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Abstract
We study digraph k-coloring games where agents are vertices of a directed unweighted graph and
arcs represent agents’ mutual unidirectional idiosyncrasies or conflicts. Each agent can select one
of k different colors, and her payoff in a given state is given by the number of outgoing neighbors
with a different color. Such games model lots of strategic real-world scenarios and are related to
several fundamental classes of anti-coordination games. Unfortunately, the problem of understanding
whether an instance of the game admits a pure Nash equilibrium is NP-complete [33]. Therefore, in
the last few years a relevant research focus has been that of designing polynomial time algorithms
able to compute approximate Nash equilibria, i.e., states in which no agent, changing her strategy,
can improve her payoff by some bounded multiplicative factor. The only two known algorithms in
this respect are those in [14]. While they provide theoretical guarantees, their practical performance
over real-world instances so far has not been investigated. In this paper, under the further motivation
of the lack of practical approximation algorithms for the problem, we experimentally evaluate the
above algorithms with the conclusion that, while they were suitably designed for achieving a bounded
worst case behavior, they generally have a poor performance. Therefore, we next focus on classical
best-response dynamics, and show that, despite of the fact that they might not always converge,
they are very effective in practice. In particular, we provide a strong empirical evidence that they
outperform existing methods, since surprisingly they quickly converge to exact Nash equilibria in
almost all instances arising in practice. This also shows that, while this class of games is known to
not always possess pure Nash equilibria, in almost all cases such equilibria exist and can be efficiently
computed, even in a distributed uncoordinated way by a decentralized interaction of the agents.
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1 Introduction

In this paper we consider digraph k-coloring games. We are given an unweighted directed
graph where vertices represent selfish autonomous agents and arcs mutual unidirectional
idiosyncrasies or conflicts. Moreover, we have a set of k ≥ 2 available colors denoting agents’
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20:2 Digraph k-Coloring Games: From Theory to Practice

available choices or strategies. A state of the game is a vertex coloring, induced by the
choices of the agents. The objective of each agent is that of maximizing her own payoff,
which is defined as the number of outgoing neighbors with a color different from hers.

Digraph k-coloring games form some of the basic payoff structures in algorithmic game
theory, they fall within the fundamental classes of (anti-)coordination games (see the Related
Work section) and model many relevant real-world scenarios. Typical examples are wireless
networks in which radio stations wish to select the transmission frequency not used by the
maximum number of neighboring stations within their range in order to limit interferences,
or social networks in which members must be split in groups and want to maximize the
number of enemies they do not end together with, or markets in which sellers aim to locate
their activities as far as possible from their direct competitors.

A classical solution concept of stable outcomes in scenarios with selfish and autonomous
agents is the (pure) Nash equilibrium (NE, for short) where no agent can improve her payoff
by unilaterally changing her strategy. In our setting of digraph k-coloring games, a NE
is a coloring where no vertex can improve her payoff by changing color. The NE is one
of the most important concepts in game theory. As such, its efficient computation is one
of the most important problems in algorithmic game theory [24]. In the specific setting
when the input graph is undirected, the k-coloring game is a potential game [39], which
implies that a NE always exists. In particular, when the graph is unweighted undirected, the
dynamics (where at each step one agent performs an improving move) always converges to a
NE in a polynomial number of steps [29,33]. However, in the more general case of directed
graphs, for any k ≥ 2 it is known that even the problem of understanding whether digraph
k-coloring games admit a NE is NP-complete [33]. Therefore, like in a variety of games
falling in this class, where Nash equilibria do not exist or cannot be computed in polynomial
time, researchers focused on the milder form of approximate equilibria [14]. Namely, a state
is called a γ-Nash equilibrium (γ-NE, for short), for some γ ≥ 1, if no agent can strictly
improve her payoff by a multiplicative factor of γ by changing her strategy.

To the best of our knowledge, the only advancements in this direction about digraph
k-coloring games are those presented in [14]. In details, the authors: (i) show that a pure NE
(i.e., with γ = 1) is not guaranteed to exist for any number of players n and colors k < n;
(ii) observe that, for any k ≥ 2, a pure NE exists and can be found in polynomial time if
the graph is bipartite or directed acyclic; (iii) notice that, for the case of k = 2, a γ-Nash
equilibria might not exist for any bounded value of γ. In fact, it is easy to see that in any
2-coloring of a directed cycle with an odd number of vertices there is always at least one
vertex with zero utility (and hence no NE can have bounded γ); (iv) present a deterministic
polynomial time algorithm (called ap1) that, for any k ≥ 3, returns a k-coloring that is a
∆o-Nash equilibrium, where ∆o is the maximum outgoing degree of the input digraph G; (v)
present a randomized algorithm (denoted as lll-spe in what follows) that, by exploiting
the constructive version of the well-known Lovász Local Lemma (LLL, for short, from here
onwards) [40], computes a constant approximate Nash equilibrium in polynomial expected
running time. Specifically, the algorithm works for any constant k ≥ 2 and for the special
class of n-vertex digraphs having Ω(logn) minimum outgoing degree.

