cut quality. Also, we always use 64 threads in order to get the best
performance that is possible with our test system.

Figure 4 shows plots for both the quality and the achieved throughput for k between
64 and 8192. For DerandomizedS2, RandomS2, and BuchbinderS2, the throughput decreases
for increasing k. This is due to the fact that we use the superlinear Goemans algorithm for
merging, and the graph used for merging has 2k nodes. On the other hand, the throughput
increases with k when running GoemansS2. The reason for this is that a large value of k

implies smaller subgraphs, for which the local solutions can then be computed faster. As seen
for the graphs flickr, luxembourg and web-sk-2005, there is a range of k for which the
throughput of GoemansS2 is in an equilibrium; increasing k within this range seems to equally
accelerate the local solutions and decelerate the merging into a global solution. However,
once k becomes too large, the throughput of GoemansS2 appears to decrease with k. We
could only observe this for our smallest graph Stanford3.

Now let us focus on the quality of the cut. For GoemansS2, the quality generally decreases
for larger values of k. This can be seen for all graphs except for great-britain, where
k = 8192 is the only configuration that finished in time, and for Stanford3, where the
cut quality first decreases, and then increases again once k exceeds 1024. This anomaly
is likely due to the fact that Stanford3 only has around 10000 nodes, and for large k the

4 For more information on NUMA architectures see https://uefi.org/specs/ACPI/6.4/17_NUMA_
Architecture_Platforms/NUMA_Architecture_Platforms.html

https://uefi.org/specs/ACPI/6.4/17_NUMA_Architecture_Platforms/NUMA_Architecture_Platforms.html
https://uefi.org/specs/ACPI/6.4/17_NUMA_Architecture_Platforms/NUMA_Architecture_Platforms.html
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Figure 4 Scaling experiments for our framework where we visualize the effect of partitioning
different graphs into a varying number of subgraphs on the computed cut quality and the running
time of our framework. We partition our graph into between 64 to 8192 subgraphs while the number
of used threads is fixed to 64. For this experiments we compare the algorithms DerandomizedS2,
BuchbinderS2, RandomS2 or GoemansS2. In the plot above we see the computed cut and in the plot
below the throughput (size of graph divided by running time) of our framework for each configuration.
We additionally provide the cut quality of the best linear time algorithm (as continuous red line)
that does not use our framework and the best computed cut for some k ∈ {2, 4, 8, ..., 8192} by using
GoemansS2 in our framework as dashed blue line.
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computation becomes more and more similar to a simple sequential execution of Goemans on
the entire graph. The cuts computed by DerandomizedS2, RandomS2 and BuchbinderS2 are
generally worse than the one computed by GoemansS2. The overall order of quality is (from
worst to best): RandomS2, BuchbinderS2, DerandomizedS2, GoemansS2. The only exception is
flixster, where the cut quality of most algorithms is almost the same, and only RandomS2
performs very poorly. With increasing k, the cut quality of DerandomizedS2, RandomS2 and
BuchbinderS2 on the smaller graphs (luxembourg, web-sk-2005, Stanford3) increases. This
is because for large k, a significant fraction of the total edge weights is between the subgraphs.
Thus, the simple linear time algorithms used for the local solutions loose relevance, while the
better Goemans algorithm used for merging becomes more relevant. However, the quality
does not reach the one of GoemansS2.

We conclude that GoemansS2 produces the best cuts, and that the best choice of k is
the smallest k that allows the framework to finish within the given time limit. Increasing k

further than that will only decrease the cut quality, and not even necessarily accelerate the
computation.

4 Conclusion

We described a parallel framework for computing an approximate Max-Dicut that scales
well for large graphs and produces high quality cuts for graphs with high coverage. It is also
extendable, such that it is easy to add new algorithms.

The experiments showed that the best quality cuts are obtained by dividing the graphs
into as few partitions as the Goemans algorithm finishes within the time limit on each of the
partitions. While the sizes of resulting partitions can be used as a first indicator for choosing
the right number of partitions, it remains an open problem to find an exact predictor for
this. Also, our algorithms only sensibly scale for ≈

√
n processors, as with more processors

the sequential merging part becomes too expensive. Maybe a recursive (multilevel) approach
can be used to fill this gap.
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A Small Graphs

Table 2 Our used small graphs.

