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Abstract
A classic result of Edmonds states that the maximum number of edge-disjoint arborescences of a
directed graph G, rooted at a designated vertex s, equals the minimum cardinality cG(s) of an s-cut
of G. This concept is related to the edge connectivity λ(G) of a strongly connected directed graph
G, defined as the minimum number of edges whose deletion leaves a graph that is not strongly
connected. In this paper, we address the question of how efficiently we can compute a maximum
packing of edge-disjoint arborescences in practice, compared to the time required to determine
the edge connectivity of a graph. To that end, we explore the design space of efficient algorithms
for packing arborescences of a directed graph in practice and conduct a thorough empirical study
to highlight the merits and weaknesses of each technique. In particular, we present an efficient
implementation of Gabow’s arborescence packing algorithm and provide a simple but efficient
heuristic that significantly improves its running time in practice.
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1 Introduction

Let G = (V, E) be a directed graph (digraph), with m edges and n vertices. Digraph G

is strongly connected if there is a directed path from each vertex to every other vertex.
Throughout the paper we let s be a fixed but arbitrary start vertex of G. If G is strongly
connected, then all vertices are reachable from s and reach s. The edge connectivity λ(G)
of G is the minimum number of edges whose deletion leaves a digraph that is not strongly
connected. Computing the edge connectivity of a graph is a classical subject in graph
theory, as it is an important notion in several application areas, such as in the reliability
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Figure 1 A directed graph G with start vertex s and minimum s-cut value cG(s) = 2. Subgraphs
A1 and A2 are two edge-disjoint s-arborescences of G.

of transportation and communication networks, and in production, scheduling, and power
engineering [23]. The reverse digraph of G, denoted by GR = (V, ER), is the digraph that
results from G by reversing the direction of all edges. An s-cut is the set of edges directed
from S to V \ S, where S is any vertex set that contains s such that S ⊂ V . We let cG(s)
denote the minimum cardinality of an s-cut of G. Then, the edge connectivity of G is
the minimum cardinality of an s-cut of G or GR, i.e., λ(G) = min{cG(s), cGR(s)}. This
observation also holds for undirected graphs, since the edge-connectivity of an undirected
graph is equal to the edge-connectivity of the corresponding directed graph where each edge
is oriented in both directions.

A spanning tree of an undirected connected graph G is a connected acyclic spanning
subgraph of G. We extend this definition to directed graphs by ignoring the edge orientations.
Let T be a spanning tree of a directed graph G rooted at s; T is an s-arborescence of G if s

has in-degree zero and every other vertex has in-degree one. (Thus, any s-arborescence is a
spanning tree of G but not vice versa.) The arborescence packing problem for vertex s is to
construct the greatest possible number of edge-disjoint s-arborescences. See Figure 1. These
concepts are useful in applications such as modeling broadcasting and evacuation [10].

Currently, the state of the art algorithm for computing the edge-connectivity λ of a digraph
is the algorithm of Gabow [11] which runs in O(λm log n2/m) time. Gabow’s algorithm
is inspired by matroid intersection and is based on the idea of packing spanning trees.
Moreover, in [11], Gabow shows how to extend his edge-connectivity algorithm so that it also
computes a maximum packing of edge-disjoint s-arborescences of G in O(k2n2) time, where
k = cG(s). The edge connectivity of a simple undirected graph can be computed in Õ(m)
time1, randomized [14, 17] or deterministic [15, 18]. In particular, the deterministic algorithm
of Kawarabayashi and Thorup [18], as well as its improvement by Henzinger et al. [15], apply
Gabow’s algorithm on a contracted graph, for which the latter runs in Õ(m) time.

In this paper we consider the arborescence packing problem from a practical perspective.
Our starting point is the following fundamental theorem of Edmonds:

▶ Theorem 1 (Edmonds [7]). The maximum number of edge-disjoint s-arborescences of G

equals the minimum cardinality of an s-cut.

Edmonds gave an algorithmic proof, but the algorithm is complicated and seems to require
exponential time in the worst-case [11]. Later, Lovasz [21] gave an elegant proof of Edmonds’
theorem. Tarjan [25] presented an O(k2m2)-time algorithm to compute a maximum packing

1 The notation Õ(·) hides poly-logarithmic factors.



L. Georgiadis, D. Kefallinos, A. Mpanti, and S. D. Nikolopoulos 14:3

of edge-disjoint s-arborescences, where k = cG(s). Schiloach [24], presented later an O(k2mn)-
time algorithm. The same bound was achieved by Tong and Lowler [26], who also claimed
that Schiloach’s algorithm is flawed. See also [9, 16] for recent interesting generalizations of
Edmonds’ theorem.

Currently, the best bound for the arborescence packing problem is O(mk log n+nk4 log2 n),
which was achieved by Bhalgat et al. [2] using the concept of edge splitting [1, 12]. Let G be
a digraph with start vertex s. Define the s-v edge-connectivity cG(s, v), for any vertex v ≠ s,
as the cardinality of the minimum s-v cut. We say that a vertex v is eligible if indegree(v) ≥
outdegree(v). For such a vertex v, we can assume that indegree(v) = outdegree(v) since we
can add multiple edges from v to s without affecting the s-w edge-connectivity cG(s, w) of
any w ̸= s. Splitting off two edges (x, y) and (y, z) means deleting these two edges, and
adding a new edge (x, z). This operation can be done so that the s-v edge-connectivity
cG(s, v) is preserved for any v ̸= y. Splitting off of an eligible vertex v means to split off pairs
of edges incident on v so that each pair consists of an edge entering v and an edge leaving
v, without affecting the connectivity of the remaining graph until v has no outgoing edge.
Now, v can be removed from the graph without affecting the connectivity of the remaining
graph [2]. Bhalgat et al. describe a procedure that removes any specified set S of eligible
vertices while maintaining the s-v edge-connectivity of all v ̸∈ S. Their algorithm extends
the edge-connectivity algorithm of Gabow so that it can compute a splitting of all vertices in
S. Then, it recursively computes a maximum arborescence packing of the resulting graph,
which can then be used to recover a maximum arborescence packing of the original graph by
putting back the vertices in S.