However, notwithstanding the aforementioned progress, very little is known about the true
performance of existing algorithms in practice. Specifically, it remains unclear which method
performs best, in terms of approximation and running time, for inputs arising from real-world
application domains. On the one hand, in fact, no average case analysis is known for ap1 and
hence it is difficult to capture how much the upper bound on the approximation is pessimistic
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on real inputs. On the other hand, algorithm lll-spe guarantees constant approximation
with a value of γ that is quite large, and only for a class of digraphs that appears to be
quite infrequent in the application domains of the considered game. Nothing is known about
the behavior of lll-spe on general digraphs. Moreover, to the best our knowledge, no
experimental evaluations have been conducted on the subject, nor any algorithm has been
shown to perform nicely in practice.

Our Contribution. In this paper we attack such research questions through algorithmic
experimentation. In particular, our contribution is twofold. First, we implement and test
both ap1 and lll-spe1 against both artificial and real-world graphs of heterogeneous sizes
and topologies, and different values of k. We observe that the measured approximation
achieved by the two solutions, on the considered combinations of inputs and values of k, is
unsatisfactory. Specifically, the obtained colorings are comparable, in terms of measured γ,
to those one can produce by simply assigning colors to agents/vertices uniformly at random.
Then, motivated by such unsatisfactory performance, under the further motivation of the lack
of practical approximation algorithms for the problem, we focus on the classical best-response
paradigm, where at each step an agent having an improving move is selected uniformly at
random (we refer to this approach as algorithm best-resp in the following). Such paradigm
induces a dynamics on the coloring that does not offer any upper bound on the provided
approximation and might not always stabilize. Hence, to evaluate the practical effectiveness of
best-resp, we implement it and compare it against ap1 and lll-spe, through an extensive
experimental evaluation again involving large sets of heterogeneous inputs and values of
k. In our study we consider, as main performance indicators, both approximation (namely
measured γ) and computational time. Plus, we assess other metrics we introduce here, namely
average payoff and fraction of unhappy vertices, which naturally characterize the practical
effectiveness of considered algorithms in the application domains where they are intended to
be applied. Our experimental results provide strong empirical evidences of best-resp being
the most effective solution among the tested ones, and hence advised for practical usage. In
fact, in essentially all considered combinations of inputs and values of k ≥ 3, best-resp
results to be the best performing method in terms of approximation. Moreover, remarkably,
in the majority of the cases it converges to a pure NE (i.e. computes exact, non-approximate
solutions) in a reasonably low running time, even for large graphs. In the (few) remaining
cases, best-resp is comparable to other methods in terms of approximation, but achieves
better results in terms of average payoff and fraction of unhappy vertices. Our results trigger
new theoretical questions and demand for new investigation on the possibility of achieving
constant approximation for general digraphs or computing a pure NE in polynomial time for
special classes of digraphs. Our study also highlights that, while this class of games is known
to not always possess NE, in almost all cases such equilibria exist and can be efficiently
computed, even in a distributed uncoordinated way by a decentralized interaction of the
agents, such as that underlying best-resp (while ap1 and lll-spe are not naturally suited
for distributed implementations).

Related Work. k-coloring games in undirected graphs have been first investigated in [29,33],
where it is shown that a NE always exists and can be computed in polynomial time if the
graph is unweighted. When the graph is weighted, instead, a NE always exists but the
problem of computing it is PLS-complete, i.e. conjectured difficult, even for k = 2 [46] (notice

1 More precisely, a slightly modified version of lll-spe that incorporates a stopping criterion to apply it
on general digraphs, where the convergence is not guaranteed since the LLL might not hold.
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20:4 Digraph k-Coloring Games: From Theory to Practice

that graph 2-coloring games are exactly max cut games). In [43] it is proven that NE can
be computed in polynomial time for graph 2-coloring games if the maximum degree of the
graph is at most 3. A related investigation for the same class of games is presented in [5, 12],
where the authors give an algorithm that, for any ϵ > 0, computes a (3 + ϵ)-equilibrium
in time polynomial in 1

ϵ and in the instance size. All above results exploit the potential
function method. Unfortunately, digraph k-coloring games (where the graph is directed)
do not admit a potential function and the problem of understanding whether they admit a
Nash equilibrium is NP-complete for any fixed k ≥ 2, even in the unweighted case [33]. The
performance of NE in general graph k-coloring games has been addressed in [25], while the
authors of [15] consider Nash equilibria where players also have an extra profit depending
on the chosen color. Finally, the authors of [13, 28] study the existence of strong NE, i.e.
resistant to coalitional moves, again for graph k-coloring games.

Digraph k-coloring games are related to many fundamental games that have been widely
studied in recent literature. One example is graphical games, first introduced in [32], where
the payoff of each agent depends only on the strategies of her neighbours in a given social
knowledge graph defined over the set of the agents. An interesting class of graphical games,
related to digraph k-coloring games, is that of graphical congestion games [7]. Digraph
k-coloring games can also be seen as a particular form of hedonic games with an upper
bound (i.e., k) to the number of coalitions (see [4] for a brief introduction to hedonic games).
Specifically, given a k-coloring, agents having a same color can be seen as members of the
same coalition in the corresponding hedonic game. In order to get the equivalence between
the two games, the so–called hedonic utility of an agent v has to be defined as the overall
number of her neighbors minus the number of agents of her neighborhood that are in the
same coalition. Issues related to NE in hedonic games have been largely investigated under
several assumptions (see [6, 26,27,37,38,42] and references therein).