Graph n m

08blocks.mtx 300 592
3elt.mtx 4,720 27,444
BA-1_10_60-L5.edges 805 46,410
BZR.edges 14,480 31,070
COIL-RAG.edges 11,758 23,588
CSphd.mtx 1,882 1,740
California.mtx 9,664 16,150
DD199.edges 842 1,902
DD21.edges 5,749 14,267
DD242.edges 1,285 3,303
DD244.edges 292 822
DD349.edges 898 2,087
DD497.edges 904 2,453
DD6.edges 4,153 10,320
DD68.edges 776 2,093
DD687.edges 726 2,600
D_11.mtx 461 2,952
ENZYMES118.edges 97 121
ENZYMES123.edges 91 127
ENZYMES295.edges 125 139
ENZYMES296.edges 127 141
ENZYMES297.edges 123 149
ENZYMES8.edges 89 133
EPA.mtx 4,772 8,965
EVA.mtx 8,497 6,726
Franz3.mtx 2,800 11,520
G11.mtx 800 3,200
G12.mtx 800 3,200
G13.mtx 800 3,200
G32.mtx 2,000 8,000
G33.mtx 2,000 8,000
G34.mtx 2,000 8,000
G48.mtx 3,000 12,000
G49.mtx 3,000 12,000
G57.mtx 5,000 20,000
G62.mtx 7,000 28,000
G65.mtx 8,000 32,000
G66.mtx 9,000 36,000
G67.mtx 10,000 40,000
Letter-high.edges 10,508 20,250
Letter-low.edges 10,523 14,092
Letter-med.edges 10,519 14,426

Graph n m

MSRC-21C.edges 8,419 40,380
OHSU.edges 6,480 31,546
PTC-FM.edges 4,926 10,110
PTC-FR.edges 5,111 10,532
PTC-MM.edges 4,696 9,624
PTC-MR.edges 4,916 10,108
Peking-1.edges 3,342 13,150
SW-10000-6-0d3-L2.edges 10,001 30,000
SW-10000-6-0d3-L5.edges 10,001 30,000
TerroristRel.edges 882 8,592
aves-sparrow-social.edges 53 516
aves-weaver-social.edges 446 1,426
aves-wildbird-network.edges 203 11,900
bio-CE-GN.edges 2,220 53,683
bio-CE-GT.edges 924 3,239
bio-CE-HT.edges 2,617 2,985
bio-CE-LC.edges 1,387 1,648
bio-CE-PG.edges 1,871 47,754
bio-DM-HT.edges 2,989 4,660
bio-DM-LC.edges 658 1,129
bio-HS-HT.edges 2,570 13,691
bio-HS-LC.edges 4,227 39,484
bio-SC-CC.edges 2,223 34,879
bio-SC-GT.edges 1,716 33,987
bio-SC-LC.edges 2,004 20,452
bio-SC-TS.edges 636 3,959
bio-celegans.mtx 453 4,050
bio-celegansneural.mtx 297 2,345
bio-diseasome.mtx 516 2,376
bio-grid-fission-yeast.edges 2,031 25,274
bio-grid-mouse.edges 1,455 3,272
bio-grid-plant.edges 1,745 6,196
bio-grid-worm.edges 3,518 13,062
bio-yeast.mtx 1,458 3,896
bn-mouse-kasthuri_graph_v4.edges 1,029 1,700
c-fat200-1.mtx 200 3,068
c-fat200-2.mtx 200 6,470
c-fat500-1.mtx 500 8,918
chesapeake.mtx 39 340
citeseer.edges 3,244 4,536
cora.edges 2,709 5,429
delaunay_n10.mtx 1,024 6,112
delaunay_n11.mtx 2,048 12,254
delaunay_n12.mtx 4,096 24,528
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Table 3 Our used small graphs.

Graph n m

eco-florida.edges 129 2,106
eco-foodweb-baydry.edges 129 2,137
eco-foodweb-baywet.edges 129 2,106
eco-mangwet.edges 98 1,492
eco-stmarks.edges 55 356
email-dnc-corecipient.edges 2,030 12,085
email-dnc.edges 2,029 39,264
email-enron-only.mtx 143 1,246
email-univ.edges 1,134 5,451
fb-forum.edges 900 33,720
gene.edges 1,094 1,672
ia-contacts_hypertext2009.edges 114 20,818
ia-dnc-corecipient.edges 2,030 12,085
ia-hospital-ward-proximity-attr.edges 1,661 32,424
ia-hospital-ward-proximity.edges 1,661 32,424
ia-workplace-contacts.edges 876 9,827
inf-euroroad.edges 1,175 1,417
insecta-ant-trophallaxis-colony1.edges 42 308
insecta-ant-trophallaxis-colony2.edges 40 330
internet-industry-partnerships.edges 218 631
mammalia-primate-association.edges 26 1,340
mammalia-raccoon-proximity.edges 25 1,997
mammalia-voles-bhp-trapping.edges 1,687 5,324
mammalia-voles-kcs-trapping.edges 1,219 4,258
mammalia-voles-plj-trapping.edges 1,264 3,863
mammalia-voles-rob-trapping.edges 1,481 4,569
reptilia-tortoise-network-bsv.edges 137 554
reptilia-tortoise-network-cs.edges 74 258
reptilia-tortoise-network-fi.edges 788 1,713
reptilia-tortoise-network-hw.edges 17 22
reptilia-tortoise-network-lm.edges 46 134
reptilia-tortoise-network-mc.edges 16 45
reptilia-tortoise-network-pv.edges 36 104
reptilia-tortoise-network-sg.edges 25 29
reptilia-tortoise-network-sl.edges 12 18
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