Here we explore the design space of efficient algorithms that compute a maximum packing
of edge-disjoint arborescences. In particular, we present an efficient implementation of
Gabow’s arborescence packing algorithm, and provide a simple but efficient heuristic that
significantly improves its running time in practice. Then, we conduct a thorough empirical
study to highlight the merits and weaknesses of each technique. To the best of our knowledge,
we present the first efficient implementations of algorithms for packing arborescences. Hence,
we also complement the work of Georgiadis et al. [13] that studies the practical efficiency of
algorithms for computing the edge-connectivity.

2 Preliminaries

Let G be a directed graph, which may have multiple edges, with a distinguished start vertex
s. We denote the vertex and edge sets of G by V (G) and E(G), respectively. A vertex v is
reachable in G if there is a path from s to v; v is unreachable if no such path exists. An s-cut
is the set of edges directed from S to V (G) \ S, where S is any vertex set that contains s

such that S ⊂ V (G). We let cG(s) denote the minimum cardinality of an s-cut of G. Then,
cG(s) > 0 if and only if all vertices are reachable.

Let S ⊆ V (G). The out-degree (resp., in-degree) of S, denoted by δ+
G(S) (resp., δ−

G(S)),
is the number of edges directed from S to V (G) \ S (resp., from V (G) \ S to S). For
a vertex v ∈ V (G), δ+

G(v) (resp., δ−
G(v)) denotes its out-degree (resp., in-degree) in G.

We let δG = minv∈V (G){δ+
G(v), δ−

G(v)} denote the minimum degree of the graph. We let
E+

G(v) = {(v, w) ∈ E(G)} (resp., E−
G(v) = {(u, v) ∈ E(G)}), i.e., the set of edges directed

from v (resp., to v), and refer to EG(v) = E+
G(v) ∪ E−

G(v) as the set of edges adjacent to v.
We omit the subscript G if the graph is clear from the context.

Let T be a spanning tree of G and let e be an edge that is not contained in T . The
fundamental cycle of e in T , denoted by C(e, T ), is the cycle that is formed by adding e

into T .
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An s-arborescence A is a directed graph such that all vertices in V (A) are reachable
from s, δ−

A(s) = 0 and δ−
A(v) = 1 for all v ∈ V (G) − s. I.e., there is exactly one directed

path in A from s to any other vertex. We say that A is an s-arborescence of G if A is a
spanning subgraph of G, i.e., V (A) = V (G). If V (A) ⊂ V (G), then we say that A is a partial
s-arborescence of G.

A k-intersection of G is a collection T of k spanning forests T1, . . . , Tk of G that contains
at most k edges directed to each vertex v ∈ V (G) − s, and none to s, i.e., δ−

T (s) = 0 and
δ−

T (v) ≤ k for v ∈ V (G) − s. A k-intersection T = {T1, . . . , Tk} is complete if each Tj is a
spanning tree, so that δ−

T (v) = k for all v ̸= s. Edmonds [6] also proved the following Matroid
Characterization of s-cuts:

▶ Theorem 2 (Edmonds [6]). The edges of a directed graph can be partitioned into k s-
arborescences if and only if they can be partitioned into k spanning trees and every vertex
except s has in-degree k.

Referring to this result as the Matroid Characterization of minimum-cut is justified by the
fact that the spanning trees with the above property are formed by the intersection of two
matroids.

For a graph G and a subgraph H of G, we let G − H denote the subgraph of G with
vertex set V (G) and edge set E(G) − E(H). Also, for an edge e, we let G ∪ {e} denote the
graph after adding e to G, and let G − e denote the graph after deleting e from G.

3 Algorithms

In this section we provide an overview of the algorithms that we consider in our experimental
study. Let G be the input digraph with n vertices, m edges, and start vertex s. Throughout
this section, we let k = cG(s). We assume that all vertices are reachable (from s) in G, so
k > 0, since otherwise there is nothing to do.

Let A be a partial s-arborescence of G. We say that A is good if cG−A(s) ≥ k − 1. All
the algorithms we consider try to enlarge a partial s-arborescence A of G by adding one edge
at a time.

We note that we can combine any packing arborescences algorithm with Gabow’s edge
connectivity algorithm as follows. First, we run Gabow’s edge connectivity algorithm on
G, and compute a complete k-intersection T of G in O(km log n2/m) time. Then, we
keep in G only the edges of E(T ) and run the packing arborescences algorithm on the
reduced graph. (This is valid by the Matroid Characterization of s-cuts.) If the packing
algorithm runs in O(f(m, n)) time on the original graph, then the combined algorithm runs
in O(km log n2/m + f(nk, n)) total time.