While coloring games are the paradigmatic class of anti-coordination games, another very
active stream of research has been dedicated to coordination games, where agents instead
are rewarded for choosing common strategies rather than different ones. Results about
coordination games can be found in [2, 3, 44]. Finally, the authors of [41] study games where
Nash equilibria are proper vertex colorings in an undirected unweighted graphs setting.

Another prominent class of games, generalizing coloring games and bearing strong
connections with coalition, coordination, and anti-coordination games is the one of the
so-called polymatrix coordination games [51]. Here each agent v must select an action in
her strategy set, and the utility is given by the preference she has for her action plus, for
each neighbor w, a payoff which strictly depends on the mutual actions played by v and w.
Polymatrix games have been thoroughly studied both in some classical works [23,30, 31, 36]
and also, more recently, with a special focus on equilibria [11,20,21,44].

2 Notation and Background

Graph Notation. We assume we are given an unweighted directed graph, or simply digraph,
G = (V,A), without self loops, having |V | = n vertices and |A| = m arcs connecting vertices
of G. Any arc (v, w) ∈ A is directed from vertex v to vertex w. An arc is said to be an
outgoing arc from vertex v (incoming arc to vertex w, respectively) if such arc is any arc
(v, w) ∈ A.

Given a vertex v ∈ V , we denote by δv
o (δv

i , respectively) the outgoing degree of v (the
incoming degree of v, respectively), that is the number of outgoing arcs from v (the number of
incoming arcs to v, respectively) in G. The set of outgoing neighbors Nout(v) of a vertex v is
the set of vertices induced by all outgoing arcs of v, i.e. Nout(v) = {w : w ∈ V ∧ (v, w) ∈ A}.
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Moreover, we denote by do = minv∈V δ
v
o and ∆o = maxv∈V δ

v
o the minimum and maximum

outgoing degree of G, respectively. Similarly, we call do and do the average and median
outgoing degree, respectively, and ∆i = maxv∈V δ

v
i the maximum incoming degree of G.

Digraph k-coloring games. In a digraph k-coloring game we are given a digraph G = (V,A),
without self loops, in which each vertex v ∈ V is a selfish agent, and a set C of |C| = k

available colors. Each agent has a same set of actions (i.e. a same strategy set), which is the
set of the k available colors. A state of the game c = {c1, . . . , cn} is a k-coloring for graph
G (simply coloring when k is clear from the context), where each cv is the color chosen by
each agent v ∈ V (i.e., a number from 1 to k). In what follows, we will use vertex and agent
interchangeably. Given a coloring c, the payoff µc(v) (often also referred to as the utility) of
an agent v is the number of outgoing neighbors whose color in c is different from that of v,
i.e. µc(v) = |{(v, w) ∈ A : cv ̸= cw}|. Observe that, for a vertex v, having Nout(v) = ∅ or
cv = cw ∀w ∈ Nout(v) implies µc(v) = 0.

A coloring c is a pure Nash equilibrium (a.k.a. stable equilibrium, denoted in what follows
as pure NE for short), if no agent v can improve her payoff by unilaterally changing strategy
(i.e., color). Formally, if we use (c−v, c

′
v) to denote the coloring obtained, from a coloring

c = {c1, . . . , cn}, by changing the strategy of agent v from cv to c′
v, then a coloring c is a

pure NE if µc(v) ≥ µ(c−v,c′
v)(v), for any possible color c′

v ∈ C and for any vertex v ∈ V .
Unfortunately, a pure NE is not guaranteed to exist even for a large number of available

colors k. In particular, while it is easy to observe that there always exists a NE with |C| = n

colors, by just assigning to each vertex a different color, it is also possible to prove that, for
arbitrary values of n ≥ 3, and for any fixed k such that 1 < k ≤ n−1, there exist instances of
the digraph k-coloring game that do not admit any pure NE [14]. Furthermore, it is known
that, for general digraphs, the problem of determining whether the digraph k-coloring game
admits a pure NE is NP-complete, for all k ≥ 2. Moreover, the cases of bipartite graphs and
directed acyclic graphs are simpler and can be handled in polynomial time [14].

Therefore, from here onward we consider the notion of approximate Nash equilibrium,
defined as follows: a state or coloring c is a γ-approximate Nash equilibrium (simply γ-NE
or γ-stable equilibrium for short), for some γ ≥ 1, if no agent can strictly improve her payoff
by a multiplicative factor of γ, by changing color. More formally, we have that a coloring
c = {c1, . . . , cn} is a γ-NE when, for any possible color c′

v ∈ C and for any vertex v ∈ V , we
have:

γ · µc(v) ≥ µ(c−v,c′
v)(v).