3.1 The algorithm of Tarjan
Tarjan [25] computes a maximum packing of arborescences A = {A1, . . . , Ak} by executing
k iterations of the following procedure. During the j-th iteration (for j = 1, 2, . . . , k), it com-
putes an arborescence Aj of G such that Aj is pairwise edge-disjoint with the arborescences
in A(j−1) = {A1, . . . , Aj−1}, and G(j) = G \ A(j) has cG(j)(s) = k − j. (I.e., Aj is good for
G(j−1).) To compute Aj we work as follows. We initialize a vertex set S = {s}, the set of
edges E(Aj) = ∅ and mark all edges of G(j−1) as usable. Then, we perform the following
step until S = V (G). We find a usable edge e = (u, v) such that u ∈ S and v ∈ V (G) \ S,
mark e as unusable and compute cG′(S), where G′ = G(j−1) \ (Aj ∪ {e}). If cG′(S) ≥ k − j

then we add v to S, and add e to Aj .
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To test if cG′(S) ≥ k − j, it suffices to determine if we can send at least k − j units of
flow from S to v (where we assign unit edge capacities). This can be done in O(km) time
by executing at most k − j iterations of the Ford-Fulkerson method [8]. Since we perform k

iterations, and in each iteration we test at most m edges, the total running time is O(k2m2).
This bound is reduced to O(km log n2/m + k4n2) = O(k4n2) if we first compute a complete
k-intersection of G by Gabow’s edge connectivity algorithm, and then run Tarjan’s algorithm
on the reduced graph that contains only the edges of E(T ).

Implementation details

In our experiments, we noticed that the order in which we examine the usable edges may
affect the running time of the algorithm significantly. Hence, we considered two versions of
the algorithm: In the first version, we maintain the vertices of S in a stack, and examine the
usable edges e = (u, v) starting from the most recently added vertices u ∈ S. In the second
version, we maintain S in a FIFO queue, and examine the usable edges e = (u, v) starting
from the least recently added vertices u ∈ S. As in turns out, in our experiments the stack
version performed significantly better on most instances. (See Appendix A.)

3.2 The algorithm of Tong and Lawler
The algorithm of Tong and Lawler [26] applies a divide and conquer approach. Similarly
to Tarjan’s algorithm, it grows a partial arborescence A of G by trying to add one edge
at a time. Initially V (A) = {s} and E(A) = ∅. A candidate edge e = (u, v), such that
u ∈ V (A) and v ∈ V (G) \ V (A), is selected according to the following rule: u ̸= s, unless
there is no other candidate edge. Then, we compute cG′(s), where G′ = G − (A ∪ {e}),
and consider the following two cases. (a) If cG′(s) ≥ k − 1 then the examination of e is
successful. In this case, we add v to V (A), and add e to E(A). If A is now an arborescence,
that is V (A) = V (G), then we set G = G − A and recursively compute k − 1 edge-disjoint
arborescences in G. (b) Otherwise, we have cG′(S) = k − 2, and the examination of e is
unsuccessful. In this case, the algorithm of Tong and Lawler applies divide and conquer as
follows. Let (S, V (G) \ S) be a minimum s-cut of G, where s ∈ S. It is easy to observe
that e ∈ E(S, V (G) \ S), hence v ∈ V (G) \ S, and moreover, that there must be an edge
e′ ∈ E(A) such that e′ ∈ E(S, V (G) \ S). Next, we split G into two auxiliary graphs G1 and
G2, with corresponding partial arborescences A1 and A2 as follows. To construct G1, we
contract the vertices of S into s and delete all edges directed to s. Then, A1 consists of the
edges of A that were not deleted and is a partial arborescence of G1 (but it may not be a
full arborescence yet). Similarly, we construct G2 by contracting the vertices of V (G) \ S

into v and delete self-loops. To form a corresponding partial arborescence A2 of A in G2,
we delete all the edges of A that are directed from S to V (G) \ S except for the first edge
(x, y) on a path from S to V (G) \ S in A. That is, x is reachable from s through a path
that contains only vertices in S ∩ V (A). So, A2 consists of the edges of A that were not
deleted and is a partial arborescence of G2 (but it may not be a full arborescence yet). We
recursively compute k edge-disjoint arborescences A1

1, A1
2, . . . , A1

k of G1 and A2
1, A2

2, . . . , A2
k

of G2, where E(A1
1) ⊆ E(A1) and E(A2

1) ⊆ E(A2). Then, we combine these arborescences
to form k edge-disjoint arborescences of G. This combination is easy to perform because
each arborescence of G1 is edge-disjoint from exactly k − 1 arborescences of G2 and vice
versa. Hence, to form the desired arborescences of G, we combine each pair of non-disjoint
arborescences.

SEA 2022



14:6 An Experimental Study of Algorithms for Packing Arborescences

As in Tarjan’s algorithm, we can test if an edge e can be included in the partial arborescence
A in O(km) time by executing k iterations of the Ford-Fulkerson method. Since at most
kn edges are added in the packing A, the total time spent for successful edge additions is
O(k2mn). On the other hand, since we can split G at most n times, there are at most n

unsuccessful edge examinations. Thus, the total time spent for unsuccessful edge examinations
is O(kmn), which results to a total running time of O(k2mn).

Tong and Lawler also observed that the running time of their algorithm can be improved
to O(kmn + k3n2) after some preprocessing. The preprocessing phase computes a flow of
value k from s to each other vertex t ̸= s. After we have computed an s-t flow, we delete
the edges entering t with zero flow. By repeating this process for all vertices t ≠ s, after
O(kmn) time we are left with a subgraph H of G with O(kn) edges and cH(s) = k. Thus,
we can compute k edge-disjoint arborescences of H in O(k3n2) time. If we use Gabow’s edge
connectivity algorithm to compute a complete k-intersection of G instead of H, then we
obtain an O(km log n2/m + k3n2) = O(k3n2) time bound.

Implementation details

As in our implementation of Tarjan’s algorithm, we examine candidate edges (to be included
in the partial arborescence A) using a stack or a FIFO queue. As with Tarjan’s algorithm,
the running time of the Tong-Lawler algorithm depends on the order in which we examine
candidate edges. In our experiments the stack version of the Tong-Lawler algorithm out-
performed the queue version, but not consistently. (See Appendix A.) When we split G, we
create two new graph instances for G1 and G2, and assign new vertex ids so that they are in
the ranges [1, |V (G1)|] and [1, |V (G2)|] respectively. To restore the original vertex ids, we
maintain mappings hi : V (Gi) 7→ V (G), i = 1, 2. Moreover, for each edge in G1 and G2 that
has exactly one endpoint in a contracted part of the graph (i.e., for each edge (x, y) such
that x ∈ S and y ∈ V (G) \ S, or vice versa), we associate it with the corresponding original
edge of G. This information suffices to combine the arborescences in G1 and G2 and form
the arborescences of G. Thus, after a split, we no longer need to keep the initial graph in
memory.

3.3 The algorithm of Gabow
Gabow [11] presented an O(k2n2)-time algorithm to compute a maximum arborescence
packing. First, it computes a complete k-intersection T of the input digraph for s. We let G

be the subgraph with edges E(T ). Then, it repeats the following procedure, until k = 0:
1. Compute a complete (k − 1)-intersection T of G.
2. Find a good s-arborescence A of G, using the algorithm described below in Section 3.3.2.
3. Decrease k by one and repeat the procedure on G − A.

Similarly to the algorithms of Tarjan, and of Tong and Lawler, in Step 2 Gabow’s
algorithm tries to enlarge a partial arborescence by adding one edge at a time. Unlike the
these other algorithms, however, Gabow’s algorithm does not perform flow computations,
but relies on the framework of his edge-connectivity algorithm. Hence, we first provide an
overview of how Gabow computes the value k = cs(G) of a minimum s-cut, together with a
complete k-intersection T of G, in O(km log n2/m) time.

3.3.1 Computing a complete k-intersection T of G

Recall that a complete k-intersection T of G is a collection of k edge-disjoint spanning trees
T1, . . . , Tk, such that each vertex v ̸= s has in-degree k and s has in-degree zero. Gabow’s
algorithm computes T in k iterations, where in the k′-th iteration (k′ = 1, . . . , k), it begins
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with a complete (k′ − 1)-intersection and tries to enlarge it so that it becomes a complete
k′-intersection. To that end, it executes a round robin algorithm that maintains a forest Tk′

and tries to locate “joining” edges that will make Tk′ a spanning tree of G, while satisfying
the invariant that δ−

T (s) = 0 and δ−
T (v) ≤ k′ for all v ̸= s. In the following, we call a vertex

v deficient if δ−
T (v) < k′.

In more detail, during the k′-th iteration Tk′ is a forest of rooted trees, referred to
as f-trees, where each f -tree Fz is rooted at its unique deficient vertex z. For z ̸= s,
δ−

T (z) = k′ − 1. An edge e = (x, y) is joining if x and y are in different f -trees of Tk′ . The
round robin algorithm looks to enlarge Tk′ by one edge at a time, and simultaneously to
increase the in-degree of a deficient vertex z ≠ s by one. To that end, it examines an edge e1
in E−(z) \ E(T ). If e1 is joining then we are done. Otherwise, it adds e1 in some Ti and
looks for a joining edge in the fundamental cycle C(e, Ti). To break the cycle, we can remove
from Ti an edge e2 ∈ C(e, Ti). Then, we can add e2 = (u, v) to some other tree of T , or
replace e2 with a edge in E−(v) \ E(T ). This pattern continues until a joining edge is found.
The sequence of edges that leads to a joining edge is called an augmenting path. We define
this notion formally below.

An ordered pair of edges e, f is called a swap if f ∈ C(e, Ti) for some Ti ∈ T . To execute
the swap is to replace f in Ti by e. A partial augmenting path P from z is a sequence of
distinct edges e1, . . . , el, such that:
1. e1 ∈ E−(z) \ E(T ).
2. For each i < l either

a. ei+1 ∈ C(ei, Tj), where Tj contains ei+1 but not ei, or
b. ei, ei+1 ∈ E−(v), for some vertex v, where T contains ei but not ei+1.

3. Executing all swaps of P (i.e., the pairs ei, ei+1 of (2a)) gives a new collection of forests.

An augmenting path P from z is a partial augmenting path from z whose last edge el is
joining for z. To augment T along P is to execute each swap of P and add el to Tk′ . This
increases the in-degree of z by one (so z is no longer deficient), while no other in-degree
changes.

Each iteration is organized as a sequence of at most ⌈log n⌉ rounds. At the start of
each round all f -trees are active except Fs. Then, we repeatedly choose an active f -tree Fz

and search for an augmenting path from z. If no such path is found, then the algorithm
terminates and reports an s-cut of cardinality k′ −1. Otherwise, we have found an augmenting
path P from z and we augment T along P . Thus, we enlarge T by one edge and Fz is
joined to another f -tree Fw. The resulting f -tree of Tk′ is rooted at w (since z is no longer
deficient), and becomes inactive for the rest of the current round. Gabow showed that with
an appropriate implementation, each round runs in O(m) time. Furthermore, he showed that
by organizing the search for augmenting paths carefully, all augmentations can be executed
at the end of a round.