Each vertex in a γ-NE is said to be γ-happy. Viceversa, a vertex v is γ-unhappy, for some
γ ≥ 1, if and only if γ · µc(v) < µ(c−v,c′

v)(v) for some color c′
v ∈ C. In other words, a

γ-unhappy vertex can strictly improve her payoff by a multiplicative factor of γ, by changing
color. In this case, we define the potential payoff πc(v) of vertex v as the maximum payoff a
vertex v can achieve by unilaterally changing its color to another color of the strategy, that
is πc(v) = maxc′

v∈C µ(c−v,c′
v)(v). Consequently, we call the potential color of a vertex v to be

the color of C inducing the potential payoff, i.e. ψc(v) = argmaxc′
v∈C µ(c−v,c′

v)(v).
By analogy, we introduce the special notion of (simply) unhappy vertex, which occurs

for a γ-unhappy vertex when γ = 1. Specifically, given a coloring c, we say a vertex v is
unhappy if and only if µc(v) < µ(c−v,c′

v)(v) for some color c′
v ∈ C, i.e. when the vertex can

strictly improve her payoff by changing color unilaterally (c is not a pure NE). Clearly, if a
vertex v is unhappy we have that µc(v) < πc(v) and cv ≠ ψc(v) while, if πc(v) = γµc(v), for
all vertices v ∈ V for some γ > 0, we have a γ-NE.

SEA 2022



20:6 Digraph k-Coloring Games: From Theory to Practice

3 Algorithms for Digraph k-coloring Games

In this section, we first summarize the main characteristics of known algorithms for the
computation of approximate γ-NE with guarantees on the achieved γ, namely ap1 and
lll-spe [14]. Note that we equip the latter with a stopping criterion to apply it to general
digraphs. Then, we present a formal description of algorithm best-resp, an iterative best-
response-based approach that computes a k-coloring without any guarantee on the achieved
approximation. We will show in the experimental section how this simple strategy results to
be the best solution in practice.

Algorithm ap1. In this paragraph, we provide a brief description of algorithm ap1, proposed
in [14]. Given a digraph G, algorithm ap1, is deterministic and, for any k ≥ 3, returns a
k-coloring such that every vertex v with δv

o ≥ 1 has payoff at least 1, in polynomial time.
Clearly this corresponds to a ∆o-NE since ∆o is the maximum payoff any agent can achieve.

The algorithm is iterative and works as follows (see [14] for more details and for the
pseudocode of the algorithm): at each iteration the algorithm visits the graph induced by
the uncolored vertices and detects a cycle or a path (the latter happens only when the visit
reaches a vertex with zero outgoing neighbors in the induced subgraph). Then, it colors the
vertices of the cycle or the path by alternating three colors, say colors 1, 2 and 3, in a way
that every vertex gets payoff of at least 1, as follows. If the induced subgraph is a cycle,
then the algorithm considers vertices of the cycle in clockwise order and assigns the colors
by following such order, starting by any vertex and alternating the three colors. Viceversa,
if the subgraph is a path from vertex v to vertex w, then two cases can occur. If the arc
(w, u) ∈ A then it colors w by a different color with respect to the already colored vertex
u. Otherwise, it means that δw

o = 0 and we can assign any color to w. Then, it alternates
colors (in this case two colors are enough) for the other vertices of the path considered in the
reverse order starting from w. Observe that it is easy to show, by analyzing the pseudocode
of ap1, given in [14], that the following holds.

▶ Lemma 1. Algorithm ap1 runs in O(∆onm) worst case time.

Algorithm lll-gen. In this paragraph, we introduce algorithm lll-gen, a generalization
of the randomized algorithm lll-spe presented in [14]. Observe that algorithm lll-spe is
based on the Lovász Local Lemma (LLL, for short) [47], which can be used for proving that
there is a positive probability that a random assignment of the k colors to the vertices of
digraphs returns a constant approximate NE, for any value of k ≥ 2, for any graph G = (V,A)
such that the outgoing degree of any v ∈ V is δv

o = Ω(log ∆o + log ∆i). More precisely,
algorithm lll-spe is designed to compute such a NE, in polynomial expected running time,
by exploiting the constructive version of the LLL provided by [40]. Specifically, the algorithm,
starting from a random assignment of the colors, repeatedly and iteratively applies operations
of random resampling of the colors of γ-unhappy vertices of the graph, and to vertices in
their dependency sets, until the coloring converges to a γ-NE. The dependency set of a vertex
v is the set of vertices whose status of being unhappy/happy is influenced by (influences,
resp.) the status of v, namely v’s neighbours, their incoming neighbors, and v itself (see [14]).

The convergence is guaranteed to occur, for lll-spe, w.h.p., if the LLL is satisfied for a
given graph, i.e. when δv

o = Ω(log ∆o + log ∆i). In details, in order to apply the LLL: (i) a
“bad event” Iv is defined over each vertex v of the graph when v is not γ-happy; (ii) a bound
to the maximum size of the dependency set, denoted as depv, of each bad event Iv is given
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as |depv| ≤ δv
o + δv

i + δv
oδ

v
i . If the LLL is satisfied, then algorithm lll-spe returns a γ-NE

by performing a number of resampling operations of dependency sets of γ-unhappy vertices
that is polynomial in expectation, for a constant value of γ, defined as follows:

γ = max
v∈V :δv

o >0

max possible payoff
min expected payoff ≈ max

v∈V :δv
o >0

k

k − 1 +
(

k

k − 1

)2
O

(
(r − k

k − 1)−1
)

(1)

where r = δv
o/ log (∆o∆i). Note that vertices with zero out-degree are not considered in this

formula, indeed they are always happy because they can always select a strategy that yields
a non-zero payoff [14].