3.3.2 Computing a good s-arborescence
We now give an overview of how Gabow computes a good s-arborescence A of G in Step 2
of his arborescence packing algorithm. The algorithm maintains the following subgraphs of
G: a partial s-arborescence A of G, a working graph H = G − A, and a complete (k − 1)-
intersection T for s on G. It uses the following key concept. An enlarging path consists of an
edge e ∈ E+(A), and if e ∈ T , an augmenting path P for the (k − 1)-intersection T − e on
H − e. Gabow shows that if V (A) ̸= V (G), then there is always an enlarging path.
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The algorithm marks the edges that are known to belong in any complete (k − 1)-
intersection contained in H. It also maintains a set X of vertices such that each u ∈ X has
all edges of E+(u) ∩ E+(V (A)) marked. The algorithm is divided into “periods”, where each
period enlarges either A or X. Initially, A contains only the start vertex s, X is empty, and
all edges are unmarked. Then, we repeatedly apply the following procedure that locates an
enlarging path, until it halts:
Period Step. If A is an arborescence, that is V (A) = V (G) then halt. Otherwise, choose a

vertex u ∈ V (A) \ X and execute the Edge Step.
Edge Step. If all edges in E+(u) ∩ E+(V (A)) are marked then add u to X and continue

with the next Period Step. Otherwise, choose an unmarked edge e ∈ E+(u) ∩ E+(V (A)).
If e ̸∈ E(T ), then add e to A and continue with the next Period Step.

Search Step. At this point e belongs in T . Search for an augmenting path for the (k − 1)-
intersection T − e in H − e. If the search is successful, then use the augmenting path
to enlarge A and continue with the next Period Step. If the search is unsuccessful then
mark e and go to Edge Step.

The correctness of this procedure is based on the following facts. Suppose e ∈ E+(u) ∩
E+(V (A)) has no enlarging path, i.e., the Search Step was unsuccessful. Let L be the set
of edges labelled in the search, and let e′ be any edge in E+(u). Then, e belongs to any
complete (k − 1)-intersection contained in H, and no edge of L is in an enlarging path for e′,
with respect to the current A and T . This implies that for any v ∈ X, no edge of E+(v) has
an enlarging path.

To make the search for enlarging paths fast, each unsuccessful search in a period contracts
the edges in L that become labelled during an unsuccessful search for an edge e ∈ E+(u).
The contraction is valid since, for each tree Ti ∈ T , i = 1, 2 . . . , k − 1, the edges in L ∩ (Ti − e)
form a tree. Contracting V (L) into a single vertex v results in a graph H ′ that has a complete
(k − 1)-intersection that contains all edges in E−

H′(v). Then, for any edges e′ ∈ E+
H′(v),

graphs H and H ′ have the same enlarging paths for e′, and unsuccessful searches in H − e′

and H − e label the same edges not in L.
To implement the above procedure efficiently, Gabow’s algorithm performs the contractions

implicitly. To that end, it maintains a partition of V (G) into disjoint sets S1, . . . , Sl, such
that each set Sj induces a tree in each Ti ∈ T . Each vertex is labelled with the name of the
set that contains it and also, for each i = 1, . . . , k − 1, each set Sj is labelled with its root
vertex in Ti. The Search Step for an edge e = (u, w) ∈ Ti removes e from T and H, and
searches for an augmenting path P from w. During this search, when a vertex v is reached,
if v ∈ Sj then the search continues from the root of Sj in Ti. If the search is successful, then
we augment along P . Otherwise, when the search is unsuccessful, we add e back to H and
T , and update the vertex partition {Sj} by merging together all sets Sj that contain an end
of an edge that was labelled during the search.

Gabow shows that this algorithm constructs an s-arborescence A in O(kn2) time; there
are at most kn searches (at most one per edge), and at most 2n periods. The latter follows
from the fact that a period enlarges A or X, and each set can be enlarged less than n times.
Moreover, each period can be implemented to run in O(kn) time. Since we compute k

arborescences, the total running time is O(k2n2).

Practical speedup

In order to speedup Gabow’s algorithm in practice, we implemented the following simple
heuristic. Let G be the current graph. We compute an s-arborescence A of G, e.g., by
executing a depth-first search (DFS) from s, and test if A is good. To do that, it suffices to
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Table 1 An overview of the algorithms considered in our experimental study. The bounds refer
to a digraph G with minimum s-cut value k = cs(G), n vertices and m edges; m ≤ kn if G contains
only the edges of a complete k-intersection.

Algorithm Technique Complexity Ref.

Tarjan (Tar) Test if a usable edge can be added via max-flow O(k2m2) [25]

Run on a complete k-intersection O(k4n2)

Tong-Lawler (TL) Graph splitting via min-cut O(k2mn) [26]

Run on a complete k-intersection O(k3n2)

Gabow (Gab) Compute complete k′-intersections (k′ ≤ k)
and enlarging paths

O(k2n2) [11]

test if cG−T (s) = k − 1. If this is the case, then we can keep A in the packing. Otherwise,
we simply discard A, and compute a good s-arborescence of G using Gabow’s algorithm. In
either case, after we have computed a good s-arborescence A of G, we decrease k by one and
repeat the procedure on G − A.

Despite its simplicity, the above modification provides significant speedups in practice, as
the experimental results of Section 4 suggest. Moreover, we can immediately observe that
the overall O(k2n2) running time still holds for this variant of Gabow’s algorithm.

4 Empirical Analysis

We implemented our algorithms in C++, using g++ 7.5.0 with full optimization (flag -O4)
to compile the code. The reported running times were measured on a GNU/Linux machine,
with Ubuntu (18.04.6 LTS): a Dell Precision Tower 7820 server 64-bit NUMA machine with
an Intel(R) Xeon(R) Gold 5220R processor and 192GB of RAM memory. The processor
has 24.75MB of cache memory and 18 cores. In our experiments we did not use any
parallelization, and each algorithm ran on a single core. We report CPU times measured
with the high_resolution_clock class of the standard library chrono, averaged over ten
different runs.

Table 1 gives an overview of the algorithms we consider in our experimental study. We
did not include the algorithm of Bhalgat et al. because some important details are omitted
from the extended abstract of [2].2

We base our implementation of Gabow’s arborescence packing algorithm on efficient
implementations of Gabow’s edge connectivity algorithm presented in [13]. Also, for the
algorithms of Tarjan (Tar) and of Tong-Lawler (TL), we report the running time of their stack-
based implementations. We compare the stack-based against the queue-based implementations
in Appendix A. For the experimental evaluation, we considered two types of graphs: (i)
real-world directed graphs, augmented with additional edges in order to increase their
edge-connectivity, and (ii) k-cores of undirected graphs.

Augmented graphs

In our first experiment, we consider how the running time of each algorithm is affected as
the minimum s-cut value k = cs(G) increases. To that end, we augment some real-word
graphs as follows. Let G be an input strongly connected digraph. For a given parameter

2 We are unaware of a full version of [2].
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β, we create an augmented instance Gβ of G by executing the following procedure. We go
through the vertices of G and, for each vertex v, we add β − δ−(v) edges directed to v if
δ−(v) < β, where each added edge originates from a randomly chosen vertex. Then, we make
a second pass over the vertices and, for each vertex v, we add β − δ+(v) edges directed away
from v if δ+(v) < β, where each added edge is directed to a randomly chosen vertex. Notice
that the resulting graph has minimum degree δ ≥ β.

Table 2 reports the characteristics of the augmented graphs Gβ produced by the above
procedure for β ∈ {2, 4, 8, 16}. Here, we also give the number of edges (m′) in a complete k

intersection T of G (with respect to the start vertex s). In Table 3 we report the corresponding
running times of each algorithm. The execution of an algorithm was terminated if it exceeded
one hour. We also report the running times of two versions of Gabow’s algorithm that
computes a complete k intersection T of G: the standard version (Gab-EC), and a version
that uses DFS to do a fast initialization of the forest Tk′ at the beginning of the k′-th
iteration (Gab-EC-DFS). Both implementations are taken from [13]. For the algorithms of
Tarjan (Tar), and of Tong and Lawler (TL), we report both the running time when the input
is the original graph G (above) and a complete k intersection of G (below). In the latter case,
the algorithms receive a complete k intersection T of G as input, and we do not account for
the time required to compute T .

Table 2 Characteristics of augmented graphs, resulting from some real-world graphs after inserting
some edges; n is the number of vertices, m the number of edges; δ denotes the minimum vertex (in
or out) degree, and cs(G) denotes the cardinality of the minimum s-cut; m′ is the number of edges
in a complete k intersection of G (for the start vertex s).

Graph n m δ cs(G) m′ type and source

enron-EC2 8271 151651 2 2 8270

email network [19]enron-EC4 8271 162999 4 4 24810
enron-EC8 8271 190618 8 8 57890
enron-EC16 8271 253345 16 16 124050
p2p-Gnutella25-EC2 5152 19765 2 2 10302

peer2peer network [19]p2p-Gnutella25-EC4 5152 27565 4 4 20604
p2p-Gnutella25-EC8 5152 50076 8 8 41208
p2p-Gnutella25-EC16 5152 100669 16 16 82416
rome99-EC2 3352 9869 2 2 6702

road network [5]rome99-EC4 3352 15468 4 4 13404
rome99-EC8 3352 31952 8 8 26808
rome99-EC16 3352 65542 16 16 53616
s38584-EC2 16310 42128 2 2 32618

VLSI circuit [4]s38584-EC4 16310 80250 4 4 65236
s38584-EC8 16310 160297 8 8 130472
s38584-EC16 16310 323963 16 16 260944
web-Stanford-EC2 150475 2334929 2 2 300948

web graph [19]web-Stanford-EC4 150475 3307506 4 4 601896
web-Stanford-EC8 150475 2379878 8 8 1203792
web-Stanford-EC16 150475 3643794 16 16 2407584

From the results, we observe that TL has overall the worst performance, even compared
to Tar despite the inferior upper bound of the latter. Indeed, on average Tar runs twice as
fast compared to TL. This is due to the overhead incurred in TL for splitting a graph G into
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Table 3 Running times in seconds of the algorithms for the augmented graphs of Table 2. For
the algorithms of Tarjan (Tar), and of Tong and Lawler (TL), we report the running time when the
input is the original graph G (above) and a complete k intersection of G (below). The execution of
an algorithm was terminated if it exceeded 1 hour.