Now, observe that the above guarantees hold only for graphs whose structure satisfies the
LLL. Thus, in order to generalize algorithm lll-spe and apply it to any digraph, motivated
by the lack of algorithms to compute approximate NE in general digraphs, we introduce
a stopping criterion to the maximum number of resampling operations that the algorithm
can perform. This is a necessary change for our purpose of experimentally evaluating the
behavior of such algorithm also in digraphs such that δv

o is not Ω(log ∆o + log ∆i), for some
vertex v, as in this case lll-spe might not converge in polynomial time in expectation. In

Algorithm 1 Algorithm lll-gen.

Input: A digraph G(V,A), a set C of |C| = k available colors, a maximum number
of iterations I

Output: A k-coloring c of G
1 c← random k–coloring of G with uniform probability 1

k ;
2 Compute threshold on γ as in Eq. 1;
3 i← 0;
4 while ∃ a γ-unhappy vertex and i < I do
5 Let S be the set of γ unhappy vertices; /* c is not a γ-NE, hence S ̸= ∅ */
6 Select randomly a vertex v ∈ S, with uniform probability 1

|S| ;
7 Randomly, uniformly, color vertices in dependency set depv of v;
8 i← i+ 1;
9 return c;

more details, besides the input digraph and the number of available colors k, the modified
method lll-gen, summarized in Algorithm 1, takes as input also an integer value I and
stops when either a γ-NE is found or a maximum number of iterations I is performed. By
such modification, it is easy to see that the following holds.

▶ Lemma 2. Algorithm lll-gen runs in O(I(n+ ∆o + ∆i + ∆o∆i)) worst case time.

Proof. In each iteration, lines 5 and 7 are executed, with the former requiring O(n) time
while the latter performing a number of operations that is bounded by the maximum size of
the dependency set of any vertex, i.e. O(∆o + ∆i + ∆o∆i). ◀

Algorithm best-resp. In this paragraph we describe an approach for computing approx-
imated NE, named best-resp, that is inspired to classical best-response dynamics, since
they have been shown to be effective in practice to handle similar kinds of games [16, 49, 50].
More specifically, we consider what, in the literature, is sometimes referred to as myopic
best-response method [16,50], i.e. best-response dynamics where agents decide their strategy
based on knowledge of their neighbors only. Such method is universally considered one of
the most appealing strategies in this domain, since its update rules depend only on local
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20:8 Digraph k-Coloring Games: From Theory to Practice

knowledge and hence they are very easy to be translated into distributed algorithms for
decentralized systems of agents [8, 49]. We remark that this is a very relevant domain
for digraph k-coloring games, and no distributed solution to compute approximate NE is
currently known.

In more details, the idea underlying algorithm best-resp is to start from a random
coloring c. Then, if c is not a pure NE, the algorithm tries to iteratively improve it by
applying best response strategies to unhappy vertices. More specifically, during a generic
iteration the algorithm performs the following steps: (i) an unhappy vertex, say v, is selected
uniformly at random; (ii) the color cv of the unhappy vertex is set to the color in the strategy
set C that maximizes her payoff (ties are broken arbitrarily), i.e. to πc(v). The process
stops if a NE is reached, i.e. if no unhappy vertices exist in the graph, or when a maximum
number of iterations I, given as part of the input, is performed. The pseudocode of procedure
best-resp is summarized in Algorithm 2. Given the above, the following result easily follows.

Algorithm 2 Algorithm best-resp.

Input: A digraph G(V,A), a set C of |C| = k available colors, a maximum number I
of iterations

Output: A k-coloring c of G
1 c← random k–coloring of G with uniform probability 1

k ;
2 i← 0;
3 while ∃ an unhappy vertex and i < I do
4 Let S be the set of unhappy vertices; /* c is not a NE, hence S ̸= ∅ */
5 Select randomly a vertex v ∈ S, with uniform probability 1

|S| ;
6 cv ← ψc(v); // Color that maximizes payoff
7 i← i+ 1;
8 return c;

▶ Lemma 3. Algorithm best-resp runs in O(n∆oI) worst case time.

Proof. Observe that executing line 1 takes Θ(n) time. Moreover, the block of Lines 3–7
is executed at most I times, and strictly less than I times only if a pure NE is found. To
this regard, testing the existence of an unhappy vertex in each iteration requires computing
the payoff of all vertices in the worst case, which takes O(∆on) time since, for each vertex,
we need to evaluate the colors of her outgoing neighbors. Selecting at random an unhappy
vertex costs |S| hence O(n) time, and for said unhappy vertex an additional δv

o = O(∆o) time
in necessary to determine the color that maximizes her payoff. Thus, the claim follows. ◀

4 Experimentation

In this section, we describe the experimental study we conducted to assess the performance of
algorithms for digraph k-coloring games. In particular, we implemented lll-gen, best-resp,
and ap1, and designed and deployed an experimental framework to evaluate said algorithms,
with respect to various metrics of interest for the context of digraph k–coloring games, and
on large set of meaningful input digraphs.