Graph Gab-EC Gab-EC-DFS Tar TL Gab Gab-DFS

enron-EC2 0.01 0.01 0.01
0.01

1.09
0.04 0.15 0.01

enron-EC4 0.02 0.01 36.34
7.43

118.17
7.59 9.81 0.05

enron-EC8 0.06 0.01 304.29
95.58

614.18
131.91 38.42 0.28

enron-EC16 0.17 0.02 1840.76
951.43

2782.78
1319.77 130.58 1.50

p2p-Gnutella25-EC2 0.01 0.01 1.19
0.79

3.90
1.12 1.39 0.02

p2p-Gnutella25-EC4 0.02 0.01 8.46
7.05

23.76
14.34 6.57 0.04

p2p-Gnutella25-EC8 0.04 0.01 55.21
53.41

124.36
91.05 21.63 0.17

p2p-Gnutella25-EC16 0.09 0.01 403.92
450.80

760.74
629.79 61.32 0.80

rome99-EC2 0.01 0.01 0.45
0.35

0.37
0.24 0.36 0.34

rome99-EC4 0.02 0.01 3.20
3.19

7.26
5.56 2.63 0.02

rome99-EC8 0.03 0.01 21.67
21.62

50.86
37.24 8.65 0.10

rome99-EC16 0.06 0.01 160.01
156.29

312.30
241.95 25.32 0.49

s38584-EC2 0.03 0.01 14.12
8.88

37.02
23.45 14.73 12.76

s38584-EC4 0.06 0.01 131.86
117.79

262.07
98.85 75.42 0.14

s38584-EC8 0.14 0.02 1012.85
878.79

2007.45
1258.60 245.01 0.68

s38584-EC16 0.34 0.04 >1h
>1h

>1h
>1h 717.20 3.29

web-Stanford-EC2 0.60 0.29 >1h
2307.26

>1h
2350.42 520.22 1.39

web-Stanford-EC4 1.45 0.69 >1h
>1h

>1h
>1h >1h 5.40

web-Stanford-EC8 3.26 1.03 >1h
>1h

>1h
>1h >1h 14.32

web-Stanford-EC16 7.73 3.28 >1h
>1h

>1h
>1h >1h 70.98

two auxiliary graphs G1 and G2, and manipulating mappings from the vertex ids of G1 and
G2 to those in G. Furthermore, we observe that TL runs consistently faster on the complete
k intersection T of G compared to the original graph G. While this is expected since T has
fewer edges, on the other hand we note that it may be easier to find good candidate edges
to augment a partial arborescence if the graph contains some additional edges. The same
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observation holds for Tar as well, but here we see that in one instance (p2p-Gnutella25-EC16)
the algorithm runs faster on G rather than on T . Moreover, we note that the executions of
TL and Tar on T outperform Gab in some instances.

Next, we turn to the algorithms of Gabow. First, we verify that the edge-connectivity
algorithms Gab-EC and Gab-EC-DFS are very effective. Regarding the arborescence packing
algorithms, we first note that Tar and TL perform close to Gab when the edge-connectivity
cG(s) is small (EC2 instances), but quickly become uncompetitive when the edge-connectivity
increases. Overall, in our experiment, Gab was 50% faster than Tar on average. Finally, we
note that Gab-DFS is faster than Gab by two orders of magnitude on most instances. This is
due to the fact that our simple heuristic very often manages to construct a good arborescence
by a simple DFS traversal.

k-cores

A k-core of an undirected graph G is a maximal subgraph of G such that δ(v) ≥ k for all
v ∈ V (H). This concept is useful in the analysis of social networks [3] as well as in several
other applications [22]. In this experiment, we use the k-core decomposition algorithm of the
SNAP software library and tools [20], and use subgraphs of this decomposition as inputs,
for various values of k. We transform each such undirected graph to a directed graph by
orienting each edge in both directions. Table 4 reports the characteristics of the resulting
graphs. In Table 5 we report the corresponding running times of each algorithm. Again, we
terminated the execution of an algorithm if that exceeded one hour.

Here too, we observe that Tar outperforms TL on most instances, but unlike the augmented
graphs, their difference is marginal. Both TL and Tar run consistently faster on the complete
k intersection T of G compared to the original graph G. Again, the executions of TL and Tar
on T outperform Gab in some instances, but overall Gab is 50% faster. Also, our heuristic
was very effective in this experiment as well, since Gab-DFS ran faster than Gab by two
orders of magnitude.

Table 4 Characteristics of k-core graphs, extracted from real-world graphs in [19]; n is the number
of vertices, m the number of edges; δ denotes the minimum vertex degree, and cs(G) denotes the
cardinality of the minimum s-cut (which equal the edge-connectivity since the graphs are undirected);
m′ is the number of edges in a complete k intersection.

Graph n m δ cs(G) m′ type and source

facebook_combined-core02 3964 176318 2 2 7926
social circles

from facebook
facebook_combined-core04 3754 175332 4 4 11258
facebook_combined-core25 1366 118810 25 25 6824
facebook_combined-core50 616 75246 50 30 19064
Email-Enron-core09 5088 206472 9 9 45783

email
network

Email-Enron-core10 4513 196594 10 10 45120
Email-Enron-core16 2873 157506 16 16 45952
Email-Enron-core18 2561 147332 18 18 46080
CA-AstroPh-core18 5049 244004 18 18 90864

collaboration
network

CA-AstroPh-core25 3202 175520 4 4 12804
CA-AstroPh-core29 2441 139070 29 2 4880
CA-AstroPh-core32 1926 112830 32 32 61600
Gowalla_edges-core11 22742 851196 11 6 136443

social
network

Gowalla_edges-core12 19938 791666 12 5 99684
Gowalla_edges-core15 13833 639244 15 4 55328
Gowalla_edges-core20 8161 456014 20 8 65280
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Table 5 Running times in seconds of the algorithms for the k-core graphs of Table 4. For the
algorithms of Tarjan (Tar), and of Tong and Lawler (TL), we report the running time when the
input is the original graph G (above) and a complete k intersection of G (below). The execution of
an algorithm was terminated if it exceeded 1 hour.