Test Environment and Implementation Details. Our entire test environment is based on
NetworKit [48], a widely adopted open-source toolkit for implementing graph algorithms
and performing network analysis tasks at scale. All our code is written in Python, with
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some sub-routines in C++/Cython. All tests have been executed, through the Python 3.8
interpreter, under Linux (Kernel 5.3.0-53), on a workstation equipped with an Intel© Xeon©

CPU E5-2643 3.40GHz and 128 GB of RAM.

Input Details. As input to our experiments, inspired by other empirical studies on graph
algorithms [1,10,17–19,22], we employed a large dataset of digraphs, including: (i) real-world
instances, taken from publicly available repositories [34, 45]; (ii) artificial digraphs, built via
well-established random generators, namely Erdős-Rényi and Paley models [9]. More details
on used inputs, including sizes and main characteristics are reported in Table 1, while Figure
1 shows how outgoing degree is distributed in the considered inputs.

Table 1 Overview of used input digraphs. The first three columns contain dataset name, acronym,
and type; the 4th and 5th columns show number of vertices and arcs of the digraph, respectively;
columns from the 6th to the 8th report average, median and maximum outgoing degree, respectively.
Finally, the 9th column highlights whether the graph is synthetic or real-world ( = true, = false),
while the last column specifies whether the LLL holds in the given graph ( = true, = false).
Inputs are sorted by do, non-decreasing.

Dataset Short Type |V| |A| do do ∆o S LLL
Twitter twi digital social 23370 33101 1.42 0 238
facebook fac digital social 309717 472792 1.53 0 358
amazon ama ratings 80679 135336 1.68 2 9
Flight flt infrastructure 1226 2613 2.13 1 24
Peer2Peer p2p internet 62586 147892 2.36 0 78
Luxembourg lux road 30647 75546 2.47 3 9
rand3 rr3 random 10000 30000 3 3 3
rand4 rr4 random 10000 40000 4 4 4
Oregon-AS ore autonomous system 10670 44004 4.12 2 2312
rand5 rr5 random 10000 50000 5 5 5
Health hea human social 2539 12969 5.11 5 10
relativity rel collaboration 5242 28968 5.53 3 81
Linux lin community 30834 213424 6.92 5 243
Peer2PeerSm spp internet 10876 79988 7.35 5 103
Google goo hyperlinks (local) 15763 170335 10.81 8 852
Erdős-Rényi A era random 1000 12460 12.46 12 27
Blog blg interaction 1224 19022 15.54 7 256
Erdős-Rényi B erb random 1000 24943 24.94 25 45
wiki-Vote wvt voting 7115 201524 28.32 4 1065
Email ema interaction 1005 32128 31.97 21 345
Erdős-Rényi C erc random 1000 49924 49.92 50 74
Erdős-Rényi D erd random 1000 100025 100.03 100 134
Erdős-Rényi E ere random 1000 199443 199.44 199 238
paley601 pl1 random 601 180300 300 300 300
paley1181 pl2 random 1181 696790 590 590 590

Concerning parameter k, since no direct, well-established relationship is known between k
itself and the approximation provided by the algorithms under study, our experimental trials
consider carefully selected values of said parameter to investigate how the algorithms’ behavior
changes as k increases. Specifically, we consider both the reference case of k = 3 (representing
a conjectured threshold on the computational hardness of the problem) and, as suggested by
established guidelines for experimental algorithmics [35], to magnify the dependency on k

in a reasonable number of tests, values of k ranging in the interval [max{4, do},∆o], evenly
spaced as multiples of ⌊∆o−do

5 ⌉. For iterative algorithms, we fix I = n logn, since this leads
in all cases to practical running times, even on the largest inputs.

Objectives of Experimentation. The purpose of our experimentation is twofold. First, we
want to assess how effective are state-of-the-art solutions for digraph k-coloring games in
practice. To this regard, we test our implementations of ap1 and lll-gen against all inputs
and the mentioned values of k and compare, in terms of resulting γ, computed colorings
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Figure 1 Distributions of outgoing vertex degrees of input graphs: each box plot shows minimum,
1st quartile, median, 3rd quartile, and maximum values. The red dotted line shows log ∆o + log ∆i

for graphs where the LLL holds. The blue line, viceversa, marks graphs where the LLL does not
hold. Inputs are sorted, left to right, bottom to top, in non-decreasing order of do.

to randomly generated colorings, obtained by randomly, uniformly assigning a color of the
strategy set C to each agent with probability 1

|C| (we denote this method by random in what
follows). Second, we aim at establishing the practical effectiveness of algorithm best-resp,
hereby formalized. To this aim, we execute and compare obtained results to those achieved
by ap1 and lll-gen for the same inputs and values of k. In all conducted tests, as a measure
of quality of the computed colorings, we focus primarily on the obtained approximation.
Specifically, for each graph G and value of k, and for each execution of each algorithm
yielding a coloring c, we measure the approximation ratio with respect to a pure, exact NE,
denoted as γ(G, c), as follows:

γ(G, c) =
{

0 if ∃v ∈ V : cv = cu ∀ u ∈ Nout(v)
maxv∈V :δv

o >0
πc(v)
µc(v) otherwise.