Graph Gab-EC Gab-EC-DFS Tar TL Gab Gab-DFS

facebook_combined-core02 0.01 0.01 2.47
0.22

8.71
0.43 2.00 0.01

facebook_combined-core04 0.01 0.01 6.88
0.29

20.32
0.86 2.88 0.02

facebook_combined-core25 0.01 0.01 3.97
0.29

6.82
0.53 0.95 0.02

facebook_combined-core50 0.04 0.01 43.41
29.38

47.76
22.59 4.59 0.55

Email-Enron-core09 0.03 0.01 109.84
44.41

156.29
55.41 30.06 0.17

Email-Enron-core10 0.03 0.01 107.00
47.09

101.79
54.95 28.60 0.17

Email-Enron-core16 0.04 0.01 136.26
106.58

170.74
74.56 20.65 0.35

Email-Enron-core18 0.04 0.01 151.68
119.37

177.93
77.12 19.80 0.42

CA-AstroPh-core18 0.25 0.01 894.66
716.73

1029.08
412.42 63.18 1.86

CA-AstroPh-core25 0.02 0.01 6.74
1.83

16.29
1.16 2.03 0.04

CA-AstroPh-core29 0.01 0.01 0.72
0.08

2.68
0.21 0.53 0.01

CA-AstroPh-core32 0.15 0.01 556.99
537.45

545.93
270.58 28.09 1.61

Gowalla_edges-core11 0.10 0.06 2086.57
567.03

2559.07
394.37 404.29 0.49

Gowalla_edges-core12 0.07 0.04 915.08
80.10

1094.83
166.56 219.33 0.31

Gowalla_edges-core15 0.04 0.02 197.84
28.64

321.91
49.67 71.65 0.15

Gowalla_edges-core20 0.05 0.02 327.64
118.93

412.93
109.56 68.57 0.32
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A Stack-based vs queue-based implementations

Tables 6 and 4 compare the stack-based against the queue-based implementation of the
algorithms of Tarjan (Tar) and of Tong-Lawler (TL), for augmented and k-core graphs,
respectively.

Table 6 Running times in seconds of the stack-based and queue-based implementations of the
algorithms of Tarjan (Tar) and of Tong-Lawler (TL), for the augmented graphs of Table 2. We report
the running time when the input is the original graph G (above) and a complete k intersection of G

(below). The execution of an algorithm was terminated if it exceeded 1 hour.

Graph Tar TL
stack queue stack queue

enron-EC2 0.01
0.01

0.01
0.01

1.09
0.04

2.41
0.48

enron-EC4 36.34
7.23

111.44
8.18

118.17
7.59

131.24
6.73

enron-EC8 304.29
95.58

591.30
136.25

614.18
131.91

786.56
118.14

enron-EC16 1840.76
951.43

2662.05
1298.16

2782.78
1319.77

3340.18
1343.09

p2p-Gnutella25-EC2 1.19
0.79

3.66
1.13

3.90
1.12

4.41
1.59

p2p-Gnutella25-EC4 8.46
7.05

22.00
14.67

23.76
14.34

23.61
14.73

p2p-Gnutella25-EC8 55.21
53.41

123.56
99.95

124.36
91.005

119.05
88.94

p2p-Gnutella25-EC16 403.92
450.80

744.87
662.15

760.74
629.79

768.10
620.41

rome99-EC2 0.45
0.35

0.40
0.32

0.37
0.24

0.45
0.21

rome99-EC4 3.20
3.19

8.12
6.08

7.26
5.56

6.98
3.88

rome99-EC8 21.67
21.62

49.48
37.11

50.86
37.24

47.44
35.71

rome99-EC16 160.01
156.29

306.58
239.31

312.30
241.95

320.36
243.20

s38584-EC2 14.12
8.88

39.62
25.96

37.02
23.45

44.71
26.93

s38584-EC4 131.86
117.79

286.66
102.47

262.07
98.85

282.07
114.64

s38584-EC8 1012.85
878.22

2040.86
1541.89

2007.45
1258.60

1867.42
1265.24

s38584-EC16 >1h
>1h

>1h
>1h

>1h
>1h

>1h
>1h

web-Stanford-EC2 >1h
2307.26

>1h
3100.36

>1h
2350.42

>1h
>1h

web-Stanford-EC4 >1h
>1h

>1h
>1h

>1h
>1h

>1h
>1h

SEA 2022



14:16 An Experimental Study of Algorithms for Packing Arborescences

Table 7 Running times in seconds of the stack-based and queue-based implementations of the
algorithms of Tarjan (Tar) and of Tong-Lawler (TL), for the k-core graphs of Table 4. We report the
running time when the input is the original graph G (above) and a complete k intersection of G

(below). The execution of an algorithm was terminated if it exceeded 1 hour.

Graph Tar TL
stack queue stack queue

facebook_combined-core02 2.47
0.22

8.04
0.37

8.71
0.43

6.63
0.36

facebook_combined-core04 6.88
0.29

18.83
0.83

20.32
0.86

11.51
0.95

facebook_combined-core25 3.97
0.29

6.32
0.51

6.82
0.53

3.97
0.31

facebook_combined-core50 43.41
29.38

44.34
21.88

47.76
22.59

8.54
3.11

Email-Enron-core09 109.84
44.41

146.24
55.64

156.29
55.41

221.64
47.98

Email-Enron-core10 107.00
47.09

94.40
53.62

101.79
54.95

116.07
41.25

Email-Enron-core16 136.26
106.58

161.54
90.43

170.74
74.56

226.42
94.21

Email-Enron-core18 151.68
119.37

168.80
90.58

177.93
77.12

240.51
104.76

CA-AstroPh-core18 894.66
716.73

991.31
99.58

1029.08
412.42

619.59
213.50

CA-AstroPh-core25 6.74
1.83

15.42
1.66

16.29
1.16

19.77
0.75

CA-AstroPh-core29 0.72
0.08

2.50
0.19

2.68
0.21

3.02
0.10

CA-AstroPh-core32 556.99
537.45

526.15
427.66

545.93
270.58

991.77
349.73

Gowalla_edges-core11 2086.57
567.03

2468.99
455.23

2559.07
394.37

>1h
403.34

Gowalla_edges-core12 915.08
80.10

1425.66
187.11

1094.83
166.56

2482.81
169.45

Gowalla_edges-core15 197.84
28.64

498.99
53.81

321.91
49.67

780.18
47.25

Gowalla_edges-core20 327.64
118.93

552.16
122.30

412.93
109.56

847.61
105.48
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