In other words, if an algorithm computes a coloring c with γ(G, c) > 1 (a sufficient condition
for the latter to happen is all vertices having strictly positive payoff, cf. Sec. 1), it follows
that said coloring is a γ-NE. Moreover, γ(G, c) = 1 implies the computed coloring is a
pure NE. Now, since algorithms lll-gen and best-resp are iterative and induce dynamics
on the state of the game (i.e. on the coloring), this part of the study measures also further
performance indicators to better characterize the behavior of the considered algorithms.
More in details, we measure: average payoff denoted as

P (G, c) =

∑
v∈V

µc(v)

|V |
and fraction of unhappy vertices, denoted as

U(G, c) = |{v ∈ V : v is unhappy}|
|V |

.
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Finally, for all algorithms, we measure the running time T (G, c) spent to compute c. Notice
that most of our experimental framework is written in Python, with some sub-routines
in C++/Cython, with a fairly optimized code. We leave the problem open of achieving
a faster version of all implementations through careful code tuning and porting to more
high-performance programming languages., e.g. pure C++. In what follows, we will use llg,
br, rnd and ap1 to refer to algorithms lll-gen, best-resp, random and ap1, respectively,
for the sake of brevity.

Analysis. In Table 2 we present a summary of the results of our experimentation, for all
input graphs and values of k. In details, for each considered metric, starting from the most
relevant (i.e. approximation), we report the number of times each algorithm resulted to be
the best performing one (2nd, 3rd, 4th best performing one, respectively) with respect to
said metric. Note that, for those algorithms that resort to randomization, we executed three
trials for each combination and computed average values of observed measures.

Table 2 Aggregate statistics for all tested algorithms with respect to the four considered indicators,
for all combinations of inputs and values of k (for a total of 175 combinations).

metric algorithm best 2nd 3rd worst

γ(G, c)
rnd 4 (2.3 %) 33 (18.9 %) 81 (46.3 %) 57 (32.5 %)
ap1 1 (0.6 %) 69 (39.4 %) 51 (29.1 %) 54 (30.9 %)
llg 7 (4.0 %) 62 (35.4 %) 43 (24.6 %) 63 (36.0 %)
br 163 (93.1 %) 11 (6.3 %) 0 (0.0 %) 1 (0.6 %)

U(G, c)
rnd 1 (0.6 %) 42 (24.0 %) 106 (60.6 %) 26 (14.8 %)
ap1 0 (0.0 %) 13 (7.4 %) 13 (7.4 %) 149 (85.1 %)
llg 6 (3.4 %) 114 (65.1 %) 55 (31.5 %) 0 (0.0 %)
br 168 (96.0 %) 6 (3.4 %) 1 (0.6 %) 0 (0.0 %)

P (G, c)
rnd 5 (2.9 %) 56 (32.0 %) 96 (54.9 %) 18 (10.2 %)
ap1 0 (0.0 %) 7 (4.0 %) 13 (7.4 %) 155 (88.6 %)
llg 7 (4.0 %) 106 (60.6 %) 60 (34.3 %) 2 (1.1 %)
br 163 (93.2 %) 6 (3.4 %) 6 (3.4 %) 0 (0.0 %)

T (G,c)
rnd 173 (98.9 %) 2 (1.1 %) 0 (0.0 %) 0 (0.0 %)
ap1 2 (1.1 %) 152 (86.9 %) 14 (8.0 %) 7 (4.0 %)
llg 0 (0.0 %) 20 (11.4 %) 101 (57.7 %) 54 (30.9 %)
br 0 (0.0 %) 1 (0.6 %) 60 (34.3 %) 114 (65.1 %)

Our data highlight clearly that algorithm br is the best performing one, globally, in
terms of approximation. In fact, out of 175 combinations of input instances and values of k,
br computes a γ(G, c)-NE with the smallest value of γ(G, c) in 163 of them (93.1% of the
combinations). Algorithms rnd, llg and ap1, instead, behave rather badly, providing the
best approximation, together, only in the remaining 6.9% of the combinations. Moreover,
values of γ(G, c) obtained by llg and ap1 are often quite close to those of rnd, as shown
in Figures 2–3 (for k = 3) and Figure 4 (for larger k), which represents a solid evidence
of the practical ineffectiveness of the two. Notice that, in such figures we report detailed
measures of γ(G, c) and of other indicators introduced in this section, for all algorithms
and for a meaningful selection of input graphs and values of k (results for other inputs
lead to similar considerations and hence are omitted, due to space constraints). Notice
also that, in all mentioned figures, we report a default of γ(G, c) = 0 when there exist at
least one vertex with zero payoff (hence γ is unbounded) while γ(G, c) = 1 and U(G, c) = 0
correspond to a pure NE being found. Besides br being the best solution with respect to
approximation, the most surprising outcome of our experimentation is that br is able to
compute, in almost all cases, colorings that are pure, exact NEs (see e.g. Figure 2 or 3
(middle)). This is remarkable, considering the known hardness of determining this kind of
colorings in general digraphs. Specifically, br is able to find pure Nash equilibria, often in less
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Figure 2 Performance of algorithms rnd, llg, ap1 and br, respectively, in graphs twi (top),
fac (middle), and lux (bottom) with k = 3. Time is expressed in seconds.
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than n iterations, for all considered graphs and values of k (see, e.g., Figure 5, two left-most
panels) except Erdős-Rényi instances (where however in some case still achieves the best
approximation). In these latter inputs, colorings computed by best-resp appears to exhibit
a γ(G, c) that becomes periodic at some point of the optimization process, around some value
close to 1 (see Figure 5, two right-most panels). Note that, when br ranks 2nd best in terms
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Figure 4 Performance of algorithms rnd, llg, ap1 and br, respectively, in graphs twi (top-most),
ama (middle-top), goo (middle), erd (middle-bottom) and pl1 (bottom-most), with increasing
values of k. Time is expressed in seconds.

of γ(G, c), algorithm rnd results to be the best performing one (see, e.g., Figure 3, top or
bottom). At the same time, br exhibits higher average payoff and lower fraction of unhappy
vertices, which suggests that random assignment might be “lucky” in picking and making
happy high-degree vertices, while algorithm br is able to achieve maximum payoff for a large
fraction of the vertex set. By the above, we conjecture that there might exist an analysis for
algorithm br to prove a bounded approximation ratio for a broad class of graphs.
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In this direction, it is worth noticing that, unexpectedly, llg fails at achieving the best
approximation even in graphs where the LLL is satisfied (i.e. where llg finds constant
approximation in expected polynomial time). This might be due the fact that the threshold
value of γ, for which llg stops, is rather high, often larger than ∆o (e.g. 2690.36 for instance
erc, see Eq. 1 with k = 3). In this respect, to achieve better results in practice, one might
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Figure 5 Results achieved by the execution of algorithm br, in terms of γ(G, c), on graphs blg
(a), wvt (b), erd (c) and ere (d) with k = 3, respectively. The y–axis shows the measured value
of γ(G, c) as a function of the number of iterations performed by the algorithm, reported on the
x-axis (we omit iterations where γ(G, c) is unbounded due e.g. to some vertex having zero payoff).
In the two left-most panels, i.e. (a)–(b), we can observe γ(G, c) the algorithm quickly converging to
a pure NE (γ(G, c) approaches and then stabilizes at 1 (in much less than n log n and n iterations,
respectively). In the two right-most panels, , i.e. (c)–(d), instead, n log n iterations do not suffice to
achieve convergence at pure NE and γ(G, c) seems to start oscillating around a value of 1.75 and 2,
respectively.

think of removing such stopping criterion from lll-gen to let the coloring being updated,
via resampling, for a maximum number of iterations, as done by best-resp. Nonetheless,
as further experimentation shows (omitted due to space limitations), this does not lead to
meaningful improvements, in terms of both approximation and other indicators. We can
hence conclude that repeated operations of resampling of the dependency set are indeed
enough to obtain constant approximation w.h.p. but result to be empirically ineffective.
Thus, another outcome of our study is that the use of llg is discouraged for practical
purposes, unless more effective ways of exploiting the LLL can be determined. Nonetheless,
for the sake of completeness, it is worth noticing that also the latter might not be enough.
In fact, our study points out that inputs arising in real-world applications satisfying the LLL
are essentially non-existent (see Figure 1).

Regarding the impact of varying k on the performance of the considered algorithms, we
observe that, while br remains the best performing in essentially all cases, approximation
ratio and fraction of unhappy vertices (running time and average payoff, respectively) tend
to decrease (increase, respectively) with k, for all algorithms. This might suggest that larger
values of k could reduce the possibility of being unhappy, by increasing the choices of the
agents in the strategy set. Further investigation is hence necessary also here to find out
whether there exists some relationship between k, ∆o, and the quality of the equilibrium
that can be achieved. As a final remark, concerning running time, our data mostly confirm
what it is expected, i.e. that: (i) rnd is trivially the fastest method; (ii) in some cases br is
the most time consuming solution (always achieving the best approximation in these cases);
(iii) in the remaining cases, either ap1 and llg yield the largest T (G, c) but they do not
achieve the best approximation. The latter represents another evidence of br being fast at
converging to a pure NE, when it exists. To summarize, our experimental study identifies
algorithm br as the best performing one for digraph k-coloring games. This observation,
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combined with the fact that (myopic) best response approaches are easy to implement, even
in a distributed uncoordinated environment, suggests that br is strongly advised to find
good Nash equilibria in application domains where the considered game arise.

5 Conclusion and Future Work

Our experimental study adds considerable insights on digraph k-coloring games w.r.t. previous
theoretical work. In fact, it provides a strong empirical evidence of the fact that theoretical
results probably required very rare graphs, tailored around the worst case behaviour, and
that best response heuristics outperforms algorithms with guarantees. This motivates further
research effort towards proving the existence of a NE in specific classes of graphs, especially
the ones typically arising from social phenomena. Moreover, our results suggest that, in
general, a NE with a better approximation factor could be found. In fact, for the very few
cases in which a NE is not reached by br, the returned solution is always a γ-NE with a
very low approximation ratio. This renews theoretical interest on this relevant class of games.
In this direction, it is worth noticing that, a viable strategy to obtain lower bounds on the
approximation factor could be that of exploiting a linear programming formulation for the
problem, as done for other combinatorial problems in the past.
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